

CodeWarrior ®

Targeting Dreamcast

Because of last-minute changes to CodeWarrior,
some of the information in this manual may be

inaccurate. Please read the Release Notes on the
CodeWarrior CD for the latest up-to-date information.

Revised: 000301 rw

Metrowerks CodeWarrior copyright ©1993–2000 by Metrowerks, Inc. and its
licensors. All rights reserved.
Documentation stored on the compact disk(s) may be printed by licensee for personal
use. Except for the foregoing, no part of this documentation may be reproduced or
transmitted in any form by any means, electronic or mechanical, including
photocopying, recording, or any information storage and retrieval system, without
permission in writing from Metrowerks, Inc.
Metrowerks, the Metrowerks logo, CodeWarrior, PowerPlant, and Metrowerks
University are registered trademarks of Metrowerks Inc. CodeWarrior Constructor,
Geekware, PowerParts, and Discover Programming are trademarks of Metrowerks
Inc.
All other trademarks and registered trademarks are the property of their respective
owners.
ALL SOFTWARE AND DOCUMENTATION ON THE COMPACT DISK(S) ARE
SUBJECT TO THE LICENSE AGREEMENT IN THE CD BOOKLET.

How to Contact Metrowerks:

U.S.A. and International Metrowerks Corporation
9801 Metric Blvd., Suite #100
Austin, TX 78758
U.S.A.

Canada Metrowerks Inc.
1500 du College, Suite #300
Ville St-Laurent, QC
Canada H4L 5G6

World Wide Web http://www.metrowerks.com

Registration Information http://www.metrowerks.com/register
mailto:register@metrowerks.com

Desktop Technical Support http://www.metrowerks.com/support/desktop/
mailto:cw_support@metrowerks.com

Embedded Technical Support http://www.metrowerks.com/support/embedded/
mailto:cw_emb_support@metrowerks.com

Sales, Marketing, & Licensing mailto:sales@metrowerks.com

Ordering Voice: (800) 377–5416
Fax: (512) 873–4901

Intl. Sales, Mkt & Licensing mailto:intlsls@metrowerks.com

International Ordering Voice: +1 512 873 4724
Fax: +1 512 873 4901

Table of Contents

1 Introduction 9
Read the Release Notes! 9
What’s New in This Release 10

Flexible Linker Command File Language 10
Complete SHC Intrinsics Support 10
More Inline Assembly Instructions 10

CodeWarrior and Its Documentation 10
What’s in This Manual 12
Where To Go from Here 13

2 Getting Started 15
System Requirements 15
Installing CodeWarrior for Dreamcast 16

Installing the CodeWarrior for Dreamcast Software 16
Installing the Dreamcast Runtime Library 17
Making Sure Your Dreamcast Development System Works 17

3 The Dreamcast Tools 21
Introduction to the Dreamcast Tools 21

CodeWarrior IDE 22
CodeWarrior Compiler for Dreamcast 22
CodeWarrior Assembler for Dreamcast 23
CodeWarrior Linker for Dreamcast 23
CodeWarrior Debugger for Dreamcast 23
Codescape Debugger for Dreamcast 23

The Development Process with CodeWarrior. 24

4 Creating Applications 27
Creating an Application 27

5 Creating Static Libraries 35
About Static Libraries. 35
Creating a Static Library. 35

6 Converting SH Projects 37
Steps for Converting SH Projects 37
Targeting Dreamcast SGA–3

Table of Contents

7 Debugging For Dreamcast 43
Debugging with CodeWarrior 43
Using mw_pr() . 44
Debugging Static Libraries. 45

8 Debugging With Codescape 47
Debugging with the Codescape debugger 47
Using printf() . 49

9 Target Settings for Dreamcast 51
Target Settings Overview 51
Settings Panels for Dreamcast 53

Target Settings . 53
SH Target . 56
ELF Disassembler 58
SH Processor . 61
Global Optimizations 62
BatchRunner PostLinker 65
LCF Prelinker . 65
SH Linker. 67

10 C and C++ for Dreamcast 73
Number Formats for Dreamcast 74

Dreamcast Integer Formats 74
Dreamcast Floating-Point Formats 75

Calling Conventions for Dreamcast 75
Variable Allocation for Dreamcast 76
Optimizing Code for Dreamcast 76
Pragmas for Dreamcast 79
C++ issues for Dreamcast 80

Exception Handling 81
Streams and IO Classes 82
Other Restrictions 82

11 ELF Linker and Command Language 83
Structure of Linker Command Files 84

Closure Blocks . 84
Memory Segment 85
SGA–4 Targeting Dreamcast

Table of Contents

Sections Segment 86
Linker Command File Syntax 87

Alignment . 87
Arithmetic Operations 88
Comments . 88
Deadstrip Prevention 89
Exception Tables . 89
Expressions, Variables and Integral Types 89
File Selection . 91
Function Selection. 92
Stack and Heap . 93
Static Initializers. 93
Writing Data Directly to Memory 94

Alphabetical Keyword Listing 95
. (location counter) 96
ADDR . 96
ALIGN . 97
ALIGNALL . 97
EXCEPTION. 98
FORCE_ACTIVE 98
GROUP . 98
INCLUDE . 99
KEEP_SECTION . 99
MEMORY. 99
OBJECT . . 101
OVERLAYID . 101
REF_INCLUDE . 102
SECTIONS . 102
SIZEOF . . 103
STATICINIT . 103
WRITEB . 103
WRITEH . 104
WRITEW . . 104

12 Linker Issues for Dreamcast 105
Deadstripping Unused Code and Data 105
Link Order . 106
Targeting Dreamcast SGA–5

Table of Contents

Function Reordering 107

13 Inline Assembler and Intrinsics for Dreamcast 109
Working with Inline Assembly 109

Inline Assembly Syntax 109
Using Labels . 111
Using Comments 112
Using Registers . 112

Assembler Directives 113
Intrinsic Functions 115

List of Intrinsic Functions 116
Hitachi SH C Compiler-compatible Intrinsic Functions . . 117

Mnemonics for Inline Assembly. 127
Special Instructions for Inline Assembly 127
Complete List of Inline Assembly Mnemonics 129

14 Overlays 139
Building an Overlay Project 139
Overlay Notes . . 146

Overlays and Exceptions 147
Overlay Header . 147
GDWorkshop . . 147

15 Libraries and Runtime Code for Dreamcast 149
Metrowerks Utility Library 149

MWBload() . . 150
MWNotifyOverlayLoaded() 150
MWInitOverlay() 150
MWLoadOverlay(). 150

Runtime Libraries . 151
Allocating Memory and Heaps 151

16 Command Line Tools 153
Differences between Command Line Tools and IDE 153

Overlay Support 153
Linker Command File Generator 154

Locating the Command Line Tools 154
Command Line Switches 154
SGA–6 Targeting Dreamcast

Table of Contents

Switches for the mwasmshx Assembler 154
Switches for the mwccshx Compiler 155

Setting Up Environment Variables 155
C/C++ Compiler Variables 155
Linker Variables 156

Compiling and Linking. 156

17 Troubleshooting for Dreamcast 159
Hardware Communications. 159
Compiler Problems. 160
Debugger Problems. 160

Index 161
Targeting Dreamcast SGA–7

Table of Contents

SGA–8 Targeting Dreamcast

1
Introduction

This manual describes how to use CodeWarrior to develop code
targeted at the Dreamcast platform. This includes stand-alone
application programs and static libraries.

The manual also shows how to set Dreamcast project options,
and describes CodeWarrior’s Dreamcast specific run-time
libraries.

The introduction includes the following sections:

• Read the Release Notes! —where to go for critical, last-second
details

• What’s New in This Release —new features since the
previous release

• CodeWarrior and Its Documentation —a general description
of the CodeWarrior architecture and documentation

• What’s in This Manual —a description of the contents of this
manual

• Where To Go from Here —recommendations for further
reading

Read the Release Notes!
Before you use the CodeWarrior IDE or a particular tool, you
should read the release notes. They contain important last-
minute information about new features, bug fixes, and
incompatibilities that may not be included in the documentation.

The release notes folder is always included as part of a standard
CodeWarrior installation. The release notes folder is also located
at the top level of the CodeWarrior CD.
Targeting Dreamcast SGA–9

Introduct ion

What’s New in This Release

What’s New in This Release
The CodeWarrior product for Dreamcast development has some
new features. The following are most notable.

Flexible Linker Command File Language

The CodeWarrior linker uses a new command file language to
arrange your code and data. The new linker command file format
allows more flexibility in positioning than the previous version.

Complete SHC Intrinsics Support

It is now possible to use all of Hitachi’s SHC compiler intrinsics
in your CodeWarrior projects. Every intrinsic is supported.

More Inline Assembly Instructions

The new CodeWarrior compiler supports more inline assembly
instructions and parameters than before. The additional
instructions include AND.B, STC, STC.L , LDC, LDC.L , MOV.B,
MOV.W, MOV.L, OR.B, TST.B , and XOR.B.

CodeWarrior and Its Documentation
CodeWarrior is a multi-host, multi-language, multi-target
development environment. What does that mean?

Multiple hosts CodeWarrior runs on several different
operating systems including Windows, Solaris, and Mac OS. The
features, human interface, and operation of CodeWarrior is very
similar on all hosts.

Multiple languages You can use CodeWarrior to program in
several languages, including C/C++, Pascal, and Java. Third-party
compilers provide support for other languages such as Fortran.
Which languages are available to you depend upon the target for
which you are developing software.

Multiple targets You can use CodeWarrior to write software
for several different chips or operating systems. CodeWarrior
products support programming for game consoles, embedded
SGA–10 Targeting Dreamcast

Introduct ion

CodeWarrior and Its Documentation

processors, real-time operating systems, the Java Virtual
Machine, and desktop operating systems such as Windows and
Mac OS.

Most features of CodeWarrior apply regardless of your preferred
host, language, or target. General features of CodeWarrior are
described in other manuals, such as the IDE User Guide and
Debugger User Guide.

However, each target has its own unique features. This manual
describes those unique features.

For a complete understanding of CodeWarrior, you must refer to
both the general documentation and the documentation that is
specific to your particular target, such as this manual.

The documentation is organized so that various chapters in this
manual are extensions of particular generic manuals, as shown
in Table 1.1 . For a complete discussion of a particular subject, you
may need to look in both the generic manual and the
corresponding chapter in this Targeting manual.

Table 1.1 CodeWarrior documentation organization

For example, to completely understand the C/C++ compiler, you
need to know information in the C Compilers Reference (which
covers the C/C++ front-end compiler) and the information in
the C and C++ for Dreamcast chapter in this manual, which
covers the back-end compiler that generates your Dreamcast
specific code.

This chapter... Extends...

Creating Applications
Creating Static Libraries

Core Tutorials

The Dreamcast Tools
Target Settings for Dreamcast

IDE User Guide

“Debugging For Dreamcast” Debugger User Guide

C and C++ for Dreamcast C Compilers Reference
Targeting Dreamcast SGA–11

Introduct ion

What’s in This Manual

What’s in This Manual
Table 1.2 lists every chapter in this manual, and describes the
information contained in each. However, this manual only
contains information specific to Dreamcast software
development. See “CodeWarrior and Its Documentation” on
page 10 for a discussion of how these chapters relate to other
CodeWarrior documentation.

Table 1.2 Contents of chapters

Chapter Description

Introduction this chapter

Installing CodeWarrior
for Dreamcast

how to install CodeWarrior for
Dreamcast

The Dreamcast Tools describes the tools for Dreamcast

Creating Applications how to build applications for
Dreamcast

Creating Static Libraries how to build libraries for
Dreamcast

Converting SH Projects how to convert existing projects
into CodeWarrior projects

Debugging For Dreamcast how to debug your Dreamcast
applications with CodeWarrior

Debugging With
Codescape

how to interface CodeWarrior
with the external Codescape
debugger

Target Settings for
Dreamcast

how to control the compiler and
linker for Dreamcast

C and C++ for Dreamcast details of the C/C++ compiler for
Dreamcast development.

ELF Linker and
Command Language

explores the linker and its
command file syntax
SGA–12 Targeting Dreamcast

Introduct ion
Where To Go from Here
Where To Go from Here
The manuals mentioned in this section are all on the
CodeWarrior CD.

For everyone:

• For complete information about the CodeWarrior integrated
development environment, see the IDE User Guide

• For information specific to the C/C++ front-end compiler, see
the C Compilers Reference.

For reference information on Dreamcast programming:

Please contact the provider of your Dreamcast development
hardware for programming manuals specific to Dreamcast and
its SH processor.

Linker Issues for
Dreamcast

examines Dreamcast specific
linker issues

Inline Assembler and
Intrinsics for Dreamcast

details support for inline assembly
and instrinsic functions

Overlays how to create and debug overlays

Libraries and Runtime
Code for Dreamcast

libraries provided with
CodeWarrior for Dreamcast

Command Line Tools how to use command line tools

Troubleshooting for
Dreamcast

troubleshooting information
specific to Dreamcast development

Chapter Description
Targeting Dreamcast SGA–13

Introduct ion
Where To Go from Here
SGA–14 Targeting Dreamcast

2
Getting Started

This chapter gives you the information you need to install
CodeWarrior and begin programming the Dreamcast game
console.

This chapter includes the following topics:

• System Requirements — hardware and software
requirements

• Installing CodeWarrior for Dreamcast — how to install the
various tools

System Requirements
• A Pentium-class or higher computer. For best performance,

we recommend a Pentium II-class processor.

• Windows 95/98, or Windows NT 4.0 operating system

• 500MB of hard disk space.

• A minimum of 32MB RAM. 64MB RAM is preferred.

• A CD-ROM drive to install CodeWarrior software,
documentation, and examples.

In addition to the requirements above, you also need:

• HKT-01 development hardware, revision 5-24. The serial
number on the bottom of your HKT-01 contains the revision
code. If the serial number does not begin " S524... ", contact
Sega for new hardware.

• Sega Dreamcast SDK libraries.
Targeting Dreamcast SGA–15

Gett ing Started
Installing CodeWarrior for Dreamcast
Installing CodeWarrior for Dreamcast
Programming for the Dreamcast game console requires installing
and configuring both the CodeWarrior development tools and
the Dreamcast development hardware.

Installing and configuring the software is not immediately
obvious, so this chapter is essential reading. At this point, you
should have the Dreamcast development hardware connected to
your PC.

Before you can begin using the CodeWarrior tools, you must

1. Install CodeWarrior

For complete details, see “Installing the CodeWarrior for
Dreamcast Software” on page 16.

2. Install the Dreamcast libraries

For complete details, see “Installing the Dreamcast
Runtime Library” on page 17.

3. Test your system.

Before you begin programming, see “Making Sure Your
Dreamcast Development System Works” on page 17.

Installing the CodeWarrior for Dreamcast
Software

Your first step towards developing software for your target is to
install the CodeWarrior tools.

Double-click the setup.exe file from the CD, and follow the
instructions that the installation wizard provides. If you have
any questions regarding the installer, read the instructions built
into the CodeWarrior Installer for further information.
SGA–16 Targeting Dreamcast

Gett ing Started
Installing CodeWarrior for Dreamcast
NOTE If you are using a dual-boot system with Windows 95/98 and
Windows NT installed, install the tools on Windows 95/98 first.
When you finish the 95/98 installation, shutdown, reboot into
Windows NT, and install the CodeWarrior tools in the same
directory selected in the Windows 95/98 installation.

This completes the CodeWarrior for Dreamcast tools installation.

Installing the Dreamcast Runtime Library

The Sega Dreamcast SDK libraries are used in almost every
Dreamcast project you develop.

In this release, we have included CodeWarrior-compatible
versions of the Sega Dreamcast SDK libraries in the folder named
"Dreamcast Support ". They are automatically copied over as
part of the installation procedure.

Making Sure Your Dreamcast Development
System Works

After installing the software, you should make sure it works. To
do this, compile and execute the sample that is included in the
CodeWarrior example files.

1. Launch the CodeWarrior IDE

Locate the icon for the CodeWarrior IDE, and launch the
application.

2. Open the project.

From the File menu, choose the Open item. The dialog box in
Figure 2.1 appears.

Locate the project Dreamcast Examples/SDK 1.56j/
sample3d/teapot/cw/cw.mcp .
Targeting Dreamcast SGA–17

Gett ing Started
Installing CodeWarrior for Dreamcast
Figure 2.1 The 'open' dialog box

Select the project file and open it. The CodeWarrior project
window will appear, as shown in Figure 2.2 .

The project window is the central location from which you
control development. This is where you can add or remove
source files, add libraries of code, compile your code, generate
debugging information, and much more. For full information
on the CodeWarrior IDE and project manager, you should see the
CodeWarrior IDE User Guide.
SGA–18 Targeting Dreamcast

Gett ing Started
Installing CodeWarrior for Dreamcast
Figure 2.2 The 'project' window

3. Build the project.

Choose the Make command from the Project menu to build the
project. CodeWarrior will compile and link your project into a
program file called teapot_debug.elf .

4. Debug the project.

Click the Debug command from the Project menu. After
CodeWarrior uploads the compiled teapot program to your HKT-
01 hardware, the program window will appear as shown in
Figure 2.3 .
Targeting Dreamcast SGA–19

Gett ing Started
Installing CodeWarrior for Dreamcast
Figure 2.3 The 'program' window

5. Run the project.

Click the Run command from the Project menu. If your software
and hardware are set up correctly, the teapot demo will run, as
shown in Figure 2.4 .

Figure 2.4 The teapot demo
SGA–20 Targeting Dreamcast

3
The Dreamcast Tools

This chapter briefly explains the CodeWarrior for Dreamcast
development environment.

For new CodeWarrior users, this chapter provides a brief
overview of the CodeWarrior development environment, as
well as a description of the development process in CodeWarrior
as compared to a command-line environment.

The topics in the chapter are:

• Introduction to the Dreamcast Tools

• The Development Process with CodeWarrior

Introduction to the Dreamcast Tools
Programming with CodeWarrior for Dreamcast is much like
programming for any other CodeWarrior target. If you have
never used CodeWarrior before, the tools you will need to
become familiar with are:

• CodeWarrior IDE

• CodeWarrior Compiler for Dreamcast

• CodeWarrior Assembler for Dreamcast

• CodeWarrior Linker for Dreamcast

• Codescape Debugger for Dreamcast

If you are an experienced CodeWarrior user, this is the same IDE
and debugger you’ve been using all along.
Targeting Dreamcast SGA–21

The Dreamcast Tools
Introduction to the Dreamcast Tools
CodeWarrior IDE

The CodeWarrior IDE is the application that allows you to write
your executable. It controls the project manager, the source code,
editor, the class browser, and the compilers and linkers.

The CodeWarrior project manager may be new to those more
familiar with command-line development tools. All files related
to your project are organized in the project manager. This allows
you to see your project at a glance, and eases the organization of
and navigation between your source code files.

For more information about how the CodeWarrior IDE
compares to a command-line environment, see “The
Development Process with CodeWarrior” on page 24. That short
section discusses how various parts of the IDE implement the
classic features of a makefile-based command-line development
system.

The CodeWarrior IDE has an extensible architecture that uses
plug-in compilers and linkers to target various operating systems
and microprocessors. The CodeWarrior for Dreamcast package
includes a C/C++ compiler for the Hitachi SH4 processor. Other
CodeWarrior packages include C and C++ compilers for x86 and
68000 processors, among other platforms.

For more information about the CodeWarrior IDE, you should
read the CodeWarrior IDE User Guide.

CodeWarrior Compiler for Dreamcast

The CodeWarrior compiler for Dreamcast is an ANSI compliant
C/C++ compiler. This compiler is based on the same compiler
architecture that is used in all of the CodeWarrior C/C++
compilers. When used with the CodeWarrior linker for
Dreamcast, you can generated Dreamcast applications and
libraries.

For more information on the Compiler Settings, see “Target
Settings for Dreamcast” on page 51. For more information about
the CodeWarrior C/C++ language implementation, you should
read the C Compiler Guide.
SGA–22 Targeting Dreamcast

The Dreamcast Tools
Introduction to the Dreamcast Tools
CodeWarrior Assembler for Dreamcast

The CodeWarrior assembler for Dreamcast allows you to include
assembly source code as part of your project.

For more information about Dreamcast assembly programming,
you should read Hitachi’s SH4 Assembler Guide.

CodeWarrior Linker for Dreamcast

The CodeWarrior linker for Dreamcast links object code into an
ELF format executable. It also generates DWARF format
debugging information. This linker creates code using absolute
addressing.

For more information about the linker settings, see “Target
Settings for Dreamcast” on page 51.

CodeWarrior Debugger for Dreamcast

CodeWarrior’s debugger allows you to see what is happening
inside your application as it runs.

You use the debugger to find problems in your program’s
execution. The debugger can execute your program one
statement at a time and suspend execution when you reach a
specified point. When the debugger stops a program, you can
view the chain of function calls, examine and change the values
of variables, and inspect the content of the processor’s registers.

For general information about debugging, including all of its
features and its visual interface, you should read the Debugger
User Guide. Specific information pertaining to debugging the
Dreamcast can be found in “Debugging For Dreamcast” on
page 43.

Codescape Debugger for Dreamcast

The Codescape debugger from Cross Products is a stand-alone
application seperate from the CodeWarrior IDE.
Targeting Dreamcast SGA–23

The Dreamcast Tools
The Development Process with CodeWarrior
For general information about the Codescape debugger,
including all of its features and its visual interface, you should
read the Codescape for Set 5 User Guide.

The Development Process with CodeWarrior
While working with CodeWarrior, you will still proceed
through the development stages familiar to all programmers:
write code, compile, link, and debug. For complete information
on performing software development tasks like editing,
compiling, and linking, refer to the CodeWarrior IDE User Guide.
For debugging using Codescape, see the Codescape for Set 5 User
Guide.

The difference between CodeWarrior and traditional command
line environments is in how the software (in this case the IDE)
helps you manage your work more effectively. If you are
unfamiliar with an integrated environment in general, or with
CodeWarrior in particular, you may find the topics in this section
helpful. Each topic discusses how one component of the
CodeWarrior tools relates to a traditional command line
environment.

Read these topics to find out how using the CodeWarrior IDE
differs from command line programming.

• Makefiles —the IDE uses a project to control source file
dependencies and settings for compilers and linkers

• Editing —an overview of source code editing from the IDE

• Compiling —how the IDE performs compile operations

• Linking —how the linker performs linking operations

• Debugging—how to debug a program

Makefiles

The CodeWarrior IDE project is analogous to a makefile. Because
you can have multiple builds in the same project, in fact the
project is analogous to a collection of makefiles. For example, you
can have one project that has both a debug version and a release
version of your code. You can build one or the other, or both as
SGA–24 Targeting Dreamcast

The Dreamcast Tools
The Development Process with CodeWarrior
you wish. In CodeWarrior, these different builds within a single
project are called “targets”.

The IDE uses the project manager window to list all the files in
the project. Among the kinds of files in a project are source code
files and libraries.

You can add or remove files easily. You can assign files to one or
more different targets within the project, so files common to
multiple targets can be managed simply.

The IDE manages all the interdependencies between files
automatically, and tracks which files have been changed since
the last build. When you rebuild, only those files that have
changed are recompiled.

The IDE also stores the settings for compiler and linker options
in the project. You can modify these settings using the IDE, or use
#pragma statements in your code.

Editing

The CodeWarrior IDE has an integral text editor to edit source
code. It handles text files in MS-DOS/Windows, UNIX, and Mac
OS formats.

To edit a source code file, or any other editable file that is in a
project, just double-click the file’s name in the project window to
open the file.

The editor window has excellent navigational features that allow
you to switch between related files, locate any particular function,
mark any location within a file, or go to a specific line of code.

Compiling

To compile a source code file, it must be among the files that are
part of the current target. If it is, you simply select it in the project
window and choose Compile from the Project menu.

To compile all the files in the current target that have been
modified since they were last compiled, choose Bring Up To Date
in the Project menu.
Targeting Dreamcast SGA–25

The Dreamcast Tools
The Development Process with CodeWarrior
In UNIX and other command-line environments, object code
compiled from a source code file is stored in a binary file (a “.o”
or “.obj” file). The CodeWarrior IDE stores and manages object
files transparently.

Linking

Linking object code into a final binary is easy: use the Make
command in the Project menu. The Make command brings the
active project up to date, then links the resulting object code into
a final output file.

You control the linker through the IDE. There is no need to
specify a list of object files. The project manager tracks all the
object files automatically.

You can use the project manager to specify link order as well.

Debugging

To debug a project, select Debug from the Project menu.
SGA–26 Targeting Dreamcast

4
Creating Applications

A Dreamcast application is a stand-alone, executable program.
You compiled and ran one such Dreamcast application when you
verified your CodeWarrior installation.

In this chapter, we will take this one step further, and show you
how to create your own application.

This chapter includes the following topic:

• Creating an Application

Creating an Application
To create a Dreamcast application, perform the following steps:

1. Display the New Project dialog box.

Choose the File > New Project. The CodeWarrior IDE displays
the New dialog box as seen in Figure 4.1 . Give your project a
name and location. In this example, our project name is
tetrafish , and its location is D:\XYZgame\tetrafish .
Targeting Dreamcast SGA–27

Creat ing Appl icat ions
Creating an Application
Figure 4.1 The New dialog box

2. Select your project stationery.

Click on the line containing the Dreamcast stationery you want,
then click OK. For this example, select C/C++ App (no source)
(Figure 4.2).
SGA–28 Targeting Dreamcast

Creat ing Appl icat ions
Creating an Application
Figure 4.2 Stationery selection dialog box

3. Examine the project window contents

When you clicked OK, the CodeWarrior IDE created a new
project file in the designated directory, with the conventional
extension .mcp.

The project window you see on your screen contains the Sega
SDK libraries and an empty place for your program’s source files.
It should resemble the window shown in Figure 4.3
Targeting Dreamcast SGA–29

Creat ing Appl icat ions
Creating an Application
Figure 4.3 Project window

4. Modify the contents of the new project.

You will want to add your own source files to your new project.
Figure 4.4 shows the project window with some source files
added.
SGA–30 Targeting Dreamcast

Creat ing Appl icat ions
Creating an Application
Figure 4.4 Project window with modifications

5. Open the Target Settings window.

Make sure your project window is active (front-most) on the
screen, then choose the Settings command from the Edit menu.
(The command actually appears on the menu as Target Settings,
where Target is the name of the project’s currently selected target.
In the project shown in Figure 4.4 , for example, the name of the
command would be debug Settings).
Targeting Dreamcast SGA–31

Creat ing Appl icat ions
Creating an Application
Figure 4.5 Target settings dialog box

CodeWarrior displays the Target Settings dialog box in which
you can specify various optional settings for your project. This
dialog box is shown in Figure 4.5 .

For Dreamcast projects, you must specify settings for the target
platform, the project type, the compiler, and the linker. There are
other, optional settings that you can specify as well.
SGA–32 Targeting Dreamcast

Creat ing Appl icat ions
Creating an Application
Figure 4.6 Target Settings panel

6. Specify target settings.

A list of settings panels are displayed to the left of the Target
Settings dialog box. Select Target Settings; the window will
display the Target Settings panel for the project’s currently
selected target, as shown in Figure 4.6 . The Linker setting is preset
to SH Linker by the project stationery you selected, but you can
edit the target’s name or change other settings if you wish.

7. Set the project type.

Click SH Target in the panel list to display the settings panel
shown in Figure 4.7 . Again, the project type and other default
settings are preset for you by the project stationery. For an
application project, you should leave the project type set to
Application, but you can modify the output file name and other
settings if you wish.

Figure 4.7 SH Target settings for application projects

4. Specify additional settings.
Targeting Dreamcast SGA–33

Creat ing Appl icat ions
Creating an Application
You can continue to display other project settings panels
and specify any settings you wish. For more information
on the various panels and settings available, see “Target
Settings for Dreamcast” on page 51 as well as the relevant
sections of the IDE User Guide, and the C Compilers Reference.

When you’re finished specifying project settings, close the
project settings window

5. Build your project.

After your project is created and its contents and all
necessary settings are specified, you’re ready to compile
and debug your code. The Make command on the Project
menu compiles and links your project. If successful the
resulting output file is stored in your project folder under
the name you specified in the SH Target settings panel.

For more information on compiling and linking, see the
IDE User Guide.

6. Debug your application.

Once you have successfully built your project, you can
launch the debugger to debug and run your code.
SGA–34 Targeting Dreamcast

5
Creating Static Libraries

This chapter describes the role of static libraries in Dreamcast
projects and how to create them.

Topics in this chapter are:

• About Static Libraries

• Creating a Static Library

See also “Creating Applications” on page 27 for information on
creating executable applications. For more information on
projects in general, see the IDE User Guide.

About Static Libraries
A static library is a collection of functions and data that can be
incorporated into an application program (or another library).
You can use predefined libraries supplied with CodeWarrior, and
you can create your own custom-designed libraries for use in
your own projects.

Creating a Static Library
The steps for creating a static library are essentially the same as
those for creating a stand-alone application, but with the
following exceptions:

The Project Type in the SH Target settings panel shown in Figure
5.1 must be set to Library instead of Application.
Targeting Dreamcast SGA–35

Creat ing Stat ic Librar ies
Creating a Static Library
Figure 5.1 SH Target panel

• You may invent your own naming convention, or you may
use ours. Our naming convention is to use the file name
extension .elf.lib for libraries and .elf for executables.

• After successfully building your static library, you incorporate
it into another application by adding it to the project window
before building the application.

• You cannot debug a static library by itself, but you can debug it
as part of the application in which it is included.

See “Creating an Application” on page 27 for step-by-step
instructions on creating an application project. For details on the
various project settings and panels available, see “Target Settings
for Dreamcast” on page 51 as well as the relevant sections of the
IDE User Guide and the C Compilers Reference.
SGA–36 Targeting Dreamcast

6
Converting SH Projects

This chapter shows you how to make CodeWarrior projects out
of existing, makefile-based SH projects.

The topic covered in this chapter is:

• Steps for Converting SH Projects

Steps for Converting SH Projects
In the steps that follow, we will convert the SDK Teapot demo
into a CodeWarrior project we can compile, link, and debug.

1. Copy the teapot sample to its own folder.

Copy all the teapot files to a new folder. In our example shown in
Figure 6.1 , our new teapot folder is on G:\ .

Figure 6.1 Copying teapot files to a new folder
Targeting Dreamcast SGA–37

Convert ing SH Projects
Steps for Converting SH Projects
2. Create a new project.

In CodeWarrior, choose New Project from the File menu. From
the New Project window, select the Dreamcast C app (no source)
stationery as shown in Figure 6.2 , and click OK.

Figure 6.2 Select the Dreamcast C app (no source) stationery

Please note that we do not check the Create Folder checkbox. We
already have a folder for our new CodeWarrior project—the
copied teapot folder. As in Figure 6.3 , save your new project in
the teapot folder, with the file name teapot .

Figure 6.3 Start the new project in the teapot folder
SGA–38 Targeting Dreamcast

Convert ing SH Projects
Steps for Converting SH Projects
3. Add the source files from the makefile.

The Makeuser file contains the names of the source files we want
to add to our project. Open the Makeuser file that is in the teapot
folder.

Figure 6.4 Finding source files in Makeuser

The files listed in Figure 6.4 need to be added to our project.
Placing them into our sources group will help keep our project
organized.

Highlight the Sources group folder in the project window. From
the Project menu, select Add Files... This takes you to the file
selection dialog shown in Figure 6.5 . From here, you can select
the source files from the teapot folder and add them to the
project.The files you add are automatically placed at the bottom
of the link order.
Targeting Dreamcast SGA–39

Convert ing SH Projects
Steps for Converting SH Projects
Figure 6.5 Adding source files to the project window

Please note that you do not have to add nindows.lib . The
CodeWarrior version, nindows.elf.lib , was included as part
of the stationery. It is located inside the Libraries\ USER_LIBS
group.

After adding the sources, your project window will resemble
Figure 6.6 .

Figure 6.6 All files have been added
SGA–40 Targeting Dreamcast

Convert ing SH Projects
Steps for Converting SH Projects
4. Convert assembler files.

Before teapot will compile on CodeWarrior, we must make a few
changes to the assembly source file, global32.src , shown in
Figure 6.7 . The assembler directives in the global32.src file
control the behaviour of the Hitachi assembler. The
CodeWarrior assembler uses slightly different directives, so we
have to replace the Hitachi assembler directives with the
CodeWarrior equivalents.

Figure 6.7 Convert Hitachi assembler to CodeWarrior assembler

Hitachi’s .SECTION directive specifies the B32 section as a bss
section aligned on 32 bytes. The CodeWarrior equivalent of this
is:

SECTION B32, 32, 1, 3
.ALIGN 32

Replace the Hitachi .SECTION directive with the CodeWarrior
directive.

NOTE For a complete list of ELF section flags, see the “Using Directives”
chapter of the SH Assembler Reference.

In CodeWarrior, we use .SPACE instead of .RES.B . Replace all
instances of .RES.B with .SPACE.
Targeting Dreamcast SGA–41

Convert ing SH Projects
Steps for Converting SH Projects
5. The project has been converted.

You have successfully converted the teapot sample into a
CodeWarrior project. You may compile and debug this project as
if it were any other CodeWarrior project.
SGA–42 Targeting Dreamcast

7
Debugging For Dreamcast

This chapter discusses how to use CodeWarrior to debug
Dreamcast code. It covers those aspects of debugging that are
specific to the Dreamcast platform or are different from the
processes described in the IDE User Guide and the Debugger User
Guide.

This chapter contains the following topics:

• Debugging with CodeWarrior

• Using mw_pr()

• Debugging Static Libraries

Debugging with CodeWarrior
Choose Projects > Debug to bring up the debugger program
window as shown in Figure 7.1.
Targeting Dreamcast SGA–43

Debugging For Dreamcast
Using mw_pr()
Figure 7.1 The Program window

In the program window contains the stack crawl pane, the
variables window, and the code window. The debugger control
bar is at the top of the window. From here, you can run, stop, and
single-step through your program.

For detailed explanations and guidance, please see our Debugger
User Guide.

Using mw_pr()

The printf() function does not work when you debug
Dreamcast code. However, we provide an alternate function,
mw_pr(const char *) , that will send a string to the console
window.

To use mw_pr() , add the library 'mw output.lib' to your
project. This library is located in the Dreamcast Support folder.

mw_pr() takes a char pointer as its input. It recognizes '\n' as a
newline character, and the largest string it will accept is 1024 bytes
long. You might use it in the following way.
SGA–44 Targeting Dreamcast

Debugging For Dreamcast
Debugging Static Libraries
char *p = "Hello World!\n";
mw_pr(p);

Debugging Static Libraries
You can debug static libraries as part of a larger application, but
you cannot debug them on their own.
Targeting Dreamcast SGA–45

Debugging For Dreamcast
Debugging Static Libraries
SGA–46 Targeting Dreamcast

8
Debugging With
Codescape

This chapter discusses how to use CodeWarrior in conjunction
with Codescape to debug Dreamcast code.

This chapter includes the following topics:

• Debugging with the Codescape debugger

• Using printf()

NOTE Please see the Debugger release notes for the latest news about
our Codescape interoperability.

Debugging with the Codescape debugger
To have CodeWarrior launch the Codescape debugger when you
select Debug from the Project menu, you must specify Codescape
as your third-party debugger.

Set Codescape to be your third-party debugger in the Build Extras
target settings panel shown in Figure 8.1 . Click the Use third
party debugger box, and enter the path to your Codescape
executable.
Targeting Dreamcast SGA–47

Debugging With Codescape
Debugging with the Codescape debugger
Figure 8.1 Set CodeScape to be your third-party debugger

Now when you select Debug from your project, CodeWarrior
will automatically launch the Codescape debugger.

Once you are in Codescape, you will need to click File > Load
Program File to load your CodeWarrior-built executable into the
debugger. In Figure 8.2 , we illustrate how you would do this for
the SDK teapot executable, teapot_debug.elf
SGA–48 Targeting Dreamcast

Debugging With Codescape
Using printf()
Figure 8.2 Codescape’s 'load program file’ menu

Please see the Codescape User Guide for detailed instructions on
how to use the Codescape debugger.

Using printf()

The printf() function does not work in the Codescape
debugger. To print strings to the debugging console window, you
must use the LIBCRS library provided by Cross Products. Please
refer to their Codescape documentation for more information.
Targeting Dreamcast SGA–49

Debugging With Codescape
Using printf()
SGA–50 Targeting Dreamcast

9
Target Settings for
Dreamcast

This chapter discusses each of the settings panels that affect code
generation for Dreamcast development. By modifying the
settings for the individual items within a panel you control the
compiler, linker, and other aspects of code generation.

Specific details about how the compiler and linker work for
Dreamcast development, such as compiler pragmas, linker
symbols and so forth, is found in C and C++ for Dreamcast.

The sections in this chapter are:

• Target Settings Overview

• Settings Panels for Dreamcast

Target Settings Overview
Each target in a CodeWarrior project has its own individual
settings. These settings control a variety of features such as
compiler options, linker output, error and warning messages,
and so forth. You modify these settings through the Target
Settings dialog box. This interface is fully explained in the IDE
User Guide.

In brief, you control compiler and linker behavior for a particular
target by modifying settings in the appropriate settings panels in
the Target Settings dialog box. To open any settings panel, choose
Target Settings from the Edit menu, where Target is the current
target in the CodeWarrior project. Or, go to the Target view of the
Project window and double-click the target of interest.
Targeting Dreamcast SGA–51

Target Sett ings for Dreamcast
Target Settings Overview
When you do, the Target Settings dialog box appears, as shown in
Figure 9.1 .

Figure 9.1 Target Settings dialog box

Select the panel you wish to see from the hierarchical list of
panels on the left side of the dialog box. When you do, that panel
appears. You can then modify the settings to suit your needs.

When you modify the settings on a panel, you can restore the
previous values by using the Revert Panel button at the bottom
of the dialog box. To restore the settings to the factory defaults,
use the Factory Settings button at the bottom of the panel.

TIP Use project stationery when you create a new project. The
stationery has all settings in all panels set to reasonable or default
values. You can create your own stationery file with your preferred
settings. Modify a new project to suit your needs, then save it in the
stationery folder. See the IDE User Guide for details.
SGA–52 Targeting Dreamcast

Target Sett ings for Dreamcast
Settings Panels for Dreamcast
Settings Panels for Dreamcast
This section discusses those panels that are specific to Dreamcast
development, and the purpose and effect of each setting. The
panels are:

• Target Settings

• SH Target

• SH Assembler

• ELF Disassembler

• SH Processor

• Global Optimizations

• BatchRunner PostLinker

• SH Linker

Settings panels of more general interest are discussed in other
CodeWarrior manuals. Table 9.1 lists several panels and where
you can find information about them.

Table 9.1 Where to find information on other settings panels

Target Settings

The Target Settings dialog box contains a Target Settings panel. The
dialog box and the panel are not the same. The dialog box
displays all panels, one at a time. The Target Settings panel is one
of those panels.

Panel Manual

Access Paths IDE User Guide

Build Extras IDE User Guide

File Mappings IDE User Guide

Custom Keywords IDE User Guide

Debugger Settings IDE User Guide

C/C++ Language C Compilers Reference

C/C++ Warnings C Compilers Reference
Targeting Dreamcast SGA–53

Target Sett ings for Dreamcast
Settings Panels for Dreamcast
The Target Settings panel, shown in Figure 9.2 , is perhaps the
most important panel in CodeWarrior. This is the panel where
you pick your target. When you select a linker in the Target
Settings panel, you specify the target operating system and/or
chip. The other panels listed in the Settings dialog box will
change to reflect your choice.

Because the linker choice affects the visibility of other related
panels, you must set your target first before you can specify other
target-specific options like compiler and linker settings.

Figure 9.2 The Target Settings panel

NOTE The Target Settings panel is not the same as the SH Target panel.
You specify the target in the Target Settings panel. You set other
project options in the SH Target panel.

The items in this panel are:

Target Name

Use the Target Name text field to set or change the name of a
target. When you use the Targets view in the Project window,
you will see the name that you have set.

Target Name Post-Linker

Linker Output Directory

Pre-Linker Save Project Entries Using Relative Paths
SGA–54 Targeting Dreamcast

Target Sett ings for Dreamcast
Settings Panels for Dreamcast
The name you set here is not the name of your final output file. It
is the name you assign to the target for your personal use. The
name of the final output file is set in the SH Target panel.

Linker

Choose a linker from the items listed in the Linker pop-up
menu. For Dreamcast, use SH Bare Linker

Pre-Linker

Some targets have pre-linkers that perform work on object code
before it is linked. There is no pre-linker for Dreamcast
development.

Post-Linker

Some targets have post-linkers that perform additional work
(such as object code format conversion) on the final executable.
There is no post linker for Dreamcast development.

Output Directory

This is the directory where your final linked output file will be
placed. The default location is the directory that contains your
project file. Click the Choose button to specify another directory.

Save Project Entries Using Relative Paths

To add two or more files with the same name to a project, select
this option. When this option is off, each project entry must
have a unique name.

When this option is selected, the IDE includes information about
the path used to access the file as well as the file name when it
stores information about the file. When searching for a file, the
IDE combines Access Path settings with the path settings it
includes for each project entry.

When this option is off, the IDE only records information about
each project entry’s file name. When searching for a file, the IDE
only uses Access Paths.
Targeting Dreamcast SGA–55

Target Sett ings for Dreamcast
Settings Panels for Dreamcast
SH Target

The SH Target panel, shown in Figure 9.3 , is where you set the
name of your final output file.

The settings you can specify in this panel depend on the type of
project you are creating.

Figure 9.3 The SH Target panel.

The items in this panel are:

Project Type

The Project Type pull-down menu determines the kind of
project you are creating. The available project types are shown in
Figure 9.4

Figure 9.4 SH Target type options

Set this menu so that the selected menu item reflects the kind of
project you are building. You typically want to build an
Application.

Project Type File Name

Code Model
SGA–56 Targeting Dreamcast

Target Sett ings for Dreamcast
Settings Panels for Dreamcast
File Name

The File Name edit field specifies the name of the executable or
library you create. Our convention is to end this name with the
extension .elf for executables and .elf.lib for libraries.

Code Model

For Dreamcast development, use Absolute addressing as the code
model.

SH Assembler

The SH Assembler panel, shown in Figure 9.5 , controls how the
SH assembler processes assembly language instructions.

Figure 9.5 The SH Assembler panel

The items in this panel are:

Labels Must End With ‘:’

Specifies that labels must end with a colon character (:).

Labels Must End With ‘:’ Directives Begin With ‘.’

Case Sensitive Identifiers Allow Space In Operand Field

Generate Listing File Prefix File
Targeting Dreamcast SGA–57

Target Sett ings for Dreamcast
Settings Panels for Dreamcast
Directives Begin With ‘.’

Specifies that assembler directives begin with a period character
(.).

Case Sensitive Identifiers

Displays identifiers using the same letter case used in source
code. When deselected, identifiers appear in uppercase only.

Allow Space In Operand Field

Allows you to use space characters to separate operands

Generate Listing File

Determines whether or not a listing file will be generated when
the source files in the project are assembled.

Prefix File

Defines a file that is automatically included in all assembly files
in the project. This field allows you to include common
definitions without including the file in every source file.

ELF Disassembler

The ELF Disassembler panel, shown in Figure 9.6 , is where you
control settings related to the disassembly view shown to you
when you disassemble object files.
SGA–58 Targeting Dreamcast

Target Sett ings for Dreamcast
Settings Panels for Dreamcast
Figure 9.6 The ELF Disassembler panel

The items in this panel are:

Show Headers

The Show Headers checkbox puts ELF header information into
the disassembled output.

Verbose Info

The Verbose Info checkbox puts additional information into the
disassembled output. For the .symtab section, some of the
descriptive constants are shown with their numeric equivalents.
.line, .debug , extab and extabindex sections are also shown
with an unstructured hex dump.

Show Headers Verbose Info

Show Symbol and String Tables Show Relocations

Show Code Modules Use Extended Mnemonics

Show Source Code Show Address and Object Code

Show Comments Show Data Modules

Disassemble Exception Tables Show Debug Info
Targeting Dreamcast SGA–59

Target Sett ings for Dreamcast
Settings Panels for Dreamcast
Show Symbol and String Tables

The Show Symbol and String Tables checkbox lists the symbol
table for the disassembled module.

Show Relocations

The Show Relocations checkbox shows relocation information
for the corresponding text (.real.text) or data (.reala.data) section.

Show Code Modules

The Show Code Modules checkbox outputs the ELF code sections
for the disassembled module.

Use Extended Mnemonics

The Use Extended Mnemonics checkbox lists the extended
mnemonics for each instruction in the disassembled module.

Show Source Code

The Show Source Code checkbox lists the source code for the
disassembled module. The source code is displayed in mixed
mode, with line number information from the original C source.

This checkbox is only displayed if the Show Code Modules
checkbox is enabled.

Show Address and Object Code

The Show Address and Object Code checkbox lists the address
and object code for the disassembled module.

This checkbox is only displayed if the Show Code Modules
checkbox is enabled.

Show Comments

The Show Comments checkbox displays comments produced by
the disassembler in sections where comment columns are
provided.
SGA–60 Targeting Dreamcast

Target Sett ings for Dreamcast
Settings Panels for Dreamcast
This checkbox is only displayed if the Show Code Modules
checkbox is enabled.

Show Data Modules

The Show Data Modules checkbox determines whether the
disassembler outputs any ELF data sections (such as .rodata and
.bss) for the disassembled module.

Disassemble Exception Tables

The Disassemble Exception Tables checkbox includes any C++
exception tables for the disassembled module.

This checkbox is only displayed if the Show Data Modules
checkbox is enabled.

Show Debug Info

The Show Debug Info checkbox includes DWARF symbolics in
the disassembled output.

SH Processor

The SH Processor panel, shown in Figure 9.7 , is where you
control settings related to code generation for the Dreamcast
platform.

Figure 9.7 The SH Processor panel.

The items in this panel are:
Targeting Dreamcast SGA–61

Target Sett ings for Dreamcast
Settings Panels for Dreamcast
Target CPU

Defines the CPU for which the compiler generates code. For
Dreamcast, this should be set to SH4.

Use Floating Point Instructions

If this option is active, the compiler makes use of the processor’s
floating point instructions.

If this option is not active, the compiler calls runtime routines
for floating-point operations. The processor’s floating point
registers will not be used.

NOTE In this release, this option is ignored, and the floating point registers
are always used.

Make Strings Read Only

This option determines where character string constants are
stored. If this option is off, the compiler stores string constants in
the data section. If this option is on, the compiler stores string
constants in the code section.

Variables that are not initialized to the address of another object
at runtime are always placed in the code section, including C/
C++ variables declared with the const storage-class modifier.

Global Optimizations

The Global Optimization panel, shown in Figure 9.8 , controls the
method and depth by which the compiler optimizes your code.

Target CPU Make Strings Read Only

Use Floating Point
Instructions
SGA–62 Targeting Dreamcast

Target Sett ings for Dreamcast
Settings Panels for Dreamcast
Figure 9.8 Global Optimization panel

The items in this panel are:

Optimize For

Use these options to configure how the CodeWarrior IDE
optimizes your code.

• Faster Execution Speed

This option improves the execution speed of object code.
Object code is faster, but may be larger.

• Smaller Code Size

This option reduces the size of object code that the
compiler produces. Object code is smaller, but may be
slower.

Optimization Level Slider

Use the slider to determine the level of optimization applied to
your code. You can choose to turn off code optimizations, or you
can choose to apply one of four levels of optimization. The

Optimize For Optimization Level Slider
Targeting Dreamcast SGA–63

Target Sett ings for Dreamcast
Settings Panels for Dreamcast
higher the level that you select, the more optimizations are
applied to your code.

The Details text field, below the slider, lists the optimizations that
are applied. Table 9.2 repeats the information found in the
Details text field. For more information about these
optimizations, see “Optimizing Code for Dreamcast” on page 76.

Table 9.2 SH optimizer levels

NOTE If you use Smart inlining, do not use Level 0 optimization.

Level Effect Debugging

0 no optimizing safe

1 Global Register Allocation
Dead Code Elimination
Loop Invariant Code Motion
Branch Optimization
Arithmetic Optimizations
Expression Simplification

not safe

2 Common Sub-Expression
Elimination
Instruction Scheduling
Delay-slot Filling
Copy and Expression Propogation
Peephole Optimization

not safe

3 Dead Store Elimination
Strength Reduction
Lifetime Based Register Allocation
Loop Unrolling
Loop Transformations
Life Range Splitting
Vectorization

not safe

4 Optimizations are repeated n/a
SGA–64 Targeting Dreamcast

Target Sett ings for Dreamcast
Settings Panels for Dreamcast
BatchRunner PostLinker

Figure 9.9 shows the BatchRunner Postlinker panel.

Figure 9.9 The BatchRunner Postlinker panel

This panel allows you to run a batch file after CodeWarrior
successfully builds your project. To select a batch file to run, click
Choose and locate the .bat file.

If you wish to have the name of the linker output file passed as a
parameter to the batch file, click the checkbox.

NOTE The batch file that you specify will not run unless the Batchrunner
PostLinker has been selected as the post-linker for this target. The
post-linker option can be modified in the Target Settings panel.

LCF Prelinker

The LCF Prelinker panel controls the behavior of the SH LCF
(linker command file) Generator. This prelinker creates an LCF
that contains the necessary linker instructions to correctly map
your code and data in the final executable.

For more information about the LCF, see “ELF Linker and
Command Language” on page 83. The LCF Prelinker panel itself
is shown in Figure 9.10 .
Targeting Dreamcast SGA–65

Target Sett ings for Dreamcast
Settings Panels for Dreamcast
Figure 9.10 LCF Prelinker panel

Linker Command File Generation Options

The options are set by a radio button, meaning that only one
option may be selected at a time.

• Always create a new LCF

This option forces the generator to create a new LCF every
time you build the project. The new LCF will overwrite
any LCF that already exists.

• Always use a modified LCF

This option prevents the generator from creating a new
LCF. Selecting this option has the same effect as not
choosing any prelinker at all.

• Generate LCF file and halt build

This option forces the generator to create a new LCF, but it
will halt the build process before the linker reads the file.
Selecting this option allows you to make custom hand edit
changes to a generated LCF.

WARNING! After you hand edit an LCF, you should either disable the LCF
prelinker from the Target Settings panel, or select Always use a
modified LCF from the choices listed above. Otherwise, your
changes will be overwritten by the SH LCF Generator the next time
you build your project.
SGA–66 Targeting Dreamcast

Target Sett ings for Dreamcast
Settings Panels for Dreamcast
SH Linker

The SH Linker panel, shown in Figure 9.11 , is where you control
settings related to linking your object code into final form, be it
executable, library, or other type of code.

Figure 9.11 The SH Linker panel.
;

The items in this panel are:

Generate Symbolic Info Disable Deadstripping

Store Full Path Names Generate ELF Symbol Table

Generate Link Map Suppress Warning Messages

List Unused Objects Show Transitive Closure

Generate S-Record File Max Record Length

EOL Character Entry Point

Force Active Symbols
Targeting Dreamcast SGA–67

Target Sett ings for Dreamcast
Settings Panels for Dreamcast
Generate Symbolic Info

The Generate Symbolic Info checkbox controls whether the
linker generates debugging information. The debugger
information is included within the linked ELF file, and not
generated as a separate file.

When this setting is on, the linker generates debugging
information. Conversely, when this setting is off, the linker does
not generate debugging information.

When you choose Project > Enable Debugger, CodeWarrior
automatically turns on this item for you.

Store Full Path Names

The Store Full Path Names checkbox controls how the linker
includes path information for source files, in the debugging
information. When this setting is on, the linker generates
debugging information and includes it within the linked ELF
file. When this setting is off, the linker uses only the file names.
In typical usage, this setting is on.

If memory is at a premium, you can uncheck this option to save
memory on the target. The debugger can still find sources even if
they do not have the paths, but the debugger may have to find
the first file manually.

Disable Deadstripping

The Disable Deadstripping option prevents the linker from
removing unused code and data.

Generate ELF Symbol Table

The Generate Elf Symbol Table option generates an ELF symbol
table, as well as a list of relocations, in the ELF output file.

Generate Link Map

The Generate Link Map option generates a link map, a test file
that shows which files provide the definition for each object and
function in your output file. The link map file also displays the
address location given to each object and function, a memory
SGA–68 Targeting Dreamcast

Target Sett ings for Dreamcast
Settings Panels for Dreamcast
map of the sections residing in memory, and the value of each
linker generated symbol.

The filename for the link map is the same as that of the output
filename, but with the added extension of .xMap . The link map
file is placed in the project folder.

List Unused Objects

The List Unused Objects option includes unused objects in the
link map. This option only appears if the Generate Link Map
option is active.

TIP The linker never deadstrips assembler relocatables or
relocatables built with compilers other than CodeWarrior. If a
relocatable wasn’t built with the CodeWarrior C/C++ compiler, the
link map can list all of the unused—but unstripped—symbols.

You can use this information to remove the symbols from the
source and rebuild the relocatable to make your final process-
image smaller.

Show Transitive Closure

The Show Transitive Closure option adds more detail to your
link map file by recursively listing all of the objects referenced by
main() .

Listing 9.1 shows some sample code.

Listing 9.1 Sample code to show transitive closure

void foo(){
 int a = 1001;
}
void foo1(){
 int b = 1002;
}
Sint32 njUserMain(void){
 foo();
 foo1();
Targeting Dreamcast SGA–69

Target Sett ings for Dreamcast
Settings Panels for Dreamcast
 return NJD_USER_CONTINUE;
}

To show the effect of the Show Transitive Closure option, we
compile the source and generate a link map file.

Listing 9.2 Effects of Show Transitive Closure in the link map file

Link map of _start
 1] DSGLE found in strt1.obj.elf
 .
 .
 .
 4] _njUserMain (func,global) found in test.c
 5] _foo (func,global) found in test.c
 5] _foo1 (func,global) found in test.c

Suppress Warning Messages

Prevents the linker from reporting non-fatal warning messages.
The Suppress Warning Messages option does not affect warning
messages displayed by other parts of the IDE, including
compilers. In typical usage, this setting is on.

Generate S-Record File

This option is not used for Dreamcast software development.

Max Record Length

This option is not used for Dreamcast software development.

EOL Character

This option is not used for Dreamcast software development.

Entry Point

The Entry Point edit field allows you to specify the first function
that the linker uses when the program launches. This is the
program’s starting point.
SGA–70 Targeting Dreamcast

Target Sett ings for Dreamcast
Settings Panels for Dreamcast
The default _start function in the stationery is for CodeWarrior
programs. When using the Sega Dreamcast SDK, the start
function should be set to SG_SEC.

Force Active Symbols

The Force Active Symbols edit field allows the linker to include
unreferenced symbols into the output file. It is a way to make
symbols immune to deadstripping. This edit field is equivalent
to #pragma force_active .

When listing multiple symbols, separate each item with a single
space.
Targeting Dreamcast SGA–71

Target Sett ings for Dreamcast
Settings Panels for Dreamcast
SGA–72 Targeting Dreamcast

10
C and C++ for Dreamcast

This chapter describes the Metrowerks compiler for Dreamcast.

The sections in this chapter are:

• Number Formats for Dreamcast

• Calling Conventions for Dreamcast

• Variable Allocation for Dreamcast

• Optimizing Code for Dreamcast

• C++ issues for Dreamcast

However, this chapter does not discuss front-end compiler issues,
support for inline assembly, compiler and linker errors,
controlling the size of C++ code, and so forth. These topics are
covered in other CodeWarrior documentation as outlined in
Table 10.1.

Table 10.1 Other compiler/linker documentation

For this topic... See...

how CodeWarrior
implements the C/C++
language

C Compilers Reference generally

using C/C++ Language and C/
C++ Warnings settings panels

C Compilers Reference, “Setting
C/C++ Compiler Options”
chapter

controlling the size of C++
code

C Compilers Reference, “C++
and Embedded Systems”
chapter

using compiler pragmas C Compilers Reference, “Pragmas
and Symbols” chapter
Targeting Dreamcast SGA–73

C and C++ for Dreamcast
Number Formats for Dreamcast
NOTE Some of the items discussed in this chapter may actually be
implemented in the front-end compiler. However, it really doesn’t
matter whether the actual implementation of a feature occurs in the
front-end or back-end compiler. From the programmer’s point of
view, it is all one compiler.

Number Formats for Dreamcast
This section describes how the CodeWarrior C/C++ compiler
implement integer and floating-point types for the Dreamcast
processor. You can also read limits.h for more information on
integer types, and float.h for more information on floating-
point types.

The topics in this section are:

• Dreamcast Integer Formats

• Dreamcast Floating-Point Formats

Dreamcast Integer Formats

The Dreamcast back-end compiler does not allow you to change
the sizes of integers. Thus, the size of a short int is always 2
bytes, and the size of int or long int is always 4 bytes.

Table 10.2 shows the size and range of the integer types for the
Dreamcast compiler.

initiating a build, controlling
which files are compiled,
handling error reports

IDE User Guide, “Compiling
and Linking” chapter

information about a
particular error

Error Reference

inline assembly Inline Assembler and
Intrinsics for Dreamcast

Dreamcast assembler SH processor manual

For this topic... See...
SGA–74 Targeting Dreamcast

C and C++ for Dreamcast
Calling Conventions for Dreamcast
Table 10.2 Dreamcast integer Types

Dreamcast Floating-Point Formats

Table 10.3 shows the sizes and ranges of the floating point types
for the Dreamcast compiler.

NOTE double is currently implemented as float

Table 10.3 Dreamcast floating point types

Calling Conventions for Dreamcast
CodeWarrior conforms fully with Hitachi’s application binary
interface (ABI) specification. Thus, the code generated by

Type Size Range

bool 8 bits true or false

char 8 bits -128 to 127

unsigned char 8 bits 0 to 255

short 16 bits -32,768 to 32,767

unsigned short 16 bits 0 to 65,535

int 32 bits -2,147,483,648 to
2,147,483,647

unsigned int 32 bits 0 to 4,294,967,295

long 32 bits -2,147,483,648 to
2,147,483,647

unsigned long 16 bits 0 to 4,294,967,295

long long not supported not supported

Type Size Range

float 32 bits 1.17549e-38 to 3.40282e+38
Targeting Dreamcast SGA–75

C and C++ for Dreamcast
Variable Allocation for Dreamcast
CodeWarrior is compatible with code generated by Hitachi’s SH
compiler. The practical result is that you can link together any
code built with these two different compilers.

Hitachi’s ABI is documented in the SH Series C Compiler User’s
Manual, available from Hitachi.

Variable Allocation for Dreamcast
(K&R, §A4.3, §A8.3, §A8.6.2) This section describes how the C/
C++ compiler allocates space for variables.

The compiler places no limits on how large your variables may
be, or how you allocate them.

Optimizing Code for Dreamcast
This section discusses optimizations that are specific to
Dreamcast development with CodeWarrior. They are activated
and deactivated through the Global Optimization panel described
in “Global Optimizations” on page 62.

The optimizations are:

• Global Register Allocation

• Loop Invariant Code Motion

• Dead Code Elimination

• Dead Store Elimination

• Common Sub-Expression Elimination

• Instruction Scheduling

• Delay-slot Filling

• Copy and Expression Propogation

• Peephole Optimization

• Strength Reduction

• Lifetime Based Register Allocation

• Loop Unrolling
SGA–76 Targeting Dreamcast

C and C++ for Dreamcast
Optimizing Code for Dreamcast
Global Register Allocation

In this optimization, the compiler assigns two or more variables
to the same register. It does this if the code does not use the
variables at the same time. In this example, the compiler could
place i and j in the same register:

short i;
int j;

for (i=0; i<100; i++) { MyFunc(i); }
for (j=0; j<100; j++) { MyFunc(j); }

However, if a line of code like the one below appears anywhere
in the function, the compiler would realize that you are using i
and j at the same time, and place them in different registers.

MyFunc (i + j);

Register allocation reduces code size and has no effect on
execution time.

If register allocation is on while you debug your code, it may
appear as though there’s something wrong with the variables
that share a single register. In the example above, i and j would
always have the same value. When i changes, j changes in the
same way, and vice versa.

Register allocation is activated from the SH Processor panel by
selecting optimization level 1. Because it can affect debugging, we
recommend you use optimization level 0 when compiling your
debug targets.

Loop Invariant Code Motion

This optimization moves computations that don’t change on the
inside of the loop. They are moved to the outside of the loop to
improve the loop’s speed. With this option, your object code is
faster.
Targeting Dreamcast SGA–77

C and C++ for Dreamcast
Optimizing Code for Dreamcast
Dead Code Elimination

The compiler removes statements that logically can never be
executed, or statements that are never referred to by other
statements. The result is that your object code is smaller.

Dead Store Elimination

Removes assignments to a variable if the variable is not used
before being reassigned again. With this option on, object code is
smaller and faster.

Common Sub-Expression Elimination

The compiler replaces similar redundant expressions with a
single expression. For example, if two consecutive statements
both use the expression a * b * c + 10 , the compiler generates
object code that computers the expression only once, and applies
the resulting value to both statements.

With this optimization, your object code is smaller and faster.

Instruction Scheduling

The compiler uses the instruction scheduling optimization to
increase the speed of execution. When possible, this
optimization rearranges processor instructions so that the
execution of one instruction doesn’t delay the execution of
others.

Delay-slot Filling

Delay-slot filling is an optimization used by the compiler to fill in
the delay-slot of delay-slot instructions. As an example, take the
following sequence:

JSR
NOP

JSR is a delay-slot instruction, but in this case its delay-slot is
inactive. You could take advantage of its delay-slot feature by
adding an instruction after JSR.

JSR
instruction
SGA–78 Targeting Dreamcast

C and C++ for Dreamcast
Pragmas for Dreamcast
When delay-slot filling is active, instruction will be placed in the
delay-slot of the JSR instruction. The instruction in the delay-slot
will be executed before the JSR.

Copy and Expression Propogation

Replaces multiple occurences of one variable with a single
occurrence. With this option on, object code is smaller and faster.

Peephole Optimization

Applies local optimizations to small sections of your code. With
this option, the optimized sections of code are faster.

Strength Reduction

Replaces multiplication instructions that are inside loops with
addition instructions to speed up the loop. With this option,
object code is larger, but executes faster.

Lifetime Based Register Allocation

Uses the same processor register for different variables in the
same routine if the variables aren’t used in the same statement.
With this option on, object code executes faster.

Loop Unrolling

The compiler performs loop unrolling when the optimization
level is set to Level 3 or Level 4. The unrolling factor is set to 2.
As long as the loop does not have more than 20 instructions, the
loop will be unrolled.

To disable loop unrolling, add the following pragma to your
source code:

#pragma opt_unroll_loops off

Pragmas for Dreamcast
The pragmas supported by the CodeWarrior for Dreamcast
compiler are defined in the C Compilers Reference. A PDF version
Targeting Dreamcast SGA–79

C and C++ for Dreamcast
C++ issues for Dreamcast
of this manual is located in your CodeWarrior Documentation
folder.

Table 10.4 lists some of the pragmas that are not supported for
Dreamcast development. Except for the pragmas in this list, you
can use the pragmas defined in the C Compilers Reference in your
code.

Table 10.4 Pragmas not supported for Dreamcast

The default Dreamcast values for pragmas opt_unroll_count
and opt_unroll_instr_count are 2 and 40, respectively.
Documentation for these pragmas are in the C Compilers Reference.

C++ issues for Dreamcast
To access the standard C++ libraries, you can add the
MSLCppDC.lib library to your project. This is our standard C++
library.

We support C++ fully in this release, with the following
restrictions:

• Exception Handling

• Streams and IO Classes

• Other Restrictions

code_seg define_sectio
n

disable_register
s

interrrupt longlong longlong_enu
ms

no_register_colori
ng

peephole register_colorin
g

scheduling section stack_cleanup

use_fp_instruction
s

SGA–80 Targeting Dreamcast

C and C++ for Dreamcast
C++ issues for Dreamcast
Exception Handling

If you catch and throw exceptions in your program code, you
must add the following lines in Listing 10.1 to your linker
command file to define the exception table. In particular, you
must add:

.exception

to the list of sections in the $INCLUDE, and you must create a
new data segment for the exception table itself.

Listing 10.1 Creating an exception table in the LCF

$INCLUDE
{
 IP
 DSGLH
 DSGLE
 .exception # Needed for C++
}

$SEGMENT DATA 0x8C040000 R
{
 # Include the exception table index.

 ALIGN(0x4);
 *(.exception) # Needed for C++

 ALIGN(0x4);
 *(.exceptlist) # Needed for C++
}

When you use exceptions and there is an exception handler,
register R14 is used as the frame pointer. For example, when you
use the intrinsic function __alloca , R14 is used as the frame
pointer. You should reserve register R14 for this purpose and not
use it for anything else. For more information on intrinsic
functions, see “List of Intrinsic Functions” on page 116.
Targeting Dreamcast SGA–81

C and C++ for Dreamcast
C++ issues for Dreamcast
Streams and IO Classes

Neither streams nor IO classes are supported in this release, but
there is a way to mimic the popular C++ stream function, cout ,
to send output to the debugger console window.

In your program, where you usually use something like

cout << "Hello"

you use the mw_pr() function as follows:

mw_pr("Hello");

To use the mw_pr() function, add the ' mw output.lib ' library to
your project. This library is located in the Dreamcast Support
folder.

Other Restrictions

The following are not supported in this release:

• defining member templates / nested class template members
outside of the template definition

• member template conversion functions

• member template friends

• template template arguments

• 'exported' templates
SGA–82 Targeting Dreamcast

11
ELF Linker and Command
Language

The CodeWarrior ELF (Executable and Linking Format) Linker
can do more than make a program file out of the object files of
your project. The linker has several extended functions that
allow you to manipulate your program’s code in different ways.
You can define variables during linking, control the link order to
the granularity of a single function, and change the alignment.

All of these functions are accessed through commands in the
linker command file (LCF). The linker command file has its own
language complete with keywords, directives, and expressions,
that are used to create the powerful specification for your output
code.

NOTE The LCF syntax from the previous releases of the CodeWarrior for
Dreamcast tools is not compatible with the new linker command file
format.

The linker command file’s syntax and structure is similar to that
of a programming language. This language is described in the
following sections:

• Structure of Linker Command Files —discusses command file
organization.

• Linker Command File Syntax —how to program the linker to
do specific tasks.

• Alphabetical Keyword Listing —an alphabetical listing of LCF
functions and commands.
Targeting Dreamcast SGA–83

ELF Linker and Command Language
Structure of Linker Command Files
NOTE Understanding how ELF linkers work will help you understand our
linker command file format. If you would like to become more
familiar with the meaning of terms such as .data and the concepts
of storage allocation and symbol management, we recommend
that you read the following book:

John R. Levine,
Linkers and Loaders,
Ap Professional, 1999, ISBN 1-5586-0496-0.

Structure of Linker Command Files
Linker command files contain three main segments. These
segments are listed below in the order they should appear in the
command file:

• Closure Blocks —force functions into closure

• Memory Segment —map memory segments

• Sections Segment —define segment contents

A command file must contain a memory segment and a sections
segment. Closure segments are optional.

Closure Blocks

The linker is very good at deadstripping unused code and data.
We may sometimes find, however, that we have symbols that
need to be kept in our output file even if they are never directly
referenced. Interrupt handlers, for example, are usually linked at
special addresses, without any explicit jumps to transfer control
to these places.

Closure blocks provide a way for us to make symbols immune
from deadstripping. The closure is transitive, meaning that
symbols referenced by the symbol we are closing are also forced
into closure, as are any symbols referenced by those symbols, and
so on.

 The two types of closure blocks available to us are as follows:
SGA–84 Targeting Dreamcast

ELF Linker and Command Language
Structure of Linker Command Files
Symbol-level

Use FORCE_ACTIVE when you want to include a symbol
into the link that would not be otherwise included. For
example:

Listing 11.1 A sample symbol-level closure block

FORCE_ACTIVE {break_handler, interrupt_handler, my_function}

Section-level

Use KEEP_SECTION when you want to keep a section
(usually a user-defined section) in the link. For example:

Listing 11.2 A sample section-level closure block

KEEP_SECTION {IP, DSGLH, DSGLE}

A variant is REF_INCLUDE. It keeps a section in the link,
but only if the file where it is coming from is referenced.
This is very useful to include version numbers. For
example:

Listing 11.3 A sample section-level closure block with file dependency

REF_INCLUDE {.version}

Memory Segment

In the memory segment, we divide our available memory into
segments. The memory segment format looks like Listing 11.4 .

Listing 11.4 A sample MEMORY segment

MEMORY {
 code_user (RWX): ORIGIN = 0x80001000, LENGTH = 0x19000
 bss_user (RWX): ORIGIN = AFTER(segment_1), LENGTH = 0
 segment_x (RWX): ORIGIN = memory address , LENGTH = segment size
 and so on...
}

Targeting Dreamcast SGA–85

ELF Linker and Command Language
Structure of Linker Command Files
The (RWXO) portion consists of ELF access permission flags, Read,
Write, and e Xecute. If CodeWarrior has overlay support for your
target, the O flag is also available, and it represents a section of
memory that is reserved for an Overlay.

ORIGIN represents the start address of the memory segment.

LENGTH represents the size of the memory segment.

If we can not predict how much space a segment will occupy, we
can use the function AFTER and LENGTH = 0 (unlimited length)
and CodeWarrior fills in the unknown values at link time.

For a detailed examination of the MEMORY segment, please
read “MEMORY” on page 99.

Sections Segment

Inside the sections segment, we define the contents of our
memory segments, and define any global symbols that we wish to
use in our output file.

The format of a typical sections block looks like Listing 11.5 . In
this sample segment,

Listing 11.5 A sample SECTIONS segment

SECTIONS {
 .section_name : #the section name is for your reference
 { #the section name must begin with a '.'
 filename.c (.text) #put the .text section from filename.c
 filename2.c (.text) #then the .text section from filename2.c
 filename.c (.data)
 filename2.c (.data)
 filename.c (.bss)
 filename2.c (.bss)
 . = ALIGN (0x10); #align next section on 16-byte boundary.
 } > segment_1 #this means "map these contents to segment_1"

 .next_section_name:
 {
 more content descriptions
SGA–86 Targeting Dreamcast

ELF Linker and Command Language
Linker Command File Syntax
 } > segment_x # end of .next_section_name definition
} # end of the sections block

For a detailed examination of the SECTIONS segment, please
read “SECTIONS” on page 102.

Linker Command File Syntax
This section describes some practical ways in which you can use
the commands of the linker command file to perform common
tasks.

• Alignment

• Arithmetic Operations

• Comments

• Deadstrip Prevention

• Exception Tables

• Alphabetical Keyword Listing

• File Selection

• Function Selection

• Stack and Heap

• Static Initializers

• Writing Data Directly to Memory

Alignment

To align data on a specific byte-boundary, you use the ALIGN and
ALIGNALL commands to bump the location counter to the
desired boundary. For example, the following fragment uses
ALIGN to bump the location counter to the next 16-byte boundary.

file.c (.text)
. = ALIGN (0x10);
file.c (.data) # aligned on a 16-byte boundary.

The same thing can be accomplished with ALIGNALL as follows:
Targeting Dreamcast SGA–87

ELF Linker and Command Language
Linker Command File Syntax
file.c (.text)
ALIGNALL (0x10); #everything past this point aligned on 16 bytes
file.c (.data)

For more information, see “ALIGN” on page 97 and
“ALIGNALL” on page 97.

Arithmetic Operations

You may use standard C arithmetic and logical operations when
you define and use symbols in the linker command file. Table
11.1 shows the order of precedence for each operator. All
operators are left-associative. To learn more about C operators,
refer to the C Compiler Reference.

Table 11.1 Arithmetic Operators

Comments

You may add comments to your file by using the pound character
(#), C-style slash and asterisks (/* , */), or C++ style double-
slashes (//). Comments are ignored by the LCF parser. The
following are valid comments:

Precedence Operators

highest (1) - ˜ !

2 * / %

3 + -

4 >> <<

5 == != > < <= >=

6 &

7 |

8 &&

9 ||
SGA–88 Targeting Dreamcast

ELF Linker and Command Language
Linker Command File Syntax
This is a one-line comment
/* This is a
 multiline comment */
* (.text) // This is a partial-line comment

Deadstrip Prevention

CodeWarrior removes unused code and data from the output
file in a process known as deadstripping. To prevent the linker
from deadstripping unreferenced code and data, use the
FORCE_ACTIVE , KEEP_SECTION , and REF_INCLUDE
directives to preserve them in the output file. Information on
these directives can be found in “FORCE_ACTIVE” on page 98,
“KEEP_SECTION” on page 99, and “REF_INCLUDE” on
page 102.

Exception Tables

Exception tables are only required for C++. To create an exception
table, add the EXCEPTION command to the end of your code
section block. The two symbols, __exception_table_start__
and __exception_table_end__ are known to the runtime
system.

Listing 11.6 Creating an exception table

 __exception_table_start__ = .;
 EXCEPTION
 __exception_table_end__ = .;

Expressions, Variables and Integral Types

This section discusses variables, expressions, and integral types.

Variables and Symbols

All symbol names in a Linker Command File start with the
underscore character (_), followed by letters, digits, or underscore
characters. These are all valid lines for a command file:
Targeting Dreamcast SGA–89

ELF Linker and Command Language
Linker Command File Syntax
_dec_num = 99999999;
_hex_num_ = 0x9011276;

Expressions and Assignments

You can create global symbols and assign addresses to these global
symbols using the standard assignment operator, as shown:

_symbolicname = some_expression ;

An assignment may only be used at the start of an expression,
you cannot use something like this:

_sym1 + _sym2 = _sym3; # ILLEGAL!

A semicolon is required at the end of an assignment statement.

When an expression is evaluated and assigned to a variable, it is
given either an absolute or a relocatable type. An absolute
expression type is one in which the symbol contains the value
that it will have in the output file. A relocatable expression is one
in which the value is expressed as a fixed offset from the base of a
section.

Integral Types

The syntax for Linker Command File expressions is very similar
to the syntax of the C programming language. All integer types
are long or unsigned long .

Octal integers (commonly know as base eight integers) are
specified with a leading zero, followed by numeral in the range of
zero through seven. For example, here are some valid octal
patterns you could put in your linker command file:

_octal_number = 01234567;
_octal_number2 = 03245;

Decimal integers are specified as a non-zero numeral, followed
by numerals in the range of zero through nine. Here are some
SGA–90 Targeting Dreamcast

ELF Linker and Command Language
Linker Command File Syntax
examples of valid decimal integers you could put in your linker
command file:

_dec_num = 99999999;
_decimal_number = 123245;
_decyone = 9011276;

Hexadecimal (base sixteen) integers are specified as 0x or 0X (a
zero with an X), followed by numerals in the range of zero
through nine, and/or characters a through f. Here are some
examples of valid hexadecimal integers you could put in your
linker command file:

_somenumber = 0x999999FF;
_fudgefactorspace = 0X123245EE;
_hexonyou = 0xFFEE;

To create a negative integer, use the minus sign (-) in front of the
number, as in:

_decimal_number = -123456;

File Selection

When defining the contents of a SECTION block, you must specify
the source files that are contributing their sections. The standard
way of doing this is to simply list the files.

SECTIONS {
 .example_section :
 {
 main.c (.text)
 file2.c (.text)
 file3.c (.text)

In a large project, the list can grow to become very long. For this
reason, we have the ' * ' keyword. It represents the filenames of
every file in your project. Note that since we have already added
the .text sections from the files main.c , file2.c , and
file3.c , the ' * ' keyword will not add the .text sections from
those files again.
Targeting Dreamcast SGA–91

ELF Linker and Command Language
Linker Command File Syntax
 * (.text)

Sometimes you may only want to include the files from a
particular file group. The 'GROUP' keyword allows you to specify
all the files of a named file group.

 GROUP(fileGroup1) (.text)
 GROUP(fileGroup1) (.data)
 } > MYSEGMENT
}

See also “SECTIONS” on page 102.

Function Selection

The OBJECT keyword gives you precise control over how
functions are placed within your section. For example, if you
want the functions bar and foo to be placed before anything else
in a section, you might use something like the following:

SECTIONS {
 .program_section :
 {
 OBJECT (bar, main.c)
 OBJECT (foo, main.c)
 * (.text)
 } > ROOT

NOTE When using C++, you must specify functions by their mangled
names.

It is important to note that if an object is written once using the
'OBJECT' function selection keyword, the same object will not be
written again using the ' * ' file selection keyword.

See also “SECTIONS” on page 102.
SGA–92 Targeting Dreamcast

ELF Linker and Command Language
Linker Command File Syntax
Stack and Heap

To reserve space for the stack and heap, we perform some
arithmetic operations to set the values of the symbols used by the
runtime. The following is a code fragment from a section
definition that illustrates this arithmetic (Listing 11.7).

Listing 11.7 Setting up some heap

 _heap_addr = .;
 _heap_size = 0x2000; /* this is the size of our heap */
 _heap_end = _heap_addr + _heap_size;
 . = _heap_end /* reserve the space */

We do the same thing for the stack, using the ending address of
the heap as the start of our stack.

Listing 11.8 Setting up the stack

 _stack_size = 0x2000; /* this is the size of our stack */
 _stack_addr = heap_end + _stack_size;
 . = _stack_addr;

Static Initializers

Static initializers must be invoked to initialize static data before
main() starts. The CodeWarrior linker generates the static
initializer section with the STATICINIT keyword.

In your linker command file, use something similar to the
following to tell the linker where to put the table (relative to the
' . ' location counter):

..sinit :
{
 . = ALIGN (0x08);
 __sinit__ - .;
 STATICINIT
 . = ALIGN(0x04);
} > .sinit
Targeting Dreamcast SGA–93

ELF Linker and Command Language
Linker Command File Syntax
The symbol __sinit__ is known to the runtime. In the startup
code, you can use something similar to the following to call
accompany the use of static initializers in the linker command
file:

#ifdef __cplusplus
/* call the c++ static initializers */
__call_static_initializers();
#endif

Writing Data Directly to Memory

You can write data directly to memory using the WRITEx
command in the linker command file. WRITEB writes a byte,
WRITEH writes a two-byte halfword, and WRITEW writes a four-
byte word. The data is inserted at the section’s current address.

Listing 11.9 Embedding data directly into the output.

.example_data_section :
{
 WRITEB 0x48; /* 'H' */
 WRITEB 0x69; /* 'i' */
 WRITEB 0x21; /* '!' */

The example shown in Listing 11.9 is similar to the technique
used to insert overlay headers on targets that have overlay
support.

If you want to insert a complete binary file, you can use the
INCLUDE command.

Listing 11.10 Embedding a binary file into the output.

 _musicStart = .;
 INCLUDE (music.mid)
 _musicEnd = .;
} > DATA
SGA–94 Targeting Dreamcast

ELF Linker and Command Language
Alphabetical Keyword Listing
The binary file must be included in your IDE project, and the
file’s extension must be typed as a resource file in the File
Mappings target settings panel. For an illustration of how this is
done, see Figure 11.1 . For more help with resource files, please
refer to the IDE User Guide.

Figure 11.1 Marking a binary file type as a resource in File Mappings

Alphabetical Keyword Listing
The following is an alphabetical list of all the valid linker
command file functions, keywords, directives, and commands:
. (location counter) ADDR

ALIGN ALIGNALL

EXCEPTION FORCE_ACTIVE

GROUP INCLUDE

KEEP_SECTION MEMORY

OBJECT OVERLAYID

REF_INCLUDE SECTIONS

SIZEOF STATICINIT
Targeting Dreamcast SGA–95

ELF Linker and Command Language
Alphabetical Keyword Listing
. (location counter)

The period character ' . ' always maintains the current position of
the output location. Since the period always refers to a location in
a SECTIONS block, it can not be used outside a section definition.

' . ' may appear anywhere a symbol is allowed. Assigning a value
to ' . ' that is greater than its current value causes the location
counter to move, but the location counter can never be
decremented.

This effect can be used to create empty space in an output section.
In the example that follows, the location counter is moved to a
position that is 0x10000 bytes past the symbol __start .

Listing 11.11 Moving the location counter

..data :
{
 *.(data)
 *.(D)
 *.(D32)
 __start = .;
 . = __start + 0x10000;
 __end = .;
} > DATA

ADDR

The ADDR function returns the address of the named section or
memory segment.

Prototype ADDR (sectionName | segmentName)

In the example below, we use ADDR to assign the address of ROOT
to the symbol __rootbasecode (Listing 11.12).

WRITEB WRITEH

WRITEW
SGA–96 Targeting Dreamcast

ELF Linker and Command Language
Alphabetical Keyword Listing
Listing 11.12 ADDR() function

MEMORY{
 ROOT (RWX) : ORIGIN = 0x80000400, LENGTH = 0
}

SECTIONS{
 .code :
 {
 __rootbasecode = ADDR(ROOT);
 *.(text)
 } > ROOT
}

ALIGN

The ALIGN function returns the value of the location counter
aligned on a boundary specified by the value of alignValue .

Prototype ALIGN(alignValue)

alignValue must be a power of two.

Please note that ALIGN does not update the location counter; it
only performs arithmetic. To update the location counter, you
have to use an assignment such as the following.

. = ALIGN(0x10); #update location counter to 16 byte alignment

ALIGNALL

ALIGNALL is the command version of the ALIGN function. It
forces the minimum alignment for all the objects in the current
segment to the value of alignValue .

Prototype ALIGNALL(alignValue);

alignValue must be a power of two.

Unlike its counterpart ALIGN, ALIGNALL is an actual command. It
updates the location counter as each object is written to the
output (Listing 11.13).
Targeting Dreamcast SGA–97

ELF Linker and Command Language
Alphabetical Keyword Listing
Listing 11.13 ALIGNALL example

.code :
{
 ALIGNALL(16); // Align code on 16 byte boundary
 * (.init)
 * (.text)

 ALIGNALL(64); //align data on 64 byte boundary
 * (.rodata)
} > .text

EXCEPTION

The EXCEPTION command creates the exception table index in
the output file. Exception tables are only required for C++. To
create an exception table, add the EXCEPTION command to the
end of your code section block. The two symbols,
__exception_table_start__ and
__exception_table_end__ are known to the runtime system.

Listing 11.14 Creating an exception table

 __exception_table_start__ = .;
 EXCEPTION
 __exception_table_end__ = .;

FORCE_ACTIVE

The FORCE_ACTIVE directive allows you to specify symbols that
you do not want the linker to deadstrip. When using C++, you
must specify symbols using their mangled names.

Prototype FORCE_ACTIVE{ symbol [, symbol] }

GROUP

The GROUP keyword allows you to selectively include files and
sections from certain file groups.

Prototype GROUP (fileGroup) (sectionType)
SGA–98 Targeting Dreamcast

ELF Linker and Command Language
Alphabetical Keyword Listing
 For example, if you specify this:

GROUP (BAR) (.bss)

you are specifying all the .bss sections of the files in the file group
named BAR.

INCLUDE

The INCLUDE command allows you to include a binary file in the
output file.

Prototype INCLUDE filename

KEEP_SECTION

The KEEP_SECTION directive allows you to specify sections that
you do not want the linker to deadstrip.

Prototype KEEP_SECTION{ sectionType [, sectionType] }

MEMORY

The MEMORY directive allows you to describe the location and size
of memory segment blocks in the target. Using this directive, you
tell the linker the memory areas to avoid, and the memory areas
into which it should link your code and date.

The linker command file may only contain one MEMORY
directive. However, within the confines of the MEMORY directive,
you may define as many memory segments as you wish.

Prototype MEMORY { memory_spec }

The memory_spec is:

segmentName (accessFlags) : ORIGIN = address, LENGTH = length
[,COMPRESS] [> fileName]

segmentName can include alphanumeric characters and
underscore '_' characters.
Targeting Dreamcast SGA–99

ELF Linker and Command Language
Alphabetical Keyword Listing
accessFlags are passed into the output ELF file
(Phdr.p_flags). The accessFlags can be:

address is one of the following:

• a memory address

You can specify a hex address such as 0x80000400.

• an AFTER command

If you do not want to compute the addresses using offsets,
you can use the AFTER(name [,name]) command to tell
the linker to place the memory segment after the specified
segment. In the following example, overlay1 and
overlay2 are placed after the code segment, and data is
placed after the overlay segments.

MEMORY{
code (RWX) : ORIGIN = 0x80000400, LENGTH = 0
overlay1 (RWXO) : ORIGIN = AFTER(code), LENGTH = 0
overlay2 (RWXO) : ORIGIN = AFTER(code), LENGTH = 0
data (RWX) : ORIGIN = AFTER (overlay1, overlay2), LENGTH = 0
}

When multiple memory segments are specified as
parameters for AFTER, the highest memory address is used.
This is useful for overlays when you do not know which
overlay takes up the most memory space.

length is one of the following:

• a value greater than zero

If you try to put more code and data into a memory
segment than your specified length allows, the linker stops
with an error.

• autolength by specifying zero

When the length is 0, the linker lets you put as much code
and data into a memory segment as you want.

R—read W—write

X—executable O—overlay
SGA–100 Targeting Dreamcast

ELF Linker and Command Language
Alphabetical Keyword Listing
NOTE There is no overflow checking with autolength. You can end up with
an unexpected result if you use the autolength feature without
leaving enough free memory space to contain the memory segment.
For this reason, when you use autolength, we recommend that you
use the AFTER keyword to specify origin addresses.

> fileName is an option to write the segment to a binary file on
disk instead of an ELF program header. The binary file is put in
the same folder as the ELF output file. This option has two
variants:

• > fileName

writes the segment to a new file.

• >> fileName

appends the segment to an existing file.

OBJECT

The OBJECT keyword gives you control over the order in which
functions are placed in the output file.

Prototype OBJECT (function , sourcefile.c)

It is important to note that if an object is written to the outfile
using the OBJECT keyword, the same object will not be written
again by either the GROUP keyword or the '*' wildcard selector.

OVERLAYID

The OVERLAYID function returns the overlay ID of a given
section. This function is useful only if CodeWarrior supports
overlays for your target.

Prototype OVERLAYID (sectionName | segmentName)

This function is commonly used to write part of the overlay
header . For example:

WRITEW OVERLAYID (.myoverlay);
Targeting Dreamcast SGA–101

ELF Linker and Command Language
Alphabetical Keyword Listing
REF_INCLUDE

The REF_INCLUDE directive allows you to specify sections that
you do not want the linker to deadstrip, but only if they satisfy a
certain condition: the file that contains the section must be
referenced. This is useful if you want to include version
information from your sourcefile components.

Prototype REF_INCLUDE{ sectionType [, sectionType]}

SECTIONS

A basic SECTIONS directive has the following form:

Prototype SECTIONS { <section_spec> }

section_spec is one of the following:

sectionName : [AT (loadAddress)] {contents} > segmentName
or,
sectionName : [AT (loadAddress]] {contents} >> segmentName

sectionName is the section name for the output section. It must
start with a period character. For example, " .mysection ".

AT (loadAddress) is an optional parameter that specifies the
address of the section. The default (if not specified) is to make the
load address the same as the relocation address.

contents are made up of statements. These statements can

• assign a value to a symbol. See “Alphabetical Keyword
Listing” on page 95, “Arithmetic Operations” on page 88, and
“. (location counter)” on page 96.

• describe the placement of an output section, including which
input sections are placed into it. See “File Selection” on
page 91, “Function Selection” on page 92, and “Alignment”
on page 87.

segmentName is the predefined memory segment into which you
want to put the contents of the section. The two variants are:

• > segmentName
SGA–102 Targeting Dreamcast

ELF Linker and Command Language
Alphabetical Keyword Listing
This places the section contents at the beginning of the
memory segment segmentName .

• >> segmentName

This appends the section contents to the memory segment
segmentName .

Here is an example section definition

Listing 11.15 An example section definition

SECTIONS {
 .text : {
 _textSegmentStart = .;
 foobar.c (.text)
 . = ALIGN (0x10);
 barfoo.c (.text)
 _textSegmentEnd = .;
 }
 .data : { *(.data) }
 .bss : { *(.bss)
 *(COMMON)
 }
}

SIZEOF

The SIZEOF function returns the size of the given segment or
section. The return value is the size in bytes.

Prototype SIZEOF(segmentName | sectionName)

STATICINIT

The STATICINIT directive creates the static initializer tables
required for C++ programs.

Prototype STATICINIT

WRITEB

WRITEB inserts a byte of data at the current address of a section.
Targeting Dreamcast SGA–103

ELF Linker and Command Language
Alphabetical Keyword Listing
Prototype WRITEB (expression);

expression is any expression that returns a value 0x00 to 0xFF .

WRITEH

WRITEH inserts a halfword of data at the current address of a
section.

Prototype WRITEH (expression);

expression is any expression that returns a value 0x0000 to
0xFFFF .

WRITEW

WRITEW inserts a word of data at the current address of a
section.

Prototype WRITEW (expression);

expression is any expression that returns a value 0x00000000
to 0xFFFFFFFF.
SGA–104 Targeting Dreamcast

12
Linker Issues for
Dreamcast

This section discusses issues surrounding the Dreamcast linker.
The sections in this chapter are:

• Deadstripping Unused Code and Data

• Link Order

• Function Reordering

Deadstripping Unused Code and Data
The Dreamcast libraries and libraries built with the CodeWarrior
C/C++ compiler only contribute the used objects to the linked
program. If a library has assembly or other C/C++ compiler built
files, only those files that have at least one referenced object
contribute to the linked program. Completely unreferenced
object files are always ignored.

If you have unreferenced sections of code or data that must be
kept in the final application, use FORCE_ACTIVE directive of
the linker command file to prevent the linker from
deadstripping those unreferenced sections. For more
information about FORCE_ACTIVE and other closure directives,
see “Closure Blocks” on page 84. You can also set the Disable
Deadstripping option in the SH Linker preferences panel. For a
description of this panel, see “SH Linker” on page 67.

The Dreamcast linker deadstrips unused code and data from files
compiled by the CodeWarrior C/C++ compiler. Other assembler
relocatable files and C/C++ object files built by other compilers
are not deadstripped.
Targeting Dreamcast SGA–105

Linker Issues for Dreamcast
Link Order
Link Order
The link order is generally specified in the Overlays view of the
Project window. For general information on setting link order,
see the IDE User Guide.

The link order of the libraries is very important. The default
stationery is set up with the correct link order for the Dreamcast
SDK libraries. If you are not using the stationery, please link the
libraries in this exact order:

strt1.obj.elf
strt2.obj.elf
systemid.obj.elf
toc.obj.elf
sg_sec.obj.elf
sg_arejp.obj.elf
sg_areus.obj.elf
sg_areec.obj.elf
sg_are00.obj.elf
sg_are01.obj.elf
sg_are02.obj.elf
sg_are03.obj.elf
sg_are04.obj.elf
sg_ini.obj.elf
aip.obj.elf
zero.obj.elf

You must place your source files and other libraries after the files
listed above.

TIP The Dreamcast linker ignores executable files that are in the project.
You may find it convenient to keep the executable there so that you
can disassemble it. If a build is successful, the file will show up in
the project as out of date (there will be a check mark in the touch
column on the left side of the project window) because it is a new
file. If a build is unsuccessful, the IDE will not be able to find the
executable file and will stop the build with an appropriate message.
SGA–106 Targeting Dreamcast

Linker Issues for Dreamcast
Function Reordering
Function Reordering
Automatic function reordering is not supported in this release.
To reorder functions manually, you must interpret the .lor file
created by the CodeScape profiler to improve the hit rates for the
instruction cache.

The .lor file contains the recommended arrangement for your
functions. Use the OBJECT directive of the CodeWarrior linker
to arrange the listed functions in the linker command file. For
more information, see “Function Selection” on page 92.
Targeting Dreamcast SGA–107

Linker Issues for Dreamcast
Function Reordering
SGA–108 Targeting Dreamcast

13
Inline Assembler and
Intrinsics for Dreamcast

This chapter describes support for inline assembly language
programming built into the CodeWarrior compiler. For more
information on Dreamcast assembly instructions, refer to the
hardware manual of the SH processor.

The sections in this chapter are:

• Working with Inline Assembly

• Assembler Directives

• Intrinsic Functions

• Mnemonics for Inline Assembly

Working with Inline Assembly
This section describes how to use the compiler’s built-in support
for assembly language programming.

The topics in this section include:

• Inline Assembly Syntax

• Using Labels

• Using Comments

• Using Registers

Inline Assembly Syntax

There are two ways to add assembly language statements to a C or
C++ source code file.
Targeting Dreamcast SGA–109

In l ine Assembler and Intr insics for Dreamcast
Working with Inline Assembly
The first method is shown in Listing 13.1 . This method uses the
asm qualifier to specify that all statements in a function are in
assembly language. You may define local variables in functions
defined with the asm qualifier.

Listing 13.1 Defining a function with asm

asm int MyAsmFunction (void)
{
 /* Local variable definitions */
 /* Assembly language instructions */
}

The second method is shown in Listing 13.2 . This method uses
the asm qualifier as a statement to provide “inline” assembly
language instructions.

In other words, assembly language statements and regular C/C++
statements can be combined within the same function definition.
However, the inline asm statements are not allowed to reference
that function’s local variables.

Listing 13.2 Inline assembly with asm

int MyInlineAsmFunction(void)
{
 /* Local variable definitions and C/C++ statements */
 asm { /* Assembly language instructions */ }
 /* Local variable definitions and C/C++ and asm {} statements */
}

To ensure that the C/C++ compiler recognizes the asm keyword,
you must turn off the ANSI Keywords Only option in the C/C++
language settings panel. This panel and its options are fully
described in the C Compilers Reference.

The built-in assembler supports all the standard SH assembler
instructions.
SGA–110 Targeting Dreamcast

In l ine Assembler and Intr insics for Dreamcast
Working with Inline Assembly
To enter a few lines of assembly language code within a single
function, you can use the compiler’s support for intrinsic functions
instead of inline assembler. See “Intrinsic Functions” on page 115.

Keep these points in mind as you write assembly functions:

• Some optimizations may be performed on assembly language
functions and functions that contain asm blocks. This depends
on your compiler optimization setting. For information on
setting the optimization level, see “Global Optimizations” on
page 62.

You may suppress assembly optimizations by using the
..set noreorder directive. For information on the .set
directive, see “.set” on page 114.

• All statements must either be a label, like this:

[LocalLabel:]

or be an instruction, like this:

((instruction \ directive) [operands])

• Each statement must end with a newline.

• The compiler will not recognize variables that are initialized
inside blocks of inline assembly.

• Assembler directives, instructions, and registers are not case
sensitive. These two statements are exactly the same:

 ADD R2, R4 // OK
 add r2, r4 // OK

• Hex constants must be in C-Style.

 0x123ABC // OK
 $123ABC // ERROR
 H'123ABC // ERROR

Using Labels

A label can be any identifier that you have not already declared as
a local variable. A label must end with a colon. An instruction
cannot follow a label on the same line. Take the following as an
illustration:
Targeting Dreamcast SGA–111

In l ine Assembler and Intr insics for Dreamcast
Working with Inline Assembly
x1: ADD R2,R3 // ERROR
x2: // OK
 ADD R2,R3 // OK

Listing 13.3 Example of Using Labels

extern void foo(void);

int foo() {
 asm
 {
 MOVA foo_addr, R0;
foo_addr:
 .data.w 0;
 .data.l foo;
 }
}

Using Comments

You can use C and C++ comments, but you cannot use a
semicolon ';' to denote a comment. For example:

 ADD R2,R4 // OK
 ADD R2,R4 /* OK */
 ADD R2,R4 ; ERROR

Using Registers

In Listing 13.4 , we see three assembly statements embedded
within a function. To reference 'i' directly from the inline
assembly statement, we type the variable as a register .

Listing 13.4 Example of using registers

int foo3(int register i){
 asm{
 MOV i,R1;
 ADD 1, R1;
 MOV R1, R4;
 }
SGA–112 Targeting Dreamcast

In l ine Assembler and Intr insics for Dreamcast
Assembler Directives
 return i;
}

Status Register

The status register can be read and set through inline assembly.
See Listing 13.5 for an example.

Listing 13.5 Example of using the status register

/* Get status register */
static inline unsigned int get_sr(void)
{
 register unsigned int sr = 0;

 asm
 {
 STC SR, sr
 };
 return sr;
}
/* Set status register */
static inline void set_sr(unsigned int sr)
{
 register int value = sr;

 asm
 {
 LDC value, SR
 };
}

Assembler Directives
At the time of this writing, there are two directives specific to
Dreamcast assembler.
Targeting Dreamcast SGA–113

In l ine Assembler and Intr insics for Dreamcast
Assembler Directives
.set

Prototype .set [reorder | noreorder]

If you use the reorder option, the assembler uses instruction
scheduling to improve performance. This optimization reorders
processor instructions so that the execution of one instruction
doesn’t delay the execution of others.

The optimization level determines the default setting of .set .
At optimization levels of 0 and 1, the default is .set
noreorder . At other optimization levels, the default is .set
reorder . For more information on setting your optimization
level, see “Global Optimizations” on page 62.

The example shown in Listing 13.6 computes x + y in the delay-
slot for the call to foo() . Because we are purposefully putting the
ADD instruction after the JSR instruction, we use .set
noreorder to tell the compiler not to change our instruction
sequence.

Listing 13.6 .set example

 asm int ADD (int x, int y)
 {
 .set noreorder
 // y = x + y
 // call foo
 MOV.L foo, R0;
 JSR @R0;
 // return x + y;
 ADD R4, R5;
 MOV R5, R0;
 }

.frame

Prototype .frame

The .frame directive generates the epilogue and prologue for
the creation of a stack frame. You could create the stack frame
yourself using inline assembly instructions, but using .frame is
easier. You must create a stack frame if the function:
SGA–114 Targeting Dreamcast

In l ine Assembler and Intr insics for Dreamcast
Intrinsic Functions
• calls other functions

• declares local variables

Listing shows the syntax of .frame. Note that we have
commented out the RTS instruction. If you use .frame, the
compiler generates the RTS automatically.

Listing 13.7 .frame example

 asm int foo()
 {
 .frame
 MOV 12, R0;
 // RTS;
 ADD 1, R0;
 }

Intrinsic Functions
The compiler provides intrinsic functions that can generate
inline assembly instructions. These intrinsic functions execute
faster than other functions, because the compiler translates them
into inline assembly instructions. Rather than using inline
assembly syntax and specifying opcodes in an asm block, you may
find it more convenient to call an intrinsic functions that
matches what you want to do.

NOTE Support for instrinsic functions is not part of the ANSI C or C++
standards. They are an extension provided by the CodeWarrior
compiler.

When the compiler encounters the intrinsic function in your
source code, it immediately substitutes the assembly instruction
or instructions that match your function call. As a result, no
actual function call occurs in the final object code. The final code
contains the assembly language instructions that correspond to
the intrinsic functions.

The topics in this section are:
Targeting Dreamcast SGA–115

In l ine Assembler and Intr insics for Dreamcast
Intrinsic Functions
• List of Intrinsic Functions

• Hitachi SH C Compiler-compatible Intrinsic Functions

List of Intrinsic Functions

The intrinsic functions listed in Table 13.1 are available for you to
use in your CodeWarrior project.

Table 13.1 Intrinsic functions

__abs

Description Intrinsic for absolute value

Example int Intrinsic_abs (int i)
{
 int j;
 j = __abs(i);
 return j;
}

__labs

Description Intrinsic for long absolute value

Example long Intrinsic_labs (long i)
{
 long j;
 j = __labs(i);
 return j;
}

__alloca

Description Intrinsic for dynamic stack allocation

Example void Intrinsic_alloca(void)
{
 int i;

__abs __labs

__alloca __memcpy
SGA–116 Targeting Dreamcast

In l ine Assembler and Intr insics for Dreamcast
Intrinsic Functions
 short *x = (short
*)__alloca(1024*sizeof(short));
 for (i = 0; i < 1024; i++) x[i] = i;
}

__memcpy

Description Intrinsic for memory copy

Example typedef struct s
{
 int i1;
 int i2;
 int i3;
}
 s;

s s1;
s s2;

void Intrinsic_memcpy(s si)
{
 s2 = si;
 __memcpy(&s1, &si, sizeof(s));
}

Hitachi SH C Compiler-compatible Intrinsic
Functions

The intrinsic functions listed in Table 13.2 provide compatibility
with the intrinsic functions of Hitachi’s SH C compiler.
Targeting Dreamcast SGA–117

In l ine Assembler and Intr insics for Dreamcast
Intrinsic Functions
Table 13.2 Hitachi SH C compiler-compatible Intrinsic functions

set_cr

Description Sets the 32-bit status register.

Prototype void set_cr(int cr);

set_cr get_cr

set_imask get_imask

set_vbr get_vbr

set_gbr get_gbr

gbr_read_byte gbr_write_byte

gbr_read_word gbr_write_word

gbr_read_long gbr_write_long

gbr_and_bytes gbr_or_bytes

gbr_xor_byte gbr_tst_byte

sleep tas

trapa prefetch

macw macwl

set_fpscr get_fpscr

fipr ftrv

ftrvadd ftrvsub

add4 sub4

mtrx4mul mtrx4muladd

mtrx4mulsub

ld_ext st_ext

fabs fabsf

sqrt sqrtf

fsrra fsca

strcpy strcmp
SGA–118 Targeting Dreamcast

In l ine Assembler and Intr insics for Dreamcast
Intrinsic Functions
get_cr

Description References the status register.

Prototype int get_cr(void);

set_imask

Description Sets the 4-bit interrupt mask.

Prototype void set_imask(int mask);

get_imask

Description References the interrupt mask.

Prototype void get_imask(int mask);

set_vbr

Description Sets the 32-bit vector base register.

Prototype void set_vbr(void **base);

get_vbr

Description References the vector base register.

Prototype void **get_vbr(void);

set_gbr

Description Sets the 32-bit global base register.

Prototype void set_gbr(void *base);

get_gbr

Description References the global base register.

Prototype void *get_gbr(void);

gbr_read_byte

Description References the8-bit data byte at the address indicated by the GBR
and offset.

Prototype unsigned char gbr_read_byte(int offset)
Targeting Dreamcast SGA–119

In l ine Assembler and Intr insics for Dreamcast
Intrinsic Functions
gbr_write_byte

Description Writes a byte of data at the address indicated by the GBR and
offset.

Prototype void gbr_write_byte(int offset,
 unsigned char data);

gbr_read_word

Description References the 16-bit data word at the address indicated by the
GBR and offset.

Prototype unsigned char gbr_read_word(int offset);

gbr_write_word

Description Writes a word of data at the address indicated by the GBR and
offset.

Prototype void gbr_write_wrod(int offset,
 unsigned short data);

gbr_read_long

Description References the 32-bit data long at the address indicated by the
GBR and offset.

Prototype unsigned gbr_read_long(int offset);

gbr_write_long

Description writes a long of data at the address indicated by the GBR and
offset.

Prototype void gbr_write_long(int offset,
 unsigned long data);

gbr_and_bytes

Description Takes the specified mask and ANDs it with the byte data at the
address of the GBR and offset. The result is stored at the same
address.

Prototype void gbr_and_bytes(int offset,
 unsigned char mask);
SGA–120 Targeting Dreamcast

In l ine Assembler and Intr insics for Dreamcast
Intrinsic Functions
gbr_or_bytes

Description Takes the specified mask and ORs it with the byte data at the
address of the GBR and offset. The result is stored at the same
address.

Prototype void gbr_or_bytes(int offset
 unsigned char mask);

gbr_xor_byte

Description Takes the specified mask and XORs it with the byte data at the
address of the GBR and offset. The result is stored at the same
address.

Prototype void gbr_xor_byte(int offset
 unsigned char mask);

gbr_tst_byte

Description Takes the specified mask and ANDs it with the byte data at the
address of the GBR and offset. If the result is 0, the T bit is set to 1
(true). Otherwise, the T bit is set to 0 (false).

Prototype void gbr_tst_byte(int offset
 unsigned char mask);

sleep

Description Invokes the SLEEP instruction

Prototype void sleep(void);

tas

Description Invokes the TAS.B instruction with addr.

Prototype int tas(char *addr);

trapa

Description Invokes the TRAPA instruction with trap_no.

Prototype int trapa(int trap_no);
Targeting Dreamcast SGA–121

In l ine Assembler and Intr insics for Dreamcast
Intrinsic Functions
prefetch

Description Invokes the PREF instruction. This writes the 16-bytes of
memory indicated by the pointer to the cache memory.

Prototype void prefetch (void *p);

macw

Description Multiplies and accumulates the contents of two data tables.

Prototype int macw(short *ptr1,
 short *ptr2,
 unsigned int count);

Remarks The sizes of the tables at the addresses indicated by ptr1 and ptr2
must have 2-byte and 4-byte alignment, respectively.

macwl

Description Multiplies and accumulates the contents of two data tables using
a ring buffer mask.

Prototype int macwl(short *ptr1,
 short *ptr2,
 unsigned int count,
 unsigned int mask);

Remarks The tables at the addresses indicated by ptr1 and ptr2 must be
aligned to twice the size of the ring buffer mask.

set_fpscr

Description Writes a 32-bit value to the floating-point unit system/control
register.

Prototype void set_fpscr(int cr);

get_fpscr

Description Reads the value of the floating point unit system/control
register.

Prototype int get_fpscr();

Return get_fpscr() returns the FPSCR value.
SGA–122 Targeting Dreamcast

In l ine Assembler and Intr insics for Dreamcast
Intrinsic Functions
fipr

Description Calculates the inner product of single-precision floating-point
vectors vect1 and vect2 .

Prototype float fipr(float vect1[4], float vect2[4]);

Remarks No remarks

Return fipr() returns the inner product of vect1 and vect2 as a
float .

ftrv

Description Multiplies a single-precision floating-point vector (vect1) with
a 4x4 matrix stored in the extension registers (MTX) . The result is
stored in vect2 .

vect2 = vect1 x MTX

Prototype void ftrv(float vect1[4], float vect2[4]);

Remarks Before using this function, you must first use the ld_ext
intrinsic function to load MTX’s data into the extension registers.

ftrvadd

Description Multiplies a single-precision floating-point vector (vect1) with
a 4x4 matrix stored in the extension registers (MTX) , then adds
vect2 to the result. The result is stored in vect3 .

vect3 = (vect1 x MTX) + vect2

Prototype void ftrvad(float vect1[4], float vect2[4],
 float vect3[4]);

Remarks Before using this function, you must first use the ld_ext
intrinsic function to load MTX’s data into the extension registers.

ftrvsub

Description Multiplies a single-precision floating-point vector (vect1) with
a 4x4 matrix stored in the extension registers (MTX) , then
subtracts vect2 from the result. The result is stored in vect3 .

vect3 = (vect1 x MTX) - vect2

Prototype void ftrvsub(float vect1[4], float vect2[4],
 float vect3[4]);
Targeting Dreamcast SGA–123

In l ine Assembler and Intr insics for Dreamcast
Intrinsic Functions
Remarks Before using this function, you must first use the ld_ext
intrinsic function to load MTX’s data into the extension registers.

add4

Description Adds together the single-precision floating point vectors vect1
and vect2 . The result is stored in vect3 .

vect3 = vect1 + vect2

Prototype void add4(float vect1[4], float vect2[4],
 float vect3[4]);

sub4

Description Subtracts the single-precision floating-point vector vect2 from
vector vect1 . The result is stored in vect3 .

vect3 = vect1 - vect2

Prototype void sub4(float vect1[4], float vect2[4],
 float vect3[4]);

mtrx4mul

Description Multiplies a single-precision floating-point 4x4 matrix (mtrx1)
with the 4x4 matrix stored in the extension registers (MTX) . The
result is stored into mtrx2 .

mtrx2 = mtrx1 x MTX

Prototype void mtrx4mul(float mtrx1[4][4],
 float mtrx2[4][4]);

Remarks Before using this function, you must first use the ld_ext
intrinsic function to load MTX’s data into the extension registers.

mtrx4muladd

Description Multiplies a single-precision floating-point 4x4 matrix (mtrx1)
with the matrix stored in the extension registers (MTX) . Another
matrix, mtrx2 , is then added, and the result is stored into
mtrx3.
SGA–124 Targeting Dreamcast

In l ine Assembler and Intr insics for Dreamcast
Intrinsic Functions
mtrx3 = (mtrx1 x MTX) + mtrx2

Prototype void mtrx4muladd(float mtrx1[4][4],
 float mtrx2[4][4],
 float mtrx3[4][4]);

Remarks Before using this function, you must first use the ld_ext
intrinsic function to load MTX’s data into the extension registers.

mtrx4mulsub

Description Multiplies a single-precision floating-point 4x4 matrix (mtrx1)
with the matrix stored in the extension registers (MTX) . Another
matrix, mtrx2 , is then subtracted, and the result is stored into
mtrx3 .

mtrx3 = (mtrx1 x MTX) - mtrx2

Prototype void mtrx4mulsub(float mtrx1[4][4],
 float mtrx2[4][4],
 float mtrx3[4][4]);

Remarks Before using this function, you must first use the ld_ext
intrinsic function to load MTX’s data into the extension registers.

ld_ext

Description Loads the data of a 4x4 matrix into the floating-point extension
registers.

Prototype void ld_ext(float mtrx[4][4]);

Remarks No remarks

st_ext

Description Reads the floating-point extension registers and stores the matrix
data into a 4x4 matrix.

Prototype void st_ext(float mtrx[4][4]);

fabs

Description Finds the absolute value of a float.

Prototype float fabs(float x);
Targeting Dreamcast SGA–125

In l ine Assembler and Intr insics for Dreamcast
Intrinsic Functions
fabsf

Description Finds the absolute value of a float using single-precision.

Prototype float fabsf (float x);

sqrt

Description Finds the square root of a positive float.

Prototype float sqrt(float x);

sqrtf

Description Finds the square root of a positive float using single-precision.

Prototype float sqrtf(float x);

fsrra

Description Finds the reciprocal square root using single-precision.

Prototype float fssca(float val);

fsca

Description Finds the sine and cosine of rad.

Prototype void fsca(long rad,
 float *sinval,
 float *cosval);

Remarks sinval is the value of the sine.
cosval is the value of the cosine.

strcpy

Description Copies string s2 to string s1.

Prototype char strcpy(char *s1,
 char *s2);

strcmp

Description Compares string s1 to string s2.

Prototype int strcmp(char *s1
 char *s2);
SGA–126 Targeting Dreamcast

In l ine Assembler and Intr insics for Dreamcast
Mnemonics for Inline Assembly
Mnemonics for Inline Assembly
The instructions for inline assembly are a little bit different than
those for regular assembly.

• Special Instructions for Inline Assembly

• Complete List of Inline Assembly Mnemonics

Special Instructions for Inline Assembly

These are special instructions for inline assembly. The following
instructions are expanded by the compiler into a sequence of
machine instructions. They are presented in the form:

"mnemonic", "format"

Move a constant into Rn.
"MOV.L", "w,Rn"

Load effective address of label
"MOVA", "l,=R0"

Load from constant pool
"MOV.L", "l,Rn"

Inline assembly directive
"_set", ""
"_unset", ""

Embedding Data Within Code Streams

Use the following inline instructions to embed data within code
streams.

".data.b" "u"
".data.w" "v"
".data.l" "w"
Targeting Dreamcast SGA–127

In l ine Assembler and Intr insics for Dreamcast
Mnemonics for Inline Assembly
Special Instructions Example

If you are unsure of how these instructions might be used, look
at Listing 13.8 for an example. Here, we use the special MOV.L
instruction to load the constant 12345678 into R1.

Listing 13.8 Example of using special instructions

asm int foo1() {
 MOV.L 12345678,R1;
 RTS;
 NOP;
}

The compiler actually expands the special instruction into the
machine instructions shown in Listing 13.9 .

Listing 13.9 Compiler expansion of the special instruction

 _foo4:
0xD101 mov.l @(4,pc),r1
0x000B rts
0x0009 nop
0x0000 .data.w 0x0000
0x614E .data.w 0x614E
0x00BC .data.w 0x00BC

If you do not use this special instruction, you become responsible
for computing the displacement and alignment to access the
constant that is embedded in the code. Without the special
instruction, you would have to write code that resembles Listing
13.10. Note that in the MOV.L instruction below, the displacement
is multiplied by the compiler by a factor that is the same as the
size of the data being accessed (in our case, this is 4 for a long).

Listing 13.10 Alternative to using the special instruction

asm int foo2() {
 MOV.L @(1,PC), R0;
 RTS;
 NOP;
SGA–128 Targeting Dreamcast

In l ine Assembler and Intr insics for Dreamcast
Mnemonics for Inline Assembly
 .data.w 0;
 .data.l 12345678;
}

Complete List of Inline Assembly Mnemonics

Table 13.3 lists the inline assembly instructions supported by our
compiler. They are similar to the regular assembler instructions,
but '/' characters have changed to '_'. The instructions that we
do not support in inline assembly are greyed out and marked as
unsupported.

Table 13.3 List of Inline Assembler Mnemonics

Mnemonic Format Support

"ADD" "i,Rn"

"ADD" "Rm,Rn"

"ADDC" "Rm,Rn"

"ADDV" "Rm,Rn"

"AND" "i,R0"

"AND" "Rm,Rn"

"AND.B" "i,@(R0,GBR)"

"BF" "l"

"BF_S" "l"

"BRA" "m"

"BRAF" "Rn"

"BSR" "m" unsupporte
d

"BSRF" "Rn"

"BT" "l"

"BT_S" "l"
Targeting Dreamcast SGA–129

In l ine Assembler and Intr insics for Dreamcast
Mnemonics for Inline Assembly
"CLRMAC" ""

"CLRS" ""

"CLRT" ""

"CMP_EQ" "i,R0"

"CMP_EQ" "Rm,Rn"

"CMP_GE" "Rm,Rn"

"CMP_GT" "Rm,Rn"

"CMP_HI" "Rm,Rn"

"CMP_HS" "Rm,Rn"

"CMP_PL" "Rn"

"CMP_PZ" "Rn"

"CMP_STR" "Rm,Rn"

"DIV0S" "Rm,Rn"

"DIV0U" ""

"DIV1" "Rm,Rn"

"DMULS.L" "Rm,Rn"

"DMULU.L" "Rm,Rn"

"DT" "Rn"

"EXTS.B" "Rm,Rn"

"EXTS.W" "Rm,Rn"

"EXTU.B" "Rm,Rn"

"EXTU.W" "Rm,Rn"

"FABS" "Fn"

"FADD" "Fm,Fn"

"FCMP_EQ" "Fm,Fn"

"FCMP_GT" "Fm,Fn"

Mnemonic Format Support
SGA–130 Targeting Dreamcast

In l ine Assembler and Intr insics for Dreamcast
Mnemonics for Inline Assembly
"FCNVDS" "Fn"

"FCNVSD" "Fn"

"FDIV" "Fm,Fn"

"FIPR" "FVm,FVn" unsupporte
d

"FLDI0" "Fn"

"FLDI1" "Fn"

"FLDS" "Fn"

"FLOAT" "Fn"

"FMAC" "F0,Fm,Fn"

"FMOV" "Fm,Fn"

"FMOV.S" "Fm,@Rn"

"FMOV.S" "@Rm,Fn"

"FMOV.S" "@Rm+,Fn"

"FMOV.S" "Fm,@-Rn"

"FMOV.S" "@(R0,Rm),Fn"

"FMOV.S" "Fm,@(R0,Rn)"

"FMOV" "Xm,@Rn" unsupporte
d

"FMOV" "@Rm,Xn" unsupporte
d

"FMOV" "@Rm+,Xn" unsupporte
d

"FMOV" "Xm,@-Rn" unsupporte
d

"FMOV" "@(R0,Rm),Xn" unsupporte
d

Mnemonic Format Support
Targeting Dreamcast SGA–131

In l ine Assembler and Intr insics for Dreamcast
Mnemonics for Inline Assembly
"FMOV" "Xm,@(R0,Rn)" unsupporte
d

"FMOV" "Xm,Xn" unsupporte
d

"FMOV" "Xm,Dn" unsupporte
d

"FMOV" "Dm,Xn" unsupporte
d

"FMUL" "Fm,Fn"

"FNEG" "Fn"

"FRCHG" ""

"FSCHG" ""

"FSQRT" "Fn"

"FSTS" "Fn"

"FSUB" "Fm,Fn"

"FTRC" "Fn"

"FTRV" "XM,FVn" unsupporte
d

"JMP" "@Rn"

"JSR" "@Rn" unsupporte
d

"LDC" "Rn,GBR"

"LDC" "Rn,SR"

"LDC" "Rn,VBR"

"LDC" "Rn,SSR"

"LDC" "Rn,SPC"

"LDC" "Rn,DBR"

Mnemonic Format Support
SGA–132 Targeting Dreamcast

In l ine Assembler and Intr insics for Dreamcast
Mnemonics for Inline Assembly
"LDC" "Rn,Rb" unsupporte
d

"LDC.L" "@Rn+,GBR"

"LDC.L" "@Rn+,SR"

"LDC.L" "@Rn+,VBR"

"LDC.L" "@Rn+,SSR"

"LDC.L" "@Rn+,SPC"

"LDC.L" "@Rn+,DBR"

"LDC.L" "@Rn+,Rb" unsupporte
d

"LDS" "Rn,FPSCR"

"LDS" "Rn,MACH"

"LDS" "Rn,MACL"

"LDS" "Rn,PR"

"LDS" "Rn,FPUL"

"LDS.L" "@Rn+,FPSCR"

"LDS.L" "@Rn+,MACH"

"LDS.L" "@Rn+,MACL"

"LDS.L" "@Rn+,PR"

"LDS.L" "@Rn+,FPUL"

"LDTLB" ""

"MAC.L" "@Rm+,@Rn+"

"MAC.W" "@Rm+,@Rn+"

"MOV" "i,Rn"

"MOV" "Rm,Rn"

"MOV.B" "@(d8,GBR),R0"

Mnemonic Format Support
Targeting Dreamcast SGA–133

In l ine Assembler and Intr insics for Dreamcast
Mnemonics for Inline Assembly
"MOV.B" "@(d4,Rm),R0"

"MOV.B" "@(R0,Rm),Rn"

"MOV.B" "@Rm+,Rn"

"MOV.B" "@Rm,Rn"

"MOV.B" "R0,@(d8,GBR)"

"MOV.B" "R0,@(d4,Rm)"

"MOV.B" "Rm,@(R0,Rn)"

"MOV.B" "Rm,@-Rn"

"MOV.B" "Rm,@Rn"

"MOV.W" "@(d8,GBR),R0"

"MOV.W" "@(d8,PC),Rn" unsupporte
d

"MOV.W" "@(d4,Rm),R0"

"MOV.W" "@(R0,Rm),Rn"

"MOV.W" "@Rm+,Rn"

"MOV.W" "@Rm,Rn"

"MOV.W" "R0,@(d8,GBR)"

"MOV.W" "R0,@(d4,Rm)"

"MOV.W" "Rm,@(R0,Rn)"

"MOV.W" "Rm,@-Rn"

"MOV.W" "Rm,@Rn"

"MOV.L" "@(d8,GBR),R0"

"MOV.L" "@(d8,PC),Rn"

"MOV.L" "@(d4,Rm),Rn"

"MOV.L" "@(R0,Rm),Rn"

"MOV.L" "@Rm+,Rn"

Mnemonic Format Support
SGA–134 Targeting Dreamcast

In l ine Assembler and Intr insics for Dreamcast
Mnemonics for Inline Assembly
"MOV.L" "@Rm,Rn"

"MOV.L" "R0,@(d8,GBR)"

"MOV.L" "Rm,@(d4,Rn)"

"MOV.L" "Rm,@(R0,Rn)"

"MOV.L" "Rm,@-Rn"

"MOV.L" "Rm,@Rn"

"MOVA" "@(d8,PC),R0"

"MOVA" <label>,R0

"MOVCA.L" "@R0,@Rn"

"MOVT" "Rn"

"MUL.L" "Rm,Rn"

"MULS.W" "Rm,Rn"

"MULU.W" "Rm,Rn"

"NEG" "Rm,Rn"

"NEGC" "Rm,Rn"

"NOP" ""

"NOT" "Rm,Rn"

"OCBI" "@Rn"

"OCBP" "@Rn"

"OCBWB" "@Rn"

"OR" "i,R0"

"OR" "Rm,Rn"

"OR.B" "i,@(R0,GBR)"

"PREF" "@Rn"

"ROTCL" "Rn"

"ROTCR" "Rn"

Mnemonic Format Support
Targeting Dreamcast SGA–135

In l ine Assembler and Intr insics for Dreamcast
Mnemonics for Inline Assembly
"ROTL" "Rn"

"ROTR" "Rn"

"RTE" ""

"RTS" ""

"SETS" ""

"SETT" ""

"SHAD" "Rm,Rn"

"SHAL" "Rn"

"SHAR" "Rn"

"SHLD" "Rm,Rn"

"SHLL" "Rn"

"SHLL2" "Rn"

"SHLL8" "Rn"

"SHLL16" "Rn"

"SHLR" "Rn"

"SHLR2" "Rn"

"SHLR8" "Rn"

"SHLR16" "Rn"

"SLEEP" ""

"STC" "GBR,=Rn"

"STC" "SR,=Rn"

"STC" "VBR,=Rn"

"STC" "SSR,=Rn"

"STC" "SPC,=Rn"

"STC" "DBR,=Rn"

Mnemonic Format Support
SGA–136 Targeting Dreamcast

In l ine Assembler and Intr insics for Dreamcast
Mnemonics for Inline Assembly
"STC" "Rb,=Rn" unsupporte
d

"STC.L" "G,@Rn+"

"STC.L" "SR,@Rn+"

"STC.L" "VBR,@Rn+"

"STC.L" "SSR,@Rn+"

"STC.L" "SPC,@Rn+"

"STC.L" "DBR,@Rn+"

"STC.L" "Rb,@Rn+" unsupporte
d

"STS" "FPSCR,Rn"

"STS" "MACH,Rn"

"STS" "MACL,Rn"

"STS" "PR,Rn"

"STS" "FPUL,Rn"

"STS.L" "FPSCR,@-Rn"

"STS.L" "MACH,@-Rn"

"STS.L" "MACL,@-Rn"

"STS.L" "PR,@-Rn"

"STS.L" "FPUL,@-Rn"

"SUB" "Rm,Rn"

"SUBC" "Rm,Rn"

"SUBV" "Rm,Rn"

"SWAP.B" "Rm,Rn"

"SWAP.W" "Rm,Rn"

"TAS.B" "@Rn"

Mnemonic Format Support
Targeting Dreamcast SGA–137

In l ine Assembler and Intr insics for Dreamcast
Mnemonics for Inline Assembly
"TRAPA" "i"

"TST" "i,R0"

"TST" "Rm,Rn"

"TST.B" "i,@(R0,GBR)"

"XOR" "i,R0"

"XOR" "Rm,Rn"

"XOR.B" "i,@(R0,GBR)"

"XTRCT" "Rm,Rn"

Mnemonic Format Support
SGA–138 Targeting Dreamcast

14
Overlays

Using overlays is a programming technique that allows a
program to fit into memory that is smaller than the program
itself, even in the absence of virtual memory.

To use overlays, you break your program into chunks of code
that do not all have to be loaded at the same time. These chunks
of code are compiled into overlays that link against each other.
Your main program is then responsible for loading the
individual overlays as they are needed.

For example, you might have an overlay that plays mpeg
movies, an overlay that displays the main menu, and another
overlay for the gameplay. Since these overlays run
independently of each other, you can swap them in and out of
memory as you need them.

The topics in this chapter include:

• Building an Overlay Project —an introduction to
CodeWarrior’s overlay feature.

• Overlay Notes —technical notes related to overlays.

Building an Overlay Project
CodeWarrior supports overlays with a special tab in the Project
window labled Overlays. This feature allows you to easily create
overlays for your game.

In this tutorial, we will build and test a program that contains
two overlays.

Follow these steps to build a project that uses overlays.

1. Build the Project File
Targeting Dreamcast SGA–139

Overlays
Building an Overlay Project
a. Create a new project.

Launch CodeWarrior and select New Project from the File
menu. Choose Dreamcast and C C++ app (no source) for
the stationery as shown in Figure 14.1 . Note that you may not
want to create a new folder.

Figure 14.1 Choosing Stationery for the Overlay Tutorial

In the file dialog, locate the Tutorial folder which is typically
located at

Examples\Overlay\

Enter the file name overlay and click OK. You should now
see a project window named overlay.mcp.

b. Add files to the project.

Add the source files test.c , sbinit.c , mw_utils.c ,
njloop.c , overlay1.c and overlay2.c on to the project
window and under the Sources group. You should see the
files listed in the file list.
SGA–140 Targeting Dreamcast

Overlays
Building an Overlay Project
c. Create the overlays.

Click the Overlays tab at the top of the project window as
shown in Figure 14.2 . Expand the Main Application list to
show your source files.

Figure 14.2 Overlay Tab in Project Window

Select Project > Create Overlay Group. You should see a dialog
as shown in Figure 14.3 . Type in the name My Overlays and
click OK. This is the name of the new overlay group.

Figure 14.3 Create Overlay Group Dialog

You must now set the base code address for this overlay
group. To set the base address, double-click the My Overlays
group. You should see a dialog like the one in Figure 14.4 .
Targeting Dreamcast SGA–141

Overlays
Building an Overlay Project
Figure 14.4 Setting the Base Code Address for an Overlay Group

The overlay code in the group My Overlays is loaded at the
hex address entered in the Base Code Address field. For this
example, enter 8C100000 . We chose this address because we
know it is well above any memory space used by the rest of
our application.

In the project window, expand the My Overlays group. You
should see an overlay named New Overlay . Double-click the
name or icon associated with this overlay to open the Rename
Group dialog like the one in Figure 14.5 . Enter the name
LocalFunction into the text field and click OK.

Figure 14.5 Rename Group (Overlay) Dialog
SGA–142 Targeting Dreamcast

Overlays
Building an Overlay Project
NOTE The name of an overlay is also the filename of the overlay as written
to disk. In our source code, we load overlays into memory by their
filename.

In the project window’s file list, place the Overlay1.c source
file into the GlobalFunction overlay by dragging the
Overlay1.c icon to a position underneath the
LocalFunction icon.

Now we need to create the second overlay of the My
Overlays group. Click My Overlays in the project window
and then choose Project > Create New Overlay. Enter the
name GlobalFunction in the text field and click OK. Expand
the new GlobalFunction overlay and drag the overlay2.c
icon underneath the GlobalFunction icon in the file list.

d. You have successfully set up the overlays for this project.

Your project window should resemble the one in Figure 14.6 .

Figure 14.6 Project Window with Overlays
Targeting Dreamcast SGA–143

Overlays
Building an Overlay Project
2. Set Up Other Project Settings

Now set the other project settings to prepare for building our
application.

Open the Edit > debug Settings > SH Target panel. Change the
File Name to overlay.elf . Open the Target Settings > Target
Settings panel. Change the Pre-linker setting to SH LCF
Generator. Since you created the overlay project using the
stationery, you should not have to modify any other settings.

Save and close the target settings window.

3. Modifying Source Code for Overlays

We have to modify the source code to compile our code.

a. Inspect the overlay source files.

Click the Files tab in the Project window to view all the source
files in the project. Double-click the Overlay1.c file to open
it. It contains code for a simple arithmetic function named
func_ol1 . Close the file.

Open Overlay2.c . This file is slightly more interesting
because it uses a global variable named gVar . The function
func_ol2 modifies this global variable, which is declared in
test.c .

b. Edit test.c to work with overlays.

The code in your test.c will not compile. You must change
a few constants to compiler and run the program.

Your code has to refer to the overlay by its position in the
project’s overlay list. You can determine an overlay’s position
by clicking the Overlay tab in the Project window. The
overlays are LocalFunction and GlobalFunction , and they
appear in that order. Thus, the index of LocalFunction is 0,
and the index of GlobalFunction is 1.

In test.c , find the constant OVERLAY1_NUMBER. Change the
placekeeper ***Index of first overlay*** to 0. Change
the placekeeper for the second overlay to 1.

We now need to change the filenames of the overlays to
match what you entered in the project. Find the definition of
OVERLAY1_FILENAME and change it to:
SGA–144 Targeting Dreamcast

Overlays
Building an Overlay Project
#define OVERLAY1_FILENAME "LOCALFUNCTION."

Change the definition of OVERLAY2_FILENAME to:

#define OVERLAY2_FILENAME "GLOBALFUNCTION."

NOTE All filenames must be entered in uppercase letters. In addition,
filenames without filename extensions must end with a trailing
period ('. ') character.

4. Examine how the overlays are loaded.

Down in njUserMain() , we call func_ol1() and func_ol2()
in a loop. To call func_ol1() , we load its overlay file into
memory using the MWLoadOverlay() utility function.

The address argument to MWLoadOverlay() is expressed as an
offset from a table that the linker generates for you and includes
in the main application. The name of this table is
overlay_section_address . Each entry in this table
corresponds to an overlay’s base code address entered in an
Overlay Group Info dialog as shown in Figure. There is an entry
in this table for every overlay. The first entry in the table, index 0,
always refers to the main application.

We check the return value of MWLoadOverlay() to see if the
code successfully loaded. If so, we are safe to call the functions
defined in that overlay code. Once we load the overlay, we also
call the function MWNotifyOverlayLoaded() . This stub
function tells the debugger that an overlay has been loaded and
allows the debugger to make the adjustments necessary to debug
this overlay. For more information on these functions, see
“Metrowerks Utility Library” on page 149.

5. Compile the code.

Select Project > Make to compile the overlay tutorial program.

6. Test the overlays.

a. Write the overlay files to the GD-ROM emulator.

Before we can read our overlay files into memory, we must
first write them to the GD-ROM. Launch the GDWorkshop,
and create a GD-ROM image consisting of a dummy file and
our two overlay files, LocalFunction and GlobalFunction .
Targeting Dreamcast SGA–145

Overlays
Overlay Notes
Then activate the emulator by clicking the Open/Close CD
button to close the simulated GD-ROM door.

NOTE To ensure that we meet the minimum length requirements for the
GD-ROM, the dummy files we use must be at least 800 Kb in size.
We need two dummy files for the first session, and one dummy file
for the data section. The gdworkshop.exe program itself makes an
excellent dummy file.

b. Start the debugger.

Select Project > Enable Debugger, and then choose
Project > Debug. This downloads and runs our program on
the Dreamcast. On your development computer, you should
see the CodeWarrior debugger launch and stop at the
beginning of main() .

c. Step through the program.

Single Step through the program until you come to
result=func_ol1(gCount) . At this point, the
LocalFunction overlay file has been loaded. Step Into this
call to see the overlay code displayed in the Debugger. Step
through and back out to njUserMain() . Notice the variable
inVar now has a value of 1.

Step through to the call to func_ol2() . If you step through
this call, you should notice that the value of the global
variable gVar is now 10.

7. You have successfully built and tested a program using overlays.

Overlay Notes
These are various technical notes regarding how overlays are
created and used. They include:

• Overlays and Exceptions

• Overlay Header

• GDWorkshop
SGA–146 Targeting Dreamcast

Overlays
Overlay Notes
Overlays and Exceptions

C++ exceptions are not supported when you use overlays.

Overlay Header

Listing 14.1 shows the format of the overlay header record that
appears at the beginning of every overlay file. The debugger reads
this 64 byte long header to identify the overlay. when the SH LCF
generator is active, the overlay headers for your project are
created automatically.

Listing 14.1 CodeWarrior Overlay Record Format

typedef struct overlayHeader
{
char flag[3]; /* 'MWo' */
char version;
unsigned long overlayID; /* Same ID found in DWARF */
unsigned long loadAddress; /* Address where to load the overlay*/
unsigned long TextSize; /* Size of the executable part */
unsigned long DataSize; /* Size of the data part */
unsigned long StaticInit; /* Static init pointer */
unsigned long bssSize; /* unused */
unsigned long entryPoint; /* unused */
char overlayName[32];
} OverlayHeader;

GDWorkshop

After recompiling any code that deals with overlays, you must
replace the old copies of the files in the GD-ROM emulator with
the newer copies.

If you do not replace the old files with the new files, you will
encounter difficulties with your program, the CodeWarrior IDE,
or both.
Targeting Dreamcast SGA–147

Overlays
Overlay Notes
SGA–148 Targeting Dreamcast

15
Libraries and Runtime
Code for Dreamcast

Metrowerks provides a variety of libraries for use with the
CodeWarrior development environment. They include ANSI-
standard libraries for C and C++, as well as runtime libraries and
other code. This chapter discusses how to use these libraries for
Dreamcast development.

The sections in this chapter are:

• Metrowerks Utility Library

• Runtime Libraries

• Allocating Memory and Heaps

Metrowerks Utility Library
To make programming for the Dreamcast as simple as possible,
Metrowerks has written mw_utils.c . This library contains
functions for loading and initializing overlays.

Using mw_utils.c requires that you:

1. add the mw_utils.c library source to your project

2. include the mw_utils.h header file in any file that calls a
library function.

The functions in this library include:

• MWBload()

• MWNotifyOverlayLoaded()

• MWInitOverlay()

• MWLoadOverlay()
Targeting Dreamcast SGA–149

Librar ies and Runt ime Code for Dreamcast
Metrowerks Utility Library
MWBload()
Description Loads the entire contents of the named file into memory at the

chose address.

Prototype long MWBload(char *pfileName, void *address)

Parameters pfileName - name of file to load
address - memory address to place loaded data

Returns Number of bytes read if successful (-1 otherwise).

MWNotifyOverlayLoaded()
Description Informs the debugger that an overlay has been loaded.

Prototype void MWNotifyOverlayLoaded
 (void *overlayLoadAddress)

Parameters overlayLoadAddress - load address of the overlay

Remarks MWNotifyOverlayLoaded() is a stub function that does not
contain any actual code. However, when the debugger detects the
presence of this function in your code, it will realize that an
overlay has been loaded, read the header information at the start
of the overlay, and restore the breakpoints for that overlay.

MWInitOverlay()
Description Initializes memory for an overlay section.

Prototype MWInitOverlay(void* address, signed long sizeByte)

Parameters address - memory address of loaded overlay
sizeByte - length of overlay in bytes

Remarks Call this function after loading an overlay with MWBload() . This
invalidates the CPU cache, clears the bss section, and calls the
static initializer for the overlay.

MWLoadOverlay()
Description Wraps MWbload() , MWInitOverlay() , and

MWNotifyOverlayLoaded() into a single function.

Prototype MWLoadOverlay(char* pFileName, void* address)
SGA–150 Targeting Dreamcast

Librar ies and Runt ime Code for Dreamcast
Runtime Libraries
Parameters pFileName - name of overlay file to load
address - memory address to place loaded overlay

Returns true if successful.

Remarks This function strings together the functions commonly in
loading an overlay. It loads the named overlay file into memory,
initializes the overlay, and notifies the debugger that an overlay
has been loaded.

Runtime Libraries
You may need to include the following runtime libraries in your
project. The are located in the Dreamcast Support folder.

The following are the same runtime libraries that ship with the
Dreamcast SDK, but they have been converted for use with
CodeWarrior:

'nindows.elf.lib'
'ninja.elf.lib'
'shinobi.elf.lib'
'sh4nlfzz.elf.lib'

The following runtime library is required by CodeWarrior:
'MSLRuntimeDC.lib'

The following library is required to use C++ standard libraries:
'MSLCppDC.lib'

The following library is required for using the mw_pr () string
printing function:

'mw output.lib'

Allocating Memory and Heaps
Please note that the heap and stack size are specified by the
Dreamcast SDK libraries. You cannot specify heap or stack from
the SH Linker settings panel.
Targeting Dreamcast SGA–151

Librar ies and Runt ime Code for Dreamcast
Allocating Memory and Heaps
SGA–152 Targeting Dreamcast

16
Command Line Tools

CodeWarrior for Dreamcast includes a command line compiler,
assembler, and linker for programmers who prefer to use
command line tools. This chapter describes how to use the
CodeWarrior for Dreamcast command line compiler and linker
to build applications.

The topics in this chapter are:

• Differences between Command Line Tools and IDE

• Locating the Command Line Tools

• Command Line Switches

• Setting Up Environment Variables

• Compiling and Linking

NOTE Please read the Command LIne Tools Release Notes before using
the tools.

Differences between Command Line Tools and
IDE

The IDE-hosted tools and the command line tools differ in
capability. These differences are as follows:

• Overlay Support

• Linker Command File Generator

Overlay Support

You can not create projects with overlays using the command
line tools.
Targeting Dreamcast SGA–153

Command Line Tools
Locating the Command Line Tools
Linker Command File Generator

The command line tools do not automatically create the .lcf
linker command file. You must write your own .lcf file to link
your project.

Locating the Command Line Tools
The command line tools are a set of three executable files:

• mwccshx.exe —Dreamcast compiler

• mwldshx.exe —Dreamcast linker

• mwasmshx.exe —Dreamcast assembler

These tools are located in the folder named
CodeWarrior\Tools\Command Line Tools .

Command Line Switches
Under the IDE, linker settings and project settings are configured
using preference panels. With command line tools, these settings
are set according to switches and options you give on the
command line.

For a complete list of command line switches for any tool
component, use the -help option. For example, to obtain a
complete list of switches for the command line tool compiler,
you would type:

mwccshx -help

When using command line tools, you specify compiler and
linker settings manually. In general, you need to use the
following switches and options to compile Dreamcast
applications.

Switches for the mwasmshx Assembler
-little
SGA–154 Targeting Dreamcast

Command Line Tools
Setting Up Environment Variables
Switches for the mwccshx Compiler
-prefix prefix_dc.h
-inline off
-g
-v
-little
-ansi off
-ARM off
-bool off
-strict off
-wchar_t off
-proc SH4
-heapsize 32768
-stacksize 32768
-fp hard
-main SG_SEC
-map

Setting Up Environment Variables
Several environment variables are used at runtime to search for
system paths and libraries. These variables can shorten the
command lines for many tasks. All of the variables mentioned
below are lists which are separated by semicolons (';').

NOTE It is not necessary to include quote marks when defining
environment variables that include spaces. Windows will not strip
out the quotes—leaving them in leads to “unknown directory”
warnings in the command line tool. Use the following syntax when
defining variables in batch files or at the command line:

set Folders=C:\First Path\Foo;D:\Second Path\Bar

C/C++ Compiler Variables

MWCIncludes —the named paths are added to the system path.
Typically you might define this variable as follows:

set MWCIncludes=
CodeWarrior\Dreamcast Support\INCLUDE\;
Targeting Dreamcast SGA–155

Command Line Tools
Compiling and Linking
CodeWarrior\Dreamcast Support\Shinobi\Lib\;
CodeWarrior\Dreamcast Support\Shc\INCLUDE\;
CodeWarrior\Dreamcast Support\Shinobi\INCLUDE\;
CodeWarrior\Dreamcast Support\Runtime\Runtime DC

Linker Variables

MWLibraries —the named paths are added to the system path.
Typically, you might define this variable as follows:

set MWLibraries=
CodeWarrior\Dreamcast Support\Shinobi\Lib\;
CodeWarrior\Dreamcast Support\Runtime\Runtime DC

MWLibraryFiles —the named files are added to the end of the
link order. Typically, you might define this variable as follows:

set MWLibraryFiles=ninja.elf.lib;
Shinobi.elf.lib;sh4nlfzz.elf.lib;
Nindows.elf.lib;MSLRuntimeDC.LIB

Compiling and Linking
The compiler invokes the linker automatically. The link order is
determined by the order in which files are listed on the
command line. Keep in mind that you still need a valid linker
command file to link your code.

We have included two examples to illustrate the usage of the
command line tools. These may be found in the folder named:

 Examples\Command Line Tools\

For the interest of simplicity, assume for a moment that all of the
libraries and source code files used by the teapot example are
located in the same folder as the command line tools themselves
(this allows us to present an example without long path names).
If this were the case, we could create a batch file with the
following commands to compile and link our project into an
executable named teamake1.elf .

mwasmshx -little global32_cw.src
SGA–156 Targeting Dreamcast

Command Line Tools
Compiling and Linking
mwccshx -prefix prefix_dc.h -O4,p -inline off
-g -little -ansi off -ARM off -bool off
-strict off -wchar_t off -proc SH4
-heapsize 32768 -stacksize 32768 -fp hard
-main SG_SEC -v -o teamake1.elf -map
strt1.obj.elf strt2.obj.elf systemid.obj.elf
toc.obj.elf sg_sec.obj.elf sg_arejp.obj.elf
sg_areus.obj.elf sg_areec.obj.elf
sg_are00.obj.elf sg_are01.obj.elf
sg_are02.obj.elf sg_are03.obj.elf
sg_are04.obj.elf sg_ini.obj.elf aip.obj.elf
zero.obj.elf ninja.elf.lib Shinobi.elf.lib
sh4nlfzz.elf.lib Nindows.elf.lib MSLRuntimeDC.LIB
model.c njloop.c sbinit.c t009.c test.c
global32_cw.o linker.lcf
Targeting Dreamcast SGA–157

Command Line Tools
Compiling and Linking
SGA–158 Targeting Dreamcast

17
Troubleshooting for
Dreamcast

This chapter gives you a quick reference point for common
problems (and their solutions) when using CodeWarrior for
Dreamcast development. This should be the first place you look
before contacting CodeWarrior support.

• Hardware Communications

• Compiler Problems

• Debugger Problems

Hardware Communications
This section describes possible solutions to communications
problems between your host computer and your HKT-01.

CodeWarrior fails to recognize the HKT-01 hardware.

Problem: CodeWarrior can’t communicate with the HKT-01.

Background: The HKT-01 is a SCSI device. If the HKT-01 is not turned on
when the operating system starts, it will not be recognized.

Solution: Turn on the HKT-01 and reboot your computer.

Codescape asks you to update your SCSI driver.

Problem: Your SCSI driver is too old for Codescape to use.

Background: Codescape needs the latest version of the Adaptec SCSI driver.

Solution: Download the latest version of the SCSI driver from the Adaptec
website: http://www.adaptec.com
Targeting Dreamcast SGA–159

Troubleshoot ing for Dreamcast
Compiler Problems
Compiler Problems
This section provides possible solutions to problems you may en
counter in using the compiler.

Error ‘@5’ could not be assigned to a register

Problem: The compiler is rejecting your inline assembly statements when
your global optimization setting is set to 0.

Background: The compiler does not use the virtual register allocator at
optimization level 0. Therefore, it is possible that when the
inline assembly routines are compiled, there are no more real
registers available. .

Solution: You can set inlining to Don’t Inline in the C/C++ language
settings, or you can set the optimization level to Level 1 or
higher.

Debugger Problems
This section provides possible solutions to problems you may
encounter during debugging.

Programs with GDROM data files do not run

Problem: The debugger cannot find your data files.

Background: Data files that are meant to be spooled from the GDROM are
loaded via GD Workshop, not the CodeWarrior debugger.

Solution: Use GD Workshop to emulate the GDROM device.
SGA–160 Targeting Dreamcast

<
B

o
o

k
N

a
m

e
>

<
B

o
o

k
N

a
m

e
>

<
B

o
o

k
N

a
m

e
>

<
B

o
o

k
N

a
m

e
>

<
B

o
o

k
N

a
m

e
>
DRAFT

Index

Symbols
* 91
. (location counter) 96
__exception_table_end__ 98
__exception_table_start__ 98
__sinit__ 94

A
access permission flags 86, 100
addr 96
after 100
align 97
alignall 97
alignment 87
applications

creating 27
assembler

See also assembly code
description of 23
directives 41, 113

assembly code
C source code, embedded within 109
Hitachi directives, converting 41

assignment, in LCF 90

C
C++

restrictions, usage 80
standard libraries 80
support 80

Codescape debugger 23
configuring CodeWarrior for use with 47
launching 48
printf() in 49
starting 48

command line tools 155
link order 156
location of 154
options 154
overlays 153
switches 154

compiler
description of 22

cout()
using mw_pr() as a substitute for 82

D
deadstripping 105

prevention 84, 89
debugger

See also Codescape debugger
Codescape 23
description of 23
launching 43
printf() substitute 44
starting 43

debugging
optimized code 77
static libraries 45

delay-slot. See optimizations
documentation 11

E
Entry Point edit field 70
environment variables 155
environment variables, command line tools 155
exception 89, 98
exception tables 89
exceptions, overlays and C++ 147
executables

naming conventions 36, 57
expressions, in LCF 90

F
file mappings 95
filename, SH Target panel 57
floating point

formats 75
force_active 85, 89, 98

G
GDROM

troubleshooting 160
GDWorkshop 145, 147
Generate Symbolic Info check box 68
<Book Name> TMP–161

Index
DRAFT

Global Optimizations panel. See target settings
panels

group 92, 98

H
hardware requirements. See installation
heap size 93, 151

I
IDE

description of 22
include 94, 99
inline assembly

case sensitive 111
comments 112
instructions 110
labels 111
local variables, referencing 110
mnemonics 127
mnemonics, supported 129–138
optimizations 111
registers 112
syntax 109
variables, initializing 111

installation
CodeWarrior 16
Sega SDK libraries 17
system requirements 15
testing of 17

integral types, in LCF 89
intrinsic functions 115

__abs 116
__alloca 116
__labs 116
__memcpy 117
Hitachi, compatible with 117–127

K
keep_section 85, 89, 99

L
LCF. See linker command files
libraries

See also static libraries
C++ standard 80, 151
debugger 151
debugger specific 44

link order 106
naming conventions 36, 57
runtime, CodeWarrior 151
runtime, SDK 151
Sega SDK 106
Sega SDK installation 17

link map file 68
link order 106

command line tools 156
linker

See also target settings panels, SH Linker
description of 23
garbage collection. See deadstripping
See alsolinker command files
settings 55

linker command files 83–104
* 91
access permission flags 86, 100
addr 96
after 100
align 97
alignall 97
alignment 87
arithmetic operations 88
assignment 90
comments 88
deadstripping prevention 89
exception 98
exception tables 89
expressions 90
file selection 91
force_active 98
function selection 92
group 92, 98
heap size 93
include 94, 99
integral types 89
keep_section 99
memory 85, 99–101
object 92, 101
overlay support 86, 94
overlayid 101
ref_include 102
sections 86, 102–103
sizeof 103
stack size 93
static initializers 93
symbols 89
variables 89
TMP–162 <Book Name>

Index

<
B

o
o

k
N

a
m

e
>

<
B

o
o

k
N

a
m

e
>

<
B

o
o

k
N

a
m

e
>

<
B

o
o

k
N

a
m

e
>

<
B

o
o

k
N

a
m

e
>
DRAFT

writeb 103
writeh 104
writew 104
writing data 94

linker option, Target Settings panel 55
linker, overlay support in 86
List Unused Objects check box 69
loop unrolling. See optimizations

M
makefiles

converting to CodeWarrior projects 37
description of 24

memory 99–101
MSLCppDC.lib 80, 151

See also libraries
mw output.lib 151
mw_pr() , as a printf() substitute 44

N
naming conventions

executables 36, 57
libraries 36, 57

number formats 74
floating-point 75
integers 74

O
OBJECT 92
object 92, 101
optimizations

caveats 64
common subexpression 78
copy and expression propogation 79
dead code elimination 78
dead store elimination 78
debugging, safe for 64
delay-slot filling 78
global register allocation 77
inline assembly 111
instruction scheduling 78, 114
local 64
loop invariant 77
loop unrolling 79
peephole 79
register allocation, lifetime-based 79
settings 62

slider settings 63
strength reduction 79

optimize for, Global Optimizations panel 63
options

command line tools 154
output directory, Target Settings panel 55
overlay support 86

headers 94
overlayid 101
overlays 139

command line tools 153
debugging 145
header format 147
tutorial 139

P
pragmas 79
printf() substitute

for debugging 44, 49
project type, SH Target panel 56

R
ref_include 85, 89, 102
registers

floating-point 62
inline assembly 112
stack frame pointer 81
status register 113
troubleshooting 160

release notes 9
resource file 95

S
save project entries, Target Settings panel 55
SCSI drivers, problems with 159
sections 86, 102–103
settings panels

ELF Disassembler 58
SH Assembler. See target settings panels
SH Bare Linker. See linker
SH Linker panel. See target settings panels
SH Processor panel. See target settings panels
SH Target. See target settings panels
sizeof 103
stack frame 114

pointer 81
<Book Name> TMP–163

Index
DRAFT

stack size 93, 151
startup code 94
static initializers 93
static libraries

creating 35
debugging 45

stationery
default contents 29, 52

status register. See registers
Store Full Path Names check box 68
switches

command line tools 154
symbols, in LCF 89
system requirements. See installation

T
target CPU, SH Processor panel 62
target name, Target Settings panel 54
target settings 51

See also target settings panels
default values 52
description of 51
dialog box 51

Target Settings panel. See target settings panels
target settings panels

for Dreamcast 32
Global Optimizations 62
SH Assembler 57
SH Linker 67
SH Processor 61
SH Target 56
Target Settings 54

troubleshooting 159–160
communications 159
GDROM 160
registers 160
SCSI drivers 159

U
use floating point, SH Processor panel 62

V
variables

allocating 76
initializing, inline assembly 111
local, inline assembly 110

variables, in LCF 89

W
writeb 94, 103
writeh 94, 104
writew 94, 104

X
xMap file 69
TMP–164 <Book Name>

CodeWarrior

Targeting Dreamcast

Credits

writing lead: Roger Wong

engineering: Aaron Smith, Guohua Cao, Laurent
Visconti, Nick Havens, Shoji Ueda,
Takashi Kashima, Toshiaki Koasa, and
Xin Li

frontline warriors: David Wilson, and CodeWarrior users
everywhere

	Introduction
	Read the Release Notes!
	What’s New in This Release
	Flexible Linker Command File Language
	Complete SHC Intrinsics Support
	More Inline Assembly Instructions

	CodeWarrior and Its Documentation
	What’s in This Manual
	Where To Go from Here

	Getting Started
	System Requirements
	Installing CodeWarrior for Dreamcast
	Installing the CodeWarrior for Dreamcast Software
	Installing the Dreamcast Runtime Library
	Making Sure Your Dreamcast Development System Works

	The Dreamcast Tools
	Introduction to the Dreamcast Tools
	CodeWarrior IDE
	CodeWarrior Compiler for Dreamcast
	CodeWarrior Assembler for Dreamcast
	CodeWarrior Linker for Dreamcast
	CodeWarrior Debugger for Dreamcast
	Codescape Debugger for Dreamcast

	The Development Process with CodeWarrior

	Creating Applications
	Creating an Application

	Creating Static Libraries
	About Static Libraries
	Creating a Static Library

	Converting SH Projects
	Steps for Converting SH Projects

	Debugging For Dreamcast
	Debugging with CodeWarrior
	Using mw_pr()
	Debugging Static Libraries

	Debugging With Codescape
	Debugging with the Codescape debugger
	Using printf()

	Target Settings for Dreamcast
	Target Settings Overview
	Settings Panels for Dreamcast
	Target Settings
	SH Target
	ELF Disassembler
	SH Processor
	Global Optimizations
	BatchRunner PostLinker
	LCF Prelinker
	SH Linker

	C and C++ for Dreamcast
	Number Formats for Dreamcast
	Dreamcast Integer Formats
	Dreamcast Floating-Point Formats

	Calling Conventions for Dreamcast
	Variable Allocation for Dreamcast
	Optimizing Code for Dreamcast
	Pragmas for Dreamcast
	C++ issues for Dreamcast
	Exception Handling
	Streams and IO Classes
	Other Restrictions

	ELF Linker and Command Language
	Structure of Linker Command Files
	Closure Blocks
	Memory Segment
	Sections Segment

	Linker Command File Syntax
	Alignment
	Arithmetic Operations
	Comments
	Deadstrip Prevention
	Exception Tables
	Expressions, Variables and Integral Types
	File Selection
	Function Selection
	Stack and Heap
	Static Initializers
	Writing Data Directly to Memory

	Alphabetical Keyword Listing
	. (location counter)
	ADDR
	ALIGN
	ALIGNALL
	EXCEPTION
	FORCE_ACTIVE
	GROUP
	INCLUDE
	KEEP_SECTION
	MEMORY
	OBJECT
	OVERLAYID
	REF_INCLUDE
	SECTIONS
	SIZEOF
	STATICINIT
	WRITEB
	WRITEH
	WRITEW

	Linker Issues for Dreamcast
	Deadstripping Unused Code and Data
	Link Order
	Function Reordering

	Inline Assembler and Intrinsics for Dreamcast
	Working with Inline Assembly
	Inline Assembly Syntax
	Using Labels
	Using Comments
	Using Registers

	Assembler Directives
	Intrinsic Functions
	List of Intrinsic Functions
	Hitachi SH C Compiler-compatible Intrinsic Functions

	Mnemonics for Inline Assembly
	Special Instructions for Inline Assembly
	Complete List of Inline Assembly Mnemonics

	Overlays
	Building an Overlay Project
	Overlay Notes
	Overlays and Exceptions
	Overlay Header
	GDWorkshop

	Libraries and Runtime Code for Dreamcast
	Metrowerks Utility Library
	MWBload()
	MWNotifyOverlayLoaded()
	MWInitOverlay()
	MWLoadOverlay()

	Runtime Libraries
	Allocating Memory and Heaps

	Command Line Tools
	Differences between Command Line Tools and IDE
	Overlay Support
	Linker Command File Generator

	Locating the Command Line Tools
	Command Line Switches
	Switches for the mwasmshx Assembler
	Switches for the mwccshx Compiler

	Setting Up Environment Variables
	C/C++ Compiler Variables
	Linker Variables

	Compiling and Linking

	Troubleshooting for Dreamcast
	Hardware Communications
	Compiler Problems
	Debugger Problems

	Index

