
SH4 Debug Interface Guide

SH4 Debug Interface Guide

Cross Products Limited

Legal Notice
IMPORTANT

The information contained in this publication is subject to change without notice. This publication is supplied "as is" without warranty
of any kind, either express or implied, including but not limited to the implied warranties or conditions of merchantability or fitness for
a particular purpose. In no event shall Cross Products be liable for errors contained herein or for incidental or consequential damages,
including lost profits, in connection with the performance or use of this material whether based on warranty, contract, or other legal
theory.

This publication contains proprietary information which is protected by copyright. No part of this publication may be reproduced in any
form, or stored in a database or retrieval system, or transmitted or distributed in any form by any means, electronic, mechanical
photocopying, recording, or otherwise, without the prior permission of Cross Products Limited.

This equipment is Class A Information Technology Equipment (ITE) as defined in EN55022:1994.

Warning

This is a Class A product. In a domestic environment this product may cause radio interference in which case the
user may be required to take adequate measures.

NOTE: THIS EQUIPMENT HAS BEEN TESTED AND FOUND TO COMPLY WITH THE LIMITS FOR "CLASS A"
DIGITAL DEVICES, PURSUANT TO PART 15 OF THE FCC RULES. THESE LIMITS ARE DESIGNED TO PROVIDE
REASONABLE PROTECTION AGAINST HARMFUL INTERFERENCE WHEN THE EQUIPMENT IS OPERATED IN A
COMMERCIAL ENVIRONMENT. THIS EQUIPMENT GENERATES, USES, AND CAN RADIATE RADIO FREQUENCY
ENERGY AND, IF NOT INSTALLED AND USED IN ACCORDANCE WITH THE INSTRUCTION MANUAL, MAY CAUSE HARMFUL
INTERFERENCE TO RADIO COMMUNICATIONS. OPERATION OF THIS EQUIPMENT IN A RESIDENTIAL AREA IS LIKELY TO CAUSE
HARMFUL INTERFERENCE IN WHICH CASE THE USER WILL BE REQUIRED TO CORRECT THE INTERFERENCE AT HIS OWN EXPENSE.

CHANGES OR MODIFICATIONS NOT EXPRESSLY APPROVED BY CROSS PRODUCTS LTD. COULD VOID THE USER'S AUTHORITY TO
OPERATE THE EQUIPMENT.

SH4 Debug Interface Guide

Revision History

First release April 2000. CodeScape version 3.0.0

© 2000 Cross Products Limited. All rights reserved.
CodeScape is a registered trademark of Cross Products Limited in the United Kingdom and other countries. All other trademarks or
registered trademarks are the property of their respective owners.

�����������	
���
�
�
����������������������
�������������������

����������� �!!
�� ��"#!
$�	��%������ �!!
�� ��&!&

'''(��������(�(��
�%�������������)���*+	��������(�(��

�%����������
��������
+	��������(�(��

SH4 Debug Interface Guide

i

Contents
About this guide ...1

ASE and Extended debug stubs ...3
The ASE debug stub ..3
The Extended debug stub ...3
Functional differences of the ASE and Extended debug stubs4

Optimization of the stubs ...6
Exception handling in the ASE debug stub ...7
Exception handling in the Extended debug stub ..8

Debug stub cache usage ...8
Caching during BIOS calls ..8
Cache coherency for the 'Write Memory' command ...8

Interrupts and Exceptions ..11
Exception handling with or without a Boot ROM ..11

Halt or Resume after stub load ..11
Exceptions during debugging with a Boot ROM ...12
Exceptions during debugging without a Boot ROM ...13
Interrupts during debugging ..14
Caveats and limitations ..14

Use of the HBC registers ...14
Debugging exception handlers using CodeScape ..14
Performance loss when handling SH4 FPU exceptions15

Communications Channels ...17
About channels ..17

Channel access ...17
Channel designation ..18
Channel buffers ..18

Contents

ii

ASE BIOS services .. 19
Target channel access ...19

BIOS calls ...19
Interrupts ..20

Accessing ASE BIOS services ..20
Setup registers ...21
Results ...21
Error codes ...22

ASE BIOS calls ...23
Read byte, INCHR ..23
Write byte, OUTCHR ...24
Read buffer, RDBF ...25
Write buffer, WRBF ... 27
Read channel buffer status, RDSTAT ..28
Set and Read Channel Interrupts, CHISR ...29

Servicing buffers ...31
Interrupt control ..31
Polling ..33
Acknowledging receipt of a HUDI interrupt ..34
HUDI interrupt handler considerations ..35

CPDIAL Library Reference ... 37
Host channel access ..37

Connecting and disconnecting .. 37
Using DIAL ... 39

Calling a function ...39
CDial functions .. 40

Error codes ...40
CDial class definition ..41
InitializeDial ... 43
GetVersion ..44
SetTimeOut ...45
GetTimeOut ..46
FindNextDevice ...47
GetDeviceDetails ..48
ValidateDevice ...49
GetErrorText ... 50

SH4 Debug Interface Guide

iii

Connect ...51
Disconnect ..52
GetDialDebugMode ..53
SetDialDebugMode ..54

CDial::CDialChannelEx functions ..55
Typed channels ..55
CDialChannelEx class definition ..55
Reserve ..56
Release ...57
Validate ...58
DataReady ...59
Read ...60
Write ..61

CDial::CTypedChannelROEx functions ...62
CTypedChannelROEx class definition ...62
Reserve ..63
Release ...64
Validate ...65
DataReady ...66
Read ...67

CDial::CTypedChannelEx functions ..68
CTypedChannelEx class definition ..68
Write ..69

CDial::Console functions ..70
CDial::Console class definition ..70
Inquiry ...71
ProcessInquiryError ...74
Execute ..75
Suspend ...76
Resume ..77
ReadMemory ..78
WriteMemory ...79
ReadContext ...80
WriteContext ..82
ReadConfig ...84
ResetNoDebug ..85

Contents

iv

ResetAndDebug ...86
MakeSafe ..87

DIAL error codes ...88
Error categories ...88
SALSA error codes ..89
SALSADACON error codes ... 90
DA error codes ...91
Console error codes ... 91
WINSOCK error codes ...92
UNKNOWN error codes .. 92

 1

About this guide

“ASE and Extended debug stubs” provides detailed background information about the two
debug stubs and their differences.

“Interrupts and Exceptions” provides details of how interrupts and exceptions are implemented
under different debugging environments.

“Communications Channels” provides an overview of channels and how they are accessed from
the target and host using ASE BIOS services and the CPDIAL library respectively.

“ASE BIOS services” describes ASE BIOS calls and channel interrupts used to access channels
from the target and gives code examples.

“CPDIAL Library Reference” describes the Debug Interface Adapter Library, including the CDIAL
C++ class definitions, and how to use its functions to access channels from the host.

About this guide

2

 3

ASE and Extended debug
stubs

The debug stub has two parts, the ASE debug stub and the Extended debug stub. Two stubs are
required because ASE memory is limited to 1kbyte and is insufficient to provide all the required
functionality. The Extended debug stub, due to its size, must be resident in external RAM.

The two stubs and their environment requirements are discussed in this chapter.

The ASE debug stub
The ASE debug stub resides in the SH4’s 1kbyte of ASE memory. This memory cannot be
physically read or written to by the application code, it can only be accessed in ASE mode by
the debug tools. The ASE debug stub is a minimal debug stub loaded into ASE RAM after a
target system reset. The purpose of the ASE debug stub is to facilitate basic debugging, system
initialisation and the loading of the larger and functionally complete Extended debug stub.
Once the Extended debug stub is loaded the ASE debug stub is used simply to chain ASE
exceptions to handlers within the Extended debug stub. The ASE debug stub and ASE RAM are
transparent to the application.

The Extended debug stub
The Extended debug stub resides in RAM and requires 16kbytes of memory. This debug stub
contains all the necessary functionality to provide comprehensive debugging of the target. The
debug stub memory is not protected from corruption by the application code, thus the
application programmer must not under any circumstance attempt to utilise the memory space
allotted to the Extended debug stub. An errant piece of application code can write over the
Extended debug stub causing it to fail. Under these circumstances the debug stub (and debug

ASE and Extended debug stubs

4

session in progress) must be reloaded and restarted. The Extended debug stub has its own
private stack within the boundaries of the allotted 16kbytes of RAM and thus does not require
use of the application program’s stack.

The location of the Extended debug stub is defined either by the Boot ROM code, or by the
settings in the Start-up configuration dialog of CodeScape.

The Extended debug stub can also be identified by the three instructions at the start of the
16kbyte section, which are always BRK, RTE, NOP; instruction codes 0x003B, 0x000B, and
0x0009.

Byte sequence:

• 0x3B, 0x00, 0x0B, 0x00, 0x09, 0x00 - little endian Extended debug stub

• 0x00, 0x3B, 0x00, 0x0B, 0x00, 0x09 - big endian Extended debug stub

Functional differences of the ASE and Extended
debug stubs
The table below lists the differences in functionality of the two stubs.

Function
Extended
debug stub

ASE debug
stub Comments

Read/Write memory yes yes Extended: Optimized for speed.
ASE: Optimized for size.

Write memory cache coherency
maintained.

yes yes Extended: Handled by the Extended
debug stub.
ASE: Handled by the DA (much slower).

Read/Write General purpose
registers.

yes yes

Read/Write Floating point registers yes yes

Read/Write UBC registers yes yes Extended: Optimized for speed.
ASE: Achieved by multiple memory R/W
accesses (much slower).

Read/Write HBC registers yes yes Extended: Optimized for speed.
ASE: Achieved by multiple memory R/W
accesses (much slower).

SH4 Debug Interface Guide

5

Read/Write MMU registers. yes yes Extended: Optimized for speed.
ASE: Achieved by multiple memory R/W
accesses (much slower).
ASE: Store queue info not available.

Default exception handler at VBR. yes no Extended: Located wholly within the
boundaries of the 16kbytes allotted.

Catch exceptions at VBR + 0x100. yes yes Extended: Uses default exception
handler.
ASE: Uses SH4’s trace mechanism.

Catch exceptions at VBR + 0x400. yes yes Extended: Uses default exception
handler.
ASE: Uses SH4’s trace mechanism.

Catch interrupts at VBR + 0x600. yes yes Extended: Uses default exception
handler.
ASE: Uses SH4’s trace mechanism.

Exception passback to stub. yes no

Profiling, statistical sampling. yes no

Profiling, tracing yes no

BIOS calls for virtual channels. yes no

BIOS calls for utility functions. yes no

Supports little endian systems. yes yes Extended: DA detects the endianness of
the target and loads a little endian
Extended debug stub when required.
ASE: ASE RAM is always big endian.

Supports big endian systems yes yes Extended: DA detects the endianness of
the target and loads a big endian
Extended debug stub when required.
ASE: ASE RAM is always big endian.

Require system memory to be
present and configured.

yes no Extended: Requires 16kbytes (anywhere
in RAM).
ASE: Required no RAM at all.

Facilitates debugging of code in
ROM.

yes yes

Function
Extended
debug stub

ASE debug
stub Comments

ASE and Extended debug stubs

6

Optimization of the stubs
The ASE debug stub must fit entirely into 1kbyte (512 instructions), for this reason all of the
ASE debug stub's functions are optimized for size. In some cases functionality is delegated from
the ASE debug stub to the Debug Adapter (DA).

An example of this is the 'Read Context HBC'. This is a command issued by CodeScape to
request that the values of all of the HBC's (hardware break controller) memory mapped registers
are returned.

In the Extended debug stub, a protocol exists for this purpose. The DA requests the HBC's
context and the Extended debug stub replies by reading the required registers and returning
them in a single transaction.

In the ASE debug stub no such protocol exists between the DA and the ASE debug stub, however
the same result is achieved by the DA issuing a series of 'Read Memory' commands to read each
of the individual registers one by one.

Facilitates debugging of code in
RAM.

yes yes

Facilitates the use of software
breakpoints

yes yes

Facilitates the use of hardware
breakpoints

yes yes

ROMless system 'bring up'. yes yes

RAMless system 'investigation'. no yes

ASE mode used for debugging. yes yes Extended: Vectored into from ASE RAM.
ASE: Used inherently.

Hitachi SH4 FPU exception handled. yes no Extended: Transparent to user (code
execution slowed down).
ASE: Exception reported (handled by
CodeScape).

Stub memory protected for
application code.

no yes

Function
Extended
debug stub

ASE debug
stub Comments

SH4 Debug Interface Guide

7

The DA and Extended debug stub performs the HBC context read in the most efficient (fastest)
method possible whereas the DA and the ASE debug stub performs the HBC context read using
the minimum amount of code in the ASE debug stub. The net result is that the Extended debug
stub runs much faster than the ASE debug stub.

Exception handling in the ASE debug stub
The ASE debug stub uses the SH4's Branch Trace mechanism to allow exceptions and interrupts
to be caught. The Branch Trace mechanism is part of the SH4's on-chip hardware debugging
tools. This allows the ASE debug stub to be entered, via an ASE Trace exception, when a
particular condition is met.

The Trace Branch mechanism is set up to cause the stub to be entered when either; an exception
to VBR + 0x100, an exception to VBR + 0x400, an interrupt to VBR + 0x600 or an RTE
instruction is executed. When the stub is entered due to the one the above Branch Trace events
occurring the following action is taken:

The Branch Trace events VBR + 0x600 and RTE are usually not required as far as the user is
concerned, but they must be handled because the SH4's Branch Trace mechanism does allow
individual branch types to be selected. Thus for VBR + 0x600 and RTE, the DA instructs the ASE
debug stub to simply return program control back to the application program.

If the ASE debug stub is being used to debug an application that uses interrupt VBR + 0x600
and its associated RTE, there will be a time penalty due to the 'filtering' effect of processing this
unwanted exception.

When using the ASE debug stub for debugging, if you do not want the ASE debug stub to catch
any exceptions, then it is possible to turn off the Branch Trace mechanism entirely. This is
achieved using CodeScape (from a memory window) to write a single byte 0x00 to the 'Trace
Memory Control Register' at address 0xFF2000BC. It should be noted that without the Branch
Trace mechanism the ASE debug stub will no longer be able to catch any exceptions (including
ones such as Address Error etc.) and in CodeScape you will be limited to using hardware and
software breakpoints and basic trace functions such as single stepping.

VBR + 0x100 Code is halted and the event is reported to the DA.

VBR + 0x400 Code is halted and the event is reported to the DA.

VBR + 0x600 Program execution is resumed (under control of the DA).

RTE Program execution is resumed (under control of the DA).

ASE and Extended debug stubs

8

Exception handling in the Extended debug stub
The Extended debug stub handles exceptions and interrupts by installing a default exception
handler which sets up the VBR register accordingly. Alternatively, you can use your own
application exception handler, see “Interrupts and Exceptions” on page 11.

Debug stub cache usage

Caching during BIOS calls
When a BIOS call is made the debug stub runs from the SH4’s P1 area (cacheable). If the SH4’s
cache is enabled then the speed of the BIOS call is improved due to the debug stub being in a
cacheable area. The debug stub does not implicitly enable the cache during a BIOS call.

Cache coherency for the 'Write Memory' command
Cache coherency for writing to the SH4's memory is maintained for both the ASE debug stub
and the Extended debug stub. The basic method used to achieve this is:

• The CCR (cache control register) is put into 'write through' mode before actually
writing to the SH4's memory, write to the memory, then return the CCR to its
original state.

• Before 'resuming' running the application code (after a memory write), the
instruction cache is flushed.

For the Extended debug stub

The manipulation of the CCR for the Extended debug stub is done entirely in the Extended
debug stub's 'Write Memory' command. If a memory write to the SH4 has been issued by the
DA then the following sequence of events is executed:

• Prior to the memory write the current CCR (cache control register) value is saved.

• The cache is put into write through mode.

• The memory write is carried out.

• The CCR is returned to its original value.

At the end of the debug session (the series of commands issued when in the debug stub prior
to resuming the application code) the instruction cache is invalidated.

SH4 Debug Interface Guide

9

For the ASE debug stub

For the ASE debug stub, the CCR is manipulated by the DA issuing 'Read Memory' and 'Write
Memory' commands to read and write the CCR register before and after issuing the actual 'Write
Memory' command itself. Using this method the ASE debug stub's 'Write Memory' command
does not need any code to handle cache coherency, however, the performance is degraded due
to the overhead of the DA issuing the additional commands.

ASE and Extended debug stubs

10

 11

Interrupts and Exceptions

This section deals with issues concerning exception and interrupt handling on the target and
the interaction and interrupt requirements of the debug stub.

Exception handling with or without a Boot ROM

Halt or Resume after stub load
Once the Extended debug stub has loaded, the Debug Adapter (DA) instructs the debug stub to
either resume execution of the Boot ROM (if one is installed), or set up a default environment
and wait for the user to perform some action such as downloading a program. This is controlled
by the option: Halt after stub load on the Start-up options dialog box in CodeScape.

The debug stub implements exceptions using different methods depending on this condition.

Resume (debugging with a Boot ROM)

This mode exists to allow program execution to resume back to the Boot ROM after the
Extended debug stub is loaded. This is achieved with the minimum of disruption to the state of
the target microprocessor context.

However the following changes will have been made to the context after resuming:

• The DBR register is loaded with the default debug stub exception handler.

Interrupts and Exceptions

12

Halt (debugging without a Boot ROM)

This mode exists to allow the Extended debug stub to be loaded and then the context to be set
up with default settings to allow a debugging session to commence. In this mode CodeScape
does not pass program control back to the Boot ROM, instead, control remains within the debug
stub monitor.

• The DBR register is loaded with the default debug stub exception handler.

• The VBR register is loaded with the default debug stub exception handler.

• The stack pointer is loaded at 0x0d000000.

• The status register block bit is cleared to 0.

Exceptions during debugging with a Boot ROM
When 'resume after stub load' mode has been selected, the debug stub does not implement a
exception or interrupt handler of its own and it does not alter or set up the VBR register. Thus
the debug stub makes no demands of the application code and does not introduce any time
penalties by running debug stub exception handler code. However, this does mean that the
application code must implement its own handler if exceptions or interrupts are to be used by
the application code itself.

To allow the debug stub the ability to process exceptions (not interrupts, see “Interrupts during
debugging” on page 14.) in this mode, the debug stub incorporates a passback facility to allow
unhandled exceptions to be caught and processed by the debug stub. To implement the passback
facility the application code exception handler must call the debug stub using the following
sequence of instructions.

For exceptions (VBR + 0x100 and VBR + 400) the passback call takes the form:

BRK
RTE
RTE
NOP

This special sequence causes the debug stub to be entered via the 'BRK' instruction and the
double 'RTE' immediately after the break indicates to the debug stub that this is an exception
passback call.

This sequence should be added to the end of the application code exception handler to allow
the debug stub to process any unhandled exceptions. The 'NOP' at the end is not strictly required
but can be added to inhibit compiler or assembler errors. You should use the passback sequence

SH4 Debug Interface Guide

13

where you would normally put code to deal with unhandled exceptions. Where an exception
has been handled correctly by the application code, then an 'RTE' must be executed rather than
the passback sequence.

Notes:

1. After the debug stub processes an unhandled exception, the program execution is
returned to the interrupted code, control is not returned to the application exception
handler. Thus no attempt is made to try and execute the 'RTE RTE' element of the
passback sequence.

2. Some assemblers and compilers may not allow an RTE opcode following an RTE
opcode. In this event the following sequence could be used:

BRK
RTE
DC.W 0x002b
NOP

3. Unhandled exceptions passed back to the debug stub are reported to CodeScape and
this in turn is interpreted and reported as specified by CodeScape.

4. The application code must take care to ensure the SR.BL block bit is handled correctly
to ensure exceptions are accepted (see the Hitachi SH4 hardware manual for further
details).

5. For the passback facility to function correctly the application code must not change
the contents of the EXPEVT register prior to issuing the passback call.

Exceptions during debugging without a Boot ROM
When 'halt after stub load' mode has been selected, the debug stub implements a default
exception and interrupt handler by initialising the VBR register to point at the debug stub
default handler.

The default handler allows all exceptions and interrupts to be caught by the debug stub and in
turn reported by CodeScape. This allows application code to be debugged without the need for
an application code handler to catch exceptions such as 'address error' etc.

The application code can at any time install its own handler by changing the contents of the
VBR. Once this is done the debug stub default handler will no longer function but application
code can utilise the passback method as described in the previous section to allow unhandled
exceptions to be handled by the debug stub.

Interrupts and Exceptions

14

If the VBR is changed by the application code, the debug stub will make no attempt to restore
the VBR to point at the debug stub default handler. However the application code can restore
the VBR to the default value to make the default handler functional again.

Notes:

1. If 'halt after stub load' debugging mode is selected the SR.BL block bit defaults to 0.

Interrupts during debugging
An additional specific passback sequence is available to allow unhandled interrupts (not
exceptions) to be captured and reported to CodeScape. To implement this passback facility the
application code interrupt handler must call the debug stub using the following sequence of
instructions.

BRK
RTE
RTS
NOP

The above sequence should be implemented in a similar manner to the exception passback
sequence described above. This sequence must only be used to passback unhandled interrupts
for the interrupt handler at the address VBR + 0x600.

Caveats and limitations

Use of the HBC registers
CodeScape makes use of the HBC unit to implement hardware breakpoints, for this reason the
application code must not attempt to access the HBC's registers.

Debugging exception handlers using CodeScape
It is possible to 'lose' hardware breakpoints when debugging application exception handlers.
This occurs if the handler routine being debugged does not allow for nested exceptions to occur.
A nested exception is required in this instance to allow the HBC exception to be accepted and
the debug stub default handler to be called. It is recommended that software breakpoints are
used where possible when debugging exception handlers.

Consult the Hitachi SH4 hardware manual for information on allowing nested interrupts to
occur, however the following notes outline the basic methodology. On entering the application
exception handler:

SH4 Debug Interface Guide

15

1. Save the SPC to a temporary location.

2. Save the SSR to a temporary location.

3. Clear the SR.BL bit to 0 (this now allows exceptions or interrupts to occur).

4. Execute the application exception handler code.

5. Set the SR.BL bit to 1. (this inhibits exceptions or interrupts from occurring when
restoring the SPC and SSR).

6. Restore the SSR to the original value from the temporary location.

7. Restore the SPC to the original value from the temporary location.

8. RTE

Notes:

1. If an interrupt occurs within the exception handler prior to the SR.BL bit being cleared,
then it will be held until the SR.BL bit is cleared.

2. If an exception occurs within the exception handler prior to the SR.BL bit being cleared
or after it has been set, then it will cause a manual reset to occur causing program
execution to transfer to the reset vector (highly undesirable). This situation will occur
if the exception handler contains a programming error in the code such as an
instruction address error. Care must be taken with writing application exception
handlers to ensure no such errors exist, specifically when the SR.BL bit is set.

Performance loss when handling SH4 FPU exceptions
If the enable bit for underflow, overflow and inexact in the FPSCR registers is set, the processor
reports an exception for all operations that can possibly generate the desired exception,
regardless of whether an error is detected. It is the exception handler's responsibility to
differentiate between real and false exceptions by masking together the cause and enable bits
of the FPSCR register.

To alleviate this problem the Extended debug stub checks these bits and ignores false exceptions.
Processing exceptions for every floating point operation can seriously impact on the
performance of the processor.

The ASE debug stub cannot process the exceptions and relies on CodeScape to handle the
problem. The process of stopping the processor and waiting for the debugger to service the
exception produces an even larger degradation in performance.

Interrupts and Exceptions

16

 17

Communications Channels

About channels
Channels provide a means of fast communication between the host and the target. There are
four high-speed bi-directional channels allowing communication between host and target
applications at speeds in excess of 500kbytes/s. Each channel may be read from and written to
independently either a byte at a time or in blocks.

Channels are implemented via the JTAG interface from the target to the Debug Adapter (DA)
and via Ethernet from the DA to your computer. The DA has eight 128kbyte buffers to provide
an input and output buffer for each channel to ensure uninterrupted communication.

The following chapters describe in detail the ASE BIOS services and DIAL library functions and
give code examples where appropriate.

NOTE: At the time of writing, you cannot use channels with Microsoft® Windows® CE.

Channel access

Target access

Channels are accessed from the target using the ASE BIOS services. These services allow
communication between the target and the DA via the JTAG interface.

Host access

Channels are accessed from the host using the Debug Interface Adapter Library (DIAL). This
library provides communication between the host and the DA via the SCSI interface.

Communications Channels

18

Channel designation
The channels are reserved for use as follows:

Channel buffers
The DA contains eight 128kbyte buffers to ensure uninterrupted data transfer between the target
and host. Each of the four channels has a host-to-target and a target-to-host buffer as shown:

Channel
Number Use

0 Operating System debugging interface.

1 File Server (Debugging File Server Protocol).

2 Sound.

3 Spare.

 19

ASE BIOS services

This section describes the ASE BIOS calls used to access channels from the target, channel
interrupts and code examples.

Target channel access
Channel access from the target to the application is implemented using either:

• ASE BIOS calls made by the application software to the debug stub.

-OR-

• Interrupts issued by the DA debug stub to the target application interrupt handler.

The ASE BIOS calls are non-blocking to allow the target application to issue a BIOS call and
receive a reply immediately. The return values of the reply indicate the success or failure to carry
out the requested task.

BIOS calls
Six ASE BIOS calls are available for use by the application software, these are:

• Read byte, INCHR.

• Write byte, OUTCHR.

• Read buffer, RDBF.

• Write buffer, WRBF.

• Read channel buffer status, RDSTAT.

• Set and read channel interrupts, CHISR.

ASE BIOS services

20

Interrupts
The DA can issue an interrupt to the target application interrupt handler when a specified
channel buffer condition is met, see “Set and Read Channel Interrupts, CHISR” on page 29.

Accessing ASE BIOS services
In privileged mode the ASE BIOS services are accessed by:

1. Loading registers R4, R5, R6, R7 with the required parameters.

2. JSR to the start address of the debug stub, ASE_BIOS in the examples.

In user mode the ASE BIOS services are accessed by:

1. Loading registers R4, R5, R6, R7 with parameters.

2. TRAPA #02.

Notes:

1. ASE BIOS services are provided by the Extended debug stub resident in target system
RAM. The ASE debug stub provides just one service, “Instruct the DA where to load
the Extended stub”.

2. The ASE BIOS accepts any value for the destination address, therefore calling code
should validate the supplied parameters in the TRAPA handler.

3. If an application exception handler is in use, the debug stub exception passback must
be implemented to allow the TRAPA #02 to be handled by the debug stub. The
application exception handler must not alter the values of EXPEVT and TRA prior to
issuing the passback call.

4. In privileged mode the TRAPA #02 instruction can also be used to issue a BIOS call
subject to the same validation as above.

5. BIOS calls can be issued using TRAPA #02 when the debug stub’s default exception
handler is in use. In this instance the default handler will issue the BIOS call in a
way that is transparent to the application code.

SH4 Debug Interface Guide

21

Setup registers
To use the ASE BIOS services, set up the registers as shown in the following table. Request the
service by a JSR to the start address of the debug stub, ASE_BIOS, if in privileged mode, or a
TRAPA #02 if in user mode.

Results
After the BIOS call, R0 and LOC hold the results as follows:

Name Description R4 R5 R6 R7 LOC

INCHR Read byte 0x0A00 +
Channel
Number.

Not used. Not used. Not used. Not used.

OUTCHR Write byte. 0x0B00 +
Channel
Number.

Byte to
write.

Not used. Not used. Not used.

RDBF Read buffer. 0x0A08 +
Channel
Number.

Maximum
write size.

Destination
address.

Address of
LOC.

Number of
bytes read.

WRBF Write buffer. 0x0B08 +
Channel
Number.

Number of
bytes to
write.

Source
address.

Address of
LOC.

Number
of bytes
written.

RDSTAT Read channel
buffer status.

0x0C00 +
Channel
Number.

Not used. Not used. Address of
LOC.

Status.

Operation R0 LOC

INCHR Byte read in low word, error code in high word. Not used.

OUTCHR Error code in high word. Not used.

RDBF Error code in high word. Number of bytes read.

WRBF Error code in high word. Number of bytes written.

RDSTAT Error code in high word. Data available, space available.

ASE BIOS services

22

Error codes
There are nine possible error codes, stored in the high order 16 bits of R0:

NOTE: An ASE BIOS call may use a subset of the above codes for its return codes.

Name Value Meaning

CONAOK 0 No error, the operation was successful.

CONERR 1 Fatal error. The DA suffered an internal error.

CONBAD 2 Unknown command.

CONPRM 3 Parameter error. A buffer count of zero was requested.

CONADR 4 Bad address.

CONCNT 5 Bad count. A buffer count exceeding the maximum allowable value was requested.
The current maximum value is 65536 bytes.

CONCBF 6 Channel buffer full. If there is insufficient space to write all the requested number of
bytes, then as much data will be written as possible. When the buffer is full the
application is informed that no further data was written because there was no more
space available.

CONCBE 7 Channel buffer empty. The application is informed that there was no data to read.

CONBSY 8 Channel busy.

SH4 Debug Interface Guide

23

ASE BIOS calls

Read byte, INCHR
Reads a single byte of data from the specified channel buffer to the target.

Call parameters

Returned data

Example BIOS call
; OS (Channel 0) issue a 'read byte non-blocking' BIOS call.

mov.l #(INCHR + OS),r4 ;BIOS command + channel (0xA00 + 0).
mov.l #STUBSTART,r9 ;Point at the stub start.
jsr @r9 ;Issue BIOS call
nop

; After call:
; Byte Read returned in low word R0.
; Error code returned in high word R0.

R4 0xA00 + channel (0,1,2,3)

R5 Not used.

R6 Not used.

R7 Not used.

LOC Not used.

R0 In high order 16 bits, one of:
CONAOK, No error.
CONCBE, channel buffer
empty.
CONERR, fatal error.
Byte read in low order 8 bits.

LOC Not used.

ASE BIOS services

24

Write byte, OUTCHR
Writes a single byte of data from the target to the specified channel buffer.

Call parameters

Returned data

Example BIOS call
; OS (Channel 0) issue a 'write byte non-blocking' BIOS call.

mov.l #(OUTCHR + OS),r4 ;BIOS command + channel (0xB00 + 0).
mov.l #0xa5,r5 ;Byte to write (e.g. 0xa5).
mov.l #STUBSTART,r9 ;Point at the stub start.
jsr @r9 ;Issue BIOS call
nop

; After call:
; Error code returned in high word R0.

R4 0xB00 + channel (0,1,2,3).

R5 Byte of data to write.

R6 Not used.

R7 Not used.

LOC Not used.

R0 In high order 16 bits, one of:
CONAOK, No error.
CONCBF, Channel buffer full.
CONERR, Fatal error.

LOC Not used.

SH4 Debug Interface Guide

25

Read buffer, RDBF
Reads a number of bytes of channel data, up to a specified maximum.

Call parameters

Returned data

Example BIOS call
; OS (Channel 0) issue a 'read buffer non-blocking' BIOS call.

mov.l #(RDBF + OS),r4 ;BIOS command + channel (0xA08 + 0).
mov.l #200,r5 ;Max number of bytes to read.
mov.l #buffer,r6 ;Pointer to destination buffer area.
mov.l #loc,r7 ;Location to report actual number

;of bytes read after BIOS call.
mov.l #STUBSTART,r9 ;Point at the stub start.
jsr @r9 ;Issue BIOS call

R4 0xA08 + channel (0,1,2,3).

R5 Byte Count. The maximum transfer size of data to be
read from the specified channel buffer.

R6 Destination address of data read from the specified
channel buffer.

R7 Zero, or address of LOC to put Byte Count.

LOC Zero or a 32-bit address to store the actual number of
bytes read from the specified channel buffer.

R0 In high order 16 bits, one of:
CONAOK, No error.
CONPRM, Bad parameter.
CONCNT, Bad count.
CONCBE, Channel buffer empty.
CONERR, Fatal error.

LOC The number of bytes actually read (32-bits) or zero if the
channel buffer was empty.

ASE BIOS services

26

nop
; After call:
; Error code returned in high word R8.
; 'Loc' contains the number of bytes read.
; 'buffer' contains 'loc' number of data bytes read.

SH4 Debug Interface Guide

27

Write buffer, WRBF
Writes a number of bytes, up to a specified maximum, to the specified channel buffer.

Call parameters

Returned data

Example BIOS call
; OS (Channel 0) issue a 'write buffer non-blocking' BIOS call.

mov.l #(WRBF + OS),r4 ;BIOS command + channel (0xB08 + 0).
mov.l #200,r5 ;Max number of bytes to write.
mov.l #buffer,r6 ;Pointer to source buffer area.
mov.l #loc,r7 ;Location to report actual number

 ;of bytes written after BIOS call.
mov.l #STUBSTART,r9 ;Point at the stub start.
jsr @r9 ;Issue BIOS call
nop

; After call:
; Error code returned in high word R8.
; 'Loc' contains the number of bytes written.

R4 0xB08 + channel (0,1,2,3).

R5 Byte Count. The number of bytes to be written to the
specified channel buffer, up to a maximum of 65536
bytes.

R6 Source address. The address in target memory to read
data from.

R7 Zero, or address of LOC to put the Byte Count. If this
value is non-zero, then the value points to a 32-bit
location to store the actual number of bytes written
to the DA buffer.

LOC 32-bit location to hold the number of bytes
transferred.

R0 In high order 16 bits, one of:
CONAOK, No error.
CONCBF, Channel buffer full.
CONERR, Fatal error.

LOC Number of bytes actually written (32 bits) or zero if
the specified channel buffer was full.

ASE BIOS services

28

Read channel buffer status, RDSTAT
Informs the target application of amount of data available to be read from and space available
to be written to in the specified channel buffer.

Call parameters

Returned data

Example BIOS call
; OS (Channel 0) issue a 'read channel buffer status' BIOS call.

mov.l #(RDSTAT + OS),r4 ;BIOS command + channel (0xC00 + 0).
mov.l #loc,r7 ;Location to report the actual

;status information
mov.l #STUBSTART,r9 ;Point at the stub start.
jsr @r9 ;Issue BIOS call
nop

; After call:
; Error code returned in high word R8.
; 'Loc' (long) contains the number of bytes available to be read.
; 'Loc'+4 (long) contains the space in bytes available for writing.

R4 0xC00 + channel (0,1,2,3).

R5 Not used.

R6 Not used.

R7 Address of LOC to buffer status information.

LOC 64-bit location to hold bytes of data available
(long), bytes of space available (long).

R0 CONAOK.

LOC 64-bit location to hold bytes of data available (long), followed
by bytes of space available (long).

SH4 Debug Interface Guide

29

Set and Read Channel Interrupts, CHISR
Use CHISR to service buffers:

• Request a Hitachi-UDI (HUDI) interrupt if a transmitting buffer is empty or a receiving
buffer is full.

• Determine if data is present in a channel buffer.

• Acknowledge receipt of HUDI interrupts by the application interrupt handler.

Call Parameters

R4 CHISR = 0x900

R5 Address of a long word LOC, must be non-zero.

R6 Not used.

R7 Not used.

LOC Four 8-bit fields, as described below.

Channel
Name 0 1 2 3 Set bit to...

IPISET1 0 (LSB) 8 16 24 change input buffer interrupts (bits 1-2).

IPSIE5 1 9 17 25 enable a single input buffer interrupt, clear to disable.
Valid only if bit 0 is set.

IPMIE3 2 10 18 26 enable multiple interrupts, clear to disable. Valid only if
bit 0 is set.

IPACK 3 11 19 27 acknowledge receipt of interrupt when data is present
in the input buffer.

OPISET2 4 12 20 28 change output buffer interrupts (bits 5-6).

OPSIE5 5 13 21 29 enable a single output buffer interrupt, clear to disable.
Valid only if bit 4 is set.

OPMIE4 6 14 22 30 enable multiple interrupts, clear to disable. Valid only if
bit 4 is set.

OPACK 7 15 23 31(MSB) acknowledge receipt of an interrupt when space is
available in the output buffer.

ASE BIOS services

30

Returned data

Bits 0-7 apply to channel 0, 8-15 to channel 1, 16-23 to channel 2, and 24-31 to channel 3.

Notes

1. IPSIE and IPMIE are ignored if IPISET is set to 0.

2. OPSIE and OPMIE are ignored if OPISET is set to 0.

3. IPMIE is ignored if IPSIE is set to 0.

4. OPMIE is ignored if OPSIE is set to 0.

5. IPSIE and OPSIE are cleared automatically on acknowledgment of an interrupt.

R0 One of CONAOK, CONERR, CONPRM in the high order 16 bits.

LOC Four 8-bit fields, as described below.

Channel
Name 0 1 2 3 Meaning when bit set

IPINT 0 (LSB) 8 16 24 An input buffer interrupt has occurred.

IPSIE 1 9 17 25 Input buffer interrupts are enabled.

IPMIE 2 10 18 26 Multiple interrupts are enabled.

IPRDY 3 11 19 27 There is data in the input buffer.

OPINT 4 12 20 28 An output buffer interrupt has occurred.

OPSIE 5 13 21 29 Output buffer interrupts are enabled.

OPMIE 6 14 22 30 Multiple interrupts are enabled.

OPRDY 7 15 23 31 (MSB) There is space in the output buffer.

SH4 Debug Interface Guide

31

Servicing buffers
There are two ways to use the CHISR service to inform the application software there is a buffer
for it to service:

• Interrupt control. Trigger a HUDI interrupt when channel buffer data becomes
available or channel space is available.

• Polling. Poll a channel to determine if a transmitting buffer is empty or a receiving
buffer is non-empty.

Interrupt control
The CHISR BIOS call allows the target application to interrupt the target if one of these
conditions are met:

• Data is in the input buffer for the application software to read and process.

• Space is available in the output buffer for the application software to store data
in the buffer, ready for the host to read and process.

You can generate single or multiple HUDI interrupts when a condition is met. Single interrupts
are generated once-only when an interrupt condition is met. Multiple interrupts are generated
each time the channel condition is met.

Notes:

1. The HUDI is not an ASE mode interrupt.

2. The HUDI interrupt vectors to the application software interrupt handler. It is the
responsibility of the application software to ensure this is present.

3. CHISR can return with more than one 'interrupt occurred' bit set.

ASE BIOS services

32

Example BIOS call

This example shows a typical BIOS call to set up and clear interrupts for the four channels.

; Use the 'set and read interrupts' BIOS call to set up interrupts.
;

mov.l #loc,r5 ;Location for set up parameters.
;
; Channel 0. Operating system. Set for single interrupt on input
; buffer (data available).

mov.b #(IPISET + IPSIE),r8
mov.b r8,@r5

;
; Channel 1. File server. Set up for multiple interrupts on input
; buffer (data available) and output buffer (space available).
 mov.b #(IPSET + IPMIE + OPISET + OPMIE),r8
 mov.b r8,@(1,r5)
;
; Channel 2. Sound tools. Turn off interrupts.

mov.b #(IPISET + OPISET),r8
mov.b r8,@(2,r5)

;
; Channel 3. Unused. Make no changes to channel 3.

mov.b #0x00,r8
mov.b r8,@(3,r5)

;
; Issue a 'Set and read channel interrupts' BIOS call.

mov.l #CHISR,r4 ;BIOS command 0x900.
mov.l #STUBSTART,r9 ;Point at the stub start.
jsr @r9 ;Issue BIOS call.
nop

; After call:
; Error code returned in high word R8.
; 'Loc' contains eight 4-bit fields containing interrupt and buffer
; status.

SH4 Debug Interface Guide

33

Polling
The CHISR, ‘Set and Read Channel Interrupts', BIOS call can be used to determine the state of
individual channel buffers. This allows polling to implemented instead of interrupt control.

Example BIOS call

This example shows a typical BIOS call to interrogate the four channels' buffers.

; Use the 'set and read interrupts' BIOS call to read channel status.
mov.l #loc,r5 ;Location for set up parameters.
mov.b #0,r8
mov.b r8,@rr5 ;No change channel 0
mov.b r8,@(1,r5) ;No change channel 1
mov.b r8,@(2,5) ;No change channel 2
mov.b r8,@(3,r5) ;No change channel 3

;
; Issue a 'Set and read channel interrupts' BIOS call.

mov.l #CHISR,r4 ;BIOS command 0x900.
mov.l #STUBSTART,r9 ;Point at the stub start.
jsr @r9 ;Issue BIOS call.
nop

; After call:
; Error code returned in high word R8.
; 'Loc' contains eight 4-bit fields containing interrupt and buffer
; status.

mov.l #loc,r5 ;Location for returned parameters.
mov.b @r5+,r1 ;Current Channel 1 status.
mov.b @r5+,r2 ;Current Channel 2 status.
mov.b @r5+,r3 ;Current Channel 3 status.
mov.b @r5+,r4 ;Current Channel 4 status.

; The registers r1,r2,r3,r4 now contain the details for each channel
; for the following items:
; Input buffer data available/no data available.
; Output buffer space available/no space available.
; and also:
; Input buffer occurred/not occurred.
; Input buffer interrupts enabled/disabled.
; Input buffer multiple interrupts enabled/disabled.
; Output buffer occurred/not occurred.
; Output buffer interrupts enabled/disabled.
; Output buffer multiple interrupts enabled/disabled.

ASE BIOS services

34

Acknowledging receipt of a HUDI interrupt
You can use CHISR to acknowledge the receipt of an HUDI interrupt. The application interrupt
handler must include the functionality to acknowledge HUDI interrupts for the following
reasons:

1. The HUDI interrupt cannot be guaranteed to be accepted by the SH4. This is a
characteristic of the SH4 microprocessor.

2. The interrupt can be lost if the debug stub is entered at the same time as a HUDI
interrupt is generated, for example when executing a software BRK breakpoint.

The DA will repeatedly issue HUDI interrupts (when interrupts are enabled) until the application
software has acknowledged the interrupt by calling CHISR.

When the application software code HUDI interrupt handler is entered due to an HUDI interrupt,
the 'set and read channel interrupts' command with the relevant acknowledge bits set should
be issued. This will inform the DA that the interrupt has been accepted and prevent it from
re-issuing the HUDI interrupt again.

Example BIOS call

This example shows a typical BIOS call to acknowledge an input interrupt on channel 1.

; Use the 'set and read interrupts' BIOS call to acknowledge an
interrupt.

mov.l #loc,r5 ;Location for set up parameters.
mov.b #0,r8
mov.b r8,@r5 ;No change channel 0
mov.b r8,@(2,r5) ;No change channel 2
mov.b r8,@(3,r5) ;No change channel 3
mov.b #IPACK,r8 ;Acknowledge interrupt.
mov.b r8,@(1,r5)

;
; Issue a 'Set and read channel interrupts' BIOS call.

mov.l #CHISR,r4 ;BIOS command 0x900.
mov.l #STUBSTART,r9 ;Point at the stub start.
jsr @r9 ;Issue BIOS call.
nop

; After call:
; Error code returned in high word R8.
; 'Loc' contains eight 4-bit fields containing interrupt and buffer
; status.

SH4 Debug Interface Guide

35

HUDI interrupt handler considerations

HUDI interrupt handler

The interrupt associated with channel usage generated by the DA is the HUDI interrupt. This
causes an SH4 'interrupt' category at an offset of 0x600 from the VBR. The application code
must have a suitable exception handler routine in place to allow the exception to be serviced.

As with the SH4's entire on-chip peripheral module interrupts the HUDI interrupt has an
associated priority to allow masking of interrupts by using the status register interrupt level
mask bits (SR.IMASK). This priority must be set so that the HUDI interrupt is not masked. The
register IPRC (interrupt priority register C) facilitates the setting up of the priority for the HUDI.
It is the responsibility of the application program to ensure that the priority for the HUDI is high
enough to allow interrupts through. It is recommended that the IPRC value be set to its highest
level (15) to ensure unplanned masking of this interrupt does not occur.

It must be noted that the on-chip peripheral module interrupt priority level setting should only
be performed when the status register block bit SR.BL is set. This is a requirement of the SH4.

Within the application code interrupt handler, the INTEVT register must be checked to ascertain
the source of the interrupt. For the HUDI interrupt the INTEVT will contain 0x6000x5E0 and
EXPEVT will contain 0x620.

BIOS calls within the HUDI interrupt handler

The recommended method for implementing a HUDI interrupt handler is:

1. Issue a CHISR (Set and Read Channel Interrupts) BIOS call to ascertain which
channel sources caused the interrupt (and whether it was on input and/or output).

2. For each of the interrupting sources, either:

- Handle the interrupt immediately by issuing further BIOS channel commands
to move data between the Host and the target as applicable.

-OR-

- Set flags or signals to inform 'background code' of the interrupt occurring.

Issue a CHISR (Set and Read Channel Interrupts) BIOS call to acknowledge all channel
sources that caused the interrupt.

NOTE: The above method assumes that all the normal requirements for the
implementation of SH4 interrupt handlers are observed.

ASE BIOS services

36

 37

CPDIAL Library Reference

Host channel access
The CPDIAL communications library provides access to channels from the host. CPDIAL is
organized as a C++ class called CDial containing objects that each hold an API for a different
device supported by the library. There are four header files required to use the library with
channels, the principle header file is dial.h.

Connecting and disconnecting
Two functions, Connect and Disconnect establish and release a connection between an
application and a device. Depending on the type of the device, the nature of the connection can
be very important. For example, a network device may be accessed by multiple users but an
active connection provides a user with exclusive access to the device for the duration of that
connection.

Header file: Contains:

Dial.h The CDial class definition and definition of DIALDEVICE.

DialChannel.h The definition of CDialChannel, the base class for the six
channel-specific classes. Data structures used by CDIALChannel are
contained in GenChannel.h.

GenChannel.h The data structures used by DialChannel.

error.h The DIAL API error code definitions.

CPDIAL Library Reference

38

NOTE: When a device is first found (using FindNextDevice) it is recommended that a
connection is made and kept until the device is no longer required. For example,
CodeScape connects to a device, locally or across a network, at startup and does
not disconnect from the device until it is shut down.

SH4 Debug Interface Guide

39

Using DIAL
To initialize and use the library acquire a pointer to the library using InitializeDial function.

Calling a function
DIAL requires a ‘magic cookie’ (denoted by DIAL_ID) that the DIAL DLL uses to identify the
device. The DIAL_ID is usually obtained using the FindNextDevice function.

Example

NOTE: This example illustrates the calling convention only; for more examples, see the
TESTDIAL diagnostic utility and source code provided with CPDIAL.

// Instantiate the DIAL library once only for any given application
CDial * pDial = InitializeDial();
pDial = GetDial;

DIAL_EC ecRetCode = DIAL_EC_NOERROR;
DIAL_ID DeviceID = DIAL_ID_UNDEF;

ecRetCode = DIAL->FindNextDevice(DeviceID,
DIALDEVICE::DEVTYPE_KATANA_DA);

// a DIAL root method

if (ecRetCode == DIAL_EC_NOERROR)
{
__ecRetCode = pDial->DA.xxx(DeviceID, ...) _// control the DA
__ecRetCode = pDIAL->Console.xxx(DIAL_ID, deviceID, ...) // control the console.
__... ____// access the channels.
__ecRetCode = DIAL->FServer.Reserve (DeviceID, ...);
__ecRetCode = DIAL->FServer.Read(DeviceID, ...);
__ecRetCode = DIAL->FServer.Release(DeviceID, ...);
}

CPDIAL Library Reference

40

CDial functions
The CDial class contains these functions:

The following two functions are available for the Dreamcast:

Error codes
The majority of CDial class methods return a 32-bit error code (of type DIAL_EC). The higher
16 bits is a group code indicating the module, the lower 16 bits is an error code indicating the
error. Error codes are defined in the file error.h; the construct of the error is not usually required
to be known. Passing the error code to the GetErrorText function returns a textual description
of the category and specific error encountered.

Function name Purpose

InitializeDial Initializes DIAL and returns a pointer to the Dial interface.

GetVersion Returns the library’s version number.

SetTimeOut Sets the timeout period.

GetTimeOut Returns the current timeout value.

FindNextDevice Locate devices on the bus.

GetDeviceDetails Supplies details of a specified device.

ValidateDevice Tests the validity of a specified device.

GetErrorText Converts an error code to a strings.

Connect Makes a connection to a device.

Disconnect Disconnects from a device.

GetDialDebugMode Gets the current debug mode, OS or CPU.

SetDialDebugMode Sets the current debug mode, OS or CPU.

SH4 Debug Interface Guide

41

CDial class definition
The CDial class definition has the public form. The class CChannel is defined externally to
CDial in its own definition and implementation files and contains just the routines specific to
that module.

class CDial
{
public:

enum DEBUGMODE
{

DEBUGMODE_OS,
DEBUGMODE_CPU

};
CDialDAEx& DA;
CDialConsoleEx& Console;

// Use these channel wrapper classes in preference to using
// CChannel directly
CTypedChannelEx& VSerial;
CTypedChannelEx& DebugOS;
CTypedChannelEx& FServer;
CTypedChannelEx& Sound;
CTypedChannelROEx& TraceProfile;
// Direct access to the CChannel class.
// Needs specification of channel identifier CHANTYPE enumerated
// parameter defined in channel.h
// N.B. CHANTYPE_TRACEPROFILE is *Read Only*, as specified in
// CTraceProfile API.
CDialChannelEx& Channel;

CDial(CDialDAEx& da,
CDialConsoleEx& console,
CTypedChannelEx& vserial,
CTypedChannelEx& debugOS,
CTypedChannelEx& fileServer,
CTypedChannelEx& sound,
CTypedChannelROEx& traceProfile,
CDialChannelEx& channel
) : DA(da),

Console(console),
VSerial(vserial),
DebugOS(debugOS),
FServer(fileServer),
Sound(sound),
TraceProfile(traceProfile),
Channel(channel)

{

CPDIAL Library Reference

42

}
virtual BOOL GetVersion(DWORD&, DWORD&) const = 0;

virtual void SetTimeOut(DWORD) = 0;
virtual DWORD GetTimeOut() const = 0;

virtual DIAL_EC FindNextDevice(DIAL_ID&,
DIALDEVICE::DEVTYPE) = 0;

virtual DIAL_EC GetDeviceDetails(DIAL_ID, DIALDEVICE&) = 0;

virtual DIAL_EC ValidateDevice(DIAL_ID,
DIALDEVICE::DEVTYPE = DIALDEVICE::DEVTYPE_UNDEF) =

0;

virtual const char*GetErrorText(DIAL_EC) = 0;

virtual DIAL_EC Connect(DIAL_ID) = 0;

virtual void Disconnect(DIAL_ID) = 0;
};

#ifdef DIAL_DEF_
extern "C" __declspec(dllexport) CDial * InitializeDial();
extern "C" __declspec(dllexport) DIAL_EC GetDialDebugMode(CDial *,

DIAL_ID,
CDial::DEBUGMODE&);

extern "C" __declspec(dllexport) DIAL_EC SetDialDebugMode(CDial *,
DIAL_ID,
CDial::DEBUGMODE);

#else
extern "C" __declspec(dllimport) CDial * InitializeDial();
extern "C" __declspec(dllimport) DIAL_EC GetDialDebugMode(CDial *,

DIAL_ID,
CDial::DEBUGMODE&);

extern "C" __declspec(dllimport) DIAL_EC SetDialDebugMode(CDial *,
DIAL_ID,
CDial::DEBUGMODE);

typedef CDialDAEx CDA;
typedef CDialConsoleEx CConsole;
typedef CDialChannelEx CChannel;
typedef CDialMirageEx CMirage;
#endif

SH4 Debug Interface Guide

43

InitializeDial
Initializes DIAL and returns a pointer to the Dial interface.
CDial * InitializeDial();

Return value

A pointer to the Dial interface.

Parameters

None.

CPDIAL Library Reference

44

GetVersion
Returns the library’s version number.
BOOL CDial::GetVersion (WORD& Major,

WORD& Minor);

Return value

Always returns True.

Parameters

Major
The major version number.

Minor
The minor version number.

SH4 Debug Interface Guide

45

SetTimeOut
Sets the timeout, in milliseconds, for the high-level commands.
VOID SetTimeOut(DWORD timeout);

Return value

None.

Parameters

timeout
The timeout value in milliseconds, the default is 5000 milliseconds.

Remarks

Sets the timeout value for the channel-specific commands. If a command reports a non-serious
error, such as BUSY or PENDING, DIAL retries the command or waits for it to be completed
until the timeout period is reached.

CPDIAL Library Reference

46

GetTimeOut
Returns the current timeout value for DIAL high-level commands.
DWORD GetTimeOut(VOID);

Return value

The current timeout value in milliseconds.

Parameters

None.

SH4 Debug Interface Guide

47

FindNextDevice
Locate devices on the bus.
DIAL_EC FindNextDevice(DIAL_ID& device,

DIALDEVICE::DEVTYPE type = DIALDEVICE::DEVTYPE_INDEF);

Return value

Returns DIAL_EC_NOERROR on success or an error code otherwise.

Parameters

device
The most recently found device. Use DIAL_ID_UNDEF to find the first device.

type
The type of device to find. The default value is ALL. See DIALDEVICE in dial.h
for a list of device types.

Remarks

Use FindNextDevice to find DIAL devices. The caller supplies a device identifier (or
DIAL_ID_UNDEF to find the first device). On successful return the device identifier of the next
matching device is set.

NOTE: Device identifiers are passed by reference and will be modified.

CPDIAL Library Reference

48

GetDeviceDetails
Supplies details for a specified device.
DIAL_EC GetDeviceDetails(DIAL_ID device,

DIALDEVICE& details);

Return value

Returns DIAL_EC_NOERROR on success or an error code otherwise.

Parameters

device
A valid device identifer.

details
A DIALDEVICE structure where the results are stored.

Remarks

See DIALDEVICE in dial.h for supported device types.

NOTE: The details of a particular device are passed by reference and will be modified.

SH4 Debug Interface Guide

49

ValidateDevice
Tests the validity of a specified device.
DIAL_EC ValidateDevice(DIAL_ID device,

DIALDEVICE::DEVTYPE type = DIALDEVICE::DEVTYPE_UNDEF);

Return value

Returns DIAL_EC_NOERROR on success or an error code otherwise.

Parameters

device
A valid device identifer.

type
The type of device to validate. The default is DIALDEVCE::DEVTYPE_UNDEF.

Remarks

See DIALDEVICE in dial.h for a list of device types.

CPDIAL Library Reference

50

GetErrorText
Converts an error code to a string for display purposes.
const char * GetErrorText(DIAL_EC error)

Return value

Returns a pointer to a string containing a textual representation of error.

Parameters

error
The error code to convert.

Remarks

None.

SH4 Debug Interface Guide

51

Connect
Makes a connection to a device.
DIAL_EC Connect(DIAL_ID device)

Return value

Returns DIAL_EC_NOERROR on success or an error code otherwise.

Parameters

device
The identifier of the device to connect to.

Remarks

The device will not be available to other users until it is released using the Disconnect function.
Each use of Connect must be matched by a corresponding Disconnect call.

NOTE: Always use the Connect and Disconnect functions connecting to a device. This is
the most efficient method and guarantees the correct state of the device.

CPDIAL Library Reference

52

Disconnect
Disconnects from a device.
void Disconnect(DIAL_ID device)

Return value

None.

Parameters

device
The identifier of the device to disconnect from.

Remarks

After disconnecting, the device is then available to other users. Each use of the Connect function
must be matched by a corresponding Disconnect call.

NOTE: Always use the Connect and Disconnect functions connecting to a device. This is
the most efficient method and guarantees the correct state of the device.

SH4 Debug Interface Guide

53

GetDialDebugMode
Gets the current debug mode (either CDial::DEBUGMODE_OS or CDial::DEBUGMODE_CPU).
DIAL_EC GetDialDebugMode(CDial * pDial,

DIAL_ID device,
CDial::DEBUGMODE& mode);

Return value

Returns DIAL_EC_NOERROR on success or an error code otherwise.

Parameters

pDial
Pointer to DIAL (as returned by InitializeDial).

device
A valid device identifer.

mode
Storage for the result.

Remarks

None.

CPDIAL Library Reference

54

SetDialDebugMode
Sets the current debug mode (either CDial::DEBUGMODE_OS or CDial::DEBUGMODE_CPU).
DIAL_EC SetDialDebugMode(CDial * pDial,

DIAL_ID device,
CDial::DEBUGMODE mode);

Return value

Returns DIAL_EC_NOERROR on success or an error code otherwise.

Parameters

pDial
Pointer to DIAL (as returned by InitializeDial).

device
A valid device identifer.

mode
The mode to set.

Remarks

None.

SH4 Debug Interface Guide

55

CDial::CDialChannelEx functions

Typed channels
DIAL’s channel functions are defined by three classes, CDialChannelEx, CTypedChannelROEx
and CTypedChannelEX. CDialChannelEx represents a generic channel whereas
CTypedChannelROEx and CTypedChannelEX represent channels of a particular type.

CDialChannelEx class definition

class CDialChannelEx : public CGenChannel
{
public:

virtual DIAL_EC Reserve(DIAL_ID,
CHANTYPE,
DWORD = DIAL_DEFAULT_TIMEOUT) = 0;

virtual DIAL_EC Release(DIAL_ID, CHANTYPE) = 0;
virtual DIAL_EC Validate(DIAL_ID, CHANTYPE) = 0;
virtual DIAL_EC DataReady(DIAL_ID, CHANTYPE, BOOL&, DWORD&) = 0;
virtual DIAL_EC Read(DIAL_ID,

CHANTYPE,
DWORD,
DWORD&,
void*,
BOOL = FALSE,
DWORD = DIAL_DEFAULT_TIMEOUT) = 0;

virtual DIAL_EC Write(DIAL_ID,
CHANTYPE,
DWORD,
DWORD&,
const void*,
BOOL = FALSE,
DWORD = DIAL_DEFAULT_TIMEOUT) = 0;

};

CPDIAL Library Reference

56

Reserve
Reserves the channel specified by type and must be used before any reading or writing is
performed.
DIAL_EC Reserve(DIAL_ID device,

CHANTYPE type,
DWORD timeout = DIAL_DEFAULT_TIMEOUT);

Return value

Returns DIAL_EC_NOERROR on success or an error code otherwise.

Parameters

device
A valid device identifier.

type
A member of the CChannel::CHANTYPE enumeration, specifying the channel.

timeout
The length of time to wait for the channel if it is in use by another process.

Remarks

When the channel is no longer required, for example when a program exits, a corresponding
Release call must be made.

If the channel is currently in use, the length of time Reserve waits for the channel request to
succeed is specified by DIAL_DEFAULT_TIMEOUT which is set to 5000 milliseconds by
default. To wait indefinitely, specify INFINITE.

SH4 Debug Interface Guide

57

Release
Releases the channel specified by type on the device specified by device for use by other
processes.
DIAL_EC Release(DIAL_ID device,

CHANTYPE type);

Return value

Returns DIAL_EC_NOERROR on success or an error code otherwise.

Parameters

device
A valid device identifier.

type
A member of the CChannel::CHANTYPE enumeration specifying the channel.

CPDIAL Library Reference

58

Validate
Tests for the presence of the channel specified by type on the device specified by device and is
reserved for use by this process.
DIAL_EC Validate(DIAL_ID device,

CHANTYPE type);

Return value

Returns DIAL_EC_NOERROR on success or an error code otherwise.

Parameters

device
A valid device identifier.

type
A member of the CChannel::CHANTYPE enumeration, specifying the channel.

Remarks

None.

SH4 Debug Interface Guide

59

DataReady
Determines whether there is any data to read on the specified channel.
DIAL_EC DataReady(DIAL_ID device,

CHANTYPE type,
BOOL& isData,
DWORD& status);

Return value

Returns DIAL_EC_NOERROR on success or an error code otherwise.

Parameters

device
A valid device identifier.

type
A member of the CChannel::CHANTYPE enumeration, specifying the channel.

isData
Set to True if data is available in the buffer, False otherwise.

status
Holds additional status information on return.

Remarks

Currently only the CHANTYPE_TRACEPROFILE channel modifies this value to
CHANSTATUS_HALFFULL. For all other specified channels, it is returned as 0.

CPDIAL Library Reference

60

Read
Reads a specified amount from the specified channel and returns the actual amount read.
DIAL_EC Read(DIAL_ID device,

CHANTYPE type,
DWORD size,
DWORD& sizeRead,
const void* buffer,
BOOL blocking = FALSE,
DWORD timeout = DIAL_DEFAULT_TIMEOUT);

Return value

Returns DIAL_EC_NOERROR on success or an error code otherwise.

Parameters

device
A valid device identifier.

type
A member of the CChannel::CHANTYPE enumeration, specifying the channel.

size
The amount of data to read.

sizeRead
The amount of data actually read.

buffer
A pointer to a buffer to store the result.

blocking
Set to True for blocking, False for non-blocking.

timeout
The delay before a timeout.

Remarks

By default Read is non-blocking. To make a blocking call use the extra parameters blocking
and timeout. If blocking, the length of time Read waits for the channel request to succeed is
specified by DIAL_DEFAULT_TIMEOUT which is set to 5000 milliseconds by default. To wait
indefinitely, specify a value of INFINITE.

SH4 Debug Interface Guide

61

Write
Writes from the specified channel to the specified address and returns the actual number of bytes
read.
DIAL_EC Write(DIAL_ID device,

CHANTYPE type,
DWORD size,
DWORD& sizeWritten,
const void* buffer,
BOOL blocking = FALSE,
DWORD timeout = DIAL_DEFAULT_TIMEOUT);

Return value

Returns DIAL_EC_NOERROR on success or an error code otherwise.

Parameters

device
A valid device identifier.

type
A member of the CChannel::CHANTYPE enumeration, specifying the channel.

size
The amount of data to read.

sizeWritten
The amount of data actually read.

buffer
A pointer to a buffer to store the result.

blocking
Set to True for blocking, False for non-blocking.

timeout
The delay before a timeout.

Remarks

By default Write is non-blocking. To make a blocking call use the extra parameters blocking
and timeout. If blocking, the length of time Write waits for the channel request to succeed is
specified by DIAL_DEFAULT_TIMEOUT which is set to 5000 milliseconds by default. To wait
indefinitely, specify a value of INFINITE.

CPDIAL Library Reference

62

CDial::CTypedChannelROEx functions

CTypedChannelROEx class definition
// This represents a read-only channel of a specific type

class CTypedChannelROEx : public CGenChannel
{
public:

virtual DIAL_EC Reserve(DIAL_ID,
DWORD = DIAL_DEFAULT_TIMEOUT) = 0;

virtual DIAL_EC Release(DIAL_ID) = 0;
virtual DIAL_EC Validate(DIAL_ID) = 0;
virtual DIAL_EC DataReady(DIAL_ID,

BOOL&,
DWORD&) = 0;

virtual DIAL_EC Read(DIAL_ID,
DWORD,
DWORD&,
void*,
BOOL = FALSE,
DWORD = DIAL_DEFAULT_TIMEOUT) = 0;

};

SH4 Debug Interface Guide

63

Reserve
Reserves the channel specified by type and must be used before any reading or writing is
performed.
DIAL_EC Reserve(DIAL_ID device,

DWORD timeout = DIAL_DEFAULT_TIMEOUT);

Return value

Returns DIAL_EC_NOERROR on success or an error code otherwise.

Parameters

device
A valid device identifier.

timeout
The length of time to wait for the channel if it is in use by another process.

Remarks

When the channel is no longer required, for example when a program exits, a corresponding
Release call must be made.

If the channel is currently in use, the length of time Reserve waits for the channel request to
succeed is specified by DIAL_DEFAULT_TIMEOUT which is set to 5000 milliseconds by
default. To wait indefinitely, specify INFINITE.

CPDIAL Library Reference

64

Release
Releases the channel specified by type on the device specified by device for use by other
processes.
DIAL_EC Release(DIAL_ID device);

Return value

Returns DIAL_EC_NOERROR on success or an error code otherwise.

Parameters

device
A valid device identifier.

SH4 Debug Interface Guide

65

Validate
Tests for the presence of the channel specified by type on the device specified by device and is
reserved for use by this process.
DIAL_EC Validate(DIAL_ID device);

Return value

Returns DIAL_EC_NOERROR on success or an error code otherwise.

Parameters

device
A valid device identifier.

Remarks

None.

CPDIAL Library Reference

66

DataReady
Determines whether there is any data to read on the specified channel.
DIAL_EC DataReady(DIAL_ID device,

BOOL& isData,
DWORD& status);

Return value

Returns DIAL_EC_NOERROR on success or an error code otherwise.

Parameters

device
A valid device identifier.

isData
Set to True if data is available in the buffer, False otherwise.

status
Holds additional status information on return.

Remarks

None.

SH4 Debug Interface Guide

67

Read
Reads a specified amount from the specified channel and returns the actual amount read.
DIAL_EC Read(DIAL_ID device,

DWORD size,
DWORD& sizeRead,
const void* buffer,
BOOL blocking = FALSE,
DWORD timeout = DIAL_DEFAULT_TIMEOUT);

Return value

Returns DIAL_EC_NOERROR on success or an error code otherwise.

Parameters

device
A valid device identifier.

size
The amount of data to read.

sizeRead
The amount of data actually read.

buffer
A pointer to a buffer to store the result.

blocking
Set to True for blocking, False for non-blocking.

timeout
The delay before a timeout.

Remarks

By default Read is non-blocking. To make a blocking call use the extra parameters blocking
and timeout. If blocking, the length of time Read waits for the channel request to succeed is
specified by DIAL_DEFAULT_TIMEOUT which is set to 5000 milliseconds by default. To wait
indefinitely, specify INFINITE.

CPDIAL Library Reference

68

CDial::CTypedChannelEx functions

CTypedChannelEx class definition
CTypedChannelEx inherits from CTypedChannelROEx and adds the Write function.

// This represents a read-write channel of a specific type

class CTypedChannelEx : public CTypedChannelROEx
{
public:

virtual DIAL_EC Write(DIAL_ID,
DWORD,
DWORD&,
const void*,
BOOL = FALSE,
DWORD = DIAL_DEFAULT_TIMEOUT) = 0;

};

SH4 Debug Interface Guide

69

Write
Writes from the specified channel to the specified address and returns the actual number of bytes
read.
DIAL_EC Write(DIAL_ID device,

DWORD size,
DWORD& sizeWritten,
const void* buffer,
BOOL blocking = FALSE,
DWORD timeout = DIAL_DEFAULT_TIMEOUT);

Return value

Returns DIAL_EC_NOERROR on success or an error code otherwise.

Parameters

device
A valid device identifier.

size
The amount of data to read.

sizeWritten
The amount of data actually read.

buffer
A pointer to a buffer to store the result.

blocking
Set to True for blocking, False for non-blocking.

timeout
The delay before a timeout.

Remarks

By default Write is non-blocking. To make a blocking call use the extra parameters blocking
and timeout. If blocking, the length of time Write waits for the channel request to succeed is
specified by DIAL_DEFAULT_TIMEOUT which is set to 5000 milliseconds by default. To wait
indefinitely, specify INFINITE.

CPDIAL Library Reference

70

CDial::Console functions

CDial::Console class definition
These functions are used to communicate with the target attached to the DA and are defined in
DialConsole.h.
class CDialConsole : public CGenConsole
{
public:

virtual DIAL_EC Inquiry(DIAL_ID,
INQUIRY&) = 0;

virtual DIAL_EC ProcessInquiryError(const INQUIRY&,
BOOL = TRUE,
BOOL = FALSE) = 0;

virtual DIAL_EC Execute(DIAL_ID, DWORD) = 0;
virtual DIAL_EC Suspend(DIAL_ID) = 0;
virtual DIAL_EC Resume(DIAL_ID) = 0;
virtual DIAL_EC ReadMemory(DIAL_ID,

DWORD,
ELEMENTSIZE,
DWORD,
void*) = 0;

virtual DIAL_EC WriteMemory(DIAL_ID,
DWORD,
ELEMENTSIZE,
DWORD,
const void*) = 0;

virtual DIAL_EC ReadContext(DIAL_ID,
CONTEXTMODE,
WORD,
void*) = 0;

virtual DIAL_EC WriteContext(DIAL_ID,
CONTEXTMODE,
WORD,
const void*) = 0;

virtual DIAL_EC ReadConfig(DIAL_ID,
READCONFIG&) = 0;

virtual DIAL_EC ResetNoDebug(DIAL_ID) = 0;
virtual DIAL_EC ResetAndDebug(DIAL_ID) = 0;
virtual DIAL_EC MakeSafe(DIAL_ID) = 0;
virtual DIAL_EC GetValidConsoleStatus(DIAL_ID,

CDialConsoleStatus *&) = 0;
};

#ifndef CPL_INTERNAL
class CDialConsoleEx : public CDialConsole {};
#endif

SH4 Debug Interface Guide

71

Inquiry
Returns the current state of the target.
DIAL_EC Inquiry(DIAL_ID device,

INQUIRY& inquiry);

Return Value

Returns DIAL_EC_NOERROR on success or an error code otherwise.

Parameters

device
A valid device identifier.

inquiry
A CConsole::INQUIRY structure to store the result.

Remarks

The status information returned is state dependent. Within the CConsole::INQUIRY class
returned, three fields are used to identify the current execution state of the target, the signal
category and a signal identifier. The fields relate to enumerations within the CConsole class
such as CConsole::SIGNAL, CConsole::SIGCAT.

NOTE: The CConsole::Inquiry() command does not in itself cause a SIGNAL_HALTED
exception to be reported, even though it is described as a CConsole command. The
command is able to non-intrusively report the current status.

Signal state Execution state
SIGNAL_RUNNING Executing application code.

SIGNAL_STOPPED In debug stub as result of a Suspend() target command.
SIGNAL_HALTED In debug stub as result of CPU exception or target command issued.

Check bySigCat and wSigID to differentiate.
SIGNAL_RESET Initial condition after CConsole::ResetAndDebug() or

manual reset or power cycle causes the stub to (re)load when the DA
is in CPU debug mode.

SIGNAL_SAFE Indicates a CConsole::MakeSafe() command was issued.
SIGNAL_FAIL Failed to load/reset the debug stub.
SIGNAL_NODEBUG Running without target debug facilities.

CPDIAL Library Reference

72

When a signal value of either SIGNAL_STOPPED, SIGNAL_HALTED, SIGNAL_RESET or
SIGNAL_SAFE is flagged, the current PC field is also available and valid.

When a signal value of SIGNAL_HALTED is flagged, the signal category and signal ID fields
provide processor specific information for the exception or other reason for being in the debug
stub.

Possible values of the signal category where Inquiry returns SIGNAL_HALTED.

The SIGCAT_REPORTEVENT is currently only used to report that a CPU manual reset has been
detected. The signal ID will be SIGID_MANUALRESET.

The SIGCAT_CHNLBLOCK category can be treated in the same way as SIGNAL_RUNNING, and
target commands may be issued as normal. However, should the CConsole::Resume command
be issued, the blocked serial channel operation will return False if it has not yet completed. The
response to this signal category is to wait for the CHNLBLOCK signal category to be cleared. For
example, CConsole::Inquiry will continue to be issued until the signal changes and a signal
value such as SIGNAL_RUNNING is detected.

The signal ID value is specific to the CPU and matches the manufacturer’s exception code for
the given category. In general, the ‘vector base’ and ‘offset’ are encoded into ‘category’, then
‘exception code’ is the category specific ID.

To determine the reason for halting the target execution and entering the debug stub, the
SIGNAL_HALTED state and signal category SIGCAT_ASE are both specified. The two causes of
this are:

• A CConsole command was issued by the host.

• A software breakpoint (using ASE BRK) or hardware breakpoint (using ASE HBC)
was encountered.

The signal identifier allows you to differentiate between ASE exceptions:
if (InquirySignal == CConsole::SIGNAL_HALTED)

Signal category Means

SIGCAT_UNDEFINED Reserved for future use.

SIGCAT_ASE Currently defined for use on the 7091-EVA.

SIGCAT_GENERAL General exception.

SIGCAT_INTERRUPT Interrupt.

SIGCAT_CHNLBLOCK Blocked channel (such as Fserver) operation in progress.

SIGCAT_REPORTEVENT Check SIGID for event being reported.

SIGCAT_PROFILEBUFF Statistical sampling and trace profiling buffer signal.

SH4 Debug Interface Guide

73

{
__switch (InquirySignalCategory)
__{
____case CConsole::SIGCAT_ASE:
______switch (InquirySignalID)
______{
________case 0x04:_// ASE-HBC BREAK
__________// HBC breakpoint encountered break;
________case 0x08:_// ASE-SW BREAK
__________// BRK software breakpoint encountered break;
________case 0x10:_// ASE-PIN BREAK
__________// ASE Pin break encountered as a result of CConsolecommand being issued
__________// (Inquiry() command does not cause ASE-PIN BREAK entry into the stub).
__________// This means target was executing game code and would have reported
__________// a SIGNAL_RUNNING if we hadn’t issued a command to it. After all debug
_________// commands have been issued, a CConsole::Resume() command should be issued
_________// to exit the debug stub and continue normal execution
_________break;

_______default:
_________break;
______}

______break;
____...
____...
____default:
____...
____break;
__}
}

NOTE: The CConsole::Inquiry() command does not in itself cause a SIGNAL_HALTED
and ASE-PIN BREAK exception to be reported, even though it is described as a
CConsole command; it is able to non-intrusively report the current status.

CPDIAL Library Reference

74

ProcessInquiryError
Queries the inquiry data bit-fields retrieved from the Inquiry command.
CDail::ProcessInquiryError(const INQUIRY& inquiry,

BOOL needDebug = TRUE,
BOOL reserved = FALSE);

Return Value

Returns DIAL_EC_NOERROR on success or an error code otherwise.

Parameters

inquiry
A CConsole::INQUIRY structure obtained using the Inquiry function.

needDebug
Set to True if debug support is required, False otherwise.

reserved
Reserved. Always set to False.

Remarks

Use this function to validate whether the target is in a state to support debugging using the
CConsole commands for example, all stubs have been successfully loaded with debug support
available. Specify the required level of functionality using the NeedDebug boolean parameter.

SH4 Debug Interface Guide

75

Execute
Causes execution to start on the target from the given address.
DIAL_EC Execute(DIAL_ID device,

DWORD address);

Return Value

Returns DIAL_EC_NOERROR on success or an error code otherwise.

Parameters

device

A valid device identifier.

address
The address to start executing from.

Remarks

This function is equivalent to modifying the PC register using read and write context and then
issuing a resume command.

After a CConsole::Execute() command has been successfully issued, the
CConsole::Inquiry() command reports the signal status as SIGNAL_RUNNING unless an
exception is encountered prior to completion. In this case the relevant signal, category and code
is reported.

CPDIAL Library Reference

76

Suspend
This causes the target specified by device to suspend execution and enter the debug stub.

DIAL_EC Suspend(DIAL_ID device);

Return Value

Returns DIAL_EC_NOERROR on success or an error code otherwise.

Parameters

device

A valid device identifier.

Remarks

The CConsole::Inquiry() command will report the signal status as SIGNAL_STOPPED after
a CConsole::Suspend() command has been successfully issued.

SH4 Debug Interface Guide

77

Resume
Causes execution on the target to resume from the point where it stopped.

DIAL_EC Resume(DIAL_ID deviceID);

Return Value

Returns DIAL_EC_NOERROR on success or an error code otherwise.

Parameters

device
A valid device identifier.

Remarks

Use this function to resume execution when the target has been stopped due to a suspend
command, exception or general host command interaction such as the current PC. After a
CConsole::Resume() command has been successfully issued, the CConsole::Inquiry()
command reports the signal status as SIGNAL_RUNNING, unless an exception is encountered
prior to completion. In this case the relevant signal, category and code will be reported.

CPDIAL Library Reference

78

ReadMemory
Reads the target’s memory.
DIAL_EC ReadMemory(DIAL_ID device,

DWORD address,
ELEMENTSIZE elementSize,
DWORD elementCount,
void* buffer);

Return Value

Returns DIAL_EC_NOERROR on success or an error code otherwise.

Parameters

device
A valid device identifier.

address
The address to read from.

elementSize
A member of the CConsole::ELEMENTSIZE enumeration (ELEMENTSIZE_BYTE,
ELEMENTSIZE_WORD, or ELEMENTSIZE_LONG) specifying the size of each element.

elementCount
The number of elements to read.

buffer
A pointer to a buffer large enough to hold the resulting data.

Remarks

NOTE: The memory is retrieved into the specified destination buffer as a byte stream in
the same order as in the target’s memory, regardless of the elementSize
specified.

SH4 Debug Interface Guide

79

WriteMemory
Writes to the target’s memory.
DIAL_EC WriteMemory(DIAL_ID device,

DWORD address,
ELEMENTSIZE elementSize,
DWORD elementCount,
const void* buffer);

Return Value

Returns DIAL_EC_NOERROR on success or an error code otherwise.

Parameters

device
A valid device identifier.

address
The address to write to.

elementSize
A member of the CConsole::ELEMENTSIZE enumeration (ELEMENTSIZE_BYTE,
ELEMENTSIZE_WORD, or ELEMENTSIZE_LONG) specifying the size of each element.

elementCount
The number of elements to write.

buffer
A pointer to a buffer holding the data to be written.

NOTE: The memory is written from the specified source buffer as a byte stream as ordered
in the target’s memory, regardless of the ElementSize specified.

CPDIAL Library Reference

80

ReadContext
Reads a context from the target.
DIAL_EC ReadContext(DIAL_ID device,

CONTEXTMODE mode,
WORD length,
void* buffer);

Return Value

Returns DIAL_EC_NOERROR on success or an error code otherwise.

Parameters

device
A valid device identifier.

mode
A member of the CConsole::CONTEXTMODE enumeration that specifies which set
of internal registers to read.

length
The size of the buffer to store the result.

buffer
A pointer to a buffer to store the result.

Remarks

The CConsole::CONTEXTMODE is defined as an enumeration as follows:

Context Means

CONTEXTMODE_GENERAL General registers.

CONTEXTMODE_FPU Floating point registers.

CONTEXTMODE_UBC User Break Controller.

CONTEXTMODE_HBC Reserved - EVA chip’s Hardware Break Controller.

CONTEXTMODE_ASE Reserved - ASE mode specific registers.

CONTEXTMODE_PERF Reserved for Performance counters.

CONTEXTMODE_TRACE Reserved for Execution Trace information.

CONTEXTMODE_MMU Reserved for the Memory management unit.

SH4 Debug Interface Guide

81

The structure definition for the general and floating point registers is defined in GenConsole.h
as the structures SDIALRegsSH4EVA and SDIALRegsSH4EVA_FPU.

A pointer to one of these structures is passed as the destination buffer to the function and the
structure size, length, is specified using sizeof(structure).

NOTE: The context is declared to be represented in the native endian of the processor. For
the Hitachi SH4 this is usually little endian. The endianness can be checked using
the CConsole::ReadConfig command.

CPDIAL Library Reference

82

WriteContext
Writes a context to the target.
DIAL_EC WriteContext(DIAL_ID device,

CConsole::CONTEXTMODE mode,
WORD length,
const void* buffer);

Return Value

Returns DIAL_EC_NOERROR on success or an error code otherwise.

Parameters

device
A valid device identifier.

mode
A member of the CConsole::CONTEXTMODE enumeration that specifies which set
of internal registers to read.

length
The size of the buffer storing the data to write.

buffer
A pointer to a buffer storing the data to write.

Remarks

The CConsole::CONTEXTMODE is defined as an enumeration as follows:

Mode Context

CONTEXTMODE_GENERAL General registers.

CONTEXTMODE_FPU Floating point registers.

CONTEXTMODE_UBC User Break Controller.

CONTEXTMODE_HBC Reserved. Hardware Break Controller.

CONTEXTMODE_ASE Reserved. ASE mode specific registers.

CONTEXTMODE_PERF Reserved. Performance counters

CONTEXTMODE_TRACE Reserved. Execution Trace information

CONTEXTMODE_MMU Reserved. Memory management unit

SH4 Debug Interface Guide

83

The structure definition for the general and floating point registers is defined in GenConsole.h
as the structures SDIALRegsSH4EVA and SDIALRegsSH4EVA_FPU.

A pointer to one of these structures is passed as the source buffer to the function. The structure
size is specified as the length using sizeof(structure).

NOTE: The context is declared to be represented in the native endian of the processor. For
the SH7091-EVA this is usually little endian. The endianness can be checked using
the CConsole::ReadConfig command.

CPDIAL Library Reference

84

ReadConfig
Reads the current configuration of the debug stub on the target.
DIAL_EC ReadConfig(DIAL_ID device,

READCONFIG& config);

Return Value

Returns DIAL_EC_NOERROR on success or an error code otherwise.

Parameters

device
A valid device identifier.

config
A CConsole::READCONFIG structure to hold the result.

Remarks

The configuration details retrieved in CConcole::READCONFIG include the endian of the target
CPU, the CPU family and type. The Hitachi SuperH family is identified as an enumeration
UPROCFAMILY_HI_SH and the processor type within that family is defined to be one of the
following:

• UPROCTYPE_UNDEF (Reserved)

• UPROCTYPE_SH1

• UPROCTYPE_SH2

• UPROCTYPE_SH3

• UPROCTYPE_SH3E

• UPROCTYPE_SH4

• UPROCTYPE_SH4EVA

SH4 Debug Interface Guide

85

ResetNoDebug
Resets the main board without loading a debug stub and limits the available CDial::Console
commands to Inquiry and ResetAndDebug. All CDial::DA commands are still available.

DIAL_EC ResetNoDebug(DIAL_ID device);

Return Value

Returns DIAL_EC_NOERROR on success or an error code otherwise.

Parameters

device
A valid device identifier.

Remarks

Use this function to test applications without interference from the debugging system. For
example, as if the application was running on a production unit.

CPDIAL Library Reference

86

ResetAndDebug
Causes a full reset of the system and the 1K ASERAM stub to be loaded onto the target and run.
Full debugging functionality is available on the target.

DIAL_EC ResetAndDebug(DIAL_ID device);

Return Value

Returns DIAL_EC_NOERROR on success or an error code otherwise.

Parameters

device
A valid device identifier.

Remarks

The reset behavior is dependent on a DA configuration status bit, OSorCPUflag, defined in
CDA::CONFIGDATA. A value of 0 means OS debug mode and value of 1 means CPU debug mode.

When the DA is configured for OS debug mode, the target will automatically exit the debug stub
and resume execution after the reset has occurred. The CConsole::Inquiry() command will
report the signal status as SIGNAL_RUNNING after CConsole::ResetAndDebug() has been
successfully issued.

When the DA is configured for CPU debug mode, the target will remain in the debug stub after
the reset has occurred. The CConsole::Inquiry() command will report the signal status as
SIGNAL_RESET after CConsole::ResetAndDebug() has been successfully issued and
execution of the target will not occur until either a CConsole::Resume() or a
CConsole::Execute() command is issued.

SH4 Debug Interface Guide

87

MakeSafe
DIAL_EC MakeSafe(DIAL_ID device);

Allows the DA to set the target microprocessor to a safe state by setting various registers.

Return Value

Returns DIAL_EC_NOERROR on success or an error code otherwise.

Parameters

device
A valid device identifier.

Remarks

For the SH7091-EVA the following operations are carried out as a result of a MakeSafe
command being issued:

• Register VBR is set to the debug stub default handler.

• Register DBR is set to the debug stub default handler.

• Register SR is set to the value 0x0600000F0 (status register).

• Register R15 is set to the value 0x0D000000 (stack pointer).

The CConsole::Inquiry() command will report the signal status as SIGNAL_SAFE after a
CConsole::MakeSafe() command has been successfully issued.

CPDIAL Library Reference

88

DIAL error codes
All error codes are defined as enumerations in error.h. The higher order 16 bits contain the
error category and the lower order 16 bits contain the actual error code.

Error categories

 Error Code Means

ERRCAT_NOERROR No error.

ERRCAT_SALSA General errors.

ERRCAT_SALSADACON Additional errors relating to DA and target.

ERRCAT_DA Errors from DA specific commands.

ERRCAT_CON Errors from target specific commands.

ERRCAT_WINSOCK Errors Winsock specific commands.

ERRCAT_UNKNOWN Errors of unknown origin.

SH4 Debug Interface Guide

89

SALSA error codes

Error Code Means

ERRSALSA_NOERROR No error.

ERRSALSA_NOTINITED Call made to uninitialized layer.

ERRSALSA_DEVICENOTMATCH Failed to validate the device type.

ERRSALSA_DEVICENOTFOUND Didn’t find requested device.

ERRSALSA_CHANLNOTALLOCD Logical channel (LUN) not allocated.

ERRSALSA_NOCHNLAVAIL No more channels (LUNs) available.

ERRSALSA_MEMALLOCFAIL Memory allocation failed.

ERRSALSA_BADADAPTER Failed to validate the DA.

ERRSALSA_BADDEVICEID Failed to validate the device identifier.

ERRSALSA_TIMEOUT Timed out on command.

ERRSALSA_FAILCREATESYNCOBJ Failed to create the device’s synchronization object.

ERRSALSA_FAILCREATELOCKOBJ Failed to create the device’s synchronization control object.

ERRSALSA_FAILLOCK Timed out or bad attempt to lock a synchronization object.

ERRSALSA_FAILUNLOCK Failed attempting to unlock a synchronization object.

ERRSALSA_BADVERSION The version passed to SALSA.Initialise does not match the version
used to build the library.

ERRSALSA_DEVICEINUSE The specified device is already in use.

ERRSALSA_NOTIMPLEMENTED The specified function has not been implemented.

CPDIAL Library Reference

90

SALSADACON error codes

Error Code Means

ERRSALSADACON_CMDPENDING Command still pending completion.

ERRSALSADACON_CMDNOMATCH Returned command header did not match in
command field.

ERRSALSADACON_SEQNOMATCH Returned command header did not match in
sequence field.

ERRSALSADACON_FLSHOPENFAIL Failed to open flash image file.

ERRSALSADACON_FLSHSTATFAIL Failed to fstat() flash image file.

ERRSALSADACON_FLSHSHORTREAD Short read from flash image file.

ERRSALSADACON_BADELEMENTSIZE Bad ELEMENTSIZE specified in ReadMemory() or
WriteMemory().

ERRSALSADACON_NOCONPOWER The target is currently powered off.

ERRSALSADACON_RESETINGCON The target is currently being reset (Reset pin low).

ERRSALSADACON_FAILLOADSTUB (SIGNAL_FAIL) One of the debug stubs failed to load.

ERRSALSADACON_FAIL1KSTUB The ASE RAM debug stub failed to load.

ERRSALSADACON_FAILFULLSTUB The Extended debug stub failed to load.

ERRSALSADACON_FAILNODEBUG (SIGNAL_NODEBUG) No debug support available.

SH4 Debug Interface Guide

91

DA error codes

Console error codes

Error Code Means

DAERRDA_DAAOK Command completed without an error.

DAERRDA_DATMO DA Command timed out during action.

DAERRDA_DAERA DA Command error while erasing firmware.

DAERRDA_DAPRG DA command error during reflashing.

DAERRDA_DAFIC DA Command firmware image corrupt.

DAERRDA_DAERR DA Command general error.

Error Code Means

DAERRCON_CONAOK Console command completed without an error.

DAERRCON_CONERR Console command fatal error.

DAERRCON_CONBAD Console command unknown.

DAERRCON_CONPRM Console command parameter error.

DAERRCON_CONADR Console command bad address.

DAERRCON_CONCNT Console command bad count.

DAERRCON_CONCBF Console command channel buffer full.

DAERRCON_CONCBE Console command channel buffer empty.

DAERRCON_CONBSY Console command not processed as BUSY.

DAERRCON_CONCNA Console command not available (no debug stub).

CPDIAL Library Reference

92

WINSOCK error codes

UNKNOWN error codes

Error Code Means

ERRWINSOCK_INVALIDVERSION The version of the Winsock library is invalid.

ERRWINSOCK_CANTCONNECT Unable to connect to the specified device.

Error Code Means

ERRUNKNOWN_UNKNOWNERR Error of unknown origin.

	About this guide
	ASE and Extended debug stubs
	The ASE debug stub
	The Extended debug stub
	Functional differences of the ASE and Extended debug stubs
	Optimization of the stubs
	Exception handling in the ASE debug stub
	Exception handling in the Extended debug stub

	Debug stub cache usage
	Caching during BIOS calls
	Cache coherency for the 'Write Memory' command

	Interrupts and Exceptions
	Exception handling with or without a Boot ROM
	Halt or Resume after stub load

	Exceptions during debugging with a Boot ROM
	Exceptions during debugging without a Boot ROM
	Interrupts during debugging
	Caveats and limitations
	Use of the HBC registers
	Debugging exception handlers using CodeScape
	Performance loss when handling SH4 FPU exceptions

	Communications Channels
	About channels
	Channel access
	Channel designation
	Channel buffers

	ASE BIOS services
	Target channel access
	BIOS calls
	Interrupts

	Accessing ASE BIOS services
	Setup registers
	Results
	Error codes

	ASE BIOS calls
	Read byte, INCHR
	Write byte, OUTCHR
	Read buffer, RDBF
	Write buffer, WRBF
	Read channel buffer status, RDSTAT
	Set and Read Channel Interrupts, CHISR

	Servicing buffers
	Interrupt control
	Polling
	Acknowledging receipt of a HUDI interrupt
	HUDI interrupt handler considerations

	CPDIAL Library Reference
	Host channel access
	Connecting and disconnecting

	Using DIAL
	Calling a function

	CDial functions
	Error codes
	CDial class definition
	InitializeDial
	GetVersion
	SetTimeOut
	GetTimeOut
	FindNextDevice
	GetDeviceDetails
	ValidateDevice
	GetErrorText
	Connect
	Disconnect
	GetDialDebugMode
	SetDialDebugMode

	CDial::CDialChannelEx functions
	Typed channels
	CDialChannelEx class definition
	Reserve
	Release
	Validate
	DataReady
	Read
	Write

	CDial::CTypedChannelROEx functions
	CTypedChannelROEx class definition
	Reserve
	Release
	Validate
	DataReady
	Read

	CDial::CTypedChannelEx functions
	CTypedChannelEx class definition
	Write

	CDial::Console functions
	CDial::Console class definition
	Inquiry
	ProcessInquiryError
	Execute
	Suspend
	Resume
	ReadMemory
	WriteMemory
	ReadContext
	WriteContext
	ReadConfig
	ResetNoDebug
	ResetAndDebug
	MakeSafe

	DIAL error codes
	Error categories
	SALSA error codes
	SALSADACON error codes
	DA error codes
	Console error codes
	WINSOCK error codes
	UNKNOWN error codes

