Game Developers

Quick Start

Guide



Introduction

The purpose of this document is to explain very briefly how to add speech recognition to a game
using the ASR1600 C/API'. There are several game types that could be extended with this
technology; such as adventures, board games, simulation games, RPG’s... For example, imagine
we have an adventure game “X”". In this kind of games the player can perform several actions,
like picking up objects, talk to persons, use objects and many more. Common interfaces to
access the actions are menus, with a gamepad as controlling device. We could for instance allow
the user to formulate the action instead of just pushing buttons to navigate through a menu
structure.

Note that this document will not tell you how to write games, | will only try to clarify some
functions needed to enable speech recognition in your application.

The Game

Initialization

First, to enable the speech recognition we need to initialize the API. To do this, We need to
include the header file and call the function CasrAPIInit.

#include “ASR1600.h”

ERRORID err;
HAPI hApi;

COSCALLBACKS OsCallBacks = {

mCBMALLOC,

mCBFREE,

mCBREALLOC,

mCBGETCURTASK, /* Get ID of current task. Only
useful in multitasking environments
*/

mCBGETCURTHREAD, /* Get ID of current thread. Only

useful in multithreading
environments */
MCBCREATECRITICALSECTION,
mCBDELETECRITICALSECTION,
MCBENTERCRITICALSECTION,
mCBLEAVECRITICALSECT ION

! This document does not apply to the Macro API on top of the Consumer API.

Copyright 1999 LERNOUT & HAUSPIE SPEECH PRODUCTS® NV Page 2 of 9
All Rights Reserved



/* Initialize API */

DWORD dwApiUserData = 0;

err = CasrAPlInit(&0sCallbacks, dwApiUserData, &hApi);
if (err!=ERR_SUCCESS) HaltOnError();

The structure OsCal 1Backs contains addresses of functions for platform specific operations, for
example allocation of memory.

The parameter dwApiUserData is intended for the address of the encapsulating class if there is
one. Since we do not use it here it may be zero. The parameter hApi contains a handle to the
instance we created by calling this function. It might be wise to make this a global variable, as we
are going to need this handle in most API function calls.

Language Data

The next step is to load the language data. Our adventure game will run in one language only, so
we could load and activate the language information directly after the initialization of the API.

HDATA hData;

char* pData;

ReadlLanguageData(pData) ; /* Load language data */
BOOL IsPermanent = TRUE;

err = CasrimportData(hApi, (PDATA) pData, IsPermanent, &hData)
if (err!=ERR_SUCCESS) HaltOnError();

The function ReadLanguageData will allocate the buffer and fill it with the language model (a
.LNG file on the GDFS). Afterwards, we pass a pointer to this buffer to the CasrImportData
function. These language models will typically take over 500KB of memory, so you probably want
to load this at the beginning of the application, unless there is a long period where ASR will not be
used.

Since an application has to copy the language data from GDFS to RAM, the IsPermanent
parameter can always be TRUE. If you set the IsPermanent parameter to FALSE, the engine
will make an internal copy of the buffer; this is only useful when copying from slow ROM to faster
RAM. When you set the value of this parameter to TRUE, you should not free the buffer as
long as hData, containing the handle of the language data, is valid.

The next step is activating the engine. We need to call CasrOpen, and afterwards we activate the
language data we have imported earlier.

Copyright 1999 LERNOUT & HAUSPIE SPEECH PRODUCTS® NV Page 3 of 9
All Rights Reserved



HASR hAsr;

CRECOGCALLBACKS RecogCallBacks =

mCBRESULT, /* Result notification */

mCBSTATE, /* State notification */

mCBTRAIN, /* Userword training notification */
mCBABNORM, /* Abnormal Condition notification */
mCBAGC, /* Request to change the analog gain */
MCBASKCURRENTGAIN /* Returns the current gain setting */

/* Open a recognition engine */

DWORD dwUserData = O;

err = CasrOpen(hApi, &RecogCallBacks, dwUserData, &hAsr);
if (err!=ERR_SUCCESS) HaltOnError();

/* The engine is now in BOOT state */

/* Activate the language on the engine */
err = CasrActivateData(hAsr, hData);
if (err!=ERR_SUCCESS) HaltOnError();
/* The engine is now in DATAREADY state */

Again we need to pass a structure with addresses of functions. In this case the functions are
mainly notification functions, with the exception of the AGC functions because these are again
platform specific and need to be implemented in the application.

In this example we will not use dwUserData (hence the 0 value). Typically this argument is used
to pass an address of a structure linked to an engine.

The callbacks will return the structure USERDATA containing both user data DWORDS
(dwApiUserData and dwUserData).

The parameter hAsr is filled with a handle to the engine and will be needed in functions that
apply to the engine. Again it might be useful to make this a global variable.

The Context

A context is a compiled grammar which represents all sentences (syntax + vocabulary) that can
be recognized®.

Now we are ready for the real work. The next step is to decide how we are going to select the
words we want to recognize (the context). In an adventure game this is highly dependent on the
situation in the game. For instance, at one point in the game there is a door sign that can be read,
so we will need to have a command like “read sign” in the context. In the next scene there might
be no sign, so the command “read sign” would be completely obsolete. Since the API only allows
one context to be active, we could make different contexts for each situation. But adventure
games contain a high number of these situations, so this might be a far too complex solution. An

? Other documents describe in more detail what contexts and language files are (see
adt_ug_203.pdf)

Copyright 1999 LERNOUT & HAUSPIE SPEECH PRODUCTS® NV Page 4 of 9
All Rights Reserved



alternative would be to put all commands in the same context, and activate only the needed ones
using the CasrSetActiveWords API function. A second alternative is to make a context for
each command and merge them at run time using CasrMergeContextsAndClasses. This is
less interesting in this situation, and | will use the word enabling/disabling option in this sample.

Of course, there is also the possibility to combine the latter two, by making a few contexts, merge
them as needed and activate the needed words or commands.

HCONT hCont;

char* pCont;
ReadContextData(pCont) /* Load Context */

BOOL IsPermanent = TRUE;

err = CasrimportContext(hApi, (PCONT) pCont, IsPermanent, &hCont);
if (err!=ERR_SUCCESS) HaltOnError();

As you can see this is very similar to the import of the language model.

Now it is time to decide which words we are going to activate. Since we are going to use speech
as our main control “device”, we have to wait for a result to change the activated words.

#define WID_EXIT 1
#define WID_NEWGAME 2
#define WID_RESUMESAVED 3

CWORDID idWords[3] = { WID_EXIT, /* “EXit” */
WID_NEWGAME, /* “New Game” */
WID_RESUMESAVED };/* “Resume Saved” */

err = CasrSetActiveWords(hAsr, idWords, 3);
if (err!=ERR_SUCCESS) HaltOnError();
/* The engine is now in IDLE state */

You need to build an array of all the word ID’s you would like to activate. To find out what ID

belongs to a command in your context, you can use showctxinfo.exe, which is provided with the
SDK.

Copyright 1999 LERNOUT & HAUSPIE SPEECH PRODUCTS® NV Page 5 of 9
All Rights Reserved



The Recognition Loop

Now the engine is in IDLE mode, which is the first state of the recognition cycle. We have to start
the process by calling CasrStart, to put the engine in the SLEEP state. When begin of speech
is detected the engine will go into RUN mode automatically. When begin of speech is disabled,
the engine will go into RUN mode directly, skipping the SLEEP state. When a trailing silence is
detected, or when CasrStop is called, the engine will go into the RECOVER state, notify the
result if there is one, and go back into IDLE mode.

In our game this means that if we want to wait for the response of the user, we call CasrStart,
walit for the result or IDLE state change notification and evaluate the input.

err = CasrStart(hAsr);
if (err!=ERR_SUCCESS) HaltOnError();
/* The engine is now in SLEEP state */

StartRecordingDevice();

unsigned char mCBSTATE(CASRSTATE State, PUSERDATA pDummy)
{
iT (State==CASR_RECOVER) {

StopRecordingDevice(); /* Stop the recording device iIn
the recover mode, to avoid buffer
overflow on long recover
calculations */

}

return O;

}

unsigned char mCBRESULT(CASRRESULT* pResult, PUSERDATA pDummy)
{

EvaluateResult(pResult);

return O;
}
void EvaluateResult(CASRRESULT* pResult)
{

it (IpResult) return;
if (pResult->iNbr==0) return;
SENTENCE* pSentence=pResult->pSentences+0;
/* For this simple example, we will parse based on first word
of the utterance */
CWORDID Id=pSentence->pWords[0]-pAlternatives[0].idWord;
it (1d==WID_NEWGAME) {
/* do stuff */

SetNewGameState(ST_NEWGAME); /* Game will reset */

Copyright 1999 LERNOUT & HAUSPIE SPEECH PRODUCTS® NV Page 6 of 9
All Rights Reserved



void StateNewGame() /* Called when game is making the transition */
{

/* Activate the new set of commands */

err = CasrSetActiveWords(hAsr, idWords, dwNbrWords);

if (err!=ERR_SUCCESS) HaltOnError();

err = CasrStart(hAsr);

ifT (err!=ERR_SUCCESS) HaltOnError();
/* The engine is now in SLEEP state */
StartRecordingDevice();

Feeding the engine
When the engine is in SLEEP or RUN mode, we have to supply recorded samples to the engine.

Most game programmers use some kind of loop which is called a few times per second (like the
vertical retrace loop). A good way is to supply newly recorded samples in this loop.

void FeedSamples(char* pSampleBuffer, int nSamples)

{
err = CasrAcquisition(hAsr, PCM_16 11KHZ, (PVOID)pSampBuffer,
nSamples*2);
if (err!=ERR_SUCCESS) HaltOnError();
ClearSampleBuffer(pSampBuffer) ;
}

There are a few considerations to make about the amount of bytes you want to feed to the
recognizer (nSamples). If the buffer is too small, an overflow might occur when the loop time is
long. For example, if you feed the buffer to the engine 60 times per second, the buffer needs to
be at least 368 bytes long because we sample 16bits 11025 times per second. Just to be on the
safe side, always make the buffer a bit bigger (e.g. 512 bytes) to avoid overflow.

Internally data is processed per 10 milliseconds. This means that when the recognizer receives
110 samples or 220 bytes it will start calculating (less data just gets queued).

The ASR engine itself is not realtime at all. This means that the speed at which data is fed is
totally irrelevant. This means that a buffer underrun cannot occur. By buffer underrun we mean
that preparing the buffer takes a longer time than the processing by the engine.

Buffer overrun is the other way round, the buffer is prepared, but the engine cannot process the
data fast enough. If you feed all the available data per vertical retrace, this cannot occur
(providing your WSSIP buffer is big enough.

Copyright 1999 LERNOUT & HAUSPIE SPEECH PRODUCTS® NV Page 7 of 9
All Rights Reserved



Closing the Engine

Finally, when the recognition engine is not needed anymore, calling a set of functions can close it.

// Deactivate language and context data
err = CasrActivateData(hAsr, NULL);

if (err!=ERR_SUCCESS) HaltOnError();

// Close the context
err = CasrCloseContext(hCont);

if (err!=ERR_SUCCESS) HaltOnError();

// Close the language data
err = CasrCloseData(hData);

if (err!=ERR_SUCCESS) HaltOnError();

// Close the recognition engine
err = CasrClose(hAsr);

if (err!=ERR_SUCCESS) HaltOnError();

// Close APl and free all resources
err = CasrAPIClose(hApi);

if (err!=ERR_SUCCESS) HaltOnError();

This is about all it takes. Note that the example code simplistically shows usage of the most
important C/API functions. Integrating this into a real game will require some more structured
code. This depends a lot on how the existing game code is like (C, C++ event handling). An
important remark is that all callback functions must be defined, some of them may be dummy
functions (doing not much more but always returning success) e.g. the multithreading callbacks
will probably never be needed. For a more complete explanation of all functions refer to the
ASR1600/C Low Level Specification for Sega’s DreamCast platform.

Copyright 1999 LERNOUT & HAUSPIE SPEECH PRODUCTS® NV Page 8 of 9
All Rights Reserved



File Types

e Lng: Language model file

These data files contain the language models. Per language (Japanese and American English) 2
files are provided. You have 8 bits and 4 bits compressed models This is the data that needs to
be given to the engine with the CasrimportData() function.

e Ctx: Binary context file

This file has an L&H proprietary binary format. It contains compiled grammar information and
phonetic information about the context. These files contain the data needed to be given to the
CasrimportContext() function. The .ctx data works with the 8bits and 4bits language data.

e Bnf: Context grammar specification file

These files have an L&H specific 'Bachus Naur Form' documented in adt_ug_203.pdf. Bnf's
should be converted to a compiled engine useable format with the LexTool or AsrBatchTool. The
LexTool is a part of the Development tools. AsrBatchTool is a commandline tool provided with the
Sega specific development tools.

e Wcl: Word & class string information file

File that contains string information for the classes and words in a context. This file is not useable
on the DreamCast platform and needs to be converted to a .wrd and .cls first.

e Wrd: Word string information file

Contains information about the character strings of the context words. The ASR1600/C V2 does
not use strings. The engine works with ID's (to reduce memory and complexity). This means that
the .ctx files do not contain the string information that is present in the .bnf. These .wrd files can
be used to associate the original strings to the id's returned by the engine. The ctxfuncs.c source
provided in this release shows how to use this fileformat. These files can be generated with the
convwcl tool of the \tools directory.

e Cls: Class string information file

Contains information about the character strings of the context classes. The same remarks as on
.wrd files apply.

Copyright 1999 LERNOUT & HAUSPIE SPEECH PRODUCTS® NV Page 9 of 9
All Rights Reserved



