

CodeWarrior¨

Error Reference

Because of last-minute changes to CodeWarrior,
some of the information in this manual may be

inaccurate. Please read the Release Notes on the
CodeWarrior CD for the latest up-to-date information.

Revised: 980302-JDR

Metrowerks CodeWarrior copyright ©1993Ð1998 by Metrowerks Inc. and its licensors.
All rights reserved.
Documentation stored on the compact disk(s) may be printed by licensee for personal
use. Except for the foregoing, no part of this documentation may be reproduced or trans-
mitted in any form by any means, electronic or mechanical, including photocopying,
recording, or any information storage and retrieval system, without permission in
writing from Metrowerks Inc.
Metrowerks, the Metrowerks logo, CodeWarrior, and Software at Work are registered
trademarks of Metrowerks Inc. PowerPlant and PowerPlant Constructor are trademarks
of Metrowerks Inc.
All other trademarks and registered trademarks are the property of their respective
owners.
ALL SOFTWARE AND DOCUMENTATION ON THE COMPACT DISK(S) ARE SUB-
JECT TO THE LICENSE AGREEMENT IN THE CD BOOKLET.

How to Contact Metrowerks:

U.S.A. and international Metrowerks Corporation
P.O. Box 334
Austin, TX 78758
U.S.A.

Canada Metrowerks Inc.
1500 du College, Suite 300
Ville St-Laurent, QC
Canada H4L 5G6

Ordering Voice: (800) 377Ð5416
Fax: (512) 873Ð4901

World Wide Web http://www.metrowerks.com

Registration information register@metrowerks.com

Technical support support@metrowerks.com

Sales, marketing, & licensing sales@metrowerks.com

CompuServe goto Metrowerks

Table of Contents
Table of Contents 3

1 Introduction 5
Overview of the Error Reference 5
Conventions Used in This Manual 5
Settings Affect Errors . 6

2 C/C++ Compiler Error Messages 9
C/C++ Compiler Errors 9
Symbol Names (C/C++) 9
Punctuation (C/C++) 11
A to C (C/C++). 17
D to F (C/C++) . 25
G to I (C/C++) . 31
J to L (C/C++) . 62
M to O (C/C++) . 63
P to R (C/C++) . 66
S to T (C/C++) . 72
U to Z (C/C++). 80

3 Pascal Compiler Error Messages 85
Pascal Compiler Errors 85
Symbol Names (Pascal) 85
Punctuation (Pascal) 86
A to C (Pascal) . 89
D to F (Pascal) . 97
G to I (Pascal) . 100
J to L (Pascal). . 108
M to O (Pascal) . . 109
P to R (Pascal) . 113
S to T (Pascal) . 116
U to Z (Pascal) . 119

4 Java Error Messages 125
Java Compiler Errors 125
Error Reference ERRÐ3

Table of Contents

Symbol Names (Java) 125
Punctuation Marks (Java) 130
A to B (Java) . 130
C (Java) . 139
D to F (Java) . 159
G to I (Java) . 165
J to N (Java) . 179
O to R (Java) . 193
S to U (Java) . 198
V to Z (Java) . 209

5 Linker Error Messages 215
Typography Notes for Linker Error Messages 215
Linker Errors. . 216

Symbol Names (Linker) 216
A to C (Linker) . . 221
D to F (Linker) . . 230
G to I (Linker) . 233
J to L (Linker) . 237
M to O (Linker) . 240
P to T (Linker) . 244
U to Z (Linker) . . 249
ERRÐ4 Error Reference

1
Introduction
This manual lists the errors you may encounter from the CodeWar-
rior compilers and linkers.

In each chapter, the errors are arranged in sections according to the
first character in the message. Errors that begin with a symbol name
(such as the name of a variable or routine) come first. Errors that
begin with a non-alphabetic character (such as punctuation) come
next. After that, the errors are listed alphabetically.

Overview of the Error Reference
When you compile and link code, CodeWarrior may discover prob-
lems. If there is a problem, the compiler or linker posts an error in
the Message window. This manual discusses each error, what it
means, and in many cases provides you with suggestions for cor-
recting the error.

The chapters in this manual describe the errors you may encounter
from each compiler and linker. They are:

¥ ÒC/C++ Compiler ErrorsÓ on page 9

¥ ÒPascal Compiler ErrorsÓ on page 85

¥ ÒJava Compiler ErrorsÓ on page 125

¥ ÒLinker Error MessagesÓ on page 215

Conventions Used in This Manual
The following list describes the font conventions and structure used
in this reference manual.
Error Reference ERRÐ5

Introduction

Settings Affect Errors

Error Message <variable name>

This section following the error message explains the nature of the
error and its possible causes. A name in italics indicates an un-
known variable name or type that will be filled in by the compiler
when the error is generated.

 Ô)Õ expected

The compiler did not find a right parenthesis where it expected to
find one.

NOTE: An example of how an error or warning message would
appear.

Listing 1.1 sample source code

In some cases, sample source code is provided that demonstrates
the error message.

Fix: Some error messages include a suggestion about how the error
could be fixed.

See Also Some error messages include a reference where more information
can be found. This section often points out a Metrowerks CodeWar-
rior feature that can be used to detect or stop the error from being
generated.

Settings Affect Errors
Language options not only affect the way the compiler translates
the source code in your program files,. These settings also affect
which source code is flagged as errors and which source code com-
piles. In many cases, the appearance of errors depends heavily on
the selected language settings. Where applicable, the description of
an error will include the name of the checkbox that, when selected,
screens for a particular error.
ERRÐ6 Error Reference

Introduction

Settings Affect Errors

NOTE: For more information on the panels which affect error
recognition, consult the CodeWarrior IDE User Guide

To change the language options used by the compiler, first select
(Target) Settings from the Edit menu. Once the Target Settings dia-
log box appears, select the appropriate language settings panel from
the list on the left, and choose the language options.
Error Reference ERRÐ7

Introduction

Settings Affect Errors

ERRÐ8 Error Reference

2
C/C++ Compiler
Error Messages
This chapter gives an alphabetical list of the compiler errors which
may be encountered while using Metrowerks CodeWarrior compil-
ers for the PowerPC-based, 68K-based Mac OS, Win32/x86 and
Windows NT application code generators.

C/C++ Compiler Errors
In this list, errors with variable initial text (such as a class or func-
tion name) come first. Errors beginning with a non-alphabetic sym-
bol character come next. After that, errors are listed alphabetically.

NOTE: The description of some C++ errors contains a reference
to Margaret A Ellis and Bjarne StroustrupÕs The Annotated C++
Reference Manual, Addison-Wesley, Reading, MA, 1990. These
page references are indicated by the abbreviation ARM, followed
by the page number and section. For example: ARM p.202, 10.1.1
Ambiguities.

Symbol Names (C/C++)
These are C/C++ compiler error messages that begin with a symbol
name, the name of a variable or function.

Error 10177 class is not a SOM class

You are using one of the SOM pragmas within the declaration of a
class that isnÕt a SOM class. The pragmas SOMReleaseOrder, SOM-
Error Reference ERRÐ9

C/C++ Compiler Error Messages

Symbol Names (C/C++)

ClassVersion, SOMMetaClass, and SOMCallStyle may appear
only within the declaration of the SOM class they apply to.

Fix Be sure the pragma appears within the declaration of the SOM class
it applies to. DonÕt use these pragmas with classes that are not de-
scended from SOMObject.

Error 10164 variable could not be assigned to a register

Undocumented at this time.

Error 10051 variable is not a struct/union/class member

An item referenced as a member/method of a struct, union, or class
is not defined as being a member/method. For example, in Listing
2.1 below, theColors.color references a member, var, that does
not belong to the struct ColorValues.

Listing 2.1 Not a struct/union/class member

typedef struct
{

short seq; // var is not defined in
short group;// this struct

} ColorValues;

ColorValuestheColors;
theColors.color = 1;// error: see above

Fix Check the structure, union, or class in question. This error may be
caused by a simple spelling mistake. In C++ this error often hap-
pens when a class member function or constructorÕs arguments do
not match the prototype. If this is not the case, either change the
item referenced or modify the structure, union, or class.

Error 10193 classname is not an Objective-C class

This error is generated because the class you attempted to use
<classname> is not an Objective-C type class.
ERRÐ10 Error Reference

C/C++ Compiler Error Messages

Punctuation (C/C++)

Punctuation (C/C++)
These are C/C++ compiler error messages that begin with punctua-
tion marks.

Error 10126 func hides inherited virtual function func2

You declared a non-virtual member function that hides a virtual
function in a superclass. One function hides another if it has the
same name but a different argument types. For example:

Listing 2.2 func hides inherited virtual function func2

class A {
public:

virtual void f(int);
virtual void g(int);

};

class B: public A {
public:

void f(char);// WARNING: Hides A::f(int)
virtual void g(int); // OK: Overrides A::g(int)

};

This warning appears only if you turned on the Hidden virtual
functions option in the C/C++ Warnings settings panel.

Fix Turn off the Hidden virtual functions option or choose another
name for one of the functions.

Also, ensure that all derived virtual functions have identical param-
eter lists as the base virtual function.

Listing 2.3 Function declaration hides inherited virtual function.

class X { virtual void f(); };
class Y : X { void f(int); }; // Y::f() hides X::f()
Error Reference ERRÐ11

C/C++ Compiler Error Messages
Punctuation (C/C++)
Error 10116 #if nesting overflow

This error occurs when the number of nested #if processor direc-
tives exceeds the maximum number allowed.

Fix To fix this error, study the logic behind your nested #ifs. ThereÕs
probably a way of dividing the large nested #if into a series of
smaller nests.

Error 10144 #include nesting overflow

This error occurs when the number of nested #includes processor
directives exceeds the maximum number allowed.

Fix To fix this error, study the logic behind your nested #includes.
ThereÕs probably a way of dividing the large nested #includes
into a series of smaller nests.

Error 10016 Ô(Õ expected

The compiler did not find a left parenthesis where it expected to
find one.

Fix Use the Balance command to balance all left and right parenthesis.

Error 10017 Ô)Õ expected

The compiler did not find a right parenthesis where it expected to
find one.

Fix Use the Balance command to balance all left and right parenthesis.
This error may be caused by a syntax error in a previous statement.

To prevent this error while typing in source code, select the Balance
While Typing checkbox in the Editor preference panel. When se-
lected, this preference sounds an alert if an un-matching right pa-
renthesis is typed.
ERRÐ12 Error Reference

C/C++ Compiler Error Messages
Punctuation (C/C++)
See Also For more on Balance While Typing, consult the CodeWarrior IDE
UserÕs Guide.

NOTE: This error may be caused by a syntax error or missing
symbol in a previous statement.

Error 10131 Ô<Õ expected

The compiler did not find a left angle bracket where it expected to
find one.

Fix This error may be caused by a syntax error or missing symbol in a
previous statement.

NOTE: The Balance command does not check for angle brack-
ets, Õ<Õ and Õ>Õ.

Error 10132 Ô>Õ expected

The compiler did not find a right angle bracket where it expected to
find one. For example, Listing 2.4 gives an example of a missing
right angle bracket.

Listing 2.4 Õ>Õ expected

template <class T> class Ca;
CA *aClass; // error

Fix This error may be caused by a syntax error in a previous statement.

NOTE: The Balance While Typing does not check for angle
brackets, Õ<Õ and Õ>Õ.

See Also For more on Balance While Typing, consult the CodeWarrior UserÕs
Guide.
Error Reference ERRÐ13

C/C++ Compiler Error Messages
Punctuation (C/C++)
Error 10017 Ô,Õ expected

The compiler did not find a comma where it expected to find one.

Fix This error may be caused by a previous syntax error. For example,
the compiler expects to find a comma in the call to GetMenu() in
the Listing 2.5 below. Actually, to fix this error, a parenthesis must
be added to end the function call to GetMenu().

Listing 2.5 Comma expected

gAppleMenu = GetMenu(APPLE_MENU_ID);
gFileMenu = GetMenu(FILE_MENU_ID;
// the error compiler expected a comma because a right
parenthesis is missing after FILE_MENU_ID.

Error 10071 Ô:Õ expected

The compiler did not find a colon where it expected to find one. For
example, in the switch statement in Listing 2.6, a colon is missing
after APPLE_MENU_ID.

Listing 2.6 Colon expected

switch(theMenu)
{

case APPLE_MENU_ID// error: missing ':'

switch(theItem)
{

case ABOUT_ITEM : // Correct

Fix If the error is not apparent, an error in a previous statement may be
causing the problem. Correct all previous errors first and recompile.
ERRÐ14 Error Reference

C/C++ Compiler Error Messages
Punctuation (C/C++)
Error 10024 Ô;Õ expected

The compiler did not find a semicolon where it expected to find one.
For example, in Listing 2.7 below, a semicolon is missing after the
function call WindowInit().

Listing 2.7 Semicolon expected

ToolBoxInit();
WindowInit()// ';' missing from this line
MenuBarInit();

Fix If the error is not apparent, it is likely being caused by a previous er-
ror. Correct all previous errors first and recompile.

Ô[Õ expected

The compiler did not find a left bracket where it expected to find
one.

Fix If the error is not apparent, it is likely being caused by a previous er-
ror. Correct all previous errors first and recompile.

To prevent this error while typing in source code, select the Balance
While Typing checkbox in the Editor preferences panel. When se-
lected, this preference allows you to balance brackets as you type
them.

See Also For more on Balance While Typing, consult the CodeWarrior IDE
UserÕs Guide.

Error 10026 Ô]Õ expected

The compiler did not find a right bracket where it expected to find
one.

Fix If the error is not apparent, it is likely being caused by a previous er-
ror. Correct all previous errors first and recompile.
Error Reference ERRÐ15

C/C++ Compiler Error Messages
Punctuation (C/C++)
To prevent this error while typing in source code, select the Balance
While Typing checkbox in the Editor preference panel. When se-
lected, this preference allows you to balance brackets as you type
them.

See Also For more on Balance While Typing, consult the CodeWarrior IDE
UserÕs Guide.

Error 10036 Ô{Õ expected

The compiler did not find a left brace where it expected to find one.

Fix Use the Balance command to balance all left and right braces. This
error may be caused by a syntax error in a previous statement.

Error 10031 Ô}Õ expected

The compiler did not find a right brace where it expected to find
one.

Fix Use the Balance command to balance all left and right braces. This
error may be caused by a syntax error in a previous statement.

To prevent this error while typing in source code, select the Balance
While Typing checkbox in the Editor preference panel. When se-
lected, this preference lets you balance braces as you type them.

Error 10157 Ô&Õ reference member <var> is not initialized

A reference member was not initialized. All reference types must be
evaluated in the scope of the constructor. For example, Listing 2.8
below shows an un-initialized and a properly initialized reference.

Listing 2.8 Reference member not initialized

class caClass {
 private:
 int x;
 public
 const int &ref;
 caClass() {} // <-- no initialization
ERRÐ16 Error Reference

C/C++ Compiler Error Messages
A to C (C/C++)
 };
// properly initialized reference

class caClass {
 private:
 int x;
 public:
 const int &ref;
 caClass():ref(x) {} //<-- now reference is initialized
 };

A to C (C/C++)
These are error messages that begin with A, B, or C.

Error 10089 ambiguous access to class/struct/union member

The compiler signals this error when a reference to a class, struct, or
union member is ambiguous.

You may get this message when calling a function that is defined in
both a virtual base class and another base class with the same pa-
rameters. The CodeWarrior C++ compiler is more strict about this
situation. You must use the fully qualified form to define which
function you want to use.

See Also ARM p.202, 10.1.1 Ambiguities.

Error 10220 ambiguous access to name found ÔsymbolÕ and ÔsymbolÕ

The compiler generates an error when it sees ambiguous access to a
name. This usually occurs when the same name is used in multiple,
legally accessible namespaces, as shown in Listing 2.9.

Listing 2.9 Ambiguous access to name

namespace A {
int a;

}
long a;
Error Reference ERRÐ17

C/C++ Compiler Error Messages
A to C (C/C++)
namespace B {
using namespace ::A;
int x = a; //<<<What is this ÔaÕ? ERROR.
}

Error 10100 ambiguous access to overloaded function

This error is displayed when an ambiguous reference is made to an
overloaded function. References to overloaded functions must be
unambiguous. InListing 2.10, funcA() is overloaded with a default
argument. When it is called in the main() function, the compiler
does not understand which member function to use.

NOTE: This error is also common using double/float or
short/long arguments to overload a function.

See Also ARM p.307, 13 Overloading.

Listing 2.10 Ambiguous access to overloaded function

class aClass
{

int x;
public:
 int funcA() { x = 2; return x; }
 int funcA(int y = 3) { x = y; return x; }

};

main()
{

aClass obj;

obj.funcA();
return 0;

}

ERRÐ18 Error Reference

C/C++ Compiler Error Messages
A to C (C/C++)
Error 10206 ambiguous message selector used: <msg> also had: <msg>

This error is generated when there is ambiguity of which selector
should be used.

Error 10217 assigning a non-int numeric value to an unprototyped function

(Warning) This warning is activated by #pragma warn_largeargs
on, or by passing -warn largeargs to the command-line compilers.

The compiler will emit a warning when passing a non-integer nu-
meric value such as a float or a long long to an unprototyped func-
tion when the Òrequire prototypesÓ option is off.

Error 10186 assignment is not supported for SOM classes

You cannot use a class descended from SOMObject in an assign-
ment operation, since SOM classes do not support copy construc-
tors. For more information on SOM objects, see the Metrowerks
manual C Compilers Guide, or the SOMObjects Developer Toolkit
(IBM).

Error 10059 branch out of range

A branch destination in an assembly function is out of range, as in
the branch call in Listing 2.11.

Listing 2.11 Branch out of range

bra.s 10000

Error 10062 call of non-function

An attempt was made to call a non-function. For example, Listing
2.12 below attempts to call the variable i as if it were a function.

Listing 2.12 Call of a non-function

main()
{

Error Reference ERRÐ19

C/C++ Compiler Error Messages
A to C (C/C++)
int i;
...

i();// error: ÒiÓ is not a function
...
}

Fix Check the non-function call in question. This error may be caused
by a spelling mistake that attempts to call a similarly named non-
function instead of the desired function.

Error 10228 cannot allocate initialized objects in the scratchpad

(PlayStation only) Static initialization in the scratch pad is not sup-
ported. Call a routine to initialize it, as shown in Listing 2.13.

Listing 2.13 Cannot allocate initialized objects in the scratchpad

__declspec(scratchpad) int P=1234;// ERROR
__declspec(scratchpad) int P; // OK
...
void InitScratchPad()
{

P = 1234;
}

Error 10114 cannot construct base class <aClass>

This error appears when the base class aClass has no ctor initializer
or default constructor.

Error 10115 cannot construct direct member <aClass>

This compiler gives this error when the direct member aClass has no
ctor initializer or default constructor.

Error 10145 cannot convert from <Type_A> to <Type_B>

The compiler generates this error message when a type conversion
was attempted without proper conversion constructors, or with in-
ERRÐ20 Error Reference

C/C++ Compiler Error Messages
A to C (C/C++)
compatible types. The code in Listing 2.14 attempts to convert a
type long * to an int *.

Listing 2.14 Cannot convert Type_A to Type_B

 main()
 {

int *ptr;
ptr = new long; // <-- Error wrong type
return 0;

 }

Error 10154 cannot delete pointer to const

The compiler generates this error message when it encounters an at-
tempt to delete a pointer to a const value. For example, in Listing
2.15 below an attempt is made to delete a pointer to a const type.

Listing 2.15 Attempt to delete a pointer to a const

 main()
 {

const int y = 3;
int const *ptr = &y;
delete ptr; // <-- Error here

return 0;
 }

Error 10155 cannot destroy const object

The compiler generates this error when an attempt to destroy a
const object is encountered.

Error 10134 cannot instantiate <obj>

The compiler generates this error when the template _obj cannot be
instantiated because its definition is missing, such as the Listing 2.16
below.
Error Reference ERRÐ21

C/C++ Compiler Error Messages
A to C (C/C++)
Listing 2.16 Cannot instantiate

template <class T> class aClass;
template class aClass<int>; // error

Error 10137 cannot pass const/volatile data object to non-const/volatile
member function

This compile error occurs when an attempt is made to pass a data
object declared as a const to a member function that is not declared
as const. The Listing 2.17 below generates this compiler error.

Listing 2.17 Cannot pass const data object to non-const member function

struct stType {
 void bar(); // non-const member function
 void cbar() const; // const member function
};
...
 stType f;
 const stType cf;

 f.bar(); // OK
 f.cbar(); // OK
 cf.bar(); // error
 cf.cbar(); // OK

Error 10151 cannot throw class with ambiguous base class <cBase>

The class in the throw point has an ambiguous base class.

Fix Declare a virtual base class or eliminate any ambiguities to resolve
this error message.

Error 10073 case constant defined more than once

A constant used in a switch statement is already in use. For exam-
ple, in Listing 2.18 below, the constant ABOUT_ITEM is used more
than once.
ERRÐ22 Error Reference

C/C++ Compiler Error Messages
A to C (C/C++)
Fix Remove one of the constant labels.

Listing 2.18 Case constant defined more than once

switch(theItem)
{
case ABOUT_ITEM :

Alert(ABOUT_ALRT, NIL);
break;

case ABOUT_ITEM :
Alert(ABOUT_ALRT, NIL);
break;

Error 10143 ÔcatchÕ expected

Undocumented at this time.

Error 10156 const member <aVar> is not initialized

This error message is generated when the compiler encounters a
const member that was not initialized correctly.

Fix The const member must be initialized at the time of the objectÕs con-
struction.

Error 10212 category <Cat> redefined

The compiler generated this error because you attempted to define a
category <Cat> that was previously defined.

Error 10213 category <Cat> is undefined

The compiler generated this error because you attempted to use a
category <Cat> that has not been defined.

Error 10196 class <classname> redeclared

This error is generated because you attempted to declare the class
<classname> but it had previously been declared.
Error Reference ERRÐ23

C/C++ Compiler Error Messages
A to C (C/C++)
Error 10197 class <classname> redefined

This error is generated because you attempted to define a class
<classname> but it had previously been defined.

Error 10104 class has no default constructor

This error occurs when the compiler cannot construct a class be-
cause it has no default constructor, as shown in Listing 2.19.

Listing 2.19 Class has no default constructor

struct stType {
stType(int);

};

stType f; // error: no default constructor

Error 10147 class type expected

The compiler generates this error message when a class type was ex-
pected.

Error 10125 'const' or '&' variable needs initializer

You must initialize const or reference variables when you declare it.
For example:

Listing 2.20 Const and reference variables need initializers

const int a = 1;// OK
const int b; // ERROR: const variable

// needs initializer

int c;
int &rc = c; // OK
int &rd; // ERROR: reference variable

// needs initializer
ERRÐ24 Error Reference

C/C++ Compiler Error Messages
D to F (C/C++)
Error 10159 constness casted away

This error message is generated when an attempt to cast a const to
a volatile type is encountered.

D to F (C/C++)
These are C/C++ compiler error messages that begin with D, E, or
F.

Error 10230 data object <object> redefined

The compiler generates an error when a data object is incorrectly
redefined.

Listing 2.21 Data object <object> redefined

int a = 1;
int a = 2;//<<< ERROR: the variable name is reused incorrectly

Error 10046 data type is incomplete

The data type usually a class or structure is incomplete. ÒIncomplete
classÓ errors usually happen when attempts are made to use classes
that have been partially declared usually using Òforward declara-
tionsÓ.

See Also Òillegal use of incomplete struct/union/classÓ on page 56

Error 10022 declaration syntax error

The compiler encountered a syntax error while trying to resolve a
declaration.

Fix Examine the declaration in question. If the error is not apparent, it is
likely being caused by a previous error. Correct all previous errors
first and recompile.
Error Reference ERRÐ25

C/C++ Compiler Error Messages
D to F (C/C++)
Error 10035 declarator expected

The compiler expected to find a declaration, but found something
else instead.

Fix Check the declaration in question. If the error is not apparent, it is
likely being caused by a previous error. Correct all previous errors
first and recompile.

Error 10074 default label defined more than once

The compiler found more than one default label in the same
switch statement. For example,Listing 2.22 below causes this error.

Listing 2.22 More than one default:

switch(...)
{

default:;
default:;// only one default in switch !

}

Fix Remove one of the default labels.

Error 10128 derived function differs from virtual base function in return
type only

The compiler generates this error when the return type of the de-
rived function differs from the return type of a virtual base function.
The Listing 2.23 provides an example.

Listing 2.23 Derived function differs from virtual base in return type only

class aClass { virtual int f(); }
class bar : aClass {

void f(); // error
}

ERRÐ26 Error Reference

C/C++ Compiler Error Messages
D to F (C/C++)
Error 10040 division by 0

When a constant expression tries to divide by zero or use modulo
zero, a division by 0 error is signaled.

Error 10014 end of line expected

This error can occur in many circumstances, and may be the result
of another error on a previous line of code. For example, if you turn
on the ANSI Keywords Only option in C/C++ Language settings
panel, this error occurs when text follows the #endif directive. The
ANSI standard specifies that only a comment can follow an #endif
directive. Listing 2.24 below shows another example where more to-
kens are expected on a line.

Listing 2.24 More tokens expected on a line

#define// error: compiler expects more tokens
#if // on both lines.

Fix In the case of text rather than a comment following the #endif di-
rective, deselect the ANSI Keywords Only checkbox in C/C++
Language settings panel, and recompile.

Error 10166 exception specification list mismatch

The exception specification lists for a function declaration and a
function definition donÕt match, as shown in Listing 2.25.

Listing 2.25 exception specification list mismatch

void f() throw(int);
// exception specification list mismatch

void f() throw(long)
{
}

Error Reference ERRÐ27

C/C++ Compiler Error Messages
D to F (C/C++)
exception handling does not work with Ôdirect destructionÕ

The compiler generates this error when you use C++Õs exception
handling and the Enable C++ Exceptions option in the C/C++ Lan-
guage settings panel is off or the direct_destruction pragma is
on.

Fix Turn on the Enable C++ Exceptions option in the C/C++ Language
settings panel or turn off the pragma direct_destruction.

Error 10153 exception handling option is disabled

This error occurs when the Enable C++ Excpeptions option in the
C/C++ Language settings panel is disabled, and you try to use EH
(for example, throw;).

Error 10042 expression syntax error

The compiler generates this error when it encounters any kind of il-
legal expression syntax.

Fix If the error is not apparent, it is likely being caused by a previous er-
ror. Correct all previous errors first and recompile.

Error 10066 function already has a stackframe

This error occurs when the compiler finds more than one fralloc
directive in an assembly function.

Fix Remove all but one of the fralloc directives from the assembly
function.

Error 10149 function call <func> does not match

The compiler generates this error when a call to a function does not
match the expected arguments. An attempt to initialize an object
without a proper matching constructor also generates this message.

Fix Add a default constructor for your class. Also, check the previous
defined class or structure, including the header file named prior to
this error message, for a missing object list.
ERRÐ28 Error Reference

C/C++ Compiler Error Messages
D to F (C/C++)
Listing 2.26 Function ÔfuncÕ does not match

class A {
 public:
 A() {}
} //<-- no semicolon, object list expected

main()
{
 A a; // <-- error reported here
 return 0;
}

Error 10063 function call does not match prototype

A function callÕs arguments do not correspond to the functionÕs pro-
totype. Listing 2.27 shows that the call to SetWaggle() passes two
arguments when the function prototype requires one.

Fix Match function call with function prototype. Select the function call
and choose Find DeÞnition from the Search menu to locate the
function prototype definition.

Listing 2.27 Function call does not match prototype

long SetFoo(long foonum)
{
...
}
...
MyFoo = SetFoo(size, length);

// error: two variables parameters in call to
// SetFoo, prototype has only one argument

Error 10141 function defined ÔinlineÕ after being called

This error message is generated when a function is declared inline
after it has already been called. In Listing 2.28 below the function is
used in the class before the function definition where it is declared
inline.
Error Reference ERRÐ29

C/C++ Compiler Error Messages
D to F (C/C++)
Fix Declare the function prototype to be inline.

Listing 2.28 Function defined inline after being called

int func(int x);

 class cA {
 int i;
 public:
 cA() { i = func(3); }
};

 inline int func(int x) { return x + 1; }

Error 10067 function has no initialized stackframe

This error occurs when the compiler encounters an assembly func-
tion whose stack frame as not been allocated using the fralloc di-
rective.

Fix Modify your assembly function so is that it uses fralloc.

Error 10079 function has no prototype

A function is defined without a preceding prototype. This error oc-
curs if the Require Function Prototypes checkbox, in the C/C++
Language settings panel, is selected.

Fix Either define a preceding prototype for the function in question, or
deselect the Require function prototypes checkbox.

See Also For more on the Require Function Prototypes option, consult the C
Compilers Reference

Error 10069 function nesting too complex

This error occurs when the compiler encounters a function that con-
tains too many nested {} blocks.
ERRÐ30 Error Reference

C/C++ Compiler Error Messages
G to I (C/C++)
Fix To fix this error, study the function in question. ThereÕs probably a
way to divide the function into a series of dependent functions.

Error 10184 functions cannot return SOM classes

A function cannot return a class which is descended from SOM-
Object, since SOM classes do not support copy constructors. For
more information on SOM objects, see the Metrowerks manual
C Compilers Guide, or the SOMObjects Developer Toolkit (IBM).

Error 10185 functions cannot have SOM class arguments

A function cannot contain in its argument list any class which is de-
scended from SOMObject, since SOM classes do not support copy
constructors. For more information on SOM objects, see the
Metrowerks manual C Compilers Guide, or the SOMObjects Developer
Toolkit (IBM).

Error 10227 function result is a pointer/reference to an automatic variable

The compiler generates an error when you use an automatic vari-
able and reference it outside of its scope, as shown in Listing 2.29.

Fix Expand the scope or increase the persistence of the variable. For ex-
ample, you could declare the variable as a pointer in the heap in-
stead of declaring it as a local variable on the stack.

Listing 2.29 Function result is a pointer/reference to an automatic variable

char *foo()
{

char c=0;
return &c;

}

G to I (C/C++)
These are C/C++ compiler error messages that begin with G, H, or I.
Error Reference ERRÐ31

C/C++ Compiler Error Messages
G to I (C/C++)
Error 10189 global SOM class objects are not supported

If an object is a type descended from SOMObject, you cannot use it
as a global variable. For more information on SOM objects, see the
Metrowerks manual C Compilers Guide, or the SOMObjects Developer
Toolkit (IBM).

Error 10023 identifier <name> redeclared

Undocumented at this time.

Error 10150 identifier <name> redeclared was declared as: <a_typeÕ now
declared as: Ôb_type

The compiler issues this error when the source code attempts to re-
define an identifier. For example, in Listing 2.30 below, the identi-
fier var is declared as both a long and a Point.

NOTE: This error is often the result of re-using the name of a
Macintosh declared variable or function.

Fix Change the name of one of the identifiers.

Listing 2.30 Identifier <var> redeclared

long var;
Double temp;
Point var;

 // var has already been declared above

// Using a Macintosh Toolbox function name
// as a class name.

class Random { public: void get(); };

void Random::get() // <-- this produces an error
{ //... }
ERRÐ32 Error Reference

C/C++ Compiler Error Messages
G to I (C/C++)
Error 10008 identifier expected

The compiler expected to find an identifier, but instead found an-
other token. For example, in Listing 2.31 below , the compiler issues
this error because short is placed where an identifier should be.

Fix If the error is not apparent, it is likely being caused by a missing
symbol, such as a semicolon or comma, on a previous line. Correct
all previous errors first and recompile.

Listing 2.31 Identifier expected

long Waggle;
longtemp, short; // short is placed where an

 // identifier should be
PointmyPt;

Error 10087 illegal #pragma

The compiler found an unrecognized #pragma directive.

Fix A list of #pragmas recognized by Metrowerks C is listed in the C
Compilers Reference Consult this list to make sure the #pragma you
are using exists and is spelled correctly.

Error 10097 illegal Ô&Õ reference

This error is issued when the compiler encounters an illegal & refer-
ence, as in Listing 2.32.

Listing 2.32 Illegal Ô&Õ reference

int &&g; // error: cannot dereference an integer twice

Error 10231 illegal access to local variable from other function

The compiler generates this error when you illegally try to access a
local variable from another function.
Error Reference ERRÐ33

C/C++ Compiler Error Messages
G to I (C/C++)
Listing 2.33 Illegal access to local variable from other function

void bar()
{

int a=0;

struct nest {
void foo()
{

a=2;//<<< ERROR: ÔaÕ is bar's local variable, which cannot
 // be accessed from nest::foo

}
};

}

Error 10142 illegal constructor/destructor declaration

The compiler generates this error when an attempt to declare a con-
structor or destructor is done in an illegal manner. Listing 2.34 at-
tempts to call the constructor after the object is already initialized.

Listing 2.34 Illegal constructor declaration

class cA {
public:
 void cA() {}

};

cA A;

main() {
A.cA();
return 0;

}

Error 10160 illegal const/volatile Ô&Õ reference initialization

The compiler generates this error message when either a const or a
volatile reference was improperly initialized.
ERRÐ34 Error Reference

C/C++ Compiler Error Messages
G to I (C/C++)
Fix This is often the result of not initializing a reference during object
construction.

Error 10082 illegal data in precompiled header

The compiler issued this error because the precompiled header con-
tained improper data.

Fix Remove the data, from your precompiled header and precompile it
again. Refer to the C Compilers Guide for information on illegal
items in a precompiled header.

Error 10165 illegal exception specification

You used a exception specification where it isnÕt allowed, as shown
in Listing 2.35.

Listing 2.35 illegal exception specification

typedef void (*f)() throw(int);
// cannot use spec in typedef

Error 10148 illegal explicit conversion from <type_A> to <type_B>

The compiler issued this error when an explicit conversion of one
type to an improper type is encountered. Listing 2.36 attempts to
convert a pointer to a class into a long.

Listing 2.36 Illegal explicit conversion

class D { };

 main()
 {
 long x;
 D d;
 x = (long)d;
 return 0;
 }
Error Reference ERRÐ35

C/C++ Compiler Error Messages
G to I (C/C++)
Error 10102 illegal ÔfriendÕ declaration

The compiler issues this error when it encounters an illegal declara-
tion. For example,Listing 2.37 shows friend being illegally de-
clared.

Listing 2.37 Illegal ÔfriendÕ declaration

int i;
class aClass {

friend i;// illegal 'friend' declaration
};

Error 10103 illegal ÔinlineÕ function definition

This error is given when a function that has already been referenced
is defined as inline.

Error 10094 illegal ÔoperatorÕ declaration

This error is displayed when the compiler finds an illegal operator
declaration, as in Listing 2.38.

Listing 2.38 Illegal ÔoperatorÕ declaration

int operator +(int,int,int);

Error 10140 illegal <class::constructor(argument)> copy constructor

This error appears if a class constructor function is declared with an
argument of the same class type, as in Listing 2.39.

Listing 2.39 Illegal class::constructor(argument) copy constructor

class aClass {
aClass(aClass);// error
aClass(aClass&); // OK

};
ERRÐ36 Error Reference

C/C++ Compiler Error Messages
G to I (C/C++)
Error 10101 illegal access/using declaration

This error occurs when you attempt to incorrectly declare access to a
base class member from a derived class. You can adjust the access to
base class member by using the base class memberÕs qualified-
name, in a public or protected part of a derived class declaration.
Listing 2.40 demonstrates this error.

See Also ARM p. 244, 11.3 Access Declaration.

Listing 2.40 Illegal access declaration.

class B {
 private:

int a
 public:

int b;
};

class D : private B {
 public:

B::a; // <-- Error illegal access declaration
B::b; // legal allows B::b to be used in

//an external function
int x;
void fx() { b = x; }

}Derived;

inline void fx() { Derived.b = 3; }

Error 10093 illegal access qualifier

This error is signaled when an illegal qualification is encountered.
In Listing 2.41, this code is illegal because foo doesn't exist.

See Also ARM p. 112.
Error Reference ERRÐ37

C/C++ Compiler Error Messages
G to I (C/C++)
Listing 2.41 Illegal access qualifier

struct stType { enum efoo { nfoo } mfoo; };
...

foo::xfoo; // error: illegal qualified

Error 10088 illegal access to protected/private member

This error is signaled when a function attempts to access a private
member. For example, in the Listing 2.42 priv is declared as
private. Function func() attempts to access this member.

Listing 2.42 Illegal access to private member

class aClass { private: int priv; }
func() {

aClass x;
x.priv=0;

//func() cannot access private member priv
}

Error 10056 illegal addressing mode

An assembly-language instruction attempts to use an addressing
mode that is not possible with this instruction, as in Listing 2.43.

Listing 2.43 Illegal addressing mode

moveq d0,d1

Error 10010 illegal argument list

This error appears when the compiler finds an illegal macro argu-
ment list, as in Listing 2.44.

Listing 2.44 Illegal argument list

#define macro(arg,,)
ERRÐ38 Error Reference

C/C++ Compiler Error Messages
G to I (C/C++)
Error 10030 illegal array definition

The compiler gives this error when it encounters an array defined
with a negative or zero subscript (also illegal array base type). Mak-
ing the last member of a struct an empty array is a non-ANSI lan-
guage extension that is not supported by Metrowerks CodeWarrior
C/C++ as demonstrated in Listing 2.45.

Fix As a work around for the source in Listing 2.45 , the code should
change to whatÕs shown in Listing 2.46.

Listing 2.45 Illegal array definition

typedef struct {
short howMany;
Data *dataBase[];// error: non-ANSI extension

} DataBase

NOTE: Remember to change your allocation routines so that
they allocate the right size for these structs. For example, in List-
ing 2.46 the proper allocation routine would be sizeof(Data-
Base) - (nb_elements -1) * sizeof(Data).

Listing 2.46 Fix for illegal array definition

typedef struct {
short howMany;
Data *dataBase[1]; // OK: now ANSI compliant

} DataBase

Error 10080 illegal assignment to constant

This error is issued by the compiler when an expression attempts to
assign a value to a constant, as in Listing 2.47.
Error Reference ERRÐ39

C/C++ Compiler Error Messages
G to I (C/C++)
Listing 2.47 Illegal assignment to constant

const int i=5;
...
i=10; // cannot assign to a const

Fix Check the assignment in question. This error may be caused by a
spelling mistake that attempts to assign a value to a similarly named
constant instead of the desired variable.

Error 10039 illegal bitfield declaration

The compiler issues this error when a bitfield of size zero is de-
clared. This error is also issued if too many bits are requested, as in
the example below.

Fix Check the bitfield declaration in question to make sure that a size of
zero is not declared, and that too many bits are not requested.

Listing 2.48 Illegal bitfield declaration

long err:33;

Error 10001 illegal character constant

This error is signaled when an attempt is made to assign an illegal
character constant. Listing 2.49 contains three examples of illegal
character constants.

Fix Examine the character constant to make sure it is assigned a legal
character.

Listing 2.49 Illegal character constant

char FooCh;
...
...

FooCh = ''; // each of these assignments
ERRÐ40 Error Reference

C/C++ Compiler Error Messages
G to I (C/C++)
FooCh = '\x'; // contain illegal character
FooCh = 'ddjdjdj';// constants.

Error 10229 illegal class member access

This error occurs when you try access a class member that doesn't
exist.

Error 10025 illegal constant expression

This error is issued when the compiler encounters a constant ex-
pression that contains an illegal value or operator.

Fix Examine and correct the constant expression in question. If this
error is not apparent, it is likely being caused by a previous error.
Correct all previous errors and recompile.

Error 10113 illegal ctor initializer

This error is signaled when the compiler encounters an illegal ctor
initializer. For example, the ctor initializer in Listing 2.50 is illegal
because thereÕs no i member of the aClass.

Fix If you are having problems with constructors of a sub-class, you are
probably not naming the parent class explicitly, such as in Listing
2.51.

Listing 2.50 Illegal ctor initializer

class aClass {
aClass(): i(12) {} // error: illegal ctor

 // (no i member)
};

CButton is a subclass of Clickable which takes a type Display-
System* as its argument. In CodeWarrior C++ when making a con-
structor which passes parameters to the parent class, you need to
name the parent class explicitly. You must use the following tem-
plate:
Error Reference ERRÐ41

C/C++ Compiler Error Messages
G to I (C/C++)
BLAH::BLAH(parameter1, parameter2) :
PARENT_OF_BLAH(parameter2)

Listing 2.51 Illegal ctor initializer, explicit parent class

CButton::CButton(long resourceBase,
DisplaySystem* displaySystem) : (displaySystem)

Error 10057 illegal data size

The compiler issues this error when a line in an assembly function
contains an illegal data size, as in Listing 2.52.

Listing 2.52 Illegal data size

move.Z #0,d9

Error 10106 illegal default argument(s)

This error is given when the compiler finds a function which con-
tains one or more illegal arguments, as in the function prototype of
Listing 2.53.

Listing 2.53 Illegal default argument

int func(int x=1, int z);

Error 10117 illegal empty declaration

The compiler gives this error when a declaration is missing an iden-
tifier, as in the declaration in Listing 2.54.

Listing 2.54 Illegal empty declaration

int ;
ERRÐ42 Error Reference

C/C++ Compiler Error Messages
G to I (C/C++)
Error 10139 illegal explicit template instantiation

The compiler generates this error whenever it encounters an illegal
explicit template instantiation. Listing 2.55 provides an example
where the function f() was not properly declared as a template
function.

Listing 2.55 Illegal explicit template instantiation

//template <class T>
void f();
template void f<int>(); // error

Error 10236 illegal explicit template specification

This error occurs when there is something wrong with your explicit
template specialization. For example,

template <> int a;

Error 10028 illegal function definition

This error is signaled whenever the compiler encounters an illegally
defined function.

Fix If the error is not apparent, it is likely being caused by a previous er-
ror. Correct all previous errors first and recompile.

Error 10098 illegal function overloading

A common cause for this error is the declaration of functions with
the same name and identical arguments, but different return types.

See Also ARM p.307, 13 Overloading.

Error 10029 illegal function return type

This error is given when the compiler finds a function that returns
an array or function. A function cannot return an array or function.
A function can only return a pointer to an array or function.
Error Reference ERRÐ43

C/C++ Compiler Error Messages
G to I (C/C++)
Fix Modify your code so that the function in question returns a pointer
to the array or function.

Error 10121 illegal implicit const pointer conversion

(Warning Message) The compiler issues this warning when you
convert a const pointer into a variable, as in Listing 2.56.

Listing 2.56 Illegal implicit const pointer conversion

void func(const char *cptr)
{

char *ptr=cptr;
// illegal implicit const pointer conversion

}

Error 10110 illegal implicit conversion from <Type_A> to <Type_B>

This error is signaled when the compiler encounters an illegal im-
plicit conversion as in Listing 2.57.

NOTE: ANSI C++ differs from ANSI C in the treatment of void*.
ANSI C allows an implicit conversion from a pointer to void to a
pointer to another object type (but not to a pointer to function type-
-see Section 5.4); in C++ a void* cannot be assigned to an object
of any type other than void* without an explicit cast. Thus, Listing
2.57 is legal ANSI C, but is not accepted in C++:

See Also ANSI Draft Standard Section 5.4 ÒPointer Conversions,Ó ANSI C
Standard 3.2.2.3

Listing 2.57 Illegal implicit conversion

void f(char *cptr, void *vptr)
{

cptr = vptr;
 // Illegal in C++, legal in C
ERRÐ44 Error Reference

C/C++ Compiler Error Messages
G to I (C/C++)
char *ptr=(void *)0;
 // Illegal in C, legal in C++

// . . .
}

Error 10118 illegal implicit enum conversion from <Type_A> to <Type_B>

The compiler gives this message when an illegal implicit conver-
sion, involving an enum, is encountered. If the source code is C++,
the compiler gives this message as an error. If the source code is C
and the Extended Error Checking option in the C/C++ Warnings
settings panel is on, the compiler gives this message as a warning.
An example is shown below in Listing 2.58.

Listing 2.58 Illegal implicit enum conversion

enum ff { foo };
enum ff x = 0;
//error:illegal implicit enum conversion

Error 10232 illegal implicit member pointer conversion

This error occurs when a member function is incorrectly initialized.

Listing 2.59 Illegal implicit member pointer conversion

struct X {
void foo()
{

void (X::*f)() = foo; // ERROR
void (X::*g)() = &X::foo;// OK

}
};

Error 10075 illegal initialization

This error occurs when a variable, or other data type, is illegally ini-
tialized within a function.
Error Reference ERRÐ45

C/C++ Compiler Error Messages
G to I (C/C++)
Error 10053 illegal instruction for this processor

The compiler issues this error when an assembly-language instruc-
tion is found that does not exist for the 68000 family of microproces-
sors.

Error 10112 illegal jump past initializer

This error is signaled when a transfer is made into a block that by-
passes initializers. In certain cases, it is illegal to jump past explicit
or implicit initializers. Generally this error occurs whenever there is
a section of code that can be jumped past in the same scope. Typi-
cally in switch or goto statements as in Listing 2.60.

NOTE: ItÕs possible for the definition of p to be skipped over
within the scope itÕs in (the switch statement). The fix to this is to
either define p outside of the switch, or make a new scope. If you
have any goto statements in your function, youÕll get this error for
any variables that are defined after a goto. The solution is the
same: either define all variables before the goto, or introduce a
new scope.

See Also ARM p. 87, 6.4.2 The Switch Statement and p.91, 6.7 Declaration
Statement.

Listing 2.60 Illegal jump past initializer

 switch (i) {
 int v1 = 2; // error
 case 1:
 short v2 = 3;
 case 2:
 if(v2 == 7) {} // error
 }
ERRÐ46 Error Reference

C/C++ Compiler Error Messages
G to I (C/C++)
Error 10204 illegal message receiver

This message is given when you try to send a message to a non-
ObjC object.

Error 10221 illegal namespace

This error is generated when you use a non-namespace name as a
namespace.

Listing 2.61 Illegal namespace

int a;
namespace a {//<<< ERROR

int b;
}

Error 10223 illegal name overloading

The compiler generates an error when you attempt to perform an
illegal overload, as shown in Listing 2.62.

Listing 2.62 illegal name overloading

int b;
enum { b };//<<< ERROR

Error 10045 illegal operand

This error is signaled when an operator is applied to a non-compati-
ble operand.

Fix Try type-casting the operand to a compatible type.

Error 10054 illegal operands for this processor

This error is issued when the compiler encounters an assembly-lan-
guage instruction that refers to operands that do no exist for the 68K
family of microprocessors.
Error Reference ERRÐ47

C/C++ Compiler Error Messages
G to I (C/C++)
Error 10044 illegal operation

An operator, such as == or + was illegally applied to a struct or
union. This error is also signaled when an operator is not defined
for a data type.

Error 10105 illegal operator

This error is signaled when the compiler encounters an illegal oper-
ator, as in Listing 2.63.

Listing 2.63 Illegal operator

int operator .(int i);

Error 10099 illegal operator overloading

A common cause for this error is trying to overload an operator that
cannot be overloaded, or trying to overload a preprocessor direc-
tive.

See Also ARM p.329, 13.4 Overloaded Operators.

Error 10124 illegal precompiled header compiler flags or target

The compiler gives this error when a precompiled header file uses
the wrong compiler target. For example, you get this error if you ar
compiling code for a Power Mac OS computer with a precompiled
header that has a first line of #include <MacHeaders68k>.

Fix Check your pre-compiled header or .pch file for flags or data of a
different CPU type than your current target. Also check the prefix
file in the C/C++ Language settings panel.

Error 10123 illegal precompiled header version

The compiler gives this error when a precompiled header file is old
or defective.

Fix Check all the precompiled header files included with your project. If
the error is not apparent, check the header specified in the PreÞx
ERRÐ48 Error Reference

C/C++ Compiler Error Messages
G to I (C/C++)
File field in the C/C++ Language settings panel. For more informa-
tion consult the C Compilers Reference

Error 10058 illegal register list

This error occurs when the compiler encounters an illegal register
list in an assembly function. An example is shown in Listing 2.64.

Listing 2.64 Illegal register list

movem.ld0-d0,Ñ(sp)

Error 10216 illegal return value in void/constructor/destructor function

This error message is generated if you attempt to return a value
from a void function, or a constructor or destructor which by design
may not return a value.

Fix Remove the illegal return.

Listing 2.65 Example of illegal return value.

void foo() { return 1; }

Error 10171 illegal SOM function overload <operator>

You cannot overload member functions in a SOM class. For more in-
formation on SOM objects, see the Metrowerks manual C Compilers
Guide, or the SOMObjects Developer Toolkit (IBM).

Error 10174 illegal SOM function parameters or return type

You cannot use long double parameters or return type in mem-
ber functions for SOM classes. For more information on SOM ob-
jects, see the Metrowerks manual C Compilers Guide, or the SOMOb-
jects Developer Toolkit (IBM).

Fix Rewrite the function using a different parameter or return type.
Error Reference ERRÐ49

C/C++ Compiler Error Messages
G to I (C/C++)
Error 10078 illegal storage class

The compile issues this error when an illegal storage class is used.

If the compiler points to a static member, it may mean that you have
defined a member as static, ARM (p. 179) says ÒA data or func-
tion member of a class may be declared static in the class declara-
tionÓ Ñ but not in the definition.

Likewise, you may not declare variables as auto in global scope as
in Listing 2.66.

See Also ARM , p.179.

Listing 2.66 Illegal storage class

auto int x;//error: auto is not allowed in global scope

Error 10002 illegal string constant

This error is displayed when a string constant is encountered that
does not terminate before the end of a line.

Fix Terminate the string before the end of a line. If this error is not ap-
parent, it is likely being caused by a previous error. Correct all pre-
vious errors and recompile.

Error 10032 illegal struct/union/enum/class definition

The compiler issues this error when an illegal struct, union, enum,
or class definition is encountered.

Fix Examine the illegal struct, union, enum, or class definition to check
for any syntax errors.

Error 10133 illegal template argument(s)

The compiler gives this error when it finds a template which con-
tains one or more illegal arguments, as shown in Listing 2.67.
ERRÐ50 Error Reference

C/C++ Compiler Error Messages
G to I (C/C++)
Fix This error is often the result of the omission of a space in nested
templates creating a right shift operator.

Listing 2.67 Illegal template argument

map<double, double, less<double>> aMap;
// illegal argument

map<double, double, less<double> > aMap;

template <class T> class aClass;
aClass<int,int> *aClassptr; // illegal argument

Error 10130 illegal template declaration

The compiler gives this error when a malformed template declara-
tion is encountered, such as the template declaration in Listing 2.68.

Listing 2.68 Illegal template declaration

template <class T> T i; // error

Error 10006 illegal token

The compiler issues this error when an illegal preprocessor token is
found. For example, the @ symbol in Listing 2.69 is an illegal token.

Fix Remove the illegal token. If the illegal token is not apparent, the
error may be caused by a previous syntax error. Fix all previous er-
rors and recompile.

Listing 2.69 Illegal token

if(@)

Error 10047 illegal type

The compiler generates this error message when an illegal type is
encountered as in Listing 2.70.
Error Reference ERRÐ51

C/C++ Compiler Error Messages
G to I (C/C++)
Listing 2.70 Illegal type

static void func(int i)
{
 delete i; // <-- illegal type
}

Error 10065 illegal type cast

This error occurs when the code attempts to typecast data to an in-
compatible data type.

Error 10077 illegal type qualifier(s)

The compiler issues this error when an illegal type qualifier, for this
type in this scope, is encountered. For example, the double const
qualifier in Listing 2.71 below will produce an illegal type qualifier
error.

Fix Remove the illegal type qualifier. If this error is not apparent, it may
be caused by a previous error. Correct all previous errors and re-
compile.

Listing 2.71 Illegal type qualifier

const const int x;// double const

Error 10214 illegal use of <spec>

This error is generated when you use a keyword that is not in the
correct syntax. This error is mostly used for qualifiers and specifers.

Listing 2.72 Example of illegal use of <spec>:

inline int k; // illegal use of 'inline'
const int const cc; // illegal use of 'const'
ERRÐ52 Error Reference

C/C++ Compiler Error Messages
G to I (C/C++)
Error 10239 illegal use of asm inline function

This error is generated when you try to use entries or PC-relative
data in inline assembly functions. An example of this error is shown
in Listing 2.73.

Listing 2.73 Illegal use of asm inline function

extern void e();
inline asm int GetD7()
{

move.l d7,d0
entry e

}

illegal use of C++ feature in EC++

This error is generated when you try to use a C++ feature that is not
available in the EC++ language subset (i.e. templates, multiple in-
heritance, etcetera).

Error 10222 illegal use of namespace name

This error is generated when you use a namespace name as a non-
namespace.

Listing 2.74 Illegal use of namespace name

namespace a {
int b;

}
int g = a++;//<<< ERROR

Error 10208 illegal use of Objective-C object

This error is generated when you try to use an ObjC class in an un-
spupported way. For example if you pass the class by value, de-
clare/define a ObjC class object.
Error Reference ERRÐ53

C/C++ Compiler Error Messages
G to I (C/C++)
Error 10178 illegal use of #pragma outside of SOM class definition

You can use four SOM pragmas only within the definition of the
SOM class that the apply to: SOMReleaseOrder,SOMClass-
Version, SOMMetaClass, SOMCallStyle. For more information
on SOM objects, see the Metrowerks manualC Compilers Guide, or
the SOMObjects Developer Toolkit (IBM).

Error 10119 illegal use of #pragma parameter

This message is displayed when a previous #pragma parameter
does not match a function. For example, func() in Listing 2.75
below does not match the function func1.

NOTE: In addition, If the Illegal Pragmas option is selected in the
C/C++ Warnings settings panel, undefined #pragmas are marked
as warnings.

See Also For more on the #pragmas supported by Metrowerks C/C++, con-
sult the C, C++, and Assembler Language Reference, Chapter 5, ÒPrag-
mas & Predefined Symbols.Ó For more on the C/C++ Warnings set-
tings panel, C, C++, and Assembler Language Reference, Chapter 2, ÒC
and C++ Language Notes.Ó

Listing 2.75 Illegal usage of #pragma parameter

#pragma parameter __A0 func
char *func1()
{

// ...
}

Error 10092 illegal use of ÔHandleObjectÕ

The compiler gives this error when an illegal usage of a class that is
derived from the HandleObject class is encountered.
ERRÐ54 Error Reference

C/C++ Compiler Error Messages
G to I (C/C++)
Error 10202 illegal use of 'self'

This error is given when the keyword self is used incorrectly.

Error 10203 illegal use of 'super'

This error is given when the keyword super is used incorrectly.

Error 10090 illegal use of ÔthisÕ

This error is signaled when the compiler encounters C++ code that
uses this in a non-member function.

Error 10027 illegal use of ÔvoidÕ

The compiler gives this error when an operator is incorrectly ap-
plied to a void type, or a variable is declared as a void type, as in
Listing 2.76.

Listing 2.76 Illegal use of ÔvoidÕ

int myInt;
long myNumber;
void myFoo;
//error: a variable cannot be declared as void

Error 10095 illegal use of abstract class (<aClass>)

The compiler gives this error when you attempt to instantiate from
an abstract class. An abstract class is defined with at least one pure
virtual method. A pure virtual method is declared as

// pure virtual method
virtual type MethodName (arguments) = 0;

An abstract class requires you to make a subclass that provides
methods to replace any pure virtual methods.

Fix Abstract classes must be subclassed before being instantiated. De-
fine a non-abstract subclass and derive your object from that sub-
class.
Error Reference ERRÐ55

C/C++ Compiler Error Messages
G to I (C/C++)
See Also ARM p. 214, 10.3 Abstract Classes.

Error 10084 illegal use of direct parameters

This error is issued when a function, or another expression, refer-
ences a direct parameter that is not supported. For example, the ex-
ample below attempts to use __X. This is illegal because a direct pa-
rameter must be either __D0 to __D2, __A0, __A1, or __FP0 to
__FP3.

Error 10037 illegal use of incomplete struct/union/class

This error is signaled when an incomplete struct, union, or class is
used illegally. For example, in Listing 2.77, an attempt is made to
create an incomplete object.

Fix To avoid the errors, you can try to include bar.h so you get the full
class declaration. Sometimes this does not work because of circular
references in the include files. Another option is to avoid inline (in-
clude file) references to member variables or methods of these par-
tial classes. DonÕt inline the offending function. Put it in a separate
implementation file that includes both foo.h and bar.h.

Listing 2.77 Illegal use of incomplete struct

struct A x; //cannot create an incomplete object

This error often happens when you attempt to use classes that have
been partially declared, usually using forward declarations as fol-
lows:

Listing 2.78 Using a class that has been partially declared

// foo.h
class Bar; // empty forward declaration

class aClass {
public:

// trouble coming up...
void DoIt(int x) { mBar->DoStuff(x); }
ERRÐ56 Error Reference

C/C++ Compiler Error Messages
G to I (C/C++)
 ...
private:

Bar* mBar;// you declare it
};

bar.hclass Bar {// actual declaration
// of the class

public:
 void DoStuff(int x);
 ...
};

Error 10076 illegal use of inline function

This error is signaled when an inline function is used illegally. For
example, in Listing 2.79 an attempt is made to take the address of an
inline function.

Listing 2.79 Illegal use of inline function

pascal Handle NewHandle(Size byteCount) = 0xA122;
...
&NewHandle;// error: cannot take address of

 // inline function

Error 10070 illegal use of keyword

This error occurs when a keyword is used illegally. In some cases,
this error is caused by a previous syntax error or missing symbol.
For example, in Listing 2.80, the illegal use of keyword error is
caused by a missing colon.

Fix Fix all previous error messages. If error still persists, verify that you
are using the keyword correctly as in Listing 2.81

Listing 2.80 Illegal use of keyword

switch(theMenu)
{

Error Reference ERRÐ57

C/C++ Compiler Error Messages
G to I (C/C++)
case APPLE_MENU_ID// error: missing ':'
switch(theItem)
{

case ABOUT_ITEM :
...
...

}
break;// illegal use of keyword error here

// caused by above missing colon

Listing 2.81 Illegal use of direct parameters

int func(int x:__X) {}
// error: direct parameter __X not recognized

Error 10122 illegal use of non-static member

This error is signaled when an attempt is made to access a non-static
member without having an object of that class, as in Listing 2.82.

Listing 2.82 Illegal usage of non-static member function

struct stType {
stTypef();

};
// ...

stTypef();
// error: cannot call without a stType object

Error 10081 illegal use of precompiled header

This error is given when the compiler encounters a precompiled
header file included illegally. A precompiled header file is used ille-
gally when more than one precompiled header file is #included in
the source code file (as in Listing 2.83).

Fix Check all the precompiled header files included with your project. If
the error is not apparent, check the header specified in the PreÞx
File field in the C/C++ Language settings panel.
ERRÐ58 Error Reference

C/C++ Compiler Error Messages
G to I (C/C++)
Listing 2.83 Illegal usage of precompiled header: too many

#include <MacHeaders>
#include <MacHeaders>

// error: only one precompiled header
// file allowed

Fix This error often occurs when the precompiled header file has al-
ready been #included in the PreÞx File field in the C/C++ Lan-
guage settings panel. Or, when a precompiled header is #included
after a function, variable, or type declaration, as in Listing 2.84.

Listing 2.84 Illegal usage of precompiled header: declaration

long l;
#include <MacHeaders>

// error: precompiled header included
// following declaration.

Error 10096 illegal use of pure function

The compiler generated this message when it encountered an im-
proper usage of a pure virtual function. A pure virtual function has
no definition. For example in Listing 2.85 the constructor attempts
to call the pure function myFun().

See Also ARM, p. 214, 10.3, Abstract Classes.

Listing 2.85 Illegal use of pure function

class pure {
 public:

virtual int myFun() = 0;
pure() { myFun(); }

};
Error Reference ERRÐ59

C/C++ Compiler Error Messages
G to I (C/C++)
Error 10064 illegal use of register variable

This error occurs when a register is used illegally. For example, in
Listing 2.86, an attempt is made to take the address of a register
variable.

Listing 2.86 Illegal use of register variable

register int i;
f(&i); // error: cannot take address of i

Error 10241 illegal use template argument dependent type 'T::%u'

The compiler gives this error when a template dependent type can-
not be resolved. An example of this error is shown in Listing 2.87.

Listing 2.87 Illegal use template argument dependent type 'T::%u'

template <class T> int foo(typename T::x arg);
int i = foo<int>(1);
// error: illegal use template argument dependent type 'T::x'

Error 10218 implicit arithmetic conversion fromType_A to Type_B

This warning occurs when you implicitly convert a big arithmetic
type to a smaller (this has to be enabled in the Warnings prefs
panel). For example,

long l;
short s;
...
 s=l; // <<<error
ERRÐ60 Error Reference

C/C++ Compiler Error Messages
G to I (C/C++)
Error 10161 inconsistent linkage: ÔexternÕ object redeclared as ÔstaticÕ

The compiler will generate this error message in C++ if you try to
re-declare or define an extern object as static. This is shown in List-
ing 2.88.

Listing 2.88 Inconsistent linkage: ÔexternÕ object redeclared as ÔstaticÕ

void f();
static void f(); // <<< ERROR

Error 10224 instance variable list does not match @interface

The compiler generates an error when the instance variable list de-
clared in the interface does not match what is defined in the imple-
mentation.

Listing 2.89 Instance variable list does not match @interface

@interface A
{

int a;
}
@end
@implementation A
{

long b; //<<< ERROR: inconsistent with declaration
}
@end

Error 10179 introduced method <method > is not specified in release order
list

If you use the SOMReleaseOrder pragma for a SOM class, the
pragma must list all the new methods that the class declares (but
not the methods it overrides). For more information on SOM ob-
jects, see the Metrowerks manual C Compilers Guide, or the SOMOb-
jects Developer Toolkit (IBM).
Error Reference ERRÐ61

C/C++ Compiler Error Messages
J to L (C/C++)
Fix There are two ways to fix this problem:

¥ Include the method in the SOMReleaseOrder pragmaÕs list.

¥ Remove the SOMReleaseOrder pragma. The compiler as-
sumes the release order is the same as the order in which the
functions appear in the class declaration. However, when
you release a version of the class, use the pragma, since youÕll
need to modify its list in later versions of the class.

J to L (C/C++)
These are C/C++ compiler error messages that begin with J, K, or L.

Error 10072 label <Lgt> redefined

The compiler generates this error when an attempt is made to rede-
fine a label, in this case Lgt, that has already been defined.

Fix Remove or rename one of the labels.

Error 10111 local data >32k

This error is issued when the local data totals exceed 32K. The local
data, usually a declared array, is stored on the stack and has a limit
of 32K.

Fix You can overcome this restriction by defining an array as static or
using dynamic allocation to move the storage from the stack to the
heap.

Error 10163 local data > 224 bytes

(Mac OS PPC) This error is caused in assembly functions which
have no stack frame. In such a function there is a limit of 224 bytes
of local variables.

Fix To resolve this create a stack frame, using the fralloc/frfree di-
rectives.
ERRÐ62 Error Reference

C/C++ Compiler Error Messages
M to O (C/C++)
local variable <name> was not assigned to a register

(Mac OS PPC) The compiler generates this error when a register
variable was named but not assigned as a register. In assembly
functions, any variable declared register is guaranteed to be in a
register and its name may be used anywhere a register is
valid.

Fix This usually is because there are already too many register vari-
ables being used. Remove some previously assigned register
variables to resolve this error.

M to O (C/C++)
These are C/C++ compiler error messages that begin with M, N, or
O.

Error 10009 macro <Macro> redefined

The compiler generates this error when an attempt is made to rede-
fine a macro, in this case <Macro>, that has already been defined.

Fix Remove or rename one of the macros.

Error 10012 macro(s) too complex

This error is signaled when a macro cannot be expanded because it
is too complex (or possibly recursive).

Fix You can resolve this error by studying the macro and redesigning it
with less complexity.

Error 10235 ÔmainÕ not defined as external Ôint main()Õ function

Undocumented at this time.

Error 10200 method <mthd> not defined

This error is generated you forget to define a method that was de-
clared in the @interface.
Error Reference ERRÐ63

C/C++ Compiler Error Messages
M to O (C/C++)
Error 10194 method <mthd> redeclared

This error is generated because you attempted to declare the
method <mthd> which had previously been declared.

Error 10201 method <mthd> redefined

This error is generated because you attempted to define a method
<mthd> that was previously defined.

Error 10237 name has not been declared in namespace/class

This error occurs when you define something that has not been de-
clared in it's namespace. For example,

namespace N {}
int N::a; // <<<error

Error 10173 no parameters allowed in SOM class constructors

The constructor for a SOM class cannot contain constructors. For
more information on SOM objects, see the Metrowerks manualC
Compilers Guide or the SOMObjects Developer Toolkit (IBM).

Error 10172 no static members allowed in SOM classes

A SOM class cannot contain static data members. For more informa-
tion on SOM objects, see the Metrowerks manual C Compilers Guide ,
or the SOMObjects Developer Toolkit (IBM).

Error 10129 non-const Ô&Õ reference initialized to temporary

The compiler generates this message when the initial value for a ref-
erence type is not an lvalue of that type. The compiler will create a
temporary for the initialization. However, there is no storage for
this temporary, as in Listing 2.90.

See Also Ònot an lvalueÓ on page 66
ERRÐ64 Error Reference

C/C++ Compiler Error Messages
M to O (C/C++)
Listing 2.90 Non-const Ô&Õ reference initialized to temporary

long &r = 40000;
// the proper method to use is
long x;
long &y = x;
y = 40000;

Error 10183 new SOM callstyle method <method > must have explicit
ÔEnvironment *Õ parameter

If you create a SOM class that uses new IDL callstyle, each of the
classÕs methods must contain an Environment pointer as its first ar-
gument. For more information on SOM objects, see the Metrowerks
manual C Compilers Guide , or the SOMObjects Developer Toolkit
(IBM).

Fix There are two solutions:

¥ Add an Environment pointer to the methodÕs argument list
as its first argument.

¥ Use the SOMCallStyle pragma to declare that all of the
classÕs methods use the older OIDL callstyle. The SOMCall-
Style method looks like this:
#pragma SOMCallStyle OIDL

Error 10050 not a struct/union/class

The compiler expected to find a struct, union, or class, but found a
simple type instead, as in Listing 2.91.

Listing 2.91 Not a struct

long var;
var.myfoo = 10;// error: var is not a struct
Error Reference ERRÐ65

C/C++ Compiler Error Messages
P to R (C/C++)
Error 10043 not an lvalue

The compiler expected an expression referring to an item, such as a
variable, to which it can assign a value. Another expression was
found instead.

Error 10055 number is out of range

The compiler signals this error when a numeric value is encoun-
tered that is out of range for its data type.

See Also For a complete list of data types supported by Metrowerks C/C++,
see the Metrowerks C, C++, and Assembler Language Reference.

Error 10234 object <object> redefined

The compiler generates an error when an object is incorrectly
redefined, as shown in Listing 2.92.

Listing 2.92 Object <object> redefined

void foo() {}
void foo() {}//<<< ERROR

Error 10198 Objective-C type <Type> is undefined (should be defined in
objc.h)

This error is generated because you attempted to use an Objective-C
type <Type> that had not been defined in the objc.h header file.

Error 10199 Objective-C type <Type> has unexpected type

This error is generated because you attempted to use a type <Type>
that included an unexpected type for its object type.

P to R (C/C++)
These are C/C++ compiler error messages that begin with P, Q, or
R.
ERRÐ66 Error Reference

C/C++ Compiler Error Messages
P to R (C/C++)
Error 10127 pascal function cannot be overloaded

CodeWarrior does not let you overload pascal functions. The List-
ing 2.93, when compiled, will issue this error.

Listing 2.93 Illegal pascal function overloading

int f(int);
pascal void f(); // error

Error 10049 pointer/array required

This error is issued when the compiler finds a left bracket, [, follow-
ing a variable which is neither a pointer nor an array. The left
bracket can only follow a pointer or array name.

Error 10107 possible unwanted Ô;Õ

(Warning Message) A semicolon was found immediately following
a while, if, or for statement. This may cause an unintended logi-
cal error, as in Listing 2.94. This warning is signaled when the Possi-
ble Errors option is selected in the C/C++ Warnings settings panel.

Fix Either remove the unwanted semicolon or deselect the Possible Er-
rors option in the C/C++ Warnings settings panel.

See Also For more on the Possible Errors option, consult the C, C++, and As-
sembler Language Reference, Chapter 2, ÒC and C++ Language
Notes.Ó.

Listing 2.94 Possible unwanted Ô;Õ

while (x < 10);// possible unwanted ';'
 printf(Ò%d Ò, x);

Error 10191 Ôpointer to memberÕ is not supported for SOM classes

You cannot use take the address of a member of a class thatÕs de-
scended from SOMObject. For example, &foo::bar is not allowed
if foo is descended from SOMObject. For more information on SOM
Error Reference ERRÐ67

C/C++ Compiler Error Messages
P to R (C/C++)
objects, see the Metrowerks manual C Compilers Guide , or the SO-
MObjects Developer Toolkit (IBM).

Error 10108 possible unwanted assignment

(Warning Message) This warning occurs when an assignment (= op-
erator) occurs within a logical expression in a while, if, or for
statement. This may be meant as an equality operation, as in Listing
2.95. This is signaled as an error when the Possible Errors checkbox
is selected in the C/C++ Warnings settings panel.

Fix Either correct the unwanted assignment or deselect the Possible
Errors checkbox under in the C/C++ Warnings settings panel.

See Also For more on the Possible Errors checkbox, consult C, C++, and As-
sembler Language Reference, Chapter 2, ÒC and C++ Language
Notes.Ó.

Listing 2.95 Possible unwanted assignment

if (x = 20) printf(ÒOKÓ);
// possible unwanted assignment.

Error 10109 possible unwanted compare

(Warning Message) This warning occurs when the compiler be-
lieves it finds an unwanted comparison as in Listing 2.96.

NOTE: The error is signaled when the Possible Errors checkbox
is selected in the C/C++ Warnings settings panel.

Fix Either correct the unwanted comparison or deselect the Possible Er-
rors checkbox under the C/C++ Warnings settings panel.

See Also For more on the Possible Errors checkbox, consult C, C++, and
Assembler Language Reference, Chapter 2, ÒC and C++ Language
Notes.Ó.
ERRÐ68 Error Reference

C/C++ Compiler Error Messages
P to R (C/C++)
Listing 2.96 Possible unwanted compare

x == 1;// possible unwanted comparison

Error 10019 preceding #if is missing

This error is issued when an #endif directive is found without a
matching #if directive.

Fix Examine the logic behind previous nested #if structures to make
sure you havenÕt included an additional #endif directive.

Error 10138 preceding Ô#pragma pushÕ is missing

The compiler generates this error when it encounters a #pragma
pop encountered that does not have a matching, preceding
#pragma push.

For more on the pragmas available in CodeWarrior, consult the C,
C++, and Assembler Language Reference.

Error 10219 preprocessor #error directive

The compiler generates an error when it encounters the directive
#error.

Fix NOTE: Before fixing this error, you should check to see why this
error directive was added. The directive #error is usually used to
prevent the programmer from compiling a section of code in cer-
tain situations.

To fix the error, remove the #error directive.

Error 10238 preprocessor #warning directive

The compiler generates a warning when it encounters the directive
#warning.

NOTE: Before fixing this error, you should check to see why this
warning directive was added. The directive #warning is usually
Error Reference ERRÐ69

C/C++ Compiler Error Messages
P to R (C/C++)
used to tell the programmer that unexpected things could happen
in a section of code.

NOTE: This directive is not available when the option ANSI Strict
is enabled in the C/C++ Language settings panel.

Fix To fix the error, remove the #warning directive.

Error 10018 preprocessor syntax error

The compiler encounters an illegal preprocessor directive, as in List-
ing 2.97.

Fix Check the syntax of the directive in question. If the error is not ap-
parent, it is likely being caused by a previous error.

Listing 2.97 Preprocessor Syntax Error

#include file

Error 10209 protocol <prtcl> redefined

This error is generated because the protocol <prtcl> was previ-
ously defined.

Error 10211 protocol <prtcl> is already in protocol list

The compiler generated this error because the protocol <prtcl>
was previously listed in the protocol list.

Error 10210 protocol <prtcl> is undefined

This error is generated because the protocol <prtcl> was not de-
fined.

Error 10225 protocol list does not match @interface

The compiler generates an error when the protocol list declared in
the interface does not match what is defined in the implementation.
ERRÐ70 Error Reference

C/C++ Compiler Error Messages
P to R (C/C++)
Listing 2.98 Protocol list does not match @interface

@protocol a
@end
@protocol b
@end
@interface A <a>
@end
@implementation A //<<< ERROR: inconsistent with declaration
@end

Error 10205 receiver cannot handle this message

This message is generated because the receiver could not properly
handle the message.

Error 10061 reference to label <lbl> is out of range

This error is given when an assembly function contains a branch
whose destination is out of range, as in Listing 2.99.

Listing 2.99 Reference to label ÔlblÕ is out of range

bra.s label// error: label too far away

Error 10085 return value expected

This error is generated when a function declared to return a value,
does not contain a return value. For example, the var() function in
Listing 2.100 should return an int or be declared as void.

Fix Declare the function in question as void, or return a value.

WARNING! In C++ a function declared without a return value is
implied to return an int type as in Listing 2.101.
Error Reference ERRÐ71

C/C++ Compiler Error Messages
S to T (C/C++)
Listing 2.100 Return value expected

int var() {}//error: no return value

Listing 2.101 Return value from main() function expected.

main()
{

cout << ÒworkingÓ;
//<-- no return error here.

}

Error 10158 RTTI option is disabled

This compiler error is displayed when run-time type identification
is attempted when the RTTI pragma or the Enable RTTI option in
the C/C++ Language settings panel is off

Fix Turn on the Enable RTTI option in the C/C++ Language settings
panel.

Error 10187 sizeof() is not supported for SOM classes

You cannot use a class or object descended from SOMObject in a
sizeof() expression. For more information on SOM objects, see
the Metrowerks manual C Compilers Guide , or the SOMObjects De-
veloper Toolkit (IBM).

S to T (C/C++)
These are C/C++ compiler error messages that begin with S or T.

Error 10180 SOM class access qualification only allowed to direct parent or
own class

When you invoke a method with explicit scope (such as
obj->B::func()), the specified class (B) must be the same class as
the object (obj) or a direct parent of the objectÕs class.
ERRÐ72 Error Reference

C/C++ Compiler Error Messages
S to T (C/C++)
For example, if class A is the parent of class B which is the parent of
class C, then

C* obj = new C;

obj->C::func();// OK: C is objÕs class
obj->B::func();// OK: B is a direct parent

 // of objÕs class
obj->A::func();// ERROR: A is NOT a direct

 // parent of objÕs class

For more information on SOM objects, see the Metrowerks manual
C Compilers Guide , or the SOMObjects Developer Toolkit (IBM).

Error 10190 SOM class arrays are not supported

You cannot create arrays of SOM objects. For more information on
SOM objects, see the Metrowerks manual C Compilers Guide , or the
SOMObjects Developer Toolkit (IBM).

Fix Store the SOM objects some other way (such as a linked list).

Error 10170 SOM class data members must be private

All the data members of a SOM class must have private access. For
more information on SOM objects, see the Metrowerks manual C
Compilers Guide , or the SOMObjects Developer Toolkit (IBM).

Fix Make sure you donÕt declare any data members in a protected or
public access area of your class.

Error 10188 SOM classes cannot be class members

You cannot declare a SOM class as a member of another class. For
more information on SOM objects, see the Metrowerks manual C
Compilers Guide , or the SOMObjects Developer Toolkit (IBM).

Fix Declare a pointers to the SOM object as a member, instead

Error 10168 SOM classes can only inherit from other SOM based classes

A SOM class can inherit only from classes that are descendants of
SOMObject. If you use multiple inheritance, you cannot mix SOM
Error Reference ERRÐ73

C/C++ Compiler Error Messages
S to T (C/C++)
classes and regular classes together. For more information on SOM
objects, see the Metrowerks manual C Compilers Guide , or the
SOMObjects Developer Toolkit (IBM).

Fix Make sure all the SOM classÕs base classes are descended from SO-
MObject. If you donÕt want to create a SOM class, make sure none of
the base classes are descended from SOMObject.

Error 10169 SOM classes inheritance must be virtual

When you declare a SOM class, all its base classes must be virtual.
For more information on SOM objects,see the Metrowerks manual C
Compilers Guide , or theSOMObjects Developer Toolkit , published by
IBM.

Fix Make sure the virtual keyword appears before each of the classÕs
bases in the classÕs declaration.

Error 10192 SOM class has no release order list

(Warning Message) You created a SOM class without a SOMRe-
leaseOrder list, and the Extended Error Checking option is on.
The compiler assumes the release order is the same as the order in
which the functions appear in the class declaration. For more infor-
mation on SOM objects, see the Metrowerks manual C Compilers
Guide, or the SOM Objects Developer Toolkit, published by IBM.

Fix There are two ways to avoid this warning:

¥ In the C/C++ Warning preferences panel, turn off the Ex-
tended Error Checking option.

¥ Include a SOMReleaseOrder pragma for the class which
gives the release order for all the classÕs member functions.

Error 10181 SOM class must have one non-inline member function

A SOM class must have at least one member function that isnÕt in-
line. MacSOM uses this class to determine which translation unit
implements the class. For more information on SOM objects,see the
Metrowerks manual C Compilers Guide or the SOMObjects Developer
Toolkit (IBM).
ERRÐ74 Error Reference

C/C++ Compiler Error Messages
S to T (C/C++)
Fix Make sure the class contains at least one member function that isnÕt
inline. If necessary, create an empty one.

Error 10175 SOM runtime function func not defined (should be defined in
somobj.hh)

The compiler expects to find certain runtime functions in the som-
obj.hh header file, but the compiler canÕt find one of them. The
somobj.hh file may have been corrupted, or you may have edited
the file incorrectly. For more information on SOM objects, see the
Metrowerks manual C Compilers Guide, or the SOM Objects Developer
Toolkit (IBM).

Fix Replace the somobj.hh header file on your hard disk with a copy
from the CodeWarrior CD. Modify somobj.hh only if youÕre famil-
iar with MacSOM.

Error 10176 SOM runtime function func has unexpected type

The compiler expects runtime functions in the somobj.hh header
file to be defined in a certain way, but the return type for one of the
functions is wrong. The somobj.hh file may have been corrupted,
or you may have edited the file incorrectly. For more information on
SOM objects, see the Metrowerks manual C Compilers Guide, or the
SOMObjects Developer Toolkit (IBM).

Fix Replace the somobj.hh header file on your hard disk with a copy
from the CodeWarrior CD. Modify somobj.hh only if youÕre famil-
iar with MacSOM.

Error 10182 SOM type variable undefined

This error occurs when a SOM specific data type (eg Environment)
cannot be found. This error usually appears because you haven't in-
cluded the right header files.

Error 10226 super class does not match @interface

The compiler generates an error when the super class declared in
the interface does not match what is defined in the implementation.
Error Reference ERRÐ75

C/C++ Compiler Error Messages
S to T (C/C++)
Listing 2.102 super class does not match @interface

@interface a
@end
@interface b
@end
@interface c : a
@end
@implementation c : b//<<< ERROR: inconsistent with declaration
@end

Error 10007 string too long

The character string in question is too long.

Fix Normally this error message is displayed because a terminating
quotes mark was omitted from the string. A solution is to turn on
the Color Syntax option in the Editor preference panel.

Error 10034 struct/union/class member <stType> redefined

This error appears when an attempt is made to redefine a struct,
union, enum, or a class member that has already been defined.

Fix Typically this happens when you use a name you have already as-
signed. Remove or rename one of the struct, union, enum, or class
members.

Error 10038 struct/union/class size exceeds 32k

This error appears when the size of a class, union, or struct is greater
than 32k. A struct, class, or union, usually a declared array, is stored
on the stack and has a limit of 32K.

Fix You can overcome this restriction by defining an array as static or
using dynamic allocation to move the storage from the stack to the
heap.
ERRÐ76 Error Reference

C/C++ Compiler Error Messages
S to T (C/C++)
Error 10033 struct/union/enum/class tag <stType> redefined

This error appears when an attempt is made to redefine a struct,
union, enum, or a class tag that has already been defined.

Fix Typically this happens when you use a name you have already as-
signed. Remove or rename one of the struct, union, enum, or class
tags.

Error 10135 template redefined

This error is given when an attempt is made to redefine a template
that has already been defined, as in Listing 2.103.

Fix Remove or rename one of the struct, union, enum, or class tags.

Listing 2.103 Template redefined

template <class T> class aClass { ... };

template <class T> class aClass { ... }; // error

Error 10136 template parameter mismatch

The compiler gives this error when the member function template
parameter list does not match the class parameter list, as in Listing
2.104.

Listing 2.104 template parameter mismatch

template <class T> class aClass { void f() };
template <class T,class U>

void aClass<T>::f() { ... }; // error

Error 10215 template too complex or recursive

The compiler gives this error when there are too many recursive
template expansions.

Fix Decrease the complexity of your algorithm.
Error Reference ERRÐ77

C/C++ Compiler Error Messages
S to T (C/C++)
Error 10052 the file <filename> cannot be opened

The compiler cannot find a file name provided in an #include di-
rective, as in the second #include directive in Listing 2.105.

Fix It is possible that the file name specified in the #include directive
is spelled wrong or is not on a valid access path. Switch to the
Finder and use the Find command to find the file in question.

It is also possible that the #include file is specified as a system in-
clude, <..>, when it should be specified as a user include, Ò...Ó. If
this is the case, select the Always Search User Paths checkbox in the
Access Path settings panel.

See Also For more on access paths and the option Always Search User Paths,
consult the C Compilers Reference

Listing 2.105 File cannot be opened

#include "AbstractHeader.h"
#include "Foo.h"// This file doesnÕt exist
#include <QDoffscreen.h>

Error 10167 the parameter(s) of the <functionname> function must be
immediate value(s)

Undocumented at this time.

Error 10048 too many initializers

This error is given when the number of initialization values is
greater than the number of items specified in the declaration of the
initialized structure.

Fix Typically you encounter this error when initializing elements in an
array, structure or class and you attempt to assign more values than
elements declared. Adjust the number of elements in the array, class
or structure or use the correct number of initializers.
ERRÐ78 Error Reference

C/C++ Compiler Error Messages
S to T (C/C++)
Error 10011 too many macro arguments

The compiler issues this error when an attempt is made to define a
macro with more than 32 arguments, as in Listing 2.106.

Listing 2.106 Too many macro arguments

 #define macro(arg1,...,arg33) ...

Error 10146 type mismatch <A_type> and <B_type>

The compiler issues this error when expects to find one data type,
but finds another instead.

This error may also occur if one of your functions has the same
name as a Metrowerks macro. For example,Listing 2.107 gives a
type mismatch error.

Fix If the data types are involved are castable, typecast the offending
data type to the correct type.

In Listing 2.107, Length is a macro defined in the precompiled
headers MacHeaders68K and MacHeadersPPC:

#define Length(s) (*(unsigned char *)(s))

To fix this error, rename your variable to something other than a
pre-defined macro.

Listing 2.107 Type mismatch

class MyLine {
public:
 MLine(double theLen);
 double Length(void);

Error 10233 typename redefined

The compiler generates an error when a typename is incorrectly
redefined, as shown in Listing 2.108.
Error Reference ERRÐ79

C/C++ Compiler Error Messages
U to Z (C/C++)
Listing 2.108 Typename redefined

struct B;
typedef int B;//<<<

U to Z (C/C++)
These are C/C++ compiler error messages that begin with U, V, W,,
X, Y, or Z.

Error 10195 undefined method <mthd>

This error is given when a method name <mthd> was used but had
not been defined.

Error 10041 undefined identifier <var>

This error occurs when an identifier is used that has not been de-
fined.

Fix This is often caused from a variable not being declared within the
scope it appears in. Also, check for spelling errors.

Error 10060 undefined label <Lbl>

The compiler generates this error when a goto statement specifies a
label that has not been defined within the function.

Fix Remove the goto, or create the necessary label within the scope
where the error occurs.

Error 10005 undefined preprocessor directive

This error is signaled when a preprocessor directive not recognized
by Metrowerks C/C++ is used.

Fix A list of preprocessor directives recognized by Metrowerks C are
listed in the C, C++, and Assembler Language Reference. Consult this
list to make sure the directive you are using exists and is spelled
correctly.
ERRÐ80 Error Reference

C/C++ Compiler Error Messages
U to Z (C/C++)
Error 10003 unexpected end of file

The end of a source code file was reached before a language item
was completed.

Fix This error may be caused by a misplaced or unbalanced right brace.
Check the penultimate line of the source code file in question. If the
error is not apparent, fix all previous errors and recompile.

Error 10013 unexpected end of line

The end of a source code line was reached before a language item
was completed.

Fix This error may be caused by anything from a misplaced semicolon
to a missing symbol. Check the source code line in question. If the
error is not apparent, fix all previous errors and recompile.

Error 10021 unexpected token

This error occurs when the compiler finds an unexpected token.

Fix If the error is not apparent, it is likely being caused by a previous
syntax error or missing symbol. Fix all previous errors and recom-
pile.

Error 10091 unimplemented C++ feature

The compiler generates this error when it encounters a C++ feature
that is not yet supported by Metrowerks C++.

Error 10162 unknown assembler instruction mnemonic

This error message is used to report an illegal instruction name.

Fix Correct the mnemonic in the assembler instruct

Error 10207 unknown message selector

This error is generated because the message selector was not de-
clared or defined in any of the object hierarchy.
Error Reference ERRÐ81

C/C++ Compiler Error Messages
U to Z (C/C++)
Error 10020 unterminated #if / macro

This error is displayed when an #if directive is found with no
matching #endif directive, or a macro definition is not complete.

Error 10004 unterminated comment

The end of a source code file was reached before a comment was
completed.

Error 10068 value is not stored in register

Undocumented at this time.

Error 10086 variable <var> is not initialized before being used

The compiler encounters an expression using a variable that has nei-
ther been assigned a value nor initialized. For example the code in
Listing 2.109 would cause this error.

Fix Initialize or assign a value to the variable before using it in an ex-
pression.

Listing 2.109 Variable is not initialized before being used.

static int f()
{

int i;
return i;

}

Error 10083 variable <var> is not used in function

(Warning Message) A variable declared in a function is not used in
the function body. This warning is signaled as an error if the Un-
used Variables checkbox is selected in the C/C++ Warnings set-
tings panel.

Fix Either remove the unused variable, or deselect the Unused Vari-
ables checkbox.
ERRÐ82 Error Reference

C/C++ Compiler Error Messages
U to Z (C/C++)
See Also For more on the Unused Variables checkbox, see the C Compilers
Reference

Error 10120 virtual functions cannot be pascal functions

This error appears when a virtual function is declared as a pascal
function. For example, in Listing 2.110, the class var illegally de-
clares func() as a pascal function.

Listing 2.110 Virtual functions cannot be pascal functions

class aClass {
pascal int func(); // illegal declaration

};

Error Reference ERRÐ83

C/C++ Compiler Error Messages
U to Z (C/C++)
ERRÐ84 Error Reference

3
Pascal Compiler
Error Messages
This chapter gives an alphabetical list of the most common compiler
errors which may be encountered while using Metrowerks
CodeWarrior compilers for both the PowerPC-based and 68K-based
Macintosh when using the Pascal programming language.

Pascal Compiler Errors
In this list, errors with variable initial text (such as a class or func-
tion name) come first. Errors beginning with a non-alphabetic sym-
bol character come next. After that, errors are listed alphabetically.

Symbol Names (Pascal)
These are Pascal compiler error messages that begin with a symbol
name, the name of a variable or function.

<param> could not be assigned to a register

The compiler cannot assign this variable or parameter to a register.
This error only occurs in in-line assembler routines.

<var> doesnÕt start a variant list

YouÕre initializing a variant record and using an identifier that can-
not start the variant part. For example:

Listing 3.1 Initializing a variant record

rect = RECORD
foo : integer;
Error Reference ERRÐ85

Pascal Compiler Error Messages
Punctuation (Pascal)
CASE bar : boolean OF
true : (a,b: char);
false: (i:integer);

END;

rec1: rect = (foo:1, bar:true, a:'a', b:'b');
{ OK }

rec2: rect = (foo:2, a:'a', b:'b');
{ ERROR: DidnÕt initialize bar }

rec3: rect = (foo:3, bar:false, a:'a', b:'b');
{ ERROR: If bar is false, you must}
{ initialize i, not a and b. }

<ident> must be a type <type>

This is an error because this identifier <ident> was not declared as
a type <type>.

Punctuation (Pascal)
These are Pascal compiler error messages that begin with punctua-
tion marks.

Ô.Õ expected

A period is missing at the main BEGIN END block of a source file.

Fix Make sure the final END statement is properly spelled. Make sure
the final END statement is followed by a dot (.) instead of a semi-
colon (;).

Ô..Õ expected

The compiler canÕt translate an improper array declaration. Pascal
array declarations need beginning and end subscripts separated by
two dots (..) (Listing 3.2).
ERRÐ86 Error Reference

Pascal Compiler Error Messages
Punctuation (Pascal)
Listing 3.2 Example array declarations

TYPE
GoodArrayType = ARRAY [1 .. 10] OF REAL; { OK }
BadArrayType = ARRAY [10] OF REAL; { Error }

Ô,Õ expected

The compiler canÕt find a comma (,) to separate parameters in a
routine declaration or call.

Ô;Õ expected

A semi-colon is missing at the end of a statement (Listing 3.3).

Listing 3.3 Example semi-colon error

VAR
b : CHAR; { OK }
c : REAL { Error }
d : INTEGER;

Ô:Õ expected

The compiler expected a colon (:) to denote the data type of an
identifier (variable, object, parameter, or routine)

Ô:=Õ expected

YouÕve attempted to assign a value to a variable without the assign-
ment operator (Listing 3.4).

Listing 3.4 Example of an incorrect variable assignment

c := 3; { OK }
c = 3; { Error, Ò=Ó is a comparison operator }
Error Reference ERRÐ87

Pascal Compiler Error Messages
Punctuation (Pascal)
Ô=Õ expected

The compiler expected the equality comparison (=) operator in a
boolean expression.

Ô[Õ expected

The compiler expected an opening left bracket to specify an ordinal
range.

Ô]Õ expected

A closing right bracket is missing (Listing 3.5).

Listing 3.5 Example of a missing right bracket

VAR
c : ARRAY [1 .. 10] OF INTEGER;

BEGIN
c[1] := 6; { OK }
c[2 := 28; { Error }

Ô(Õ expected

The compiler expects to find an opening left parenthesis to begin an
expression.

Ô)Õ expected

The compiler expects to find a closing right parenthesis to end an
expression (Listing 3.6).

Listing 3.6 Example of a missing closing parenthesis

b := cos(c); { OK }
a := sin(b; { Error }
ERRÐ88 Error Reference

Pascal Compiler Error Messages
A to C (Pascal)
Ô...Õ canÕt be used in this context.

You are using an ellipsis incorrectly.

{$endc} or {$endif} expected

The compiler expected to find the end of a compiler compiler direc-
tive here.

$error

(Warning) Your code contains the $error directive, which prints a
user-defined warning message to the Messages Window.

A to C (Pascal)
These are Pascal compiler error messages that begin with A, B, or C.

a CONST parameter cannot be modified

You tried to modify a parameter declared CONST.

a CONST parameter cannot be passed to a VAR parameter

You cannot pass a CONST parameter to a VAR parameter since the
compiler cannot ensure that the CONST parameter will remain un-
changed.

a standard routine cannot be assigned

You cannot assign a standard routine to a procedureÕs parameter. A
standard routine is one of PascalÕs built-in routines, like abs. For ex-
ample:

Listing 3.7 Assigning a standard routine to a procedureÕs parameter

procedure foo (function a (i : integer) :
 integer);

begin
end;
Error Reference ERRÐ89

Pascal Compiler Error Messages
A to C (Pascal)
{ . . . }

foo(abs);{ ERROR: cannot assign the built-in
function abs to a procedureÕs
 parameter }

actual declaration for 'identifier' missing

An error occurred because an actual declaration for this anonymous
type was not given in the implementation of the unit.

actual parameterÕs size is too small, could mangled memory

(Warning) The string youÕre passing to a routine is smaller than the
routine expects. Since the string parameter is a VAR parameter,
copying the string could mangle memory.

already declared

The underlined symbol is declared more than once in the current
scope (Listing 3.8).

Fix Remove the extra declaration.

Listing 3.8 Example of the already declared error

program test;

type
t_char = char;
t_char = ^char; // 't_char' type is already declared

var
c: t_char;
c: char; // variable 'c' is already declared

begin
end.
ERRÐ90 Error Reference

Pascal Compiler Error Messages
A to C (Pascal)
already defined macro

This error is generated when you try to redefine a macro.

array element type cannot be a schema

An error occured because the component type of an array cannot be
a type derived from a schema.

assignment to loop index variable

(Warning) The compiler is warning you that the variable used as an
index in a FORÉDO loop is assigned a value in the loop. Doing so
might prevent the loop from terminating (Listing 3.9).

TIP: To make the compiler warn about this condition, select
ModiÞed For-loop Indexes in the Pascal Warnings preferences
panel.

Fix Remove the assignment to the index variable, or use another vari-
able.

Listing 3.9 Example of loop index assignment

program test;

var
i: integer;

begin
for i:=1 to 100 do
begin

i:=1;
end;

end.
Error Reference ERRÐ91

Pascal Compiler Error Messages
A to C (Pascal)
bad precompiled unit format

This is an error caused by the compiler in some way. Please remove
binaries and preferences then recompile your project. If the problem
persist please contact Metrowerks Technical Support.

bad symbol

[Obsolete] This error has been replace by bad Òbad precompiled
unit format.Ó

ÔBEGINÕ expected

The compiler expects to find the beginning of a compound state-
ment here.

cannot assign to a record with schema array type fields

You cannot perform an assignment to a record type variable that
contains fields which are array types derived from schemata.

cannot be a schema

Only non-packed records and arrays can be used to declare a
schema. You cannot use a variable of a type derived from a schema
as an argument to an open array type parameter. You also cannot
use a schema as a function return type. Object type data members
cannot be types derived from schemata.

cannot be a var parameter

The compiler gives this error became the underlined parameter in
the routine call is not a variable and it should be.

Listing 3.10 Cannot be a var paramter

program test;

 procedure a(var c:char);
 begin
 end;
ERRÐ92 Error Reference

Pascal Compiler Error Messages
A to C (Pascal)
begin
 a('a');// should be replaced with: c:='a'; a(c);
end.

Fix Assign routine call parameter value into a variable and used the
variable to call the routine.

cannot find file

This error is generated when the compiler could not find a file while
compiling or linking a project.

cannot mix different styles of conditional compilation
directives

This error is generated because you tried to mix Borland and MPW
style conditional compilation

cannot mix dynamic arrays and non-local gotos

This error is generated because you tried to have an open array pa-
rameter for a nested routine that uses exit.

cannot mix optimized and unoptimized classes.

This error is generated because you tried to mix optimized and un-
optimized classes.

Fix Ôoptimize class hierarchyÕ needs to be on or off for all pascal units
(project sources and pascal unit libraries)

cannot mix pointer based and handle based classes.

This error is generated because you tried to mix pointer based and
handle based classes.

Fix Ôpointer based objectsÕ must be on or off for all pascal units (project
sources and pascal unit libraries)
Error Reference ERRÐ93

Pascal Compiler Error Messages
A to C (Pascal)
cannot mix short-circuit and non short-circuit logical
operations

An error was generated because you cannot mix short-circuit opera-
tors (&,|) with non short-circuit operators (and,or) within the same
expression

cannot nest an object method definition

An error occurred because you have attempted to nest the definition
for a method inside a procedure or function, as in Listing 3.11.

Listing 3.11 Cannot Nest an Object Method Definition

type
Widget = object

procedure Run;
end;

procedure Foo;
procedure Widget.Run; //ERROR
begin
end;

begin
end;

cannot override data field <ident>

You already used this identifier <ident> as a data field for this class
or one of its ancestors.

cannot pack this type

An error message was given because this type declaration cannot be
made a packed type

cannot use formal discriminants in enumeration lists

You cannot use the formal discriminants in a schema declaration as
enumerated identifiers.
ERRÐ94 Error Reference

Pascal Compiler Error Messages
A to C (Pascal)
can't be a routine type

You cannot assign a parameter of a routine type to a variable of a
procedural type. The parameter may represent a nested routine, but
variables of a procedural type cannot represent nested routines.

Listing 3.12 CanÕt be a routine type

type intfunc = function (i : integer) : integer;

procedure foo (function a (i : integer) :
integer);

var x : intfunc;
begin
 x := a; // ERROR
end;

canÕt be an open array base type

You cannot declare an open array (that is, an array with no upper
limit) of this type; for example, an open array of files.

canÕt initialize an occurrence of this type

You cannot perform static initialization on an variable of this type.

CanÕt override ÔobjectMethodÕ.

The compiler generates this error message because this method can-
not be overridden

canÕt use Ô^Õ for procedural types

DonÕt create a pointer to a procedure with the ^ operator. Just use
the procedureÕs name itself. For example:

Listing 3.13 CanÕt use ^ for procedural types

TYPE fooproc = ^procedure;// ERROR
 fooproc = procedure; // OK
Error Reference ERRÐ95

Pascal Compiler Error Messages
A to C (Pascal)
case constant defined more than once

A value in a CASE statement is repeated (Listing 3.14).

Listing 3.14 Case constant defined more than once error

...
CASE i OF

1 : x := Sin(x);
2 : x := Cos(x);
3 : x := Exp(x);
2 : y := 0.0;

{ Error: 2 is already defined. }
...

class 'identifier' already declared external

You declared the class to be external and you cannot redefine it.

class 'identifier' was declared forward or external

An ancestor class was declared forward or external and hasnÕt been
fully defined yet. You must fully define a class before inheriting
from it.

compiler restriction

This language feature is not supported by the Metrowerks Pascal
compiler.

constant overflow

An error was encountered when the value represented by this con-
stant exceeds the internal representation available. An example
would be trying to fit 4 000 000 000 into a longint.

constant string too long

The compiler generated this error message because the literal string
contains to many characters. The strings length is greater than or
equal to 256 characters.
ERRÐ96 Error Reference

Pascal Compiler Error Messages
D to F (Pascal)
D to F (Pascal)
These are Pascal compiler error messages that begin with D, E, or F.

division by 0

YouÕve attempted a division operation with 0 as the divisor. Divi-
sion by zero is illegal.

ÔDOÕ expected

The DO keyword is missing in a WHILE or FOR statement (Listing
3.15).

Listing 3.15 ÔDOÕ expected error

FOR a := 1 TO 10 DO { OK }
b := b + a;

WHILE b > 100 { Error: no DO keyword }
b := b DIV 2;

ÔENDÕ expected

An END keyword is missing in a BEGINÐEND statement block.

Fix Make sure the END statement is properly spelled or that the END
statement intended to finish a BEGINÐEND statement block is not
ÒusedÓ by another BEGINÐEND block.

end of line expected

There is unnecessary text at the end of this line.

error in macro definition

This is generated when you try to use an improperly defined macro.
Error Reference ERRÐ97

Pascal Compiler Error Messages
D to F (Pascal)
Exit statement needs a routine name

The Exit procedure requires an argument: the name of the routine
to exit or PROGRAM to exit the program.

expression type must be boolean

A non-boolean expression is used where a boolean expression is ex-
pected as in Listing 3.16.

Listing 3.16 Expression type must be boolean error

IF (a + 10) <> 0 THEN { OK }
b := 50;

IF (a + 10) THEN
{ Error: not a boolean expression }

b := 50;

extra Ô,Õ in parameters declaration

An error was given when the routine call contains an extra comma
(,) in the argument list as in Listing 3.17.

Listing 3.17 Example of extra , in parameters declaration

foo(bar,);

ÔFILEÕ expected

An error was given because this parameter must of a file type.

file not allowed in this context

This is an error because this component defines a file which is illegal
in this context, as in Listing 3.18.
ERRÐ98 Error Reference

Pascal Compiler Error Messages
D to F (Pascal)
Listing 3.18 Example of File not allowed error

foo = record phyle : file; end;

formal discriminants cannot be used as parameters to function
calls

You cannot use the formal discriminants in a schema declaration as
actual parameters to a procedure or function call.

function already has a stackframe

This assembler error message is given when, a stackframe is already
defined for the routine.

function doesnÕt return any value

A function does not have an assignment statement that assigns a
value to the function name identifier (Listing 3.19). To specify the
value a function returns, the functionÕs identifier must be assigned a
value as if it were an ordinary variable.

Listing 3.19 Function doesnÕt return any value errors

FUNCTION InchesToCms(inches : REAL) : REAL;
VAR

temp : REAL;

BEGIN
 { Error: no assignment to InchesToCms identifier }

temp := inches * 2.54;
END;

FUNCTION ChickenCount(hatchedEggs : INTEGER) :
INTEGER;

BEGIN
{ Error: no assignment if condition is false }
IF hatchedEggs = 0 THEN

ChickenCount := 0;
END;
Error Reference ERRÐ99

Pascal Compiler Error Messages
G to I (Pascal)
function has no initialized stackframe

This assembler error message is given because a stackframe must be
defined for the routine.

G to I (Pascal)
These are Pascal compiler error messages that begin with G, H, or I.

goto a label enclosed in a ÔFORÕ statement.

This is an error because this label is the target for a goto statement
from outside the FOR loop as in Listing 3.20.

Listing 3.20 Example of goto a label enclosed in FOR statement.

goto 1;
for <var> := <expr> to <expr2> do
1:

goto a label enclosed in a ÔWITHÕ statement

This error message is given when the label is the target for a goto
statement from outside the WITH statement. An example of this
error is in Listing 3.21.

Listing 3.21 Example of goto a label enclosed ina WITH statement.

goto 1;
with <expr> do begin

...
1:
...
end;

goto between ÔCASEÕ legs.

An error is given when the goto's target is inside another CASE la-
bel, as in Listing 3.22.
ERRÐ100 Error Reference

Pascal Compiler Error Messages
G to I (Pascal)
Listing 3.22 Example of goto between CASE legs.

case <expr> of
lab1 : begin

...
goto 1;
...
end;

lab2 : begin
...
2:
...
end;

end

goto between ÔIFÕ and ÔELSEÕ parts.

An error is generated when the goto's target is between an IF and
ELSE as in Listing 3.23.

Listing 3.23 Example of goto between IF and ELSE parts.

if <expr> then begin
...
goto 1;
...
end

else begin
...
1:
...
end

ÔidentifierÕ not visible in this scope

You are attempting to access a protected or private data field out-
side of its restricted scope.
Error Reference ERRÐ101

Pascal Compiler Error Messages
G to I (Pascal)
identifier expected

The error message is given when the compiler expects to find an
identifier.

illegal addressing mode

This assembler message is generated because this addressing mode
is illegal for the operation

Illegal cast, size mismatch.

You tried to cast a variable of a structured type to another struc-
tured type of a different size. The structured types must be the same
size.

illegal casting

This is an error because of an inappropriate attempt to use a value
of one data type as another data type (Listing 3.24).

Listing 3.24 Illegal casting error

VAR
a : LONGINT;
b : ARRAY [1..3] OF CHAR;
i : REAL;

BEGIN
...
a := LONGINT(i); { OK };
a := LONGINT(b); { Error }
...

illegal declaration

This is an error because it is illegal to use this declaration in this con-
text as in Listing 3.25.
ERRÐ102 Error Reference

Pascal Compiler Error Messages
G to I (Pascal)
Listing 3.25 Example of Illegal declaration.

procedure foo (...) ; c; external;

illegal format for real constant

An error was given because this number doesn't correspond to the
notation accepted for a floating point number.

illegal function result type

This error is given when a function cannot return an item of this
type, as in Listing 3.26.

Listing 3.26 Example of illegal function result type.

function foo : FILE;

illegal instruction for this processor

This assembler message is given for an unrecognized instruction.

illegal label

The compiler gives this error when a label is not in the range of
1... 9999.

illegal operand

You cannot use this expression as an operand.

illegal operand type

This is an error because this operator doesn't allow operands of this
type.

illegal operands for this processor

This assembler error message is generated because this kind of op-
erand is not accepted by the processor.
Error Reference ERRÐ103

Pascal Compiler Error Messages
G to I (Pascal)
illegal operation

An error is generated because this operation cannot be performed,
as in Listing 3.27.

Listing 3.27 Example of illegal operation.

i/0 (division by literal zero)

illegal operation on a file

An error is generated because this operation is not allowed for a file
or files of this type.

illegal register list

This assembler error message is given because this instruction
doesn't accept this register list.

illegal routine specification

This error is generated because you declare a routine that was in-
valid.

illegal set element type

An error is given when the type cannot be used as a base to con-
struct a set, as in Listing 3.28.

Listing 3.28 Example of illegal set element type.

set of real

illegal statement

This is an error because the statement is illegal, as in Listing 3.29.
ERRÐ104 Error Reference

Pascal Compiler Error Messages
G to I (Pascal)
Listing 3.29 Example of illegal statement.

if <expr> then
procedure

illegal symbol in declaration

You have attempted to declare a variable, but its identifier is incor-
rect or unknown. An example of this error is in Listing 3.30

Listing 3.30 Illegal symbol in declaration error

VAR
x9 : REAL; { OK }
_ripe : CHAR; { OK }
123e : INTEGER;

{ Error: canÕt start with number }

illegal symbol in factor

You have included an illegal or unknown symbol in your statement,
as in Listing 3.31

Listing 3.31 illegal symbol in factor

 x := +-85
 if a==2 then b = 3.0; (* the a==2 is illegal*)

illegal usage in this scope

An error message was given because an illegal operation was per-
formed within the scope, as in Listing 3.32.

Listing 3.32 Example of illegal usage in this scope.

for i : <expr1> to <expr2> do
call(i){ where the parameter is by-var }
Error Reference ERRÐ105

Pascal Compiler Error Messages
G to I (Pascal)
illegal usage of a selector

This is an error because [, ., ^ can only occur with the correspond-
ing types, as in Listing 3.33.

Listing 3.33 Example of illegal usage of a selector.

i : integer;
i^ := 4;

illegal use of inline function

This is an error because this function can not be defined as inline.

illegal use of keyword

This is an error because this keyword is illegal in this context.

incorrect syntax for $$Shell(id) substitution

(MPW only) A warning was issued because the syntax used to spec-
ify a path variable is incorrect. The default search paths are used in-
stead to locate the unit.

ÔINHERITEDÕ must be used in a method definition.

An error is given because the inherited directive can only occur in a
method definition, not in an ordinary routine definition. Listing 3.34
is an example of this error.

Listing 3.34 Example of INHERITED must be used in a method definition.

procedure foo;
begin

inherited bar;
end;
ERRÐ106 Error Reference

Pascal Compiler Error Messages
G to I (Pascal)
INLINE is not supported in PowerPC

You tried to use inline opcode routines in PowerPC code. The
PowerPC compiler doesnÕt support this feature.

ÔINTERFACEÕ expected

This is an error because the interface part of a unit is missing.

internal compiler error

This error message was generated when the compilation halted. The
compiler is functioning improperly.

WARNING! If this error is generated please contact Technical
Support by sending in a bug report form. Please include as much
information as to when and how the error occurred as possible.

invalid function name or function name expected

This error is generated because the compiler expected a routine
name.

invalid procedure name or procedure name expected

This error is generated because the compiler expected a routine
name.

invalid program name or program name expected

This error is generated because the compiler expected a program
name.

invalid unit name or unit name expected

This error is generated because the compiler expected a unitname.

invalid variant record CASE type

This error is given when the CASE statement label type is not an or-
dinal value.
Error Reference ERRÐ107

Pascal Compiler Error Messages
J to L (Pascal)
J to L (Pascal)
These are Pascal compiler error messages that begin with J, K, or L.

label error

This is an error because a label has been redefined.

label range error

An error is given when the case label ranges lower bound is larger
than the upper one. Listing 3.35 is an example of this error.

Listing 3.35 Example of label range error.

case <expr> of
5..3 :
end;

local data > 224 bytes

You must create a stack frame for this routine, since it has more than
224 bytes of local variables. For more information, see ÒThe Built-In
AssemblerÓ in the Pascal Language Manual.

local variables size > 32K

The total amount of memory used to allocate local variables has ex-
ceeded 32Kbytes. This error often occurs when declaring arrays that
are too large (Listing 3.36).

Listing 3.36 Local variables size > 32K error

PROCEDURE BoomArray();

VAR
{ Error: this local array is

greater than 32Kbytes }
wayTooBig : ARRAY [1 .. 100000] OF INTEGER;
ERRÐ108 Error Reference

Pascal Compiler Error Messages
M to O (Pascal)
Fix Make some of the variables global instead.

M to O (Pascal)
These are Pascal compiler error messages that begin with M, N, or
O.

method not declared in Ô*Õ.

This error was given because this method wasn't declared in this
class.

missing array initializer

The array initializer doesnÕt contain enough elements.

missing Ô$IFCÕ directive

The compiler encountered a {$ELSEC} or {$ENDC} directive with-
out first finding a matching {$IFC} directive.

must be a pointer or an object

This is an error because the actual declaration for an anonymous
type must be either a pointer or an object.

must be an array

This is an error because this variable's type must be an array.

must be an ordinal type

An error because formal discriminants to a schema must be an ordi-
nal type.

must be assignable

The left hand side of an assignment statement canÕt be assigned a
value. Listing 3.37 shows an example.
Error Reference ERRÐ109

Pascal Compiler Error Messages
M to O (Pascal)
Listing 3.37 Must be assignable error

CONST
a = 10;

BEGIN
a := 20;

{ Error: constant values canÕt be reassigned }
...

must be a constant

You have attempted using an expression as a constant that is not a
constant expression. Listing 3.38 shows an example.

Listing 3.38 Must be a constant error

CONST
b = 10; { OK }

 x = func();
{ Error: function call is not allowed }

...

CASE finalValue OF
1 : f := 10; { OK }
b : f := 2;

{ Error: b is not a constant expression }
...

must be a function

A procedure is called where a function is expected (Listing 3.39).

Listing 3.39 Must be a function error

FUNCTION Func() : INTEGER; FORWARD;
...
PROCEDURE Func();
{ Error: expected a function definition }
ERRÐ110 Error Reference

Pascal Compiler Error Messages
M to O (Pascal)
BEGIN
END;

must be an object type.

This is an error because this variable's type must be a class.

must be an open array parameter

This error is given because the HIGH function can only be used with
an open array; that is, an array declared with no range. An open
array can only be declared in routine formal parameter list.

must be a pointer

This is an error because this variable's type must be a pointer.

must be a procedure

A function is used where a procedure is expected (Listing 3.40).

Listing 3.40 Must be a procedure error

PROCEDURE Func() : INTEGER; FORWARD;
...
FUNCTION Func();
{ Error: expected a procedure definition }
BEGIN
END;

must be a range

An error was given because this variable's type must be a range.

must be a record

This is an error because this variable's type must be a record.
Error Reference ERRÐ111

Pascal Compiler Error Messages
M to O (Pascal)
must be a scalar

An error was given because this variable's type must be an ordinal
type or an enumeration.

must be a text file.

An error was given because this variable's type must be a file of type
'text'.

must be a variable

This is an error because this identifier was not declared as a vari-
able,

no parameter list

An error was generated when the parameter list was missing for
this routines call.

not in program parameters

This is an ANS Pascal error message. It is generated when the file
was not declared in the program header.

number is out of range

This is an error because the literal number is out of the range de-
fined for the variable/field/parameter.

number overflow

The compiler is signalling an attempt to assign a numeric constant
value to a variable thatÕs greater than the maximum allowed for that
data type. Listing 3.41 give an example of this error

Listing 3.41 Number overflow error

VAR
a : INTEGER;

BEGIN
ERRÐ112 Error Reference

Pascal Compiler Error Messages
P to R (Pascal)
a := 10000000000000000000000000;
{ Error: too big! }

...

object cannot contain file component

This is an error because a file cannot be made out of classes.

object not printable

This is an error because it's impossible to print the value of this type.

ÔOFÕ expected

The compiler generates this message because the code is missing the
keyword OF in a CASE statement

out of range

An error message is given when the value is out of the range de-
fined for the variable, field, or parameter.

P to R (Pascal)
These are Pascal compiler error messages that begin with P, Q, or R.

parameter mismatch

The parameters in a routineÕs definition and declaration do not
match (Listing 3.42).

Listing 3.42 Parameter mismatch error

PROCEDURE Func(a : INTEGER); FORWARD;
...

PROCEDURE Func(a : CHAR); { Error: parameter doesnÕt match }
BEGIN
Error Reference ERRÐ113

Pascal Compiler Error Messages
P to R (Pascal)
...
END;

parameter missing

A routine call does have enough parameters to match the routineÕs
definition (Listing 3.43).

Listing 3.43 Parameter missing error

FUNCTION Times(i : INTEGER; factor : INTEGER) :
INTEGER;

BEGIN
...

END;

BEGIN
x := Times(12); { Error: need 2 parameters }

...

preprocessor nesting too deep

The compiler gives this error when there are too many nested com-
pilation directives.

procedural variable canÕt get nested routine.

This is an error because you cannot assign a local routine to a proce-
dural type variable

procedure already FORWARD

The underlined routine is declared as FORWARD more than once in
the current scope. Listing 3.44 gives and example of this error.

Fix There are two suggested fixes to this error:

¥ Remove the extra declaration.
ERRÐ114 Error Reference

Pascal Compiler Error Messages
P to R (Pascal)
¥ Remove the FORWARD keyword if your are actually defining
the routine.

Listing 3.44 Procedure already FORWARD error

program test;

procedure a; forward;
procedure a; forward; // procedure 'a' is already

 // declared as FORWARD

begin
end.

program parameter redeclaration

This ANS Pascal error message is given when the file was already
declared as in Listing 3.45.

Listing 3.45 Example of program parameter redeclaration.

program (output, output);

range base type mismatch

An error was given because it is impossible to construct a range
over this type. Listing 3.46 gives an example of this error.

Listing 3.46 Example of range base type mismatch.

fprange = 1.0 .. 1.5;

redeclaration of routine <routineName>

A function or procedure, named routineName, is declared more than
once in the same scope.
Error Reference ERRÐ115

Pascal Compiler Error Messages
S to T (Pascal)
redundant symbol

An error is given because this character is illegal in Pascal.

result type mismatch

The compiler generated this error message because this function's
type doesn't match the declaration's type.

routine ÔidentifierÕ declared but undefined.

You did not implement a routine that you declared in the interface
or declared forward.

S to T (Pascal)
These are Pascal compiler error messages that begin with S, T.

scalar value expected

The compiler expects a scalar value, such as a boolean, enumeration,
range, char, or integer.

Segmentation directive must be placed after
ÔIMPLEMENTATIONÕ.

Segmentation directives, {$S segmentName}, cannot be placed in
the interface part of a unit. Instead, place segmentation directives in
the implementation part.

set base type mismatch

This is an error because the base type of these sets are not compati-
ble, as in Listing 3.47.

Listing 3.47 Example of set base type mismatch.

set of colors and set of chars
ERRÐ116 Error Reference

Pascal Compiler Error Messages
S to T (Pascal)
size mismatch for universal parameter

This error is given when UNIV parameters are not the same size.
UNIV parameters must match in sizes.

string mismatch, the parameter could be mangled in the called
routine, use a ÔconstÕ parameter.

(Warning) The string youÕre passing to a routine is longer than the
routine expects. Since this string parameter is a value parameter,
copying the string could corrupt memory.

string too long for assignment

The string literal assigned to a string variable is longer than the
string variableÕs length (Listing 3.48).

Listing 3.48 String too long for assignment error

VAR
s : STRING[10];

BEGIN
{ Error: s can only be 10 characters long }
s := 'abcdefghijklmnopqrstuvwxyz';

...

subrange type expected

You must use an ordinal type subrange in this context.

ÔTHENÕ expected

The THEN keyword is missing in an IF statement (Listing 3.49).

Listing 3.49 ÔTHENÕ expected error

IF a = 'b' THEN b := a; { OK }
IF x = 0 { Error: no THEN keyword }

y := 100;
Error Reference ERRÐ117

Pascal Compiler Error Messages
S to T (Pascal)
ÔTOÕ or ÔDOWNTOÕ expected

A TO or DOWNTO keyword is missing in a FOR statement (Listing
3.50).

Listing 3.50 ÔTOÕ or ÔDOWNTOÕ expected error

FOR j := 1 TO 10 { OK }
k := k * 2;

FOR i := 0 DO { Error: no TO or DOWNTO clause }

Too many array initializers

The array initializer contains too many elements.

Too many include files

This error message is displayed when the number of include files
exceeds the capacity of the compiler.

Too many nested directives

This error message is generated when the compiler encounters too
many levels of nesting.

too many nested macros

You exceeded the maximum nesting level for macros. You cannot
nest them more than 32 deep.

Too many opcodes for inline routine

The compiler generates this error message when the inline routine is
too long.

type expected

A data or object type is missing in a variable declaration (Listing
3.51).
ERRÐ118 Error Reference

Pascal Compiler Error Messages
U to Z (Pascal)
Listing 3.51 Type expected error

VAR
a : CHAR; {OK }
i : ; { Error: missing type }

type <identifier> had a forward declaration, the compiler
cannot change it to <identifier>

You didnÕt define the type, and the compiler cannot change a vari-
able of that type to a new type. To allow this type coercion turn on
the Relax pointer compatibility option in the Pascal Language set-
tings panel.

type mismatch

The type of a variable differs from the expression it is being as-
signed. Also, the type of an item in an expression is not compatible
with the other types used in the expression. An example of this
error is in Listing 3.52

Listing 3.52 Type mismatch error

a := 'A';
b := 'a' - 'A';

{ Error: characters arenÕt numeric }

U to Z (Pascal)
These are Pascal compiler error messages that begin with U, V, W,
X, Y, or Z.

unclosed comment

A comment has not been terminated (Listing 3.53).
Error Reference ERRÐ119

Pascal Compiler Error Messages
U to Z (Pascal)
Listing 3.53 Unclosed comment error

{ Error: unclosed comment error }
{$I test.p
VAR

i, j : INTEGER;
...

undeclared identifier

A variable or constant name is used in source code, but has not been
declared.

undefined identifier

An error occurred when this identifier is undefined.

undefined label Ôlabel-numberÕ

A label has been declared or referenced in a GOTO statement but is
not used in the source code (Listing 3.54).

Listing 3.54 Undefined label error

LABEL 1000;

VAR
i, j : INTEGER;

BEGIN
i := 10;
IF i > 5 THEN GOTO 1000

{ Error: 1000 never used }
END;

undefined label

An error occurred when a label was referenced by had not been de-
clared.
ERRÐ120 Error Reference

Pascal Compiler Error Messages
U to Z (Pascal)
undefined MPW shell variable

 (MPW only, warning) A warning was issued because the path vari-
able is undefined. The default search paths are used instead to lo-
cate the unit.

undefined pointer ÔidentifierÕ

An error occurred when this identifier was assumed to be a pointer
but is still undefined.

unexpected end of file

The compiler reached the end of a source code file before it could
read the terminating END statement.

Fix Add the terminating statement to the source code file.

unknown PowerPC instruction mnemonic

This is an unknown assembler instruction for the PowerPC assem-
bler.

ÔUNITÕ expected

The UNIT expected error message is issued if neither program or
unit is the first keyword of the file.

unrecognized pragma

This error is generated when you attempt to use a pragma that is not
valid for the platform target.

ÔUNTILÕ expected

This REPEAT statement is missing its UNTIL clause. Every REPEAT
statement must end with an UNTIL clause.

unit wasnÔt compiled

The unit being referenced in the project cannot be found within the
project. This error often occurs when a UNITÕs name and its file-
Error Reference ERRÐ121

Pascal Compiler Error Messages
U to Z (Pascal)
name donÕt match. By default, Metrowerks Pascal requires that the
name in a unitÕs UNIT statement and the unitÕs filename (without
the filename extension) be the same.

Fix Add the unit or the library that contains the unit to the project, or
change the unitÕs filename to match the name used in the unitÕs
UNIT statement.

unresolved forward class reference to ÔidentifierÕ.

An error occurred because this identifier was assumed to be a class
but is still undefined.

unresolved external class reference to <identifier>

The compiler cannot create an instance of an external class since it
doesn't know the classÕs size.

unsafe object reference.

An error is generated when the reference to an object's field is un-
safe. The Memory Manager may move the object.

unterminated string

A string literal doesnÕt have an ending quote. For example of this
error see Listing 3.55

Listing 3.55 Unterminated string error

CONST
{ Error: no ending quote character }
kDefaultTitle = 'Rabbit Food Accounting Package;
...

unused variable

The compiler is warning that a variable has been declared, but it is
never used in its scope (Listing 3.56). To make this warning active,
select Unused Variables in the Pascal Warnings settings panel.
ERRÐ122 Error Reference

Pascal Compiler Error Messages
U to Z (Pascal)
Listing 3.56 Unused variable warning

FUNCTION ChunkCount(a : INTEGER) : INTEGER;

VAR
SockStr : STRING[100]; { Warning: SockStr never used }

BEGIN
ChunkCount := a * 10

END;

value is not stored in register

This assembler error message is given when the value is not in a
register, it must be in a register.

variable Ô*Õ is a loop index

This is an error because you cannot use a for loop index for this pur-
pose.

variable identifiers not allowed in expression

Index range expressions cannot contain references to variable iden-
tifiers.

variable used but not initialized

A variable is used in an expression without first being assigned a
value (Listing 3.57).

Fix Assign a value to the variable before using it in an expression.

Listing 3.57 Variable used but not initialized warning

VAR
i, j, k : INTEGER;

BEGIN
j := i * 10; { Error: i isnÕt initialized yet }
IF (Fib(i) > 100 THEN
Error Reference ERRÐ123

Pascal Compiler Error Messages
U to Z (Pascal)
{ Error: i isnÕt initialized yet }
k := 1;

END.
ERRÐ124 Error Reference

4
Java Error
Messages
This chapter gives an alphabetical list of the compiler errors which
may be encountered while using Metrowerks Java compiler.

Java Compiler Errors
In this list, errors with variable initial text (such as a class or func-
tion name) come first. Errors beginning with a non-alphabetic sym-
bol character come next. After that, errors are listed alphabetically.

Symbol Names (Java)
These are Java compiler error messages that begin with a symbol
name, such as the name of a method, variable, or class.

Error 14195 class in throws clause must be a subclass of class
java.lang.Throwable.

Any class in the throws clause must be a subclass of Throwable.
Generally, the exception classes you create will be subclasses of
Exception, which is in turn a subclass of Throwable.

Listing 4.1 Throwing a class that is not a subclass of Throwable

public class FirstException {
// Not a subclass of anything.
// . . .

}

public class SecondException extends Exception {
Error Reference ERRÐ125

Java Error Messages
Symbol Names (Java)
// A subclass of Exception, which is a subclass of Throwable.
// . . .

}

public class ThrowTestClass {
public static void c(int x)

throws FirstException, SecondException {
// ERROR: FirstException is not a subclass of
// java.lang.Throwable.

// . . .
}
// . . .

}

Error 14099 class is an abstract class. It canÕt be instantiated.

You tried to create an instance of an abstract class.

Fix Either declare the class not to be abstract, or create a subclass of the
abstract class and then create an instance of the subclass.

Listing 4.2 Instantiating an abstract class

public abstract class Animal { /* . . . */ }
public class Bird extends Animal { /* . . . */ }

public class AbstractExample {

public static void main(String args[]) {
Animal A = new Animal();

// ERROR: Animal is an abstract class.
Bird B = new Bird();

// OK: Bird is not abstract.
}

}

ERRÐ126 Error Reference

Java Error Messages
Symbol Names (Java)
Error 14175 className is defined in fileName. Because it is used outside
of its source file, it should be defined in a file called
className.java.

This error will only occur when the option Strict File Names is en-
abled in the Java Language settings panel, and you have not defined
a classname is defined in fileName. Because it is used outside of its
source file, it should be defined in a file called className.java.

Error 14092 interface is an interface. It canÕt be instantiated.

You tried to create an instance of an interface.

Fix Either change the interface to a class, or create a class that imple-
ments the interface and create an instance of the class.

Listing 4.3 Instantiating an interface

public interface CanFly { /* . . . */ }
public class Plane implements CanFly { /* . . . */}

public class InterfaceExample {
public static void main(String args[]) {

CanFly C = new CanFly(); // ERROR: CanFly is an interface.
Plane P = new Plane(); // OK: Plane is a class

}
}

Error 14091 class1 must be declared abstract and not final. It does not
define method from class2.

If a class contains abstract methods, you cannot declare it as final.
Instead, you must declare it abstract.

Fix You may have subclassed the class from an abstract class and for-
gotten to define all the abstract methods. Or you may have declared
abstract methods right in the class and accidentally declared the
class as final instead of abstract. Either declare the class to be
abstract, or define the abstract methods.
Error Reference ERRÐ127

Java Error Messages
Symbol Names (Java)
Listing 4.4 Declaring an abstract class as final

public abstract class Animal {
abstract void Noise();
abstract int NumLegs();

}

public final class Bird extends Animal {
void Noise() { System.out.println("Tweet!"); }
// ERROR: Bird must define NumLegs() to be a final class

}

public final class Shape {
abstract double Circumference();
abstract double Area();
// ERROR: Shape must be declared abstract
// since it declares abstract methods.

}

Error 14090 class1 must be declared abstract. It does not define method
from class2.

If a class contains abstract methods, you must declare it abstract.

Fix You may have subclassed the class from an abstract class and for-
gotten to define all the abstract methods. Or you may have declared
abstract methods right in the class and forgotten to declare it as ab-
stract. Either declare the class to be abstract, or define the ab-
stract methods.

Listing 4.5 Declaring an abstract class as final

public abstract class Animal {
abstract void Noise();
abstract int NumLegs();

}

public class Bird extends Animal {
void Noise() { System.out.println("Tweet!"); }
// ERROR: Bird must define NumLegs() or be declared abstract
ERRÐ128 Error Reference

Java Error Messages
Symbol Names (Java)
}

public class Shape {
abstract double Circumference();
abstract double Area();
// ERROR: Shape must be declared abstract
// since it declares abstract methods.

}

Error 14013 symbol expected.

 This error will be signaled when the compiler expects to find a cer-
tain keyword or punctuation, as shown in Listing 4.6.

Listing 4.6 symbol expected

if i = 3) // will give "(expected"
return;

Error 14153 symbol must be an interface.

Where the compiler expected to see the name of an interface, you
used the name of another symbol. For example, you may have used
the name of a class instead of an interface in an implements clause.

Listing 4.7 Using a class name where an interface name is expected

public abstract class Animal { /* . . . */ }
public class Bird implements Animal { /* . . . */ }

// ERROR: In an implements clause, you must use the name of an
// interface, not a class.

public class Bear extends Animal { /* . . . */ }
// OK

Error 14114 symbol not supported.

This error is a "convenience" error. It is signaled when certain un-
supported keywords or expressions (const, goto,
placement new) from C++ are seen by the compiler.
Error Reference ERRÐ129

Java Error Messages
Punctuation Marks (Java)
Punctuation Marks (Java)
These are Java compiler error messages that begin with punctuation
marks.

Error 14028 [] can only be applied to arrays. It canÕt be applied to type.

You applied [] to type, which is not an array.

Fix You may have misdeclared the variable, or used too many dimen-
sions in an array reference.

Listing 4.8 Using [] with an integer

int x;
int[] y = new int[3];
int[][] z = new int[3][3];

x[2] = 1; // ERROR: x is an integer
y[2] = 2; // OK
y[2][2] = 3;// ERROR: y is a 1-dimensional array
z[2][2] = 4;// OK

A to B (Java)
These are error messages that begin with A or B.

Error 14103 a ''break'' or ''continue'' must transfer control within the same
method.

Methods in block local classes must not "break" or "continue" to the
enclosing method. An illegal break is shown in Listing 4.9.

Listing 4.9 Illegal break

public class foo {

public void method(int x) {
ERRÐ130 Error Reference

Java Error Messages
A to B (Java)
switch (x) {

case 1:
{

Object o = new Object() {

public String toString() {

//...
break; //illegal; must not break out of method scope

}
}

}
}

}
}

Error 14133 Abstract and native methods canÕt have a body: method

You declared a method to be abstract or native, but you gave the
method a body. Abstract methods are defined in the subclassÕs
body. Native methods are defined in a source file written with an-
other language, such as C.

Listing 4.10 Abstract and native methods with bodies

public abstract class Animal {
abstract void Noise();
abstract int NumLegs() { return 0; }

// ERROR: An abstract method canÕt have a body.
}

public class Bird extends Animal {
void Noise() { System.out.println("Tweet!"); }
native int NumLegs() { return 2; }

// ERROR: A native method canÕt have a body.
}

Error Reference ERRÐ131

Java Error Messages
A to B (Java)
Error 14217 Abstract methods canÕt be final: method

Undocumented at this time.

Error 14218 Abstract methods canÕt be native:method

Undocumented at this time.

Error 14215 Abstract methods canÕt be private: method

You cannot declare a method to be both private and abstract. A pri-
vate method cannot be overridden in a subclass. An abstract
method must be overridden in a subclass to be useful.

Error 14216 Abstract methods canÕt be static: method

Undocumented at this time.

Error 14219 Abstract methods canÕt be synchronized: method

Undocumented at this time.

Error 14052 Access across scopes to the private member
targetMemberName in className is not implemented. The
reference will succeed if the member is given package scope.

The compiler generates an error when you attempt to access across
scopes to the private member.

Error 14061 Ambiguous class: symbol and symbol

If a class could be resolved to two different imported packages, this
error is thrown.

import java.util.*;
import java.sql.*;

class aClass {

Date aDate; //Could be "java.util.Date" or "java.sql.Date"
ERRÐ132 Error Reference

Java Error Messages
A to B (Java)
}

Error 14194 Ambiguous name: typeName is both a class and a package.

If a qualifier resolves to both a package and a class, this error is gen-
erated.

Listing 4.11 Qualifier resolves to both a package and a class

package foo;

class foo {

class feem {

}
}

class feem {

public void aMethod() {

feem aFeem = new foo.feem(); //ERROR: which feem is intended?
}

}

Error 14201 An error has occurred in the compiler; please file a bug report
(support@metrowerks.com) using the e-mail bug report form
in the Release Notes folder.

There is a bug in the compiler that caused it to raise a fatal error that
it could not handle. Please file a bug report to Metrowerks Technical
Support at support@metrowerks.com with the report form on
your CodeWarrior CD. Be sure to include code which triggers this
error.
Error Reference ERRÐ133

Java Error Messages
A to B (Java)
Error 14202 An exception has occurred in the compiler; please file a bug
report (support@metrowerks.com) using the email bug report
form in the Release Notes folder.

There is a bug in the compiler that caused it to raise an exception it
could not handle. Please file a bug report to Metrowerks Technical
Support at support@metrowerks.com with the report form on
your CodeWarrior CD. Be sure to include code which triggers this
error.

Error 14155 An interface canÕt implement anything; it can only extend other
interfaces.

You declared an interface and used the implements keyword
where you should have used the extend keyword.

Fix When you list the superinterfaces of an interface, use the extend
keyword.

Listing 4.12 Using implements, instead of extends

public interface CanFly { /* . . . */ }

public interface CanFlyInSpace implements CanFly { /* . . . */ }
// ERROR: Use extends, not implements

public interface CanBeSuperSonic extends CanFly { /* . . . */ }
// OK

Error 14168 Argument canÕt have type void: symbol

You declared a methodÕs argument to be void. Only methods them-
selves can be void.

Listing 4.13 Declaring an argument to be void

int X(void a) {
// ERROR: An argument canÕt be void.
ERRÐ134 Error Reference

Java Error Messages
A to B (Java)
// . . .
}

Error 14172 Arithmetic exception.

You tried to perform an illegal arithmetic operation, such as divid-
ing by zero.

Listing 4.14 Dividing by zero

int i = 1 / 0; // ERROR: Cannot divide by zero.

Error 14031 Array constants can only be used in initializers.

You can use array constants only in a variableÕs declaration to ini-
tialize the array.

Listing 4.15 Using array constants

int x[] = { 1, 2, 3 };// OK

int y[] = new int[3];
y = { 1, 2, 3 } // ERROR

int z[] = new int[3];
z[1] = 1; z[2] = 2; z[3] = 3; // OK

Error 14098 Array dimension missing.

You forgot to use a dimension when creating a new array.

Listing 4.16 Forgetting the array dimension

int[] a = new int[]; // ERROR: Need a dimension.
int[] b = new int[3];// OK
Error Reference ERRÐ135

Java Error Messages
A to B (Java)
Error 14027 Array index required.

You forgot to use an index when referencing an element in an array.

Listing 4.17 Forgetting the array index.

int z[] = new int[3];
z[] = 1; // ERROR: Need an index.
z[2] = 2;// OK

Error 14049 Attempt to assign a blank final variableName variable in a
loop. The initialization must occur exactly once.

Blank finals are final variables which have no initialization expres-
sion in their declaration. These variables must be definitely as-
signed once and only once, and their initialization cannot occur in a
looping construct.

Listing 4.18 Attempting to assign a blank final in a loop

class aClass {

aClass() {

final int i; //blank final

for (int x = 0; x < 3; x++)
i = 3; //blank final is assigned inside the for loop

}
}

Error 14050 Attempt to assign to a variable variableName in a different
method. From enclosing blocks, only final local variables are
available.

Methods in block local classes can only assign to blank local vari-
ables from the enclosing method.
ERRÐ136 Error Reference

Java Error Messages
A to B (Java)
Listing 4.19 Attempt to assign to a variable variableName in a different
method.

public class outerClass {
public void outerMethod (int x) {

final int y;

new Object() {
public int hashCode() {

x++; //not allowed; x is not final
y = 3; //OK

}
}

}
}

Error 14039 Attempt to reference field field in a variable.

You tried to access a field in a variable that isnÕt a class and has no
fields.

Listing 4.20 Referencing a field in a variable with no fields

int x;
System.out.println (x.length);

// ERROR: x is an int and has no fields.

Error 14046 Attempt to reference method method in variable as an instance
variable.

You tried to access method as though it were an instance variable in
variable.

Fix When you call a method with no arguments, you must always fol-
low the methodÕs name with an empty pair of parentheses. Either
change the declaration to be a instance variable, or add an argument
list to the methodÕs call.
Error Reference ERRÐ137

Java Error Messages
A to B (Java)
Listing 4.21 Using a method as an instance variable

public class Bird {
void Noise() { System.out.println("Tweet!"); }
int NumLegs() { return 2; }

}

public class AbstractExample {
public static void main(String args[]) {

System.out.println (B.NumLegs);
// ERROR: NumLegs is a method, not an instance variable

}
}

Error 14051 Attempt to use a non-final variable variableName from a
different method. From enclosing blocks, only final local
variables are available.

Methods in block local classes can access local variables from the en-
closing method, but only if these variables are final.

Listing 4.22 Attempting to use a non-final variable from a different method.

public class outerClass {

public void outerMethod (int x) {

final int copyOfx = x;

new Object() {
public String toString() {

return "x is " + x + " and copyOfx is " + y;
 //reference to copyOfx is allowed, reference to x is not.

}
}

}
}

ERRÐ138 Error Reference

Java Error Messages
C (Java)
Error 14059 Blank final variable variableName may not have been
initialized. It must be assigned a value in an initializer, or in
every constructor.

The compiler must be able to determine that all blank final variables
are definitely assigned.

Error 14101 'break' must be in loop or switch.

A break statement can appear only within a switch, while, do, or
for statement block.

Fix Either make sure your braces are balanced correctly, or rewrite your
code to avoid the break statement.

C (Java)
These are error messages that begin with C.

Error 14144 CanÕt access symbol. Class or interface must be public, in
same package, or an accessible member class.

If an attempt is made to use an inaccessible class, this error is sig-
naled.

An example of this error is shown in Listing 4.23.

Listing 4.23 CanÕt access symbol. Class or interface must be public, in
same package, or an accessible member class.

import java.util.*;

HashtableEntry[] entry = new HashtableEntry[]; //illegal;
//HashtableEntry is only accessible within the java.util package

Error 14072 CanÕt access protected field variable in class. class is not a
subclass of the current class.

You declared a variable to be protected or private protected
and are accessing it from a class that doesnÕt have access to it. If you
Error Reference ERRÐ139

Java Error Messages
C (Java)
declare a classÕs variable to be protected, you can access it only in
a subclass of that class or in other classes in the same package. If you
declare a classÕs variable to be private protected, you can ac-
cess it only in a subclass of that class.

For example, say you have this class declaration in the package foo:

Listing 4.24 A class with a protected variable.

package foo;

public class A {
protected int m;
public int n;

}

This code wonÕt compile:

Listing 4.25 Accessing a protected variable

package bar;
import foo.*;

public class X extends A {
public int sum(A a) {

return a.m + a.n;
// ERROR: a.m is protected and X is a subclass of A, but you
// aren't using X's copy of m. You're using another
// instance's copy of m.

}

public int sum() {
return m + n;
// OK: Now youÕre using XÕs copy of m.

}
}
// . . .
ERRÐ140 Error Reference

Java Error Messages
C (Java)
Error 14073 CanÕt access protected inner type innerClassName in
targetClassName. currentClassName is not a subclass of the
current class.

Inner classes obey the same access rules as other class members.

Listing 4.26 CanÕt access protected inner type because the current class
name is not a subclass of the current class

class A {

protected static class B {

}
}

class C {

void method() {
new A.B(); //illegal; B is protected,

 //and C is not a subclass of A.
}

}

Error 14071 CanÕt access protected method method in class. class is not a
subclass of the current class.

You declared a method to be protected or private protected
and are accessing it from a class that doesnÕt have access to it. If you
declare a classÕs method to be protected, you can access it only in
a subclass of that class or in other classes in the same package. If you
declare a classÕs method to be private protected, you can ac-
cess it only in a subclass of that class.

For example, say you have this class declaration in the package foo:

Listing 4.27 A class with a protected variable.

package foo;
Error Reference ERRÐ141

Java Error Messages
C (Java)
public class A {
protected int m() { return 1; }
public int n { return 2; }

}

This code wonÕt compile:

Listing 4.28 Accessing a protected variable

package bar;
import foo.*;

public class X extends A {
public int sum(A a) {

return a.m() + a.n();
//ERROR: a.m() is protected and X is a subclass of A, but you
// aren't using X's copy of m(). You're using another
// instance's copy of m().

}

public int sum() {
return m() + n();
// OK: Now youÕre using XÕs copy of m().

}
}
// . . .

Error 14048 CanÕt assign a second value to a blank final variable:
variableName

Blank finals are final variables which have no initialization expres-
sion in their declaration. These variables must be assigned once and
only once.

Listing 4.29 Assigning a blank variable more than once

public class aClass {
public static final int x;
ERRÐ142 Error Reference

Java Error Messages
C (Java)
static {
x = 3;
x = 4; // error here

}
}

Error 14047 CanÕt assign a value to a final variable: variable

You tried to change the value of the variable variable which was de-
clared final.

Fix Either change the variableÕs declaration, or declare a new variable to
hold the value.

Listing 4.30 Assigning a value to a final variable

final int SIZE = 512;

int setSIZE(int x) {
SIZE = x; // ERROR: SIZE is final
return SIZE;

}

Error 14197 CanÕt catch class; it must be a subclass of class
java.lang.Throwable.

Any class in the catch clause must be a subclass of Throwable.
Generally, the exception classes you create will be subclasses of
Exception, which is in turn a subclass of Throwable.

Listing 4.31 Catching a class that is not a subclass of Throwable

public class E1 { /* . . . */ }
public class E2 extends Exception { /* . . .* }
public class CatchTestClass {

public static void c(int x) {
try {

// . . .
} catch (E1 e1) {
Error Reference ERRÐ143

Java Error Messages
C (Java)
// ERROR: E1 is not a subclass of Throwable.
// . . .

} catch (E2 e2){
// OK: E2 is a subclass of Exception,
// which in turn is a subclass of Throwable.
// . . .

}
}

}

Error 14093 CanÕt directly invoke abstract method method in class.

You tried to directly call a method that was declared to be abstract.

Fix Either remove the method call or define the method.

public abstract class Animal {
abstract int NumLegs();

}
public class Bird extends Animal {

int NumLegs() { return 2 + super.NumLegs(); }
// ERROR: CanÕt invoke super.NumLegs(), since itÕs abstract.

}

Error 14067 CanÕt invoke a method on a symbol.

You tried to invoke a method on a variable that isnÕt a class and has
no methods.

Listing 4.32 Invoking a method on an int

int x;
x.length();// ERROR

Error 14044 CanÕt make a static reference to inner class innerClassName.

Inner classes which are not declared static must be referenced
through an instance of the outer class.
ERRÐ144 Error Reference

Java Error Messages
C (Java)
Listing 4.33 Failure to make a static reference to inner class

public class outerClass {

public class innerClass {

public void aMethod() { }
}

}

public class anotherClass {

public static void anotherMethod() {

outerClass.innerClass.aMethod();
 //this fails, because no instance of outerClass present

}
}

Error 14043 CanÕt make a static reference to nonstatic variable variable in
class.

You accessed variable in class as though it were a static variable, but
it actually is an instance variable.

Fix Either access the variable through an instance of the class, or declare
the variable to be static.

Listing 4.34 Accessing an instance variable as a static variable

public class Bird {
int size;
static int numlegs;

}

public class StaticExample {
public static void main(String args[]) {

Bird b = new Bird();

Bird.size = 12; // ERROR: size is not static.
Error Reference ERRÐ145

Java Error Messages
C (Java)
Bird.numlegs = 2; // OK
b.size = 12;// OK

}
}

Error 14097 CanÕt make forward reference to variable in class.

While initializing a variable, you made a forward reference to a
variable that hasnÕt been defined yet.

Fix Either change the order in which you declare the variables, or re-
write the initialization.

Listing 4.35 Illegal forward reference

int a = b; // ERROR: b isnÕt defined yet
int b = 1; // OK
int c = b; // OK
int d = d + 1; // ERROR: Cannot refer to d in

 // its own initialization

Error 14070 CanÕt make static reference to method method in class.

You accessed method in class as though it were a static method, but it
actually is an instance method.

Fix Either access the method through an instance of the class, or declare
the method to be static.

Listing 4.36 Accessing an instance method as a static method

public class Bird {
static void PrintNumBirds() { /* . . . */ }
void Fly() { /* . . . */ }

}

public class StaticExample {
public static void main(String args[]) {

Bird b = new Bird();
ERRÐ146 Error Reference

Java Error Messages
C (Java)
Bird.Fly(); // ERROR: Fly() is not static.
Bird.PrintNumBirds(); // OK
b.Fly(); // OK

}
}

Error 14199 CanÕt read: symbol

If the compiler has problems getting the text for a source from the
IDE, the Java compiler will report this error.

Error 14060 CanÕt reference symbol before the superclass constructor has
been called.

In an explicit constructor call, either you referred to one of the ob-
jectÕs instance variables or instance methods, or you used this or
super in one of the arguments.

Fix Replace the instance variables or instance methods with other val-
ues.

Listing 4.37 Referring to instance variables in explicit constructor call

class Point {
int x, y;
int oldX = 0, oldY = 0;
static final int DEFAULTX = 0, DEFAULTY = 0;
Point(int x, int y) { this.x = x; this.y = y; }

Point() { this(oldX, oldY); }
// ERROR: oldX and oldY are instance variables.

Point() { this(DEFAULTX, DEFAULTY); }
// OK: DEFAULTX and DEFAULTY are static variables.

Point() { this(this.DEFAULTX, this.DEFAULTY); }
// ERROR: Cannot use "this" in explicit constructor call.

Point() { this(0, 0); }
// OK

}

Error Reference ERRÐ147

Java Error Messages
C (Java)
Error 14029 CanÕt specify array dimension in a declaration.

You specified the arrayÕs dimension in its declaration.

Fix Specify the arrayÕs dimension in the initial value for the array, as
shown in the example below. If youÕre declaring an argument, leave
out the array dimension altogether.

Listing 4.38 Specifying an arrayÕs dimension in its declaration

int a[3] = new int[];// ERROR
int b[] = new int[3]; // OK
int c[3] = { 1, 2, 3 };// ERROR
int d[] = { 1, 2, 3 };// OK

Error 14030 CanÕt specify array dimension in a type expression.

In a type expression for an array type, you included the arrayÕs di-
mension. Type expressions are most commonly used when you
make an explicit cast.

Fix Remove the dimension.

Listing 4.39 Casting arrays

class Animal { /* . . . */ }
class Bird extends Animal { /* . . . */ }

public class ArrayCastTest {
 public static void main(String args[]) {

Animal animals[] = new Bird[3];
Bird birds1[] = (Bird[3])animals;// ERROR
Bird birds2[] = (Bird[])animals; // OK

}
}

ERRÐ148 Error Reference

Java Error Messages
C (Java)
Error 14147 CanÕt subclass final classes: class

You tried to make a subclass of class, which is declared final.

Fix Either make a subclass of a different class, or remove the final
modifier from classÕs definition.

Listing 4.40 Subclassing a final class

final class Bird { /* . . . */ }
class Eagle extends Bird { /* . . . */ } // ERROR

Error 14148 CanÕt subclass interfaces: symbol

You tried to subclass the interface interface. A class doesnÕt extend
an interface, it implements an interface.

Fix Either change the classÕs declaration so that it uses the implements
keyword instead of the extends keyword, or change the interface
to a class.

Listing 4.41 Subclassing an interface

interface CanFly { /* . . . */ }
class Bird extends CanFly {/*... */}// ERROR
class Plane implements CanFly {/*...*/} // OK

Error 14196 CanÕt throw symbol; it must be a subclass of class
java.lang.Throwable.

Any class in a throw clause must be a subclass of Throwable. Gen-
erally, the exception classes you create will be subclasses of
Exception, which is in turn a subclass of Throwable.

Listing 4.42 Catching a class that is not a subclass of Throwable

public class E1 { /* . . . */ }
public class E2 extends Exception { /* . . .*/ }
Error Reference ERRÐ149

Java Error Messages
C (Java)
public class CatchTestClass {
public static void c(int x) throws E1, E2 {

// ERROR: E1 is not a subclass of Throwable

if (x==0)
throw new E1();// ERROR: E1 is not a subclass of Throwable

else if (x<0)
throw new E2();// OK: E2 is a subclass of Throwable

else {
// . . .

}
}

}

Error 14111 Case label symbol too large for 'switch' on type

In a switch statement block, the case label symbol is larger than the
maximum allowed value for the switch variable of type type.

short c = 0;
switch (c) {

case 1: // OK
case 100: // OK
case 100000: // ERROR: Maximum value for short is 32767

}

Error 14024 'case' outside switch statement.

A case statement can appear only within a switch statement
block.

Fix Make sure your braces are balanced correctly.

Error 14170 catch not reached

This catch clause will never be reached, since its exception is a sub-
class of an exception for a previous catch clause.

Fix Either reverse the order of the clauses or remove one.
ERRÐ150 Error Reference

Java Error Messages
C (Java)
Listing 4.43 Catching an exception thatÕs already been caught

class MyException extends Exception { /* . . . */ }

public class CatchExample {
public static void main(String args[]) {

try {
// . . .

} catch (Exception e1) {
// . .

} catch (MyException e1) {
// ERROR: This will never be reached, since it's a subclass
// of Exception, which is caught above

}
}

}

Error 14021 ÒcatchÓ without ÒtryÓ.

A catch clause can appear only right after a try statement block.

Fix Make sure the is right after a try statement, and make sure your
braces are balanced correctly.

Error 14089 className must override methodName with a public method
in order to implement interfaceName.

In order to implement an interface, all methods of that interface
must be declared public.

Listing 4.44 Failure to implement an interface by not declaring all methods
of an interface public

public interface feem {

public void foo();
}

public class bar implements feem {
Error Reference ERRÐ151

Java Error Messages
C (Java)
void foo() {} //must be specified public
}

Error 14017 ÒclassÓ or ÒinterfaceÓ keyword expected.

After package and import statements, a Java file can include only
class and interface declarations.

Fix You cannot declare global variables in Java. Make sure your braces
are balanced correctly.

Listing 4.45 Using unexpected keywords

package foo;
package bar; // ERROR: Extra package declaration.

int x; // ERROR: Variable declarations are not allowed here

public class A { /* . . . */ }// OK

Error 14117 Class symbol already defined in symbol.

You defined the class class more than one time in symbol .

Fix Remove or rename one of the class definitions.

Listing 4.46 Defining a class more than once

class RedundantClass { /* . . . */ }
class OKClass { /* . . . */ }
class RedundantClass { /* . . . */ }// ERROR

Error 14167 Class symbol canÕt be declared both abstract and final.

You declared class to be both abstract and final. Such a class could
never be used. An abstract class cannot be instantiated and must be
subclassed. A final class cannot be subclassed.
ERRÐ152 Error Reference

Java Error Messages
C (Java)
Listing 4.47 Declaring a class to be both abstract and final

abstract final class Yuch { /* . . . */ } // ERROR
abstract class OK { /* . . . */ } // OK
final class AlsoOK extends OK { /*...*/ } // OK

Error 14191 Class symbol not found in location.

You used the class class in location without defining or importing it.

Fix Make sure you spelled the name correctly, defined it in the right
place, or imported the classÕs package correctly.

Listing 4.48 Spelling a class name wrong

class Fubar { /* . . . */ }

public class StaticExample {
public static void main(String args[]) {

Foobar f = new Foobar();// ERROR: "Foobar" should be "Fubar"
 }
}

Error 14118 Class name class1 clashes with imported class class2.

You defined the class class2 that has the same name as the class
class1 thatÕs in an imported package.

Fix Either rename or remove one of the classes, or donÕt import the
package.

For example, say you have this class declaration in the package foo:

Listing 4.49 Declaring class B once

package foo;
public class B { /* . . . */ }

This class declaration would raise an error:
Error Reference ERRÐ153

Java Error Messages
C (Java)
Listing 4.50 Declaring class B twice

package bar;
import foo.*;

class B { /* . . . */ } // ERROR: ThereÕs a class B in package foo

Error 14018 Class or interface declaration expected.

The compiler expected a class or interface declaration, but found
something else instead. After a fileÕs package and import state-
ments, a file can contain only class and interface declarations.

Listing 4.51 Not finding a class or interface declaration

package bar;
import foo.*;

class Fubar { /* . . . */ }

int a;// ERROR: A variable definition is not allowed here.

public class StaticExample {
public static void main(String args[]) {

 // . . .
 }
}
} // ERROR: Extra closing brace

Error 14001 Comment not terminated at end of input.

You left out the final */ for a comment.

Listing 4.52 Forgetting to close off a comment.

public class A {
 // . . .

}

/* Commenting out a class
ERRÐ154 Error Reference

Java Error Messages
C (Java)
class B {
 // . . .

} // ERROR: Forgot to close off the comment

Error 14112 Constant expression required.

In a switch statement block, one of the case labels is not a constant
value.

Fix Either replace the case label with a constant, or change the switch
statement to an if-then-else statement.

Listing 4.53 Using a variable or method call in a case label

public class TrivialApplication {
final static int A = 2;

public static void main(String args[]) {
int b = 0, c = 1;

switch (c) {
case 100: // OK
case A: // OK: Final variable is a constant
case b: // ERROR: b is not a constant.
case foo(A): // ERROR: Method call is not a constant

}
}

}

Error 14160 Constructor constructor requires a method body.

You declared the constructor constructor without giving it a method
body. All constructors must have method bodies, since you cannot
declare a constructor to be either abstract or native.

Listing 4.54 Declaring a constructor without a method body

class A {
int x;
Error Reference ERRÐ155

Java Error Messages
C (Java)
A();ÊÊÊÊÊÊÊÊÊÊÊ// ERROR
A() { x = 1; } // OK

}

Error 14066 Constructor invocation must be the first thing in a method.

If you explicitly call a constructor from another constructor, the ex-
plicit call must be the first statement.

Listing 4.55 Explicitly calling a constructor

class B extends A {
int y;
B() { y = 1; super(); }// ERROR
B() { super(); y = 1; }// OK

}

Error 14085 Constructor is ambiguous: constructor1, constructor2

There is more than one constructor that matches your constructor
call. Neither constructor exactly matches the types of the callÕs argu-
ments, but both are equally good matches after necessary conver-
sions are applied to the callÕs arguments.

Fix Either explicitly cast one of the constructor callÕs arguments so it
more closely matches one of the constructors, or (better yet) define a
new constructor that more closely matches the constructor callÕs ar-
guments.

Listing 4.56 Ambiguous constructors

class A {
int x, y;
A(short xx, int yy) { x = xx; y = yy; }
A(int xx, short yy) { x = xx; y = yy; }

}

public class TrivialApplication {
short m = 0, n = 1;
ERRÐ156 Error Reference

Java Error Messages
C (Java)
A a1 = new A(m, n);
// ERROR: No matter which constructor is used, one argument
// must be converted from a short to an int.

A a2 = new A((int)m, n);
// OK: Second constructor now matches exactly

}

Error 14126 Constructors canÕt be native, abstract, static, synchronized, or
final: constructor

You declared a constructor to be native, abstract, static,
synchronized, or final. You can declare constructors to be only
public, private, or protected. Here are the reasons:

¥ abstract or final: You cannot override a constructor. De-
claring it final is unnecessary. Declaring it abstract is useless,
since you couldnÕt implement it in a subclass.

¥ static: You must invoke a constructor on a particular in-
stance.

¥ synchronized: This is unnecessary since the object under
construction is not available to other threads until the con-
struction is complete.

¥ native: Allowing only Java constructors makes it easier for
the Java Virtual Machine to ensure that superclass construc-
tors are correctly invoked.

Error 14102 'continue' must be in loop.

A continue statement can appear only within a while, do, or for
statement block.

Fix Either make sure your braces are balanced correctly, or rewrite your
code to avoid the break statement.

Error 14233 Couldn't find profiling classes; profiling data will not be
generated.

The option Emit Profiling Data was enabled in the Java Language
settings panel, but Profiler.zip wasn't added to the project.
Error Reference ERRÐ157

Java Error Messages
C (Java)
Error 14149 Cyclic class inheritance.

Your class inheritance includes a circular reference.

Listing 4.57 Cyclic class inheritance

class A extends B { /* . . . */ }
class B extends C { /* . . . */ }
class C extends A { /* . . . */ }

// ERROR: Cyclic class inheritance

Error 14152 Cyclic class inheritance or scoping.

A general error is signaled when the compiler detects a cycle in an
inheritance graph.

Error 14150 Cyclic class inheritance: A subclass cannot enclose a
superclass.

Your class inheritance includes a circular reference when a subclass
encloses a superclass.

Listing 4.58 Cyclic class inheritance when a subclass encloses a
superclass

public class foo extends feem {

class feem {

}
}

Error 14151 Cyclic interface inheritance.

Your interface inheritance includes a circular reference.

Listing 4.59 Cyclic interface inheritance

interface A extends B { /* . . . */ }
interface B extends C { /* . . . */ }
ERRÐ158 Error Reference

Java Error Messages
D to F (Java)
interface C extends A { /* . . . */ }
// ERROR: Cyclic interface inheritance

D to F (Java)
These are error messages that begin with D, E, or F.

Error 14025 'default' outside switch statement.

A default statement can appear only within a switch statement
block.

Fix Make sure your braces are balanced correctly.

Error 14113 Duplicate 'default' label.

A switch statement contains more than one default label. Only
one default label is allowed.

Listing 4.60 Using duplicate default labels

int a = 0;
switch (a) {

case 1: // OK
default: // OK
case 2: // OK
default: // ERROR

}

Error 14110 Duplicate case label: symbol

You used the same case label twice in the same switch statement.

public class TrivialApplication {
final static int B = 1;

public static void main(String args[]) {
int a = 0;
Error Reference ERRÐ159

Java Error Messages
D to F (Java)
switch (a) {
case 1: // OK
case 2: // OK
case 1: // ERROR
case B: // ERROR: B equals 1

}
}

}

Error 14142 Duplicate inner class declaration: innerClassName is already
defined in this scope.

You cannot declare a duplicate of an inner class. An example of
code which will generate this error is shown in Listing 4.61.

Listing 4.61 Illegally declaring a duplicate inner class

public class outerClass {

class innerClass {

}

class innerClass {

}
}

Error 14139 Duplicate method declaration: symbol

A class has two methods with the same name and the same argu-
ment types.

Fix Either give one of the methods a different name, or use different
types for the arguments.
ERRÐ160 Error Reference

Java Error Messages
D to F (Java)
Listing 4.62 Using duplicate method names and arguments

class A {
void foo(int x) { /* . . . */ }
void foo(short y) { /* . . . */ }

// OK: Java allows overloading:
// this has same name but different argument type

void foo(int z) { /* . . . */ }
// ERROR: Same method name and same argument type

Error 14141 Duplicate variable declaration: symbol was symbol

A class has two variables with the same name.

Fix Give one of the variables a new name.

Listing 4.63 Using duplicate variable names

class A {
int a;

}

class B extends A {
float a; // OK: This shadows A.a
float b; // OK
int b; // ERROR
native int b() ;// OK: But not a good idea. This is a method,

} // not a variable.

Error 14020 ÒelseÓ without ÒifÓ.

An else clause can appear only as part of an if-then-else state-
ment block.

Fix Make sure your braces are balanced correctly. If the then clause con-
tains more than one statement, make sure theyÕre enclosed in
braces.
Error Reference ERRÐ161

Java Error Messages
D to F (Java)
Listing 4.64 Using an else clause without an if statement

if (a==0)
System.out.println ("Hello");
System.out.println ("How are you?");

else
// ERROR: The then clause is not enclosed in brackets.
System.out.println ("Goodbye");

Error 14198 Exception symbol canÕt be thrown in initializer.

While initializing a variable, you used a method that throws an ex-
ception that isnÕt caught.

Fix Either rewrite the method to make sure that exception is caught, or
initialize the variable differently.

Listing 4.65 Throwing an exception in an initializer

class E1 extends Exception { /* . . . */ }
class E2 extends Exception { /* . . . */ }

class A {
int a = foo(1);// ERROR: foo() throws an exception that

 // is not caught.
int foo(int x) throws E2 {

try {
if (x==0)

throw new E1();// OK: E1 is caught
else if (x<0)

throw new E2();// ERROR: E2 is NOT caught
} catch (E1 e) {

System.out.println("oops");
} finally {

return x;
}

}
// . .

}

ERRÐ162 Error Reference

Java Error Messages
D to F (Java)
Error 14205 Exception exception is never thrown in the body of the
corresponding try statement.

In a catch clause, you try to catch an exception that is never
thrown.

Fix You may have forgotten to remove this catch clause after remov-
ing the code that throws that exception, or you may have gotten the
name of the exception wrong.

Listing 4.66 Catching an exception that is never thrown

class E1 extends Exception { /* . . . */ }
class E2 extends Exception { /* . . . */ }

class A {
int foo(int x) {

try {
if (x==0)

throw new E1();
} catch (E2 e) {// ERROR: E2 is not thrown.

System.out.println("oops");
} finally {

return x;
}

}
}

Error 14204 Exception symbol must be caught, or it must be declared in
the throws clause of this method.

You throw an exception that is never caught and is not declared in
the methodÕs throws clause.

Fix Either put the code in a try statement that catches the exception, or
add the exception to the methodÕs throw clause.
Error Reference ERRÐ163

Java Error Messages
D to F (Java)
Listing 4.67 Throwing an uncaught, undeclared exception

class E1 extends Exception { /* . . . */ }

class A {
int foo(int x) {

if (x==0)
throw new E1(); // ERROR: Not caught and

else // not in throws clause
return x;

}
}

Error 14022 ÒfinallyÓ without ÒtryÓ.

A finally clause can appear only after a try or catch statement
block.

Fix Make sure the clause follows a try or catch statement, and make
sure your braces are balanced correctly.

Error 14189 File fileName does not contain className as expected, but
badClassName.

This will occur if a zip contains an entry for a class of a given name,
but upon loading the class, the compiler determines that it has a dif-
ferent name.

Fix Either remove the final modifier or change the name of one of the
classes.

Listing 4.68 Overriding a final method

class A {
final void x() { /*...*/ }
void y() { /*...*/ }

}

class B extends A {
void x() { /*...*/ } // ERROR: x() is final in A
ERRÐ164 Error Reference

Java Error Messages
G to I (Java)
void y() { /*...*/ } // OK: y() is not final
}

G to I (Java)
These are error messages that begin with G, H, or I.

Error 14213 Hexidecimal numbers must contain at least one hexidecimal
digit.

Undocumented at this time.

Error 14026 I/O error in symbol.

Undocumented at this time.

Error 14016 Identifier expected.

The compiler could not find an identifier where it expected one.

Fix Maybe you forgot to put in an identifier where one is needed, or
you accidentally used a reserved word to name a variable, method,
class, or interface.

Listing 4.69 Abusing a reserved word

class A {
int ; // ERROR: Forgot to specify names.
void float() { /* . . . */ }// ERROR: float is a reserved word

}

Error 14036 Impossible for symbol to be instance of symbol.

If the compiler can determine that an instance of test will always
fail, it will issue this error.
Error Reference ERRÐ165

Java Error Messages
G to I (Java)
Listing 4.70 Impossible for symbol to be instance of symbol.

String i;

if (i instanceof java.awt.Component) //can never be true
return;

Error 14087 Incompatible type for location. CanÕt convert type1 to type2.

You are trying to convert a variable of type1 to be type2, but the
types are incompatible. You cannot perform the conversion even
with an explicit conversion. The location is where the conversion is
taking place: in a declaration, = statement, etc.

Listing 4.71 Incompatible conversions

class A { /* . . . */ }
class C { /* . . . */ }

public class TrivialApplication {
public static void main(String args[]) {

C cc;
A a = new A(),
A aa = new C();// ERROR
cc = a; // ERROR

}
}

Error 14086 Incompatible type for location. Explicit cast needed to convert
type1 to type2.

You are trying to convert implicitly a variable of type1 to be type2,
but you need to perform an explicit conversion. The location is
where the conversion is taking place: in a declaration, = statement,
etc.

Listing 4.72 Incompatible implicit conversions

class A { /* . . . */ }
class B extends A { /* . . . */ }
ERRÐ166 Error Reference

Java Error Messages
G to I (Java)
public class TrivialApplication {
public static void main(String args[]) {

A a = new A();
B bb;
short x;

bb = a; // ERROR: The conversion is OK,
 // but it must be explicit

bb = (B) a;// OK: Now itÕs explicit
x = Math.PI; // ERROR
x = (short) Math.PI; // OK

 }
}

Error 14146 Inconsistent member declaration. At most one of public,
private, or protected may be specified.

The compiler generates an error when an inconsistent member dec-
laration is found.

Error 14220 Initializer must be able to complete normally.

Undocumented at this time.

Error 14135 Inner classes canÕt be volatile, transient, native, or
synchronized: innerClassName

An error occurs when an inner class is volatile, transient, native or
synchronized.

Error 14042 Inner type innerClassName in className not accessible from
className.

Code in one class attempted to reference an inaccesible inner class of
another class.
Error Reference ERRÐ167

Java Error Messages
G to I (Java)
Listing 4.73 Attempting to reference an inaccessible inner class of another
class

public class bar {

private static class foo {

public static void aMethod() { }
}

}

public class blat {

public void fromHere() {

bar.foo.aMethod(); //foo is not accesible from blat
}

}

Error 14121 Instance methods canÕt be overridden by a static method.
Method method is an instance method in class.

You tried to override the instance method method in class class with
a static method. Only instance methods may override instance
methods.

Fix Change either the name or the declaration of one of the methods.

Listing 4.74 Overriding an instance method with a static method

class A {
void x() { /* . . . */ }
void y() { /* . . . */ }

 }

class B extends A {
static void x() { /*...*/ } // ERROR: x() is an instance

// method in A
ERRÐ168 Error Reference

Java Error Messages
G to I (Java)
void y() { /*...*/ }// OK
}

Error 14161 Instance variables canÕt be void: variable

You declared the instance variable variable to be void. Only methods
may be void.

class A {
void x; // ERROR
void x() { /* . . . */ } // OK

}

Error 14166 Interface interface of location not found.

You used the class interface in location without defining or importing
it.

Fix Make sure you spelled the name correctly, defined it in the right
place, or imported the interfaceÕs package correctly.

Error 14157 Interface symbol repeated.

In the implements clause of an class definition, you used the same
interface more than once.

Fix Remove one of the occurrences.

Listing 4.75 Listing the same interface twice

interface CanFly { /* . . . */ }
interface CanWalk { /* . . . */ }

class Bird implements CanWalk, CanFly, CanWalk { /* . . . */ }
// ERROR: CanWalk is repeated twice
Error Reference ERRÐ169

Java Error Messages
G to I (Java)
Error 14129 Interface fields canÕt be private or protected: symbol

In an interface declaration, you declared a field to be private or pro-
tected. All interface fields are public. You can explicitly declare a
field with the modifier public, but it is unnecessary and consid-
ered to be bad programming style.

Listing 4.76 Declaring an interface field to be private

interface A {
private int CONST1 = 1;// ERROR
public int CONST2 = 2;// OK, but unnecessary
int CONST3 = 3;// BETTER

 }

Error 14128 Interface methods canÕt be native, static, synchronized, final,
private, or protected : symbol

You declared an interface method to be native, static, synchronized,
final, private, or protected. All interface methods are public and
static. You can explicitly use the modifiers public and abstract,
but it is unnecessary and considered to be bad programming style.

Here is why you cannot use the specified modifiers:

¥ private and protected: All instance methods are public.

¥ static: All instance methods are abstract.

¥ final: All instance methods are abstract. However, when
you define a class that implements the interface, you can im-
plement an interface method with a final method.

¥ native and synchronized: These describe how the
method is implemented, which an interface does not specify.
However, when you define a class that implements the inter-
face, you can implement an interface method with a native or
synchronized method.

Listing 4.77 Declaring an interface method to be final

interface A {
final int meth1(); // ERROR
ERRÐ170 Error Reference

Java Error Messages
G to I (Java)
abstract int meth2();// OK, but unnecessary
int meth3(); // BETTER

 }

class B implements A {
public final int meth2() { return 0; } // OK
// . . .

}

Error 14154 Interfaces canÕt be final: symbol

You cannot declare an interface to be final. All interfaces are ab-
stract. You can explicitly use the modifiers abstract, but it is un-
necessary and considered to be bad programming style.

Listing 4.78 Declaring an interface to be final

final interface A { } // ERROR
abstract interface B { } // OK, but unnecessary
interface C { } // BETTER

Error 14125 Interfaces canÕt have constructors.

An interface cannot contain constructors. It can contain only
method and field declarations.

Error 14127 Interfaces canÕt have static initializers.

An interface cannot contain static initializers. It can contain only
method and field declarations.

Error 14063 Invalid argument type symbol for symbol.

If an operator is passed a bad type, this error will be signaled.

String s = "hi";
s++; //error
Error Reference ERRÐ171

Java Error Messages
G to I (Java)
Error 14034 Invalid arguments to symbol.

If an operator is given arguments of a type it cannot handle, this
error will be signaled.

For example:

int i = "hi" << 3; //can only shift ints or longs

Error 14084 Invalid array dimension.

Undocumented at this time.

Error 14035 Invalid cast from type1 to type2.

You tried to make an illegal conversion from type1 to type2. This
conversion isnÕt allowed even with an explicit cast.

class A { /* . . . */ }
class B { /* . . . */ }

public class TrivialExample {
public static void main(String args[]) {

B b = new B();
A a = (A)b;// ERROR: CanÕt cast one unrelated

 // class to another
int c = (int)"123";// ERROR: CanÕt cast a string to an int

}
}

Error 14004 Invalid character constant.

You created a character constant incorrectly. A character constant
must be a single character or a single escape sequence between two
single quotes.

Listing 4.79 Creating invalid character constants

int a = 'TEXT'; // ERROR: Can only be one char
char b = 'T'; // OK
char c = '\uFFFFF'; // ERROR: This is two chars (\uFFFF and F)
ERRÐ172 Error Reference

Java Error Messages
G to I (Java)
char d = '\uFFFF';// OK
char e = 'a"; // ERROR: Ends in double quote

Error 14009 Invalid character in input.

You used an invalid character in your code.

Fix Perhaps you intended to use it in a comment, string, or character
constant.

Listing 4.80 Using an invalid character

public class TrivialExample {
public static void main(String args[]) {

char c = '\u000E'; // OK
\u000E // ERROR: CanÕt use this character alone in

} // a file
}

Error 14008 Invalid character in number.

You used an invalid character in a numeric constant. A decimal
number may contain only the digits 0Ð9 and cannot begin with 0.
An octal number begins with 0 and may contain only the digits 0Ð7.
A hexadecimal number begins with 0x or 0X and may contain the
digits 0Ð9, the letters aÐf and the letters AÐF.

Listing 4.81 Using invalid characters in numbers

int a = 0x1F2G; // ERROR: G is not a hex digit
int b = 1OOO; // ERROR: You used letter O, instead of zero (0)

Error 14007 Invalid character in octal number.

You used an invalid character in an octal integer constant. An octal
number begins with 0 and may contain only the digits 0Ð7. A deci-
mal number must not begin with 0, since the compiler will assume
itÕs an octal constant.
Error Reference ERRÐ173

Java Error Messages
G to I (Java)
Listing 4.82 Using invalid characters in octal numbers

int a = 079; // ERROR: 9 is not an octal digit.
int b = 077; // OK
int c = 79; // OK

Error 14158 Invalid class file format: symbol, symbol

Undocumented at this time.

Error 14104 Invalid declaration.

If a variable is declared in an illegal place, this error is issued.

An example of this error is shown in Listing 4.83.
ERRÐ174 Error Reference

Java Error Messages
G to I (Java)
Listing 4.83 Invalid declaration

try {

}
catch(Exception e, int i) { //can only have one declaration in

//catch stat

}

Error 14006 Invalid escape character.

You used an invalid escape character. The valid escape sequences
are \b, \t, \n, \f, \r, \", \', \\, and Unicode escape sequences. A
valid Unicode escape sequence is \u followed by four hexadecimal
digits.

Listing 4.84 Using an invalid escape sequence

String s = "\i"; // ERROR
char c1 = '\u000G';// ERROR: G is not a hex digit
char c2 = '\u000A'; // OK

Error 14169 Invalid expression statement.

ThereÕs a statement that contains only a single expression which
isnÕt allowed to be used alone in a statement. The only expressions
you can use alone in a statement are assignment, method call, class
instance creation, pre-increment, pre-decrement, post-increment,
and post-decrement.

Listing 4.85 Using invalid expression statements

public class TrivialExample {
static int twice(int y) { return 2*y; }

public static void main(String args[]) {
int x = 0;
Error Reference ERRÐ175

Java Error Messages
G to I (Java)
(void) twice(3); // ERROR: (void) isn't allowed
twice(3); // OK
x; // ERROR: A variable alone is not a statement
x++; // OK: Post-increment is OK

}
}

Error 14010 Invalid floating point format.

You used an invalid character in a floating-point constant.

Listing 4.86 Invalid floating point format

float f = 1.0e--30;// ERROR

Error 14032 Invalid initializer for type symbol.

You used an array initializer to initialize something that isnÕt an ar-
ray.

Listing 4.87 Using an array initializer incorrectly

int a = { 1, 2, 3 }; // ERROR
int[] b = { 1, 2, 3, {1, 2, 3} };// ERROR
int[][] c = { { 1, 2, 3}, { 1, 2, 3 } }; // OK
int[] d = { 1, 2, 3 }; // OK

Error 14108 Invalid label.

You named a label incorrectly. Labels use the same naming conven-
tions as other identifiers.

Listing 4.88 Using an invalid label

for (int i =1; i<10; i++) {
1a: i--; // ERROR
a1: i--; // OK
ERRÐ176 Error Reference

Java Error Messages
G to I (Java)
// . . .
}

Error 14033 Invalid left hand side of assignment.

Only local variable, field, or array access may appear in the left
hand side of an assignment.

Fix Perhaps you intended to use == instead of =.

Listing 4.89 Using an invalid left hand side of an assignment

public class TrivialExample {
static int twice(int x) { return 2*x; }

 public static void main(String args[]) {
if (twice(3) = 6) /* . . . */ ;// ERROR
if (twice(3) == 6) /* . . . */ ;// OK

}
}

Error 14163 Invalid method declaration; method name required.

When you declared a method, you left out the method name.

Listing 4.90 Method has no name

public class A {

public void (int x) { //method has no name

}
}

Error 14162 Invalid method declaration; return type required.

When you declared a method, you left out the return type. If the
method returns no value, you must declare it to be void.
Error Reference ERRÐ177

Java Error Messages
G to I (Java)
Listing 4.91 Leaving out the return type

hello(int x) { System.out.println("Hello"); } // ERROR
void bye(int x) { System.out.println("Bye"); }// OK

Error 14164 Invalid qualified constructor name.

Your qualified constructor name is invalid. In Listing 4.92, the cont-
structor illegally has a return type.

Listing 4.92 Constructor has a return type

public class A {

public void A() { //constructor canÕt have return type

}
}

Error 14088 Invalid term.

If a type expression is found where a value should be, this error is
signaled. An example of this error is found in Listing 4.93

Listing 4.93 Invalid term.

int i = int;

Error 14037 Invalid type expression.

If the compiler expects to find a type, but instead finds an expres-
sion that cannot represent a type, it will issue this error.

Listing 4.94 Invalid type expression

String a = "hi";

Class aClass = a.class; //Should use "String.class"
ERRÐ178 Error Reference

Java Error Messages
J to N (Java)
J to N (Java)
These are error messages that begin with J, K, L, M, or N.

Error 14179 Local class innerClassName is already defined in this method.

You declared a local class twice in the same method.

Listing 4.95 Declaring a local class twice in the same method

public class foo {

public void aMethod() {

class x extends y {
}

class x extends z {
}

}
}

Error 14221 Member interfaces can only occur in interfaces and top-level
classes.

Undocumented at this time.

Error 14212 Method methodName canÕt be static in innerClassName. Only
members of interfaces and top-level classes can be static.

Non-top-level classes canÕt contain static variables.

public class outerClass {

public class innerClass {

static int foo() { }
 //illegal; innerClass isn't top level
 //(i.e. isn't package level and isn't static)
Error Reference ERRÐ179

Java Error Messages
J to N (Java)
}
}

Error 14130 Method method canÕt be transient. Only variables can be
transient.

A method cannot be declared transient. A transient variable is one
that isnÕt saved permanently (to a file, for example) when the rest of
the objectÕs variables are saved. Methods are not saved.

Error 14131 Method method canÕt be volatile. Only variables can be
volatile.

A method cannot be declared volatile. A volatile variable is one
whose value may change unexpectedly. A method doesnÕt have a
value.

Error 14183 Method methodName is inherited in className, and hides a
method of the same name in anscestorClassName. An explicit
ÒthisÓ qualifier must be used to select the desired instance.

An example of this error and its fix are shown in Listing 4.96.

Listing 4.96 Failure to invoke a method

public class bar {

public int foo() { }

}

public class feem {

int foo() { }

public void aMethod() {

bar aBarSubclass = new bar() {

public void innerMethod() {
ERRÐ180 Error Reference

Java Error Messages
J to N (Java)
int x = foo(); //if bar.foo() is meant to be invoked,
 //bar.this.foo() should be used

}
}

}
}

Error 14069 Method symbol in symbol is not accessible from symbol.

If a method cannot be invoked because of it's access, this error is sig-
naled.

class A { private void foo(); }

class B { { foo(); }} //error

Error 14068 Method symbol not found in symbol.

You refer to a method that is not defined in the current class. You
may have spelled the methodÕs name wrong, forgot to define the
method, or meant to refer to a method in another class.

Listing 4.97 Using a misspelled method

class A {
void bar() { /* . . . */ }
protected void foo() {

baz();// ERROR: Maybe you meant bar()
}

}

Error 14159 Method symbol requires a method body. Otherwise declare it
as abstract.

If a method is not declared to be abstract or native, you must define
it with a method body.

Fix Either declare it to be abstract or native, or define the method.
Error Reference ERRÐ181

Java Error Messages
J to N (Java)
Listing 4.98 Failing to define a method

class A {
void foo1(); // ERROR
void foo2() { /* . . . */ } // OK
abstract void foo3(); // OK
native void foo4(); // OK

}

Error 14119 Method redefined with different return type: method1 was
method2

You tried to overridemethod2 with method1, which has the same
name and argument types as method2 but a different return type.
When you override one method with another, their return types
must match. If you want to overload one method with another, their
argument types must be different.

Listing 4.99 Overloading a method with a different return type

class A {
int y;
int foo(int x) { return x*y; }

}

class B extends A {
float w;
float foo(int x) { return x*w; } // ERROR: Same argument types,

 // different return type
int foo(int x) { return x+w; } // OK: This overrides foo()
float foo(float x) {return x*w;} // OK: This overloads foo()

}

Error 14124 Methods canÕt be overridden to be more private. Method
method is not private in class.

You tried to override method with another method that is more pri-
vate. The overriding method must be just as private or less private
than the original method.
ERRÐ182 Error Reference

Java Error Messages
J to N (Java)
Listing 4.100 Overriding a method with a more private method

class A {
void meth1() { /* . . . */ }
void meth2() { /* . . . */ }
void meth3() { /* . . . */ }
void meth4() { /* . . . */ }

}

class B extends A {
private void meth1() { /* . . . */ } // ERROR
void meth2() { /* . . . */ } // OK
protected void meth3() { /* . . . */ } // OK
public void meth4() { /* . . . */ }// OK

}

Error 14123 Methods canÕt be overridden to be more private. Method
symbol is protected in symbol.

You tried to override a protected method with another method that
is private. The overriding method must be just as private or less pri-
vate than the original method.

Listing 4.101 Overriding a protected method with a private method

class A {
protected void meth1() { /* . . . */ }
protected void meth2() { /* . . . */ }
protected void meth3() { /* . . . */ }
protected void meth4() { /* . . . */ }

}

class B extends A {
private void meth1() { /* . . . */ } // ERROR
void meth2() { /* . . . */ } // ERROR
protected void meth3() { /* . . . */ } // OK
public void meth4() { /* . . . */ }// OK

}

Error Reference ERRÐ183

Java Error Messages
J to N (Java)
Error 14122 Methods canÕt be overridden to be more private. Method
symbol is public in symbol.

You tried to override a public method with another method that is
protected or private. The overriding method must be just as private
or less private than the original method.

Listing 4.102 Overriding a protected method with a private method

class A {
public void meth1() { /* . . . */ }
public void meth2() { /* . . . */ }
public void meth3() { /* . . . */ }
public void meth4() { /* . . . */ }

}

class B extends A {
private void meth1() { /* . . . */ } // ERROR
void meth2() { /* . . . */ } // ERROR
protected void meth3() { /* . . . */ } // ERROR
public void meth4() { /* . . . */ }// OK

}

Error 14140 Methods canÕt be redefined with a different return type:
method1 was method2

You tried to overload method2 with method1, which has the same
name and argument types as method2 but a different return type.
When you overload one method with another, their argument types
must be different.

Listing 4.103 Overloading a method with a different return type

class A {
int y;
float w;
int foo(int x) { return x*y; }

float foo(int x) { return x*w; } // ERROR: Same argument types,
 // different return type
ERRÐ184 Error Reference

Java Error Messages
J to N (Java)
float foo(float x) {return x*w;} // OK: This overloads foo()
}

Error 14019 Missing term.

The compiler didnÕt encounter a term (such as an identifier) where it
expected one.

Fix Check for a typing error.

Listing 4.104 Missing terms

int a === 1, b, c;// ERROR: Too many equal signs
foo(a,,c);// ERROR: Too many commas

Error 14156 Multiple inheritance is not supported.

Java does not allow multiple inheritance: a class extending more
than one other class.

Fix Rewrite your code using interfaces instead.

Listing 4.105 Using multiple inheritance

class A { /* . . . */ }
class B { /* . . . */ }
class C extends A, B { /* . . . */ }// ERROR

interface X { /* . . . */ }
interface Y { /* . . . */ }
class Z implements X, Y { /* . . . */ } // OK

Error 14095 No constructor matching constructor found in class.

The compiler couldnÕt find a constructor that matches the argu-
ments you used in a new instance creation expression (such as in a
new statement).
Error Reference ERRÐ185

Java Error Messages
J to N (Java)
Fix Either cast the arguments to match a constructor or create a new
constructor for the argument types.

Listing 4.106 Finding no constructor that matches call

class A {
int x;
A(int xx) { x = xx; }
// . . .

}

public class TrivialApplication {
 public static void main(String args[]) {

A a1 = new A();// ERROR: Since you defined a construc-
 // tor, compiler doesnÕt create
 // default constructor.

A a3 = new A(2.0); // ERROR: No constructor for float arg.
A a4 = new A((int)2.0);// OK: Uses constructor for int arg.
A a2 = new A(2); // OK

}
}

Error 14207 No enclosing instance of className is in scope; an explicit
one must be provided when creating innerClassName, as in
outer. new Inner() or outer. super().

If an inner class is created without an implicit instance of the outer
class (i.e. is not created from within an instance method of the outer
class), the new (or super) keyword must be qualified.

Listing 4.107 No enclosing instance of the class is in scope

public class foo {

public class bar {
}

public static bar makeBar(foo outerInstance) {

return new bar(); //illegal, as there is no implicit
ERRÐ186 Error Reference

Java Error Messages
J to N (Java)
 //instance of foo. Instead, use
 //"return foo.new bar();"

}
}

Error 14209 No enclosing instance of className is in scope; an explicit
one must be provided when accessing memberName, as in
outer.member.

A static inner class is attempting to reference an instance variable of
the outer class without qualifing the enclosing instance.

Listing 4.108 No enclosing instance of a class is in scope

public class foo {

int bar; //instance variable

static class blat {

public void aMethod(foo aFoo) {

bar++; //no enclosing instance of foo.
 //Instead, use "aFoo.bar++;"

}
}

}

Error 14208 No enclosing instance of className is in scope; cannot
create a default constructor for className.

In the constructor for a subclass of an inner class, if there is no en-
closing instance of the outer class in scope, and the outer class has
no public paramater-less constructor, this error will be generated.

Listing 4.109 Cannot create a default destructor for the class

public class foo {
Error Reference ERRÐ187

Java Error Messages
J to N (Java)
public foo(String s) { //Note that foo requires a string to be
 //constructed

}

public class bar {
}

}

public class blat extends foo.bar {
}

public class feem {

public static blat createABlat() {
return new blat(); //no enclosing instance of foo, and bar

 //needs one, and one canÕt be synthesized by the
 //compiler because foo has no default constructor

}
}

Error 14100 No label definition found for label.

You refer to the label label but do not define it.

Fix Make sure the label name is spelled correctly.

Listing 4.110 Finding no matching label

int i = 0;
while (true) {

System.out.println(" i = " + i);
i++;
if (i>10) break end; // ERROR: No label named end.

}

Error 14094 No method matching method found in class.

You tried to access the method in class, but the compiler cannot find
any method with those argument types in that class.
ERRÐ188 Error Reference

Java Error Messages
J to N (Java)
Fix Make sure you spelled the name of the class correctly, used the cor-
rect arguments, and are using a method you have access to.

Listing 4.111 Finding no matching method

class B {
private void foo() { /* . . . */ }
void bar() { /* . . . */ }

}

public class TrivialApplication {
 public static void main(String args[]) {

B b = new B();

b.foo();ÊÊ// ERROR: bar() is private
b.bar(3); //ÊERROR: foo() doesn't have any arguments.
b.bar(); // OK

 }
}

Error 14040 No variable symbol defined in symbol.

You tried to access the variable in class, but the compiler cannot find
any variable with that name in that class.

Fix Make sure you spelled the name of the class correctly.

Listing 4.112 Finding no matching variable

class B {
int x;
// . . .

}

public class TrivialApplication {
 public static void main(String args[]) {
 B b = new B();

 int y = b.xx; //ÊERROR: xx is misspelled

int z = b.x; // OK
Error Reference ERRÐ189

Java Error Messages
J to N (Java)
 }
}

Error 14076 Note: {0} has been deprecated.

This warning means that the item in question has been deprecated.
You can turn this warning off by disabling the option Emit depreca-
tion warnings in the Java Language settings panel.

Error 14078 Note: The constructor {0} has been deprecated.

This warning means that the item in question has been deprecated.
You can turn this warning off by disabling the option Emit depreca-
tion warnings in the Java Language settings panel.

Error 14077 Note: The method {0} in {1} has been deprecated.

This warning means that the item in question has been deprecated.
You can turn this warning off by disabling the option Emit depreca-
tion warnings in the Java Language settings panel.

Error 14079 Note: The variable {0} in {1} has been deprecated.

This warning means that the item in question has been deprecated.
You can turn this warning off by disabling the option Emit depreca-
tion warnings in the Java Language settings panel.

Error 14214 Note: Method methodName in className does not override
the corresponding method in className, which is private to a
different package.

This lets you know that you may think you are overriding a method
of a superclass, but that the superclass method in question is not
overridable from your package, and you are thus really introducing
a new method of the same name and signature.

Listing 4.113 Method fails to override the corresponding method

package A;

public class blat {
ERRÐ190 Error Reference

Java Error Messages
J to N (Java)
void foo() {}
}

//new file

package B;

public class bar {

void foo() {};
 //foo is not overridable, as it is package-private.
}

Error Reference ERRÐ191

Java Error Messages
J to N (Java)
Error 14206 Note: The cloning of an array does not throw any checked
exceptions, and therefore does not require any catch clauses.
Please remove unused catch clauses, or if you wish to retain
compatibility with older compilers, you may insert an artificial
throw as follows: if (false) throw new
CloneNotSupportedException();

In 1.1, clone()-ing an array no longer throws a checked exception.
However, 1.0.2 code requries a clone() invocation to be surrounded
with a try block, as shown in Listing 4.114.

Listing 4.114 Using an artificial throw to retain compatibility with older
compilers

try {

int[] foo = {1,2,3}

int[] fooCopy = foo.clone();
}
catch (CloneNotSupportedException e) {
}

Error 14011 Numeric overflow.

You specified a constant numeric value that is too large or too small
to be represented.

Listing 4.115 Overflowing a variable

int x = 9999999999; // ERROR: maximum is 2147483647
int y = -9999999999; // ERROR: minimum is -2147483648
double z= 9e999; // ERROR: maximum is about 1.8e308

Error 14012 Numeric underflow.

A value was specified which was too small to be represented by the
given type.
ERRÐ192 Error Reference

Java Error Messages
O to R (Java)
Listing 4.116 Numeric underflow

float f = 10e-980; // too small

O to R (Java)
These are error messages that begin with O, P, Q, or R.

Error 14065 Only constructors can invoke constructors.

You used a constructor call (this() or super()) in a method,
which is not a constructor.

Fix Consider removing the constructor call with a new statement.

Listing 4.117 Calling a constructor from a method

class A {
int x;
A(int xx) { x = xx; }
A() { this(0); } // OK: A() is a constructor
A foo(int xx) { return this(0); }// ERROR: foo() is a method
A bar(int xx) { return new A(xx); }// OK: bar() uses new.

}

Error 14038 Only named classes can have ''extends'' or ''implements''
clauses.

Anonymous block local classes, which are created in new expres-
sions, cannot use the extends or implements keyword in order to
specify their origin. Instead, the superclass or interface must be de-
clared in the new instance expression.

For instance, an anonymous class which is to implement the runna-
ble interface should appear as:

Runnable r = new Runnable() { /*class body*/ }
Error Reference ERRÐ193

Java Error Messages
O to R (Java)
rather than

Runnable r = new Object extends Runnable { /* class body */ }

Error 14116 Only one package declaration allowed.

If a file has two or more package declarations, this error is signaled.

Error 14192 Package symbol not found in symbol.

If an import statement occurs for a non-existent package, this error
will occur.

Error 14174 Public symbol must be defined in a file called "symbol".

This warning will only be issued when the option Strict Filenames is
enabled in the Java Language settings Panel. It occurs if a public
class does not reside in a file of the same name.

Error 14188 Recursive constructor invocation: symbol.

You have a constructor that calls itself, which would cause infinite
conversion.

Listing 4.118 Defining a recursive constructor

class A {
int x;
A(int xx) { this(xx); }// ERROR: Recursive!
A(byte xx) { this((short) xx); } // OK: Because of cast, it

 // calls the constructor
 // below

A(short xx) { x = xx; }
}

Error 14075 Reference to method methodName in className as if it were a
variable.

The compiler generates an error when you reference a method in a
certain classname as if it were a variable, as shown in Listing 4.119.
ERRÐ194 Error Reference

Java Error Messages
O to R (Java)
Listing 4.119 Referencing a method in a classname as if it were a variable

public class foo {

public int feem() {
return 0;

}

public int bar() {

int x = feem; //should be "int x = feem();"
}

}

Error 14045 Reference to symbol is ambiguous. It is defined in symbol and
symbol.

If a class implements two interfaces, each of which contain a field of
a given name, any references to that variable must be qualified with
the interface name.

Listing 4.120 Reference to symbol is ambiguous. It is defined in symbol and
symbol.

interface A { String name; }

interface B { String name; }

class C implements A,B {

String aName = name; // error here, should be "A.name" or
"B.name"

}

Error Reference ERRÐ195

Java Error Messages
O to R (Java)
Error 14074 Reference to variable symbol in symbol as if it was a method.

If a name resolves to a variable, but it is used as a method, this error
is signaled.

class A {

Object foo;

public Object method() {
return foo(); //error here

}
}

Error 14145 Repeated modifier.

You repeated the same modifier in a declaration. You can use a
modifier only once.

Listing 4.121 Repeating a modifier

public public class A { // ERROR
final public final int X = 1; // ERROR

}

Error 14064 ÒlengthÓ applied to symbol, which is not an array.

If an expression attempts to reference the length of an object that is
not known to be an array, this error is signaled.

Object foo = new int[i];

int i = foo.length; //Static type of foo is Object, although
 //dynamic type is int[]

Error 14107 'return' inside static initializer.

A static initializer cannot return a value, so it cannot contain a
return statement.
ERRÐ196 Error Reference

Java Error Messages
O to R (Java)
Listing 4.122 No return statement allowed in static initializer

public class X{
// . . .
static {

System.out.println ("Class X is loading..");
return;
// ERROR: Static initializer cannot contain a return statement

}
}

Error 14109 Return required at end of method.

You declared that a method returns a value, but it doesnÕt have a
return statement at each place where the method might exit.

Listing 4.123 Missing a return statement

int foo() { /*...*/ } // ERROR: No return statement

int bar(int x) {
if (x<=0)

return 0;
} // ERROR: No return statement for x > 0.

Error 14105 'return' with value from method.

You declared the method method to be void, but it contains a
return statement with a value.

Fix Either remove the value from the return statement, or declare the
method differently.

Listing 4.124 Returning a value from a void method

void twice (int a) {
return (a*2);
// ERROR: Either declare twice to return an int
Error Reference ERRÐ197

Java Error Messages
S to U (Java)
// or remove the value from the return statement
}

Error 14115 'return' with value from constructor: constructor

You cannot return a value from a constructor.

Listing 4.125 Returning a value from a constructor

public class Bird {
// . . .
int Age;
Bird (int x) {

this.Age = x;
return this; // ERROR

}
}

Error 14106 'return' without value from symbol.

You declared the method method to return a value, but it contains a
return statement with no value. Either add a value to the return
statement, or declare the method to be void.

Listing 4.126 Returning no value from a function

int factorial(int x) {
if (x==1) return; // ERROR
else return (x * factorial(x-1));// OK

}

S to U (Java)
These are error messages that begin with S, T, or U.

Error 14014 Statement expected.

The compiler expected a statement, but didnÕt see one.
ERRÐ198 Error Reference

Java Error Messages
S to U (Java)
Listing 4.127 Not finding a statement where expected.

class A {
void foo(int x) {

class B { } // ERROR: Not a statement
}

}

Error 14171 Statement not reached.

This statement will never be executed because a statement before it
unconditionally transfers control to another statement.

Listing 4.128 Not reaching a statement

int foo(int x) {
return x;
x++; // ERROR: This is never reached.

}

Error 14132 Static methods canÕt be abstract: method

You cannot declare a method to be both static and abstract. A static
method cannot be overridden. An abstract method must be overrid-
den to be useful.

Error 14120 Static methods canÕt be overridden. Method method is static in
class.

You tried to override method, which was declared to be static in class.

Fix Either remove the static modifier, or remove or rename one of the
methods.

Listing 4.129 Overriding a static method.

class A {
static void foo() { /* . . . */ }

}

Error Reference ERRÐ199

Java Error Messages
S to U (Java)
class B extends A {
void foo() { /* . . . */ } // ERROR: foo() is static in A.

}

Error 14002 String not terminated at end of input.

You forgot to end a string with a closing quote.

Fix Use Syntax Coloring (described in the CodeWarrior IDE UserÕs Man-
ual) to find out where the quote is missing.

Listing 4.130 String without end

public class TrivialExample {
 public static void main(String args[]) {

String s = "ERROR: This string is not closed.
 }
}

Error 14003 String not terminated at end of line.

You didnÕt end a string at the end of a line.

Fix If you have a long string that you must continue over two lines, split
it into multiple strings, concatenated with plus signs (+).

Listing 4.131 Extending a string over a couple lines.

String s1 = "ERROR: This string is not closed
at the end of the line.";

String s2 = "OK: This is how to handle" +
" a long string";

Error 14165 Superclass class1 of class2 not found.

While defining class2, you tried to extend class1 without defining or
importing it. Make sure you spelled the name correctly, defined it in
the right place, or imported the classÕs package correctly.
ERRÐ200 Error Reference

Java Error Messages
S to U (Java)
Listing 4.132 Spelling a superclass name wrong

class Fubar { /* . . . */ }
class X extends Foobar { /* . . . */ }

// ERROR: "Foobar" should be "Fubar"

Error 14143 Superclass of class canÕt be an interface: interface

You declared a class class and used the extends keyword where
you should have used the implements keyword.

Fix When you list the interfaces of an class , use the implements key-
word.

Listing 4.133 Using extends, instead of implements

interface CanFly { /* . . . */ }

class Plane extends CanFly { /* . . . */ }
// ERROR: Use implements, not extends

class Bird implements CanFly { /* . . . */ }
// OK

Error 14180 The class name className is already defined in this scope.
An inner class may not have the same simple name as any of
its enclosing classes.

You cannot declare duplicate class names. An example of this error
is shown in Listing 4.134.

Listing 4.134 Class name defined twice in the same scope

public class feem {

class bar {

class feem { //error
}

Error Reference ERRÐ201

Java Error Messages
S to U (Java)
}
}

Error 14173 The compiler failed to compile the field <field name> in class
<class name> due to <internal error message>.

This error means that you have found an internal compiler error.
Please submit a bug report, preferably via email to
<support@metrowerks.com>. Be sure to include code that trig-
gers this error so that our engineers can resolve this compiler bug.

Error 14230 The definitions of method method inherited from location and
location are compatible, but the combination of them is
nontrivial and has not been implemented. As a workaround,
declare method explicitly in this class.

Undocumented at this time.

Error 14222 The instance method method declared in location cannot
override the static method of the same signature declared in
location. It is illegal to override a static method.

Undocumented at this time.

Error 14225 The method method declared in method (which is not
deprecated) overrides a deprecated method of the same
signature declared in method.

Undocumented at this time.

Error 14224 The method method declared in location cannot override the
final method of the same signature declared in location. Final
methods cannot be overridden.

You tried to override the method method but it was declared to be
final in the class class.

Error 14226 The method method declared in location cannot override the
method of the same signature declared in location. The
access modifier is made more restrictive.

Undocumented at this time.
ERRÐ202 Error Reference

Java Error Messages
S to U (Java)
Error 14227 The method method declared in location cannot override the
method of the same signature declared in location. They must
have the same return type.

Undocumented at this time.

Error 14228 The method method declared in location cannot override the
method of the same signature declared in location. Their
throws clauses are incompatible.

Undocumented at this time.

Error 14229 The method method inherited from location is incompatible
with the method of the same signature inherited from location.
They must have the same return type.

Undocumented at this time.

Error 14223 The static method method declared in location cannot hide the
instance method of the same signature declared in location. It
is illegal to hide an instance method.

Undocumented at this time.

Error 14185 The type typeName canÕt be private. Package members are al-
ways accessible within the current package.

Top level classes (i.e. non-nested classes and static nested classes)
cannot be private.

Listing 4.135 Declaring a class to be private

private class A { /* . . . */ } // ERROR
class B { /* . . . */ } // OK: Only available to classes

 // in this package.
public class C { /* . . . */ }// OK: Available to all classes

 // in any package.
Error Reference ERRÐ203

Java Error Messages
S to U (Java)
Error 14210 The type innerClassName canÕt be static. Static members can
only occur in interfaces and top-level classes.

Non-top-level classes canÕt contain static inner classes.

public class outerClass {

public class innerClass {

static class innerInnerClass {
 //illegal; innerClass isn't top level
 //(i.e. isn't package level and isn't static)

}
}

}

Error 14186 The type typeName canÕt be declared static. It is already top-
level, since it is a member of a package.

Package-level classes shouldn't be declared static, as they are im-
plicitly static.

public static class topLevel {
//if this class is not nested, remove the static qualifier
}

Error 14187 The type typeName canÕt be made protected. Package
members can either be public or local to the current package.

Non-nested classes can either be declared "public" or left unquali-
fied. Protected package-level classes are not allowed.

protected class topLevel {
//if this class is not nested, remove the protected qualifier
}

Error 14232 The variable in an assignment to a blank final must be a simple
name or a simple name qualified by "thisÓ.

Undocumented at this time.
ERRÐ204 Error Reference

Java Error Messages
S to U (Java)
Error 14231 The variable in an assignment to a static blank final must be a
simple name (it may not follow a dot '.').

Undocumented at this time.

Error 14234 The zip file name is compressed, and cannot be used.

This error is generated because the compiler cannot handle com-
pressed zips or jars.

Error 14138 This final variable must be initialized: symbol

Undocumented at this time.

Error 14136 Transient variables canÕt be members of interfaces: symbol

Variables in interfaces are by definition public static final, and there-
fore cannot be transient (because "transient static" would be mean-
ingless, as static variables aren't serialized.)

Error 14023 ÒtryÓ without ÒcatchÓ or ÒfinallyÓ.

A try statement must be followed by at least one catch or a
finally clause. This try statement has none.

Fix Make sure your braces are balanced correctly.

Error 14015 Type expected.

This error will be signaled when the compiler expects a class name
or a primitive type, but finds something else. This occurs in various
situations. An example of this error is below in Listing 4.136

Listing 4.136 type expected

public static final name = "hi"; //should be "public static final
 //String name = "hi";
Error Reference ERRÐ205

Java Error Messages
S to U (Java)
Error 14184 Type typeName is inherited in className, and hides a type of
the same name in an enclosing scope. An explicit qualifier
prefix must be used to name this type.

An example of this error and its fix are shown in Listing 4.137.

Listing 4.137 Failure to name a type

public class bar {

public class foo {

}

}

public class feem {

public class foo {

}

public void aMethod() {

bar aBarSubclass = new bar() {

public void innerMethod() {

foo aFoo = new foo(); //if bar.foo is meant to be
 //instantiated,
 //"foo afoo = new bar.foo();" should be used

}
}

}
}

Error 14005 Unbalanced parentheses.

You left out a parenthesis in an expression.
ERRÐ206 Error Reference

Java Error Messages
S to U (Java)
Fix Use the Balance command (described in the CodeWarrior IDE UserÕs
Manual) to find out where the parenthesis is missing.

Listing 4.138 Missing a parenthesis.

System.out.println("Hello World!" ;// ERROR

undef.var.or.class

See ÒUndefined variable or class name: className.typeNameÓ on
page 209.

Error 14053 Undefined variable: variable

You used variable without defining or importing it.

Fix Make sure you spelled the name correctly, defined it in the right
place, or accessed it through a class instance if necessary.

Listing 4.139 Using an undefined variable

class A {
int foobar = 0;

}

public class TrivialExample {
 public static void main(String args[]) {

int fubar = 0;
A a = new A();

int x = foobar + 1;// ERROR
int y = a.foobar + 1;// OK
int z = fubar + 1; // ERROR

 }
}

Error Reference ERRÐ207

Java Error Messages
S to U (Java)
Error 14054 Undefined variable: variableName. The "super" keyword may
only be used for member access and constructor invocation.

If the super keyword is used to qualify something other than a field
or method of a super class, this error will result.

Listing 4.140 Using the super keyword to qualify something other than a
field or method of a superclass

public class one {

}

public class two {

public two() {
super.blort(); // ERROR

}
}

Error 14056 Undefined variable, class, or package name: a.qualified.Name

If a qualifed name is used, and the qualifier cannot be resolved to a
class or a package, this error will result, as shown in Listing 4.141.

Listing 4.141 Unresolved qualifer

String s = java.util.File.fileSeparator;
//should be "java.io.File.fileSeparator"

Error 14055 Undefined variable or package name: a.qualified.Name

If a qualifed name is used, and the qualifier cannot be resolved to a
package, this error will result.
ERRÐ208 Error Reference

Java Error Messages
V to Z (Java)
Error 14057 Undefined variable or class name: className.typeName

If a qualifed name is used to reference a member of an object, and
the qualifier cannot be resolved to a class or variable, this error will
result.

Listing 4.142 Undefined variable or class name

Thred.currentThread(); //Should be "Thread.currentThread();

V to Z (Java)
These are error messages that begin with V, W, X, Y, or Z.

Error 14211 Variable variableName canÕt be static in innerClassName. Only
members of interfaces and top-level classes can be static.

Non-top-level classes canÕt contain static variables.

public class outerClass {

public class innerClass {

static int x;
 //illegal; innerClass isn't top level
 //(i.e. isn't package level and isn't static)

}
}

Error 14041 Variable variable in location not accessible from class.

You tried to access variable in location , but its access declared in
class1 wonÕt allow it.

Fix Either change variableÕs access status or rewrite your code so you
donÕt need it.
Error Reference ERRÐ209

Java Error Messages
V to Z (Java)
class A {
private int x = 1;
protected int y = 1;

}

class B extends A {
int a = x;// ERROR: x is private.
int b = y;// OK: y is protected.

}

Error 14181 Variable variableName is inherited in className, and hides a
variable of the same name in anscestorClassName. An explicit
''this'' qualifier must be used to select the desired instance.

An example of this error and its fix are shown in Listing 4.143.

Listing 4.143 Failure to increment a variable

public class bar {

public int foo;

}

public class feem {

public int foo;

public void aMethod() {

bar aBarSubclass = new bar() {

public void innerMethod() {

foo++; //if (e.g.) feem.foo is meant to be
 //incremented, feem.this.foo++ should be used

}
}
ERRÐ210 Error Reference

Java Error Messages
V to Z (Java)
}
}

Error 14182 Variable variableName is inherited in className, and hides a
local variable of the same name. An explicit ÒthisÓ qualifier
must be used to select the variable, or the local must be
renamed.

An example of this error and its fix are shown in Listing 4.144.

Listing 4.144 Failure to increment a local variable

public class bar {

public int foo;

}

public class feem {

public void aMethod() {

int foo;

bar aBarSubclass = new bar() {

public void innerMethod() {

foo++; //if feem.foo is meant to be incremented,
 //feem.this.foo++ should be used

}
}

}
}

Error 14058 Variable variable may not have been initialized.

YouÕre using variableÕs value, but you havenÕt initialized it yet.
Error Reference ERRÐ211

Java Error Messages
V to Z (Java)
Fix Either initialize the variable or rewrite your code so you donÕt need
it.

Listing 4.145 Using an uninitialized variable

int x;
int y = x+1; // ERROR

x = 2;
int z = x+1; // OK

Error 14178 Variable symbol is already defined in this method.

You declared variable twice in this method.

Fix Either remove one of the declarations, or rename one of them.

Listing 4.146 Using the same variable name twice

int x;
// . . .

for (int x = 1; x<10; x++) { // ERROR: x already defined
// . . .

}

Error 14177 Variable variable is used twice in the argument list of this
method.

You declared variable twice in this argument.

Fix Either remove one of the declarations, or rename one of them.

Listing 4.147 Defining an argument twice

int foo(int x, int y, int x) { return x+y+x; }
// ERROR: x defined twice
ERRÐ212 Error Reference

Java Error Messages
V to Z (Java)
Error 14134 Variables canÕt be synchronized, abstract or native: variable

You cannot declare a variable to be synchronized, abstract, or na-
tive. These modifiers describe how a method is implemented and
donÕt make sense when applied to variables.

Error 14137 Volatile variables canÕt be final or members of interfaces:
variableName

You cannot declare a volatile variable as final, or as a member of a
certain interface.

Listing 4.148 Declaring a volatile variable as final

public class aClass {

public volatile final int foo; //error
}

Error 14096 Wrong number of arguments in methodName.

When the compiler can determine which method you are trying to
invoke, but also determines that you have used the wrong number
of arguments to that method, this error will be displayed.
Error Reference ERRÐ213

Java Error Messages
V to Z (Java)
ERRÐ214 Error Reference

5
Linker Error
Messages
This chapter gives an alphabetical list of the most common linker er-
rors which may be encountered while using Metrowerks CodeWar-
rior compilers.

Typography Notes for Linker Error Messages
In this chapter, errors with variable initial text (such as a class or
function name) come first. Errors beginning with a non-alphabetic
symbol character come next. After that, errors are listed alphabeti-
cally.

Each linker error has a compatibility table that indicates the operat-
ing system(s) and/or chip(s) with which the linker error is compati-
ble. A sample compatibility table appears here.

Compatibility This linker error is found on the following targets:

¥ Compatible targets are in black text

¥ Incompatible targets appear in grey

¥ Blank cells appear in the table in support of future targets

¥ BeOS represents the Be operating system

¥ Mac OS represents the Mac OS operating system on either
PowerPC or 68K processors

¥ Magic represents the Magic Cap operating system

¥ PS OS represents the Sony PlayStation operating system

¥ PalmOS represents the USR PalmPilot operating system

BeOS Mac OS Magic PalmOS PowerPC PS OS Win32
Error Reference ERRÐ215

Linker Error Messages
Linker Errors
¥ Win32 represents Windows95 and WindowsNT operating
systems on x86 processors

¥ PowerPC represents PowerPC embedded processors using
the PPC EABI (Embedded Application Binary Interface)

If you are reading a printed version of this manual as it appears in
the Inside CodeWarrior series, you should be aware that new targets
may become available after this manual goes to print.

Information about your target may not appear in this version of the
printed documentation. In that case, you should consult the Target-
ing manual or release notes for your product to determine whether
a particular linker error is compatible with your target.

Linker Errors
The linker errors are divided into the following sections:

¥ Symbol Names (Linker)

¥ A to C (Linker)

¥ D to F (Linker)

¥ G to I (Linker)

¥ J to L (Linker)

¥ M to O (Linker)

¥ P to T (Linker)

¥ U to Z (Linker)

Symbol Names (Linker)

These are linker error messages that begin with a symbol name, the
name of a variable or function.

<_foo> 16-bit code reference to <_bar>is out of range.

Compatibility This linker error is found on the following targets:

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS
ERRÐ216 Error Reference

Linker Error Messages
Linker Errors
Description The target symbol of a 16-bit PC-relative jump must be located with
32K of the jump statement.

Fix There are two possible fixes to this error message.

First, rearrange the files in your project to move the target closer to
the source.

If this doesnÕt solve the error (and you are targeting Mac68k), set the
code model preference to large. To do this, open the Settings Panel
Dialog from the Edit menu, and choose the panel 68K Processor,
under the heading Code Generation. Choose Large from the Code
Model pop-up menu.

<<_filename: symbol1> 16-bit data reference to <symbol2> is
out of range

Compatibility This linker error is found on the following targets:

Description Symbol1, in the file _Þlename, assumes a data object, symbol2, is
within a 32K range (a near, 16-bit reference), but symbol2 is more
than 32K away from symbol1.

Either symbol2 must be made closer to symbol1 to allow a 16-bit ref-
erence or symbol1 must use a far, 32-bit reference to symbol2.

Fix Fixing this linker error may require explicitly placing symbol1 and
symbol2 in the same segment. In the Processor preferences panel, try
setting the Code Model to Large, selecting the Far Data and Far
Strings checkboxes.

<_foo> 8-bit (16-bit) computed reference out of range: <bar>-
<fa>

Compatibility This linker error is found on the following targets:

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS
Error Reference ERRÐ217

Linker Error Messages
Linker Errors
Description A computed reference cannot be resolved because the objects are
too far away from each other. This will most likely come from a con-
verted MPW library.

<func> has 16-bit code reference to non-code symbol:
<s_name>

Compatibility This linker error is found on the following targets:

Description A non Metrowerks assembly code which references a data object
using a 16-bit displacement, and the data object is more than 32K
away.

Fix There are two ways to fix this. First, move the data object closer to
the code which references it (either by using one of the code sorting
options in the PPC PEF panel, or by moving files in the project win-
dow). The second way to fix this is to use an instruction with an ab-
solute address or a bigger displacement.

<func1> 16-bit code reference to <func2> is out of range

Compatibility This linker error is found on the following targets:

Description A non Metrowerks written assembly code which references a sec-
ond function using a 16-bit displacement, and the data object is
more than 32K away.

Fix There are two ways to fix this. First, move the function closer to the
code which references it (either by using one of the code sorting op-
tions in the PPC PEF panel, or by moving files in the project win-
dow). The second way to fix this is to use an instruction with an ab-
solute address or a bigger displacement

<_foo> has 16-bit data reference to non-data symbol <bar>

Compatibility This linker error is found on the following targets:

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS
ERRÐ218 Error Reference

Linker Error Messages
Linker Errors
Description bar is referenced as data but defined as code.

<_foo> has illegal computed reference between segments:
<bar>-<fa>

Compatibility This linker error is found on the following targets:

Description There is an illegal reference type in one of the object files. This will
most likely be caused by a converted MPW library.

<_foo> has illegal single segment 16-bit reference to <bar>

Compatibility This linker error is found on the following targets:

Description This error message is given when you try to use more than one seg-
ment in a non-extended resource.

Fix To fix this linker error get rid of the segmentation or to switch to an
extended resource by selecting the Extended Resource checkbox in
the 68K Project preferences.

See Also: For information on code models and code resources, see Targeting
Mac OS.

<_foo> has illegal single segment 32-bit reference to <bar>.

Compatibility This linker error is found on the following targets:

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS
Error Reference ERRÐ219

Linker Error Messages
Linker Errors
Description Single segments cannot use multiple segments or jump tables. This
error message is displayed when some code was compiled with
smart or large code model and the project type doesn't support it.

NOTE: Often, the problem is from using an ANSI Library since
the ANSI library was built with smart code model. If you want to
use an ANSI Library, you have to make a multi-segment code re-
source by setting the extended resource option in your 68k project
preference.

Fix Smart or large code can only be used in multi-segment projects, like
applications and multi-segment code resource. It can't be used with
single-segment resources. If you want to make a multi-segment
code resource, turn on the Extended Resource option in the 68K
Project settings panel

See Also For information on code models and code resources, see Targeting
Mac OS.

<_foo> is undefined or is not an exportable object.

Compatibility This linker error is found on the following targets:

Description This error message is given if the user has an entry in the .exp file,
and the entry cannot be found or cannot be exported (i.e. marked as
#pragma internal).

<_filename> is not a valid library file.

Compatibility This linker error is found on the following targets:

Description The named file had the proper file type for a CodeWarrior library,
but the contents are not valid. The library file in question may be
damaged.

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS
ERRÐ220 Error Reference

Linker Error Messages
Linker Errors
<_filename> is not a valid PEF shared library.

Compatibility This linker error is found on the following targets:

Description The named file had the proper file type for a shared library, but the
contents are not valid. The shared library in question may be dam-
aged.

<_filename> is not a valid XCOFF file.

Compatibility This linker error is found on the following targets:

Description The named file had the proper file type for an XCOFF library or
shared library, but the contents are not valid. The XCOFF file in
question may be damaged.

<_foo> referenced from <_bar> is undefined.

Compatibility This linker error is found on the following targets:

Description The Linker will generate this error message because a referenced
code or data module is not defined anywhere. This means that the
undefined function does not exist in your code. This could be be-
cause it is a library that you did not include, a source file you did
not include or because you forgot to define the function in your
code.

Fix Locate or create the referenced function and make sure it is in your
project.

A to C (Linker)

These are linker error messages that begin with A, B, or C.

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS
Error Reference ERRÐ221

Linker Error Messages
Linker Errors
A <c><num> resource was found. It will override some
project settings

Compatibility This linker error is found on the following targets:

Description (Warning) This linker warning is generated when <c><num> re-
source was found that will override some project settings.

Fix This is common when creating a FAT project. The linker creates
'SIZE' and 'cfrg' resources based on the project preferences. If the
linker finds a user-defined resource of either one of these types and
ID's, then it uses that resource instead of its own. The warning tells
you not to expect certain project preferences to work.

An error occurred while importing the shared library.

Compatibility This linker error is found on the following targets:

Description This general error message is generated by the PEF Importer to flag
a read error.

An error occurred while reading from the .exp file.

Compatibility This linker error is found on the following targets:

Description This general error message is generated PEF Linker is to flag a error
while reading the .exp file.

An error occurred while linking the PEF container.

Compatibility This linker error is found on the following targets:

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS
ERRÐ222 Error Reference

Linker Error Messages
Linker Errors
Description This is a general purpose error message given by the PEF linker for
CFM68K. It is used to flag write errors.

An error occurred while trying to open the .exp file.

Compatibility This linker error is found on the following targets:

Description The linker generates this general purpose error message if reading
of the .exp file fails.

An error occurred while trying to write the .exp file.

Compatibility This linker error is found on the following targets:

Description This general error message is generated PEF Linker is to flag a error
while writing the .exp file.

application or code resource has no main entry point.

Compatibility This linker error is found on the following targets:

Description An application or code resource must have a main entry point spec-
ified in the PEF settings panel. If you attempt to link a PowerPC
project that does not have a main entry point, this link error occurs.
For more on entry points and the PEF preferences, consult ÒSetting
the PEF Preferences (PowerPC Only)Ó in Targeting Mac OS.

Bad relocation symbol: <ErrNum>

Compatibility This linker error is found on the following targets:

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS
Error Reference ERRÐ223

Linker Error Messages
Linker Errors
Description This is an internal linker error indicating a bad object.

Cannot include more than 1 resource file

Compatibility This linker error is found on the following targets:

Description Your project has tried to include more than one resource file.

Cannot load object resource for <bar>

Compatibility This linker error is found on the following targets:

Description An object resource cannot be loaded. This is probably caused by ei-
ther a corrupt project file or a memory problem.

Fix Delete object file and preference file and check your hard drive and
memory for possible errors with a disk utility.

Cannot use CFM68K library.

Compatibility This linker error is found on the following targets:

Description This error message is generated when you try to use a CFM68k li-
brary in a traditional Mac OS application or resource

Cannot use non-CFM68K library.

Compatibility This linker error is found on the following targets:

Description This error message is generated when you try to use a a traditional
Mac OS library in CFM68k application or resource.

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS
ERRÐ224 Error Reference

Linker Error Messages
Linker Errors
CanÕt copy resource file <filename>.

Compatibility This linker error is found on the following targets:

Description An I/O error occurred while copying one of the resource files into
the final executable file. The specific I/O error is indicated as well.

CanÕt find source file ÔfooÕ Ñ statement locations will be lost.

Description (Warning) The linker could not find the file named foo while import-
ing XCOFF object code. When you debug the code, the debugger
may not be able to display the source code for the file, or the debug-
ger may display the source code but wonÕt be able to display dashes
for breakpoints.

CanÕt import PEF shared library <filename>.

Compatibility This linker error is found on the following targets:

Description An I/O error occurred while reading the named shared library file
during Make. The specific I/O error is indicated as well.

CanÕt import XCOFF file <filename>.

Compatibility This linker error is found on the following targets:

Description An I/O error occurred while reading the named XCOFF file during
Make. The specific I/O error is indicated as well.

CanÕt parse debug information in ÔstringÕ

Description (Warning) The linker could not understand a piece of debug infor-
mation while importing XCOFF code. The debugger may not dis-
play the symbol associated with the string correctly.

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS
Error Reference ERRÐ225

Linker Error Messages
Linker Errors
CanÕt read export file <filename>.

Compatibility This linker error is found on the following targets:

Description An I/O error occurred while reading the .exp file for this project.
The specific I/O error is indicated as well.

CanÕt read library file <filename>.

Compatibility This linker error is found on the following targets:

Description An I/O error occurred while reading the named library file during
linking. The specific I/O error is indicated as well.

CanÕt read sort file <filename>.

Compatibility This linker error is found on the following targets:

Description The linker was unable to open and read <filename>.

Fix The file may be corrupted or other input/output error. You should
use a disk utility to check your hard drive for possible flaws. If no
flaws are found please contact Metrowerks Technical Support.

Can't read temp file ÔfilenameÕ

Compatibility This linker error is found on the following targets:

Description (MPW) You use the -tmp directive, and the linker cannot read from
or write to one of the temporary files that the linker created in the
folder you specified.

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS
ERRÐ226 Error Reference

Linker Error Messages
Linker Errors
Fix Make sure the name of the folder is correctly spelled, the path is cor-
rect, the folderÕs volume is mounted, and that you have access priv-
ileges to it.

CanÕt write application <filename>.

Compatibility This linker error is found on the following targets:

Description An error occurred while the linker was writing the executable file,
which might be an application, shared library, or code resource. The
specific error is indicated as well. It can be an I/O error such as
ÒDisk FullÓ or it can be an ÒOut Of MemoryÓ error.

Fix Memory errors can usually be fixed by increasing the partition size
of CodeWarrior.

CanÕt write export file <filename>.

Description An I/O error occurred while the linker was writing the .exp file.
The specific error is indicated as well. If you select ÒUse .exp fileÓ
from the PEF settings panel of the Preferences, but the file project-
name.exp does not exist, the linker will write a default .exp file
containing all global symbols.

See Also: ÒExport SymbolsÓ in Targeting Mac OS.

CanÕt write library file <filename>.

Compatibility This linker error is found on the following targets:

Description An error occurred while the linker was writing the library file. The
specific error is indicated as well. This can be an I/O error such as
ÒDisk FullÓ or it can be an ÒOut Of MemoryÓ error.

Fix ÒOut Of MemoryÓ errors can usually be fixed by increasing the par-
tition size of CodeWarrior.

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS
Error Reference ERRÐ227

Linker Error Messages
Linker Errors
CanÕt write link map <filename>.

Compatibility This linker error is found on the following targets:

Description An error occurred while the linker was writing the link map file.
The specific error is indicated as well. This can be an I/O error such
as ÒDisk FullÓ or it can be an ÒOut Of MemoryÓ error.

Fix ÒOut Of MemoryÓ errors can usually be fixed by increasing the par-
tition size of CodeWarrior.

CanÕt write sort file <filename>.

Compatibility This linker error is found on the following targets:

Description The linker failed to write the sort file <filename>

Fix The file may already be opened or corrupted, or other possible
problems: disk full, file is locked, i/o error, disk is write-protected.
If other conditions occured please contact Metrowerks Technical
Support.

CanÕt write SYM file <filename>.

Compatibility This linker error is found on the following targets:

Description An error occurred while the linker was writing the SYM file. The
specific error is indicated as well. This can be an I/O error such as
ÒDisk FullÓ or it can be an ÒOut Of MemoryÓ error.

Fix ÒOut Of MemoryÓ errors can usually be fixed by increasing the par-
tition size of CodeWarrior.

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS
ERRÐ228 Error Reference

Linker Error Messages
Linker Errors
Class optimization failure for <function>

Compatibility This linker error is found on the following targets:

Description The linker failed to optimize the function <function>.

Fix The unit declaring <function> class wasn'tcompiled using 'optimize
class hierarchy'.

code resource must not have a termination routine

Compatibility This linker error is found on the following targets:

Description A native or fat code resource cannot have a termination entry point,
specified in the PEF settings panel.

COMDAT sections do not match in size: <Func>

Compatibility This linker error is found on the following targets:

Description Multiple identical definitions for functions are allowed but these do
not match in size. This is not currently supported.

cross-TOC call from <symbol1> to <symbol2> has no TOC
reload slot

Compatibility This linker error is found on the following targets:

Description The linker requires that a NOP instruction be placed after any call to
an external routine, as a place-holder for a TOC-reload instruction
needed when calling a routine from a shared library. This error can

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS
Error Reference ERRÐ229

Linker Error Messages
Linker Errors
occur if you import some assembly language code that does not
contain the NOP, but calls a routine which is imported from a shared
library.

D to F (Linker)

These are linker error messages that begin with D, E, or F.

Duplicate COMDAT section: <Func> in files:

Compatibility This linker error is found on the following targets:

Description Invalid multiple definition for functions.

entry-point <symbol> is not a descriptor

Compatibility This linker error is found on the following targets:

Description (Warning) The initialization, main, and termination entry points are
usually external routines, that the linker references through a de-
scriptor (sometimes called a TVector) in the data area. For certain
kinds of code resources (like plugins), you may want to use a vari-
able as the entry-point instead of a function.

Entry Point <_pt> is undefined.

Compatibility This linker error is found on the following targets:

Description In the CFM68K settings panel, the user can specify three entry
points: Initialization, Main, and Termination. This message occurs
when you specify an entry point that doesn't exist.

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS
ERRÐ230 Error Reference

Linker Error Messages
Linker Errors
Error creating output file: <filename> <status>

Compatibility This linker error is found on the following targets:

Description The linker was not able to create an output file <filename> with the
DOS <status>.

Fix Check to see if there already is an open file with the same filename
that is currently in use. Check for free disk space.

Error opening file: <filename> <status>

Compatibility This linker error is found on the following targets:

Description The linker could not open <filename> with the DOS <status> for
linking.

Fix Reset access paths and verify folders in which the file is located.

Error while operation

Compatibility This linker error is found on the following targets:

Description Linker errors in this form occur when the linker encounters file I/O
problems. Operation may one of the following:

¥ saving resources

¥ writing to SYM file

¥ setting SYM file position

¥ getting file info

¥ creating SYM file

¥ opening SYM file

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS
Error Reference ERRÐ231

Linker Error Messages
Linker Errors
¥ reading or parsing SEG file

¥ creating new file

¥ creating or copying resource fork

¥ opening file's resource fork

¥ writing file's resource fork

These linker errors can be caused by anything from defective media
to a volume being full. The solution depends on the nature of the er-
ror.

Error writing output file: <filename>

Compatibility This linker error is found on the following targets:

Description The linker was unable to write to the output file <filename.>

Fix This is likely due to lack of Drive space. Also, check to see if the
Drive is corrupted.

export symbol <symbol> is undefined

Compatibility This linker error is found on the following targets:

Description The symbol named in the .exp file does not exist.

File read error

Compatibility This linker error is found on the following targets:

Description The linker could not read the file for some reason.

Fix verify that the file is present and is not corrupted.

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS
ERRÐ232 Error Reference

Linker Error Messages
Linker Errors
G to I (Linker)

These are linker error messages that begin with G, H, or I.

Global Object <obj> was already declared in File: <fname>.

Compatibility This linker error is found on the following targets:

Description The linker will generate this error if you define a global data or code
object in more that one file.

Fix Remove all but one declaration, or declare all but one to be external.

HUNK_DEINIT_CODE not yet supported.

Compatibility This linker error is found on the following targets:

Description This error message is generated when an unsupported object type is
encountered.

NOTE: You will not get this error unless your object file has been
corrupted.

ignored duplicate resource <type> (id) in <filename>

Compatibility This linker error is found on the following targets:

Description The named resource was already copied from another resource file
in the project.

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS
Error Reference ERRÐ233

Linker Error Messages
Linker Errors
ignored: <symbol> class in <filename1> previously defined in
<filename2>

Compatibility This linker error is found on the following targets:

Description (Warning) The linker will permit multiple definitions of a symbol
that is defined in a library. The order of files in the project window
determines which definition of the symbol will be used. Subsequent
definitions are ignored.

Illegal computed reference for <foo>

Compatibility This linker error is found on the following targets:

Description The linker encountered an illegal computed reference for foo.

Illegal relocation for <foo>

Compatibility This linker error is found on the following targets:

Description An illegal relocation information.

Illegal object data

Compatibility This linker error is found on the following targets:

Description This error message is generated when the linker encounters illegal
data in a library.

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS
ERRÐ234 Error Reference

Linker Error Messages
Linker Errors
Illegal object data in <objectFile>

Compatibility This linker error is found on the following targets:

Description The linker does not recognize the data format in file objectFile. Usu-
ally, this error is issued when you attempt to link a PowerPC library
with a 68K project.

Fix Make sure the file is in a format recognized by the CodeWarrior
project manager. To fix this error, build the libraryÕs source code
with a 68K compiler and linker or find a 68K version of the Pow-
erPC library.

Illegal object file version, an error occurred while writing the
libraryÕs object data.

Compatibility This linker error is found on the following targets:

Description An error occurred during the file I/O.

Internal error <ErrMessage>

Compatibility This linker error is found on the following targets:

Description An internal linker error has occurred with the Metrowerks linker.
Please report this to Metrowerks Technical Support.

Invalid object code.

Compatibility This linker error is found on the following targets:

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS
Error Reference ERRÐ235

Linker Error Messages
Linker Errors
Description You tried to link a 68K library with a PowerPC program.

Fix To fix this error, build the libraryÕs source code with a PowerPC
compiler and linker or find a PowerPC version of the 68K library.

Invalid object file: <filename>

Compatibility This linker error is found on the following targets:

Description The object file <filename> was of the wrong object format.

Invalid object library

Compatibility This linker error is found on the following targets:

Description The object Library was an invalid type for the current project type.

Invalid object library: <filename>

Compatibility This linker error is found on the following targets:

Description The object library filename was invalid.

Invalid PEF shared library.

Compatibility This linker error is found on the following targets:

Description The named file had the proper file type for a CodeWarrior library,
but the contents are not valid. The library file in question may be
damaged.

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS
ERRÐ236 Error Reference

Linker Error Messages
Linker Errors
Invalid relocation type: <ErrNum>

Compatibility This linker error is found on the following targets:

Description This is an internal linker error indicating a bad object.

Invalid subsystem

Compatibility This linker error is found on the following targets:

Description The subsystem id that was set on the linker panel is invalid.

J to L (Linker)

These are linker error messages that begin with J, K, or L.

Library Linker: Cannot have resource files in library.

Compatibility This linker error is found on the following targets:

Description This library linker error message is shown if you have a .rsrc file
in your library project.

NOTE: This error is often generated by including a ResEdit file in
the project.

Library Linker: Cannot load object resource.

Compatibility This linker error is found on the following targets:

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS
Error Reference ERRÐ237

Linker Error Messages
Linker Errors
Description The library linker generates this message when there is not enough
memory. Alternatively the resource file maybe damaged.

Library Linker: Illegal object data.

Compatibility This linker error is found on the following targets:

Description This error is generated when the linker encounters illegal data in a
library.

Library Linker: Out of memory.

Compatibility This linker error is found on the following targets:

Description This library linker error message is shown when there is not enough
memory.

library must not contain any resource files

Compatibility This linker error is found on the following targets:

Description You can't add any resource files in a project whose type is library. If
the library requires resources, the resource files must be added to
the projects which use the library.

Library resource cannot be read.

Compatibility This linker error is found on the following targets:

Description This error message is displayed whenever you have a library file er-
ror.

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS
ERRÐ238 Error Reference

Linker Error Messages
Linker Errors
Link aborted - Too many errors.

Compatibility This linker error is found on the following targets:

Description The linker will generate this error message more than 100 linker er-
rors are encountered.

Link Error: Code resource cannot have more than one
segment.

Compatibility This linker error is found on the following targets:

Description This error appears if you try to have more that one code segment in
s single segment resource

Link Error: Object resource not found.

Compatibility This linker error is found on the following targets:

Description This linker error occurs when an object resource cannot be loaded.
This could be a corrupt project file or memory problem.

Link Error: Runtime Object resource not found.

Compatibility This linker error is found on the following targets:

Description This linker error will not occur unless you have modified the com-
pilerÕs resources. If you receive this linker error, contact Metrowerks
Technical Support.

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS
Error Reference ERRÐ239

Linker Error Messages
Linker Errors
Link failed.

Compatibility This linker error is found on the following targets:

Description A fatal link error such as ÒOut Of MemoryÓ has occurred. The spe-
cific link error is indicated as well.

Local Object <foo> is redeclared

Compatibility This linker error is found on the following targets:

Description The local object foo is declared more than once within one object file.

M to O (Linker)

These are linker error messages that begin with M, N, or O.

ÔmainÕ is undefined.

Compatibility This linker error is found on the following targets:

Description This Linker error message occurs when there is no main() function
defined in the program.

Fix You need to fix this error differently, depending on whether your
project is for an application, C code resource or Pascal code re-
source.

Application In an executable application this error is usually the
result of not including the source file that includes the main() func-
tion in your project.

C code resource In a multi-segment project, your main() must
be in Segment 1. If your main() is not in Segment 1 then the

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS
ERRÐ240 Error Reference

Linker Error Messages
Linker Errors
CodeWarrior start-up code tries to call your main() via an A4-
based reference. However, A4 is not setup until your main() has a
chance to call SetCurrentA4().

Pascal code resource Code resources can only be built from
units. In the units INTERFACE section, you have to indicate the code
resources main entry point. This entry point is indicated with the
$MAIN directive. You need to specify the missing main identifier
with the $MAIN directive.

missing vtable: <_vt_foo> Check that all virtual functions and
static members are defined

Compatibility This linker error is found on the following targets:

Description The linker generates this error message because the compiler usu-
ally tries to generate only one instance of a virtual function table.
This table is usually created together with a certain static member or
a virtual function definition. If you forget to define that member you
will get this error message.

NOTE: This message is specific to a C++ project. The error usu-
ally means you are making an instance of a derived class without
declaring the base classes or including the base classÕ header file
in your derived class header files.

multiply-defined: <symbol> in <filename1> defined in
<filename2>

Compatibility This linker error is found on the following targets:

Description The linker will not permit multiple definitions of a symbol if neither
symbol comes from a library.

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS
Error Reference ERRÐ241

Linker Error Messages
Linker Errors
NOTE: All multiply-defined symbols are reported in a single mes-
sage.

Multiple definition of symbol: <Var> in files:

Compatibility This linker error is found on the following targets:

Description The linker found two or more definitions of the same symbol.

Fix Rename the variables to remove the conflicts.

Near data section or jump table is greater than 32KB.

Compatibility This linker error is found on the following targets:

Description With CFM68K the near data section uses A5-relative addressing, so
is limited to 32KB below A5. The jump table is above A5 and also
limited to 32KB.

Near data segment is bigger than 64k

Compatibility This linker error is found on the following targets:

Description The project being linked has more than the 64K limit of global data
allowed using near, 16-bit references. To allow more than 64K of
global data, your project needs to use far, 32-bit references.

Fix Select the Far Data and Far Strings checkboxes in the 68K Processor
preferences panel.

No entry point found

Compatibility This linker error is found on the following targets:

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS
ERRÐ242 Error Reference

Linker Error Messages
Linker Errors
Description The linker did not find an entry point.

Fix Check to see if your project includes a main or WinMain function.
Check to see if your Project settings x86 Linker options have the
entry point correctly listed.

Not a <CPU_Type> Library

Compatibility This linker error is found on the following targets:

Description This Library importer encountered an incorrect library type for the
project target.

Fix Replace the offending library with the correct CPU version.

Not enough memory for linker.

Compatibility This linker error is found on the following targets:

Description This error message is given if there is not enough memory for the
linker.

Out of memory

Compatibility This linker error is found on the following targets:

Description The linker does not have enough Memory to complete the build.

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS
Error Reference ERRÐ243

Linker Error Messages
Linker Errors
Fix Increase the partition for Macintosh hosted compilers, or Increase
the system memory for Macintosh and Windows hosted by closing
other applications, or increasing the memory.

output code size exceeds 64K limit; please contact
sales@metrowerks.com for info on unlimited linker

Compatibility This linker error is found on the following targets:

Description The BeOS ships with a linker that can build applications and shared
libraries that are smaller than 64K in size. If you get this error, check
our release notes or call technical support for the work-arounds to
build several shared libraries, or call Metrowerks sales to purchase
an unlimited linker.

P to T (Linker)

These are linker error messages that begin with P, Q, R, S, or T.

sort symbol <s_sym> is undefined

Compatibility This linker error is found on the following targets:

Description (Warning) A sort symbol <s_sym> was undefined.

Fix The sort file names a symbol that the linker didn't find. Either de-
fine that symbol, or remove it from the sort file.

sort file <FileName> did not list all code symbols

Compatibility This linker error is found on the following targets:

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS
ERRÐ244 Error Reference

Linker Error Messages
Linker Errors
Description (Warning) This linker warning is given when the file <FileName>
failed to list all possible code symbols.

Fix It's not really necessary to fix this unless it concerns you. The code
will be in the order specified in the sort file until the sort file runs
out of symbols. The rest of the code symbols follow, in an unde-
fined order.

Sorting <obj_name>

Compatibility This linker error is found on the following targets:

Description This is not an error it is a status message, like "Linking" or "Compil-
ing".

Symbol data error in <bar>

Compatibility This linker error is found on the following targets:

Description The linker found illegal data in the object file bar. This means that
the object data is not compatible with the current CodeWarrior com-
piler. Remove all binary information and recompile your project.

Syntax error in exports file <fname> , line <n>.

Compatibility This linker error is found on the following targets:

Description The export file must contain only identifiers, comments (indicated
by a # character and terminated by the end of line) and white space
(spaces or tabs)

syntax error on line <n> of export file <filename>

Compatibility This linker error is found on the following targets:

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS
Error Reference ERRÐ245

Linker Error Messages
Linker Errors
Description The export file must contain only identifiers, comments (indicated
by a # character and terminated by the end of line) and white space
(spaces or tabs).

syntax error on line <LineNo> of sort file <FileName>

Compatibility This linker error is found on the following targets:

Description The sort file had a syntax error on line number <LineNo> in file
<FileName>

Fix Fix the syntax error. The syntax of the sort file is the same as the
syntax for an exp file.

The global data module <foo> is undefined

Compatibility This linker error is found on the following targets:

Description Where foo is one of the following internal start-up code variables:

¥ __codereftype__

¥ __maincodexnum__

¥ __headersize__

¥ __LoadSeg__

¥ __codexreftype__

¥ __Startup__

This linker error will not occur unless you have modified the com-
pilerÕs resources. If you receive this linker error, contact Metrowerks
Technical Support.

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS
ERRÐ246 Error Reference

Linker Error Messages
Linker Errors
The main entry point for applications must be an executable
module.

Compatibility This linker error is found on the following targets:

Description The CFM68k linker generates this error if the user puts a non-func-
tion as the main entry point for an application (which is illegal), for
Shared Libraries

NOTE: You can have a data object as the main entry point.

The __segloader routine cannot be found.

Compatibility This linker error is found on the following targets:

Description The __segloader() routine is used to load segments under
CFM68K, it is found in the MWCFM68KRuntime.Lib library.

The virtual function table <_vt_foo> is undefined, make sure
that all static members and virtual functions are defined.

Compatibility This linker error is found on the following targets:

Description The linker generates this error message because the compiler usu-
ally tries to generate only one instance of a virtual function table.
This table is usually created together with a certain static member or
a virtual function definition. If you forget to define that member you
will get this error message

NOTE: This message is specific to a C++ project. The error usu-
ally means you are making an instance of a derived class without

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS
Error Reference ERRÐ247

Linker Error Messages
Linker Errors
declaring the base classes or including the base classÕ header file
in your derived class header files.

TOC size of <n> bytes exceeds 64K limit

Compatibility This linker error is found on the following targets:

Description The TOC is a part of the data area used to indirectly address other
data. The TOC contains one 4-byte entry for each variable, floating-
point constant, or string constant that is referenced in the program.

Fix You can reduce the TOC requirements of your program with a cou-
ple of different option:

¥ The Pool Strings option in the C/C++ Language settings
panel, or pragma pool_strings, pools the string constants
from each file into a single data object which needs only 1
TOC entry.

¥ The Store Static Data in TOC option in the PPC Processor
settings panel stores small static integer variables and float-
ing-point constants directly in the TOC, instead of allocating
space for them elsewhere and storing pointers to them in the
TOC. If you have lots of small static variables (under 4 bytes),
turn this option on to save TOC space. If you have lots of
large floating-point constants (4 to 8 bytes), turn this option
off to save TOC space.

too many link errors

Compatibility This linker error is found on the following targets:

Description The linker stops reporting errors after about 100 errors are encoun-
tered.

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS
ERRÐ248 Error Reference

Linker Error Messages
Linker Errors
U to Z (Linker)

These are linker error messages that begin with U, V, W, X, Y, or Z.

Unable to launch the Application.

Compatibility This linker error is found on the following targets:

Description This linker error is given if a file I/O problem occurs when
CodeWarrior performs a Run.

Unable to load multi-segment driver header

Compatibility This linker error is found on the following targets:

Description This linker error will not occur unless you have modified the com-
pilers resources. If you receive this linker error, contact Metrowerks
Technical Support.

Undefined symbol: <Var> in file:

Compatibility This linker error is found on the following targets:

Description The linker was unable to find the symbol Var.

Fix Usually this is due to a spelling error, missing library or a source
code that was not added to the project.

undefined: <symbol1> class> referenced from <symbol2> in
<filename>

Compatibility This linker error is found on the following targets:

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS
Error Reference ERRÐ249

Linker Error Messages
Linker Errors
Description The named symbol was referenced but never defined. As a special
case, you'll get an undefined message for the symbol __procinfo
(data) if you make a Native code resource that is not one of the
known resource types: CDEF, MDEF, MBDF, LDEF, WDEF, cdev, XCMD,
or XFCN.

NOTE: Multiple references to the same undefined symbol are re-
ported in a single message.

Fix To avoid this error, you must define a global variable __procinfo
of type unsigned long initialized to the proper MixedMode flags
placed in the RoutineDescriptor that becomes part of the Native
code resource. Consult the comments in the MixedMode.h for de-
tails on RoutineDescriptor flags.

unsupported XCOFF relocation (x, y, z) in <filename>

Compatibility This linker error is found on the following targets:

Description The named XCOFF file was valid but contained some relocation in-
formation that is not supported by the CodeWarrior linker.

Fix Make sure that the XCOFF file was assembled without symbolic de-
bugging information. If the error still occurs, contact Metrowerks
Tech Support.

User requested termination

Compatibility This linker error is found on the following targets:

Description The build was terminated by the user.

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS

Mac68k MacPPC CFM68k Win32 BeOS PS OS Palm RTOS
ERRÐ250 Error Reference

Linker Error Messages
Linker Errors
Error Reference ERRÐ251

Linker Error Messages
Linker Errors
ERRÐ252 Error Reference

Index
C
Compiler Errors

C/C++ 68k 9
C/C++ PPC 9
Pascal 68k 85
Pascal PPC 85

Compiler Errors Win32/x86 9

E
Errors

Compiler C/C++ 9
Compiler Pascal 85
Font Explanations 5
Linker C/C++ 215

Explanations
Font Conventions 5

L
Linker Errors

C/C++ Linker Errors 68k 215
C/C++ Linker Errors PPC 215
C/C++ Linker Errors Win32/x86 215
Error Reference ERRÐ253

ERRÐ254 Error Reference

CodeWarrior

Error Reference

Credits

writing lead: John Roseborough

other writers: Ron Liechty, Marc Paquette

engineering: Marcel Achim, Mark Anderson, Berar-
dino Barrata, Pascal Cleve, Michael Cord-
ery, Andreas Hommel, John McEnerney,
Clinton Popetz, Cam Vien

frontline warriors: Metrowerks Technical Support

Guide to CodeWarrior Documentation
CodeWarrior documentation is modular, like the underlying tools. There are manuals
for the core tools, languages, libraries, and targets. The exact documentation provided
with any CodeWarrior product is tailored to the tools included with the product. Your
product will not have every manual listed here. However, you will probably have addi-
tional manuals (not listed here) for utilities or other software specific to your product.

Core Documentation

IDE User Guide How to use the CodeWarrior IDE

Debugger User Guide How to use the CodeWarrior debugger

CodeWarrior Core Tutorials Step-by-step introduction to IDE components

Language/Compiler Documentation

C Compilers Reference Information on the C/C++ front-end compiler

Pascal Compilers Reference Information on the Pascal front-end compiler

Error Reference Comprehensive list of compiler/linker error messages, with many Þxes

Pascal Language Reference The Metrowerks implementation of ANS Pascal

Assembler Guide Stand-alone assembler syntax

Command-Line Tools Reference Command-line options for Mac OS and Be compilers

Plugin API Manual The CodeWarrior plugin compiler/linker API

Library Documentation

MSL C Reference Function reference for the Metrowerks ANSI standard C library

MSL C++ Reference Function reference for the Metrowerks ANSI standard C++ library

Pascal Library Reference Function reference for the Metrowerks ANS Pascal library

MFC Reference Reference for the Microsoft Foundation Classes for Win32

Win32 SDK Reference MicrosoftÕs Reference for the Win32 API

The PowerPlant Book Introductory guide to the Metrowerks application framework for Mac OS

PowerPlant Advanced Topics Advanced topics in PowerPlant programming for Mac OS

Targeting Manuals

Targeting BeOS How to use CodeWarrior to program for BeOS

Targeting Java VM How to use CodeWarrior to program for the Java Virtual Machine

Targeting Mac OS How to use CodeWarrior to program for Mac OS

Targeting MIPS How to use CodeWarrior to program for MIPS embedded processors

Targeting NEC V810/830 How to use CodeWarrior to program for NEC V810/830 processors

Targeting Net Yaroze How to use CodeWarrior to program for Net Yaroze game console

Targeting Nucleus How to use CodeWarrior to program for the Nucleus RTOS

Targeting OS-9 How to use CodeWarrior to program for the OS-9 RTOS

Targeting Palm OS How to use CodeWarrior to program for Palm OS

Targeting PlayStation OS How to use CodeWarrior to program for the PlayStation game console

Targeting PowerPC Embedded Systems How to use CodeWarrior to program for PPC embedded processors

Targeting VxWorks How to use CodeWarrior to program for the VxWorks RTOS

Targeting Win32 How to use CodeWarrior to program for Windows

	Table of Contents
	Introduction
	Overview of the Error Reference
	Conventions Used in This Manual
	Settings Affect Errors

	C/C++ Compiler Error Messages
	C/C++ Compiler Errors
	Symbol Names (C/C++)
	Punctuation (C/C++)
	A to C (C/C++)
	D to F (C/C++)
	G to I (C/C++)
	J to L (C/C++)
	M to O (C/C++)
	P to R (C/C++)
	S to T (C/C++)
	U to Z (C/C++)

	Pascal Compiler Error Messages
	Pascal Compiler Errors
	Symbol Names (Pascal)
	Punctuation (Pascal)
	A to C (Pascal)
	D to F (Pascal)
	G to I (Pascal)
	J to L (Pascal)
	M to O (Pascal)
	P to R (Pascal)
	S to T (Pascal)
	U to Z (Pascal)

	Java Error Messages
	Java Compiler Errors
	Symbol Names (Java)
	Punctuation Marks (Java)
	A to B (Java)
	C (Java)
	D to F (Java)
	G to I (Java)
	J to N (Java)
	O to R (Java)
	S to U (Java)
	V to Z (Java)

	Linker Error Messages
	Typography Notes for Linker Error Messages
	Linker Errors
	Symbol Names (Linker)
	A to C (Linker)
	D to F (Linker)
	G to I (Linker)
	J to L (Linker)
	M to O (Linker)
	P to T (Linker)
	U to Z (Linker)

