SEGA

Dreamcast SH4
Cross Assembler






Hitachi Microcomputer Support
Software

SH Series Cross Assembler

HITACHI



Notice

When using this document, keep the following in mind:

. This document may, wholly or partially, be subject to change without notice.

. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, th
whole or part of this document without Hitachi’'s permission.

. Hitachi will not be held responsible for any damage to the user that may result from
accidents or any other reasons during operation of the user’s unit according to this do

. Circuitry and other examples described herein are meant merely to indicate the
characteristics and performance of Hitachi’'s semiconductor products. Hitachi assume
responsibility for any intellectual property claims or other problems that may result fro
applications based on the examples described herein.

. No license is granted by implication or otherwise under any patents or other rights of
third party or Hitachi, Ltd.

. MEDICAL APPLICATIONS: Hitachi's products are not authorized for use in MEDICAL|
APPLICATIONS without the written consent of the appropriate officer of Hitachi's sale
company. Such use includes, but is not limited to, use in life support systems. Buyers
Hitachi’s products are requested to notify the relevant Hitachi sales offices when plan
use the products in MEDICAL APPLICATIONS.

cument.

ning to




Contents

P O A . e et e s 1
(@AY =] AV [\ TP 3
Y=Te1 (o] o I @ AV /=Y o Vi [\ TR 5

Section 2 Relationships between the Software

Development SUPPOIT TOOIS .....oiiiiiieiiee e 7
Programmer’s GUIAE .........ooouiiiiiiii e 9
Section 1 Program EI@mMENTS.........cooiiiiiiiiiiiieeeieei e 10
1.1 SOUICE StAtEIMENTS....ciiiiiii it e e et eear s 10
1.1.1 Source StatemMent STIUCIUME ........cccuvuiiiiiiiiiiii e 10
1.1.2 Coding Of SOUICE StatEMENTS .....coouueiiiieiiiiit e ee e a e 11
1.1.3 Coding of Source Statements across Multiple Lines..........cccccoeviiiiiiii. 12
1.2 RESEIVEA WOTUS ...ttt ettt e e e e et et e e e e e e e e bbb s 13
1.3 SYMIOIS ... e 17
1.3.1 FUNCtions Of SYMDOIS......cooiiiiiiiii e 17
1.3.2 CodiNg Of SYMDOIS ...eueeiiii e 18
L4 CONSTANES ...ttt e ettt e et e et e et 20
1.4.2 INteger CONSTANTS ....uuiiiiiiiiiii et e e e e e e aees 20
1.4.2 Character CONSIANTS .....civiiiiiiiiitiiiie ettt e e e e e e e 21
1.4.3 Floating-Point NUMDEIS ......uuiiiiiiiieeie e 22
1.4.4 FiXxed-POIiNt NUMDEIS ...uuuiiii et e e e e e e e e eeeeeeees 25
1.5 LOCALION COUNTET ...ttt ettt e e ettt ettt ettt e e e e e e e e e et e e e e e e s nnnnbban s 27
1.6 EXPIESSIONS ....ciiiiiiiiiittttt ettt e e ettt et e e e 29
1.6.1 ElemMentS Of EXPrESSION . ....uuuuititeiiieeae ettt e e e e e e e e e e e 29
1.6.2 OPEIratioN PrIOTILY ...uueeeeisi e e e e e e e e e e e e e e e e eeeeeeaeaenes 31
1.6.3 Detailed Description 0N OPEIatiON .........uuueueeeiiiiiiiiiiee e e e e e e e eeaeees 34
1.6.4 NOLES ON EXPIESSIONS ... i iieeiiiiiteieee ettt e e et ettt e e 36
A O = Yot (=T ST £ 1T TP PP TPPTPRTTRRRR 37
1.8 LOCAI LADEI....ceeeeeeee et 38
1.8.1 Local Label FUNCLIONS ........uiiiiiiiiiiiiee e 38
1.8.2 Description Method of Local Label...............ueuiiiiiiiiee, 39
1.8.3 Scope Of LOCAl LADEIS.......ccoiiiiiiiiiiiiii e 39
Section 2 Basic Programming Knowledge.............cceoiiiiiiiiiiiiiiiiiiiiiieeeee 40
2.1 SECHIONS ..ttt ettt e oottt e e e e ettt e as 40

HITACHI i



2.1.1 Section TypeS DY USAQe......cooiiiiiiiieiie e 40

2.1.2 Absolute Address Sections and Relative Address Sections............cceuuuuviiiineeeenn. 44
2.2 Absolute and RelativVe VAIUES ........cooouiiii et 46
2.2.1 ADSOIULE VAIUES. ... ettt a e e e et 46
2.2.2 RelatiVE VAIUBS. ... .ot 46
2.3 Symbol Definition and REFEIENCE .......ccooi i a7
2.3.1 SYMDBOI DEFINITION ...ttt e e e e e e e e e e e e e e eeeeeenees 47
2.3.2 SYMDOI RETEIENCE. ... s 48
2.4 .SeParate ASSEIMDIY ...... it 50
2.4.1 Separate ASSEMDIY..... oo 50
2.4.2 Declaration of Export Symbols and Import SymbolS................euviiiiiiiiiiiiiiiiiiininn. 51
Section 3 Executable INSIrUCHIONS........oooiiiiiiiiiii e 53
3.1 Overview of Executable INSIFUCTIONS. ... ...ooiiiiii et e e e 53
3.2 Notes on Executable INSIIUCTIONS .........ooiiiiiiiiee it e e e e e e eeeees 59
3.2.1 Notes 0N the OPEeration SIZe.........ooieiiiiiiiie e eaaans 59
3.2.2 Notes on Delayed Branch INStruCtioNS ...........ccoooviiiiiiiiiiii 70
3.2.3 Notes on Address CalCUlatioNS...........ceuvviviiiiiiiiiiiiiiiii e 72
Section 4 AsSSeMDIEr DIr€CHVES.....ccccuuii e 77
4.1 Overview of the ASSEMDIEr DIr€CHVES ......ccoiiiiiii e 77
4.2 Assembler DIireCtive RefEIENCE .......oooieiiii e 79
4.2.1 Target CPU ASSemMDBIEr DIir€CHVE .......ciiiiiiiiiiii e 79
4.2.2 Section and Location Counter Assembler DIreCtives...........cccccvvvvviiiiiiiiiiinnnnnn, 81
4.2.3 Symbol Handling Assembler DIreCliVES.........cccooviiiiiiiiiiiii 90
4.2.4 Data and Data Area Reservation Assembler Directives............cccoov e 98
4.2.5 Export and Import Assembler DIreCtiVeS ..........oooooeiiiiiiiiiiiieeeeeis 128
4.2.6 Object Module Assembler DIr€CtIVES..........cooviiiiiiiieeeeeeeeeeeeeeas 135
4.2.7 Assemble Listing AsSsembler DIr€CHVES ......ccoovveeeeeeeeeeeeee e 145
4.2.8 Other ASSembler DIr€CHVES ........oooii i 160
Section 5 File INCluSioN FUNCHION........coouuiiiiiiii e 167
Section 6 Conditional Assembly FUNCHON..........ccoooiiiieiiiiiiiiiiii e, 171
6.1 Overview of the Conditional Assembly FUNCLION ... 171
6.1.1 PreproCessor VAriabIes ..........oi oot 171
6.1.2 Replacement SYMDOIS. ......coouuu e 172
6.1.3 Conditional ASSEMDIY.......coiiiiiiiiiiii e 173
6.1.4 Iterated EXPANSION .....coii ittt 175
6.1.5 Conditional Iterated EXPanSION ...........uuuueiuiiiiiiiieee e 175
6.2 Conditional ASSEMDBIY DIFECHIVES .....ccooiii e 177
.ASSIGNA Integer Preprocessor Variable Definition (Redefinition Is Possible) .......... 178
ASSIGNC Character Preprocessor Variable Definition (Redefinition Is Possible)...... 180

i HITACHI



.DEFINE Definition of Preprocessor Replacement Character String............cccvvvveennnn. 182

AIF,.AELIF,.AELSE,.AENDI Conditional Assembly with Comparison ..................... 184
AIFDEF, .AELSE,.AENDI Conditional Assembly with Definition............................ 186
.AREPEAT,.AENDR Iterated EXpansion............ccceeeeiiiiiiiiiiiiieeeeeeeeeees 188
AWHILE, .AENDW Conditional Iterated EXPanSion ...............eeevvermmiimieminininiiiniiinn. 190
.AERROR Error Generation During Preprocessor EXpansion.............cccccuvvvvrveeeeeeeeennn. 192
EXITM EXPansion TerMINATION. .......iiiiiiiiee et e e 193
ALIMIT Maximum Count Specification for . AWHILE Expansion in Preprocessor ... 195
IST=Totu[o] o N AN |V F= T o Il U o o 1o o TR 197
7.1 Overview of the Macro FUNCHION ..ot e e 197
7.2 MAcCro FUNCHON DIFECLIVES .....ciieiiiiee ittt ettt e et e e et eeeeeaaans 199
.MACRO,.ENDM Macro Definition ...........ccoeuuuuiiaeiiiiiiii e 200
EXITM EXPansion TerMINATION. ........oiiiiiiiie et e e e e 203
T3 MACTO BOOY ...ttt e et 204
A Y = Tod o TN - | | S 208
7.5 Character String Manipulation FUNCLIONS ............uuiiiiiiiiiiii e 210
.LEN Character String LeNgth COUNT...........uuuiiuiiiiiiiie e 211
ANSTR Character String SEarCh ........ccooiiiiiiiiii e 212
.SUBSTR Character Substring EXtraction..............cccccviiiiiiiiiiiiiiiiiiiiiiin 213
Section 8 Automatic Literal Pool Generation FUNCLION.............eeiiiiiiiiiieeeneen. 215
8.1 Overview of Automatic Literal POOl GeNeration ..............cooeviiuiiiiieiiiiiiiiiie e 215
8.2 Extended Instructions Related to Automatic Literal Pool Generation ............cccooeeeeiieieenn. 215
8.3 Size Mode for Automatic Literal POOl Generation..............coeuuuuiiiieiiiiiiiiiie e 216
8.4 Literal POOI OULPUL .....oeiiiiiiiiiiei ettt e e e e ettt et e e e e e e e e e e eeeeennnnes 217
8.4.1 Literal Pool Output after Unconditional BranCh..............cccccoc, 218
8.4.2 Literal Pool Output to the .POOL LOCAtION.........ccoeeiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeiiies 218
8.5 LItral SNAIING ...t e 219
8.6 Literal POOI OULPUL SUPPIESSION.......cviiiiiiiiiiiiiiiitiiitbttitiiii s a e e e e e e e e e e e e e aeaaaaaaaeas 220
8.7 Notes on Automatic Literal POOl OQULPUL ...........coooiiiiiiiiiiiiiiiiieeeeee s 221
Section 9 SH-DSP INSIIUCTIONS......cooiiiiiiiiiiee et 225
9.1 Program CONTENTS. .. ...ttt e et et e e et e e et e e et e e et e e eaa e aeaa e aeraaaernaaeennnas 225
0.1.1 SOUICE STAIEMENTS. ... iiiti ettt ettt e e et e e e e e e et e e et e e e eaa e aenb e eaeeaaaees 225
9.1.2 Parallel Operation INSIFUCTIONS ........uuuiiiieiiiiii e aaeeees 225
9.1.3 Data MOVE INSIIUCTIONS .......iiiiiiiiie ettt e e et e e e e eeaa e e e e e eeeean 226
9.1.4 Coding of Source Statements Across Multiple LINeS.............uuvvviviiiiiiiiiiiiiniiiinnnn. 227
9.2 DSP INSIIUCTIONS. ... eteeeeettitie ettt e e e et ettt bbb e e e e e e e e e ettt eeabbbbna e e e e eeeaeeeenes 228
9.2.1 DSP Operation INSIIUCTIONS ........coiiiiiiiiiiiiiiiieiee e 228
9.2.2 Data MOVE INSITUCTIONS ...ttt 232
9.3 Notes on Executable INSIIUCTIONS .........ooiiiiiiiiiiiieeee e 236

HITACHI i



U SIS GUIL et e e e e 238

Section 1 Executing the ASSembIer ... 239
1.1 CommaANd LiNE FOMMAL ......ciiiiieeiiiiiiiiiii ettt e et e e e e e e e e e e en e 239
1.2 File SPecCifiCation FOIMAL.........cooiiiiiiee et e ettt eeee it e aeees 240
1.3 SHCPU Environment Variable. ... 241
Section 2 Command LiNE OPLiONS.......uuiiiieiiiiiiiiiiiiiee et 243
2.1 Overview of Command LiNe OPLIONS..........iiiiiiiiiiiiiee et e e e 243
2.2 Command Line Option REfEIENCE .........uii i 245
2.2.1 Target CPU Command Line OPLioN ..........uuuiiiiiiiiiiiieie et 245
2.2.2 Object Module Command Line OPtiONS........cevvvviiiimiiiiiiiiiiiiiiiiiiiiise s 246
2.2.3 Assembly Listing Command Line OPLiONS.........ooiiiiiiiiiieiiiiee e 250
2.2.4 File Inclusion Function Command Line OPtioN ..........ccccccvviiiiiiiiiiiii 259
2.2.5 Conditional Assembly Command Line OPLiONS ............cceeiiinn 261
2.2.6 Assembler Execution Command Line€ OPtioN ...........ccccoiiiniies 264
2.2.7 Japanese Character Description Command Line Options ..............eevvviiiiiiieeeeeene. 267
2.2.8 Automatic Literal Pool Generation Command Line Option............ccceeeeeeeienennnn. 271
2.2.9 Command Line Input Command Lin€ OPLiON ............uuuiuiiimiiiiiiiiiaiaaaeeee e 273
Appendix...275
Appendix A Limitations and Notes on Programming ..............ccccceeeiieeeeeeeeeeenn. 277
Appendix B Sample Program..........ccoooooiiiiiiiii e 279
B.1 Sample Program SPeCIfiCatiONS .......coiiiiiiii e 279
B.2 CodING EXAMPIE. ... ettt e et et e e et e ea s 280
Appendix C Assemble Listing Output EXample .........cccoooviiiiiiiiiiiiiiiiiiiiiiies 283
C.1 SOUIrCE Program LiSTING . ... o ettt ettt e e e et e eaeeeean s 284
C.2 CroSS-REfEIENCE LISTING ettt ettt e e e et e e e e e bt e e e e e eebaa e e aaeeees 285
C.3 Section INformation LiSHING .......... i eeaaans 286
APPENIX D EFrOr MESSAQES ...vvviiiieeeeiiieeiiii ettt 289
D = 4 o] g Y/ o 1= PP 289
D.2 Error MESSage TabIeS. ... .ttt e e e et e e aees 292
Appendix E Differences from Former Version............ccccovvvvviiiiiiiiinnie e 313
S R 01 = U LT TP PO PPPOPPPPPPPPP 313
E.2 CONSTANTS ..ottt eaaa 314
E.3 Added ASSEMDIEr DIFECLIVES .......cciiiii e e e e e et e e ee e 314
E.4 Automatic Literal POOI GENEIAtION .......uuiiiiiiiiee e 314
E.5 Added Command LiN€ OPtiON ......... e e e 315

iv HITACHI



E.B TaAg File OULPUL ...ttt e ettt e e e e ettt e e e e e etaa e e aeeeraaaaaaeee 315

Appendix F ASCII Code TabIe ......ccoooiiiiiiiiii e 317
Supplement 318

Supplement 1 Extended Instruction REPEAT for SH-DSP.........cccccoeviivvennnnnn. 319
1.1 REPEAT DESCIIPUION ...ttt ettt ettt e e e e ettt e e e e e etbb e e e e eenbban e aaaeens 319
I 0o T 10Tl == U o] o] (=S PSP 320
1.3 Notes on Extended INStruction REPEAT ..o 322
Supplement 2 Error Messages Related to REPEAT ........ccooovvviiiiiiiiiviiiiieeeeeees 325

HITACHI v



vi

HITACHI



Preface

This manual describes the SH Series Cross Assembler, which supports development of software
for Hitachi Super H RISC Engine Family (hereafter referred to as SH microprocessor).

This manual is organized as follows:

Overview: Gives an overview of the functions of the assembler.

Programmer’s Guide: Describes the assembly language syntax and programming
techniques.

User’s Guide: Describes the use (invocation) of the assembler program itself and
the command line options.

Appendix: Describes assembler limitations and error messages.

Read the following manuals before use of the assembler.

For information concerning the SH microprocessor hardware, refer to the hardware manual of
the microprocessor.

For information concerning the SH microprocessor executable instructions, refer to the
programming manual of the microprocessor.

For information concerning software development support tools:

“SH Series C Compiler User's Manual”

“H Series Linkage Editor User's Manual”

“H Series Librarian User's Manual”

“SH Series Simulator/Debugger User’'s Manual”

Notes:

The following symbols have special meanings in this manual.

e <jtem>: <specification item>

o A Blank space(s) or tab(s)

e %: The OS prompt (indicates the input waiting state)

« (RET): Press the Return (Enter) key.

e . The preceding item can be repeated.

e [ The enclosed item is optional (i.e., can be omitted.)
¢ Numbers are written as follows in this manual.

e Binary: A prefix of “B’” is used.

¢ Octal: A prefix of “Q’” is used.

e Decimal: A prefix of “D’” is used.

HITACHI 1



» Hexadecimal: A prefix of “H'” is used.
» However, when there is no specification, the number without a prefix is decimal.

UNIX is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

MS-DOS is an operating system administrated by the Microsoft Corporation (United States).

SPARC is a CPU and workstation administrated by SPARC International, Inc.
HP9000/700 series is a trademark of Hewlett-Packard Company.

NEWS is a trademark of Sony Corporation.

PC-9800 series is a trademark of NEC Corporation.

IBM PC is a registered trademark of International Business Machines Corporation.

2 HITACHI



Overview

HITACHI



HITACHI



Section 1 Overview

The “SH Series Cross Assembler” (referred to below as the (or this) assembler) converts source
programs written in assembly language into a format that can be handled by SH
microprocessors, and outputs the result as an object module. Also, the results of the assembly
processing are output as an assemble listing.

This assembler provides the following functions to support efficient program development:

« Assembler directives

Give the assembler various instructions.
¢ File inclusion function

Includes files into a source file.
e Conditional assembly function

Selects source statements to be assembled or repeats assembly according to a specified
condition.

* Macro function
Gives a name to a sequence of statements and defines it as one instruction.
« Automatic literal pool generation function

Interprets data transfer instructions MOV.W #imm, MOV.L #imm, and MOVA #imm that
are not provided by the SH microprocessor as extended instructions and expands them into
SH microprocessor executable instructions and constant data (literals).

Figure 1-1 shows the function of the assembler.

Assembly-language File inclusion

Included file
source program

« Assembler directives
» Conditional assembly
™~ * Macro
< Automatic literal pool generation

Assembler

Object module  Assembile listing

Figure 1-1 Function of the Assembler

HITACHI 5



HITACHI



Section 2 Relationships between the Software
Development Support Tools

The following software development support tools are available for the SH microprocessors.

» SH Series C Compiler (Referred to below as the C compiler.)

» H Series Linkage Editor (Referred to below as the linkage editor.)

» H Series Librarian (Referred to below as the librarian.)

» H Series Object Converter (Referred to below as the object converter.)

» SH Series Simulator/Debugger (Referred to below as the simulator/debugger.)

These tools assist in the efficient development of application software.

Figure 2-1 shows the relationships between the software development support tools.

C-language

source program -
C compiler

Assembler

Object

module
CPU
information "
file

Assembly-language
source program

Library
file

Simulator/debugger —Eijs-type-format

load module

Figure 2-1 Relationships between the Software Development Support Tools

HITACHI 7



Supplement:
Use a general purpose editor (a text editor) to edit source programs.

The C compiler converts programs written in the C-language into either object modules or
assembly-language source programs.

The librarian converts object modules and relocatable load modules into library files. We
recommend handling processing that is common to multiple programs as a library file. (This has
several advantages, including allowing modules to be easily managed.)

The linkage editor links together object modules and library files to produce load modules
(executable programs).

The object converter converts load modules into the S-type format. (The S-type format is a
standard load module format.)

The simulator/debugger assists debugging microprocessor software.

Load modules created by this development support system can be input to several types of
emulator. (Emulators are systems for debugging microprocessor system hardware and software.)
Also, S-type-format load modules can be input into most EPROM programmers.

8 HITACHI



Programmer’s Guide

HITACHI



Section 1 Program Elements

1.1 Source Statements

If source programs are compared to natural language writing, a source statement will correspond
to “a sentence.” Thewords” that make up a source statement are reserved words and symbols.

1.1.1 Source Statement Structure

The figure below shows the structure of a source statement.

[<label>] O<operation>][  O<operand(s)>]] [<kcomment>]
Example:
LABEL1: MOV.L @r0, R1 ; This is an example of a source statement.
Comment
Operands
Operation
Label
(1) Label

A symbol or a local symbol is written as a tag attached to a source statement.
A symbol is a name defined by the programmer.
(2) Operation

The mnemonic of an executable instruction, an extended instruction, an SH-DSP instruction,

an assembler directive, or a directive statement is written as the operation.
Executable instructions must be SH microprocessor instructions.

Extended instructions are instructions that are expanded into executable instructions and
constant data (literals). For details, refer to Programmer’s Guide, 8, “Automatic Literal Pool

Generation Function”.

SH-DSP instructions are instructions that control the DSP of the SH-DSP microprocessor.

For details, refer to Programmer’s Guide, 9, “SH-DSP Instruction.”
Assembler directives are instructions that give directions to the assembler.

10 HITACHI



Directive statements are used for file inclusion, conditional assembly, and macro functions.
For details on each of these functions, refer to Programmer’s Guide, 5, “File Inclusion
Function”, 6, “Conditional Assembly Function”, or 7, “Macro Function”.

(3) Operand
The object(s) of the operation’s execution are written as the operand.

The number of operands and their types are determined by the operation. There are also
operations which do not require any operands.

(4) Comment

Notes or explanations that make the program easier to understand are written as the
comment.

1.1.2 Coding of Source Statements

Source statements are written using ASCII characters. Character strings and comments can
include Japanese kana and kanji characters (shift JIS code or EUC code).

In principle, a single statement must be written on a single line. The maximum length of a line is
255 bytes.

(1) Coding of Label
The label is written as follows:
Written starting in the first column,

Or:

Written with a colon (:) appended to the end of the label.

Examples:
LABEL1 ; This label is written starting in the first column.
LABEL2: : This label is terminated with a colon.

LABEL3 : This label is regarded as an error by the assembler,
: since it is neither written starting in the first column
; nor terminated with a colon.
(2) Coding of Operation

The operation is written as follows:
O When there is no label:

Written starting in the second or later column.
O When there is a label:

Written after the label, separated by one or more spaces or tabs.

Examples:

ADD RO,R1 An example with no label.

HITACHI 11



LABEL1: ADD R1,R2 An example with a label.
CAUTION!

Since white spaces and tabs are ASCII characters, each space or tab requires a byte of
storage.

(3) Coding of Operand
The operand is written following the operation field, separated by one or more spaces or tabs.
Examples:

ADD RO,R1 ; The ADD instruction takes two operands.
SHAL R1 : The SHAL instruction takes one
operand.

(4) Coding of Comment
The comment is written following a semicolon (;).

The assembler regards all characters from the semicolon to the end of the line as the
comment.

Examples:
ADD RO,R1 ; Adds RO to R1.

1.1.3 Coding of Source Statements across Multiple Lines
A single source statement can be written across several lines in the following situations:

* When the source statement is too long as a single statement.
* When it is desirable to attach a comment to each operand.

Write source statements across multiple lines using the following procedure.

1. Insert a new line writing a comma that separates operands as the point to break the line.
2. Insert a plus sign (+) in the first column of the next line.
3. Continue writing the source statement following the plus sign.

Spaces and tabs can be inserted following the plus sign.

Examples:

DATA.L HFFFF0000,
+ H'FFOOFFOO,
+ H'FFFFFFFF

; In this example, a single source statement is written across three lines.

A comment can be attached at the end of each line.

12 HITACHI



Examples:

.DATA.L H'FFFFO0000, . Initial value 1.
+ H’FFOOFFO00, ; Initial value 2.
+ H'’FFFFFFFF ; Initial value 3.

; In this example, a comment is attached to each operand.
1.2 Reserved Words
Reserved words are names that the assembler reserves as symbols with special meanings.

Reserved words must not be used as symbols. Reserved words are different depending on the
CPU type. Table 1-1 lists the reserved words.

HITACHI 13



List of Reserved Words

Table 1-1

SH-DSP

SH2 SH3 SH3E

SH1

Reserved Word
Register name

RO

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10
R11
R12
R13
R14
R15
SP*
SR

GBR
VBR

MACH

MACL
PR
PC
SSR

SPC
R15 and SP indicate the same register.

Note:

HITACHI

14



Table 1-1 List of Reserved Words (cont)

Reserved Word

SH1

SH2

SH3

SH3E

SH-DSP

Register name

RO_BANK

o

X

R1_BANK

X

R2_BANK

X

R3_BANK

R4_BANK

R5_BANK

R6_BANK

R7_BANK

FRO

x|OlO|O|O|O|O|O]|O

FR1

X

FR2

FR3

FR4

FRS

FR6

FR7

FR8

FR9

FR10

FR11

FR12

FR13

FR14

FR15

FPUL

FPSCR

X

MOD

x|OlO|O|O|O|OfO|O|O|O|O|O|O|O|O|O|O|OfO|O|O|O|O|0O]|O

RE

X

RS

DSR

A0

AOG

O|O0O|O|Of0O|O

HITACHI

15



Table 1-1 List of Reserved Words (cont)

Reserved Word SH1 SH2 SH3 SH3E SH-DSP
Register name Al x X x x o
AlG x x x x e}
MO x x x x o
M1 x x x X e}
X0 x x x x o
X1 x x x X e}
YO x x x x o
Y1 X X X X 0)
Operator STARTOF O (0] 0] 0] o
SIZEOF (0] O 0] 0] 0]
HIGH 0] O 0] 0] O]
LOwW o} 0} o o o}
HWORD (0] 0] 0] 0] 0]
LWORD (0] 0] 0] 0] 0]
$EVEN 0] 0] 0] 0] 0]
$0ODD O 0] 0] 0] 0]
$EVEN2 0] 0] 0] 0] 0]
$0ODD2 o} 0} o o o}
Location counter $ 0 o} @) o O

Symbol meaning: O : Used as reserved word
x: Not used as reserved word

Reference:

CPU type - Programmer’s Guide, 4.2.1, “Target CPU Assembler Directive”
Operators - Programmer’s Guide, 1.6.1, “Expression Elements”

Location counter- Programmer’s Guide, 1.5, “Location Counter”

Symbols - Programmer’s Guide, 1.3, “Symbols”

16 HITACHI



1.3 Symbols

1.3.1 Functions of Symbols

Symbols are names defined by the programmer, and perform the following functions.

e Address symbols.............. Express data storage and branch destination addresses.
e Constant symboaols ............... Express constants.

¢ Aliases of register names.... Express general registers.

e Section names...........cccueeee Express section names.

Note: A section is a part of the program, and the linkage editor regards it as a unit of
processing.

The following shows examples of symbol usages.

HITACHI 17



Examples:

BRA SuB1 : BRA is a branch instruction.

SUBL1 is the address symbol of the destination.

[]

O
SUBL: |:|
]

MAX: .EQU 100 - EQU is an assembler directive that sets a value to a

; symbol.
MOV # MAXRO ; MAX expresses the constant value 100.

[]
[]

MIN: .REG RO : .REG is an assembler directive that defines a register
: alias.
MOV.B #100, MIN ; MIN is an alias for RO.

[]
[]

.SECTION CDCODE,ALIGN=4

; .SECTION is an assembler directive that declares a section.
'|:| CD is the name of the current section.

1.3.2 Coding of Symbols

(1) Available Characters
The following members of the ASCII character can be used.
O Alphabetical uppercase and lowercase letters (A to Z, ato z)
0 Numbers (0 to 9)
O Underscore ()
O Dollar sign ($)

18 HITACHI



The assembler distinguishes uppercase letters from lowercase letters in symbols.

(2) First Character in a Symbol

The first character in a symbol must be one of the following.

O Alphabetical uppercase and lowercase letters (Ato Z, ato z)

O Underscore ()

O Dollar sign ($)

CAUTION!

The dollar sign character used alone is a reserved word that expresses the location counter.

Reference:

O Reserved words» Programmer’s Guide, 1.2, “Reserved Words”
(3) Maximum Length of a Symbol

A symbol may contain up to 32 characters.

The assembler ignores any characters after the first 32.
(4) Names that Cannot Be Used as Symbols

Reserved words cannot be used as symbols. The following names must not be used because
they are used as internal symbols by the assembler.

_$$nnnnn (nis a number from 0 to 9.)

Note: Internal symbols are necessary for assembler internal processing. Internal symbols are
not output to assemble listings or object modules.

HITACHI 19



1.4 Constants

141 Integer Constants
Integer constants are expressed with a prefix that indicates the radix.

The radix indicator prefix is a notation that indicates the radix of the constant.

e Binary numbers ................. The radix indicator “B’” plus a binary constant.

e Octal numbers .................. The radix indicator “Q’” plus an octal constant.

¢ Decimal numbers .............. The radix indicator “D’” plus a decimal constant.

« Hexadecimal numbers ....... The radix indicator “H’” plus a hexadecimal constant.

The assembler does not distinguish uppercase letters from lowercase letters in the radix
indicator.

The radix indicator and the constant value must be written with no intervening space.

Examples:
.DATA.B B'10001000 ;
.DATA.B Q'210 ; These source statements express the same
.DATA.B D’'136 : numerical value.
.DATA.B H'88 ;

The radix indicator can be omitted. Integer constants with no radix indicator are normally
decimal constants, although the radix for such constants can be changed with the .RADIX
assembler directive.

Reference:

Interpretation of integer constants without a radix specified
- Programmer’s Guide, 4.2.7, “Other Assembler Directives”, .RADIX

Supplement:

“Q" is used instead of “O” to avoid confusion with the digit O.

20 HITACHI



1.4.2 Character Constants
Character constants are considered to be constants that represent ASCII codes.

Character constants are written by enclosing up to 4 ASCII characters in double quotation
marks.

The following ASCII characters can be used in character constants.

ASCII codes {09 (tab)
{20 (space) to H’ 7E (tilde)

Examples:

.DATA.L “ABC”; Thisisthe same as .DATA.L H'00414243.
.DATAW “AB”; Thisis the same as .DATA.W H'4142.
.DATA.B “A”"; This is the same as .DATA.B H'41.

: The ASCII code for A is: H'41
: The ASCII code for B is: H'42
: The ASCII code for C is: H'43

In addition, Japanese kana and kanji characters in shift JIS code or EUC code can be used. When
using Japanese characters in shift JIS code or EUC code, be sure to specify the SJIS or EUC
command line option, respectively. Note that the shift JIS code and EUC code cannot be used
together in one source program.

Use two double quotation marks in succession to indicate a single double quotation mark in a
character constant.

Example:

.DATAB “ " “ ;Thisis a character constant consisting of a single
double quotation mark.

DATAL « #&EF« ; Japanese kanji characters.

.DATAB “ " “ ; Thisis a character constant consisting of a single
double quotation mark.

DATAL « BEF«; Japanese kaniji characters.
References:
SJIS command line option

- User’s Guide, 2.2.7, “Japanese Character Command Line Options,” -SJIS

HITACHI 21



EUC command line option

- User's Guide, 2.2.7, “Japanese Character Command Line Options,” -EUC

1.4.3 Floating-Point Numbers

Floating-point numbers can be specified as operands in floating-point operation instructions
(FPU instructions) and assembler directives for reserving floating-point numbers.

Floating-Point Number Representation:

Floating-point numbers can be represented in decimal and hexadecimal.

Decimal representation
F{£}] {n[-[m]]} [S[[£]xx]]
. m
F' Indicates that the number is decimal. It cannnot be omitted.
n[. [m]] n indicates the integer part in decimal. m indicates the fraction part in decimal.

. m Either the integer part or the fraction part can be omitted. If the sign (%) is omitted, the
assembler assumes it is positive.

S Indicates that the number is in single precision.

[[£]xx] Indicates the exponent part in decimal. If omitted, the assembler assumes 0. If
the sign (z) is omitted, the assembler assumes it is positive.
Example:

F'0.5S-2=0.5 x 102  =0.005 = H'3BA3D70A
F’.123S3 =0.123 x 108 =123 = H'42F60000

F'0.999 =0.999 = H'3F7FBF76

Hexadecimal representation

H'XXXXXXXX[.S}

H Indicates that the number is hexadecimal. It cannot be omitted.

XXXXXXXX Indicates the bit pattern of the floating-point constant in hexadecimal.
If the bit pattern is shorter than the specified data length, it is aligned
to the right end of the reserved area and Os are added to the remaining
bits in the reserved area. If the bit pattern is longer than the specified
data length, the right-side bits of the bit pattern are allocated for the
specified data length and the remaining bits of the bit pattern are
ignored.

S Indicates that the number is in single precision.

22

This format directly specifies the bit pattern of the floating-point constant to represent data
that is difficult to represent in decimal format, such as Os for single-precision data length or
infinity.

HITACHI



Example:

H’00000000.S = H'00000000

H'FFFF.S = H'0000FFFF

H'123456789AB = H'456789AB
Floating-Point Data Range:

Table 1-2 lists the floating-point data types.
Table 1-2  Floating-Point Data Types

Data Type Description

The absolute value is between the underflow and overflow
boundaries including the boundary values.

Normalized number

Zero The absolute value is between 0 and the underflow boundary,
including O.
Infinity The absolute value is larger than the overflow boundary.

Not-a-Number (NAN)

A value that is not a numerical value. Includes sNAN (signaling NAN)
and qNAN (quiet NAN).

These data types are shown on the following number line. NAN cannot be shown on the number

line because it is not handled as a numerical value.

b ) 0 ()

—oo | | | |

(4)

| +00

-<-—— Negative normalized —»<— Zero —»<—— Positive normalized —»

number number

Decimal Hexadecimal

@...... Negative overflow boundary: —3.40282366e3  H'FF7FFFFF
@) ...... Negative underflow boundary: —1.17549436e73% H'80800000
@A) ...... Positive underflow boundary: ~ 1.17549436e38  H'00800000

@) ...... Positive overflow boundary: 3.40282366e38  H'7F7FFFFF

HITACHI

23




Floating-Point Data Format:

The floating-point data format consists of a sign bit, an 8-bit exponent part, and a 23-bit fraction
part.

: Decimal point
: Sign bit

: Exponent part
. Fraction part

mmwn p

Sign bit
Indicates the sign of a value. Positive and negative are represented by 0 and 1, respectively.
Exponent part

Indicates the exponent of a value. The actual exponent value is obtained by subtracting the
bias value (127) from the value specified in this exponent part.

Fraction part

Each bit has its own significance and correspondsl{@?, ..., 223 from the start bit,
respectively.

A floating-point number is represented using S, E, and F as follows:
28127 (-1)s . (1.F)

(LF)=1+b0x21+ bl x22+ ... +b22x2723

bi (0<i < 22) indicates the value (0 or 1) of the “i"th bit in the fraction part.
Table 1-3 shows the floating-point representation for each data type.

Table 1-3  Floating-Point Representation for Each Data Type

Data Type Exponent (E) Fraction (F) Representation

Normalized number 1<E<254 Any value (-1)s . 25127 (1.F)

Zero =0 =0 (-1)s.0 +0 =H'00000000
-0 =H'80000000

Infinity =255 =0 (-1)s. + = H'00000000
- =H'80000000

NAN =255 =0 sNAN: Bit22is 1.

gNAN: Bit22is 0.

24

HITACHI



1.4.4 Fixed-Point Numbers

Fixed-point numbers can be specified as operands in the assembler directive for reserving fixed-
point numbers.

Fixed-Point Number Representation:
Fixed-point numbers express real numbers ranging from -1.0 to 1.0 in decimal.
Word size and long word size are available for fixed-point numbers.

¢ Word-size fixed-point numbers
Two-byte signed integers expressing real numbers ranging from -1.0 to 1.0.
The real number expressed by 2-byte signed integer x (-32,768 < = x < = 32,767) is x/32768.

Example:
Fixed-point number Word-size representation
-1.0 H’8000
-0.5 H’'C000
0.0 H’0000
0.5 H’'4000
1.0 H'7FFF

» Long word-size fixed-point numbers
Four-byte signed integers expressing real numbers ranging from -1.0 to 1.0. The real number
expressed by 4-byte signed ingeter x (-2,147,483,648 < = x < = 2,147,483,647) is
x/2147483648.

Example:
Fixed-point number Long word-size representation
-1.0 H’80000000
-0.5 H’C0000000
0.0 H’00000000
0.5 H’40000000
1.0 H'7FFFFFFF

Fixed-Point Data Format:

» The fixed-point data format consists of a sign bit and a 15-bit fraction part in word size, and
a sign bit and a 31-bit fraction part in long word size. The decimal point is assumed to be
fixed on the right of the sign bit.

« Word size

HITACHI 25



A : Decimal point
ERENERRERREEEEEN
E —  » F : Fraction part

¢ Long word size

3130 0

S =
A

« Sign bit (S)
Indicates the sign of a value. Positive and negative are represented by 0 and 1, respectively.
e Fraction part (F)
Each bit has its own significance and correspondsl{@?, ..., 231 from the start bit,
respectively.

Valid Range for Fixed-Point Numbers:

In long-word size, 31 bits can represent nine digits of data in decimal, but the assembler handles
ten digits in decimal as a valid number, rounds the 35th bit in RN (round to the nearer absolute
value) mode, and uses the high-order 31 bits of the result as fixed-point data.

Note: The actual fixed-point data range is -1.0 to 0.9999999999, but the assembler assumes 1.0
as 0.9999999999 and represents it as H'7FFFFFFF.

26 HITACHI



1.5 Location Counter

The location counter expresses the address (location) in memory where the corresponding object
code (the result of converting executable instructions and data into codes the microprocessor can
regard) is stored.

The value of the location counter is automatically adjusted according to the object code output.

The value of the location counter can be changed intentionally using assembler directives.

Examples:

.ORG H'00001000 ; This assembler directive sets the location counter to
; H’00001000.

.DATAW HFF ; The object code generated by this assembler directive has
; a length of 2 bytes.
; The location counter changes to H'00001002.

.DATA.W H'FO ; The object code generated by this assembler directive has
; a length of 2 bytes.
; The location counter changes to H'00001004.

.DATAW H’10 ; The object code generated by this assembler directive has
; a length of 2 bytes.
; The location counter changes to H'00001006.

ALIGN 4 ; The value of the location counter is corrected to be a multiple
; of 4.
; The location counter changes to H’'00001008.

.DATA.L H'FFFFFFFF ; The object code generated by this assembler directive has

; a length of 4 bytes.
The location counter changes to H'0000100C.

.ORG is an assembler directive that sets the value of the location counter.
ALIGN is an assembler directive that adjusts the value of the location counter.
.DATA is an assembler directive that reserves data in memory.

.W is a specifier that indicates that data is handled in word (2 bytes) size.

.L is a specifier that indicates that data is handled in long word (4 bytes) size.

[]

References:

Setting the value of the location counter

HITACHI 27



- Programmer’s Guide, 4.2.2, “Section and Location Counter Assembler Directives” .ORG

Correcting the value of the location counter
- Programmer’s Guide, 4.2.2, “Section and Location Counter Assembler Directives”
ALIGN

The location counter is referenced using the dollar sign symbol.

Examples:

LABEL1l: .EQU $ ;. This assembler directive sets the value of the
: location counter to the symbol LABEL1.

; .EQU is an assembler directive that sets the value to a symbol.

28 HITACHI



1.6 Expressions

Expressions are combinations of constants, symbols, and operators that derive a value, and are
used as the operands of executable instructions and assembler directives.

1.6.1 Elements of Expression
An expression consists of terms, operators, and parentheses.

(1) Terms
The terms are the followings:
O A constant
0 The location counter reference ($)
O A symbol (excluding aliases of the register name)
O The result of a calculation specified by a combination of the above terms and an operator.
An independent term is also a type of expression.

(2) Operators

Table 1-4 shows the operators supported by the assembler.

Table 1-4  Operators

Operator Type Operator Operation Coding
Arithmetic operations + Unary plus + <term>

- Unary minus - <term>

+ Addition <terml> + <term2>

- Subtraction <terml> - <term2>

* Multiplication <terml> * <term2>

/ Division <terml>/ <term2>
Logic operations ~ N Unary negation ~ <term>

& Logical AND <terml> & <term2>

| Logical OR <terml> | <term2>

~ N Exclusive OR <terml> ~ <term2>
Shift operations << Arithmetic left shift <term 1> << <term 2>

>> Arithmetic right shift <term 1> >> <term 2>

HITACHI

29



Table 1-4  Operators (cont)

Operator Type Operator Operation Coding
Section set STARTOF  Derives the starting address STARTOF <section name>
operations* of a section set.
SIZEOF Derives the size of a section ~ SIZEOF <section name>
set in bytes.
Even/odd operations $EVEN 1 when the value is a $EVEN <symbol>
multiple of 2, and 0
otherwise
$0ODD 0 when the value is a $0ODD <symbol>
multiple of 2, and 1
otherwise
$EVEN2 1 when the value is a $EVEN2 <symbol>
multiple of 4, and 0
otherwise
$0ODD2 0 when the value is a $0ODD2 <symbol>
multiple of 4, and 1
otherwise
Extraction operations HIGH Extracts the high-order byte  HIGH <term>
LOW Extracts the low-order byte LOW <term>
HWORD Extracts the high-order word HWORD <term>
LWORD Extracts the low-order word ~ LWORD <term>

Note: See the supplement below.

Supplement:

In this assembly language, programs are divided into units called section. Sections are the
units in which linkage processing is performed.

When there are multiple sections of the same type and same name within a given program,
the linkage editor links them into a single “section set”.

Reference:

Sections - Programmer’s Guide, 2.1, “Sections”
(3) Parentheses

Parentheses modify the operation priority.

See the next section, section 1.6.2, “Operation Priority”, for a description of the use of
parentheses.

30 HITACHI



1.6.2 Operation Priority

When multiple operations appear in a single expression, the order in which the processing is
performed is determined by the operator priority and by the use of parentheses. The assembler
processes operations according to the following rules.

<Rule 1>

Processing starts from operations enclosed in parentheses. When there are multiple parentheses,
processing starts with the operations surrounded by the innermost parentheses.

<Rule 2>
Processing starts with the operator with the highest priority.
<Rule 3>

Processing proceeds in the direction of the operator association rule when operators have the
same priority.

Table 1-5 shows the operator priority and the association rule.
Table 1-5 Operator Priority and Association Rules

Priority Operator Association Rule

1 (high) + - 7 A"STARTOF SIZEOF Operators are processed from right to left.
$EVEN $ODD $EVEN2 $0ODD2
HIGH LOW HWORD LWORD*

2 * Operators are processed from left to right.
3 ! + - Operators are processed from left to right.
4 << >> Operators are processed from left to right.
5 & Operators are processed from left to right.
6 (low) |~ " Operators are processed from left to right.

Note: The operators of priority 1 (highest priority) are for unary operation.

HITACHI 31



The figures below show examples of expressions.

Example 1:

1+(2-(3+(4-5)))
@)
(b)
©
(d)

The assembler calculates this expression in the order (a) to (d).

The result of (a) is -1}

The result of (b) is 2}
The result of (c) is 0} The final result of this calculation is 1.

The result of (d) is 1}

Example 2:

- H FFFFFFF1 + H 000000FO0 * H 00000010 | H O000000F0 & H OO0OOFFFF
(@) Q) ) |
| ©

()

The assembler calculates this expression in the order (a) to (e).

The result of (a) is H'0000000F}
The result of (b) is H'O0000F00}
The result of (c) is H'OO000FOF} The final result of this calculation is H'OOOOOFFF.
The result of (d) is H'O00000F0}
The result of (e) is H'O0OO00FFF}

32 HITACHI



Example 3:

-~ - 7 H 0000000F
@
(b)
(©)
(d)

The assembler calculates this expression in the order (a) to (d).

The result of (a) is H'FFFFFFFO}

The result of (b) is H'00000010}
The result of (c) is HFFFFFFEF} The final result of this calculation is H'00000011.

The result of (d) is H'00000011}

HITACHI

33




1.6.3 Detailed Description on Operation

STARTOF Operation: Determines the start address of a section set after the specified sections
are linked by the linkage editor.

SIZEOF Operation: Determines the size of a section set after the specified section are linked
by the linkage editor.

Example:
. CPU SH1
. SECTION | NIl T_RAM DATA, ALI G\=4
. RES. B H 100
. SECTI ON | NI T_DATA, DATA, ALI G\=4
INNT_BGN .DATA.L  (STARTOF INITRAM.....ooviiriinnnnn.. 1 (1)
INIT_END . DATA. L  (STARTOF INIT_RAM + (SIZECF INT_RAM...: (2)
. SECTI ON MAI N, CCDE, ALI G\=4
I NI TI AL:
MOV. L DATAL, R6
MoV #0, RS
MOV. L DATA1+4, R3
BRA LOOP2
MOV. L @3, R4
LoPL: MOV, L RS, @4 :K.i.t?"éis,\m gata area in section
ADD #4, R4 - '
LOOP2:
MOV. L @6, R3
CVP/ HI R3, R4
BF LOOP1
RTS
NOP
DATA1L:
. DATA. L I NI T_END
. DATA. L I NI T_BGN
. END
(1) Determines the start address of section INIT_RAM.
(2) Determines the end address of section INIT_RAM.

34 HITACHI



HIGH Operation: Extracts the high-order byte from the low-order two bytes of a 4-byte value.

Before operation After operation
31 24 23 16 15 8 7 0 31 24 23 16 15 8 7 0
| | | Hxx | | | HO00 H'00 H00 | Hxx |
| f
Example:

LABEL .EQU H'00007FFF
.DATA HIGH LABEL; Reserves integer data H'0000007F on memory.
LOW Operation: Extracts the lowest-order one byte from a 4-byte value.

Before operation After operation

31 2423 1615 8 7 0 31 2423 1615 8 7 0
| | | Hxx | | Hoo | HoO | HOO | Hxx |

| f

HWORD Operation: Extracts the high-order two bytes from a 4-byte value.

Before operation After operation

31 16 15 0 31 16 15 0
H'XXXX | | H'0000 | H'XXXX

| t

LWORD Operation: Extracts the low-order two bytes from a 4-byte value.

Before operation After operation

31 16 15 0 31 16 15 0
H'XXXX | | H'0000 H'XXXX

HITACHI 35



Even/Odd Operation: Determines if the value of the address symbol is a multiple of 2 or 4.
Table 1-6 shows the even/odd operations.

Table 1-6 Even/Odd Operations

Operator Operation

$EVEN 1 when the value is a multiple of 2, and 0 otherwise
$ODD 0 when the value is a multiple of 2, and 1 otherwise
$EVEN2 1 when the value is a multiple of 4, and 0 otherwise
$0ODD2 0 when the value is a multiple of 4, and 1 otherwise
Example:

To obtain the current program counter value using an $O0DD?2 operator.

LAB:
MOVA @(0,PC),RO
ADD #-4+2 *$0DD2 LAB,RO ; $ODD?2 gives 0 when LAB is
; a multiple of 4, and gives 1 when

; LAB is not a multiple of 4.
164 Notes on Expressions

(1) Internal Processing
The assembler regards expression values as 32-bit signed values.
Example:
“H'FO
The assembler regards H'FO as H’000000FO.

Therefore, the value of ~H'FO is H'FFFFFFOF. (Note that this is not H’'O000000F.)

(2) Arithmetic Operators

Where values must be determined at assembly, the multiplication and division operators
cannot take terms that contain relative values (values which are not determined until the end
of the linkage process) as their operands.

Example:
IMPORT SYM
.DATA SYM/10; Correctly assembled.
.ORG SYM/10 ; An error will occur.
Also, a divisor of 0 cannot be used with the division operator.

36 HITACHI



(3) Logic Operators
The logic operators cannot take terms that contain relative values as their operands.
Reference:
Relative values— Programmer’s Guide, 2.2, “Absolute and Relative Values”.

1.7 Character Strings
Character strings are sequences of character data.
The following ASCII characters can be used in character strings.

ASCII codes {H'09 (tab)
{H'20 (space) to H'7E (tilde)

A single character in a character string has as its value the ASCII code for that character and is
represented as a byte sized data object. In addition, Japanese kana and kaniji characters in shift
JIS code or EUC code can be used. When using Japanese characters in shift JIS code or EUC
code, be sure to specify the SJIS or EUC command line option, respectively. If not specified,
Japanese characters are handled as the Japanese code specified by the host machine.

Character strings are written enclosed in double quotation marks.

Use two double quotation marks in succession to indicate a single double quotation mark in a
character string.

Examples:
.SDATA * Hello! " This statement reserves the character string data
; Hello!
.SDATA * TReyTI This statement reserves the character string data
: TRy 7To
.SDATA ““Hello!™ ; This statement reserves the character string data
; “Hello!”
; .SDATA is an assembler directive that reserves
; character string data in memory.
Supplement:

The difference between character constants and character strings is as follows.

Character constants are numeric values. They have a data size of either 1 byte, 2 bytes, or 4
bytes.

Character strings cannot be handled as numeric values. A character string has a data size
between 1 byte and 255 bytes.

HITACHI 37



References:

SJIS command line option
- User's Guide, 2.2.7, “Japanese Character Command Line Options,” -SJIS

EUC command line option
- User's Guide, 2.2.7, “Japanese Character Command Line Options,” -EUC

1.8 Local Label

1.8.1 Local Label Functions

A local label is valid locally between address symbols. Since a local label does not conflict with
the other labels outside its scope, the user does not have to consider other label names. A local
label can be defined by writing in the label field in the same way as a normal address symbol,
and can be referenced by an operand.

An example of local label descriptions is shown below.

Example:

LABEL1: ; Local block 1 start

?0001:
[]

CMP/EQ R1,R2

BT 20002 ; Branches to 270002 of local block 1
BRA 20001 ; Branches to 270001 of local block 1
?0002: |:|
LABEL2: ; Local block 2 start
?0001:

[]

CMP/GE R1,R2

BT 20002 ; Branches to 270002 of local block 2
BRA 20001 ; Branches to 2?0001 of local block 2
?0002:
LABELS: ; Local block 3 start

Note: A local label cannot be referenced during debugging.
A local label cannot be specified as any of the following items:

38 HITACHI



e Macro name

e Section name

¢ Object module name

* Label in .ASSIGNA, .ASSIGNC, .EQU, .ASSIGN, .REG, or .DEFINE
e Operand in .EXPORT, .IMPORT, or .GLOBAL

1.8.2 Description Method of Local Label

First Character:

A local label is a character string starting with a question mark (?).
Usable Characters:

The following ASCII characters can be used in a local label, except for the first character:

« Alphabetical uppercase and lowercase letters (A to Z and a to z)
¢ Numbers (0 to 9)

e Underscore ()

« Dollar sign ($)

The assembler distinguishes uppercase letters from lowercase ones in local labels.
Maximum Length:

The length of local label characters is between 2 and 16 characters. If 17 or more characters are
specified, the assembler will not recognize them as a local label.

1.8.3 Scope of Local Labels

The scope of a local label is called a local block. A local block is divided by address symbols,
and by the .SECTION directive.

The local label defined within a local block can be referenced in that local block.

A local label belonging to a local block is interpreted as being unique even if its spelling is the
same as local labels in other local blocks; it does not cause an error.

Note: The address symbols defined by the .EQU or .ASSIGN directive are not interpreted as
delimiters for the local block.

HITACHI 39



Section 2 Basic Programming Knowledge

2.1 Sections

If source programs are compared to natural language writing, a section will correspond to a
“chapter.” The section is the processing unit used when the linkage editor links object modules.

211 Section Types by Usage
Sections are classified by usage into the following types.

» Code section

» Data section

e Common section
* Stack section

e Dummy section

(1) Code Section
The following can be written in a code section:
0 Executable instructions
0 Extended instructions
Assembler directives that reserve initialized data.

Examples:
.SECTION CD, CODEALIGN=4 ; This assembler directive declares a
; code section with the name CD.
MOV.L X,R1 ; This is an executable instruction.
MOV E'RZ
ALIGN 4

X: .DATA.L HFFFFFFFF ; This assembler directive reserves
|:| ; initialized data.

40 HITACHI



(2) Data Section
The following can be written in a data section:
O Assembler directives that reserve initialized data.
O Assembler directives that reserve uninitialized data.

Examples:

. SECTI ON DT1, DATA, ALI G\=4 ;  This assembler directive declares
;. a data section with the name DT1.
. DATA. W H FFOO ,  These assembler directives reserve
! . DATA. B H FF . initialized data.
L j
e 3
. SECTI ON  DT2, DATA, ALI G\=4 ;  This assembler directive declares
;  adata section with the name DT2.
. RES. W 10 : These assembler directives reserve
.RES. B 10 ;. data areas that do not have initial
! ;  values.

(3) Common Section

A common section is used as a section to hold data that is shared between files when a source
program consists of multiple source files.

The following can be written in a common section:

O Assembler directives that reserve initialized data.

O Assembler directives that reserve uninitialized data.
Supplement:

The linkage editor reserves common sections with the same name to the same area in
memory. In the example shown in figure 2-1, the common section CM declared in file A and
the common section CM declared in file B are reserved to the same area in memory.

HITACHI 41



Program Memory

File A File B

Common section CM T Common section CM » Common section CM

Figure 2-1 Memory Reservation of Common Section

(4) Stack Section

The section that the SH microprocessor uses as a stack area (an area for temporary data
storage) is called the stack section.

The following can be written in the stack section:
O Assembler directives that reserve uninitialized data.

Examples:
.SECTION ST, STACKALIGN=4 ; This assembler directive declares a
; stack section with the name ST.
.RES.B 1024 ; This assembler directive reserves a
; stack area of 1024 bytes.
STK:

(5) Dummy Section

A dummy section is a hypothetical section for representing data structures. The assembler
does not output dummy sections to the object module.
The following can be written in a dummy section:

O Assembler directives that reserve uninitialized data.

Examples:
.SECTION DM, DUMMY : This assembler directive declares
: a dummy section with the name DM.
.RESB 1

; The assembler does not output the
A: .RESB 1

B: .RES.B 2

[]

Specific methods for specifying data structures are described in the supplement on the next
page.

; section DM to the object module.

42 HITACHI



Supplement:

As shown in figure 2-2, it is possible to access areas in memory by using address symbols from a
dummy section.

Data structure Memory
Reference The start of
point B et | area 1 T
Address bl The startofarea _, [--ooooooo______
symbol A ! Item A | Dummy 1plus A ltem A
Address —» r------somm-mssoos 7 section The start of area —» [------------------ Area 1
symbol B ! Item B H 1plusB Iltem B
L 1
The start of
area 2
The startofarea _, }----ccoooeeooo
2 plus A Item A
The start of area —» [------------------ Area 2
2 plus B Iltem B
Figure 2-2 Data Structure Example Using Dummy Section
Example:

In the example above, assume that R1 holds the starting address of area 1 and R2 holds the
starting address of area 2.

MOV.L @(B,R1),RO0 ; Moves the contents of item B in area 1 to RO.
MOV.L_RO,@(B,R2) ; Moves the contents of RO to item B in area 2.

HITACHI 43



CAUTION!

1. The following cannot be used in stack and dummy sections:
a. Executable instructions
b. Extended instructions
c. Assembler directives that reserve initialized data

(.DATA, .DATAB, .SDATA, .SDATAB, .SDATAC, .SDATAZ, .FDATA, .FDATAB,
and .XDATA)

2. When using a data or common section, be sure to keep in mind whether that section is
reserved to ROM or RAM.

2.1.2 Absolute Address Sections and Relative Address Sections

A section can be classified as either an absolute address section or as a relative address section
depending on whether absolute start addresses are given to the sections at assembly.

(1) Absolute Address Section

The memory location of absolute address sections is specified in the source program, and
cannot be changed by the linkage editor. In this assembly language, locations in an absolute
address section are expressed as absolute addresses, which are addresses that express the
position in memory itself.

Examples:

.SECTION ABS,DATA, LOCATE=H'0000F000 ; ABS is an absolute address section.
; The starting address of section ABS is
; the absolute address H'0000F000.

DATA.W H'1111 ; The constant H'1111 is reserved at
; he absolute address H'0000F000.

.DATA.W H'2222 ; The constant H'2222 is reserved at
; he absolute address H'0000F002.
(2) Relative Address Section
The location in memory of relative sections is not specified in the source program, but rather
is determined when the sections are linked by the linkage editor. In this assembly language,
locations in a relative address section are expressed as relative addresses, which are
addresses that express the position relative to the start of the section itself.

44 HITACHI



Examples:

.SECTION REL,DATA, ALIGN=4 : REL is a relative address section.
; The starting address of section REL is
; determined after linkage.

DATAW H'1111 : The constant H'1111 is reserved at the
relative address H'00000000.

DATAW H'2222 ; The constant H'2222 is reserved at the
; relative address H'00000002.

Supplement:
Dummy sections correspond neither to relative nor to absolute address sections.

HITACHI

45



2.2 Absolute and Relative Values

Absolute values are determined when assembly completes. Relative values are not determined
until the linkage editor completes.

2.2.1 Absolute Values

The following are the absolute values handled by the assembler.

(1) Constants
O Integer constants
O Character constants
0 Symbols that have a value that is one of the above (hereafter referred to as constant
symbols).
(2) Absolute Address Values
O The location counter referenced in an absolute address section
0 The location counter referenced in a dummy section

O Symbols that have a value that is one of the above (hereafter referred to as absolute
address symbols).

(3) Other Absolute Values
Expressions whose value is determined when assembly completes.

222 Relative Values
The following are the relative values handled by the assembler.

(1) Relative Address Values

0 The location counter referenced in a relative address segment

O Symbols that have the above as a value (hereafter referred to as relative address symbols).
(2) External Reference Values

Symbols that reference another file (hereafter referred to as import symbols).
(3) Other Relative Values

Expressions whose value is not determined until the linkage editor completes.

46 HITACHI



2.3 Symbol Definition and Reference

2.3.1 Symbol Definition

(1) Normal Definition
The normal method for defining a symbol is to write that symbol in the label field of a source
statement. The value of that symbol will then be the value of the location counter at that
point in the program.

Examples:
. SECTI ON DT1, DATA, LOCATE=H 0000F000 ; This statement declares an
; absolute address section.
X1: .DATA. W H 1111 ; The value of X1 becomes H'0000F000.
X2: . DATA. W H 2222 ;. The value of X2 becomes H'0000F002.
L *
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ‘
] . SECTI ON DT2, DATA, ALI G\=4 ;. This statement declares a relative 1
;  address section. ]
' Yl: . DATA W H 1111 ; The value of Y1 is determined when
| ;  the linkage editor completes, and its !
; value is the start address of the section.
Y2: .DATA W H 2222 : The value of Y2 is determined when
! ;  the linkage editor completes, and its :
| ;. value is the start address of the section
1 ; plus 2.

HITACHI 47



(2) Definition by Assembler Directive

Symbols can be defined by using assembler directives to set an arbitrary value or a special
meaning.

Examples:
.SECTION DT1,DATA,ALIGN=4 ; DT1 is the section name.

; A section name is also a type of symbol
it hat expresses the start address of
; a section.
: However, the syntactic handling of address
; symbols and section names is different.

X .EQU 100 ; The value of X is 100.
; X cannot be redefined.

Y. .ASSIGN 10 ; The value of Y is 10.
; Y can be redefined.

Z: .REG R1 ; Z becomes an alias of the general

; register R1.
; Z cannot be redefined.

2.3.2 Symbol Reference
There are three forms of symbol reference as follows:

* Forward reference
+ Backward reference
« External reference

Supplement:

Figure 2-3 shows the meaning of the terms forward and backward as used in this manual.

File

Backward Source program start

Reference position

Forward Source program end

Figure 2-3 Meaning of the Terms Forward and Backward

48 HITACHI



Figure 2-4 shows the meaning of the term external as used in this manual.

File

File

Reference position -
External

Figure 2-4 Meaning of the Term External

(1) Forward Reference

Forward reference means referencing a symbol that is defined forward from the point of
reference.

Examples:

[]

BRA FORWARD ; BRA s a branch instruction.
|;:| This is a forward reference to the symbol FORWARD.

[]

(2) Backward Reference
Backward reference means referring to a symbol that is defined backward from the point of

reference.

Examples:
[]

BRA BACK : BRA is a branch instruction.
(3) External Reference

When a source program consists of multiple source files, a reference to a symbol defined in
another file is called an external reference. External reference is described in the next
section, 2.4, “Separate Assembly”.

FORWARD

BACK

This is a backward reference to the symbol BACK.

HITACHI 49



2.4 Separate Assembly

2.4.1 Separate Assembly

Separate assembly refers to the technique of creating a source program in multiple separate
source files, and finally creating a single load module by linking together those source files’
object modules using the linkage editor.

The process of developing software often consists of repeatedly correcting and reassembling the
program. In such cases, if the source program is partitioned, it will be only necessary to
reassemble the source file that was changed. As a result, the time required to construct the
complete program will be significantly reduced.

If a source program is collected If a source program is partitioned
together in a single file... into several files...
— File —File

Processing 1

S ! — File
Processing 2 pTTTTTTTmmmmeees 1 | Processing 2
Do ; ! —File !

Processing 3 Processing 3

N S ; ; | [—File
Processing 4 Processing 4

File—
Processing 5
— File ——

Processing 6

. Part of the source program that
requires changes.

: Range of the program that must
be reassembled.

Figure 2-5 Relationship between the Changed Range of the Source Program and the
Range of the Program that must be Reassembled

50 HITACHI



The procedure involved in separate assembly consists of steps 1 to 4.

1. Investigate methods for partitioning the program.
Normally, programs are partitioned by function.
Note that the memory reservation of the section must also be considered at this point.
2. Divide the source program into separate files and edit those files accordingly.
3. Assemble the individual files.
4. Link the individual object modules into a single load module.

2.4.2 Declaration of Export Symbols and Import Symbols

When a source program consists of multiple files, referencing a symbol defined in one file from
another file is called “external reference” or “import.” When referencing a symbol externally
(this declaration is called “external definition” or “export”), it is necessary to declare to the
assembler that “this symbol is shared between multiple files.”

(1) Export Symbol Declaration

This declaration is used to declare that the definition of the symbol is valid in other files.
.EXPORT or .GLOBAL directive is used to make this declaration.

(2) Import Symbol Declaration

This declaration is used to declare that a symbol defined in another file is referenced.
IMPORT or GLOBAL directive is used to make this declaration.

Examples:
In this example the symbol MAX is defined in file A and referenced in file B.

HITACHI 51



File A:

[]

.EXPORT MAX ; Declares MAX to be an export symbol.
MAX: .EQU 100 ; Defines MAX.

[]

File B:
IMPORT MAX ; Declares MAX to be an import symbol.
MOV _#MAX,RO ; References MAX.
Reference:

Symbol Export and Import
- Programmer’s Guide, 4.2.5, “Export and Import Assembler Directives”, .EXPORT,
.IMPORT, .GLOBAL

52 HITACHI



Section 3 Executable Instructions

3.1 Overview of Executable Instructions

The executable instructions are the instructions of SH microprocessor. SH microprocessor
interprets and executes the executable instructions in the object code stored in memory.

An executable instruction source statement has the following basic form.

[ <symbol >:] A<menoni c>[. <operation size>] [a<addressing node>[, <addressi ng node] ] [‘; <comment >]‘
L I | L |

Label Operation Operand Comment

This section describes the mnemonic, operation size, and addressing mode. The other elements
are described in detail in section 1, “Program Elements”, in the Programmer’s Guide.

(1) Mnemonic

The mnemonic expresses the executable instruction. Abbreviations that indicate the type of
processing are provided as mnemonics for SH microprocessor instructions.

The assembler does not distinguish uppercase and lowercase letters in mnemonics.

(2) Operation Size
The operation size is the unit for processing data. The operation sizes vary with the
executable instruction. The assembler does not distinguish uppercase and lowercase letters in
the operation size.

Specifier Data Size

B Byte

Word (2 bytes)

Long word (4 bytes)

nw|lrls

Single precision (4 bytes)

(3) Addressing Mode

The addressing mode specifies the data area accessed, and the destination address. The
addressing modes vary with the executable instruction. Table 3-1 shows the addressing
mode.

HITACHI 53



Table 3-1

Addressing Mode

Addressing Modes

Name

Description

Rn Register direct The contents of the specified register.
@Rn Register indirect A memory location. The value in Rn gives the start
address of the memory accessed.
@Rn+ Register indirect with A memory location. The value in Rn (before being
post-increment incremented*?) gives the start address of the
memory accessed.
SH microprocessor first uses the value in Rn for
the memory reference, and increments Rn
afterwards.
@-Rn Register indirect with A memory location. The value in Rn (after being
pre-decrement decremented*?) gives the start address of the
memory accessed.
SH microprocessor first decrements Rn, and then
uses that value for the memory reference.
@(disp,Rn) Register indirect with A memory location. The start address of the
displacement’3 memory access is given by: the value of Rn plus
the displacement (disp).
The value of Rn is not changed.
@(RO,Rn) Register indirect with A memory location. The start address of the
index memory access is given by: the value of RO plus
the value of Rn.
The values of RO and Rn are not changed.
@(disp,GBR) GBR indirect with A memory location. The start address of the
displacement memory access is given by: the value of GBR plus
the displacement (disp).
The value of GBR is not changed.
@(RO,GBR) GBR indirect with A memory location. The start address of the
index memory access is given by: the value of GBR plus
the value of RO.
The values of GBR and RO are not changed.
@(disp,PC) PC relative with A memory location. The start address of the

displacement

memory access is given by: the value of the PC
plus the displacement (disp).

Notes 1 to 3 = See next page.

54

HITACHI



Table 3-1 Addressing Modes (cont)

Addressing Mode Name

Description

symbol

PC relative specified
with symbol

[When used as the operand of a branch
instruction]

The symbol directly indicates the destination
address.

The assembler derives a displacement (disp) from
the symbol and the value of the PC, using the
formula: disp = symbol - PC.

[When used as the operand of a data move
instruction]

A memory location. The symbol expresses the
starting address of the memory accessed.

The assembler derives a displacement (disp) from
the symbol and the value of the PC, using the
formula: disp = symbol - PC.

[When used as the operand of an instruction that
specifies the RS or RE register (LDRS or LDRE
instruction)]

Refer to Programmer’s Guide, 9.3, “Notes on
Executable Instructions.”

#imm

Immediate

Expresses a constant.

Notes: 1.

Increment

The amount of the increment is 1 when the operation size is a byte, 2 when the
operation size is a word (two bytes), and 4 when the operation size is a long word

(four bytes).
Decrement

The amount of the decrement is 1 when the operation size is a byte, 2 when the
operation size is a word, and 4 when the operation size is a long word.

Displacement

A displacement is the distance between two points. In this assembly-language,
the unit of displacement values is in bytes.

HITACHI 55



The values that can be used for the displacement vary with the addressing mode and the
operation size.

Table 3-2  Allowed Displacement Values

Addressing Mode Displacement*

@(disp,Rn) When the operation size is byte (B):
H’00000000 to H'0000000F (O to 15)

When the operation size is word (W):
H’00000000 to H'0000001E (O to 30)

When the operation size is long word (L):
H’00000000 to H'0000003C (0 to 60)

@(disp,GBR) When the operation size is byte (B):
H’00000000 to H'000000FF (O to 255)

When the operation size is word (W):
H’00000000 to H'000001FE (O to 510)

When the operation size is long word (L):
H’00000000 to H’'000003FC (0 to 1020)

@(disp,PC) [When used as an operand of a move instruction]

When the operation size is word (W):
H’00000000 to H'000001FE (O to 510)

When the operation size is long word (L):
H’00000000 to H’'000003FC (0 to 1020)

[When used as an operand of an instruction that sets the RS or RE
register (LDRS or LDRE)]

H'FFFFFFOO to H'O00000FE (-256 to 254)
Note: Units are bytes, numbers in parentheses are decimal.

56 HITACHI



Table 3-2  Allowed Displacement Values (cont)

Addressing Mode Displacement*

symbol [When used as a branch instruction operand]

When used as an operand for a conditional branch instruction (BT, BF,
BF/S, or BT/S):

{H’00000000 to H'000000FF (0 to 255)

{H'FFFFFF00 to H'FFFFFFFF (-256 to -1)

When used as an operand for an unconditional branch instruction
(BRA or BSR)

{H'00000000 to H'00000FFF (0 to 4095)
{H'FFFFFO00 to H'FFFFFFFF (-4096 to -1)

[When used as the operand of a data move instruction]

When the operation size is word (W):
H’00000000 to H’'000001FE (O to 510)

When the operation size is long word (L):
H’00000000 to H'000003FC (0 to 1020)

[When used as an operand of an instruction that sets the RS or RE
register (LDRS or LDRE)]

H'FFFFFFO0 to H'000000FE  (-256 to 254)

Note: Units are bytes, numbers in parentheses are decimal.

Reference:

LDRS, LDRE
- Programmer’s Guide, 9.3, “Notes on Executable Instructions”

HITACHI

57



The values that can be used for immediate values vary with the executable instruction.

Table 3-3 Allowed Immediate Values

Executable Instruction Immediate Value

TST, AND, OR, XOR H’00000000 to H'000000FF (0 to 255)

MOV {H’00000000 to H’'000000FF (O to 255)
{H'FFFFFF80 to H'FFFFFFFF (-128 to -1) *

ADD, CMP/EQ {H’00000000 to H'000000FF (0 to 255)

H'FFFFFF80 to H'FFFFFFFF (-128 to -1) *

TRAPA H’00000000 to H'000000FF (0 to 255)

SETRC H’00000001 to H'000000FF (1 to 255)

Note: Values in the range H'FFFFFF80 to H'FFFFFFFF can be written as positive decimal

values.
Reference:
SETRC

- Programmer’s Guide, 9.3, “Notes on Executable Instructions”

CAUTION!

The assembler corrects the value of displacements under certain conditions.

Condition Type of Correction
When the operation size is a word and the —  The lower bit of the displacement is
displacement is not a multiple of 2 - discarded, resulting in the value being a

- multiple of 2.

When the operation size is a long word and -  The lower 2 bits of the displacement are
the displacement is not a multiple of 4 - discarded, resulting in the value being a
- multiple of 4.

When the displacement of the branch - The lower bit of the displacement is
instruction is not a multiple of 2 - discarded, resulting in the value being a
- multiple of 2.

Be sure to take this correction into consideration when using operands of the mode @ (disp,Rn),
@(disp,GBR), and @(disp,PC).

Example:

MOV.L @(63,PC),R0

The assembler corrects the 63 to be 60, and generates object code identical to that for the
statement MOV.L @(60,PC),R0, and warning number 870 occurs.

58 HITACHI



3.2 Notes on Executable Instructions

3.21 Notes on the Operation Size

The operation sizes that can be specified vary with the mnemonic and the addressing mode
combination.

SH1 Executable Instruction and Operation Size Combinations:
Table 3-4 shows the SH1 allowable executable instruction and operation size combinations.

Table 3-4 SH1 Executable Instruction and Operation Size Combinations (Part 1)

1. Data Move Instructions Operation Sizes
Default when
Mnemonic Addressing Mode B W L Omitted
MOV #imm,Rn 0] A A B *1
MOV @(disp,PC),Rn x o o} L
MOV symbol,Rn X 0 @] L
MOV Rn,Rm x x (0] L
MOV Rn,@Rm 0 0 @] L
MOV @Rn,Rm 0 0 @] L
MOV Rn,@-Rm 0 0 @] L
MOV @Rn+,Rm 0 0 @] L
MOV RO,@(disp,Rn) o o o} L
MOV Rn,@(disp,Rm) X X 0] L *2
MOV @(disp,Rn),RO (0] 0] 0] L
MOV @(disp,Rn),Rm x X o) L *3
MOV Rn,@(RO,Rm) O 0] 0] L
MOV @(RO,Rn),Rm O 0] 0] L
MOV RO,@(disp,GBR) O 0] 0] L
MOV @(disp,GBR),R0 o) o) o) L
MOVA #imm,R0O X X A L
MOVA @(disp,PC),R0 x X o] L
MOVA symbol,RO X X (0] L

Notes: See next page.

HITACHI 59



Table 3-4 SH1 Executable Instruction and Operation Size Combinations (Part 1) (cont)

1. Data Move Instructions Operation Sizes
Default when

Mnemonic Addressing Mode B W L Omitted
MOVT Rn x x (0] L
SWAP Rn,Rm (0] (0] X W
XTRCT Rn,Rm X X (0] L
Symbol meanings:

Rn, Rm A general register (RO to R15)

SR Satus register

VBR Vector base register

PR Procedure register

RO General register RO (when only RO can be specified)

GBR Global base register

MACH, MACL Accumulator register

PC Program counter

imm An immediate value

symbol A symbol

disp A displacement value

B Byte

L Long word (4 bytes)

W Word (2 bytes)

O Valid specification

X Invalid specification:

The assembler regards instructions with this combination as the specification being

omitted.
O The assembler regards them as extended instructions.
Notes: 1. In size selection mode, the assembler selects the operation size according to the imm
value.

2. In this case Rn must be one of R1 to R15.
3. In this case Rm must be one of R1 to R15.

References:

Extended instructions

- Programmer’s Guide, 8.2, “Extended Instructions Related to Automatic Literal Pool

Generation”

Size selection mode
- Programmer’s Guide, 8.3, “Size Mode for Automatic Literal Pool Generation”

60 HITACHI



Table 3-4 SH1 Executable Instruction and Operation Size Combinations (Part 2)

2. Arithmetic Operation Instructions Operation Sizes
Default when
Mnemonic Addressing Mode B W L Omitted
ADD Rn,Rm X X (0] L
ADD #imm,Rn x X e) L
ADDC Rn,Rm x X e) L
ADDV Rn,Rm x x 0 L
CMP/EQ #imm,RO x x o L
CMP/EQ Rn,Rm x x o L
CMP/HS Rn,Rm X X (0] L
CMP/GE Rn,Rm X X (0] L
CMP/HI Rn,Rm X X (0] L
CMP/GT Rn,Rm X X (0] L
CMP/PZ Rn X X (0] L
CMP/PL Rn X X (0] L
CMP/STR Rn,Rm X X (0] L
D] AVA Rn,Rm X X (0] L
DIVOS Rn,Rm X X e) L
DIVOU (no operands) X X x —
EXTS Rn,Rm 0] 0] x w
EXTU Rn,Rm 0] 0] x w
MAC @Rn+,@RmM+ X o) X W
MULS Rn,Rm x 0 O L *
MULU Rn,Rm X 0] 0] L *
NEG Rn,Rm x x (0] L
NEGC Rn,Rm x x (0] L
SUB Rn,Rm x x (0] L
SUBC Rn,Rm X X e) L
SUBV Rn,Rm X X (0] L
Note: The object code generated when W is specified is the same as that generated when L is
specified.

HITACHI



Table 3-4 SH1 Executable Instruction and Operation Size Combinations (Part 3)

3. Logic Operation Instructions Operation Sizes
Default when

Mnemonic Addressing Mode B W L Omitted
AND Rn,Rm X X (0] L

AND #imm,R0O x x e) L

AND #imm,@(RO,GBR) 0 x x B

NOT Rn,Rm x x (0] L

OR Rn,Rm x x (0] L

OR #imm,R0O x X e} L

OR #imm,@(R0,GBR) (0] x x B

TAS @Rn o) X X B

TST Rn,Rm x x (0] L

TST #imm,R0O X X o) L

TST #imm,@(R0,GBR) (0] x x B

XOR Rn,Rm x x (0] L

XOR #imm,R0O X X o) L

XOR #imm,@(R0,GBR) (0] x x B

62 HITACHI



Table 3-4 SH1 Executable Instruction and Operation Size Combinations (Part 4)

4. Shift Instructions Operation Sizes
Default when

Mnemonic Addressing Mode B W L Omitted
ROTL Rn x x (0] L
ROTR Rn x x (0] L
ROTCL Rn x x (0] L
ROTCR Rn x x (0] L

SHAL Rn x x (0] L
SHAR Rn x x (0] L

SHLL Rn x x (0] L

SHLR Rn x x (0] L
SHLL2 Rn x x (0] L
SHLR2 Rn x x (0] L
SHLLS Rn x x (0] L
SHLR8 Rn x x (0] L
SHLL16 Rn X X (0] L
SHLR16 Rn X X (0] L

Table 3-4 SH1 Executable Instruction and Operation Size Combinations (Part 5)

5. Branch Instructions Operation Sizes
Default when

Mnemonic Addressing Mode B W L Omitted

BF symbol X x x —

BT symbol X x x —

BRA symbol x x x —

BSR symbol x x x —

JMP @Rn X X X —

JSR @Rn X X X —

RTS (no operands) X x x —

HITACHI



Table 3-4 SH1 Executable Instruction and Operation Size Combinations (Part 6)

6. System Control Instructions Operation Sizes

Default when
Mnemonic Addressing Mode B W L Omitted
CLRT (no operands) X x x —
CLRMAC (no operands) X x x —
LDC Rn,SR x x (0] L
LDC Rn,GBR X x e) L
LDC Rn,VBR x x 0 L
LDC @RN+,SR X X o) L
LDC @Rn+,GBR X X o) L
LDC @Rn+,VBR X X o) L
LDS Rn,MACH X X (0] L
LDS Rn,MACL x x 0 L
LDS Rn,PR X X (0] L
LDS @Rn+,MACH x x 0 L
LDS @Rn+MACL x x o L
LDS @Rn+,PR X X o) L
NOP (no operands) X x x —
RTE (no operands) X x x —
SETT (no operands) X x x —
SLEEP (no operands) X x x —
STC SR,Rn x x (0] L
STC GBR,Rn x x 0] L
STC VBR,Rn X X (0] L
STC SR,@-Rn X X o) L
STC GBR,@-Rn X X o) L
STC VBR,@-Rn X X (0] L
STS MACH,Rn X X (0] L
STS MACL,Rn X X (0] L
STS PR,Rn x x (0] L
STS MACH,@-Rn x X e) L
STS MACL,@-Rn x X e) L
STS PR,@-Rn X X o) L
TRAPA #imm X X (0] L

64 HITACHI



SH2 Executable Instruction and Operation Size Combinations:

Table 3-5 shows the executable instruction and operation size combinations for the SH2

instructions added to those of the SH1.

Table 3-5 SH2 Executable Instruction and Operation Size Combinations (Part 1)

1. Arithmetic Operation Instructions Operation Sizes
Default when
Mnemonic Addressing Mode B W L Omitted
MAC @Rn+,@Rm+ X 0 O W
MUL Rn,Rm X X (0] L
DMULS Rn,Rm x x 0 L
DMULU Rn,Rm X X (0] L
DT Rn X X x —

Table 3-5 SH2 Executable Instruction and Operation Size Combinations (Part 2)

2. Branch Instructions Operation Sizes

Default when
Mnemonic Addressing Mode B W L Omitted
BF/S symbol x x x —
BT/S symbol x x x —
BRAF Rn X X X —
BSRF Rn X X X —

SH3 Executable Instruction and Operation Size Combinations:

Table 3-6 shows the executable instruction and operation size combinations for the SH3

instructions added to those of the SH2.

Table 3-6  SH3 Executable Instruction and Operation Size Combinations (Part 1)

1. Data Move Instructions Operation Sizes
Default when
Mnemonic Addressing Mode B W L Omitted
PREF @Rn X X X —
HITACHI

65



Table 3-6

2. Shift Instructions

Operation Sizes

SH3 Executable Instruction and Operation Size Combinations (Part 2)

Default when

Mnemonic Addressing Mode B W L Omitted
SHAD Rn,Rm X X (0] L
SHLD Rn,Rm X X (0] L

Table 3-6 SH3 Executable Instruction and Operation Size Combinations (Part 3)

3. System Control Instructions Operation Sizes

Default when

Mnemonic Addressing Mode B W L Omitted
CLRS (No operands) x x x —
SETS (No operands) x X x —
LDC Rm,SSR X x e) L
LDC Rm,SPC x x (0] L
LDC Rm,Rn_BANK X X (0] L
LDC @Rm+,SSR X X (0] L
LDC @Rm+,SPC X X o) L
LDC @Rm+,Rn_BANK X X (0} L
STC SSR,Rn x x (0] L
STC SPC,Rn x x (0] L
STC Rm_BANK,Rn X X (0] L
STC SSR,@-Rn X X o) L
STC SPC,@-Rn X X o) L
STC Rm_BANK,@-Rn X X (0] L
LDTLB (No operands) X x x —
Symbol meanings:

Rn_BANK Bank general register

SSR Save status register

SPC Save program counter

66 HITACHI



SH3E Executable Instruction and Operation Size Combinations:

Table 3-7 shows the executable instruction and operation size combinations for the SH3E
instructions added to those of the SH3.

Table 3-7 SH3E Executable Instruction and Operation Size Combinations (Part 1)

1. Data Move Instructions Operation Sizes
Default when

Mnemonic Addressing Mode B W L S Omitted
FLDIO FRn x x x (0] S
FLDI1 FRn x x x (0] S
FMOV @Rm,FRN x x x o S
FMOV FRm,@Rn x x x o S
FMOV @Rm+,FRN X x x e} S
FMOV FRm,@-Rn X X X o) S
FMOV @(RO,Rm),FRn X X X o) S
FMOV FRm,@(RO,Rn) X X X e) S
FMOV FRm,FRn X X X e) S
Symbol meanings:

FRm,FRn Floating-point register

FRO FRO floating-point register
FPUL  FPU low register

FPSCR FPU status control register
S Single precision (4 bytes)

HITACHI 67



Table 3-7 SH3E Executable Instruction and Operation Size Combinations (Part 2)

2. Arithmetic Operation Instructions Operation Sizes
Default when

Mnemonic Addressing Mode B W L S Omitted
FABS FRn x x x (0] S
FADD FRm,FRn X X X (0] S
FCMP/EQ FRm,FRn X X X e) S
FCMP/GT FRm,FRn X X X e) S

FDIV FRm,FRn X X X (0] S
FMAC FRO,FRmM,FRn X X X (0] S
FMUL FRm,FRn X X X e) S
FNEG FRn x x x (0] S
FSQRT FRn X X X 0 S
FSUB FRm,FRn X X X e) S

Table 3-7 SH3E Executable Instruction and Operation Size Combinations (Part 3)

3. System Control Instructions Operation Sizes
Default when

Mnemonic Addressing Mode B W L S Omitted
FLDS FRm,FPUL X X X e) S
FLOAT FPUL,FRn X X X e) S

FSTS FPUL,FRn X X X e) S
FTRC FRm,FPUL X X X (0] S

LDS Rm,FPUL X X (0] X L

LDS @Rm+,FPUL X x 'e) x L

LDS Rm,FPSCR x x o x L

LDS @Rm+,FPSCR X x 'e) x L

STS FPUL,Rn x x (0] x L

STS FPUL,@-Rn x x o x L

STS FPSCR,RN X X e) X L

STS FPSCR,@-Rn X x 'e) x L

68 HITACHI



SH-DSP Executable Instruction and Operation Size Combinations:

Table 3-8 shows the executable instruction and operation size combinations for the SH-DSP
instructions added to those of the SH2.

Table 3-8 SH-DSP Executable Instruction and Operation Size Combinations (Part 1)

1. Repeat Control Instructions Operation Sizes
Default when

Mnemonic Addressing Mode B W L Omitted
LDRS @(disp,PC) x x e} L
LDRS symbol X x (0] L
LDRE @(disp,PC) x x e} L
LDRE symbol X x (0] L
SETRC Rn X X X —
SETRC #imm x x x —
Symbol meanings:

MOD Modulo register

RS Repeat start register

RE Repeat end register

DSR DSP status register

AO DSP data register (A0, X0, X1, YO, or Y1 can be specified.)

HITACHI 69



Table 3-8 SH-DSP Executable Instruction and Operation Size Combinations (Part 2)

2. System Control Instructions Operation Sizes
Default when

Mnemonic Addressing Mode B W L Omitted
LDC Rn,MOD x X e) L
LDC Rn,RS x x (0] L
LDC Rn,RE X X (0] L
LDC @Rn+,MOD X X (e} L
LDC @RN+,RS X X o) L
LDC @RN+,RE X X o) L
LDS Rn,DSR x X e) L
LDS Rn,AO0 x x (0] L
LDS @Rn+,DSR X X o) L
LDS @Rn+,A0 X X o) L
STC MOD,Rn x x (0] L
STC RS,Rn x x (0] L
STC RE,Rn x x (0] L
STC MOD,@-Rn X X o) L
STC RS,@-Rn X X o) L
STC RE,@-Rn X X o) L
STS DSR,Rn x x 0] L
STS AO,Rn x x (0] L
STS DSR,@-Rn X X o) L
STS AO,@-Rn X X o) L

3.2.2 Notes on Delayed Branch Instructions

The unconditional branch instructions are delayed branch instructions. SH microprocessors
execute the delay slot instruction (the instruction directly following a branch instruction in
memory) before executing the delayed branch instruction.

If an instruction inappropriate for a delay slot is specified, the assembler issues error number 150
or 151.

Table 3-9 shows the relationship between the delayed branch instructions and the delay slot
instructions.

70 HITACHI



Table 3-9 Relationship between Delayed Branch Instructions and Delay Slot Instructions

Delayed Branch

Delay Slot BF/S BT/S BRAF BSRF BRA BSR JMP JSR RTS RTE
BF X X X X X X X X X X
BT X X X X X X X X X X
BF/S X X X X X x x x X x
BT/S X X X X X x x x X x
BRAF x X X X X X X X X X
BSRF X X X X X X X x x x
BRA x X X X X X X X X X
BSR X X X X X X x x x X
JMP x X X X X X X X X X
JSR X X X X X X x x x X
RTS X X X X X X x x x X
RTE x X X X X X X X X X
TRAPA x X X X X X X X X X
MOV @(disp,PC),Rn O O O O O O O O O O

symbol,Rn 0 0 X X O O X X X X
MOVA @(disp,PC),R0 O O O O O O O O O O

symbol,RO 0 0 X X O O X X X X
Extended MOV.L #imm,Rn x X X X X X X X X X
instructions

MOV.W #imm,Rn x x x X X X X X x X

MOVA #imm,RO x X X X X X X X X X
Any other instruction 0] 0] 0] 0] 0] 0] 0] 0] (o) o)
Symbol meanings:

(0] Normal, i.e., the assembler generates the specified object code.
O Warning 871

Note on the value of PC: PC = <destination address for the delayed
branch instruction> + 2
The assembler generates the specified object code.
X Error 150 or 151
The instruction specified is inappropriate as a delay slot instruction.

The assembler generates object code with a NOP instruction (H’0009).

HITACHI 71



CAUTION!

If the delayed branch instruction and the delay slot instruction are coded in different sections,
the assembler does not check the validity of the delay slot instruction.

Reference:

Extended Instructions
- Programmer’s Guide, 8.2, “Extended Instructions Related to Automatic Literal Pool
Generation”

3.2.3 Notes on Address Calculations

When the operand addressing mode is PC relative with displacement, i.e., @(disp,PC), the value
of PC must be taken into account in coding. The value of PC can vary depending on certain
conditions.

(1) Normal Case
The value of PC is the first address in the currently executing instruction plus 4 bytes.

Examples: (Consider the state when a MOV instruction is being executed at absolute
address H’'00001000.)

Memory

Absolute addresses
H'00001000 MOV.L @(8,PC),R0

PC | H00001004 |

disp = 8 bytes

H'0000100C | Area being
accessed

2 bytes

Figure 3-1 Address Calculation Example (Normal Case)

72 HITACHI



(2) During the Delay Slot Instruction
The value of PC is destination address for the delayed branch instruction plus 2 bytes.

Examples: (Consider the state when a MOV instruction is being executed at absolute
address H’'00001000.)

Memory

Absolute addresses

BRA L1
H'00001000 MOV.L @(8,PC),R0

— Branch destination for the
L1 =H'00001006 delayed branch

PC | H00001008 =

disp = 8 hytes

H'00001010 | Area being
accessed

2 bytes

Figure 3-2 Address Calculation Example (When the Value of PC Differs Due to a Branch)

Supplement:

When the operand is the PC relative specified with the symbol, the assembler derives the
displacement taking account of the value of PC when generating the object code.

HITACHI 73



(3) During the Execution of Either a MOV.L @(disp,PC),Rn or a MOVA @(disp,PC),R0

When the value of PC is not a multiple of 4 SH microprocessors correct the value by
discarding the lower 2 bits when calculating addresses.
Examples:

1. When SH microprocessor corrects the value of PC
(Consider the state when a MOV instruction is being executed at address H'00001002.)

Memory
Address
H'00001002 MOV.L @(8,PC),R0

H'00001004

disp = 8 bytes

The value of the PC H'0000100C | Area being accessed —
is corrected to be

a multiple of 4.

2 bytes

Figure 3-3 Address Calculation Example (When SH Microprocessor Corrects
the Value of PC)

2. When SH microprocessor does not correct the value of PC
(Consider the state when a MOV instruction is being executed at address H'00001000.)

Memory
Address
H'00001000 MOV.L @(8,PC),R0

PC |H'00001004

disp = 8 bytes

The value of the PC
is not changed. H'0000100C

— Area being accessed —

2 bytes

Figure 3-4 Address Calculation Example (When SH Microprocessor Does Not Correct
the Value of PC)

74 HITACHI



Supplement:

When the operand is the PC relative specified with the symbol, the assembler derives the
displacement taking account of the value of PC when generating the object code.

HITACHI 75



76

HITACHI



Section 4 Assembler Directives

4.1 Overview of the Assembler Directives

The assembler directives are instructions that the assembler interprets and executes. Table 4-1
lists the assembler directives provided by this assembler.

Table 4-1 Assembler Directives

Type Mnemonic Function
Target CPU .CPU Specifies the target CPU.
Section and the location .SECTION Declares a section.
counter .ORG Sets the value of the location counter.
.ALIGN Corrects the value of the location counter.
Symbols .EQU Sets a symbol value (reset not allowed).
ASSIGN Sets a symbol value (reset allowed).
.REG Defines the alias of a register name.
.FREG Defines a floating-point register name.
Data and data area .DATA Reserves integer data.
reservation .DATAB Reserves integer data blocks.
.SDATA Reserves character string data.
.SDATAB Reserves character string data blocks.
.SDATAC Reserves character string data (with length).
.SDATAZ Reserves character string data (with zero
terminator).
.FDATA Reserves floating-point data.
.FDATAB Reserves floating-point data blocks.
XDATA Reserves fixed-point data.
.RES Reserves data area.
.SRES Reserves character string data area.
.SRESC Reserves character string data area (with length).
.SRESZ Reserves character string data area (with zero

terminator).

.FRES Reserves floating-point data area.

HITACHI 77



Table 4-1 Assembler Directives (cont)

Type Mnemonic Function
Export and import symbol .EXPORT Declares export symbols.
IMPORT Declares import symbols.
.GLOBAL Declares export and import symbols.
Object modules .OUTPUT Controls object module output.
.DEBUG Controls the output of symbolic debug information.
.ENDIAN Selects big endian or little endian.
.LINE Changes line number.
Assemble listing .PRINT Controls assemble listing output.
.LIST Controls the output of the source program listing.
.FORM Sets the number of lines and columns in the
assemble listing.
.HEADING Sets the header for the source program listing.
.PAGE Inserts a new page in the source program listing.
.SPACE Outputs blank lines to the source program listing.
Other directives .PROGRAM Sets the name of the object module.
.RADIX Sets the radix in which integer constants with no

radix specifier are interpreted.

.END Declares the end of the source program.

78 HITACHI



4.2 Assembler Directive Reference

42.1 Target CPU Assembler Directive

This assembler provides the following assembler directive concerned with the target CPU.
.CPU Specifies the target CPU.

.CPU Target CPU Specification

Syntax

A.CPUA<target CPU>

Statement Elements

1. Label
The label field is not used.
2. Operation
Enter the .CPU mnemonic.
3. Operands
Enter the target CPU.
Specification Target CPU
SH1 Assembles program for SH1
SH2 Assembles program for SH2
SH3 Assembles program for SH3
SH3E Assembles program for SH3E
SHDSP Assembles program for SH-DSP

This directive determines the target CPU. If it is omitted, the CPU specified by the SHCPU
environment variable becomes valid.

Reference: SHCPU environment variable
- User’s Guide, 1.3, “SHCPU Environment Variable”

Description

1. .CPU is the assembler directive that specifies the target CPU for which the source program is
assembled.

2. The following CPU can be selected:

HITACHI 79



SH1
SH2
SH3
SH3E
SHDSP

Specify this directive at the beginning of the source program. If it is not specified at the
beginning, an error will occur. However, directives related to assembly listing can be written
before this directive.

When several .CPU directives are specified, only the first specification becomes valid.

The assembler gives priority to target CPU specification in the order of -CPU, .CPU, and the
SHCPU environment variable.

Coding Example

.CPU SH2

.SECTION A,CODE,ALIGN=4
MOV.L RO,R1
MOV.L RO,R2

Assembles program for SH2.

Reference: -CPU

80

- User’s Guide, 2.2.1, “CPU Command Line Option” -CPU

HITACHI



4.2.2 Section and Location Counter Assembler Directives

This assembler provides the following assembler directives concerned with sections and the
location counter.

.SECTION Declares a section.

.ORG Sets the value of the location counter.
ALIGN Adjusts the value of the location counter to a multiple of the boundary alignment
value.

HITACHI 81



.SECTION Section Declaration

Syntax

0.SECTION[<section name> [,<section attribute>
[{LOCATE= <start address>|ALIGN=<boundary alignment value>}]]

Statement Elements

1. Label
The label field is not used.
2. Operation
Enter the .SECTION mnemonic.
3. Operands
O First operand: the section name
The rules for section names are the same as the rules for symbols.

References: Naming sections
- Programmer’s Guide, 1.3.2, “Coding of Symbols”

0 Second operand: the section attribute

Attribute Section Type
CODE Code section
DATA Data section
STACK Stack section
COMMON Common section
DUMMY Dummy section

The shaded section indicates the default value when the specifier is omitted.

When the specification is omitted, the section will be a code section.
0 Third operand: start address or boundary alignment value

Specification Section Type

LOCATE = <start address> Absolute address section

ALIGN = <boundary alignment value> Relative address section

No specification Relative address section (boundary

alignment value = 4)

The specification determines whether the section type will be an absolute address section
or a relative address section.

82 HITACHI



Description

1. .SECTION is the section declaration assembler directive.

A section is a part of a program, and the linkage editor regards it as a unit of processing. The
following describes section declaration using the simple examples shown below.
—— Source program

_ SECTI ON CD, CODE, AL| G\e4 -« This statement declares the start of
o, section CD.

Source statement set 1 | = This part of the source program
belongs to section CD.

.SECTI ON DT, DATA, ALI G\=4 -« This statement declares the start
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ‘ of section DT.

belongs to section DM.

Source statement set 2 ! | This part of the source program
1 belongs to section DT.
. SECTI ON DM DUMWY -1 This statement declares the start of
BT T T T EErT section DM.
Source statement set 3 | <] This part of the source program

. END -« This statement declares the end of the
source program.

Note: This example assumes that the .SECTION
directive does not appear in any of the source
statement sets 1 to 3.
2. ltis possible to redeclare (and thus restart, i.e., re-enter) a section that was previously
declared in the same file. The following is a simple example of section restart.
—— Source program

_ SECTI ON CD, CODE, ALI GN\=4 «— | This statement declares the start of
e, section CD.

Source statement set 1 | =] This part of the source program
; belongs to section CD.

. SECTI ON CcD «—|— This statement declares the restart
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, of section CD.

-« This part of the source program

also belongs to section CD.

(This part of the program is a
continuation of source statement set 1.)

Note: This example assumes that the .SECTION
directive does not appear in any of the source
statement sets 1 to 3.

HITACHI 83



84

CAUTION!

When using the .SECTION directive to restart a section, the second and third operands must
be omitted. (The original specifications when first declaring the section remain valid.)

Use LOCATE = <start address> as the third operand when starting an absolute address
section. The start address is the absolute address of the start of that section.

The start address must be specified as follows:

O The specification must be an absolute value,
and,

O Forward reference symbols must not appear in the specification.

The values allowed for the start address are from H’00000000 to H'FFFFFFFF. (From -
2,147,483,648 to 4,294,967,295 in decimal.)

Use ALIGN = <boundary alignment value> to start a relative address section. The linkage
editor will adjust the start address of the section to be a multiple of the boundary alignment
value.

The boundary alignment value must be specified as follows:

0 The specification must be an absolute value,

and,

O Forward reference symbols must not appear in the specification.

The values allowed for the boundary alignment value are powers of 20,e28. 2, ..., 31
For code sections, the values must be 4 or larger powers of Z,&9.2, ..., 31

The assembler provides a default section for the following cases.

The use of executable instructions when no section has been declared.

The use of data reservation assembler directives when no section has been declared.
The use of the .ALIGN directive when no section has been declared.

The use of the .ORG directive when no section has been declared.

Reference to the location counter when no section has been declared.

The use of statements consisting of only the label field when no section has been
declared.

The default section is the following section.
O Section name: P
O Section type: Code section
Relative address section (with a boundary alignment value of 4)

O oOooo0oogono

HITACHI



Coding Example

; This section of the program belongs to the default section P.

1 . DATA. L H 11111111 i ; The default section P is a code section, and is a relative
3 3 ; address section with a boundary alignment value of 4.

; This section of the program belongs to the section CD.

| i
! I

| |

! I

| |

| MOV RO, R2 ', The section CD is a code section, and is a relative address
! I

3 | section with a boundary alignment value of 4.

! I

3 X1: . DATA. L H 22222222 I This section of the program belongs to the section DT.
l . DATA. L H 33333333 i ; The section DT is a data section, and is an absolute address
3 —_— 3 ; section with a start address of H'00001000.

END

Note: Tﬁ example assumes the .SECTION directive does not appear in the parts indicated by

HITACHI 85



.ORG Location-Counter-Value Setting

Syntax

0.0ORGO<location-counter-value>

Statement Elements

1.

Label

The label field is not used.

Operation

Enter the .ORG mnemonic.

Operands

Enter the new value for the location counter.

Description

1.

86

.ORG is an directive that sets the value of the location counter. The .ORG directive is used to
place executable instructions or data at a specific address.

The location-counter-value must be specified as follows:

O The specification must be an absolute value or an address within the section,
and,
O Forward reference symbols must not appear in the specification.

The values allowed for the location-counter-value are from H’'00000000 to H'FFFFFFFF.
(From -2,147,483,648 to 4,294,967,295 in decimal.)

When the location-counter-value is specified with an absolute value, the following condition
must hold:

<location-counter-valuez <section start addresgwhen compared as unsigned values)
The assembler handles the value of the location counter as follows.
O The value is regarded as an absolute address value within an absolute address section.
O The value is regarded as a relative address value (relative distance from the section head)
within a relative address section.

HITACHI



Coding Example

.SECTION DT,DATA,LOCATE=H'FFFF0000
.DATALL H11111111

.ORG H'FFFF0010 ; This statement sets the value of the location
counter.
DATA.L H'22222222 ; The integer data H'22222222 is stored at

: absolute address H'FFFF0010.

Explanatory Figure for the Coding Example
Memory

Absolute address
H'FFFFO000 — H'11111111

Locations from H'FFFF0004
to H'FFFFOOOF are not
changed due to the use of
Absolute address the .ORG assembler directive.
H'FFFF0010 — H'22222222

HITACHI



.ALIGN Location-Counter-Value Correction

Syntax

O.ALIGN O<boundary alignment value>

Statement Elements

1. Label
The label field is not used.

2. Operation
Enter the .ALIGN mnemonic./

3. Operands
Enter the boundary alignment value.

Description

1. .ALIGN is an directive that corrects the location-counter-value to be a multiple of the
boundary alignment value. Executable instructions and data can be allocated on specific
boundary values (address multiples) by using the .ALIGN directive.

2. The boundary alignment value must be specified as follows:
O The specification must be an absolute value,
and,
O Forward reference symbols must not appear in the specification.
The values allowed for the boundary alignment value are powers of 20,e28. 2, ..., 31
The boundary alignment value specified by .ALIGN directive must be less than or equal to
the boundary alignment value specified by .SECTION directive.

3. When .ALIGN is used in a relative section the following must be satisfied:
Boundary alignment value specified by .SECTIGNBoundary alignment value specified
by .ALIGN

4. When .ALIGN is used in a code section, the assembler inserts NOP instructions in the object

88

code* to adjust the value of the location counter. Odd byte size areas are filled with H'09.
Note: This object code is not displayed in the assemble listing.

When .ALIGN is used in a data dummy, or stack section, the assembler only adjusts the
value of the location counter, and does not fill in any object code in memory.

HITACHI



Coding Example

.SECTION Plire

.DATA.B H'11
.DATA.B H22
.DATA.B H’'33

ALIGN 2 ; This statement adjusts the value of the location
DATAW H4444 ; counter to be a multiple of 2.

ALIGN 4 : This statement adjusts the value of the location
.DATA.L |j‘55555555 ; counter to be a multiple of 4.

Explanatory Figure for the Coding Example

This example assumes that the byte sized integer dataH'11 is originally located at the
4-byte boundary address. The assembler will insert the filler data as shown in the figure
below.

byt Memory
! -byte — :
boundary
H11 | H22 | H33 | H'09
; H'4444 | H'0009 1
3 H'55555555 !
! : Codes filled in by !
the assembler.
| \ y |
4 bytes
HITACHI 89




4.2.3 Symbol Handling Assembler Directives

This assembler provides the following assembler directives concerned with symbols.

.EQU Sets a symbol value.

ASSIGN Sets and resets a symbol value.

.REG Defines the alias of a register name.
.FREG Defines a floating-point register name.

90 HITACHI



.EQU Symbol Value Setting (Resetting Not Allowed)

Syntax

<symbol>[:] 0O.EQUO<symbol value>

Statement Elements

1. Label

Enter the symbol to which a value is to be set.
2. Operation

Enter the .EQU mnemonic.
3. Operands

Enter the value to be set to the symbol.

Description

1. .EQU is an assembler directive that sets a value to a symbol.
Symbols defined with the .EQU directive cannot be redefined.
2. The symbol value must be specified as follows:

0 The specification must be an absolute value, an address value, or an import symbol
value®

and,
O Forward reference symbols must not appear in the specification.

The values allowed for the symbol value are from H’00000000 to H'FFFFFFFF. (From -
2,147,483,648 to 4,294,967,295 in decimal.)

Note: An import value, import value + constant, or import value - constant can be specified.

HITACHI 91



Coding Example

[]

X1: EQU 10
X2: EQU 20

CMP/EQ #X1,R0

BT  LABEL1
CMP/EQ #X2,R0

BT EFELZ

92

The value 10 is set to X1.
The value 20 is set to X2.

This is the same as CMP/EQ #10,R0.

This is the same as CMP/EQ #20,R0.

HITACHI



ASSIGN Symbol Value Setting (Resetting Allowed)

Syntax

<symbol>[:] O.ASSIGN O<symbol value>

Statement Elements

1.

Label

Enter the symbol to which a value is to be set.
Operation

Enter the . ASSIGN mnemonic.

Operands

Enter the value to be set to the symbol.

Description

1.

ASSIGN is an assembler directive that sets a value to a symbol.
Symbols defined with the .ASSIGN directive can be redefined with the .ASSIGN directive.
The symbol value must be specified as follows:
O The specification must be an absolute value or an address value,
and,
O Forward reference symbols must not appear in the specification.

The values allowed for the symbol value are from H’00000000 to H'FFFFFFFF. (From -
2,147,483,648 to 4,294,967,295 in decimal.)

Definitions with the .ASSIGN directive are valid from the point of the definition forward in
the program.

Symbols defined with .ASSIGN have the following limitations:
0 They cannot be used as export or import symbols.
0 They cannot be referenced from the simulator/debugger.

HITACHI 93



Coding Example

X1:
X2:

X1:
X2:

94

[]

.ASSIGN 1

.ASSIGN 2
CMP/EQ #X1,R0
BT LABEL1

CMP/EQ #X2,R0

BT ﬁELZ

.ASSIGN 3

.ASSIGN 4
CMP/EQ #X1,R0
BT LABEL3

CMP/EQ #X2,R0

BF ﬁEL4

This is the same as CMP/EQ #1,R0.

This is the same as CMP/EQ #2,R0.

This is the same as CMP/EQ #3,R0.

This is the same as CMP/EQ #4,RO0.

HITACHI



.REG Register Name Alias Definition

Syntax

<symbol>[:] 0O.REGO<register name>
or
<symbol>[:] O.REGO(<register name>)

Statement Elements

1.

Label

Enter the symbol to be defined as the alias of a register name.

Operation

Enter the .REG mnemonic.

Operands

Enter the register name for which the alias of a register name is being defined.

Description

1.

.REG is the assembler directive that defines the alias of a register name.

The alias of a register name defined with .REG can be used in exactly the same manner as
the original register name.

The alias of a register name defined with .REG cannot be redefined.
The alias of a register name can only be defined for the general registers (RO to R15, and
SP).
Definitions with the .REG directive are valid from the point of the definition forward in the
program.
Symbols defined with .REG have the following limitations:
0 They cannot be used as import or export symbols.
0 They cannot be referenced from the simulator/debugger.

HITACHI 95



Coding Example

[]

MIN: .REG R10

MAX: .REG R11
MOV  #0O,MIN ; This is the same as MOV #0,R10.
MOV  #99 MAX ; This is the same as MOV #99,R11.

CMP/HS MIN,R1
BF LABEL
CMP/HS R1,MAX

BF |ﬁBEL

96 HITACHI



.FREG Floating-Point Register Name Alias Definition

Syntax

<symbol>[:] [0O.FREGO<floating-point register name>
or
<symbol>[:] [0O.FREGO(<floating-point register name>)

Statement Elements

1. Label
Enter the symbol to be defined as a floating-point register name.
2. Operation
Enter the .FREG mnemonic.
3. Operands
Enter the floating-point register name for which the alias is to be defined.
Description
1. .FREG is the assembler directive that defines the alias of a floating-point register name.
The alias of a floating-point register name defined with .FREG can be used in exactly the
same manner as the original register name.
The alias of a floating-point register name defined with .FREG cannot be redefined.
2. The alias can only be defined for the floating-point registers (FRO to FR15).
3. Definitions with the .FREG are valid from the point of the definition forward in the program.
4. Symbols defined with .FREG have the following limitations:

0 They cannot be used as import or export symbols.
O They cannot be referenced from the simulator/debugger.

Coding Example

[]

MAX: .FREG FR11
FMOV @FR1,MAX ; This is the same as FMOV @FR1,FR11.
FCMP/EQ MAX,FR2 ; This is the same as FCMP/EQ FR11,FR2.

BF IL_AFEL

HITACHI 97



4.2.4 Data and Data Area Reservation Assembler Directives

This assembler provides the following assembler directives that are concerned with data and data
area reservation.

.DATA Reserves integer data.

.DATAB Reserves integer data blocks.

.SDATA Reserves character string data.

.SDATAB Reserves character string data blocks.

.SDATAC Reserves character string data (with length).
.SDATAZ Reserves character string data (with zero terminator).
.FDATA Reserves floating-point data.

.FDATAB Reserves floating-point data block.

XDATA Reserves fixed-point data.

.RES Reserves data area.

.SRES Reserves character string data area.

.SRESC Reserves character string data area (with length).
.SRESZ Reserves character string data area (with zero terminator).
.FRES Reserves floating-point data area.

98 HITACHI



.DATA Integer Data Reservation

Syntax

[<symbol>[:]] O.DATA[.<operation size>] O<integer data>
[,<integer data>...]

Statement Elements

1. Label
Enter a reference symbol if required.
2. Operation
O Mnemonic
Enter .DATA mnemonic.
O Operation size

Specifier Data Size

B Byte

w Word (2 bytes)

L Long word (4 bytes)

The shaded section indicates the default value when the specifier is omitted.

0 The specifier determines the size of the reserved data.

O The long word size is used when the specifier is omitted.
3. Operands

Enter the values to be reserved as data in the operand field.

Description

1. .DATA is the assembler directive that reserves integer data in memory.

2. Arbitrary values, including relative values and forward reference symbols, can be used to
specify the integer data.

3. The range of values that can be specified as integer data varies with the operation size.

Operation Size Integer Data Range*

B H’00000000 to H’'000000FF (0 to 255)
H'FFFFFF80 to HFFFFFFFF  (-128 to -1)

w H’00000000 to H’'0000FFFF (0 to 65,535)
H’FFFF8000 to H'FFFFFFFF  (-32,768 to -1)

L H’00000000 to H'7FFFFFFF (0 to 4,294,967,295)

H’80000000 to H'FFFFFFFF  (-2,147,483,648 to -1)
Note: Numbers in parentheses are decimal.

HITACHI 99



Coding Example

[]

ALIGN 4 ;

.DATA.L

H'11111111

.DATAW H'2222,H'3333;
.DATAB H44H55 ;

(This statement adjusts the value of the
location counter.)

These statements reserve integer data.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

100

Address symbol

X

Explanatory Figure for the Coding Example

Memory
11 11 11 11
22 22 |33 33
44 | 55
J
4 bytes
HITACHI

Note: The data in this figure
is hexadecimal.



.DATAB Integer Data Block Reservation

Syntax

[<symbol>[:]] O.DATAB[.<operation size>] O<block count>,<integer data>

Statement Elements

1. Label
Enter a reference symbol if required.
2. Operation
O Mnemonic
Enter .DATAB mnemonic.
O Operation size
Specifier Data Size
B Byte
W Word (2 bytes)
L Long word (4 bytes)
The shaded section indicates the default value when the specifier is omitted.
O The specifier determines the size of the reserved data.
O The long word size is used when the specifier is omitted.
3. Operands
O First operand: block count
Enter the number of times the data value is repeated as the first operand.
0 Second operand: integer data
Enter the value to be reserved as the second operand.
Description
1. .DATAB is the assembler directive that reserves the specified number of integer data items
consecutively in memory.
2. The block count must be specified as follows:

0 The specification must be an absolute value,
and,
O Forward reference symbols must not appear in the specification.

Arbitrary values, including relative values and forward reference symbols, can be used to
specify the integer data.

HITACHI 101



3. The range of values that can be specified as the block size and as the integer data varies with
the operation size.

Operation Size Block Size Range*

B H’00000001 to H'FFFFFFFF (1 to 4,294,967,295)

W H’00000001 to H'7FFFFFFF (1 to 2,147,483,647)

L H’00000001 to H'3FFFFFFF (1 to 1,073,741,823)

Operation Size Integer Data Range*

B H’00000000 to H’'000000FF (0 to 255)
H'FFFFFF80 to HFFFFFFFF (-128 to -1)

w H’00000000 to H’'0000FFFF (0 to 65,535)
H’FFFF8000 to H'FFFFFFFF  (-32,768 to -1)

L H’00000000 to H'7FFFFFFF (0 to 4,294,967,295)

H’80000000 to H'FFFFFFFF  (-2,147,483,648 to -1)
Note: Numbers in parentheses are decimal.

102 HITACHI



Coding Example

[]

ALIGN 4 ; (This statement adjusts the value of the
: location counter.)

X: .DATAB.L 1,H11111111 ;
.DATAB.W 2,H'2222 ; This statement reserves two blocks of integer
.DATAB.B 3,H’33 ; data.

Explanatory Figure for the Coding Example

Memory
! Address symbol
X — ;
| 11 11 11 11
i 22 2222 22 |
| 33 [ 33 | 33 ] !
Note: The data in this figure
N J is hexadecimal.
4 bytes

HITACHI 103



.SDATA Character String Data Reservation

Syntax

[<symbol>[:]] 0.SDATAO"<character string>“[,"<character string>"...]

Statement Elements

1.

Label

Enter a reference symbol if required.
Operation

Enter the .SDATA mnemonic.

Operands

Enter the character string(s) to be reserved.

Description

1.

2.

.SDATA is the assembler directive that reserves character string data in memory.
Reference: Character strings Programmer’s Guide, 1.7, “Character Strings”
A control character can be appended to a character string.
The syntax for this notation is as follows.
“<character string>“<<ASCII code for a control character>>

The ASCII code for a control character must be specified as follows.
O The specification must be an absolute value,

and,
O Forward reference symbols must not appear in the specification.

104 HITACHI




Coding Example

[]

ALIGN 4 ; (This statement adjusts the value of
: the location counter.)
X: SDATA “AAAAA” ; This statement reserves character string data.
.SDATA *““BBB™ ; The character string in this example includes
: double quotation marks.
.SDATA “ABAB'<H07> ; The character string in this example has

; a control character appended.

Explanatory Figure for the Coding Example

Memory
Address

symbol ﬂ\
X 41 41 41 41

| 4122 42 42 |
: 42 2241 42 :

41 42 07 | Notes: 1. The data in this figure is
hexadecimal.

2. The ASCII code for “A” is: H'41.
N ) The ASCII code for “B” is: H'42.
The ASCII code for “"" is: H'22.

HITACHI 105



.SDATAB Character String Data Blocks Reservation

Syntax

[<symbol>[:]] 0.SDATABUO<block count>,"<character string>*

Statement Elements

1.

Label
Enter a reference symbol if required.
Operation
Enter the .SDATAB mnemonic.
Operands
O First operand: <block count>
Enter the number of character strings as the first operand.
0 Second operand: <character string>
Enter the character string to be reserved as the second operand.

Description

1.

2.

.SDATAB is the assembler directive that reserves the specified number of character strings
consecutively in memory.

Reference: Character strings Programmer’s Guide, 1.7, “Character Strings”
The <block count> must be specified as follows:
O The specification must be an absolute value,
and,
0 Forward reference symbols must not appear in the specification.
A value of 1 or larger must be specified as the block count.
The maximum value of the block count depends on the length of the character string data.

(The length of the character string data multiplied by the block count must be less than or
equal to H'FFFFFFFF (4,294,967,295) bytes.)

. A control character can be appended to a character string.

The syntax for this notation is as follows.

“<character string>“<<ASCII code for a control character>>

The ASCII code for a control character must be specified as follows.
O The specification must be an absolute value,

and,
O Forward reference symbols must not appear in the specification.

106 HITACHI



Coding Example

[]

ALIGN 4 ;

X: .SDATAB 2,"AAAAA”

.SDATAB 2,”"BBB"™”

.SDATAB 2,"ABAB"<H07> ;

Explanatory Figure for the Coding Example

Memory
Address
iymbO' w41 41 41 41
41741 41 M
41 41 ] 22 42
42 42 22 [ 22
22
41 42 41 42
07 [41 42 41
42 07

3 42 42 42

(This statement adjusts the value of the

location counter.)

This statement reserves two character
string data blocks.

The character string in this example
includes double quotation marks.

The character string in this example has

a control character appended.

Notes: 1. The data in this figure is

hexadecimal.

2. The ASCII code for “A” is: H'41.
The ASCII code for “B” is: H'42.
The ASCII code for “"” is: H'22.

HITACHI

107



.SDATAC Character String Data Reservation (With Length)

Syntax

[<symbol>[:]] 0.SDATACO "<character string>“[,"<character string>“...]

Statement Elements

1. Label
Enter a reference symbol if required.
2. Operation
Enter the .SDATAC mnemonic.
3. Operands
Enter the character string(s) to be reserved.

Description

1. .SDATAC is the assembler directive that reserves character string data (with length) in
memory.
A character string with length is a character string with an inserted leading byte that indicates
the length of the string.
The length indicates the size of the character string (not including the length) in bytes.
Reference: Character strings Programmer’s Guide, 1.7, “Character Strings”

2. A control character can be appended to a character string.
The syntax for this notation is as follows.

“<character string>“<<ASCII code for a control character>>

The ASCII code for a control character must be specified as follows.
O The specification must be an absolute value,

and,
O Forward reference symbols must not appear in the specification.

108 HITACHI



Coding Example

[]

ALIGN 4 ; (This statement adjusts the value of the

location counter.)

X: .SDATAC “AAAAA” ;

data (with length).

The character string in this example
includes double quotation marks.

.SDATAC *““BBB™ ;

.SDATAC “ABAB"<H'07> ; The character string in this example has

a control character appended.

Explanatory Figure for the Coding Example

Memory
Address

symbol ~
05 41 41 41

X 41 41]05 22
42 42 42 22
05 41 42 41
42 07 | Notes: 1. The data in this figure is
hexadecimal.

2. The ASCII code for “A” is: H'41.
N J The ASCII code for “B” is: H'42.
The ASCII code for “"" is: H'22.

HITACHI

This statement reserves character string

109



.SDATAZ Character String Data Reservation (With Zero Terminator)

Syntax

[<symbol>[:]] 0.SDATAO"<character string>“[,"<character string>"...]

Statement Elements

1. Label
Enter a reference symbol if required.
2. Operation
Enter the .SDATAZ mnemonic.
3. Operands
Enter the character string(s) to be reserved.
Description

1. .SDATAZ is the assembler directive that reserves character string data (with zero terminator)
in memory.

A character string with zero terminator is a character string with an appended trailing byte
(with the value H'00) that indicates the end of the string.

Reference: Character stringsProgrammer’s Guide, 1.7, “Character Strings”
2. A control character can be appended to a character string.
The syntax for this notation is as follows.
“<character string>“<<ASCII code for a control character>>

The ASCII code for a control character must be specified as follows.
O The specification must be an absolute value,

and,
O Forward reference symbols must not appear in the specification.

110 HITACHI



Coding Example

[]

ALIGN 4

X: .SDATAZ “AAAAA”

.SDATAZ *““BBB™ ;

.SDATAZ “ABAB’<H'07> ;

(This statement adjusts the value of the

location counter.)

This statement reserves character string

data (with zero terminator).

The character string in this example
includes double quotation marks.

Explanatory Figure for the Coding Example

| Memory

' Address

i symbol T~

CX 41 41 41 41

1 41 00|22 42

| 42 42 22 00

! 41 42 41 42

1 07 00 | Notes:
} N y,

4 bytes

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

HITACHI

1. The data in this figure is
hexadecimal.

2. The ASCII code for “A” is: H'41.
The ASCII code for “B” is: H'42.
The ASCII code for “"" is: H'22.

The character string in this example has
a control character appended.

111



.FDATA Floating-Point Data Reservation

Syntax

[<symbol>[:]] 0O.FDATA[.S] O<floating-point data>
[,<floating-point data>...]

Statement Elements

1.

Label
Enter a reference symbol if required.
Operation
0 Mnemonic
Enter .FDATA mnemonic.
O Operation size
Enter S for single precision.
Operands
Enter the values to be reserved as data.

Description

1.

.FDATA is the assembler directive that reserves floating-point data in memory.

2. .FDATA can be specified for any CPU.

Reference: Floating-point numbers
- Programmer’s Guide, 1.4.3, “Floating-Point Numbers”

112 HITACHI




Coding Example

ALIGN 4 ; (This statement adjusts the value of the
|:| ; location counter.)

X: .FDATA.S F'12.34 ; This statement reserves a 4-byte area
; 414570A3 (F'12.34).
.FDATA.S H'F800000.S ; This statement reserves a 4-byte area

; 7F800000 (H’F800000.S).

Memory

X
~ 41 45 70 A3

7F 80 00 00

HITACHI 113




.FDATAB Floating-Point Data Block Reservation

Syntax

[<symbol>[:]] O.FDATABI.S] O<block count>,<floating-point data>

Statement Elements

1. Label
Enter a reference symbol if required.
2. Operation
O Mnemonic
Enter .FDATAB mnemonic.
O Operation size
Enter S for single precision.
3. Operands
O First operand: block count
Enter the number of times the data value is repeated as the first operand.
0 Second operand: floating-point data
Enter the floating-point number to be reserved as the second operand.

Description

1. .FDATAB is the assembler directive that reserves the specified number of floating-point data
items consecutively in memory.

2. The block count must be specified as follows:
0 The specification must be an absolute value,
and,
O Forward reference symbols, export symbols, and relative symbols must not appear in
specification.
3. The range of values that can be specified as the block count must be from 1 to
1,073,741,823.

Reference: Floating-point number
- Programmer’s Guide, 1.4.3, “Floating-Point Numbers”

114 HITACHI



Coding Example

ALIGN 4 ; (This statement adjusts the value of the
|:| ; location counter.)

X: .FDATAB.S 2,H'7F800000.S ; This statement reserves two blocks of 4-byte
; areas 7F800000 (H'7F800000.S).

Explanatory Figure for the Coding Example

Memory
Address symbol

X —
7F 80 00 00

7F 80 00 00

HITACHI 115



XDATA Fixed-Point Data Reservation

Syntax

[<symbol>[:]] 0O.XDATA[.<operation size>] O<fixed-point data>
[,<fixed-point data>...]

Statement Elements

1. Label
Enter a reference symbol if required.
2. Operation
O Mnemonic
Enter .XDATA mnemonic.
0 Operation size

Specifier Data Size
w Word (2 bytes)
L Long word (4 bytes)

The shaded section indicates the default value when the specifier is omitted.

O The specifier determines the size of the reserved data.
O The long word size is used when the specifier is omitted.
3. Operands
Enter the fixed-point number to be reserved as data in the operand field.

Description

1. .XDATA is the assembler directive that reserves fixed-point data in memory.

Reference: Fixed-point number
- Programmer’s Guide, 1.4.4, “Fixed-Point Numbers”

116 HITACHI



Coding Example

ALIGN 4 ; (This statement adjusts the value of the
|:| ; location counter.)

X: . XDATA.L 0.5 : This statement reserves 4-byte area
; (H’40000000).
XDATA.W 0.75,0.25 ; This statement reserves 2-byte areas

, (H'6000) and (H'2000).

Explanatory Figure for the Coding Example

Memory
Address symbol

X —
40 00 00 OO0

60 00 [ 20 00

HITACHI 117



.RES Data Area Reservation

Syntax

[<symbol>[:]] 0.RES[.<operation size>] O<area count>

Statement Elements

1. Label
Enter a reference symbol if required.
2. Operation
O Mnemonic
Enter .RES mnemonic.
O Operation size

Specifier Data Size

B Byte

w Word (2 bytes)

L Long word (4 bytes)

The shaded section indicates the default value when the specifier is omitted.

The specifier determines the size of one area.
The long word size is used when the specifier is omitted.
3. Operands
Enter the number of areas to be reserved in the operand field.

Description

1. .RES is the assembler directive that reserves data areas in memory.
2. The area count must be specified as follows:
O The specification must be an absolute value,
and,
O Forward reference symbols must not appear in the specification.
3. The range of values that can be specified as the area count varies with the operation size.

Operation Size Area Count Range*

B H’00000001 to H'FFFFFFFF (1 to 4,294,967,295)
W H’00000001 to H'7FFFFFFF (1 to 2,147,483,647)
L H’00000001 to H'3FFFFFFF (1 to 1,073,741,823)

Note: Numbers in parentheses are decimal.

118 HITACHI



Coding Example

ALIGN 4 ; (This statement adjusts the value of the location
; counter.)
X: .RES.L 2 ; This statement reserves two long word size areas.
.RES.W 3 ; This statement reserves three word size areas.
.RES.B 5 ; This statement reserves five byte size areas.

Explanatory Figure for the Coding Example

Memory

Address symbol

X T

HITACHI 119



.SRES Character String Data Area Reservation

Syntax

[<symbol>[:]] 0.SRESO<character string area size>
[,<character string area size>...]

Statement Elements

1. Label
Enter a reference symbol if required.
2. Operation
Enter the .SRES mnemonic.
3. Operands
Enter the sizes of the areas to be reserved.

Description

1. .SRES is the assembler directive that reserves character string data areas.
2. The character string area size must be specified as follows:
O The specification must be an absolute value,
and,
O Forward reference symbols must not appear in the specification.
The values that are allowed for the character string area size are from H’00000001 to
H'FFFFFFFF (from 1 to 4,294,967,295 in decimal).

120 HITACHI



Coding Example

ALIGN 4 ; (This statement adjusts the value of the location
; counter.)
X: .SRES 7 ; This statement reserves a 7-byte area.
.SRES 6 ; This statement reserves a 6-byte area.

Explanatory Figure for the Coding Example

Memory
| Address symbol
R N S :
1 7 i
| L |
i 7 1
N Y
4 bytes

HITACHI 121



.SRESC Character String Data Area Reservation (With Length)

Syntax

[<symbol>[:]] 0.SRESCUO<character string area size>
[,<character string area size>...]

Statement Elements

1. Label
Enter a reference symbol if required.
2. Operation
Enter the .SRESC mnemonic.
3. Operands
Enter the sizes of the areas (not including the length) to be reserved.

Description

1. .SRESC is the assembler directive that reserves character string data areas (with length) in
memory.

A character string with length is a character string with an inserted leading byte that indicates
the length of the string.

The length indicates the size of the character string (not including the length) in bytes.
Reference: Character strings Programmer’s Guide, 1.7, “Character Strings”
2. The character string area size must be specified as follows:
0 The specification must be an absolute value,
and,
O Forward reference symbols must not appear in the specification.

The values that are allowed for the character string area size are from H’00000000 to
H’000000FF (in decimal, from 0 to 255).

3. The size of the area reserved in memory is the size of the character string area itself plus 1
byte for the count.

122 HITACHI



Coding Example

ALIGN 4 ; (This statement adjusts the value of the location
; counter.)
X: .SRESC 7 ; This statement reserves 7 bytes plus 1 byte for
; the count.
.SRESC 6 ; This statement reserves 6 bytes plus 1 byte for
; the count.

Explanatory Figure for the Coding Example

Memory
‘ Address symbol
| X N e e
% 777
| 20
N J

HITACHI 123



.SRESZ Character String Data Area Reservation (With Zero Terminator)

Syntax

[<symbol>[:]] 0.SRESZUO<character string area size>
[,<character string area size>...]

Statement Elements

1. Label
Enter a reference symbol if required.
2. Operation
Enter the .SRESZ mnemonic.
3. Operands
Enter the sizes of the areas (not including the terminating zero) to be reserved.

Description

1. .SRESZ is the assembler directive that allocates character string data areas (with zero
termination).

A character string with length is a character string with an appended trailing byte (with the
value H’'00) that indicates the end of the string.

Reference: Character strings Programmer’s Guide, 1.7, “Character Strings”
2. The character string area size must be specified as follows:
0 The specification must be an absolute value,
and,
O Forward reference symbols must not appear in the specification.

The values that are allowed for the character string area size are from H’00000000 to
H’000000FF (in decimal, from 0 to 255).

3. The size of the area reserved in memory is the size of the character string area itself plus 1
byte for the terminating zero.

124 HITACHI



Coding Example

(This statement adjusts the value of the location
counter.)

This statement reserves 7 bytes plus 1 byte for
the terminating byte.

This statement reserves 6 bytes plus 1 byte for
the terminating byte.

Address symbol
X

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Explanatory Figure for the Coding Example

Memory

HITACHI

125



.FRES Floating-Point Data Area Reservation

Syntax

[<symbol>[:]] 0.FRES|[S] U<area count>

Statement Elements

1. Label
Enter a reference symbol if required.
2. Operation
O Mnemonic
Enter .FRES mnemonic.
0 Operation size
Enter S for single precision.
3. Operands
Enter the number of areas (the number of single-precision data items).

Description

1. .FRES is the assembler directive that reserves floating-point data areas in memory.
2. The area count must be specified as follows:
0 The specification must be an absolute value,
and,
O Forward reference symbols, import symbols, and relative symbols must not appear in the
specification.

126 HITACHI



Coding Example

.ALIGN 4 ; (This statement adjusts the value of the location
; counter.)

X: .FRES 2 ; This statement reserves two areas.
.FRES 3 ; This statement reserves three areas.

Explanatory Figure for the Coding Example

Memory

Address symbol

X Y

HITACHI 127



4.2.5

Export and Import Assembler Directives

This assembler provides the following assembler directives concerned with export and import.

.EXPORT [Declares export This declaration allows symbols defined in the current file to
symbols. be referenced in other files.

IMPORT Declares import This declaration allows symbols defined in other files to be
symbols. referenced in the current file.

.GLOBAL [Declares export and This declaration allows symbols defined in the current file to

import symbols.

be referenced in other files, and allows symbols defined in
other files to be referenced in the current file.

128

HITACHI



.EXPORT Export Symbols Declaration

Syntax

0.EXPORTO<symbol>[,<symbol>...]

Statement Elements

1. Label
The label field is not used.
2. Operation
Enter the .EXPORT mnemonic.
3. Operands
Enter the symbols to be declared as export symbols.

Description

1. .EXPORT is the assembler directive that declares export symbols.

An export symbol declaration is required to reference symbols defined in the current file
from other files.

2. The following can be declared to be export symbols.
0 Constant symbols (other than those defined with the .ASSIGN directive)
O Absolute address symbols (other than address symbols in a dummy section)
O Relative address symbols

3. To reference a symbol as an import symbol, it is necessary to declare it to be an export
symbol, and also to declare it to be an import symbol.

Import symbols are declared in the file in which they are referenced using either the
IMPORT or the .GLOBAL directive.

HITACHI 129



Coding Example

(In this example, a symbol defined in file A is referenced from file B.)

File A:
.EXPORT X ; This statement declares X to be an export
|:| ; symbol.
X: .EQU H’10000000 ; This statement defines X.
File B:
IMPORT_X ; This statement declares X to be an import symbol
ALIGN 4
DATA.L_X ; This statement references X.

130 HITACHI



IMPORT Import Symbols Declaration

Syntax

O.IMPORTO<symbol>[,<symbol>...]

Statement Elements

1. Label
The label field is not used.
2. Operation
Enter the .IMPORT mnemonic.
3. Operands
Enter the symbols to be declared as import symbols.

Description

1. .IMPORT is the assembler directive that declares import symbols.
An import symbol declaration is required to reference symbols defined in another file.
2. Symbols defined in the current file cannot be declared to be import symbols.

3. To reference a symbol as an import symbol, it is necessary to declare it to be an export
symbol, and also to declare it to be an import symbol.

Export symbols are declared in the file in which they are defined using either the .EXPORT
or the .GLOBAL directive.

HITACHI 131



Coding Example

(In this example, a symbol defined in file A is referenced from file B.)

File A:
.EXPORT X ; This statement declares X to be an export symbol
X: .EQU H’10000000 ; This statement defines X.
File B:
AMPORT X ; This statement declares X to be an import
|:| ; symbol.
ALIGN 4
.DATA.L X ; This statement references X.

132 HITACHI



.GLOBAL Export and Import Symbols Declaration

Syntax

0.GLOBALO<symbol>[,<symbol>...]

Statement Elements

1. Label
The label field is not used.
2. Operation
Enter the .GLOBAL mnemonic.
3. Operands
Enter the symbols to be declared as export symbols or as import symbols.

Description

1. .GLOBAL is the assembler directive that declares symbols to be either export symbols or
import symbols.

An export symbol declaration is required to reference symbols defined in the current file
from other files. An import symbol declaration is required to reference symbols defined in
another file.

2. A symbol defined within the current file is declared to be an export symbol by a .GLOBAL
declaration.

A symbol that is not defined within the current file is declared to be an import symbol by a
.GLOBAL declaration.

3. The following can be declared to be export symbols.
0 Constant symbols (other than those defined with the .ASSIGN assembler directive)
O Absolute address symbols (other than address symbols in a dummy section)
O Relative address symbols

4. To reference a symbol as an import symbol, it is necessary to declare it to be an export
symbol, and also to declare it to be an import symbol.

Export symbols are declared in the file in which they are defined using either the .EXPORT
or the .GLOBAL directive.

Import symbols are declared in the file in which they are referenced using either the
IMPORT or the .GLOBAL directive.

HITACHI 133



Coding Example

(In this example, a symbol defined in file A is referenced from file B.)

File A:
.GLOBAL X ; This statement declares X to be an export
|:| : symbol.
X: .EQU ﬂ’lOOOOOOO : This statement defines X.
File B:
.GLOBAL X ; This statement declares X to be an import
|:| : symbol.
ALIGN 4
.DATA.L X ; This statement references X.

134 HITACHI



4.2.6 Object Module Assembler Directives

This assembler provides the following assembler directives concerned with object modules.

.OUTPUT Controls object module and debug information output.

.DEBUG Controls the output of symbolic debug information.

.ENDIAN Selects big endian or little endian.

.LINE Changes line number.

HITACHI 135



.OUTPUT Object Module Output Control

Syntax

0.OUTPUTO<output specifier>[,<output specifier>]

Statement Elements

1. Label
The label field is not used.
2. Operation
Enter the .OUTPUT mnemonic.
3. Operands: <output specifier>
Output Specifier Output Control
OBJ An object module is output.
NOOBJ No object module is output.
DBG Debug information is output in the object module.
NODBG No debug information is output in the object module.
The shaded section indicates the default value when the specifier is omitted.
The output specifiers control object module and debug information output.
Description
1. .OUTPUT is the assembler directive that controls object module and debug information
output.
2. Ifthe .OUTPUT directive is used two or more times in a program with inconsistent output
specifiers, an error occurs.
Example: |_| |_|
.OUTPUT OBJ .OUTPUT OBJ
.OUTPUT NODBG ~ OK .OUTPUT NOOBJ ~ Error
3. Specifications concerning debug information output are only valid when an object module is
output.
4. The assembler gives priority to command line option specifications concerning object

module and debug information output.

References: Object module output

- User's Guide, 2.2.2, “Object Module Command Line Options” -OBJECT -NOOBJECT
Debug information output

- User's Guide, 2.2.2, “Object Module Command Line Options” -DEBUG -NODEBUG

136 HITACHI



Coding Example

Note: This example and its description assume that no command line options concerning object
module or debug information output were specified.

.OUTPUT OBJ ; An object module is output.
|:| ; No debug information is output.

.OUTPUT OBJ,DBG : Both an object module and debug information
|:| ; is output.

.OUTPUT OBJ,NODBG ; An object module is output.
|:| ; No debug information is output.

Supplement:

Debug information is required when debugging a program using the simulator/debugger, and is
part of the object module.

Debug information includes information about source statements and information about
symbols.

HITACHI 137



.DEBUG Symbolic Debug Information Output Control

Syntax

0.DEBUG<output specifier>

Statement Elements

1. Label
The label field is not used.
2. Operation
Enter the .DEBUG mnemonic.
3. Operands: output specifier
Output Specifier Output Control

ON Symbolic debug information is output starting with the next
source statement.

OFF Symbolic debug information is not output starting with the next
source statement.

The shaded section indicates the default value when the specifier is omitted.

The output specifier controls symbolic debug information output.
Description

1. .DEBUG is the assembler directive that controls the output of symbolic debug information.

This directive allows assembly time to be reduced by restricting the output of symbolic
debug information to only those symbols required in debugging.

2. The specification of the .DEBUG directive is only valid when both an object module and
debug information are output.

References: Object module output
- Programmer’s Guide, 4.2.6, “Object Module Assembler Directives”, .OUTPUT

- User's Guide, 2.2.2 “Object Module Command Line Options”
-OBJECT -NOOBJECT

Debug information output
- Programmer’s Guide 4.2.6, “Object Module Assembler Directives”, .OUTPUT

- User's Guide, 2.2.2, “Object Module Command Line Options”
-DEBUG -NODEBUG

138 HITACHI



Coding Example

[]

.DEBUG OFF ; Starting with the next statement, the assembler
|:| ; does not output symbolic debug information.

.DEBUG ON ; Starting with the next statement, the assembler
|:| outputs symbolic debug information.

.DEBUG OFF ; Starting with the next statement, the assembler
|:| ; does not output symbolic debug information.

.DEBUG ON ; Starting with the next statement, the assembler
|:| ; outputs symbolic debug information.

Supplement:

The term “symbolic debug information” refers to the parts of debug information concerned with
symbols.

HITACHI 139



.ENDIAN Endian Selection

Syntax

O.ENDIAN O[<endian>]

<endian>:{BIG|LITTLE}

Statement Elements

1. Label

The label field is not used.
2. Operation

Enter the .ENDIAN mnemonic.
3. Operands: endian

Endian Output Control
BIG Assembles program in big endian
LITTLE Assembles program in little endian

The shaded section indicates the default value when the specifier is omitted.

Description

1. .ENDIAN is the assembler directive that selects the big endian or little endian.
2. The endian specified by an .ENDIAN directive is valid until the next .ENDIAN is specified.
3. If the -ENDIAN option has been specified, the .ENDIAN is invalidated.

Reference: -ENDIAN

- User’'s Guide, 2.2.2 “Object Module Command Line Options” -ENDIAN

140 HITACHI



Coding Example

1. When the big endian is selected

.ENDIAN__ BIG : This statement selects the big endian.
X: .DATA.L H'12345678 ;
.DATAW H'1234,H'5678 ; These statements reserve integer data.

.DEIA.B H'12,H34 ;

; Memory !
1 Address symbol |
‘ X ] :
12 34 56 78 !
| 12 34 | 56 78 |
1 12 [ 34 ]
! N J Note: The data in this figure :
! is hexadecimal. 1
! 4 bytes !

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

HITACHI 141




2. When the little endian is selected

.ENDIAN LITTLE ;

.DATAW

H'12345678

H'1234,H'5678 ;
H'12,H'34

This statement selects the little endian.

These statements reserve integer data.

Explanatory Figure for the Coding Example

Memory
Address symbol
X — :
3 78 56 34 12 !
1 34 12 | 78 56 1
: 12 [ 34 3
J Note: The data in this figure
is hexadecimal. !
1 4 bytes !
142 HITACHI




.LINE Line Number Modjification

Syntax

O.LINE O[*<file name>" ]<line number>

Statement Elements

1. Label
The label field is not used.
2. Operation
Enter the .LINE mnemonic.
3. Operands
O First operand: file name
Enter the file name referred to at error message output or at debugging.
0 Second operand: line number
Enter the line number referred to at error message output or at debugging.

Description

1. .LINE is the assembler directive that changes the file name and line number referred to at
error message output or at debugging.

2. The line number and the file name specified with a .LINE directive is valid until the next
.LINE.

3. Inan SH C Compiler of version 3.0 or higher, the .LINE directive that corresponds to the
line number in the C source file is generated when the debug option is specified and an
assembler source is output.

4. If the file name is omitted, the file name is not changed, but only the line number is changed.

HITACHI 143



Coding Example

shc —code=asntode -debug test.c

C source program (test.c) Assembly source program (test.src)
Lint func() : : . EXPORT _func :
' ! i .SECTION P, CODE, ALI GN\=4 }
i nt i . LI NE "Jasmtest.c", 1
1 : : _func: ; function: func |
f j =0; : ! frame size=0 1
3 for (i=1;i<=10;i+¥){ | - .LINE "/asmtest.c",5 ;
! j+=i; : } MOV #0, R5 |
! } 3 3 .LINE "/asnmtest.c", 6 !
' return(j); | : MOV #10, R6 i
) : i MOV #1, R4 }
o i | L212: }
i . LINE "lasmtest.c", 7 :
| ADD R4, RS |
} ADD #1, R4 }
.LINE "lasmtest.c", 6
3 CWP/ GT R6, R4 |
| BF L212 i
f . LINE "lasmtest.c", 10 ;
1 RTS 1
. LINE "/asmtest.c",9
| MoV R5, RO !
} END }

144 HITACHI




4.2.7 Assemble Listing Assembler Directives

This assembler provides the following assembler directives for controlling the assemble listing.

.PRINT Controls assemble listing output.
.LIST Controls the output of the source program listing.
.FORM Sets the number of lines and columns in the assemble listing.

.HEADING Sets the header for the source program listing.

.PAGE Inserts a new page in the source program listing.
.SPACE Outputs blank lines to the source program listing.
Supplement:

The assembile listing is a listing to which the results of the assembly are output, and includes a
source program listing, a cross-reference listing, and a section information listing.

Reference: For a detailed description of the assemble listing, see appendix C, “Assemble
Listing Output Example”.

HITACHI 145



.PRINT Assemble Listing Output Control

Syntax

O.PRINT O<output specifier>[,<output specifier>...]

Statement Elements

1.

Label

The label field is not used.
Operation

Enter the .PRINT mnemonic.
Operands: output specifier

Output Specifier Assembler Action

LIST An assemble listing is output.

NOLIST No assemble listing is output.

SRC A source program listing is output in the assemble listing.
NOSRC No source program listing is output in the assemble listing.
CREF A cross-reference listing is output in the assemble listing.
NOCREF No cross-reference listing is output in the assemble listing.
SCT A section information listing is output in the assemble listing.
NOSCT No section information listing is output in the assembile listing.

The shaded sections indicate the default settings when the specifier is omitted.

The output specifier controls assemble listing output.

Description

1.
2.

.PRINT is the assembler directive that controls assemble listing output.
If the .PRINT directive is used two or more times in a program with inconsistent output
specifiers, an error occurs.

Example: |_| |_|

.PRINT LIST .PRINT LIST
.PRINT_NOSRC ~ OK .PRINT_NOLIST ~ Error

The output specifiers concerned with the source program listing, the cross-reference listing,
and the section information listing are only valid when an assemble listing is output.

The assembler gives priority to command line option specifications concerning assemble
listing output.

146 HITACHI



References: Assemble listing output

- User’'s Guide, 2.2.3, “Assemble Listing Command Line Options”
-LIST -NOLIST
-SOURCE -NOSOURCE
-CROSS_REFERENCE -NOCROSS_REFERENCE
-SECTION -NOSECTION

Coding Example

Note: This example and its description assume that no command line options concerning
assemble listing output are specified.

.PRINT LIST ; All types of assemble listing are output.

.PRINT  LIST,NOSRC,NOCREF

[]

Only a section information listing is output.

HITACHI 147



.LIST Source Program Listing Output Control

Syntax

O.LIST O<output specifier>[,<output specifier>...]
Output specifier: {ON|JOFF|COND|NOCOND|DEF|NODEF|CALL|NOCALL|
NOEXP|CODE|NOCODE}

Statement Elements

1. Label

The label field is not used.
2. Operation

Enter the .LIST mnemonic.
3. Operands

Enter the output specifiers.

Description

1. .LIST is the assembler directive that controls output of the source program listing in the
following three ways:

a Selects whether or not to output source statements.

b Selects whether or not to output source statements related to the conditional assembly and
macro functions.

c Selects whether or not to output object code lines.
2. Output is controlled by output specifiers as follows:

148 HITACHI



Output Specifier

Type Output Not output Object Description
a ON OFF Source statements The source statements following this directive
b COND NOCOND Failed condition Condition-failed .AIF or .AIFDEF directive
statements
DEF NODEF Definition Macro definition statements

AREPEAT and .AWHILE definition statements
INCLUDE directive statements

ASSIGNA and .ASSSIGNC directive
statements

CALL NOCALL Call Macro call statements,
AlF, AIFDEF, and .AENDI directive statements

EXP NOEXP Expansion Macro expansion statements
AREPEAT and .AWHILE expansion
statements

CODE NOCODE Objectcodelines The object code lines exceeding the source
statement lines

The shaded sections indicate the default settings when the specifier is omitted.

The specification of the .LIST directive is only valid when an assemble listing is output.
References: Source program listing output
- Programmer’s Guide, 4.2.7, “Assemble Listing Assembler Directives”, .PRINT

- User’s Guide, 2.2.3, “Assemble Listing Command Line Options”,
-LIST -NOLIST -SOURCE -NOSOURCE

The assembler gives priority to command line option specifications concerning source
program listing output.

Reference:  Output on the source program listing

- User’s Guide, 2.2.3, “Assemble Listing Command Line Options”
-SHOW -NOSHOW

.LIST directive statements themselves are not output on the source program listing.

HITACHI 149



Coding Example

LIST NOCOND,NODEF This statement controls source program
MACRO SHLRN COUNT,Rd listing output.

SHIFT .ASSIGNA\COUNT

AIF\&SHIFT GE 16
SHLR16 \Rd

SHIFT .ASSIGNA\&SHIFT-16
.AENDI

AIF\&SHIFT GE 8
SHLR8 \Rd

SHIFT .ASSIGNA\&SHIFT-8
.AENDI

These statements define a general-
purpose multiple-bit shift procedure as a
macro instruction.

AIF\&SHIFT GE 4
SHLR2 \Rd
SHLR2 \Rd

SHIFT .ASSIGNA\&SHIFT-4
.AENDI

AIF\&SHIFT GE 2
SHLR2 \Rd

SHIFT .ASSIGNA\&SHIFT-2
.AENDI

AIF\&SHIFT GE 1
SHLR \Rd
.AENDI

.ENDM

SHLRN 23,R0
.END

fffff " Macro call

150 HITACHI



Source Listing Output of Coding Example

The .LIST directive suppresses the output of the macro definition, .ASSIGNA and .ASSIGNC
directive statements, and .AlIF and .AIFDEF condition-failed statements.

*** SH SERIES ASSEMBLER Ver. 3.0 ***  07/09/95 16:33:49

PAGE 1
PROGRAM NAME =
31 31
32 32 SHLRN 23,R0
33 M
35 M
36 M AIF 23 GE 16
37 00000000 4029 C SHLR16 RO
39 M .AENDI
40 M
41 M AIF7 GES8
45 M
46 M AIF7 GE4
47 00000002 4009 C SHLR2 RO
48 00000004 4009 C SHLR2 RO
50 M .AENDI
51 M
52 M AIF3 GE 2
53 00000006 4009 C SHLR2 RO
55 M .AENDI
56 M
57 M AIF1 GE1
58 00000008 4001 C SHLR RO
59 M .AENDI
60 33 .END

¥»****TOTAL ERRORS 0
**’ﬁOTAL WARNINGS 0

HITACHI 151



.FORM Assembile Listing Line Count and Column Count Setting

Syntax

0.FORMI<size specifier>[,<size specifier>...]

Statement Elements

1. Label

The label field is not used.
2. Operation

Enter the .FORM mnemonic.
3. Operands: size specifier

Size Specifier Listing Size
LIN=<line count> The specified value is set to the number of lines per page.
COL=<column count> The specified value is set to the number of columns per line.

These specifications determine the number of lines and columns in the assembile listing.
Description

1. .FORM is the assembler directive that sets the number of lines per page and columns per line
in the assembile listing.

2. The line count and column count must be specified as follows:
O The specifications must be absolute values,
and,
O Forward reference symbols must not appear in the specifications.
The values allowed for the line count are from 20 to 255.
The values allowed for the column count are from 79 to 255.
3. The .FORM directive can be used any number of times in a given source program.

4. The assembler gives priority to command line option specifications concerning the number
of lines and columns in the assembile listing.

References: Setting the line count in assemble listing

- User's Guide, 2.2.3, “Assemble Listing Command Line Options” -LINES
Setting the column count in assemble listing

- User's Guide, 2.2.3, “Assemble Listing Command Line Options” -COLUMNS

5. When there is no specification of command line option or .FORM assembler directive
specification for the line count or the column count, the following values are used:

O Line count............. 60 lines
O Column count 132 columns

152 HITACHI



Coding Example

Note: This example and its description assume that no command line options concerning the
assemble listing line count and/or column count are specified.

[]

.FORM LIN=60, COL=200 ; Starting with this page, the number of lines

; per page in the assemble listing is 60 lines.
Also, starting with this line, the number of
columns per line in the assembile listing is
200 columns.

.FORM LIN=55, COL=150 ; Starting with this page, the number of lines

; per page in the assemble listing is 55 lines.
Also, starting with this line, the number of
columns per line in the assemble listing is
150 columns.

|:| ;

HITACHI 153



.HEADING Source Program Listing Header Setting

Syntax

0O.HEADINGO"<character string>*

Statement Elements

1. Label
The label field is not used.
2. Operation
Enter the .HEADING mnemonic.
3. Operands: character string
Enter the header for the source program listing.

Description

1. .HEADING is the assembler directive that sets the header for the source program listing.
A character string of up to 60 characters can be specified as the header.
Reference: Character strings
- Programmer’s Guide, 1.7, “Character Strings”
2. The .HEADING directive can be used any number of times in a given source program.
The range of validity for a given use of the .HEADING directive is as follows:
O When the .HEADING directive is on the first line of a page, it is valid starting with that
page.
0 When the .HEADING directive appears on the second or later line of a page, it is valid
starting with the next page.

154 HITACHI



Coding Example

[]

.HEADING ** SAMPLE.SRC™ WRITTEN BY YAMADA”

Explanatory Figure for the Coding Example

Source program listing

———————————————————————————————————————————— ~— Page boundary
— Second line
\\F Header

"SAMPLE. SRC' WRI TTEN BY YAMADA

HITACHI 155




.PAGE Source Program Listing New Page Insertion

Syntax

0.PAGE

Statement Elements

1. Label

The label field is not used.
2. Operation

Enter the .PAGE mnemonic.
3. Operands

The operand field is not used.

Description

1. .PAGE is the assembler directive that inserts a new page in the source program listing at an
arbitrary point.

2. The .PAGE directive is ignored if it is used on the first line of a page.

3. .PAGE directive statements themselves are not output to the source program listing.

156 HITACHI



Coding Example

[]

MOV RO,R1
RTS
MOV RO,R2
.PAGE ;A new page is specified here since the

; section changes at this point.
.SECTION DT,DATA,ALIGN=4
.DATA.L H'11111111
.DATA.L H'22222222
.DATA.L |j33333333

Note: See appendix C, “Assemble Listing Output Example”, for an explanation of the contents of the
source program listing.

i 18 00000022 6103 18 MoV RO, R1L 3
| 19 00000024 000B 19 RTS !
3 20 00000026 6203 20 MoV RO, R2 i
3 ---------------------------------------------------------------------------- - New i
| page !
| *** SH SERI ES ASSEMBLER Ver. 3.0 *** 10/ 10/ 95 10: 23: 30 !
PROGRAM NAME = !
i 23 00000000 23 . SECTI ON DT, DATA, ALI GN 3
| 24 00000000 11111111 24 . DATA. L H 11111111 !
3 25 00000004 22222222 25 . DATA. L H 22222222 |
! 26 00000008 33333333 26 . DATA. L H 33333333 i

HITACHI 157




.SPACE Source Program Listing Blank Line Output

Syntax

0.SPACE][ O<line count>]

Statement Elements

1.

Label

The label field is not used.

Operation

Enter the .SPACE mnemonic.

Operands: line count

Enter the number of blank lines.

A single blank line is output if this operand is omitted.

Description

1.

.SPACE is the assembler directive that outputs the specified number of blank lines to the
source program listing. Nothing is output for the lines output by the .SPACE directive; in
particular line numbers are not output for these lines.

The line count must be specified as follows:
0 The specification must be an absolute value,
and,
O Forward reference symbols must not appear in the specification.
Values from 1 to 50 can be specified as the line count.

When a new page occurs as the result of blank lines output by the .SPACE directive, any
remaining blank lines are not output on the new page.

4. .SPACE directive statements themselves are not output to the source program listing.

158 HITACHI



Coding Example

.SECTION DT1,DATAALIGN=4

.DATA.L H11111111

.DATA.L H'22222222

.DATA.L H’'33333333

.DATA.L H'44444444 : Inserts five blank lines at the point
.SPACE 5 : where the section changes.

.SECTION DT2,DATA,ALIGN=4

*** SH SERI ES ASSEMBLER Ver. 3.0 *** 10/10/95 10: 23: 30
PROGRAM NAME =
1 00000000 1 . SECTION  DT1, DATA, ALI G\=4
2 00000000 11111111 2 . DATA. L H 11111111
3 00000004 22222222 3 . DATA. L H 22222222
4 00000008 33333333 4 . DATA. L H 33333333
5 0000000C 44444444 5 . DATA. L H 44444444

7 00000000 7 . SECTION  DT2, DATA, ALl G\=4

Note: See appendix C, “Assemble Listing Output Example”, for an explanation of the contents of the source
program listing.

HITACHI 159




4.2.8 Other Assembler Directives

This assembler provides the following additional assembler directives.

.PROGRAM Sets the name of the object module.

.RADIX Sets the radix in which integer constants with no radix specifier are
interpreted.

.END Declares the end of the source program.

160

HITACHI



.PROGRAM  Object Module Name Setting

Syntax

0.PROGRAM <object module name>

Statement Elements

1.

Label

The label field is not used.
Operation

Enter the .PROGRAM mnemonic.

. Operands: <object module name>

Enter a name that identifies the object module.

Description

1.

.PROGRAM is the assembler directive that sets the object module name.

The object module name is a name that is required by the H Series Linkage Editor or the H
Series Librarian to identify the object module.

Object module naming conventions are the same as symbol naming conventions.

The assembler distinguishes upper-case and lower-case letter in object module names.
Reference: Coding of symbols

- Programmer’s Guide, 1.3.2, “Coding of Symbols”

Setting the object module name with the .PROGRAM directive is valid only once in a given
program. (The assembler ignores the second and later specifications of the .PROGRAM
directive.)

If there is no .PROGRAM specification of the object module name, the assembler will set a
default (implicit) object module name.

The default object module name is the file name of the object file (the object module output
destination).

Example:  Object filename............ 'PROG! | obj

Object module name..... PROG

Note: When MS-DOS is used, the file format is written in uppercase letters.

HITACHI 161



Reference: User’s Guide, 1.2, “File Specification Format”
5. The object module name can be the same as a symbol used in the program.

Coding Example

.PROGRAM PROG1 ; This statement sets the object module name to be

PROGL1.
[]

162 HITACHI



.RADIX Default Integer Constant Radix Setting

Syntax

0.RADIX O<radix specifier>

Statement Elements

1. Label

The label field is not used.
2. Operation

Enter the .RADIX mnemonic.
3. Operands: radix specifier

Radix Specifier Radix of Integer Constants with No Radix Specification
B Binary

Q Octal

D Decimal

H Hexadecimal

The shaded section indicates the default setting when the specifier is omitted.

This specifier sets the radix (base) for integer constants with no radix specification.

Description

1. .RADIX is the assembler directive that sets the radix (base) for integer constants with no
radix specification.

2. When there is no radix specification with the .RADIX directive in a program, integer
constants with no radix specification are interpreted as decimal numbers.

3. If hexadecimal (radix specifier H) is specified as the radix for integer constants with no radix
specification, integer constants whose first digit is A through F must be prefixed with a 0
(zero). (The assembler interprets expressions that begin with A through F to be symbols.)

4. Specifications with the .RADIX directive are valid from the point of specification forward in
the program.

HITACHI 163



Coding Example

[]

.RADIX D
X: .EQU 100 ; This 100 is decimal.
.RADIX H
Y: .EQU |f|4 : This 64 is hexadecimal.
.RADIX H
Z: .EQU OF : A zero is prefixed to this constant “OF” since it would
; be interpreted as a symbol if it were written as simply
“F.

]

164 HITACHI



.END Source Program End Declaration

Syntax

O.END[ O<start address>]

Statement Elements

1. Label
The label field is not used.
2. Operation
Enter the .END mnemonic.
3. Operands: start address
Enter the start address for simulation if required.

Description

1. .END is the assembler directive that declares the end of the source program.
Assembly processing terminates at the point that the .END directive appears.

2. If a start address is specified with the .END directive in the operand field, the
simulator/debugger starts simulation from that address.

3. The start address must be specified with either an absolute value or an address value.
4. The value of the start address must be an address in a code section.

Coding Example

.SECTION CD,CODE,ALIGN=4

START:
[]

.END START : This statement declares the end of the source
: program.
; The simulator/debugger starts simulation from
: the address indicated by the value of the
: symbol START.

HITACHI 165



166 HITACHI



Section 5 File Inclusion Function

The file inclusion function allows source files to be inserted into other source files at assembly
time. The file inserted into another file is called an included file.

This assembler provides the .INCLUDE directive to perform file inclusion. The file specified
with the .INCLUDE directive is inserted at the location of the .INCLUDE directive.

Example:

Source program

. INCLUDE "FILE H' Included file FILE.H

,,,,,,,,,,,,,,,,,,,,,,,

. SECTI ON CDL, CODE, ALI G\=4 |

oN EQU 1
MOV #ON, RO OFF: .EQU | 0 |

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

. I NCLUDE "FILE H'
ON. .EQU 1
OFF: .EQU O

. SECTI ON CD1, CODE, ALI G\=4
MOV #ON, RO

HITACHI 167



.INCLUDE File Inclusion

Syntax

O.INCLUDE O"<file name>*

Statement Elements

1. Label
The label field is not used.
2. Operation
Enter the .INCLUDE mnemonic.
3. Operands
Enter the file to be included.
Description
1. .INCLUDE is the file inclusion assembler directive.
2. If no file format is specified, only the file name is used as specified (the assembler does not
assume any default file format).
Reference: User’s Guide, 1.2, “File Specification Format”
3. The file name can include the directory. The directory can be specified either by the absolute
path (path from the route directory) or by the relative path (path from the current directory).
Note: The current directory for the .INCLUDE directive in a source file is the directory
where the assembler is initiated. The current directory for the .INCLUDE directive
in an included file is the directory where the included file exits.
4. Included files can include other files. The nesting depth for file inclusion is limited to 30
levels (multiplex state).
5. The directory name specified by .INCLUDE can be changed by -INCLUDE.

Reference: -INCLUDE
- User’s Guide, 2.2.4, “File Inclusion Function Command Line Option”

168 HITACHI



Coding Example

This example assumes the following directory configuration and operations:

) S——
/

dirl dir2

T T
@ file2.h

» Starts the assembler from the route directory (/)
* Inputs source file /dirl/filel.src

* Inserts file2.h in filel.src

* Inserts file3.h in file2.h

The start command is as follows:

%asmsh /dirl/filel.src (RET)
filel.src must have the following inclusion directive:

.INCLUDE “dir2/file2.h" ; / is the current directory (relative path specification).
or

INCLUDE “/dir2/file2.h" ; Absolute path specification
file2.h must have the following inclusion directive:

.INCLUDE “file3.h” ; /dir2 is the current directory (relative path specification).
or

INCLUDE “/dir2/file3.h" ; Absolute path specification
CAUTION!

When using MS-DOS, change the slash (/) in the above example as follows depending on the
version of MS-DOS.

¢ Japanese version: Yen mark (¥)
¢ English version: Backslash (\)

HITACHI 169



170 HITACHI



Section 6 Conditional Assembly Function

6.1 Overview of the Conditional Assembly Function

The conditional assembly function provides the following assembly operations:

Replaces a character string in the source program with another character string.

Selects whether or not to assemble a specified part of a source program according to the
specified condition.

Iteratively assembles a specified part of a source program.

6.1.1 Preprocessor variables

Preprocessor variables are used to write assembly conditions. Preprocessor variables are of either
integer or character type.

1.

Integer preprocessor variables

Integer preprocessor variables are defined by the .ASSIGNA directive (these variables can be
redefined).

When referencing integer preprocessor variables, insert a backslash (\)* and an ampersand
(&) in front of them.

Example:
FLAj:lASSIGNA 1
AlF \&FLAG EQ 1 ; MOV RO,R1 is assembled
MOV RO,R1 ; when FLAG is 1.

.AEND

Note: When using a Japanese version of MS-DOS, use ¥ instead of \.

Character preprocessor variables

Character preprocessor variables are defined by the .ASSIGNC directive (these variables can
be redefined).

When referencing character preprocessor variables, insert a backslash (\)* and an ampersand
(&) in front of them.

HITACHI 171



Example:
FLAG: .ASSIGNC “ON”

[]

AIF“ \&FLAG” EQ “ON” MOV RO,R1 is assembled
MOV RO,R1 ; when FLAG is “ON".
.AENDI

[]

Note: When using a Japanese version of MS-DOS, use ¥ instead of \.

6.1.2 Replacement Symbols

The .DEFINE directive specifies symbols that will be replaced with the corresponding character
strings at assembly. A coding example is shown below.

Example:

SYV\ﬁ .DEFINE *“RY”

mOV.L SYM1,RO ;Replaced with MOV.L R1,RO.

172 HITACHI



6.1.3 Conditional Assembly

The conditional assembly function determines whether or not to assemble a specified part of a
source program according to the specified conditions. Conditional assembly is classified into
two types: conditional assembly with comparison and conditional assembly with definition.

Conditional Assembly with Comparison:

Selects the part of program to be assembled according to whether or not the specified condition
is satisfied. A coding example is as follows:

.AlF <conparison condition 1>
<Statements to be assembled when condition 1 is satisfied>

.. AELI F <conparison condition 2>

<Statements to be assembled when condition 2 is satisfied>

. AELSE

HITACHI 173



Example:

[]

AlF “&FLAG” EQ “ON”

MOV RO,R10 ; Assembled when FLAG
MOV R1,R11 ; is ON.

MOV R2,R12 ;

AELSE

MOV R10,RO : Assembled when FLAG
MOV R11,R1 : is not ON.

MOV R12,R2 ;

AENDI

Conditional Assembly with Definition:

Selects the part of program to be assembled by whether or not the specified replacement symbol
has been specified. A coding example is as follows:

. Al FDEF <definition condition>

<Statements to be assembled when the specified replacement symbol is defined>

|__Erample:

AIFDEF FLAG

MOV RO,R10 Assembled when FLAG is defined with
MOV R1,R11 the .DEFINE directive after the .AIFDEF
MOV R2,R12 djrective in the program.

.AELSE

MOV R10,RO Assembled when FLAG is not defined with
MOV R11,R1 the .DEFINE directive after the .AIFDEF
MOV R12,R2 directive in the program.

174 HITACHI



0

6.1.4 Iterated Expansion

A part of a source program can be iteratively assembled the specified number of times. A coding
example is shown below.

[]

AREPEAT <count>
< Statements to be iterated>
.AENDR

Example:

; This example is a division of 64-bit data by 32-bit data.
; R1:R2 (64 bits) + RO (32 bits) = R2 (32 bits): Unsigned
TST RO,RO ; Zero divisor check
BT zero_div
CMP/HS RO,R1

BT over_div

: Overflow check

DIVOU ; Flag initialization

AREPEAT 32

ROTCL R2 : These statements are iterated 32 times.
DIVl RO,R1 ;

AENDR

ROTCL R2 : R2 = quotient

6.1.5 Conditional Iterated Expansion

A part of a source program can be iteratively assembled while the specified condition is
satisfied. A coding example is shown below.

[]

AWHILE <condition>
< Statements to be iterated>
AENDW

HITACHI 175



Example:

; This example is a multiply and accumulate

; operation.

TbISiz: .ASSIGNA 50 : TblSiz: Data table size

MOV A Thbll,R1 : R1: Start address of data table 1

MOV A Tbl2,R2 : R2: Start address of data table 2

CLRMAC : MAC register initialization

AWHILE \&ThISize GT O ; While ThISiz is larger than 0,

MAC.W @RO+,@R1+ ; this statement is iteratively assembled.
TbISiz: .ASSIGNA \&ThISiz-1 ; 1 is subtracted from TblSiz.

AENDW

STS MACL,RO : The result is obtained in RO.

176 HITACHI



6.2 Conditional Assembly Directives

This assembler provides the following conditional assembly directives.

.ASSIGNA

.ASSIGNC

.DEFINE

AlF
AELIF
AELSE
.AENDI

AIFDEF
AELSE
.AENDI

AREPEAT
.AENDR

AWHILE
AENDW

.AERROR
EXITM
ALIMIT

Defines an integer preprocessor variable. The defined variable can
be redefined.

Defines a character preprocessor variable. The defined variable can
be redefined.

Defines a preprocessor replacement character string.

Determines whether or not to assemble a part of a source program
according to the specified condition. When the condition is satisfied,
the statements after the .AlF are assembled. When not satisfied, the
statements after the .AELIF or .AELSE are assembled.

Determines whether or not to assemble a part of a source program
according to the replacement symbol definition. When the
replacement symbol is defined, the statements after the .AIFDEF are
assembled. When not defined, the statements after the .AELSE are
assembled.

Repeats assembly of a part of a source program (between
.AREPEAT and .AENDR) the specified number of times.

Assembles a part of a source program (between .AWHILE and
.AENDW) iteratively while the specified condition is satisfied.

Processes an error during preprocessor expansion.
Terminates .AREPEAT or .AWHILE iterated expansion.
Specifies the maximum count of . AWHILE expansion.

HITACHI 177



ASSIGNA Integer Preprocessor Variable Definition (Redefinition Is Possible)
Syntax

<preprocessor variable>[:] 0.ASSIGNAO<value>

Statement Elements

1. Label
Enter the name of the preprocessor variable.
2. Operation
Enter the .ASSIGNA mnemonic.
3. Operands
Enter the value to be assigned to the preprocessor variable.

Description

1. .ASSIGNA is the assembler directive that defines a value for an integer preprocessor
variable. The syntax of integer preprocessor variables is the same as that for symbols. The
assembler distinguishes uppercase and lowercase letters.

2. The preprocessor variables defined with the .ASSIGNA directive can be redefined with the
.ASSIGNA directive.

3. The values for the preprocessor variables must be the following:
0 Constant (integer constant and character constant)
0 Defined preprocessor variable
0 Expression using the above as terms

4. Defined preprocessor variables are valid from the point of specification forward in the source
program.

5. Defined preprocessor variables can be referenced in the following locations:
O .ASSIGNA directive

O .ASSIGNC directive

O .AIF directive

O .AELIF directive

O .AREPEAT directive

O .AWHILE directive

0 Macro body (source statements between .MACRO and .ENDM)

When referencing integer preprocessor variables, insert a backstfestd(§n ampersand
(&) in front of them.

\&<preprocessor variable>[]

To clearly distinguish the preprocessor variable name from the rest of the source statement,
an apostrophe (‘) can be added.

178 HITACHI



Note: When using a Japanese version of MS-DOS, use ¥ instead of \.

6. When a preprocessor character string is defined by a command line option, the .ASSIGNA
directive specifying the preprocessor valiable having the same name as the character string is
invalidated.

Coding Example

RN: .REG (RO) ;
SHIFT: .ASSIGNA 27

This example generates a general-purpose multiple-bit
shift instruction which shifts bits to the right by the
number of SHIFT.

RO is set to Rn.

27 is set to SHIFT

AlF \&SHIFT GE 16 Condition: SHIFT = 16

SHLR16 Rn ; When the condition is satisfied, Rn is shifted to the right by 16 bits.
SHIFT: .ASSIGNA \&SHIFT-16 16 is subtracted from SHIFT.

.AENDI

AlF \&SHIFT GE 8 Condition: SHIFT = 8

SHLR8 Rn ; When the condition is satisfied, Rn is shifted to the right by 8 bits.
SHIFT: .ASSIGNA \&SHIFT-8 8 is subtracted from SHIFT.

.AENDI

AlF \&SHIFT GE 4 Condition: SHIFT = 4

SHLR2 Rn ; When the condition is satisfied, Rn is shifted to the right by 4 bits.

SHLR2 Rn ;
SHIFT: .ASSIGNA \&SHIFT-4 4 is subtracted from SHIFT.

.AENDI

AlF \&SHIFT GE 2 Condition: SHIFT = 2

SHLR2 Rn ; When the condition is satisfied, Rn is shifted to the right by 2 bits.
SHIFT: .ASSIGNA \&SHIFT-2 2 is subtracted from SHIFT.

.AENDI

AlF \&SHIFT EQ 1 Condition: SHIFT =1

SHLR Rn ; When the condition is satisfied, Rn is shifted to the right by 1 bit.

.AENDI

The expanded results are as follows:

SHLR16 RO ; When the condition is satisfied, Rn is shifted to the right by 16 bits.
SHLR8 RO ; When the condition is satisfied, Rn is shifted to the right by 8 bits.
SHLR2 RO ; When the condition is satisfied, Rn is shifted to the right by 2 bits.
SHLR1 RO ; When the condition is satisfied, Rn is shifted to the right by 1 bit.

HITACHI

179



ASSIGNC Character Preprocessor Variable Definition (Redefinition Is Possible)

Syntax

<preprocessor variable>[:] 0.ASSIGNCO"<character string>*

Statement Elements

1.

Label

Enter the name of the preprocessor variable.
Operation

Enter the . ASSIGNC mnemonic.

. Operands

Enter the character string enclosed with double quotation marks ().

Description

1.

.ASSIGNC is the assembler directive that defines a character string for an character
preprocessor variable. The syntax of character preprocessor variables is the same as that for
symbols. The assembler distinguishes uppercase and lowercase letters.

The preprocessor variables defined with the .ASSIGNC directive can be redefined with the
.ASSIGNC directive.

Character strings are specified by characters or preprocessor variables enclosed by double
quotation marks ().

Defined preprocessor variables are valid from the point of specification forward in the source
program.

Defined preprocessor variables can be referenced in the following locations:
O .ASSIGNA directive

.ASSIGNC directive

AIF directive

AELIF directive

.AREPEAT directive

AWHILE directive

O Macro body (source statements between .MACRO and .ENDM)

When referencing character preprocessor variables, insert a backslash (\)* and an ampersand
(&) in front of them.

\&<preprocessor variable>[]

O Oooono

To clearly distinguish the preprocessor variable name from the rest of the source statement,
an apostrophe (‘) can be added.

Note: When using a Japanese version of MS-DOS, use ¥ instead of \.

180 HITACHI



6. When a preprocessor character string is defined by a command line option, the .ASSIGNC
directive specifying the preprocessor variable having the same name as the character string is
invalidated.

Coding Example

FLAG: .ASSIGNC “ON” ;“ ON"is set to FLAG.
AlF “&FLAG” EQ “ON” ; MOV RO,R1 is assembled
MOV RO,R1 ; when FLAG is “ON".
.AENDI
FLAG: .ASSIGNC “\&FLAG “ ; Aspace (““) is added to FLAG.
FLAGA:.ASSIGNC “OFF” ; “OFF” is added to FLAGA.

FLAG: .ASSIGNC “\&FLAG’AND \&FLAGA"
; An apostrophe (‘) is used to distinguish FLAG and
; AND.
; FLAG finally becomes “ON AND OFF”.

[]

HITACHI 181



.DEFINE Definition of Preprocessor Replacement Character String

Syntax

<symbol>[:] O.DEFINE O"<replacement character string>"

Statement Elements

1. Label
Enter a symbol to be replaced with a character string.
2. Operation
Enter the .DEFINE mnemonic.
3. Operands
Enter a replacement character string enclosed with double quotation marks (*).
Description
1. .DEFINE is the assembler directive that specifies that the symbol is replaced with the
corresponding character string.
2. The differences between the .DEFINE directive and the .ASSIGNC directive are as follows.
0 The symbol defined by the . ASSIGNC directive can only be used in the preprocessor
statement; the symbol defined by the .DEFINE directive can be used in any statement.
0 The symbols defined by the .ASSIGNA and the .ASSIGNC directives are referenced by
the “\&symbol” format; the symbol defined by the .DEFINE directive is referenced by
the “symbol” format.
0 The .DEFINE symbol cannot be re-defined.
3. The .DEFINE directive specifying a symbol is invalidated when the same replacement

symbol has been defined by a command line option.

Coding Example

SYM1: .DEFI

2

E “RT1”

MOV.L SYM1RO ; Replaced with MOV.L R1,R0.

1]

182 HITACHI



Notes

1. A hexadecimal number starting with an alphabetical character a to f or A to F will be
replaced when the same character string is specified as a replacement symbol by .DEFINE.
Add 0 to the beginning of the number to stop replacing such number.

AO: .DEFINE “0”
MOV.B #H'AO,RO : Replaced with MOV.B #H'0,R0.
MOV.B #H'OAO,RO ; Not replaced.

2. Aradix indication (B’, Q’, D’, or H’) will also be replaced when the same character string is
specified as a replacement symbol by .DEFINE. When specifying a symbol having only one
character, such as B, Q, D, H, b, g, d, or h, make sure that the corresponding radix indication
is not used.

B .DEFINE “H”
MOV.B #B’'10,R0 ; Replaced with MOV.H #H'10,R0.

HITACHI 183



AIF,.AELIF,.AELSE,.AENDI Conditional Assembly with Comparison

Syntax

.AlF<ternl><rel ati onal operator><tern2>
<Source statements assenbled if the AIF condition is satisfied>
. AELI F<terml><rel ati onal operator><tern>
[<Source statenents assenbled if the AELIF condition is satisfied> ]

. AELSE
<Source statenents assenbled if all the conditions are not satisfied>
. AENDI

Statement Elements

1. Label

The label field is not used.
2. Operation

Enter the .AlIF, .AELIF (can be omitted), .AELSE (can be omitted), or .AENDI mnemonic.
3. Operands

AIF: Enter the condition. Refer to the description below.

AELIF: Enter the condition. Refer to the description below.

AELSE: The operand field is not used.

AENDI: The operand field is not used.

Description

1. .AIF, .AELIF, .AELSE, and .AENDI are the assembler directives that select whether or not

to assemble source statements according to the condition specified. The .AELIF and .AELSE
directives can be omitted.

2. .AELIF can be specified repeatedly between .AIF and .AELSE.

3. The condition must be specified as follows:
AIF A<terml1> A<relational operator> A<term2>
AELIF A<terml1> A<relational operator> A<term2>
Terms are specified with numeric values or character strings. However, when a numeric
value and a character string are compared, the condition always fails.
Numeric values are specified by constants or preprocessor variables.

184 HITACHI



Character strings are specified by characters or preprocessor variables enclosed by double
guotation marks (“). To specify a double quotation mark in a character string, enter two
double quotation marks (“ “) in succession.
4. The following relational operators can be used:
EQ: terml =term2
NE: terml _term2
GT: terml > term2
LT: terml <term2
GE: terml=term2
LE: terml<term2
Note: Numeric values are handled as 32-bit signed integers. For character strings, only EQ and
NE conditions can be used.

Coding Example

[]

AlF \&TYPE EQ 1

MOV RO,R3 ; These statements
MOV R1,R4 ; are assembled
MOV R2,R5 ; when TYPE is 1.
AELIF \&TYPE EQ 2

MOV RO,R6 ; These statements
MOV R1,R7 ; are assembled
MOV R2,R8 ; when TYPE is 2.
.AELSE

MOV RO,R9 ; These statements
MOV R1,R10 ; are assembled
MOV R2,R11 ; when TYPE is not 1 nor 2.
.AENDI

[]

HITACHI 185



AIFDEF, .AELSE,.AENDI Conditional Assembly with Definition

Syntax

. Al FDEF <r epl acenent synbol >

<statenments to be assenbl ed when the specified replacenment synbol is defined>

. AELSE
<statenments to be assenbl ed when the specified replacenment synbol is not defined>
. AENDI

Statement Elements

1. Label

The label field is not used.
2. Operation

Enter the .AIFDEF, .AELSE (can be omitted), or . AENDI mnemonic.
3. Operands

AIFDEF: Enter the condition. Refer to the description below.
AELSE: The operand field is not used.
AENDI: The operand field is not used.

Description

1. .AIFDEF, .AELSE, and .AENDI are the assembler directives that select whether or not to
assemble source statements according to the replacement symbol definition.
2. The condition must be specified as follows.
AIFDEF A<replacement symbol>

The replacement symbol must be defined by the .DEFINE directive.

When the specified replacement symbol is defined by the command line option or in the
source statements before this directive, the condition is regarded as satisfied. When the

replacement symbol is defined after this directive or is not defined, the condition is regarded
as unsatisfied.

186 HITACHI



Coding Example

[]

.AIFDEF FLAG

MOV RO,R3 ; These statements are assembled when
MOV R1,R4 ; FLAG is defined with .DEFINE directive.
AELSE

MOV RO,R6 ; These statements are assembled when
MOV R1,R7 ; FLAG is not defined with .DEFINE directive.
AENDI

[]

HITACHI 187



.AREPEAT,.AENDR lterated Expansion

Syntax

U.AREPEAT <count>
<Source statements iteratively assembled>
U.AENDR

Statement Elements

1. Label
The label field is not used.
2. Operation
Enter the .AREPEAT or . AENDR mnemonic.
3. Operands
.AREPEAT: Enter the number of iterations.
AENDR: The operand field is not used.

Description

1. .AREPEAT and .AENDR are the assembler directives that assemble source statements by
iteratively expanding them the specified number of times.

2. The source statements between the . AREPEAT and .AENDR directives are iterated the
number of times specified with the .AREPEAT directive. Note that the source statements are
simply copied the specified number of times, and therefore, the operation does not loop at
program execution.

3. Counts are specified by constants or preprocessor variables.
4. Nothing is expanded if a value of O or smaller is specified.

188 HITACHI



Coding Example

TST RO,RO
BT zero_div
CMP/HS RO,R1
BT over_div
DIVOU
AREPEAT 32
ROTCL R2
DIV1 RO,R1
.AENDR
ROTCL R2

)

This example is a division of 64-bit data by 32-bit data.
R1:R2 (64 bits) + RO (32 bits) = R2 (32 bits): Unsigned
Zero divisor check

Overflow check

Flag initialization

These statements are

iterated 32 times.

R2 = quotient

HITACHI 189



AWHILE, . AENDW Conditional Iterated Expansion

Syntax

O.AWHILE A<term1> [<relational operator> A<term2>
<Source statements iteratively assembled>
U.AENDW

Statement Elements

1. Label
The label field is not used.
2. Operation
Enter the .AWHILE or . AENDW mnemonic.
3. Operands
AWHILE: Enter the condition to iteratively expand source statements.
AENDW: The operand field is not used.
Description

1. .AWHILE and .AENDW are the assembler directives that assemble source statements by
iteratively expanding them while the specified condition is satisfied.

2. The source statements between the .AWHILE and .AENDW directives are iterated while the
condition specified with the .AWHILE directive is satisfied. Note that the source statements
are simply copied iteratively, and therefore, the operation does not loop at program
execution.

3. The condition must be specified as follows:
AWHILE O<term1> [O<relational operator> O<term2>

Terms are specified with numeric values or character strings. However, when a numeric
value and a character string are compared, the condition always fails.

Numeric values are specified by constants or preprocessor variables.

Character strings are specified by characters or preprocessor variables enclosed by double
guotation marks (“). To specify a double quotation mark in a character string, enter two
double quotation marks (“ “) in succession.

Conditional iterated expansion terminates when the condition finally fails.

An infinite loop occurs if a condition which never fails is specified. Accordingly, the
condition for this directive must be carefully specified.

4. The following relational operators can be used:

190 HITACHI



EQ: terml =term2
NE: terml _term2
GT: terml > term2
LT: terml <term2
GE: terml1=term2
LE: terml<term2

Note: Numeric values are handled as 32-bit signed integers. For character strings, only EQ and
NE conditions can be used.

Coding Example

This example is a multiply and accumulate

: operation.

TblSiz: .ASSIGNA 50 ; TblSiz: Data table size

MOV A_TblI1,R1 ; R1: Start address of data table 1

MOV A_TblI2,R2 ; R2: Start address of data table 2

CLRMAC : MAC register initialization

AWHILE \&TbISize GTO0 ; While TblSiz is larger than O,

MAC.W @RO+,@R1+ : this statement is iteratively assembled.
TblSiz:.ASSIGNA \&TbISiz-1 : 1 is subtracted from ThlSiz.

.AENDW

STS MACL,RO ; The result is obtained in RO.

HITACHI 191



.AERROR Error Generation During Preprocessor Expansion
Syntax

O0.AERROR
Statement Elements

1. Label

The label field is not used.
2. Operation

Enter the .AERROR mnemonic.
3. Operands

The operand field is not used.
Description

1. When the .AERROR directive is assembled, error 667 is generated and the assembler is
terminated with an error.

2. The .AERROR directive can be used to check values such as preprocessor variables.

Coding Example

[]

AlF \&FLG eq 1
MOV R1,R10
MOV R2,R11
AELSE
AERROR ; When \&FLG is not 1, an error is generated.

.AENDI

192 HITACHI



.EXITM Expansion Termination
Syntax

O.EXITM
Statement Elements

1. Label

The label field is not used.
2. Operation

Enter the .EXITM mnemonic.
3. Operands

The operand field is not used.

Description

1. .EXITM is the assembler directive that terminates an iterated expansion ((AREPEAT to
.AENDR) or a conditional iterated expansion ((AWHILE to .AENDW).

2. Either expansion is terminated when this directive appears.

3. This directive is also used to exit from macro expansions. The location of this directive must
be specified carefully when macro instructions and iterated expansion are combined.

Reference: Macro expansion
- Programmer’s Guide, 7.2, “Macro Function Directives”

HITACHI 193



Coding Example

[]

COUNT .ASSIGNA O
AWHILE 1EQ1

: 0 is set to COUNT.

; An infinite loop (condition is always satisfied) is

: specified.
ADD RO,R1
ADD R2,R3
COUNT .ASSIGNA\&COUNT+1 ; 1 is added to COUNT.
AlIF \&COUNTEQ 2 ; Condition: COUNT =2
EXITM : When the condition is satisfied
AENDI : AWHILE expansion is terminated.
AENDW

[]

When COUNT is updated and satisfies the condition specified with the .AIF directive, .EXITM is
assembled. When .EXITM is assembled, .AWHILE expansion is terminated.

The expansion results are as follows:

ADD RO,R1 When COUNT is 0
ADD R2,R3

ADD RO,R1 When COUNT is 1
ADD R2,R3

After this, COUNT becomes 2 and expansion is terminated.

194 HITACHI



ALIMIT Maximum Count Specification for . AWHILE Expansion in Preprocessor

Syntax

O.ALIMIT  <count>

Statement Elements

1. Label
The label field is not used.
2. Operation
Enter the .ALIMIT mnemonic.
3. Operands
Enter the maximum count of statement expansion.
Description
1. During conditional iterated ((AWHILE to .AENDW) expansion, if the statement expansion

count exceeds the maximum value specified by the .ALIMIT directive, warning 854 is
generated and the expansion is terminated.
If the .ALIMIT directive is not specified, the maximum count is 65,535.

Coding Example

ALIMIT 20

FLG: .ASSIGNA 0

AWHILE \&FLGeqO ; Expansion is terminated after performed
NOP ; 20 times, and a warning message is output.
.AENDW

[]

HITACHI 195



196 HITACHI



Section 7 Macro Function

7.1 Overview of the Macro Function

The macro function allows commonly used sequences of instructions to be named and defined as
one macro instruction. This is called a macro definition. Macro instructions are defined as

follows:
L

.MACRO <macro name>
<macro body>

.ENDM |:|

A macro name is the name assigned to a macro instruction, and a macro body is the statements
to be executed as the macro instruction.

Using a defined macro instruction by specifying the name is called a macro call. Macro
instructions are called as follows:

<defined rﬁro name>

An example of macro definition and macro call is shown below.

Example:

.MACRO SUM ; Processing to obtain the sum of RO, R1, R2,

MOV RO,R10 ; and R3 is defined as macro instruction SUM.

ADD R1,R10

ADD R2,R10

ADD R3,R10

.ElﬁM
SUM ;. This statement calls macro instruction SUM.

; Macro body MOV RO,R10
; ADD R1,R10
; ADD R2,R10
; ADD R3,R10

is expanded from the macro instruction.

Parts of the macro body can be replaced when expanded by the following procedure:

HITACHI 197



1. Macro definition
a. Declare formal parameters in the .MACRO directive.
b. Use the formal parameters in the macro body. Formal parameters must be identified in
the macro body by placing a backslash (\) in front of them.
2. Macro call

Specify macro parameters in the macro call.
When the macro instruction is expanded, the formal parameters are replaced with their

corresponding macro parameters.

Example:
.MACRO SUM ARG1 ;  Formal parameter ARG1 is defined.
MOV RO, \ARG1 ; ARGL is referenced in the macro body.
ADD R1, \ARG1
ADD R2, \ARG1
ADD R3, \ARG1
.ENDM

SUM R10 ;. This statement calls macro instruction SUM
; specifying macro parameter R10.
The formal parameter in the macro body is
replaced with the macro parameter, and
MOV RO,R10
ADD R1,R10
ADD R2,R10
ADD R3,R10 is expanded.

198 HITACHI



7.2

This assembler provides the following macro function directives.

Macro Function Directives

.MACRO Defines a macro instruction.
.ENDM
EXITM Terminates macro instruction expansion.

HITACHI

199



.MACRO,.ENDM Macro Definition

Syntax

0.MACR@<macro name>[ [O<formal parameter>[=<default>]
[,<formal parameter>...]]
U.ENDM

Statement Elements

1.

Label

The label field is not used.

Operation

Enter the .MACRO or .ENDM mnemonic.

Operands
.MACRO: Enter the name and formal parameters for the macro instruction to be defined.
When formal parameters are defined, their defaults can be defined (defaults can be omitted).

.ENDM: The operand filed is not used.

Description

1.

.MACRO and .ENDM are the assembler directives that define a macro instruction (a
sequence of source statements that are collectively named and handled together).

Macro definition

Naming as a macro instruction the source statements (macro body) between the . MACRO
and .ENDM directives is called a macro definition.

Macro name
Macro names are the names assigned to macro instructions.

Formal parameters
Formal parameters are specified so that parts of the macro body can be replaced by specific
parameters at expansion time. Formal parameters are replaced with the character strings
(macro parameters) specified at macro expansion (macro call).
O Formal parameter syntax
The syntax for formal parameters is the same as that for symbols. The assembler
distinguishes uppercase and lowercase letters.
O Formal parameter reference
Formal parameters are used (referenced) at the part to be replaced in the the macro
body.
The syntax of formal parameter reference in macro bodies is as follows:
\<formal parameter name>['] *
To clearly distinguish the preprocessor variable name from the rest of the source
statement, an apostrophe (‘) can be added.

200 HITACHI



Note: When using a Japanese version of MS-DOS, use ¥ instead of \.

5. Formal parameter defaults

Defaults for formal parameters can be specified in macro definitions. The default specifies
the character string to replace the formal parameter when the corresponding macro parameter
is omitted in a macro call.

The default must be enclosed by double quotation marks () or angle brackets (<>) if any of
the following characters are included in the default.

0 Space

Tab

Comma (,)

Semicolon (;)

Double quotation marks (“)
O Angle brackets (< >)

The assembler inserts defaults at macro expansion by removing the double quotation marks
or angle brackets that enclose the character strings.

6. Restrictions on macro definitions

O Macros cannot be defined in the following locations:
Macro bodies (between .MACRO and .ENDM directives)
Between .AREPEAT and .AENDR directives
Between .AWHILE and .AENDW directives
The .ENDM directive cannot be used within a macro body.

0 No symbol can be inserted in the label field of the .ENDM directive. The .ENDM
directive is ignored if its label field is not blank, but no error is generated in this case.

u
u
u
u

u
g
g
g

HITACHI 201



Coding Example

[]

.MACRO SUM ; Processing to obtain the sum of RO, R1, R2,
MOV RO,R10 ; and R3 is defined as macro instruction SUM.
ADD R1,R10
ADD R2,R10
ADD R3,R10
.ENDM
SUM : This statement calls macro instruction SUM
; Macro body MOV RO,R10
; ADD R1,R10
ADD R2,R10

ADD R3,R10 is expanded.

202 HITACHI



.EXITM Expansion Termination
Syntax

O.EXITM
Statement Elements

1. Label

The label field is not used.
2. Operation

Enter the .EXITM mnemonic.
3. Operands

The operand field is not used.
Description

1. .EXITM is the assembler directive that terminates a macro expansion. This directive can be
specified within the macro body (between the .MACRO and .ENDM directives).

2. Expansion is terminated when this directive appears.

3. This directive is also used to exit from iterated expansions specified with the .AREPEAT or
AWHILE directive. The location of this directive must be specified carefully when macro
instructions and iterated expansion are combined.

HITACHI 203



Coding Example

. MACRO SUM P1

MOV RO, R10
ADD R1, R10 1)
ADD R2, R10

= (2
ADD R3, R10
. ENDM

SUM CEXI T™

.EXITM is expanded at (2) and macro expansion is terminated. Only the statements indicated

by (1) are expanded.

7.3 Macro Body

The source statements between the .MACRO and .ENDM directives are called a macro body.
The macro body is expanded and assembled by a macro call.

1. Formal parameter reference
Formal parameters are used to specify the parts to be replaced with macro parameters at
macro expansion.
The syntax of formal parameter reference in macro bodies is as follows:
\<formal parameter name>['] *
To clearly distinguish the formal parameter name from the rest of the source statement, add
an apostrophe (').
Note: When using a Japanese version of MS-DOS, use ¥ instead of \.

204 HITACHI



Coding example:

.MACRO PLUS1 P,P1 ; P and P1 are formal parameters.
ADD #1, \P1 ;  Formal parameter P1 is referenced.
.SDATA * \P'1” : Formal parameter P is referenced.
.ENDM

PLUS1 R,R1 ; PLUS1 is expanded.

Expanded results are as follows:
ADD #1,R1 : Formal parameter P1 is referenced.

.SDATA “R1” ; Formal parameter P is referenced.

2. Preprocessor variable reference
Preprocessor variables can be referenced in macro bodies.
The syntax for preprocessor variable reference is as follows:
\&<preprocessor variable name>['] *

To clearly distinguish the formal parameter name from the rest of the source statement, add

an apostrophe ().

Note: When using a Japanese version of MS-DOS, use ¥ instead of \.

Coding example:

.MACRO PLUS1

ADD #1,R \&V1 ;  Preprocessor variable V1 is referenced.
.SDATA * \&V'1” ; Preprocessor variable V is referenced.
.ENDM

\Y/ ASSIGNC “R” ; Preprocessor variable V is defined.

V1 .ASSIGNA1 ; Preprocessor variable V1 is defined.
PLUS1 ; PLUS1 is expanded.

Expanded results are as follows:
ADD #1,R1 : Preprocessor variable V1 is referenced.
.SDATA “R1” ; Preprocessor variable V is referenced.

3. Macro generation number
The macro generation number facility is used to avoid the problem that symbols used within
a macro body will be multiply defined if the macro is expanded multiple times. To avoid this
problem, specify the macro generation number marker as part of any symbol used in a
macro. This will result in symbols that are unique to each macro call.
The macro generation number marker is expanded as a 5-digit decimal number (between
00000 and 99999) unique to the macro expansion.
The syntax for specifying the macro generation number marker is as follows:

HITACHI 205



\@ -~
Note: When using a Japanese version of MS-DOS, use ¥ instead of \.

Two or more macro generation number markers can be written in a macro body, and they
will be expanded to the same number in one macro call.

CAUTION!

Because macro generation number markers are expanded to numbers, they must not be
written at the beginning of symbol names.

Reference: Programmer’s Guide, 1.3.2, “Coding of Symbols”
Coding example:
.MACRO RES_STR STR, Rn

MOV.L #str\@ ,\Rn
BRA end_st\@
NOP
stn@ .SDATA “\STR”
.ALIGN 2
end_stri@
.ENDM
RES_STR “ONE”,R0 :| Different symbols are generated each time
RES_STR “TWO”",R1 RES_STR is expanded.

Expanded results are as follows:

MOV.L #str00000,R0
BRA end_str00000
NOP
str00000 .SDATA “ONE”
ALIGN 2
end_str00000
MOV.L #str00001,R1
BRA end_str00001
NOP
str00001 .SDATA “TWO”
ALIGN 2
end_str00001

206 HITACHI



4. Macro replacement processing exclusion

When a backslash (\) appears in a macro body, it specifies macro replacement processing.
Therefore, a means for excluding this macro processing is required when it is necessary to
use the backslash as an ASCII character.

The syntax for macro replacement processing exclusion is as follows:
\(<macro replacement processing excluded character string>)
Note: When using a Japanese version of MS-DOS, use ¥ instead of \.

The backslash and the parentheses will be removed in macro processing.
Coding example:
.MACRO BACK_SLASH_SET

\(MOV #1",R0) ; \is expanded as an ASCII character.
.ENDM

Expanded results are as follows:
MOV  #"'\",R0O ; \ is expanded as an ASCII character.

5. Comments in macros

Comments in macro bodies can be coded as normal comments or as macro internal
comments. When comments in the macro body are not required in the macro expansion code
(to avoid repeating the same comment in the listing file), those comments can be coded as
macro internal comments to suppress their expansion.

The syntax for macro internal comments is as follows:
\;<comment> *

Note: When using a Japanese version of MS-DOS, use ¥ instead of \.

Coding example:
.MACRO PUSH Rn

MOV.L \Rn,@-R15 | \Rn is a register.
.ENDM
PUSH RO

Expanded results are as follows (the comment is not expanded):
MOV.L RO,@-R15

6. Character string manipulation functions

Character string manipulation functions can be used in the body of a macro. The following
character string manipulation functions are provided.

.LEN Character string length.
INSTR Character string search.
.SUBSTR Character string substring.
References:

HITACHI 207



.LEN - Programmer’s Guide, 7.5, “Character String Manipulation Functions”, .LEN
INSTR - Programmer’s Guide, 7.5, “Character String Manipulation Functions”, .INSTR
.SUBSTR- Programmer’s Guide, 7.5, “Character String Manipulation Functions”, .SUBSTR

7.4 Macro Call

Expanding a defined macro instruction is called a macro call. The syntax for macro calls is as
follows:

Syntax

[<symbol>] <macro name>[<macro parameter> [,<macro parameter> ...]]

Statement Elements

1. Label
Enter a reference symbol if required.

2. Operation
Enter the macro name to be expanded. The macro name must have been already defined
before a macro call.

3. Operands
Enter character strings as macro parameters to replace formal parameters at macro
expansion. The formal parameters must have been declared in the macro definition with
.MACRO.

Description

1. Macro parameter specification
Macro parameters can be specified by either positional specification or keyword
specification.
O Positional specification
The macro parameters are specified in the same order as that of the formal parameters
declared in the macro definition.
0 Keyword specification
Each macro parameter is specified following its corresponding formal parameter,
separated by an equal sign (=).
2. Macro parameter syntax
Macro parameters must be enclosed by double quotation marks (“) or angle brackets (<>) if
any of the following characters are included in the macro parameters:
0 Space
O Tab
0 Comma (,)
O Semicolon (;)

208 HITACHI



0 Double quotation marks (*)
O Angle brackets (< >)

Macro parameters are inserted by removing the double quotation marks or angle brackets
that enclose character strings at macro expansion.

Coding Example

. MACRO SUM FROVFO, TO=9 ; Macro instruction SUM and formal
MOV R\ FROM R10 ; parameters FROM and TO are defined.
COUNT . ASSI GNA \ FROV+1 n

. AWHI LE \ &COUNT LE \ TO

MoV R\ &COUNT, R10 |Macro body is coded

COUNT . ASSI GNA \ &COUNT+1 using formal parameters.

. AENDW

. ENDM |

SUM 0,5 ~|Both will be expanded

SUM TO=5 _linto the same statements.

Expanded results are as follows (the formal parameters in the macro body are replaced with
macro parameters):

MOV RO, R10
MOV R1,R10
MOV R2,R10
MOV  RS3, R10
MOV R4, R10
MOV  R5, R10

HITACHI 209



7.5 Character String Manipulation Functions

This assembler provides the following character string manipulation functions.

.LEN Counts the length of a character string.
INSTR Searches for a character string.
.SUBSTR Extracts a character string.

210

HITACHI



.LEN Character String Length Count
Syntax

.LEN[ 0O](“<character string>")
Description

1. .LEN counts the number of characters in a character string and replaces itself with the
number of characters in decimal with no radix.

2. Character strings are specified by enclosing the desired characters in double quotation marks
(). To specify a double quotation mark in a character string, enter two double quotation
marks in succession.

3. Macro formal parameters and preprocessor variables can be specified in the character string
as shown below.
.LEN("\<formal parameter>")
.LEN("\&<preprocessor variable>"%
Note: When using a Japanese version of MS-DOS, use ¥ instead of \.

4. This function can only be used within a macro body (between .MACRO and .ENDM
directives).

Coding Example:

[]

.MACRO RESERVE_LENGTH P1
ALIGN 4

SRES LEN(“\P1")
ENDM

RESERVE_LENGTH ABCDEF
RESERVE_LENGTH ABC
Expanded results are as follows:

ALIGN 4

.SRES 6 ; “ABCDEF” has six characters.
ALIGN 4

.SRES 3 ; “ABC” has three characters.

HITACHI 211



INSTR Character String Search

Syntax

INSTR[ O](“<character string 1>“,"<character string 2>"
[,<start position>])

Description

1.

.INSTR searches character string 1 for character string 2, and replaces itself with the
numerical value of the position of the found string (with O indicating the start of the string) in
decimal with no radix. .INSTR is replaced with -1 if character string 2 does not appear in
character string 1.
Character strings are specified by enclosing the desired characters in double quotation marks
(). To specify a double quotation mark in a character string, enter two double quotation
marks in succession.
The <start position> parameter specifies the search start position as a numerical value, with O
indicating the start of the string. Zero is used as default when this parameter is omitted.
Macro formal parameters and preprocessor variables can be specified in the character strings
and as the start position as shown below.

INSTR(“\<formal parameter>“, ...)

INSTR("\&<preprocessor variable>", . *)
Note: When using a Japanese version of MS-DOS, use ¥ instead of \.

5. This function can only be used within a macro body (between the .MACRO and .ENDM

directives).

Coding Example:

[]

.MACRO FIND_STR P1
.DATA.W .INSTR(“ABCDEFG”,"\P1",0)
.ENDM

[]

FIND_STR CDE

FIND_STRH
Expanded results are as follows:
.DATA.W 2 ; The start position of “CDE” is 2 (0 indicating the
beginning of the string) in “ABCDEFG”
.DATAW -1 ; “ABCDEFG” includes no “H".

212 HITACHI



.SUBSTR Character Substring Extraction
Syntax

.SUBSTR[ O](“<character string>“,<start position>,<extraction
length>)

Description

1. .SUBSTR extracts from the specified character string a substring starting at the specified
start position of the specified length. .SUBSTR is replaced with the extracted character
string enclosed by double quotation marks ().

2. Character strings are specified by enclosing the desired characters in double quotation marks
(*). To specify a double quotation mark in a character string, enter two double quotation
marks in succession.

3. The value of the extraction start position must be O or greater. The value of the extraction
length must be 1 or greater.

4. If illegal or inappropriate values are specified for the <start position> or <extraction length>
parameters, this function is replaced with a blank space (* “).

5. Macro formal parameters and preprocessor variables can be specified in the character string,
and as the start position and extraction length parameters as shown below.

.SUBSTR(“\<formal parameter>"“, ...)

.SUBSTR("\&<preprocessor variable>",) *
Note: When using a Japanese version of MS-DOS, use ¥ instead of \.

6. This function can only be used within a macro body (between the .MACRO and .ENDM
directives).

Coding Example:

[]

.MACRO RESERVE_STR P1=0,P2
.SDATA .SUBSTR(“ABCDEFG",\P1,\P2)
.ENDM

[]

RESERVE_STR 2,2
RESERVE_STR ,3 ; Macro parameter P1 is omitted.

Expanded results are as follows:
.SDATA “CD”
.SDATA “ABC”

HITACHI 213



214 HITACHI



Section 8 Automatic Literal Pool Generation Function

8.1 Overview of Automatic Literal Pool Generation

To move 2-byte or 4-byte constant data (referred to below as a “literal”) to a register, a literal
pool (a collection of literals) must be reserved and referred to in PC relative addressing mode.
For literal pool location, the following must be considered:

» Is data stored within the range that can be accessed by data move instructions?

» Is 2-byte data aligned to a 2-byte boundary and is 4-byte data aligned to a 4-byte boundary?
» Can data be shared by several data move instructions?

* Where in the program should the literal pool be located?

The assembler automatically generates from a single instruction a .DATA directive and a PC
relative MOV or MOVA instruction, which moves constant data to a register.

For example, this function enables program (a) below to be coded as (b):

@)
MOV.L DATAL,RO
MOV.L DATA2,R1

[]

.ALIGN 4
DATAl1 .DATA.L H'12345678
DATA2 .DATA.L 500000

(b)
MOV.L #H'12345678,R0
MOV.L #500000,R1

[]

8.2 Extended Instructions Related to Automatic Literal Pool Generation

The assembler automatically generates a literal pool corresponding to an extended instruction
(MOV.W #imm, Rn; MOV.L #imm, Rn; or MOVA #imm, R0O) and calculates the PC relative
displacement value.

An extended instruction source statement is expanded to an executable instruction and literal
data as shown in table 8-1.

HITACHI 215



Table 8-1 Extended Instructions and Expanded Results

Extended Instruction Expanded Result

MOV.W #imm, Rn MOV.W @(disp, PC), Rn and 2-byte literal data
MOV.L #imm, Rn MOV.L @(disp, PC), Rn and 4-byte literal data
MOVA #imm, RO MOVA @(disp, PC), RO and 4-byte literal data

8.3 Size Mode for Automatic Literal Pool Generation

Automatic literal pool generation has two modes: size specification mode and size selection
mode. In size specification mode, a data move instruction (extended instruction) whose
operation size is prespecified is used to generate a literal pool. In size selection mode, when a
move instruction without size specification is written, the assembler automatically checks the
imm operand value and selects a suitable-size move instruction.

Table 8-2 shows data move instructions and size mode.

Table 8-2 Data Move Instructions and Size Mode

Data Move Instruction Size Specification Mode Size Selection Mode
MOV  #imm, Rn Executable instruction Selected by assembler
MOV.B #imm, Rn Executable instruction Executable instruction
MOV.W #imm, Rn Extended instruction Extended instruction
MOV.L #imm, Rn Extended instruction Extended instruction

Size Specification Mode:

In this mode, a data move instruction without size specification (MOV #imm,Rn) is handled as a
normal executable instruction. This mode is used when -AUTO_LITERAL is not specified as
the command line option.

Size Selection Mode:

In this mode, when a data move instruction without size specification (MOV #imm,Rn) is
written, the assembler checks the imm operand value and automatically generates a literal pool
if necessary. The imm value is checked for the signed value range.

This mode is used when -AUTO_LITERAL is specified as the command line option.

Table 8-3 shows the instructions selected depending on imm value range.

216 HITACHI



Table 8-3

imm Specification

Instructions Selected in Size Selection Mode

imm Value Range*

Selected Instruction

Constant or back-reference
absolute value

H'FFFFFFS0 to H'0000007F
(-128 to 127)

MOV.B #imm, Rn

H'FFFF8000 to H'FFFFFF7F
(-32,768 to -129)
H'00000080 to H'00007FFF
(128 to 32,767)

MOV.W #imm, Rn

Expansion result:

[MOV.W @(disp, PC), Rn and
2-byte literal data]

H’80000000 to H'FFFF7FFF
(-2,147,483,648 to -32,769)
H’00008000 to H'7FFFFFFF
(32,768 to 2,147,483,647)

MOV.L #imm, Rn
Expansion result:
[MOV.L @(disp, PC), Rn and
4-byte literal data]

Relative value or forward-
reference absolute value

Does not depend on imm
value

MOV.L #imm, Rn
Expansion result:
[MOV.L @(disp, PC), Rn and
4-byte literal data]

Note: The values in parentheses ( ) are decimal.

Reference:

-AUTO_LITERAL

- User’s Guide, 2.2.8, “Automatic Literal Pool Output Command Line Option”

8.4 Literal Pool Output

The literal pool is output to one of the following locations:

» After an unconditional branch and its delay slot instruction
* Where a .POOL directive has been specified by the programmer

The assembler outputs the literal corresponding to an extended instruction to the nearest output
location following the extended instruction. The assembler gathers the literals to be output as a

literal pool.

CAUTION!

When a label is specified in a delay slot instruction, no literal pool will be output to the location

following the delay slot.

HITACHI

217



8.4.1 Literal Pool Output after Unconditional Branch

An example of literal pool output is shown below.

Source program
' . SECTI ON CD1, CODE, LOCATE=H 0000F000 !
' CD1_START: ;
: MOV. L #H FFFFO000, RO !
: MOV. W #H FFO0O, R1 !
3 MOV. L #CD1_START, R2 3
j MV #H FF, R3 :

1 0000F000 1 . SECTI ON CD1, CODE, LOCATE=H 0000F000
2 0000F0002 CD1_START

3 0000OF000 5004 3 MOV. L  #H FFFF0000, RO

4 0000F002 11034 MOV. W #H FFOO, R1

5 0000F004 52055 MOV. L  #CD1_START, R2

6 0000F006 63006 MoV #H FF, R3

7 0000F008 000B7 RTS

8

9  *x** BEG N-POOL ****
10 0000FOOC FFOO ~ DATA FOR SOURCE-LINE 4

11 0000FOOE 0000 ALl GNVENT CODE

12 0000F010 FFFFO000  DATA FOR SOURCE-LINE 3
13 0000F014 0000FO00  DATA FOR SOURCE-LINE 5

0000F00A 6A03 8 MOV RO, R10
14 ****  END-POOL **** |

8.4.2 Literal Pool Output to the .POOL Location

If literal pool output location after unconditional branches is not available within the valid
displacement range (because the program has a small number of unconditional branches), the
assembler outputs error 402. In this case, a .POOL directive must be specified within the valid
displacement range.

The valid displacement range is as follows:

e Word-size operation: 0to 511 bytes
¢ Long word-size operation: 0 to 1023 bytes

218 HITACHI



When a literal pool is output to a .POOL location, a branch instruction is also inserted to jump
over the literal pool.

An example of literal pool output is shown below.

Source program

' . SECTI ON CD1, CODE, LOCATE=H 0000F000 '
| CD1_START !
MOV.L  #H FFFF0000, RO !
MOV. W  #H FF00, Rl !
MOV.L  #CDl_START, R2 !
MOV #H FF, R3 :

L
Automatic literal pool generation result (source list)

1 0000F000 1 . SECTI ON CD1, CODE, LOCATE=H 0000F000 ;
! 2 0000F0002 CD1_START: ;
' 3 0000F000 50123 MOV. L #H FFFFO000, RO ;
' 4 0000F002 110E4 MOV. W #H FFOO, R1 ;
' 5 0000F004 52165 MOV. L #CD1_START, R2 ;
' 6 0000F006 6300 6 MoV #H FF, R3 ;
. 7 0000F008 7 . POOL 3
i 8 **xx%x BEGQ N- POOL **** i
' 9 0000F008 A006 BRA TO END- POOL |
' 10 0000FO0A 0009 NOP |
' 11 0000F00C FFOO DATA FOR SOURCE- LI NE 4 ;
' 12 0000FOOE 0000 ALl GNMVENT CODE
' 13 0000F010 FFFF0000 DATA FOR SOURCE- LI NE 3
' 14 0000F014 0000F000 DATA FOR SOURCE- LI NE 5
i 15 * k kK END- POOL  **** i
1 168 . END 1

8.5 Literal Sharing

When the literals for several extended instructions are gathered into a literal pool, the assembler
makes the extended instructions share identical immediate data.

The following operand forms can be identified and shared:

e Symbol
» Constant
* Symbol * constant

HITACHI 219



In addition to the above, expressions that are determined to have the same value at assembly
processing may be shared.

However, extended instructions having different operation sizes do not share literal data even
when they have the same immediate data.

An example of literal data sharing among extended instructions is shown below.

Source program

MOV.L  #H FFFF0000, RO !
MOV. W  #H FFOO, R1 !
MOV.L  #H FFFF0000, R2 ;

MV #H FF, R3
RTS
MOV RO, R10

&N j

"1 0000F000 1 . SECTI ON CD1, CODE, LOCATE=H 0000F000 |
' 2 0000F0002 CD1_START: |
|3 0000F000 5004 3 MOV.L  #H FFFF0000, RO |
| 4 0000F002 1103 4 MOV. W #H FF00, RL |
| 5 0000F004 52045 MOV.L  #H FFFF0000, R |
' 6 0000F006 6300 6 MOV #H FF, R3 |
|7 0000F008 000B 7 RTS |
| 8 0000FOOA 6A03 8 MOV RO, R10 |
i 9 * %k % % BEGNP(I]_ * % % % i
' 10 0000FO0C FFOO DATA FOR SOURCE- LI NE 4 |
' 11 0000FOOE 0000 ALI GNVENT CODE |
' 12 0000F010 FFFF0000 DATA FOR SOURCE- LI NE 3, 5 |
i 13 * %k k% END_Pw_ * %k k% i
14 9 . END |

8.6 Literal Pool Output Suppression

When a program has too many unconditional branches, the following problems may occur:

» Many small literal pools are output
» Literals are not shared

In these cases, suppress literal pool output as shown below.

220 HITACHI



<delayed branch instruction>

<delay slot instruction>

.NOPmL

Example

Source program

MOV. L

RTS

NOP

. NOPOOL
CASE2:

MOV. L

RTS

el

Automatic literal pool generation result (source list)

20
21
22
23
24
25

0000F000 20 CASEL:
0000F000 5001 21
0000F002 000B22
0000F004 0009 23
24 . NOPOCL
0000F006 25 CASE2:
26 0000F006 5001 26
27 0000F008 000B27
28 000OOFOO0A 0009 28
29
30 0000FO0OC FFFFO000
31 *x**  END- POOL

#H FFFFO000, RO

#H FFFF0000, RO

* k k% BEGN_P(I]_ * k k%

Extended instruction 1

No literal pool is output here

Extended instruction 2

_________

Literal pool is output here

-

MOV. L
RTS
NOP

#H FFFF0000, RO

MOV. L
RTS
NOP

#H FFFF0000, RO

DATA FOR SOURCE- LI NE 21, 26

* k k%

8.7

1.
a.
b.

Notes on Automatic Literal Pool Output

If an error occurs when an extended instruction is written
Extended instructions must not be specified in delay slots (error 151).
Extended instructions must not be specified in relative sections having a boundary

alignment value of less than 2 (error 152).

MOV.L #imm, Rn or MOVA #imm, RO must not be specified in relative sections having

a boundary alignment value of less than 4 (error 152).

2.

If an error occurs when a .POOL directive is written

HITACHI 221



.POOL directives must not be written after unconditional branches (error 522).
3. Ifan error occurs when a .NOPOOL directive is written

.NOPOOL directives are valid only when written after delay slot instructions. If written at
other locations, the .NOPOOL directive causes error 521.

4. If the displacement of an executable instruction exceeds the valid range when an extended
instruction is expanded

The assembler generates a literal pool and outputs error 402 for the instruction having a
displacement outside the valid range.
Solution: Move the literal pool output location (for example, by the .NOPOOL
directive), or change the location or addressing mode of the instruction causing the error.

5. If the literal pool output location cannot be found
If the assembler cannot find a literal pool output location satisfying the following conditions
in respect to the extended instruction,
O Same file
O Same section
O Forward direction
the assembler outputs, at the end of the section which includes the extended instruction, the
literal pool and a BRA instruction with a NOP instruction in the delay slot to jump around
the literal pool, and outputs warning 876.

6. If the displacement from the extended instruction exceeds the valid range
If the displacement of the literal pool from the extended instruction exceeds the valid range,
error 402 is generated.
Solution: Output the literal pool within the valid range (for example, using the .POOL
directive.)

7. Differences between size specification mode and size selection mode
The former version of the assembler can only use the size specification mode, but the size
selection mode is added to this new assembler version. If the source program created before
for the former version is assembled in the size selection mode by the new version, the imm
values of data move instructions without size specifications will differ by H'00000080 to
H’000000FF (128 to 255) from these asembled by the former version.
An example of source listing output in the size specification mode and size selection mode is
shown below.

222 HITACHI



Example:
Source program

777777777777777777777777777777777777777777777777777777777777

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

#H FF, R3

. SECTI ON CD1, CODE, LOCATE=H 0000F000 :
MOV. L  #H FF, RO !
MOV. W #H FF, RL
MV.B  #H FF, R2

7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777

0000F000
0000F002
0000F004
0000F006
0000F008
0000FO0A

0000F00C
0000FOOE
0000F010

0000F000 1

1
2
3
4
5
6
7
8 *x*x*xx BEGQ N POOL
9
10
11
12

5004 2 MOvV. L
11033 MOV. W
63FF 4 MOV. B
63FF 5 MoV
000B6 RTS
6A03 7 MoV
*kkk*k

#H FF, RO
#H FF, R1
#H FF, R2
#H FF, R3

RO, R10

O00OFF DATA FOR SCURCE- LI NE 3
0000 ALI GNMVENT CODE
DATA FOR SOURCE- LI NE 2

000000FF

The contents of R3 is H'FFFFFFFF.
Automatic literal pool output in size selection mode (source listing)

* k k k% END_Pal * k kkk

. SECTI ON CD1, CODE, LOCATE=H 0000F000

' 1 0000F000 1

i 2 0000FO00 50042 MOV. L
+ 3 0000F002 11033 MOV. W
. 4 0O000F004 63FF 4 MOV. B
' 5 0000F006 11025 MoV

! 6 0000FO08 000B6 RTS

! 7 0000F00A 6A03 7 MoV

: 8 *kk k% BEGN_P(n * Kk kk ok

19 0000FO0C

110 O000OFOOE
111 0000F010

#H FF, RO
#H FF, R
#H FF, R2
#H FF, R3

RO, R10

. SECTI ON CD1, CODE, LOCATE=H 0000F000

OOFF DATA FOR SOURCE-LINE 3,5
0000 ALl GNIVENT CODE
DATA FOR SCQURCE- LI NE 2
:12 *kkk*k END_Pm_ *kkkk

000000FF

The contents of R3 is H'000000FF.

HITACHI

223




224 HITACHI



Section 9 SH-DSP Instructions

9.1 Program Contents

9.11 Source Statements

The SH-DSP instructions are classified into two types: executable instructions and DSP
instructions. The DSP instructions have a different instruction set and description format from
those for the SH-series microcomputer. For the DSP instructions, many operations can be
included in one statement. The DSP instruction operation is as follows:

1. DSP operation: Specifies operations between DSP registers.

PABS, PADD, PADDC, PAND, PCLR, PCMP, PCOPY, PDEC, PDMSB, PINC, PLDS,
PMULS, PNEG, POR, PRND, PSHA, PSHL, PSTS, PSUB, PSUBC, PXOR

2. X data transfer operation: Specifies data transfer between a DSP register and X data memory.
MOVX, NOPX

3. Y data transfer operation: Specifies data transfer between a DSP register and Y data memory.
MOVY, NOPY

4. Single data transfer operation: Specifies data transfer between a DSP register and memory.
MOVS

Reference:

Executable instructions
- Programmer’s Guide, 3, “Executable Instructions”

9.1.2 Parallel Operation Instructions

Parallel operation instructions specify DSP operations as well as data transfer between a DSP
register and X or Y data memory at the same time. The instruction size is 32 bits. The
description format is as follows:

[<label>][ O<DSP operation part>][ O<data transfer part>][<comment>]

DSP Operation Part Description Format:

[<condition>  A]<DSP operation>  A<operand>[ A<DSP operation> A<operand>]
» Condition: Specifies how parallel operation instruction is executed as follows:

DCT: The instruction is executed when the DC bit is 1.
DCF: The instruction is executed when the DC bit is 0.

» DSP operation: Specifies DSP operation.

HITACHI 225



Only the pairs of the two instructions (PADD and PMULS, PSUB and PMULS) can be
combined.

Data Transfer Part Description Format:

[<X data transfer operation>[ O<operand>]]
[ O<Y data transfer operation>[ O<operand>]]

Be sure to specify X data transfer and Y data transfer in this order. Inputting an instruction is not
required when the data move instruction is NOPX or NOPY.

Example:

LABEL1: PADD A0, MD, AO PMULS X0, YO, M MOVX W @4+, X0 MOVY. W @6+, YO ; DSP |nstruction
Label DSP operation part Data transfer part Comment

DCT PINC X1, A1 MOVX. W @4, X0 MOVY. W @6+, YO
DSP operation part Data transfer part

PCWVWP X1, M MOVX. W @R4, XO Y Menory transfer is omtted
DSP operation part Data transfer part Comment

9.1.3 Data Move Instructions

Two types of data move instructions are available: combination of X data memory transfer and
Y data memory transfer, and single data transfer. The description formats are as follows:

Combination of X Data Memory Move and Y Data Memory Move Instructions:
[<label>][ O<X data transfer operation>[ O<operand>]]

[ O<Y data transfer operation>[ O<operand>]][<comment>]

Be sure to specify X data memory transfer and Y data memory transfer in this order. Inputting
an instruction is not required when the data move instruction is NOPX or NOPY. Note that both
X data memory and Y data memory cannot be omitted, unlike the parallel operation instruction.

Example:
LABEL2: MOVX.L @R4,X0 ; Data move instruction

(Y data memory transfer is omitted)
MOVX.W @R4,X0 MOVY.W @R6+, YO

Single Data Move Instruction:

[<label>][ O<single data transfer operation> O<operand>][<comment>]

Specifies the MOVS instruction.

226 HITACHI



Example:
LABEL3: MOVS.W @-R2,A0 ; Single data transfer
9.14 Coding of Source Statements Across Multiple Lines

For the DSP instructions, many operations can be included in one statement, and therefore,
source statements become long and complicated. To make programs easy to read, source
statements for DSP instructions can be written across multiple lines by separating between an
operand and an operation, in addition to separating by a comma between operands.

Write source statements across multiple lines using the following procedure.

1. Insert a new line between an operand and an operation.
2. Insert a plus sign (+) in the first column of the next line.
3. Continue writing the source statement following the plus sign.

Spaces and tabs can be inserted following the plus sign.

HITACHI 227



Example:
PADD AO0,M0,X0
+ PMULS Al1,Y1,MO0
+ MOVX @R4,x0
+ MOVY @R6,Y1

; A single source statement is written across four lines.

9.2 DSP Instructions

9.2.1 DSP Operation Instructions
Table 9-1 lists DSP instructions in mnemonic.
Table 9-1 DSP Instructions in Mnemonic

Instruction Name Mnemonic

DSP arithmetic operation instructions PADD, PSUB, PCOPY, PDMSB, PINC, PNEG, PMULS,
PADDC, PSUBC, PCMP, PDEC, PABS, PRND, PCLR,

PLDS, PSTS
DSP logic operation instructions POR, PAND, PXOR
DSP shift operation instructions PSHA, PSHL

Operation Size:

For the DSP operation instructions, operation size cannot be specified.
Addressing Mode:

Table 9-2 lists addressing modes for the DSP operation instructions.

Table 9-2  Addressing Modes for DSP Operation Instructions

Addressing Mode Description Format
DSP register direct Dp (DSP register name)
Immediate data #imm

» DSP register direct

Table 9-3 lists registers that can be specified in DSP register direct addressing mode. For Sx,
Sy, Dz, Du, Se, Sf, and Dg, refer to table 9-5, DSP Operation Instructions.

228 HITACHI



Table 9-3 Registers that Can Be Specified in DSP Register Direct Addressing Mode

DSP Register

AO Al MO M1 X0 X1 YO Y1l
Dp Sx Yes Yes Yes Yes

Sy Yes Yes Yes Yes
Dz Yes Yes Yes Yes Yes Yes Yes Yes
Du Yes Yes Yes Yes

Se Yes Yes Yes Yes Yes
Sf Yes Yes Yes Yes
Dg Yes Yes Yes Yes

* Immediate data

Immediate data can be specified for the first operand of the PSHA and PSHL instructions.
The following items can be specified:

O Value type
Constants, symbols, or expressions can be specified.
O Symbol types

Symbols including relative symbols and import symbols can be specified as immediate
data*

O Value range
Table 9-4 lists the specifiable value ranges.
Table 9-4 Ranges of Immediate Data

Instruction Range
PSHA instruction H'FFFFFFEO to H'00000020 (-32 to 32)
PSHL instruction H'FFFFFFFO to H'00000010 (-16 to 16)

Note: When a relative symbol or import symbol is specified as immediate data, the linkage
editor checks the value in the rage from H'FFFFFFCO to H'0000003F (-64 to 63).

HITACHI 229



Combination of Multiple DSP Operation Instructions:

The PADD instruction and the PMULS instruction, or the PSUB instruction and the PMULS
instruction can be specified in combination. These two types of combinations are basically one
DSP instruction. The PADD (or PSUB) operand and a PMULS operand are separately described
so that programs can be read easily.

Example:

PADD A0,M0,A0 PMULS X0,Y0,M0 NOPX MOVY.W @R6+, YO
PSUB A1,M1,A1 PMULS X1,Y1,M1 MOVX @R4+,X0 NOPY

Note: Warning 701 is displayed if the same register is specified as the destination registers
when multiple DSP operation instructions are specified in combination.

Example:

PADD A0,M0,A0_ PMULS X0,Y0,AQ0 _ - Warning 701
Conditional DSP Operation Instructions:

Conditional DSP operation instructions specify if the program is executed according to the DC
bit of the DSR register.

DCT: When the DC bit is 1, the instruction is executed.
DCF: When the DC bit is 0, the instruction is executed.

Conditional DSP operation instructions are the following:

PADD, PAND, PCLR, PCOPY, PDEC, PDMSB, PINC, PLDS, PNEG, POR, PSHA, PSHL,
PSTS, PSUB, PXOR

DSP Operation Instruction List:

Table 9-5 lists DSP operation instructions. For the registers that can be specified as Sx, Sy, Dz,
Du, Se, Sf, and Dg, refer to table 9-3, Registers that Can Be Specified in DSP Register Direct
Addressing Mode.

230 HITACHI



Table 9-5 DSP Operation Instructions

Mnemonic Addressing Mode Mnemonic Addressing Mode
PABS Sx, Dz
PABS Sx, Dz
PADD Sx, Sy, Dz
PADD Sx, Sy, Du PMULS Se, Sf, Dg
PADDC Sx, Sy, Dz
PAND Sx, Sy, Dz
PCLR Dz
PCMP Sx, Sy
PCOPY Sx, Dz
PCOPY Sy, Dz
PDEC Sx, Dz
PDEC Sy, Dz
PDMSB Sx, Dz
PDMSB Sy, Dz
PINC Sx, Dz
PINC Sy, Dz
PLDS Dz, MACH
PLDS Dz, MACL
PMULS Se, Sf, Dg
PNEG Sx, Dz
PNEG Sy, Dz
POR Sx, Sy, Dz
PRND Sx, Dz
PRND Sy, Dz
PSHA #imm, Dz
PSHA Sx, Sy, Dz
PSHL #imm, Dz
PSHL Sx, Sy, Dz
PSTS MACH, Dz
PSTS MACL, Dz
PSUB Sx, Sy, Dz
HITACHI 231



Table 9-5 DSP Operation Instructions (cont)

Mnemonic Addressing Mode Mnemonic Addressing Mode
PSUB Sx, Sy, Du PMULS Se, Sf, Dg
PSUBC Sx, Sy, Dz

PXOR Sx, Sy, Dz

9.2.2 Data Move Instructions
Mnemonics:

Two types of data move instructions are available: dual memory move instructions and single
memory move instructions.

Dual memory move instructions specify data move, at the same time, between x memory and a
DSP register, and between Y memory and a DSP register.

Single memory move instructions specify data move between arbitrary memory and a DSP
register. Table 9-6 lists data move instructions in mnemonic.

Table 9-6 Data Move Instructions in Mnemonic

Classification Mnemonic
Dual memory move X memory move NOPX
MOVX
Y memory move NOPY
MOVY
Single memory move MOVS

Operation Size:
NOPX and NOPY instructions: Operation size cannot be specified.

MOVX and MOVY instructions: Only word size (.\W) can be specified. If omitted, word size
is specified.

MOVS instruction: Word size (.\W) or long word size (.L) can be specified. If
omitted, long word size is specified.

232 HITACHI



Addressing Mode:
Table 9-7 lists addressing modes that can be specified for the data move instructions.

Table 9-7 Addressing Modes of Data Move Instructions

Addressing mode Description
DSP register direct Dz
Register indirect @Az
Register indirect with post-increment @Az+
Register indirect with index/post-increment @Az+Iz
Register indirect with pre-decrement @-Az

Register indirect with index/post-increment is a special addressing mode for the DSP data move
instructions. In this mode, after referring to the contents indicated by register Az, register Az
contents are incremented by the value of the 1z register.

Registers that Can Be Specified in Addressing Modes:

Table 9-8 lists registers that can be specified in the DSP register direct, register indirect, register
indirect with post-increment, register indirect with index/post-increment, and register indirect
with pre-decrement addressing modes. For Dx, Dy, Ds, Da, Ax, Ay, As, Ix, ly, and Is, refer to
table 9-9, Data Move Instructions.

Table 9-8 Registers that Can Be Specified in Addressing Modes for Data Move

Instructions
SH Register DSP Register
R2 R3 R4 R5 R6 R7 R8 R9 A0 A1 MO M1 X0 X1 YO Y1 AOGAlG
Dz Dx Yes Yes
Dy Yes Yes
Ds Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Da Yes Yes
Az AX Yes Yes
Ay Yes Yes
As Yes Yes Yes Yes
1z Ix Yes
ly Yes
Is Yes

HITACHI 233



Note: Warning 703 is displayed if the destination register for the DSP instruction and the
destination register for the data transfer instruction are the same register, and if the
instructions are in the same statement.

Example:

PADD AO0,M0,Y0 NOPX MOVY.W @R6+,Y0 - Warning 703
Data Move Instruction List:

Table 9-9 lists data move instructions. For registers that can be specified for Dx, Dy, Ds, Da, Ax,
Ay, As, Ix, ly, and Is, refer to table 9-8, Registers that Can Be Specified in Addressing Modes
for Data Move Instructions.

234 HITACHI



Table 9-9 Data Move Instructions

Classification Mnemonic Addressing Mode
X data move instructions NOPX

MOVX.W @AX, Dx
MOVX.W @AXx+, Dx
MOVX.W @AXx+Ix, Dx
MOVX.W Da, @AX
MOVX.W Da, @Ax+
MOVX.W Da, @AXx+Ix

Y data move instructions NOPY
MOVY.W @Ay, Dy
MOVY.W @Ay+, Dy
MOVY.W @Ay+ly, Dy
MOVY.W Da, @Ay
MOVY.W Da, @Ay+
MOVY.W Da, @Ay+ly

Single data move instructions MOVS.W @-As, Ds
MOVS.W @As, Ds
MOVS.W @As+, Ds
MOVS.W @As+Is, Ds
MOVS.W Ds, @-As
MOVS.W Ds, @As
MOVS.W Ds, @As+
MOVS.W Ds, @As+Is
MOVS.L @-As, Ds
MOVS.L @As, Ds
MOVS.L @As+, Ds
MOVS.L @As+ls, Ds
MOVS.L Ds, @-As
MOVS.L Ds, @As
MOVS.L Ds, @As+
MOVS.L Ds, @As+Is

HITACHI 235



9.3 Notes on Executable Instructions
Displacement Value Range:

The PC-relative displacement value for the LDRS and LDRE instructions must be within the
range from H'FFFFFFOO0 to F'O00000FE (-256 to 254). If a symbol is specified as an operand for
these instructions, the symbol location must be within the above range in PC-relative mode.

Immediate Value Range:

The immediate value for the SETRC instruction must be within the range from H’'00000001 to
H’000000FF (1 to 255). If 0 is specified, warning 835 is output and 0 is set in the object code. In
this case, the repeat count becomes one.

Note:

If an external reference symbol is specified as the immediate value for the SETRC instruction,
the linkage editor checks the range from H’00000000 to H'000000FF (O to 255).

Reference:

Executable instructions
- Programmer’s Guide, 3, Executable Instructions

RS and RE Register Setting:

The repeat start address and end address are set in the RS and RE registers by the LDRS and
LDRE instructions, respectively. The address values depend on the number of instructions in the
repeat loop. Table 9-10 shows the number of instructions in the repeat loop and address setting.

Table 9-10 Number of Instructions in Repeat Loop and Address Setting

Number of Instructions

Register One Two Three Four or More
RS register Repeat_Start0 + 8 Repeat_Start0 + 6 Repeat_StartO + 4 Repeat_Start
RE register Repeat_Start0 + 4 Repeat_StartO + 4 Repeat_Start0O + 4 Repeat_End3 + 4

* Repeat_Start0: Address of the instruction before the repeat start address
* Repeat_Start: Repeat start address
» Repeat_End3: Address of the location three instructions before the repeat end address

236 HITACHI



An example of RS and RE register setting is shown below.

Example:

; When two instructions are in the repeat loop

LDRS RptStart0 +6 ;
LDRE RptStart0 +4 ;
SETRC #10 :

RptStartO: ;
NOP

PADD AO0,M0,AQ ;
PCMP X1,MO0 ;

Repeat start address setting
Repeat end address setting

Repeat count setting

Address of the instruction before the repeat start

address

Repeat start address

Repeat end address

; When four instructions are in the repeat loop

LDRS RptStart ;
LDRE RptEnd3 +4 ;

SETRC #10 :
NOP
RptStart: ;
PADD AO0,M0,A0
RptENd3: ;

PSUB Al1,M1,Al
PMULS XO0,Y0,M0
PINC XO,A1

PCMP X1,MO0 ;

Repeat start address setting
Repeat end address setting

Repeat count setting

Repeat start address

Address of the location three instructions before

the repeat end address

Repeat end address

HITACHI 237



User’s Guide

238 HITACHI



Section 1 Executing the Assembler

1.1 Command Line Format

To start the assembler, enter a command line with the following format when the host computer
operating system is in the input wait state.

> asmsh A <input source file> [,<input source file> ..][[A] <command line options> ...]
| Il J | J

(1) (2 (3)

(1) Assembler start command.
(2) Name of input source file. Multiple source files can be specified at the same time.
(3) Command line options, which specify the assembly method in more detail.

CAUTION!

When multiple source files are specified on the command line, the unit of assembly processing
will be the concatenation of the specified files in the specified order.

In this case, the .END directive must appear only in the last file.
Supplement:

The assembler returns the operating system a return code that reports whether or not the
assembly processing terminated normally. The return value indicates the level of the errors
occurred as follows.

Normal termination 0

Warnings occurred 0

Errors occurred MS-DOS: 2
UNIX: 1

Fatal error occurred MS-DOS: 4
UNIX: 1

The return code can be changed with -ABORT.
Reference:

-ABORT
- User’s Guide, 2.2.6, “Assembler Execution Command Line Options,” -ABORT

HITACHI 239



1.2 File Specification Format
Files handled by the assembler are specified in the following format.
<file name>.[<file format>]

The term “file name” as used in this manual normally refers to both the file name and the file
format.

Example:

(File name)
file.src ..... A file with the file name file and the file format src.
prog.obj ..... A file with the file name prog and the file format obj.

The file format is used as an identifier to distinguish the contents of the file. Thus two files with
differing formats are different files even if the file name is the same.

Example:

file.src}

file.obj} These file names specify different files.

The assembler handles the following types of file.

* Source file
This is a source program file. If a source program file is specified without the file format, the
file format src will be supplied.

¢ Object file
This is an output destination file for object modules. If an object file is specified without the
file format, the file format obj will be supplied. If an object file is not specified to the
assembler, a file with the same name as the source file (the first file) and with the file format
obj* will be used.

» Listing file
This is an output destination file for assemble listings. If a listing file is specified without the
file format, the extension lis will be supplied. If a listing file is not specified to the
assembiler, a file with the same name as the source file (the first file) and with the file format
lis* will be used.

Note: When MS-DOS is used, the file format is in uppercase letters.

240 HITACHI



1.3 SHCPU Environment Variable

The assembler assembles the program for the CPU specified by the SHCPU environment
variable. The following shows how to specify the environment variable.

For UNIX:

¢ C Shell
setenv SHCPU <target CPU>

* Bourne/Korn Shell
SHCPU=<target CPU>
export SHCPU

For MS-DOS:
SET SHCPU=<target CPU>
The target CPU can be selected from SH1, SH2, SH3, SH3E, and SHDSP.

The priority of target CPU specification is in the order of -CPU, .CPU directive, and SHCPU
environment variable.

Note: Be sure to specify this environment variable in uppercase letters.

HITACHI 241



242 HITACHI



Section 2 Command Line Options

2.1 Overview of Command Line Options

Command line options are detailed specifications of the assembly processing. Table 2-1 shows
an overview of the command line options.

Table 2-1 Command Line Options

Section

Number Command Line Option Function

221 Target CPU specifications
-CPU Specifies target CPU

222 Object module specifications
-[NOJOBJECT Controls output of object module
-[NO]DEBUG Controls output of debugging information
-ENDIAN Selects big endian or little endian

223 Assembly listing specifications
-[NOJLIST Controls output of assembly listing
-[NOJSOURCE Controls output of source program listing
-[NO]JCROSS_REFERENCE  Controls output of cross-reference listing
-[NOJSECTION Controls output of section information listing
-[NO]SHOW Controls output of part of source program listing
-LINES Specifies the number of lines in assemble listing
-COLUMNS Specifies the number of columns in assemble listing

224 File inclusion function specifications
-INCLUDE Specifies the include file directory

225 Conditional assembly specifications
-ASSIGNA Defines integer preprocessor variable
-ASSIGNC Defines character preprocessor variable
-DEFINE Defines replacement character string

2.2.6 Assembler execution specifications
-EXPAND Outputs preprocessor expansion result
-ABORT Changes the error level at which the assembler is

abnormally terminated

HITACHI 243



Table 2-1 Command Line Options (cont)

Section
Number Command Line Option Function
2.2.7 Japanese character description specifications
-SJIS Interprets Japanese characters in source file as shift
JIS code
-EUC Interprets Japanese characters in source file as EUC
code
-OUTCODE Specifies the Japanese code for output to object
code
2.2.8 Automatic literal pool generation specifications
-AUTO_LITERAL Specifies size mode for automatic literal pool
generation
2.2.9 Command line specifications
-SUBCOMMAND Inputs command line from a file
Supplement:

The assemble listing is a listing to which the results of the assembly processing are output, and
consists of a source program listing, a cross-reference listing, and a section information listing.

References: See appendix C, “Assemble Listing Example”, for a detailed description of the
assemble listing.

244 HITACHI



2.2 Command Line Option Reference

221 Target CPU Command Line Option
This assembler provides the following command line option concerned with the target CPU.
-CPU This command line option specifies the target CPU.
-CPU Target CPU Specification
Syntax
-CPU=<target CPU>
Description

1. The -CPU option specifies the target CPU for the source program to be assembled.
2. The following CPUs can be specified.
O SH1
O SH2
O SH3
O SH3E
O SH-DSP

Relationship with Assembler Directives

Command Line SHCPU Environment
Option Assembler Directive Variable Result
-CPU (regardless of any (no specification) Target CPU specified by -
specification) CPU
(no specification) .CPU <target CPU> (no specification) Target CPU specified by
.CPU
(no specification) SHCPU = <target CPU> Target CPU specified by
SHCPU environment
variable
(no specification) SH1

References: Target CPU
- Programmer’s Guide, 4.2.1, “Target CPU Assembler Directive,” .CPU

SHCPU environment variable
- User's Guide, 1.3, “SHCPU Environment Variable”

HITACHI 245



2.2.2 Object Module Command Line Options

This assembler provides the following command line options concerned with object modules.

-OBJECT These command line options control output of an object module.
-NOOBJECT

-DEBUG These command line options control output of debug information.
-NODEBUG

-ENDIAN This command line option selects big endian or little endian.

246 HITACHI



-OBJECT
-NOOBJECT Object Module Output Control

Syntax

-OBJECT [= <object output file>]
-NOGBJECT

The abbreviated forms are indicated by bold face.
Description

1. The -OBJECT option specifies output of an object module.
The -NOOBJECT option specifies no output of an object module.
2. The object output file specifies the output destination for the object module.
3. When the object output file parameter is omitted, the assembler takes the following actions:
O If the file format is omitted:
The file format obj is supplied.
O If the specification is completely omitted:

The file format obj is appended to the name of the input source file (the first specified
source file) *

Note: When MS-DOS is used, the file format is in uppercase letters.
CAUTION!

Do not specify the same file for the input source file and the output object file. If the same file is
specified, the contents of the input source file will be lost.

Relationship with Assembler Directives

The assembler gives priority to specifications made with command line options.

Command Line Option Assembler Directive Result

-OBJECT (regardless of any specification)  An object module is output.

-NOOBJECT (regardless of any specification)  An object module is not output.

(no specification) .OUTPUT OBJ An object module is output.
.OUTPUT NOOBJ An object module is not output.
(no specification) An object module is output.

HITACHI 247



-DEBUG
-NODEBUG  Debug Information Output Control

Syntax

-DEBUG
-NODEBUG

The abbreviated forms are indicated by bold face.

Description

1.

The -DEBUG option specifies output of debug information.
The -NODEBUG option specifies no output of debug information.

. The -DEBUG and -NODEBUG options are only valid in cases where an object module is

being output.
References: Object module output
- Programmer’s Guide, 4.2.6, “Object Module Assembler Directives”, .OUTPUT

- User’'s Guide, 2.2.2, “Object Module Command Line Options”,
-OBJECT -NOOBJECT

Relationship with Assembler Directives

The assembler gives priority to specifications made with command line options.

Command Line Option Assembler Directive Result

-DEBUG (regardless of any specification)  Debug information is output.

-NODEBUG (regardless of any specification)  Debug information is not output.

(no specification) .OUTPUT DBG Debug information is output.
.OUTPUT NODBG Debug information is not output.
(no specification) Debug information is not output.

Supplement:

Debug information is information required when debugging a program using the
simulator/debugger or the emulator, and is part of the object module. Debug information
includes information about source statement lines and information about symbols.

248 HITACHI



-ENDIAN Big Endian or Little Endian Selection
Syntax

-ENDIAN[=<endian>]
Endian:{ BIG| LITTLE}

The abbreviated form is indicated by bold face.
Description

1. The -ENDIAN option selects big endian or little endian for the target CPU.
2. The default is big endian.

Relationship with Assembler Directives

The assembler gives priority to specifications made with command line options.

Command Line Option Assembler Directive Result

-ENDIAN=BIG (regardless of any specification)  Assembles in big endian

-ENDIAN=LITTLE (regardless of any specification)  Assembles in little endian

(no specification) .ENDIAN BIG Assembles in big endian
.ENDIAN LITTLE Assembles in little endian
(no specification) Assembles in big endian

Reference: .ENDIAN

- Programmer’s Guide, 4.2.6, “Object Module Assembler Directives,” .ENDIAN

HITACHI

249



2.2.3

Assembly Listing Command Line Options

This assembler provides the following command line options concerned with the assemble

listing.

-LIST These command line options control output of an assemble listing.
-NOLIST

-SOURCE These command line options control output of a source program
-NOSOURCE listing.

-CROSS_REFERENCE
-NOCROSS_REFERENCE

These command line options control output of a cross-reference
listing.

-SECTION These command line options control output of a section information

-NOSECTION listing.

-SHOW These command line options control output of the source program

-NOSHOW listing.

-LINES This command line option sets the number of lines in the assemble
listing.

-COLUMNS This command line option sets the number of columns in the

assemble listing.

250

HITACHI



-LIST
-NOLIST Assemble Listing Output Control

Syntax

-LIS T [ =<listing output file> ]
- NOLIST

The abbreviated forms are indicated by bold face.
Description

1. The -LIST option specifies output of an assembile listing.
The -NOLIST option specifies no output of an assemble listing.
2. The listing output file specifies the output destination file for the assemble listing.
3. When the listing output file parameter is omitted, the assembler takes the following actions:
O If the file format is omitted:
The file format lis is supplied.
O If the specification is completely omitted:

The file format lis is appended to the name of the input source file (the first specified
source file) *

4. Do not specify the same file for the input source file and the listing output file.
Note: When MS-DOS is used, the file format is in uppercase letters.
CAUTION!

Do not specify the same file for the input source file and the output object file. If the same file is
specified, the contents of the input source file will be lost.

Relationship with Assembler Directives

The assembler gives priority to specifications made with command line options.

Command Line Option Assembler Directive Result

-LIST (regardless of any specification)  An assemble listing is output.

-NOLIST (regardless of any specification)  An assemble listing is not output.

(no specification) .PRINT LIST An assemble listing is output.
.PRINT NOLIST An assemble listing is not output.
(no specification) An assemble listing is not output.

HITACHI 251



-SOURCE
-NOSOURCE Source Program Listing Output Control

Syntax

-SOURCE
- NOS@RCE

The abbreviated forms are indicated by bold face.
Description

1. The -SOURCE option specifies output of a source program listing to the assemble listing.
The -NOSOURCE option specifies no output of a source program listing to the assemble
listing.

2. The -SOURCE and -NOSOURCE options are only valid in cases where an assemble listing is
being output.

References: Assemble listing output
- Programmer’s Guide, 4.2.7, “Assemble Listing Assembler Directives”, .PRINT

- User’'s Guide, 2.2.3, “Assemble Listing Command Line Options”,
-LIST -NOLIST

Relationship with Assembler Directives
The assembler gives priority to specifications made with command line options.

Result (When an Assemble

Command Line Option Assembler Directive Listing Is Output)
-SOURCE (regardless of any specification) A source program listing is
output.
-NOSOURCE (regardless of any specification) A source program listing is not
output.
(no specification) .PRINT SRC A source program listing is
output.
.PRINT NOSRC A source program listing is not
output.
(no specification) A source program listing is
output.

252 HITACHI



-CROSS_REFERENCE
-NOCROSS_REFERENCE Cross-Reference Listing Output Control

Syntax

-CROSS_REFERENCE
-NOCROSS_REFERENCE

The abbreviated forms are indicated by bold face.
Description

1. The -CROSS_REFERENCE option specifies output of a cross-reference listing to the
assemble listing.

The -NOCROSS_REFERENCE option specifies no output of a cross-reference listing to the
assemble listing.

2. The -CROSS_REFERENCE and -NOCROSS_REFERENCE options are only valid in cases
where an assemble listing is being output.

References: Assemble listing output
- Programmer’s Guide, 4.2.7, “Assemble Listing Assembler Directives”, .PRINT

- User’'s Guide, 2.2.3, “Assemble Listing Command Line Options”,
-LIST -NOLIST

Relationship with Assembler Directives
The assembler gives priority to specifications made with command line options.

Result (When an Assemble

Command Line Option Assembler Directive Listing Is Output)
-CROSS_REFERENCE (regardless of any specification) A cross-reference listing is output.
-NOCROSS_REFERENCE (regardless of any specification) A cross-reference listing is not
output.
(no specification) .PRINT CREF A cross-reference listing is output.
.PRINT NOCREF A cross-reference listing is not
output.
(no specification) A cross-reference listing is output.

HITACHI 253



-SECTION -NOSECTION Section Information Listing Output Control
Syntax

-SECTION
-NOSECTION

The abbreviated forms are indicated by bold face.
Description

1. The -SECTION option specifies output of a section information listing to the assemble
listing.
The -NOSECTION option specifies no output of a section information listing to the assemble
listing.

2. The -SECTION and -NOSECTION options are only valid in cases where an assemble listing
is being output.
References: Assembile listing output
- Programmer’s Guide, 4.2.7, “Assemble Listing Assembler Directives”, .PRINT
- User’s Guide, 2.2.3, “Assemble Listing Command Line Options”,
-LIST -NOLIST

Relationship with Assembler Directives
The assembler gives priority to specifications made with command line options.

Result (When an Assemble

Command Line Option Assembler Directive Listing Is Output)
-SECTION (regardless of any specification) A section information listing is
output.
-NOSECTION (regardless of any specification) A section information listing is not
output.
(no specification) .PRINT SCT A section information listing is
output.
.PRINT NOSCT A section information listing is not
output.
(no specification) A section information listing is
output.

254 HITACHI



-SHOW
-NOSHOW Source Program Listing Output Control

Syntax

<UNIX>
-SHOW [= <output type>[,<output type> ...]]
-NOSHOW [= <output type>[,<output type> ...]]

<MS-DOS>
/SH OW [=(<output type>[,<output type> ...])]
/NOSHOW [=(<output type>[,<output type> ...])]
When only one output type is specified, the parentheses can be omitted.

Output type: { CONDITIONALS| DEFINITIONS| CALLS| EXPANSIONS|COIE}

The abbreviated forms are indicated by bold face.

Description

1.

The -SHOW option specifies output of preprocessor function source statements and object
code lines in the source program listing.

The -NOSHOW option suppresses output of specified preprocessor function source
statements and object code display lines in the source program listing.

The items specified by output types will be output or suppressed depending on the option.
When no output type is specified, all items will be output or suppressed.

-SHOW: Output

-NOSHOW: No output (suppress)

The following output types can be specified:

Output Type Object Description

CONDITIONALS Failed condition Condition-failed .AIF or .AIFDEF statements
DEFINITIONS Definition Macro definition parts,

AREPEAT and .AWHILE definition parts,
INCLUDE directive statements
ASSIGNA and .ASSSIGNC directive statements

CALLS Call Macro call statements,
AlF, .AIFDEF, and .AENDI directive statements

EXPANSIONS Expansion Macro expansion statements
.AREPEAT and .AWHILE expansion statements

CODE Object code lines The object code lines exceeding the source
statement lines

HITACHI 255



References: Source program listing output
- Programmer’s Guide, 4.2.7, “Assemble Listing Assembler Directives”, .PRINT

- User's Guide, 2.2.3, “Assemble Listing Command Line Options”, -LIST -NOLIST -
SOURCE -NOSOURCE

Relationship with Assembler Directives
The assembler gives priority to specifications made with command line options.

Command Line Option Assembler Directive Result

-SHOW=<output type> (regardless of any specification)  The object code is output.

-NOSHOW=<output type> (regardless of any specification) = The object code is not output.

(no specification) .LIST <output type> (output) The object code is output.

.LIST <output type> (suppress) The object code is not output.

(no specification) The object code is output.

256 HITACHI



-LINES Setting of the Number of Lines in the Assemble Listing
Syntax
-LIN ES=<line count>
The abbreviated form is indicated by bold face.
Description

1. The -LINES option sets the number of lines on a single page of the assemble listing. The
range of valid values for the line count is from 20 to 255.

2. The -LINES option is only valid in cases where an assemble listing is being output.
References: Assemble listing output
- Programmer’s Guide, 4.2.7, “Assemble Listing Assembler Directives”, .PRINT

- User’s Guide, 2.2.3, “Assemble Listing Command Line Options”,
-LIST -NOLIST

Relationship with Assembler Directives

The assembler gives priority to specifications made with command line options.

Command Line Option ~ Assembler Directive Result
-LINES=<line count> (regardless of any specification) The number of lines on a page is
given by -LINES.
(no specification) .FORM LIN=<line count> The number of lines on a page is
given by .FORM.
(no specification) The number of lines on a page is
60 lines.

HITACHI 257



-COLUMNS  Setting of the Number of Columns in the Assemble Listing
Syntax
-COLUMNS=<column count>
The abbreviated form is indicated by bold face.
Description

1. The -COLUMNS option sets the number of columns in a single line of the assemble listing.
The range of valid values for the column count is from 79 to 255.

2. The -COLUMNS option is only valid in cases where an assembile listing is being output.
References: Assemble listing output
- Programmer’s Guide, 4.2.7, “Assemble Listing Assembler Directives”, .PRINT

- User’s Guide, 2.2.3, “Assemble Listing Command Line Options”,
-LIST -NOLIST

Relationship with Assembler Directives

The assembler gives priority to specifications made with command line options.

Command Line Option Assembler Directive Result
-COLUMNS= (regardless of any specification)  The number of columns in a line
<column count> is given by -COLUMNS.
(no specification) .FORM COL=<column count> The number of columns in a line
is given by .FORM.
(no specification) The number of columns in a line

is 132 columns.

258 HITACHI



224 File Inclusion Function Command Line Option

This assembler provides the following command line option concerned with the file inclusion
function.

-INCLUDE This command line option specifies the include file directory.

HITACHI 259



-INCLUDE Include File Directory Specification
Syntax

-I NCLUDE=<directory name>[,<directory name....]
The abbreviated form is indicated by bold face.
Description

The -INCLUDE option specifies the include file directory.
The directory name depends on the naming rule of the host machine used.
As many directory name as can be input in one command line can be specified.

The current directory is searched, and then the directories specified by the -INCLUDE are
searched in the specified order.

El A

Relationship with Assembler Directives

Command Line Option Assembler Directive Result
-INCLUDE (regardless of any specification) (1) Directory specified by
.INCLUDE
(2) Directory specified by -
INCLUDE*
(no specification) .INCLUDE <file name> Directory specified by .INCLUDE
Note: The directory specified by the -INCLUDE option is added before that specified by

.INCLUDE.

Note
asmsh aaa.mar -include=/usr/tmp,/tmp (UNIX)
(.INCLUDE “file.h” is specified in aaa.matr.)
The current directory, /usr/tmp, and /tmp are searched for file.h in that order.

Reference: .INCLUDE
- Programmer’s Guide, 5, “File Inclusion Functionn”

260 HITACHI



2.25 Conditional Assembly Command Line Options

This assembler provides the following command line options concerned with conditonal

assembly.

-ASSIGNA This command line option defines integer preprocessor variable.
-ASSIGNC This command line option defines character preprocessor variable.
-DEFINE This command line option defines replacement character string.

HITACHI 261



-ASSIGNA Integer Preprocessor Variable Definition
Syntax

-AS SIGNA=<preprocessor variable>=<integer constant>
[,<preprocessor variable>=<integer constant>...]

The abbreviated form is indicated by bold face.
Description

1. The -ASSIGNA option sets an integer constant to a preprocessor variable.
2. The naming rule of preprocessor variables is the same as that of symbols.

3. Aninteger constant is specified by combining the radix (B’, Q’, D’, or H’) and a value. If the
radix is omitted, the value is assumed to be decimal.

4. An integer constant must be within the range from -2,147,483,648 to 4,294,967,295. To
specify a negative value, use a radix other than decimal.

Relationship with Assembler Directives

Command Line Option Assembler Directive Result

-ASSIGNA ASSIGNA* Value specified by -ASSIGNA
(no specification) Value specified by -ASSIGNA

(no specification) ASSIGNA Value specified by .ASSIGNA

Note: When a value is assigned to a preprocessor variable by the -ASSIGNA option, the
definition of the preprocessor variable by .ASSIGNA is invalidated.

Note

When the host machine uses UNIX as the OS, specify a backslash (\) before the apostrophe (‘) of
the radix. If a preprocessor variable includes a dollar mark ($), specify a backslash (\) before the
dollar mark.

Example:
asmsh aaa.mar -assigna=_\$=HVFF (UNIX)

Value H'FF is assigned to preprocessor variable _$. All references (\&_$) to preprocessor
variable _$ in the source program are set to H'FF.

Reference: .ASSIGNA
- Programmer’s Guide, 6.2, “Conditional Assembly Directive,” .ASSIGNA

262 HITACHI



-ASSIGNC Character Preprocessor Variable Definition
Syntax

-AS SIGNC=<preprocessor variable>="<character string>“
[,<preprocessor variable>=“<character string>“...]

The abbreviated form is indicated by bold face.
Description

The -ASSIGNC option sets a character string to a preprocessor variable.
The naming rule of preprocessor variables is the same as that of symbols.
A character string must be enclosed by double-quotation marks ().

Up to 255 characters (bytes) can be specified for a character string.

El A

Relationship with Assembler Directives

Command Line Option Assembler Directive  Result

-ASSIGNC ASSIGNC directive* Character string specified by -ASSIGNC
(no specification) Character string specified by -ASSIGNC
(no specification) ASSIGNC directive Character string specified by .ASSIGNC

Note: When a character string is assigned to a preprocessor variable by the -ASSIGNC option,
the definition of the preprocessor variable by .ASSIGNC is invalidated.

Note

To specify the following characters in a character string when the host machine uses UNIX as
the OS, specify a backslash (\) before the characters. To specify character strings before and
after the following characters, enclose the character strings by double-quotation marks ().

¢ Exclamation mark (1)

¢ Double-quotation mark (*)
» Dollar mark ($)

» Back quotation mark (")

asmsh aaa.mar -assignc=_\$="ON"\I"OFF” (UNIX)

Character string ON!OFF is assigned to preprocessor variable _$. All references (\&_$) to
preprocessor variable _$ in the source program are set to ON!OFF.

Reference: .ASSIGNC
- Programmer’s Guide, 6.2, “Conditional Assembly Directive,” .ASSIGNC

HITACHI 263



-DEFINE Replacement Character String Definition
Syntax

-DEFINE=<replacement symbol>="<character string>"
[,<replacement symbol>=“<character string>“...]

The abbreviated form is indicated by bold face.
Description

1. The -DEFINE option defines that the specified symbol is replaced with the corresponding
character string by the preprocessor.

2. Differences between -DEFINE and -ASSIGNC are the same as those between .DEFINE and
ASSIGNC.

Relationship with Assembler Directives

Command Line Option Assembler Directive  Result

-DEFINE .DEFINE directive* Character string specified by -DEFINE
(no specification) Character string specified by -DEFINE
(no specification) .DEFINE directive Character string specified by .DEFINE

Note: When a character string is assigned to a replacement symbol by the -DEFINE option, the
definition of the replacement symbol by .DEFINE is invalidated.

Reference: .DEFINE
- Programmer’s Guide, 6.2, “Conditional Assembly Directive,” .DEFINE

2.2.6 Assembler Execution Command Line Option

This assembler provides the following command line options concerned with assembler
execution.

-EXPAND This command line option outputs preprocessor expansion result.

-ABORT This command line option changes the error level at which the assembler is
abnormally terminated.

264 HITACHI



-EXPAND Preprocessor Expansion Result Output
Syntax

-EXPANDI[=<output file name>]
The abbreviated form is indicated by bold face.
Description

1. The -EXPAND option outputs an assembler source file for which macro expansion,
conditional assembly, and file inclusion have been performed.

2. When this option is specified, no object will be generated.
3. If no output file is specified, the file name becomes as follows:
O When the file format (extension) is omitted:
.exp is used.
O When both the file name and file format (extension) is omitted:

The input source file name specified first is used as the file name body and .exp is used as
extensiort:

4. Do not specify the same file name for the input and output files.

Note: When MS-DOS is used, the file format is in uppercase letters.

HITACHI 265



-ABORT Change of Error Level at Which the Assembler Is Abnormally Terminated
Syntax

-AB ORT=<error level>
Error level{ WARNING|ERROR}

The abbreviated form is indicated by bold face.
Description

1. The -ABORT option specifies the error level and changes the return value to the OS
depending on the assembly result.

2. The return value to the OS is as follows:

Number of Cases Return Value to OS when Option Specified
ABORT=WARNING ABORT=ERROR *
Warning Error Fatal Error MS-DOS UNIX MS-DOS UNIX
0 0 0 0 0 0 0
1 or more 0 0 2 1 0 0
— 1 or more 0 2 1 2 1
— — 1 or more 4 1 4 1

Note: The underline indicates the default option setting.

3. When the return value to the OS becomes 1 or larger, the object module is not output.
4. The -ABORT option is valid only when the object module output is specified.

266 HITACHI



2.2.7 Japanese Character Description Command Line Options

This assembler provides the following command line options concerned with Japanese
characters description in source files.

-SJIS This command line option interpretes Japanese kanji characters in source files as
shift JIS code.

-EUC This command line option interpretes Japanese kanji characters in source files as
EUC code.

-OUTCODE |This command line option specifies the Japanese kanji code for output to object file.

HITACHI 267



-SJIS Interpretation of Japanese Characters as Shift JIS Code
Syntax

-SJIS
Description

1. The -SJIS option enables Japanese characters to be written in character strings and
comments.
SJIS Japanese characters in character strings and comments are interpreted as
shift JIS code.

No specification Japanese characters in character strings and comments are interpreted as
Japanese code specified by the host machine.

2. Do not specify this option together with the -EUC option.

Reference:  Shift JIS code
- Programmer’s Guide, 1.4.2 “Character Constants”

268 HITACHI



-EUC Interpretation of Japanese Characters as EUC Code
Syntax

-EUC
Description

1. The -EUC option enables Japanese characters to be written in character strings and
comments.
EUC Japanese characters in character strings and comments are interpreted
EUC code.
No specification Japanese characters in character strings and comments are interpreted as
Japanese code specified by the host machine.
2. Do not specify this option together with the -SJIS option.

Reference: EUC code
- Programmer’s Guide, 1.4.2 “Character Constants”

HITACHI 269



-OUTCODE  Specification of Japanese Code for Output to Object File
Syntax

-OUTCODE=<Japanese code>
<Japanese code>:{SJIS|EUC}

The abbreviated form is indicated by bold face.
Description

1. The -OUTCODE option converts Japanese characters in the source file to the specified
Japanese kaniji code for output to the object file.

2. The Japanese code output to the object file depends on the -OUTCODE specification and the
code (-SJIS or -EUC) in the source file as follows:
Japanese Code in Source File

-OUTCODE

Specification -SJIS -EUC No Specification
SJIS Shift JIS code Shift JIS code Shift JIS code
EUC EUC code EUC code EUC code

No specification Shift JIS code EUC code Default code

Default code is as follows.

Host Machine Default Code
SPARC station EUC code
HP9000 700 series Shift JIS code
RISC NEWS series Shift JIS code
PC9800 series Shift JIS code

IBM PC and its compatible machine

Reference: Japanese code in the source file
- User’s Guide, 2.2.7 “Japanese Character Description Command Line Options”
-SJIS
- User’s Guide, 2.2.7 “Japanese Character Description Command Line Options”
-EUC

270 HITACHI



2.2.8 Automatic Literal Pool Generation Command Line Option

This assembler provides the following command line option concerned with automatic literal
pool generation.

-AUTO_LITERAL This command line option specifies the size mode for automatic
literal pool generation.

HITACHI 271



-AUTO_LITERAL Size Mode Specification for Automatic Literal Pool Generation
Syntax
-AUTO_LITERAL
The abbreviated form is indicated by bold face.
Description

1. The -AUTO_LITERAL option specifies the size mode for automatic literal pool generation.

O When this command line option is specified, automatic literal pool generation is
performed in size selection mode, and the assembler checks the imm value in the data
move instruction without operation size specification (MOV #imm,Rn) and automatically
generates a literal pool if necessary.

O When this option is not specified, automatic literal pool generation is performed in size
specification mode, and the data move instruction without size specification is handled as
a 1-byte data move instruction.

2. In the size selection mode, the imm value in the data move instruction without operation size
specification is handled as a signed value. Therefore, a value within the range from

H’00000080 to H'000000FF (128 to 255) is regarded as word-size data.

Selected Size or Error

Size Selection Size Specification
imm Value Range* Mode Mode
H’80000000 to H'FFFF7FFF (-2,147,483,648 to - Long word Warning 835
32,769)
H'FFFF8000 to H'FFFFFF7F (-32,768 to -129) Word Warning 835
H'FFFFFF80 to H'0000007F (-128 to 127) Byte Byte
H’00000080 to H'000000FF (128 to 255) Word Byte
H’00000100 to H'00007FFF (256 to 32,767) Word Warning 835
H’00008000 to H'7FFFFFFF (32,768 to Long word Warning 835

2,147,483,647)
Note: The value in parentheses ( ) is in decimal.

Reference: Size selection mode
Size specification mode
- Programmer’s Guide, 8.3 “Size Mode for Automatic Literal Pool Generation”

272 HITACHI



2.2.9 Command Line Input Command Line Option

This assembler provides the following command line option concerned with command line
input.

-SUBCOMMAND  This command line option inputs command line specifications from a file.

HITACHI 273



-SUBCOMMAND Command Line Specification Input from File
Syntax
-SUBCOMMAND=<subcommand file name>
The abbreviated form is indicated by bold face.
Description

1. The -SUBCOMMAND option inputs command line specifications from a file.

2. Specify input file names and command line options in the subcommand file in the same order
as for normal command line specifications.

3. Only one input file name or one command line option can be specified in one line in the
subcommand file.

4. This option must be specified at the end of a command line. The remaining files and options
are read from the specified subcommand file.

5. This option must not be specified in a subcommand file.
Example:
asmsh aaa.src -subcommand=aaa.sub

The subcommand file contents are expanded to a command line and assembled.

: -li st 3

The above command line and file aaa.sub are expanded as follows:

asmsh aaa.src,bbb.src -list -noobj

Notes
1. One line of a command file can include a maximum of 300 bytes.
2. One command file can include a maximum of 32,767 bytes.

274 HITACHI



Appendix

HITACHI 275



276 HITACHI



Table A-1 Limitations and Notes on Programming

Appendix A Limitations and Notes on Programming

No. Item Limitation
Character types ASCII characters, shift JIS code, EUC code
2 Upper/lower-case letter Symbols (including section names)} Distinauished
distinction Object module names} 9
Reserved words}
Executable instruction mnemonics} ¢
Assembler directive mnemonics} distinguished
Operation sizes}
Integer constant radixes}
3 Line length Up to 255 bytes
4 Program length (in lines) Up to 65,535 lines
5 Character constants Up to 4 characters
6 Symbol length Up to 32 characters
7 Number of symbols Up to 65,535 symbols
8 Number of import symbols Up to 65,535 symbols
9 Number of export symbols Up to 65,535 symbols
10 Section size Up to H'FFFFFFFF bytes
11 Number of sections Up to 65,535 sections
12 Number of macro generation Up to 100,000 numbers
numbers
13 Number of literals Up to 100,000 literals

HITACHI

277



278 HITACHI



Appendix B Sample Program
This appendix presents a sample program written for this assembler.

B.1 Sample Program Specifications

Functional Specification

Macros and subroutines for addition, subtraction, multiplication, and division of fixed-po
data in the following format:

<parameter 1> OP <parameter 2>result
OP: +, -x, +

Note: Operation results are rounded off. Neither underflow nor overflow is checked.

Data Format

Register| I\ | Integer part Fraction part
A
Decimal point

Sign bit

The location of the decimal point is set in preprocessor variable POINT as the number ¢
from the MSB.

Inputs and Outputs

Inputs: Set parameter 1 in register Parm1.

Set parameter 2 in register Parm2.

For addition and subtraction, parameters 1 and 2 can be specified as macro
parameters.
Output: The result is stored in register Parm 1.

Macro and Subroutine Usage

Addition (+): Macro call FIX_ADD [parameter 1], [parameter 2]
Subtraction (-): Macro call FIX_SUB [parameter 1], [parameter 2]
Multiplication (x): Subroutine call FIX_MUL
Division(+): Subroutine call FIX_DIV

Registers to be Used

Define the following registers with the .REG directive:
Parml, Parm 2, WORK 1, WORK2, WORK3, WORK4

nt

f bits

HITACHI 279



B.2 Coding Example

. MACRO FI X_ADD Rs=Parn®?, Rd=Par nil
ADD \Rs, \ Rd
. ENDM
. MACRO FI X_SUB Rs=Par n2, Rd=Par nil
SuB \Rs, \ Rd
. ENDM

FI X_MUL:
DI VOS  Parnt, Par n2 ;
MOVT WORK1 ; Stores the sign of the result in WORK1.
CWP/ PZ  Par nl ;o
BT MULO1 ; 1 If (Parml < 0), Parm1 = —Parm1
NEG Par i, Par ml ;oo

MJULO1 CWP/ PZ  Par n2 o
BT MJLO2 ; ' If (Parm2 < 0), Parm2 = —Parm2
NEG Par n2, Par ng ;o

MJLO2 MJULU Par miL, Par n2 ; Parml (low) * Parm2 (low)
SWAP. W Par ni, Par niL ;
STS MACL, WORK2 ;
MJLU Par miL, Par n2 ; Parml (high) * Parm2 (low)
SWAP. W Par ni, Par niL ;
SWAP. W Par n2, Par n2 ;
STS MACL, WORK3 ;
MJLU Par miL, Par n2 ; Parml (low) * Parm2 (high)
SWAP. W Par ni, Par niL ;
STS MACL, WORK4 ;
MJLU Par mi, Par n2 ; Parml (high) * Parm2( high)
CLRT ;
STS MACL, Par ni ;
MoV WORK3, Par n2 o
SHLR16 WORK3 ; 1
SHLL16 Parn2 P
ADDC Par n2, WORK2 ; |
ADDC WORK3, Par mL ; ; Sums 16-bit multiplication results.
MoV WORK4, Par n2 ; :
SHLR16 WORK4 N
SHLL16 Parn? ; 1
ADDC WORK4, Par ;oo
. AREPEAT \ &PO NT ;o
SHLL Par n2 ; ' Corrects decimal point location.
ROTCL Par mlL ; |
. AENDR o
SHLR WORK1 ;o
BF MJLO3 ; . Adds the sign.
NEG Par i, Par mL ;o

MJLO3 RTS
NOP

280

HITACHI

(Continued on following page.)



FI X_DI V:

MOV #0, WORK1
DIVOS  WORK1, Parml
SUBC WORK1, Par mL
. AREPEAT \ &PQO NT
SHAR Par m

ROTCR  WORK1

. AENDR
Dl VOS Par n2, Par nlL
. AREPEAT 32

ROTCL WORK1

Dl V1 Par n2, Par niL
. AENDR

ROTCL WORK1

MoV #0, Par nlL
ADDC Par mL, WORK1
MOV WORK1, Par mlL
RTS

NOP

If dividend is a negative value,
converts to 1's complement.

Corrects decimal point location.

Parm1:WORK1/Parm2 - WORK1

Converts to 2's complement.

HITACHI

281




282 HITACHI



Appendix C Assemble Listing Output Example

The assemble listing shows the result of the assemble processing. The assemble listing consists
of a source program listing, a cross-reference listing, and a section information listing.

This appendix describes the content and output format of the assemble listing using the assembly
of the source program shown below as an example. This uses the sample program shown in
appendix B to calculate the following:

15%x225+3+5

POINT .ASSIGNA 16
Parml .REG (RO)
Parm2 .REG (R1)
WORK1 .REG (R2)
WORK2 .REG (R3)
WORK3 .REG (R4)
WORK4 .REG (R5)

.SECTION SAMPLE,CODE,ALIGN=4
.INCLUDE “appendix B”

a .REG (R8)
b .REG (R9)
¢ .REG (R10)
d .REG (R11)

start
STS PR,@-SP
MOV.L #H'00018000,a
MOV.L #H'00024000,b
MOV.L #H00030000,c
MOV.L #H’00050000,d

MOV a,Parml
MOV  b,Parm2
BSR FIX_MUL
NOP

MOV Parml,a
MOV c,Parml
MOV d,Parm2
BSR FIX DIV
NOP

FIX_ADD a
MOV Parml,a
LDS @SP+,PR
RTS

NOP

.END

HITACHI 283



C1 Source Program Listing

The source program listing lists information related to the source statements, including the line
number and the corresponding object code.

Figure C-1 shows an example of a source program listing.

*** SH SERI ES ASSEMBLER Ver. 3.0 *** 07/12/95 19:52: 40
PROGRAM NAME = " SAVPLE” ()
1 1 HEADI NG """ SAVPLE" " "
2 2 PO NT . ASSIGNA 16
3 3 Parml . REG (RO)
4 4 Parn2 .REG (R1L)
5 5 WORKL . REG (R2)
6 6 WORK2 . REG (R3)
7 7 WORK3 . REG (R4)
8 — 8 WORK4 . REG (R5)
20 00000000 9 11 FIX_MIL:
21 00000000 2107 10 11 DI VOS  Parmi, Par n2
22 00000002 0229 11 11 MOVT WVORK1 :
23 00000004 4011 12 11 CWP/ PZ Parml .
24 00000006 8900 13 11 BT MULO1 ;0 if (Parml
25 00000008 600B 14 11 NEG Par i, Par ml Do
1) (2 (©)] 4 (5 (6)
237 *kkkx BEG N-POOL *****
238 00000180 A008 BRA TO END- POOL
239 00000182 0009 NOP
240 00000184 00018000 DATA FOR SOURCE- LI NE 217 ®
241 00000188 00024000 DATA FOR SOURCE- LI NE 218
242 0000018C 00030000 DATA FOR SOURCE- LI NE 219
243 00000190 00050000 DATA FOR SOURCE- LI NE 220
244 *kkk Kk END_ Pw_ * ok ok ok ok
245 39 . END
*#%%% TOTAL ERRORS 0
*#%%% TOTAL WARNI NGS 0

©)

Figure C-1 Source Program Listing Output Example

(1) Line numbers (in decimal)
(2) The value of the location counter (in hexadecimal)

(3) The object code (in hexadecimal). The size of the reserved area in bytes is listed for areas
reserved with the .RES, .SRES, .SRESC, and .SRESZ assembler directives.

(4) Source line numbers (in decimal)

(5) Expansion type. Whether the statement is expanded by file inclusion, conditional assembly
function, or macro function is listed.

In:  File inclusion (n indicates the nest level).

C: Satisfied conditional assembly, performed iterated expansion, or satisfied conditional
iterated expansion

284 HITACHI



M: Macro expansion
(6) The source statements
(7) The header setup with the .HEADING assembler directive.
(8) The literal pool

(9) The total number of errors and warnings. Error messages are listed on the line following the
source statement that caused the error.

C.2 Cross-Reference Listing

The cross-reference listing lists information relating to symbols, including the attribute and the
value.

Figure C-2 shows an example of a cross-reference listing.

*** SH SERI ES ASSEMBLER Ver. 3.0 *** 07/ 12/ 95 19:52: 40

*** CROSS REFERENCE LI ST

NAVE SECTION  ATTR VALUE SEQUENCE

FI X DI V SAVPLE 00000088 94* 229

FI X_MJL SAMPLE 00000000 20* 224

MVANO3 UDEF 00000000 89

MJULO1 SAVPLE 0000000A 24 26*

MJLO2 SAMPLE 00000010 27 29*

Par L REG 3* 21 23 25
37 37 39 41
69 71 73 75
96 97 102 104

Par n2 REG 4* 21 26 28
44 45 47 49
70 72 74 76

168 170 172 174
1) 2 (3) 4 (5)

Figure C-2 Cross-Reference Listing Output Example

(1) The symbol name
(2) The name of the section that includes the symbol (first eight characters)
(3) The symbol attribute

HITACHI 285



EXPT Export symbol

IMPT Import symbol

SCT Section name

REG Symbol defined with the .REG assembler directive
ASGN Symbol defined with the .ASSIGN assembler directive
EQU Symbol defined with the .EQU assembler directive
MDEF Symbol defined two or more times

UDEF Undefined symbol

No symbol A symbol other than those listed above

attribute (blank)

(4) The value of symbol (in hexadecimal)

(5) The list line numbers (in decimal) of the source statements where the symbol is defined or
referenced. The line number marked with an asterisk is the line where the symbol is defined.

C.3 Section Information Listing

The section information listing lists information related to the sections in a program, including
the section type and section size.

Figure C-3 shows an example of a section information listing.

*** SH SERI ES ASSEMBLER Ver. 3.0 *** 07/ 12/ 95 19:52: 40

*** SECTI ON DATA LI ST

SECTI ON ATTRIBUTE  SIZE START
SAVPLE REL-CODE 000000194
()] @ (©) 4

Figure C-3 Section Information Listing Output Example

(1) The section name
(2) The section type

286 HITACHI



REL Relative address section
ABS Absolute address section
CODE Code section

DATA Data section

COMMON Common section
STACK Stack section

DUMMY Dummy section

(3) The section size (in hexadecimal, byte units)
(4) The start address of absolute address sections

HITACHI 287



288 HITACHI



Appendix D Error Messages

D.1 Error Types

(1) Command Errors
These are errors related to the command line that starts the assembler. These errors can
occur, for example, in cases where there are errors in the source file or command line option
specifications.
The assembler outputs the error message to standard error output (usually the'diSpkay).
format of these messages is as folldws:

“*“ line <line number>:<error number> (E) <message>

Example:

““ line 0: 10(E) NO INPUT FILE SPECIFIED

Notes: 1. The assembler outputs the message to standard output when MS-DOS is used.
2. The format is as follows when MS-DOS is used:

(<line number>): <error number>(E)<message>

Example:

(0): 10(E) NO INPUT FILE SPECIFIED

(2) Source Program Errors
These are syntax errors in the source program.
The assembler outputs the error message to standard output (usually the display) or the
source program listing. (If a source program listing is output during assembly, these
messages are not output to standard output.)
The format of these messages is as foll&ws:
“<source file name>*“ line <line number>: <error number>(E)<message>

“<source file name>"“ line <line number>: <error number>(W)<message>

HITACHI 289



Example:

“PROG.SRC’,line 25: 300(E) ILLEGAL MNEMONIC
“PROG.SRC’,line 33: 811(W) ILLEGAL SYMBOL DEFINITION

Notes: 1. The assembler outputs the message to standard output or the source program listing
when MS-DOS is used.

2. The format is as follows when MS-DOS is used:

<source file name>(<line number>): <error number>(E)<message>

<source file name>(<line number>): <error number>(W)<message>

Example:
PROG.SRC(25): 300(E) ILLEGAL MNEMONIC
PROG.SRC(33): 811(W) ILLEGAL SYMBOL DEFINITION

The source program error numbers are classified as follows:

100 to 199 General source program syntax errors

200 to 299 Errors in symbols

300 to 349 Errors in operations and/or operands

350 to 399 Errors in DSP instructions

400 to 499 Errors in expressions

500 to 599 Errors in assembler directives

600 to 699 Errors in file inclusion, conditional assembly, or macro function
700 to 799 Warnings in DSP instructions

800 to 999 General source program warnings

(3) Fatal Errors

These are errors related to the assembler operating environment, and can occur, for example,
if the available memory is insufficient.

The assembler outputs a message to standard error duijnet format of these messages is
as follows'2

“* line <line number>:<error number> (F) <message>

290 HITACHI



Example:
““ line 0: 903(F) LISTING FILE OUTPUT ERROR

Notes: 1. The assembler outputs the message to standard output when MS-DOS is used.
2. The format is as follows when MS-DOS is used:

(<line number>): <error number>(F)<message>

Example:
(0): 903(F) LISTING FILE OUTPUT ERROR

Assembly processing is interrupted when a fatal error occurs.

HITACHI 291



D.2

Error Message Tables

Table D-1 Command Error Messages

10 Message: NO INPUT FILE SPECIFIED
Meaning: There is no input source file specified.
Recovery procedure: Specify an input source file.
20 Message: CANNOT OPEN FILE <file name>
Meaning: The specified file cannot be opened.
Recovery procedure: Check and correct the file name and directory.
30 Message: INVALID COMMAND PARAMETER
Meaning: The command line options are not correct.
Recovery procedure: Check and correct the command line options.
40 Message: CANNOT ALLOCATE MEMORY

Meaning: All available memory is used up during processing.

Recovery procedure: This error only occurs when the amount of available user memory is
extremely small. If there is other processing occurring at the same
time as assembly, interrupt that processing and restart the
assembler. If the error still occurs, check and correct the memory
management employed on the host system.

50 Message: COMPLETED FILE NAME TOO LONG <file name>

Meaning: The file name including the directory is too long.

Recovery procedure:

Supplement:

Shorten the total length of the file name and directory path.

It is possible that the object module output by the assembler after
this error has occurred will not be usable with the
simulator/debugger.

292

HITACHI



Table D-2 Source Program Error Messages

General Source Program Syntax Errors

100 Message: OPERATION TOO COMPLEX
Error description: Too complex operation.
Recovery procedure: Simplify the expression for the operation.
101 Message: SYNTAX ERROR IN SOURCE STATEMENT
Error description: Syntax error in source statement.
Recovery procedure: Check and correct the whole source statement.
102 Message: SYNTAX ERROR IN DIRECTIVE
Error description: Syntax error in assembler directive source statement.
Recovery procedure: Check and correct the whole source statement.
104  Message: LOCATION COUNTER OVERFLOW
Error description: The value of location counter exceeded its maximum value.
Recovery procedure: Reduce the size of the program.
105 Message: ILLEGAL INSTRUCTION IN STACK SECTION
Error description: Executable instruction, extended instruction, or assembler directive
that reserves data in stack section.
Recovery procedure: Remove the instruction, extended instruction, or directive in the
stack section.
106  Message: TOO MANY ERRORS
Error description: Error display terminated due to too many errors.
Recovery procedure: Check and correct the whole source statement.
108 Message: ILLEGAL CONTINUATION LINE
Error description: lllegal continuation line.
Recovery procedure: Check and correct continuation line.
109 Message: LINE NUMBER OVERFLOW
Error description: The number of lines being assembled exceeded 65,535 lines.
Recovery procedure: Subdivide the program into multiple files.
150 Message: INVALID DELAY SLOT INSTRUCTION

Error description:

Recovery procedure:

lllegal executable instruction placed following delayed branch
instruction in memory.

Change the order of the instruction so that the instruction does not
immediately follow a delayed branch instruction.

HITACHI 293



Table D-2 Source Program Error Messages (cont)

151 Message: ILLEGAL EXTENDED INSTRUCTION POSITION
Error description: Extended instruction placed following a delayed branch instruction in
memory.
Recovery procedure: Place an executable instruction following the delayed branch
instruction.
152  Message: ILLEGAL BOUNDARY ALIGNMENT VALUE
Error description: lllegal boundary alignment value specified for a section including
extended instructions.
Recovery procedure: Specify 2 or a larger multiple of 2 as a boundary alignment value.
153 Message: ILLEGAL ADDRESS

Error description:
Recovery procedure:

Executable or extended instruction placed at an odd address.
Place executable and extended instructions at even addresses.

Symbol Errors

200 Message: UNDEFINED SYMBOL REFERENCE
Error description: Undefined symbol reference.
Recovery procedure: Define the symbol.
201  Message: ILLEGAL SYMBOL OR SECTION NAME
Error description: Reserved word specified as symbol (or section name).
Recovery procedure: Correct the symbol or section name.
202  Message: ILLEGAL SYMBOL OR SECTION NAME
Error description: lllegal symbol (or section name).
Recovery procedure: Correct the symbol or section name.
203  Message: ILLEGAL LOCAL LABEL

Error description:
Recovery procedure:

lllegal local label.
Correct the local label.

Operation and Operand Errors

300 Message: ILLEGAL MNEMONIC
Error description: lllegal operation.
Recovery procedure: Correct the operation.
301 Message: TOO MANY OPERANDS OR ILLEGAL COMMENT
Error description: Too many operands of executable instruction, or illegal comment
format.
Recovery procedure: Check and correct the operands and comment.
304 Message: LACKING OPERANDS

Error description:
Recovery procedure:

Too few operands.
Correct the operands.

294

HITACHI



Table D-2 Source Program Error Messages (cont)

307 Message: ILLEGAL ADDRESSING MODE
Error description: lllegal addressing mode in operand.
Recovery procedure: Correct the operand.

308 Message: SYNTAX ERROR IN OPERAND

Error description:

Recovery procedure:

Syntax error in operand.
Correct the operand.

DSP Instruction Errors

350 Message: SYNTAX ERROR IN SOURCE STATEMENT (<mnemonic>)
Error description: There are syntax error(s) in the DSP instruction statement.
Recovery procedure: Correct the source statement.

351 Message: ILLEGAL COMBINATION OF MNEMONICS

(<mnemonic>, <mnemonic>)
Error description: lllegal combination of DSP operation instructions is specified.
Recovery procedure: Correct the combination of DSP operation instructions.

352 Message: ILLEGAL CONDITION (<mnemonic>)

Error description: lllegal condition for DSP operation instructions is specified.
Recovery procedure: Cancel the condition or change the DSP operation instruction.

353 Message: ILLEGAL POSITION OF INSTRUCTION (<mnemonic>)

Error description: The DSP operation instruction is specified in an illegal position.
Recovery procedure: Specify the DSP operation instruction in the correct position.

354  Message: ILLEGAL ADDRESSING MODE (<mnemonic>)

Error description: The addressing mode of the DSP operation instruction is illegal.
Recovery procedure: Correct the operand.

355 Message: ILLEGAL REGISTER NAME (<mnemonic>)

Error description: The register name of the DSP operation instruction is illegal.
Recovery procedure: Correct the register name.

357 Message: ILLEGAL COMBINATION OF MNEMONICS (<mnemonic>)
Error description: An illegal data transfer instruction is specified.

Recovery procedure: Correct the data transfer instruction.

371 Message: ILLEGAL COMBINATION OF MNEMONICS

Error description:

Recovery procedure:

(<mnemonic>, <mnemonic>)
The combination of data transfer instructions is illegal.
Correct the combination of data transfer instructions.

HITACHI

295



Table D-2 Source Program Error Messages (cont)

372  Message: ILLEGAL ADDRESSING MODE (<mnemonic>)
Error description: An illegal addressing mode for the data transfer instruction operand
is specified.
Recovery procedure: Correct the operand.
373  Message: ILLEGAL REGISTER NAME (<mnemonic>)

Error description:
Recovery procedure:

An illegal register name for the data transfer instruction is specified.
Correct the register name.

Expression and Operation Errors

400 Message: CHARACTER CONSTANT TOO LONG
Error description: Character constant is longer than 4 characters.
Recovery procedure: Correct the character constant.
402  Message: ILLEGAL VALUE IN OPERAND
Error description: Operand value out of range for this instruction.
Recovery procedure: Change the value.
403 Message: ILLEGAL OPERATION FOR RELATIVE VALUE
Error description: Attempt to perform multiplication, division, or logic operation on
relative value.
Recovery procedure: Correct the expression.
406 Message: ILLEGAL OPERAND
Error description: An expression is specified at the location where floating-point data
must be specified.
Recovery procedure: Specify floating-point data.
407 Message: MEMORY OVERFLOW
Error description: Memory overflow during expression calculation.
Recovery procedure: Simplify the expression.
408 Message: DIVISION BY ZERO
Error description: Attempt to divide by 0.
Recovery procedure: Correct the expression.
409 Message: REGISTER IN EXPRESSION
Error description: Register name in expression.
Recovery procedure: Correct the expression.
411  Message: INVALID STARTOF/SIZEOF OPERAND

Error description:
Recovery procedure:

STARTOF or SIZEOF specifies illegal section name.
Correct the section name.

296

HITACHI



Table D-2 Source Program Error Messages (cont)

412  Message: ILLEGAL SYMBOL IN EXPRESSION
Error description: Relative value specified as shift value.
Recovery procedure: Correct the expression.
450 Message: ILLEGAL DISPLACEMENT VALUE
Error description: lllegal displacement value. (Negative value is specified.)
Recovery procedure: Correct the displacement value.
452  Message: ILLEGAL DATA AREA ADDRESS
Error description: PC-relative data move instruction specifies illegal address for data
area.
Recovery procedure: Access a correct address according to the instruction operation size.
(4-byte boundary for MOV.L and MOVA, and 2-byte boundary for
MOV.W.)
453  Message: LITERAL POOL OVERFLOW

Error description:

Recovery procedure:

More than 510 extended instructions exist that have not output
literals.
Output literal pools using .POOL.

Assembler Directive Errors

500 Message: SYMBOL NOT FOUND
Error description: Label not defined in directive that requires label.
Recovery procedure: Insert a label.
501 Message: ILLEGAL ADDRESS VALUE IN OPERAND
Error description: lllegal specification of the start address or the value of location
counter in section.
Recovery procedure: Correct the start address or value of location counter.
502 Message: ILLEGAL SYMBOL IN OPERAND
Error description: lllegal value (forward reference symbol, import symbol, or relative
address symbol) specified in operand.
Recovery procedure: Correct the operand.
503 Message: UNDEFINED EXPORT SYMBOL
Error description: Symbol declared for export symbol not defined in the file.
Recovery procedure: Define the symbol. Alternatively, remove the export symbol
declaration.
504  Message: INVALID RELATIVE SYMBOL IN OPERAND

Error description:

Recovery procedure:

lllegal value (forward reference symbol or import symbol) specified
in operand.
Correct the operand.

HITACHI 297



Table D-2 Source Program Error Messages (cont)

505 Message: ILLEGAL OPERAND
Error description: Misspelled operand.
Recovery procedure: Correct the operand.
506 Message: ILLEGAL OPERAND
Error description: lllegal element specified in operand.
Recovery procedure: Correct the operand.
508 Message: ILLEGAL VALUE IN OPERAND
Error description: Operand value out of range for this directive.
Recovery procedure: Correct the operand.
510 Message: ILLEGAL BOUNDARY VALUE
Error description: lllegal boundary alignment value.
Recovery procedure: Correct the boundary alignment value.
512  Message: ILLEGAL EXECUTION START ADDRESS
Error description: lllegal execution start address.
Recovery procedure: Correct the execution start address.
513 Message: ILLEGAL REGISTER NAME
Error description: lllegal register name.
Recovery procedure: Correct the register name.
514  Message: INVALID EXPORT SYMBOL
Error description: Symbol declared for export symbol that cannot be exported.
Recovery procedure: Remove the declaration for the export symbol.
516 Message: EXCLUSIVE DIRECTIVES
Error description: Inconsistent directive specification.
Recovery procedure: Check and correct all related directives.
517 Message: INVALID VALUE IN OPERAND
Error description: lllegal value (forward reference symbol, an import symbol, or
relative-address symbol) specified in operand.
Recovery procedure: Correct the operand.
518 Message: INVALID IMPORT SYMBOL
Error description: Symbol declared for import defined in the file.
Recovery procedure: Remove the declaration for the import symbol.
520 Message: ILLEGAL .CPU DIRECTIVE POSITION

Error description:

Recovery procedure:

CPU is not specified at the beginning of the program, or specified
more than once.
Specify .CPU at the beginning of the program once.

298

HITACHI



Table D-2 Source Program Error Messages (cont)

521 Message: ILLEGAL .NOPOOL DIRECTIVE POSITION
Error description: .NOPOOL placed at illegal position.
Recovery procedure: Place .NOPOOL following a delayed branch instruction.
522  Message: ILLEGAL .POOL DIRECTIVE POSITION
Error description: .POOL placed following a delayed branch instruction.
Recovery procedure: Place an executable instruction following the delayed branch
instruction.
523 Message: ILLEGAL OPERAND
Error description: lllegal .LINE directive operand.
Recovery procedure: Correct the operand.
525 Message: ILLEGAL .LINE DIRECTIVE POSITION

Error description:

Recovery procedure:

LINE directive specified during macro expansion or conditional
iterated expansion.
Change the specified position of the .LINE directive.

File Inclusion, Conditional Assembly, and Macro Errors

600 Message: INVALID CHARACTER
Error description: lllegal character.
Recovery procedure: Correct it.
601 Message: INVALID DELIMITER
Error description: lllegal delimiter character.
Recovery procedure: Correct it.
602 Message: INVALID CHARACTER STRING FORMAT
Error description: Character string error.
Recovery procedure: Correct it.
603 Message: SYNTAX ERROR IN SOURCE STATEMENT
Error description: Source statement syntax error.
Recovery procedure: Reexamine the entire source statement.
604  Message: ILLEGAL SYMBOL IN OPERAND
Error description: lllegal operand specified in a directive.
Recovery procedure: No symbol or location counter ($) can be specified as an operand of
this directive.
610 Message: MULTIPLE MACRO NAMES

Error description:

Recovery procedure:

Macro name reused in macro definition ((MACRO directive).
Correct the macro name.

HITACHI

299



Table D-2 Source Program Error Messages (cont)

611 Message: MACRO NAME NOT FOUND
Error description: Macro name not specified (MACRO directive).
Recovery procedure: Specify a macro name in the name field of the .MACRO directive.
612 Message: ILLEGAL MACRO NAME
Error description: Macro name error ((MACRO directive).
Recovery procedure: Correct the macro name.
613 Message: ILLEGAL .MACRO DIRECTIVE POSITION
Error description: .MACRO directive appears in macro body (between .MACRO and
.ENDM directives), between .AREPEAT and .AENDR directives, or
between .AWHILE and .AENDW directives.
Recovery procedure: Remove the .MACRO directive.
614  Message: MULTIPLE MACRO PARAMETERS
Error description: Identical formal parameters repeated in formal parameter
declaration in macro definition (MACRO directive).
Recovery procedure: Correct the formal parameters.
615 Message: ILLEGAL .END DIRECTIVE POSITION
Error description: .END directive appears in macro body (between .MACRO and
.ENDM directives).
Recovery procedure: Remove the .END directive.
616 Message: MACRO DIRECTIVES MISMATCH
Error description: An .ENDM directive appears without a preceding .MACRO directive,
or an .EXITM directive appears outside of a macro body (between
.MACRO and .ENDM directives), outside of . AREPEAT and .AENDR
directives, or outside of . AWHILE and .AENDW directives.
Recovery procedure: Remove the .ENDM or .EXITM directive.
618 Message: MACRO EXPANSION TOO LONG
Error description: Line with over 255 characters generated by macro expansion.
Recovery procedure: Correct the definition or call so that the line is less than or equal to
255 characters.
619 Message: ILLEGAL MACRO PARAMETER

Error description:

Recovery procedure:

Supplement:

Macro parameter name error in macro call, or error in formal
parameter in a macro body (between .MACRO and .ENDM
directives).

Correct the formal parameter.

When there is an error in a formal parameter in a macro body, the
error will be detected and flagged during macro expansion.

300

HITACHI



Table D-2 Source Program Error Messages (cont)

620 Message: UNDEFINED PREPROCESSOR VARIABLE
Error description: Reference to an undefined preprocessor variable.
Recovery procedure: Define the preprocessor variable.
621 Message: ILLEGAL .END DIRECTIVE POSITION
Error description: .END directive in macro expansion.
Recovery procedure: Remove the .END directive.
622 Message: )" NOT FOUND
Error description: Matching parenthesis missing in macro processing exclusion.
Recovery procedure: Add the missing macro processing exclusion parenthesis.
623 Message: SYNTAX ERROR IN STRING FUNCTION
Error description: Syntax error in character string manipulation function.
Recovery procedure: Correct the character string manipulation function.
624  Message: MACRO PARAMETERS MISMATCH
Error description: Too many macro parameters for positional specification in macro
call.
Recovery procedure: Correct the number of macro parameters.
631 Message: END DIRECTIVE MISMATCH
Error description: Terminating preprocessor directive does not agree with matching
directive.
Recovery procedure: Reexamine the preprocessor directives.
640 Message: SYNTAX ERROR IN OPERAND
Error description: Syntax error in conditional assembly directive operand.
Recovery procedure: Reexamine the entire source statement.
641 Message: INVALID RELATIONAL OPERATOR
Error description: Error in conditional assembly directive relational operator.
Recovery procedure: Correct the relational operator.
642 Message: ILLEGAL .END DIRECTIVE POSITION
Error description: .END directive appears between .AREPEAT and .AENDR directives
or between .AWHILE and .AENDW directives.
Recovery procedure: Remove the .END directive.
643 Message: DIRECTIVE MISMATCH

Error description:

Recovery procedure:

.AENDR or .AENDW directive does not form a proper pair with
.AREPEAT or .AWHILE directive.
Re-examine the preprocessor directives.

HITACHI

301



Table D-2 Source Program Error Messages (cont)

644  Message: ILLEGAL .AENDW OR .AENDR DIRECTIVE POSITION
Error description: AENDW or .AENDR directive appears between .AlF and .AENDI
directives.
Recovery procedure: Remove the . AENDW or .AENDR directive.
645 Message: EXPANSION TOO LONG
Error description: Line with over 255 characters generated by .AREPEAT or .AWHILE
expansion.
Recovery procedure: Correct the . AREPEAT or .AWHILE to generate lines of less than or
equal to 255 characters.
650 Message: INVALID INCLUDE FILE
Error description: Error in .INCLUDE file name.
Recovery procedure: Correct the file name.
651 Message: CANNOT OPEN INCLUDE FILE
Error description: Could not open .INCLUDE file.
Recovery procedure: Correct the file name.
652 Message: INCLUDE NEST TOO DEEP
Error description: File inclusion nesting exceeded 30 levels.
Recovery procedure: Limit the nesting to 30 or fewer levels.
653 Message: SYNTAX ERROR IN OPERAND
Error description: Syntax error in .INCLUDE operand.
Recovery procedure: Correct the operand.
660 Message: .ENDM NOT FOUND
Error description: Missing .ENDM directive following .MACRO.
Recovery procedure: Insert an .ENDM directive.
662 Message: ILLEGAL .END DIRECTIVE POSITION
Error description: .END directive appears between .AlIF and .AENDI directives.
Recovery procedure: Remove the .END directive.
663 Message: ILLEGAL .END DIRECTIVE POSITION
Error description: .END directive appears in included file.
Recovery procedure: Remove the .END directive.
664  Message: ILLEGAL .END DIRECTIVE POSITION

Error description:

Recovery procedure:

.END directive appears between .AlF and .AENDI directives.
Remove the .END directive.

302

HITACHI



Table D-2 Source Program Error Messages (cont)

665 Message:
Error description:

Recovery procedure:

EXPANSION TOO LONG

Lines with over 255 characters are generated by the .DEFINE
directive.

Correct the .DEFINE directive to generate lines of less than or equal
to 255 characters.

667 Message:
Error description:

Recovery procedure:

SUCCESSFUL CONDITION .AERROR

Statement including the .AERROR directive was processed in the
.AIF condition.

Correct the conditional statement so that the .AERROR directive is
not processed.

668 Message:
Error description:
Recovery procedure:

ILLEGAL VALUE IN OPERAND

Error in the operand of the directive.

Specify, as the operand of this directive, a symbol defined by
.DEFINE directive.

HITACHI 303



Table D-3 Source Program Warning Messages

DSP Instruction Warnings

700 Message: ILLEGAL VALUE IN OPERAND (<mnemonic>)
Error description: The operand value of the DSP operation instruction exceeds the
specifiable range.
Recovery procedure: Correct the operand value within the specifiable range.

701  Message: MULTIPLE REGISTER IN DESTINATION
(<mnemonic>, <mnemonic>)
Error description: The same register is specified as multiple destination operands of

the DSP instruction.
Recovery procedure: Specify the register correctly.

702  Message: ILLEGAL OPERATION SIZE (<mnemonic>)
Error description: The operation size of the DSP operation instruction or the data
transfer instruction is illegal.
Recovery procedure: Cancel or correct the operation size.

703  Message: MULTIPLE REGISTER IN DESTINATION
(<mnemonic>, <mnemonic>)
Error description: The same register is specified as the destination registers of the

DSP operation instruction and data transfer instruction.
Recovery procedure: Specify the register correctly.

General Source Program Warnings

800 Message: SYMBOL NAME TOO LONG

Error description: A symbol exceeded 251 characters.

Recovery procedure: Correct the symbol.

Supplement: The assembler ignores the characters starting at the 252nd

character.

801 Message: MULTIPLE SYMBOLS

Error description: Symbol already defined.

Recovery procedure: Remove the symbol redefinition.

Supplement: The assembler ignores the second and later definitions.
807 Message: ILLEGAL OPERATION SIZE

Error description: lllegal operation size.

Recovery procedure: Correct the operation size.

Supplement: The assembler ignores the incorrect operation size specification.

304 HITACHI



Table D-3 Source Program Warning Messages (cont)

808 Message: ILLEGAL CONSTANT SIZE
Error description: lllegal notation of integer constant.
Recovery procedure: Correct the notation.
Supplement: The assembler may misinterpret the integer constant, i.e., interpret it
as a value not intended by the programmer.
810 Message: TOO MANY OPERANDS
Error description: Too many operands or illegal comment format.
Recovery procedure: Correct the operand or the comment.
Supplement: The assembler ignores the extra operands.
811 Message: ILLEGAL SYMBOL DEFINITION
Error description: Specified label in assembler directive that cannot have a label.
Recovery procedure: Remove the label specification.
Supplement: The assembler ignores the label.
813 Message: SECTION ATTRIBUTE MISMATCH
Error description: A different section type is specified on section restart (reentry), or, a
section start address is respecified at the restart of absolute section.
Recovery procedure: Do not respecify the section type or start address on section reentry.
Supplement: The specification of starting section remains valid.
815 Message: MULTIPLE MODULE NAMES
Error description: Respecification of object module name.
Recovery procedure: Specify the object module name once in a program.
Supplement: The assembler ignores the second and later object module name
specifications.
816 Message: ILLEGAL DATA AREA ADDRESS
Error description: lllegal allocation of data or data area.
Recovery procedure: Locate the word data or data area on the even address. Locate the
long word data or data area on an address of a multiple of 4.
Supplement: The assembler corrects the location of the data or data area
according to the size of it.
817 Message: ILLEGAL BOUNDARY VALUE

Error description:

Recovery procedure:

Supplement:

A boundary alignment value less than 4 specified for a code section.
The specification is valid, but if an executable instruction or extended
instruction is located at an odd address, error 153 occurs.

Special care must be taken when specifying 1 for code section
boundary alignment value.

HITACHI 305



Table D-3 Source Program Warning Messages (cont)

825 Message: ILLEGAL INSTRUCTION IN DUMMY SECTION

Error description: Executable instruction, extended instruction, or assembler directive
that reserves data or data area in dummy section.

Recovery procedure: Remove the instruction or directive.

Supplement: The assembler ignores the instruction or directive.

826  Message: ILLEGAL PRECISION

Error description: The floating-point constant is not in single precision (.S).

Recovery procedure: Specify single precision.

Supplement: The assembler assumes single precision.

832 Message: MULTIPLE ‘P’ DEFINITIONS

Error description: Symbol P already defined before a default section is used.

Recovery procedure: Do not define P as a symbol if a default section is used.

Supplement: The assembler regards P as the name of the default section, and
ignores other definitions of the symbol P.

835 Message: ILLEGAL VALUE IN OPERAND

Error description: Operand value out of range for this instruction.

Recovery procedure: Correct the value.

Supplement: The assembler generates object code with a value corrected to be
within range.

836 Message: ILLEGAL CONSTANT SIZE

Error description: lllegal notation of integer constant.

Recovery procedure: Correct the notation.

Supplement: The assembler may misinterpret the integer constant, i.e., interpret it
as a value not intended by the programmer.

837 Message: SOURCE STATEMENT TOO LONG

Error description: The length of a source statement exceeded 255 bytes.

Recovery procedure: Rewrite the source statement to be within 255 bytes by, for example,
rewriting the comment. Alternatively, rewrite the statement as a
multi-line statement.

Supplement: The assembler ignores byte number 256, and regards the
characters starting at byte 257 as the next statement.

838 Message: ILLEGAL CHARACTER CODE

Error description:

Recovery procedure:

The shift JIS code or EUC code is specified outside character strings
and comments, or the SJIS or EUC command line option is not
specified.

Specify the shift JIS code or EUC code in character strings or
comments. Specify the SJIS or EUC command line option.

306

HITACHI



Table D-3 Source Program Warning Messages (cont)

839 Message: ILLEGAL FIGURE IN OPERAND
Error description: Fixed-point data having six or more digits is specified in word size, or
that having 11 or more digits is specified in long-word size.
Recovery procedure: Reduce the digits to the limit.
840 Message: OPERAND OVERFLOW
Error description: Floating-point data overflows.
Recovery procedure: Modify the value.
Supplement: The assembler assumes +_ when the value is positive and -_ when
negative.
841  Message: OPERAND UNDERFLOW
Error description: Floating-point data underflows.
Recovery procedure: Modify the value.
Supplement: The assembler assumes +0 when the value is negative and -0 when
negative.
850 Message: ILLEGAL SYMBOL DEFINITION
Error description: Symbol specified in label field.
Recovery procedure: Remove the symbol.
851 Message: MACRO SERIAL NUMBER OVERFLOW
Error description: Macro generation counter exceeded 99999.
Recovery procedure: Reduce the number of macro calls.
852  Message: UNNECESSARY CHARACTER
Error description: Characters appear after the operands.
Recovery procedure: Correct the operand(s).
854  Message: .AAWHILE ABORTED BY .ALIMIT

Error description:

Recovery procedure:

Expansion count has reached the maximum value specified by
ALIMIT directive, and expansion has been terminated.
Check the condition for iterated expansion.

HITACHI

307



Table D-3 Source Program Warning Messages (cont)

870 Message: ILLEGAL DISPLACEMENT VALUE
Error description: lllegal displacement value.
(Either the displacement value is not an even number when the
operation size is word, or the displacement value is not a multiple of
4 when the operation size is long word.)
Recovery procedure: Take account of the fact that the assembler corrects the
displacement value.
Supplement: The assembler generates object code with the displacement
corrected according to the operation size.
(For a word size operation the assembler discards the low order bit
of the displacement to create an even number, and for a long word
size operation the assembler discards the two low order bits of the
displacement to create a multiple of 4.)
871 Message: PC RELATIVE IN DELAY SLOT
Error description: Executable instruction with PC relative addressing mode operand is
located following delayed branch instruction.
Recovery procedure: Take account of the fact that the value of PC is changed by a
delayed branch instruction.
Supplement: The assembler generates object code exactly as specified in the
program.
874  Message: CANNOT CHECK DATA AREA BOUNDARY
Error description: Cannot check data area boundary for PC-relative data move
instructions.
Recovery procedure: Note carefully the data area boundary at linkage process.
Supplement: The assembler only outputs this message when a data move
instruction is included in a relative section, or when an import symbol
is used to indicate a data area.
875 Message: CANNOT CHECK DISPLACEMENT SIZE

Error description:
Recovery procedure:

Supplement:

Cannot check displacement size for PC-relative data move
instructions.

Note carefully the distance between data move instructions and data
area at linkage.

The assembler only outputs this message when a data move
instruction is included in a relative section, or when an import symbol
is used to indicate a data area.

308

HITACHI



Table D-3 Source Program Warning Messages (cont)

876  Message: ASSEMBLER OUTPUTS BRA INSTRUCTION
Error description: The assembler automatically outputs a BRA instruction.
Recovery procedure: Specify a literal pool output position using .POOL, or check that the
program to which a BRA instruction is added can run normally.
Supplement: When a literal pool output location is not available, the assembler
automatically outputs literal pool and a BRA instruction to jump over
the literal pool.

880 Message: END NOT FOUND
Error description: No .END in the program.
Recovery procedure: Add an .END.

HITACHI 309



Table D-4 Fatal Error Messages

901 Message: SOURCE FILE INPUT ERROR
Error description: Source file input error.
Recovery procedure: Check the hard disk for adequate free space. Create the required
free space by deleting unnecessary files.
902 Message: MEMORY OVERFLOW
Error description: Insufficient memory. (Unable to process the temporary information.)
Recovery procedure: Subdivide the program.
903 Message: LISTING FILE OUTPUT ERROR
Error description: Output error on the list file.
Recovery procedure: Check the hard disk for adequate free space. Create the required
free space by deleting unnecessary files.
904 Message: OBJECT FILE OUTPUT ERROR
Error description: Output error on the object file.
Recovery procedure: Check the hard disk for adequate free space. Create the required
free space by deleting unnecessary files.
905 Message: MEMORY OVERFLOW
Error description: Insufficient memory. (Unable to process the line information.)
Recovery procedure: Subdivide the program.
906 Message: MEMORY OVERFLOW
Error description: Insufficient memory. (Unable to process the symbol information.)
Recovery procedure: Subdivide the program.
907 Message: MEMORY OVERFLOW
Error description: Insufficient memory. (Unable to process the section information.)
Recovery procedure: Subdivide the program.
908 Message: SECTION OVERFLOW
Error description: The number of sections exceeded 65,535.
Recovery procedure: Subdivide the program.
909 Message: SYMBOL OVERFLOW
Error description: The number of symbols exceeded 65,535.
Recovery procedure: Subdivide the program.
910 Message: SOURCE LINE NUMBER OVERFLOW

Error description:

Recovery procedure:

The number of source program lines exceeded 65,535.
Subdivide the program.

310

HITACHI



Table D-4 Fatal Error Messages (cont)

911 Message: IMPORT SYMBOL OVERFLOW
Error description: The number of import symbols exceeded 65,535.
Recovery procedure: Reduce the number of import symbols.
912 Message: EXPORT SYMBOL OVERFLOW
Error description: The number of export symbols exceeded 65,535.
Recovery procedure: Reduce the number of export symbols.
933 Message: ILLEGAL ENVIRONMENT VARIABLE
Error description: The specified target CPU is incorrect.
Recovery procedure: Correct the target CPU.
935 Message: SUBCOMMAND FILE INPUT ERROR
Error description: Subcommand file input error.
Recovery procedure: Check the hard disk for adequate free space. Create the required
free space by deleting unnucessary files.
950 Message: MEMORY OVERFLOW
Error description: Insufficient memory.
Recovery procedure: Separate the source program.
951 Message: LITERAL POOL OVERFLOW
Error description: More than 100,000 internal symbols are used for literal pools.
Recovery procedure: Separate the source program.
952  Message: LITERAL POOL OVERFLOW
Error description: Literal pool capacity overflow.
Recovery procedure: Insert unconditional branch before overflow.
953 Message: MEMORY OVERFLOW
Error description: Insufficient memory.
Recovery procedure: Separate the source program.
954  Message: LOCAL BLOCK NUMBER OVERFLOW
Error description: The number of local blocks that are valid in the local label exceeded
100,000.
Recovery procedure: Separate the source program.
956 Message: EXPAND FILE INPUT/OUTPUT ERROR

Error description:

Recovery procedure:

File output error for preprocessor expansion.
Check the hard disk for adequate free space. Create the required
free space by deleting unnecessary files.

HITACHI 311



Table D-4 Fatal Error Messages (cont)

957 Message: MEMORY OVERFLOW
Error description: Insufficient memory.
Recovery procedure: Separate the source program.
958 Message: MEMORY OVERFLOW
Error description: Insufficient memory.

Recovery procedure: Separate the source program.

312 HITACHI



Appendix E Differences from Former Version

The differences between this new version (SH-series cross assembler v.3.0) and the former
version (SH-series cross assembler v.2.0) are described below.

E.l CPU

This version includes assembly functions for the SH-DSP and SH3E in addition to the SH1,
SH2, and SH3, and the following items are added or changed.

» Reserved words

« Executable instructions

e .CPU assembler directive
e CPU command line option
¢ SH-DSP instructions

The target CPU is specified by the CPU command line option or .CPU directive in the former
version, but in the new version, it can also be specified by the SHCPU environment variable.

The SHCPU environment variable value specification is the same as that for the C compiler or
the simulator debugger, and therefore this value can be referenced in common by these tools.

When the target CPU is specified several times by -CPU, .CPU, and SHCPU, the target CPU is
selected based on the following priorities:

Priority 1: -CPU specification
Priority 2: .CPU specification
Priority 3: SHCPU specification

References:

Reserved words

- Programmer’s Guide, 1.2, “Reserved Words”
Executable instructions

- Programmer’s Guide, 3, “Executable Instructions”
.CPU assembler directive

- Programmer’s Guide, 4.2.1, “Assembler Directive Related to CPU”
-CPU command line option

- User’s Guide, 2.2.1, “"CPU Command Line Option”
SH-DSP instructions

— Programmer’s Guide, 9, “SH-DSP Instructions”
SHCPU environment variable

- User’s Guide, 1.3, “SHCPU Environment Variable”

HITACHI 313



E.2 Constants

In the new version, fixed-point constants and floating-point constants can be used in addition to
integer constants and character constants.

» Fixed-point constants are used in the SH-DSP.
» Floating-point constants are used in the SH3E.

References:

Fixed-point constants
- Programmer’s Guide, 1.4.4, “Fixed-Point Constants”

Floating-point constants
- Programmer’s Guide, 1.4.3, “Floating-Point Constants”

E.3 Added Assembler Directives

Table E-1 lists the assembler directives and assembler statements added to the new version.

Table E-1 Added Assembler Directives and Statements

Assembler Directive Reference in

or Statement Function Programmer’s Guide
.FREG Alias for floating-point register 4.2.3

.FDATA Floating-point constant reservation 4.2.4

.FDATAB Floating-point constant block reservation 4.2.4

XDATA Fixed-point constant reservation 4.2.4

AIFDEF Conditional assembly with definition 6.2

E.4 Automatic Literal Pool Generation

The new version includes the size selection mode, in which the assembler checks the imm value
of th data move instruction without operation size (MOV #imm,Rn) and automatically generates
a literal pool if necessary.

References:

Size selection mode

- Programmer’s Guide, 8.3, “Size Mode for Automatic Literal Pool Generation”
- User’s Guide, 2.2.8, “Command Line Option Related to Automatic Literal Pool
Generation”

314 HITACHI



E.5 Added Command Line Option
Table E-2 lists the command line option added to the new version.

Table E-2 Added Command Line Option

Command Line Option Function Reference

OUTCODE Output Japanese code User's Guide, 2.2.7
selection

AUTO_LITERAL Size mode selection User’s Guide, 2.2.8

References:

Size mode

— Programmer’s Guide, 8.3, “Size Mode for Automatic Literal Pool Generation”
- User’s Guide, 2.2.8, “Command Line Option Related to Automatic Literal Pool
Generation”

E.6 Tag File Output

If an error or a warning occurs at assembly, the former version outputs a tag file, but the new
version does not. To create a tag file, output the error or warning information to a file using the
redirection function.

Example
asmsh test.src >& test.tag (UNIX)
asmsh test.src > test.tag (MS-DOS)

Error and warning information is output to test.tag.

HITACHI 315



316 HITACHI



Appendix F ASCII Code Table

Table F-1 ASCII Code Table

Upper 4 Bits

0

Lower 4 Bits

SP

DLE
DC1
DC2
DC3
DC4

NUL
SOH
STX
ETX

EOT

%

NAK
SYN
ETB

ENQ
ACK
BEL
BS
HT
LF
VT

CAN
EM

SuB

ESC
FS
GS

FF

CR

RS
us

SO
SI

DEL

317

HITACHI



Supplement

318 HITACHI



Supplement 1 Extended Instruction REPEAT for SH-DSP

The REPEAT extended instruction makes the assembler to automatically generate the SH-DSP
loop control instructions (LDRS, LDRE, and SETRC).

The values set in the RS and RE registers depend on the number of instructions to be repeated.
The REPEAT extended instruction automatically calculates the values to be set in the RS and
RE registers according to the number of the instructions to be repeated, and generates the LDRS
and LDRE instructions using the calculated values.

Reference: Values to be set in the RS and RE registers
- Programmer’s Guide, 9.3, Notes on Executable Instructions

1.1 REPEAT Description
Syntax

[<symbol>[:]] AREPEAT<start address>,<end address>[,<repeat count>]
Statement Elements

1. Start and end addresses

Enter the labels of the start and end addresses of the repeat loop.
2. Repeat count

Enter the repeat count in immediate value or general register name.
Description

1. REPEAT automatically generates DSP instructions LDRS and LDRE to repeat the
instructions in the range from the start address to the end address.

2. When the repeat count is specified, REPEAT generates a SETRC instruction. When the
repeat count is omitted, SETRC is not generated.

HITACHI 319



1.2 Coding Examples

To Repeat Four or More Instructions (Basic Example):

REPEAT RptStart,RptEnd,#5
PCLR YO
PCLR AO
RptStart: MOVX @R4+,X1 MOVY @R6+,Y1
PADD A0,Y0,YO PMULS X1,Y1,A0
1 DCT PCLR AO
AND RO,R4
RptEnd: AND RO,R6

This program repeats execution of five instructions from RptStart to RptEnd five times.
The expanded results are as follows:

LDRS RptStart
LDRS RptEnd3+4
SETRC #5
PCLR YO
PCLR A0
RptStart: MOVX @R4+,X1 MOVY @R6+,Y1
RptEnd3: PADD A0,YO PMULS X1,Y1,A0 ; The label is not generated actually.
DCT PCLR AO
AND RO,R4
RptEnd: AND RO,R6

To Repeat One Instruction: Specify the same label as the start and end addresses.

REPEAT Rpt,Rpt,R0
MOVX @R4+,X1 MOVY @R6,Y1
Rpt:  PADD A0,Y0,YO PMULS X1,Y1,A0 MOVX @R4+,X1 MOVY @R6+,Y1

The expanded results are as follows:

LDRS RptStart0+8

LDRE RptStartO+4

SETRC RO
RptStart0: MOVX @R4+,X1 MOVY @R6,Y1 ; The label is not generated actually.
Rpt: PADD A0,Y0,Y0O PMULS X1,Y1,A0 MOVX @R4+,X1 MOVY @R6+,Y1

320 HITACHI



To Repeat Two Instructions:

REPEAT RptStart,RptEnd,#10

PCLR YO
RptStart: MOVX @R4+,X1 MOVY @R6+,Y1
RptEnd: PADD A0,Y0,YO PMULS X1,Y1,A0

The expanded results are as follows:

LDRS RptStart0O+6

LDRE RptStartO+4

SETRC #10
RptStart0: PCLR YO ;
RptStart: MOVX @R4+,X1 MOVY @R6+,Y1
RptEnd: PADD AO0,Y0,YO PMULS X1,Y1,A0

To Repeat Three Instructions:

REPEAT RptStart,RptEnd,R0
PCLR YO

RptStart: MOVX @R4+,X1 MOVY @R6+,Y1
PMULS X1,Y1,A0

RptEnd: PADD A0,Y0,Y0

The expanded results are as follows:

LDRE RptStartO+4
LDRS RptStart0+4
SETRC RO
RptStart0: PCLR YO ;
RptStart: MOVX @R4+,X1 MOVY @R6+,Y1
PMULS X1,Y1,A0
RptEnd: PADD A0,Y0,Y0

HITACHI

The label is not generated actually.

The label is not generated actually.

321



To Omit Repeat Count: When the repeat count is omitted, the assembler does not generate
SETRC. To separate the LDRS and LDRE from the SETRC, omit the repeat count.

REPEAT RptStart,RptEnd
; The LDRS and LDRE are expanded here.
MOV #10,R0
OuterLoop:
SETRC 16
PCLR YO
PCLR AO
RptStart: MOVX @R4+,X1 MOVY @R6+,Y1
PADD A0,Y0,YO PMULS X1,Y1,A0
DCT PCLR A0
AND RO,R4
RptEnd: AND RO,R6
DT RO
BF OuterLoop

1.3 Notes on Extended Instruction REPEAT

Start and End Addresses: Only the labels in the same section or the local labels in the same
local block can be specified as the start and end addresses.

The start address must be after (at a higher address than) the REPEAT extended instruction. The
end address must be after (at a higher address than) the start address.

Reference: Local labels
- Programmer’s Guide, 1.8, Local Label

Instructions Inside Loops:

« If one of the following assembler directives that reserve a data item or a data area or an
.ORG directive is used inside a loop, the assembler outputs a warning message and counts
the directive as one of the instructions to be repeated. If an .ALIGN directive is used inside a
loop to adjust the boundary alignment, the assembler outputs a warning message and counts
the directive as one of the instructions to be repeated.

Directives generating a warning inside loops:
.DATA, .DATAB, .SDATA, .SDATAB, .SDATAC, .SDATAZ, .FDATA, .FDATAB,
XDATA, .RES, .SRES, .SRESC, .SRESZ, .FRES, .ALIGN, and .ORG

¢ The assembler stops automatic generation of literal pools within a loop. Therefore, even
when an unconditional branch is used in a loop, no literal pool is generated. If a .POOL

322 HITACHI



directive is used in a loop, the assembler outputs a warning message and ignores the .POOL
directive.

Instruction Immediately before Loop: If three or less instructions are to be repeated, the
instruction immediately before the loop must be an executable instruction or a DSP instruction.
Therefore, when three or less instructions are to be repeated and if one of the following is
located immediately before the start address of the loop, the assembler outputs a warning
message.

Assembler directive that reserves a data item or a data area, or .ORG directive

.DATA, .DATAB, .SDATA, .SDATAB, .SDATAC, .SDATAZ, .FDATA, .FDATAB,

XDATA, .RES, .SRES, .SRESC, .SRESZ, .FRES, or .ORG

Literal pool generated by the automatic literal pool output function

If an unconditional branch instruction and a delay slot instruction are located immediately
before a loop, or if a .POOL directive is located immediately before a loop, a literal pool
may be automatically generated. To stop literal pool generation before a loop, use a
.NOPOOL directive immediately after the delay slot instruction.

One alignment byte generated by an .ALIGN Directive

When an .ALIGN directive is used immediately after an odd address before a loop, one
alignment byte may be generated (for exampleIGN 4 is specified when the location
counter value is 3). In this case, the contents of the byte before a loop is not an executable
instruction, and an error message is output. If two or more alignment bytes are generated
before a loop, their contents is a NOP instruction and the program can be correctly executed.

Others:

One or more executable or DSP instructions must be located between a REPEAT extended
instruction and the start address. Otherwise, the assembler outputs an error message.

No REPEAT extended instruction must be located between a REPEAT extended instruction
and the end address. If REPEAT extended instructions are nested, the assembler outputs an
error message, the first REPEAT is valid, and the other REPEAT instructions are ignored.

HITACHI 323



324 HITACHI



Tables 2-1 and 2-2 show the error messages and the warning message related to REPEAT,

Supplement 2 Error Messages Related to REPEAT

respectively.

Table 2-1

Error Messages Related to REPEAT

160

Message:
Error description:

Recovery procedure:

REPEAT LOOP NESTING

Another REPEAT is located between a REPEAT and the end
address

Correct the REPEAT location.

161

Message:
Error description:

Recovery procedure:

ILLEGAL START ADDRESS FOR REPEAT LOOP

No executable or DSP instructions are located between a REPEAT
and start address.

Use one or more executable or DSP instructions between the
REPEAT and start address.

162

Message:
Error description:

Recovery procedure:

ILLEGAL DATA BEFORE REPEAT LOOP

lllegal data is found immediately before the loop specified by a
REPEAT instruction.

If an assembler directive is located before the loop, correct the
directive. If a literal pool is located before the loop, use a
.NOPOOL directive to stop literal pool output.

Supplement: When three or less instructions are to be repeated, an executable or
DSP instruction must be located before the loop.
460 Message: ILLEGAL SYMBOL

Error description:

Recovery procedure:

A backward reference symbol, an undefined symbol, or a symbol
other than label is specified as an operand of a REPEAT, or the
start address is larger than (after) the end address.

Correct the operand.

461

Message:
Error description:

Recovery procedure:

SYNTAX ERROR IN OPERAND
lllegal operand.
Correct the operand.

462

Message:
Error description:

Recovery procedure:

ILLEGAL VALUE IN OPERAND

The distance between a REPEAT and the label exceeds the
allowable range.

Correct the location of the REPEAT or label.

463

Message:
Error description:

Recovery procedure:

NO INSTRUCTION IN REPEAT LOOP

No instruction is found in a loop, or no instruction is found at the end
address.

Write an instruction between the start and end addresses, or specify
an address storing an instruction as the end address.

HITACHI 325



Table 2-2 Warning Message Related to REPEAT

881

Message:

Error description:
Recovery procedure:
Supplement:

ILLEGAL DIRECTIVE IN REPEAT LOOP

An illegal assembler directive is found in a loop.

Delete the directive.

If a directive that reserves a data item or a data area, an .ALIGN
directive, or an .ORG directive is used in a loop, the assembler
counts the directive as one of the instructions to be repeated.

326

HITACHI



	ASMSH_E_USER.PDF
	Contents
	Preface
	Overview
	Section 1 Overview
	Section 2 Relationships between the Software Development Support Tools

	Programmer’s Guide
	Section 1 Program Elements
	1.1 Source Statements
	1.2 Reserved Words
	1.3 Symbols
	1.4 Constants
	1.5 Location Counter
	1.6 Expressions
	1.7 Character Strings
	1.8 Local Label

	Section 2 Basic Programming Knowledge
	2.1 Sections
	2.2 Absolute and Relative Values
	2.3 Symbol Definition and Reference
	2.4 Separate Assembly

	Section 3 Executable Instructions
	3.1 Overview of Executable Instructions
	3.2 Notes on Executable Instructions

	Section 4 Assembler Directives
	4.1 Overview of the Assembler Directives
	4.2 Assembler Directive Reference

	Section 5 File Inclusion Function
	Section 6 Conditional Assembly Function
	6.1 Overview of the Conditional Assembly Function
	6.2 Conditional Assembly Directives

	Section 7 Macro Function
	7.1 Overview of the Macro Function
	7.2 Macro Function Directives
	7.3 Macro Body
	7.4 Macro Call
	7.5 Character String Manipulation Functions

	Section 8 Automatic Literal Pool Generation Function
	8.1 Overview of Automatic Literal Pool Generation
	8.2 Extended Instructions Related to Automatic Literal Pool Generation
	8.3 Size Mode for Automatic Literal Pool Generation
	8.4 Literal Pool Output
	8.5 Literal Sharing
	8.6 Literal Pool Output Suppression
	8.7 Notes on Automatic Literal Pool Output

	Section 9 SH-DSP Instructions
	9.1 Program Contents
	9.2 DSP Instructions
	9.3 Notes on Executable Instructions


	User’s Guide
	Section 1 Executing the Assembler
	1.1 Command Line Format
	1.2 File Specification Format
	1.3 SHCPU Environment Variable

	Section 2 Command Line Options
	2.1 Overview of Command Line Options
	2.2 Command Line Option Reference


	Appendix
	Appendix A Limitations and Notes on Programming
	Appendix B Sample Program
	B.1 Sample Program Specifications
	B.2 Coding Example

	Appendix C Assemble Listing Output Example
	C.1 Source Program Listing
	C.2 Cross-Reference Listing
	C.3 Section Information Listing

	Appendix D Error Messages
	D.1 Error Types
	D.2 Error Message Tables

	Appendix E Differences from Former Version
	E.1 CPU
	E.2 Constants
	E.3 Added Assembler Directives
	E.4 Automatic Literal Pool Generation
	E.5 Added Command Line Option
	E.6 Tag File Output

	Appendix F ASCII Code Table

	Supplement
	Supplement 1 Extended Instruction REPEAT for SH-DSP
	1.1 REPEAT Description
	1.2 Coding Examples
	1.3 Notes on Extended Instruction REPEAT

	Supplement 2 Error Messages Related to REPEAT



