

CodeWarrior ®

C Compilers Reference

Because of last-minute changes to CodeWarrior,
some of the information in this manual may be

inaccurate. Please read the Release Notes on the
CodeWarrior CD for the latest up-to-date information.

Revised: 99/01/24 map

Metrowerks CodeWarrior copyright ©1993–1999 by Metrowerks Inc. and its licensors.
All rights reserved.
Documentation stored on the compact disk(s) may be printed by licensee for personal
use. Except for the foregoing, no part of this documentation may be reproduced or trans-
mitted in any form by any means, electronic or mechanical, including photocopying,
recording, or any information storage and retrieval system, without permission in
writing from Metrowerks Inc.
Metrowerks, the Metrowerks logo, CodeWarrior, and Software at Work are registered
trademarks of Metrowerks Inc. PowerPlant and PowerPlant Constructor are trademarks
of Metrowerks Inc.
All other trademarks and registered trademarks are the property of their respective
owners.
ALL SOFTWARE AND DOCUMENTATION ON THE COMPACT DISK(S) ARE SUB-
JECT TO THE LICENSE AGREEMENT IN THE CD BOOKLET.

How to Contact Metrowerks:

U.S.A. and international Metrowerks Corporation
9801 Metric, Suite 100
Austin, TX 78758
U.S.A.

Canada Metrowerks Inc.
1500 du College, Suite 300
Ville St-Laurent, QC
Canada H4L 5G6

Ordering Voice: (800) 377–5416
Fax: (512) 873–4901

World Wide Web http://www.metrowerks.com

Registration information register@metrowerks.com

Technical support cw_support@metrowerks.com

Sales, marketing, & licensing sales@metrowerks.com

CompuServe Go: Metrowerks

Table of Contents
1 Introduction 11

What’s in this Reference? 11
Read the Release Notes! 12
What’s New . 12
CodeWarrior Year 2000 Compliance 13
Conventions Used in This Reference 14

2 Setting C/C++ Compiler Options 15
Setting C Compiler Options Overview. 15
C/C++ Language Panel 15
C/C++ Warnings Panel 18

Treat All Warnings as Errors 20
Illegal Pragmas . 20
Empty Declarations. 20
Possible Errors . 21
Unused Variables. 22
Unused Arguments 23
Extra Commas . 24
Extended Error Checking 24
Hidden Virtual Functions 26
Implicit Arithmetic Conversions 26
Non-Inlined Functions 27
Inconsistent Use of ‘class’ and ‘struct’ Keywords 27

3 C Compiler 29
C Compiler Overview 29
The CodeWarrior Implementation of C 30

Identifiers . 30
Include Files . 30
Prefix Files . 32
Sizeof() Operator . 32
Volatile Variables . 33
Enumerated Types 33

Extensions to ANSI/ISO C 36
C Compilers Reference CCR–3

ANSI Strict . 37
Using the wchar_t Type 38
C++ Style Comments 38
Unnamed Arguments in Function Definitions 38
A # not Followed by Argument in a Macro. 38
Using an Identifier After #endif 39
Using Typecasted Pointers as lvalues 40
Declaring Variables By Address 40
ANSI Keywords Only. 41
Expand Trigraphs 42
Character Constants as Integer Values. 42
Inlining . 43
Multibyte Strings and Comments. 44
Pool Strings . 45
Reusing Strings . 46
Require Function Prototypes 47
Map Newlines to CR 49
Relaxed Pointer Type Rules 50
Use Unsigned Chars 50
Using 64-bit Integers 51
Converting Pointers to Types of the Same Size 51
Getting Alignment and Type Information at Compile-Time . 52
Arrays of Zero Length in Structures. 52
Intrinsic Functions for Bit Rotation 53
The “D” Constant Suffix. 53

4 C++ Compiler 55
C++ Compiler Overview 55
CodeWarrior Implementation of C++ 56

Implicit Return Statement for main() 57
Keyword Ordering 57
Additional Keywords 58
Conversions in the Conditional Operator 58
Default Arguments in Member Functions 58
Local Class Declarations with Inline Functions 59
CCR–4 C Compilers Reference

Copying and Constructing Class Objects 59
Checking for Resources To Initialize Static Data 60
Calling an Inherited Member Function 61

Unsupported Extensions. 64
Controlling the C++ Compiler 64

Using the C++ Compiler Always 64
Controlling ARM Conformance 65
Controlling Exception Handling 66
Controlling RTTI . 66
Using the bool Type 67
Controlling C++ Extensions 67

Working With C++ Exceptions 68
Working With RTTI . 69

Using the dynamic_cast Operator 69
Using the typeid Operator 71

Working With Templates. 72
Declaring and Defining Templates 73
Instantiating a Template. 76

5 C++ and Embedded Systems 79
C++ and Embedded Systems Overview 79
Activating EC++ . 79
Differences Between ANSI/ISO C++ and EC++ 80

Templates . 80
Libraries . 80
File Operations. 80
Localization . 80
Exception Handling 81
Other Language Features 81

Meeting EC++ Specifications With CodeWarrior 81
Language Related Issues 81
Library Related Issues 82

Strategies for Smaller Code Size in C++ 82
Size Optimizations 83
Inlining . 84
C Compilers Reference CCR–5

Virtual Functions . 84
Runtime Type Identification 85
Exception Handling 85
Operator New . 85
Multiple Inheritance 86
Virtual Inheritance 86
Stream-Based Classes 86
Alternative Class Libraries. 87

6 Pragmas and Symbols 89
Pragmas and Symbols Overview 89
Pragmas . 90

Pragma Syntax. 90
Pragma Scope . 91
a6frames . 92
align . 93
align_array_members 94
always_inline . 95
ANSI_strict . 96
arg_dep_lookup . 97
ARM_conform . 97
auto_inline . 98
bool . 99
check_header_flags 100
code_seg . 100
code68020 . . 101
code68881 . . 102
cplusplus . 103
cpp_extensions. . 103
d0_pointers . 104
data_seg . 106
def_inherited . 106
defer_codegen . . 107
define_section . 108
direct_destruction 112
CCR–6 C Compilers Reference

direct_to_som . 112
disable_registers . 113
dollar_identifiers 114
dont_inline . 115
dont_reuse_strings 115
ecplusplus. . 116
EIPC_EIPSW . 117
enumsalwaysint . 117
exceptions . . 118
export . 119
extended_errorcheck 121
far_code, near_code, smart_code 122
far_data . . 123
far_strings. . 124
far_vtables . 124
faster_pch_gen. . 125
float_constants . . 125
force_active . 126
fourbyteints . 126
fp_contract . 127
fp_pilot_traps . 128
function. . 129
global_optimizer, optimization_level 129
IEEEdoubles . . 130
ignore_oldstyle . 131
import . 132
init_seg . . 133
inline_depth . . 134
inline_intrinsics . 134
internal . 135
interrupt . 136
k63d . 136
k63d_calls . . 137
lib_export . . 138
longlong . 138
C Compilers Reference CCR–7

longlong_enums . 139
longlong_prepval 139
macsbug, oldstyle_symbols 140
mark . 141
message. . 142
microsoft_exceptions 142
microsoft_RTTI . 142
mmx . 143
mmx_call . 143
mpwc. . 144
mpwc_newline. . 145
mpwc_relax . 146
no_register_coloring 147
no_static_dtors. . 148
once . 149
only_std_keywords. 149
opt_common_subs 150
opt_dead_assignments 150
opt_dead_code. . 151
opt_lifetimes. . 151
opt_loop_invariants 152
opt_propagation . 152
opt_strength_reduction 153
opt_unroll_loops 153
opt_vectorize_loops 154
optimization_level 154
optimize_for_size 154
oldstyle_symbols. 155
pack . 155
parameter . . 156
pcrelstrings . 157
peephole . 158
pointers_in_A0, pointers_in_D0 159
pool_data . 160
pool_strings . . 161
CCR–8 C Compilers Reference

pop, push . . 161
precompile_target 162
profile . 163
readonly_strings . 164
register_coloring 165
require_prototypes 165
RTTI . 166
scheduling . 166
section . 167
segment. . 174
side_effects . 175
simple_prepdump 176
SOMCallOptimization 176
SOMCallStyle . 177
SOMCheckEnvironment 177
SOMClassVersion 179
SOMMetaClass . 180
SOMReleaseOrder 180
stack_cleanup . 181
static_inlines. . 182
suppress_init_code 182
sym . 183
syspath_once . 184
toc_data. . 184
trigraphs . 185
traceback . 185
unsigned_char . . 186
unused . 187
use_fp_instructions 187
use_frame . . 188
use_mask_registers 188
warn_emptydecl 189
warning_errors . 189
warn_extracomma 190
warn_hidevirtual. 190
C Compilers Reference CCR–9

warn_illpragma . 191
warn_implicitconv 192
warn_notinlined . 193
warn_padding . . 193
warn_possunwant 194
warn_structclass . 195
warn_unusedarg 196
warn_unusedvar 196
warning. . 197
wchar_type . 198

Predefined Symbols 198
ANSI Predefined Symbols 198
Metrowerks Predefined Symbols 200

Checking Options . 202

Index 211
CCR–10 C Compilers Reference

1
Introduction
This manual describes the CodeWarrior C and C++ compilers, and
how to use them to generate code for all CodeWarrior targets. There
are chapters that cover information about the C/C++ compiler that
applies to all targets. Information that is specific to a particular tar-
get operating system or processor appears in separate chapters, one
per target.

The sections in this introduction are:

• What’s in this Reference?

• Read the Release Notes!

• What’s New

• CodeWarrior Year 2000 Compliance

• Conventions Used in This Reference

What’s in this Reference?
The manual is organized into these principle sections:

• Interface—how to set compiler options

• Language—generic information on the compilers as they
apply to all CW targets

• Pragmas—information on all pragmas for all targets

Each chapter begins with an overview section. Table 1.1 lists each of
these and describes what each chapter in this manual covers.
C Compilers Reference CCR–11

Introduct ion

Read the Release Notes!

Table 1.1 What’s in this reference

Read the Release Notes!
Because of last-minute changes to the CodeWarrior C/C++ com-
piler, some of the information may be inaccurate. Please read the
Release Notes on the CodeWarrior CD for the latest up-to-date in-
formation.

What’s New
This reference has been updated to cover CodeWarrior C/C++ ver-
sion 2.3 and later.

New and changed topics in this reference are:

• “Introduction” on page 11—this chapter has been updated to
follow the organization followed by other CodeWarrior lan-
guage references

• “ANSI Strict” on page 37—updated to cover the “D” constant
suffix

• “ANSI Keywords Only” on page 41—updated to note that
far is no longer a keyword in some versions of CodeWarrior
C/C++

This chapter… Describes…

Setting C Compiler Op-
tions Overview

where to find information on the C/C++ Language and C/
C++ Warnings settings panels.

C Compiler Overview how the CodeWarrior C/C++ compiler implements C

C++ Compiler Overview how the CodeWarrior C/C++ compiler implements C++
features that are not shared by C.

C++ and Embedded Sys-
tems Overview

how to use CodeWarrior C++ for embedded systems de-
velopment and how to design programs to anticipate the
proposed EC++ (Embedded C++) standard.

Pragmas and Symbols
Overview

the pragmas and predefined symbols available with
CodeWarrior C/C++ compiler
CCR–12 C Compilers Reference

Introduct ion

CodeWarrior Year 2000 Compliance

• “Character Constants as Integer Values” on page 42—up-
dated to distinguish integer values denoted with character
string constants from multi-byte character sets

• “Intrinsic Functions for Bit Rotation” on page 53—describes
new “built-in” functions

• “The “D” Constant Suffix” on page 53—describes how to ex-
plicitly specify floating point constant values of type double

• “Using the bool Type” on page 67—updated to distinguish
between the ANS/ISO C++ Standard’s definition of the bool
type and its non-standard implementations

• “Declaring and Defining Templates” on page 73—new infor-
mation on improved conformance with the ANS/ISO C++
Standard for template declarations

• “direct_destruction” on page 112—this pragma is obsolete
and is no longer available

• “float_constants” on page 125—a new pragma to treat float-
ing point constants as values of type float by default

• “longlong_prepval” on page 139—a new pragma to allow the
preprocessor to handle expressions of type long long

• “message” on page 142—a new pragma for issuing messages
to the user

• “no_static_dtors” on page 148—a new pragma for control-
ling the generation of C++ static destructors

• “warn_padding” on page 193—a new pragma for controlling
warnings for data structure alignment

CodeWarrior Year 2000 Compliance
The Products provided by Metrowerks under the License agree-
ment process dates only to the extent that the Products use date data
provided by the host or target operating system for date representa-
tions used in internal processes, such as file modifications. Any Year
2000 Compliance issues resulting from the operation of the Products
are therefore necessarily subject to the Year 2000 Compliance of the
relevant host or target operating system. Metrowerks directs you to
the relevant statements of Microsoft Corporation, Sun Microsys-
tems, Inc., Apple Computer, Inc., and other host or target operating
C Compilers Reference CCR–13

Introduct ion

Conventions Used in This Reference

systems relating to the Year 2000 Compliance of their operating sys-
tems. Except as expressly described above, the Products, in them-
selves, do not process date data and therefore do not implicate Year
2000 Compliance issues.

For additional information, visit: http://www.metrowerks.com/
about/y2k.html .

Conventions Used in This Reference
This manual includes syntax examples that describe how to use cer-
tain statements, such as the following:

#pragma parameter [return-reg] func-name [param-regs]
#pragma optimize_for_size on | off | reset

Table 1.2 describes how to interpret these statements.

Table 1.2 Understanding Syntax Examples

If the text
looks like… Then…

literal Include it in your statement exactly as it’s printed.

metasymbol Replace the symbol with an appropriate value. The text after the
syntax example describes what the appropriate values are.

a | b | c Use one and only one of the symbols in the statement: either a, b,
or c.

[a] Include this symbol only if necessary. The text after the syntax ex-
ample describes when to include it.
CCR–14 C Compilers Reference

2
Setting C/C++
Compiler Options
This chapter describes where to find information on the C/C++
Compiler and C/C++ Warnings settings panels.

Setting C Compiler Options Overview
This section contains the following sections:

• “C/C++ Language Panel” on page 15, illustrates each option
available to you, and tells you where that option is explained
fully.

• “C/C++ Warnings Panel” on page 18, illustrates each com-
piler warning available to you, and tells you where that
warning is explained fully.

The C/C++ Compiler settings panel, where you set compiler op-
tions, is also known as the C/C++ Language settings panel.

C/C++ Language Panel
You may configure how the C/C++ compiler works by setting a va-
riety of options. You set these options in the C/C++ Compiler set-
tings panel, shown in Figure 2.1. For information on how to display
a particular settings panel, see the IDE User Guide.

TIP: Another way to set these options is to use pragma direc-
tives in your source code. See “Pragmas and Symbols” on page
89 for more information.
C Compilers Reference CCR–15

Sett ing C/C++ Compi ler Opt ions

C/C++ Language Panel

Each compiler option has a corresponding pragma that you can use
in source code to turn that particular option on or off, regardless of
the settings in the C/C++ Compiler panel. In addition, there are
some pragmas that do not have a corresponding setting in the C/
C++ Compiler panel. See “Pragmas and Symbols Overview” on
page 89 for details on each available pragma.

You may also use a special preprocessor directive in your code to
determine the current setting of each option. See “Checking Op-
tions” on page 202 for information on how to use this directive.

Some of the options shown in Figure 2.1 may not appear for some
targets. For example, the Direct to SOM item appears for Mac OS.

Figure 2.1 The C/C++ Compiler Settings Panel
CCR–16 C Compilers Reference

Sett ing C/C++ Compi ler Opt ions
C/C++ Language Panel
Most of the items in this panel are discussed elsewhere in this man-
ual, because they are closely related to how the compiler imple-
ments standard C and C++.

Other items

This table lists where to find information about the other items in
this panel.

This item… Is described here…

Activate C++ Compiler “Using the C++ Compiler Always” on page 64.

ARM Conformance “Controlling ARM Conformance” on page 65

Enable C++ Exceptions “Controlling C++ Extensions” on page 67

Enable RTTI “Controlling RTTI” on page 66

Inline Depth
Auto-inline

“Inlining” on page 43

Pool Strings “Pool Strings” on page 45

Don’t Reuse Strings “Reusing Strings” on page 46

Require Function Prototypes “Require Function Prototypes” on page 47

Enable bool Support “Using the bool Type” on page 67

Enable wchar_t Support “Using the wchar_t Type” on page 38

ANSI Strict “ANSI Strict” on page 37

ANSI Keywords Only “ANSI Keywords Only” on page 41

Expand Trigraphs “Expand Trigraphs” on page 42

Multi-Byte Aware “Multibyte Strings and Comments” on page 44

Direct to SOM Targeting Mac OS manual

Map Newlines to CR “Map Newlines to CR” on page 49

Relaxed Pointer Type Rules “Relaxed Pointer Type Rules” on page 50

Enums Always Int “Enumerated Types” on page 33
C Compilers Reference CCR–17

Sett ing C/C++ Compi ler Opt ions
C/C++ Warnings Panel
C/C++ Warnings Panel
The C/C++ compiler generates errors when it cannot understand
your code as a result of improper syntax. In addition to errors, the
compiler can generate a series of helpful warnings that alert you to
legal but usually unintentional syntax. These mistakes are legal C
and C++ code, but the code might not do what you expect.

When the compiler finds one of these possible mistakes, it can gen-
erate a warning. Warnings are not fatal. Unless you choose to treat
these warnings as errors, your code will still compile (although it
may not run correctly).

This section describes the items in the C/C++ Warnings panel. You
determine which warnings you receive by setting options in the
panel. Figure 2.2 illustrates this panel.

Each warning also has a corresponding pragma that you can use in
source code to turn that particular warning on or off for a limited
piece of code. See “Pragmas and Symbols Overview” on page 89 for
details on each available pragma.

You may also use a special preprocessor directive in your code to
determine the current setting of each option. See “Checking Op-
tions” on page 202 for information on how to use this directive.

For information on how to display a particular settings panel, see
the IDE User Guide.

Use Unsigned Chars “Use Unsigned Chars” on page 50

Prefix File “Prefix Files” on page 32

EC++ Compatibility Mode “Activating EC++” on page 79

Enable Objective C Targeting Rhapsody manual

This item… Is described here…
CCR–18 C Compilers Reference

Sett ing C/C++ Compi ler Opt ions
C/C++ Warnings Panel
Figure 2.2 The C/C++ Warnings Settings Panel

The items in this panel are:

• “Treat All Warnings as Errors” on page 20

• “Illegal Pragmas” on page 20

• “Empty Declarations” on page 20

• “Possible Errors” on page 21

• “Unused Variables” on page 22

• “Unused Arguments” on page 23

• “Extra Commas” on page 24

• “Extended Error Checking” on page 24

• “Hidden Virtual Functions” on page 26

• “Implicit Arithmetic Conversions” on page 26
C Compilers Reference CCR–19

Sett ing C/C++ Compi ler Opt ions
C/C++ Warnings Panel
• “Non-Inlined Functions” on page 27

• “Inconsistent Use of ‘class’ and ‘struct’ Keywords” on page
27

Treat All Warnings as Errors

When the Treat All Warnings as Errors option is on, the compiler
treats all warnings as though they were errors. It will not compile a
file until all warnings are resolved.

The Treat All Warnings as Errors option corresponds to the pragma
warning_errors , described at“warning_errors” on page 189. To
check whether this option is on, use __option
(warning_errors). See “Checking Options” on page 202 for in-
formation on how to use this directive.

Illegal Pragmas

If the Illegal Pragmas option is on, the compiler displays a warning
when it encounters an illegal pragma. For example, these pragma
statements generate warnings:

#pragma near_data off // WARNING: near_data is not a pragma.
#pragma far_data select // WARNING: select is not defined
#pragma far_data on // OK

The Illegal Pragmas option corresponds to the pragma
warn_illpragma , described at “warn_illpragma” on page 191. To
check whether this option is on, use __option
(warn_illpragma). See “Checking Options” on page 202 for in-
formation on how to use this directive.

Empty Declarations

If the Empty Declarations option is on, the compiler displays a
warning when it encounters a declaration with no variable name.
For example:
CCR–20 C Compilers Reference

Sett ing C/C++ Compi ler Opt ions
C/C++ Warnings Panel
int ; // WARNING
int i; // OK

The Empty Declarations option corresponds to the pragma
warn_emptydecl , described at “warn_emptydecl” on page 189. To
check whether this option is on, use __option
(warn_emptydecl) . See “Checking Options” on page 202 for in-
formation on how to use this directive.

Possible Errors

If the Possible Errors option is on, the compiler checks for some
common typographical mistakes that are legal C syntax but that
may have unwanted side effects, such as putting in unintended
semicolons or confusing = and ==. The compiler generates a warn-
ing if it encounters one of these:

• An assignment in a logical expression or the condition in an
if , while , or for expression. This check is useful if you fre-
quently use = when you meant to use ==. For example:

if (a=b) f(); // WARNING: a=b is an assignment

if ((a=b)!=0) f(); // OK: (a=b)!=0 is a comparison

if (a==b) f(); // OK: (a==b) is a comparison

• An equal comparison in a statement that contains a single ex-
pression. This check is useful if you frequently use == when
you meant to use =. For example:

a == 0; // WARNING: This is a comparison.
a = 0; // OK: This is an assignment

• A semicolon (;) directly after a while , if , or for statement.
For example, the statement generates a warning and is prob-
ably an unintended infinite loop:
C Compilers Reference CCR–21

Sett ing C/C++ Compi ler Opt ions
C/C++ Warnings Panel
while (i++); // WARNING: Unintended infinite loop

If you intended to create an infinite loop, put white space or a com-
ment between the while statement and the semicolon. For example,
these statements do not generate errors or warnings, and ensure
that you will win the hearts of everyone using your software when
the code is executed.

while (i++) ; // OK: White space separation
while (i++) /*: Comment separation */ ;

The Possible Errors option corresponds to the pragma
warn_possunwant , described at “warn_possunwant” on page 194.
To check whether this option is on, use __option
(warn_possunwant). See “Checking Options” on page 202 for in-
formation on how to use this directive.

Unused Variables

If the Unused Variables option is on, the compiler generates a
warning when it encounters a variable that you declare but do not
use. This check helps you find misspelled variable names and vari-
ables you have written out of your program. For example:

void foo(void)
{
 int temp, errer; // ERROR: errer is misspelled
 error = do_something() // WARNING: temp and error are unused.
}

If you want to use this warning, but need to declare a variable that
you don’t use, use the pragma unused , as in this example:

void foo(void)
{
 int i, temp, error;

 #pragma unused (i, temp) /* Compiler won’t warn that i and temp
CCR–22 C Compilers Reference

Sett ing C/C++ Compi ler Opt ions
C/C++ Warnings Panel
 error=do_something(); /* are not used */

}

The Unused Variables option corresponds to the pragma
warn_unusedvar , described at “warn_unusedvar” on page 196. To
check whether this option is on, use __option
(warn_unusedvar) . See “Checking Options” on page 202 for in-
formation on how to use this directive.

Unused Arguments

If the Unused Arguments option is on, the compiler generates a
warning when it encounters an argument you declare but do not
use. This check helps you find misspelled argument names and ar-
guments you have written out of your program.

void foo(int temp,int errer); // ERROR: errer is misspelled
{
 error = do_something(); // WARNING: temp and error are unused.
}

If you need to declare an argument that you don’t use, there are two
ways to avoid this warning. You can use the pragma unused , as in
this example:

void foo(int temp, int error)
{
 #pragma unused (temp)
 /* Compiler won’t warn that temp is not used */

 error=do_something();
}

You can also turn off the ANSI Strict option, and not give the un-
used argument a name. (See “Unnamed Arguments in Function
Definitions” on page 38.) For example:
C Compilers Reference CCR–23

Sett ing C/C++ Compi ler Opt ions
C/C++ Warnings Panel
void foo(int /* temp */, int error)
{
 /* Compiler won’t warn that temp is not used, it’s not named

 error=do_something(); */
}

The Unused Arguments option corresponds to the pragma
warn_unusedarg , described at “warn_unusedarg” on page 196. To
check whether this option is on, use __option
(warn_unusedarg) . See “Checking Options” on page 202 for in-
formation on how to use this directive.

Extra Commas

If the Extra Commas option is on, the compiler generates a warning
when it encounters an extra comma. For example, this statement is
legal in C, but it causes a warning when this option is on:

int a[] = { 1, 2, 3, 4, }; // ^ WARNING: Extra comma after 4

The Extra Commas option corresponds to the pragma
warn_extracomma , described at “warn_extracomma” on page 190.
To check whether this option is on, use __option
(warn_extracomma) . See “Checking Options” on page 202 for in-
formation on how to use this directive.

Extended Error Checking

If the Extended Error Checking option is on, the C compiler gener-
ates a warning (not an error) if it encounters one of these syntax
problems:

• A non-void function that does not contain a return state-
ment. For example, this would generate a warning:

main() /* assumed to return int */
{

CCR–24 C Compilers Reference

Sett ing C/C++ Compi ler Opt ions
C/C++ Warnings Panel
 printf ("hello world\n");
} /* WARNING: no return statement */

This would be OK:

void main() /* function declared to return void */
{
 printf ("hello world\n");
}

• Assigning an integer or floating-point value to an enum type.
For example:

enum Day { Sunday, Monday, Tuesday, Wednesday,
 Thursday, Friday, Saturday } d;

d = 5; /* WARNING */
d = Monday; /* OK */
d = (Day)3 ; /* OK */

• An empty return statement (return;) in a function that is
not declared void . For example, this code would generate a
warning:

int MyInit(void)
{
 int err = GetMyResources();
 if (err !=0) return; /* ERROR: Empty return statement */

 /* ... */

This would be OK:

int MyInit(void)
{
 int err = GetMyResources();
 if (err!=0) return -1; /* OK */

 /* ... */
C Compilers Reference CCR–25

Sett ing C/C++ Compi ler Opt ions
C/C++ Warnings Panel
The Extended Error Checking option corresponds to the pragma
extended_errorcheck , described at “extended_errorcheck” on
page 121. To check whether this option is on, use __option
(extended_errorcheck) . See “Checking Options” on page 202
for information on how to use this directive.

Hidden Virtual Functions

If the Hidden virtual functions option is on, the compiler generates
a warning if you declare a non-virtual member function in a sub-
class that hides an inherited virtual function in a superclass. One
function hides another if it has the same name but a different argu-
ment types. For example:

class A {
 public:
 virtual void f(int);
 virtual void g(int);
};

class B: public A {
 public:
 void f(char); // WARNING: Hides A::f(int)
 virtual void g(int); // OK: Overrides A::g(int)
};

The Hidden virtual functions option corresponds to the pragma
warn_hidevirtual , described at “warn_hidevirtual” on page 190.
To check whether this option is on, use __option
(warn_hidevirtual) . See “Checking Options” on page 202 for
information on how to use this directive.

Implicit Arithmetic Conversions

If the Implicit Arithmetic Conversions option is on, the compiler is-
sues a warning if the destination of an operation isn’t large enough
to hold all possible results. For example, assigning the value of a
variable of type long to a variable of type char will result in a
warning if this option is on.
CCR–26 C Compilers Reference

Sett ing C/C++ Compi ler Opt ions
C/C++ Warnings Panel
Non-Inlined Functions

If the Non-Inlined Functions option is on, the compiler issues a
warning when it is unable to inline a function.

This option corresponds to pragma warn_notinlined . To check
whether this option is on, use __option (warn_notinlined) .
See “Checking Options” on page 202 for information on how to use
this directive.

Inconsistent Use of ‘class’ and ‘struct’
Keywords

If the Inconsistent Use of ‘class’ and ‘struct’ Keywords option is
on, the compiler issues a warning if the class and struct key-
words are used in the definition and declaration of the same identi-
fier.

class X;
struct X { int a; }; // warning

Use this warning when linking (with static or dynamic libraries)
with object code produced from another C++ compiler that makes a
distinction between class and struct variables in its name “man-
gling.”

This option corresponds to pragma warn_structclass . To check
whether this option is on, use __option (warn_structclass) .
See “Checking Options” on page 202 for information on how to use
this directive.
C Compilers Reference CCR–27

Sett ing C/C++ Compi ler Opt ions
C/C++ Warnings Panel
CCR–28 C Compilers Reference

3
C Compiler
This chapter describes how the CodeWarrior C compiler imple-
ments the C language.

C Compiler Overview
This chapter discusses the CodeWarrior C compiler as it applies to
all CodeWarrior targets. For the most part, the information in this
chapter is equally applicable to any operating system or processor.

Other chapters in this manual discuss other features of the compiler
that are specific to particular operating systems and processors. For
a complete picture, you need to consider all the information relating
your target of interest.

This chapter does not cover C++ features. For more information on
the C++ language, see “C++ Compiler Overview” on page 55.

This chapter contains the following sections:

• “The CodeWarrior Implementation of C” on page 30 explains
how the CodeWarrior compiler implements certain parts of
the standard C language.

• “Extensions to ANSI/ISO C” on page 36 describe some of
CodeWarrior C’s extensions to the C standards.

You’ll find frequent references to K&R §A, which is Appendix A,
“Reference Manual,” of The C Programming Language, Second Edition
(Prentice Hall) by Kernighan and Ritchie. These references show
you where to look for more information on the topics discussed in
the corresponding section.
C Compilers Reference CCR–29

C Compi ler
The CodeWarrior Implementation of C
The CodeWarrior Implementation of C
This section describes how CodeWarrior implements many parts of
the C programming language. For information on the parts of the
C++ language that are specific to C++, see “C++ Compiler Over-
view” on page 55.

This section discusses the following topics:

• Identifiers

• Include Files

• Prefix Files

• Sizeof() Operator

• Volatile Variables

• Enumerated Types

Identifiers
(K&R, §A2.3) The C compiler lets let you create identifiers of any
size. However, only the first 255 characters are significant for inter-
nal and external linkage.

Include Files

(K&R, §A12.4) The C compiler can nest #include files up to 32
times. An include file is nested if another #include file uses it in an
#include statement. For example, if Main.c includes the file
MyFunctions.h , which includes the file MyUtilities.h , the file
MyUtilities.h is nested once.

You can use full path names in #include directives, as in this ex-
ample for Mac OS:

#include "HD:Tools:my headers:macros.h"

The CodeWarrior IDE lets you specify where the compiler looks for
#include files with the Access Paths settings panel, shown in Fig-
ure 3.1. It contains two lists of folders: the User list and the System
list. By default, each list contains one folder. The User list contains
{Project ƒ} , which is the folder that the project file is in and all
CCR–30 C Compilers Reference

C Compi ler
The CodeWarrior Implementation of C
the folders it contains. The System list contains {Compiler ƒ} ,
which is the folder that CodeWarrior is in, and all the folders it con-
tains.

Figure 3.1 The Access Paths settings panel

The compiler searches for a #include file in either the System list
or both the User and System lists, depending on which characters
enclose the file. If you enclose the file in brackets (#include
<stdio.h>), the compiler looks for the file in the System list. If you
enclose the file in quotes (#include "myfuncs.h"), the compiler
looks for the file in the User list first, and then in the System list. In
general, use brackets for include files that are for a large variety of
projects and use quotes for include files that are for a specific
project.
C Compilers Reference CCR–31

C Compi ler
The CodeWarrior Implementation of C
If the Always Search User Paths option is selected, the compiler
also uses the User access paths for include files enclosed in brackets
(#include < file>).

For information on how to modify the Access Paths settings panel,
see the CodeWarrior IDE User Guide.

See also: “Prefix Files” on page 32.

TIP: If you’re using the compiler under Apple Computer’s MPW
programming environment, you can specify where to find #include
files with the -i compiler option and the {CIncludes} variable,
described in Command-Line Tools Manual and MPW Command
Reference.

Prefix Files

If you have a single file you wish to include in every source file in a
project, you can use the Prefix File item in the C/C++ Language
Panel. Enter the name of the file in the Prefix File edit field in this
panel.

The compiler automatically includes this file (and any files that it, in
turn, includes) in every source file in the project’s current target.
This is an excellent way to include a precompiled header file in a
project.

This field is also used as an alternative to the -d option commonly
issued to compilers that operate at the command line.

See also: “Include Files” on page 30.

Sizeof() Operator

The sizeof() operator returns a number of type size_t , which
the compiler declares to be of type unsigned long int (in the file
stddef.h) . If your code assumes that sizeof() returns a number
of type int , it may not work correctly.
CCR–32 C Compilers Reference

C Compi ler
The CodeWarrior Implementation of C
Volatile Variables

(K&R, §A4.4) When you declare a variable to be volatile the C com-
piler takes the following precautions:

• It does not store the variable in a register.

• It computes the variable’s address every time a piece of code
references the variable.

Listing 3.1 shows an example of volatile variables.

Listing 3.1 volatile variables

void main(void)
{
 int i[100];
 volatile int a, b;

 a = 5;
 b = 20;

 i[a + b] = 15;
 i[a + b] = 30;
}

The compiler does not place the value of a, b, or a+b in registers.
Also, the compiler recalculates a+b in both assignment statements.

Enumerated Types

(K&R, §A8.4) This section describes how the C compiler selects the
underlying integer data type for an enumerated type. The compiler
behavior is controlled primarily by the Enums Always Int option in
the C/C++ Language Panel.

The compiler uses one of two different strategies, depending on the
setting of the Enums Always Int option.

If Enums Always Int is on, the underlying type is always signed
int . All enumerators must be no larger than a signed int . If an
C Compilers Reference CCR–33

C Compi ler
The CodeWarrior Implementation of C
enumerated constant is larger than an int , the compiler generates
an error.

However, if the ANSI Strict option is off, enumerators that can be
represented as an unsigned int are implicitly converted to
signed int . For example:

#pragma enumsalwaysint on
#pragma ANSI_strict on
enum foo { a=0xFFFFFFFF }; // ERROR. a is 4,294,967,295:
 //
too big for a signed int
#pragma ANSI_strict off
enum bar { b=0xFFFFFFFF }; // OK: b can be represented as an
 //
unsigned int, but is implicitly
 //
converted to a signed int (-1).

See “ANSI Strict” on page 37 for additional features of that setting.

If Enums Always Int is off, the compiler chooses the integral data
type that supports the largest enumerated constant. The type could
be as small as a char or as large as a long int . It could even be a
64-bit long long value.

To be more precise, if Enums Always Int is off, the compiler picks
one of the following:

• If all enumerators are positive, it picks the smallest unsigned
integral base type that is large enough to represent all enu-
merators

• If at least one enumerator is negative, it picks the smallest
signed integral base type large enough to represent all enu-
merators.

For example:

#pragma enumsalwaysint off
enum { a=0,b=1 }; // base type: unsigned char
CCR–34 C Compilers Reference

C Compi ler
The CodeWarrior Implementation of C
enum { c=0,d=-1 }; // base type: signed char
enum { e=0,f=128,g=-1 }; // base type: signed short

The compiler will use long long data types only if Enums Always
Int is off and the longlong_enums pragma is on. (There is no set-
tings panel option corresponding to the longlong_enums pragma.)

For example:

#pragma enumsalwaysint off
#pragma longlong_enums off
enum { a=0x7FFFFFFFFFFFFFFF }; // ERROR: a is too large
#pragma longlong_enums on
enum { b=0x7FFFFFFFFFFFFFFF };// OK: base type: signed long long
enum { c=0x8000000000000000 };// OK: base type: unsigned long long
enum { d=-1,e=0x80000000 }; // OK: base type: signed long long

When the longlong_enums pragma is off and ANSI Strict is on,
you cannot mix unsigned 32-bit enumerators greater than
0x7FFFFFFF and negative enumerators. If both the
longlong_enums pragma and the ANSI Strict option are off, huge
unsigned 32-bit enumerators are implicitly converted to signed 32-
bit types.

For example:

#pragma enumsalwaysint off
#pragma longlong_enums off
#pragma ANSI_strict on
enum { a=-1,b=0xFFFFFFFF }; // error
#pragma ANSI_strict off
enum { c=-1,d=0xFFFFFFFF }; // base type: signed int (b==-1)

The Enums Always Int option corresponds to the pragma enum-
salwaysint . To check whether this option is on, use __option
(enumsalwaysint) . By default, this option is off.

See also “enumsalwaysint” on page 117, “longlong_enums” on
page 139, and “Checking Options” on page 202.
C Compilers Reference CCR–35

C Compi ler
Extensions to ANSI/ISO C
Extensions to ANSI/ISO C
This section describes CodeWarrior extensions to the C standard
that apply to all targets. In most cases you turn the extension on or
off with an option in the C/C++ Language Panel. See “C/C++ Lan-
guage Panel” on page 15 for information about that panel.

The topics in this section are:

• “ANSI Strict” on page 37

• “C++ Style Comments” on page 38

• “Unnamed Arguments in Function Definitions” on page 38

• “A # not Followed by Argument in a Macro” on page 38

• “Using an Identifier After #endif” on page 39

• “Using Typecasted Pointers as lvalues” on page 40

• “Declaring Variables By Address” on page 40

• “ANSI Keywords Only” on page 41

• “Expand Trigraphs” on page 42

• “Character Constants as Integer Values” on page 42

• “Inlining” on page 43

• “Multibyte Strings and Comments” on page 44

• “Reusing Strings” on page 46

• “Require Function Prototypes” on page 47

• “Map Newlines to CR” on page 49

• “Relaxed Pointer Type Rules” on page 50

• “Use Unsigned Chars” on page 50

• “Using 64-bit Integers” on page 51

• “Converting Pointers to Types of the Same Size” on page 51

• “Getting Alignment and Type Information at Compile-Time”
on page 52

• “Arrays of Zero Length in Structures” on page 52

• “Intrinsic Functions for Bit Rotation” on page 53

• “The “D” Constant Suffix” on page 53
CCR–36 C Compilers Reference

C Compi ler
Extensions to ANSI/ISO C
For information on target-specific extensions, you should refer to
the Target manual for the particular target in which you are inter-
ested.

ANSI Strict

The ANSI Strict option in the C/C++ Language Panel affects several
extensions to the C language supported by the CodeWarrior com-
piler. The extensions are:

• C++ Style Comments

• Unnamed Arguments in Function Definitions

• A # not Followed by Argument in a Macro

• Using an Identifier After #endif

• Using Typecasted Pointers as lvalues

• Converting Pointers to Types of the Same Size

• Arrays of Zero Length in Structures

• The “D” Constant Suffix

In each case the extension is only available if the ANSI Strict setting
is off. If the ANSI Strict setting is on, then these extensions to the
ANSI C standard are disabled.

You cannot turn on the extensions controlled by the ANSI Strict set-
ting individually. They are all on or off depending upon the setting.

This setting may affect how the compiler handles enumerated con-
stants. See “Enumerated Types” on page 33 for more information.

This setting may also affects the main() function for C++ pro-
grams. See “Implicit Return Statement for main()” on page 57..

The ANSI Strict option corresponds to the pragma ANSI_strict. To
check whether this option is on, use __option (ANSI_strict) .

See also “ANSI_strict” on page 96. and “Checking Options” on page
202.
C Compilers Reference CCR–37

C Compi ler
Extensions to ANSI/ISO C
Using the wchar_t Type

Turn on the Enable wchar_t Support option if you want to use the
standard C++ wchar_t type to represent wide characters. Turn this
option off to use the regular character type, char .

C++ Style Comments

(K&R, §A2.2) The C compiler can accept C++ comments in source
code. In a C++ comment, anything that follows // on a line is con-
sidered a comment. For example:

a = b; // This is a C++ comment

To turn this feature on, turn off the ANSI Strict setting in the C/C++
Language Panel. If the ANSI Strict setting is on, then this extension
to standard C is disabled.

See also: “ANSI Strict” on page 37.

Unnamed Arguments in Function Definitions

(K&R, §A10.1) The C compiler can accept an unnamed argument in
a function definition. For example:

void f(int) {} /* OK, if ANSI Strict is off */
void f(int i) {} /* ALWAYS OK */

To turn this feature on, turn off the ANSI Strict setting in the C/C++
Language Panel. If the ANSI Strict setting is on, then this extension
to standard C is disabled.

See also: “ANSI Strict” on page 37.

A # not Followed by Argument in a Macro

(K&R, §A12.3) The C compiler can accept a # token not followed by
an argument in a macro definition. For example:
CCR–38 C Compilers Reference

C Compi ler
Extensions to ANSI/ISO C
#define add1(x) #x #1 // OK, but probably not what you wanted:
 // add1(abc) creates "abc"#1
#define add2(x) #x "2" // OK: add2(abc) creates "abc2"

To turn this feature on, turn off the ANSI Strict setting in the C/C++
Language Panel. If the ANSI Strict setting is on, then this extension
to standard C is disabled.

See also: “ANSI Strict” on page 37.

Using an Identifier After #endif

(K&R, §A12.5) The C compiler can accept an identifier token after
#endif and #else . This extension helps you match an #endif
statement with its corresponding #i f, #ifdef , or #ifnde f state-
ment, as shown here:

#ifdef __MWERKS__
ifndef __cplusplus
 /*
 * . . .
 */
endif __cplusplus
#endif __MWERKS__

To turn this feature on, turn off the ANSI Strict setting in the C/C++
Language Panel. If the ANSI Strict setting is on, then this extension
to standard C is disabled.

See also: “ANSI Strict” on page 37.

TIP: If you turn on the ANSI Strict option (disabling the exten-
sion), you can still use the same idea to help you match your #if-
def and #endif directives. Simply put the identifiers into com-
ments, as in the following example.
C Compilers Reference CCR–39

C Compi ler
Extensions to ANSI/ISO C
#ifdef __MWERKS__
ifndef __cplusplus
 /*
 * . . .
 */
endif /* __cplusplus */
#endif /* __MWERKS__ */

Using Typecasted Pointers as lvalues

The C compiler can accept a pointer that you typecast to another
pointer type as an lvalue.

For example:

char *cp;
((long *) cp)++; /* OK if ANSI Strict is off. */

To turn this feature on, turn off the ANSI Strict setting in the C/C++
Language Panel. If the ANSI Strict setting is on, then this extension
to standard C is disabled.

See also: “ANSI Strict” on page 37.

Declaring Variables By Address

(K&R, §A8.7) The C compiler lets you specify the address that a
variable refers to. For example, this definition defines MemErr to
contain whatever is at the address 0x0220 :

short MemErr:0x220;

The variable MemErr contains whatever is at the address 0x220 .

WARNING! For Mac OS programming, avoid using this exten-
sion to refer to low-memory globals. To ensure that your programs
CCR–40 C Compilers Reference

C Compi ler
Extensions to ANSI/ISO C
are compatible with future versions of the Mac OS, use the func-
tions defined in the LowMem.h header file.

This extension cannot be turned off. There is no corresponding
pragma or setting in the C/C++ Language Panel.

ANSI Keywords Only

(K&R, §A2.4) The C compiler can recognize several additional re-
served keywords. The ANSI Keywords Only option in the C/C++
Language Panel controls whether the compiler recognizes these
keywords.

If this option is on, the compiler generates an error if it encounters
any of the CodeWarrior C additional keywords. If you’re writing
code that must follow the ANSI/ISO standard strictly, turn on the
ANSI Keywords Only option in the settings panel.

When this option is off, these additional keywords are available to
you:

• asm

This keyword lets you use the compiler’s built-in inline as-
sembler. (K&R, §A10.1) For more information on the inline
assemblers, consult:

• far

The CodeWarrior C/C++ compiler for Motorola 68K proces-
sors treats far as a keyword. Other versions of CodeWarrior
C/C++ do not recognize far as a keyword.

• inline

Lets you declare a C function to be inline. For more informa-
tion, see “Inlining” on page 43.

• pascal

This keyword is used in Mac OS programming.

• __stdcall

This keyword is used in Microsoft Win32 programming.
C Compilers Reference CCR–41

C Compi ler
Extensions to ANSI/ISO C
The ANSI Keywords Only option corresponds to the pragma
only_std_keywords . To check whether this option is on, use
__option (only_std_keywords) . By default, this option is off.

See also “only_std_keywords” on page 149 and “Checking Options”
on page 202.

Expand Trigraphs

(K&R, §A12.1) The C compiler lets you ignore trigraph characters.
Many common character constants (especially on Mac OS) look like
trigraph sequences, and this extension lets you use them without in-
cluding escape characters.

If you’re writing code that must follow the ANSI/ISO standard
strictly, turn on the Expand Trigraphs option in the C/C++ Lan-
guage Panel. If this option is on, be careful when you initialize
strings or multi-character constants that contain question marks.

char c = '????'; // ERROR: Trigraph sequence expands to
'??^
char d = '\?\?\?\?'; // OK

The Expand Trigraphs option corresponds to the pragma tri-
graphs , To check whether this option is on, use __option (tri-
graphs) . By default, this option is off.

See also “trigraphs” on page 185 and “Checking Options” on page
202.

Character Constants as Integer Values

(K&R, §A2.5.2) The C compiler lets you use character string con-
stants that contain 2 to 4 characters to denote a 32-bit integer values.
Here are some examples:
CCR–42 C Compilers Reference

C Compi ler
Extensions to ANSI/ISO C
Table 3.1 Integer values as character string constants

This extension cannot be turned off. There is no corresponding
pragma or setting in the C/C++ Language Panel.

NOTE: This feature is different from using multibyte character
sets, where a single character is represented by a data type larger
than 1 byte.

See “Multibyte Strings and Comments” on page 44 for a discus-
sion of a different extension relating to using character sets with
more than 256 characters (such as Kanji).

Inlining

The compiler determines whether to inline a function based on the
settings of the ANSI Keywords Only item and the Inline Depth
and Auto-inline items in the C/C++ Language Panel.

For beginners: When you call an inline function, the compiler in-
serts the function’s code instead instructions to call that function.
Inlining functions makes your programs faster (because you exe-
cute the function’s code immediately without a function call), but
possibly larger (because the function’s code may be repeated in
several different places).

If you turn off the ANSI Keywords Only option, you can declare C
functions to be inline . The inlining items in the C/C++ Language
Panel let you choose to inline no functions, only functions declared
inline, or all small functions as shown in Table 3.2.

Character constant Equivalent hexadecimal

’ABCD' 0x41424344

’ABC ' 0x00414243

’AB' 0x00004142
C Compilers Reference CCR–43

C Compi ler
Extensions to ANSI/ISO C
Table 3.2 Options for the Inline Depth pop-up menu

The Smart item and items 1 to 8 in the Inline Depth pop-up menu
correspond to the pragma inline_depth (“C/C++ Language
Panel” on page 15). To check whether this option is on, use
__option(inline_depth) , described at “Checking Options” on
page 202.

The Don’t Inline item in the Inline Depth pop-up menu corre-
sponds to the pragma dont_inline , described at “dont_inline” on
page 115. To check whether this option is on, use __option
(dont_inline) , described at “dont_inline” on page 204. By de-
fault, this option is off.

The Auto-Inline option lets the compiler choose which functions to
inline. Also inlines C++ functions declared inline and member
functions defined within a class declaration. This option corre-
sponds to the pragma auto_inline , described at “auto_inline” on
page 98. To check whether this option is on, use __option
(auto_inline) , described at “auto_inline” on page 203. By de-
fault, this option is off.

Multibyte Strings and Comments

The C compiler supports languages that use more than one byte to
represent a character, such as Unicode and Japanese Kanji. This fea-
ture is controlled by the Multi-Byte Aware item in the C/C++ Lan-
guage Panel.

This option Does this…

Don’t Inline Inlines no functions, not even C or C++ func-
tions declared inline .

Smart Inlines small functions to a depth of 2 to 4 inline
functions deep.

1 to 8 Always inlines to the depth specified by the nu-
merical selection.

Always Inline Always inlines functions, no matter the depth.
CCR–44 C Compilers Reference

C Compi ler
Extensions to ANSI/ISO C
To use multibyte strings or comments, turn on the Multi-Byte
Aware option. If you don’t need multibyte strings or comments,
turn this option off, because it slows down the compiler.

See “Character Constants as Integer Values” on page 42 for a discus-
sion of creating a character constant consisting of more than one
character (a completely different subject with a similar sounding
name).

Pool Strings

The Pool Strings option in the C/C++ Language Panel affects how
the compiler stores string constants

NOTE: In principle this option works for all targets. However, it is
useful only for a Table of Contents based (TOC-based) linking
mechanism such as that used for Mac OS on the PowerPC pro-
cessor, or with Code Fragment Manager support on the 68K pro-
cessor.

If this option is on, the compiler collects all string constants into a
single data object so your program needs one TOC entry for all of
them. Turning this option on decreases the number of TOC entries
in your program but increases your program’s size, because it uses a
less efficient method to store the string’s address.

If this option is off, the compiler creates a unique data object and
TOC entry for each string constant.

TIP: You can change the size of the TOC with the Store Static
Data in TOC option in the PPC Processor settings panel. For
more information, see the Targeting Mac OS manual.

Turning this option on is especially useful if your program is large
and has many string constants.
C Compilers Reference CCR–45

C Compi ler
Extensions to ANSI/ISO C
NOTE: If you turn the Pool Strings option on, the compiler ig-
nores the setting of the PC-Relative Strings option. This is a 68K-
only feature.

The Pool Strings option corresponds to the pragma
pool_strings . To check whether this option is on, use __option
(pool_strings) . By default, this option is off.

See also “pool_strings” on page 161 and “Checking Options” on
page 202.

Reusing Strings

The Don’t Reuse Strings option in the C/C++ Language Panel af-
fects how the compiler stores string literals.

If this option is on, the compiler stores each string literal separately.

If this option is off, the compiler stores only one copy of identical
string literals. This option helps you save memory if your program
contains identical string literals which you do not modify.

If this option is off (meaning that string storage is reused for identi-
cal strings) and you change one of the strings, you change them all.
For example, take this code snippet:

char *str1="Hello";
char *str2="Hello"; // two identical strings
*str2 = 'Y';

If the Don’t Reuse Strings option is on. the strings are stored sepa-
rately. After changing the first character, str1 is still "Hello" but
str2 is "Yello" .

If the Don’t Reuse Strings option is off, the two strings are stored in
one memory location (i.e. the same memory location is reused), be-
cause they are both identical. After changing the first character, both
str1 and str2 are "Yello" . This is counter-intuitive, and can lead
to difficult-to locate bugs.
CCR–46 C Compilers Reference

C Compi ler
Extensions to ANSI/ISO C
The Don’t Reuse Strings option corresponds to the pragma
dont_reuse_strings . To check whether this option is on, use
__option (dont_reuse_strings) . By default, this option is on.
(Strings are not reused.)

See also “dont_reuse_strings” on page 115. and “Checking Options”
on page 202.

Require Function Prototypes

(K&R, §A8.6.3, §A10.1) The C compiler lets you choose how to en-
force function prototypes. This behavior is controlled by the Re-
quire Function Prototypes item in the C/C++ Language Panel.

When the Require Function Prototypes option is on, the compiler
generates an error if you use a function that is defined after it is ref-
erenced and does not have a prototype. If the function is implicitly
defined, that is, is defined before it is referenced, and does not have
a prototype, then the compiler will issue a warning if Require Func-
tion Prototypes is on.

This option helps you prevent errors that happen when you call a
function before you declare or define it. For example, without a
function prototype, you may pass data if the wrong type. As a re-
sult, your code may not work as you expect even though it compiles
without error.

In Listing 3.2, PrintNum() is called with an integer argument but is
later defined to take a floating-point argument.

Listing 3.2 Unnoticed type-mismatch

#include <stdio.h>

void main(void)
{
 PrintNum(1); // PrintNum() tries to interpret the
 integer as a float. Prints 0.000000.
}

C Compilers Reference CCR–47

C Compi ler
Extensions to ANSI/ISO C
void PrintNum(float x)
{
 printf("%f\n", x);
}

When you run this code, you could get this result:

0.000000

Although the compiler does not complain about the type mismatch,
the function does not work as you want. Since PrintNum() is not
prototyped, the compiler does not know it needs to convert the inte-
ger to a floating-point number before calling the function. Instead,
the function interprets the bits it received as a floating-point number
and prints nonsense.

If you prototype PrintNum() first, as in Listing 3.3, the compiler
converts its argument to a floating-point number, and the function
prints what you wanted.

Listing 3.3 Using a prototype to avoid type-mismatch

#include <stdio.h>

void PrintNum(float x); // Function prototype.

void main(void)
{
 PrintNum(1); // Compiler knows to convert int to float.
} // Prints 1.000000.

void PrintNum(float x)
{
 printf("%f\n", x);
}

In the above example, the compiler automatically typecast the
passed value. In other situations where automatic typecasting is not
available, the compiler will generate an error if an argument does
not match the data type required by a function prototype. Such a
CCR–48 C Compilers Reference

C Compi ler
Extensions to ANSI/ISO C
mismatched data type error is easy to locate at compile time. If you
do not use prototypes, you get no compiler error. However, at runt-
ime the code may behave strangely, and the cause of the resulting
unintentional behavior can be extremely difficult to track down.

The Require Function Prototypes option corresponds to the
pragma require_prototypes . To check whether this option is on,
use __option (require_prototypes) . By default, this option is
on.

See also “require_prototypes” on page 165, and “Checking Op-
tions” on page 202.

Map Newlines to CR

The C compiler lets you choose how to interpret the newline ('\n')
and return ('\r') characters. This behavior is controlled by the
Map Newlines to CR item in the C/C++ Language Panel.

In most compilers, including CodeWarrior C/C++, '\r' is trans-
lated to the value 0x0D, the standard value for carriage return, and
'\n' is translated to the value 0x0A , the standard value for line-
feed.

However, the C compiler in the Macintosh Programmers Work-
shop, known as MPW C, '\r' is translated to 0x0A and '\n' is
translated to 0x0D—the opposite of the typical behavior.

If you turn this option on, the compiler uses the MPW conventions
for the '\n' and '\r' characters.

If this option is off, the compiler uses the CodeWarrior C and C++
conventions for these characters.

If you turn this option on, be sure you use ANSI/ISO C and C++ li-
braries that were compiled with this option on. If you turn this op-
tion on and use libraries built with this option off, you won’t be able
to read and write '\n' and '\r' properly. For example, printing
‘\n’ would bring you to the beginning of the current line instead of
inserting a new line.
C Compilers Reference CCR–49

C Compi ler
Extensions to ANSI/ISO C
This option corresponds to the pragma mpwc_newline . To check
whether this option is on, use __option (mpwc_newline) . By de-
fault, this option is off.

See also “mpwc_newline” on page 145, and “Checking Options” on
page 202.

For more information on issues relating to compatibility with MPW
in Mac OS programming, see Targeting Mac OS.

Relaxed Pointer Type Rules

When you turn on the Relaxed Pointer Type Rules option in the C/
C++ Language Panel, the compiler treats char* and unsigned
char* as the same type. While prototypes are checked for compati-
ble pointer types, direct pointer assignments will be allowed.

This option is especially useful if you’re using code written before
the ANSI/ISO C standard. Old source code frequently uses these
types interchangeably.

This option has no effect on C++. When compiling C++ source code,
the compiler differentiates char* and unsigned char* data types
even if the relaxed pointer option is on.

The Relaxed Pointer Type Rules option corresponds to the pragma
mpwc_relax . To check whether this option is on, use __option
(mpwc_relax) .

See also “mpwc_relax” on page 146, and “Checking Options” on
page 202.

Use Unsigned Chars

The C compiler can automatically treat a char declarations as un-
signed char . This behavior is controlled by the Use Unsigned
Chars setting in the C/C++ Language Panel.

When the Use Unsigned Chars option is on, the C compiler treats a
char declaration as if it were an unsigned char declaration.
CCR–50 C Compilers Reference

C Compi ler
Extensions to ANSI/ISO C
NOTE: If you turn this option on, your code may not be compati-
ble with libraries that were compiled with this option turned off.

The Use Unsigned Chars option corresponds to the pragma
unsigned_char . To check whether this option is on, use __option
(unsigned_char) . By default, this option is off.

See also “unsigned_char” on page 186 and “Checking Options” on
page 202.

Using 64-bit Integers

The C compiler lets you define a 64-bit integer with the type speci-
fier long long . This behavior is controlled by the longlong
pragma. There is no item in the C/C++ Language Panel to control
this option.

If this option is on, you may declare a long long integer. A long
long can hold values from -9 ,223 ,372 ,036 ,854 ,775 ,808 to
9,223 ,372 ,036 ,854 ,775 ,807 . An unsigned long long can hold
values from 0 to 18,446 ,744 ,073 ,709 ,551 ,615 .

If this option is off, using long long causes a syntax error.

In an enumerated type, you can use an enumerator large enough for
a long long . For more information, see “Enumerated Types” on
page 33. However, long long bitfields are not supported.

You control the long long type with pragma longlong . To
check whether this option is on, use __option (longlong). By
default, this pragma is on.

See also “longlong” on page 138 and “Checking Options” on page
202.

Converting Pointers to Types of the Same Size

The C compiler allows the conversion of pointer types to integral
data types of the same size in global initializations. Since this type of
conversion doesn’t conform to the ANSI C standard, it is only avail-
C Compilers Reference CCR–51

C Compi ler
Extensions to ANSI/ISO C
able if the ANSI Strict option is off in the C/C++ Language settings
panel. See “ANSI Strict” on page 37 for more information on this
option.

Listing 3.4 Converting a pointer to a same-sized integral type

char c;
long arr = (long)&c; // accepted (not ANSI/ISO C)

Getting Alignment and Type Information at
Compile-Time

The C compiler has two built-in functions that return information
about a data type’s byte alignment and its data type.

The function call __builtin_align(typeID) returns the byte-
alignment used for the data type typeID.

The function call __builtin_type(typeID) returns an integral
value that describes what kind of data type typeID is. If typeID is an
integral or an enumerated type, __builtin_type(typeID) returns
0. If typeID is a floating point type, __builtin_type(typeID) re-
turns 1. If typeID is any other kind of data type,
__builtin_type(typeID) returns 2.

Arrays of Zero Length in Structures

If the ANSI Strict option is off in the C/C++ Language Panel, the
compiler allows arrays of no length as the last item in a structure.
Listing 3.5 shows an example. Arrays may be defined with a zero as
the index value or with no index value between brackets.

Listing 3.5 Using zero-length arrays

struct listOfLongs {
long listCount;
long list[0]; // OK if ANSI Strict is off, [] is OK, too.

}

CCR–52 C Compilers Reference

C Compi ler
Extensions to ANSI/ISO C
Intrinsic Functions for Bit Rotation

CodeWarrior C has functions

__rol(op, n)

__ror(op, n)

that do left or right bit rotation respectively.

The op argument represents the item to have its bits rotated. The n
argument represents the number of times to rotate op bits. The op ar-
gument is not promoted to a larger data type, and may be of type
char , short , int , long or long long .

These functions are intrinsic (“built-in”). That is, to use the func-
tions you do not first have to provide function prototypes for them.
Also, you do not need to link with any special libraries.

NOTE: Currently, these functions are limited to the Motorola 68K
and Intel x86 versions of the CodeWarrior C/C++ compiler.

The “D” Constant Suffix

When CodeWarrior C finds a “D” immediately after a floating point
constant value, it treats that value as data of type double .

When the float_constants pragma is on, floating point constants
should end with a “D” so that they are not treated as values of type
float .

For related information, see “float_constants” on page 125.
C Compilers Reference CCR–53

C Compi ler
Extensions to ANSI/ISO C
CCR–54 C Compilers Reference

4
C++ Compiler
This chapter describes how the CodeWarrior C++ compiler imple-
ments the C++ language.

C++ Compiler Overview
This chapter discusses the CodeWarrior C++ compiler as it applies
to all CodeWarrior targets. For the most part, the information in this
chapter is equally applicable to any operating system or processor.

Other chapters in this manual discuss other features of the compiler
that are specific to particular operating systems and processors. For
a complete picture, you need to consider all the information relating
your target of interest.

In addition, the C compiler is an integral part of the CodeWarrior
C++ compiler. As a result, everything about the C compiler applies
equally to C++. This discussion of the C++ compiler does not repeat
information on the C Compiler. See “C Compiler Overview” on
page 29 for information on the C compiler.

This chapter covers all the features of the compiler that exist in sup-
port of the C++ language. In addition to describing those features
and how to control them, this chapter also has sections on working
with advanced features of C++ such as RTTI, exceptions, and tem-
plates.

This chapter contains the following sections:

• “CodeWarrior Implementation of C++” on page 56 describes
how CodeWarrior C++ implements certain sections of the
C++ standard.

• “Unsupported Extensions” on page 64 describes some addi-
tions to the ANSI/ISO C++ standard that CodeWarrior C++
does not support
C Compilers Reference CCR–55

C++ Compi ler
CodeWarrior Implementation of C++
• “Controlling the C++ Compiler” on page 64 describes how to
change the compiler’s behavior by setting options in the C/
C++ Language Panel.

• “Working With C++ Exceptions” on page 68 describes how
to use the try and catch statements to perform exception
handling.

• “Working With RTTI” on page 69 describes how to use run-
time type information support in your code.

• “Working With Templates” on page 72 describes the best
way set up the files that define and declare your templates. It
also documents an addition to the C++ standard which lets
you explicitly instantiate templates.

For information on using Embedded C++ (EC++) and for strategies
on developing smaller C++ programs, see “C++ and Embedded
Systems Overview” on page 79.

Many topics contain references to ARM, which is The Annotated C++
Reference Manual (Addison-Wesley) by Ellis and Stroustrup. These
references show you where to look for more information on the in-
formation discussed in that topic.

CodeWarrior Implementation of C++
This section describes how CodeWarrior C++ implements certain
parts of the C++ standard, as described in The Annotated C++ Refer-
ence Manual (Addison-Wesley) by Ellis and Stroustrup. The topics
discussed in this section are:

• Implicit Return Statement for main()

• Keyword Ordering

• Additional Keywords

• Conversions in the Conditional Operator

• Default Arguments in Member Functions

• Local Class Declarations with Inline Functions

• Copying and Constructing Class Objects

• Checking for Resources To Initialize Static Data
CCR–56 C Compilers Reference

C++ Compi ler
CodeWarrior Implementation of C++
• Calling an Inherited Member Function

Implicit Return Statement for main()

The compiler adds a

return 0;

statement in C++ a program’s main() function if the function re-
turns an int result and doesn’t end with a user return statement.

Examples:

int main() { } // equivalent to:
 // int main() { return 0; }
main() { } // equivalent to:
 // int main() { return 0; }

The compiler will also enforce an external int main() function if
ANSI Strict is on in the C/C++ Language Panel.

Keyword Ordering

(ARM §7.1.2, §11.4) If you use either the virtual or the friend
keyword in a declaration, it must be the first word in the declara-
tion. For example:

Listing 4.1 Using the virtual or friend keywords

class foo {
 virtual int f0(); // OK
 int virtual f1(); // ERROR
 friend int f2(); // OK
 int friend f3(); // ERROR
}

C Compilers Reference CCR–57

C++ Compi ler
CodeWarrior Implementation of C++
Additional Keywords

(ARM §2.4, ANSI §2.8) In addition to reserving the symbols in §2.4
of the ARM as keywords, CodeWarrior C++ reserves these symbols
from §2.8 of the ANSI C++ Standard as keywords:

Conversions in the Conditional Operator

(ARM §5.16) The compiler does not apply reference conversions to
the second and third expressions of the conditional operator. In
other words, unless the second and third expressions are numeric
types, they must be the same type.

Listing 4.2 A conversion in a conditional operator

class base { };
class derived : public base { };

static void foo(derived i)
{
 base &a = i;
 derived &b = i, c;
c = (sizeof(0) ? a:b); // ERROR: b is not converted to (base &)
c = (sizeof(0) ? a:(base &)b) // OK, typecast
}

Default Arguments in Member Functions

(ARM, §8.2.6) The compiler does not bind default arguments in a
member function at the end of the class declaration. Before the de-
fault argument appears, you must declare any value that you use in
the default argument expression. For example:

bool const_cast dynamic_cast

explicit false mutable

namespace reinterpret_cast static_cast

true typeid using
CCR–58 C Compilers Reference

C++ Compi ler
CodeWarrior Implementation of C++
Listing 4.3 Using default arguments in member functions

class foo {
 enum A { AA };
 int f(A a = AA); // OK
 int f(B b = BB); // ERROR: BB is not declared yet
 enum B { BB };
};

Local Class Declarations with Inline Functions

(ARM, §9.8) If you’re declaring a class within a function, the class’s
inline functions cannot access the outer function’s local types or
variables. In other words, the compiler inserts the class’s inline
functions on global scope level. For example:

Listing 4.4 Using local class declarations with inline functions

int x;

void foo()
{
 static int s;

 class local {
 int f1() { return s; } // ERROR: cannot access 's'

 int f2() { return local::f1(); } // ERROR: cannot access local
 int f3() { return x; } // OK
 };
}

Copying and Constructing Class Objects

(ARM, §12.1, §12.8) The compiler does not generate a copy construc-
tor or a default operator= for a simple class. A simple class is a
class that:

• Is a base class or is derived only from simple classes
C Compilers Reference CCR–59

C++ Compi ler
CodeWarrior Implementation of C++
• Has no class members or has only simple class members

• Has no virtual member functions

• Has no virtual base classes

• Has no constructor or destructor

Listing 4.5 Constructors

class Simple { int f; };

void simpleFunc (Simple s1)
{
 Simple s2 = Simple(s1); // ERROR: An explicit copy constructor
 // call. The compiler generates no
 // default copy constructor.

 Simple s3 = s1; // OK: The compiler performs a bitwise copy
}

The compiler does not guarantee that generated assignment or copy
constructors will assign or initialize objects representing virtual
base classes only once.

Checking for Resources To Initialize Static
Data

Sometimes you create static C++ objects that require certain re-
sources, such as a floating-point unit (FPU). You can check for these
resources by creating a function called __PreInit__() which the
compiler calls before it initializes static data. You cannot check for
these resources in your main() routine, because the compiler ini-
tializes static data before it calls main().

You must declare the __PreInit__() function like this:

extern "C" void __PreInit__(void);
CCR–60 C Compilers Reference

C++ Compi ler
CodeWarrior Implementation of C++
NOTE: This function is not supported when generating code for
PowerPC.

For example, this stub checks for a floating-point unit. In this case
you would also have to define the functions HasFPU() and Dis-
playNoFPU() yourself.

Listing 4.6 Checking for an FPU before initializing static data

#include <Types.h>
#include <stdlib.h>

extern "C" void __PreInit__(void);

void __PreInit__(void)
{
 if(!HasFPU()) {
 DisplayNoFPU(); // Display "No FPU" Alert
 abort(); // Abort program exection
 }
}

Calling an Inherited Member Function

(ARM, §10.2) If you want to call an inherited virtual member func-
tion, rather than the local override of that function, you can do so in
two ways. The first way is the recommended method for referring
to member functions defined in a base class, or any other parent
class. The second way, while more convenient, is not recommended
if you intend to use your source code with other compilers.

The standard way to call inherited member functions

The first way is supported by the ANSI/ISO C++ Standard and sim-
ply qualifies the member function with its base class.

Assume you have two classes, MyBaseClass and MySubClass ,
each implementing a function named MyFunc() .
C Compilers Reference CCR–61

C++ Compi ler
CodeWarrior Implementation of C++
From within a function of MySubClass , you can call the base class
version of MyFunc() this way:

MyBaseClass::MyFunc();

However, if you change the class hierarchy, this code may break.
Assume you introduce an intermediate class, and your hierarchy is
now MyBaseClass , MyMiddleClass , and MySubClass . Each has a
version of MyFunc() . The code above still calls the original version
of MyFunc() in the MyBaseClass , bypassing the additional behav-
ior you implemented in MyMiddleClass . In all likelihood, this is
not what you intend, and this kind of subtlety in the code can lead
to unexpected results and bugs that are very hard to locate.

Using inherited keyword to call inherited member functions

NOTE: The inherited keyword is not supported by the ANSI/
ISO C++ standard and is only implemented for single inheritance
with CodeWarrior C++.

You may call the inherited version of MyFunc() this way:

inherited::MyFunc();

With the inherited keyword, the compiler identifies the base class
at compile time. This line of code would call the immediate base
class in both cases: where the base class is MyBaseClass , and where
the immediate base class is MyMiddleClass .

If your class hierarchy changes at a later date and your subclass in-
herits from a different base class, the immediate base class is still
called, despite the change in hierarchy.

The syntax is the following:

inherited:: func-name(param-list);
CCR–62 C Compilers Reference

C++ Compi ler
CodeWarrior Implementation of C++
The statement calls the func-name in the class’s immediate base class.
If class has more than one immediate base class (because of multiple
inheritance) and the compiler can’t decide which func-name to call,
the compiler generates an error.

This example creates a Q class that draws its objects by adding be-
havior to the O class.

Listing 4.7 Using inherited to call an inherited member function

class O { virtual void draw(Point); }
class Q : O { void draw(Point); }

void O::draw (Point p)
{
 Rect r = { p.x-5, p.y-5, p.x+5, p.y+5 };
 FrameOval(r); // Draw an O.
}

void Q::draw (Point p)
{
 inherited::draw(p); // Perform behavior of base class
 MoveTo(p.x, p.y); // Perform added behavior
 Line(5, 5);
}

Make sure to insert this directive before using the inherited key-
word:

#pragma def_inherited on

For related information on this pragma see “def_inherited” on page
106.
C Compilers Reference CCR–63

C++ Compi ler
Unsupported Extensions
Unsupported Extensions
The C++ compiler does not support this extension to the C++ stan-
dard as described in The Annotated C++ Reference Manual (Addison-
Wesley) by Ellis and Stroustrup:

• Overloading methods operator new[] and operator
delete[] to allocate and deallocate the memory for a whole
array of objects at once. Instead overload operator new()
and operator delete() , which are the functions that op-
erator new[] and operator delete[] call (ARM, §5.3.3,
§5.3.4).

Controlling the C++ Compiler
This section describes how to change the behavior of CodeWarrior
C++ by setting some options in the C/C++ Language Panel. For in-
formation on this panel and all its options, see “C/C++ Language
Panel” on page 15.

This section contains the following:

• Using the C++ Compiler Always

• Controlling ARM Conformance

• Controlling Exception Handling

• Controlling RTTI

• Using the bool Type

• Controlling C++ Extensions

For more information on Direct to SOM, see Targeting Mac OS.

Using the C++ Compiler Always

If you turn on the Activate C++ Compiler option in the C/C++ Lan-
guage Panel, the compiler compiles all the C source files in your
project as C++ code. If you turn this option off, the CodeWarrior
IDE looks at a file name’s suffix to determine whether to use the C
or C++ compiler. The the suffixes it looks for are described by the
entries in the CodeWarrior IDE’s File Mappings settings panel. See
CCR–64 C Compilers Reference

C++ Compi ler
Controlling the C++ Compiler
the IDE User Guide for more information on configuring this settings
panel.

This option corresponds to the pragma cplusplus . To check
whether this option is on, use __option (cplusplus) . By de-
fault, this option is off.

See also “cplusplus” on page 103 and “Checking Options” on page
202.

Controlling ARM Conformance

When the ARM Conformance option in the C/C++ Language Panel
is on, CodeWarrior C++ generates an error when it encounters cer-
tain ANSI/ISO C++ features that conflict with the C++ specification
in The Annotated C++ Reference Manual. Use this option only if you
must make sure that your code strictly follows the specification in
The Annotated C++ Reference Manual.

Turning on this option prevents you from doing the following

• Using protected base classes (ARM, §11.2). For example:

class X {};
class Y : protected X {}; // OK in CodeWarrior C++. Error in ARM.

• Changing the syntax of the conditional operator to let you
use assignment expressions without parentheses in the sec-
ond and third expressions (K&R, §A7.16). For example:

i ? x=y : y=z // OK in CodeWarrior C++. Error in ARM.
i ? (x=y):(y=z) // OK in ARM and CodeWarrior C++

• Declaring variables in the conditions of if , while and
switch statements (K&R, §A9.4, §A9.5). For example:

while (int i=x+y) { /* ... */ }
 // OK in CodeWarrior C++. Error in ARM.

Turning on this option allows you to do the following:
C Compilers Reference CCR–65

C++ Compi ler
Controlling the C++ Compiler
• Using variables declared in the condition of a for statement
after the for statement (K&R, §9.5). For example:

for(int i=1; i<1000; i++) { /* ... */ }
return i; // OK in ARM, Error in CodeWarrior C++

This option corresponds to the pragma ARM_conform . To check
whether this option is on, use __option (ARM_conform) . By de-
fault, this option is off.

See also “ARM_conform” on page 97 and “Checking Options” on
page 202.

Controlling Exception Handling

Turn on the Enable C++ Exceptions option in the C/C++ Language
Panel if you use the ANSI/ISO-standard try and catch state-
ments. Otherwise, turn off this option to generate smaller and faster
code.

TIP: If you use PowerPlant for Mac OS programming, make sure
this option is turned on. PowerPlant uses C++ exceptions.

For more information on CodeWarrior implements ANSI/ISO C++
exception handling mechanism, see “Working With C++ Excep-
tions” on page 68.

This option corresponds to the pragma exceptions . To check
whether this option is on, use __option (exceptions) . By de-
fault, this option is off.

See also “exceptions” on page 118 and “Checking Options” on page
202.

Controlling RTTI

CodeWarrior C++ supports run-time type information (RTTI), in-
cluding the dynamic_cast and typeid operators. To use these op-
CCR–66 C Compilers Reference

C++ Compi ler
Controlling the C++ Compiler
erators, turn on the Enable RTTI option in the C/C++ Language
Panel.

For more information on how to use these two operators, see
“Working With RTTI” on page 69.

Using the bool Type

Turn on the Enable bool Support option if you want to use the stan-
dard C++ bool type to represent true and false . Turn this option
off if recognizing bool , true , or false as keywords would cause
problems in your program.

Enabling the bool data type and its true and false values is not
equivalent to defining them using typedef and #define . The C++
bool type is a distinct type defined by the ANSI/ISO C++ Stan-
dard. Source code that does not treat it as a distinct type might not
compile properly.

For example, some compilers other than treat CodeWarrior C++
treat the bool type as equivalent to the unsigned char data type.
Source code that compiles successfully on such a compiler might
not compile without errors with CodeWarrior C++ unless the En-
able bool Support option is off.

This option corresponds to the pragma bool . To check whether this
option is on, use __option (bool) . By default, this option is off.

See also “bool” on page 99 and “Checking Options” on page 202.

Controlling C++ Extensions

The C++ compiler has additional extensions that you can activate.
There is no item in the C/C++ Language Panel to activate these ex-
tensions. You must turn on the pragma cpp_extensions .

If this pragma is on, the compiler lets you use these extensions to the
ANSI/ISO C++ standard:

• Anonymous structs (ARM, §9). For example:
C Compilers Reference CCR–67

C++ Compi ler
Working With C++ Exceptions
#pragma cpp_extensions on
void foo()
{
 union {
 long hilo;
 struct { short hi, lo; };
 // annonymous struct
 };
 hi=0x1234;
 lo=0x5678;
 // hilo==0x12345678
}

• Unqualified pointer to a member function (ARM, §8.1c). For
example:

#pragma cpp_extensions on
struct Foo { void f(); }
void Foo::f()
{
 void (Foo::*ptmf1)() = &Foo::f;
 // ALWAYS OK

 void (Foo::*ptmf2)() = f;
 // OK, if cpp_exptensions is on.
}

To check whether this option is on, use the __option
(cpp_extensions) . By default, this option is off.

See also “cpp_extensions” on page 103 and “Checking Options” on
page 202.

Working With C++ Exceptions
If you turn on the Enable C++ Exceptions options in the C/C++
Language Panel, you may use the try and catch statements to per-
form exception handling. For more information on activating sup-
CCR–68 C Compilers Reference

C++ Compi ler
Working With RTTI
port for C++ exception handling, see “Controlling Exception Han-
dling” on page 66.

If exceptions are enabled, you can throw exceptions across any code
that’s compiled by the CodeWarrior C/C++ compiler. You cannot
throw exceptions across the following:

• Mac OS Toolbox function calls

• Libraries compiled with exception support turned off

• Libraries compiled with versions of the CodeWarrior C/C++
compiler earlier than CodeWarrior 8

• Libraries compiled with CodeWarrior Pascal or other
compilers

If you throw an exception across one of these, the code calls
terminate() and exits.

If you throw an exception when you’re allocating a class object or an
array of class objects, the code automatically destructs the partially
constructed objects and de-allocates the memory for them.

Working With RTTI
This section describes how to work with run-time type information
features of C++ supported in the CodeWarrior C++ compiler. RTTI
lets you cast one type of object to be another type, get information
about objects, and compare their types at runtime.

The topics in this section are:

• Using the dynamic_cast Operator

• Using the typeid Operator

Using the dynamic_cast Operator

The dynamic_cast operator lets you safely convert a pointer of
one type to a pointer of another type. Unlike an ordinary cast,
dynamic_cast returns 0 if the conversion is not possible. An ordi-
C Compilers Reference CCR–69

C++ Compi ler
Working With RTTI
nary cast returns an unpredictable value that may crash your pro-
gram if the conversion is not possible.

This is the syntax for dynamic_cast operator:

dynamic_cast< Type*>(expr)

The Type must be either void or a class with at least one virtual
member function. If the object that expr points to (* expr) is of type
Type or is derived from type Type, this expression converts expr to a
pointer of type Type* and returns it. Otherwise, it returns 0, the null
pointer.

For example, take these classes:

class Person { virtual void func(void) { ; } };
class Athlete : public Person { /* . . . */ };
class Superman : public Athlete { /* . . . */ };

And these pointers:

Person *lois = new Person;
Person *arnold = new Athlete;
Person *clark = new Superman;
Athlete *a;

This is how dynamic_cast would work with each:

a = dynamic_cast<Athlete*>(arnold);
 // a is arnold, since arnold is an Athlete.
a = dynamic_cast<Athlete*>(lois);
 // a is 0, since lois is not an Athelete.
a = dynamic_cast<Athlete*>(clark);
 // a is clark, since clark is both a Superman and an Athlete.

You can also use the dynamic_cast operator with reference types.
However, since there is no equivalent to the null pointer for refer-
ences, dynamic_cast throws an exception of type bad_cast if it
cannot perform the conversion.
CCR–70 C Compilers Reference

C++ Compi ler
Working With RTTI
NOTE: The bad_cast type is defined in the header file excep-
tion. Whenever you use dynamic_cast with a reference, you
must #include exception.

This is an example of using dynamic_cast with a reference:

#include <exception>
// . . .
Person &superref = *clark;

try {
 Person &ref = dynamic_cast<Person&>(superref);
}
catch(bad_cast) {
 cout << "oops!" << endl;
}

Using the typeid Operator

The typeid operator lets you determine the type of an object. Like
the sizeof operator, it takes two kinds of arguments:

• the name of a class

• an expression that evaluates to an object

NOTE: Whenever you use typeid operator, you must #include
the typeinfo header file.

The typeid operator returns a reference to a type_info object that
you can compare with the == and != operators. For example, if you
have these classes and objects:

class Person { /* . . . */ };
class Athlete : public Person { /* . . . */ };

Person *lois = new Person;
C Compilers Reference CCR–71

C++ Compi ler
Working With Templates
Athlete *arnold = new Athlete;
Athlete *louganis = new Athlete;

All these expressions are true:

#include <typeinfo>
// . . .
if (typeid(Athlete) == typeid(*arnold))
 // arnold is an Athlete, result is true
if (typeid(*arnold) == typeid(*louganis))
 // arnold and louganis are both Athletes, result is true
if (typeid(*lois) == typeid(*arnold)) // ...
 // lois and arnold are not the same type, result is false

You can access the name of a type with the name() member func-
tion in the type_info class. For example, these statements:

#include <typeinfo>
// . . .
cout << "Lois is a(n) "
 << typeid(*lois).name() << endl;
cout << "Arnold is a(n) "
 << typeid(*arnold).name() << endl;

Print this:

Lois is a(n) Person
Arnold is a(n) Athlete

Working With Templates
(ARM, §14) This section describes the best way to organize your
template declarations and definitions in files. It also documents how
to explicitly instantiate templates, using a syntax that is not in the
ARM but is part of the ANSI/ISO C++ standard.

This section includes the following topics:
CCR–72 C Compilers Reference

C++ Compi ler
Working With Templates
• Declaring and Defining Templates

• Instantiating a Template

Declaring and Defining Templates

In a header file, declare your class functions and function templates,
as shown in Listing 4.8.

Listing 4.8 templ.h: A Template Declaration File

template <class T>
class Templ {
 T member;
public:
 Templ(T x) { member=x; }
 T Get();
};

template <class T>
T Max(T,T);

In a source file, include the header file and define the function tem-
plates and the member functions of the class templates. Listing 4.9
shows you an example.

This source file is a template definition file. You’ll include this file in
any file that uses your templates. You do not need to add the tem-
plate definition file to your project. Although this is technically a
source file, you work with it as if it were a header file.

The template definition file does not generate code. The compiler
cannot generate code for a template until you specify what values it
should substitute for the templates arguments. Specifying these val-
ues is called instantiating the template. See “Instantiating a Tem-
plate” on page 76.
C Compilers Reference CCR–73

C++ Compi ler
Working With Templates
Listing 4.9 templ.cp: A Template Definition File

#include "templ.h"

template <class T>
T Templ<T>::Get()
{
 return member;
}

template <class T>
T Max(T x, T y)
{
 return ((x>y)?x:y);
}

WARNING! Do not include the original template declaration file,
which ends in .h . If you include the template .h file in your source
file, the compiler will generate an error saying that the function or
class is undefined.

Providing declarations when declaring the template

CodeWarrior C++ processes any declarations in a template when
the template is declared, not when it is instantiated.

Although the C++ compiler currently accepts declarations in tem-
plates that are not available when the template is declared, future
versions of the compiler will not. shows some examples.

Listing 4.10 Declarations in template declarations

// Names in a class template declaration have to be defined

template<typename T> struct foo {
 bar *member; // illegal (but currently accepted)
};
struct bar { };
CCR–74 C Compilers Reference

C++ Compi ler
Working With Templates
foo<int> fi;

// Workaround: Declare all names before using them:

struct bar;
template<typename T> struct foo {
 bar *member; // OK
};
struct bar { };
foo<int> fi;

// Names in template argument dependent base classes:

template<typename T> struct foo {
 typedef T *tptr;
};
template<typename T> struct bar : foo<T> {
 tptr member; // illegal (but currently accepted)
};

// Workaround: Use qualifed name syntax:

template<typename T> struct foo {
 typedef T *tptr;
};
template<typename T> struct bar : foo<T> {
 typename foo<T>::tptr member; // OK
};

// The correct usage of typename in template argument
// dependent qualified names in some contexts:

template<class T> struct X {
 typedef X *xptr;
 xptr f();
};
template<class T> X<T>::xptr X<T>::f() // 'typename' missing
{

C Compilers Reference CCR–75

C++ Compi ler
Working With Templates
 return 0;
}

// Workaround: Use 'typename':

template<class T> typename X<T>::xptr X<T>::f() // OK
{
 return 0;
}

Instantiating a Template

The compiler cannot generate code for a template until you:

• declare the template class

• provide a template definition

• specify the data type(s) for the template

For information on the first two requirements, see “Declaring and
Defining Templates” on page 73.

Specifying the data type(s) and other arguments for a template is
called instantiating the template. CodeWarrior C++ gives you two
ways to instantiate a template. You can let the compiler instantiate it
automatically when you first use it, or you can explicitly create all
the instantiations you’ll need.

Automatic instantiation

To instantiate templates automatically, include the template defini-
tion file in all the source files that use the template, and just use the
template members as you would any other type or function. The
compiler automatically generates code for a template instantiation
whenever it sees a new one. Listing 4.11 shows how to automati-
cally instantiate the templates in Listing 4.8 and Listing 4.9, class
Templ and class Max.
CCR–76 C Compilers Reference

C++ Compi ler
Working With Templates
Listing 4.11 myprog.cp: A Source File that Uses Templates

#include <iostreams.h>
#include "templ.cp" // includes templ.h as well

void main(void) {
 Templ<long> a = 1, b = 2;
 // The compiler instantiates Templ<long> here.
 cout << Max(a.Get(), b.Get());
 // The compiler instantiates Max<long>() here.
}

If you use automatic instantiation, the compiler may take longer to
compile your program because it has to determine on its own which
instantiations you’ll need. Also, the object code for the template in-
stantiations will be scattered throughout your program.

Explicit instantiation

To instantiate templates explicitly, include the template definition
file in a source file, and write a template instantiation statement for
every instantiation. The syntax for a class template instantiation is

template class class-name<templ-specs>;

The syntax for a function template instantiation is

template return-type func-name<templ-specs>(arg-specs)

Listing 4.12 shows how to explicitly instantiate the templates in List-
ing 4.8 and Listing 4.9.

Listing 4.12 myinst.cp: Explicitly Instantiating Templates

#include "templ.cp"

template class Templ<long>; // class instantiation
template long Max<long>(long,long); // function instantiation
C Compilers Reference CCR–77

C++ Compi ler
Working With Templates
When you’re explicitly instantiating a function, you do not need to
include in templ-specs any arguments that the compiler can deduce
from arg-specs. For example, in Listing 4.12 you can instantiate
Max<long>() like this:

template long Max<>(long, long);
 // The compiler can tell from the arguments
 // that you’re instantiating Max<long>()

If you use explicit instantiation, the compiler compiles your pro-
gram more quickly. Because the instantiations can be in one file
with no other code, you can even choose to put them in a separate li-
brary.

NOTE: Explicit instantiation is not in the ARM but is part of the
ANSI/ISO C++ standard.
CCR–78 C Compilers Reference

5
C++ and Embedded
Systems
This chapter describes how to develop effective software for embed-
ded systems using CodeWarrior C++. It also has topics that all C++
programmers may find useful for developing smaller programs.

C++ and Embedded Systems Overview
This chapter covers the following items of concern to embedded
systems programmers.

• Activating EC++

• Differences Between ANSI/ISO C++ and EC++

• Meeting EC++ Specifications With CodeWarrior

• Strategies for Smaller Code Size in C++

NOTE: This chapter discusses some strategies for program de-
sign for embedded systems and is not meant to be a definitive so-
lution.

Currently, CodeWarrior C++ may be used for EC++-compatible
embedded systems development, but does not include some li-
braries mentioned in the EC++ proposal.

Activating EC++
To compile EC++ source code, make sure the EC++ Compatibility
Mode option is on in the C/C++ Language settings panel.
C Compilers Reference CCR–79

C++ and Embedded Systems
Differences Between ANSI/ISO C++ and EC++
To test for EC++ compatibility mode at compile time use the
__embedded_cplusplus predefined symbol. For more information,
see “Predefined Symbols” on page 198.

Differences Between ANSI/ISO C++ and EC++
Several features of ANSI/ISO C++ (ANSI C++) are not present in
EC++. Among the features not supported in EC++ are:

• Templates

• Libraries

• File Operations

• Localization

• Exception Handling

• Other Language Features

Templates

ANSI C++ supports templates. The EC++ proposal does not include
template support for class or functions.

Libraries

The classes <string> , <complex> , <ios> , <streambuf> , <is-
tream> and <ostream> are supported in Embedded C++ specifica-
tions. However only in a non-template form. All other ANSI C++ li-
braries including the STL-type algorithm libraries are not supported

File Operations

There are no file operations specified in the EC++ proposed stan-
dard except for simple console input and output file types.

Localization

There are no localization libraries in the EC++ proposed standard
because of the excessive memory requirements.
CCR–80 C Compilers Reference

C++ and Embedded Systems
Meeting EC++ Specifications With CodeWarrior
Exception Handling

Exception handling is not supported in the EC++ proposed stan-
dard.

Other Language Features

The following language features are not supported. Some other
minor features are also unsupported but not listed.

• mutable specified

• RTTI

• namespace

• multiple inheritance

• virtual inheritance

Meeting EC++ Specifications With CodeWarrior
This section describes how to be compliant with the proposed Em-
bedded C++ (EC++). These topics discuss different facets of design-
ing software to meet the EC++ standard:

• Language Related Issues

• Library Related Issues

Language Related Issues

To make sure your source code is compatible with both the ANSI/
ISO C++ and EC++ standards, follow these guidelines:

• do not use RTTI (Run-Time Type Identification).

• do not use exception handling, namespaces, or other unsup-
ported features.

• do not use multiple or virtual inheritance

Some of these C++ features, such as RTTI and exceptions, can be
turned off in the compiler settings for your code. These options are
C Compilers Reference CCR–81

C++ and Embedded Systems
Strategies for Smaller Code Size in C++
in the C++ Language settings panel, described in “Setting C Com-
piler Options Overview” on page 15.

Library Related Issues

Do not refer to routines, data structures, and classes in the Metrow-
erks Standard Libraries for C++.

Metrowerks will explore alternative class libraries that are more
suitable for use with EC++-compliant applications and may make
them available in a future release.

Strategies for Smaller Code Size in C++
When using C++ where program size may be critical, there are cer-
tain strategies that a programmer can follow to ensure optimal code
size.

NOTE: In all strategies, reducing the size of object may affect
the performance of that code.

Some of these strategies are used by the proposed Embedded C++
(EC++) uses some of these strategies as part of its specification.
Other strategies apply to C++ programming in general. All of these
strategies may be used by any C++ program, whether the program
follows the EC++ standard or not.

In CodeWarrior, you can group these into compiler-related, lan-
guage-related, and library-related steps.

Compiler-related strategies

Compiler-related strategies rely on using compiler features to re-
duce the size of object code.

• Size Optimizations—use the compiler size optimization set-
tings
CCR–82 C Compilers Reference

C++ and Embedded Systems
Strategies for Smaller Code Size in C++
• Inlining—how to control and limit the effectiveness of the
inline directive

Language-related strategies

Language-related strategies limit or avoid the use of ANSI/ISO C++
features. Although these features may make software design and
maintenance easier, they often do so at the cost of affecting code size

• Virtual Functions—not using virtual functions reduces the
size of code

• Runtime Type Identification—the compiler won’t generate
extra data if a program doesn’t use Runtime Type Identifica-
tion (RTTI)

• Exception Handling—while CodeWarrior C++ provides
zero-overhead exception handling to provide optimum exe-
cution speed, it still generates extra object code for exception
support

• Operator New—be careful not to throw an exception within
the new operator

• Multiple Inheritance—the compiler won’t generate extra data
if the use of multiple inheritance isn’t used

Library-related strategies

• Stream-Based Classes—these classes in the Metrowerks Stan-
dard Libraries comprise a lot of object code

• Alternative Class Libraries—non-standard class libraries
may provide a subset of the standard library’s functionality
with less overhead

Size Optimizations

Metrowerks compilers include optimization settings for size or
speed, and various levels of optimization. Choose size as your de-
sired outcome, and the level of optimization you wish to apply.

You control optimization settings as an option in the settings for
your target. The option is in the Processor settings panel.
C Compilers Reference CCR–83

C++ and Embedded Systems
Strategies for Smaller Code Size in C++
When debugging, compile your code without any optimizations.
Some optimizations disrupt the relationship between source and
object code required by the debugger. Optimize your code after you
have finished debugging.

See also “Setting C Compiler Options Overview” on page 15.

Inlining

With CodeWarrior you can turn inlining off, allow normal inlining,
auto-inline, or set the maximum depth of inlining.

Inlining may reduce or increase code size. There is no definite an-
swer for this question. Inlining small functions can make a program
smaller. In particular if you have a class library with a lot of getter/
setter member functions, the code size can be quite a bit smaller
with inlining on.

However, MSL C++ defines many functions as inline, and this is not
good if you want minimal code size. For optimal code size when
using MSL C++, turn inlining off when you build the library. If you
are not using MSL C++, normal inlining and a common sense use of
the keyword “inline” may improve your code size.

In CodeWarrior you control inlining as a language option in the tar-
get settings. The option is in the C/C++ Language settings panel.

When debugging your code, turn inlining off to maintain a clear
correspondence between source and object code. After debugging,
set the inlining level that has the best effect on your object code.

 See also “Inlining” on page 43.

Virtual Functions

For optimal code size virtual functions should not be used except
when necessary. A virtual function is never dead-stripped, even if
it’s never called.
CCR–84 C Compilers Reference

C++ and Embedded Systems
Strategies for Smaller Code Size in C++
Runtime Type Identification

If code size is an issue, do not use RTTI. RTTI generates a data table
for every class, so turning this off will make the data section smaller.

The proposal for Embedded C++ does not allow runtime type iden-
tification. Turn RTTI off as a C++ language option in the target set-
tings. The option is in the C/C++ Language settings panel.

See also “Controlling RTTI” on page 66.

Exception Handling

Be selective when using C++ exception handling routines, or not
use exceptions at all. CodeWarrior has a zero runtime overhead
error handling mechanism. However, using exceptions still adds
some code size. The exception tables (data) can get pretty big when
using exception handling.

The proposal for Embedded C++ does not allow exception han-
dling. Turn exception handling off as a C++ language option in the
target settings. The option is in the C/C++ Language settings panel.

NOTE: The proposed ANSI/ISO standard libraries and the use of
the “new” operator will require exception handling. See “Operator
New” on page 85.

Operator New

The C++ new operator might throw an exception or not depending
on how the runtime library implements the new operator. To have it
throw exceptions set __throws_bad_alloc to 1, to have it not set
__throws_bad_alloc to 0 in the prefix file for your target and re-
build your library.

Please read your release notes or Targeting manual for more infor-
mation.
C Compilers Reference CCR–85

C++ and Embedded Systems
Strategies for Smaller Code Size in C++
Multiple Inheritance

The code and data overhead required to implement multiple inher-
itance is fairly modest.

The proposal for Embedded C++ does not allow multiple inherit-
ance.

Virtual Inheritance

For optimal code size, do not use virtual inheritance. Virtual base
classes are often complex and will add a lot of code to the construc-
tor and destructor functions.

The proposal for Embedded C++ does not allow virtual inheritance.

Stream-Based Classes

The Metrowerks Standard Library (MSL) C++ stream-based classes
will initialize several instances of direct and indirect objects. When
code size is critical, do not use any stream-based classes. The
stream-based classes include standard input (cin), standard output
(cout), and standard error (cerr). There are wide-character equiv-
alents for the normal input and output routines as well. Unless there
is a great need for these classes, use standard C input and output
functions instead.

In addition to the standard C++ stream classes, there are string
streams for in-core formatting that will also evoke a heavy overhead
and should be avoided. If size is critical, use C’s sprintf or ss-
canf functions instead.

The proposal for Embedded C++ does not allow for templatized
classes or functions. MSL is compliant with the ANSI/ISO proposed
standards that are based on templates.
CCR–86 C Compilers Reference

C++ and Embedded Systems
Strategies for Smaller Code Size in C++
Alternative Class Libraries

Metrowerks Standard Library (MSL) C++ is based on the ANSI/ISO
proposed C++ standard. This C++ Standard is implemented using
templates, which have a large initial overhead for specialization.

To avoid this overhead, you may want to devise your own vector,
string, or other utility classes that you use commonly. In addition,
there are other class libraries available, such as the NIH's (National
Institute of Health) Class Library. These may be more suitable for
your work.

If you do use an alternative library, keep in mind possible problems
with virtual inheritance, RTTI, or other causes of larger code size
that we described above.
C Compilers Reference CCR–87

C++ and Embedded Systems
Strategies for Smaller Code Size in C++
CCR–88 C Compilers Reference

6
Pragmas and
Symbols
This chapter describes the pragmas and predefined symbols avail-
able with the Metrowerks C/C++ compiler.

Pragmas and Symbols Overview
You set compiler options for an entire project by changing the set-
tings in the C/C++ Language Panel. You can also control how the
compiler compiles your code from within your code, using prag-
mas.

Most of the pragmas correspond to options in the C/C++ Language
Panel, or other settings panels such as the 68K Processor panel, the
PowerPC processor panel, and so forth.

Typically, you use the settings panels to set the options for most of
your code and use pragmas to change the options for special cases.
For example, with the C/C++ Language Panel, you can turn off a
time-consuming optimization and, with a pragma, turn it on only
for the code it helps most.

TIP: If you use Metrowerks command-line tools, such as those
for MPW or Be OS, see the Command-Line Tools manual for infor-
mation on how to duplicate the effect of #pragma statements using
command-line tool options.

The sections in this chapter are:

• Pragma Syntax—explains pragma syntax

• Pragma Scope—the range of a pragma
C Compilers Reference CCR–89

Pragmas and Symbols
Pragmas
• Pragmas—lists each pragma

• Predefined Symbols—lists ANSI and CodeWarrior symbols

• Checking Options—explains how to determine the current
setting of most pragmas and options

Pragmas
This section describes how to use pragmas and lists and explains
each pragma.

These topics describe how to use pragmas:

• Pragma Syntax

• Pragma Scope

Pragma Syntax

Most pragmas have this syntax:

#pragma option-name on | off | reset

Generally, use on or off to change the option’s setting, and then
use reset to restore the option’s original setting, as shown below:

#pragma profile off
 // If the option Generate Profiler Calls is on,
 // turns it off for these functions.

#include <smallfuncs.h>

#pragma profile reset
 // If the option Generate Profiler Calls was originally on,
 // turns it back on. Otherwise, the option remains off

Suppose that you use #pragma profile on instead of #pragma
profile reset . If you later turn off Generate Profiler Calls from
the Preference dialog, that pragma turns it on. Using reset ensures
CCR–90 C Compilers Reference

Pragmas and Symbols
Pragmas
that you don’t inadvertently change the settings in the Project Set-
tings dialog.

Pragma Scope

In general, the scope of a pragma setting is limited to a single file.

As discussed in Pragma Syntax, you should use on, or off after the
pragma’s name to change a pragma’s setting to the condition you
want. After you have set the pragma to the desired state, all code
after that point is compiled with that setting until either:

• change the setting with on, off , or (preferred) reset

• you reach the end of the file

At the beginning of each file, the compiler reverts to the project or
default settings.

Pragma settings are not stored in a precompiled header file. In other
words, you can modify compiler settings inside a precompiled
header, but the change affects the code within that file only. The set-
tings that were active at the end of the precompiled header file are
lost and have to be set up again.

The settings for an item that is declared in a precompiled header file
(such as data or a function) are saved and restored when the pre-
compiled header file is included.

For example, this code says that the variable xxx is a far variable.

// in file pch.h

#pragma far_data on
extern int xxx;

Now, assume a file includes this as a precompiled header.

// in file test.c
#pragma far_data off // far data is off

#include "pch.pch" // this file set far_data on
C Compilers Reference CCR–91

Pragmas and Symbols
Pragmas
// far_data is still 'off' but xxx is still a far variable

The pragma setting still works within the header file, even though
the source file including the header has a different setting.

a6frames

Description Controls the generation of stack frames based on the A6 register.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma a6frames on | off | reset

Remarks This pragma applies to Mac OS on 68K programming only.

If this pragma is on, the compiler generates A6 stack frames which
let debuggers trace through the call stack and find each routine.
Many debuggers, including the Metrowerks debugger and Jasik’s
The Debugger, require these frames. If this pragma is off, the com-
piler does not generate these frames, so the generated code is
smaller and faster.

This is the code that the compiler generates for each function, if this
pragma is on:

LINK # nn,A6
UNLK A6

This pragma corresponds to Generate A6 Stack Frames option in
the 68K Linker settings panel. To check whether this option is on,
use __option (a6frames) , described in “Checking Options” on
page 202.

68K PowerPC NEC V800 Intel x86 MIPS
CCR–92 C Compilers Reference

Pragmas and Symbols
Pragmas
align

Description Specifies how to align data.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma options align= alignment

Remarks This pragma applies to Mac OS programming only.

This pragma specifies how to align structs and classes, where align-
ment can be one of the following values:

68K PowerPC NEC V800 Intel x86 MIPS

If alignment is The compiler …

mac68k Aligns every field on a 2-byte boundaries,
unless a field is only 1-byte long. This is the
standard alignment for 68K Macintosh com-
puters.

mac68k4byte Aligns every field on 4-byte boundaries.

power Align every field on its natural boundary.
This is the standard alignment for Power
Macintosh computers. For example, it aligns
a character on a 1-byte boundary and a 16-bit
integer on a 2-byte boundary. The compiler
applies this alignment recursively to struc-
tured data and arrays containing structured
data. So, for example, it aligns an array of
structured types containing an 4-byte float-
ing point member on an 4-byte boundary.

native Aligns every field using the standard align-
ment. It is equivalent to using mac68k for
68K Macintosh computers and power for
Power Macintosh computers.
C Compilers Reference CCR–93

Pragmas and Symbols
Pragmas
Note there is a space between options and align .

This pragma corresponds to the Struct Alignment option in the 68K
Processor settings panel.

align_array_members

Description Controls the alignment of arrays within struct and class data.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma align_array_members on | off | reset

Remarks This pragma applies to Mac OS programming only.

This option lets you choose how to align an array in a struct or class.
If this option is on, the compiler aligns all array fields larger than a
byte according to the setting of the Struct Alignment option. If this
option is off, the compiler doesn’t align array fields.

Listing 6.1 Choosing how to align arrays

#pragma align_array_members off
struct X1 {
 char c; // offset==0

packed Aligns every field on a 1-byte boundary. It is
not available in any settings panel. This
alignment will cause your code to crash or
run slowly on many platforms. Use it with
caution.

reset Resets the option to the value in the previous
#pragma options align statement, if there
is one, or to the value in the 68K or PPC Pro-
cessor settings panel.

If alignment is The compiler …

68K PowerPC NEC V800 Intel x86 MIPS
CCR–94 C Compilers Reference

Pragmas and Symbols
Pragmas
 char arr[4]; // offset==1 (char aligned)
};

#pragma align_array_members on
#pragma align mac68k
struct X2 {
 char c; // offset==0
 char arr[4]; // offset==2 (2-byte align)
};

#pragma align_array_members on
#pragma align mac68k4byte
struct X3 {
 char c; // offset==0
 char arr[4]; // offset==4 (4-byte align)
};

To check whether this option is on, use __option
(align_array_members) , described in “Checking Options” on
page 202. By default, this option is off.

always_inline

Description Controls the use of inlined functions.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma always_inline on | off | reset

Remarks When this option is on, the compiler attempts to inline every func-
tion declared with the inline keyword.

This pragma doesn’t correspond to any settings panel option. To
check whether this option is on, use __option
(always_inline) , described in “Checking Options” on page 202.

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–95

Pragmas and Symbols
Pragmas
ANSI_strict

Description Controls the use of non-standard language features.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma ANSI_strict on | off | reset

Remarks The common ANSI extensions are the following. If you turn on the
pragma ANSI_strict , the compiler generates an error if it encoun-
ters any of these extensions.

• C++-style comments. For example:

a = b; // This is a C++-style comment

• Unnamed arguments in function definitions. For example:

void f(int) {} /* OK, if ANSI Strict is off */
void f(int i) {} /* ALWAYS OK */

• A # token not followed by an argument in a macro definition.
For example:

#define add1(x) #x #1
 /* OK, if ANSI_strict is off,
 but probably not what you wanted:
 add1(abc) creates "abc"#1 */

#define add2(x) #x "2"
 /* ALWAYS OK: add2(abc) creates "abc2" */

• An identifier after #endif . For example:

#ifdef __MWERKS__
 /* . . . */
#endif __MWERKS__ /* OK, if ANSI_strict is off */

68K PowerPC NEC V800 Intel x86 MIPS
CCR–96 C Compilers Reference

Pragmas and Symbols
Pragmas
#ifdef __MWERKS__
 /* . . . */
#endif /*__MWERKS__*/ /* ALWAYS OK */

This pragma corresponds to the ANSI Strict option in the C/C++
Language Panel. To check whether this option is on, use __option
(ANSI_strict) , described in “Checking Options” on page 202.

arg_dep_lookup

Description Controls C++ argument-dependent name lookup.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma arg_dep_lookup on | off | reset

Remarks When this option is on, the C++ compiler uses argument-dependent
name lookup. By default this option is on.

This pragma doesn’t correspond to any settings panel option. To
check whether this option is on, use __option
(arg_dep_lookup) , described in “Checking Options” on page
202.

ARM_conform

Description Controls the use of non-ARM language features.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma ARM_conform on | off | reset

Remarks When pragma ARM_conform is on, the compiler generates an error
when it encounters certain ANSI C++ features that conflict with the

68K PowerPC NEC V800 Intel x86 MIPS

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–97

Pragmas and Symbols
Pragmas
C++ specification in The Annotated C++ Reference Manual. Use this
option only if you must make sure that your code strictly follows
the specification in The Annotated C++ Reference Manual.

Turning on this pragma prevents you from doing the following

• Using protected base classes. For example:

class X {};
class Y : protected X {}; // OK if ARM_conform is off.

• Changing the syntax of the conditional operator to let you
use assignment expressions without parentheses in the sec-
ond and third expressions. For example:

i ? x=y : y=z // OK if ARM_conform is off.
i ? (x=y):(y=z) // ALWAYS OK

• Declaring variables in the conditions of if , while and
switch statements. For example:

while (int i=x+y) { . . . } // OK if ARM_conform is off.

Turning on this option allows you to do the following:

• Using variables declared in the condition of an if statement
after the if statement. For example:

for(int i=1; i<1000; i++) { /* . . . */ }
return i; // OK if ARM_conform is on.

This pragma corresponds to the ARM Conformance option in the
C/C++ Language Panel. To check whether this option is on, use
__option (ARM_conform) , described in “Checking Options” on
page 202.

auto_inline

Description Controls the selection of which functions to inline.
CCR–98 C Compilers Reference

Pragmas and Symbols
Pragmas
Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma auto_inline on | off | reset

Remarks If this pragma is on, the compiler, automatically picks functions to
inline for you

Note that if either the Don’t Inline option (“Inlining” on page 43) or
the dont_inline pragma (“dont_inline” on page 115) is on, the
compiler ignores the setting of the auto_inline pragma and
doesn’t inline any functions.

This pragma corresponds to the Auto-Inline option of the Inlining
menu the C/C++ Language Panel. To check whether this option is
on, use __option (auto_inline) , described in “Checking Op-
tions” on page 202.

bool

Description Controls if bool , true , and false are treated as keywords or not.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma bool on | off | reset

Remarks When this pragma is on, you can use the standard C++ bool type to
represent true and false . Turn this pragma off if recognizing
bool , true , or false as keywords would cause problems in your
program.

This pragma corresponds to the Enable bool Support option in the
C/C++ Language Panel, described in “Using the bool Type” on
page 67. To check whether this option is on, use __option(bool) ,
described in “Checking Options” on page 202. By default, this op-
tion is off.

68K PowerPC NEC V800 Intel x86 MIPS

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–99

Pragmas and Symbols
Pragmas
check_header_flags

Description Sets if checking should be done to ensure that a precompiled
header’s data matches a project’s target settings.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma check_header_flags on | off | reset

Remarks This pragma affects precompiled headers only.

When this pragma is on, the compiler makes sure that the precom-
piled header’s preferences for double size (8-byte or 12-byte), int
size (2-byte or 4-byte) and floating point math correspond to the
build target’s settings. If they do not match, the compiler generates
an error.

If your precompiled header file has settings that are independent
from those in the project, turn this pragma off. If your precompiled
header depends on these settings, turn this pragma on.

This pragma does not correspond to any option in the C/C++ Lan-
guage Panel. To check whether this option is on, use __option
(check_header_flags) , described in “Checking Options” on
page 202. By default, this pragma is off.

code_seg

Description Specifies the segment into which code is placed.

Compatibility This pragma is compatible with the following platform targets:

68K PowerPC NEC V800 Intel x86 MIPS

68K PowerPC NEC V800 Intel x86 MIPS
CCR–100 C Compilers Reference

Pragmas and Symbols
Pragmas
Prototype #pragma code_seg(name)

Remarks This pragma designates the segment into which compiled code is
placed. The name is a string specifying the name of the code seg-
ment. For example, the pragma

#pragma code_seg(".code")

places all subsequent code into a segment named.code .

code68020

Description Controls object code generation for Motorola 680x0 (and higher)
processors.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma code68020 on | off | reset

Remarks This pragma applies to 68K programming only.

When this option is on, the compiler generates code that’s opti-
mized for the MC68020. The code runs on a Power Macintosh or a
Macintosh with a MC68020 or MC68040. The code does crash on a
Macintosh with a MC68000. When this option is off, the compiler
generates code that will run on any Macintosh.

WARNING! Do not change this option’s setting within a function
definition.

Before your program runs code optimized for the MC68020, use the
gestalt() function to make sure the chip is available. For more in-
formation on gestalt() , see Chapter “Gestalt Manager” in Inside
Macintosh: Operating System Utilities.

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–101

Pragmas and Symbols
Pragmas
In the Mac OS compiler, this option is off by default.

This pragma corresponds to the 68020 Codegen option in the 68K
Processor settings panel. To check whether this option is on, use
__option (code68020) , described in “Checking Options” on
page 202.

code68881

Description Controls object code generation for Motorola 68881 (and higher)
math coprocessors.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma code68881 on | off | reset

Remarks This pragma applies to 68K programming only.

When this option is on, the compiler generates code that’s opti-
mized for the MC68881 floating-point unit (FPU). This code runs on
a Macintosh with an MC68881 FPU, MC68882 FPU, or a MC68040
processor. (The MC68040 has a MC68881 FPU built in.) The code
does not run on a Power Macintosh, a Macintosh with an
MC68LC040, or a Macintosh with any other processor and no FPU.
When this option is off, the compiler generates code that will run on
any Macintosh.

WARNING! If you use the code68881 pragma to turn this option
on, place it at the beginning of your file, before you include any
files and declare any variables and functions.

Before your program runs code optimized for the MC68881, use the
gestalt() function to make sure an FPU is available. For more in-
formation on gestalt() , see Chapter “Gestalt Manager” in Inside
Macintosh: Operating System Utilities.

68K PowerPC NEC V800 Intel x86 MIPS
CCR–102 C Compilers Reference

Pragmas and Symbols
Pragmas
This pragma corresponds to the 68881 Codegen option in the 68K
Processor settings panel. To check whether this option is on, use
__option (code68881) , described in “Checking Options” on
page 202.

cplusplus

Description Specifies if subsequent source code should be translated as C or C++
source code.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma cplusplus on | off | reset

Remarks When this pragma is on, the compiler compiles the code that fol-
lows as C++ code. When this option is off, the compiler uses the suf-
fix of the filename to determine how to compile it. If a file’s name
ends in .cp , .cpp , or .c++ , the compiler automatically compiles it
as C++ code. If a file’s name ends in .c , the compiler automatically
compiles it as C code. You need to use this pragma only if a file con-
tains a mixture of C and C++ code.

This pragma corresponds to the Activate C++ Compiler option in
the C/C++ Language Panel. To check whether this option is on, use
__option (cplusplus) , described in “Checking Options” on
page 202.

cpp_extensions

Description Controls language extensions to ANSI/ISO C++.

Compatibility This pragma is compatible with the following platform targets:

68K PowerPC NEC V800 Intel x86 MIPS

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–103

Pragmas and Symbols
Pragmas
Prototype #pragma cpp_extensions on | off | reset

Remarks If this option is on, it enables these extensions to the ANSI C++ stan-
dard:

• Anonymous structs. For example:

#pragma cpp_extensions on
void foo()
{
 union {
 long hilo;
 struct { short hi, lo; }; // annonymous struct
 };
 hi=0x1234;
 lo=0x5678; // hilo==0x12345678
}

• Unqualified pointer to a member function. For example:

#pragma cpp_extensions on
struct Foo { void f(); }
void Foo::f()
{
 void (Foo::*ptmf1)() = &Foo::f; // ALWAYS OK

 void (Foo::*ptmf2)() = f; // OK, if cpp_exptensions is on.
}

This pragma does not correspond to any option in the C/C++ Lan-
guage Panel. To check whether this option is on, use the __option
(cpp_extensions) , described in “Checking Options” on page
202. By default, this option is off.

d0_pointers

Description Specifies which register should be used to hold function result
pointers.

Compatibility This pragma is compatible with the following platform targets:
CCR–104 C Compilers Reference

Pragmas and Symbols
Pragmas
Prototype #pragma d0_pointers

Remarks This pragma applies to 68K programming only.

This pragma lets you choose between two calling conventions: the
convention for MPW and Macintosh Toolbox routines and the con-
vention for Metrowerks C and C++ routines. In the MPW and Mac-
intosh Toolbox calling convention, functions return pointers in the
register DO. In the Metrowerks C and C++ convention, functions re-
turn pointers in the register A0.

When you declare functions from the Macintosh Toolbox or a li-
brary compiled with MPW, turn on the d0_pointers pragma.
After you declare those functions, turn off the pragma to start de-
claring or defining Metrowerks C and C++ functions.

In Listing 6.2, the Toolbox functions in Sound.h return pointers in
D0 and the user-defined functions in Myheader.h use A0.

Listing 6.2 Using #pragma pointers_in_A0 and #pragma pointers_in_D0

#pragma d0_pointers on // set for Toolbox calls
#include <Sound.h>
#pragma d0_pointers reset // set for my routines
#include "Myheader.h"

The pragmas pointers_in_A0 and pointers_in_D0 have much
the same meaning as d0_pointers and are available for back-
ground compatibility. The pragma pointers_in_A0 corresponds
to #pragma d0_pointers off and the pragma pointers_in_D0
corresponds to #pragma d0_pointers on . The pragma
d0_pointers is recommended for new code since it supports the
reset argument. For more information, see “pointers_in_A0,
pointers_in_D0” on page 159.

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–105

Pragmas and Symbols
Pragmas
This pragma does not correspond to any option in the 68K Processor
settings panel. To check whether this option is on, use the
__option (d0_pointers) , described in “Checking Options” on
page 202.

data_seg

Description Ignored, but included for compatibility with Microsoft compilers.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma data_seg(name)

Remarks Ignored. Included for compatibility with Microsoft. It designates the
segment into which initialized is placed. The name is a string speci-
fying the name of the data segment. For example, the pragma

data_seg(".data")

places all subsequent data into a segment named .data .

def_inherited

Description Controls the use of the inherited keyword.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma def_inherited on | off | reset

Remarks This option allows the use of the inherited keyword in C++ pro-
gramming. The default is off.

68K PowerPC NEC V800 Intel x86 MIPS

68K PowerPC NEC V800 Intel x86 MIPS
CCR–106 C Compilers Reference

Pragmas and Symbols
Pragmas
NOTE: The inherited keyword is not supported by the ANSI/
ISO C++ standard and is only implemented for single inheritance
with CodeWarrior C++.

 To check whether this option is on, use the __option
(def_inherited) , described in “Checking Options” on page 202.

defer_codegen

Description Controls the inlining of functions that haven’t been compiled yet.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma defer_codegen on | off | reset

Remarks This option allows inlining of inline and auto-inline functions that
are called before their definition:

#pragma defer_codegen on
#pragma auto_inline on

extern void f();
extern void g();

main()
{

f(); // will be inlined
g(); // will be inlined

}

inline void f() {}
void g() {}

NOTE: The compiler will need more memory when this option is
selected.

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–107

Pragmas and Symbols
Pragmas
 To check whether this option is on, use the __option
(defer_codegen) , described in “Checking Options” on page 202.

define_section

Description Arranges object code into sections.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma define_section sname istr [ustr] [addrmode]
[accmode]

Remarks This sophisticated and powerful pragma lets you arrange compiled
object code into predefined sections and sections you define.

The parameters are:

• sname—identifier by which this user-defined section is refer-
enced in the source.

For example:

#pragma section sname begin

or

 __declspec(sname)

• istr—section name string for initialized data assigned to
sname, such as.data (applies to uninitialized data if ustr is
omitted)

• ustr—elf section name for uninitialized data assigned to
sname

• addrmode—indicates how the section is addressed. It can be
one of the following

– standard —32-bit absolute address

– near_absolute —16-bit absolute address

– far_absolute —32-bit absolute address

– near_code —16-bit offset from TP

68K PowerPC NEC V800 Intel x86 MIPS
CCR–108 C Compilers Reference

Pragmas and Symbols
Pragmas
– far_code —32-bit offset from TP

– near_data —16-bit offset from GP

– far_data —32-bit offset from GP

• accmode—indicates the attributes of the section. It can be one
of the following:

– R—readable

– RW—readable and writable

– RX—readable and executable

– RWX—readable, writable, and executable

The default value for ustring is the same as istring . The default
value for addrmode is "standard ". The default value for accmode
is"RWX".

The compiler predefines the following common MIPS sections in
absolute addressing mode (Table 6.1).

Table 6.1 MIPS predefined sections

In addition, the following are reserved for the C++ implementation
(Table 6.2).

Table 6.2 MIPS predefined sections for C++

#pragma define_section text ".text" far_absolute RX

#pragma define_section data ".data" ".bss" far_absolute RW

#pragma define_section sdata ".sdata" ".sbss" near_data RW

#pragma define_section const ".rodata" far_absolute R

#pragma define_section exception ".exception" far_absolute R

#pragma define_section exceptlist ".exceptix" far_absolute R

#pragma define_section vtables ".vtables" far_absolute R
C Compilers Reference CCR–109

Pragmas and Symbols
Pragmas
The compiler predefines the following common MIPS sections in
PID addressing mode (Table 6.3).

Table 6.3 MIPS predefined sections in PID addressing mode

The compiler predefines the following common MIPS sections in
PIC addressing mode (Table 6.4).

Table 6.4 MIPS predefined sections in PIC addressing mode

The compiler predefines the following common V810/V830 sections
(Table 6.5).

#pragma define_section text ".text" far_absolute RX

#pragma define_section data ".data" ".bss" far_data RW

#pragma define_section sdata ".sdata" ".sbss" near_data RW

#pragma define_section const ".rodata" far_absolute R

#pragma define_section exception ".exception" far_ data R

#pragma define_section exceptlist ".exceptix" far_ data R

#pragma define_section vtables ".vtables" far_ data R

#pragma define_section text ".text" far_code RX

#pragma define_section data ".data" ".bss" far_absolute RW

#pragma define_section sdata ".sdata" ".sbss" near_data RW

#pragma define_section const ".rodata" far_code R

#pragma define_section exception ".exception" far_absolute R

#pragma define_section exceptlist ".exceptix" far_absolute R

#pragma define_section vtables ".vtables" far_absolute R
CCR–110 C Compilers Reference

Pragmas and Symbols
Pragmas
Table 6.5 Predefined sections for NEC V810 and V830 processors

In addition, the following are reserved for the C++ implementation
(Table 6.6):

Table 6.6 Predefined sections for NEC V810 and V830 processors (C++)

#pragma define_section text ".text" far_code RX

#pragma define_section data ".data" ".bss" far_data RW

#pragma define_section sdata ".sdata" ".sbss" near_data RW

#pragma define_section itext ".itext" far_absolute RX

#pragma define_section const ".const" far_absolute R

#pragma define_section sconst ".sconst" near_absolute R

#pragma define_section sedata ".sedata" ".sebss" near_absolute RW

#pragma define_section sidata ".sidata" near_absolute RW

#pragma define_section cdata1 ".cdata1" far_absolute RW

#pragma define_section cdata2 ".cdata2" far_absolute RW

#pragma define_section cdata3 ".cdata3" far_absolute RW

#pragma define_section udata1 ".udata1" far_absolute RW

#pragma define_section udata2 ".udata2" far_absolute RW

#pragma define_section udata3 ".udata3" far_absolute RW

#pragma define_section exception ".exception" far_data R

#pragma define_section exceptlist ".exceptlist" far_data R

#pragma define_section vtables ".vtables" far_data R

#pragma define_section string ".string" far_data RW

#pragma define_section cstring ".cstring" far_data R
C Compilers Reference CCR–111

Pragmas and Symbols
Pragmas
#pragma define_section can also be used to redefine the at-
tributes of these existing sections:

1. You can force all data to be addressed using 16-bit absolute
addresses using

#pragma define_section data ".data" near_absolute

2. You can force exception tables to be addressed using 32-bit
TP-relative using

#pragma define_section exceptlist ".exceptlist" far_code
#pragma define_section exception ".exception" far_code

If you're going to do this, it is best to put these #pragmas in a prefix
file or some other header that will be #included by all source files in
your program.

NOTE: Any section that is user-defined in the compiler must be
mapped to an appropriate segment in the ELF linker's Section
Mappings settings panel:

NEV V800 Sections defined near_absolute must be assigned to a
segment whose address is in the ranges 00000000:00007FFF and
FFFF8000:FFFFFFFF . Sections defined near_code or far_code
must be assigned to the same segment as .text . Sections defined
near_data or far_data 'must be assigned to the same segment as
.data

direct_destruction

This pragma is no long available.

direct_to_som

Description Controls the generation of SOM object code.

Compatibility This pragma is compatible with the following platform targets:
CCR–112 C Compilers Reference

Pragmas and Symbols
Pragmas
Prototype #pragma direct_to_som on | off | reset

Remarks This pragma is available for Mac OS using C++ only.

This pragma lets you create SOM code directly in the CodeWarrior
IDE. SOM is an integral part of OpenDoc. For more information, see
Targeting Mac OS.

Note that when you turn on this pragma, Metrowerks C/C++ auto-
matically turns on the Enums Always Int option in the C/C++ Lan-
guage Panel, described in “Enumerated Types” on page 33.

This pragma corresponds to the Direct to SOM menu in the C/C++
Language Panel. Selecting On from that menu is like setting this
pragma to on and setting the SOMCheckEnviornment pragma to
off . Selecting On with Environment Checks from that menu is like
setting both this pragma and SOMCheckEnviornment to on. Se-
lecting off from that menu is like setting both this pragma and
SOMCheckEnviornment to off. For more information on
SOMCheckEnviornment see “SOMCheckEnvironment” on page
177.

To check whether this option is on, use the __option
(direct_to_SOM) . See “Checking Options” on page 202. By de-
fault, this pragma is off.

disable_registers

Description Controls compatibility for the ANSI/ISO function setjmp() .

Compatibility This pragma is compatible with the following platform targets:

68K PowerPC NEC V800 Intel x86 MIPS

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–113

Pragmas and Symbols
Pragmas
Prototype #pragma disable_registers on | off | reset

Remarks If this option is on, the compiler turns off certain optimizations for
any function that calls setjmp() . It disables global optimization
and does not store local variables and arguments in registers. These
changes ensure that all local variables will have up-to-date values.

NOTE: This option disables register optimizations in functions
that use PowerPlant’s TRY and CATCH macros but not in functions
that use the ANSI-standard try and catch statements. The TRY
and CATCH macros use setjmp() , but the try and catch state-
ments are implemented at a lower level and do not use setjmp() .

For Mac OS, this pragma mimics a feature that’s available in THINK
C and Symantec C++. Use this pragma only if you’re porting code
that relies on this feature, since it drastically increases your code’s
size and decreases its speed. In new code, declare a variable to be
volatile if you expect its value to persist across setjmp() calls.

This pragma does not correspond to any option in the PowerPC or
NEC V800 settings panels. To check whether this option is on, use
the __option (disable_registers) , described in “Checking
Options” on page 202. By default, this option is off.

dollar_identifiers

Description Controls use of dollar signs ($) in identifiers.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma dollar_identifiers on | off | reset

Remarks When this pragma is on, the compiler accepts dollar signs ($) in
identifiers. When this option is off, the compiler issues an error if it
encounters anything but underscores, alphabetic, and numeric char-
acters in an identifier.

68K PowerPC NEC V800 Intel x86 MIPS
CCR–114 C Compilers Reference

Pragmas and Symbols
Pragmas
The default for this pragma is off.

This pragma does not correspond to any settings panel option. To
check whether this option is on, use the __option
(dollar_identifiers) , described in “Checking Options” on
page 202.

dont_inline

Description Controls the generation of inline functions.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma dont_inline on | off | reset

Remarks If the pragma dont_inline is on, the compiler doesn’t inline any
function calls, even functions declared with the inline keyword or
member functions defined within a class declaration. Also, it
doesn’t automatically inline functions, regardless of the setting of
the auto_inline pragma, described in “auto_inline” on page 98. If
this option is off, the compiler expands all inline function calls.

This pragma corresponds to the Don’t Inline option of the Inlining
menu the C/C++ Language Panel. To check whether this option is
on, use __option (dont_inline) , described in “Checking Op-
tions” on page 202.

dont_reuse_strings

Description Specifies if each string literal should be stored separately in the
string pool.

Compatibility This pragma is compatible with the following platform targets:

68K PowerPC NEC V800 Intel x86 MIPS

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–115

Pragmas and Symbols
Pragmas
Prototype #pragma dont_reuse_strings on | off | reset

Remarks If the pragma dont_reuse_strings is on, the compiler stores
each string literal separately. If this pragma is off, the compiler
stores only one copy of identical string literals. This pragma helps
you save memory if your program contains lots of identical string
literals which you do not modify.

For example, take this code segment:

char *str1="Hello";
char *str2="Hello"
*str2 = 'Y';

If this option is on, str1 is "Hello" and str2 is "Yello" . If this
option is off, both str1 and str2 are "Yello" .

This pragma corresponds to the Don’t Reuse Strings option in the
C/C++ Language Panel. To check whether this option is on, use
__option (dont_reuse_strings) , described in “Checking Op-
tions” on page 202.

ecplusplus

Description Controls the use of embedded C++ features.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma ecplusplus on | off | reset

Remarks If this option is on the C++ compiler disables the non-EC++ features
of ANSI C++ such as templates, multiple inheritance, and so on. See
“C++ and Embedded Systems” on page 79 for more information on
Embedded C++ support in CodeWarrrior C/C++.

This pragma doesn’t correspond to any settings panel option. To
check whether this option is on, use __option (ecplusplus) , de-

68K PowerPC NEC V800 Intel x86 MIPS
CCR–116 C Compilers Reference

Pragmas and Symbols
Pragmas
scribed in “Checking Options” on page 202. By default this pragma
is off.

EIPC_EIPSW

Description Controls the saving of processor information for interrupt functions.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma EIPC_EIPSW on|off|reset

Remarks If this option is in effect when compiling an interrupt function, the
compiler will also save or restore the EIPC and EIPSW. It is then safe
to enable additional interrupts by calling __EIEP() .

This pragma doesn’t correspond to any settings panel option. To
check whether this option is on, use __option
(dont_reuse_strings) , described in “Checking Options” on
page 202.

enumsalwaysint

Description Specifies the size of enumerated types.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma enumsalwaysint on | off | reset

Remarks When pragma enumsalwaysint is on, the C or C++ compiler
makes an enumerated types the same size as an int . If an enumer-
ated constant is larger than int , the compiler generates an error.
When the pragma is off, the compiler makes an enumerated type
the size of any integral type. It chooses the integral type with the
size that most closely matches the size of the largest enumerated

68K PowerPC NEC V800 Intel x86 MIPS

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–117

Pragmas and Symbols
Pragmas
constant. The type could be as small as a char or as large as a long
int .

For example:

enum SmallNumber { One = 1, Two = 2 };
 /* If enumsalwaysint is on, this type will
 be the same size as a char.
 If the pragma is off, this type will be
 the same size as an int. */

enum BigNumber
 { ThreeThousandMillion = 3000000000 };
 /* If enumsalwaysint is on, this type will
 be the same size as a long int.
 If this pragma is off, the compiler may
 generate an error. */

For more information on how the compiler handles enumerated
types, see “Enumerated Types” on page 33.

This pragma corresponds to the Enums Always Int option in the C/
C++ Language Panel. To check whether this option is on, use
__option (enumsalwaysint) , described in “Checking Options”
on page 202.

exceptions

Description Controls the availability of C++ exception handling.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma exceptions on | off | reset

Remarks If you turn on this pragma, you can use the try and catch state-
ments to perform exception handling. If your program doesn’t use

68K PowerPC NEC V800 Intel x86 MIPS
CCR–118 C Compilers Reference

Pragmas and Symbols
Pragmas
exception handling, turn this option off to make your program
smaller.

You can throw exceptions across any code that’s compiled by the
CodeWarrior 8 (or later) Metrowerks C/C++ compiler with the En-
able C++ Exceptions option turned on. You cannot throw excep-
tions across the following:

• Macintosh Toolbox function calls

• Libraries compiled with the Enable C++ Exceptions option
turned off

• Libraries compiled with versions of the Metrowerks C/C++
compiler earlier than CodeWarrior 8

• Libraries compiled with Metrowerks Pascal or other compil-
ers.

If you throw an exception across one of these, the code calls
terminate() and exits.

This pragma corresponds to the Enable C++ Exceptions option in
the C/C++ Language Panel. To check whether this option is on, use
__option (exceptions) , described in “Checking Options” on
page 202.

export

Description Controls items to export from a module.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma export on | off | reset | list names

Remarks This pragma applies to Mac OS programming only.

The pragma export gives you another way to export symbols be-
sides using a .exp file. To export symbols with this pragma, choose
Use #pragma from the Export Symbols menu in the PPC PEF or
CFM68K settings panel. Then turn on this pragma to export vari-

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–119

Pragmas and Symbols
Pragmas
ables and functions declared or defined in this file. If you choose
any other option from the Export Symbols menu, the compiler ig-
nores this pragma.

If you want to export all the functions and variables declared or de-
fined within a certain range, use #pragma export on at the begin-
ning of the range and use #pragma export off at the end of the
range. If you want to export all the functions and variables in a list,
use #pragma export list . If you want to export a single variable
or function, use __declspec(export) at the beginning of the dec-
laration

For example, this code fragment use #pragma export on and off
to export the variable w and the functions a1() and b1() :

#pragma export on
int a1(int x, double y);
double b1(int z);
int w;
#pragma export off

This code fragment use #pragma export list to export the
symbols:

int a1(int x, double y);
double b1(int z);
int w;
#pragma export list a1, b1, w

This code fragment uses __declspec(internal) to export the
symbols:

__declspec(export) int a1(int x, double y);
__declspec(export) double b1(int z);
__declspec(export) int w;

This pragma does not correspond to an option in any settings panel.
To check whether this option is on, use __option(export) , de-
scribed in “Checking Options” on page 202.
CCR–120 C Compilers Reference

Pragmas and Symbols
Pragmas
extended_errorcheck

Description Controls the issuing of warnings for possible unintended logical er-
rors.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma extended_errorcheck on | off | reset

Remarks If the pragma extended_errorcheck is on, the C compiler gener-
ates a warning (not an error) if it encounters one of the following:

• A non-void function that does not contain a return state-
ment. For example, this would generate a warning:

main() /* assumed to return int */
{
 printf ("hello world\n");
} /* WARNING: no return statement */

This would be OK:

void main()
{
 printf ("hello world\n");
}

• Assigning an integer or floating-point value to an enum type.
For example:

enum Day { Sunday, Monday, Tuesday,
 Wednesday, Thursday,
 Friday, Saturday } d;

d = 5; /* WARNING */
d = Monday; /* OK */
d = (Day)3; /* OK */

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–121

Pragmas and Symbols
Pragmas
NOTE: Both of these are always errors in C++.

The C/C++ compiler generates a warning if it encounters this:

• An empty return statement (return;) in a function that is
not declared void . For example, this code would generate a
warning:

int MyInit(void)
{
 int err = GetMyResources();
 if (err!=0) return; // WARNING: Empty return statement

 // . . .
}

This would be OK:

int MyInit(void)
{
 int err = GetMyResources();
 if (err!=0) return -1; // OK

 // . . .
}

This pragma corresponds to the Extended Error Checking option in
the C/C++ Warnings Panel. To check whether this option is on, use
__option (extended_errorcheck) , described in “Checking
Options” on page 202.

far_code, near_code, smart_code

Description Specify the kind of addressing to use for executable code.

Compatibility This pragma is compatible with the following platform targets:

68K PowerPC NEC V800 Intel x86 MIPS
CCR–122 C Compilers Reference

Pragmas and Symbols
Pragmas
Prototype #pragma far_code,
#pragma near_code,
#pragma smart_code

Remarks This pragma applies to Mac OS on 68K programming only.

These pragmas determine what kind of addressing the compiler
uses to refer to functions:

• #pragma far_code always generates 32-bit addressing,
even if 16-bit addressing can be used

• #pragma near_code always generates 16-bit addressing,
even if data or instructions are out of range.

• #pragma smart_code generates 16-bit addressing when-
ever possible and uses 32-bit addressing only when neces-
sary.

For more information on these code models, see the CodeWarrior
User’s Guide.

These pragmas correspond to the Code Model option in the 68K
Processor settings panel. The default is #pragma smart_code .

far_data

Description Controls the use of 32-bit addressing to refer to global data.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma far_data on | off | reset

Remarks If this pragma is on, you can have any amount of global data since
the compiler uses 32-bit addressing to refer to globals instead of 16-
bit addressing. Your program will also be slightly bigger and
slower. this pragma is off, your global data is stored as near data
and add to the 64K limit on near data.

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–123

Pragmas and Symbols
Pragmas
This pragma corresponds to the Far Data option in the 68K Proces-
sor settings panel. To check whether this option is on, use
__option (far_data) , described in “Checking Options” on page
202.

far_strings

Description Controls the use of 32-bit addressing to refer to string literals.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma far_strings on | off | reset

Remarks If this pragma is on, you can have any number of string literals since
the compiler uses 32-bit addressing to refer to string literals, instead
of 16-bit addressing. Your program will also be slightly bigger and
slower. If this pragma is off, your string literals are stored as near
data and add to the 64K limit on near data.

This pragma corresponds to the Far String Constants option in the
68K Processor settings panel. To check whether this option is on,
use __option (far_strings) , described in “Checking Options”
on page 202.

far_vtables

Description Controls the use of 32-bit addressing for C++ virtual function tables.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma far_vtables on | off | reset

Remarks This pragma applies to Mac OS on 68K programming only.

68K PowerPC NEC V800 Intel x86 MIPS

68K PowerPC NEC V800 Intel x86 MIPS
CCR–124 C Compilers Reference

Pragmas and Symbols
Pragmas
A class with virtual function members has to create a virtual func-
tion dispatch table in a data segment. If this pragma is on, that table
can be any size since a the compiler uses 32-bit addressing to refer to
the table, instead of 16-bit addressing. Your program will also be
slightly bigger and slower. If this pragma is off, the table is stored as
near data and adds to the 64K limit on near data.

This pragma corresponds to the Far Method Tables option in the
68K Processor settings panel. To check whether this option is on,
use __option (far_vtables) , described in “Checking Options”
on page 202.

faster_pch_gen

Description Controls the performance of precompiled header generation.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma faster_pch_gen on | off | reset

Remarks Turning this pragma on can make writing a precompiled header
much faster (depending on the header structure). Precompiled
header files that are generated with this option are slightly bigger.
The default is off.

This pragma does not correspond to any option in any settings
panel. To check whether this option is on, use the __option
(faster_pch_gen) , described in “Checking Options” on page
202.

float_constants

Description Controls how floating pointing constants are treated.

Compatibility This pragma is compatible with the following platform targets:

68K PowerPC NEC V800 Intel x86 MIPS

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–125

Pragmas and Symbols
Pragmas
Prototype #pragma float_constants on | off | reset

Remarks If this option is on, the compiler assumes that all unqualified float-
ing point constant values are of type float , not double .

This pragma is useful when working with source code compiled for
the AMD K6 processors.

This pragma does not correspond to any option in any settings
panel. To check whether this option is on, use the __option
(float_constants) , described in “Checking Options” on page
202.

For related information, see “The “D” Constant Suffix” on page 53.

force_active

Description Controls how “dead” functions are linked.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma force_active on | off | reset

Remarks This pragma applies to Mac OS on 68K programming only.

If this option is on, the linker will not strip the following functions
out of the finished application, even if the functions are never called
in the program.

In Macintosh code, this option is off by default.

This pragma does not correspond to any option in any settings
panel. To check whether this option is on, use the __option
(force_active) , described in “Checking Options” on page 202.

fourbyteints

Description Controls the size of the int data type.

68K PowerPC NEC V800 Intel x86 MIPS
CCR–126 C Compilers Reference

Pragmas and Symbols
Pragmas
Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma fourbyteints on | off | reset

Remarks When this option is on, the size of an int is 4 bytes. When this op-
tion is off, the size of an int is 2 byes.

This pragma corresponds to the 4-Byte Ints option in the 68K Pro-
cessor settings panel. To check whether this option is on, use
__option (fourbyteints) , described in “Checking Options” on
page 202.

NOTE: Whenever possible, set this option from the settings
panel and not from a pragma. If you must set it from a pragma,
place the pragma at the beginning of your program, before you in-
clude any files or declare any functions or variables.

fp_contract

Description Controls the use of special floating point instructions to improve
performance.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma fp_contract on | off | reset

Remarks This pragma applies to PowerPC programming only.

If this pragma is on, the compiler uses such PowerPC instructions as
FMADD, FMSUB, and FNMAD to speed up floating-point computations.
However, certain computations give unexpected results when this
pragma is on. For example:

68K PowerPC NEC V800 Intel x86 MIPS

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–127

Pragmas and Symbols
Pragmas
register double A, B, C, D, Y, Z;
register double T1, T2;

A = C = 2.0e23;
B = D = 3.0e23;

Y = (A * B) - (C * D);
printf("Y = %f\n", Y);
/* prints 2126770058756096187563369299968.000000 */

T1 = (A * B);
T2 = (C * D);
Z = T1 - T2;
printf("Z = %f\n", Z); /* prints 0.000000 */

When this option is off, Y and Z have the same value.

This pragma corresponds to the Use FMADD & FMSUB option in
the PPC Processor settings panel. To check whether this option is
on, use __option (fp_contract) , described in “Checking Op-
tions” on page 202.

fp_pilot_traps

Description Controls floating point code generation for Palm OS.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma fp_pilot_traps on | off | reset

Remarks This pragma controls floating point code generation. If on, the com-
piler makes references to Palm OS library routines to perform float-
ing point operations.

68K PowerPC NEC V800 Intel x86 MIPS
CCR–128 C Compilers Reference

Pragmas and Symbols
Pragmas
function

Description Ignored but included for compatibility with Microsoft compilers.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma function(funcname1, funcname2, ...)

Remarks Ignored. Included for compatibility with Microsoft.

global_optimizer, optimization_level

Description Controls optimization.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma global_optimizer on | off | reset

#pragma optimization_level 1 | 2 | 3 | 4 | 5

Remarks These pragmas control the global optimizer performs. To turn the
global optimizer on and off, use the pragma global_optimizer .
To choose which optimizations the global optimizer performs, use
the pragma optimization_level with an argument from 1 to 5.
The higher the argument, the more optimizations that the global op-
timizer performs. If the global optimizer is turned off, the compiler
ignores the pragma optimization_level .

For more information on the optimization the compiler performs for
each optimization level, refer to the Targeting manual for the plat-
form you’re developing for.

These pragmas correspond to the options in the Global Optimiza-
tions settings panel. To check whether the global optimizer is on,

68K PowerPC NEC V800 Intel x86 MIPS

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–129

Pragmas and Symbols
Pragmas
use __option (global_optimizer) , described in “Checking
Options” on page 202.

IEEEdoubles

Description Specifies the size of the double type.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma IEEEdoubles on | off | reset

Remarks This option, along with the 68881 Codegen option, specifies the
length of a double . The table below shows how these options work:

This pragma corresponds to the 8-Byte Doubles option in the 68K
Processor settings panel. To check whether this option is on, use
__option (IEEEdoubles) , described in “Checking Options” on
page 202.

NOTE: Whenever possible, set this option from the settings
panel and not from a pragma. If you must set it from a pragma,
place the pragma at the beginning of your program, before you in-
clude any files or declare any functions or variables.

68K PowerPC NEC V800 Intel x86 MIPS

If IEEEDoubles
is…

and code68881
is…

Then a double is this
size…

on on or off 64 bits

off off 80 bits

off on 96 bits
CCR–130 C Compilers Reference

Pragmas and Symbols
Pragmas
ignore_oldstyle

Description Controls the recognition of function declaration that follow the con-
vention before ANS/ISO C.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma ignore_oldstyle on | off | reset

Remarks If pragma ignore_oldstyle is on, the compiler ignores old-style
function declarations and lets you prototype a function any way
you want. In old-style declarations, you don’t specify the types of
the arguments in the argument list but on separate lines. It’s the
style of declaration used in the first edition of The C Programming
Language (Prentice Hall) by Kernighan and Ritchie.

For example, this code defines a prototype for a function with an
old-style declaration:

int f(char x, short y, float z);

#pragma ignore_oldstyle on

f(x, y, z)
char x;
short y;
float z;
{
 return (int)x+y+z;
}

#pragma ignore_oldstyle reset

This pragma does not correspond to an option in any settings panel.
By default this option is off. To check whether this option is on, use
__option (ignore_oldstyle) , described in “Checking Op-
tions” on page 202.

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–131

Pragmas and Symbols
Pragmas
import

Description Controls or specifies the availability of imported symbols.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma import on | off | reset | list names

Remarks This pragma applies to Mac OS CFM programming only.

This pragma lets you import variables and functions that are in
other fragments. Use this to import symbols that have been ex-
ported with the export pragma, an .exp file, or the Export Sym-
bols menu in the CFM68K and PPC PEF settings panel.

If you want to import all the functions and variables declared or de-
fine within a certain range, use #pragma import on at the begin-
ning of the range and use #pragma import off at the end of the
range. If you want to import all the functions and variables in a list,
use #pragma import list . If you want to import a single vari-
able or function, use __declspec(external) at the beginning of
the declaration

For example, this code fragment use #pragma import on and
off to import the variable w and the functions a1() and b1() :

#pragma import on
int a1(int x, double y);
double b1(int z);
int w;
#pragma import off

This code fragment use #pragma import list to import the
symbols:

int a1(int x, double y);
double b1(int z);

68K PowerPC NEC V800 Intel x86 MIPS
CCR–132 C Compilers Reference

Pragmas and Symbols
Pragmas
int w;
#pragma import list a1, b1, w

And this code fragment uses __declspec(import) to import the
symbols:

__declspec(import) int a1(int x, double y);
__declspec(import) double b1(int z);
__declspec(import) int w;

This pragma does not correspond to an option in any settings panel.
To check whether this option is on, use __option (import) , de-
scribed in “Checking Options” on page 202.

init_seg

Description Controls the order in which initialization code is executed.

Compatibility This pragma is compatible with the following platform targets:

Prototype pragma init_seg(compiler | lib | user | " name ")

Remarks This pragma controls the order in which initialization code is exe-
cuted.The initialization code for a C++ compiled module calls con-
structors for any statically declared objects. For C, no initialization
code is generated.

The order of initialization is

1.compiler

2.lib

3.user

If you specify the name of a segment, a pointer to the initialization
code is placed in the designated segment. In this case, the initializa-
tion code is not called automatically: it’s up to you to call it explic-
itly.

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–133

Pragmas and Symbols
Pragmas
inline_depth

Description Controls how deeply inline function calls are expanded.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma inline_depth(n)
#pragma inline_depth(smart)

Remarks Sets the number of passes used to expand inline function calls. The
number n is an integer from 0 to 1024 or the smart specifier.

The smart specifier is the default mode, with 4 passes where the
passes 2-4 are limited to small inline functions. All inlineable func-
tions are expanded if inline_depth is set to 1-1024.

The pragmas dont_inline and always_inline override this
pragma.

inline_intrinsics

Description Controls the inlining of intrinsic functions.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma inline_instrinsics on | off | reset

Remarks When this option is on, the compiler directly generates intrinsic
functions without generating a function call.

This pragma does not correspond to an option in any settings panel.
To check whether this option is on, use __option
(inline_intrinsics) , described in “Checking Options” on page
202.

68K PowerPC NEC V800 Intel x86 MIPS

68K PowerPC NEC V800 Intel x86 MIPS
CCR–134 C Compilers Reference

Pragmas and Symbols
Pragmas
internal

Description Controls the availability of symbols outside a module.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma internal on | off | reset | list names

Remarks This pragma applies to Mac OS CFM programming only.

This pragma lets you specify that certain variables and functions are
internal and not imported. The compiler generates smaller and
faster code when it calls an internal function, even if you declared it
as extern.

If you want to declare all the functions and variables declared or de-
fine within a certain range as internal, use #pragma internal on
at the beginning of the range and use #pragma internal off at
the end of the range. If you want to declare all the functions and
variables in a list as internal, use #pragma internal list . If you
want to declare a single variable or function as internal, use
__declspec(internal) at the beginning of the declaration.

For example, this code fragment use #pragma internal on and
off to declare the variable w and the functions a1() and b1() as in-
ternal:

#pragma internal on
int a1(int x, double y);
double b1(int z);
int w;
#pragma internal off

This code fragment uses #pragma internal list to declare the
symbols as internal:

int a1(int x, double y);
double b1(int z);

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–135

Pragmas and Symbols
Pragmas
int w;
#pragma internal list a1, b1, w

And this code fragment uses __declspec(internal) to declare
the symbols as internal:

__declspec(internal) int a1(int x, double y);
__declspec(internal) double b1(int z);
__declspec(internal) int w;

This pragma does not correspond to an option in any settings panel.
To check whether this option is on, use __option (internal) ,
described in “Checking Options” on page 202.

interrupt

Description Controls the compilation of object code for interrupt routines.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma interrupt on|off|reset

Remarks When this option is on, the compiler generates a special prologue
and epilogue for these functions: all modified registers (both non-
volatile and scratch registers) are saved or restored, and the func-
tion returns via RETI instead of JMP [LP] .

For convenience, the compiler will also mark any interrupt function
so that the linker does not dead-strip it.

k63d

Description Controls special code generation for AMD K6 3D extensions.

Compatibility This pragma is compatible with the following platform targets:

68K PowerPC NEC V800 Intel x86 MIPS
CCR–136 C Compilers Reference

Pragmas and Symbols
Pragmas
Prototype #pragma k63d on | off | reset

Remarks This pragma tells the x86 compiler to generate code for AMD K6 3D
extensions. This option causes the compiler to generate code that
will only run on processors that are equipped with the circuitry
needed to execute the specialized 3D instructions.

This pragma corresponds to the K6 3D Favored option in the Ex-
tended Instruction Set menu of the x86 CodeGen settings panel.

NOTE: This #pragma generates code that is not compatible with
the Intel Pentium class of microprocessors.

To learn more about this pragma, read the Targeting Win32 manual.

k63d_calls

Description Controls use of AMD K6 3D calling conventions.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma k63d_calls on | off | reset

Remarks This pragma tells the x86 compiler to generate code for AMD K6 3D
and Intel MMX extensions. This option causes the compiler to gen-
erate code that will only run on processors that are equipped with
the circuitry needed to execute these specialized instruction sets.
This pragma generates code that requires fewer register operations
at mode switching time.

This pragma corresponds to the MMX + K6 3D option in the Ex-
tended Instruction Set menu of the x86 CodeGen settings panel.

68K PowerPC NEC V800 Intel x86 MIPS

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–137

Pragmas and Symbols
Pragmas
To learn more about this pragma, read the Targeting Win32 manual.

lib_export

Description Controls the recognition of the export , import , and internal
pragmas.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma lib_export on | off | reset

Remarks This pragma applies to Mac OS CFM programming only.

If this pragma is off, the compiler ignores the pragmas export, im-
port, and internal. It is available for compatibility with previous ver-
sions of the compiler. It corresponds to the
__declspec(lib_export) type qualifier, described in “ANSI
Keywords Only” on page 41. To check whether this option is on, use
__option (lib_export) , described in “Checking Options” on
page 202.

This pragma does not correspond to an option in any settings panel.

longlong

Description Controls the availability of the long long type.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma longlong on | off | reset

Remarks When the longlong pragma is on, the C or C++ compiler lets you
define a 64-bit integer with the type specifier long long. This is
twice as large as a long int, which is a 32-bit integer. A long long
can hold values from -9 ,223 ,372 ,036 ,854 ,775 ,808 to

68K PowerPC NEC V800 Intel x86 MIPS

68K PowerPC NEC V800 Intel x86 MIPS
CCR–138 C Compilers Reference

Pragmas and Symbols
Pragmas
9,223 ,372 ,036 ,854 ,775 ,807 . An unsigned long long can hold
values from 0 to 18,446 ,744 ,073 ,709 ,551 ,615 .

This pragma does not correspond to an option in any settings panel.
To check whether this option is on, use __option (longlong) ,
described in “Checking Options” on page 202.

longlong_enums

Description Controls whether or not enumerated types are the size of the long
long type.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma longlong_enums on | off | reset

Remarks This pragma lets you use enumerators that large enough to be long
long integers. It’s ignored if the enumsalwaysint pragma is on
(described in “enumsalwaysint” on page 117).

For more information on how the compiler handles enumerated
types, see “Enumerated Types” on page 33.

This pragma does not correspond to an option in any settings panel.
To check whether this option is on, use __option
(longlong_enums) , described in “Checking Options” on page
202. By default, this option is on.

longlong_prepval

Description Controls whether or not the preprocessor treats expressions of type
long as long long instead.

Compatibility This pragma is compatible with the following platform targets:

68K PowerPC NEC V800 Intel x86 MIPS

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–139

Pragmas and Symbols
Pragmas
Prototype #pragma longlong_prepval on | off | reset

Remarks When this option is on, the C/C++ preprocessor treats expressions
of type long as type long long instead.

This pragma does not correspond to an option in any settings panel.
To check whether this option is on, use __option
(longlong_prepval) , described in “Checking Options” on page
202. By default, this option is on.

macsbug, oldstyle_symbols

Description Control the generation of debugger data for MacsBug.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma macsbug on | off | reset

#pragma oldstyle_symbols on | off | reset

Remarks This pragma applies to Mac OS on 68K programming only.

These pragmas let you choose how the compiler generates Macsbug
symbols. Many debuggers, including Metrowerks debugger, use
Macsbug symbols to display the names of functions and variables.
The pragma macsbug lets you turn on and off Macsbug generation.
The pragma oldstyle_symbols lets you choose which type of
symbols to generate. The table below shows how these pragmas
work:

68K PowerPC NEC V800 Intel x86 MIPS

To do this… Use these pragmas…

Do not generate Macsbug
symbols

#pragma macsbug on
CCR–140 C Compilers Reference

Pragmas and Symbols
Pragmas
These pragmas corresponds to MacsBug Symbols option in the 68K
Linker settings panel. To check whether the macsbug pragma op-
tion is on, use __option (macsbug) , described in “Checking Op-
tions” on page 202. To check whether the old style pragma is on, use
__option (oldstyle_symbols) described in “Checking Op-
tions” on page 202.

mark

Description Adds an item to the Function pop-up menu in the IDE’s editor win-
dow.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma mark itemName

Remarks This pragma adds itemName to the source file’s Function pop-up
menu. If you open the file in the CodeWarrior Editor and select the
item from the Function pop-up menu, the editor brings you to the
pragma. Note that if the pragma is inside a function definition, the
item will not appear in the Function pop-up menu.

If itemName begins with “--” a menu separator appears in the IDE’s
function pop-up menu:

#pragma mark --

This pragma does not correspond to an option in any settings panel.

Generate old style Macs-
bug symbols

#pragma macsbug on
#pragma oldstyle_symbols on

Generate new style Macs-
bug symbols

#pragma macsbug on
#pragma oldstyle_symbols off

To do this… Use these pragmas…

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–141

Pragmas and Symbols
Pragmas
message

Description Issues a text message to the user.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma message(" text")

Remarks This pragma tells the compiler to issue a message, text, to the user.
When running under the CodeWarrior IDE, the message appears in
the Errors & Warnings window.

microsoft_exceptions

Description Controls the use of Microsoft C++ exception handling.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma microsoft_exceptions on | off | reset

Remarks This pragma tells the x86 compiler to generate exception handling
code that is compatible with Microsoft C++ exception handling
code.

 To check whether this option is on, use __option
(microsoft_exceptions) , described in “Checking Options” on
page 202.

microsoft_RTTI

Description Controls the use of Microsoft C++ runtime type information.

Compatibility This pragma is compatible with the following platform targets:

68K PowerPC NEC V800 Intel x86 MIPS

68K PowerPC NEC V800 Intel x86 MIPS
CCR–142 C Compilers Reference

Pragmas and Symbols
Pragmas
Prototype #pragma microsoft_RTTI on | off | reset

Remarks This pragma tells the x86 compiler to generate runtime type infor-
mation that is compatible with Microsoft C++.

 To check whether this option is on, use __option
(microsoft_RTTI) , described in “Checking Options” on page
202.

mmx

Description Controls special code generation Intel MMX extensions.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma mmx on | off | reset

Remarks This pragma tells the x86 compiler to generate code for Intel MMX
extensions. This option causes the compiler to generate code that
will only run on processors that are equipped with the circuitry
needed to execute the more than 50 specialized MMX instructions.

This pragma corresponds to the MMX option in the Extended In-
struction Set menu of the x86 CodeGen settings panel. To check
whether this option is on, use __option (mmx) , described in
“Checking Options” on page 202.

To learn more about this pragma, read the Targeting Win32 manual.

mmx_call

Description Controls the use of MMX calling conventions.

Compatibility This pragma is compatible with the following platform targets:

68K PowerPC NEC V800 Intel x86 MIPS

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–143

Pragmas and Symbols
Pragmas
Prototype #pragma mmx_call on | off | reset

Remarks When this pragma is on, the compiler favors the use of MMX calling
conventions.

To check whether this option is on, use __option (mmx_call) ,
described in “Checking Options” on page 202.

To learn more about this pragma, read the Targeting Win32 manual.

mpwc

Description Controls the use Apple’s MPW C calling conventions.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma mpwc on | off | reset

Remarks This pragma applies to Mac OS on 68K processors only.

When the pragma mpwc is on, the compiler does the following to be
compatible with MPW C’s calling conventions:

• Passes any integral argument that is smaller than 2 bytes as a
sign-extended long integer . For example, the compiler
converts this declaration:

int MPWfunc (char a, short b, int c, long d, char *e);

• To this:

long MPWfunc(long a, long b, long c, long d, char *e);

68K PowerPC NEC V800 Intel x86 MIPS

68K PowerPC NEC V800 Intel x86 MIPS
CCR–144 C Compilers Reference

Pragmas and Symbols
Pragmas
• Passes any floating-point arguments as a long double . For
example, the compiler converts this declaration:

void MPWfunc(float a, double b, long double c);

• To this:

void MPWfunc(long double a, long double b, long double c);

• Returns any pointer value in D0 (even if the pragma
pointers_in_D0 is off).

• Returns any 1-byte, 2-byte, or 4-byte structure in D0.

• If the 68881 Codegen option is on, returns any floating-point
value in FP0.

This pragma corresponds to the MPW C Calling Convention op-
tion in the 68K Processor settings panel. To check whether this op-
tion is on, use __option (mpwc) , described in “Checking Options”
on page 202.

mpwc_newline

Description Controls the use new line character convention used by Apple’s
MPW C.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma mpwc_newline on | off | reset

Remarks If you turn on the pragma mpwc_newline , the compiler uses the
MPW conventions for the '\n' and '\r' characters. If this pragma
is off, the compiler uses the Metrowerks C and C++ conventions for
these characters.

In MPW, '\n' is a Carriage Return (0x0D) and '\r' is a Line Feed
(0x0A). In Metrowerks C and C++, they’re reversed: '\n' is a Line
Feed and '\r' is a Carriage Return.

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–145

Pragmas and Symbols
Pragmas
If you want to turn this pragma on, be sure you use the ANSI C and
C++ libraries that were compiled with this option on. The 68K ver-
sions of these libraries are marked with an NL; for example, MSL
C.68K (NL_2i).Lib . The PowerPC versions of these libraries are
marked with NL; for example, MSL C.PPC (NL).Lib .

If you turn this pragma on and use the standard ANSI C and C++ li-
braries, you won’t be able to read and write '\n' and '\r' prop-
erly. For example, printing '\n' brings you to the beginning of the
current line instead of inserting a new line.

This pragma corresponds to the Map Newlines to CR option in the
C/C++ Language Panel. To check whether this option is on, use
__option (mpwc_newline) , described in “Checking Options” on
page 202.

mpwc_relax

Description Controls the compatibility of the char* and unsigned char*
types.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma mpwc_relax on | off | reset

Remarks When you turn on this pragma, the compiler treats char* and un-
signed char* as the same type. This option is especially useful if
you’re using code written before the ANSI C standard. This old
source code frequently used these types interchangeably.

This option has no effect on C++ source code.

This pragma may be used to relax function pointer checking:

#pragma mpwc_relax on
extern void f(char *);

68K PowerPC NEC V800 Intel x86 MIPS
CCR–146 C Compilers Reference

Pragmas and Symbols
Pragmas
extern void(*fp1)(void *) = &f; // error but allowed
extern void(*fp2)(unsigned char *) = &f; // error but allowed

This pragma corresponds to the Relaxed Pointer Type Rules option
in the C/C++ Language Panel. To check whether this option is on,
__option (mpwc_relax) , described in “Checking Options” on
page 202.

no_register_coloring

Description Controls the use of a register to hold the values of more than one
variable.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma no_register_coloring on | off | reset

Remarks When the no_register_coloring pragma is off, the compiler
performs register coloring. In this optimization, the compiler lets
two or more variables share a register: it assigns different variables
or parameters to the same register if you do not use the variables at
the same time. In this example, the compilers could place i and j in
the same register:

short i;
int j;

for (i=0; i<100; i++) { MyFunc(i); }
for (j=0; j<1000; j++) { OurFunc(j); }

However, if a line like the one below appears anywhere in the func-
tion, the compiler would realize that you’re using i and j at the
same time and place them in different registers:

int k = i + j;

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–147

Pragmas and Symbols
Pragmas
If register coloring is on while you debug your project, it may ap-
pear as though there’s something wrong with the variables sharing
a register. In the example above, i and j would always have the
same value. When i changes, j changes in the same way. When j
changes, i changes in the same way. To avoid this confusion while
debugging, turn off register coloring or declare the variables you
want to watch as volatile.

The pragma corresponds to the Global Register Allocation option
in the 68K Processor settings panel. To check whether this option is
on, use __option (no_register_coloring) , described in
“Checking Options” on page 202. By default, this option is off.

NOTE: To turn off register coloring in code for a PowerPC Mac-
intosh, use the statement #pragma global_optimizer off .
For more information, see “global_optimizer, optimization_level”
on page 129.

See also “register_coloring” on page 165.

no_static_dtors

Description Controls the generation of static destructors in C++

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma no_static_dtors on | off | reset

Remarks When this option is on, the compiler does not generate object code
for any static or global object destructors, reducing the size of the
object code.

This pragma is useful for C++ programs that never exit.

The pragma doesn’t correspong to an option in any settings panel.
By default, this option is off. To check whether this option is on, use

68K PowerPC NEC V800 Intel x86 MIPS
CCR–148 C Compilers Reference

Pragmas and Symbols
Pragmas
__option (no_static_dtors) , described in “Checking Op-
tions” on page 202.

once

Description Specifies if a header file may be included more than once in the
same source file.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma once [on | off]

Remarks Use this pragma to ensure that the compiler includes header files
only once in a source file. This pragma is especially useful in pre-
compiled header files.

There are two versions of this pragma: #pragma once and
#pragma once on . Use #pragma once in a header file to ensure
that the header file is included only once in a source file. Use
#pragma once on in a header file or source file to insure that any
file is included only once in a source file.

This pragma does not correspond to an option in any settings panel.
By default this option is off.

only_std_keywords

Description Controls the use of ANSI/ISO keywords.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma only_std_keywords on | off | reset

Remarks The C/C++ compiler recognizes additional reserved keywords. If
you’re writing code that must follow the ANSI standard strictly,

68K PowerPC NEC V800 Intel x86 MIPS

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–149

Pragmas and Symbols
Pragmas
turn on the pragma only_std_keywords . For more information,
see “ANSI Keywords Only” on page 41.

This pragma corresponds to the ANSI Keywords Only option in
the C/C++ Language Panel. To check whether this option is on, use
__option (only_std_keywords) , described in “Checking Op-
tions” on page 202.

opt_common_subs

Description Controls the use of common subexpression optimization.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma opt_common_subs on | off | reset

Remarks When this option is on, the compiler replaces similar redundant ex-
pressions with a single expression. For example, if two statements in
a function both use the expression

a * b * c + 10

the compiler generates object code that computes the expression
only once and applies the resulting value to both statements.

The pragma doesn’t correspong to an option in any settings panel.
To check whether this option is on, use __option
(opt_common_subs) , described in “Checking Options” on page
202.

opt_dead_assignments

Description Controls the use of dead store optimization.

Compatibility This pragma is compatible with the following platform targets:

68K PowerPC NEC V800 Intel x86 MIPS

68K PowerPC NEC V800 Intel x86 MIPS
CCR–150 C Compilers Reference

Pragmas and Symbols
Pragmas
Prototype #pragma opt_dead_assignments on | off | reset

Remarks When this option is on, the compiler removes assignments to vari-
ables if the variables are not used before being reassigned.

The pragma doesn’t correspong to an option in any settings panel.
To check whether this option is on, use __option
(opt_dead_assignments) , described in “Checking Options” on
page 202.

opt_dead_code

Description Controls the use of dead code optimization.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma opt_dead_code on | off | reset

Remarks When this option is on, the compiler removes statements that, logi-
cally, will never be executed or is never referred to by other state-
ments.

The pragma doesn’t correspong to an option in any settings panel.
To check whether this option is on, use __option
(opt_dead_code) , described in “Checking Options” on page 202.

opt_lifetimes

Description Controls the use of lifetime analysis optimization.

Compatibility This pragma is compatible with the following platform targets:

68K PowerPC NEC V800 Intel x86 MIPS

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–151

Pragmas and Symbols
Pragmas
Prototype #pragma opt_lifetimes on | off | reset

Remarks When this option is on, the compiler uses the same processor regis-
ter for different variables in the same routine if the variables aren’t
used in the same statement.

The pragma doesn’t correspong to an option in any settings panel.
To check whether this option is on, use __option
(opt_lifetimes) , described in “Checking Options” on page 202.

opt_loop_invariants

Description Controls the use of loop invariant optimization.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma opt_loop_invariants on | off | reset

Remarks When this option is on, the compiler moves computations that don’t
change on the inside of a loop to the outside of a loop to improve the
loop’s speed.

The pragma doesn’t correspong to an option in any settings panel.
To check whether this option is on, use __option
(opt_loop_invariants) , described in “Checking Options” on
page 202.

opt_propagation

Description Controls the use of copy and constant propagation optimization.

Compatibility This pragma is compatible with the following platform targets:

68K PowerPC NEC V800 Intel x86 MIPS

68K PowerPC NEC V800 Intel x86 MIPS
CCR–152 C Compilers Reference

Pragmas and Symbols
Pragmas
Prototype #pragma opt_propagation on | off | reset

Remarks When this option is on, the compiler replaces multiple occurrences
of one variable with a single occurrence.

The pragma doesn’t correspong to an option in any settings panel.
To check whether this option is on, use __option
(opt_proagation) , described in “Checking Options” on page
202.

opt_strength_reduction

Description Controls the use of strength reduction optimization.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma opt_strength_reduction on | off | reset

Remarks When this option is on the compiler replaces multiplication instruc-
tions that are inside loops with addition instructions to speed up the
loops.

The pragma doesn’t correspong to an option in any settings panel.
To check whether this option is on, use __option
(opt_strength_reduction) , described in “Checking Options”
on page 202.

opt_unroll_loops

Description Controls the use of loop unrolling optimization.

Compatibility This pragma is compatible with the following platform targets:

68K PowerPC NEC V800 Intel x86 MIPS

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–153

Pragmas and Symbols
Pragmas
Prototype #pragma opt_unroll_loops on | off | reset

Remarks When this option is on the compiler places multiple copies of a
loop’s statements inside a loop to improve its speed.

The pragma doesn’t correspong to an option in any settings panel.
To check whether this option is on, use __option
(opt_unroll_loops) , described in “Checking Options” on page
202.

opt_vectorize_loops

Description Controls the use of loop vectorizing optimization.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma opt_vectorize_loops on | off | reset

Remarks When this option is on the compiler improves loop performance.

The pragma doesn’t correspong to an option in any settings panel.
To check whether this option is on, use __option
(opt_vectorize_loops) , described in “Checking Options” on
page 202.

optimization_level

See the pragma global_optimizer , described in
“global_optimizer, optimization_level” on page 129.

optimize_for_size

Description Controls optimization to reduce the size of object code.

Compatibility This pragma is compatible with the following platform targets:

68K PowerPC NEC V800 Intel x86 MIPS
CCR–154 C Compilers Reference

Pragmas and Symbols
Pragmas
Prototype #pragma optimize_for_size on | off | reset

Remarks This option lets you choose what the compiler does when it must
decide between creating small code or fast code. If this option is on,
the compiler creates smaller object code at the expense of speed. If
this option is off, the compiler creates faster object code at the ex-
pense of size.

Most significantly if this option is on, the compiler ignores the in-
line directive, and generates function calls to call any function de-
clared inline .

The pragma corresponds to the Optimize for Size option Global
Optimizations settings panel. To check whether this option is on,
use __option (optimize_for_size) , described in “Checking
Options” on page 202.

oldstyle_symbols

See “macsbug, oldstyle_symbols” on page 140 for information
about this pragma.

pack

Description Controls the alignment of data structures.

Compatibility This pragma is compatible with the following platform targets:

68K PowerPC NEC V800 Intel x86 MIPS

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–155

Pragmas and Symbols
Pragmas
Prototype #pragma pack([n | push, n | pop])

Remarks Sets the packing alignment for data structures. It affects all data
structures declared after this pragma until you change it again with
another pack pragma.

This pragma corresponds to the Byte Alignment option in the x86
CodeGen settings panel.

parameter

Description Specifies the use of registers to pass parameters.

This pragma… Does this…

#pragma pack(n) Sets the alignment modulus to n,
where n may be 1, 2, 4, 8 or 16. For
MIPS compilers, if n is 0, structure
alignment is reset to the default
setting.

#pragma pack(push, n) Pushes the current alignment mod-
ulus on a stack, then sets it to n,
where n may be 1, 2, 4, 8 or 16.
Use push and pop when you need
a specific modulus for some decla-
ration or set of declarations, but do
not want to disturb the default set-
ting. This form is not supported by
the MIPS compilers.

#pragma pack(pop) Pops a previously pushed align-
ment modulus from the stack. This
form is not supported by the MIPS
compilers.

#pragma pack() For x86 compilers, resets align-
ment modulus to the value speci-
fied in the x86 CodeGen settings
panel. For MIPS compilers, resets
structure alignment to the default
setting.
CCR–156 C Compilers Reference

Pragmas and Symbols
Pragmas
Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma parameter return-reg func-name(param-regs)

Remarks This pragma applies to 68K programming only.

The compiler passes the parameters for the function func-name in the
registers specified in param-regs instead of the stack, and returns any
return value in the register return-reg. Both return-reg and param-regs
are optional.

Here are some samples:

#pragma parameter __D0 Gestalt(__D0, __A1)
#pragma parameter __A0 GetZone
#pragma parameter HLock(__A0)

When you define the function, you need to specify the registers
right in the parameter list, as described in the appropriate Targeting
manual.

This pragma does not correspond to an option in any settings panel.

pcrelstrings

Description Controls the storage and reference of string literals from the pro-
gram counter.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma pcrelstrings on | off | reset

Remarks If this option is on, the compiler stores the string constants used in a
local scope in the code segment and addresses these strings with
PC-relative instructions. If this option is off, the compiler stores all

68K PowerPC NEC V800 Intel x86 MIPS

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–157

Pragmas and Symbols
Pragmas
string constants in the global data segment. Regardless of how this
option is set, the compiler stores string constants used in the global
scope in the global data segment. For example:

#pragma pcrelstrings on
int foo(char *);

int x = f("Hello"); // "Hello" is allocated in
 // the global data segment
int bar()
{
 return f("World"); //"World" is allocated in the code segment
} // (pc-relative)

Strings in C++ initialization code are always allocated in the global
data segment.

NOTE: If you turn the pool_strings pragma on, the compiler
ignores the setting of the pcrelstrings pragma.

This pragma corresponds to the PC-Relative Strings option in the
68K Processor settings panel. To check whether this option is on,
use __option (pcrelstrings) , described in “Checking Op-
tions” on page 202. By default, this option is off.

peephole

Description Controls the use peephole optimization.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma peephole on | off | reset

Remarks If this pragma is on, the compiler performs peephole optimizations,
which are small local optimizations that eliminate some compare in-
structions and improve branch sequences.

68K PowerPC NEC V800 Intel x86 MIPS
CCR–158 C Compilers Reference

Pragmas and Symbols
Pragmas
This pragma corresponds to the Peephole Optimizer option in the
PPC Processor settings panel. To check whether this option is on,
use __option (peephole) , described in “Checking Options” on
page 202.

pointers_in_A0, pointers_in_D0

Description Controls which calling convention to use.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma pointers_in_A0

#pragma pointers_in_D0

Remarks These pragmas are available for Mac OS on 68K processors only.

These pragmas let you choose between two calling conventions: the
convention for MPW and Macintosh Toolbox routines and the con-
vention for Metrowerks C and C++ routines. In the MPW and Mac-
intosh Toolbox calling convention, functions return pointers in the
register DO. In the Metrowerks C and C++ convention, functions re-
turn pointers in the register A0.

When you declare functions from the Macintosh Toolbox or a li-
brary compiled with MPW, use the pragma pointers_in_D0 .
After you declare those functions, use the pragma
pointers_in_A0 to start declaring or defining Metrowerks C and
C++ functions.

In Listing 6.3, the Toolbox functions in Sound.h return pointers in
D0 and the user-defined functions in Myheader.h use A0.

Listing 6.3 Using #pragma pointers_in_A0 and #pragma pointers_in_D0

#pragma pointers_in_D0 // set for Toolbox calls
#include <Sound.h>

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–159

Pragmas and Symbols
Pragmas
#pragma pointers_in_A0 // set for my own routines
#include "Myheader.h"

The pragmas pointers_in_A0 and pointers_in_D0 have much
the same meaning as d0_pointers and are available for back-
wards compatibility. The pragma pointers_in_A0 corresponds to
#pragma d0_pointers off and the pragma pointers_in_D0
corresponds to #pragma d0_pointers on . The pragma
d0_pointers is recommended for new code since it supports the
reset argument. For more information, see “d0_pointers” on page
104.

This pragma does not correspond to any option in the settings
panel. To check whether this option is on, use the __option
(d0_pointers) , described in “Checking Options” on page 202.

pool_data

Description Controls how data is stored.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma pool_data on | off | reset

Remarks This pragma is available for embedded PowerPC programming
only.

If this pragma is on, the compiler optimizes pooled data. The
pragma must be used before the function you want it apply to.

This pragma corresponds to the Pool Data option in the PPC Pro-
cessor settings panel. To check whether this option is on, use
__option (pool_data) , described in “Checking Options” on
page 202.

68K PowerPC NEC V800 Intel x86 MIPS
CCR–160 C Compilers Reference

Pragmas and Symbols
Pragmas
pool_strings

Description Controls how string literals are stored.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma pool_strings on | off | reset

Remarks If the pragma pool_strings in the C/C++ Language Panel is on,
the compiler collects all string constants into a single data object so
your program needs one TOC entry for all of them. If this pragma is
off, the compiler creates a unique data object and TOC entry for
each string constant. Turning this pragma on decreases the number
of TOC entries in your program but increases your program’s size,
since it uses a less efficient method to store the string’s address.

This pragma is especially useful if your program is large and has
many string constants or uses the Metrowerks Profiler.

NOTE: If you turn the pool_strings pragma on, the compiler
ignores the setting of the pcrelstrings pragma.

This pragma corresponds to the Pool Strings option in the C/C++
Language Panel. To check whether this option is on, use __option
(pool_strings) , described in “Checking Options” on page 202.

pop, push

Description Save and restore pragma settings.

Compatibility This pragma is compatible with the following platform targets:

68K PowerPC NEC V800 Intel x86 MIPS

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–161

Pragmas and Symbols
Pragmas
Prototype #pragma push
#pragma pop

Remarks The pragma push saves all the current pragma settings. The pragma
pop restores all the pragma settings to what they were at the last
push pragma. For example, see Listing 6.4.

Listing 6.4 push and pop example

#pragma far_data on
#pragma pointers_in_A0
#pragma push // push all compiler options
#pragma far_data off
#pragma pointers_in_D0
 // pop restores "far_data" and "pointers_in_A0"
#pragma pop

These pragmas are available so you can use MacApp with Metro-
werks C and C++. If you’re writing new code and need to set a
pragma option to its original value, use the reset argument, de-
scribed in “Pragma Syntax” on page 90.

precompile_target

Description Specifies the file name for a precompiled header file.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma precompile_target filename

Remarks NOTE: This pragma is not supported on Be OS.

This pragma specifies the filename for a precompiled header file. If
you don’t specify the filename, the compiler gives the precompiled
header file the same name as its source file.

68K PowerPC NEC V800 Intel x86 MIPS
CCR–162 C Compilers Reference

Pragmas and Symbols
Pragmas
Filename can be a simple filename or an absolute pathname. If file-
name is a simple filename, the compiler saves the file in the same
folder as the source file. If filename is a path name, the compiler
saves the file in the specified folder.

Listing 6.5 shows sample source code from the MacHeaders pre-
compiled header source file. By using the predefined symbols
__cplusplus and powerc and the pragma precompile_target ,
the compiler can use the same source code to create different pre-
compiled header files for C and C++, 680x0 and PowerPC.

Listing 6.5 Using #pragma precompile_target filename

#ifdef __cplusplus
 #ifdef powerc
 #pragma precompile_target "MacHeadersPPC++"
 #else
 #pragma precompile_target "MacHeaders68K++"
 #endif
#else
 #ifdef powerc
 #pragma precompile_target "MacHeadersPPC"
 #else
 #pragma precompile_target "MacHeaders68K"
 #endif
#endif

profile

Description Controls the generation of extra object code for use with the
CodeWarrior profiler.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma profile on | off | reset

Remarks This pragma applies to Mac OS programming only.

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–163

Pragmas and Symbols
Pragmas
If this pragma is on, the compiler generates code for each function
that lets the Metrowerks Profiler collect information on it. For more
information, see the Metrowerks Profiler Manual.

This pragma corresponds to the Generate Profiler Calls option in
the 68K Processor settings panel and the Emit Profiler Calls in the
PPC Processor settings panel. To check whether this option is on,
use __option (profile) described in “Checking Options” on
page 202.

readonly_strings

Description Controls how to store string literals.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma readonly_strings on | off | reset

Remarks This option determines where to stores string constants. If this op-
tion is off, the compiler stores string constants in the data section. If
this option is on, the compiler stores string constants in the code sec-
tion.

NOTE: Variables that are not initialized to the address of another
object at run time are always placed in the code section (class
RO). This includes C/C++ variables declared with the const stor-
age-class modifier.

This pragma corresponds to the Make Strings ReadOnly option in
the PPC Processor, MIPS, and V800 Processor panels. To check
whether this option is on, using #if __option
(readonly_strings) , see “Checking Options” on page 202.

68K PowerPC NEC V800 Intel x86 MIPS
CCR–164 C Compilers Reference

Pragmas and Symbols
Pragmas
register_coloring

Description Controls whether the use of register coloring.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma register_coloring on | off | reset

Remarks When this pragma is on, the compiler uses a single register to hold
the value of more than one variable if those variables are never used
in the same statement to improve a program’s performance.

TIP: Turn this option off when debugging a program.

This pragma corresponds to the Register Coloring option in the x86
Codegen panel. To check whether this option is on, use __option
(register_coloring) , described in “Checking Options” on page
202.

See also “no_register_coloring” on page 147.

require_prototypes

Description Controls whether or not the compiler should expect function proto-
types.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma require_prototypes on | off | reset

Remarks When the pragma require_prototypes is on, the compiler gener-
ates an error if you use a function that does not have a prototype.

68K PowerPC NEC V800 Intel x86 MIPS

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–165

Pragmas and Symbols
Pragmas
This pragma helps you prevent errors that happen when you use a
function before you define it.

This pragma corresponds to the Require Function Prototypes op-
tion in the C/C++ Language Panel. To check whether this option is
on, use __option (require_prototypes) , described in “Check-
ing Options” on page 202.

RTTI

Description Controls the availability of runtime type information.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma RTTI on | off | reset

Remarks When this pragma is on, you can use runtime type information (or
RTTI) features, such as dyanamic_cast and typeid . The other
RTTI expressions are available even if the Enable RTTI option is off.
Note that *type_info::before(const type_info&) is not
yet implemented.

This pragma corresponds to the Enable RTTI option in the C/C++
Language Panel. To check whether this option is on, use __option
(RTTI) , described in “Checking Options” on page 202.

scheduling

Description Specifies the use of instruction scheduling optimization.

Compatibility This pragma is compatible with the following platform targets:

68K PowerPC NEC V800 Intel x86 MIPS

68K PowerPC NEC V800 Intel x86 MIPS
CCR–166 C Compilers Reference

Pragmas and Symbols
Pragmas
Prototype #pragma scheduling 601 | 603 | 604 |

 on | off | reset

Remarks This pragma lets you choose how the compiler rearranges instruc-
tions to increase speed. Some instructions, such as a memory load,
take more than one processor cycle. By moving an unrelated in-
struction between the load and the instruction that uses the loaded
item, the compiler saves a cycle when executing the program.

For PowerPC, you can use 601 , 603 , or 604 . If you use on, the com-
piler performs 601 scheduling.

However, if you’re debugging your code, turn this pragma off.
Since it rearranges the instructions produced from your code, the
debugger will not be able to match the statements in your source
code to the produced instructions.

section

Description Controls the organization of object code.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma section [objecttype | permission] [iname]
[uname] [data_mode= datamode] [code_mode= codemode]

Remarks This pragma applies to PowerPC embedded programming only.

This sophisticated and powerful pragma lets you arrange compiled
object code into predefined sections and sections you define. This
topic is organized into these parts:

• Parameters

• Section access permissions

• Predefined sections and default sections

• Forms for #pragma section

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–167

Pragmas and Symbols
Pragmas
• Forcing individual objects into specific sections

• Using #pragma section with #pragma push and #pragma
pop

Parameters

The optional objecttype parameter specifies where types of object
data are stored. It may be one or more of the following values:

• code_type —executable object code

• data_type —non-constant data of a size greater than the
size specified in the small data threshold option in the Pow-
erPC EABI Project settings panel

• sdata_type —non-constant data of a size less than or equal
to the size specified in the small data threshold option in the
PowerPC EABI Project settings panel

• const_type —constant data of a size greater than the size
specified in the small const data threshold option in the Pow-
erPC EABI Project settings panel

• sconst_type —constant data of a size less than or equal to
the size specified in the small const data threshold option in
the PowerPC EABI Project settings panel

• all_types —all data

Specify one or more of these object types without quotes and sepa-
rated by spaces.

CodeWarrior C/C++ generates some of its own data, such as excep-
tion and static initializer objects, which are not affected by #pragma
section .

NOTE: CodeWarrior C/C++ uses the initial setting of the Make
Strings ReadOnly option in the PowerPC EABI Processor settings
panel to classify character strings. If Make Strings ReadOnly is on,
character strings are stored in the same section as data of type
const_type . If Make Strings ReadOnly is off, strings are stored in
the same section as data for data_type .
CCR–168 C Compilers Reference

Pragmas and Symbols
Pragmas
The optional permission parameter specifies access permission. It
may be one or more of these values:

• R—read only permission

• W—write permission

• X—execute permission

For information on access permission, see “Section access permis-
sions” on page 171. Specify one or more of these permissions in any
order, without quotes, and no spaces.

The optional iname parameter is a quoted name that specifies the
name of the section where the compiler stores initialized objects.
Variables that are initialized at the time they are defined, functions,
and character strings are examples of initialized objects. The iname
parameter may be of the form “.abs. xxxxxxxx ” where xxxxxxxx
is an 8-digit hexadecimal number specifying the address of the sec-
tion.

The optional uname parameter is a quoted name that specifies the
name of the section where the compiler stores uninitialized objects.
This parameter is required for sections that have data objects. The
uname parameter may be a unique name or it may be the name of
any previous iname or uname section. If the uname section is also an
iname section then uninitialized data will be stored in the same sec-
tion as initialized objects.

The special uname COMM specifies that uninitialized data will be
stored in the common section. The linker will put all common sec-
tion data into the “.bss ” section. When the Use Common Section
option is on in the PowerPC EABI Processor panel, COMM is the de-
fault uname for the “.data ” section. When the Use Common Sec-
tion option is off, COMM is the default uname for the “.bss ” section.

The uname parameter may be changed. For example, you may want
most uninitialized data to go into the “.bss ” section while specific
variables be stored in the COMM section. Listing 6.6 shows an exam-
ple of specifying that specific uninitialized variables be stored in the
COMM section.
C Compilers Reference CCR–169

Pragmas and Symbols
Pragmas
Listing 6.6 Storing uninitialized data in the COMM section

// the Use Common Section option is off
#pragma push // save the current state
#pragma section ".data" "COMM"
int foo;
int bar;
#pragma pop // restore the previous state

You may not use any of the object types, data modes, or code modes
as the names of sections. Also, you may not use pre-defined section
names in the PowerPC EABI for your own section names.

The optional data_mode= datamode parameter tells the compiler
what kind of addressing mode to use for referring to data objects for
a section.

The permissible addressing modes for datamode are:

• near_abs —objects must be within the first 16 bits of RAM

• far_abs —objects must be within the first 32 bits of RAM

• sda_rel —objects must be within a 32K range of the linker-
defined small data base address

The sda_rel addressing mode may only be used with the
“.sdata ”, “.sbss ”, “.sdata2 ”, “.sbss2 ”,
“.EMB.PPC.sdata0 ”, and “.EMB.PPC.sbss0 ” sections.

The default addressing mode for large data sections is far_abs .
The default addressing mode for the predefined small data sections
is sda_rel .

Specify one these addressing modes without quotes.

The optional code_mode= codemode parameter tells the compiler
what kind of addressing mode to use for referring to executable rou-
tines for a section.

The permissible addressing modes for codemode are:

• pc_rel —routines must be within 24 bits of where it is called
from
CCR–170 C Compilers Reference

Pragmas and Symbols
Pragmas
• near_abs —routines must be within the first 24 bits of RAM

The default addressing mode for executable code sections is
pc_rel .

Specify one these addressing modes without quotes.

NOTE: All sections have a data addressing mode
(data_mode= datamode) and a code addressing mode
(code_mode= codemode). Although the CodeWarrior C/C++ com-
piler for PowerPC embedded allows you to store executable code
in data sections and data in executable code sections, this prac-
tice isn’t encouraged.

Section access permissions

When you define a section using #pragma section , its default ac-
cess permission is read only. If you change the current section for a
particular object type, the compiler adjusts the access permission to
allow the storage of objects of that type while continuing to allow
objects of previously-allowed object types. Associating code_type
to a section adds execute permission to that section. Associating
data_type , sdata_type , or sconst_type to a section adds write
permission to that section.

Occasionally you might create a section without making it the cur-
rent section for an object type. You might do so to force an object
into a section with the __declspec keyword. In this case, the com-
piler will automatically update the access permission for that sec-
tion to allow the object to be stored in the section, then issue a warn-
ing. To avoid such a warning, make sure to give the section the
proper access permissions before storing object code or data into it.
As with associating an object type to a section, passing a specific
permission adds to the permissions that a section already has.

NOTE: Associating an object type with a section sets the appro-
priate acces permissions for you.
C Compilers Reference CCR–171

Pragmas and Symbols
Pragmas
Predefined sections and default sections

The predefined sections set with an object type become the default
section for that type. After assigning a non-standard section to an
object type, you may rever to the default section with one of the
forms in “Forms for #pragma section” on page 172.

The compiler predefines the sections in Listing 6.7.

Listing 6.7 Predefined sections

#pragma section code_type ".text" data_mode=far_abs \
 code_mode=pc_rel
#pragma section data_type ".data" ".bss" data_mode=far_abs \
 code_mode=pc_rel
#pragma section const_type ".rodata" ".rodata" data_mode=far_abs \
 code_mode=pc_rel
#pragma section sdata_type ".sdata" ".sbss" data_mode=sda_rel \
 code_mode=pc_rel
#pragma section sconst_type ".sdata2" ".sbss2" data_mode=sda_rel \
 code_mode=pc_rel
#pragma section ".EMB.PPC.sdata0" ".EMB.PPC.sbss0" \
 data_mode=sda_rel code_mode=pc_rel

NOTE: The “.EMB.PPC.sdata0 ” and “.EMB.PPC.sbss0 ” sec-
tions are predefined as an alternative to the sdata_type object
type.

Forms for #pragma section

This pragma has these principal forms:

#pragma section ". name1"

This form simply creates a section called “.name1” if it doesn’t al-
ready exist. With this form, the compiler doesn’t store objects in the
section without an appropriate, subsequent #pragma section
statement or an item defined with the __declspec keyword. If
only one section name is specified, it is considered the name of the
CCR–172 C Compilers Reference

Pragmas and Symbols
Pragmas
initialized object section, iname. If the section is already declared,
you may also optionally specify the uninitialized object section, un-
ame. If you know that the section is should have read and write per-
mission, use #pragma section RW ". name1" instead, especially
if you use the __declspec keyword.

#pragma section objecttype ". name2"

With the addition of one or more object types, the compiler stores
objects of the types specified in the section “.name2”. If “.name2”
doesn’t exist, the compiler creates it with the appropriate access per-
missions. If only one section name is specified, it is considered the
name of the initialized object section, iname. If the section is already
declared, you may also optionally specify the uninitialized object
section, unameThis feature is useful for temporarily circumventing
the small data threshold.

#pragma section objecttype

When there is no iname parameter, the compiler resets the section
for the object types specified to the default section. For information
on predefined sections, see “Predefined sections and default sec-
tions” on page 172. Resetting an object type’s section doesn’t reset
its addressing modes. You must do so explicitly.

When declaring or setting sections, you may also add a uninitialized
section to a section that didn’t have one originally by specifiying a
uname parameter. However, you may not change the uninitialized
section associated with an initialized section once an uninitialized
section has already been associated to it. Remember that an initial-
ized section’s corresponding uninitialized section may be the same.

Forcing individual objects into specific sections

You may store a specific object of an object type into a section other
than the current section for that type without changing the current
section. Use the __declspec keyword with the name of the target
section and put it next to the extern declaration or static definition of
the item you want to store in the section. Listing 6.8 shows exam-
ples.
C Compilers Reference CCR–173

Pragmas and Symbols
Pragmas
Listing 6.8 Using __declspec to force objects into specific sections

__declspec(".data") extern int myVar;
#pragma section "constants"
__declspec("constants") const int myvar = 0x12345678;

Using #pragma section with #pragma push and #pragma pop

This pragma may be used with #pragma push and #pragma pop
to ease complex or frequent changes to sections settings. See Listing
6.6 for an example. Note that #pragma pop doesn’t restore any
changes to the access permissions of sections that exists before or
after the corresponding #pragma push .

segment

Description Specifies the code segment where subsequent object code should be
stored.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma segment name

Remarks This pragma applies to Mac OS programming only.

This pragma places all the functions that follow into the code seg-
ment named name. For more on function-level segmentation, con-
sult the Targeting manual for the platform you’re developing for.

Generally, the PowerPC compilers ignore this directive since Pow-
erPC applications do not have code segments. However, if you
choose by #pragma segment from the Code Sorting pop-up menu
in the PPC PEF settings panel, the PowerPC compilers group func-
tions in the same segment together. For more information, consult
the Targeting manual for the platform you’re developing for.

This pragma does not correspond to an option in any settings panel.

68K PowerPC NEC V800 Intel x86 MIPS
CCR–174 C Compilers Reference

Pragmas and Symbols
Pragmas
side_effects

Description Controls the use of pointer aliases.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma side_effects on | off | reset

Remarks If your program does not use pointer aliases, turn off this pragma to
make your program smaller and faster. If your program does use
pointer aliases, turn on this pragma to avoid incorrect code. A
pointer alias looks like this:

int a, *p;
p = &a; // *p is an alias for a.

To understand why pointer aliases are so important, remember that
the compiler needs to load a variable into a register before perform-
ing arithmetic on it. So, in the example below, the compiler loads a
into a register before the first addition. If *p is an alias for a, the
compiler needs to load a into a register again before the second ad-
dition, since changing *p also changed a. If *p is not an alias for a,
the compiler doesn’t need to load a into a register again, since
changing *p does not change a.

x = a + 1;
*p = 0; // If *p is an alias for a,
y = a + 2; // this changes a.

NOTE: The PowerPC compilers ignore this pragma and always
assume that a program may contain pointer aliases.

This pragma does not correspond to an option in any settings panel.
To check whether this pragma is on, use __option

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–175

Pragmas and Symbols
Pragmas
(side_effects) , described in “Checking Options” on page 202.
By default, this pragma is on.

simple_prepdump

Description Controls the suppression of comments in preprocessor dumps.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma simple_prepdump on | off | reset

Remarks By default, the preprocessor adds comments about the current in-
clude file being processed in its output. These comments can be dis-
abled by turning this pragma on.

This pragma does not correspond to an option in any settings panel.
To check whether this option is on, use __option
(simple_prepdump) . See on “Checking Options” on page 202. By
default, this pragma is off.

SOMCallOptimization

Description Controls the error checking used for making calls to SOM objects.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma SOMCallOptimization on | off | reset

Remarks This pragma is only available for Mac OS using C++ code.

The PowerPC compiler uses an optimized error check that is smaller
but slightly slower.

This pragma is ignored if the direct_to_SOM pragma, described in
“direct_to_som” on page 112, is off.

68K PowerPC NEC V800 Intel x86 MIPS

68K PowerPC NEC V800 Intel x86 MIPS
CCR–176 C Compilers Reference

Pragmas and Symbols
Pragmas
This pragma does not correspond to an option in any settings panel.
To check whether this option is on, use __option (SOMCall-
Optimization) . See on “Checking Options” on page 202. By de-
fault, this pragma is off.

SOMCallStyle

Description Specifies the convention used to call SOM objects.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma SOMCallStyle OIDL | IDL

Remarks This pragma is only available for Mac OS using C++ code.

The SOMCallStyle pragma chooses between two SOM call styles:

• OIDL, an older style that does not support DSOM

• IDL, a newer style that does support SOM.

If a class uses the IDL style, its methods must have an Environment
pointer as the first parameter. Note that the SOMClass and SOMOb-
ject classes use OIDL, so if you override a method from one of them,
you should not include the Environment pointer.

This pragma is ignored if the direct_to_SOM pragma, described in
Targeting Mac OS, is off.

This pragma does not correspond to an option in any settings panel.
To check whether this option is on, use __option (SOMCheckEn-
vironment) . See “Checking Options” on page 202. By default, this
pragma is set to IDL .

SOMCheckEnvironment

Description Controls whether or not to perform SOM environment checking.

Compatibility This pragma is compatible with the following platform targets:

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–177

Pragmas and Symbols
Pragmas
Prototype #pragma SOMCheckEnvironment on | off | reset

Remarks This pragma is only available for Mac OS using C++ code.

When the pragma SOMCheckEnvironment is on, the compiler per-
forms automatic SOM environment checking. It transforms every
IDL method call and new allocation into an expression which also
calls an error-checking function. You must define separate error-
checking functions for method calls and allocations. For more infor-
mation on how to write these functions, see Targeting Mac OS.

For example, the compiler transforms this IDL method call:

SOMobj->func(&env, arg1, arg2) ;

into something that is equivalent to this:

(temp=SOMobj->func(&env, arg1, arg2),
 __som_check_ev(&env), temp) ;

First, the compiler calls the method and stores the result in a tempo-
rary variable. Then it checks the environment pointer. Finally, it re-
turns the method’s result.

And, the compiler transforms this new allocation:

new SOMclass;

into something that is equivalent to this:

(temp=new SOMclass, __som_check_new(temp),
 temp);

First, the compiler creates the object and stores it in a temporary
variable. Then it checks the object and returns it.

68K PowerPC NEC V800 Intel x86 MIPS
CCR–178 C Compilers Reference

Pragmas and Symbols
Pragmas
The PowerPC compiler uses an optimized error check that is smaller
but slightly slower than the one given above. To use the error check
show above in PowerPC code, use the pragma SOMCall-
Optimization , described in “SOMCallOptimization” on page 176.

This pragma is ignored if the direct_to_SOM pragma, described in
Targeting Mac OS is off.

This pragma corresponds to the Direct to SOM menu in the C/C++
Language Panel. Selecting On with Environment Checks from that
menu is like setting this pragma to on. Selecting anything else from
that menu is like setting this pragma to off . To check whether this
option is on, use __option (RTTI) , described in “Checking Op-
tions” on page 202. By default, this pragma is on.

SOMClassVersion

Description Specifies a SOM class’s version.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma SOMClassVersion(class, majorVer, minorVer)

Remarks This pragma is only available for Mac OS using C++ code.

SOM uses the class’s version number to make sure the class is com-
patible with other software you’re using. If you don’t declare the
version numbers, SOM assumes zeroes. The version numbers must
be positive or zero.

When you define the class, the program passes its version number
to the SOM kernel in the class’s metadata. When you instantiate an
object of the class, the program passes the version to the runtime
kernel, which checks to make sure the class is compatible with the
running software.

This pragma is ignored if the direct_to_SOM pragma, described in
Targeting Mac OS, is off.

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–179

Pragmas and Symbols
Pragmas
This pragma does not correspond to an option in any settings panel.

SOMMetaClass

Description Specifies a SOM class’s metaclass.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma SOMMetaClass (class, metaclass)

Remarks This pragma is only available for Mac OS using C++ code.

A metaclass is a special kind of SOM class that defines the imple-
mentation of other SOM classes. All SOM classes have a metaclass,
including metaclasses themselves. By default, the metaclass for a
SOM class is SOMClass. If you want to use another metaclass, use
the SOMMetaClass pragma:

The metaclass must be a descendant of SOMClass. Also, a class can-
not be its own metaclass. That is, class and metaclass must name dif-
ferent classes.

This pragma is ignored if the direct_to_SOM pragma, described in
Targeting Mac OS, is off.

This pragma does not correspond to an option in any settings panel.

SOMReleaseOrder

Description Specifies the order in which a SOM class’s member functions are re-
leased.

Compatibility This pragma is compatible with the following platform targets:

68K PowerPC NEC V800 Intel x86 MIPS

68K PowerPC NEC V800 Intel x86 MIPS
CCR–180 C Compilers Reference

Pragmas and Symbols
Pragmas
Prototype #pragma SOMRelaseOrder(func1, func2,... funcN)

Remarks This pragma is only available for Mac OS using C++ code.

A SOM class must specify the release order of its member functions.
As a convenience for when you’re first developing the class,
Metrowerks C++ lets you leave out the SOMReleaseOrder pragma
and assumes the release order is the same as the order in which the
functions appear in the class declaration. However, when you re-
lease a version of the class, use the pragma, since you’ll need to
modify its list in later versions of the class.

You must specify every SOM method that the class introduces. Do
not specify inline member functions that are virtual, since they’re
not considered to be SOM methods. Don’t specify overridden func-
tions.

If you remove a function from a later version of the class, leave its
name in the release order list. If you add a function, place it at the
end of the list. If you move a function up in the class hierarchy,
leave it in the original list and add it to the list for the new class.

This pragma is ignored if the direct_to_SOM pragma, described in
Targeting Mac OS, is off.

This pragma does not correspond to an option in any settings panel.

stack_cleanup

Description Controls when the compiler generates code to clean up the stack.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma stack_cleanup on | off | reset

Remarks Turning this option on will disable the deferred stack cleanup after
function calls, forcing the compiler to remove arguments from the
stack after every function call. Although this option slows down ex-

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–181

Pragmas and Symbols
Pragmas
ecution, it reduces stack usage, making it less likely the stack will in-
trude on other parts of the program.

This pragma does not correspond to an option in any settings panel.
To check whether this option is on, use __option
(stack_cleanup) , described in “Checking Options” on page 202.
By default, this pragma is off.

static_inlines

Description Controls how many instances of inline functions that the compiler
generates.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma static_inlines on | off | reset

Remarks The pragma static_inlines determines what the compiler does
if it cannot inline a call to a function declared inline and must cre-
ate a compiled version of the function. If the pragma is off, the com-
piler creates one compiled version for the whole project. If the
pragma is on, the compiler creates a different compiled version for
each file that needs a compiled version.

This pragma is available only so that the compiler can pass certain
validation suites. Generally, you’ll want to leave this pragma off to
make your code smaller without any loss of speed.

This pragma does not correspond to an option in any settings panel.
To check whether this option is on, use __option
(static_inlines) , described in “Checking Options” on page
202. By default, this pragma is off.

suppress_init_code

Description Controls the suppression of static initialization object code.

68K PowerPC NEC V800 Intel x86 MIPS
CCR–182 C Compilers Reference

Pragmas and Symbols
Pragmas
Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma suppress_init_code on | off | reset

Remarks When this pragma is on, the compiler doesn’t generate any code for
static data initialization such as C++ constructors. By default this
pragma is off.

WARNING! Using this pragma without being aware of its conse-
quences can produce erratic or unpredictable behavior in your
program.

sym

Description Controls the generation of debugger symbol information.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma sym on | off | reset

Remarks The compiler pays attention to this pragma only if you turn on the
debug marker for a file in the IDE’s project window. If this pragma
is off, the compiler does not put debugging information into this
source file’s debugger symbol file (SYM or DWARF) for the func-
tions that follow. If this pragma is on, the compiler does generate
debugging information.

Note that the compiler always generates a debugger symbol file for
a source file that has a debug diamond next to it in the project win-
dow. This pragma changes only which functions have information
in that symbol file.

68K PowerPC NEC V800 Intel x86 MIPS

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–183

Pragmas and Symbols
Pragmas
To check whether this option is on, use __option (sym) , de-
scribed in “Checking Options” on page 202. By default, this pragma
is on.

syspath_once

Description Controls how include files are treated.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma syspath_once on | off | reset

Remarks Files referred to in #include <> and #include "" directives are
treated as distinct files if this option is selected, even if they refer to
the same file.

toc_data

Description Controls how static variables are stored.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma toc_data on | off | reset

Remarks This pragma applies to Mac OS CFM programming only.

If the toc_data pragma is on, the compiler makes your code
smaller and faster by storing static variables that are 4 bytes or
smaller directly in the TOC, instead of allocating space for them
elsewhere and storing pointers to them in the TOC. Turn this
pragma off only if your code expects the TOC to contain pointers to
data.

This pragma corresponds to the Store Static Data in TOC option in
the PPC Processor settings panel. To check whether this option is

68K PowerPC NEC V800 Intel x86 MIPS

68K PowerPC NEC V800 Intel x86 MIPS
CCR–184 C Compilers Reference

Pragmas and Symbols
Pragmas
on, use __option (toc_data) , described in “Checking Options”
on page 202.

trigraphs

Description Controls the use ANSI/ISO trigraph sequences.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma trigraphs on | off | reset

Remarks If you’re writing code that must follow the ANSI standard strictly,
turn on the pragma trigraphs in the C/C++ Language Panel.
Many common Macintosh character constants look like trigraph se-
quences, and this pragma lets you use them without including es-
cape characters. Be careful when you initialize strings or multi-char-
acter constants that contain question marks. For example:

char c = '????'; // ERROR: Trigraph sequence expands to '??^
char d = '\?\?\?\?'; // OK

This pragma corresponds to the Expand Trigraphs option in the C/
C++ Language Panel. To check whether this option is on, use
__option (trigraphs) , described in “Checking Options” on
page 202.

traceback

Description Controls the generation of AIX-format traceback tables for debug-
ging.

Compatibility This pragma is compatible with the following platform targets:

68K PowerPC NEC V800 Intel x86 MIPS

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–185

Pragmas and Symbols
Pragmas
Prototype #pragma traceback on | off | reset

Remarks This pragma helps other people debug your application or shared
library if you do not distribute the source code. If this option is on,
the compiler generates an AIX-format traceback table for each func-
tion, which are placed in the executable code. Both the Metrowerks
and Apple debuggers can use traceback tables.

This pragma corresponds to the Emit Traceback Tables option in
the PPC Linker settings panel. To check whether this option is on,
use the __option (traceback) , described in “Checking Op-
tions” on page 202. By default, this option is off.

unsigned_char

Description Controls whether or not declarations of type char are treated as
unsigned char .

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma unsigned_char on | off | reset

Remarks When the unsigned_char pragma is on, the C/C++ compiler
treats a char declaration as if it were an unsigned char declara-
tion.

NOTE: If you turn this pragma on, your code may not be compat-
ible with libraries that were compiled with it turned off. In particular,
your code may not work with the ANSI libraries included with
CodeWarrior.

This pragma corresponds to the Use unsigned chars option in the
C/C++ Language Panel. To check whether this option is on, use
__option (unsigned_char) , described in “Checking Options”
on page 202. By default, this option is off.

68K PowerPC NEC V800 Intel x86 MIPS
CCR–186 C Compilers Reference

Pragmas and Symbols
Pragmas
unused

Description Controls the suppression of warnings for variables and parameters
that aren’t referenced in a function.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma unused (var_name [, var_name]...)

Remarks This pragma suppresses the compile time warnings for the unused
variables and parameters specified in its argument list. You can use
this pragma only within a function body, and the listed variables
must be within the function’s scope. You cannot use this pragma
with functions defined within a class definition or with template
functions. For example:

#pragma warn_unusedvar on
#pragma warn_unusedarg on

static void ff(int a)
{
 int b;
#pragma unused(a,b) // Compiler won't complain
 // that a and b are unused
 // . . .
}

This pragma does not correspond to an option in any settings panel.

use_fp_instructions

Description Controls the generation of NEC V800 floating point instructions.

Compatibility This pragma is compatible with the following platform targets:

68K PowerPC NEC V800 Intel x86 MIPS

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–187

Pragmas and Symbols
Pragmas
Prototype #pragma use_fp_instructions on|off|reset

Remarks This option corresponds to the option Use V810 Floating-Point In-
structions, which is part of the NEC V800 Processor panel. To check
whether this option is on, use __option
(use_fp_instructions) , described in “Checking Options” on
page 202.

use_frame

Description Controls the use of the BP register for stack frames.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma use_frame on|off|reset

Remarks When this option is on the compiler uses the BP register to point to
the start of the stack frame.

To check whether this option is on, use __option (use_frame) ,
described in “Checking Options” on page 202.

use_mask_registers

Description Controls the use of the NEC V800 r20 and r21 registers.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma use_mask_registers on|off|reset

Remarks This option corresponds to the option Use r20 and r21 as Mask Reg-
isters, which is part of the NEC V800 Processor panel. To check
whether this option is on, use __option

68K PowerPC NEC V800 Intel x86 MIPS

68K PowerPC NEC V800 Intel x86 MIPS
CCR–188 C Compilers Reference

Pragmas and Symbols
Pragmas
(use_mask_registers) , described in “Checking Options” on
page 202.

warn_emptydecl

Description Controls the recognition of declarations without variables.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma warn_emptydecl on | off | reset

Remarks If the pragma warn_emptydecl is on, the compiler displays a
warning when it encounters a declaration with no variables. For ex-
ample:

int ; // WARNING
int i; // OK

This pragma corresponds to the Empty Declarations option in the
C/C++ Warnings settings panel. To check whether this option is on,
use __option (warn_emptydecl) , described in “Checking Op-
tions” on page 202.

warning_errors

Description Controls whether warnings are treated as errors or not.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma warning_errors on | off | reset

Remarks When the pragma warning_errors is on, the compiler treats all
warnings as though they were errors. It will not compile a file until
all warnings are resolved.

68K PowerPC NEC V800 Intel x86 MIPS

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–189

Pragmas and Symbols
Pragmas
This pragma corresponds to the Treat All Warnings as Errors option
in the C/C++ Warnings settings panel. To check whether this op-
tion is on, use __option (warning_errors) , described in
“Checking Options” on page 202.

warn_extracomma

Description Controls the recognition of superfluous commas.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma warn_extracomma on | off | reset

Remarks If the pragma warn_extracomma is on, the compiler generates a
warning when it encounters an extra comma. For example, this
statement is legal in C, but it causes a warning when this pragma is
on:

int a[] = { 1, 2, 3, 4, }; // ^ WARNING: Extra comma after 4

This pragma corresponds to the Treat All Warnings as Errors option
in the C/C++ Warnings settings panel. To check whether this op-
tion is on, use __option (warn_extracomma) , described in
“Checking Options” on page 202.

warn_hidevirtual

Description Controls the recognition of a non-virtual member function that
hides a virtual function in a superclass.

Compatibility This pragma is compatible with the following platform targets:

68K PowerPC NEC V800 Intel x86 MIPS

68K PowerPC NEC V800 Intel x86 MIPS
CCR–190 C Compilers Reference

Pragmas and Symbols
Pragmas
Prototype #pragma warn_hidevirtual on|off|reset

Remarks If the pragma warn_hidevirtual is on, the compiler generates a
warning if you declare a non-virtual member function that hides a
virtual function in a superclass. One function hides another if it has
the same name but a different argument types. For example:

class A {
 public:
 virtual void f(int);
 virtual void g(int);
};

class B: public A {
 public:
 void f(char); // WARNING: Hides A::f(int)
 virtual void g(int); // OK: Overrides A::g(int)
};

This pragma corresponds to the Hidden virtual functions option in
the C/C++ Warnings settings panel. To check whether this option is
on, use __option (warn_hidevirtual) . See “Checking Op-
tions” on page 202. By default, this option is off.

warn_illpragma

Description Controls the recognition of illegal pragma directives.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma warn_illpragma on | off | reset

Remarks If the pragma warn_illpragma is on, the compiler displays a
warning when it encounters an illegal pragma. For example, these
pragma statements generate warnings:

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–191

Pragmas and Symbols
Pragmas
#pragma near_data off // WARNING: near_data is not a pragma.
#pragma far_data select // WARNING: select is not defined
#pragma far_data on // OK

This pragma corresponds to the Illegal Pragmas option in the C/
C++ Warnings settings panel. To check whether this option is on,
use __option (warn_illpragma) , described in “Checking Op-
tions” on page 202.

warn_implicitconv

Description Controls the issuing of warnings for implicit arithmetic conversions.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma warn_implicitconv on | off | reset

Remarks The compiler will print a warning for implicit arithmetic conver-
sions when the source value may not be representable by the desti-
nation type. See Listing 6.9 for an example.

Listing 6.9 Example of implicit arithmetic conversion

#pragma warn_implicitconv on

char foo(int a)
{
 return a+1; // Warning : implicit arithmetic conversion ...
 // ... from 'int' to 'char'
}

This pragma corresponds to the Implicit Artithmetic Conversion
option in the C/C++ Warnings settings panel. To check whether
this option is on, use __option (warn_implicitconv) , de-
scribed in “Checking Options” on page 202.

68K PowerPC NEC V800 Intel x86 MIPS
CCR–192 C Compilers Reference

Pragmas and Symbols
Pragmas
warn_notinlined

Description Controls the issuing of warnings for functions the compiler isn’t
able to inline.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma warn_notinlined on | off | reset

Remarks The compiler will issue a warning if it is not able to inline a function.
This pragma corresponds to the Non-Inlined Functions option in
the C/C++ Warnings settings panel. To check whether this option is
on, use __option (warn_notinlined) , described in “Checking
Options” on page 202.

warn_padding

Description Controls the notification of the padding of data structures.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma warn_padding on | off | reset

Remarks If the pragma warn_padding is on, the compiler warns about any
bytes it adds to data structures to improve their alignment in mem-
ory. Refer to the appropriate Targeting manual for more information
on how CodeWarrior C++ pads data structures for a particular pro-
cessor or operating system.

 To check whether this option is on, use __option
(warn_padding) . By default, this option is off. See “Checking Op-
tions” on page 202. By default, this option is off.

68K PowerPC NEC V800 Intel x86 MIPS

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–193

Pragmas and Symbols
Pragmas
warn_possunwant

Description Controls the recognition of possible unintentional logical errors.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma warn_possunwant on | off | reset

Remarks If the pragma warn_possunwant is on, the compiler checks for
some common typographical mistakes that are legal C and C++ but
that may have unwanted side effects, such as putting in unintended
semicolons or confusing = and ==. The compiler generates a warn-
ing if it encounters one of these:

• An assignment in a logical expression or the condition in an
if , while , or for expression. This check is useful if you fre-
quently use = when you meant to use ==. For example:

if (a=b) f(); // WARNING: a=b is an assignment

if ((a=b)!=0) f(); // OK: (a=b)!=0 is a comparison

if (a==b) f(); // OK: (a==b) is a comparison

• An equal comparison in a statement that contains a single ex-
pression. This check is useful if you frequently use == when
you meant to use =. For example:

a == 0; // WARNING: This is a comparison.
a = 0; // OK: This is an assignment

• A semicolon (;) directly after a while , if , or for statement.
For example, the statement generates an error and is proba-
bly an unintended infinite loop:

68K PowerPC NEC V800 Intel x86 MIPS
CCR–194 C Compilers Reference

Pragmas and Symbols
Pragmas
while (i++); // WARNING: Unintended infinite loop

If you intended to create an infinite loop, put white space or a com-
ment between the while statement and the semicolon, and earn the
admiration of all the folks who use your code. For example, these
statements do not generate errors:

while (i++) ; // OK: White space separation
while (i++) /* OK: Comment separation */ ;

This pragma corresponds to the Possible Errors option in the C/
C++ Warnings settings panel. To check whether this option is on,
use __option (warn_possunwant) , described in “Checking Op-
tions” on page 202.

warn_structclass

Description Controls the issuing of warnings for possibly unintended mixing of
class and struct keywords.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma warn_structclass on | off | reset

Remarks If the warn_structclass pragma is on, the compiler issues a warning
if the class and struct keywords are used in the definition and
declaration of the same identifier.

class X;
struct X { int a; }; // warning

This pragma corresponds to the Inconsistent use of ‘class’ and
‘struct’ Keywords option in the C/C++ Warnings settings panel. To
check whether this option is on, use __option

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–195

Pragmas and Symbols
Pragmas
(warn_structclass) , described in “Checking Options” on page
202.

warn_unusedarg

Description Controls the recognition of unreferenced arguments.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma warn_unusedarg on | off | reset

Remarks If the pragma warn_unusedarg is on, the compiler generates a
warning when it encounters an argument you declare but do not
use. This check helps you find misspelled argument names and ar-
guments you have written out of your program.

void foo(int temp, int errer)
{
 error = do_something(); // ERROR: Error is undefined
} // WARNING: temp and error are unused.

This pragma corresponds to the Unused Arguments option in the
C/C++ Warnings settings panel. To check whether this option is on,
use __option (warn_unusedarg) , described in “Checking Op-
tions” on page 202.

warn_unusedvar

Description Controls the recognition of unreferenced variables.

Compatibility This pragma is compatible with the following platform targets:

68K PowerPC NEC V800 Intel x86 MIPS

68K PowerPC NEC V800 Intel x86 MIPS
CCR–196 C Compilers Reference

Pragmas and Symbols
Pragmas
Prototype #pragma warn_unusedvar on | off | reset

Remarks If the pragma warn_unusedvar is on, the compiler generates a
warning when it encounters a variable you declare but do not use.
This check helps you find misspelled variable names and variables
you have written out of your program. For example:

void foo(void)
{
 int temp, errer;
 error = do_something(); // ERROR: error is undefined
} // WARNING: temp and error are unused.

This pragma corresponds to the Unused Variables option in the C/
C++ Warnings settings panel. To check whether this option is on,
use __option (warn_unusedvar) , described in “Checking Op-
tions” on page 202.

warning

Description Available for compatibility only.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma warning(warning_specifier : warning_number_list)

Remarks This pragma applies to x86 programming only.

Ignored. Included for compatibility with Microsoft. The
warning_number_list is a list of warning numbers separated by
spaces, and warning_specifier is one of the following:

• once

• default

• 1

• 2

• 3

68K PowerPC NEC V800 Intel x86 MIPS
C Compilers Reference CCR–197

Pragmas and Symbols
Predefined Symbols
• 4

• disable

• error

wchar_type

Description Controls the size and format of the wchar_t type.

Compatibility This pragma is compatible with the following platform targets:

Prototype #pragma wchar_type on | off | reset

Remarks If the pragma wchar_type is on, wchar_t is treated as a built-in
type, implemented as an unsigned 16-bit integral type. If the
pragma is off, wchar_t and characters in string literals are treated
as unsigned short .

This pragma corresponds to the Enable wchar_t Support option in
the C/C++ Language settings panel. To check this option, use
__option (wchar_type) , described in “Checking Options” on
page 202.

Predefined Symbols
Metrowerks C and C++ define several preprocessor symbols that
give you information about the compile-time environment. Note
that these symbols are evaluated at compile time and not at run
time. The topics in this section are:

• ANSI Predefined Symbols

• Metrowerks Predefined Symbols

ANSI Predefined Symbols

The table below lists the symbols that the ANSI C standard requires.

68K PowerPC NEC V800 Intel x86 MIPS
CCR–198 C Compilers Reference

Pragmas and Symbols
Predefined Symbols
Table 6.7 ANSI predefined symbols

Listing 6.10 shows a small program that uses the ANSI predefined
symbols.

Listing 6.10 Using ANSI’s Predefined Symbols

#include <stdio.h>

void main(void)
{
 printf("Hello World!\n");

 printf("%s, %s\n", __DATE__, __TIME__);
 printf("%s, line: %d\n", __FILE__, __LINE__);
}

The program prints something like the following:

This macro… is…

__DATE__ The date at which the file is compiled; for ex-
ample, "Jul 14, 1995" .

__FILE__ The name of the file being compiled; for exam-
ple "prog.c" .

__LINE__ The line number of the line being compiled.
This is the number before including any
header files.

__TIME__ The time at which the file is compiled in 24-
hour format; for example, "13:01:45" .

__STDC__ Defined as 1 if compiling C source code. This
macro lets you know that Metrowerks C im-
plements the ANSI C standard. This macro is
undefined when compiling C++ source code.
C Compilers Reference CCR–199

Pragmas and Symbols
Predefined Symbols
Hello World!
Oct 31 1995, 18:23:50
main.ANSI.c, line: 10

Metrowerks Predefined Symbols

The table below lists additional symbols that Metrowerks C and
C++ provides.

Table 6.8 Predefined symbols for Metrowerks

This macro… is…

__A5__ defined as 1 if data is A5-relative, 0 if
data is A4 relative. This symbol is defined
for 68K compilers. It is undefined for
other target platforms.

__cplusplus defined if you’re compiling this file as a
C++ file, undefined if you’re compiling
this file as a C file.

__embedded_cplus
plus

defined as 1 if Embedded C++ is acti-
vated. This symbol is undefined if Em-
bedded C++ is not activated. See

__fourbyteints__ defined as 1, if you turn on the 4-byte
Ints option in the 68K Processor settings
panel. 0, if you turn off that option. This
symbol is defined for 68K compilers. It is
undefined for other platforms.

__IEEEdoubles__ defined as 1 if you turn on the 8-Byte
Doubles option in the 68K Processor set-
tings panel. 0, if you turn off that option.
This symbol is defined for 68K compilers.
It is undefined for all other target plat-
forms.
CCR–200 C Compilers Reference

Pragmas and Symbols
Predefined Symbols
__INTEL__ defined as 1 if you’re compiling this code
with the x86 compiler and undefined for
all other target platforms.

__MC68K__ defined as 1 if you’re compiling this code
with the 68K compiler and undefined for
all other target platforms.

__MC68020__ defined as 1 if you turn on the 68020 Co-
degen option in the Processor settings
panel, 0 if you turn that option off. This
symbol is defined for 68K compilers. It is
undefined for all other target platforms.

__MC68881__ defined as 1 if you turn on the 68881 Co-
degen option in the 68K Processor set-
tings panel, 0 if you turn that option off.
This symbol is defined for 68K compilers
and undefined for all other target plat-
forms.

__MIPS__ defined as 1 for MIPS compilers and un-
defined for other target platforms.

__MIPS_ISA2__ defined as 1 if the compiler’s target plat-
form is MIPS and you select the ISA II
checkbox in the MIPS Processor settings
panel. Undefined if you deselect the
checkbox. It is always undefined for other
target platforms.

__MIPS_ISA3__ defined as 1 if the compiler’s target plat-
form is MIPS and you select the ISA III
checkbox in the MIPS Processor settings
panel. Undefined if you deselect the
checkbox. It is always undefined for other
target platforms.

This macro… is…
C Compilers Reference CCR–201

Pragmas and Symbols
Checking Options
Checking Options
The preprocessor function __option() lets you test the setting of
many pragmas and options that control the C/C++ compiler and
code generation. You typically modify these settings using various
panels in the Project Settings dialog box.

The syntax for this preprocessor function is:

__option(option-name)

__MIPS_ISA4__ defined as 1 if the compiler’s target plat-
form is MIPS and you select the ISA IV
checkbox in the MIPS Processor settings
panel. Undefined if you deselect the
checkbox. It is always undefined for other
target platforms

__MWBROWSER__ defined as 1 if the CodeWarrior browser
is parsing your code. 0, otherwise.

__MWERKS__ defined as the version number of the
Metrowerks C/C++ compiler, if you’re
using CodeWarrior CW7 or later. For ex-
ample, in Metrowerks C/C++ version 2.2
__MWERKS__ would be 0x2200 . This
macro is defined as 1 if the compiler was
issued before CodeWarrior CW7.

__profile__ 1 , if you turn on the Generate Profiler
Calls option in the Processor settings
panel. 0, if you turn that option off.

__powerc,
powerc,
__POWERPC__

1, if you’re compiling this code with the
PowerPC compiler. 0, otherwise.

macintosh 1 if you’re compiling this code with the
68K or PowerPC Macintosh compiler. 0
otherwise.

This macro… is…
CCR–202 C Compilers Reference

Pragmas and Symbols
Checking Options
If the specified option is on, __option () returns 1; otherwise, it
returns 0.

This function is useful when you want one source file to contain
code that uses different option settings. The example below shows
how to compile one series of lines if you’re compiling for machines
with the MC68881 floating-point unit and another series if you’re
compiling for machines without out:

#if __option (code68881) // Code for 68K chip with FPU
#else
 // Code for any 68K processor
#endif

The table below lists all the option names you can use in the prepro-
cessor function __option() .

This argument... Corresponds to the…

a6frames Generate A6 Stack Frames option in the 68K Linker
settings panel and pragma a6frames .

align_array_members Pragma align_array_members .

always_inline Pragma always_inline .

ANSI_strict ANSI Strict option in the C/C++ Language Panel
and pragma ANSI_strict .

arg_dep_lookup Pragma arg_dep_lookup .

ARM_conform ARM Conformance option in the C/C++ Language
Panel and pragma ARM_conform .

auto_inline Auto-Inline option of the Inlining menu in the C/
C++ Language Panel and pragma auto_inline .

bool Enable C++ bool/true/false option in the C/C++ Lan-
guage Panel and pragma bool .

check_header_flags Pragma check_header_flags .

code68020 68020 Codegen option in the 68K Processor settings
panel and pragma code68020 .
C Compilers Reference CCR–203

Pragmas and Symbols
Checking Options
code68881 68881 Codegen option in the 68K Processor settings
panel and pragma code68881 .

cplusplus Whether the compiler is compiling this file as a C++
file. Related to the Activate C++ Compiler option in
the C/C++ Language Panel, the pragma cplusplus ,
and the macro cplusplus

cpp_extensions Pragma cpp_extensions

d0_pointers Pragmas pointers_in_D0 and pointers_in_A0 .

def_inherited Pragma def_inherited .

defer_codegen Pragma defer_codegen .

direct_destruction Enable Exception Handling option in the C/C++
Language Panel and pragma
direct_destruction.

direct_to_SOM Direct to SOM menu in the C/C++ Language Panel
and pragma direct_to_SOM

disable_registers Pragma disable_registers .

dollar_identifiers Pragma dollar_identifiers .

dont_inline Don’t Inline option in the C/C++ Language Panel
and pragma dont_inline .

dont_reuse_strings Don’t Reuse Strings option in the C/C++ Language
Panel and pragma dont_reuse_strings.

ecplusplus Pragma ecplusplus

EIPC_EIPSW Pragma EIPC_EIPSW

enumsalwaysint Enums Always Int option in the C/C++ Language
Panel and pragma enumsalwaysint

exceptions Enable C++ Exceptions option in the C/C++ Lan-
guage Panel and pragma exceptions

export Pragma export .

This argument... Corresponds to the…
CCR–204 C Compilers Reference

Pragmas and Symbols
Checking Options
extended_errorcheck Extended Error Checking option in the C/C++
Warnings settings panel and pragma
extended_errorcheck .

far_data Far Data option in the 68K Processor settings panel
and pragma far_data.

far_strings Far String Constants option in the 68K Processor set-
tings panel and pragma far_strings .

far_vtables Far Method Tables in the 68K Processor settings panel
and pragma far_vtables .

faster_pch_gen Pragma faster_pch_gen .

float_constants Pragma float_constants

force_active Pragma force_active .

fourbyteints 4-Byte Ints option in the 68K Processor settings panel
and pragma fourbyteints.

fp_contract Use FMADD & FMSUB option in the PPC Processor
settings panel and pragma fp_contract.

global_optimizer Global Optimization option in the PPC Processor
settings panel and pragma global_optimizer .

IEEEdoubles 8-Byte Doubles option in the 68K Processor settings
panel and pragma IEEEdoubles.

ignore_oldstyle Pragma ignore_oldstyle.

import Pragma import .

inline_intrinsics Pragma inline_intrinsics .

internal Pragma internal .

interrupt Pragma interrupt .

k63d K6 3D Favored option in the Extended Instruction
Set menu of the x86 CodeGen settings panel and
pragma k63d .

This argument... Corresponds to the…
C Compilers Reference CCR–205

Pragmas and Symbols
Checking Options
k63d_calls MMX + K6 3D option in the Extended Instruction
Set menu of the x86 CodeGen settings panel and
pragma k63d_calls .

lib_export Pragma lib_export .

little_endian No option. It is 1 if you’re compiling for a little endian
target (such as x86) and 0 if you’re compiling for a big
endian target (such as Mac OS).

longlong Pragma longlong .

longlong_enums Pragma longlong_enums .

longlong_prepval Pragma longlong_enums .

no_static_dtors Pragma no_static_dtors.

macsbug MacsBug Symbols option in the 68K Linker settings
panel and pragma macsbug .

microsoft_exceptions Pragma microsoft_exceptions .

microsoft_RTTI Pragma microsoft_RTTI .

mmx MMX option in the Extended Instruction Set menu
of the x86 CodeGen settings panel and pragma mmx.

mmx_call Pragma mmx_call .

mpwc MPW C Calling Conventions option in the 68K Pro-
cessor settings panel and pragma mpwc.

mpwc_newline Map Newlines to CR option in the C/C++ Language
Panel and pragma mpwc_newline .

mpwc_relax Relaxed Pointer Type Rules option in the C/C++
Language Panel and pragma mpwc_relax .

no_register_coloring Global Register Allocation option in the 68K Proces-
sor settings panel and pragma
no_register_coloring .

oldstyle_symbols MacsBug Symbols option in the 68K Linker settings
panel and pragma oldstyle_symbols

This argument... Corresponds to the…
CCR–206 C Compilers Reference

Pragmas and Symbols
Checking Options
only_std_keywords ANSI Keywords Only option in the C/C++ Lan-
guage Panel and pragma only_std_keywords.

opt_common_subs Pragma opt_common_subs .

opt_dead_assignments Pragma opt_dead_assignments .

opt_dead_code Pragma opt_dead_code .

opt_lifetimes Pragma opt_lifetimes .

opt_loop_invariants Pragma opt_loop_invariants .

opt_propagation Pragma opt_propagation .

opt_strength_reduction Pragma opt_strength_reduction .

opt_unroll_loops Pragma opt_unroll_loops .

opt_vectorize_loops Pragma opt_vectorize_loops .

pool_data Pool Data option in the PPC Processor (for embedded
PowerPC programming only) and pragma
pool_data

pool_strings Pool Strings option in the C/C++ Language Panel
and pragma pool_strings

precompile Whether the file is being pre-compiled.

preprocess Whether the file is being pre-processed

profile Generate Profiler Calls option in the 68K Processor
settings panel, Emit Profiler Calls option in the PPC
Processor settings panel, and pragma profile .

readonly_strings Make String Literals Readonly option in the PPC
Processor settings panel and pragma
readonly_strings.

register_coloring Pragma register_coloring .

require_prototypes Require Function Prototypes option in the C/C++
Language Panel and pragma require_prototypes .

This argument... Corresponds to the…
C Compilers Reference CCR–207

Pragmas and Symbols
Checking Options
RTTI Enable RTTI option in the C/C++ Language Panel
and pragma RTTI .

side_effects Pragma side_effects .

simple_prepdump Pragma simple_prepdump

SOMCallOptimization Pragma SOMCallOptimization

SOMCheckEnvironment Direct to SOM menu in the C/C++ Language Panel
and pragma SOMCheckEnvironment

static_inlines Pragma static_inlines

stack_cleanup Pragma stack_cleanup .

suppress_init_code Pragma suppress_init_code .

sym Marker in the project window debug column and
pragma sym

syspath_once Pragma syspath_once .

toc_data Store Static Data in TOC option in the PPC Processor
settings panel and pragma toc_data

traceback Pragma traceback .

trigraphs Expand Trigraphs option in the C/C++ Language
Panel and pragma trigraphs.

unsigned_char Use Unsigned Chars option in the C/C++ Language
Panel and pragma unsigned_char .

use_fp_instructions Use V810 Floating-Point Instructions, which is part
of the NEC V800 Processor and pragma
use_fp_instructions .

use_frame Pragma use_frame .

use_mask_registers Use r20 and r21 as Mask Registers, which is part of
the NEC V800 Processor and pragma
use_mask_registers .

This argument... Corresponds to the…
CCR–208 C Compilers Reference

Pragmas and Symbols
Checking Options
warn_emptydecl Empty Declarations option in the C/C++ Warnings
settings panel and pragma warn_emptydecl .

warn_extracomma Extra Commas option in the C/C++ Warnings set-
tings panel and pragma warn_extracomma .

warn_hidevirtual Hidden virtual functions option in the C/++ Warn-
ings settings panel and pragma warn_hidevirtual .

warn_illpragma Illegal Pragmas option in the C/C++ Warnings set-
tings panel and pragma warn_illpragma .

warn_implicitconv Implicit Arithmetic Conversions option in the C/
C++ Warnings settings panel and pragma
warn_implicitconv .

warn_notinlined Non-Inlined Functions option in the C/C++ Warn-
ings settings panel and pragma warn_notinlined .

warn_padding pragma warn_padding

warn_possunwant Possible Errors option in the C/C++ Warnings set-
tings panel and pragma warn_possunwant .

warn_structclass Inconsistent Use of ‘class’ and ‘struct’ Keywords op-
tion in the C/C++ Warnings settings panel and
pragma warn_structclass .

warn_unusedarg Unused Arguments option in the C/C++ Warnings
settings panel and pragma warn_unusedarg .

warn_unusedvar Unused Variables option in the C/C++ Warnings set-
tings panel and pragma warn_unusedvar .

warning_errors Treat Warnings As Errors option in the C/C++ Warn-
ings settings panel and pragma warning_errors .

wchar_type Enable wchar_t Support option in the C/C++ Lan-
guage settings panel and pragma wchar_type .

This argument... Corresponds to the…
C Compilers Reference CCR–209

Pragmas and Symbols
Checking Options
CCR–210 C Compilers Reference

Index
Symbols
#, and macros 38
#else 39
#endif 39
#include files. See header files
#pragma statements 90

illegal 20
=

accidental 21
operator 59

?: conditional operator 65
__A5__ 200
__builtin_align() 52
__builtin_type() 52
__cplusplus 200
__DATE__ 199
__embedded_cplusplus 80, 200
__FILE__ 199
__fourbyteints__ 200
__ieeedoubles__ 200
__INTEL__ 201
__LINE__ 199
__MC68020__ 201
__MC68881__ 201
__MC68K__ 201
__MIPS__ 201
__MIPS_ISA2__ 201
__MIPS_ISA3__ 201
__MIPS_ISA4__ 202
__MWBROWSER__202
__MWERKS__202
__option() , preprocessor function 202
__powerc 202
__POWERPC__202
__PreInit__() 60
__profile__ 202
__rol() 53
__ror() 53
__STDC__ 199
__stdcall 41
__TIME__ 199

Numerics
3D 137
__MC68020__ 201
__MC68881__ 201

A
__A5__ 200
a6frames pragma 92
Access Paths preference panel 31
Activate C++ Compiler option 64
address

specifying for variable 40
align pragma 93
align_array_members pragma 94
Always Search User Paths option, Access Paths

panel 32
always_inline pragma 95
AMD K6 126
AMD K6 3D 137
anonymous structs 67
ANSI Keywords Only option 41
ANSI_strict pragma 96
arg_dep_lookup pragma 97
arguments

unnamed 38
unused 23

ARM Conformance option 65
ARM_conform 66
ARM_conform pragma 97
asm keyword 41
assignment, accidental 21
auto_inline pragma 44, 99

B
base classes

protected 65
referring to functions in 61

Be OS 89, 162
bit rotation 53
bool keyword 58, 66
bool pragma 99
by #pragma segment option 174
C Compilers Reference CCR–211

Index
C
catch statement 56, 66, 68, 118
char 50
characters, multi-byte 42
check_header_flags pragma 100
CIncludes 32
class

mixing with struct 27
code_seg pragma 101
code68020 pragma 101
code68881 pragma 102
command line 32
commas, extra 24
comments, C++-styles 38
conditional operator 65
const_cast keyword 58
conversion

implicit 26
warning 26

copy constructor 59
__cplusplus 200
cplusplus pragma 65, 103
cpp_extensions pragma 67, 104

D
D constant suffix 53
-d option 32
d0_pointers pragma 105
__DATE__ 199
declaration

empty 20
of templates 73
of variable in statements 65

def_inherited pragma 63, 106
defer_codegen pragma 107
destructors 148
direct_destruction pragma 112
direct_to_som pragma 113
disable_registers pragma 114
DLL 27
dollar_identifiers pragma 114
Don’t Inline option 44
Don’t Reuse Strings option 46

dont_inline pragma 44, 115
dont_reuse_strings pragma 47, 116
dyanamic_cast keyword 166
dynamic_cast 69
dynamic_cast keyword 58

E
ecplusplus pragma 116
EIPC_EIPSW pragma 117
#else 39
empty declarations 20
Empty Declarations option 20
Enable Exception Handling option 66
#endif 39
Enum Always Int option 33
enumerated types 24, 25, 33
enumsalwaysint pragma 117
=

accidental 21
operator 59

errors
and warnings 20
avoiding 24
avoiding logical 21

Errors & Warnings window 142
exception handling 66
exceptions pragma 118
.exp file 132
Expand Trigraphs option 42
explicit keyword 58
export pragma 119
Export Symbols option 132
Extended Error Checking option 24
extended_errorchecking pragma 26, 121
Extra Commas option 24

F
false keyword 58
far keyword 41
far_code pragma 123
far_data pragma 123
far_strings pragma 124
far_vtables pragma 124
CCR–212 C Compilers Reference

Index
__FILE__ 199
File Mappings settings panel 64
flot_constants pragma 126
for statement 21, 66
force_active pragma 126
__fourbyteints__ 200
fourbyteints pragma 127
fp_contract pragma 127
friend keyword 57
functions

virtual, hidden 26

G
global destructors 148
Global Register Allocation option 206
global_optimizer pragma 129

H
header files 30
Hidden virtual functions option 26

I
IDE 64, 142
identifiers 30

length 30
__ieeedoubles__ 200
IEEEdoubles pragma 130
if statement 21, 65
ignore_oldstyle pragma 131
Illegal Pragmas option 20
Implicit Arithmetic Conversions option 26
import pragma 132
include files, see header files
Inconsistent Use of ‘class’ and ‘struct’ Keywords

option 27
infinite loop 21
infinite loop, creating 22
inherited keyword 62, 106
inherited keyword 62
init_seg pragma 133
inline 107

warning 27
inline keyword 41

inline_depth pragma 134
inline_intrinsics pragma 134
Inlining menu 43
instantiating

templates 76
integer formats 51
__INTEL__ 201
Intel MMX 137, 143
internal pragma 135

J
Japanese character set 44

K
K6 3D 137
Kanji 44
keywords, additional 41

L
lib_export pragma 138
libraries 27
__LINE__ 199
linking

identifier length 30
logical errors 21, 24
long long 140
long long 51
longlong 138
longlong_enums pragma 139
longlong_prepval pragma 140

M
macros

and # 38
macsbug pragma 140
main() 57
mangled names 27, 30
Map Newlines to CR option 49
__MC68020__ 201
__MC68881__ 201
__MC68K__ 201
member function pointer 68
message pragma 142
C Compilers Reference CCR–213

Index
microsoft_exceptions pragma 142
microsoft_RTTI pragma 143
__MIPS__ 201
__MIPS_ISA2__ 201
__MIPS_ISA4__ 202
__MIPS_ISA3__ 201
MMX 137, 143
mmx pragma 143, 144
mpwc pragma 144
mpwc_newline pragma 50, 145
mpwc_relax pragma 50, 146
multi-byte characters 42
MultiMedia eXtensions 137, 143
mutable keyword 58
__MWBROWSER__202
__MWERKS__202

N
namespace keyword 58
near_code pragma 123
no_static_dtors pragma 148
Non-Inlined Functions option 27

O
oldstyle_symbols pragma 140
once pragma 149
only_std_keywords pragma 42, 149
operator= 59
opt_common_subs pragma 150
opt_dead_assignments pragma 151
opt_dead_code pragma 151
opt_lifetimes pragma 152
opt_loop_invariants pragma 152
opt_proagation pragma 153
opt_strength_reduction pragma 153
opt_unroll_loops pragma 154
opt_vectorize_loops pragma 154
optimization_level pragma 129
optimize_for_size pragma 155
__option() , preprocessor function 202
options align= pragma 93
Options Checking 202

P
pack pragma 156
parameter pragma 157
pascal keyword 41
pcrelstrings pragma 157
peephole pragma 158
pointer to member function 68
pointer types 50
pointers_in_A0 pragma 159
pointers_in_D0 pragma 159
Pool Strings option 45
pool_data pragma 160
pool_strings pragma 46, 161
pop pragma 162
Possible Errors option 21
__powerc 202
__POWERPC__202
pragma

illegal 20
list of all 90
scope 91
syntax 90

#pragma statements 90
illegal 20

precompile_target pragma 162
Prefix File 32
__PreInit__() 60
preprocessor

and # 38
long long expressions 140

__profile__ 202
profile pragma 163
protected base classes 65
prototypes

requiring 47
push pragma 162

Q
qualifed name syntax 75

R
readonly_strings pragma 164
reinterpret_char keyword 58
CCR–214 C Compilers Reference

Index
Relaxed Pointer Type Rules option 50
Require Function Prototypes option 47
require_prototypes pragma 49, 165
return statement

empty 25
missing 24

RTTI 66, 166
RTTI option 67
RTTI pragma 166
Run-time type information 66, 166

S
scheduling pragma 167
Section Mappings panel, NEC V800 112
section pragma 167
segment pragma 174
side_effects pragma 175
simple class 59
simple_prepdump pragma 176
size_t 32
sizeof() operator 32
smart_code pragma 123
SOM Call Optimization pragma 176
SOMCallStyle pragma 177
SOMCheckEnvironment pragma 178
SOMClassVersion pragma 179
SOMMetaClass pragma 180
SOMRelaseOrder pragma 181
stack_cleanup pragma 181
static destructors 148
static_cast keyword 58
static_inlines pragma 182
__STDC__ 199
string literals

pooling 45
reusing 46

struct
mixing with class 27

structs
anonymous 67

suffix, constant 53
suppress_init_code pragma 183
switch statement 65
sym pragma 183

syspath pragma 184

T
template class statement 77
templates 72

declaration 73
instantiating 76

__TIME__ 199
toc_data pragma 184
traceback pragma 186
Treat All Warnings as Errors option 20
trigraph characters 42
trigraphs pragma 42, 185
true keyword 58
try statement 56, 66, 68, 118
type_info 72
type-checking 50
typeid keyword 58
typeid keyword 166
typename 75

U
Unicode 44
unnamed arguments 38
unsigned char 50
unsigned_char pragma 186
Unused Arguments option 23
unused pragma 22, 23, 187
Unused Variables option 22
Use Unsigned Chars option 50
use_fp_instructions pragma 188
use_frame pragma 188
use_mask_registers pragma 188
using keyword 58

V
variables

declaring by address 40
unused 22
volatile 33

virtual
functions, hidden 26

virtual keyword 57
C Compilers Reference CCR–215

Index
volatile variables 33

W
warn_emptydecl pragma 21, 189
warn_extracomma pragma 24, 190
warn_hidevirtual pragma 191
warn_illpragma pragma 20, 191
warn_padding pragma 193
warn_possunwant pragma 22, 194
warn_structclass pragma 195
warn_unusedarg pragma 24, 196
warn_unusedvar pragma 23, 197
warning

mixing class and struct 27
warning pragma 197

warning_errors pragma 20, 189
warnings

as errors 20
definition of 18
empty declarations 20
extra commas 24
hidden virtual functions 26
illegal pragmas 20
implicit conversion 26
non-inlined functions 27
possible errors 21, 24
unused arguments 23
unused variables 22

wchar_type pragma 198
while statement 21, 65
CCR–216 C Compilers Reference

CodeWarrior

C Compilers Reference

Credits

writing lead: Marc Paquette

other writers: Mark Anderson, Gene Backlin, BitHead,
Jeff Mattson, Jim Trudeau

engineering: Mark Anderson, Bob Campbell, Ben
Combee, Pascal Cleve, Rajeev Gulati, An-
dreas Hommel, Udi Kalekin, Michael
Kahl, Bob Kushlis, John McEnerney, Fred
Peterson, Laurent Visconti, Rhonda Wit-
tels

frontline warriors: Richard Atwell, John C. Daub, Ron
Liechty, John Roseborough, Joel Sumner,
Jim Trudeau, L. Frank Turovich,
CodeWarrior users everywhere

Guide to CodeWarrior Documentation
CodeWarrior documentation is modular, like the underlying tools. There are manuals
for the core tools, languages, libraries, and targets. The exact documentation provided
with any CodeWarrior product is tailored to the tools included with the product. Your
product will not have every manual listed here. However, you will probably have addi-
tional manuals (not listed here) for utilities or other software specific to your product.

Core Documentation

IDE User Guide How to use the CodeWarrior IDE

Debugger User Guide How to use the CodeWarrior debugger

CodeWarrior Core Tutorials Step-by-step introduction to IDE components

Language/Compiler Documentation

C Compilers Reference Information on the C/C++ front-end compiler

Pascal Compilers Reference Information on the Pascal front-end compiler

Error Reference Comprehensive list of compiler/linker error messages, with many fixes

Pascal Language Reference The Metrowerks implementation of ANS Pascal

Assembler Guide Stand-alone assembler syntax

Command-Line Tools Reference Command-line options for Mac OS and Be compilers

Plugin API Manual The CodeWarrior plugin compiler/linker API

Library Documentation

MSL C Reference Function reference for the Metrowerks ANSI standard C library

MSL C++ Reference Function reference for the Metrowerks ANSI standard C++ library

Pascal Library Reference Function reference for the Metrowerks ANS Pascal library

MFC Reference Reference for the Microsoft Foundation Classes for Win32

Win32 SDK Reference Microsoft’s Reference for the Win32 API

The PowerPlant Book Introductory guide to the Metrowerks application framework for Mac OS

PowerPlant Advanced Topics Advanced topics in PowerPlant programming for Mac OS

Targeting Manuals

Targeting BeOS How to use CodeWarrior to program for BeOS

Targeting Java VM How to use CodeWarrior to program for the Java Virtual Machine

Targeting Mac OS How to use CodeWarrior to program for Mac OS

Targeting MIPS How to use CodeWarrior to program for MIPS embedded processors

Targeting NEC V810/830 How to use CodeWarrior to program for NEC V810/830 processors

Targeting Net Yaroze How to use CodeWarrior to program for Net Yaroze game console

Targeting Nucleus How to use CodeWarrior to program for the Nucleus RTOS

Targeting OS-9 How to use CodeWarrior to program for the OS-9 RTOS

Targeting Palm OS How to use CodeWarrior to program for PalmPilot

Targeting PlayStation OS How to use CodeWarrior to program for the PlayStation game console

Targeting PowerPC Embedded Systems How to use CodeWarrior to program for PPC embedded processors

Targeting VxWorks How to use CodeWarrior to program for the VxWorks RTOS

Targeting Win32 How to use CodeWarrior to program for Windows

	Introduction
	What’s in this Reference?
	Read the Release Notes!
	What’s New
	CodeWarrior Year 2000 Compliance
	Conventions Used in This Reference

	Setting C/C++ Compiler Options
	Setting C Compiler Options Overview
	C/C++ Language Panel
	C/C++ Warnings Panel
	Treat All Warnings as Errors
	Illegal Pragmas
	Empty Declarations
	Possible Errors
	Unused Variables
	Unused Arguments
	Extra Commas
	Extended Error Checking
	Hidden Virtual Functions
	Implicit Arithmetic Conversions
	Non-Inlined Functions
	Inconsistent Use of ‘class’ and ‘struct’ Keywords

	C Compiler
	C Compiler Overview
	The CodeWarrior Implementation of C
	Identifiers
	Include Files
	Prefix Files
	Sizeof() Operator
	Volatile Variables
	Enumerated Types

	Extensions to ANSI/ISO C
	ANSI Strict
	Using the wchar_t Type
	C++ Style Comments
	Unnamed Arguments in Function Definitions
	A # not Followed by Argument in a Macro
	Using an Identifier After #endif
	Using Typecasted Pointers as lvalues
	Declaring Variables By Address
	ANSI Keywords Only
	Expand Trigraphs
	Character Constants as Integer Values
	Inlining
	Multibyte Strings and Comments
	Pool Strings
	Reusing Strings
	Require Function Prototypes
	Map Newlines to CR
	Relaxed Pointer Type Rules
	Use Unsigned Chars
	Using 64-bit Integers
	Converting Pointers to Types of the Same Size
	Getting Alignment and Type Information at Compile-Time
	Arrays of Zero Length in Structures
	Intrinsic Functions for Bit Rotation
	The “D” Constant Suffix

	C++ Compiler
	C++ Compiler Overview
	CodeWarrior Implementation of C++
	Implicit Return Statement for main()
	Keyword Ordering
	Additional Keywords
	Conversions in the Conditional Operator
	Default Arguments in Member Functions
	Local Class Declarations with Inline Functions
	Copying and Constructing Class Objects
	Checking for Resources To Initialize Static Data
	Calling an Inherited Member Function

	Unsupported Extensions
	Controlling the C++ Compiler
	Using the C++ Compiler Always
	Controlling ARM Conformance
	Controlling Exception Handling
	Controlling RTTI
	Using the bool Type
	Controlling C++ Extensions

	Working With C++ Exceptions
	Working With RTTI
	Using the dynamic_cast Operator
	Using the typeid Operator

	Working With Templates
	Declaring and Defining Templates
	Instantiating a Template

	C++ and Embedded Systems
	C++ and Embedded Systems Overview
	Activating EC++
	Differences Between ANSI/ISO C++ and EC++
	Templates
	Libraries
	File Operations
	Localization
	Exception Handling
	Other Language Features

	Meeting EC++ Specifications With CodeWarrior
	Language Related Issues
	Library Related Issues

	Strategies for Smaller Code Size in C++
	Size Optimizations
	Inlining
	Virtual Functions
	Runtime Type Identification
	Exception Handling
	Operator New
	Multiple Inheritance
	Virtual Inheritance
	Stream-Based Classes
	Alternative Class Libraries

	Pragmas and Symbols
	Pragmas and Symbols Overview
	Pragmas
	Pragma Syntax
	Pragma Scope
	a6frames
	align
	align_array_members
	always_inline
	ANSI_strict
	arg_dep_lookup
	ARM_conform
	auto_inline
	bool
	check_header_flags
	code_seg
	code68020
	code68881
	cplusplus
	cpp_extensions
	d0_pointers
	data_seg
	def_inherited
	defer_codegen
	define_section
	direct_destruction
	direct_to_som
	disable_registers
	dollar_identifiers
	dont_inline
	dont_reuse_strings
	ecplusplus
	EIPC_EIPSW
	enumsalwaysint
	exceptions
	export
	extended_errorcheck
	far_code, near_code, smart_code
	far_data
	far_strings
	far_vtables
	faster_pch_gen
	float_constants
	force_active
	fourbyteints
	fp_contract
	fp_pilot_traps
	function
	global_optimizer, optimization_level
	IEEEdoubles
	ignore_oldstyle
	import
	init_seg
	inline_depth
	inline_intrinsics
	internal
	interrupt
	k63d
	k63d_calls
	lib_export
	longlong
	longlong_enums
	longlong_prepval
	macsbug, oldstyle_symbols
	mark
	message
	microsoft_exceptions
	microsoft_RTTI
	mmx
	mmx_call
	mpwc
	mpwc_newline
	mpwc_relax
	no_register_coloring
	no_static_dtors
	once
	only_std_keywords
	opt_common_subs
	opt_dead_assignments
	opt_dead_code
	opt_lifetimes
	opt_loop_invariants
	opt_propagation
	opt_strength_reduction
	opt_unroll_loops
	opt_vectorize_loops
	optimization_level
	optimize_for_size
	oldstyle_symbols
	pack
	parameter
	pcrelstrings
	peephole
	pointers_in_A0, pointers_in_D0
	pool_data
	pool_strings
	pop, push
	precompile_target
	profile
	readonly_strings
	register_coloring
	require_prototypes
	RTTI
	scheduling
	section
	segment
	side_effects
	simple_prepdump
	SOM�Call�Optimization
	SOMCallStyle
	SOMCheckEnvironment
	SOMClassVersion
	SOMMetaClass
	SOMReleaseOrder
	stack_cleanup
	static_inlines
	suppress_init_code
	sym
	syspath_once
	toc_data
	trigraphs
	traceback
	unsigned_char
	unused
	use_fp_instructions
	use_frame
	use_mask_registers
	warn_emptydecl
	warning_errors
	warn_extracomma
	warn_hidevirtual
	warn_illpragma
	warn_implicitconv
	warn_notinlined
	warn_padding
	warn_possunwant
	warn_structclass
	warn_unusedarg
	warn_unusedvar
	warning
	wchar_type

	Predefined Symbols
	ANSI Predefined Symbols
	Metrowerks Predefined Symbols

	Checking Options

	Index

