

CodeWarrior
®

SH Assembler Reference

Because of last-minute changes to CodeWarrior, some of the
information in this manual may be inaccurate. Please read the

Release Notes on the CodeWarrior CD for the latest
up-to-date information.

Revised: 990224 rw

Metrowerks CodeWarrior copyright ©1993–1999 by Metrowerks Inc. and its licensors. All
rights reserved.

Documentation stored on the compact disk(s) may be printed by licensee for personal use.
Except for the foregoing, no part of this documentation may be reproduced or transmitted
in any form by any means, electronic or mechanical, including photocopying, recording, or
any information storage and retrieval system, without permission in writing from Metrow-
erks Inc.
Metrowerks, the Metrowerks logo, CodeWarrior, and Software at Work are registered
trademarks of Metrowerks Inc. PowerPlant and PowerPlant Constructor are trademarks of
Metrowerks Inc.
All other trademarks and registered trademarks are the property of their respective owners.
ALL SOFTWARE AND DOCUMENTATION ON THE COMPACT DISK(S) ARE
SUBJECT TO THE LICENSE AGREEMENT IN THE CD BOOKLET.

How to Contact Metrowerks:

U.S.A. and international Metrowerks Corporation
9801 Metric, Suite 100
Austin TX 78758
U.S.A.

Canada Metrowerks Inc.
1500 du College, Suite 300
Ville St-Laurent, QC
Canada H4L 5G6

Ordering Voice: (800) 377–5416
Fax: (512) 873–4901

World Wide Web http://www.metrowerks.com

Registration information register@metrowerks.com

Technical support support@metrowerks.com

Sales, marketing, & licensing sales@metrowerks.com

CompuServe go Metrowerks

Table of Contents
1 Introduction . 5

Overview of the Assembler Manual 5
What Are the Metrowerks Assemblers 5
Conventions Used in This Manual 6
Where to Learn More . 6

2 Assembler Syntax . 7
Assembler Syntax Overview 7
Statement Syntax . . 7
Symbol Syntax . 9
Symbol Scope . 10

Local Labels . 10
Global Equates . 11
Relocatable Labels 12

Constant Syntax . 14
Integer Constants 14
Floating Point Constants 15
Character Constants 15

Expression Syntax . 16
Forward Equate Syntax 19
Data Alignment . 20

3 Using Macros . 23
Using Macros Overview 23
Defining Macros . 23

Macro Definition Syntax. 23
Using Macro Arguments 24
Creating Unique Labels 25
Referring to the Number of Arguments 27

Invoking Macros . 27

4 Using Directives . 29
Using Directives Overview. 29
Macro Directives . 30
Conditional Preprocessor Directives. 31
SH Assembler Reference ASM–3

Section Control Directives 35
Scope Control Directives. 40
Symbol Definition Directives 41
Data Declaration Directives 43

Integer type declarations 43
String type declarations 45
Floating point type declarations 46

Assembler Control Directives 47
Debugging Directives 51

5 SH Assembler Settings . 53
Assembler Settings Overview 53
The Assembler Settings Panel 54

Index . 57
ASM–4 SH Assembler Reference

1
Introduction
This manual describes the syntax for the Metrowerks Assemblers,
and uses SH assembler for the examples.

Overview of the Assembler Manual
This manual describes Metrowerks Assemblers, a collection of as-
semblers for several different processors. This manual describes the
syntax for statements, macros, and directives.

This manual assumes you are already familiar with assembler and
the processor you’re writing code for.

The chapters in this manual include:

• Assembler Syntax Overview

• Using Macros Overview

• Using Directives Overview

• Assembler Settings Overview

For more information on the instruction mnemonics and register
names for a particular processor, see the books described in “Where
to Learn More.”

What Are the Metrowerks Assemblers
The Metrowerks Assemblers is a collection of assemblers for several
different processors. They share an identical syntax for statements,
directives, and macros. They differ only in the instruction mnemon-
ics and register names that are used for each processor.

The SH Assembler supports all instructions for the SH-4 processor.
SH Assembler Reference ASM–5

Introduct ion

Conventions Used in This Manual

NOTE: The assembler commands described in this manual refer
to the Metrowerks Assembler itself and should not be confused
with the inline assembler included in the Metrowerks C/C++ com-
pilers. See the Dreamcast Targeting Manual and the C Compilers
Reference for additional information on using the C/C++ inline as-
sembler.

Conventions Used in This Manual
This manual includes syntax examples that describe how to use cer-
tain statements, Table 1.1 describes how to interpret these state-
ments.

Table 1.1 Understanding Syntax Examples

Where to Learn More
The assembler uses the standard mnemonics and register names as
defined in the following documents:

• SH: SH-4 Hardware Manual, Hitachi Ltd.

If the text
looks like… Then…

literal Include it in your statement exactly as it’s printed.

metasymbol Replace the symbol with an appropriate value. The text after the
syntax example describes what the appropriate values are.

a | b | c Use one and only one of the symbols in the statement: either a, b,
or c.

[a] Include this symbol only if necessary. The text after the syntax ex-
ample describes when to include it.
ASM–6 SH Assembler Reference

2
Assembler Syntax
The chapter describes the sytax rules required to write a source file
for the Metrowerks Assemblers.

Assembler Syntax Overview
This chapter explains how to write a source file for the Metrowerks
Assemblers. You should already be familiar with Assemblers and
with the machine operations for the processor you’re writing for.
This chapter does not describe the instructions for the processors.
For more information, see “Where to Learn More.”

This chapter covers the following topics:

• Statement Syntax

• Symbol Syntax

• Symbol Scope

• Constant Syntax

• Expression Syntax

• Forward Equate Syntax

• Data Alignment

Statement Syntax
An assembly language statement may be one these types:

• Instruction statement

• Directive statement

• Macro statement
SH Assembler Reference ASM–7

Assembler Syntax

Statement Syntax

A statement can be no more than 1000 characters long. You cannot
split a statement across multiple source lines, and you cannot put
more than one statement on a source line.

A statement has the following syntax:

Listing 2.1 Statement syntax

[label] operation [operands] [comment]

Here are the parts of an assembler statement:

Label By default, a label ends in a colon (:) and can begin in any
column. If you’re porting existing code that doesn’t follow this con-
vention, turn off the Labels must end with ':' option. With the op-
tion turned off, a symbol is a label if it starts in column 1 or if it ends
with a colon (:).

For more information on labels, see “Symbol Syntax.”

Operation The operation is a name for one of the following:

• A machine operation. To find out which machine instruc-
tions are allowed for a particular chip, see “Where to Learn
More.”

• A macro call. For more information on macros, see “Using
Macros Overview.”

• An assembler directive. For a list of all the assembler direc-
tives, see “Using Directives Overview.”

Instruction, directive, and macro names are case insensitive.
For example MOV, Mov, and mov all name the same
instruction.

Operands The operands specify the data that the operation uses.
The type of the operation determines how many operands are re-
quired, if any. To separate operands, use a comma (,).

Comments Comments are text that the Metrowerks Assembler
ignores and are useful for documenting your code. The Metrowerks
Assembler ignores any text between a semicolon (;) and the end of
the line. To help you port existing code, the Metrowerks Assembler
treats the following text as a comment:
ASM–8 SH Assembler Reference

Assembler Syntax

Symbol Syntax

• In all current assemblers, it ignores any text between an as-
terisk (*) at the beginning of the line and the end of the line.
Note that the asterisk must be the first character in the line. It
has other meanings when it occurs elsewhere in a line. Also
note that some future assemblers may use an asterisk at the
beginning of the line for another purpose.

• In all current assemblers, if you turn off the Allow space in
operand field option, it ignores any text between a space
character in the operand field and the end of the line. How-
ever, some future assemblers may use this for another pur-
pose.

Symbol Syntax
A symbol is a combination of characters that represents a value, such
as an address, numeric constant, string constant, or character con-
stant. The two types of symbols are labels and equates. A label is a
symbol that represents an address. An equate is a symbol that repre-
sents any value and that you create with a .equ or .set directive.

A symbol’s name has unlimited length and can contain the follow-
ing:

• The first character must be one of these:

– If it’s not a local label, a-z, A-Z, a period (.), a question
mark (?), or underscore (_).

– If it is a local label, at-sign (@).

• Each remaining character must be one of a-z, A-Z, numerals
0-9, underscore (_), question mark (?), dollar sign ($), or pe-
riod (.).

The Case sensitive identifiers option lets you choose whether sym-
bols are case-sensitive. If the option is on, symbols are case sensi-
tive, so SYM1, sym1, and Sym1 are three different symbols, for ex-
ample. If the option is off, symbols are not case-sensitive, so SYM1,
sym1, and Sym1 are the same symbol, for example. By default, this
option is on.

To refer to the the program counter use one of these characters: pe-
riod (.), dollar sign ($), or asterisk (*).
SH Assembler Reference ASM–9

Assembler Syntax
Symbol Scope
Symbol Scope
In general, a symbol has file-wide scope: you can access it anywhere
within the file it is defined and only within the file it is defined.

A label can also have local scope: you can access it forwards and
backwards until a non-local label is encountered. To create a local
label, begin its name with an at-sign (@).

An equate can also have global scope: you can access it from other
files. To create an global equate, use the .global or .public di-
rectives.

In this section we discuss:

• Local Labels

• Global Equates

NOTE: An equate cannot have local scope. A local label cannot
have global scope while a normal label can.

Local Labels

Labels whose names begin with the at-sign (@) character are local.
The scope of a local label extends forwards and backwards until a
non-local label is encountered. A forward equate (described in “For-
ward Equate Syntax”) does not end the scope.

Lines generated by macro expansion have their own name scope for
local labels:

• A non-local label in an expanded macro does not end the
scope of locals in the unexpanded source

• The scope of local labels defined in macros does not extend
outside the macro.

The following example illustrates the scope of local labels in macros.
ASM–10 SH Assembler Reference

Assembler Syntax
Symbol Scope
Listing 2.2 The scope of local labels in a macro

MAKEPOS .MACRO
 tst #1, r0
 bra @SKIP
 neg r0
@SKIP: ;Scope of this label is within the macro
 .ENDM
START:
 mov.l COUNT, r1
 cmp/eq #1, r1
 bra @SKIP
 MAKEPOS
@SKIP: ;Scope of this label is START to END
 ;excluding lines arising from
 ;macro expansion
 add #1, r0
END: rts

In this example, the @SKIP label defined in the macro does not con-
flict with the @SKIP label defined in the main body of code.

Within a macro, the Metrowerks Assembler replaces the unique
label symbol (\@) with a unique label name which you can use as a
local label or a forward equate. For more information on unique la-
bels see “Creating Unique Labels.” For more information on for-
ward equates, see “Forward Equate Syntax.”

NOTE: You cannot export local labels and that local labels do not
appear in debugging tables.

Global Equates

An equate can also have global scope: you can access it from other
files. To declare an equate to have global scope, use the .global di-
rective, like this:
SH Assembler Reference ASM–11

Assembler Syntax
Symbol Scope
Listing 2.3 Declaring a global equate

CONST .set 256
 .global CONST

To access the equate from another file, use the .extern directive,
like this:

Listing 2.4 Importing a global equate

.extern CONST
add CONST, r1

Alternatively, you can also use the .public directive to both de-
clare and import a global equate. If the specified equate is already
defined, it’s declared global. If the specified equate isn’t defined, it’s
imported.

The name of your symbol may change when you import a global
equate from C or C++. View the disassembly of the source file and
look in the symbol table for the hashed symbol name. For example,
you may have a source file in which you define the following global
variable:

unsigned long this_long = 0x12345678;

When you view the disassembly of the source file, you will see that
the name has changed. In this example, an underscore character '_'
was added to the name.

 *** SYMBOL TABLE (.symtab) ***
no value size bind type other shndx name
13 0x00000000 0x00000004 GLOBAL OBJECT 0x00 .data _this_long

Relocatable Labels

The Metrowerks Assembler assumes a flat 32-bit memory space.
You can specify the relocation of a 32-bit label with the following ex-
pressions.
ASM–12 SH Assembler Reference

Assembler Syntax
Symbol Scope
NOTE: Some expressions are not allowed in all assemblers.

Table 2.1 Relocatable label expressions

This… Represents this

label The offset from the label to the base of its section, re-
located by the section base address. It’s also the PC-
relative target of a branch or call. It is a 32-bit ad-
dress.

label@l The low 16-bits of the symbol's relocated address

label@h The high 16-bits of this address. You can OR this
with label@l to produce the full 32-bit relocated ad-
dress

label@ha The adjusted high 16-bits of this address You can
add this to label@l to produce the full 32-bit relo-
cated address

label@sdax For labels in a small data section, the offset from the
base of the small data section to the label. This syn-
tax is not allowed for labels in other sections.

label@got For chips with a global offset table, the offset from
the base of the global offset table to the 32-bit entry
for label
SH Assembler Reference ASM–13

Assembler Syntax
Constant Syntax
Constant Syntax
The Metrowerks Assembler recognizes three kinds of constants:

• Integer Constants

• Floating Point Constants

• Character Constants

The syntax for each type of constant is the same in all assemblers.

Integer Constants

This table lists the preferred notation for integer contants. This nota-
tion works for all Metrowerks Assemblers.

Table 2.2 Preferred integer constant notation

To help you port existing code, the current assemblers also support
the notation in the following table. However, some future assem-
blers may use this notation for other purposes:

For
numbers of
this type…

Use…

Decimal A string of decimal digits, such as 12345678 .

Hexadecimal A dollar sign ($) followed by a string of hexadec-
imal digits, such as $deadbeef .

Binary A percent sign (%) followed by a string of binary
digits, such as %01010001.
ASM–14 SH Assembler Reference

Assembler Syntax
Constant Syntax
Table 2.3 Alternate integer constant notation

Note that the Metrowerks assemblers store and manipulate integer
constants using 32-bit signed arithmetic.

Floating Point Constants

You can specify floating point constants in either hexadecimal or
decimal format. A floating point constant in decimal format must
contain either a decimal point or an exponent, e.g. 1E-10 or 1.0 .

You can use floating point constants only in data generation direc-
tives like .float and .double , or in floating point instructions.
You cannot use them in expressions.

Character Constants

A character constant must be enclosed in single quotes, and can be
up to 4-characters wide depending on the context; for example, 'A' ,
'ABC' , and 'TEXT'.

To specify a single quote (') within a character constant, use two
single quote characters; for example, 'IT''S' . A character constant
can also contain any of these escape sequences.

For
numbers of
this type…

Use…

Hexadecimal 0x followed by a string of hexadecimal digits,
such as 0xdeadbeef .

Hexadecimal 0 followed by a string of hexadecimal digits,
such as 0deadbeef , and ending with an h, such
as 0deadbeefh .

Decimal A string of decimal digits followed by d, such as
12345678d .

Binary A string of binary digits followed by a b, such as
01010001b .
SH Assembler Reference ASM–15

Assembler Syntax
Expression Syntax
Table 2.4 Escape sequences

A character constant is zero-extended to 32 bits during computa-
tion. You can use a character constant anywhere you can use an in-
teger constant.

Expression Syntax
The Metrowerks Assemblers evaluate expressions using 32-bit
signed arithmetic. They do not check for arithmetic overflow.

Since there is no common set of operators in the existing assemblers
for different processors, the Metrowerks assemblers use an expres-
sion syntax similar to the one for the C language. Expressions use
the C language arithmetic rules for such things as parentheses and
associativity, and they use the same operators.

All the Metrowerks Assemblers support the operators listed in these
tables:

Sequence Description

\b Backspace

\n Line feed (ASCII character 10)

\r Return (ASCII character 13)

\t Tab

\" Double quote

\\ Backslash

\nnn Octal value of \nnn
ASM–16 SH Assembler Reference

Assembler Syntax
Expression Syntax
Table 2.5 Binary operators

Operator Description

+ add

- subtract

* multiply

/ divide

% modulo

|| logical OR

&& logical AND

| bitwise OR

& bitwise AND

^ bitwise XOR

<< shift left

>> shift right (zeros are shifted into high order bits)

== equal to

!= not equal to

<= less than or equal to

>= greater than or equal to

< less than

> greater than
SH Assembler Reference ASM–17

Assembler Syntax
Expression Syntax
Table 2.6 Unary operators

All the current Metrowerks Assemblers also allow the operations
listed in Table 2.7. However, some future assemblers may reserve
these operators for other purposes.

Table 2.7 Alternate operators

Operator Description

+ unary plus

- unary minus

~ unary bitwise complement

Operator Description

<> not equal to

// modulo

! logical OR

!! logical XOR
ASM–18 SH Assembler Reference

Assembler Syntax
Forward Equate Syntax
The operators have the following precedence, with the highest pri-
ority first:

1. unary + - ~

2. * / %

3. binary + -

4. << >>

5. < <= > >=

6. == !=

7. &

8. ^

9. |

10. &&

11. ||

Forward Equate Syntax
The Metrowerks Assemblers allow forward equates: This lets you
refer to a symbol in a file before it is defined. When an assembler
comes across an expression it cannot resolve because the expression
references a symbol whose value is not known, the assembler re-
tains the expression and marks it as unresolved. After the assembler
reads the whole file, it re-evaluates unresolved expressions and, if
necessary, repeatedly re-evaluates them until it resolves them all or
it cannot resolve them any further. If the assembler cannot resolve
an expression, it raises an error.

However, the assembler must be able to immediately resolve any
expression whose value affects the location counter.

NOTE: Note that if the assembler can make a reasonable as-
sumption about the location counter, the expression is allowed.
For example, in a forward branch instruction for a 68K processor,
you can specify a default assumption of 8, 16, or 32 bits.
SH Assembler Reference ASM–19

Assembler Syntax
Data Alignment
Thus, the code in Listing 2.5 is allowed.

Listing 2.5 Valid forward equate

 .long alloc_size
alloc_size .set rec_size + 4
 ; a valid forward equate on next line
rec_size .set table_start-table_end
 ;...
table_start:
 ; ...
table_end:

However, the code in the following example is not allowed. The as-
sembler cannot immediately resolve the expression in the .space
directive, so the effect on the location counter is unknown.

Listing 2.6 Invalid forward equate

 ;invalid forward equate on next line
rec_size .set table_start-table_end
 .space rec_size
 ; ...
table_start:
 ; ...
table_end:

Data Alignment
By default, all data is aligned on a natural boundary for the data size
and for the target processor family. You may turn off alignment
with the alignment argument to the .option directive, described
in “option.”

An assembler does not align data automatically in the .debug sec-
tion. For more information on the .debug section, see “Debugging
Directives.”
ASM–20 SH Assembler Reference

Assembler Syntax
Data Alignment
SH Assembler Reference ASM–21

Assembler Syntax
Data Alignment
ASM–22 SH Assembler Reference

3
Using Macros
This chapter describes how to define and use macros.

Using Macros Overview
The Metrowerks Assemblers let you use the same macro language
for any of the target processors. Note that the macro language is
broadly similar to Hitachi assembler syntax with some extensions.

This chapter describes the following:

• Defining Macros

• Invoking Macros

Defining Macros
This section describes how to define a macro. It tells you about the
following:

• Macro Definition Syntax

• Using Macro Arguments

• Referring to the Number of Arguments

• Creating Unique Labels

Macro Definition Syntax

A macro definition is a sequence of assembly statements that defines
the name of a macro, the format of its call, and the assembly state-
ments to process when it’s invoked. It looks like this:
SH Assembler Reference ASM–23

Using Macros
Defining Macros
Listing 3.1 A macro definition

name: .macro [param1,] [param2]. . .
; macro body
.endm

The name is a label used to invoke the macro. You can include an op-
tional list of parameters, like param1 and param2, which are oper-
ands passed to the macro and are used in the macro body. The macro
body consists of assembler statements that are substituted for a
macro call when you invoke the macro.

The macro definition must end with .endm . If you want to stop
macro processing before .endm is reached (for example, the macro
may contain conditional assembly), use .mexit .

Using Macro Arguments

You can refer to parameters directly by name. Here is the setup
macro, which moves an integer into d0 and branches to the label
_final_setup :

Listing 3.2 The setup macro

setup: .macro name
 mov.l #name, r0
 bsr _final_setup
 .endm

If you invoke it like this:

Listing 3.3 Calling setup

 setup 'VECT'

It’s expanded like this:
ASM–24 SH Assembler Reference

Using Macros
Defining Macros
Listing 3.4 Expanded setup

 MOV.L #'VECT', R0
 BSR _set_it_up_

When you refer to named macro parameters in the macro body, you
can precede or follow the macro parameter with &&. This lets you
embed the parameter in a string. For example, here is the smallnum
macro, which creates a small float by appending the string E-50 to
the macro’s argument:

Listing 3.5 The smallnum macro

smallnum: .macro mantissa
 .float mantissa&&E-50
 .endm

If you invoke it like this:

Listing 3.6 Invoking smallnum

 smallnum 10

It’s expanded like this:

Listing 3.7 Expanding smallnum

 .float 10E-50

Creating Unique Labels

You can generate unique labels within a macro with the symbol \@.
Each time you invoke the macro, the assembler generates a unique
symbol of the form ??nnnn, such as ??0001 , or ??0002 each time
the macro is called.
SH Assembler Reference ASM–25

Using Macros
Defining Macros
Also, a local label, which is any label that begins with @, has a scope
which is restricted to only the expansion of the macro. For more in-
formation, see “Symbol Scope.”

Unique labels and symbols (those that use \@) are referred to in
your code with the same methods used for regular labels and sym-
bols. The \@ sequence gets replaced by a unique string which is in-
cremented each time the macro is invoked.

Listing 3.8 Unique label macro

my_macro: .macro
 foo\@ = my_count
my_count .set my_count + 1
 add fred\@, r1
 bra label\@
 add r1, r2
label\@:
 nop
.endm

If the macro in Listing 3.8 is called twice (with my_count initialized
to 0), it gets assembled into something like Listing 3.9.
ASM–26 SH Assembler Reference

Using Macros
Invoking Macros
Listing 3.9 Unique label assembler output

0x00000000: foo??0000 = my_count
0x00000001: my_count .set my_count + 1
0x00000008: add fred??0000, r1
0x0000000c: bra label??0000
0x00000010: add r1, r2
0x00000014: label??0000
0x00000014: nop
0x00000000: my_macro
0x00000000: fred??0001 = my_count
0x00000001: my_count .set my_count + 1
0x00000008: add fred??0001, r1
0x0000000c: bra label??0001
0x00000010: add r1, r2
0x00000014: label??0001
0x00000014: nop
0x00000000:

Referring to the Number of Arguments

To refer to the number of non-null arguments passed to a macro,
use the special symbol narg . You can use it only during macro ex-
pansion.

Invoking Macros
To invoke a macro, simply use its name in your assembler listing.

When invoking a macro, you must separate parameters with com-
mas. To pass a parameter that includes a comma, enclose the param-
eter in angle brackets. For example, here is a statement that calls a
macro named moveit , that expands to the mov.l instruction

Listing 3.10 Invoking moveit with an argument that contains commas

 moveit.l <@(1020,pc)>, r15
SH Assembler Reference ASM–27

Using Macros
Invoking Macros
ASM–28 SH Assembler Reference

4
Using Directives
This chapter describes the directives that are available in any
Metrowerks Assembler.

Using Directives Overview
This chapter documents how to use assembler directives in a
Metrowerks Assembler. Some directives are not available in every
assembler. The directive’s description notes which assemblers sup-
port the directive.

By default, directives must begin with a period (.). However if you
turn off the Directives begin with '.' option in the Assembler set-
tings panel, you can leave out the period.

The rest of this chapter lists the directives, arranged in these catego-
ries:

• Macro Directives

• Conditional Preprocessor Directives

• Section Control Directives

• Scope Control Directives

• Symbol Definition Directives

• Data Declaration Directives

• Assembler Control Directives

• Debugging Directives
SH Assembler Reference ASM–29

Using Direct ives
Macro Directives
Macro Directives
The following directives let you create macros. For more informa-
tions on macros, see “Using Macros Overview.”

• macro –begins a macro definition.

• endm–ends a macro definition.

• mexit –terminates a macro’s expansion before it reaches
endm.

macro

label .macro [param1, param2 . . .]

Begins the definition of a macro named label, with the specified pa-
rameters.

endm

.endm

Ends a macro definition.

mexit

.mexit

Ends the expansion of macro before it reaches .endm .
ASM–30 SH Assembler Reference

Using Direct ives
Conditional Preprocessor Directives
Conditional Preprocessor Directives
Conditional directives create a conditional assembly block. If you
wrap some code with .ifdef and .endif you can control
whether that code is included in compilation. This is useful for mak-
ing several different builds that are slightly different.

You must use conditional directives together to form a complete
block. The Metrowerks Assemblers also contain several variations
of .if to make it easier to make blocks that test strings for equality,
test whether a symbol is defined, and more. Here are the directives.

• if –begins conditional assembly and uses any Boolean ex-
pression.

• ifdef –begins conditional assembly and tests whether a
symbol is defined.

• ifndef –begins conditional assembly and tests whether a
symbol is not defined.

• ifc –begins conditional assembly and tests whether two
strings are equal.

• ifnc –begins conditional assembly and tests whether two
strings are not equal.

• endif –ends conditional assembly.

• elseif –marks another test to make, if the first test returned
false.

• elif –marks another test to make, if the first test returned
false. This is just like elseif .

• else –marks statements to execute if none of the tests suc-
ceeded.

• ifeq ifne iflt ifle ifgt ifge –are additional condi-
tional assembly statements for backwards compatibility.
SH Assembler Reference ASM–31

Using Direct ives
Conditional Preprocessor Directives
if

.if bool-expr

Specifies the beginning of conditional assembly, where bool-expr is a
boolean expression. If bool-expr is true, the assembler processes the
statements associated with the .if directive. If bool-expr is false, the
assembler skips the statements associated with the .if directive.

Each .if directive must have a matching .endif directive.

NOTE: A boolean expression is a special type of arithmetic ex-
pressions. A boolean expression that evaluates to zero result is in-
terpreted as false, and a boolean expression that evaluates to a
nonzero result is interpreted as true. For more information on ex-
pressions, see “Expression Syntax.”

ifdef

.ifdef symbol

Specifies the beginning of conditional assembly, where symbol is a
the name of a symbol that has been defined. If name has been previ-
ously defined, the assembler processes the statements associated
with the .ifdef directive. If name has not been previously defined,
the assembler skips the statements associated with the .ifdef di-
rective.

Each .ifdef directive must have a matching .endif directive.

ifndef

.ifndef symbol

Specifies the beginning of conditional assembly, where symbol is the
name of a symbol that has not been defined. If name has not been
previously defined, the assembler processes the statements associ-
ated with the .ifndef directive. If name has been previously de-
fined, the assembler skips the statements associated with the .ifn-
def directive.
ASM–32 SH Assembler Reference

Using Direct ives
Conditional Preprocessor Directives
Each .ifndef directive must have a matching .endif directive.

ifc

.ifc string1, string2

Specifies the beginning of conditional assembly, where string1 and
string2 are two strings that are equal. The comparison is case-sensi-
tive. If the strings are equal, the assembler processes the statements
associated with the .ifc directive. If the strings are not equal, the
assembler skips the statements associated with the .ifc directive.

Each .ifc directive must have a matching .endif directive.

ifnc

.ifnc string1, string2

Specifies the beginning of conditional assembly, where string1 and
string2 are two strings that are not equal. The comparison is case-
sensitive. If the strings are not equal, the assembler processes the
statements associated with the .ifnc directive. If the strings are
equal, the assembler skips the statements associated with the .ifnc
directive.

Each .ifnc directive must have a matching .endif directive.

endif

.endif

Marks the end of conditional assembly. Each type of .if directive
must have a matching .endif directive.

elseif

.elseif bool-expr

Marks the beginning of conditional assembly statements to be pro-
cessed if the Boolean expression for an .if directive and the pre-
ceding .elseif directives are false, but the bool-expr in this
.elseif statement is true. An .if directive does not need an
.elseif directive.
SH Assembler Reference ASM–33

Using Direct ives
Conditional Preprocessor Directives
If the Boolean expression for an .if directive is false, the assembler
skips the statements associated with the .if directive and evaluates
the Boolean expression for the first .elseif directive. If that Bool-
ean expression is true, the assembler processes the statements asso-
ciated with that .elseif statement. Otherwise, it evaluates the
Boolean expression in the next .elseif statement. The assembler
continues evaluating the Boolean expressions in succeeding
.elseif statement until it comes to a Boolean expression that eval-
uates to true. If none of the .elseif directives in the .if -.endif
block have a Boolean expression that evaluates to true, the assem-
bler processes the statements associated with the block’s .else
statement, if there is one.

elif

.elif bool-expr

This is the same as elseif.

else

.else

Marks the beginning of conditional assembly statements to be pro-
cessed if the Boolean expression for an .if directive and its associ-
ated .elseif directives are false. An .if directive does not need
an .else directive.

ifeq ifne iflt ifle ifgt ifge

.ifeq ; if equal

.ifne ; if not equal

.iflt ; if less than

.ifle ; if less than or equal

.ifgt ; if greater than

.ifge ; if greater than or equal

For compatibility with other assemblers, these directives are also
supported.
ASM–34 SH Assembler Reference

Using Direct ives
Section Control Directives
Section Control Directives
These directives mark the different sections of an assembly file. All
are available in all current Metrowerks Assemblers, but some future
assemblers may not support all of them.

• text –specifies an executable code section.

• data –specifies an initialized read-write data section.

• rodata –specifies an initialized read-only data section.

• bss –specifies an uninitialized read-write data section.

• sdata –specifies a small initialized read-write data section.

• sdata2 –specifies small initialized read-only data section.

• sbss –specifies a small uninitialized read-write data section.

• debug –specifies a debug section.

• previous –reverts to the previous section.

• offset –defines a record.

• section –specifies a section of any type.

text

.text

Specifies an executable code section. This must be in front of the ac-
tual code in a file.

data

.data

Specifies an initialized read-write data section.

rodata

.rodata

Specifies an initialized read-only data section.
SH Assembler Reference ASM–35

Using Direct ives
Section Control Directives
bss

.bss

Specifies an uninitialized read-write data section.

sdata

.sdata

Specifies a small initialized read-write data section.

sdata2

.sdata2

Specifies a small initialized read-only data section.

sbss

.sbss

Specifies a small uninitialized read-write data section.

debug

.debug

Specifies a debug section. If you enable the debugger, the assembler
automatically generates some debug information for your project.
However, you use special directives in the debug section that pro-
vide the debugger with more detailed information. For more infor-
mation on the debug directives, see “Debugging Directives.”

previous

.previous

Reverts to the previous section. This switch toggles between the cur-
rent section and the previous section.
ASM–36 SH Assembler Reference

Using Direct ives
Section Control Directives
offset

.offset [expr]

Defines a record. The optional parameter expr specifies the initial lo-
cation counter. The record definition extends until the start of the
next section. Within a record, you can use only the following direc-
tives:

The data declaration directives (like .byte and .short) don’t allo-
cate any storage. They just update the location counter.

Here is a sample record definition:

Listing 4.1 A record definition with the offset directive

.offset
top: .short 0
left: .short 0
bottom: .short 0
right: .short 0
rectSize .equ *

section

.section name [, alignment],[type],[flags]

Specifies a section of name name with type type. Use this general
form to create arbitrary relocatable sections, including sections to be
loaded at an absolute address. These are the arguments to .section.
Note that only the name argument is required.

• The name is the name of the section. It can be an symbol.

• The type and flags are both numeric, being the ELF section
type/flags. The defaults for these fields are the type and flags

.equ .set .textequ

.align .org .space

.byte .short .long

.space .ascii .asciz

.float .double
SH Assembler Reference ASM–37

Using Direct ives
Section Control Directives
for the code section. The following example specifies a sec-
tion named vector with an alignment of 4 bytes:

.section vector,4

The possible ELF section types are defined in Table 4.1, and
the possible ELF section flags are defined in Table 4.2.

Table 4.1 ELF Section Types

Type Name

0 NULL

1 PROGBITS

2 SYMTAB

3 STRTAB

4 RELA

5 HASH

6 DYNAMIC

7 NOTE

8 NOBITS

9 REL

10 SHLIB

11 DYNSYM
ASM–38 SH Assembler Reference

Using Direct ives
Section Control Directives
Table 4.2 ELF Section Flags

Flag Name

0x00000001 WRITE

0x00000002 ALLOC

0x00000004 EXECINSTR

0xF0000000 MASKPROC

0x10000000 GPREL
SH Assembler Reference ASM–39

Using Direct ives
Scope Control Directives
Scope Control Directives
The Metrowerks Assemblers provide directives that let you use
equates outside the files they’re defined in. Equates are symbols de-
clared with .set or .equ , described in “Symbol Definition Direc-
tives”. These are the directives:

• global –declares that equates are exported.

• extern –declares that equates are imported.

• public –declares that equates are public.

global

.global equate [, equate]…

Declares that the listed equates are exported, that is, available to
other files. Equates are symbols declared with .set or .equ , de-
scribed in “Symbol Definition Directives”.

Use the .extern or .public directive to reference the symbols in
another file.

You cannot export labels.

extern

.extern equate [, equate]…

Declares that the listed equates are imported: available to this file
but defined in another file. Equates are symbols declared with .set
or .equ , described in “Symbol Definition Directives”.

Use the .global or .public directive to export the symbols from
another file.

You cannot import labels.

public

.public equate [, equate]…

Declares that the listed equates are public. If the equates are already
defined, the assembler exports them, that is, makes them available
ASM–40 SH Assembler Reference

Using Direct ives
Symbol Definition Directives
to other files. If the equates are not already defined, the assembler
imports them, that is, makes them available to this file but defined
in another file

Equates are symbols declared with .set or .equ , described in
“Symbol Definition Directives”. You cannot import labels.

Symbol Definition Directives
The following directives let you create equates:

• set –temporarily assigns a value to a symbol.

• equal sign (=)–temporarily assigns a value to a symbol and is
available for compatibility with other assemblers.

• equ–permanently assigns a value to a symbol.

• textequ –defines a symbol that is substituted for some arbi-
trary text.

set

symbol .set expr

Temporarily assigns the value expr to the symbol equate. You may
change equate’s value later. The symbol equate appears in the label
field of the line, and the value expr appears in the operand field.

equal sign (=)

symbol = expr

Temporarily assigns the value expr to the symbol symbol. You may
change symbol’s value later. The symbol symbol appears in the label
field of the line, and the value expr appears in the operand field.

This directive is equivalent to .set , and is available only for com-
patibility with other company’s assemblers. Some future assemblers
may not support this directive.
SH Assembler Reference ASM–41

Using Direct ives
Symbol Definition Directives
equ

symbol .equ expr

Permanently assigns the value expr to the symbol symbol. You can-
not change symbol’s value. The symbol symbol appears in the label
field of the line, and the value expr appears in the operand field.

textequ

symbol .textequ " string"

Defines a symbol symbol that is substituted with any arbitrary text
string. This directive helps you port existing code by letting you
give new names to machine instructions, directives, and operands.

Whenever you use symbol, the assembler replaces it with string be-
fore performing any other processing on that source line. Here are
some useful examples.

Listing 4.2 Some textequ examples

dc.b .textequ ".byte"
endc .textequ ".endif"
ASM–42 SH Assembler Reference

Using Direct ives
Data Declaration Directives
Data Declaration Directives
The Metrowerks Assembler has directives that initialize data. They
are split into three sections:

• “Integer type declarations”

– byte –declares an initialized block of bytes.

– short –declares an initialized block of 16-bit short inte-
gers.

– long –declares an initialized block of 32-bit short integers.

– space –declares a block of zero-initialized bytes.

• “String type declarations”

– ascii –declares a block of storage for a string.

– asciz –declares a zero-terminated block of storage for a
string.

• “Floating point type declarations”

– float –declares an initialized block of 32-bit floating-
point numbers.

– double –declares an initialized block of 64-bit floating-
point numbers.

Integer type declarations

These directives initialize blocks of integer data:

• byte –declares an initialized block of bytes.

• short –declares an initialized block of 16-bit short integers.

• long –declares an initialized block of 32-bit short integers.

• space –declares a block of zero-initialized bytes.

• fill –declares a block of zero-initialized bytes.
SH Assembler Reference ASM–43

Using Direct ives
Data Declaration Directives
byte

[label] .byte expr[, expr]…

Declares an initialized block of bytes with the name label. The as-
sembler allocates one 8-bit byte for each expression expr. Each ex-
pression must fit in the specified size.

short

[label] .short expr[, expr]…

Declares an initialized block of 16-bit short integers with the name
label. The assembler allocates 16 bits for each expression expr. Each
expression must fit in the specified size.

long

[label] .long expr[, expr]…

Declares an initialized block of 32-bit short integers with the name
label. The assembler allocates 32 bits for each expression expr. Each
expression must fit in the specified size.

space

[label] .space expr

Declares a block of zero-initialized bytes with the name label. The as-
sembler allocates a block expr bytes long and initializes each byte to
zero.

fill

[label] .fill expr

Declares a block of zero-initialized bytes with the name label. The as-
sembler allocates a block expr bytes long and initializes each byte to
zero.
ASM–44 SH Assembler Reference

Using Direct ives
Data Declaration Directives
String type declarations

These directives initialize blocks of character data:

• ascii –declares a block of storage for a string.

• asciz –declares a zero-terminated block of storage for a
string.

Note that a string can also contain any of these escape sequences.

Table 4.3 Escape sequences

ascii

[label] .ascii " string"

Declares a block of storage for the string string with the name label.
The assembler allocates an 8-bit byte for each character in string.

asciz

[label] .asciz " string"

Declares a zero-terminated block of storage for the string string with
the name label. The assembler allocates an 8-bit byte for each charac-
ter in string, and then allocates an extra block at the end that’s ini-
tialized to zero.

Sequence Description

\b Backspace

\n Line feed (ASCII character 10)

\r Return (ASCII character 13)

\t Tab

\" Double quote

\\ Backslash

\nnn Octal value of \nnn
SH Assembler Reference ASM–45

Using Direct ives
Data Declaration Directives
Floating point type declarations

These directives initialize blocks of floating-point data:

• float –declares an initialized block of 32-bit floating-point
numbers.

• double –declares an initialized block of 64-bit floating-point
numbers.

float

[label] .float value[, value]…

Declares an initialized block of 32-bit floating-point numbers with
the name label. The assembler allocates 32 bits for each value value.
Each value must fit in the specified size.

double

[label] .double value[, value]…

Declares an initialized block of 64-bit floating-point numbers with
the name label. The assembler allocates 64 bits for each value value.
Each value must fit in the specified size.
ASM–46 SH Assembler Reference

Using Direct ives
Assembler Control Directives
Assembler Control Directives
These directives let you control how the assembler emits code:

• align –aligns the location counter to the next multiple of an
expression.

• endian –specifies the byte ordering for the target processor.

• error –prints an error message.

• include –causes the assembler to switch input to another
file.

• pragma –allows you to enable and disable certain code gener-
ation capabilities.

• org –changes the location counter.

• option –sets various assembler options.

align

.align expr

Aligns the location counter to the next multiple of the expression
expr. The expression expr must be a power of 2, such as 2, 4, 8, 16, or
32.

endian

.endian big | little

Specifies the byte ordering for the target processor. You can use this
directive only on processors that let you change the byte ordering.

error

.error " error"

Prints error to the Errors & Warnings window in the CodeWarrior
IDE.
SH Assembler Reference ASM–47

Using Direct ives
Assembler Control Directives
include

.include filename

Causes the assembler to switch input to filename. The assembler
takes input from the specified file until the end of the file is reached.
Then the assembler continues to take input from the assembly state-
ment line that follows the .include directive.

The file specified by filename can have an .include directive for an-
other file.

pragma

.pragma pragma-type setting

Tells the assembler to assemble the code using a given pragma set-
ting. Refer to the C Compiler Reference for a list of relevant pragma
statements.

org

.org expr

Changes the location counter to expr. The addresses of the following
assembly statements start at the new value of the location counter.
The value of expr must be greater than the current value of the loca-
tion counter.

option

.option keyword setting

Sets the assembler options, as described in the table below. Specify-
ing reset sets the option to it’s previous setting. Using reset a second
time resets the option to the setting before the current setting.
ASM–48 SH Assembler Reference

Using Direct ives
Assembler Control Directives
Table 4.4 Option keywords

This keyword Does this

alignment off|on|reset Controls whether data is aligned on natural bound-
ary. This does not correspond any option in the set-
tings panel.

branchsize 8|16|32 Specifies the size of forward branch displacement.
This is allowed only for the x86 and 68K assemblers.
This does not correspond any option in the settings
panel

colon off|on|reset Specifies whether labels must end with a colon (:). If
it’s on, every label needs a colon. If it’s off , a labels
doesn’t need a colon if it starts in the first column.
This corresponds to the Labels must end with a ':'
option, described in “Labels must end with ':'.”

space off|on|reset Specifies whether space allowed in operand field. If
it’s on, operand fields may contain spaces. If it’s
off , a space in the operand field signals the start of
a comment. This corresponds to the Allow space in
operand field option, described in “Allow space in
operand field.”

period off|on|reset Specifies whether a period (.) is required in directive
names. If it’s on, each directive must start with a pe-
riod. If it’s off, directives don’t need to start with pe-
riods. This corresponds to the Directives begin
with '.' option, described in “Directives begin with
'.'.”

case off|on|reset Specifies where identifiers are case sensitive. If it’s
on, identifiers are case sensitive. If it’s off, identifiers
aren’t case sensitive. This corresponds to the Case
sensitive identifiers option, described in “Case sen-
sitive identifiers.”

no_at_macros off | on If true, don't allow macros which use $AT. If false,
warn if user uses $AT.
SH Assembler Reference ASM–49

Using Direct ives
Assembler Control Directives
You can prevent the assembler from inserting a NOP (no operation)
instruction after jumps and branches, and instead substitute the in-
struction of your choice. To do this, specify .option reorder
off in the standalone assembler.

The standalone assembler inserts the NOP by default. However, in
the inline assembler, NOP won’t be inserted for you.
ASM–50 SH Assembler Reference

Using Direct ives
Debugging Directives
Debugging Directives
These directives are allowed only in the .debug section of an as-
sembly file. If you enable the debugger, the assembler automatically
generates some debug information for your project. However, you
can use these directives in the debug section to provide the debug-
ger with more detailed information.

• file –writes debugging information to a specified output
file.

• function –specifies information on a subroutine.

• line –specifies the absolute line number for the following
code.

• size –specifies the length of a symbol.

• type –specifies whether a symbol is a function or object.

file

.file " filename"

Writes the debugging information for this file into filename. If this
option isn’t used, the debugging information is written to the
project file.

function

.function " func", label, length

Specifies that the subroutine func begins at label and is length bytes
long.

line

.line number

Specifies the absolute line number in the current source file which
generated the following code or data. The first line in the file is
numbered 1.
SH Assembler Reference ASM–51

Using Direct ives
Debugging Directives
size

.size symbol, expr

Specifies that symbol is of expr bytes long.

type

.type symbol, type

Specifies that symbol is of type type, where type can be either
@function or @object .
ASM–52 SH Assembler Reference

5
SH Assembler
Settings
This chapter describes the options you can set for the Metrowerks
Assemblers.

Assembler Settings Overview
There are several different assemblers available, one for each target
processor family. Each assembler has several options you control
through a settings panel. To modify the settings for an assembler,
choose Project Settings on the Edit menu. In the resulting dialog
box, select the name of the assembler to see its settings panel.

Figure 5.1 Assembler settings panel for SH Assembler
SH Assembler Reference ASM–53

SH Assembler Sett ings
The Assembler Settings Panel
All of the settings panels are very similar to that shown in Figure
5.1, which shows the SH Assembler panel. The Source format sec-
tion is the same for all.

The Assembler Settings Panel
The individual settings available to you are:

• Labels must end with ':'

• Directives begin with '.'

• Case sensitive identifiers

• Allow space in operand field

• Generate listing file

• Prefix file

Labels must end with ':'

The Labels must end with ':' option lets you choose whether labels
must end in a colon (:). If this option is on, a label must ends in a
colon (:) and can begin in any column. If this option is off, a symbol
is a label if it starts in column 1 or if it ends with a colon (:). This op-
tion is especially useful if you’re porting existing code that doesn’t
follow this convention. For more information on labels, “Symbol
Syntax.”

This option is on by default. It corresponds to the colon parameter
of the .option directive, described in “option.”

Directives begin with '.'

The Directives begin with '.' option lets you choose whether you
must put a period at the beginning of each directive name. If this
option is on, a directive must begin with a period (.). If you turn this
option off, you can leave out the period. For more information on
directives, see “Using Directives Overview.”

This option is on by default. It corresponds to the period parame-
ter of the .option directive, described in “option.”
ASM–54 SH Assembler Reference

SH Assembler Sett ings
The Assembler Settings Panel
Case sensitive identifiers

The Case sensitive identifiers option lets you choose whether sym-
bols are case-sensitive. If the option is on, symbols are case sensi-
tive, so SYM1, sym1, and Sym1 are three different symbols, for ex-
ample. If the option is off, symbols are not case-sensitive, so SYM1,
sym1, and Sym1 are the same symbol, for example. For more infor-
mation on symbols, see “Symbol Syntax.”

Note that instruction, directive, and macro names are always case
insensitive, regardless of this option’s setting.

This option is on by default. It corresponds to the case parameter
of the .option directive, described in “option.”

Allow space in operand field

The Allow space in operand option lets you choose if you can start
a comment with a space in the operand field. If you turn this option
on, spaces in the operand field are allowed. If you turn off this op-
tion, it ignores any text between a space character in the operand
field and the end of the line. For more information on comments,
see “Statement Syntax.”

This option is on by default. It corresponds to the space parameter
of the .option directive, described in “option.”

Generate listing file

The Generate listing file option creates a text file that lets you com-
pare your source code with the machine code the assembler pro-
duced. If you turn this option on, it creates a listing file using the
source name and ‘.list ’. For example, test.asm becomes
test.asm.list . If you turn this option off, it doesn’t create a list-
ing file.

This option is off by default.

Prefix file

The Prefix file field lets you specify a file that the assembler pro-
cesses before every assembly file in your project. It’s as though you
SH Assembler Reference ASM–55

SH Assembler Sett ings
The Assembler Settings Panel
put the same .include directive at the beginning of every assembly
file.

This field is blank by default.
ASM–56 SH Assembler Reference

Index
Symbols
= (equal sign) symbol definition directive 41
@ (unique label symbol) 25
@ symbol 11

A
align assembler control directive 47
alignment keyword 49
Allow space in operand field 9
Alternate operators 18
ascii data declarative directive 45
asciz data declarative directive 45
Assembler Control Directives

align 47
endian 47
error 47
include 48
option 48
org 48
pragma 48

assembler control directives 47–49
at-sign (@) 10

B
Binary operators 17
branchsize keyword 49
byte data declarative directive 44

C
case keyword 49
Case sensitive identifiers 9, 49, 55
Character Constants 15
colon keyword 49
Comments statement syntax 8
Conditional Directives

elif 34
else 34
elseif 33
endif 33
if 32
ifc 33

ifdef 32
ifeq 34
ifge 34
ifgt 34
ifle 34
iflt 34
ifnc 33
ifndef 32
ifne 34

conditional directives 31–34

D
Data Declarative Directives

ascii 45
asciz 45
byte 44
double 46
fill 44
float 46
long 44
short 44
space 44

data declarative directives 43–46
data section control directive 35
debug 20
debug section control directive 36
Debugging directives

file 51
function 51
line 51
size 52
type 52

debugging directives 51–52
defining macros 23–27
Directives begin with '.' 29, 49, 54
double data declarative directive 46

E
ELF 37
elif conditional directive 34
else conditional directive 34
elseif conditional directive 33
endian assembler control directive 47
SH Assembler Reference ASM–57

Index
endif conditional directive 33
endm directive 30
equ symbol definition directive 42
equate 9
error assembler control directive 47
extern 12
extern scope control directive 40

F
file debugging directive 51
fill data declarative directive 44
float data declarative directive 46
Floating Point Constants 15
forward equate 10
forward equates 19
function debugging directive 51

G
Generate listing file 55
global 10, 11
global equate 10
global scope control directive 40

I
if conditional directive 32
ifc conditional directive 33
ifdef conditional directive 32
ifeq conditional directive 34
ifge conditional directive 34
ifgt conditional directive 34
ifle conditional directive 34
iflt conditional directive 34
ifnc conditional directive 33
ifndef conditional directive 32
ifne conditional directive 34
include assembler control directive 48
Integer Constants 14
invoking macros 27–??

L
label 8, 9
Label statement syntax 8

Labels must end with '
' 8, 54

Labels must end with a '
' 49

labels, creating unique 25–??

line debugging directive 51
literal 6
local label 10

label, local 10
long data declarative directive 44

M
macro body 24
macro definition 23
macro directive 30
macro directives 30
metasymbol 6
mexit directive 30

N
name 24

O
offset section control directive 37
Operands statement syntax 8
Operation statement syntax 8
option 20
option assembler control directive 48
Option keywords

alignment 49
branchsize 49
case 49
colon 49
period 49
space 49

org assembler control directive 48

P
period keyword 49
pragma assembler control directive 48
Prefix file 55
previous section control directive 36
pss section control directive 36
ASM–58 SH Assembler Reference

Index
public 10, 12
public scope control directive 40

R
rodata section control directive 35

S
sbss section control directive 36
Scope Control Directives

extern 40
global 40
public 40

scope control directives 40–41
sdata section control directive 36
sdata2 section control directive 36
Section Control Directives

data 35
debug 36
offset 37
previous 36
pss 36
rodata 35
sbss 36
sdata 36
sdata2 36
section 37
text 35

section control directives 35–38
section section control directive 37
set symbol definition directive 41
SH Assembler panel 54
short data declarative directive 44
size debugging directive 52
space data declarative directive 44
space keyword 49
symbol 9
Symbol Definition Directives

= (equal sign) 41
equ 42
set 41
textequ 42

symbol definition directives 41–42
symbol scope 10–13
syntax

Comments 8
Label 8
Operands 8
Operation 8

syntax, constant 14–16
syntax, expression 16–19
syntax, forward equate 19–??

syntax, statement 7–9
syntax, symbol 9

T
text section control directive 35
textequ symbol definition directive 42
type debugging directive 52

U
Unary operators 18
SH Assembler Reference ASM–59

Index
ASM–60 SH Assembler Reference

CodeWarrior

SH Assembler Reference

Credits

writing lead: Roger Wong

other writers: BitHead, John Roseborough, Jeff Mattson,
L. Frank Turovich

engineering: Matt Cole

frontline warriors: Jim Trudeau, Eric Clapton

Guide to CodeWarrior Documentation

CodeWarrior documentation is modular, like the underlying tools. There are manuals
for the core tools, languages, libraries, and targets. The exact documentation provided
with any CodeWarrior product is tailored to the tools included with the product. Your
product will not have every manual listed here. However, you will probably have addi-
tional manuals (not listed here) for utilities or other software specific to your product.

Core Documentation

IDE User Guide How to use the CodeWarrior IDE

CodeWarrior Core Tutorials Step-by-step introduction to IDE components

Language/Compiler Documentation

C Compilers Reference Information on the C and C++ compilers

Pascal Compilers Reference Information on the Pascal and Object Pascal compilers

Pascal Language Reference The Metrowerks implementation of ANS Pascal

SH Assembler Guide Stand-alone assembler manual for SH processors

Command-Line Reference Command-line options for CodeWarrior compilers

Library Documentation

MSL C Reference Function reference for the Metrowerks standard C library

MSL C++ Reference Function reference for the Metrowerks standard C++ library

Pascal Library Reference Function reference for the Metrowerks ANS Pascal library

The PowerPlant Book Guide to the Metrowerks application framework for Mac OS

PowerPlant Advanced Topics Advanced topics in PowerPlant programming for Mac OS

Targeting Manuals

Targeting Java How to use CodeWarrior to program for the Java virtual machine

Targeting Mac How to use CodeWarrior to program for Mac OS

Targeting MIPS How to use CodeWarrior to program for MIPS embedded processors

Targeting Palm How to use CodeWarrior to program for Palm OS

Targeting PlayStation How to use CodeWarrior to program for the PlayStation game console

Targeting PowerPC Embedded Systems How to use CodeWarrior to program for PPC embedded processors

Targeting Windows How to use CodeWarrior to program for Windows 95/98/NT

	Introduction
	Overview of the Assembler Manual
	What Are the Metrowerks Assemblers
	Conventions Used in This Manual
	Where to Learn More

	Assembler Syntax
	Assembler Syntax Overview
	Statement Syntax
	Symbol Syntax
	Symbol Scope
	Local Labels
	Global Equates
	Relocatable Labels

	Constant Syntax
	Integer Constants
	Floating Point Constants
	Character Constants

	Expression Syntax
	Forward Equate Syntax
	Data Alignment

	Using Macros
	Using Macros Overview
	Defining Macros
	Macro Definition Syntax
	Using Macro Arguments
	Creating Unique Labels
	Referring to the Number of Arguments

	Invoking Macros

	Using Directives
	Using Directives Overview
	Macro Directives
	Conditional Preprocessor Directives
	Section Control Directives
	Scope Control Directives
	Symbol Definition Directives
	Data Declaration Directives
	Integer type declarations
	String type declarations
	Floating point type declarations

	Assembler Control Directives
	Debugging Directives

	SH Assembler Settings
	Assembler Settings Overview
	The Assembler Settings Panel

	Index

