
ASR1500/ASR1600
Automatic Speech Recognition

Software Development Kit
for Windows 95/98/NT

Version 3.22

Development Tools User’s Guide

© Lernout & Hauspie Speech Products, October 1999

i

EVALUATION AGREEMENT
READ THE FOLLOWING CAREFULLY BEFORE USING THE
SOFTWARE.
PRIOR TO RECEIVING THE SOFTWARE, YOU HAVE SIGNED EITHER
A LICENSE AGREEMENT OR A NON-DISCLOSURE AGREEMENT
WITH LERNOUT & HAUSPIE SPEECH PRODUCTS (L&H),
CONCERNING THE L&H ASR1500/ASR1600 SOFTWARE
DEVELOPMENT KIT. THEREFORE, REFERENCE IS MADE TO THESE
AND AS SUCH THE CONTRACTUAL TERMS AND CONDITIONS
SHALL APPLY TO THE SOFTWARE.
IF YOU HAVE NOT SIGNED SUCH AN AGREEMENT AND IF YOU
USE THE SOFTWARE, L&H WILL ASSUME THAT YOU AGREED TO
BE BOUND BY THE EVALUATION AGREEMENT SPECIFIED
HEREUNDER. IF YOU DO NOT ACCEPT THE TERMS OF THIS
EVALUATION AGREEMENT, YOU MUST RETURN THE PACKAGE
UNUSED TO L&H WITHIN SEVEN (7) DAYS AFTER RECEIPT.

1. Grant of Rights
In consideration of a possible commercial relationship, L&H hereby grants
to you, the LICENSEE, who accepts, a non-exclusive right to internally
evaluate and test the software program (“the Software”).

2. Ownership of Software
L&H retains title, interests and ownership of the Software recorded on the
original disk(s) and all subsequent copies of the Software and
Documentation, regardless of the form or media in or on which the original
and other copies may exist. L&H reserves all rights not expressly granted
to LICENSEE.

3. Copy Restrictions
This Software and the accompanying documentation are copyrighted.
Unauthorized copying of the Software, including Software that has been
merged or included with other software, or of the documentation is
expressly forbidden. LICENSEE may be held legally responsible for any
intellectual property infringement that is caused or encouraged by his
failure to abide by the terms of this agreement. LICENSEE is allowed to
make two (2) copies of the Software solely for backup purposes, provided
that the copyright notice is included on the backup copy.

4. Use Restrictions
LICENSEE agrees not to use the Software for any other purpose than
internally evaluating the Software. LICENSEE may physically transfer the
Software from one computer to another, provided that the Software is used
on only one computer at a time. LICENSEE may not modify, adapt,
translate, reverse engineer, decompile, disassemble or create derivative
works based on the Software.

ii

LICENSEE may not modify, adapt, translate or create derivative works
based on the documentation provided by L&H.
The Software may not be transferred to anyone without the prior written
consent of L&H. In no event may LICENSEE transfer, assign, lease, sell or
otherwise dispose of the Software and Documentation on a temporary or
permanent basis except as expressly provided herein.

5. Warranty
THE SOFTWARE IS PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT
LIMITATION WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. L&H shall have no liability to
LICENSEE or any third party for any claim, loss or damage of any kind,
including but not limited to lost profits, punitive, incidental, consequential
or special damages, arising out of or in connection with the use or
performance of the Software and accompanying documentation.

6. Termination
This agreement is effective until terminated. L&H reserves the right to
terminate this agreement automatically if any provision of this agreement
is violated. LICENSEE may terminate this agreement by returning the
Software and the accompanying documentation to L&H, along with a
written warranty stating that all copies have been returned.

Copyright
! Lernout & Hauspie Speech Products N.V.
Document No. D90931-21-08 L&H ASR1500/ASR1600 SOFTWARE
DEVELOPMENT KIT
Development Tools User’s Guide
V3.22 © - October 1999
No part of this publication may be reproduced or transmitted in any form
or by any means, electronic or mechanical, including photocopy, recording
or any information retrieval system, without the written permission of
L&H.

Trademarks
MS-DOS®, WINDOWS®, MICROSOFT® VISUAL C++, BORLAND C++
and Sound Blaster are registered trademarks of their respective owners.
Lernout & Hauspie Speech Products is a registered trademark.
All rights reserved.

iii

Contents
INTRODUCTION .. 1

THE ASR EVALUATOR .. 3
Introducing the ASR Evaluator ... 3
Starting the Evaluator ... 5
Menu Commands ... 6

File Menu.. 6
Recognizer Menu ... 10
Tools Menu... 22
Help Menu .. 24

The Evaluator Program Window... 25
Utterance Field ... 25
N-Best alternatives Field .. 25
Recognizer Activity Field .. 26
Active Contexts Field.. 27
Active Words Field ... 27

Recognizer Management Buttons .. 27
Start Button... 27
Stop Button... 27
Break Button... 28

Recognition Operating Modes .. 28
Push to talk... 28
Automatic stop.. 29
Open microphone... 29
Continuous Operation .. 31

Recognition from File.. 31

THE LEXICON TOOLKIT... 33
Introducing the Lexicon Toolkit (LexTool) .. 33
Starting the Lexicon Toolkit .. 35
Menu Commands ... 36

Context menu ... 36
User menu.. 44
Dictionary menu ... 49
Help menu .. 54

iv

THE BNF GRAMMAR LANGUAGE .. 57
Introducing the L&H BNF Grammar Language57
Grammar essentials..58

Preliminary..58
Notation ..58
Statements, Rules and Symbols ..59
Classes ...61
Repetitious Recognition..63
Optional Recognition ..66
Unnotified Recognition ...67
Non-Recognitions ...68
Importing...70
Any Speech ..71
Pronunciations..72
Spelling ...74

Formal Description..75
Pre-processing Grammars ...76
Comment Notation..76
Identification Section ..77
Interface Section...78
Class Section..79
Pronounce Section ...81
Rules Section..82

Isolated Word Recognition..85
Key Word Spotting..86
Connected Digit Recognition ..87
L&H BNF Grammar Language Formal Specification........................87

Terminal Symbol Notation, Word, Token87
Non-terminal Symbol Notation, Symbol88
Garbage Class..88
Compiler Keywords Specification...88
Formal Language Specification..89

Design Tips ...91
Content ...91
Limit the use of ‘special features’ ...93
Vocabulary Management..95

THE L&H+ PHONETIC TRANSCRIPTION SYSTEM 97
Introduction ...97
Multiple Pronunciations...98

v

Phoneme Table American English.......................................101
Phoneme Table Spanish ..103
Phoneme Table Italian ...105
Phoneme Table German..109
Phoneme Table British English ..111
Phoneme Table French..113
Phoneme Table Dutch..115
Phoneme Table Japanese ...117
Phoneme Table Korean ...121
Phoneme Mexican Spanish..125

ASR1500/ASR1600 Software Development Kit

Introduction - 1

INTRODUCTION

The ASR1500/ASR1600 Software Development Kit provides a
set of development tools that you can resort to at different
stages of designing, implementing, evaluating and testing the
speech-recognition features of your application(s). Those tools
include the Automatic Speech Recognition Evaluator, the
Lexicon Toolkit, the L&H BNF Grammar Language and the
L&H+ Phonetic Transcription System.
The different tools are installed automatically by the ASR
SDK installation program.

If you are not familiar with ASR programming or with the
SDK and its features, read the Introduction and the ASR
Primer in the Getting Started manual to learn about the basic
concepts.

This manual is organized into the following chapters:

The ASR Evaluator describes the graphic user interface of
the ASR Evaluator and provides details about its features.

The Lexicon Toolkit details the interface of the Lexicon
Toolkit (LexTool) and explains how the LexTool can help you
to perform several context management tasks.

The L&H BNF Grammar Language provides a
comprehensive description of the L&H BNF grammar
language, the essential tool to writing speech recognition
grammars.

The L&H+ Phonetic Transcription System contains some
information about phonetic input in general, together with
phoneme tables for the different languages supported by the
SDK.

ASR1500/ASR1600 Software Development Kit

The ASR Evaluator - 3

THE ASR EVALUATOR

Introducing the ASR Evaluator

The ASR Evaluator is a Windows program, based on the L&H
Automatic Speech Recognition (ASR1500/ASR1600) Software
Development Kit. The program serves a twofold purpose. For
people who are new to the SDK, it constitutes a very
straightforward tool to explore and evaluate the state-of-the-
art L&H Automatic Speech Recognition technology. For
people who are already in the stage of designing a speech-
enabled application, it offers a quick and easy way to test the
speech recognition contexts they may have created.

As it has primarily been designed to evaluate the ASR SDK,
the Evaluator incorporates most of the relevant features the
SDK has to offer. Thus, it helps you get a very good idea of
the performance of the L&H continuous speech engine for the
environment(s) and the language(s) you have purchased and
for the equipment that you are using. It also illustrates the
possibilities and the flexibility obtained from the Recognizer
Management Service functions in the SDK.

In addition to the interactive evaluation facilities, the ASR
Evaluator is equipped with Windows Drag & Drop
functionality for off-line evaluations with prerecorded sample
files. You select the prerecorded wave files in the Windows
Explorer and drag them onto the ASR Evaluator program
Window. The ASR Evaluator sequentially recognizes the
selected wave files and shows the recognition results on the
screen. By submitting the same files repeatedly, you can
investigate the effect of the various recognizer parameters.

ASR1500/ASR1600 Software Development Kit

4 - Development Tools User’s Guide

Another interesting feature of the Evaluator is the data
logging of all the recognition results and user actions taking
place during an evaluation session. In combination with the
off-line evaluation of speech wave files, this logfile provides
the basic information for possible statistical analysis of the
performance of the recognition engine during a specific
speech recognition task.

ASR1500/ASR1600 Software Development Kit

The ASR Evaluator - 5

Starting the Evaluator

The installation of the ASR1500/ASR1600 SDK automatically
adds a program group to the Windows Programs menu. The
Evaluator is one of the items in this group. When you click its
name in the list, the program starts up and the main window
appears on the screen.

The title bar of the program window displays information
about the ASR database, i.e. the selected engine and
environment.

ASR1500/ASR1600 Software Development Kit

6 - Development Tools User’s Guide

Note:
Before you can start up and use the Evaluator, you
have to create a user and a context and you have to
register the user for that context and for a language.

For detailed instructions on how to do this refer to the
chapter about the Lexicon Toolkit.

The following sections provide a systematic description of the
different items in the program window.

Menu Commands

File Menu

Open Logfile

This command allows you to view the logfile you can have the
Evaluator record. It opens a new window with the Notepad
text editor.

The ASR Evaluator can provide data logging of all user
actions and recognition results that occur during an
evaluation session. To enable the logging, you must mark the
Log to File checkbox in the Configuration dialog box which is
accessible via the File Menu.
Below you see an example of a log file with the type of data it
contains.

ASR1500/ASR1600 Software Development Kit

The ASR Evaluator - 7

Change Configuration

Use Change configuration if you want to change the global
settings of the Evaluator.

When you click this function in the File menu, the
Configuration dialog box appears:

ASR1500/ASR1600 Software Development Kit

8 - Development Tools User’s Guide

The settings you can adapt are the following:

• The Database
This setting determines the recognition engine and
the sampling frequency the Evaluator will be using.
Possible choices depend on the type and the number
of ASR Evaluators or SDK options you have installed
on your system. For the engine, it can be “ASR1500”,
“ASR1600” or “ASR1602”; for the sampling frequency,
“Office” indicates input at 11 kHz, whereas
“Telephone” stands for input at 8kHz.

• The Environment

At present, this setting does not have any effect, as
Win32 is the only valid environment for both
Windows 95 and Windows NT.

• The User

Here you select a user as you have created it in the
LexTool.

Note:
You can select only 1 user at the time, even if you
have created several users in the LexTool.

For details on how to create users in the LexTool,
refer to the next section in this manual. For more
general information about users, read the ASR
primer in Getting Started.

• The Language

Here you select the language for which you want to
evaluate speech recognition. Possible choices depend
on the languages you have ordered with your SDK or
Evaluator

Note:
Before you can select a language for evaluation,
you must register it to the user you have selected.

ASR1500/ASR1600 Software Development Kit

The ASR Evaluator - 9

• The Input Device

With this selection, you determine the type of input
handling and the wave device to be used during
evaluation.
As to the input handling types, “Internal” means that
the engine takes care of the sampling; “Wave” means
that the application controls the sampling; “TAPI”
means that extra controls are invoked to control the
telephony board, the actual sampling being the same
as for “Wave”.

Note:
You can only use the option “TAPI” if you have a
telephony board with the necessary drivers to
support TAPI.

As to the selection of the actual wave device, the
choices depend on the hardware you have installed on
your system.

When you select “Wave” or “TAPI” as the input type,
you can save the speech input into a file by checking
the option Save input to file. The spoken utterances
are saved as a wave file xx.wav (xx represents a
number) in the same directory as the one you have
selected to write the logfile.

In the bottom part of the Configuration dialog box, you find
the option to enable data logging. Mark the Log to file check
box to activate the logging.
If you want to change the path for the logfile, press the File
button and specify the appropriate directory and file name. If
you specify the name of a file that already exists, the
application notifies you and asks for confirmation.

Exit

Use the option Exit from the File Menu to quit the Evaluator.

ASR1500/ASR1600 Software Development Kit

10 - Development Tools User’s Guide

Recognizer Menu

Select Words

Use this function to select a set of words (a sub-vocabulary)
from the vocabulary of an active context and activate them on
the recognition engine.

This feature facilitates fast switching of active words in
menu-based command-and-control applications. You can put
all the voice commands of all the menus in one vocabulary,
but activate only the ones that are needed at a certain stage
in the execution of the program. This results in better and
faster recognition.

To obtain the Select Words dialog box, you can click the
Select Words command in the Recognizer menu or you can
push the Select Words button in the main window of the
Evaluator.

The dialog box contains three list boxes:
• Active Contexts

Contains the name of the context from which you
want to select the sub-vocabulary. If you registered
and opened several contexts for the active user, their
names will be in the list box. When you click one of

ASR1500/ASR1600 Software Development Kit

The ASR Evaluator - 11

the context names, the words of that context are
displayed in the Inactive Words and/or in the Active
Words list box, depending on their status.

• Inactive Words
Contains the list of words that are not active on the
recognizer.

• Active Words
Contains the list of words that are active on the
recognizer. It is only these active words that can be
recognized.

To make a word active or inactive, select it from the
appropriate list box and respectively push the Activate or
Inactivate button or just double-click it in the list box.

Note:
When a context is activated on the recognition engine,
all the words in that context are made active by
default.

Select Contexts

Use this function to select a context and activate it on the
recognition engine.

For the recognizer to recognize speech, you must activate one
or more contexts, as these provide the necessary information
to the recognizer about possible utterances to be recognized.

When you choose Select Contexts, the Select Context dialog
box appears.

ASR1500/ASR1600 Software Development Kit

12 - Development Tools User’s Guide

The dialog box contains a list of all the contexts available for
the user, language and database that you have selected in the
Configuration.
Select the context you wish to activate and click the OK-
button. If you want to activate multiple contexts, you can
select them simultaneously, as this is a multi-section list box.

You can open the Select Context dialog box also through the
Select Context button in the main window of the Evaluator.

Show Parameters

Use the option Show Parameters to view and/or change
engine parameters.

By changing these parameters, you can influence the
behavior of the recognition engine in order to obtain the best
possible recognition results and performance. The best way to
evaluate the impact of the different parameters is when using
prerecorded wave files as input for the recognition. Thus, you
can submit the same files a number of times with different
parameter settings.

ASR1500/ASR1600 Software Development Kit

The ASR Evaluator - 13

When you choose this function from the Recognizer menu, the
Set Parameters dialog box appears.
You can also push the Show Params button in the Evaluator
main window to access this dialog box.

For each parameter, the dialog box contains:
• a button to restore the default value
• a slider that lets you increase or decrease the value

for the parameter at your discretion

• the current value for the parameter
• the unit for the parameter

The parameters are subdivided in three groups. When you
open the dialog box it contains only the “General”
parameters. You can extend it with the “Advanced” and the
“Expert” parameters by means of the buttons at the top.
When you push the Advanced button, the dialog box is
extended with a first set of parameters.

Note:
Depending on the selected recognition engine, the Set
Parameters dialog box may contain different values or
even different parameters.

ASR1500/ASR1600 Software Development Kit

14 - Development Tools User’s Guide

The buttons at the top of the dialog box allow you to reduce
the list again to only the general parameters or to extend it
with the expert parameters.

ASR1500/ASR1600 Software Development Kit

The ASR Evaluator - 15

The overview below briefly explains the meaning of the
different parameters as they apply to the different engines
and contains some interesting comments on their usage.

ASR1500/ASR1600 Software Development Kit

16 - Development Tools User’s Guide

Accuracy States
This parameter determines the maximum number of paths
the recognition engine can follow while analyzing incoming
speech in order to find the best possible acoustic match and
come up with a recognition result for a certain utterance.

A higher value increases the recognition accuracy but also
the CPU load and memory usage; a lower value reduces the
recognition accuracy, but also the CPU load, the memory
resources and thus results in faster recognition. The optimum
value is a trade-off between the available system resources
and the accuracy desired for the application.

The value is set to 8 times max branching, with a minimum
of 100 and a maximum of 10000. For larger vocabularies, this
default value is to be increased.

Sensitivity
A speech event is defined as an energy jump of a certain
amount of decibels during a minimum period (i.e. Minimum
speech duration for start parameter). The (speech) Sensitivity
parameter, expressed in hundredths of dB (decibel), sets the
relative energy threshold that an input speech signal must
exceed in order to be classified as valid speech.

When working in Open Microphone or Continuous operation
mode, a mechanism called the Voice Activity Detector
triggers the recognition engine when the signal energy
observed exceeds the value for the Sensitivity parameter.
This functionality is provided to off-load the CPU during
silence and to yield processing time to other applications.

The parameter should be 3-6 dB above the energy level
measured during silence.

Reaction time
The Reaction time parameter determines the minimum
trailing silence the recognition engine has to detect before it
decides that an utterance is complete. This parameter

ASR1500/ASR1600 Software Development Kit

The ASR Evaluator - 17

determines the minimum response time of the recognition
engine in real-time operation.

The reason why the setting for the reaction time is not
implemented as an internal constant of the engine is because
the value required largely depends on the specific application.
Recognition of isolated words typically works with
200~300ms of trailing silence, thus keeping the response time
of the engine low. Continuous speech recognition grammars,
to overcome the problem of the small pauses and hesitations
in the speech, need 500~1000ms of trailing silence.

N-Best
The N-Best parameter determines how many alternative
recognition results the engine returns to the application.

During the recognition, the engine tries to match the speech
input with the different phonetic models it has derived from
the recognition context(s). This results in a number of
possible recognition results, to which a kind of probability
score is attributed, called the confidence level.

For the ASR1500 engine, the N-Best parameter is a boolean:
with the value set to 0, the engine only returns the
recognition result with the highest confidence level; with a
value of 1, it returns all the available alternative results.

For the ASR1600, the parameter can have a value ranging
from 1 to 100, specifying the number of alternatives you want
the engine to return, ranked by order of decreasing
confidence levels.

Rejection Penalty
This parameter determines how quickly the recognition
engine, when it is unable to recognize an utterances, decides
that it is an out-of-grammar phrase, and rejects it.

A high penalty value results in virtually no rejection of out-
of-grammar utterances; a low value, on the other hand,
causes the engine to reject such utterances rapidly.

ASR1500/ASR1600 Software Development Kit

18 - Development Tools User’s Guide

The default value is set to 75.

To decide on the appropriate value for this parameter, you
have to take into account the impact of two possible side
effects on your application:

• false rejection: an utterance that should have been
recognized correctly is rejected; this can occur when
the penalty is too low.

• false acceptance: an utterance is accepted, although it
is out of grammar; this can occur when the penalty is
too high.

When the recognizer rejects an utterance, the Evaluator
displays ### in the Utterance field of the program window.

Note:
For the ASR1600 engines, this is not the result you
would expect. In the SDK, the ASR1600 engine always
returns an alternative with a confidence value. If you
want your application to reject a result and display the
, you have to take care of that in your program,
which has been the case for the Evaluator.

Garbage Penalty
This parameter determines how quickly the engine decides
that certain parts of the input speech are irrelevant and
ignores them.

In some applications, the engine is to recognize just one
specific word and ignore the rest of the input speech. When
performing this kind of keyword spotting, the engine
compares the speech to the garbage model, presented as <...>
in the L&H BNF language.

If the penalty is set high, no sounds match the garbage
model; if it is set low, large parts of the speech will match the
model, at the risk even of missing the key word.
The default value is 75.

ASR1500/ASR1600 Software Development Kit

The ASR Evaluator - 19

Minimum speech duration for start
This parameter sets the minimum duration of the expected
speech before the Voice Activity Detector triggers the
recognition engine.

Automatic Gain Control
This boolean parameter turns the Automatic Gain Control
mechanism on (1) or off (0).

For optimum recognition performance it is essential that the
recording level of the acquisition hardware is set correctly.
Automatic Gain Control allows the recognition engine to
adapt the settings if it considers the input signal too loud or
too weak.
However, Automatic Gain Control (AGC) generates
instantaneous fluctuations of the signal levels, which can
have unwanted side effects on the quality of the recognition.
Therefore, you should use AGC with the necessary caution.

Acceptance threshold
The Acceptance threshold parameter specifies the minimum
confidence level needed for the speech recognition engine to
accept an utterance and notify the application of the
recognition result.

The Acceptance parameter is meaningful in the Open
microphone mode only. If the value is set high enough, it
allows you to have the recognition engine accept a specific
utterance only when it is certain about the recognition result.
The confidence level of the best recognition result is
calculated and compared to the acceptance parameter. If the
value is higher than the one set for the acceptance
parameter, the result is accepted, else the result is rejected
and the recognition engine waits for a new utterance.
For details on the Open microphone operating mode, refer to
the section Recognition Operating Modes further in this
chapter.

ASR1500/ASR1600 Software Development Kit

20 - Development Tools User’s Guide

Time out
The Time out parameter sets the maximum length of the
time window in which the recognizer is active. The default
value is set to 300 msec.

Bad environmental conditions, excessive background noise,
competing signals can cause the end-of-speech detection
mechanism to fail. In those cases, you can use the time-out
parameter to make sure the recognition engine automatically
breaks after a reasonable lapse of time.
This feature is also useful to overcome the “sleeping user”
phenomenon in dialog system applications, especially over
the telephone, where the user does not react to the question
asked.

Far Talk
This boolean parameter determines the sensitivity of the
AGC by setting the auto gain algorithm mode for far-talk or
close-talk.

If the parameter is set for close-talk microphones (value 0),
the AGC uses smaller increments when changing the mixer
settings, as the microphone remains at approximately the
same distance from the speaker. If the parameter is set for
far-talk microphones (value 1), larger increments are used
and a wide range of signals can be captured.

Word Penalty
The Word Penalty parameter influences the occurrence of
insertions and deletions during recognition.

Insertions occur when more words are recognized than
actually spoken; deletions, on the contrary, occur when fewer
words are recognized than spoken.
The parameter is used to change the word entrance penalty.
Use a higher value to cope with too many insertions and use
a lower value if you have a lot of deletions.
The parameter should be set to 500 for normal recognition
and to 2000 for a spelling context.

ASR1500/ASR1600 Software Development Kit

The ASR Evaluator - 21

This parameter is only available for the ASR1500 engine

Name search accuracy
This parameter determines the accuracy for the name search
during spelling.

One of the features of the ASR1500/ASR1600 engines is that
they are able to recognize words that have been spelled by
the speaker.
To use this feature, you must write a recognition grammar in
which you specify the words that need to be recognized.

The name-search parameter, similar to the accuracy
parameter, determines the number of words that can be
processed simultaneously.
As a rule, name searching is rather fast and therefore, the
use of a high accuracy value is recommended.

Partial spelling
This boolean parameter, when set, enables the engine to
recognize a word with only a few letters spelled.

If several words start with the same letters, they are all
considered as valid results and are attributed the same
confidence level.

The parameter is only valid for the ASR1600 engines.

Show/Hide N-Best

With this function you can tell the application to either show
or hide the N-Best recognized alternatives with their
corresponding confidence levels. The name of the function in
the menu alternates accordingly.
Refer also to the descriptions of the Acceptance and the N-
Best parameters.

The recognized alternatives are displayed in the program
window underneath the Utterance field.

ASR1500/ASR1600 Software Development Kit

22 - Development Tools User’s Guide

Rejection at word level

With this function, you can have the recognition engine reject
individual parts of an utterance, rather than the utterance as
a whole.

You can write a grammar stating that the utterances to be
recognized are a concatenation of different elements from the
vocabulary. When Rejection at word level is enabled, the
recognition engine considers the confidence levels of these
individual elements in the phrase and it rejects only the
elements with too low a confidence level.

In the recognition result displayed in the Utterance field,
each rejected word is represented as --- .

Tools Menu

Lexicon Toolkit

By choosing this function, you start up another development
tool: The Lexicon Toolkit (LexTool).
For detailed information about the different features of the
LexTool, see the second chapter in this manual, The Lexicon
Toolkit.

Add User Word

Choose the function Add User Word if you want to add a user
word to a context.

The words you add to a context via the LexTool are so-called
user-independent words. The (phonetic) information
necessary to recognize these words is included in the general
language model of the ASR database.
User words, on the other hand, are speaker-dependent words.
The information necessary to recognize these words results
from a training procedure by a specific speaker.

ASR1500/ASR1600 Software Development Kit

The ASR Evaluator - 23

As a rule, user words guarantee high recognition accuracy
when they are pronounced by the speaker who trained them.

To add a user word to a context, proceed as follows:
• Choose Add User Word from the Tools menu.

The Select Context dialog box appears

• In the list box, double-click the context where you
want to add a user word.
The Add User Word dialog box appears.

• Fill in the word in the User word input box and push
the Add button.
The Add user word training dialog box appears.

• Train the word by repeating it three times as
requested.

• Accept the word by pushing the button if you are
satisfied with the result.
The trained word appears in the User words list box
and the training dialog box is closed.

• Add the word to the context by pushing the Stop
button in the Add User Word dialog box.
You return to the Evaluator main window, where you
can test the recognizer on this user word.

Notes:
1. If you are not satisfied with a training utterance,

you can supersede it by pushing the Redo button
instead of the Accept button

2. If you decide not to add the user word to the
context after you have finished training it, push the
Cancel button instead of the Stop button.

Delete User Word

To delete a user word from a context, proceed as follows:
• Choose Delete User Word from the Tools menu.

The Select Context dialog box appears

ASR1500/ASR1600 Software Development Kit

24 - Development Tools User’s Guide

• In the list box, double-click the context that contains
the user word to be deleted.
The Delete User Word dialog box appears.

• Select the user word you want to delete from the User
word drop-down combo box.

• Push the Delete button.
The word disappears from the list.

• Push the OK button to confirm your action.
You return to the Evaluator main window.

Help Menu

Contents

Provides a general overview of the comprehensive on-line
help system installed with the ASR Evaluator. It contains
links to the different items included.

Search for Help On

Provides an on-line help topic search mechanism.

How to Use Help

Provides the Windows general help on the use of on-line help.

About

Provides product information.

ASR1500/ASR1600 Software Development Kit

The ASR Evaluator - 25

The Evaluator Program Window

Utterance Field

When you pronounce an utterance from the active context(s),
the Evaluator displays the recognition result in the Utterance
field.
This can be a word, a sentence, a digit or a digit string, if the
recognition was successful or it can be ###, if the recognition
engine did not recognize the utterance as a valid phrase.
If Rejection at word level is enabled, the result displayed may
consist of a sentence with --- at places where individual words
were not recognized.
If the recognition engine is running in Open Microphone
mode, and the confidence level of the utterance does not
exceed the value for the Acceptance parameter, no result is
displayed; instead, the recognition engine automatically
starts waiting for a new utterance.

N-Best alternatives Field

When the Show N-Best is enabled, the size of the Utterances
field is reduced and the N-Best alternatives field is added
underneath it.
It displays the different recognition alternatives and their
confidence values in decreasing order.

If necessary, you can verify all the alternatives and
confidence levels for all the words in a sentence, and for all
the N-best sentences in a recognition result.

If you double-click one of the sentences in the N-Best result
list box, the Alternatives at word level dialog box appears.

ASR1500/ASR1600 Software Development Kit

26 - Development Tools User’s Guide

This dialog box contains two list boxes. The first list box
shows all the words in the selected sentence. When you click
one of these words, the second list box displays all the
alternatives with their confidence levels.

Depending on the ASR engine, one or more alternatives with
associated confidence level are available.

Recognizer Activity Field

The Recognizer Activity field is the one that is hidden behind
the L&H company logo when the recognition engine is not
active.

When the recognition engine is activated in Open Microphone
mode or Continuous Operation mode, it does not start full
recognition until the Voice Activity Detector has detected
speech. During that period, the Recognizer Activity field
displays Waiting for Speech.
When the recognition engine detects an utterance, you see
the message Recognizing.

ASR1500/ASR1600 Software Development Kit

The ASR Evaluator - 27

This field can be very handy to adjust the Speech Sensitivity
parameter. If the recognizer is constantly recognizing, you
have to increase the Speech Sensitivity parameter; if it is
constantly waiting for speech, you have to decrease the
Speech Sensitivity parameter.

Active Contexts Field

The Active Contexts field contains a list of simultaneously
activated contexts.

Active Words Field

The Active Words field, underneath the Active Contexts,
contains a list of active words.

Recognizer Management Buttons

Start Button

By pushing the Start button, you start the recognition engine.
Whatever recognition mode you choose, you always have to
start the engine by pushing the Start button.

Stop Button

When you push the Stop button, the recognition process ends
and a result is returned.

ASR1500/ASR1600 Software Development Kit

28 - Development Tools User’s Guide

Break Button

When you push the Break button, the recognition process
ends, but no result is returned.

Recognition Operating Modes

The ASR1500 and ASR1600 recognition engines can operate
in four different modes. In the Evaluator main window, you
can activate them by clicking the desired option box in the
Mode frame. The operating modes are:

• Push to talk
• Automatic stop
• Open microphone

• Continuous Operation
Each of these operating modes has specific fields of
application. The sections below explain the essential
characteristics of each mode.

Push to talk

This operating mode is for speech applications that require
the control over the starting and finishing point of the
recognition time span.
Typically, applications that use this operating mode are
equipped with a push-to-talk (start) and a stop button, which
the user of the application has to push when he decides that
the recognition is to start or to stop.

Within the context of the ASR Evaluator, you can select this
mode for interactive testing, but it is also particularly suited
for evaluating the recognition of prerecorded wave files on an
engine. In this case, the control of the start and stop buttons
is handled by the application.

ASR1500/ASR1600 Software Development Kit

The ASR Evaluator - 29

Automatic stop

This mode is best suited for speech applications that guide
the user through a strict dialog.
For this type of applications, the developer can easily
determine the starting point of the incoming speech (e.g. after
a question). As to the finishing point of the time window, he
is much less certain, because he cannot predict the length of
the utterance. Therefore, he can rely on the automatic-stop
mode of the engine, which is linked to a number of
parameters.

The reaction-time parameter indicates to the recognizer how
much trailing silence has to be heard before it can decide that
the utterance is complete.
The time-out parameter sets the maximum length of the time
window in which the recognizer is active. Thanks to this
parameter, the recognition engine will automatically stop
after a certain period even if the end-of-speech detection
failed.

When working in Automatic-stop mode, you push the Start
button to begin the recognition, but the engine uses end-of-
speech detection to stop the recognition when the utterance is
complete.

Open microphone

This operating mode is intended for speech applications
requiring control of the starting point of the recognition time
window, even if it is not predetermined and where the
finishing point of the time window is uncertain or cannot be
determined.
As the starting point of the recognition time window is not
predefined, the recognizer starts in a state with low CPU
consumption monitoring the input channel. The Voice
Activity Detector (a specific speech detection algorithm) and

ASR1500/ASR1600 Software Development Kit

30 - Development Tools User’s Guide

the characteristics of the speech signal itself allow the engine
to determine when real speech is coming in. Only if that is
the case, it switches to full recognition.

The parameter on which this mechanism is based, is the
sensitivity parameter. It establishes the relative energy
threshold the input signal must exceed before it is classified
as valid speech.

This mode is typically used for applications that incorporate a
dialog with so-called barge-in functionality. In such a system,
rather than having to wait until he is requested to do so, the
user can start speaking at any point in the dialog. Thanks to
the Open-microphone mode, the engine can determine exactly
the starting point of the recognition time window. As to the
finishing point, it is handled in the same way as in
Automatic-stop mode.

Another possible application of this mode is the wake-up
functionality. This feature can help to make applications for
command-and-control more robust against environmental
noise.
In this approach, the recognition engine listens until a
particular predefined key word (e.g. “wake up!”) is recognized.
For every utterance, the confidence levels of the recognition
result are compared to the acceptance parameter and only if
the confidence level is higher than the value for the
acceptance parameter, will the result be accepted and
returned to the application. If not, the result is rejected and
the recognition engine waits for a new utterance.

When using the Open-microphone mode, you have to push
the Start button to begin. The engine, waiting for speech,
activates the speech detection mechanism; when an utterance
is detected, it switches to full recognition automatically; after
the utterance has been recognized, the end-of-speech
detection makes the engine stop automatically.

ASR1500/ASR1600 Software Development Kit

The ASR Evaluator - 31

Continuous Operation

This recognition mode is for applications that require
permanent activation of the recognition engine in order to
recognize one utterance after the other.

Two good examples of such applications are command-and-
control applications that do not require active context
changes during operation and dictation systems.

When using the Continuous Operation mode, you have to
push the Start button to begin. Speech detection starts, and
after speech has been detected and recognized, the engine
automatically restarts speech detection. To stop the engine,
you have to push the Break button.

Recognition from File

You can evaluate the recognition performance or test the
impact of different parameter settings by submitting wave
files to the recognition engine. One way to record these files is
by activating the option Save input to file in the Input device
configuration dialog box of the Evaluator. For a detailed
description of how to use this feature, refer to the section
Change Configuration.
Another possibility is to record wave files by means of the
Windows Sound Recorder. To record wave files of the
required format, change the Recording Settings to Mono, 16
bit, 11 kHz and no compression if using an 11kHz ASR
database, or Mono, 16-bit, 8 kHz and no compression if using
an 8kHz ASR database.
To test the recognition with the recorded files, select the
recognition mode Push to talk; from the Windows Explorer,
select the wave files and drag them onto the Utterance field
of the Evaluator. The files are opened one after the other and
the recognized utterances appear in the Utterance field.

ASR1500/ASR1600 Software Development Kit

The Lexicon Toolkit - 33

THE LEXICON TOOLKIT

Introducing the Lexicon Toolkit (LexTool)

The LexTool lets you perform a variety of tasks that are
essential to ASR programming. These tasks can be the
following:

• manage contexts

You can create a context, delete it, import it from a
BNF grammar file and/or export it to some target
platform format.

• edit the lexicon (vocabulary) of a context
You can add, delete or modify words and their
phonetic transcriptions.

• manage users

You can create, delete, rename and copy a user. You
can copy contexts from one user to the other. You can
register or unregister a user for languages and
contexts. Finally, you can export a user to install
his/her speech characteristics at a later stage.

• manage phonetic exception dictionaries
The phonetic transcriptions of the user-independent
words in the context can be generated by the built-in
phonetic expert system or they can be taken from
phonetic exception dictionaries. You can create such a
phonetic dictionary, delete it, modify it and/or export
it to be installed at a later stage with the application
you have developed.

ASR1500/ASR1600 Software Development Kit

The Lexicon Toolkit - 35

Starting the Lexicon Toolkit

Like the ASR Evaluator, the Lexicon Toolkit is another
program that is automatically installed during the
installation of the ASR1500/ASR1600 SDK. It is one of the
items in the program group added to the Windows Programs
menu. When you click its name in the list, the program starts
up and the main window appears on the screen.

Note:
You can also get to the Lexicon Toolkit through the
Tools menu of the ASR Evaluator.

ASR1500/ASR1600 Software Development Kit

36 - Development Tools User's Guide

Menu Commands

Context menu

An essential component to speech recognition is the
recognition context. This binary data structure, included in
the general database for a particular ASR engine, contains
information about the structure and the vocabulary of the
speech input in relation to a specific user and a specific
language.

Basically, there are two ways to build a context. You can
write and compile a BNF grammar or you can use one of the
three syntaxes provided with the ASR software package.

The Context menu contains functions to create, edit and
delete contexts.

New

The function New lets you create a context based one of the
three syntaxes.
When you choose this command, the New Context dialog box
appears.

ASR1500/ASR1600 Software Development Kit

The Lexicon Toolkit - 37

The list boxes in the dialog box let you supply the correct
specifications for the context to create:

• the ASR database that you want to use to store the
context

• the user for whom you want to register the context
• the language for which you want to register the

context

• the syntax the context is to be based on: Connected
Digits, Isolated Words or Keyword Spotting.

In the Context input box, you enter the name of the new
context. You can choose the name freely, including using
spaces, as long as no other context with the same name
exists.

Note:
If you want to create a context and the ASR database
does not contain users yet, you are prompted to create
a user first.

When you click the OK button, a dialog box appears with the
database, the user and the context displayed in the caption,
and you can immediately start to edit the context, i.e. add
words to it.

ASR1500/ASR1600 Software Development Kit

38 - Development Tools User's Guide

Open

This function opens an existing context for editing.
When you choose this command, the Open Context dialog box
appears.

Through the list boxes in the dialog box, you select the
Context itself and the Database and the User it is linked to.
The Extra Context Information box automatically displays
the relevant language and syntax for the selected context.

Note:
The reason why you have to supply more than the mere
name of the context is because there can be several
contexts with the same name, but residing in different
ASR databases, or registered to multiple users in a
given database.

When you click the OK button, a dialog box appears with the
context name, the user and the database displayed in the
caption.

ASR1500/ASR1600 Software Development Kit

The Lexicon Toolkit - 39

Editing a context can imply several tasks: adding one or more
words, deleting one or more words and/or changing phonetic
expressions.

In the context editing dialog box, all the words that are in the
vocabulary of the context are listed. Each line of this list
consists of a class name and a word. When you select a word,
the phonetic transcription appears in the field underneath. In
case there are several phonetic transcriptions, they are
separated by semicolons. You can not change the phonetic
transcription in this edit box.

The Phonetic Dictionary field indicates the phonetic
exception dictionary that is used when adding new words to
the context.

If an opened context cannot be changed, the buttons Add,
Delete and Change are disabled.

Add
When you push the Add button, the Add Word dialog box
appears.

ASR1500/ASR1600 Software Development Kit

40 - Development Tools User's Guide

To add a word to the context, supply its orthographic
expression, choose a context class and type in the valid
phonetic expression(s), separated by vertical bar(s).
If you want the system to generate the phonetic transcription
automatically, use the Convert button. In that case, the
transcriptions are retrieved from an exception dictionary or
they are generated by a built-in phonetic expert system, the
grapheme-to-phoneme system. If a word is found in the
selected dictionary, the phonetic transcriptions associated
with it always prevail.

If you want to add several words in a row, you can do so by
using the Add Another button.
When you are finished, you click the OK button to confirm all
the additions. When you click the Cancel button, only the
latest addition is rejected.

Using the Sounds Like button, you can enter some other word
the pronunciation of which has to be used for recognizing the
current word.

When clicking the Listen button, you will hear the
pronunciation of the specific word.

Note:
You can add numerous words quickly, taking
advantage of the Convert functionality in the process,
by using solely the “Enter” key on your keyboard. The
first “Enter” does the conversion, while the second one

ASR1500/ASR1600 Software Development Kit

The Lexicon Toolkit - 41

adds the word and sets you up for the next word to be
added.

Delete
If you want to remove a word from the context, you select it
and click the Delete button. The currently selected line in the
list box will be deleted.

Note:
When a context is based on the Connected-digits
syntax, the digits 0 through 9 are generated by the
system itself. These so-called system words cannot be
deleted.

Change
To change the phonetic transcription of a word, you have to
use the Change button or double-click a line in the list box.
The Change Word dialog box appears.
This dialog box is almost the same as the Add Word dialog
box, except that the orthographic expression can not be
altered. This is the only way to change the phonetic
transcription of a word.

Info
When you press the Info button in an open context, a dialog
box pops up showing more information about this context.

Delete

Choose this function to delete an existing context.

The Delete Context dialog box appears.

ASR1500/ASR1600 Software Development Kit

42 - Development Tools User's Guide

Specify the necessary information about the context that you
want to delete and click the OK button.

Import

The function Import compiles a grammar file and turns it
into a context.

When you choose the Import command, the Import Context
dialog box appears.

Before you compile the grammar, you have to supply some of
the same information as for the New command:

• the ASR database you want to use

• the user for whom you want to register the context
• the language for which you want to register the

context

ASR1500/ASR1600 Software Development Kit

The Lexicon Toolkit - 43

• the phonetic exception dictionary from which you
want the transcriptions to be retrieved

In addition, you have to supply the name of the grammar file
and the format it has been written in.
The grammar file should be written in a format that is
currently available. Currently the only available grammar
file format is BNF Grammar Compiler.

Enter the name of the new context in the appropriate input
box.

When you click the OK button, the grammar file is compiled
and the dialog box closes. A message box will inform you
when an error occurs.

Export

Use this function to convert the context into a format that
can be used on some target platform.
When you choose this command from the Context menu, the
Export Context dialog box appears.

Again, you have to supply the general information about the
context concerned: database, user and context name.
In addition, you have to indicate the format into which you
want to convert the context. Among the available export

ASR1500/ASR1600 Software Development Kit

44 - Development Tools User's Guide

formats is the SDK export format. It allows you to produce
contexts that can be redistributed with the application you
have developed.

When you click the OK button, you have to supply some file
names. The exact number of file names depends on the
selected export format. Each file name can be preceded by a
drive letter and/or path specification.
When the context is exported successfully, the dialog box
closes.

Exit

With this function, you leave the LexTool application.

User menu

Another vital concept within the context of L&H speech
recognition is the user. It refers to a data structure that
contains all the information related to the speaker. On the
one hand, it holds information for speaker-independent
speech recognition in a particular language; on the other
hand, it allows you to store information for speaker-
dependent recognition of trained user words.

Create

Use this function to create a new user
When you choose the command Create, the Create User
dialog box appears.

ASR1500/ASR1600 Software Development Kit

The Lexicon Toolkit - 45

First, you specify the ASR Database that you want to use to
store the information.

Enter the name of the user in the input box. If the name
already exists, you obtain an error message.

After creation of a new user, you are prompted to register this
user.

Delete

Use this function to delete an existing user.
When you choose this command, the Delete User dialog box
appears.

Choose the user that has to be deleted and click the OK
button.

Rename

Use this function to rename an existing user.

ASR1500/ASR1600 Software Development Kit

46 - Development Tools User's Guide

When you choose this command, the Rename User dialog box
appears.

Specify the current name of the user through the User list
box. Type the new name of the user in the New input field.
Click OK to proceed.
A user can not be renamed to an already existing user.

Copy

Use this command to create a new user by copying the data
from an existing user.
When you choose this command, the Copy User dialog box
appears.

ASR1500/ASR1600 Software Development Kit

The Lexicon Toolkit - 47

Enter the name of the new user in the appropriate input box.

The name of the new user must be different from all existing
users.

Copy Context

This command allows you to copy the context registered for
an other user to the one that is currently selected.
When you choose Copy Context from the Context menu, the
Copy User Context appears.

Enter the context name for the target user in the New
Context input box.

Notes:
1. A context can not be copied to a context with an

existing name.

2. The target user must be registered for the language
of the source context to complete this action
successfully.

ASR1500/ASR1600 Software Development Kit

48 - Development Tools User's Guide

Register/Unregister

With this function, you can register and unregister languages
and contexts for a certain user.

Registering a language for a user implies that this user will
be able to use that language. Unregistering a language
means that he will not be able to use that language.
Registering a context for a user means that this user gets a
private copy of that system context. Unregistering a context
for a user means deleting that context for this user.
When you choose this command, the Register/Unregister
dialog box appears.

Through the list boxes, you indicate the database and the
user.
In the Type list box, you specify whether you want to
register/unregister a language or a context. The list boxes at
the bottom reflect the situation of registered and

ASR1500/ASR1600 Software Development Kit

The Lexicon Toolkit - 49

unregistered items. By means of the Register and Unregister
buttons you can adjust the situation.

The OK button is only used to close the dialog box. The
registering and unregistering take place immediately.

Export

With this command, you can export a user and his speech
characteristics in order to install it at a later stage.
When you choose the Export command, the Export User
dialog box appears.

Next to the database and the user, you have to type in the
name of the export setup file or locate and select it via the
browse button (“>>”).

When you click the OK button, the user is exported and the
dialog box closes.

Dictionary menu

New

The function New in the Dictionary Menu creates a new
exception dictionary, which can be edited immediately.

ASR1500/ASR1600 Software Development Kit

50 - Development Tools User's Guide

When you choose this command, the New Dictionary dialog
box appears.

Enter the name of the new exception dictionary. A dictionary
name already used is not accepted.

When you click the OK button, a dictionary editing dialog box
appears. The initial list box in this dialog box is always
empty. Clicking the OK button saves all additional changes
after creating the new dictionary. Clicking the Cancel button
discards all additional changes after creating the new
dictionary.

Open

Use this function to open an existing exception dictionary for
editing.
When you choose this function, the Open Dictionary dialog
box appears.

ASR1500/ASR1600 Software Development Kit

The Lexicon Toolkit - 51

Editing a dictionary can consist in any of the following:
adding one or more words, deleting a word, changing a
phonetic expression.
Clicking the OK button opens a dictionary editing dialog box
with the dictionary name and the language name of the
caption. This dialog box contains a list box with words. Each
line of this list box contains a word. In the edit box
underneath, you find the phonetic transcription.

Notes:
1. You can not change the phonetic transcription in

this edit box.

2. When an opened dictionary cannot be changed, the
editing buttons Add, Delete and Change are
disabled

When clicking the Add button, the Add Word dialog box
appears. Adding words to an exception dictionary is very
similar to adding to a context. You can fill in an orthographic
expression (a word) and you can type in a number of phonetic
expressions separated by a vertical bar.

Use the Convert button to generate the phonetic
transcription automatically. These transcriptions are
generated using the grapheme-to-phoneme phonetic expert
system and exception dictionaries.

Using the Sounds Like button, you can enter some other
word, and use its pronunciation for recognizing the current
word.

When clicking the Listen button, you will hear the word.

When you add a word, you can immediately add another word
by clicking the Add Another button.

With the OK button, all additions are confirmed and put into
the current open dictionary. With the Cancel button the

ASR1500/ASR1600 Software Development Kit

52 - Development Tools User's Guide

possible current addition is discarded, but all previous
additions are put into the current open dictionary.

When clicking the Delete button, the currently selected line
in the list box is deleted.

When clicking the Change button or double-clicking a line in
the list box, a new change word dialog box opens. This dialog
box resembles the add word dialog box.

Delete

The function Delete deletes an existing exception dictionary.
When you choose the Delete command, the Delete Dictionary
dialog box appears.

Note:
The dictionary named STANDARD can not be deleted. This is
the system dictionary for the selected language.

Rename

The function Rename renames an existing exception
dictionary.
When you choose this command, the Rename Dictionary
dialog box appears.

ASR1500/ASR1600 Software Development Kit

The Lexicon Toolkit - 53

Select the Database, the Language and the dictionary; supply
its new name and click the OK button.

The dictionary name STANDARD cannot be renamed.

Copy

Use the function Copy to create a new dictionary by copying
an existing one. This copies an exception dictionary to a new
exception dictionary.

When you choose the Copy command, the Copy Dictionary
dialog box appears.

ASR1500/ASR1600 Software Development Kit

54 - Development Tools User's Guide

Fill in the name of the new dictionary in the appropriate
input box.
A dictionary cannot be copied to an already existing
dictionary.

Export

The function Export, in the Dictionary Menu exports an
exception dictionary to be installed later.
A dialog box with the database, the language and the
dictionary appears after selecting Export.

The Export setup file has to be filled in, or can be chosen via
the “>>” button.

When you click the OK button, the dictionary is exported and
the dialog box closes.

Help menu

Contents

Provides an on-line help general overview, with links to all
details.

ASR1500/ASR1600 Software Development Kit

The Lexicon Toolkit - 55

Search for Help On

Provides an on-line help topic search mechanism.

How to Use Help

Provides help on the use of on-line help.

About

Provides product information.

ASR1500/ASR1600 Software Development Kit

The BNF Grammar Language - 57

THE BNF GRAMMAR LANGUAGE

Introducing the L&H BNF Grammar Language

This chapter describes the L&H BNF grammar language
used to work out continuous speech recognition grammars.

No matter how diverse the applications can be, the phrases
input to a continuous speech system, as a rule, are based on a
structure of some kind, called a context. This structure can
range from highly complex to as simple as a sequence of
digits. The L&H BNF grammar language constitutes a
powerful tool for specifying the structure of the input to a
continuous speech recognizer.
When the grammar is complete, the BNF grammar compiler
turns this specification into a context that can be handled by
the recognition software.

The core of the L&H BNF grammar language is a collection of
grammar rules. Each rule describes an allowable structure
and gives it a name. An example of a grammar rule might be:

<date> : the <day> of <month> <year> ;

Here <date>, <day>, <month> and <year> represent
structures of interest for the input language of the continuous
speech recognizer; <day>, <month> and <year> are defined
by other rules elsewhere. With the proper definitions, the
input phrase, “the fourth of July 1776” will match the above
rule.

For historical reasons, a structure that is handled by the
recognition engine itself is called a terminal symbol, while a
structure that is specified further by other rules in the

ASR1500/ASR1600 Software Development Kit

58 - Development Tools User's Guide

grammar is called a non-terminal symbol. To avoid confusion,
terminal symbols are often referred to as tokens or words
(even though they do not have to be limited to one word!).

Grammar essentials

Preliminary

A full-fledged BNF grammar consists of different logical
sections: the pre-compiler section, the identification section,
the interface section, the class section, the pronounce section
and the rules section.
Rather than describing these different sections sequentially
and in a theoretical way, the first part of this chapter will
make abstraction of these. Starting from a very simple basic
grammar, it will gradually introduce new concepts, to end
with a complete and formal specification of the L&H BNF
grammar.

Notation

The L&H BNF grammar specification uses a C-like syntax:

• All ‘expressions’ are terminated by a semi-colon (‘;’)
• Comments can be inserted by using the C (‘/* */’) or

the C++ (‘//’) comment conventions.
• Parentheses (‘()’) can be used to group expressions

together.

ASR1500/ASR1600 Software Development Kit

The BNF Grammar Language - 59

Statements, Rules and Symbols

Imagine a bar, in the not so far future, operated by a
computer. Naturally, the computer is to recognize the
customers’ orders.
A grammar describing such a situation could be the one
below:

!grammar Drinks;

!language “American English”;

!export <Speech>;

<Speech>: lemonade | milkshake | orange juice;

This grammar should not be too hard to understand, and it is
probably obvious that we could either order a lemonade, a
milkshake or an orange juice. Nevertheless some further
explanation is warranted.

You will probably have noticed that the first three lines of our
grammar start with an exclamation mark (‘!’) followed by a
word. These words are reserved words, i.e. words that have a
special meaning to the grammar compiler. From now on we
will call a line that start with a reserved word a statement.
All other lines (except for the comment lines) will be called
rules. So, we could say that the above grammar contains
three statements and one rule.

This grammar also contains symbols. Symbols can be any
combination of a subset of ASCII-characters (only the
printable characters, and excluding the “larger than”-symbol
(“>”) as well) enclosed by angular brackets (‘< >’). Symbols are
placeholders for rules that are defined elsewhere. In the
above sample grammar, only one symbol can be recognized:
<Speech>.

Let us now take a closer look at the first statement. This kind
of statement is called a grammar statement. It contains the
reserved word !grammar, followed by a word and is

ASR1500/ASR1600 Software Development Kit

60 - Development Tools User's Guide

terminated by a semi-colon. The word can either be a single
word (like Drinks) or a string enclosed by double quotes (e.g.
“The Recognition Bar”).
Grammar statements are optional and only used for
identifying the grammar. The use of grammar statements
has no consequence on the behavior of the derived context.
The second statement is called a language statement. The
reserved word !language is followed by a language name and
a semi-colon. If the language contains two or more words, it
should be enclosed by double quotes. For instance:
“American English”.
The language statement is optional and restricts the use of
the grammar to a specific language. If a grammar contains
the language statement “!language French;” it can only be
compiled in a context for the French language. If we do not
use the language statement, the same grammar can, for
instance, be used for both “British English” and “American
English”.

Note:
If we want to import your grammar in the LexTool, and
we use the language statement in your grammar, the
language specified in the grammar should correspond
to the language specified in the LexTool.

The third statement is an export statement. Export
statements start with the reserved word !export, followed by
a symbol and a semi-colon. Export statements provide entry
points into the grammar. Thus, they define what can be
recognized and what not. In this case, it is the rule identified
by <Speech>.

This leaves us with the final part of our grammar: the rule. A
rule is made up of a symbol, followed by a colon followed by
the symbol definition terminated by a semi-colon. In this
grammar, the definition consists of a disjunction of phrases,
separated by the “or” operator (‘|’). It indicates that the

ASR1500/ASR1600 Software Development Kit

The BNF Grammar Language - 61

symbol <Speech> is defined as “lemonade” or “milkshake” or
“orange juice”.
Since the export statement defines speech as ‘that which is
defined by <Speech> ‘, the conclusion is that only these three
drinks can be recognized.

Notes:
1. To be able to use a context all symbols have to be

defined!

2. A space is not a delimiter for phrases. We cannot
order an “orange” nor can we order a “juice”. What
we can order is an “orange juice”.

Classes

In the previous section we have defined our first grammar,
allowing our bar to go into business. However, only a limited
set of drinks is available. Even if we could always add drinks
to our grammar, this would imply that we have to recompile
the grammar whenever we decide to add a drink to the menu.
The following grammar illustrates how we can bypass this
problem:

!grammar “Class Drinks”;

!language “American English”;

!export <Speech>;

!class <Speech>;

<Speech>: lemonade | milkshake | orange juice;

At first glance, there is not much difference between this
grammar and the one we have defined in the previous
section. There is only one extra statement, identified by the
reserved word !class followed by a symbol and a semi-colon.
This statement is therefore called a class statement. If a class-
statement for a symbol exists, we call that symbol a class.

ASR1500/ASR1600 Software Development Kit

62 - Development Tools User's Guide

The class statement allows us to modify the context at
runtime: we can add and delete words (using the
asrCtxAddWordEx(), asrCtxAddUserWordEx() or
asrCtxDeleteWord()) after the grammar has been compiled
into a context. Thus, we can update the contents of a context
without having to close, recompile and reopen it.

Note:
Words can only be added and removed from classes, not
regular symbols.

In order to be able to add or remove a word, the context
has to be opened with the ASRCTXATTRIB_WRITE
attribute or it has to be a temporary context. For
detailed information on these issues, refer to the
ASRAPI functions asrCtxOpen(), asrCtxOpenTemp() or
asrCtxImportBuf()) in the Function Reference manual,
supplied with the SDK.

If we do not add any content (words, phrases) to a
context (by changing the last line into “<Speech>:;”),
your context becomes generic. That is the structure
that can be used for any language.

Classes, symbols and even words not belonging to a symbol or
a class can be mixed together into a single grammar, as the
below sample demonstrates:

!grammar “Class Drinks revised”;

!language “American English”;

!export <Order>;

!class <Drink>;

<Order>: <Intro><Drink> please;

<Drink>: a lemonade |a milkshake | an orange juice;

<Intro>: I would like | Can I have;

ASR1500/ASR1600 Software Development Kit

The BNF Grammar Language - 63

The possible recognition results for this grammar are:
Can I have an orange juice please.

Can I have a lemonade please.

Can I have a milkshake please.

I would like an orange juice please.

I would like a lemonade please.

I would like a milkshake please.

Repetitious Recognition

It is not unlikely that a customer would like to order multiple
drinks. To accomplish this, we could reuse the context as we
built it before, and run it multiple times. However, running
the same context multiple times results in multiple
recognitions, which would make it impossible to keep the
different orders separated from each other. Therefore, we
want to recognize multiple orders within the same
recognition. This could be as done as follows:

!grammar “3 Drinks”;

!language “American English”;

!export <Speech>;

<Speech>: <Drink><Drink><Drink>;

<Drink>: lemonade | milkshake | orange juice;

Although this works fine, there is a major drawback: the
above grammar forces the customers to always order three
drinks. The following grammar could help us to overcome this
problem:

!grammar “1 to 3 Drinks”;

!language “American English”;

ASR1500/ASR1600 Software Development Kit

64 - Development Tools User's Guide

!export <Speech>;

<Speech>: <Drink> | <Drink><Drink> |
<Drink><Drink><Drink>;

<Drink>: lemonade | milkshake | orange juice;

This is a good solution, but it would again give rise to
problems if we wanted a range of up to 10 orders. We could
write down all possible combinations, but this is a lot of work.
A better way is demonstrated in the grammar below:

!grammar “1 to 10 Drinks Revised”;

!language “American English”;

!export <Speech>;

<Speech>: !repeat(<Drink>,1, 10);

<Drink>: lemonade | milkshake | orange juice;

We have just introduced a new reserved word: !repeat(arg1,
arg2, arg3). The first argument (arg1) is the expression to
repeat, arg2 is the minimum number of iterations and arg3 is
the maximum number.
The above grammar therefore models a situation where a
customer can order up to ten drinks.

Note:
The third argument can also be an asterisk (*). This
symbol is used to specify an undefined (unlimited)
number of repetitions. However, if we know the
maximum number of possible iterations, it is better to
specify this rather than using the asterisk. There is no
use in trying to recognize n+1 iterations, if the
maximum number to be recognized will never exceed n.

Of course, the maximum number of repetitions should
be larger or equal to the minimum number of
repetitions.

ASR1500/ASR1600 Software Development Kit

The BNF Grammar Language - 65

0 is a valid value for the minimum number of
repetitions.

The next grammar is a bit more complex, as it uses all the
structures we have discussed so far. It lets the user say the
number of each drink she/he would like, instead of forcing
her/him to repeat the drink itself.

!grammar “A lot of Drinks”;

!language “American English”;

!export <Speech>;

!class <Drink>;

!class <Drinks>;

<Speech>: !repeat(<Order>,1, 3) please;

<Order>: <Single Order> | <Multiple Order>;

<Single Order>: (one|a) <Drink>;

<Multiple Order>: <Count> <Drinks>;

<Count>: 2 | 3 | 4 |5;

<Drink>: lemonade | milkshake | orange juice;

<Drinks>: lemonades | milkshakes | orange juices;

Valid orders would include:
a lemonade please

a lemonade one orange juice please

3 milkshakes 5 lemonades one orange juice please

But also the more unlikely:
one orange juice a orange juice please

5 milkshakes 2 milkshakes one milkshake please

4 orange juices, one milkshake, one orange juice please

ASR1500/ASR1600 Software Development Kit

66 - Development Tools User's Guide

The following are not valid:
4 orange juice

a orange juice a milkshake a lemonade a lemonade please

Note:
This grammar models orders that are very unlikely to
be said. As long as there is a chance they could be
ordered, they should be modeled, otherwise it should
not be possible to recognize them. In such cases, this
grammar would not be a good grammar, but for now
and as a demonstration, it serves well.

The only other alternative may be to completely write
out all possible utterances. This may be laborious, but
gives us the best results!

Optional Recognition

In some of the above grammars we have included “please”
and in others we have not. Since not all people use this word,
there is a problem. Should we add it at the expense of poorer
recognition for people who do not use it, or should we leave it
out, thus penalizing people who do use it?

The obvious answer to this question is to allow both.
However, just as we did with the repetitions, we do not
completely write down all possible recognitions, but rather
use a shortcut. This is demonstrated below:

!grammar “Possibly Polite Drinks”;

!language “American English”;

!export <Order>;

<Order>: <Drink> !optional(please);

<Drink>: a lemonade |a milkshake | an orange juice;

ASR1500/ASR1600 Software Development Kit

The BNF Grammar Language - 67

The above grammar has the same result as the one below:
!grammar “Possible Polite Drinks Revised”;

!language “American English”;

!export <Order>;

<Order>: <Drink>|<Drink> please;

<Drink>: a lemonade |a milkshake | an orange juice;

It may seem a bit useless to introduce a whole new concept to
the grammar-specification language, when such a trivial
workaround is available. In complex grammars, however, we
may be glad to have this option at our disposal.

Note:
Note that “!optional(x)” has the same effect as “(x |)”.

Unnotified Recognition

The word “please” in the above example does not have any
meaning to our computer. Indeed, it does not affect the
client’s order. Consequently, there is no need to notify our
system of it, when speech is recognized. This can be
accomplished by using the !ignore(expression) function. Its
use is very similar to that of !optional(expression):

!grammar “Ignore Politeness In Drinks”;

!language “American English”;

!export <Order>;

<Order>: <Drink> !ignore(please);

<Drink>: a lemonade |a milkshake | an orange juice;

ASR1500/ASR1600 Software Development Kit

68 - Development Tools User's Guide

Note:
Notice the difference between !optional() and !ignore():
!optional does not require the user to actually say the
word, but if he does, the system is notified of it;
!ignore() requires the word to be spoken, but the system
is not notified of it. The table below illustrates this. We
will use the above grammars as samples.

Possible RecognitionsPossible
Utterances !optional(please) !ignore(please)

a lemonade a lemonade ###

a milkshake a milkshake ###

an orange juice an orange juice ###

a lemonade
please

a lemonade
please

a lemonade

a milkshake
please

a milkshake
please

a milkshake

an orange juice
please

an orange juice
please

an orange juice

Note:
!ignore() can only be used with single words not strings
nor symbols (classes).

Non-Recognitions

Closely related to the !ignore() function is the !action()
function. As a matter of fact, they are each other’s opposites.
The function !action will return a word/phrase even though it
has not been (and may not be) spoken. To see how this
function is used, take a look at the grammar below:

!grammar “Action Linked Drinks”;

ASR1500/ASR1600 Software Development Kit

The BNF Grammar Language - 69

!language “American English”;

!export <Order>;

<Order>: a lemonade !action(“2 $”) |a milkshake !action(“4
$”)| an orange juice !action(“3 $”);

It may be important to first point out that it is possible to
retrieve only the result, the result and the associated action
or the associated action only. You will have noticed that in
the above grammar we have included actions containing the
price for each drink. This facilitates the calculation of the bill,
as the charged amount for each drink is returned together
with the recognized drink itself. So, we do not have to look it
up in a table.

Note:
1. !actions() can also be used to make your application

language-independent. Without actions, we have to
create a new context for each localized version of
your application, as words differ from language to
language. When we add the same actions to the
corresponding words in each language, our
application can be language-independent, if it
processes the actions rather than the words
themselves. The application does not have to know
in which language a command was uttered.
For instance:

!action(“STOP_COMMAND”) stop;

versus

!action(“STOP_COMMAND”) arrête;

2. A third use of actions can be to process similar
words in a uniform matter. For instance all of the
words below have the same meaning, and therefore
it is logical to process them in the same manner:

!action(“START_COMMAND”) begin |

ASR1500/ASR1600 Software Development Kit

70 - Development Tools User's Guide

!action(“START_COMMAND”) start |

!action(“START_COMMAND”) initiate;

Importing

Previously, we have stated that each symbol has to be
defined, in order to be able to use the context. More precisely,
all symbols have to be defined prior to activating the context
on an engine. Practically this means that all symbols should
be defined in the grammar in order for it to compile.

There is one exception though: the importing of symbols. By
importing a symbol, we tell the compiler that the definition of
that particular symbol will be imported from another context.
To use a context containing imported symbols, it has to be
linked with the context exporting that symbol prior to
activating it on the engine. See also the Function Reference
manual for explanations on the following ASRAPI functions:
asrCtxLibrary() and asrCtxLink() or asrLib…() and
asrRecCtxActivateEx())

Here is an example of how we can use this feature:

!grammar “Food stuff”;

!language “American English”;

!export <Food>;

<Food>: pizza | hamburger | hot dog;

!grammar “Food & Drink”;

!language “American English”;

ASR1500/ASR1600 Software Development Kit

The BNF Grammar Language - 71

!export <Order>;

!import <Food>;

<Order>: <Food> | <Drink>;

<Drink>: a lemonade|a milkshake| an orange juice;

The first grammar models a restaurant that serves
hamburgers, hot dogs and pizzas. In the second grammar we
reuse this model in our bar-grammar. Our bar can now serve
food as well.

Note:
Unlike the first grammar, which can be used as a
standalone, the second grammar needs to be linked to
the other one.

Importing can be useful when user-dependent words
are used. The structure can be a general context
importing all user-trained words from other contexts.
As this is done at runtime, it is possible for several
users to share the same general context, each with
their own context for trained words.

Any Speech

In our examples, we have modeled different ways to take an
order. But sometimes we do not know what to expect exactly.
We only know that our customer will order a drink from our
menu, but we have no idea on how he is going to phrase this.

In such cases, it would be more efficient to check only for
specific words in a larger phrase. For doing so, we need the
garbage model (‘<…>’). The garbage model models any
speech.

Below you can see an example of its use:

ASR1500/ASR1600 Software Development Kit

72 - Development Tools User's Guide

!grammar “Drink Spotting”;

!language “American English”;

!export <Order>;

<Order>: <…><Drink><…>;

<Drink>: lemonade | milkshake | orange juice;

Following the above grammar, the customer can say
anything. As long as the utterance contains the name of one
of the drinks, it is recognized. Yet, this grammar will
recognize only the first drink that is named in an utterance.

Note:
The use of the garbage model should be limited! For
more information see also the description of the
garbage penalty parameter in the first chapter of this
manual, the ASR Evaluator or refer to the section on
the engine parameters in the Getting Started manual,
supplied with the ASR SDK.

Pronunciations

Imagine we want to expand our list of drinks with coffee.
This is a bit of a problem, because there are three different
pronunciations for this word: a British English one (“!k"#$“or
in L&H+ format: “ ‘kA+.fI “) and two American English
ones(“ !%&#$'“ or in L&H+ format “ ‘kO.fi “ and “ !%(#)$ “or in
L&H+ format “ ‘kA.fi ”). Normally, there should not be a
problem because the phonetic expert system, the Grapheme-
to-Phoneme module, together with the standard dictionary
will automatically generate the most commonly used
transcriptions for a word. (For instance 0 will be transcribed
as “zero” and “oh”.) But for coffee (and for some other words)
this is not the case. Only the most general transcription will

ASR1500/ASR1600 Software Development Kit

The BNF Grammar Language - 73

be used. If we want to use the alternative or maybe both
pronunciations, the sample grammar below provides a
solution:

!grammar “Pronounced Drinks”;

!language “American English”;

!export <Drink>;

<Drink>: lemonade | milkshake | orange juice | coffee;

!pronounce L&H coffee “([T=\”Pm(L&H+)\”]#(’kO.fi) |
(‘kA.fi)#)”;

Note:
We can not use the transcription “ ‘kA+fI ” as the
phoneme “A+” is not supported in American English,
but only in British English.

The pronounce statement in the above grammar tells the
engine what phonetic transcription(s) have to be used. This
statement is a bit complicated. Therefore, some more
explanation may be appropriate. First there is the reserved
word !pronounce. It should always be followed by the vendor
mark (“L&H”). The second argument is the word for which
you wish to provide the transcription. The third argument is
the transcription itself.

Note:
Use the or-operator (“|”) to enumerate alternative
transcriptions. Use the back-slash (“ \ “) operator to
define the succeeding quote as part of the string.

The actual transcription is preceded by a header, and
enclosed in parentheses and quotes.

As to the headers, currently two different types of
headers are used: phoneme-based and allophone-based.

ASR1500/ASR1600 Software Development Kit

74 - Development Tools User's Guide

The first one uses the [T=”Pm(L&H+)”] header, the
second the [T=”A(L&H+)”].

All languages currently available, except for Japanese,
use the phoneme-based transcription and hence the
[T=”Pm(L&H+)”] header. Japanese uses the
allophone-based transcriptions (the [T=”A(L&H+)”]
header.)

Spelling

The last feature to discuss is spelling.
The recognition engine allows you to spell words using the
!spelling feature. Although you could treat each letter as a
separate word, this would yield very poor recognition results.
Indeed, letters are very small words with a great resemblance
and they are therefore very hard to recognize. Even humans
have problems differentiating between for instance “m” and
“n”.

This feature simply tells the engine that the specified words
have to be spelled. It is important to realize that it is
necessary to know these words in advance, i.e. prior to the
recognition. It is not possible to recognize unknown words,
i.e. words that are not in the context, just by spelling them.

This is an example:
!grammar “Spelled Drinks”;

!language “American English”;

!export <Drink>;

!class <Drink> !spelling <spell-syntax>;

<Drink>: lemonade | milkshake | “orange juice” | coffee;

<spell-syntax>:!repeat(<letters>, 1, *);

<letters>: l | e |m |o |n |a|d|i|k|s|h|r|g|j|u|c|f;

ASR1500/ASR1600 Software Development Kit

The BNF Grammar Language - 75

The above grammar specifies that words belonging to the
class <Drink> have to be recognized and that these words are
structured as specified in the <spell-syntax>. This syntax
specifies that the words are concatenations of the <letters>
enumerated. In simpler terms, the words in <Drink> have to
be spelled using the letters in <letters>.

Notes:
1. The symbol containing the spelled words has to be a

class.

2. The characters making up the spelling syntax can
only consist of one symbol.

3. Although adding only those characters that make up
the words suffices, this imposes limitations on the
words that can be added: they have to be made up of
the same letters. To avoid this problem, you can
define the symbol that contains the letters as a
class, which allows you to add letters at runtime.

4. If you want to spell a string it has to be enclosed in
double quotes.

5. It is not possible to mix up normal (continuous)
recognition with spelling! (For instance it is not
possible to recognize something like “I have a
c a t”.)

Formal Description

In this section, the various features introduced above will be
discussed, in a more formal and structural way.

ASR1500/ASR1600 Software Development Kit

76 - Development Tools User's Guide

Pre-processing Grammars

A C-style preprocessor is used for compiling BNF grammar
files.

Currently only the following preprocessor statement is
supported:

#include filename

filename is a valid file name enclosed in
quotation marks.

Example:

include “numbers.bnf”

!grammar Stocks;
!language “American English”;
!export <speech>;

<speech> : <buy command> | <sell command>;

<buy command> : !optional(please) buy !optional (<number>
!optional(shares) | share) of !optional(the)
<company name>;

<sell command> : !optional(please) sell !optional (<number>
!optional(shares) | share) of !optional(the)
<company name>;

Comment Notation

C/C++-like comments “/* */” and “//” can be used in BNF
grammar files.

ASR1500/ASR1600 Software Development Kit

The BNF Grammar Language - 77

Identification Section

The identification section consists of two optional statements
where you can specify the grammar name and the language
used. The language to be used must always be specified when
starting the grammar compiler. If it is also specified in the
file, both languages must match.

Example
!grammar German_Grammar;
!language Deutsch;

!grammar statement

Format
!grammar word ;

Description
The !grammar statement specifies the name of the
grammar.
Example

!grammar TestGrammar;

!language statement

Format
!language word ;

Description
The !language statement specifies the language of the
grammar.
Example

!language “American English”;

Comments
This is an optional statement: the language will be
specified anyway as a parameter to the grammar compiler.

ASR1500/ASR1600 Software Development Kit

78 - Development Tools User's Guide

Interface Section

The interface section consists of a number of export and
import statements that specify which symbols are available
to other grammars and the recognizer software, and which
symbols are used from other grammars.

With the !export statement, you can specify the non-terminal
symbols to be exported, so that they can be used by other
grammars. Exported symbols also serve as the top-level entry
point for the compiler.
With the !import statement you can declare the non-terminal
symbols, which are used in the grammar but defined and
exported in other grammar files. All the separately compiled
grammars (contexts) have to be linked, so that the imported
non-terminal symbols are resolved.

Example
!import <Digit> ;
!export <Number> ;

The non-terminal symbol <Digit> is defined in another
grammar file and is imported here. The non-terminal symbol
<Number> is defined in this grammar file and is exported, so
that it can be used in other grammar files. The syntax
starting with the non-terminal symbol <Number> can be
activated for recognition.

!export statement

Format
!export symbol;

Description
The !export statement specifies the top rule non-terminal
symbols in the BNF grammar. It also you allows to export
frequently used symbols for use by other contexts. Other
contexts can import the symbols by linking the contexts.
Example

ASR1500/ASR1600 Software Development Kit

The BNF Grammar Language - 79

!export <Number>;
!export <Integer>;

Comments
At least one !export statement should always be used, to
indicate at least one the starting rule. If this is not the
case, it will result in an empty context after grammar
compilation.
The non-terminal symbols must be defined in the
grammar.

!import statement

Format
!import symbol;

Description
The !import statement allows you to import frequently
used symbols from other contexts.
Example

!import <Number>;
!import <Month>;

Comments
The non-terminal symbols specified in the !import
statement cannot be defined in the grammar itself.

Class Section

The class section consists of a number of class statements.

Example
!class <City>;
!class <State>;
!class <name> !spelling <letters>;

ASR1500/ASR1600 Software Development Kit

80 - Development Tools User's Guide

!class statement

In the !class statement you can define a non-terminal
symbol that is a word class, i.e., a list of words to which
words can be added or deleted afterwards. Word classes
can be edited with the Lexicon Toolkit or with the ASRAPI
functions asrCtxAddWord(), asrCtxAddUserWord() and
asrCtxDeleteWord(). A word class is a container of
alternative words, with the same syntactical meaning.
Two different styles of class descriptions exist:

Format 1
!class symbol;

Description
The specified non-terminals are declared as word classes.
These word classes should be defined further on in the
grammar, using the following syntax:

<symbol> : ;

or
<symbol> : word1 | word2 | ... | wordN;

Example

!class <Destination City>;
!class <Departure City>;

Format 2
!class symbol1 !spelling symbol2;

Description
symbol1 is a class of words that will be spelled using a
syntax described in the rule definition of symbol2. symbol1
is a regular class as described above, and can be exported
or used in other rules. For recognition, the words in
symbol1 should be spelled using the symbols specified in
the syntax definition. Currently this syntax definition
should be of the form:
<syntax> : <class>+;

where <class> is a class containing the symbols to be
recognized in the spelling.
Example

ASR1500/ASR1600 Software Development Kit

The BNF Grammar Language - 81

!export <rule>;
!class <animal> !spelling <syntax>;
!class <letter> : a | c | d | g | o | t;
<animal> : cat | dog;
<syntax> : <letter>+;
<rule> : <animal>;

This example will recognize “cat” or “dog” upon the
utterance of “ ‘c’ ‘a’ ‘t’ ” or “ ‘d’ ‘o’ ‘g’ ”.

Pronounce Section

!pronounce statement

Format
!pronounce vendor_mark word word ;

Description
With the !pronounce statement you can override the
default phonetic transcriptions for certain words. When
such statements are given for a certain terminal word, the
given transcriptions are used instead of the default
phonetic transcriptions for that word. The phonetic
alphabets for specific languages can be found in the
appendix.
Example

!pronounce L&H Dr “([T=\”Pm(L&H+)\”]# ‘ d A k . t $ R+ #)”;
!pronounce L&H St “([T=\”Pm(L&H+)\”]# ‘ s t R+ I t #)”;

Here we define the pronunciations for the abbreviations
for doctor and street.

Comments
There are 3 arguments: the vendor name, the terminal
word and the phoneme string (which has to be put
between double quotes and parentheses). The phonemes
must be part of the L&H+ phonetic alphabet, defined for
the specific language.

ASR1500/ASR1600 Software Development Kit

82 - Development Tools User's Guide

The specified phonetic transcription also has to include a
header containing information on the phonetic-model
used. Currently there are two models available:

! the [T=”A(L&H+)”] header for use with the
Japanese language, and

! the [T=”Pm(L&H+)”] header for use with all
other languages.

Tables with the available phonemes for each language can
be found in the appendices.

Rules Section

In the rules section the body of the grammar definition is
given. This section is made up of one or more grammar rules.
A grammar rule has the form:

<A> : expression ;

<A> represents the non-terminal name; the expression
represents a regular expression of zero or more names; the
colon and the semicolon are L&H BNF punctuation. Of all
the non-terminals, those that are exported have a particular
importance. The parser (compiler) is designed to recognize
the top-level symbols by the contents of the export
statements.

A rule specifies a set of symbol strings to be matched. It
contains words (which match words to be recognized), non-
terminals (which match symbols defined by rules in the
grammar), operators and functions (which specify repetitions,
choices, and other features).

Sequences

Format
expression expression

Description

ASR1500/ASR1600 Software Development Kit

The BNF Grammar Language - 83

Sequences concatenate two or more expressions. The
white space between consecutive expressions, symbols or
words is the implicit concatenation operator.
Example
I want to go to <City>
This expression indicates that the words “I”, “want”, “to”,
“go”, “to” and the symbol <city> are matched by this
expression if they occur in this specific sequential order.

Alternatives

Format
expression1 | expression2

Description
The value of this sub-expression is either expression1 or
expression2. One or more constituents in an alternative
expression can be empty. This results in the expression
possibly being nothing at all.
See also the !optional operator.
Example

Boston | New York | <Foreign Cities>

This expression indicates that the word “Boston”, the
expression “New York” and the symbol <Foreign City> are
all allowed by the expression.

!repeat function

Format
!repeat (expression, NUMBER, number_or_asterisk)

Description
The expression can be repeated from a minimum
NUMBER of times to a maximum number of times. If an
asterisk is specified, it means “infinity times”. Note that
NUMBER can be 0!

!optional function

Format
!optional (expression)

ASR1500/ASR1600 Software Development Kit

84 - Development Tools User's Guide

Description
The !optional function makes an expression optional in a
certain rule.
Example

the !optional(<adjective>) tree

Comments
The non-terminal symbol <adjective> is optional in this
expression. There may be an adjective, but it is not
necessary. Note that this in fact is another notation for:

(<adjective> |)

!ignore function

Format
!ignore (expression)

Description
The !ignore function makes an expression recognized, but
not notified to the application.
Example

the !ignore(“old”) tree

Comments
The full expression (including “old”) is recognized, but only
the string “the tree” is notified to the application. Note
that !ignore can only contain one single word enclosed by
double quotes. Symbols can not be ignored!

!action function

Format
!action(word)

Description
The !action function specifies an additional word or string
to be notified to the application, without this being
recognized, i.e., for recognition purposes the action string
is not present. The word or phrase has to be enclosed in
quotation marks.
Example

file close !action(“fclose(fileHandle);”);

ASR1500/ASR1600 Software Development Kit

The BNF Grammar Language - 85

Comments
Upon recognition of the expression, excluding the action
string, the full expression (including the action string) is
notified to the application, i.e.,

file close fclose(fileHandle);

Precedence Levels and Associativity for Operators

The following preceding levels and associativity rules
apply:

Precedence Operator Associativity

highest brackets

sequence left, binary

lowest alternative left, binary

functions

The functions have the highest precedence level. The binary,
left associative operator ‘sequence’ (which does not have a
symbol) has a higher precedence level than the binary, left
associative operator alternative “|” . The implicit precedence
levels can be overruled by the use of brackets.

Example
New York | Amsterdam
New (York | Amsterdam)

The implicit precedence levels make the first example an
alternative list of “New York” and “Amsterdam” where the
second example is an alternative list of “New York” and “New
Amsterdam”.

Isolated Word Recognition

Isolated Word Recognition is treated as a special case of
continuous speech recognition and is provided by a special

ASR1500/ASR1600 Software Development Kit

86 - Development Tools User's Guide

purpose syntax that comes standard with the ASRAPI
installation. This special purpose syntax is conceptually
equivalent to the following formal description in terms of the
L&H continuous speech grammar language.

!grammar IsolatedWordRecognition;
!export <Word>;
!class <Word>;
<Word> :;

This tiny grammar description defines the symbol <word> as
a word class. The only rule in the grammar states that valid
utterances are a <word> and that the symbol <word> is
empty. When new contexts are created with this syntax,
words can be added to the <word> word class using the
asrCtxAddWord() function.

Key Word Spotting

Keyword Spotting is treated as a special case of continuous
speech recognition and is provided by a special purpose
syntax that comes standard with the ASRAPI installation.
This special purpose syntax is conceptually equivalent to the
following formal description in terms of the L&H continuous
speech grammar language.

!grammar KeyWordSpotting;
!export <start>;
!class <Keyword>;
<start> : <...> <Keyword> <...>;
<Keyword> :;

This grammar description defines the symbol <keyword> as a
word class. The first rule states that a valid utterance is a
<keyword> surrounded by garbage (noise, non-vocabulary
speech, etc.). The second rule that defines the symbol
<keyword> states that the class is empty. When new contexts
are created with this syntax, words can be added to the
<keyword> word class using the asrCtxAddWord() function.

ASR1500/ASR1600 Software Development Kit

The BNF Grammar Language - 87

Connected Digit Recognition

Connected Digit Recognition is treated as a special case of
continuous speech recognition and is provided by a special
purpose syntax that comes standard with the ASRAPI
installation. This special purpose syntax is conceptually
equivalent to the following formal description in terms of the
L&H continuous speech grammar language.

!grammar ConnectedDigits;
!export <start>;
!class <digit>;
<start> : !repeat(<digit>,1,*) ;
<digit> : 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9;

The first rule states that a valid utterance is a repetition of
one or more <digit>. The second rule that defines the symbol
<digit> states that the symbol is one of the digits. This
grammar is specific for each language since it contains
specific words.

L&H BNF Grammar Language Formal
Specification

Terminal Symbol Notation, Word, Token

Two notations exist for terminal symbols:
1) any sequence of letters and digits, beginning with

letter: ASRAPI, take, word, I, UB40.
2) any text inside double quotation marks: “Lernout &

Hauspie Speech Products”, “B-52”, “tic-tac-toe”,
“&$^%@*\”\n\r\12kg”.

Such strings can include escape sequences like:

ASR1500/ASR1600 Software Development Kit

88 - Development Tools User's Guide

\a BEL (007) \t TAB (011)

\b BS (010) \v VTAB (013)

\f FF (014) \” “

\n NL (012) \" "

\r CR (015) \\ \

Non-terminal Symbol Notation, Symbol

Non-terminal symbols are of the form <any text excluding
some characters>. Any text is defined here as the printable
ASCII characters. Non-printing characters such as carriage
return, line feed, form feed, horizontal tabulation, vertical
tabulation, etc. cannot be used. Also the “>” character cannot
be used.

Garbage Class

The garbage class is a special class, written as <...>, which
can be used in the grammar specification to indicate places
where any phrase, any speech can be uttered. This class is
used, e.g., to specify the keyword spotting syntax in this BNF
language.

Compiler Keywords Specification

Compiler keywords are differentiated from regular terminal
symbols by a leading ‘!’ character. Here is the list of
keywords:

• !grammar - grammar statement

ASR1500/ASR1600 Software Development Kit

The BNF Grammar Language - 89

• !language - language statement

• !pronounce - pronounce statement

• !class - word class statement

• !spelling - spelling syntax identifier

• !export - non-terminals export statement

• !import - non-terminals import statement

• !repeat - repeat function (expression can be repeated)

• !optional - optional function (expression is optional)

• !ignore - pseudo-function (do not notify recognized
 text to the application)

• !action - action-string function - extra info is
notified

 to the application

Formal Language Specification

The #include statement and C/C++ style comments, being
preprocessor statements, are not described in this
specification.

grammar :

sequence-of-statements
sequence-of-statements :

<empty>

statement sequence-of-statements

statement :
<empty> ;
grammar-statement ;
language-statement ;
export-statement ;
import-statement ;
class-statement ;
pronounce-statement ;
rule-statement ;

ASR1500/ASR1600 Software Development Kit

90 - Development Tools User's Guide

grammar-statement :
!grammar word

language-statement :
!language word

export-statement :
!export symbol

import-statement :
!import symbol

class-statement :
!class symbol
!class symbol !spelling symbol

pronounce-statement :
!pronounce vendor-mark word word

rule-statement :
symbol : comp-expression

comp-expression :
<empty>
comp-expression expression
comp-expression | comp-expression

expression :
word
symbol
(comp-expression)
operator-expression

operator-expression :
repeat-operator
optional-operator
ignore-operator
action-operator

repeat_operator :
!repeat (comp-expression, integer,
integer)
!repeat (comp-expression, integer, *)

optional-operator:
!optional (comp-expression)

ignore-operator:
!ignore (word)

ASR1500/ASR1600 Software Development Kit

The BNF Grammar Language - 91

action-operator:
!action (word)

symbol-list :
(symbol sequence-of-symbols)
symbol sequence-of-symbols

vendor-mark :
L&H

Design Tips

The more your grammar is adjusted to the situation, the
better the recognition will be. The aim is to be able to
recognize all valid commands and only those. Making sure all
valid commands are included is mostly not too difficult. On
the other hand, making sure that only those are added may
require some more effort.
Even if you have a good model of the speech that is likely to
be produced, there are some other factors that may influence
the quality of the recognition. Grammars with seemingly the
same effect still may have different behavior. In the following
sections, we will tackle some of the thorny issues.

Content

In this section we will discuss the content of a grammar.
Even if most of the comments here seem pretty obvious, some
of them may prove very useful.

Strings

The first thing you should consider is to use long
words/phrases rather than short ones. The longer the phrase,
the more information is available, and the more accurate the
recognition result will be. In this respect, it is also wise to use
as distinct phrases as possible. The example below illustrates

ASR1500/ASR1600 Software Development Kit

92 - Development Tools User's Guide

how difficult it may be to make a correct distinction between
two sentences, as they differ in only a very small location.

"I am going to the store"

"I am going in the store"

As a rule of thumb, try to use longer and more distinct
sentences, even though logically it does not seem necessary.

Another problem may be opposite words. Many of them sound
very similar. Typically, the only difference between the two
resides in prefixes like “un-“ and “in-“. (For instance
“popular” versus “unpopular”). It is good practice to avoid
using these kinds of opposites, although it might be very
difficult to come up with good, logical alternatives. Using
such opposites in longer sentences, where the ‘carrier’
sentences themselves are sufficiently different may help to
differentiate between the two.

Quotes

You have to use quotes with the necessary caution. When
your terminal symbols contain phrases, instead of a single
word, using quotes will increase the size of the grammar. The
reason for this is that quoted phrases are regarded as single
words. The following example illustrates this:

“I am going to the store" | "I am going in the store"

vs.

I am going to the store | I am going in the store

In the first case, the engine would consider that there are
only two ‘words’, versus eleven in the second case. As a result,
the size of the phonetic information stored will be larger for
the first alternative. The reason for this is that in the first
case, similar words will be stored phonetically multiple times.
For instance, the phonetic string for “going” will be stored
once as part of the “I am going to the store”-word and once for

ASR1500/ASR1600 Software Development Kit

The BNF Grammar Language - 93

the “I am going in the store”-word, whereas in the second
case it is stored only once.

Moreover, the use of quotes also requires the user to speak
the quoted string in a continuous way. The engine will not
take into account possible gaps or short pauses between the
words. On average, this results in poorer results if the users
are not familiar with the possible answers.
As a general guideline, it is best not to use quotes.
However, there are some situations where the use of quotes is
recommended. Some words have to be pronounced as a single
word. An example of this would be the French liaisons, i.e.
the linking of words. For instance “Ils ont” should not be
pronounced as two separate words but rather as a single
word “Ilsont”. Another less obvious example would be
“New York” in English (and other languages).

Interaction

A context free grammar is not a dictation grammar: users
cannot just say what they want. A grammar should be
designed to handle specific syntaxes. It is essential to be
consistent in the design. That makes it easier for the users to
get familiar with the context and ‘anticipate’ the expected
responses. The use of well-chosen prompts can help as well.
The less confused the user is about a possible response, the
higher the chance he will use a correct one and the higher the
accuracy of the recognition.
It is also important to give feedback to the user so that he
may know that his command has been correctly understood.
Feedback, although adequate, should not be overdone to
avoid slowing down the dialog. Note that this feedback could
also be blended in the prompts.

Limit the use of ‘special features’

Although the special features may help you to create the
perfect grammar, their use often restricts the optimization of

ASR1500/ASR1600 Software Development Kit

94 - Development Tools User's Guide

the grammars, resulting in longer response times, and
decreased accuracy. Structures like !action, !ignore, etc.
should be used moderately. The same applies to the uses of
classes. Do not turn a symbol into a class unless you really
intend to add words to or delete words from it. Classes too
limit the number of optimization that can be performed.

The garbage model is somewhat special. It is actually a
‘dangerous’ thing to use as it models ‘any‘ speech. If you know
what is going to be said, even though you are not interested
in it, it will give better performance if you list this speech
rather than using the garbage model. Even if you know only a
limited part of the text that should definitely be spoken
within the space where you are using <…>, put that text in
the grammar and surround it with <…>. The more speech
you can identify the better the results.

Something similar to the overuse of the garbage-model is the
overuse of repetitions. If you know the maximum number of
repetitions, it is better to specify this maximum rather than
just specifying an *. It serves no purpose trying to recognize 8
digits in a 7-digit telephone-number.
Take a look at the following lines:

What’s your name | What’s your address;

vs.

What’s your (name | address);

Both have the same effect, but the second option is better. If
there are common parts, it is good practice to separate them
from the specific parts. In this regard, the second option
below is also better than the first:

<digit><digit>|<digit><digit><digit>;

vs.

<digit><digit>!optional(<digit>);

ASR1500/ASR1600 Software Development Kit

The BNF Grammar Language - 95

Vocabulary Management

We already explained that you only want those words or
phrases in your grammar that can actually be spoken and
only those. This is not always enough. A context is a general
representation of the speech that can be spoken during the
life span of an application. This does not necessarily mean
that all of these words have a valid meaning all of the time.
Therefore it would be better to limit the recognizable (active)
words to specific time frames in an application’s life span.
The fewer the number of words that are active at any point in
the grammar, the lower the branching factor, and the easier
to recognize.
In this respect, we would like to point out the importance of
exported symbols. Symbols that are exported can be
activated, deactivated, enabled or disabled, thus allowing
easy vocabulary management. For more information on how
to accomplish this, refer to the section on Vocabulary
Management in the User’s Guide.

ASR1500/ASR1600 Software Development Kit

The L&H+ Phonetic Transcription System - 97

THE L&H+ PHONETIC
TRANSCRIPTION SYSTEM

Introduction

Phonetic transcriptions are an essential tool in the
description of human speech. The aim of a phonetic
transcription is to provide a method of representing
pronunciation in a written form in an unambiguous manner.

The most widely used phonetic alphabet is the one
established by the International Phonetic Association (IPA).
This alphabet consists mainly of the letters of the Roman
alphabet together with a few letters from the Greek alphabet.
A few other symbols are especially designed for IPA. The
general principle is that a distinctive sound is represented by
one and only one symbol. The IPA system also provides a set
of diacritics to be added to the basic symbols. The purpose of
these diacritics is to allow a finer description of the sounds if
required. The last version of the IPA alphabet dates from
1993.

The set of IPA symbols is not available on standard
keyboards and it is not supported in common computer
character sets such as ASCII. To overcome this problem L&H
has designed an encoding system that allows for the
representation of the complete IPA character set using a
limited range of ASCII symbols. This encoding system is
called L&H+.

L&H+ covers all IPA symbols in the 1993 version but it also
adds a few symbols to represent phonetic elements not

ASR1500/ASR1600 Software Development Kit

98 - Development Tools User’s Guide

included in the IPA system. L&H+ uses members of the
ASCII set in the range 33-126 to construct a phonetic symbol.
In L&H+ the percentage symbol “%” separates the basic
symbol from the diacritics. For example, IPA /! / is /E%~/
in#L&H+$

The tables on the following pages provide the list of
phonemes for several languages with their corresponding
transcriptions in the L&H+ and IPA systems. Written and
transcribed examples per phoneme are included. In these
examples, bold letters indicate the graphemes that
correspond to each phoneme in normal pronunciation.

Multiple Pronunciations

In all languages, the orthographic representation of a word
can have (sometimes completely) different pronunciations.

These alternative pronunciations sometimes can be
represented orthographically. For example, in English the
digit ‘0’ can be read as null or as zero.

In other cases only a phonetic transcription can reflect the
pronunciation variability. For instance, the word ‘the’ can be
pronounced as /’D$/ or /’Di/ (depending on the context).

Another example is the word ‘different‘, which can be read as
/’dI.f$.R+$nt/ but also as /’dI.fR+$nt/. The difference between
the two transcriptions is the deletion of a /‘$’/.

In order to cope with these cases, a notational formalism is
introduced here. This formalism provides an economic way of
representing variability of pronunciations and increases the
flexibility of traditional phonetic transcriptions.

ASR1500/ASR1600 Software Development Kit

The L&H+ Phonetic Transcription System - 99

The individual alternative pronunciations are separated by
the pipe symbol (‘|’) and enclosed by parentheses. The action
of deletion is represented by the deletion symbol (=0).

Applying this formalism to the above examples gives:
‘0’ (null | zero)
‘the’ /’D ($ | i)/
‘different’ /’dI.f ($ | =0).R+$nt/

This formalism should be used with care. The combination of
alternative pronunciations can lead to the generation of
invalid strings of phonemes or sounds. For example, the word
‘record’ can be transcribed either as /R+I.’kOR+d/ (the verb to
record) or as /’R+E.kOR+d/ (the noun record). Combining
these two representations into /(‘ | =0) R+ (I | E).(‘ | =
0)kOR+d / can generate 8 possible combinations.

One correct way to reflect the alternatives in a phonetic
transcription based on our notation system is /(R+I. ‘ |
‘R+E.) kOR+d/.

ASR1500/ASR1600 Software Development Kit

The L&H+ Phonetic Transcription System - 101

Phoneme Table American English

L&H+ IPA Example L&H+
Transcription

IPA
Transcription

Vowels
i i beat 'bit Èbit

I I bit 'bIt ÈbIt

E E bed 'bEd ÈbEd

@ Q map 'm@p ÈmQp

A A car 'kAR+ ÈkAr

^ Ã but 'b^t ÈbÃt

O � bought 'bOt Èb�t

U U book 'bUk ÈbUk

u u boot 'but Èbut

$ « about $.'ba&Ut «.ÈbaUt

E0 Î turn 'tE0R+n ÈtÎÓn

Diphthongs
e&I eI bait 'be&It ÈbeIt

O&I �I boy 'bO&I Èb�I

a&I aI buy 'ba&I ÈbaI

a&U aU down 'da&Un ÈdaUn

o&U oU show 'So&U ÈSoU

Approximants
j j you 'ju Èju

w w wit 'wIt ÈwIt

R+ Ó ride 'R+a&Id ÈÓaId

l l let 'lEt ÈlEt

ASR1500/ASR1600 Software Development Kit

102 - Development Tools User�s Guide

L&H+ IPA Example L&H+
Transcription

IPA
Transcription

Plosives
p p pan 'p@n ÈpQn

t t tan 't@n ÈtQn

k k can 'k@n ÈkQn

b b boy 'bO&I Èb�I

d d day 'de&I ÈdeI

g g got 'gAt ÈgAt

? ? glottal stop '?it È?it

Fricatives
f f fine 'fa&In ÈfaIn

T T thin 'TIn ÈTIn

s s sin 'sIn ÈsIn

S S shine 'Sa&In ÈSaIn

v v vine 'va&In ÈvaIn

D D that 'D@t ÈDQt

z z zone 'zo&Un ÈzoUn

Z Z vision 'vI.Z$n ÈvI.Z«n

h h head 'hEd ÈhEd

Affricates
t&S t�S church 't&SE0R+t&S Èt�SÎÓt�S

d&Z d�Z jungle 'd&Z^ nK.g$l Èd�ZÃN.g«l

Nasals
m m my 'ma&I ÈmaI

n n no 'no&U ÈnoU

nK N sing 'sInK ÈsIN

Special
' È primary stress

'2 Ç secondary stress

. . syllable boundary

_ word boundary

silence (pause)

ASR1500/ASR1600 Software Development Kit

The L&H+ Phonetic Transcription System - 103

Phoneme Table Spanish

L&H+ IPA Example L&H+
Transcription

IPA
Transcription

Vowels
i i vivo 'bi.Bo Èbi.Bo

e e peso 'pe.so Èpe.so

a a casa 'ka.sa Èka.sa

o o bobo 'bo.Bo Èbo.Bo

u u cuñado ku.'n~a.Do ku.Èøa.Do

Approximants
j j ciego 'Tje.Go ÈTje.Äo

w w cuenta 'kwen.ta Èkwen.ta

l l lata 'la.ta Èla.ta

Trill
r r carro 'ka.ro Èka.ro

Tap
r6 R caro 'ka.r6o Èka.Ro

Plosives
p p pepa 'pe.pa Èpe.pa

t t tía 'ti.a Èti.a

k k kilo 'ki.lo Èki.lo

b b cambio 'kam.bjo Èkam.bjo

d d dedo 'de.Do Ède.Do

g g hangar an.'gar6 an.ÈgaR

ASR1500/ASR1600 Software Development Kit

104 - Development Tools User�s Guide

L&H+ IPA Example L&H+
Transcription

IPA
Transcription

Fricatives
f f fin 'fin Èfin

T T cero 'Te.r6o ÈTe.Ro

D D dedo 'de.Do Ède.Do

s s seso 'se.so Èse.so

J S mayo 'ma.Jo Èma.Æo

x v ajo 'a.xo Èa.xo

G D agua 'a.Gwa Èa. Äwa

B z bobo 'bo.Bo Èbo.Bo

Affricates
t&S t�S chico 't&Si.ko Èt�Si.ko

d&Z d�Z yo 'd&Zo Èd�Zo

Nasals
m m amo 'a.mo Èa.mo

n n nene 'ne.ne Ène.ne

n~ ø niño 'ni.n~o Èni. øo

Special
' È primary stress

. . syllable boundary

_ word boundary

silence (pause)

ASR1500/ASR1600 Software Development Kit

The L&H+ Phonetic Transcription System - 105

Phoneme Table Italian

L&H+ IPA Example L&H+
Transcription

IPA
Transcription

Vowels
a a case 'ka.se Èka.se

e e nero 'ne.ro Ène.ro

E E epoca 'E.po.ka ÈE.po.ka

i i vino 'vi.no Èvi.no

o o volo 'vo.lo Èvo.lo

O � cosa 'kO.sa Èk�.sa

u u lumaca lu.'ma.ka lu.Èma.ka

Diphthongs
e&u eu europa e&u.'rO.pa eu.Èr�.pa

E&u Eu feudo 'fE&u.do ÈfEu.do

a&u au causa 'ka&u.za Èkau.za

Trills
r r raro 'ra.ro Èra.ro

r: rù carro 'ka.r:o Èka.rùo

Approximants
j j piú 'pju ÈTje.Äo

w w può 'pwO Èpw�

l l lama 'la.ma Èla.ma

l: lù bello 'bE.l:o ÈbE.lùo

l~ ´ gli 'l~i È´i

l~: ´ù figlio 'fi.l~:o Èfi.´ùo

ASR1500/ASR1600 Software Development Kit

106 - Development Tools User�s Guide

L&H+ IPA Example L&H+
Transcription

IPA
Transcription

Plosives
p p copia 'kO.pja Èk�.pja

p: pù pappa 'pa.p:a Èpa.pùa

t t tana 'ta.na Èta.na

t: tù fatto 'fa.t:o Èfa.tùo

k k casa 'ka.sa Èka.sa

k: kù macchia 'ma.k:ja Èma.kùja

b b bacio 'ba.t&So Èba.t�So

b: bù babbo 'ba.b:o Èba.bùo

d d dito 'di.to Èdi.to

d: dù freddo 'fre.d:o Èfre.dùo

g g ago 'a.go Èa.go

g: gù leggo 'lE.g:o ÈlE.gùo

Fricatives
f f festa 'fEs.ta ÈfEs.ta

f: fù baffi 'ba.f:i Èba.fùi

s s sole 'so.le Èso.le

s: s fisso 'fi.s:o Èfi.sùo

S S scivolo 'Si.vo.lo ÈSi.vo.lo

S: Sù liscio 'li.S:o Èli.Sùo

v v vino 'vi.no Èvi.no

v: vù ovvio 'O.v:jo È�.vùjo

z z viso 'vi.zo Èvi.zo

Affricates
t&s t�s zio 't&si.o Èt�si.o

t&s: t�sù ragazza ra.�ga.t&s:a ra.Èga.t�sùa

t&S t�S ci �t&Si Èt�Si

t&S: t�Sù faccia �fa.t&S:a Èfa.t�Sùa

d&Z d�Z giusto �d&Zus.to Èd�Zus.to

d&Z: d�Zù oggi �O.d&Z:i È�.d�Zùi

d&z d�z zona �d&zO.na Èd�z�.na

d&z: d�zù mezzo �mE.d&z:o ÈmE.d�zùo

ASR1500/ASR1600 Software Development Kit

The L&H+ Phonetic Transcription System - 107

L&H+ IPA Example L&H+
Transcription

IPA
Transcription

Nasals
m m mano 'ma.no Èma.no

m: mù mamma 'ma.m:a Èma.mùa

n n nano 'na.no Èna.no

n: nù danno 'da.n:o Èda.nùo

n~ ø gnocco 'n~O.mo Èø�.mo

n~: øù ogni 'O.n~:i È�.øùi

Special
' È primary stress

'2 Ç secundary stress

. . syllable boundary

_ word boundary

silence (pause)

ASR1500/ASR1600 Software Development Kit

The L&H+ Phonetic Transcription System - 109

Phoneme Table German

L&H+ IPA Example L&H+
Transcription

IPA
Transcription

Vowels
i: iù Riese 'Ri:.z$ È{iù.z«

y: yù grün 'gRy:n Èg{yùn

I I Milch 'mIlC ÈmIlC

Y Y Küste 'kYs.t$ ÈkYs.t«

e: eù Kehle 'ke:.l$ Èkeù.l«

e+ O Öl 'e+l ÈOl

E E letzte 'lEt.st$ ÈlEts.t«

E+ ¿ löschen 'lE+.S$n Èl¿.S«n

a a Stadt 'Stat ÈStat

a: aù Wagen 'va:.g$n Èvaù.g«n

O � voll 'fOl Èf�l

o: où groß 'gRo:s Èg{oùs

U U Kunst 'kUnst ÈkUnst

u: uù Fuß 'fu:s Èfuùs

$ « Taste 'tas.t$ Ètas.t«

Diphthongs
O&y �y heute 'hO&y.t$ Èh�y.t«

a&I ai Teil 'ta&il Ètail

a&u au Baum 'ba&um Èbaum

Approximants
j j jemand 'je:.mant Èjeù.mant

l l Licht 'lICt ÈlICt

Trill

R { Reise 'Ra&i.z$ È{ai.z«

ASR1500/ASR1600 Software Development Kit

110 � Development Tools User�s Guide

L&H+ IPA Example L&H+
Transcription

IPA
Transcription

Plosives
p p Post 'pOst Èp�st

t t Tinte 'tIn.t$ ÈtIn.t«

k k klein 'kla&in Èklain

b b Bein 'ba&in Èbain

d d dich 'dIC ÈdIC

g g liegen 'li:.g$n Èliù.g«n

? ? (glottal stop) b$.'?ax.t$n b«.È?ax.t«n

Fricatives
f f Feld 'fElt ÈfElt

s s Fels 'fEls ÈfEls

S S Schnee 'Sne: ÈSneù

v v wach 'vax Èvax

z z Saal 'za:l Èzaùl

Z Z Journal ZUR.'na:l ZU{.Ènaùl

C C Milch 'mIlC ÈmIlC

x x Bach 'bax Èbax

h h Hand 'hant Èhant

Affricates
p&f p�f Pferd 'p&fe:Rt Èp�feù{t

t&s t�s Zug 't&su:k Èt�suùk

t&S t�S klatschen 'kla.t&S$n Èkla.t�S«n

d&Z d�Z Gin 'd&ZIn Èd�ZIn

Nasals
m m Mann 'man Èman

n n Norden 'nOR-d$n Èn�{.d«n

nK N Ring 'RInK È{IN

Special
' È primary stress

'2 Ç secundary stress

. . syllable boundary

_ word boundary

silence (pause)

ASR1500/ASR1600 Software Development Kit

The L&H+ Phonetic Transcription System - 111

Phoneme Table British English

L&H+ IPA Example L&H+
Transcription

IPA
Transcription

Vowels
i i beat 'bit Èbit

I I bit 'bIt ÈbIt

E E bed 'bEd ÈbEd

@ Q map 'm@p ÈmQp

A A car 'kA ÈkA

A+ � pot 'pA+t Èp�t

^ Ã but 'b^t ÈbÃt

O � bought 'bOt Èb�t

U U book 'bUk ÈbUk

u u boot 'but Èbut

$ « about $.'ba&Ut «.ÈbaUt

E0 Î turn 'tE0n ÈtÎn

Diphthongs
I&$ I« here 'hI&$ ÈhI«

E&$ E« there 'DE&$ ÈDE«

U&$ U« poor 'pU&$ ÈpU«

e&I eI bait 'be&It ÈbeIt

O&I �I boy 'bO&I Èb�I

a&I aI buy 'ba&I ÈbaI

a&U aU down 'da&Un ÈdaUn

o&U oU show 'So&U ÈSoU

Approximants
j j you 'ju Èju

w w wit 'wIt ÈwIt

R+ Ó ride 'R+a&Id ÈÓaId

l l let 'lEt ÈlEt

ASR1500/ASR1600 Software Development Kit

112 � Development Tools User�s Guide

L&H+ IPA Example L&H+
Transcription

IPA
Transcription

Plosives
p p pan 'p@n ÈpQn

t t tan 't@n ÈtQn

k k can 'k@n ÈkQn

b b boy 'bO&I Èb�I

d d day 'de&I ÈdeI

g g got 'gA+t Èg�t

? ? (glottal stop) '?it È?it

Fricatives
f f fine 'fa&In ÈfaIn

T T thin 'TIn ÈTIn

s s sin 'sIn ÈsIn

S S shine 'Sa&In ÈSaIn

v v vine 'va&In ÈvaIn

D D that 'D@t ÈDQt

z z zone 'zo&Un ÈzoUn

Z Z vision 'vI.Z$n ÈvI.Z«n

h h head 'hEd ÈhEd

Affricates
t&S t�S church 't&SE0t&S Èt�SÎt�S

d&Z d�Z jungle 'd&Z^ nK.g$l Èd�ZÃN.g«l

Nasals
m m my 'ma&I ÈmaI

n n no 'no&U ÈnoU

nK N sing 'sInK ÈsIN

Special
' È primary stress

'2 Ç secondary stress

. . syllable boundary

_ word boundary

silence (pause)

ASR1500/ASR1600 Software Development Kit

The L&H+ Phonetic Transcription System - 113

Phoneme Table French

L&H+ IPA Example L&H+
Transcription

IPA
Transcription

Vowels
i i minute mi.'nyt mi.Ènyt

y y mûr 'myR ÈmyR

e e élément e.le.'mA%~ e.le.ÈmA)â

e+ O deux 'de+ ÈdO

E E très 'tRE ÈtRE

E+ ¿ oeuvre 'E+.vR$ È¿.vR«

a a la 'la Èla

A A pâte 'pAt ÈpAt

O � morte 'mORt Èm�Rt

o o eau 'o Èo

u u tour 'tuR ÈtuR

$ « le 'l$ Èl«

E%~ E) vin 'vE%~ ÈvE)

A%~ A) blanc 'blA%~ ÈblA)

O%~ �) bon 'bO%~ Èb�)

E+%~ ¿) brun 'bRE+%~ ÈbR¿)

Approximants
j j briller bRi.'je bRi.Èje

h\ ç lui 'lh\i Èlçi

w w oui 'wi Èwi

l l la 'la Èla

Tap
R R rond 'RO%~ ÈR�)

ASR1500/ASR1600 Software Development Kit

114 � Development Tools User�s Guide

L&H+ IPA Example L&H+
Transcription

IPA
Transcription

Plosives
p p pas 'pa Èpa

t t tas 'ta Èta

k k canne 'kan Èkan

b b bas 'ba Èba

d d de 'd$ d«

g g gomme 'gOm Èg�m

Fricatives
f f faim 'fE%~ ÈfE)

s s sauce 'sos Èsos

S S charme 'SaR.m$ ÈSaR.m«

v v vol 'vOl Èv�l

z z zéro ze.'Ro ze.ÈRo

Z Z jardin ZaR.'dE%~ ZaR.ÈdE)

Nasals
m m mot 'mo Èmo

n n nous 'nu Ènu

n~ ø agneau a.'n~o a.Èøo

nK N smoking smO.'kinK sm�.ÈkiN

Special
' È primary stress

. . syllable boundary

_ word boundary

silence (pause)

ASR1500/ASR1600 Software Development Kit

The L&H+ Phonetic Transcription System - 115

Phoneme Table Dutch

L&H+ IPA Example L&H+
Transcription

IPA
Transcription

Vowels
i i vies 'vis Èvis

y y vuur 'vyr Èvyr

I I vis 'vIs ÈvIs

e e veel 'vel Èvel

e+ O beuk 'be+k ÈbOk

E E pet 'pEt ÈpEt

E: Eù primair 'pri.mE:r pri.ÈmEùr

a a paars 'pars Èpars

A A pak 'pAk ÈpAk

^ Ã put 'p^t ÈpÃt

O � pot 'pOt Èp�t

o o poot 'pot Èpot

u u voet 'vut Èvut

$ « de 'd$ Èd«

Diphthongs
E&I Ei hij 'hE&i ÈhEi

A&u Au vrouw 'vrA&u ÈvrAu

^&y Ãy tuin 't^&yn ÈtÃyn

Approximants
j j jood 'jot Èjot

w w nieuw 'niw Èniw

V V water 'Va.t$r ÈVA.t«r

l l lach 'lAx ÈlAx

Trill

r r rood 'rot Èrot

ASR1500/ASR1600 Software Development Kit

116 � Development Tools User�s Guide

L&H+ IPA Example L&H+
Transcription

IPA
Transcription

Plosives
p p poot 'pot Èpot

t t toen 'tun Ètun

k k zak 'zAk ÈzAk

b b boot 'bot Èbot

d d doen 'dun Èdun

g g zakdoek 'zAg.duk ÈzAg.duk

? ? (glottal stop) G$.'?ar.z$lt Ä«.È?ar.z«lt

Fricatives
f f fiets 'fits Èfits

s s sap 'sAp ÈsAp

S S show 'Sow ÈSow

v v leven 'le.v$n Èle.v«n

z z zap 'zAp ÈzAp

Z Z journaal Zur.'nal Zur.Ènal

x x lach 'lAx ÈlAx

G Ä lagen 'la.G$n Èla.Ä«n

h h hoed 'hut Èhut

Nasals
m m moed 'mut Èmut

n n niet 'nit Ènit

nK N bang 'bAnK ÈbAN

Special
' È primary stress

. . syllable boundary

_ word boundary

silence (pause)

ASR1500/ASR1600 Software Development Kit

The L&H+ Phonetic Transcription System - 117

Phoneme Table Japanese

L&H+ IPA Example L&H+
Transcription

IPA
Transcription

Vowels

A # © kA‘do k#FQ

A: #Ö ��. ‘FkA:do M#ÖFQ

i K �3I iAi K#K

i: KÖ ¸I3I i:Ai KÖ#K

u- � ¼� u-r6u- �4�

u-: �Ö ��P ‘Fu-:r6u- �Ö4�

e G � kAze M#\G

e: GÖ XW sANse: U#�UGÖ

o Q kX te‘ko VGMQ

o: QÖ Z� r6ip:o: 4KRÖQÖ

Plosives

p R �6	 supA‘i U�R#K

p: RÖ ^hvI sup:A‘i U�RÖ#K

b D wK bA‘bA D#D#

b: DÖ �(5�. A‘Fb:A:do #DÖ#ÖFQ

t V × kA‘tA M#V#

t: VÖ :hd kA‘t:A M#VÖ#

d F �� dA‘dA F#F#

d: FÖ =(. he‘d:o JGFÖQ

k M Ï sAkA‘ U#M#

k: MÖ �(�� sA‘k:A: U#MÖ#

g I �N� gAr6Asu- I#4#U�

g: IÖ .(� do‘g:u- FQIÖ�

? ! GhG A?A #!#

ASR1500/ASR1600 Software Development Kit

118 - The L&H+ Phonetic Transcription System

Fricatives

z \ '� kAzAr6u- M#\#4�

Z < �W ki‘Zu- MK<�

h J þ hAnA' J#P#

h: JÖ 5(4 ba‘h:A D#JÖ#

P � :�X PA‘N �#�

P: �Ö 5(:�� bAP:A: D#�Ö#Ö

s U (3 kAsAi M#U#K

s: UÖ �Ñ kAs:Ai M#UÖ#K

S 5 *� kA‘Su- M#5�

S: 5Ö �� dAS:u-: F#5Ö�Ö

v X Y�	�OX vAior6iN X#KQ4K�

v: XÖ �(Y� sA‘v:i U#XÖK

Affricates

t&s VU > se‘t&su- UGVU�Ö

t&s: VUÖ ´@ set&s:u- UGVUÖ�

t&S V5 K9 ‘Ft&So:sA V5QÖU#

t&S: V5Ö �+ hAt&S:u-: J#V5Ö�Ö

z: \ �(� o‘z:u- Q\Ö�

Z: <Ö 5(�L bA‘Z:o D#<ÖQ

Nasals

m O nR mAki O#MK

n P ì nA‘ni P#PK

N � � sAN U#�

Flap

r6 4 4 r6Aku-‘ 4#M�

r6: 4Ö �(N� Ar6:A: #4Ö#Ö

Approximant

M L Ø¦ jAsAi L#U#K

w Y Æ wAtASi Y#V#5K

ASR1500/ASR1600 Software Development Kit

The L&H+ Phonetic Transcription System - 119

Special

‘ Falling accent

‘F Late falling accent

ASR1500/ASR1600 Software Development Kit

The L&H+ Phonetic Transcription System - 121

Phoneme Table Korean

L&H+ IPA Example L&H+
Transcription

IPA
Transcription

Vowels

a C �} a.gi C�JK

O o �� Om.ma oO�OC

o Q qÁ o.i Q�K

u W ým u.ju W�LW

u- � �~ u-m.sOnK �O�Uo1

i K ÁÑ i.ru-m K�T�O

e G �á e.nu-n G�P�P

e+ 2 Ùù he+.sa J2�UC

E (ii kE.bal M(�DCN

Diphthongs

u-&i �K ¥ù u-&i.sa �K�UC

ja LC É} ja.gi LC�IK

jO Lo 9Ñ jO.ru-m Lo�TWO

jo LQ áM jo.ga LQ�IC

ju LW mÙm ju.ram.sOn LW�TCO�UoP

je LG UU je.j-Ol LG�ÌoN

jE L' å} jE.gi L'�IK

wE Y' © wE Y'

wi YK Q} wi.gi YK�IK

wa YC �e wan.su YCP�UW

we YG 9� wen.mal YGP�OCN

wO Yo �-
 wOn.go.j-i YoP�IQ�ÌK

ASR1500/ASR1600 Software Development Kit

122 - Development Tools User’s Guide

L&H+ IPA Example L&H+
Transcription

IPA
Transcription

Plosives

p R a1 pa.da RC�FC

b D
v ci.banK EK�DC1

p` R	 µQ p`al.gan R	CN�ICP

p{ R* Y� p{a.gwe R*C�IYG

t V 1ù ta.ri VC�TK

d F Å1ù e+.da.ri YG�FC�TK

t` V	 �} t`al.gi V	CN�IK

t{ V* �Ù t{an.so V*CP�UQ

k M MÞ� ka.ranK.bi MC�TC1�DK

g I �¹ to.gu VQ�IW

k` M	 �¥ k`a.c{I M	C� E*K

k{ M* ¶å� k{onK.na.mul M+Q1�PC�OWN

c E Ý* ca.sik EC�UKM

j- Ì ÝòM ca.j-anK.ga EC�ÐC1�JC

c` E)Ñ� c`a.im.sE EC�KO� U(

c{ E* uõ c{a.nam E+C�PCO

? ! �~ u-m.sOnK �O�Uo1

Fricatives

s U ùÙ sa.ram UC�TCO

s` U	 E
 s`a.um U	C�WO

h J ¥å ha.nu-l JC�P�N

h6 × ��M mu.h6O.ga OW�Üo�JC

ASR1500/ASR1600 Software Development Kit

The L&H+ Phonetic Transcription System - 123

L&H+ IP
A

Example L&H+
Transcription

IPA
Transcription

Approximants

j L õ� kjO.ul MLo�WN

w Y 9� wen.mal YGP�OCN

Nasals

m O �m ma.sul OC�UWN

n P åÉ na.ra PC�TC

nK 0 bý kanK.san MC1�UCP

Laterals

l N U> kal. t`u-N MCN�V	�1

r T 1= si.rjOn UK�TLoP

Special

. � syllable boundary

silence (pause)

<space> Word/phrase delimiter

*. End of declarative

*, comma

*! End of exclamation

*? End of question

*; semicolon

*: colon

ASR1500/ASR1600 Software Development Kit

The L&H+ Phonetic Transcription System - 125

Phoneme Table Mexican Spanish

L&H+ IPA Example L&H+
Transcription

IPA
Transcription

Vowels
i i vivo 'bi.Bo Èbi.Bo

e e peso 'pe.so Èpe.so

a a casa 'ka.sa Èka.sa

o o bobo 'bo.Bo Èbo.Bo

u u cuñado ku.'n~a.Do ku.Èøa.Do

Approximants
j j ciego 'Tje.Go ÈTje.Äo

w w cuenta 'kwen.ta Èkwen.ta

l l lata 'la.ta Èla.ta

Trill
r r carro 'ka.ro Èka.ro

Tap
r6 R caro 'ka.r6o Èka.Ro

Plosives
p p pepa 'pe.pa Èpe.pa

t t tía 'ti.a Èti.a

k k kilo 'ki.lo Èki.lo

b b cambio 'kam.bjo Èkam.bjo

d d dedo 'de.Do Ède.Do

g g hangar an.'gar6 an.ÈgaR

ASR1500/ASR1600 Software Development Kit

126 - Development Tools User�s Guide

L&H+ IPA Example L&H+
Transcription

IPA
Transcription

Fricatives
f f fin 'fin Èfin

D D dedo 'de.Do Ède.Do

s s seso 'se.so Èse.so

z z desde 'dez.De Èdez.De

J Æ mayo 'ma.Jo Èma.Æo

x x ajo 'a.xo Èa.xo

G Ä agua 'a.Gwa Èa. Äwa

B B bobo 'bo.Bo Èbo.Bo

Affricates
t&S t�S chico 't&Si.ko Èt�Si.ko

d&Z d�Z yo 'd&Zo Èd�Zo

Nasals
m m amo 'a.mo Èa.mo

n n nene 'ne.ne Ène.ne

n~ ø niño 'ni.n~o Èni. øo

nK N cinco 'sinK.ko ÈsiN.ko

Special
' È primary stress

. . syllable boundary

_ word boundary

silence (pause)

	INTRODUCTION
	THE ASR EVALUATOR
	Introducing the ASR Evaluator
	Starting the Evaluator
	Menu Commands
	File Menu
	Recognizer Menu
	Tools Menu
	Help Menu

	The Evaluator Program Window
	Utterance Field
	N-Best alternatives Field
	Recognizer Activity Field
	Active Contexts Field
	Active Words Field

	Recognizer Management Buttons
	Start Button
	Stop Button
	Break Button

	Recognition Operating Modes
	Push to talk
	Automatic stop
	Open microphone
	Continuous Operation

	Recognition from File

	THE LEXICON TOOLKIT
	Introducing the Lexicon Toolkit (LexTool)
	Starting the Lexicon Toolkit
	Menu Commands
	Context menu
	User menu
	Dictionary menu
	Help menu

	THE BNF GRAMMAR LANGUAGE
	Introducing the L&H BNF Grammar Language
	Grammar essentials
	Preliminary
	Notation
	Statements, Rules and Symbols
	Classes
	Repetitious Recognition
	Optional Recognition
	Unnotified Recognition
	Non-Recognitions
	Importing
	Any Speech
	Pronunciations
	Spelling

	Formal Description
	Pre-processing Grammars
	Comment Notation
	Identification Section
	Interface Section
	Class Section
	Pronounce Section
	Rules Section

	Isolated Word Recognition
	Key Word Spotting
	Connected Digit Recognition
	L&H BNF Grammar Language Formal Specification
	Terminal Symbol Notation, Word, Token
	Non-terminal Symbol Notation, Symbol
	Garbage Class
	Compiler Keywords Specification
	Formal Language Specification

	Design Tips
	Content
	Limit the use of ‘special features’
	Vocabulary Management

	THE L&H+ PHONETIC TRANSCRIPTION SYSTEM
	Introduction
	Multiple Pronunciations
	Phoneme Table American English
	Phoneme Table Spanish
	Phoneme Table Italian
	Phoneme Table German
	Phoneme Table British English
	Phoneme Table French
	Phoneme Table Dutch
	Phoneme Table Japanese
	Phoneme Table Korean
	Phoneme Mexican Spanish

