AF

Lermnout & Hauspie ™

ASR1600/C V2 Low Level API Specification for Sega’s
DreamCast platform

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 1 of 87
All rights reserved.

1 Table of Contents

ASR1600/C Low Level APl Specification for Sega's

DreamCast platform..........cocceeiiiieiiiiieiee e 1
Table of Contents..........ccceeveiiiiiieiiiicennns 2
INtrOdUCHION ... 4

2.1 Basic Functionality ... s
2.2 Basic Requirements. 4
Paradigm)
31 Definitions........... ...5
3.2 APl Internals.............06
3.3 Initializing the engine...........ccocceiiieinenns 6
3.4 Context manipulationcccceeeveennnen. 7
35 Classes......cccovenunnn. 4
3.6 Recognition 4
3.7 Inheritance of adaptive data .9
3.8 Automatic Gain Control............ .9
3.9 Memory......ccccvveeereennne .9
3.10 User word training...........ccecevvveeevieneennnen. 9
3.11 SPEIliNG .eeeeiiieeiee e
3.12 Adding and deleting of words
3.13 Adding and deleting of user words . .
3.14 Exported Symbol activation.....................
3.15 Activation of more than 1 context at the
SAME tIME...oiiiiiiciiie e 11

3.16 Recognition Operating Mode and State
diagram 11
ASR1600 Low Level API function calls ...13

4.1 Engine related functions..............cccccce... 13
4.2 Context related functionsccccceeene 14
4.3 Classes related functions..............ccccceuee 14
4.4 Training related functions......... .15

4.5 Engine state related functions..
4.6 Miscellaneous functions..............
ASR1600 Function Specification.
5.1 Basic functionalitycccc...... .
CasrACUISITION........ccoiiiiiriiiciiiceeie e
CasrActivateContext
CasrActivateData......
CasrAPIClose....
CasrAPIlinit.....
CasrClose.............
CasrCloseContext. .
CasrClosSeDatac.uvvveveeeiiiiiiiee e ceiieee e e
CasrExportData.........cccceeeiiiiiiiiieieiieee s
CasrGainSet..........cccvveeeeene
CasrGetActivatedContext
CasrGetActivatedData........
CasrGetActiveWords..........
CasrGetAPIVersion .
CasrGetParam.........cccccviiiiiii
CasrGetParamLiStcccoocevvieeeeeieiiiieee e
CasrGetSignalLevel.
CasrGetSNR.............
CasrGetSPIVersion ..
CasrGetState............
CasrimportContext .
CasrimportDataceeeeeriiiiiiiieee e
CASIOPEN ...ttt
CasrSetActiveWords
CasrSetParam.............
CasrSetParamList
CasrStart
CasrStop ..evvveveeeiiiiiieieeeeee .
5.2 Added functionality..........cccccocvvrniieninneene
5.2.1 User word training related
CasrAcknowledge....................
CasrAddContextUserWord ...
CasrDeleteContextUserWord... .
CasrStartUserWordTraining..........ccoceeerieeeiiineennnns

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV

5.2.2 Contextrelatedoccveveveeeiiiiiiieee e, 54
CasrExportContext
5.2.3 Classes related...........cccvvereeeiiiiiiiiineee s
CaSrCloSECIASSES.......coeiueieiiiieeiiiee e
CasrimportClasses.........ccccvveeeeeenenns
5.2.4 Merging of contexts and classes.
CasrMergeContextsAndClasses.......

Callbacks

CBASKCURRENTGAINccocviiiiiiiiiiciiice,
CBRESULTcoccvveennn.

CBSTATE ...
CBTRAIN

0S Callbacks................
CBCREATECRITICALSECTION...

CBDELETECRITICALSECTIONccovviiiiiiinen.
CBENTERCRITICALSECTIONcoovciiiiiiiice,

CBGETCURTHREAD

CBLEAVECRITICALSECTION........cceoevieeeeeeeeeeenn

CBMALLOC ..o

CBREALLOC
Types, structures and defines................ 74

8.1 Types

CPARAMID ..ottt
CPARAMVALUE
CWORDID
DWORD..

PCASRRESULT
PCASRSTATEooiiiiiieiiiieec e

PCOSCALLBACKS....
PCPARAMLIST

PCPARAMVALUE.........
PCRECOGCALLBACKS

PHCONT
PHCLASSES..

PSENTENCEoooiiiiiiiiiiiieee e
PSPEECHUNITBUF...
PTIMEINFO................
PUSERWORDBUF

PWORDBUFcoiiiiiiiiiiicei e
PUSERDATA ...t
USERWORDBUF....

8.2 Structures...
ALTERNATIVE....oiiiiiiiiieeee e

- page 2 of 87

All rights reserved.

CASRRESULT
COSCALLBACKS.
CPARAMLIST ..o

RECWORD
SENTENCE..........

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV

TIMEINFO....
USERDATA.
WORDBUFccocooieiiieicnrens

8.3 Enumeration types.........cccccvevveiniiiennnnn. 85
ABNORMCONDoooiiiriiiirieniie e

CASRSTATE..............
CSAMPLEFORMAT ...
PROMPTYPE.......oiiiiiiiiiiiciiec e

- page 3 of 87

All rights reserved.

2 Introduction

The ASR1600/C API is designed to be a portable speech API for consumer products that
need a phonetic engine. A port of the ASR1600 engine to a consumer product can be started
from this specification. The API encapsulates the SPI (Service Provider Interface) and adds
some functionality to it. The SPI is an interface, which contains only the basic engine
functionality needed. The API adds to this functionality the addition and deletion of user words,
the possibility to export contexts and the concept of classes !

The following list enumerates the functionality that is implemented, and the minimum
requirements of the device and operating system that must be available.

2.1 Basic Functionality

- Only 1 context can be active at the same time on an engine. If a higher level API or an
application wants to activate more than 1 context at the same time, those contexts must
be merged to 1 context before sending it to the engine.

- >1 engine can be started

- Language switching is available

- 1 task or thread controls 1 engine.

- Fast activation of words is available. If an application or a higher level APl wants symboll
activation, this API has to do this with word activation.

- User Word training at runtime is possible.

- Trained user words can be shared among different contexts and can be stored by the
user of the API to be able to add them to different contexts.

- N-Best alternative recognition results will be returned.

- Confidence levels are returned with each recognition result alternative.

- Spelling is not available.

2.2 Basic Requirements

- No operating system calls are called directly in this API. All the OS functions needed are
encapsulated in a set of callback functions the user of the API has to supply.

- The API does not do signal acquisition. The API is not concerned with input devices, the
samples are supplied by the user of the API.

- The implementation of the API doesn’t use global variables that can change so that the
linker-generated file can be put in ROM.

- All callback functions are passing application-defined user data. This allows applications
to do there own sub-allocation in specific heap or to keep data attached to the APl and/or
engine sessions.

! For more information about concepts of ASR, please refer to The Speech Application
Development Guide.

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 4 of 87
All rights reserved.

3 Paradigm

3.1 Definitions

API
Application Programmer Interface. Layer of function calls that interface between an
application or a higher level APl and a recognition engine. It provides services that can be
used by a client. In this document API refers to the ASR1600 Low Level consumer API also
written as ASR1600/C.

SPI
Service provider interface. Layer of function calls that expose the basic recognition
functionality. It provides the service (a recognizer) that can be used by a client (application
or a higher level API).

Callback function
Function of the application that is called by the API. In an initializing the API, a pointer to
this application function is passed to the API. The API can then call this function when it
needs, e.g. to request more memory, or to inform that a new recognition result is available.

Grammar
Textual description of all sentences (syntax + vocabulary) that need to be recognized.

Context
Compiled grammar (in an engine-useable format).

Engine
Code that actually does the recognition.

User Word
Word that can be added to a class, of which the pronunciation is obtained by having the
user speak the word a number of times (the so-called “training procedure”)

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 5 of 87
All rights reserved.

3.2 APl Internals

The ASR 1600/C Low Level API is designed to be a portable speech API for consumer
products that needs a phonetic recognizer. The API does not have support for advanced
context and application management. This means in practice that the API is not able to
associate contexts with different applications and that recognition results will be sent only to
one application.

Portability of the ASR1600 Low Level API is ensured due to the fact that the API

- does not make use of a file system: all data (contexts, language data and user models)
are received and returned as data-buffers. This way all data is independent of the storage
format, plus the controlling application does not need to know more about the data than
its size, and location in memory.

- does not do its own memory management (does not directly allocate and de-allocate
memory).

- calls the operating system using a limited set of basic (encapsulated) functions, which
should be available on any operating system. All multitasking and multithreading
functions defined can be replaced by dummy functions in operating systems that do not
support multitasking and/or multithreading. These functions are only used to make the
API task and thread safe.

- doesn'’t use global variables that can change (only constant ones).

Application

Memory Recognition
Management Callbacks
Callbacks

Speech
sample
acquisition

ASR 1600/C

File system
Low Level API

3.3 Initializing the engine

This API does not have the concepts user and language. All data the recognizer needs can be
imported with CasrimportData and activated on an engine with CasrActivateData.

The data buffers given to CasrimportData can be permanent (for example in ROM), non-
permanent or changeable by the engine. In the case of permanent non-changeable data the
engine makes no copy but only a reference to the data is kept. In the case of changeable
data, this data can be saved with the CasrExportData function.

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 6 of 87
All rights reserved.

3.4 Context manipulation

Each context is stored outside the API in a separate buffer. This buffer can be imported with
the CasrimportContext function. Before recognition can be started, the context has to be
activated on the engine (CasrActivateContext). The same context can be activated on
different engines.

Note that context buffers used to store contexts are address independent, and thus can be

moved around in memory, saved, reloaded etc.
The context can be saved for later reuse with the CasrExportContext function.

3.5 Classes

The class names data buffer is stored outside the API. This buffer can be obtained from the
PC tools. This buffer can be imported with the CasrimportClasses context.

3.6 Recognition

After the recognition is started up, the user of the API supplies the API with buffers containing
wave data. These buffers are supplied by calling the CasrAcquisition function. When the
engine has a recognition result ready, it calls the CBRESULT callback function. Recognition is
started with the CasrStart function. This function returns directly without waiting for a
recognition result.

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 7 of 87
All rights reserved.

Basic Sequence of Function Calls for Recognition

Initialization

CasrAPIInit() I Initialize the API
v
CasrimportData() I Load language data in memory
CasrOpen() I Open a recognizer engine
v
CasrActivateData() I Activate the language on the engine
CasrimportContext() I Load a context in memory
CasrActivateContext() I Activate the context on the engine

Recognition

Casrstart() I Start the recognition engine

CasrAcquisition()

Supply the engine with sample data

CasrStop() Stop the recognition and force a result
(Engine can also stop itself when
L enough silence is detected)
Close
CasrA(Cl\}'SaLtf Data() I Deactivate language and context data for
the engine
CasrCloseContext() I Close the context (buffer can be freed)
CasrCloseData(I Close the language data
CasrClose () I Close the recognition engine
CasrAPIClose () I Close API and free all used resources

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 8 of 87
All rights reserved.

3.7 Inheritance of adaptive data

Adaptive data refers to engine settings based on line characteristics and speaker
characteristics. These characteristics have a default value when a recognizer is started and
are automatically recalculated (and adapted) on the fly based on the engines input signal.
There is a possibility to initialize adaptive data of the ASR1600 data. This can be
accomplished by specifying the initialization data with the CasrActivateData function. The
following sources can be used:

1. Platform specific. The data has been optimized to a certain hardware platform.

2. Data generated with a microphone adaptation procedure if supported for this platform.
This could be a dummy recognition session where the user is asked to count. At the end
the CasrExportData function gives the initialization data.

3. Data from the previous recognition session (Data that has been saved with the
CasrExportData function).

4. Default (Factory setting). This is done if no CasrActivateData is called before CasrStart.

The data used for CasrActivateData should preferably be the first in this list that is available.

3.8 Automatic Gain Control

The ASR1600 engine contains an Automatic Gain Control that can be used to automatically
adjust the analog gain. This feature will only work if the platform supports changing of the
analog gain. This feature can be enabled with the CPARAM_AGCON parameter.

The engine will call the CBAGC callback function each time it wants to do an adjustment of
the gain supplying a new value for the gain. It is up to the application if it wants to adjust the
gain to this value. The new value of the gain will be notified to the APl with the CasrGainSet
function.

At the start of the engine the CBASKCURRENTGAIN callback is used to initialize the gain
value on the engine.

3.9 Memory

The API does not have internal memory management. This implies that all memory for use of
the API must be given to the API by an application. This does not only include buffers
containing contexts and sample buffers, but even buffers containing the APl workspace and
intermediate results.

The callback functions CBMALLOC and CBFREE are used for allocating and freeing memory.

3.10 User word training

A user word is trained independently of the contexts. When the user word training is done, the
result is a buffer. This buffer can then be used for adding the word to a context
(CasrAddContextUserWord) or saved by the application for later use. Note that this buffer can
be used many times, or can even be stored and reloaded later.

Training starts by calling CasrStartUserWordTraining. The engine calls the CBTRAIN
(PROMPTTYPE_START) callback function. Upon acknowledge (CasrAcknowledge) of this
callback function, the engine expects a training utterance. At the end of the utterance (TS
detected or CasrStop called) the CBTRAIN (PROMPTTYPE_ACCEPT) callback function is
called to ask for an acceptance of this utterance. On acceptance of the utterance the next
utterance is asked or the CBTRAIN (PROMPTTYPE_CONFIRM) callback function is called if
it was the last utterance that is being accepted. When the acknowledgment of this callback
function is PROMPT_OK, the user word model is calculated. At the end the CBTRAIN
(PROMPTTYPE_TRAINEND) callback function is called. After this event the user word buffer
returned, is valid.

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 9 of 87
All rights reserved.

Called by application Called by API

\

Ve ¥
CBTRAIN(... START ...)
J

CasrStartUserWordTraining()

¥
OK or NOK

K OK

NOK—J

¥
CBTRAIN(... ACCEPT ...)
)

—

¥
OK or NOK

\ OK or NOK I\ OK (Last Ut[erance)—w
CBTRAIN(... CONFIRM ...)
J

¥
OK or NOK

\%OK (Userword trained) or NOK (userword not trained) v

CBTRAIN(... TRAINEND ...)
J

User word training finished. Userword
buffer is ready or training has been
cancelled

Figure 1: user word training call flow

3.11 Spelling

Spelling is not included.

3.12 Adding and deleting of words

This API does not support adding and deleting of words from a context. This means that only
userwords can be added dynamically, all speaker independent words need to be known
beforehand.

3.13 Adding and deleting of user words

This API supports adding and deleting of user words from a context. This can be done with
CasrAddContextUserWord and CasrDeleteContextUserWord. The new context can be
exported with CasrExportContext.

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 10 of 87
All rights reserved.

3.14 Exported Symbol activation

This API does not support activation and deactivation of symbols that are exported in a BNF
grammar. This functionality can be implemented on top of the API with the
CasrSetActiveWords and CasrGetActiveWords functions.

3.15 Activation of more than 1 context at the same time

Only one context can be activated on the engine itself. If a higher level API or an application
wants to activate more than 1 context at the same time, the contexts must be merged to one
context with the CasrMergeContextsAndClasses function.

3.16 Recognition Operating Mode and State diagram

The ASR1600 engine has one operating mode. An operating mode can be represented by a
finite state diagram describing the possible states and state transitions. State transitions in this
diagram can happen due to API function calls or internal events in the recognition engine.

- CasrAcknowledge
OMPT_OK or PROMP

CasrOpen

yeisised

Figure 2: Engine state diagram

The operating mode can be represented by a total of 10 states:

BOOT : Initial state.

DATAREADY : All necessary data has been activated on the engine so that context can
be activated or user word training can start.

IDLE : All necessary data and context have been activated so that recognition can start.
SLEEP : Low processing begin of speech detection active. When start detection is
disabled the state automatically changes to the RUN state.

RUN : Recognition is active, full processing power is used.

RECOVER : Recognition not active, recovering recognition result.

PROMPT : Asking for a confirmation to start the next utterance.

RECORD : Acquisition active.

ACCEPT : Asking for an acceptance of an utterance.

CONFIRM : Asking for a confirmation to accept the 3 utterances.

The engine is opened in the boot state. After all necessary data has been activated
(CasrActivateData) on the engine, a transition to the DATAREADY state is made. From

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 11 of 87
All rights reserved.

this state a context can be activated (to the IDLE state) to do recognition or user word
training can be started (to the PROMPT state).

The CasrStart function will force a state transition from the IDLE state to the SLEEP state.
Depending on the CPARAM_START_ENABLE parameter the engine stays in the SLEEP
state for detecting the beginning of speech or goes directly to the RUN state. On CasrStop
or on detection of trailing silence (if enabled) a transition is made to the RECOVER state.
In this state the recognition result is determined and the result is notified to the application.
Afterwards a transition is made to the IDLE state.

The user word procedure is started from the DATAREADY or IDLE state with the
CasrStartUserwordTraining API function. A transition is made to the PROMPT state. In this
state the application is notified when the user can start speaking. The application has to
acknowledge (CasrAcknowledge) this notification to proceed with the training. When the
application acknowledges a PROMPT notification with PROMPT_OK this indicates that the
training procedure can continue and a transition is made to the RECORD state. At this
point the acquisition process is started and the user is supposed to say the user word.
Detection of trailing silence and/or CasrStop will cause a transition to the ACCEPT state
that will wait for confirmation to continue. At this point the user can accept or reject the
utterance that was spoken during the RUN state. After acceptance or rejection a transition
is made to the PROMPT state. If the user has rejected the utterance, he will be prompted to
pronounce the user word again. The speech information will be used to train the user word
when he accepts the utterance and he will be prompted for the next utterance. When this
was the last utterance, a transition is made to the CONFIRM state and the user will be
asked if he wants to accept the utterances and create the user word. A transition is made
to the DATAREADY state which finishes the training procedure. The end of the training is
notified with the PROMPTTYPE_TRAINEND notification. From now on the user word
buffer is valid.

The CPARAM_TS parameter indicates to the recognizer how much trailing silence has to
be heard before it can be decided that the utterance is complete. This is not an internal
constant in the engine because this value depends on the specific application. Typical
command and control applications making use of isolated word recognition or keyword-
spotting syntax requires typically 300 ms of trailing silence. Applications using continuous
digit syntax or general continuous speech grammars will need 500-1000 ms of trailing
silence before the endpoint criterion fires. This is due to the fact that in continuous speech
small pauses and hesitations occur in the middle of a sentence.

The CPARAM_TIMEOUT parameter indicates the maximum time the recognizer will
search for trailing silence. Bad environmental conditions, excessive background noise,
competing signals can be the cause that the stop criterion never fires. In those cases one
needs an emergency brake to stop the recognizer after a reasonable amount of time.

The CPARAM_ENABLEPREMRES parameter is used to enable the generation of
premature result notifications. This is useful in a keyword spotting or dictation like syntax.
Once the engine is started a result is notified when there is one available (e.g.: a keyword
detected) and the engine stays in the RUN state. This process is stopped when CasrStop
is called. When this feature is enabled, the CPARAM_START_ENABLE parameter
indicates if during silence the low CPU speech detection system is used. When this
parameter is enabled the engine is only recognizing during periods of speech. In this case
the engine state will be switching between SLEEP and RUN.

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 12 of 87
All rights reserved.

4 ASR1600 Low Level API function calls

4.1 Engine related functions

CasrAcquisition

Supplies the engine with sample data. This function should be called periodically.

CasrActivateData
Activates certain data on an engine.

CasrClose
Closes an engine.

CasrCloseData
Closes data.

CasrExportData

Exports data to a buffer in case the engine has changed the data.

CasrGainSet
Passes the analog gain setting to the API.

CasrGetActivatedData
Returns the data that has been activated on an engine.

CasrGetSignalLevel
Gets the signal level from the last sample buffer.

CasrGetSNR
Gets the current Signal to Noise Rate of the signal seen so far.

CasrimportData

Loads data in memory passes a memory pointer to the permanent data.

CasrOpen
Opens an engine (also initializes certain callback functions).

CasrStart
Starts a recognition engine.

CasrStop
Stops a recognition and forces a result.

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV

All rights reserved.

- page 13 of 87

4.2 Context related functions

CasrActivateContext
Activates a context on an engine disabling the previous context.

CasrAddContextUserWord
Adds a user word to a context.

CasrCloseContext
Closes a context.

CasrDeleteContextUserWord
Removes a user word from a context.

CasrExportContext
Exports a context to a buffer.

CasrGetActivatedContext
Gets the activated context.

CasrGetActiveWords
Gets the enabled words in 1 class in a context.

CasrimportContext
Loads a context in memory and associates a handle with it.

CasrMergeContextsAndClasses

This function merges two context buffers and their corresponding class buffers.

CasrSetActiveWords
Enables certain words in 1 class in a context.

4.3 Classes related functions

CasrCloseClasses
Closes a class names instance.

CasrimportClasses
Imports a class hames data buffer.

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV
All rights reserved.

- page 14 of 87

4.4 Training related functions

CasrAcknowledge

Sends an acknowledge signal back to the engine when a user word utterance is accepted.

CasrStartUserWordTraining
Initializes and starts user words training.

4.5 Engine state related functions

CasrGetParam
Gets the value of a parameter.

CasrGetParamList
Gets the value of all the engine specific parameters.

CasrGetState
Gets the current state of the engine.

CasrSetParam
Sets the value of a parameter.

CasrSetParamList
Sets the value of all the engine specific parameters.

4.6 Miscellaneous functions

CasrAPIClose
Frees all used resources.

CasrAPIInit
Initializes the API.

CasrGetAPIVersion
Gets the API version.

CasrGetSPIVersion
Gets the SPI version.

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV

All rights reserved.

- page 15 of 87

5 ASR1600 Function Specification

5.1 Basic functionality

CasrAcquisition

ERRORID CasrAcquisition(HASR hAsr, CSAMPLEFORMAT SampleFormat, PVOID
pSampleBuf, DWORD dwBufSize)

Receives a sample buffer from the application and recognition processing is done. Notification
callback functions (state changes, recognition results) are likely to be called within this
function call.

Parameters

hAsr
Handle to an engine installed opened with CasrOpen [INPUT].

SampleFormat
Format of the samples in pSampleBuf [INPUT].

The only current valid format is PCM_16_11KHZ.

pSampleBuf
Buffer containing the samples [INPUT].

dwBufSize
Length (in bytes) of the sample buffer [INPUT].

Return Value

Error code.

ERR_WRONG_STATE The function is called on an engine that is in the
wrong state.
Valid states are CASR_RUN, CASR_RECORD,
CASR_SLEEP.

ERR_BADSAMFORMAT The format of the samples is not valid.

ERR_NULL_HANDLE A NULL handle was passed

ERR_INVALID_ENGINE Handle to the engine is not valid, possibly because
the engine has been closed.

ERR_TASK_THREAD Handle to an engine is used in another task or thread
than the one that did the CasrOpen.

ERR_INVALID_SPI Handle to SPI data is invalid or is used in another

task than the task that created the handle.

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 16 of 87
All rights reserved.

Callback functions within this function call

All recognition callback functions can be called from within this function depending on
the engine state.

See Also
CasrOpen(),CasrStart()

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 17 of 87
All rights reserved.

CasrActivateContext

ERRORID CasrActivateContext(HASR hAsr, HCONT hCont)

Activates a context on an engine, enabling all the words in the context. After this function call,

recognition can be started.

Parameters
hAsr

Handle to the engine instance [INPUT].

hCont

Context handle returned by the CasrimportContext function. If hCont equals NULL the
active context is de-activated [INPUT].

Return Value

Error code.

ERR_WRONG_STATE

ERR_NULL_HANDLE

ERR_INVALID_CONTEXT

ERR_TASK_THREAD_CONTEXT

ERR_MALLOC

ERR_INVALID_ENGINE

ERR_TASK_THREAD

ERR_INVALID_SPI

The function is called on an engine that is in the
wrong state.
Valid states are CASR_IDLE, CASR_DATAREADY.

A NULL handle was passed

Handle to the imported context is not valid, probably
because it has been closed.

Handle to the context was created in another task or
thread by CasrimportContext.

Memory allocation failed.

The callback functions CBMALLOC and CBFREE
are called for storing and release the engine'’s
dynamic data.

Probably not enough heap memory.

Handle to the engine is not valid, possibly because
the engine has been closed.

Handle to an engine is used in another task or thread
than the one that did the CasrOpen.

Handle to SPI data is invalid or is used in another
task than the task that created the handle.

Callback functions within this function call

CBSTATE

Callback function used to notify state changes.

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 18 of 87

All rights reserved.

See Also

CasrimportContext(), CasrGetActivatedContext(), CasrSetActiveWords(),
CasrGetActiveWords()

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 19 of 87
All rights reserved.

CasrActivateData

ERRORID CasrActivateData(HASR hAsr, HDATA hData)

Activates certain data to be used by an engine. For the 1600 this is either a language buffer or
an session data buffer. If a context was already activated on the engine, an activation of a
language buffer automatically deactivates that context! If hData equals 0, the current
language, if present, is deactivated, together with its context, if present. The engine is put

back in the BOOT state.

Parameters

hAsr

Handle to the engine instance [INPUT].

hData

Handle of the data returned by the CasrimportData function [INPUT].

Return Value

Error code.

ERR_WRONG_STATE

ERR_NULL_HANDLE

ERR_INVALID_CONTEXT

ERR_TASK_THREAD_CONTEXT

ERR_MALLOC

ERR_INVALID_ENGINE

ERR_TASK_THREAD

ERR_INVALID_SPI

The engine function is called on an engine that is in
the wrong state.

Valid states are CASR_IDLE, CASR_DATAREADY,
CASR_BOOT.

A NULL handle was passed

Handle to the imported context is not valid, probably
because it has been closed.

Handle to a context is used in another task or thread
than the one that did the CasrimportContext. The
callback function CBGETCURTASK is called to
examine this.

Memory allocation failed.

The callback functions CBMALLOC and CBFREE
are called for storing and release the engine’s
dynamic data.

Probably not enough heap memory.

Handle to the engine is not valid, possibly because
the engine has been closed.

Handle to the engine is used in another task or
thread than the one that did the CasrOpen.

Handle to SPI data is invalid or is used in another
task than the task that created the handle.

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 20 of 87

All rights reserved.

Callback functions within this function call

CBSTATE
Callback function used to notify state changes.

See Also
CasrimportData(), CasrGetActivatedData(), CasrCloseData(), CasrExportData()

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 21 of 87
All rights reserved.

CasrAPIClose
ERRORID CasrAPIClose(HAPI hApi)

Frees all resources used by the API. The hApi handle is invalidated by this function. When this
function has been called, no other API functions may be called anymore except the
CasrAPIInit function.

Parameters

hApi
Handle to the API instance [INPUT].

Return Value

Error code.
ERR_NULL_HANDLE A NULL handle was passed.
ERR_INVALID_ENGINE Handle to the engine is not valid, possibly because
the engine has been closed already.
ERR_INVALID_SPI Handle to SPI data is invalid or is used in another
task than the task that created the handle.
See Also

CasrAPIInit()

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 22 of 87
All rights reserved.

CasrAPlInit

ERRORID CasrAPIInit(PCOSCALLBACKS pOscCallbacks, DWORD dwApiUserData,
PHAPI phApi)

Initializes the OS callbacks used by the API. These are the only operating system calls called
in the API. The API handle is the only handle that can be used across different threads.

Parameters

pOscCallbacks

Pointer to the COSCALLBACKS structure containing all the OS callbacks. Structure will
be copied and can therefor reside on the stack [INPUT].

dwApiUserData

DWORD representing a value that will be passed by all callback functions called by the
API [INPUT].

phApi
Address where the handle of an API instance will be written [OUTPUT].

Return Value

Error code.
ERR_NULL_HANDLE A NULL handle was passed.
ERR_MALLOC Memory allocation failed.
The callback functions CBMALLOC and CBFREE
are called for storing and release userdata into
memory.
Probably not enough heap memory.
See Also

CasrAPIClose(), CasrOpen()

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 23 of 87
All rights reserved.

CasrClose

ERRORID CasrClose(HASR hAsr)

Closes an engine, invalidates the hAsr. Frees all used resources belonging to that engine. The
engine must be in the BOOT, IDLE of DATAREADY state. This function invalidates the hAsr

handle.

Parameters
hAsr

Handle to the engine instance [INPUT].

Return Value

Error code.

ERR_WRONG_STATE

ERR_NULL_HANDLE

ERR_INVALID_ENGINE

ERR_TASK_THREAD

ERR_INVALID_SPI

See Also
CasrOpen()

An engine function is called on an engine that was in
the wrong state.

Valid states are CASR_IDLE, CASR_DATAREADY,
CASR_BOOT.

A NULL handle was passed

Handle to the engine is not valid, possibly because
the engine has been closed.

Handle to the engine is used in another task or
thread than the one that did the CasrOpen.

Handle to SPI data is invalid or is used in another
task than the task that created the handle.

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 24 of 87

All rights reserved.

CasrCloseContext

ERRORID CasrCloseContext(HCONT hCont)

Closes a context, invalidates the hCont handle. Frees all used resources. The hCtx may not
be active on any engine!

Parameters

hCont
Handle to the context [INPUT].

Return Value

Error code.
ERR_CONTEXT_IN_USE A CasrCloseContext was attempted on a context
that is still in use on some engine.
ERR_NULL_HANDLE A NULL handle was passed to the API function.
ERR_INVALID_ENGINE Handle to the engine is not valid, possibly because
the engine has been closed.
ERR_INVALID_SPI Handle to SPI data is invalid or is used in another
task than the task that created the handle.
See Also

CasrimportContext(), CasrCloseData(), CasrActivateContext()

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 25 of 87
All rights reserved.

CasrCloseData
ERRORID CasrCloseData(HDATA hDATA)

Closes the data, invalidates the hData. Frees all used resources. The hData must not be
active on any engine!

Parameters

hDATA
Handle to the data [INPUT].

Return Value

Error code.
ERR_DATA_IN_USE A CasrCloseData was attempted on imported data
that is still in use on some engine.
ERR_NULL_HANDLE A NULL handle was passed.
ERR_INVALID_ENGINE Handle to the engine is not valid, possibly because
the engine has been closed.
ERR_INVALID_SPI Handle to SPI data is invalid or is used in another
task than the task that created the handle.
See Also

CasrCloseContext(), CasrActivateData(), CasrimportData(), CasrExportDatay)

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 26 of 87
All rights reserved.

CasrExportData

ERRORID CasrExportData(HASR hAsr, DWORD DataType, PVOID *ppBuf,

PDWORD pdwsSize)

Exports the data associated of type DataType to a buffer of memory that will be allocated by
means of the CBMALLOC callback function. It is the responsibility of the calling application to
free this buffer To ensure that the correct free function is called it is safest to free with the

CBFREE function.

Parameters

hAsr

Handle to the engine instance [INPUT].

DataType

Type of data to export. For now only DATA_SESSIONDATA is supported [INPUT].

ppBuf

Address of a variable where the pointer to the memory buffer will be written [OUTPUT].

pdwSize

Address of a variable where the length of the memory buffer will be written [OUTPUT].

Return Value

Error code.

ERR_WRONG_STATE

ERR_WRONG_DATA

ERR_NULL_HANDLE

ERR_INVALID_ENGINE

ERR_TASK_THREAD

ERR_INVALID_SPI

See Also

The function was called on an engine that was in the
wrong state.
Valid states are DATAREADY, IDLE, SLEEP, RUN.

An import of a data buffer with a wrong DataType
field was attempted.

Valid Data Types are DATA_SESSIONDATA.

A NULL handle was passed.

Handle to the engine is not valid, possibly because
the engine has been closed.

Handle to the engine is used in another task or
thread than the one that did the CasrOpen.

Handle to SPI data is invalid or is used in another
task than the task that created the handle.

CasrimportData(), CasrExportData(), CasrActivateData(), CasrGetActivatedData()

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 27 of 87

All rights reserved.

CasrGainSet

ERRORID CasrGainSet(HASR hAsr, WORD Gain)

Passes the analog gain setting to the API. This function has to be called in response to the
CBAGC and the CBASKCURRENTGAIN callback function calls. It is the responsibility of the
user application to actually set the gain of the acquisition hardware. This function only reports
the gain information back to the engine.

Parameters
hAsr
Handle to the engine instance [INPUT].
Gain
The value of the current analog gain. This has to be a value between 1 (minimum) and

65535 (maximum). 0 should not be passed because it means that there will be no signal
[INPUT].

Return Value

Error code.
ERR_NULL_HANDLE A NULL handle was passed.
ERR_INVALID_ENGINE Handle to the engine is not valid, possibly because
the engine has been closed.
ERR_TASK_THREAD Handle to an engine is used in another task or thread
than the one that did the CasrOpen.
ERR_INVALID_SPI Handle to SPI data is invalid or is used in another
task than the task that created the handle.
See Also

CBAGC(), CBASKCURRENTGAIN()

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 28 of 87
All rights reserved.

CasrGetActivatedContext

ERRORID CasrGetActivatedContext(HASR hAsr, PHCONT phCont)

Returns the handle of the context activated on an engine.
If no context has been actived then the function returns a handle 0 in *phCont.

Parameters

hAsr
Handle to the engine instance [INPUT].

phCont
Pointer to the context handle [OUTPUT].

Return Value

Error code.
ERR_NULL_HANDLE A NULL handle was passed.
ERR_WRONG_STATE This function was called with no context active in the
engine.
ERR_INVALID_ENGINE Handle to the engine is not valid, possibly because
the engine has been closed.
ERR_TASK_THREAD Handle to the engine is used in another task or
thread than the one that did the CasrOpen.
ERR_INVALID_SPI Handle to SPI data is invalid or is used in another
task than the task that created the handle.
See Also

CasrActivateContext(), CasrGetActivatedData(), CasrimportContext(),
CasrCloseContext()

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 29 of 87
All rights reserved.

CasrGetActivatedData

ERRORID CasrGetActivatedData(HASR hAsr, PHDATA *ppData, PDWORD
pdwsSize)

Returns an array of the activated data handles on an engine. This function will allocate
memory for 2 HDATA handles and return the memory address in ppData. (*ppData)[0] will
contain the active language and (*ppData)[1] will contain the handle to the session data. It is
up to the application to free this memory. To ensure that the correct free function is called it is
safest to free with the CBFREE function.

Parameters

hAsr
Handle to the engine instance [INPUT].

ppData
Address of a variable that will receive the pointer to the allocated buffer [OUTPUT].

pdwSize
Address of a variable where the size of the array will be written [OUTPUT].

Return Value

Error code.
ERR_NULL_HANDLE A NULL handle was passed.
ERR_INVALID_ENGINE Handle to the engine is not valid, possibly because
the engine has been closed.
ERR_TASK_THREAD Handle to the engine is used in another task or
thread than the one that did the CasrOpen.
ERR_INVALID_SPI Handle to SPI data is invalid or is used in another
task than the task that created the handle.
ERR_MALLOC Memory allocation failed.
The callback functions CBMALLOC and CBFREE
are called for storing and release the engine’s
dynamic data.
Probably not enough heap memory.
See Also

CasrGetActivatedContext(), CasrimportData(), CasrActivateData(), CasrCloseData()

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 30 of 87
All rights reserved.

CasrGetActiveWords

ERRORID CasrGetActiveWords(HASR hAsr, PCWORDID *ppActiveWords,

PDWORD pdwsSize)

Returns an array containing the words that are active on the engine. The engine allocates a
buffer of word ids through the CBMALLOC callback function. It is up to the user to free this
memory again. To ensure that the correct free function is called it is safest to free with the

CBFREE function.

Parameters

hAsr

Handle to the engine instance [INPUT].

ppActiveWords

Address of a variable that points to the array containing the ID’s of the active words.

[OUTPUT].
pdwSize

Address of a variable where the size of the array will be written [OUTPUT].

Return Value

Error code.

ERR_WRONG_STATE

ERR_NULL_HANDLE

ERR_INVALID_ENGINE

ERR_TASK_THREAD

ERR_INVALID_SPI

See Also

Engine was in wrong state. Valid states are IDLE,
SLEEP, RUN.

A NULL handle was passed.

Handle to the engine is not valid, possibly because
the engine has been closed.

Handle to the engine is used in another task or
thread than the one that did the CasrOpen.

Handle to SPI data is invalid or is used in another
task than the task that created the handle.

CasrSetActiveWords(), CasrGetActivatedContext(), CasrActivateContext()

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 31 of 87

All rights reserved.

CasrGetAPIVersion

ERRORID CasrGetAPIVersion(HAPI hApi, PDWORD pdwAPIVersion)
Returns the version of the current APl implementation.

Parameters
hApi
Handle to the API instance [INPUT].

pdwAPIVersion
Pointer to the DWORD where the API version information will be written.

The DWORD has the following format:
OxMMmmbbbb
-> MM Major version number
->mm Minor version number
-> bbbb Build number

[OUTPUT].

Return Value
This function always returns ERR_SUCCES.

See Also
CasrGetSpiVersion()

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV
All rights reserved.

- page 32 of 87

CasrGetParam

ERRORID CasrGetParam(HASR hAsr, CPARAMID Paramid, PCPARAMVALUE

pParamValue)

Gets the current value of an engine parameter.

Parameters

hAsr

Handle to the engine instance [INPUT].

Paramld

ID of the parameter to get [INPUT].

pParamValue

Pointer to the variable where the engine parameter will be written [OUTPUT].

Return Value

Error code.

ERR_UNKNOW_PARAM

ERR_NULL_HANDLE

ERR_INVALID_ENGINE

ERR_TASK_THREAD

ERR_INVALID_SPI

See Also

Parameter used in CasrSetParam or
CasrGetParam is out of range.

A NULL handle was passed.

Handle to the engine is not valid, possibly because
the engine has been closed.

Handle to the engine is used in another task or
thread than the one that did the CasrOpen.

Handle to SPI data is invalid or is used in another
task than the task that created the handle.

CasrSetParam(), CasrGetParamList(), CasrSetParamList()

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 33 of 87

All rights reserved.

CasrGetParamList

ERRORID CasrGetParamList(HASR hAsr, PCPARAMLIST pParamList)
Gets the list of all the parameter settings of an engine.

Parameters

hAsr
Handle to the engine instance [INPUT].

pParamList
Pointer to the structure where the engine parameters will be written [OUTPUT].

Return Value

Error code.
ERR_NULL_HANDLE A NULL handle was passed.
ERR_INVALID_ENGINE Handle to the engine is not valid, possibly because
the engine has been closed.
ERR_TASK_THREAD Handle to the engine is used in another task or
thread than the one that did the CasrOpen.
ERR_INVALID_SPI Handle to SPI data is invalid or is used in another
task than the task that created the handle.
Comments

pParamList should be allocated before calling this function.

See Also
CasrSetParam(), CasrGetParam(), CasrSetParamList()

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 34 of 87
All rights reserved.

CasrGetSignallLevel

ERRORID CasrGetSignalLevel(HASR hAsr, PCASRLEVEL pCasrLevel)
Gets the current signal level. This level is a value between -7200 (-72 dB) and 1800 (18 dB).

Parameters

hAsr
Handle to the engine instance [INPUT].

pCasrlLevel
Pointer to the variable where the current signal level will be written [OUPUT].

Return Value

Error code.
ERR_NULL_HANDLE A NULL handle was passed.
ERR_INVALID_ENGINE Handle to the engine is not valid, possibly because
the engine has been closed.
ERR_INVALID_SPI Handle to SPI data is invalid or is used in another
task than the task that created the handle.
See Also
CasrGetSNR()

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 35 of 87
All rights reserved.

CasrGetSNR
BOOL casrGetSNR(HASR hAsr, CASRLEVEL *pSNR)

Gets the current SNR of the signal seen so far. This level is a value between 0 (0 dB) and
5000 (50 dB).

Parameters:

hAsr
Handle to the engine instance [INPUT].

pSNR

Pointer to the variable where the SNR will be written [OUTPUT].

Return value:

Error code.
ERR_NULL_HANDLE A NULL handle was passed.
ERR_INVALID_ENGINE Handle to the engine is not valid, possibly because
the engine has been closed.
ERR_TASK_THREAD Handle to the engine is used in another task or
thread than the one that did the CasrOpen.
ERR_INVALID_SPI Handle to SPI data is invalid or is used in another
task than the task that created the handle.
See Also
GetSignalLevel()

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 36 of 87
All rights reserved.

CasrGetSPIVersion

ERRORID CasrGetSPIVersion(HAPI hApi, PDWORD pdwSPIVersion)
Returns the version of the current SPI implementation.

Parameters

hApi
Handle to the API instance [INPUT].
pdwSPIVersion

Pointer to the DWORD where the SPI version information will be written to.

The DWORD has the following format :
OxMMmmbbbb
-> MM Major version number
->mm Minor version number
-> bbbb Build number

[OUTPUT].

Return Value

Error code.

See Also
CasrGetAPIVersion()

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV
All rights reserved.

- page 37 of 87

CasrGetState

ERRORID CasrGetState(HASR hAsr, PCASRSTATE pState)
Gets the current engine state.

Parameters

hAsr
Handle to the engine instance [INPUT].

pState
Pointer to a variable where the current engine state will be written [OUTPUT].

Return Value

Error code.
ERR_NULL_HANDLE A NULL handle was passed.
ERR_INVALID_ENGINE Handle to the engine is not valid, possibly because
the engine has been closed.
ERR_INVALID_SPI Handle to SPI data is invalid or is used in another
task than the task that created the handle.
See Also

CasrOpen(), CasrStart(), CBSTATE()

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 38 of 87
All rights reserved.

CasrimportContext

ERRORID CasrimportContext(HAPI hApi, PCONT pCont, BOOL IsPermanent,
PHCONT phCont)

Imports a context and associates a handle with it. This context can then be activated on
different engine instances with a low memory overhead. If the same context buffer is imported
twice, the data is only copied once. When an imported context is not needed anymore, the
resources should be freed with the CasrCloseContext() function.

Parameters

hApi
Handle to the APl instance [INPUT].
pCont

Read only buffer containing a context. This data can be shared between different engine
instances. [INPUT]

IsPermanent
TRUE if the buffer pointed to is permanent (stays in memory) and can be used as such
as long as HCONT is valid. When this parameter is set to false the entire databuffer is
copied by the API to a buffer allocated by CBMALLOC. [INPUT].

phCont

Address of a context handle. This context can then be used on different engines [
OUTPUT |.

Return Value

Error code.
ERR_WRONG_DATA The data buffer that was passed was not a context
data buffer.
ERR_NULL_HANDLE A NULL handle was passed.
ERR_INVALID_ENGINE Handle to the engine is not valid, possibly because
the engine has been closed.
ERR_TASK_THREAD Handle to the engine is used in another task or
thread than the one that did the CasrOpen.
ERR_INVALID_SPI Handle to SPI data is invalid or is used in another
task than the task that created the handle.
See Also

CasrimportData(), CasrExportContext(), CasrActivateContext()

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 39 of 87
All rights reserved.

CasrimportData

ERRORID CasrimportData(HAPI hApi, PDATA pData, BOOL IsPermanent,
PHDATA phData)

Loads data in memory and associates a handle with it. This data can then be activated on
different engine instances with a low memory overhead. If the same data is imported twice,
the data is only copied ones. When imported data is not needed anymore, the resources
should be freed with the CasrCloseData() function.

Parameters

hApi
Handle to the APl instance [INPUT].
pData

Buffer containing the data. This data can be shared between different engine instances
depending on the type of the data [INPUT].

IsPermanent
TRUE if the buffer pointed to is permanent (stays in memory) and can be used as such
as long as HDATA is valid. If IsPermanent is FALSE memory will be allocated and the
data will be copied. Data that can be changed by the engine (user specific models,
inherits data) must be non-permanent if the engine is allowed to change it.
CasrExportData can be used to save the changed data [INPUT].

phData

Pointer to the handle of the data associated with pData. This language can than be used
on different engines [OUTPUT].

Return Value

Error code.
ERR_NULL_HANDLE A NULL handle was passed.
ERR_INVALID_ENGINE Handle to the engine is not valid, possibly because
the engine has been closed.
ERR_TASK_THREAD Handle to the engine is used in another task or
thread than the one that did the CasrOpen.
ERR_INVALID_SPI Handle to SPI data is invalid or is used in another
task than the task that created the handle.
See Also

CasrimportContext(), CasrExportData(), CasrActivateData()

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 40 of 87
All rights reserved.

CasrOpen

ERRORID CasrOpen(HAPI hApi, PCRECOGCALLBACKS pRecogCallbacks,
DWORD dwUserData, PHASR phAsr)

Opens an engine and initializes it.

Parameters

hApi
Handle to the API instance [INPUT].
pRecogCallbacks
Pointer to a structure containing a set of callback functions that can be used by the
engine. The structure is copied by the function and therefor can be non-permanent
[INPUT].
dwUserData
DWORD that will be returned with every callback used to notify some information to the
application. This can be used to assign user-data to an engine instance [INPUT].
phAsr
Pointer where the handle of the new engine instance will be written to [OUTPUT].

Return Value

Error code.
ERR_NULL_HANDLE A NULL handle was passed.
ERR_INVALID_ENGINE Handle to the engine is not valid, possibly because
the engine has been closed.
ERR_TASK_THREAD Handle to the engine is used in another task or
thread than the one that did the CasrOpen.
ERR_INVALID_SPI Handle to SPI data is invalid or is used in another

task than the task that created the handle.

Callback functions within this function call

CBSTATE
Callback function used to notify state changes.

CBASKCURRENTGAIN
Callback function used to ask for the current setting of the analog gain.

See Also
CasrClose(), CasrAPIInit(), CasrAPIClose()

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 41 of 87
All rights reserved.

CasrSetActiveWords

ERRORID CasrSetActiveWords(HASR hAsr, PCWORDID pidWords, DWORD

NbrWords)

Enables or disables certain words in 1 context. Activation is a fast way for switching active

vocabularies.

Parameters
hAsr

Handle to the engine instance [INPUT].

pidWords

Array containing the ID’s of all words that must be enabled. All the words that are not in
this array will be disabled [INPUT].

NbrWords

Number of word ID’s in pidWords [INPUT].

Return Value

Error code.

ERR_WRONG_STATE

ERR_NULL_HANDLE

ERR_INVALID_CONTEXT

ERR_TASK_THREAD_CONTEXT

ERR_MALLOC

ERR_INVALID_ENGINE

ERR_TASK_THREAD

ERR_INVALID_SPI

The function is called on an engine that was in the
wrong state.
Valid states are CASR_IDLE, CASR_DATAREADY.

A NULL handle was passed.

Handle to the imported context is not valid, probably
because it has been closed.

This function is called in another task or thread than
the one that did the CasrimportContext of the active
context.

Memory allocation failed.

The callback functions CBMALLOC and CBFREE
are called for storing and release the engine’s
dynamic data.

Probably too less memory.

Handle to the engine is not valid, possibly because
the engine has been closed.

Handle to the engine is used in another task or
thread than the one that did the CasrOpen.

Handle to SPI data is invalid or is used in another
task than the task that created the handle.

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 42 of 87

All rights reserved.

See Also
CasrActivateContext(), CasrimportContext(), CasrGetActiveWords()

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 43 of 87
All rights reserved.

CasrSetParam

ERRORID CasrSetParam(HASR hAsr, CPARAMID Paramid, CPARAMVALUE
ParamValue)

Sets a certain engine parameter.

Parameters
hAsr
Handle to the engine instance [INPUT].

Paramid
ID of the parameter to set [INPUT].

ParamValue
New value of the parameter [INPUT].

Return Value

Error code.
ERR_WRONG_STATE The function is called on an engine that was in the
wrong state.
Valid states are CASR_IDLE, CASR_DATAREADY,
CASR_BOOT, CASR_RECOVER .
ERR_NULL_HANDLE A NULL handle was passed.
ERR_INVALID_ENGINE Handle to the engine is not valid, possibly because
the engine has been closed.
ERR_TASK_THREAD Handle to the engine is used in another task or
thread than the one that did the CasrOpen.
ERR_INVALID_SPI Handle to SPI data is invalid or is used in another
task than the task that created the handle.
ERR_UNKNOW_PARAM Parameter used in CasrSetparam is out of range.
See Also

CasrOpen(), CasrSetParamList(), CasrGetParam(), CasrGetParamList()

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 44 of 87
All rights reserved.

CasrSetParamList

ERRORID CasrSetParamList(HASR hAsr, PCPARAMLIST pParamList)

Initializes all the parameters. The buffer supplied can be retrieved with the CasrGetParamList
function in a previous session.

Parameters

hAsr
Handle to the engine instance [INPUT].

pParamList
Pointer to the structure containing the new values of all the parameters [INPUT].

Return Value

Error code.
ERR_WRONG_STATE The function is called on an engine that was in the
wrong state.
Valid states are CASR_IDLE, CASR_DATAREADY,
CASR_BOOT.
ERR_NULL_HANDLE A NULL handle is passed.
ERR_INVALID_ENGINE Handle to the engine is not valid, possibly because
the engine has been closed.
ERR_TASK_THREAD Handle to the engine is used in another task or
thread than the one that did the CasrOpen.
ERR_INVALID_SPI Handle to SPI data is invalid or is used in another
task than the task that created the handle.
See Also

CasrGetParamList(), CasrGetParam(), CasrSetParam()

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 45 of 87
All rights reserved.

CasrStart
ERRORID CasrStart(HASR hAsr)

Start the recognition engine. From now on the recognition is active and notifications can be
sent. The engine is put either in the SLEEP state or in the RUN state, depending on the
setting of the START_ENABLE parameter.

Parameters

hAsr
Handle to the engine instance [INPUT].

Return Value

Error code.

ERR_WRONG_STATE The function is called on an engine that was in the
wrong state.
Valid states are CASR_IDLE.

ERR_NULL_HANDLE A NULL handle was passed.

ERR_INVALID_ENGINE Handle to the engine is not valid, possibly because
the engine has been closed.

ERR_TASK_THREAD Handle to the engine is used in another task or
thread than the one that did the CasrOpen.

ERR_INVALID_SPI Handle to SPI data is invalid or is used in another

task than the task that created the handle.

Callback functions within this function call

CBSTATE
Callback function used to notify state changes.

See Also
CasrOpen(), CasrStop()

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 46 of 87
All rights reserved.

CasrStop
ERRORID CasrStop(HASR hAsr)

Forces the recognition engine to stop. Whatever is heard up to this point, is turned into a
recognition result.

Parameters

hAsr
Handle to the engine instance [INPUT].

Return Value

Error code.
ERR_NULL_HANDLE A NULL handle was passed.
ERR_INVALID_ENGINE Handle to the engine is not valid, possibly because
the engine has been closed.
ERR_TASK_THREAD Handle to the engine is used in another task or
thread than the one that did the CasrOpen.
ERR_INVALID_SPI Handle to SPI data is invalid or is used in another

task than the task that created the handle.

Callback functions within this function call
CBRESULT

Callback function used to indicate that a recognition result is available.

CBSTATE
Callback function used to notify state changes.

See Also
CasrOpen(), CasrStart(), CasrAcquisition()

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 47 of 87
All rights reserved.

5.2 Added functionality

5.2.1 User word training related

CasrAcknowledge

ERRORID CasrAcknowledge(HASR hAsr, DWORD Decision)

Gives an acknowledge (and a decision) to the engine to continue the user word training. This
function can be called in the CBSTATE callback.

Parameters
hAsr
Handle to an engine installed opened with CasrOpen [INPUT].

Decision
Decision of the application (PROMPT_OK, PROMPT_NOK or PROMPT_CANCEL)

[INPUT].

Return Value

Error code.

ERR_WRONG_STATE The function is called on an engine that was in the
wrong state.
Valid states are CASR_PROMPT, CASR_ACCEPT,
CASR_CONFIRM.

ERR_NULL_HANDLE A NULL handle was passed.

ERR_INVALID_ENGINE Handle to the engine is not valid, possibly because
the engine has been closed.

ERR_TASK_THREAD Handle to the engine is used in another task or
thread than the one that did the CasrOpen.

ERR_INVALID_SPI Handle to SPI data is invalid or is used in another

task than the task that created the handle.

Callback functions within this function call
CBSTATE
Callback function used to notify state changes.
CBTRAIN
Callback function used during user word training to notify user interactions.

See Also
CBTRAIN()

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 48 of 87
All rights reserved.

CasrAddContextUserWord

ERRORID CasrAddContextUserWord(HCONT hCont, HCLASSES hClasses, char *
pszClass, USERWORDBUF userWordBuf, DWORD dwUserWordSize, PCWORDID
pnFirstUserWordld, PDWORD pcUserWordlds)

This function adds a user word to a context. Userwords are added to a class in a certain
context. Since a class can occur more than once in a context, more than one id is generated
and returned.

Parameters

hCont
Context instance handle [INPUT].

hClasses
Class names instance handle [INPUT].

pszClass
Class name string [INPUT].

userWordBuf
User word data buffer [INPUT].

dwUserWordSize
User word data buffer byte size [INPUT].

pnFirstUserwWordld
Pointer where first user word ID assigned will be written [OUTPUT].

pcUserWordlds
Pointer where the number of assigned user word ID’s will be stored [OUTPUT].

Return Value

Error code.
ERR_CONTEXT_IN_USE Some engine is busy with this context.
ERR_MALLOC Memory allocation failed.

The callback functions CBMALLOC and CBFREE
are called for storing and release engine’s dynamic
data.

Probably not enough heap memory.

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 49 of 87
All rights reserved.

Comments

The parameter userWordBuf can be filled in with the buffer pointer returned via the API
function CasrStartUserWordTraining, after the training process has been completed.
When calling this function a next available user word ID range is assigned to the user word.
The range is returned via the first ID and the number of IDs. It can be a range because the
specified class can occur several times in the grammar. For each occurrence a new user word
ID is generated. If the userWordBuf obtained by CasrStartUserWordTraining is saved, this
function can be called with the same data at a later time. Saving this buffer to store userwords
and adding them to a context when needed is the least memory consuming.

See Also
CasrimportContext(), CasrCloseContext(), CasrStartUserWordTraining()

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 50 of 87
All rights reserved.

CasrDeleteContextUserWord

ERRORID CasrDeleteContextUserWord(HCONT hCont, HCLASSES hClasses, char
* pszClass, CWORDID nFirstUserWordld, DWORD cUserWordlds)

This function deletes a user word from a context.

Parameters

hCont
Context instance handle [INPUT].

hClasses
Class names instance handle [INPUT].

pszClass
Class name string [INPUT].

nFirstUserWordld
First user word ID [INPUT].

cUserWordlds
Number of user word ID’s [INPUT].

Return Value

Error code.
ERR_CONTEXT_IN_USE Some engine is still working with the context.
ERR_MALLOC Memory allocation failed.
The callback functions CBMALLOC and CBFREE
are called for storing and release engine’s dynamic
data.
Probably not enough heap memory.
ERR_INVALID_RANGE Invalid range specified.
Comments

When calling this function all user word ID's bigger than nFirstUserWordld are decremented
by cUserWordlds. User word ID's start from 0x80000000. This function deletes the range of
user word ID's, as returned by the function CasrAddContextUserWord. Remark that only user
words that have been added since the last context import can be deleted with this function.

See Also
CasrimportContext(), CasrCloseContext(), CasrAddContextUserWord()

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 51 of 87
All rights reserved.

CasrStartUserWordTraining

ERRORID CasrStartUserWordTraining(HASR hAsr, PUSERWORDBUF

pUserWordBuf, PDWORD pdwsSize)

Starts the user word training. The UserWordBuf and dwSize will not be written immediately,
the addresses that are passed need to be valid until the userword training has ended. The
START_ENABLE engine parameter needs to be disabled (set to FALSE) before calling this
function. The userword training process does not have an equivalent of the sleep state, the
engine always immediately jumps from start to record. If the userword is fully trained (A
PROMPT_OK has been answered to the CONFIRM request) then the engine will allocate
memory for the userword and pUserWordBuf will contain a pointer to this memory. This
memory has been allocated with the CBMALLOC callback by the engine and it is up to the
application to free the memory when the userword is not needed anymore. The application
can use the CBFREE callback to free this memory.

Parameters
hAsr

Handle to the engine instance [INPUT].

pUserWordBuf

Address of a variable that will receive a pointer to a buffer containing the user word data.
The user of the API can use this data to add the word to a context. This buffer will only
be valid upon a successful receipt of a PROMPTTYPE_TRAINEND notification

[OUTPUT]
pdwSize

Address of variable that receives the length of the buffer [OUTPUT].

Return Value

Error code.

ERR_WRONG_STATE

ERR_NULL_HANDLE

ERR_INVALID_CONTEXT

ERR_TASK_THREAD_CONTEXT

ERR_INVALID_ENGINE

ERR_TASK_THREAD

The function is called on an engine that was in the
wrong state.
Valid states are CASR_IDLE, CASR_DATAREADY.

A NULL handle was passed.

Handle to the imported context is not valid, probably
because it has been closed.

Handle to a context is used in another task or thread
than the one that did the CasrimportContext.

Handle to the engine is not valid, possibly because
the engine has been closed.

Handle to an engine is used in another task or thread
than the one that did the CasrOpen.

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 52 of 87

All rights reserved.

ERR_MALLOC Memory allocation failed.
The callback functions CBMALLOC and CBFREE

are called for storing and engine’s dynamic data.
Probably not enough heap memory.

ERR_INVALID_SPI Handle to the SPI is invalid or is used in another task
than the task that created the handle.

Callback functions within this function call

CBSTATE
Callback function used to notify state changes.

See Also
CasrAddContextUserWord(),CasrDeleteContextUserWord()

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 53 of 87
All rights reserved.

5.2.2 Context related

CasrExportContext

ERRORID CasrExportContext(HCONT hCont, PCONT pCont, PDWORD
pdwLength)

This function exports a context to a data buffer. This function can be called with pCont equal
to NULL in which case the pdwLength variable will be filled with the required buffer size. With
this information the application can allocate that amount of memory and assign pCont with
this. After this you call CasrExportContext again which will actually fill the buffer with the
context data.

Parameters

hCont
Context instance handle [INPUT].

pCont
Context data buffer. Application should allocate enough memory before calling this
function and put the buffersize in dwLength . [OUTPUT].

pdwLength
Pointer where length in bytes of context data buffer should be passed /will be written
[INPUT/OUTPUT].

Return Value
Error code.

ERR_BUF _TOO_SMALL Output buffer too small.

Comments

The context data buffer actual length is always returned, even if NULL is passed via the
parameter pCont.

See Also
CasrimportContext()

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 54 of 87
All rights reserved.

5.2.3 Classes related

CasrCloseClasses

ERRORID CasrCloseClasses(HCLASSES hClasses)
This function closes a class names instance.

Parameters

hClasses
Class names instance handle [INPUT].

Return Value

In the current implementation this function always returns ERR_SUCCESS.

Comments

This function frees all used resources and invalidates the class names instance handle.

See Also
CasrimportClasses()

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 55 of 87
All rights reserved.

CasrlmportClasses

ERRORID CasrimportClasses(HAPI hApi, PCLASSES pClasses, PHCLASSES
phClasses)

This function imports a class names data buffer.

Parameters
hApi
Handle to the API instance [INPUT].

pClasses
Class names data buffer [INPUT].

phClasses
Class names instance handle [OUTPUT].

Return Value

Error code.
ERR_MALLOC Memory allocation failed.
The callback functions CBMALLOC and CBFREE
are called for storing and release engine’s dynamic
data.
Probably not enough memory.
Comments

The class names data buffer contains amung other class names and class ID cross-
references. This data buffer can be obtained from the PC tools. A class names instance
handle is associated with the imported data.

See Also
CasrCloseClasses()

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 56 of 87
All rights reserved.

5.2.4 Merging of contexts and classes

CasrMergeContextsAndClasses

ERRORID CasrMergeContextsAndClasses(HCONT hContl, HCONT hCont2,
PHCLASSES phClassesl, PHCLASSES phClasses2, PHCONT phContResult,

PHCLASSES phClassesResult)

This function merges two context buffers and their corresponding class buffers. This function
creates a new context and new classes buffer. These buffers are already imported in the API
and are identified with a handle (stored in phContResult and phClassesResult). If the merged
context is no longer needed, the resources of these two handles should be freed with the

CasrCloseContext() and CasrCloseClasses() functions.

Parameters
hContl
Context instance handle [INPUT].

hCont2
Context instance handle [INPUT].

phClassesl
Class names instance handle [INPUT].

phClasses2
Class names instance handle [INPUT].

phContResult
Pointer to the context handle [OUTPUT].

phClassesResult
Class names instance handle [OUTPUT].

Return Value

Error code.
ERR_CONTEXT_IN_USE Some engine was still using one of the engines.
ERR_MALLOC Memory allocation failed.

The callback functions CBMALLOC and CBFREE
are called for storing and release engine’s dynamic

data.
Probably not enough memory.

ERR_INCOMPATIBLE_CONTEXTS Contexts are of a different type.

ERR_DOUBLE_CLASSNAMES Contexts that contain equal classnames can not be

merged.

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV
All rights reserved.

- page 57 of 87

Comments

The only purpose of this function is to make it possible to use two contexts at the same time. It
is however not possible to merge two contexts which have classes with the same name. The
handle for the merged context returned by this function can be used in the
CasrActivateContext() function.

See Also
CasrCloseContext(), CasrimportClasses(), CasrimportContext()

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 58 of 87
All rights reserved.

6 Callbacks

CBABNORM

unsigned char (*CBABNORM)(ABNORMCOND AbnormalCondition, PUSERDATA
pUserData)

Callback function used to notify abnormal conditions.
Parameters
AbnormalCondition: Type of abnormal condition.
Possible conditions:

BADSNR

The signal to noise ratio is too low.
OVERLOAD

The input signal is too loud.
TOOQUIET

The input signal is too soft.
NOSIGNAL

No signal has been seen for a time after the start of the agc.
GARBLEDSOUND

A very short non-speech sound has been seen.
POORMIC

A poor microphone has been detected.

pUserData: User data passed with the CasrOpen and CasrAPIInit function.

Return Value
Non-zero if there has been an error.

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 59 of 87
All rights reserved.

CBAGC
unsigned char (*CBAGC)(WORD NewGain, PUSERDATA pUserData)

Callback function used to request an analog gain change. In response of this callback the
application has to pass the setting of the new gain to the API with the CasrGainSet
function. The CasrGainSet function can be called within this callback or at a later time.
Never calling the CasrGainSet function (e.g. If you use a dummy CBAGC callback) has
the same effect as disabling the AGC functionality.

Parameters
NewGain: value for the new analog gain. This is a value between 1 (minimum) and
65535 (maximum). 0 means that the applications does not support this feature. The
new value of the analog gain the application has changed to or 0O if the application does
not support this feature.
pUserData: user data passed with the CasrOpen and CasrAPIlInit function.

Return Value

Non-zero if there has been an error.

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 60 of 87
All rights reserved.

CBASKCURRENTGAIN
unsigned char (*CBASKCURRENTGAIN)(PUSERDATA pUserData)

Callback function used to ask for the current setting of the analog gain. In response of this
callback the application has to pass the setting of the gain to the API with the CasrGainSet
function. The CasrGainSet function can be called within this callback or at a later time.

Parameters

pUserData : user data passed with the CasrOpen and CasrAPIInit function.
Return Value

Non-zero if there has been an error.

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 61 of 87
All rights reserved.

CBRESULT
unsigned char (*CBRESULT)(PCASRRESULT pResult, PUSERDATA pUserData)

Callback function used to indicate that a recognition result is available.

Parameters
pResult : pointer to the result structure. This pointer is only valid as long as the program
is inside the callback function. The result structure is destroyed when the callback
function returns.
Members of the result structure are:

iNbr
Number of recognition alternatives.

pSentences
Array containing all sentences of the N-best result. They are ordered according to
their confidence value (probability). Per sentence you have an iConf member which
indicates how confident the recognizer is that this sentence is the correct one.

pUserData : user data passed with the CasrOpen and CasrAPIInit function.

Return Value
Non-zero if there has been an error.

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 62 of 87

All rights reserved.

CBSTATE
unsigned char (*CBSTATE)(CASRSTATE State, PUSERDATA pUserData)

Callback function used to notify state changes.
Parameters

State: new State.
Possible states are:

CASR_BOOT

No contexts, language or user activated yet.
CASR_DATAREADY

All necessary data is activated.
CASR_IDLE

Context, language and user are activated.
CASR_SLEEP

Low CPU start detection.
CASR_RUN

Recognizing.
CASR_RECOVER

TS detected or CasrStop called. Notifying the result.
CASR_PROMPT

Waiting for user feedback during training to start the utterance.
CASR_RECORD

Recording a user word utterance.
CASR_ACCEPT

Waiting for user feedback during training to accept an utterance.
CASR_CONFIRM

Waiting for user feedback during training to accept all the training data.

pUserData : user data passed with the CasrOpen and CasrAPIInit function.

Return Value
Non-zero if there has been an error.

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV
All rights reserved.

- page 63 of 87

CBTRAIN
unsigned char (*CBTRAIN)(PROMPTTYPE PromptType, PUSERDATA pUserData)

Callback function used during user word training to notify user interactions.

Parameters
PromptType: type of prompt notification. See PROMPTTYPE for possible values.
Possible prompt types are:

PROMPTTYPE_START

Send before the start of an utterance. Upon return of this function the user can start

speaking. Possible acknowledges:

- PROMPT_OK : The speaker may start to speak.

- PROMPT_CANCEL : The training will be canceled and a

PROMPTTYPE_TRAINEND will be send.

PROMPTTYPE_ACCEPT

Send to ask the user if he wants to accept the spoken utterance. Possible

acknowledges:

- PROMPT_OK : The speaker accepts this utterance.

- PROMPT_NOK : The speaker rejects this utterance.

- PROMPT_CANCEL : The training will be canceled and a

PROMPTTYPE_TRAINEND will be send.

PROMPTTYPE_CONFIRM

Send when the 3 utterances are spoken, to ask for the user a confirmation if he wants

to create the user word using the 3 utterances. Possible acknowledges:

- PROMPT_OK : OK, create.

- PROMPT_CANCEL : The user word will not be created and a

PROMPTTYPE_TRAINEND will be send.

PROMPTTYPE_TRAINED

The training has finished. No acknowledge necessary.

pUserData : user data passed with the CasrOpen and CasrAPIInit function.

Return Value
Non-zero if there has been an error.

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 64 of 87
All rights reserved.

7 OS Callbacks

This is the list of callbacks that encapsulates the needed operating system functionality used
in the ASR1600\C API. For a non-multitasking operating system, the 3 callback functions that
are really needed are CBMALLOC, CBFREE and CBREALLOC, all the other functions can be
implemented as dummy functions. The other ones are only needed to implement a
multitasking and multithreading save API.

CBCREATECRITICALSECTION
HCRITSECTION (*CBCREATECRITICALSECTION)(PUSERDATA pUserData)

Callback function for creation and initialization of a critical section. Callbacks for operating
systems that do not support multithreading can be implement as a dummy function. The
dummy function can simply return 1. A critical section can be used to synchronize
resources that are accessed in different threads.

Return Value
Handle (type HCRITSECTION) associated with the critical section. NULL if there has
been an error.

Parameters
pUserData : user data passed with the CasrOpen and CasrAPIInit or CspellOpen and
CspellAPlInit function.

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 65 of 87
All rights reserved.

CBDELETECRITICALSECTION

BOOL (*CBDELETECRITICALSECTION)(HCRITSECTION hCritSection, PUSERDATA
pUserData)

Callback function for deleting a critical section. Callbacks for operating systems that do not
support multithreading can be implemented as a dummy function. The dummy function
should simply return TRUE. A critical section can be used to synchronize resources that
are accessed in different threads. This function frees all the resources used by the critical
section.

Parameters
hCritSection : handle of the critical section to delete.
pUserData : user data passed with the CasrOpen and CasrAPlInit or CspellOpen and
CspellAPlInit function.

Return Value
TRUE if there has been an error.

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 66 of 87
All rights reserved.

CBENTERCRITICALSECTION

BOOL (*CBENTERCRITICALSECTION)(HCRITSECTION hCritSection, PUSERDATA
pUserData)

Callback function for entering a critical section. Callbacks for operating systems that do not
support multithreading can be implemented as a dummy function. The dummy function
should simply return TRUE. A critical section can be used to synchronize resources that
are accessed in different threads. Upon return of this callback the calling thread owns this
critical section. Another thread locks if it calls this function until the first thread calls
CBLEAVECRITICALSECTION.

Parameters
hCritSection : handle of the critical section to enter.
pUserData : user data passed with the CasrOpen and CasrAPIInit or CspellOpen and
CspellAPlInit function.

Return Value
TRUE if there has been an error.

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 67 of 87
All rights reserved.

CBFREE
void (*CBFREE)(PVOID pMem, PUSERDATA pUserData)

Callback function used to release memory obtained with function of type CBMALLOC.
Parameters
pMem : pointer to the memory to free.

pUserData : user data passed with the CasrOpen and CasrAPlInit function.

Return Value
No return value.

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 68 of 87
All rights reserved.

CBGETCURTASK
int (*CBGETCURTASK)(PUSERDATA pUserData)

Callback function used to ask for the task ID Callbacks for operating systems that do not
support multitasking can always return 0. This function is used to check if handles are not
used between tasks.

Return Value
Current task’s ID.

Parameters
pUserData : user data passed with the CasrOpen and CasrAPlInit or CspellOpen and
CspellAPlInit function.

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 69 of 87
All rights reserved.

CBGETCURTHREAD
int (*CBGETCURTHREAD)(PUSERDATA pUserData)

Callback function used to ask for the thread ID. Callbacks for operating systems that do not
support multithreading can always return 0. This function is used to check if handles are
not used between threads.

Return Value
ID of the current thread.

Parameters
pUserData : user data passed with the CasrOpen and CasrAPIInit function.

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 70 of 87
All rights reserved.

CBLEAVECRITICALSECTION

BOOL (*CBLEAVECRITICALSECTION)(HCRITSECTION hCritSection, PUSERDATA
pUserData)

Callback function for leaving a critical section. Callbacks for operating systems that do not
support multithreading can be implemented as a dummy function. The dummy function
should simply return TRUE. A critical section can be used to synchronize resources that
are accessed in different threads. This function releases the ownership of a critical section
and unlocks another thread that is waiting for the ownership (in the
CBENTERCRITICALSECTION function).

Parameters
hCritSection : handle of the critical section to leave.
pUserData : user data passed with the CasrOpen and CasrAPlInit function.

Return Value
TRUE if there has been an error.

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 71 of 87
All rights reserved.

CBMALLOC
void * (*CBMALLOC)(DWORD dwSize, PUSERDATA pUserData)

Callback function to a memory allocation function.
Parameters
dwSize : size of the memory buffer to allocate.

pUserData : user data passed with the CasrOpen and CasrAPlInit function.

Return Value
Pointer to the newly allocated block of memory or NULL if not enough memory available.

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 72 of 87
All rights reserved.

CBREALLOC

void* (* CBREALLOC)(void *Ptr,DWORD Size, PUSERDATA pUserData);

Callback function to a function used to adjust the size of a memory buffer previously
allocated with CBMALLOC. This callback is currently not used in this API. It is specified in
the callback structure because it is needed when spelling is supported.

Parameters
Ptr: Pointer to the memory buffer to resize.
Size: New Size for the memory buffer.
pUserData: user data passed with the CasrOpen and CasrAPlInit function.

Return value:
Pointer to the newly re-allocated block of memory or NULL if not enough memory
available. The returned pointer is not necessarily the same as Ptr.

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 73 of 87
All rights reserved.

8 Types, structures and defines

8.1 Types
BOOL

Boolean variable, can be TRUE (1) or FALSE (0).

CASRLEVEL

Short, representing the current signal level of the engine. Valid values are between -7200 (-
72 dB) and 1800 (+18 dB).

CPARAMID

DWORD representing the ID of a certain engine parameter. Following parameters are
available :

a. acoustic engine (handle type HASR)

CPARAM_TS ENABLE

To enable or disable trailing silence detection.

Range: TRUE (1) or FALSE (0)

Default: TRUE (1)
CPARAM_START_ENABLE

To enable or disable low CPU start detection.

Range: TRUE (1) or FALSE (0)

Default: TRUE (1)
CPARAM_ENABLEPREMRES

Enable the generation of premature results. This is useful in keyword spotting mode

where the engine is running continuously and results are notified each time a keyword is

recognized.
Range: TRUE (1) or FALSE (0)
Default: FALSE (0)
CPARAM_TS
Minimum amount of trailing silence before the end of an utterance is detected.
Range: 100 ms - 2000 ms
Default: 300 ms

CPARAM_TIMEOUT
Maximum amount of time the engine can recognize (SLEEP, RUN or RECORD state).
Range: 0 sec (no Time Out) - 30 sec
Default: 0

CPARAM_ACCURACY
Trade off between CPU-load, memory requirements and the obtained accuracy of the
recognizer. The lower this values the less CPU-time and memory are needed, but the
performance will also degrade. The higher this value, the more CPU-time and memory,
but the performance will increase.
Range: 100 - 10000
Default: 300

CPARAM_REJECTION
With this parameter you can change the confidence level values. The higher this value
the more rejections (the lower the confidence levels).
Range: 0-100
Default: 50

CPARAM_GARBAGE

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 74 of 87
All rights reserved.

With this parameter you can change the model for the anyspeech <...>. The higher this
value the more speech will match the anyspeech model in favor of the words of the
context.
Range: 0-100
Default: 50
CPARAM_SENSITIVITY
Sensitivity of the low CPU speech detection system (if enabled). The lower this value the
easier begin of speech will be detected.
Range: 0 (0 dB) - 4000 (40 dB)
Default: 2000 (20 dB)
CPARAM_MINSPEECH
Minimum duration of speech the low CPU speech detection system has to see before
begin of speech is detected.
Range: 10 msec - 400 msec
Default: 60 msec
CPARAM_AGCON
Switches AGC on or off.
Range: TRUE (1) or FALSE (0)
Default: FALSE (0)
CPARAM_MAXNBEST
Maximum number of sentences in the result.
Range: 1-1000
Default: 10
CPARAM_FARTALK
Informs the AGC if a far talk or a close talk microphone is used.
Range: TRUE (1) or FALSE (0)
Default: TRUE (1)
CPARAM_SELECTGENDER
Selects the genders that are being used by the engine. If more then 1 gender is selected,
the engine automatically defines the gender of the speaker. If the gender of the speaker is
known in advance it is better to set this gender on the engine. This saves memory and
CPU and very little in recognition performance. This parameter is a combination (or-ing) of
the following defines:

GENDER_MALE
GENDER_FEMALE
GENDER_CHILD
GENDER_BOY
GENDER_GIRL
GENDER_UNKNOWN

Which genders can be activated depends on the activate language. GENDER_UNKNOWN
means all genders that are in the language. Most languages contain at least the
GENDER_MALE and GENDER_FEMALE gender.

Range: Bitfield made by or-ing one of more of the following defines: GENDER_MALE,
GENDER_FEMALE, GENDER_CHILD, GENDER_BOY or GENDER_GIRL.
Default: GENDER_UNKNOWN
Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS"” NV - page 75 of 87

All rights reserved.

CPARAMVALUE
DWORD representing the value of a certain engine parameter. See CPARAMID as well.

CWORDID

DWORD representing a word in a context.

DWORD

Unsigned long (32 bit).

ERRORID

DWORD containing an error code. Following error codes are available.

Basic error codes:

0
1
2

10

11
12
13
14

15

ERR_SUCCESS
ERR_MALLOC
ERR_TASK_THREAD

ERR_APIINIT

ERR_CONTEXT_WRONG_HANDLE

ERR_CONTEXT_IN_USE

ERR_NULL_HANDLE

ERR_WRONG_STATE

ERR_DATA_WRONG_HANDLE

ERR_DATA_IN_USE

ERR_UNKNOWN_PARAM

ERR_INVALID_ENGINE

ERR_LANGUAGE_MISMATCH

ERR_WRONG_DATA

ERR_INVALID_DATA

ERR_TASK_THREAD_DATA

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV
All rights reserved.

Function executed successfully.
Memory allocation failed.

Handle to an engine was used in
another task or thread than the
one that did the CasrOpen.

CasrAPIlInit called more than
once.

Context handle is not present in
the global list of imported contexts.
A CasrCloseContext was
attempted on a context that is still
in use on some engine.

A NULL handle was passed to
some API function.

An engine function was called on
an engine that was in the

Wrong state.

Data handle is not present in the
global list of imported data.
CasrCloseData was attempted on
a data import that is still in use on
some engine.

Parameter used in CasrSetParam
or CasrGetParam is out of range.
Handle to the engine is not valid,
possibly because the engine has
been closed.

attempt to activate context or
session data that does not match
the activated language

An import of some data buffer with
a wrong DataType field was
attempted

Handle to the imported data not
valid, probably because it has
been closed

Handle to an imported data was
used in another task or thread than
the one that did the
CasrimportData

- page 76 of 87

16

17

18

19

20

20

22

23

24
25

26

ERR_INVALID_CONTEXT

ERR_TASK_THREAD_CONTEXT

ERR_INVALID_SPI

ERR_NULL_POINTER

ERR_INVALID_GENDER

ERR_NO_USERWORD_TRAINING

ERR_NO_START_DETECTION

ERR_WRONG_SIZE

ERR_UTTFORMAT_UNKNOWN
ERR_INVALID_WORDID

ERR_TIMEOUT

Added error codes:

handle to the imported context not
valid, probably because it has
been closed

handle to a context was used in
another task or thread than the
one that did the
CasrimportContext

handle to a SPI was invalid or was
used in another task then the task
the created the handle

a NULL pointer was passed to
some SPI function

illegal value for
CPARAM_SELECTGENDER
(might also occur during
CasrActivate!)

the currently active language is
unable to do userword training
attempted
CasrStartUserWordTraining with
start detection enabled

A buffer with the wrong size has
been passed

Unknown utterance format

at least one wordID is out of range
in CasrSetActiveWords

Timeout occurred

100 ERR_INCOMPATIBLE_HANDLES handles are not compatible
110 ERR_BUF _TOO_SMALL output buffer too small
120 ERR_INVALID_CLASSNAME classname is not valid
130 ERR_INCOMPATIBLE_CONTEXTS contexts are of a different type.
131 ERR_DOUBLE_CLASSNAMES contexts which contain equal
classnames can not be merged.

140 ERR_INVALID_RANGE invalid range specified.

HASR

Pointer representing a handle to an engine instance.

HCONT

Pointer representing a handle to context data that can be loaded, activated and enabled
on an engine.

HCLASSES
Pointer representing a class names instance handle.

HCRITSECTION
Pointer representing a handle associated with a critical section.

HDATA
Pointer representing a handle associated with loaded data in memory.

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV
All rights reserved.

- page 77 of 87

PALTERNATIVE
pointer to ALTERNATIVE.

PCASRLEVEL
pointer to CASRLEVEL.

PCASRRESULT
pointer to CASRRESULT.

PCASRSTATE
pointer to CASRSTATE.

PDATA
pointer to DATA.

PCLASSES
Class names data buffer.

PCOSCALLBACKS
pointer to COSCALLBACKS.

PCPARAMLIST
pointer to CPARAMLIST.

PCPARAMVALUE
pointer to CPARAMVALUE.

PCRECOGCALLBACKS
pointer to CRECOGCALLBACKS.

PCONT

PVOID representing a pointer to a context buffer.

PCWORDID
pointer to CWORDID.

PDWORD
pointer to DWORD.

PHASR
pointer to HASR.

PHCONT
Pointer to a HCONT.

PHCLASSES
Pointer to a HCLASSES.

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV
All rights reserved.

- page 78 of 87

PHDATA
pointer to HDATA.

PRECWORD
pointer to RECWORD.

PSENTENCE
pointer to SENTENCE.

PSPEECHUNITBUF

pointer to SPEECHUNITBUF.

PTIMEINFO
pointer to TIMEINFO.

PUSERWORDBUF
pointer to USERWORDBUF.

PVOID
void pointer.

PWORD
pointer to WORD.

PWORDBUF
pointer to WORDBUF.

PUSERDATA
pointer to USERDATA.

USERWORDBUF

PVOID representing a pointer to a user word buffer.

WORD
unsigned short (16 bit).

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV

All rights reserved.

- page 79 of 87

8.2 Structures

ALTERNATIVE
typedef struct {
int iConf;
| ong | Score;
CWORDI D i dWor d;
} ALTERNATI VE;

Formatted part of a recognition result.

Members
iConf
The confidence level of this alternative.
IScore
Score for this alternative, the lower the better.
idWord
id of this alternative (User word ids have an offset OFFSET_USERWORDID).

CASRRESULT
typedef struct {
int iNbr;
PSENTENCE pSent ences;
} CASRRESULT;

Represents a formatted recognition result.

Members
iNbr
Number of recognition alternatives.
pSentences
Array containing all sentences of the N-best result.

COSCALLBACKS

typedef struct {
CBMALLOC cbMal | oc;
CBFREE cbFr ee;
CBREALLCC cbReal | oc;
CBGETCURTASK cbGet Cur Thr ead:;
CBGETCURTHREAD cbGet Cur Thr ead;
CBCREATECRI Tl CALSECTI ON cbCreateCriti cal Secti on;
CBDELETECRI Tl CALSECTI ON cbDel eteCritical Secti on;
CBENTERCRI TI CALSECTI ON cbEnterCritical Secti on;
CBLEAVECRI TI CALSECTI ON cbLeaveCritical Secti on;

} COSCALLBACKS;

Structure representing a set of callback functions that encapsulates operating system calls
needed by the API. This structure is passed with the casrAPIInit function.

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 80 of 87
All rights reserved.

Members
cbMalloc
Memory allocation function.
cbFree
Memory freeing function.
cbRealloc
Re-allocating function.
cbGetCurThread
Get id of current task (only useful in multitasking environments).
cbGetCurThread
Get id of current thread (only useful in multithreading environments).
cbCreateCriticalSection
Function for creation and initialization of a critical section (only useful in multithreading
environments).
cbDeleteCriticalSection
Function for deleting a critical section (only useful in multithreading environments).
cbEnterCriticalSection
Function for entering a critical section (only useful in multithreading environments).
cbLeaveCriticalSection
Function for leaving a critical section (only useful in multithreading environments).

CPARAMLIST

typedef struct {
DWORD cparam ts_enabl e;
DWORD cparam start_enabl e;
DWORD cparam ts;
DWORD cpar am ti neout ;
DWORD cpar am accur acy;
DWORD cparam rej ecti on;
DWORD cpar am _gar bage;
DWORD cparam sensitivity;
DWORD cpar am_mi nspeech;
DWORD cpar am agcon;
DWORD cpar am maxnbest ;
DWORD cpar am enabl epr enr es;
DWORD cparam fartal k;
DWORD cpar am sel ect gender ;

} CPARAMLI ST;

Structure representing a list of parameters. See also CPARAMID and CPARAMVALUE.

Members

cparam_ts_enable

Trailing silence detection on or of.
cparam_start_enable

Low CPU start detection on or of.
cparam_ts

Minimum amount of trailing silence.
cparam_timeout

Maximum amount of time the engine can recognize.
cparam_accuracy

Accuracy of the recognizer.
cparam_rejection

Penalty for the rejection word.
cparam_garbage

Penalty for the garbage model.
cparam_sensitivity

Sensitivity of the low CPU speech detection.
cparam_minspeech

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 81 of 87
All rights reserved.

Minimum amount of speech the low CPU detection system has to see befor begine of

speech is detected.
cparam_agcon

AGC on or of.
cparam_maxnbest

Maximum number of sentences in the result.
cparam_enablepremres

Generation of premature results enabled or disabled.
cparam_fartalk

Close talk or far talk microphone.
cparam_selectgender

Sets the level of automatic gender detection.

CRECOGCALLBACKS

typedef struct {

CBRESULT cbResul t;

CBSTATE cbSt at e;

CBTRAI N cbTrai n;

CBABNCRM cbAbnor m

CBAGC chAgc;

CBASKCURRENTGAI N cbAskCurrent Gai n;
} CRECOGCALLBACKS;

Represents a set of callback functions the engine can use. This structure is passed with
the CasrOpen function.

Members

cbResult

Result natification.
cbState

State notification.
cbTrain

User word training notification.
cbAbnorm

Abnormal condition notification.
cbAgc

Request to change the analog gain.
cbAskCurrentGain

Returns the current gain setting.

DATA

typedef struct {
DWORD dwbDat aType;
DWORD dwsSi ze;

} DATA;

Structure representing data buffer information.

Members
dwDataType
Type of data in the buffer. Can be DATA_LANG, DATA_LANG_FIXED,
DATA_CONTEXT, DATA_SESSIONDATA or DATA_NAMETREE.
dwsSize
Size of the data buffer.

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 82 of 87
All rights reserved.

RECWORD

typedef struct {

int i NborAlternatives;

TI MElI NFO Ti nel nf o;

ALTERNATI VE* pAlternatives;
} RECWORD;

Formatted part of a recognition result.

Members
iNbrAlternatives
Number of alternatives for this word.
Timelnfo
Contains the times of the begin and the end of this word.
pAlternatives
Array containing all the alternatives.

SENTENCE

typedef struct {
int i NorWrds;
int iConf;
| ong | Score;
TI MEI NFO Ti nel nf o;
RECWORD pWor ds;

} SENTENCE;

Formatted part of a recognition result.

Members
iNbrWords
Number of words in this sentence.
iConf
Confidence level of this sentence.
IScore

Score for this sentence, the lower the better. This value needn’t be used, the confidence

value is a better choice.
Timelnfo

Contains the times of the begine and the end of this sentence.
pWords

Array containing the words of this sentence.

SPEECHUNITBUF

typedef struct {
WORD Nbr SpeechUni t s;
PWORD pSpeechUni ts;
} SPEECHUNI TBUF;

Structure representing the speech units of a pronunciation of a word.

Members
NbrSpeechUnits
Number of speech units in the array.
pSpeechUnits
Array of speech units.

TIMEINFO
typedef struct {

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV
All rights reserved.

- page 83 of 87

DWORD Ti neBegi n;
DWORD Ti neEnd;
} TI MEI NFG,

Structure returning time information about the utterance that was said. All returned times
are in number of samples received counting from the time that CastStart has been called.
A value of -1 (Oxffffffff) means that no timing information is returned.

Members
TimeBegin
Begin time of the corresponding utterance.
TimeEnd
End time of the corresponding utterance.

USERDATA

typedef struct ({
DWORD dwApi User Dat a;
DWORD dwEngi neUser Dat a;
} USERDATA;

Structure representing the different pronunciations of a word.

Members
dwApiUserData

User data passed with the CasrAPlInit or CspellAPlInit function.
dwEngineUserData

User data passed with the CasrOpen or CspellOpen function.

WORDBUF

typedef struct {
WORD Nbr Prons;

PSPEECHUNI TBUF pSpeechUni t Buf s;
} WORDBUF;

Structure representing the different pronunciations of a word.

Members
NbrProns
Number of pronunciations.
pSpeechUnits
Array of structures representing the speech units of the different pronunciations.

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 84 of 87
All rights reserved.

8.3 Enumeration types

ABNORMCOND

enum ABNORMCOND {
BADSNR,
OVERLQAD,

TOOQUI ET,
NOSI GNAL,
GARBL EDSOUND,
POORM C

b
Type of the abnormal condition that occurred.

Members

BADSNR

The signal to noise ratio is too low.
OVERLOAD

The input signal is too loud.
TOOQUIET

The input signal is too soft.
NOSIGNAL

No signal has been seen for a time after the start of the AGC.
GARBLEDSOUND

A very short non-speech sound has been seen.
POORMIC

A poor microphone has been detected.

CASRSTATE

enum CASRSTATE {
CASR_BOOT,
CASR_DATAREADY,
CASR_| DLE,
CASR_SLEEP,
CASR_RUN,
CASR_RECOVER,
CASR_PROMPT,
CASR_RECORD,
CASR_ACCEPT,
CASR_CONFI RM

b
Represents the current state of an engine.

Members

CASR_BOOT

No contexts, language or user activated yet.
CASR_DATAREADY

All necessary data is activated.
CASR_IDLE

Context, language and user are activated.
CASR_SLEEP

Low CPU start detection.
CASR_RUN

Recognizing.
CASR_RECOVER

TS detected or CasrStop called. Notifying the result.
CASR_PROMPT

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 85 of 87
All rights reserved.

Waiting for user feedback during training to start the utterance.
CASR_RECORD

Recording a user word utterance.
CASR_ACCEPT

Waiting for user feedback during training to accept an utterance.
CASR_CONFIRM

Waiting for user feedback during training to accept all the training data.

CSAMPLEFORMAT

enum CSAMPLEFORMAT {
PCM 16_11KHZ
s

Specifies the format of the samples passed in the CasrAcquisition function.

Members
PCM_16_11KHZ
16-bit samples PCM at 11 kHz.

PROMPTYPE

enum PROVPTYPE {
PROVPTTYPE_START,
PROVPTTYPE_ACCEPT,
PROVPTTYPE_CONFI RM
PROVPTTYPE_TRAI NED

b

Represents the different types of prompt notifications send during user word training. The
decision has to be notified to the engine with the CasrAcknowledge function call.

Members
PROMPTTYPE_START
Send before the start of an utterance. Upon return of this function the user can start
speaking. Possible acknowledges:
- PROMPT_OK : The speaker may start to speak.
- PROMPT_CANCEL : The training will be canceled and a
PROMPTTYPE_TRAINEND will be send.
PROMPTTYPE_ACCEPT
Send to ask the user if he wants to accept the spoken utterance. Possible
acknowledges:
- PROMPT_OK : The speaker accepts this utterance.
- PROMPT_NOK : The speaker rejects this utterance.
- PROMPT_CANCEL : The training will be canceled and a
PROMPTTYPE_TRAINEND will be send.

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 86 of 87
All rights reserved.

PROMPTTYPE_CONFIRM
Send when the 3 utterances are spoken, to ask for the user a confirmation if he wants

to create the user word using the 3 utterances. Possible acknowledges:
- PROMPT_OK : OK, create.
- PROMPT_CANCEL : The user word will not be created and a
PROMPTTYPE_TRAINEND will be send.
PROMPTTYPE_TRAINED
The training has finished. No acknowledge necessary.

Copyright 1998 LERNOUT & HAUSPIE SPEECH PRODUCTS” NV - page 87 of 87
All rights reserved.

	Table of Contents
	Introduction
	Basic Functionality
	Basic Requirements

	Paradigm
	Definitions
	API Internals
	Initializing the engine
	Context manipulation
	Classes
	Recognition
	Inheritance of adaptive data
	Automatic Gain Control
	Memory
	User word training
	Spelling
	Adding and deleting of words
	Adding and deleting of user words
	Exported Symbol activation
	Activation of more than 1 context at the same time
	Recognition Operating Mode and State diagram

	ASR1600 Low Level API function calls
	Engine related functions
	Context related functions
	Classes related functions
	Training related functions
	Engine state related functions
	Miscellaneous functions

	ASR1600 Function Specification
	Basic functionality
	CasrAcquisition
	CasrActivateContext
	CasrActivateData
	CasrAPIClose
	CasrAPIInit
	CasrClose
	CasrCloseContext
	CasrCloseData
	CasrExportData
	CasrGainSet
	CasrGetActivatedContext
	CasrGetActivatedData
	CasrGetActiveWords
	CasrGetAPIVersion
	CasrGetParam
	CasrGetParamList
	CasrGetSignalLevel
	CasrGetSNR
	CasrGetSPIVersion
	CasrGetState
	CasrImportContext
	CasrImportData
	CasrOpen
	CasrSetActiveWords
	CasrSetParam
	CasrSetParamList
	CasrStart
	CasrStop

	Added functionality
	User word training related
	CasrAcknowledge
	CasrAddContextUserWord
	CasrDeleteContextUserWord
	CasrStartUserWordTraining
	Context related
	CasrExportContext
	Classes related
	CasrCloseClasses
	CasrImportClasses
	Merging of contexts and classes
	CasrMergeContextsAndClasses

	Callbacks
	CBABNORM
	CBAGC
	CBASKCURRENTGAIN
	CBRESULT
	CBSTATE
	CBTRAIN

	OS Callbacks
	CBCREATECRITICALSECTION
	CBDELETECRITICALSECTION
	CBENTERCRITICALSECTION
	CBFREE
	CBGETCURTASK
	CBGETCURTHREAD
	CBLEAVECRITICALSECTION
	CBMALLOC
	CBREALLOC

	Types, structures and defines
	Types
	BOOL
	CASRLEVEL
	CPARAMID
	CPARAMVALUE
	CWORDID
	DWORD
	ERRORID
	HASR
	HCONT
	HCLASSES
	HCRITSECTION
	HDATA
	PALTERNATIVE
	PCASRLEVEL
	PCASRRESULT
	PCASRSTATE
	PDATA
	PCLASSES
	PCOSCALLBACKS
	PCPARAMLIST
	PCPARAMVALUE
	PCRECOGCALLBACKS
	PCONT
	PCWORDID
	PDWORD
	PHASR
	PHCONT
	PHCLASSES
	PHDATA
	PRECWORD
	PSENTENCE
	PSPEECHUNITBUF
	PTIMEINFO
	PUSERWORDBUF
	PVOID
	PWORD
	PWORDBUF
	PUSERDATA
	USERWORDBUF
	WORD

	Structures
	ALTERNATIVE
	CASRRESULT
	COSCALLBACKS
	CPARAMLIST
	CRECOGCALLBACKS
	DATA
	RECWORD
	SENTENCE
	SPEECHUNITBUF
	TIMEINFO
	USERDATA
	WORDBUF

	Enumeration types
	ABNORMCOND
	CASRSTATE
	CSAMPLEFORMAT
	PROMPTYPE

