Debugging i0S Applications With IDA
Copyright 2016 Hex-Rays SA

IDA 6.95 introduced the Remote i0S Debugger plugin, which allows users to debug iOS target
applications directly from IDA. It works on all supported platforms (Mac, Windows, Linux),
supports both ARM32 and ARM64 targets, and has been extensively tested with i10S 9.

The goal of this tutorial is to install a small example app on your device and use IDA to debug it.

Before we begin, please note that the Remote iOS Debugger requires a running instance of the
Apple 10S debugserver in order to function. Since 10S devices are often jailed, spawning a remote
debugger process (or doing anything else for that matter) can be somewhat of a task.

IDA provides various ways of working with jailed devices, depending on your platform. If you are a
Mac user, continue reading. If you are a non-mac user, skip to "Non-Mac users'.

Quick Start

The fastest way to get started is to use Xcode to build and install a sample app, then switch to IDA
to debug it. We will cover this process in depth here. If you prefer not to use Xcode, jump ahead to
the 'ios_deploy' section.

Creating a Sample Project

Note that since IDA depends on the i0OS debugserver, IDA can only debug applications that the
debugserver can debug. Usually, the default debugserver installed by Xcode can only debug
applications that you have built with Xcode.

Thus, we must start by building a sample app ourselves, just for this tutorial.

First open Xcode.app and on the "Welcome to Xcode' screen, choose 'Create a new Xcode project'.
Then when asked to choose a template, select one of the 10S Application templates:

Choose a template for your new project:

i0S
Application - 000 1 .
Framework & Library
Other Master-Detail Page-Based Single View Tabbed
Application Application Application Application

0S X
Application %
Framework & Library
System Plug-in Game
Other

Master-Detail Application

This template provides a starting point for a master-detail application. It provides a user
interface configured with a navigation controller to display a list of items and also a split
view on iPad.

Cancel —

Click Next, and when asked for the project options, use the following values:

Product Name: demo
Organization Identifier: me
Language: Objective-C

For the remaining fields you can use the default values.

Symbols

Once your project has been created, ensure that your device is attached to your host machine and is
selected as the current device in the top left of the Xcode window:

f\ demo) l Troy's iPhone

When you first select your device, Xcode will perform two important tasks. First it will install the
debugserver on your device (which IDA will need for debugging), and it will also extract symbol
files from dyld shared cache.

Symbol processing usually takes a while, and you can check the progress at the top of the Xcode
window:

Processing symbol files 1

When this process is completed, Xcode will store the symbols in:
~/Library/Developer/Xcode/i0S DeviceSupport/<i0OS version>/Symbols

Ensure that this directory is present and use it to set SYMBOL_PATH in
idaqg.app/Contents/Mac0S/cfg/dbg ios.cfg:

SYMBOL _PATH = "~/Library/Developer/Xcode/iOS DeviceSupport/9.3.1 (13E238)/Symbols";

Installation

In order for IDA to debug this app, it must know the path to the app's executable file. However, i0S
tends to hide these details about the file system, and as far as we know there is no way to formally
ask Xcode where exactly it has installed the app on your device.

So, we use the following workaround:

Open the source file AppDelegate.m, and in the function didFinishLaunchingWithOptions, insert
the following line:

NSLog(@"app installation path: %@", [[NSBundle mainBundle] executablePath]);
This will ensure that the installation path will be printed in the Xcode console when the app is run.

Now click on the big Play button in the top left of the Xcode window. This will build, install, and
launch the app on your target device. Once you see that the app has been launched and the
application path as been printed to the console, press the Stop button in the top left.

Launching the Debugger

Now it's time to open our sample app in IDA. On the left side of the Xcode window, under the
Project Navigator tab, click on demo.app under the Products folder:

=5 B A A © =2 =2 B

y g demo = @ < OO0 O
2 targets, iOS SDK 8.1
v | demo ®
h AppDelegate.h D
m AppDelegate.m Identity and Type
h MasterViewController.h Name demo.app
MasterViewController.m
L Type Application Bundle [T

h DetailViewController.h

m DetailViewController.m Location Relative to Build Products

Main.storyboard
demo.app

Full Path /Users/troy/demo/
DerivedData/demo/Build/

Products/Debug-iphoneos/
P | | demoTests demo.app

v Products

7~z demo.app

[]demoTests.xctest

' Images.xcassets
LaunchScreen.xib
» || Supporting Files

Then, on the right side of the Xcode window under the Utilities tab, you can find the path to newly
built app bundle. Use this path to open the app's executable file in IDA:

troy@mac:~$ idaq64 /Users/troy/demo/DerivedData/demo/Build/Products/Debug-
iphoneos/demo.app/demo

Once IDA has finished loading the file, select 'Remote i1OS Debugger' from the combo box at the
top of the screen and set a breakpoint at main.

Now open menu Debugger>Process options... and for the 'Application' and 'Input File' fields, use
the path that was printed to the console when you ran the app in the 'Installation’ section above:

[NON) @ Debug application setup: ios

NOTE: all paths must be valid on the remote computer

Application dle/Application/5131B97E-3D84-41D3-85D6-4E3F7DDB8E42/demo.app/demo “
Input file dle/Application/5131B97E-3D84-41D3-85D6-4E3F7DDB8E42/demo.app/demo |4
Parameters “
Hostname localhost g Port 23946 “

Save network settings as default

Help Cancel | OK |

In this situation, IDA will not use the 'Hostname' and 'Port' fields, but it still always requires a non-
empty hostname. Just set it to 'localhost'.

Now click Debugger>Start process, and wait for the breakpoint at main to be hit:

P IZIE]

0000000100051D64

0000000100051D64

0000000100051D64 ; Attributes: bp-based frame
0000000100051D64

0000000100051D64 ; int __cdecl main(int argc, const char **argv, const char **envp)
0000000100051D64 EXPORT _main
0000000100051D64 _main

0000000100051D64

0000000100051D64 var_38= -0x38
0000000100051D64 var_30= -0x30
0000000100051D64 var_24= -0x24
0000000100051D64 var_20= -0x20
0000000100051D64 var_ l4= -0x14
0000000100051D64 var_10= -0x10
0000000100051D64 var_8= -8

0000000100051D64 var_4= -4

0000000100051D64 var_sO= 0

0000000100051D64

0000000100051D64 STP X29, X30, [SP,#-0x10+var_s0]!
0000000100051D68 MOV X29, SP

0000000100051D6C SUB SP, SP, #0x40

0000000100051D70 MOV W8, #0

0000000100051D74 STP WO, W8, [X29,#var_8]
0000000100051D78 STUR X1, [X29,#var_10]

0000000100051D7C BL _objc_autoreleasePoolPush
0000000100051D80 ADRP X1, #selRef_class@PAGE
0000000100051D84 ADD X1, X1, #selRef_class@PAGEOFF
0000000100051D88 ADRP X9, #classRef_ AppDelegate@PAGE
0000000100051D8C ADD X9, X9, #classRef AppDelegate@PAGEOFF
0000000100051D90 LDUR W8, [X29,#var_8]

0000000100051D94 LDUR X10, [X29,#var_10]

0000000100051D98 LDR X9, [X9] ; _OBJC_CLASS $_AppDelegate

And that's it! You can now explore process memory, inspect registers, single step, etc. Happy
debugging!

ios_deploy
We recommend Mac users to download 'ios_deploy' from the hex-rays downloads page:

https://www.hex-rays.com/products/ida/support/ida/ios_deploy.zip

This helper utility has effectively replaced Xcode in our development cycle, and can perform all the
everyday tasks that can be difficult on 1OS - like signing and installing applications, extracting
debugging symbol files from dyld shared cache, and retrieving the installation paths of target
executables.

See 10s_deploy -h to get a quick look at what it can do.

The goal of this part of the tutorial is to use ios_deploy to install a prebuilt sample application and
debug it in IDA — with limited dependence on Xcode.

Connection

Before we get started lets do a sanity check to make sure IDA will be able to recognize and connect
to your device. Connect a device to your Mac via USB (currently ios_deploy cannot work over Wi-
F1), and run the following command:

troy@mac:~$ ios_deploy listen

Device connected:

- name: iPhone 6

- model: iPhone 6s

-ios ver: 10.0

- build: 14A5341a

- arch: arm64

- id: 9b72866777b672d81bcf080964926f3b9864a9b2
~C

troy@mac:~$

ios_deploy should print a message every time a device is connected/disconnected. If you see a
message like you see above, then so far so good.

https://www.hex-rays.com/products/ida/support/ida/ios_deploy.zip

Installing the debugserver

The next step is to ensure that the debugserver has been installed on your device and IDA will be
able to launch it. You can check this using the 'diagnostics' phase:

troy@mac:~$ ios_deploy diagnostics

Device: iPhone 6 (iPhone 6s, iOS 10.0)

Warning: could not launch the debugserver (The service is invalid.)

Trying to re-mount the developer disk image...

Error: could not open signature file
/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/DeviceSupport/10.0
(14A5341a)/DeveloperDisklmage.dmg.signature

Phase 'diagnostics' failed, exiting

troy@mac:~$

If the debugserver is not present on your device, you will get a 'service is invalid' message, and the
diagnostics phase will try install the DeveloperDisklmage.dmg automatically and try again.

If diagnostics failed to find a matching DeveloperDisklmage.dmg for your device (like it did
above), you can find one manually. They are usually located in:

/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/DeviceSupport/
Then use 'mount -d <path>' to install it:

troy@mac:~$ ios_deploy mount -d \

> /Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/DeviceSupport/10.0\ \
(14A5339a\)/DeveloperDiskimage.dmg

troy@mac:~$ ios_deploy diagnostics

Device: iPhone 6 (iPhone 6s, iOS 10.0)

Diagnostics completed. No issues to report

troy@mac:~$

If the debugserver could be launched, you should see 'Diagnostics completed. No issues to report'.

Symbols

The next step is to extract debug symbols from dyld shared cache. IDA relies heavily on these
symbol files in order to achieve fast and detailed debugging (as does Xcode — it usually stores
symbols in ~/Library/Developer/Xcode/iOS\ DeviceSupport when you first connect your device).

To extract the symbol files to your host, run the “symbols” phase:

troy@troy:~$ ios_deploy symbols
Copying dyld...

Downloading 0.59 MB of 0.59 MB
/tmp/dyld: done

Copying dyld_shared_cache_armé64...
Downloading 767.19 MB of 767.19 MB
/tmp/dyld_shared_cache_arm64: done
Extracting symbol file: 957/1197

When this phase completes it will store the symbols at ~/Symbols. We can now tell IDA where to
find them by setting SYMBOL PATH in idaq.app/Contents/MacOS/cfg/dbg _ios.cfg:

SYMBOL_PATH = "~/Symbols";

Installation

Now it's time to set up an example target application. We have provided a prebuilt example i0S

binary in 'ios_demo' at https://www.hex-rays.com/products/ida/support/ida/ios_demo.zip, along
with the source code. You must codesign this application in order to install and debug it on your
device, which means you must be part of the iPhone Developer program.

If the application is not properly codesigned with your developer certificate, the debugserver will
refuse to debug it, reporting a 'Failed to get task for process' error message.

See 'ios_deploy codesign -h' for more on how this process works.

Once you have verified that you have an iPhone Developer certificate and you have downloaded the
example app, cd to ios_demo/ and run the following command:

troy@mac:~/ios_demo$ ios_deploy appify -e demo

This will create an app bundle at ./demo.app, which can then be installed on your device with:

troy@mac:~/ios_demo$ ios_deploy install -b demo.app/
You can then print the installation path via:

troy@troy:~J/ios_demo$ ios_deploy paths -b demo -s
/var/containers/Bundle/Application/132A825B-9EB8-4FA4-B49B-3722C0EBFF24/demo.app/demo

Launching the Debugger

Finally, it's time to launch IDA and run the debugger. First open the example app in ida:
troy@troy:~/ios_demo$ idaq demo.app/demo
Once IDA has finished loading the file, Select 'Remote iOS Debugger' from the combo box at the
top of the window and set a breakpoint at main. Open menu Debugger>Process options... and for
both the 'Application' and 'Input file' fields, insert the path you retrieved by running 'ios_deploy
paths' above:

[] [) €® Debug application setup: ios

NOTE: all paths must be valid on the remote computer

Application dle/Application/132A825B-9EB8-4FA4-B49B-3722C0EBFF24/demo.app/demo “
Input file dle/Application/132A825B-9EB8-4FA4-B49B-3722C0OEBFF24/demo.app/demo H
Parameters i
Hostname localhost 4 Port 23946 4

Save network settings as default

Help Cancel | OK]

In this situation, IDA will not use the 'Hostname' and 'Port' fields, but it still always requires a non-
empty hostname. Just set it to 'localhost'.

Now click Debugger>Start process, and wait for the breakpoint at main to be hit:

P

0009FF7C
0009FF7C
0009FF7C
0009FF7C
0009FF7C
0009FF7C
0009FF7C
0009FF7C
0009FF7C
0009FF7C
0009FF7C
0009FF7C
0009FF7C
0009FF7C
0009FF7E
0009FF80
0009FF82
0009FF8A
0009FF8C
0009FF92
0009FF94
0009FF96
0009FF98
0009FF9A
0009FF9E
0009FFA4
0009FFA6
0009FFAS
0009FFAR
0009FFAR
0009FFAA
0009FFAR
0009FFAR

CODEl6

; int _ cdecl main(int argec, const char **argv, const char **envp)
EXPORT _main
_main

var_18= -0x18
var_ l4= -0xl4
var_10= -0x10
var_C= -0xC

PUSH {R7,LR}

MOV R7, SP

SUB SP, SP, #0x10

MoV R2, #(aHelloWorld - Ox9FF8E) ; "hello, worldl\n"
ADD R2, PC ; "hello, world!\n"
MOVS R3, #

STR R3, [SP,#0xl18+var C]

STR RO, [SP,#0x18+var_10]

STR R1, [SP,#0x18+var_14]

MOV RO, R2 ; char *

BLX _printf

MOVS R1, #

STR RO, [SP,#0x18+var_ 18]

MOV RO, R1

ADD SP, SP, #0x10

POP {R7,PC}

; End of function _main

7 __text ends

And that's it! You can now step, explore process memory, inspect registers, etc. Happy debugging!

Troubleshooting

Process Launch

If IDA fails to launch the target process for whatever reason, it will usually print an error message
to the console window. Here are some common error messages:

* Elocked - this means the debugserver failed to launch the process because the device's
screen is locked. Simply unlock the screen and this error should go away.

* The service is invalid - this usually means IDA tried to launch a debugging utility that is
not installed on the device. Please ensure that the DeveloperDisklmage.dmg has been
mounted on your device (either via Xcode or 'ios_deploy mount').

* [Efailed to get the task for process - this likely means that the debugserver does not have
permission to debug the target app. Please ensure that the target app has been properly
codesigned for debugging (‘ios_deploy codesign' can do this for you).

SA: http://iphonedevwiki.net/index.php/Debugserver and AUTOLAUNCH in dbg_1o0s.cfg

IDA_DEBUG_DEBUGGER

This flag will make IDA print very verbose logging messages to the console while the debugger is
running. Enable it by launching IDA with: '/path/to/idaq -z10000'

If this option is enabled when using the Remote i0OS debugger, IDA will log all of the packet
communication between IDA and the debugserver. Look for lines prefixed with:

> ... (data sent to debugserver)

and

< ... (data received from debugserver)

http://iphonedevwiki.net/index.php/Debugserver

Often times these packets will contain messages or error codes that might describe the problem.

Syslog

You can also use the SYSLOG_FLAGS option in dbg_ios.cfg to instruct the debugserver to print
extra debug messages to the i0S system log.

You can then use 'ios_deploy syslog' while IDA is running to fetch the system log.

Working with Multiple Devices

Be careful when working with multiple iOS devices connected to your host simultaneously. In this
situation you can select the target device via menu Debugger>Debugger options>Set specific
options:

LWL / iPhone 6 (iPhone 6s, iOS 10.0) v

iPad mini (iPad mini, i0S 9.3.2)
Troy's iPhone (iPhone 6s, iOS 9.3.1)

eI OK |

If you have multiple devices connected and you don't specify a target device, IDA will simply use
the first device it finds. The device used is not guaranteed to be deterministic, so its a good idea to
explicitly tell IDA which device to use.

Non-Mac users

On non-mac platforms, IDA has no way to launch the debugserver automatically like it does on
Mac. Thus, you must be able to ssh to your device and launch the debugserver yourself, specifying
a port to listen on. Then specify this port and the hostname of your device in the Process Options
dialog:

testers—iPad:~ root# ./debugserver *:1234

debugserver—64 for armvé Copyright (c) 2007-2009 Apple, Inc. All Rights Reserved.
Listening to port 1234...

Hostname 192.168.5.39 i Port 1234| g

See http://iphonedevwiki.net/index.php/Debugserver for how to get the most out of the
debugserver.

Also see http://iphonedevwiki.net/index.php/SSH_Over USB for an overview of how you can ssh
to your device over USB.

Symbols

IDA relies heavily on symbol files extracted from dyld shared cache for fast and detailed
debugging. It is definitely possible to debug without symbol files, but IDA will be much slower and
will be missing many symbol names.

If you manage to extract symbol files from your device (either using a third-party tool or Xcode if
you have access to a Mac), you can tell IDA where to find these files via the SYMBOL PATH
variable in dbg_ios.cfg.

http://iphonedevwiki.net/index.php/SSH_Over_USB
http://iphonedevwiki.net/index.php/Debugserver

	Quick Start
	Creating a Sample Project
	Symbols
	Installation
	Launching the Debugger
	ios_deploy
	Connection
	Installing the debugserver
	Symbols
	Installation
	Launching the Debugger
	Troubleshooting
	Non-Mac users
	Symbols

