

®

r
e

CodeWarrior
Debugge

User’s Guid
Because of last-minute changes to CodeWarrior, some of the information in this manual may be inaccurate.
Please read the Release Notes for the latest up-to-date information.

Revised: 980831-mds

Metrowerks CodeWarrior copyright ©1993Ð1998 by Metrowerks Inc. and its licensors.
All rights reserved.
Documentation stored on the compact disk(s) may be printed by licensee for personal
use. Except for the foregoing, no part of this documentation may be reproduced or trans-
mitted in any form by any means, electronic or mechanical, including photocopying,
recording, or any information storage and retrieval system, without permission in
writing from Metrowerks Inc.
Metrowerks, the Metrowerks logo, CodeWarrior, and Software at Work are registered
trademarks of Metrowerks Inc. PowerPlant and PowerPlant Constructor are trademarks
of Metrowerks Inc.
All other trademarks and registered trademarks are the property of their respective
owners.
ALL SOFTWARE AND DOCUMENTATION ON THE COMPACT DISK(S) ARE SUB-
JECT TO THE LICENSE AGREEMENT IN THE CD BOOKLET.

How to Contact Metrowerks:

U.S.A. and international Metrowerks Corporation
9801 Metric Boulevard, Suite 100
Austin, TX 78758
U.S.A.

Canada Metrowerks Inc.
1500 du College, Suite 300
Ville St-Laurent, QC
Canada H4L 5G6

Ordering Voice: (800) 377Ð5416
Fax: (512) 873Ð4901

World Wide Web http://www.metrowerks.com

Registration information register@metrowerks.com

Technical support support@metrowerks.com

Sales, marketing, & licensing sales@metrowerks.com

CompuServe goto Metrowerks

Table of Contents
1 Introduction 9

Overview of the Debugger Manual 9
Metrowerks Year 2000 Compliance 10
Read the Release Notes! 11
Manual Conventions 11

Typographical conventions 11
Host Conventions 12
Figure Conventions. 12
Keyboard Conventions 13

WhatÕs New . 14
System Requirements 15

Windows . 15
Mac OS . 16
Solaris . 16

Installing MW Debug 16
Starting Points . 18
Where to Learn More 19

2 Getting Started 21
Getting Started Overview 21
Preparing for Debugging 21

Setting Up a Target for Debugging 21
Setting Up a File for Debugging 23
Generating Symbolics Information 24

Launching the Debugger 24
Using the Integrated Debugger. 25
Launching MW Debug from the IDE (Mac OS) 25
Launching MW Debug Directly 26

Symbolics Files . 27

3 What You See 29
What You See Overview 29
Program Window . 30

Stack Crawl Pane. 31
Debugger User Guide DBGÐ3

Table of Contents

Variables Pane . 32
Debugger Toolbar 33
Source Pane . 34

Browser Window . 39
File Pane . 41
Function Pane . 41
Globals Pane. 42
Browser Source Pane 43
Function Pop-up Menu 45

Expression Window. 46
Breakpoint Window. 47
Watchpoint Window 48
Log Window . 48
Variable Window . 50
Array Window . 50
Memory Window . 52
Register Window . 54
Process Window . 57

Process Pane. 57
Tasks Pane . 58
Process Window Toolbar 59

4 Basic Debugging 61
Basic Debugging Overview 61
Starting Up . 62
Running, Stepping, and Stopping Code 64

Current-Statement Arrow 66
Running Your Code 66
Stepping a Single Line 68
Stepping Into Routines 68
Stepping Out of Routines 69
Skipping Statements 70
Stopping Execution 71
Killing Execution . 72

Navigating Code . 73
DBGÐ4 Debugger User Guide

Table of Contents

Linear Navigation 73
Call-Chain Navigation 73
Browser Window Navigation 75
Source-Code Navigation 77
Using the Find Dialog. 79
Changing Font and Color 81

Breakpoints . 81
Setting Breakpoints 82
Clearing Breakpoints 83
Temporary Breakpoints 83
Viewing Breakpoints 83
Conditional Breakpoints 84
Impact of Optimizing Code on Breakpoints 85

Watchpoints . 88
Setting Watchpoints 89
Clearing Watchpoints 90
Viewing Watchpoints 90

Viewing and Changing Data 91
Viewing Local Variables 92
Viewing Global Variables 93
Putting Data in a New Window 93
Viewing Data Types 94
Viewing Data in a Different Format 95
Viewing Data as Different Types 96
Changing the Value of a Variable 98
Using the Expression Window 99
Viewing Raw Memory 100
Viewing Memory at an Address 100
Viewing Processor Registers 102

Editing Source Code 103

5 Expressions 105
Expressions Overview. 105
How Expressions are Interpreted 106

Expressions in the Expression Window 106
Debugger User Guide DBGÐ5

Table of Contents

Expressions in the Breakpoint Window 107
Expressions in the Memory Window 108

Using Expressions . 108
Special Expression Features 108
Expression Limitations 109

Example Expressions 110
Expression Syntax . 112

6 Debugger Preferences 119
Debugger Preferences Overview 119
MW Debug Preference Panels 119

Settings . . 120
Display . 121
Symbolics . . 124
Program Control 126
Win32 Settings . . 129
Windows Java Settings 130
Windows Runtime Settings 131

Integrated Debugger Target Panels 132
Target Settings . . 132
x86 Exceptions (Windows). 133

7 Debugger Menus 135
Debugger Menus Overview 135
File Menu . 136
Edit Menu . . 138
Control Menu . 140
Data Menu. . 143
Window Menu . . 148
Help menu (Windows) 150
Apple Menu (Mac OS). 150

8 Troubleshooting 151
About Troubleshooting 151
General Problems. . 151
Problems Launching the Debugger 152
DBGÐ6 Debugger User Guide

Table of Contents

The debugger wonÕt launch 152
Debug does nothing 153
Errors reported on launch (Mac OS) 153
Slow launching (Mac OS) 154

Problems Running/Crashing the Debugger 154
Project works in the debugger, crashes without 154

Problems with Breakpoints. 155
Statements donÕt have breakpoints 155
Breakpoints donÕt respond. 156

Problems with Variables 157
A variable doesnÕt change 157
Variables are assigned incorrect values 157
Strange variables 159
Strange data types 159
Unrecognized data types 160
ÒundeÞned identiÞerÓ in the expression window 161

Problems with Source Files. 162
No source-code view 162
Outdated source Þles 162
Sharing source code between projects 163
Spurious ANSI C code in Pascal projects. 163

Debugger Error Messages 164

Index 169
Debugger User Guide DBGÐ7

Table of Contents

DBGÐ8 Debugger User Guide

1
Introduction
Welcome to the CodeWarrior Debugger manual.

NOTE: On occasion a CodeWarrior product ships with an ear-
lier version of the IDE than reflected in this user guide. In that
case, your IDE will not have the new features described in this
manual. You can identify new features by referring to ÒWhatÕs
New.Ó

In some cases a patch may become available to update the tools.
You can point your web browser to the Metrowerks website at
http://www.metrowerks.com for more information.

Overview of the Debugger Manual
A debugger controls program execution so that you can see whatÕs
happening internally as your program runs. You use a debugger to
find problems in your programÕs execution. The debugger can exe-
cute your program one statement at a time, suspend execution
when control reaches a specified point, or interrupt the program
when it changes the value of a designated memory location. When
the debugger stops a program, you can view the chain of function
calls, examine and change the values of variables, and inspect the
contents of the processorÕs registers.

This manual describes the integrated debugger, the source-level de-
bugger for the Metrowerks CodeWarrior software development en-
vironment. To a great extent the same debugger works for all sup-
ported target chips, operating systems, and languages (C, C++,
Pascal, Java, and assembly language). This manual often refers to
the integrated debugger as Òthe CodeWarrior debugger,Ó or simply
as Òthe debugger.Ó
Debugger User Guide DBGÐ9

Introduction

Metrowerks Year 2000 Compliance

This manual describes the common functionality of the debugger
for all platforms. There may be some minor differences, either addi-
tions or unimplemented features, on a per-target basis. You should
read the debugging chapter or chapters of the appropriate Targeting
manual to cover the specific differences for your target.

The other topics in this chapter are:

¥ Metrowerks Year 2000 ComplianceÑinformation about
product compliance with the year 2000

¥ Read the Release Notes!Ñimportant last-minute information

¥ Manual ConventionsÑimportant information on conven-
tions used in this manual

¥ WhatÕs NewÑa short review of new features

¥ System RequirementsÑhardware and software requirements

¥ Installing MW DebugÑputting it together

¥ Starting PointsÑan overview of the chapters in this manual

¥ Where to Learn MoreÑother sources of information related
to the CodeWarrior debugger

Metrowerks Year 2000 Compliance
The Products provided by Metrowerks under the License agree-
ment process dates only to the extent that the Products use date data
provided by the host or target operating system for date representa-
tions used in internal processes, such as file modifications. Any Year
2000 Compliance issues resulting from the operation of the Products
are therefore necessarily subject to the Year 2000 Compliance of the
relevant host or target operating system. Metrowerks directs you to
the relevant statements of Microsoft Corporation, Sun Microsys-
tems, Inc., Apple Computer, Inc., and other host or target operating
systems relating to the Year 2000 Compliance of their operating sys-
tems. Except as expressly described above, the Products, in them-
selves, do not process date data and therefore do not implicate Year
2000 Compliance issues.

For additional information, visit: http://www.metrowerks.com/
about/y2k.html.
DBGÐ10 Debugger User Guide

Introduction

Read the Release Notes!

Read the Release Notes!
Before using the debugger, read the release notes. They contain im-
portant information about new features, bug fixes, and any late-
breaking changes.

Manual Conventions
This section describes the different conventions used in this manual.

Typographical conventions

This manual uses some style conventions to make it easier to read
and and find specific information:

Notes, warnings, tips, and beginnerÕs hints

An advisory statement or NOTE may restate an important fact, or
call your attention to a fact which may not be obvious.

A WARNING given in the text may call attention to something
such as an operation that, if performed, could be irreversible, or flag
a possible error that may occur.

A TIP can help you become more productive with the CodeWarrior
IDE. Impress your friends with your knowledge of little-known
facts that can only be learned by actually reading the fabulous man-
ual!

A For Beginners note may help you better understand the termi-
nology or concepts if you are new to programming.

Typeface conventions

If you see some text that appears in a different typeface (as the
word different does in this sentence), you are reading file or
folder names, source code, keyboard input, or programming items.

Text formatted like this means that the text refers to an item on the
screen, such as a menu command or control in a dialog box.
Debugger User Guide DBGÐ11

Introduction

Manual Conventions

If you are using an on-line viewing application that supports hyper-
text navigation, such as Adobe Acrobat, you can click on underlined
and colored text to view another topic or related information. For
example, clicking the text ÒOverview of the Debugger ManualÓ in
Adobe Acrobat takes you to a section that gives you an overview of
the entire Debugger User Guide.

Host Conventions

CodeWarrior runs on the host platforms and operating systems
listed below. Throughout this manual, a generic platform identifier
is used to identify the host platform, regardless of operating system.

The specific versions of the operating system that host CodeWarrior
are:

¥ Windows Ñdesktop versions of the WIndows operating sys-
tem that are Win32 compliant, such as Windows 95 or Win-
dows NT.

¥ Mac OS Ñdesktop versions of Mac OS, System 7.1 or later.

¥ Solaris ÑSolaris version 2.5.1 or later.

Figure Conventions

The visual interface of the hosts listed in ÒHost ConventionsÓ is
nearly identical in all significant respects. When discussing a partic-
ular interface element such as a dialog box or window, the screen-
shot may come from any of these hosts. You should have no diffi-
culty understanding the picture, even if you are using CodeWarrior
on a different host than the one shown.

However, there are occasions when dialog boxes or windows are
unique to a particular host. For example, a particular dialog box
may appear dramatically different on a Windows host and on a
Mac OS host. In that case, a screenshot from each unique host will
appear and be clearly identified so that you can see how CodeWar-
rior works on your preferred host.
DBGÐ12 Debugger User Guide

Introduction

Manual Conventions

Keyboard Conventions

The default keyboard shortcuts for CodeWarrior on some platforms
are very similar. However, keyboards and shortcuts do vary across
host platforms. For example, a typical keyboard for a Windows ma-
chine has an Alt key, but that same key is called the Option key on a
typical keyboard for a Mac OS computer.

To handle these kinds of situations, CodeWarrior documentation
identifies and uses the following paired terms in the text:

¥ Enter/ReturnÑthe Òcarriage returnÓ or Òend of lineÓ key.
This is not the numeric keypad Enter key, although in almost
all cases that works the same way.

¥ Backspace/DeleteÑthe Windows Backspace key and the
Mac OS Delete key. In most cases, CodeWarrior maps these
keys the same way. This is the key that (in text editing)
causes the character before the insertion point to be erased.
(This is not Delete/Del, the Òforward deleteÓ key.)

¥ Ctrl/CommandÑthe Windows Ctrl (control) key and the
Mac OS Command key (). In most cases, CodeWarrior
maps these keys the same way.)

¥ Alt/OptionÑthe Windows Alt key and the Mac OS Option
key. In most cases, CodeWarrior maps these keys the same
way.

For example, you may encounter instructions such as ÒPress Enter/
Return to proceed,Ó or ÒAlt/Option click the Function pop-up menu
to see the functions in alphabetical order.Ó Use the appropriate key
as it is labeled on your keyboard.

Some combinations of key strokes require multiple modifier keys.
In those cases, key combinations are shown connected with hy-
phens. For example, if you read ÒShift-Alt/Option-Enter/Return,Ó
you would press the Shift, Alt, and Enter keys on a Windows host
and the Shift, Option, and Return keys on a Mac OS host.

Sometimes the cross-platform variation in keyboard shortcuts is
more complex. In those cases, you will see more detailed instruc-
tions on how to use a keyboard shortcut for your host platform. In
all cases the host and shortcut will be clearly identified.
Debugger User Guide DBGÐ13

Introduction

WhatÕs New

Special Note for Solaris Users

The Solaris-hosted CodeWarrior IDE uses the same modifier key
names as used for Mac OS (Shift, Command, Option, and Control).
Likewise, the Key Bindings preference panel uses Mac OS symbols
to represent modifier keys. Table 1.1 shows the default modifier key
mappings and the symbols used to represent them. On Solaris ma-
chines, modifier keys can be mapped to any key on the keyboard.
To change these default modifier key mappings, choose Keyboard
Preferences from the Info menu. When reading this manual, you
will need to keep in mind your modifier key mappings.

Table 1.1 Mac OS and Solaris modifier key legend

WhatÕs New
There are a few new features that have been added to the debugger.

CodeWarrior IDE and the Integrated Debugger

The CodeWarrior IDE now features an integrated debugger to pro-
vide seamless interaction between the programming and debugging
of your source code. Some of the benefits of this integration include:

¥ Reduced memory requirements. With only one application
running, memory demands are significantly reduced.

¥ Increased productivity. Since you donÕt have to switch back
and forth between the IDE and Debugger to step through

Symbol Mac OS Solaris

Command key Meta key

Option key Alt key

Shift key Shift key

Control key Control key
DBGÐ14 Debugger User Guide

Introduction
System Requirements
your code, set breakpoints, etc., a more efficient use of time is
achieved, increasing your productivity.

¥ The integrated debugger fully supports x86, PowerPC, 68K,
and Java debugging. No longer are separate debuggers re-
quired to debug each platform. The integrated debugger han-
dles them all.

Choose Enable Debugger from the Project menu to enable the de-
bugger. Then, choose Debug from the Project menu to activate and
use the debugger. You can pause the program at any time to set
breakpoints, view variables or memory, step into or out of routines,
as well as perform many other debugging tasks.

NOTE: Some versions of the CodeWarrior IDE do not ship with
the integrated debugger. In those cases, debugging support is
provided by the external MW Debug application or other third-
party debuggers. See your platformÕs Targeting manual for addi-
tional information on debugging a specific target.

To make use of the external debugger, ensure that the debugger is
enabled, then choose Debug .

System Requirements
Most versions of the CodeWarrior IDE feature the integrated de-
bugger. If the Project menu in your CodeWarrior IDE has the En-
able Debugger or Disable Debugger commands, then you can
use the integrated debugger. Otherwise, you need to install an ex-
ternal debugger in order to debug your code.

MW Debug is supplied with those versions of the CodeWarrior IDE
that do not have the integrated debugger. The following system re-
quirements apply to using MW Debug.

Windows

MW Debug requires a 486, Pentiumª, equivalent, or better proces-
sor with 16 MB RAM and approximately 5 MB of disk space. MW
Debugger User Guide DBGÐ15

Introduction
Installing MW Debug
Debug requires the Microsoft Windows 95 or Windows NT 4.0 op-
erating system.

For optimum performance, we recommend that you use a computer
with a Pentiumª or equivalent processor with at least 24 MB of
RAM running Microsoft Windows NT 4.0.

Mac OS

MW Debug requires a Motorola 68020 processor or better, or a
PowerPC 601 or better processor. MW Debug needs approximately
2 MB of disk space and 1.5 MB of RAM.

MW Debug requires System 7.1 or later (for 68K Macintosh) or Sys-
tem 7.1.2 or later (for Power Macintosh), and color QuickDraw.
CFM-68K is required on 68K systems.

The watchpoints feature requires a Motorola 68020 or better proces-
sor with Virtual Memory turned on, or a PowerPC 601 processor or
better with Virtual Memory either on or off. The watchpoints fea-
ture also requires System 7.5 or later. See ÒWatchpointsÓ on page 88
for more information.

Solaris

MW Debug requires a Sun SparcStation or Sparc-based machine, at
least 32 MB of RAM, a CD-ROM drive to install the software, 40 MB
of free hard disk space, Network Information Service, an X11 server
(Open Windows v3.3 recommended), a window manager that is
vX11r5 or later, and Motif 1.2.2 or later.

Installing MW Debug
You do not need to install MW Debug if your version of the
CodeWarrior IDE features the integrated debugger. MW Debug is a
separate application that provides the same features as the inte-
grated debugger. For more information, see ÒSystem Require-
mentsÓ.
DBGÐ16 Debugger User Guide

Introduction
Installing MW Debug
There is only one version of MW Debug for all CodeWarrior compil-
ers and platforms. MW Debug is a separate application, but it
meshes almost seamlessly with the rest of the CodeWarrior inte-
grated development environment.

The CodeWarrior Installer automatically installs MW Debug and all
necessary components when you install versions of the CodeWar-
rior IDE that do not feature the integrated debugger. MW Debug
and the Debugger Plugins folder must be in the same directory or
the debugger will not work.

We strongly recommended that you use the CodeWarrior Installer
to install MW Debug to make sure you have all the required files.

Mac OS

MW Debug and the Debugger Plugins folder should be located in
the (Helper Apps) folder or you may not be able to launch the de-
bugger directly from a project.

In order to work, MW Debug also requires the presence of a few
system extensions in the Extensions subfolder of your System
folder. The installer automatically places these items in your Exten-
sions folder. If you install or remove any of them, you must restart
your computer for the changes to take effect. Before using the de-
bugger, make sure that the correct extensions are installed for your
current target and platform, as shown in Figure 1.1:
Debugger User Guide DBGÐ17

Introduction
Starting Points
Figure 1.1 Extra files required by MW Debug (Mac OS)

¥ ObjectSupportLibÑa shared library needed for debugging
PowerPC object code.

¥ CFM-68K Runtime EnablerÑrequired to use the debugger
shared library. You can find a version of the debugger on the
Tools CD that does not use the shared library.

¥ PPCTraceEnablerÑneeded for debugging PowerPC object
code on System versions earlier than 7.5.

Starting Points
This manual contains the following chapters:

¥ Getting Started OverviewÑhow to install and run the de-
bugger, and what SYM files are

¥ What You See OverviewÑthe visual components of the de-
bugger, all the windows and displays you encounter

¥ Basic Debugging OverviewÑthe principal features of the de-
bugger and how to use them

¥ Expressions OverviewÑhow to use expressions in the de-
bugger

¥ Debugger Menus OverviewÑa reference to the menu com-
mands in the debugger

¥ About TroubleshootingÑfrequently encountered problems
and how to solve them
DBGÐ18 Debugger User Guide

Introduction
Where to Learn More
If you are new to the CodeWarrior debugger, have questions about
the installation process, or do not know what a SYM file is, start
reading ÒGetting Started OverviewÓ on page 21. To become familiar
with the debugger interface, see ÒWhat You See OverviewÓ on
page 29.

If you donÕt know how to control program execution, set break-
points, or modify variables, read ÒBasic Debugging OverviewÓ on
page 61, and ÒExpressions OverviewÓ on page 105.

For reference on menu items in the debugger, see ÒDebugger Menus
OverviewÓ on page 135.

No matter what your skill level, if you have problems using the de-
bugger, consult ÒAbout TroubleshootingÓ on page 151. Here youÕll
find information about many commonly encountered problems and
how to solve them.

Where to Learn More
If you are already comfortable with basic debugging, but want to
know more about special considerations when debugging certain
kinds of code, you should read the Targeting manual for your target.
Debugger User Guide DBGÐ19

Introduction
Where to Learn More
DBGÐ20 Debugger User Guide

2
Getting Started
This chapter discusses how to prepare a project file for debugging,
Background information on symbolics files is also provided. Other
chapters discuss the various features and functions of the debugger.

Getting Started Overview
This chapter includes the background information you need to use
the debugger effectively. The topics discussed are:

¥ Preparing for Debugging

¥ Launching the Debugger

¥ Symbolics Files

Preparing for Debugging
To debug the code generated by a particular build target within
your CodeWarrior project file, you must make sure both the build
target and the individual source files within it are set up for debug-
ging. When they are, CodeWarrior generates symbolics information
that is used by the debugger.

This section discusses each of these topics:

¥ Setting Up a Target for Debugging

¥ Setting Up a File for Debugging

¥ Generating Symbolics Information

Setting Up a Target for Debugging

To prepare a build target for debugging, make sure it is the current
build target. Then choose the Enable Debugger command from
the Project menu in the CodeWarrior IDE. When debugging is en-
Debugger User Guide DBGÐ21

Getting Started
Preparing for Debugging
abled for a build target, the menu item changes to Disable Debug-
ger . Choosing Disable Debugger turns off debugging for the build
target and changes the menu item back to Enable Debugger .

The Enable Debugger command sets items in the Project window
and the settings panels for the current build target to tell the com-
piler and linker to generate debugging information. In response, the
compiler and linker generate a symbolics file containing informa-
tion for debugging at the source-code level.

See the CodeWarrior IDE User Guide for more information on build
target settings.

NOTE: A symbolics file allows the debugger to keep track of
each function and variable name (the symbols) you use in your
source code. See ÒSymbolics FilesÓ for more information.

When you choose Enable Debugger, you may see an alert (Figure
2.1). If this alert appears, click Yes to apply the debugging changes
to your target.

Figure 2.1 Accepting changes set by Enable Debugger
DBGÐ22 Debugger User Guide

Getting Started
Preparing for Debugging
Setting Up a File for Debugging

After you have enabled debugging for the current build target, you
have to set up your individual files for debugging. If you intend to
debug your program, youÕll typically turn on debugging for all of
your source files.

In the CodeWarrior IDEÕs Project window, there is a debug column,
as shown in Figure 2.2. A mark in this column next to a file means
that debugging is on for that file; no mark means that debugging is
off. For group names, a mark indicates that debugging is on for
every file in the group and no mark means that debugging is off for
one or more files in the group.

Figure 2.2 Setting debugging in the Project window

Debug Column
Debugger User Guide DBGÐ23

Getting Started
Launching the Debugger
To turn debugging on or off for a file, click in the debug column for
that file. Clicking next to a group name turns debugging on or off
for all files in the group. If a file cannot be debugged (because it is
not a source file) you cannot turn debugging on for that file.

Generating Symbolics Information

To generate symbolics information, both the current build target
and source files within that target must be prepared for debugging.
See Setting Up a Target for Debugging and Setting Up a File for De-
bugging for information on how to do this.

Once the current build target and its source files are prepared,
choose the Make command from the CodeWarrior IDEÕs Project
menu to compile and link your final code.

For more information on compiling and linking, see the CodeWarrior
IDE User Guide as well as the Targeting manual for your particular
target.

Launching the Debugger
Normally, you launch the debugger directly from the IDE. If your
CodeWarrior product includes MW Debug, you can launch that ex-
ternal debugger as you would any other application on your host
platform. Your are ability to use the integrated debugger, MW De-
bug, or both, depends upon the chip and operating system you are
targeting, and the kind of code you are creating.

When you launch MW Debug, you will typically be asked to locate
a symbolics file.

Some targets and projects also allow MW Debug to be launched di-
rectly from the IDE.

This section discusses the details of launching the debugger using
either technique. The topics are:

¥ Launching MW Debug from the IDE (Mac OS)

¥ Launching MW Debug Directly
DBGÐ24 Debugger User Guide

Getting Started
Launching the Debugger
Either process requires a symbolics file. See ÒPreparing for Debug-
gingÓ for information on how to create a symbolics file.

Using the Integrated Debugger

Normally, you use the integrated debugger, included with most
versions of CodeWarrior, to debug your code.

To run the integrated debugger from within the IDE, you must have
debugging enabled. If the debugger is currently disabled, you must
choose Enable Debugger from the Project menu before you can
choose the Debug command.

The IDEÕs Project menu has a command that toggles between Run
and Debug , depending upon whether the debugger is currently en-
abled. If the Debug command is enabled, then the IDE can launch
the debugger directly for your target and project. The debugger will
open the required symbolics file automatically, or ask you to find it.

The IDE enables the Debug command only for targets that generate
executable code (such as an application).

Launching MW Debug from the IDE (Mac OS)

If your version of the CodeWarrior IDE does not include the inte-
grated debugger, you can use the external MW Debug application
to debug your code.

To launch the external CodeWarrior debugger from the IDE, you
must place MW Debug in the same directory as the CodeWarrior
IDE. Furthermore, MW Debug must already be running in the back-
ground, and you need a source file open.

If the debugger is currently disabled, you must choose Enable De-
bugger from the Project menu before you can choose the Debug
command

When you enable debugging, the Run command on the Project
menu changes to Debug . This command compiles and links your
Debugger User Guide DBGÐ25

Getting Started
Launching the Debugger
code, then launches it through the debugger. (See ÒPreparing for
DebuggingÓ for more information on this topic.)

Choose Switch to MW Debugger to begin debugging your appli-
cation in the external debugger.

The IDE enables the Debug command only for targets that generate
executable code (such as an application).

If your current target generates a library or other form of shared
code, you can still debug your source files. However, you must
launch the application that uses your code separately, and launch
the debugger directly. See ÒLaunching MW Debug DirectlyÓ for
more information.

Launching MW Debug Directly

If your version of the CodeWarrior IDE does not include the inte-
grated debugger, you can use the external MW Debug application
to debug your code.

Because MW Debug is a separate application, you can launch it di-
rectly just like any other application. As always, you must supply a
symbolics file for the debugger to work with. You can launch MW
Debug in any of three ways:

¥ Double-click a symbolics file.

¥ Double-click the MW Debug icon. YouÕll see the standard
Open File dialog box allowing you to choose a symbolics file.

¥ Drag and drop a symbolics file onto the MW Debug icon.

Launching the debugger directly is frequently required. There are
many targets or kinds of code that the IDE cannot launch. For exam-
ple, if you are writing an application plug-in, the plug-in cannot run
on its own. In addition, the CodeWarrior IDE has no idea what ap-
plication must be running to invoke the plug-in. In such cases, you
would need to launch MW Debug directly.

Using the plug-in example, the steps you would follow to debug the
plug-in would typically be:
DBGÐ26 Debugger User Guide

Getting Started
Symbolics Files
1. Launch the debugger directly, as described above.

2. Open the symbolics file for your plug-in code.

3. Set a breakpoint in your code.

(For more information, see ÒBreakpointsÓ on page 81.)

4. Launch the application that uses the plug-in.

5. Do whatever is necessary in the application to invoke the code
in the plug-in.

When execution of the plug-in code reaches your breakpoint, the
debugger takes control, and you can debug your plug-in code.

Symbolics Files
A projectÕs symbolics file contains information the debugger needs
to debug the project, such as the names of routines and variables
(the symbols), their locations within the source code, and their loca-
tions within the object code.

The debugger uses this information to display the source code that
corresponds to your object code. When you stop in the debugger to
examine whatÕs going on, the debugger shows you the source.

You may also view the corresponding assembly-language
instructions and memory addresses. See ÒViewing source code as
assemblyÓ on page 36.

CodeWarrior supports several different symbolics formats appro-
priate for a variety of targets. Among the formats supported are:

See ÒPreparing for DebuggingÓ for information on how to set up
projects and source files to create symbolics files.

Format Principal Target

CodeView Win32

DWARF Embedded systems

SYM Mac OS
Debugger User Guide DBGÐ27

Getting Started
Symbolics Files
See the Codewarrior IDE User Guide for more information on gener-
ating symbolic information, including information on compiler and
linker settings.

For more information on target-specific symbolic information, see
the corresponding Targeting manual.
DBGÐ28 Debugger User Guide

3
What You See
This chapter describes the many visual components of the
CodeWarrior Debugger user interface.

What You See Overview
This chapter explains the various windows, panes, and displays you
can use when debugging. The remaining chapters in this manual as-
sume you are familiar with the nature and purpose of the various
parts of the debugger. The topics discussed in this chapter include:

¥ Program Window

¥ Browser Window

¥ Expression Window

¥ Breakpoint Window

¥ Watchpoint Window

¥ Log Window

¥ Variable Window

¥ Array Window

¥ Memory Window

¥ Register Window

¥ Process Window
Debugger User Guide DBGÐ29

What You See
Program Window
Program Window

When the debugger opens a symbolics file, it opens the Program
window. This window is shown in Figure 3.1.

The Program window displays debugging information about the
source-code file containing the currently running routine. It has four
primary areas:

¥ Stack Crawl Pane

¥ Variables Pane

¥ Debugger Toolbar

¥ Source Pane

You can resize panes by clicking and dragging the boundary be-
tween them. The active pane has a heavy border. You can switch be-
tween panes with the Tab key.

Type-ahead selection is available in the Stack Crawl and Variables
panes. You can also use the arrow keys or Tab to navigate the items
in either of these panes when it is the active pane.

There are additional controls along the very bottom of the Source
pane, to the left of the horizontal scroll bar:

¥ the function pop-up menu

¥ the current line number

¥ the source pop-up menu

See also ÒBrowser WindowÓ for details on the contents of the
Browser window.
DBGÐ30 Debugger User Guide

What You See
Program Window
Figure 3.1 Parts of the Program window

Stack Crawl Pane

The stack crawl pane in the Program window shows the current
subroutine calling chain (Figure 3.2). Each subroutine is placed
below the routine that called it.

The highlighted routine is displayed in the source pane at the bot-
tom of the window. Select any routine in the stack crawl pane to dis-
play its code in the source pane.

To display a routine
in the Source Pane,
click the name of
the routine in the
Stack Crawl Pane.

The Source Pane
displays the
currently executing
source code and
any breakpoints.

To examine local variables
and any referenced global
variables, use the Variables Pane.
Debugger User Guide DBGÐ31

What You See
Program Window
Figure 3.2 Stack crawl pane

Variables Pane

The variables pane (Figure 3.3) shows a list of the currently executing
routineÕs local variables.

Mac OS The variables pane also displays any global variables
the routine refers to. Local and global variables are separated by a
dashed line.

The Variables pane lists the variables in outline form. Click the tree
control (Windows) or the disclosure triangle (Mac OS) next to an
entry to show or hide the entries inside it.

For example, in Figure 3.3, clicking the disclosure triangle next to
variable msg hides its members. Click the disclosure triangle again
to redisplay the members. You can dereference multiple levels of
pointers to get directly to the data by pressing the Ctrl/Option key
while expanding an entry; this feature is useful for expanding a
handle to a structured type and viewing the structureÕs members.

See also ÒExpandÓ on page 143 and ÒCollapse AllÓ on page 143.

NewBall() is on display
in the Source Pane. It
was called by main().

To view main(), click its
name in the Stack Crawl
Pane. It will be displayed
in the Source Pane.
DBGÐ32 Debugger User Guide

What You See
Program Window
Figure 3.3 Variables pane

NOTE: If you are viewing assembly code, no register or mem-
ory will be displayed in the Variables pane. Instead, use the regis-
ter and FPU register windows (ÒRegister WindowÓ) to view the
contents of the central-processor and floating-point registers.
(Some targets do not have an FPU, and the FPU register window
is not available.)

Debugger Toolbar

The control buttons (Figure 3.4) are a series of buttons that give ac-
cess to the execution commands in the Control menu: Run, Stop,
Kill, Step Over, Step Into, and Step Out.
Debugger User Guide DBGÐ33

What You See
Program Window
Figure 3.4 Debugger Process Window Toolbar

Mac OS In MW Debug, smaller versions of the control buttons
are available as a separate toolbar (Figure 3.5). Choose Show/Hide
Toolbar (Mac OS) from the Window menu to display or hide the
toolbar.

Figure 3.5 Debugger Toolbar

See also ÒBasic Debugging OverviewÓ on page 61.

Source Pane

The source pane displays the contents of a source-code file. The de-
bugger takes the source code directly from the current targetÕs
source code files, including any comments and white space. The
pane shows C/C++, Pascal, Java, and in-line assembly code exactly
as it appears in your programÕs source code (Figure 3.6), using the
font and color specified in the CodeWarrior IDEÕs Editor prefer-
ences panel.
DBGÐ34 Debugger User Guide

What You See
Program Window
The source pane lets you step through the programÕs source code
line by line. Its progress is shown by the current-statement arrow,
which always points to the next statement to be executed.

Figure 3.6 Source pane (program window)

If there are two or more routine calls on a single line, each routine is
executed separately as one step before the current-statement arrow
moves to the next line. When this happens, the arrow is dimmed
whenever the program counter is within, but not at the beginning
of, a source-code line.
Debugger User Guide DBGÐ35

What You See
Program Window
Figure 3.7 Source and assembly views

Viewing source code as assembly

To view your source code as assembly language, click the source pop-
up menu at the bottom of the Program window. Choosing Assem-
DBGÐ36 Debugger User Guide

What You See
Program Window
bler displays the contents of the source pane as assembly code (Fig-
ure 3.7). When viewing assembly code, the debugger still lets you
step through the code and set breakpoints.

NOTE: If you are viewing assembly code, no register or mem-
ory will be displayed. Instead, use the register and FPU register
windows (ÒRegister WindowÓ) to view the contents of the central-
processor and floating-point registers. (Some targets do not have
an FPU, and the FPU register window is not available.)

Viewing source with mixed assembly

To view your source code and assembly language at the same time,
click the source pop-up menu at the bottom of the Program window.
Choosing Mixed displays the source code of the current routine in-
termixed with assembly code (Figure 3.8). The source that produced
the assembly instructions appears before the assembly itself. When
viewing code in the mixed view, the debugger makes the assembly
code Òlive.Ó This means you can set breakpoints and step through
source code, but only for assembly language instructions. Notice
you cannot set breakpoints on source lines as shown in Figure 3.8.

Figure 3.8 Viewing mixed code

If no source is available for the code, then the display reverts to As-
sembly. There is no syntax hilighting for this view, so all the text ap-
pears plain.
Debugger User Guide DBGÐ37

What You See
Program Window
Viewing source with mixed assembly is not available for Java in
MW Debug. This feature is available in the integrated debugger.

Figure 3.9 Function pop-up menu

Function Pop-up Menu

The function pop-up menu, at the bottom-left corner of the source
pane, contains a list of the routines defined in the source file se-
lected in the source pane (Figure 3.9). Selecting a routine in the func-
tion menu displays it in the source pane.

Check mark means
MainWndProc() is
currently executing.

Choosing a routine
displays it in the
Source Pane.

Alt-Clicking displays
the functions in
alphabetical order.
DBGÐ38 Debugger User Guide

What You See
Browser Window
Press the Alt/Option key, then click the Function menu to display
the menu sorted alphabetically.

Browser Window
When MW Debug opens a symbolics file, it opens two windows: the
Program window and the Browser window. The two are similar in
overall appearance, but differ in the details of what they display.

The Browser window (Figure 3.10) somewhat resembles the Program
window in both appearance and functionality, but displays differ-
ent information. The Browser window lets you view any file in the
current build target, whereas the Program window can only display
the file containing a currently executing routine selected from the
stack crawl pane. You can also use the Browser window to view or
edit the values of all of your programÕs global variables; the Pro-
gram window lets you change only those globals referenced by rou-
tines currently active in the call chain.

For beginners: Do not get the Browser window confused with
the Class Browser available in the CodeWarrior IDE. Although the
two look similar, the debuggerÕs Browser window is a source code
browser, not a class browser.

The Browser window has four panes:

¥ File Pane at the top left

¥ Function Pane at the top center

¥ Globals Pane at the top right

¥ Browser Source Pane on the bottom

Like the Program window, the Browser window has a function pop-
up menu, a line number, and a source pop-up menu at the bottom of
the window. Also like the Program window, the Browser window
lets you resize panes by clicking and dragging the boundary be-
tween them. You can switch between panes with the Tab key.

Mac OS The active pane has a heavy border.
Debugger User Guide DBGÐ39

What You See
Browser Window
Type-ahead selection is available in the files, functions, and globals
panes. You can also use the arrow keys or Tab to navigate the items
in any of these panes when it is the active pane.

The debugger allows more than one symbolics file to be open at a
time: that is, you can debug more than one program at a time. You
can use this feature, for example, to debug an application and sepa-
rate plug-ins for the application.

See also ÒProgram WindowÓ for details on the contents of the Pro-
gram window.

Figure 3.10 Browser window

Click a file name to display the file's routines in the Function
Pane. Click Global Variables to display all global variables in
the Globals Pane.

The Source Pane displays the source
code of the routine selected in the
Function Pane.

View global and
static variables
in the Globals
Pane.

Click a routine in the
Function Pane to
display it in the
Source Pane.
DBGÐ40 Debugger User Guide

What You See
Browser Window
File Pane

The file pane in the Browser window (Figure 3.11) displays a list of
all source files associated with the current target you are debugging.
When you select a file name in this pane, a list of the routines de-
fined in the file is displayed in the function pane.

The file pane is used in conjunction with the function and source
panes to set breakpoints in your program. Clicking Global Variables
in the file pane displays all the global variables used in your pro-
gram. These global variables are listed in the globals pane.

See also ÒGlobals PaneÓ and ÒBreakpointsÓ on page 81.

Figure 3.11 File pane

Function Pane

When you select a source-code file in the Browser windowÕs file
pane, the function pane presents a list of all routines defined in that
file. Clicking a routine name scrolls that routine into view in the
source pane at the bottom of the window.

The file pane lists the
source code files in the
target program. The
Global Variables entry,
when selected, displays
the program's global and
static variables in the
Globals Pane.

The highlighted file, in
this case SillyBalls.c,
is displayed in the source
pane.
Debugger User Guide DBGÐ41

What You See
Browser Window
Figure 3.12 Function pane

NOTE: If your code is written in C++ or Object Pascal, the Sort
functions by method name in browser option in the
Preferences dialog (see ÒSettingsÓ on page 120) alphabetizes
function names of the form className::methodName by method
name instead of by class name. Since most C++ source files tend
to contain methods all of the same class, this preference makes it
easier to select methods in the function pane by typing from the
keyboard.

Globals Pane

When the Global Variables item is selected in the file pane, the glo-
bals pane displays all global variables used by your program (Figure
3.13). You can also view static variables by selecting a file in the file
pane. The static variables will also appear in the globals pane.

When a routine is
selected in the
Function Pane, its
code appears in
the source pane.

The Function Pane
lists the routines
defined in the
source code file
selected in the File
Pane.
DBGÐ42 Debugger User Guide

What You See
Browser Window
Figure 3.13 Globals pane

Placing globals in a separate window

To display a global variable in its own window, double-click the
variableÕs name in the globals pane; a new variable window will ap-
pear containing the variableÕs name and value. You can also open a
variable window by selecting the desired variable in the globals
pane and selecting the View Variable or View Array command
from the Data menu. A global displayed in its own window can be
viewed and edited the same way as in the globals pane. You can
also add global variables to the expression window.

See also ÒVariable Window,Ó ÒArray Window,Ó and ÒExpression
Window.Ó

Windows containing global variables remain open for the duration
of the debugging session. To close a global variable or global array
window, click its close box.

See also ÒClose All Variable WindowsÓ on page 149.

Browser Source Pane

The browser source pane allows you to browse the contents of the
source-code file selected in the file pane (Figure 3.14). You can use it

To resize column widths,
drag this separator.

Click a variable to select it.
Double-click an array or
variable to display it in its
own window.

Alt-double-click a pointer
variable to open an array
window using the pointer
values.
Debugger User Guide DBGÐ43

What You See
Browser Window
to set breakpoints in any file listed in the file pane. Notice, however,
that the source browser pane does not show the currently executing
statement; to view the current statement or local variables, use the
Program window instead.

The source pane displays code in the font and colors specified in
CodeWarrior IDE EditorÕs preferences panel. If the item selected in
the file pane does not contain source code, the source pane displays
the message ÒSource text or disassembly not available.Ó

The Browser window has a source pop-up menu at the bottom like the
one in the Program window (see ÒViewing source code as assem-
blyÓ). Choose Assembler to display the contents of the source pane
as assembly code, as shown earlier in Figure 3.7. You can set break-
points in assembly code, just as you can in source code. Choose
Mixed to display source code intermixed with assembly language,
as shown earlier in Figure 3.8.

See also ÒSource Pane,Ó ÒChanging Font and ColorÓ on page 81,
and ÒBreakpointsÓ on page 81.

Figure 3.14 Browser source pane

The source pane will display the message
"Source text or disassembly not available"
when a library file is selected.

The breakpoint column
lets you set breakpoints
that suspend the target
program's execution.

Click this menu to switch between
source and assembly language views.

Clicking this icon displays
a list of routines defined
in the file selected in the
File Pane.
DBGÐ44 Debugger User Guide

What You See
Browser Window
Function Pop-up Menu

The function pop-up menu, at the bottom-left corner of the source
pane, contains a list of the routines defined in the source file se-
lected in the file pane. Selecting a routine in the function menu dis-
plays it in the source pane, just as if you had clicked the same rou-
tine in the function pane.

Press the Alt/Option key, then click the Function menu to display
the menu sorted alphabetically as shown earlier in Figure 3.9.

NOTE: The function pop-up menu does nothing if there is no
source code displayed in the source pane.
Debugger User Guide DBGÐ45

What You See
Expression Window
Expression Window
The expression window (Figure 3.15) provides a single place to put
frequently used local and global variables, structure members, and
array elements without opening and manipulating a lot of win-
dows.

To open the expression window, choose Expressions Window
from the Window menu.

Use the Copy to Expression command in the Data menu to add se-
lected items to the expression window. You can also use the mouse
to drag items from other variable panes and windows into the ex-
pression window, or to reorder the items in the expression window
by dragging an item to a new position in the list.

Figure 3.15 Expression window

To remove an item from the expression window, select the item and
press the Backspace/Delete key or choose Clear from the Edit
menu.

Unlike local variables displayed in an ordinary variable window,
those in the expression window are not removed on exit from the
routines in which they are defined.

To hide this variable's
information, click this
disclosure triangle.

To show this variable's
information, click this
disclosure triangle.

Alt-clicking dereferences
multiple levels of pointers
to display members
directly.

To change the value of
a variable, double-click
in this column.
DBGÐ46 Debugger User Guide

What You See
Breakpoint Window
See also ÒShow/Hide ExpressionsÓ on page 149, ÒCopy to Expres-
sionÓ on page 144, and ÒUsing the Expression WindowÓ on page 99.

Breakpoint Window
The breakpoint window (Figure 3.16) lists all breakpoints in your cur-
rent target, by source file and line number. To open the breakpoint
window, choose Breakpoints Window from the Window menu.

Figure 3.16 Breakpoint window

There is a breakpoint marker to the left of each listing. A circle indi-
cates that the breakpoint is active, a dash that it is inactive. Clicking
a breakpoint marker toggles the breakpoint on or off while remem-
bering its position in the target program. Double-clicking a break-
point listing activates the Browser window, with its source pane
displaying that line of code.

Each breakpoint can have an attached condition. If the condition is
true and the breakpoint is set, the breakpoint stops program execu-
tion. If the breakpoint is clear or the condition is false, the break-
point has no effect.

See also ÒBreakpointsÓ on page 81, ÒShow/Hide BreakpointsÓ on
page 149, and ÒConditional BreakpointsÓ on page 84.
Debugger User Guide DBGÐ47

What You See
Watchpoint Window
Watchpoint Window
The watchpoint window (Figure 3.17) lists all watchpoints in your cur-
rent target by memory address. To open the watchpoint window,
choose Watchpoints Window from the Window menu.

Figure 3.17 Watchpoint window

You can clear a watchpoint by selecting it with the mouse and doing
any of the following:

¥ Choose Clear Watchpoint from the Data menu.

¥ Choose Clear from the Edit menu.

¥ Press the Backspace/Delete key.

See also ÒWatchpointsÓ on page 88 and ÒShow/Hide WatchpointsÓ
on page 149.

Log Window
The Log window (Figure 3.18) displays messages as your program
makes calls to system DLLÕs or starts new tasks.

You can directly edit the contents of the log window. This allows
you to make notes as your program runs. You can also copy text
from it with the Copy command in the Edit menu, or use the Save
or Save As command in the File menu to save its contents to a text
file for later analysis.
DBGÐ48 Debugger User Guide

What You See
Log Window
Figure 3.18 Log window
Debugger User Guide DBGÐ49

What You See
Variable Window
Variable Window
A variable window (Figure 3.19) displays a single variable and allows
its contents to be edited. A variable window containing a local vari-
able will close on exit from the routine in which the variable is de-
fined.

Figure 3.19 A variable window

Array Window
The array window (Figure 3.20) displays a contiguous block of mem-
ory as an array of elements and allows the contents of the array ele-
ments to be edited. To open the array window, select an array vari-
able in a variable pane (either locals or globals) and then choose
View Array from the Data menu. To close the array window, click
its close box.

You can also use the View Memory as command in the Data menu
to open an array window. This command presents a dialog box in
which you can select a data type, then opens an array window inter-
preting memory as an array of that type.

An array windowÕs title bar describes the base address the array is
bound to. An arrayÕs base address can be bound to an address, a
variable, or a register. Dragging a register name or variable name
from a variable or register pane to an array window sets the array
address. An array bound to a local variable will close when the vari-
ableÕs routine returns to its caller.

The information pane displays the data type of the array elements,
along with the arrayÕs base address. Clicking the arrow in the infor-

To change a variable's
value, double-click in
this column.
DBGÐ50 Debugger User Guide

What You See
Array Window
mation pane shows more information about the array. From the ex-
panded information pane, you can select the arrayÕs base address,
its size, and which members to view if the array elements are of a
structured type.

Figure 3.20 Anatomy of an array window

The arrayÕs contents are listed sequentially, starting at element 0. If
array elements are cast as structured types, an arrow appears to the

Click this triangle
to show an
information pane.

To select the base
address of the array,
click one of these
buttons.

To select a specific member
to view in each element, use
this pop-up menu.

To see the size of
the array, enter
a limit here.
Debugger User Guide DBGÐ51

What You See
Memory Window
left of each array element, allowing you to expand or collapse the el-
ement.

See also ÒOpen Array WindowÓ on page 144 and ÒView Memory
AsÓ on page 146.

Memory Window
A memory window displays the contents of memory in hexadecimal
and corresponding ASCII character values (Figure 3.21). To open a
memory window, select a variable, routine name, or expression rep-
resenting the desired base address in the program, browser, or ex-
pression window and choose View Memory from the Data menu.
To close the memory window, click its close box.

Figure 3.21 A memory window

NOTE: The View Memory as command opens an array win-
dow (ÒArray WindowÓ) displaying memory as an array of data of a
type you specify.
DBGÐ52 Debugger User Guide

What You See
Memory Window
The source of the base address (which may be a variable, a routine,
any expression, or a raw address like 0xCAF64C) is displayed at the
top of the window. A memory window is blank if the base address
canÕt be accessed.

To change the base address, simply type or drag a new expression
to the expression field. If the expression does not produce an lvalue,
then the value of the expression is used as the base address. For ex-
ample, the memory-window expression

PlayerRecord

will show memory beginning at the address of PlayerRecord.

If the expressionÕs result is an object in memory (an lvalue), then the
address of the object is used as the base address. For example, the
expression

*myArrayPtr

will show memory beginning at the address of the object pointed to
by myArrayPtr.

You can use a memory window to change the values of individual
bytes in memory. Simply click in the displayed data to select a start-
ing point, and start typing. If you select a byte in the hexadecimal
display, you are restricted to typing hexadecimal digits. If you select
a byte in the ASCII display, you can type any alphanumeric charac-
ter. Certain keys (such as Backspace/Delete, Tab, Enter, and so
forth) do not work. New data you type overwrites what is already
in memory.

Mac OS

If the expression is a pointer-sized register, then the registerÕs con-
tents are used as the base address. For example,

¨A0

will show memory beginning at the address contained in the 68K
register A0. Floating-point registers cannot be used.
Debugger User Guide DBGÐ53

What You See
Register Window
WARNING! Arbitrarily changing the contents of memory can
be very dangerous to your computerÕs stability and can result in a
crash. Make sure you know what youÕre doing, and donÕt change
anything critical.

Register Window
A register window displays CPU registers (Figure 3.22) and allows
their contents to be edited. To open a register window, choose Gen-
eral Registers from the submenu of the Registers Windows com-
mand, located in the Window menu.

NOTE: The appearance of the Register window will change de-
pending upon the target processor. Also, you may not see a sub-
menu for the Register Window command. In such case, simply
choose Register Window to see the window shown in Figure 3.22.

Figure 3.22 A CPU register window

For some targets, an FPU (floating -point unit) register is also avail-
able. If an FPU is available, you can display its registers as well.
Choose FPU Registers from the submenu of the Registers Win-
dows command, located in the Window menu.
DBGÐ54 Debugger User Guide

What You See
Register Window
To change a register value, double-click the register value or select
the register and press Enter/Return. You can then type in a new
value.

Figure 3.23 A CPU register window (Mac OS)

Mac OS Click a register windowÕs zoom box to display the full
set of registers. Toggle status and condition registers between 0 and
1 by double-clicking, or by selecting the register and pressing Re-
turn or Enter.

WARNING! Changing the value of a register is a very danger-
ous thing to do. It could corrupt your data, memory, or cause a
crash.

Clicking the Zoom box
shows or hides the
condition codes.

Change a register's value
by double-clicking it.

Condition codes
Debugger User Guide DBGÐ55

What You See
Register Window
Figure 3.24 An FPU register window (Mac OS)

See also ÒShow/Hide RegistersÓ on page 149 and ÒShow/Hide
FPU RegistersÓ on page 149.

Clicking the zoom box alternates the window
between this full view and a small view.
DBGÐ56 Debugger User Guide

What You See
Process Window
Process Window
The Process window (Figure 3.25) lists processes currently running
including some hidden processes. The process window also lists
tasks for the selected process. To open the process window, choose
Processes Window from the Window menu.

Figure 3.25 Process window

The Process window has two panes and a tool bar:

¥ Process PaneÑdisplays currently running processes

¥ Tasks PaneÑdisplays tasks running in the selected process

¥ Process Window ToolbarÑallows to run, stop, or kill pro-
cesses and tasks under the debuggerÕs control

See also ÒShow/Hide ProcessesÓ on page 148.

Process Pane

The Process pane lists all active processes. A process under the de-
buggerÕs control has a checkmark next to its entry in the window.
Debugger User Guide DBGÐ57

What You See
Process Window
To set debugger control for a process, click the checkmark column.
Double-clicking a process name activates that process.

TIP: If you turn on debugger control for a process, you can un-
target the process without killing it. To untarget the process, simply
click the checkmark column again and click the Resume button
in the subsequent dialog.

Figure 3.26 Process pane

Tasks Pane

The tasks pane lists all the active tasks for a given process. Only
tasks from the program under the debuggerÕs control will be shown.
Double-clicking a task name activates a Program window with the
code for that task. You can also choose a task and then use the Pro-
gram window button in the top right corner.

There are two columns in the task pane. The first column displays
the task ID. The second columns shows the task state. A task can be
either running, stopped, or crashed.
DBGÐ58 Debugger User Guide

What You See
Process Window
Figure 3.27 Tasks pane

Process Window Toolbar

The Process Window Toolbar (Figure 3.28) has controls to Run ,
Stop , and Kill a process under the debuggerÕs control. These con-
trols have no effect on any other active processes or tasks.

The Step Over , Step Into , and Step Out buttons work the same as
they do in the Program window. Clicking any of these three buttons
will activate a Program window showing the current statement ar-
row.

Figure 3.28 Process Window Toolbar

Run
Stop

Kill
Stack Crawl

Step Over

Step Into

Step Out
Debugger User Guide DBGÐ59

What You See
Process Window
The Program window button will show the Program window for
the selected process or task. If a process is selected, the Program
window for that process is brought to the front. If a task is selected,
the Program window for that task is brought to the front. You can
have multiple Program windows open at a time.

See also ÒDebugger Toolbar.Ó
DBGÐ60 Debugger User Guide

4
Basic Debugging
This chapter introduces you to the principles of debugging.

Basic Debugging Overview
A debugger is software that controls the execution of a program so
that you can see whatÕs happening internally and identify problems.
This chapter discusses how to use the debugger to locate and solve
problems in your source code by controlling program execution and
viewing your data and variables. The principal topics discussed are:

¥ Starting UpÑthings to watch out for when starting the de-
bugger

¥ Running, Stepping, and Stopping CodeÑcontrolling pro-
gram execution a line at a time

¥ Navigating CodeÑmoving around and finding the code you
want in the debugger

¥ BreakpointsÑstopping execution when and where you want

¥ WatchpointsÑstopping execution when the contents of a
memory location are changed

¥ Viewing and Changing DataÑseeing your variables and
modifying them at will

¥ Editing Source CodeÑediting source code while in a debug-
ger session.

To learn how to prepare a build target for debugging or launch the
debugger, see ÒGetting Started OverviewÓ on page 21. This chapter
also assumes you are familiar with the information about the de-
bugger interface found in ÒWhat You See OverviewÓ on page 29.
For information on how to set the debuggerÕs preferences, see ÒPref-
erencesÓ on page 140.
Debugger User Guide DBGÐ61

Basic Debugging
Starting Up
Starting Up
To use the integrated debugger, first open a project. Then, choose
Enable Debugger from the Project menu. Choose the Debug com-
mand from the Project menu to launch the integrated debugger.

When using MW Debug on your code, you should pay careful at-
tention to what happens. The following two problems might occur:

If MW Debug is not running and you launch it from a project or di-
rectly from a symbolics file, when the debugger appears the pro-
gram window is the active window. If thatÕs the case, all is well.
Your programÕs code appears in the program window, stopped at
the first line and ready to run.

If MW Debug is already running and you launch it directly from a
project, when the debugger appears the browser window may be the ac-
tive window. In this case, you must issue a second Run command
from inside the debugger. This launches the target under debugger
control, brings the program window to the foreground, and stops
the program at the first line.
DBGÐ62 Debugger User Guide

Basic Debugging
Starting Up
Figure 4.1 Where is file?

Figure 4.2 Where is file? (Mac OS)
Debugger User Guide DBGÐ63

Basic Debugging
Running, Stepping, and Stopping Code
Occasionally, the debugger may ask you for the location of a partic-
ular file. The dialog, shown in Figure 4.1, appears.

You may see this dialog either upon startup (the debugger is look-
ing for the file with the main entry point) or by clicking on a specific
file in MW DebugÕs Browser Window.

This can happen under the following situations:

¥ a file has been moved to a different directory

¥ youÕve received the project from another person on your
team and the paths are different

¥ youÕve selected a file belonging to a compiled library and
you do not have the source files

The last case is most common if a library you are using in your tar-
get has been compiled with debug symbols turned on. This is espe-
cially true with some of the libraries distributed with CodeWarrior.

Once you have found the file, the debugger will remember the file
location, even between debug sessions.

See also ÒLaunching MW Debug from the IDE (Mac OS)Ó on
page 25 and ÒLaunching MW Debug DirectlyÓ on page 26.

Running, Stepping, and Stopping Code
This section discusses how to how to run your code, move through
it line by line, and stop or kill the target when you want to stop de-
bugging.

Moving through code line by line is often called ÒwalkingÓ through
your code. It is a linear approach to navigating, where you start at
the beginning and move steadily through the code. This is impor-
tant for understanding how to navigate in your codeÑbut the real
power comes in the next sections, which discuss how to navigate to
any location directly, how to stop your code at specific locations
when certain conditions are met, and how to view and change your
data.
DBGÐ64 Debugger User Guide

Basic Debugging
Running, Stepping, and Stopping Code
There are a few ways to walk through your code. You can use the
control buttons, keyboard, or choose the appropriate command
from the integrated debuggerÕs Debug menu or MW DebugÕs Con-
trol menu. Table 4.1 lists the control buttons along with their default
menu and keyboard equivalents in the integrated debugger.

Table 4.1 Button and Key commands

This section discusses:

¥ Current-Statement Arrow

¥ Running Your Code

¥ Stepping a Single Line

¥ Stepping Into Routines

¥ Stepping Out of Routines

¥ Skipping Statements

¥ Stopping Execution

¥ Killing Execution

Button Menu
Command

Windows
Keyboard
Equivalent

Mac OS
Keyboard
Equivalent

Run F5 Command-R

Stop Control-P

Kill Shift-F5 Control-K

Step Over F10 Control-S

Step Into F11 Control-T

Step Out Shift-F11 Control-U
Debugger User Guide DBGÐ65

Basic Debugging
Running, Stepping, and Stopping Code
Figure 4.3 The current-statement arrow

Current-Statement Arrow

The current-statement arrow in the program window (Figure 4.3) in-
dicates the next statement to be executed. It represents the proces-
sorÕs program-counter register. If you have just launched the debug-
ger, it will point to the first line of executable code in your program.

Running Your Code

If the target has been launched but execution has been stopped, use
the Run command (Figure 4.4) to restart your program. When you
do, the program resumes execution at the current-statement arrow.

Figure 4.4 The Run command

NOTE: (MW Debug) If the target has been launched, youÕll see
source code in the source pane of the program window. If it has

The current-statement
arrow points to the next
statement to execute.
DBGÐ66 Debugger User Guide

Basic Debugging
Running, Stepping, and Stopping Code
not been launched, the program window says ÒProgram name is
not running.Ó In that case, the Run command launches your target
under control of the debugger and brings the program window for-
ward with execution stopped at the first line of code.

After a breakpoint or a Stop command, the debugger regains con-
trol and the program window appears showing the current-state-
ment arrow and the current values of local and global variables. The
debugger places an implicit breakpoint at the programÕs main entry
point and stops there (Figure 4.5). Issuing another Run command
resumes program execution from the point of the interruption. After
a Kill command, Run restarts the program from its beginning.

Figure 4.5 Starting the execution of the target program

When a program is
first launched from
the debugger,
execution
automatically stops
at the program's
main entry point.
Debugger User Guide DBGÐ67

Basic Debugging
Running, Stepping, and Stopping Code
TIP: You can inhibit the automatic launch of MW Debug by hold-
ing down the Alt/Option key while opening the symbolics file.You
can also change the Automatically launch applications when
SYM Þ le opened preference (see ÒProgram ControlÓ on
page 126). One use for this feature is to debug C++ static con-
structors, which are executed before entering the programÕs main
routine.

Stepping a Single Line

To execute one statement, use the Step Over command (Figure 4.6).
If that statement is a routine call, the entire called routine executes
and the current-statement arrow proceeds to the next line of code.
The contents of the called routine are stepped over; the routine runs,
but it does not appear in the debuggerÕs program window. In other
words, the Step Over command executes a routine call without vis-
iting the code in the called routine. When you are stepping over
code and reach the end of a routine, the current statement arrow re-
turns to the routineÕs caller.

Figure 4.6 The Step Over command

Stepping Into Routines

Sometimes you want to follow execution into a called routine (this is
known as tracing code). To execute one statement at a time and fol-
low execution into a routine call, use the Step Into command (Fig-
ure 4.7).
DBGÐ68 Debugger User Guide

Basic Debugging
Running, Stepping, and Stopping Code
Figure 4.7 The Step Into command

Step Into moves the current-statement arrow down one statement,
unless the current statement contains a routine call. When Step
Into reaches a routine call, it follows execution into the routine
being called.

Stepping Out of Routines

To execute statements until the current routine returns to its caller,
use the Step Out command (Figure 4.8). Step Out executes the rest
of the current routine normally and stops the program when the
routine returns to its caller. You are going one level back up the call-
ing chain. See ÒCall-Chain Navigation.Ó

Figure 4.8 The Step Out command
Debugger User Guide DBGÐ69

Basic Debugging
Running, Stepping, and Stopping Code
Skipping Statements

Sometimes you may want to skip statements altogether: that is, not
execute them at all. To move the current-statement arrow to a differ-
ent part of the currently executing source-code file, simply drag it
with the mouse (Figure 4.9). Note that dragging the current-state-
ment arrow does not execute the statements between the arrowÕs orig-
inal location and the new location it is dragged to.

WARNING! Dragging the current-statement arrow is equivalent
to deliberately changing the program counter in the register win-
dow. This is very dangerous, because you might corrupt the stack
by skipping routine calls and returns. The debugger is not able to
prevent you from corrupting your run-time environment.

Figure 4.9 Dragging the current-statement arrow

To move the current-statement arrow without potentially corrupt-
ing the run-time environment, Alt/Option click a statement in the
breakpoint column (Figure 4.10). Alt/Option clicking the statement
sets a temporary breakpoint: Execution proceeds normally until the
current-statement arrow reaches the temporary breakpoint, then
stops. (See ÒBreakpoints.Ó)

To force the current-
statement arrow to another
statement, simply drag it.
DBGÐ70 Debugger User Guide

Basic Debugging
Running, Stepping, and Stopping Code
Figure 4.10 Setting a temporary breakpoint

Stopping Execution

While your program is running, you may wish to use the Stop com-
mand (Figure 4.11) to suspend execution and explore with the de-
bugger. This stops execution at some point where the operating sys-
tem surrenders control to other processes such as the host debugger.
You can then step through your code from that point, or use the
Run command to resume execution.

Figure 4.11 The Stop command

Stopping in this fashion is not very precise. Code executes very
quickly, and there is no telling where in your code youÕre going to
stop when you issue the Stop command. ItÕs usually a better idea to

To execute the program
up to this point, Alt-click
in the breakpoint column.
Debugger User Guide DBGÐ71

Basic Debugging
Running, Stepping, and Stopping Code
use breakpoints, which allow you to stop execution precisely where
you want. (See ÒBreakpoints.Ó)

NOTE: The Stop command is not available for some targets be-
cause it is dependent on operating system services. For details on
any particular target, see the corresponding Targeting manual.

TIP: (Mac OS) If your program hangs in an infinite loop, you can
regain control by typing the combination Command-Control-/ from
your keyboard. This will interrupt the program and put you in the
debugger so you can try to figure out whatÕs going on.

TIP: (Windows) If your program hangs in an infinite loop, you
can regain control by switching to MW Debug and issuing a Stop
command.

Killing Execution

Sometimes you want to terminate your program completelyÑend
the debugging session. The Kill command (Figure 4.12) ends the
program and returns you to the debugger. The program window
will tell you that the program is not running, and to choose Run
from the integrated debuggerÕs Project menu or MW DebugÕs Con-
trol menu to start it.

Figure 4.12 The Kill command
DBGÐ72 Debugger User Guide

Basic Debugging
Navigating Code
Killing the program is not the same as stopping. Stopping only sus-
pends execution temporarily: you can resume from the point at
which you stopped. Killing permanently terminates the program.

Navigating Code
This section discusses the various ways you can move around in
your code. This skill is vital when you want to set breakpoints at
particular locations. Methods of moving around in code include:

¥ Linear NavigationÑstepping though code

¥ Call-Chain NavigationÑmoving to active routines

¥ Browser Window NavigationÑmoving to code in the
browser window in MW Debug

¥ Source-Code NavigationÑmoving to code in your source
files

¥ Using the Find DialogÑusing MW DebugÕs Find dialog to
find occurrences of specific definitions, variables, or routine
calls

Linear Navigation

You can ÒwalkÓ through your code by using the Step Over, Step
Into, and Step Out commands as needed until you reach the place
you want. This is useful for short stretches of code, but not very
helpful when you want to get to a specific location a distance away.

See also ÒStepping a Single Line,Ó ÒStepping Into Routines,Ó and
ÒStepping Out of Routines.Ó

Call-Chain Navigation

The chain of routine calls is displayed in the stack crawl pane of the
program window (Figure 4.13). Each routine in the chain appears
below its caller, so the currently executing routine appears at the
bottom of the chain and the first routine to execute in the program is
at the top.
Debugger User Guide DBGÐ73

Basic Debugging
Navigating Code
Figure 4.13 The stack crawl pane

You can use the stack crawl pane to navigate to the routines that
called the currently executing routine.To find where a routine in the
stack crawl pane is called from, click the name of its caller. This dis-
plays the source code for the caller right at the point of call (Figure
4.14).

Figure 4.14 Finding a routineÕs point of call

This is the first
routine executed in
the program.

This is the currently
executing routine.

Clicking DoMenuCommand()'s
caller, DoEvent(), shows
the point where DoEvent()

calls DoMenuCommand().
DBGÐ74 Debugger User Guide

Basic Debugging
Navigating Code
Browser Window Navigation

You can use MW DebugÕs browser window to jump to any location
in your source code. To view a specific routine:

1. Make the browser window active (Figure 4.15).

Figure 4.15 Activating MW DebugÕs browser window

2. In the browser windowÕs file pane, select the file where the
routine is defined (Figure 4.16).

Simply click the desired file, or use the arrow keys to scroll through
the list. The source code for that file appears in the source pane. You
can also type the name of the file.

Program window

Click in the Browser
Window to make it
active.

The Browser Window
lets you view any
file in the target
project.
Debugger User Guide DBGÐ75

Basic Debugging
Navigating Code
Figure 4.16 Selecting a file to view its contents

3. Locate the desired code in the source file.

You can scroll the source pane to find the code you want. A more
useful technique is to use the browser windowÕs function pane or
function pop-up menu to select the desired routine (Figure 4.17).

The routine appears in the source pane of the browser window.
Once the routine is displayed, you can set and clear breakpoints.
(See ÒBreakpoints.Ó)
DBGÐ76 Debugger User Guide

Basic Debugging
Navigating Code
Figure 4.17 Choosing a routine to view

Source-Code Navigation

You can display the routine you want to view in MW DebugÕs
browser window by first using the CodeWarrior integrated devel-
opment environment (either C/C++ or Pascal) to open and search
your source code. Then switch to MW Debug to view the same code
in the browser window. Note that you must have MW Debug in
order to follow the subsequent steps.

To display a specific routine or file while using the CodeWarrior
IDE, and then display that code in MW DebugÕs browser window:

1. Within the CodeWarrior environment, open the source-code
file that contains the desired routine. The file must be a
project file.

2. Place the insertion point at the statement you want to appear
in the browser window.

You can use the function pop-up menu to display a specific routine
(Figure 4.18), or use any other technique in the source-code editor to
locate the desired code.
Debugger User Guide DBGÐ77

Basic Debugging
Navigating Code
Figure 4.18 Selecting a function from C/C++ or Pascal

TIP: You can use the Find and Find Next commands on the
Edit menu to quickly move to the code you want to look at in the
browser window.

3. Choose the Switch To MW Debugger command from the File
menu (Figure 4.19).

MW Debug becomes the active application. The browser window
displays the statement at which you set the editorÕs insertion point.
You can return to the Editor at any time by choosing the Edit Þle-
name command from MW DebugÕs File menu (Figure 4.20).

Choose a routine in
C/C++ or Pascal to
set a breakpoint in.
DBGÐ78 Debugger User Guide

Basic Debugging
Navigating Code
Figure 4.19 Switching to MW Debug

Figure 4.20 Returning to the CodeWarrior development
environment from MW Debug

Using the Find Dialog

MW DebugÕs Find dialog box (Figure 4.21) allows you to search for
text in the source pane of the program or browser window. The
search begins at the current location of the selection or insertion
point and proceeds forward toward the end of the file. Choose Find
from the Edit menu.
Debugger User Guide DBGÐ79

Basic Debugging
Navigating Code
Figure 4.21 MW DebugÕs Find dialog

MW DebugÕs Find dialog box contains the following items:

¥ Text: An editable text box for entering the text to search for.

¥ Ignore case: If selected, makes the search case-insensitive:
that is, corresponding upper- and lowercase letters (such as
A and a) are considered identical. If deselected, the search is
case-sensitive: upper- and lowercase letters are considered
distinct.

¥ Entire word: If selected, the search will find only complete
words (delimited by punctuation or white-space characters)
matching the specified search string. If deselected, the search
will find occurrences of the search string embedded within
larger words, such as the in other.

¥ Wrap: If selected, the search will Òwrap aroundÓ when it
reaches the end of the file and starts from the beginning. If
deselected, the search will end on reaching the end of the file.

¥ Find: Confirms the contents of the dialog box and begins the
search. The settings in the dialog box are remembered and
will be redisplayed when the Find command is invoked
again.

¥ Cancel: Dismisses the dialog box without performing a
search. The settings in the dialog box are not remembered
and will revert to their previous values when the Find com-
mand is invoked again.

Use the Find Next command to repeat the last search, starting from
the current location of the selection or insertion point.
DBGÐ80 Debugger User Guide

Basic Debugging
Breakpoints
Use the Find Selection command to search for the next occurrence
of the text currently selected in the source pane. This command is
disabled if there is no current selection, or only an insertion point.

TIP: You can reverse the direction of the search by using the
shift key with the keyboard shortcuts, Ctrl/Cmd G (find next) or
Ctrl/Cmd H (find selection).

Changing Font and Color

The debugger displays source code in the font and color specified in
the CodeWarrior IDEÕs Editor preference panel.

To change the font and syntax coloring of source code in the debug-
ger:

1. Launch the CodeWarrior IDE.

2. Make sure no editor window or project is open.

3. Choose Preferences from the Edit menu.

4. Choose the Editor preference panel.

5. Set the font and syntax coloring preferences.

6. Click OK to close the Preferences dialog box.

The debugger will use these font and syntax-coloring settings when
displaying source code.

Breakpoints
A breakpoint suspends execution of the target program and returns
control to the debugger. When the debugger reaches a statement
with a breakpoint, it stops the program before the statement is
about to execute. The debugger then displays the routine containing
the breakpoint in the program window. The current-statement
arrow appears at the breakpoint, ready to execute the statement it
points to.
Debugger User Guide DBGÐ81

Basic Debugging
Breakpoints
This section discusses:

¥ Setting Breakpoints

¥ Clearing Breakpoints

¥ Temporary Breakpoints

¥ Viewing Breakpoints

¥ Conditional Breakpoints

¥ Impact of Optimizing Code on Breakpoints

Setting Breakpoints

From the source pane of the program window or browser window,
you can set a breakpoint on any line with a dash markerÑthe short
line to the left of a statement in the breakpoint column (see Figure
4.22). The dash becomes a circle (red on a color monitor). This indi-
cates that a breakpoint has been set at this statement. Execution will
stop just before this statement is executed.

Figure 4.22 Setting breakpoints

TIP: Put one statement on each line of code. Not only is your
code easier to read, it is easier to debug. The debugger allows
only one breakpoint per line of source code, no matter how many
statements a line has.

A Breakpoint is set at this statement. To clear the breakpoint, click this circle.
To execute the target program up to this breakpoint, Option-click this circle.

To set a breakpoint at this
statement, click this dash.
DBGÐ82 Debugger User Guide

Basic Debugging
Breakpoints
Clearing Breakpoints

To clear a single breakpoint, click the breakpoint circle next to it in
the source pane. It turns back into a dash, indicating that you have
removed the breakpoint. To clear all breakpoints, choose the Clear
All Breakpoints command from the Debug menu.

Temporary Breakpoints

Sometimes you want to run a program to a particular statement and
stop, and you want to do this just once. To set a temporary break-
point, Alt/Option click the breakpoint dash to the left of the desired
statement. When you resume execution, it will proceed to that state-
ment and stop.

NOTE: If there is already a regular breakpoint at the statement,
Alt/Option clicking removes the breakpoint, but the temporary
breakpoint still works.

If another breakpoint is encountered before reaching the temporary
breakpoint, the program will stop at the first breakpoint. The tem-
porary breakpoint remains in place, however, and will be triggered
and then removed when execution reaches it.

Viewing Breakpoints

To see a list of all breakpoints currently set in your program, choose
the Breakpoints Window command from the Window menu. A
window appears that lists the source file and line number for each
breakpoint (Figure 4.23). Clicking a breakpoint marker in the break-
point window turns a breakpoint on or off while remembering the
breakpointÕs position in the target program.
Debugger User Guide DBGÐ83

Basic Debugging
Breakpoints
Figure 4.23 Displaying the breakpoint window in MW Debug

NOTE: Double-clicking on a breakpoint location in the break-
point window will take you to that line of code in the browser win-
dow.

See Also ÒBreakpoint WindowÓ on page 47.

Conditional Breakpoints

You can set conditional breakpoints that stop your programÕs execu-
tion at a given point only when a specified condition is met. A con-
ditional breakpoint is an ordinary breakpoint with a conditional ex-
pression attached. If the expression evaluates to a true (nonzero)
value when control reaches the breakpoint, the programÕs execution
stops; if the value of the expression is false (zero), the breakpoint
has no effect and program execution continues.

Conditional breakpoints are created in the breakpoint window. To
make a conditional breakpoint:

To see a list of breakpoints,
choose Show Breakpoints
from the Window menu.
DBGÐ84 Debugger User Guide

Basic Debugging
Breakpoints
1. Set a breakpoint at the desired statement.

2. Display the breakpoint window by choosing Breakpoints
Window from the Window menu.

3. In the breakpoint window, double-click the breakpointÕs con-
dition field and enter an expression, or drag an expression
from a source-code view or from the expression window.

In Figure 4.24, the debugger will stop execution at line 120 in the
NewBall() routine if and only if the variable newTop is greater
than six.

Figure 4.24 Creating a conditional breakpoint

NOTE: Conditional breakpoints are especially useful when you
want to stop inside a loop, but only after it has looped several
times. You can set a conditional breakpoint inside the loop, and
break when the loop index reaches the desired value.

Impact of Optimizing Code on Breakpoints

To enable you to set breakpoints accurately, the debugger relies on a
direct correspondence between source code and object code. Opti-
mizing your code can disrupt this relationship and cause problems
setting breakpoints..

If there is no breakpoint dash to the left of a line of source code in
the debugger, you cannot set a breakpoint at that line. The potential
causes are:

¥ symbolics information is disabled for that line

¥ the routine containing the line is unused and was therefore
deadstripped by the linker
Debugger User Guide DBGÐ85

Basic Debugging
Breakpoints
¥ the code has been optimized and the final object code no
longer corresponds to the original source code, the subject of
this topic

For example, the PowerPC compiler will let you set a breakpoint
when the start of a source statement corresponds to the start of a
Òbasic blockÓ (no real need to understand that term) that has at least
one instruction in it.

Normally, when Debug Info is turned on for a source file, the com-
piler will contrive to start a new basic block at each source statement
that actually generates some code. For example:

- int i = 1;
- if (i)

 {
 int k;

- int j = 1;
- i = j;

 }

lines like { will not permit a breakpoint because there isnÕt a unique
object code address for that source line, since they generate no in-
structions.

Once you start turning on the optimizer, things break down. For ex-
ample, when Instruction Scheduling is enabled, the compiler no
longer starts a new basic block for each source statement. That al-
lows the scheduler the maximum flexibility for reordering instruc-
tions within the block. The different instructions that correspond to
a source statement will no longer be consecutive, theyÕll be inter-
mingled with the instructions from other source statements. In the
example above, youÕll get breakpoints like this:
DBGÐ86 Debugger User Guide

Basic Debugging
Breakpoints
- int i = 1;
 if (i)

 {
 int i;

- int j = 1;
 i = j;

 }

At optimization level 3 or 4, the source statements you write may
not even appear in the generated code. For example, given a loop
like this:

i = 0;
j = 0;
while (i < 10)
{

 j = j + 1;
 i = i + 1;

}

The compiler will translate this into the source-equivalent of this:

j = j + 1; // duplicate 10 times
j = j + 1;
...
j = j + 1;

or even into this:

j = 10;

and totally eliminate any instructions corresponding to the while
loop.

For best symbolic debugging results, you want to turn optimiza-
tions off or use optimizations that are Òdebug safe.Ó Different opti-
mizations are available for different targets. See the Targeting man-
Debugger User Guide DBGÐ87

Basic Debugging
Watchpoints
ual for details. In a typical situation, you would turn Peephole and
Global Optimizers OFF, Instruction Scheduling OFF, and
DonÕt Inline ON. Then you should get a breakpoint marker at
every ÒmeatyÓ statement. These optimizations are available for
most targets. You can view the current optimizatinos for your
project by choosing the Target Settings command from the Edit
menu. The actual name of the command will include the name of
your build target.

After setting a breakpoint, you can begin executing the program
from the program window by choosing the Step, Step Over, Step
Into, or Run commands from the Debug menu. These commands
are also available in MW DebugÕs Control menu.

See also ÒRunning, Stepping, and Stopping Code.Ó

Watchpoints
A watchpoint is a location or region of memory that you designate
for the debugger to keep an eye on for you. Whenever a new value
is written to that area of memory, the debugger will suspend execu-
tion of the target program and notify you with an alert message on
your screen (Figure 4.25). After dismissing the alert, you can pro-
ceed to examine the call chain, inspect or change variables, step
through your code, or use any of the debuggerÕs other facilities. (In
particular, from the debugger level, you can change the contents of
the location that triggered the watchpoint without triggering it
again.) Use the Run command (or the Run button on the toolbar) to
continue execution from the watchpoint.

Mac OS Watchpoints require System version 7.5 to run, and will
not work on 68K machines unless virtual memory is enabled. They
are also known to be incompatible with Speed Doubler, and possi-
bly with RAM Doubler as well.
DBGÐ88 Debugger User Guide

Basic Debugging
Watchpoints
Figure 4.25 Watchpoint alert

Setting Watchpoints

You can set a watchpoint in any of the following ways:

¥ Select a variable, in a variable window or in the globals pane
of the browser window, and choose Set Watchpoint from
the Debug menu.

¥ Drag a variable from another window into the watchpoint
window.

¥ Select a range of bytes in a memory window and choose Set
Watchpoint from the Debug menu.

Variables or memory locations on which a watchpoint has been set
are underlined in red in the symbolics, variable, or memory win-
dows.

See Also ÒUse Syntax Coloring in Source DisplayÓ on page 123.

WARNING! There are some significant restrictions on where in
memory you can place a watchpoint. You can use them only on
global variables or on objects allocated from your application
heap. You cannot set a watchpoint on a stack-based local variable
or on a variable being held in a register
Debugger User Guide DBGÐ89

Basic Debugging
Watchpoints
Mac OS You cannot set a watchpoint anywhere in low memory
or the system heap.

NOTE: When debugging small 68K projects, you may see a di-
alog box with the following text when trying to set watchpoints on a
global variable: ÒCould not set a watchpoint at that location be-
cause it is on the stack.Ó This is a limitation of the classic 68K runt-
ime architecture, not the debugger.

Clearing Watchpoints

You can clear a watchpoint in any of the following ways:

¥ After triggering the watchpoint, choose the Clear Watch-
point command from the Debug menu.

¥ Select a variable, in a variable window or in the globals pane
of MW DebugÕs browser window, and choose Clear Watch-
point from the Debug menu.

¥ Select a range of bytes in a memory window and choose
Clear Watchpoint from the Debug menu.

¥ Select an existing watchpoint in the watchpoint window and

Ð Choose Clear Watchpoint from the Debug menu

Ð Choose Clear from the Edit menu

Ð Press the Backspace/Delete key

All watchpoints are automatically cleared when the target program
terminates or is killed by the debugger.

Viewing Watchpoints

To see a list of all watchpoints currently set in your program, choose
the Watchpoints Window command from the Window menu. A
window appears that lists the address and length of each watch-
point (Figure 4.26).
DBGÐ90 Debugger User Guide

Basic Debugging
Viewing and Changing Data
Figure 4.26 Viewing the watchpoint window in MW Debug

See Also ÒWatchpoint WindowÓ on page 48.

Viewing and Changing Data
A critical feature of a debugger is the ability to see the current val-
ues of variables, and to change those values when necessary. This
allows you to understand what is going on, and to experiment with
new possibilities. This section discusses:

¥ Viewing Local Variables

¥ Viewing Global Variables

¥ Putting Data in a New Window

¥ Viewing Data Types

¥ Viewing Data in a Different Format
Debugger User Guide DBGÐ91

Basic Debugging
Viewing and Changing Data
¥ Viewing Data as Different Types

¥ Changing the Value of a Variable

¥ Using the Expression Window

¥ Viewing Raw Memory

¥ Viewing Memory at an Address

¥ Viewing Processor Registers

For additional information on viewing and changing data for a par-
ticular target, see the corresponding Targeting manual.

Viewing Local Variables

Local variables appear in the Variables pane of the program win-
dow (Figure 4.27). If the variable is a handle, pointer, or structure,
you can click the arrow to the left of the name to expand the view.
This allows you to see the members of the structure or the data ref-
erenced by the pointer or handle.

In MW Debug, you can also expand or collapse variables by choos-
ing the Expand or Collapse All commands from the Data menu.

See also ÒExpandÓ on page 143, ÒCollapse AllÓ on page 143, and
ÒVariables PaneÓ on page 32.

Figure 4.27 Viewing local variables

These are local variables
defined in the currently
executing routine.
DBGÐ92 Debugger User Guide

Basic Debugging
Viewing and Changing Data
Viewing Global Variables

Global variables appear in the program and MW DebugÕs browser
windows (Figure 4.28). In the program window, they appear below
a dotted line in the Variables pane. In MW DebugÕs browser win-
dow, they appear in the globals pane when you select the Global
Variables item in the file pane.

See also ÒVariables PaneÓ on page 32, ÒGlobals PaneÓ on page 42,
and ÒGlobals PaneÓ on page 42.

Figure 4.28 Viewing global variables in MW DebugÕs browser
window

Putting Data in a New Window

Sometimes the locals or globals panes are not the most convenient
places to view data. You can place any variable or group of vari-
ables in a separate window or windows of their own.

Click Global Variables in the browser window
to view all global variables in the program.
Debugger User Guide DBGÐ93

Basic Debugging
Viewing and Changing Data
Figure 4.29 Putting a variable in its own window

To place a variable or memory location in its own window, double-
click its name (Figure 4.29) or select the name and choose the View
Variable command from the Data menu. If the variable is an array,
use the View Array command instead. To view the memory the
variable occupies as a memory dump, use either the View Memory
or View Memory as command.

See also ÒVariable WindowÓ on page 50, ÒArray WindowÓ on
page 50, and ÒMemory WindowÓ on page 52.

Viewing Data Types

If you wish, the debugger will display the data types of variables on
a window-by-window basis. Select the window or pane in which
you want data types displayed and choose Show Types from the
Data menu. Names of variables and memory locations in that win-
dow or pane will be followed by the relevant data type (Figure
4.30).

TIP: To show data types automatically, select the In variable
panes, show variable types by default preference in the De-

Double-clicking an item
in a variable pane places
it in its own window.
DBGÐ94 Debugger User Guide

Basic Debugging
Viewing and Changing Data
bugger Display Settings preference panel of the IDE Preferences
window. See ÒSettingsÓ on page 120 for more information.

Figure 4.30 Viewing data types

Viewing Data in a Different Format

You can control the format in which a variableÕs value is displayed.
The following options are available:

¥ signed decimal

¥ unsigned decimal

¥ hexadecimal

¥ character

¥ C string

¥ Pascal string

¥ floating-point

¥ enumeration

¥ Fixed

Choose Show Types
from the Data menu.

Items in the pane appear
with their data types.
Debugger User Guide DBGÐ95

Basic Debugging
Viewing and Changing Data
¥ Fract

To view data in a particular format, select either the name or the
value of the variable in any window in which it is displayed, then
choose the format you want from the Data menu (Figure 4.31).

Figure 4.31 Selecting a data format

Not all formats are available for all data types. For example, if a
variable is an integral value (such as type short or long), you can
view it in signed or unsigned decimal, hexadecimal, or even as a
character or string, but not in floating-point, Fixed, or Fract for-
mat.

Viewing Data as Different Types

The View as command in the Data menu allows you to change the
data type in which a variable, register, or memory is displayed:

1. Select the item in a window or pane.

Select a data format, and
the variable value appears
in that format.
DBGÐ96 Debugger User Guide

Basic Debugging
Viewing and Changing Data
2. Choose View as from the Data menu.

A dialog box appears (Figure 4.32).

3. Select the data type by which to view the item.

The type name you select appears in the New Type box near the
bottom of the dialog. If you want to treat the item as a pointer, ap-
pend an asterisk (*) to the type name.

4. Click the OK button.

The display of the itemÕs value changes to the specified type.

Figure 4.32 Selecting a data type
Debugger User Guide DBGÐ97

Basic Debugging
Viewing and Changing Data
Changing the Value of a Variable

You can change the value of a variable in any window itÕs displayed
in: the locals pane of the program window, the globals pane of the
browser window, or any variable, array, or expression window. Just
double-click the old value (or select it and press Enter/Return and
type the new value (Figure 4.33).

Figure 4.33 Changing a variable value

Variable values can be entered in any of the following formats:

¥ decimal
DBGÐ98 Debugger User Guide

Basic Debugging
Viewing and Changing Data
¥ hexadecimal

¥ floating-point

¥ C string

¥ Pascal string

¥ character constant

To enter a string or character constant, you must include C-style
quotation marks (single quotes '' for a character constant, double
"" for a string). For Pascal strings, include the escape sequence \p
as the first character in the string.

WARNING! Changing variable values can be dangerous. The
debugger allows you to set a variable to any value of the appropri-
ate data type: for example, you could set a pointer to nil and
crash the machine.

Using the Expression Window

The expression window provides a single place to put frequently
used local and global variables, structure members, array elements,
and even complex expressions without opening and manipulating a
lot of windows. Open the window with the Expressions Window
item in the Window menu. You can add an item to the expression
window by dragging and dropping from another window, or by se-
lecting the item and choosing Copy to Expression from the Data
menu.

The contents of the expression window are updated whenever exe-
cution stops in the debugger. Any variable that is out of scope is left
blank. You can take advantage of the expression window to per-
form a number of useful tricks:

¥ Move a routineÕs local variables to the expression window
before expanding them to observe their contents. When the
routine exits, its variables will remain in the expression win-
dow and will still be expanded when execution returns to the
routine. The expression window does not automatically col-
Debugger User Guide DBGÐ99

Basic Debugging
Viewing and Changing Data
lapse local variables when execution leaves a routine, like the
locals pane in the program window.

¥ Keep multiple copies of the same item displayed as different
data types, by using the Copy to Expression and View as
commands in the Data menu.

¥ Keep a sorted list of items. You can reorder items by drag-
ging them within the expression window.

¥ View local variables from calling routines. You donÕt have to
navigate back up the calling chain to display a callerÕs local
variables (which hides the local variables of the currently ex-
ecuting routine). Add the callerÕs local variables to the ex-
pression window and you can view them without changing
levels in the call-chain pane.

See Also ÒExpression WindowÓ on page 46.

Viewing Raw Memory

To examine and change the raw contents of memory:

1. Select an item or expression representing the base address of
the memory you want to view examine.

2. Choose View Memory from the Data menu.

A new memory window appears, displaying the contents of mem-
ory in hexadecimal and ASCII. You can change memory directly
from the memory window by entering hexadecimal values or char-
acters. You can also change the beginning address of the memory
being displayed by changing the expression in the editable text box
at the top of the window.

Viewing Memory at an Address

The View Memory and View Memory as commands in the Data
menu allow you to follow any pointerÑincluding an address stored
in a registerÑand view the memory it currently points to. To dis-
play the memory referenced by a pointer:

1. Select the value of the variable or register in a window in
which it is displayed.
DBGÐ100 Debugger User Guide

Basic Debugging
Viewing and Changing Data
2. Choose View Memory or View Memory as from the Data
menu.

If you choose View Memory, a memory window opens displaying
a raw memory dump starting at the address referenced by the
pointer. If you choose View Memory As, a dialog box appears for
selecting a data type (Figure 4.34); continue with step 3.

3. If you chose View Memory as, select a data type in the dialog
box.

The type name you select appears in the New Type box near the
bottom of the dialog. To view the memory a register points to, ap-
pend an asterisk (*) to the type name.

Figure 4.34 Choosing a data type to view memory

To make it a pointer, add an
asterisk (*) after the name of
the data type. Use two asterisks
for handles.

Selecting a data type enters
it in the New Type field.
Debugger User Guide DBGÐ101

Basic Debugging
Viewing and Changing Data
4. Click the OK button.

A new window appears (Figure 4.35) displaying the contents of
memory starting at the address referenced by the pointer.

Figure 4.35 Viewing memory as a specified data type

NOTE: You can use this technique to view the contents of the stack. If
your target processor stores the stack pointer in a particular regis-
ter, select the value of that register. Then follow the steps above.

See Also ÒMemory WindowÓ on page 52.

Viewing Processor Registers

To view the contents of the processorÕs registers, choose Show Reg-
isters or Show FPU Registers from MW DebugÕs Window menu
(Figure 4.36). (Some targets do not have an FPU, and the FPU regis-
ter window is not available for them.)
DBGÐ102 Debugger User Guide

Basic Debugging
Editing Source Code
Figure 4.36 Viewing processor registers in MW Debug

See Also ÒRegister WindowÓ on page 54.

Editing Source Code
You cannot edit code directly in the debugger. However, you can
use the debugger to open the file so that you can modify your code.
In the Files pane of the Browser window you can:

¥ double-click a file name

¥ select a file name and choose the Edit filename item in the
debuggerÕs File menu.

When you do, the IDE opens the file in an Editor window, and you
can edit it.

Windows You can specify which editor opens a the file. See
ÒWin32 SettingsÓ on page 129.
Debugger User Guide DBGÐ103

Basic Debugging
Editing Source Code
DBGÐ104 Debugger User Guide

5
Expressions
Expressions are used in the CodeWarrior debugger to show the
value of a numerical or logical computation or to make breakpoints
conditional.This chapter describes their use.

Expressions Overview
An expression represents a computation that produces a value. The
debugger displays the value in the expression window or acts upon
the value when it is attached to a breakpoint in the breakpoint win-
dow. The debugger evaluates all expressions each time it executes a
statement.

An expression can combine literal values (numbers and character
strings), variables, registers, pointers, and C++ object members with
operations such as addition, subtraction, logical and, and equality.

An expression may appear in the expression window, the break-
point window, or a memory window.The debugger treats the result
of the expression differently, depending on the window in which
the expression appears.

This chapter discusses how expressions are treated and used in the
debugger. The topics in this chapter are:

¥ How Expressions are Interpreted

¥ Using Expressions

¥ Example Expressions

¥ Expression Syntax
Debugger User Guide DBGÐ105

Expressions
How Expressions are Interpreted
How Expressions are Interpreted
This section discusses how the debugger interprets expressions in
each window. The topics are:

¥ Expressions in the Expression Window

¥ Expressions in the Breakpoint Window

¥ Expressions in the Memory Window

Expressions in the Expression Window

The expression window shows expressions and their values. To see
the value of an expression, place it in the expression window. To
create a new expression:

1. Display the expression window.

Choose Expressions Window from the Window menu, or click in
an open expression window to make it active.

2. Choose New Expression from the Data menu.

3. Type a new expression and press Enter or Return.

The expressionÕs value appears in the value column next to the ex-
pression (Figure 5.1). You can also create a new expression by drag-
ging a variable or expression from another window to the expres-
sion window.

Figure 5.1 An expression in the expression window

The expression window treats all expressions as arithmetic: the de-
bugger does not interpret the expressionÕs result as a logical value,
as it does in the breakpoint window.
DBGÐ106 Debugger User Guide

Expressions
How Expressions are Interpreted
See also ÒExpression WindowÓ on page 46.

Expressions in the Breakpoint Window

You can attach an expression to a breakpoint in the breakpoint win-
dow.The breakpoint window treats expressions as logical rather
than arithmetic. If the result of the expression is zero, it is consid-
ered false and the debugger ignores the breakpoint and continues
execution; if the result is nonzero, it is considered true and the de-
bugger stops at the breakpoint if the breakpoint is active.

To learn how to set a breakpoint, see ÒSetting BreakpointsÓ on
page 82. Once you have set a breakpoint, you can attach an expres-
sion to it to make it conditional on that expression:

1. Display the breakpoint window.

Choose Breakpoints Window from the Window menu, or click in
an open breakpoint window to make it active.

2. Set a condition.

Double-click the condition field for the desired breakpoint and type
an expression (Figure 5.2). You can also add or change a break-
pointÕs condition by dragging an expression from another window
and dropping it on the breakpointÕs condition.

Figure 5.2 An expression in the breakpoint window

A conditional breakpoint stops the program if the expression yields
a true (nonzero) result when execution reaches the breakpoint. If the
expression produces a false (zero) result, execution continues with-
out stopping.
Debugger User Guide DBGÐ107

Expressions
Using Expressions
See also ÒBreakpoint WindowÓ on page 47 and ÒConditional
BreakpointsÓ on page 84.

Expressions in the Memory Window

In a memory window, expressions are treated as addresses. The ex-
pression in the text box at the top of the window defines the base
address for the memory displayed in the window. To change a
memory windowÕs base address:

1. Display the memory window.

Choose View Memory from the Data menu, or click in an open
memory window to make it active.

2. Enter a new expression.

Double-click the expression field and type an expression. You can
also drag an expression from another window and drop it in the
memory windowÕs base-address field.

The window will display the contents of memory beginning at the
address obtained by evaluating the new expression.

See also ÒMemory WindowÓ on page 52.

Using Expressions
The debuggerÕs expression syntax is similar to that of C/C++, with
a few additions and limitations. Pascal style expressions are also
supported.

Special Expression Features

Expressions can refer to specific items:

¥ The debugger considers integer values to be 4 bytes long. Use
the short data type to denote a 2-byte integer value.

¥ The debugger treats double values as objects 10 bytes (80
bits) in length, rather than 8 bytes (64 bits).

¥ To compare character strings, use the == (equal) and != (not
equal) operators. Note that the debugger distinguishes be-
DBGÐ108 Debugger User Guide

Expressions
Using Expressions
tween Pascal- and C-format strings. Use the prefix \p when
comparing Pascal string literals. The expression

"Nov shmoz ka pop" == "\pNov shmoz ka pop"

yields a false result, because it compares a C string and a Pas-
cal string.

¥ (Mac OS) To refer to register values, use the ¨ symbol and a
register name. (Type Option-r to get the ¨ symbol.)

Expression Limitations

Expressions have a few limitations:

¥ Do not use C/C++ preprocessor definitions and macros (de-
fined with the #define directive). They are not available to
the expression evaluator, even though they are defined in the
source code.

¥ Do not use operations involving side effects. The increment
(i++) and decrement (i--) operators, as well as assignments
(i = j), are not allowed.

¥ Do not call functions.

¥ Do not use function names or pointers to functions.

¥ Do not use expression lists.

¥ Do not use pointers to C++ class members.

¥ The debugger cannot distinguish between identical variable
names used in nested blocks to represent different variables
(see Listing 5.1).

Listing 5.1 Identical variable names in nested blocks (C++)

// The debugger canÕt distinguish between x the
// int variable and x the double variable. If x
// is used in an expression, the debugger wonÕt
// know which one to use.

void f(void)
{

int x = 0;
...
Debugger User Guide DBGÐ109

Expressions
Example Expressions
{
double x = 1.0;
...

}
}

¥ Type definitions that are not available to the debugger can-
not be used in expressions (see Listing 5.2).

Listing 5.2 Type definitions in expressions (C/C++)

// Use long in expressions; Int32 not available
typedef long Int32;

// Use Rect* in expressions; RectPtr not
// available
typedef Rect* RectPtr;

¥ Nested type information is not available. In Listing 5.3, use
Inner, not Outer::Inner in a debugger expression.

Listing 5.3 Nested type information (C/C++)

// To refer to the i member, use Inner.i,
// not Outer::Inner.i

struct Outer
{

struct Inner
{

int i;
};

};

Example Expressions
The list below gives example expressions that you can use in any
window that uses expressions.
DBGÐ110 Debugger User Guide

Expressions
Example Expressions
¥ A literal decimal value:
160

¥ A literal hexadecimal value:
0xA0

¥ The value of a variable:
myVariable

¥ The value of a variable shifted 4 bits to the left:
myVariable << 4

¥ The difference of two variables:
myRect.bottom - myRect.top

¥ The maximum of two variables:
(foo > bar) ? foo : bar

¥ The value of the item pointed to by a pointer variable:
*MyTablePtr

¥ The size of a data structure (determined at compile time):
sizeof(myRect)

¥ The value of a member variable in a structure pointed to by a
variable:

myRectPtr->bottom

or
(*myRectPtr).bottom

¥ The value of a class member in an object:
myDrawing::theRect

Below are examples of logical expressions: the result is considered
true if non-zero, false if zero.

¥ Is the value of a variable false?
!isDone

or
isDone == 0

¥ Is the value of a variable true?
isReady

or
isReady != 0

¥ Is one variable greater than or equal to another?
Debugger User Guide DBGÐ111

Expressions
Expression Syntax
foo >= bar

¥ Is one variable less than both of two others?
(foo < bar) && (foo < car)

¥ Is the 4th bit in a character value set to 1?
((char)foo >> 3) & 0x01

¥ Is a C string variable equal to a literal string?
cstr == "Nov shmoz ka pop"

¥ Is a Pascal string variable equal to a literal string?
pstr == "\pScram gravy ain't wavy"

¥ Always true:
1

¥ Always false:
0

Expression Syntax
This section defines the debuggerÕs expression syntax. The first line
in a definition identifies the item being defined. Each indented line
represents a definition for that item. An item with more than one
definition has each definition listed on a new line. Items enclosed in
angle brackets (<>) are defined elsewhere. Items in italic typeface
are to be replaced by a value or symbol. All other items are literals
to be used exactly as they appear.

For example,

<name>
identifier
<qualified-name>

defines the syntax of a name. A name can be either an identifier or a
qualified name; the latter is a syntactic category defined in another
of the definitions listed here.

<name>
identifier
<qualified-name>
DBGÐ112 Debugger User Guide

Expressions
Expression Syntax
<typedef-name>
identifier

<class-name>
identifier

<qualified-name>
<qualified-class-name>::<name>

<qualified-class-name>
<class-name>
<class-name>::<qualified-class-name>

<complete-class-name>
<qualified-class-name>
:: <qualified-class-name>

<qualified-type-name>
<typedef-name>
<class-name>::<qualified-type-name>

<simple-type-name>
<complete-class-name>
<qualified-type-name>
char
short
int
long
signed
unsigned
float
double
void

<ptr-operator>
*
&

<type-specifier>
<simple-type-name>

<type-specifier-list>
<type-specifier> <type-specifier-list>(opt)

<abstract-declarator>
<ptr-operator> <abstract-declarator>(opt)
Debugger User Guide DBGÐ113

Expressions
Expression Syntax
(<abstract-declarator>)

<type-name>
<type-specifier-list> <abstract-

declarator>(opt)

<literal>
integer-constant
character-constant
floating-constant
string-literal

<register-name>
¨PC
¨SP
¨Dnumber
¨Anumber

<register-name>
¨Rnumber
¨FPRnumber
¨RTOC

<register-name>
$PC
$SP
$RTOC
$Anumber

NOTE: Registers not targeted by the processor will not display
random values for unknown register expressions.

NOTE: For specifying a register, the range for number depends
on the number of registers available on the target processor.

<primary-expression>
<literal>
this
::identifier
::<qualified-name>
DBGÐ114 Debugger User Guide

Expressions
Expression Syntax
(<expression>)
<name>
<register-name>

<postfix-expression>
<primary-expression>
<postfix-expression>[<expression>]
<postfix-expression>.<name>
<postfix-expression>-><name>

<unary-operator>
*
&
+
-
!
~

<unary-expression>
<postfix-expression>
<unary-operator> <cast-expression>
sizeof <unary-expression>
sizeof(<type-name>)

<cast-expression>
<unary-expression>
(<type-name>)<cast-expression>

<multiplicative-expression>
<cast-expression>
<multiplicative-expression> * <cast-

expression>
<multiplicative-expression> / <cast-

expression>
<multiplicative-expression> % <cast-

expression>

<additive-expression>
<multiplicative-expression>
<additive-expression> + <multiplicative-

expression>
<additive-expression> - <multiplicative-

expression>
Debugger User Guide DBGÐ115

Expressions
Expression Syntax
<shift-expression>
<additive-expression>
<shift-expression> << <additive-expression>
<shift-expression> >> <additive-expression>

<relational-expression>
<shift-expression>
<relational-expression> < <shift-expression>
<relational-expression> > <shift-expression>
<relational-expression> <= <shift-

expression>
<relational-expression> >= <shift-

expression>

<equality-expression>
<relational-expression>
<equality-expression> == <relational-

expression>
<equality-expression> != <relational-

expression>

<and-expression>
<equality-expression>
<and-expression> & <equality-expression>

<exclusive-or-expression>
<and-expression>
<exclusive-or-expression> ^ <and-expression>

<inclusive-or-expression>
<exclusive-or-expression>
<inclusive-or-expression> | <exclusive-or-

expression>

<logical-and-expression>
<inclusive-or-expression>
<logical-and-expression> && <inclusive-or-

expression>

<logical-or-expression>
<logical-and-expression>
<logical-or-expression> || <logical-and-

expression>
DBGÐ116 Debugger User Guide

Expressions
Expression Syntax
<conditional-expression>
<logical-or-expression>
<logical-or-expression> ? <expression> :

<conditional-expression>

<expression>
<conditional-expression>
Debugger User Guide DBGÐ117

Expressions
Expression Syntax
DBGÐ118 Debugger User Guide

6
Debugger
Preferences
This chapter discusses the preferences in the MW Debug applica-
tion. It covers every option in each preference panel, and describes
what each option does.

Debugger Preferences Overview
The Preferences dialog box allows you to change various aspects of
the debuggerÕs behavior. The specific panels that appear are in the
following two catagories:

¥ MW Debug Preference Panels

¥ Integrated Debugger Target Panels

MW Debug Preference Panels
There are several common debugger panels that are available for all
targets. Additional panels may appear for particular targets. See the
appropriate targeting manual for complete information on target-
specific debugger preferences. The common panels that appear in
MW Debug are:

¥ Settings

¥ Display

¥ Symbolics

¥ Program Control

¥ Win32 Settings

¥ Windows Java Settings

¥ Windows Runtime Settings
Debugger User Guide DBGÐ119

Debugger Preferences
MW Debug Preference Panels
Settings

The Settings panel is shown in Figure 6.1. The Settings panel in-
cludes options related to the saving of debugger settings between
sessions

Figure 6.1 Settings preferences

Save settings in local Ò.dbgÓ files

Saves window size and position in .dbg files. These files optionally
contain breakpoints and expressions. Selecting this preference cre-
ates a new .dbg file or modifies an existing one for every symbolics
DBGÐ120 Debugger User Guide

Debugger Preferences
MW Debug Preference Panels
file you open with the debugger. If you deselect this preference, the
.dbg file is still created, but the window and other data are not
saved.

Save breakpoints

Enabled if Save window settings in local Ò.dbgÓ Þles is selected.
Saves breakpoint settings in the symbolics fileÕs .dbg file. If you de-
select this preference, breakpoint settings are forgotten when saving
the .dbg file.

Save expressions

Enabled if Save window settings in local Ò.dbgÓ Þles is selected.
Saves the contents of the expression window in the symbolics fileÕs
.dbg file. If you deselect this preference, the expression windowÕs
contents are forgotten when saving the .dbg file.

See also ÒExpression WindowÓ on page 46.

Display

The Display panel is shown in Figure 6.2. The Display panel in-
cludes options related to the saving of display of various items in
the debuggerÕs windows.

In variable panes, show variable types by default

Shows variable types when a new variable window is opened. This
setting is stored in the .dbg file.

Settings in the projectÕs .dbg file take precedence over this prefer-
ence. Variable windows that were opened before setting the prefer-
ence will use the settings found in the .dbg file.

Sort functions by method name in browser

Changes the way C++, Object Pascal, and Java functions are sorted
in the browser windowÕs function pane. When this preference is de-
selected, function names of the form className::methodName are
sorted alphabetically by class name first, then by method name
Debugger User Guide DBGÐ121

Debugger Preferences
MW Debug Preference Panels
within the class. Selecting this preference causes the functions to be
alphabetized directly by method name. Since most C++, Object Pas-
cal, and Java source-code files tend to contain methods all of the
same class, this preference makes it easier to select methods in the
function pane by typing from the keyboard.

Figure 6.2 Display preferences
DBGÐ122 Debugger User Guide

Debugger Preferences
MW Debug Preference Panels
Attempt to use dynamic type of C++, Object Pascal
objects and SOM objects

Displays the runtime type of C++ or Object Pascal objects; deselect-
ing this preference displays an objectÕs static type only. The debug-
ger can determine dynamic types only for classes with at least one
virtual function. Virtual base classes are not supported.

Show tasks in separate windows

Allows you to toggle between two ways of displaying tasks. If this
preference is turned on, double-clicking on a task in the Process
window will bring up a separate stack crawl window to display the
code. If this option is turned off, the task popup menu will appear at
the bottom of the stack crawl window. Use this menu to choose a
task to display in the same stack crawl window.

NOTE: The effect of this option does not occur immediately.
The setting that is active for the start of a debugging session stays
active for the duration of that session. If you change this setting in
the middle of a debugging session, you must stop debugging and
then restart debugging to make the new preference take effect.

Use Syntax Coloring in Source Display

Allows you to toggle how to display your source code with respect
to syntax coloring. If this preference is turned on, your source code
text will have different colors with respect to function. (comments
will appear green for example). If this option is turned off, the
source code will appear as the default text color for the specified tar-
get.

Use External Editor

Allows you to choose whether an external editor is to be used to edit
your source code.
Debugger User Guide DBGÐ123

Debugger Preferences
MW Debug Preference Panels
Watchpoint Hilite

Allows you to set the color that the debugger uses to identify a
watchpoint. Clicking the color swatch displays the standard dialog
for picking a color. The default color is red.

Variable Change Hilite

Allows you to set the color that the debugger uses to identify a
changed variable. Clicking the color swatch displays the standard
dialog for picking a color. The default color is red.

Default size for unbound arrays

Specifies the array size to use when no size information is available.

Symbolics

The Symbolics panel is shown in Figure 6.3. The Symbolics panel in-
cludes options related to opening, closing, and management of sym-
bolics files and Java class and zip files.

Use temporary memory for SYM data

Uses temporary memory to store the symbolics fileÕs data. This
keeps the debuggerÕs memory partition small and interferes less
with the target program as it executes. Deselecting this preference
forces the debugger to use more memory, leaving less available for
the target program.

At startup, prompt for SYM file if none specified

Prompts for a symbolics file to open when the debugger is launched
by itself. Deselecting this checkbox allows the debugger to launch
without prompting for a symbolics file.
DBGÐ124 Debugger User Guide

Debugger Preferences
MW Debug Preference Panels
Figure 6.3 Symbolics preferences

Always prompt for source file location if file not
found

Prompts you to locate source-code files for the target program if the
debugger cannot find them. The debugger normally remembers the
locations of these files; selecting this preference causes it to prompt
you for the location of missing source code files, even if it has previ-
ously recorded their locations.
Debugger User Guide DBGÐ125

Debugger Preferences
MW Debug Preference Panels
Ignore file modification dates

The debugger keeps track of the modification dates of source files
from which a symbolics file is created. If the modification dates
donÕt match, the debugger normally displays an alert box warning
you of possible discrepancies between the object code and the
source code. Selecting this preference disables this warning; dese-
lecting the preference enables the warning.

Open all class files in directory hierarchy

If this option is enabled, the debugger opens all the class files in the
directory and all contained directories and merges them all together
in the same Browser window.

See also a Targeting manual for information on target-specific pref-
erences.

Program Control

The Program Control panel is shown in Figure 6.4. The Program
Control panel includes options related to the launching, termina-
tion, and control of the program being debugged.

Automatically launch applications when SYM file
opened

Automatically launches a target program when its symbolics file is
opened, setting an implicit breakpoint at the programÕs main entry
point. Deselecting this preference allows you to open a symbolics
file without launching the program, so that you can examine object
code that executes before the main routine, such as C++ static con-
structors.

You can also avoid launching the target program by holding down
the Alt/Option key when opening a symbolics file.

Confirm ÒKill ProcessÓ when closing or quitting

Prompts for confirmation before aborting a process when a target
program is killed.
DBGÐ126 Debugger User Guide

Debugger Preferences
MW Debug Preference Panels
Figure 6.4 Program Control preference

Stop at program main when launching applications

Usually when you begin debugging an application, the debugger
stops at the first line of main(). You must then choose the Run
command a second time to continue past that point. Turning off this
option means that when you debug your application, it does not
stop at main() and instead runs free. This option is most useful be-
tween debugging sessions after youÕve set all your breakpoints.
Debugger User Guide DBGÐ127

Debugger Preferences
MW Debug Preference Panels
Select stack crawl window when task is stopped

Automatically brings Stack Crawl window to the front when a task
is stopped. If this option is turned off, the Stack Crawl window will
remain in its previous position. This is useful if you have variable
windows open and want to see the variables change as you step
through your code. You can control the Stack Crawl window even if
itÕs not the currently active window.

Figure 6.5 Program Control preference (Mac OS)
DBGÐ128 Debugger User Guide

Debugger Preferences
MW Debug Preference Panels
DonÕt step into runtime support code

Executes constructor code for C++ static objects normally, without
displaying it in the program window.

QC-aware (Mac OS)

Makes MW Debug aware of Onyx TechnologyÕs QC system exten-
sion. When QC reports an error, the debugger stops the target pro-
gram at the point of the error and displays an alert. After reporting a
QC error, the debugger deactivates QC. Use the QC hot-key combi-
nation to reactivate QC before beginning debugging and after each
QC error report.

Deselecting this preference makes the debugger ignore QC error re-
ports and prevents it from deactivating QC.

NOTE: The integrated debugger catches both 68K and Pow-
erPC DebugStr() traps. Hence, the QC-aware option is not avail-
able on the integrated debugger.

Java Runtime (Mac OS)

This option allows you to choose between using Metrowerks Java
runtime or the Apple MRJ when debugging Java Applets. See Tar-
geting the Java VM for more details on using this preference.

Win32 Settings

The Win32 Settings panel is shown in Figure 6.6. Use this panel to
set up the default editor you would like to use to edit files. If no de-
fault editor application is specified, the file will be opened by Note-
Pad.
Debugger User Guide DBGÐ129

Debugger Preferences
MW Debug Preference Panels
Figure 6.6 Win32 Settings

Windows Java Settings

The Java Settings panel is shown in Figure 6.7 includes options spe-
cific to debugging Java programs and applets. Edit the fields in this
panel when debugging Java programs and applets.

Figure 6.7 Java Settings

Class for debugging: Edit this field to specify the class file you
want to debug.

Program Arguments: Edit this field to specify command line argu-
ments to be used by your project when a java application is de-
bugged.
DBGÐ130 Debugger User Guide

Debugger Preferences
MW Debug Preference Panels
JView Arguments: Edit this field to specify any arguments jview
may require while debugging your project.

See Also Targeting Java for more information on debugging Java
programs and applets.

Windows Runtime Settings

The Runtime Settings panel is shown in Figure 6.8 includes options
specific to the configuration of the Windows environment. This
panel consists of two main areas: Environment Settings and General
Settings.

Figure 6.8 Runtime Settings

The Environment Settings area allows you to specify environment
variables that are set and passed to your program as part of the
envp parameter in the main() or available from the getenv() call
and are only available to the target program. When the your pro-
Debugger User Guide DBGÐ131

Debugger Preferences
Integrated Debugger Target Panels
gram terminates, the settings are no longer available. For example, if
you are writing a program that logs into a server, you could use
variables for userid and password.

The General Settings area has the following fields:

Working Directory: Use this field to specify the directory in which
debugging occurs. If no directory is specified, debugging occurs in
the same directory the executable is located.

Program Arguments: Use this field to pass command-line argu-
ments to your program at startup. Your program receives these ar-
guments when started with the Run command.

Integrated Debugger Target Panels
The following preference panels for targets appear in the debugger
integrated into the CodeWarrior IDE. These panels include:

¥ Target Settings

¥ x86 Exceptions (Windows)

Target Settings

The Target Settings panel is shown in Figure 6.9 includes options to
enable log activities and to specify the application where a shared li-
brary, DLL, or code resource are debugged.

Figure 6.9 Target Settings panel
DBGÐ132 Debugger User Guide

Debugger Preferences
Integrated Debugger Target Panels
Log System Messages

Enable this option to log all system messages to a file. When dis-
abled, no log file is created.

Program to Launch for Debugging Shared Libs, DLLs
and Code Resources

Click Choose to select the name of the application to launch when
debugging shared libraries, DLLs, or code resources.

This is not a debugger application but the application for which the
shared library, DLL, or code resource was written to interact with.
For example, if youÕre writing a Photoshop plug-in, you would use
the Choose control to select Photoshop as the target application.
When Debug is chosen, the IDE builds the plug-in, loads the sym-
bolic information for the plug-in, then launches Photoshop to enable
you to debug the plug-in.

x86 Exceptions (Windows)

Use the x86 Exceptions panel shown in Figure 6.10 to specify which
exceptions the integrated debugger should catch.
Debugger User Guide DBGÐ133

Debugger Preferences
Integrated Debugger Target Panels
Figure 6.10 x86 Exceptions panel
DBGÐ134 Debugger User Guide

7
Debugger Menus
This reference chapter describes each menu item in MW Debug.

Debugger Menus Overview
There are six menus:

¥ File MenuÑopen and close symbolic files, open source files,
save log files, and quit

¥ Edit MenuÑthe standard editing operations, plus debugger
preferences

¥ Control MenuÑmanage your path through code, or switch
to a low-level debugger

¥ Data MenuÑmanage the display of data in the debugger

¥ Window MenuÑopen and close various display windows in
the debugger

¥ Help menu (Windows)Ñlearn about MW Debug

¥ Apple Menu (Mac OS)Ñlearn about MW Debug

NOTE: The actual location of debugger menu commands may
be different in the IDEÕs integrated debugger. See the IDE User
Guide for more information.
Debugger User Guide DBGÐ135

Debugger Menus
File Menu
File Menu
The commands in the File menu allow you to open, close, edit, and
save files.

Open

Opens an existing symbolics file to debug. A Standard File dialog
box appears, prompting you to select a symbolics file. The symbol-
ics file must be in the same folder as its target program (the program
you want to debug).

After you choose the symbolics file, the debugger loads it into mem-
ory, loads the target program, places an implicit breakpoint at the
programÕs main entry point, and launches the program. The pro-
gram then pauses at the initial breakpoint, returning control to the
debugger.

The Open command can also be used to open Java class or zip files.
The debugger reads the symbolics from these files and treats them
as if they were symbolics files. SeeTargeting the Java VM for more in-
formation.

See also ÒPreparing for DebuggingÓ on page 21 for information on
generating symbolic information for your target.

NOTE: More than one program can be opened and debugged
at the same time.

Close

Closes the active window.

If the Confirm ÒKill ProcessÓ when closing or quitting prefer-
ence is not selected, closing the program window kills the running
program (if any); selecting the Run command reopens the program
window and re-executes the program from the beginning. If this
preference is selected, a dialog box appears offering you the choice
DBGÐ136 Debugger User Guide

Debugger Menus
File Menu
of killing the program, keeping it running even after closing the
program window, or canceling the Close command.

See also ÒConfirm ÒKill ProcessÓ when closing or quittingÓ on
page 126.

Edit filename

Opens the designated source-code file in the CodeWarrior IDE Edi-
tor. The CodeWarrior environment must already be running; the
debugger will not launch it automatically.

Opens the designated source-code file in the default editor chosen
in the Win32 Settings preference panel. If there is no default editor
specified, the file will be opened by NotePad.

See also ÒWin32 SettingsÓ on page 129.

Save

Saves the contents of the log window to the disk under the current
file name. This command is enabled only when the log window is
active.

Save As

Displays a Standard File dialog box for saving the contents of the
log window under a different name. The new name becomes associ-
ated with the log window; later Save commands will save to the
new file name rather than the old one. This command is enabled
only when the log window is active.

Save A Copy As

Displays a Standard File dialog box for saving the contents of the
log window under a different name. The old name remains associ-
ated with the log window; later Save commands will continue sav-
ing to the old file name rather than switching to the new one. This
command is enabled only when the log window is active.
Debugger User Guide DBGÐ137

Debugger Menus
Edit Menu
Save Settings

Saves the current settings of the program and browser windows,
provided that the Save window settings in local Ò.dbgÓ Þles
preference is selected in the Preferences dialog box. This command
also saves breakpoints and expressions if the Save breakpoints
and Save expressions preferences are selected, respectively.

See also ÒSettingsÓ on page 120.

Quit

Quits the debugger.

If the Confirm ÒKill ProcessÓ when closing or quitting prefer-
ence is not selected, quitting the debugger kills all running pro-
grams (if any). If this preference is selected, a dialog box appears of-
fering you the choice of killing the programs, keeping them running
even after quitting the debugger, or canceling the Quit command.

See also ÒConfirm ÒKill ProcessÓ when closing or quittingÓ on
page 126.

Edit Menu
The commands on the Edit menu apply to variable values and ex-
pressions displayed in the debugger. The debugger does not allow
editing of source code.

See also ÒEdit filenameÓ for information about how to edit source
code that appears in a Source pane.

Undo

Reverses the effect of the last Cut, Copy, Paste, or Clear operation.

Cut

Deletes selected text and puts it in the Clipboard. You cannot cut
text from a source pane.
DBGÐ138 Debugger User Guide

Debugger Menus
Edit Menu
Copy

Copies selected text into the Clipboard without deleting it. You can
copy text from a source pane or from the log window.

Paste

Pastes text from the Clipboard into the active window. You cannot
paste text into a source pane.

Clear

Deletes selected text without putting it in the Clipboard. You cannot
clear text from a source pane.

Select All

Selects all text in the active window. You can select text only while
editing a variable value or an expression, or in the log window.

Find

Opens a dialog box allowing you to search for text in the source
pane of the program or browser window. The search begins at the
current location of the selection or insertion point and proceeds for-
ward toward the end of the file.

See Also ÒUsing the Find DialogÓ on page 79.

Find Next

Repeats the last search, starting from the current location of the se-
lection or insertion point.

Find Selection

Searches for the next occurrence of the text currently selected in the
source pane. This command is disabled if there is no current selec-
tion, or only an insertion point.
Debugger User Guide DBGÐ139

Debugger Menus
Control Menu
TIP: You can reverse the direction of the search by using the
Shift key with the keyboard shortcuts, Shift-Ctrl/Shift-Cmd G (find
previous) or Shift-Ctrl/Shift-Cmd H (find previous selection).

See Also ÒUsing the Find DialogÓ on page 79.

Preferences

Opens a dialog box that lets you change various aspects of the de-
buggerÕs behavior. Information on the preferences dialog box is in-
troduced in ÒDebugger Preferences OverviewÓ on page 119.

Control Menu
The Control menu contains commands that allow you to manage
program execution.

Run

Executes the target program. Execution starts at the current-state-
ment arrow and continues until encountering a breakpoint, or until
you issue a Stop or Kill command.

See also ÒRunning Your CodeÓ on page 66.

Stop

Temporarily suspends execution of the target program and returns
control to the debugger. When a Stop command is issued to an exe-
cuting program, the program window appears showing the current
values of the local variables. The current-statement arrow is posi-
tioned at the next statement to be executed, the Stop command is
dimmed in the Control menu, and a message appears in the pro-
gram windowÕs source pane.

To resume executing a stopped program, you may

¥ select the Run command. Execution will continue at the cur-
rent-statement arrow.
DBGÐ140 Debugger User Guide

Debugger Menus
Control Menu
¥ step through the target program one statement at a time with
the Step Over, Step Into, or Step Out commands in the
Control menu.

NOTE: The Stop command is dependent on operating system
services and does not work for all targets. See the appropriate
Targeting manual for more information.

See also ÒStopping ExecutionÓ on page 71.

Kill

Permanently terminates execution of the target program and re-
turns control to the debugger. Using a breakpoint or the Stop com-
mand allows you to resume program execution from the point of
suspension; the Kill command requires that you use Run to restart
program execution from the main entry point.

See also ÒKilling ExecutionÓ on page 72.

Step Over

Executes a single statement, stepping over function calls. The state-
ment indicated by the current-statement arrow is executed, then
control returns to the debugger. When the debugger reaches a func-
tion call, it executes the entire function without displaying its source
code in the program window. In other words, the Step Over com-
mand does not go deeper into the call chain. Step Over does, how-
ever, follow execution back to a functionÕs caller when the function
terminates.

See also ÒStepping a Single LineÓ on page 68.

Step Into

Executes a single statement, stepping into function calls. The state-
ment indicated by the current-statement arrow is executed, then
control returns to the debugger. Unlike the Step Over command,
Step Into follows function calls, showing the execution of the called
function in the source pane of the program window. Stepping into a
Debugger User Guide DBGÐ141

Debugger Menus
Control Menu
function adds its name to the call chain in the program windowÕs
call-chain pane.

See also ÒStepping Into RoutinesÓ on page 68.

Step Out

Executes the remainder of the current function until it exits to its
caller. Step Out executes the program from the statement indicated
by the current-statement arrow, then returns control to the debug-
ger when the function containing that statement returns to its caller.

See also ÒStepping Out of RoutinesÓ on page 69.

TIP: Functions with no debugging information, such as operat-
ing-system routines, are displayed in the program windowÕs
source pane as assembly language. Use Step Out to execute and
exit from functions that have no debugging information.

Clear All Breakpoints

Clears all breakpoints in all source-code files belonging to the target
program.

Break on C++ exception

Causes the debugger to break at __throw() every time a C++ ex-
ception occurs. See the appropriate Targeting manual for more in-
formation on debugging C++ exceptions.

Switch to Monitor (Mac OS)

Gives control to the Macintosh ROM Monitor program or any low-
level debugger (such as MacsBug) that you may have installed on
your computer.

NOTE: The MacsBug macros file supplied with MW Debug
contains a pair of MacsBug macros for switching in the opposite
direction. If you install these macros in your Debugger Prefs file
DBGÐ142 Debugger User Guide

Debugger Menus
Data Menu
(using a resource-management tool such as ResEdit), you can
enter the CodeWarrior debugger from MacsBug by typing cw from
68K code or cwp from PowerPC code.

Data Menu
The Data menu lets you control how data values are displayed in
the debugger.

Show Types

Shows the data types of all local and global variables displayed in
the active variable pane or variable window.

Expand

Displays the C members, C++ data members, Pascal fields, or Java
fields inside a selected structured variable, or dereferences a se-
lected pointer or handle.

Collapse All

Hides all C members, C++ data members, Pascal fields, Java fields,
or pointer or handle dereferences.

New Expression

Creates a new entry in the expression window, prompting you to
enter a new expression. You can also drag an expression to the ex-
pression window from source code or from another window or
pane, or select it and choose the Copy to Expression command
from the Data menu.

See also ÒExpression WindowÓ on page 46.

Open Variable Window

Creates a separate window to display a selected variable. This com-
mand is useful for monitoring the contents of large structured vari-
ables (Pascal records or C/C++ structs).
Debugger User Guide DBGÐ143

Debugger Menus
Data Menu
See also ÒVariable WindowÓ on page 50.

Open Array Window

Creates a separate window to display a selected array. This com-
mand is useful for monitoring the contents of arrays.

See also ÒArray WindowÓ on page 50.

Copy to Expression

Copies the variable selected in the active pane to the expression
window. You can also drag an expression to the expression window
from source code or from another window or pane.

See also ÒExpression WindowÓ on page 46.

Set/Clear Watchpoint

Sets or clears a watchpoint for the selected variable or range of
memory. You may select a variable or range of memory in the mem-
ory window, or you may select a variable from any variable win-
dow. If a watchpoint already exists, this command changes to Clear
Watchpoint .

See also ÒSetting BreakpointsÓ on page 82 and ÒClearing Watch-
pointsÓ on page 90.

Clear Current Watchpoint

Will clear the watchpoint your program has just hit and stopped at.

See also ÒClearing WatchpointsÓ on page 90.

View As

Displays a selected variable as a value of a specified data type. This
command applies to variables listed in the program windowÕs locals
pane, the browser windowÕs globals pane, or a variable window.

Memory variables can be viewed as any data type. If the new data
type is smaller than the variableÕs original type, any excess data is
DBGÐ144 Debugger User Guide

Debugger Menus
Data Menu
ignored; if the new type is larger than the original type, the debug-
ger reads additional data from succeeding memory locations. A reg-
ister variable can be viewed only as a type of the same size as the
register.

When you choose the View as command, a dialog box appears
showing a list of all data types defined in the project (see Figure 7.1).
Choosing a data type enters it in the New Type field. You can ap-
pend an asterisk (*) if you want the variable to be interpreted as a
pointer, or two asterisks (**) to treat it as a handle. Click OK to dis-
play the value of the variable using the specified type.

Figure 7.1 Using View As

To make it a pointer, add an
asterisk (*) after the name
of the data type. Use two
asterisks for handles.

Selecting a data type enters
it in the New Type field.
Debugger User Guide DBGÐ145

Debugger Menus
Data Menu
See also ÒViewing Data as Different TypesÓ on page 96, ÒViewing
Raw MemoryÓ on page 100, and ÒViewing Memory at an AddressÓ
on page 100.

View Memory As

Displays the memory a selected variable occupies or a selected reg-
ister points to. This command opens an array window interpreting
memory as an array of a type specified using the View As dialog
box.

See also ÒArray WindowÓ on page 50 and ÒViewing Memory at an
AddressÓ on page 100.

View Memory

Displays the contents of memory as a hexadecimal/ASCII character
dump. This command opens a memory window beginning at the
address of the currently selected item or expression.

See also ÒMemory WindowÓ on page 52.

Default

Displays the selected variable in its default format based on the
variable type.

Signed Decimal

Displays the selected variable as a signed decimal value.

See also ÒViewing Data in a Different FormatÓ on page 95.

Unsigned Decimal

Displays the selected variable as an unsigned decimal value.

Hexadecimal

Displays the selected variable as a hexadecimal value.
DBGÐ146 Debugger User Guide

Debugger Menus
Data Menu
Character

Displays the selected variable as a character value.

The debugger uses ANSI C escape sequences to show non-printable
characters. Such sequences use a backslash (\) followed by an octal
number or a predefined escape sequence. For example, character
code 29 is displayed as '\35' (35 is the octal representation of deci-
mal 29). The tab character is displayed as '\t'.

C String

Displays the selected variable as a C character string: a sequence of
ASCII characters terminated by a null character ('\0'). The termi-
nating null character is not displayed as part of the string.

See also ÒCharacterÓ for information on non-printable characters.

Pascal String

Displays the selected variable as a Pascal character string: an initial
byte containing the number of characters in the string, followed by
the sequence of characters themselves. The initial length byte is not
displayed as part of the string.

Floating Point

Displays the selected variable as a floating-point value.

Enumeration

Displays the selected variable as an enumeration. Enumerated vari-
ables are displayed using their symbolic names, provided by the
compiler for C/C++ enum variables defined with typedef. Sym-
bolic values for char, short, int, or long variables are not dis-
played.

NOTE: When editing enumerated variables, you must enter
their values in decimal.
Debugger User Guide DBGÐ147

Debugger Menus
Window Menu
Fixed

Displays the selected variable as a numerical value of type Fixed.
Fixed variables are stored as 32-bit integers in the symbolics file,
and are initially displayed in that form. You can use the Fixed com-
mand to reformat these variables to type Fixed. Any 32-bit quantity
can be formatted as a Fixed value.

Fract

Displays the selected variable as a numerical value of type Fract.
Fract variables work the same way as Fixed variables: they are
stored as 32-bit integers in the symbolics file and are initially dis-
played as 32-bit integers. You can use the Fract command to refor-
mat and edit these variables in the same way as Fixed variables.
Any 32-bit quantity can be formatted as a Fract value.

Window Menu
The Window menu contains commands to show or hide many de-
bugger windows. There is also a list of all windows currently open
on the screen.

Show/Hide Toolbar (Mac OS)

Displays or hides the mini toolbar. This command toggles between
Show Toolbar and Hide Toolbar , depending on whether the tool-
bar is currently visible on the screen.

Show/Hide Processes

Displays or hides the process window. This command toggles be-
tween Show Processes and Hide Processes, depending on
whether the process window is currently visible on the screen.

See also ÒProcess WindowÓ on page 57.
DBGÐ148 Debugger User Guide

Debugger Menus
Window Menu
Show/Hide Expressions

Displays or hides the expression window. This command toggles
between Show Expressions and Hide Expressions, depending on
whether the expression window is currently visible on the screen.

See also ÒExpression WindowÓ on page 46.

Show/Hide Breakpoints

Displays or hides the breakpoint window. This command toggles
between Show Breakpoints and Hide Breakpoints, depending
on whether the breakpoint window is currently visible on the
screen.

See also ÒBreakpoint WindowÓ on page 47.

Show/Hide Watchpoints

Displays or hides the watchpoint window. This command toggles
between Show Watchpoints and Hide Watchpoints, depending
on whether the watchpoint window is currently visible on the
screen.

See also ÒWatchpoint WindowÓ on page 48.

Close All Variable Windows

Closes all open variable and array windows. This command is dis-
abled when there are no open variable or array windows.

Show/Hide Registers

Displays or hides the registers window. This command toggles be-
tween Show Registers and Hide Registers, depending on
whether the registers window is currently visible on the screen.

See also ÒRegister WindowÓ on page 54.
Debugger User Guide DBGÐ149

Debugger Menus
Help menu (Windows)
Show/Hide FPU Registers

Displays or hides the FPU registers window. This command toggles
between Show FPU Registers and Hide FPU Registers, depend-
ing on whether the FPU registers window is currently visible on the
screen. (Some targets do not have an FPU, and the FPU register win-
dow is not available for them.)

See also ÒRegister WindowÓ on page 54.

Other Window Menu Items

The remaining items on the Window menu list all windows cur-
rently open on the screen. A checkmark appears beside the active
window. To make a window active, you can:

¥ click in the window

¥ choose the window in the Window menu

¥ use the windowÕs keyboard equivalent, as shown in the Win-
dow menu

Help menu (Windows)
The Help menu contains commands to access the MW Debug help
file. The fourth command, About Metrowerks Debugger , dis-
plays copyright and author information about the application, as
well as credits.

Apple Menu (Mac OS)
The Apple menu contains one command for the debugger, About
Metrowerks Debugger. This command displays copyright and au-
thor information about the application, as well as credits.
DBGÐ150 Debugger User Guide

8
Troubleshooting
This chapter contains frequently asked questions (and answers)
about MW Debug. If you have a problem with the debugger, come
here first. Others may have encountered similar difficulties, and
there may be a simple solution.

About Troubleshooting
If you find that the debugger is causing problems, the first thing you
should try is delete the debugger preferences file. This file is called
MWDebug.prf and is located in the Metrowerks directory in your
Windows directory.

This chapter discusses various problems people have encountered
while debugging their programs. There are suggested solutions for
each problem. If your problem is not in this chapter, please contact
Metrowerks Technical Support for assistance.

The general topics covered include:

¥ General Problems

¥ Problems Launching the Debugger

¥ Problems Running/Crashing the Debugger

¥ Problems with Breakpoints

¥ Problems with Variables

¥ Problems with Source Files

General Problems
There may come a time when one of the solutions in this section
doesnÕt seem to work, or your specific problem isnÕt in here. Before
Debugger User Guide DBGÐ151

Troubleshooting
Problems Launching the Debugger
sending a note to Metrowerks Technical Support, try one or more of
the following:

¥ Remove easily regenerated files and data, including .(x)sym-
bolics, .dbg file, preferences, binaries in your project (choose
Remove Binaries and Compact in the CodeWarrior IDE.
See the IDE Users Guide for more information).

¥ Copy new versions of the IDE and Debugger to your hard
drive.

¥ Check for extension conflicts.

¥ Try a few sample sessions with all possible extensions off.

Problems Launching the Debugger
This section lists questions and problems with launching the debug-
ger.

The debugger wonÕt launch

Problem

Even if Enable Debugger is selected, when I run my application
the debugger doesnÕt launch.

The Run or Debug command in the CodeWarrior Project menu is
dimmed.

Background

You can launch the debugger automatically from the CodeWarrior
IDE only if the project is an application project, and the debugger is
in the same folder as the CodeWarrior IDE.

Solutions

¥ Make sure your project generates an application. The Run
command is only available when creating an application.

¥ Make sure the CodeWarrior debugger application is in the
same folder as the CodeWarrior IDE application.
DBGÐ152 Debugger User Guide

Troubleshooting
Problems Launching the Debugger
¥ Launch the debugger directly by double-clicking its icon.

See also ÒLaunching MW Debug DirectlyÓ on page 26.

Debug does nothing

Problem

The Run command does nothing.

Background

You must have everything set up properly for the debugger to work
correctly. In addition, make sure your code actually does some-
thing!

Solutions

¥ Make sure debugging is enabled.

¥ Consult the debugger release notes for the latest information
on incompatibilities with third-party software.

See also ÒSetting Up a Target for DebuggingÓ on page 21.

Errors reported on launch (Mac OS)

Problem

I get error -27 when I start debugging and -619 when I quit.

Background

You may be using an older version of RamDoubler that is not com-
patible with the debugger.

Solution

¥ Upgrade RamDoubler to version 1.5.2 or better.
Debugger User Guide DBGÐ153

Troubleshooting
Problems Running/Crashing the Debugger
Slow launching (Mac OS)

Problem

I have a big project. When I run with the debugger, it takes a long
time (minutes) before the debugger is up, and I can hear the hard
drive thrashing around like crazy.

Background

The debugger uses temporary memory to store symbolics informa-
tion. If you are using virtual memory, it is better to disable the de-
buggerÕs use of temporary memory.

Solution

¥ In the debuggerÕs Preferences dialog, turn off the Use tem-
porary memory for SYM data preference. Increase the size
of the debugger partition by about the size of your symbolics
file.

Problems Running/Crashing the Debugger
This section covers problems that occur while youÕre running the
debugger.

Project works in the debugger, crashes
without

Problem

My project works fine when running under debugger control. When
I run without the debugger, my program crashes.

Background

Running under the debugger changes the operating environment in
which your program runs. This can have the strange effect of mak-
ing an otherwise buggy program work correctly. It is hard to tell
precisely what your particular problem may be, but we can suggest
a couple of factors that may causes this kind of odd behavior.
DBGÐ154 Debugger User Guide

Troubleshooting
Problems with Breakpoints
For one, the debugger slows things down. If you have code that is
time-sensitive, things may happen too fast when the debugger is not
present. Keep this in mind when tracking down the problem.

The presence of the debugger can also modify how memory is man-
aged in your project. A block of memory may not move if the de-
bugger is running, for example. With the debugger absent, the block
moves and a memory-related bug strikes.

Solutions

¥ Look for time-sensitive problems, race conditions, and so
forth.

¥ Look for memory-related problems, such as accessing null
pointers or handles, improperly disposing of resource han-
dles, or disposing of handles more than once.

¥ Develop your low-level debugging skills.

Problems with Breakpoints
This section covers problems related to setting and clearing break-
points.

Statements donÕt have breakpoints

Problem

Some statements donÕt have dashes in the breakpoint column, mak-
ing it impossible to set them.

Background

The CodeWarrior linkers are very smart. They do not generate sym-
bolics information for source code that is not linked into the final
product. If a statement is never actually used, the linker does not in-
clude it in the final object code. You cannot set a breakpoint on such
a statement, because the object code does not exist.
Debugger User Guide DBGÐ155

Troubleshooting
Problems with Breakpoints
Code optimization may also reorganize the object code extensively,
affecting the correspondence between object code and source code
and making it difficult or impossible to set breakpoints accurately.

Solution

¥ Make sure all your code is used. Change the source code if
necessary.

¥ Check your source code to see if statements were ignored by
the compiler because of compiler directives.

¥ Turn off all compiler optimizations, set Instruction Sched-
uling off, and set DonÕt Inline on, and rebuild your project.
Optimization may be making changes in object code that do
not correspond to your source code. You should get a break-
point marker at every ÒmeatyÓ statement.

¥ Use a coding style wherein you put only one statement on a
source lineÑthe compiler will output breakpoint informa-
tion for multiple statements on a line, but the debugger only
shows which source line youÕre on, so you may end up step-
ping multiple times on the same source line.

See also ÒImpact of Optimizing Code on BreakpointsÓ on page 85.

Breakpoints donÕt respond

Problem

I set a breakpoint, but it doesnÕt work.

Background

Breakpoints stop execution only if the breakpoint is reached, it is ac-
tive, and its condition (if it has one) is true.

Solutions

¥ Step through your code to verify whether youÕre reaching the
statement at which you placed the breakpoint.

¥ Look in the breakpoint window to see if the breakpoint is in-
active.
DBGÐ156 Debugger User Guide

Troubleshooting
Problems with Variables
¥ If the breakpoint has a condition, make sure it tests true. The
debugger ignores breakpoints with false conditions.

See also ÒSetting BreakpointsÓ on page 82 and ÒConditional Break-
pointsÓ on page 84.

Problems with Variables
This section covers problems related to variables.

A variable doesnÕt change

Problem

I have a variable and I assign it a value, but the value doesnÕt change
in the debugger.

Background

You arenÕt using the variable for anything later on in the code. As a
result, the compiler has optimized it away.

Solutions

¥ Remove the unused variable from your code.

¥ Modify your code to use the variable.

Variables are assigned incorrect values

Problem

I notice that values seem to be changing incorrectly. I have encoun-
tered one of these two problems:

¥ Two or more variables are being set to the same value simul-
taneously.

¥ One variable is receiving a value that is supposed to be as-
signed to another.
Debugger User Guide DBGÐ157

Troubleshooting
Problems with Variables
Background

The compiler has recognized that the variables are not used concur-
rently, and has given the variables the same storage location. What
you are seeing is a kind of automatic compiler optimization called
Òregister coloring.Ó Register coloring checks to see how variables
are used in a routine. If two or more variables are in the same scope
but are not used at the same time, the compiler may use the same
processor register for both variables. Using registers instead of
memory to store and manipulate variables improves a programÕs
performance.

Listing 8.1 is a good example of the kind of code that results in regis-
ter coloring. Because four different variables are set but never used
simultaneously, the compiler has arranged for all four to use the
same register. The debugger, however, has no way of knowing that
all four variables share the same register, so it shows all four vari-
ables changing with each assignment. In fact, the code shown in
Listing 8.1 does nothing at all; serious optimization might eliminate
it entirely.

Listing 8.1 Variables changing with register coloring

void main(void)
{

long a = 0, b = 0, c = 0, d = 0;

a = 1; /* a is set to 1 */
b = 2; /* a is set to 2, b remains unchanged */
c = 3; /* a is set to 3, c remains unchanged */
d = 4; /* a is set to 4, d remains unchanged */

}

Solutions

¥ Do nothing. Register coloring is not a problem.

¥ To prevent register coloring in C/C++, declare your vari-
ables with the volatile keyword. Do this with a preproces-
sor directive so that you can easily remove the volatile
storage class specifiers after debugging.
DBGÐ158 Debugger User Guide

Troubleshooting
Problems with Variables
See also the C, C++, and Assembly Language Manual for more infor-
mation.

Strange variables

Problem

The debugger shows variables in the local and global variable panes
that are not declared in the source code.

Background

The compiler often creates its own temporary variables in the object
code as it translates source code. These temporary variables appear
in the debugger with a dollar sign ($) in their names. The debugger
also displays C++ virtual base class types with a $ prefix.

The compiler and linker often add variables from libraries and run-
time routines that help initialize and terminate your program.

Solution

¥ None. This is not a problem that needs correction.

Strange data types

Problem

When Show Types is selected in the Data menu, some enumerated
values are displayed as having type Ò?anonx,Ó where x is an arbi-
trary number.

Background

The debugger cannot display the names of enumerated types if the
names are not defined in the source code. At compile time, the com-
piler assigns a generic type name to such enumerated types. It is this
generic name that the debugger displays.

For example, in Listing 8.2, with Show Types selected, variable my-
Marx will be displayed as having the anonymous type ?anonx, be-
cause its enumerated type has no name. On the other hand, variable
Debugger User Guide DBGÐ159

Troubleshooting
Problems with Variables
myBeatle will be shown with type Beatle, because its enumerated
type is defined with that name.

Listing 8.2 Unnamed enumerated types (C/C++)

// Debugger displays as anonymous type
enum {Groucho,

Harpo,
Chico,
Zeppo } myMarx = Harpo;

// Debugger displays as type Beatle
typedef enum Beatle {John,

Paul,
George,
Ringo} myBeatle = John;

Solution

¥ None. This is not a problem that needs correction.

Unrecognized data types

Problem

IÕve declared my own data type. Why canÕt I view a variable as that
type?

Background

The symbolics file includes information only about types that are
used in the program. Types defined in typedefs are not stored in
the symbolics file, so you need to view the variable as the type it is
derived from. For example, if you have declared a type MyLong
based on the long data type, you can view it as a long, but not as a
MyLong.

See also ÒViewing Data as Different TypesÓ on page 96.
DBGÐ160 Debugger User Guide

Troubleshooting
Problems with Variables
Solution

¥ Use the base data type.

¥ Choose the Show Types item from the Data menu to see
what the debugger thinks the type is.

Òundefined identifierÓ in the expression
window

Problem

Using a user-defined type in an expression in the expression win-
dow gives an Ò¥ undefined identifier ¥Ó value.

Background

The debugger does not recognize data types that are simply aliases
of another type, because such alias types are not included in the
symbolics file.

For example, given the Pascal type declaration

TYPE
MYBIGINT = LONGINT;

the expression

MYBIGINT(thePtr)

in the debuggerÕs expression window will display its value as
Ò¥ undefined identifier ¥.Ó To get the correct result, use this expres-
sion instead:

LONGINT(thePtr)

Solution

¥ Use the original data type instead of the defined data type.

See also ÒExpression LimitationsÓ on page 109.
Debugger User Guide DBGÐ161

Troubleshooting
Problems with Source Files
Problems with Source Files
This section covers problems related to source-code files.

No source-code view

Problem

All I see in the source pane is assembly-language code. The source
popup menu wonÕt let me show source code.

Background

There is no symbolics information available for that code. You may
not have turned on debugging for a file, or you may be stepping
through some ancillary code added by the linker that has no corre-
sponding source code (for example, glue code). Without symbolics
information, the debugger can only show the code in assembly lan-
guage.

Solutions

¥ If the code is from your own source file, make sure the
CodeWarrior IDE generates symbolics information for the
file.

¥ If the code is from some other source (such as a compiled li-
brary), step out of the function to return to the caller. There is
no source code to view.

See also ÒSetting Up a File for DebuggingÓ on page 23.

Outdated source files

Problem

When I run my project, I get a warning that says the modification
dates donÕt match. WhatÕs going on?
DBGÐ162 Debugger User Guide

Troubleshooting
Problems with Source Files
Background

The symbolics file keeps track of when the source file on which it is
based was last changed. If the date and time stored in the symbolics
file do not match those of the original file, the debugger warns you
that the symbolics information may no longer be current.

Solution

¥ Touch the source file (or make a do-nothing change and save
it), then rebuild your project or bring it up to date.

Sharing source code between projects

Problem

The debugger displays an alert when attempting to view the same
source-code file from two different browser windows.

Background

The debugger cannot open the same file from different browser
windows.

Solution

¥ Create copies of the file so that each project has its own ver-
sion.

Spurious ANSI C code in Pascal projects

Problem

IÕm working in Pascal, and when IÕm stepping through code I find
ANSI C routines! I havenÕt included any ANSI C libraries. WhatÕs
going on?

Background

The Pascal runtime library was written in C and uses ANSI C rou-
tines. These are the routines that show up when debugging a Pascal
program.
Debugger User Guide DBGÐ163

Troubleshooting
Debugger Error Messages
Solution

¥ None. This is not a problem that needs correction.

Debugger Error Messages
Following is a list of error messages that you may receive from the
debugger, with some hints about the possible causes or circum-
stances of the error. Messages listed without comment are self-
explanatory.

An unknown error occurred while trying to target an
existing process.

Bad type code

Internal error.

Bus Error

Attempt to read or write to an invalid address.

can't display value -- type information not supported

The symbolics file contains a data type that MW Debug does not
support.

Can't use this source file, it was not saved before
running, or was edited after linking.

The debugger doesnÕt have access to the same text the compiler saw.
The debugger will just issue a warning unless the debug informa-
tion references nonexistent text, in which case it gives you this error
message.

class name expected

Unexpectedly encountered something other than a class name while
evaluating an expression.

Could not complete your request because the
DBGÐ164 Debugger User Guide

Troubleshooting
Debugger Error Messages
process is not suspended.

The command you issued cannot be performed while the program
is running.

Could not set a watch point because the page
containing that memory location overlaps low
memory or the system heap.

Watchpoints cannot be set in low memory or in the system heap.

Could not set a watch point because the page
containing that memory location overlaps the stack.

Watchpoints are implemented via the memory write-protection
mechanism, which operates at the page level. You cannot write-pro-
tect a page of memory containing part of the stack.

Couldn't locate the program entry point, program will
not stop on launch.

When launching a program, the debugger normally sets an implicit
breakpoint at the beginning of the function named main() (in C/
C++) or the main program (in Pascal). If it canÕt find such a routine,
it just launches the program and lets it run.

identified or qualified name expected

Unexpectedly encountered something other than an indentifier or
qualified name while evaluating an expression.

illegal character constant

Invalid character constant encountered while evaluating an expres-
sion.

illegal string constant

Invalid string constant encountered while evaluating an expression.
Debugger User Guide DBGÐ165

Troubleshooting
Debugger Error Messages
illegal token

Invalid token encountered while evaluating an expression.

Invalid C or Pascal string.

An ill-formed string was encountered in evaluating an expression.

Invalid character constant.

An invalid character constant was encountered in evaluating an ex-
pression.

Invalid escape sequence inside string or character
constant.

C/C++ escape sequence in a string wasnÕt valid syntax.

invalid pointer or reference expression

Invalid pointer or reference expression encountered while evaluat-
ing an expression.

invalid type declaration

Invalid type encountered while evaluating an expression.

invalid type information in SYM file

MW Debug is unable to display a variable because of bad data in the
symbolics file.

New variable value is too large for the destination
variable.

For example, you have attempted to assign a 20-byte string to a 10-
byte string variable.

No type with that name exists.

MW Debug doesnÕt recognize a type name you have entered in the
View As dialog.
DBGÐ166 Debugger User Guide

Troubleshooting
Debugger Error Messages
Register not available

The debugger is unable to get a valid register value to display a reg-
ister variable. For example, when looking at routines up the stack
from the current routine, the debugger canÕt dig out the saved regis-
ter values unless all routines below it on the stack have debug infor-
mation.

string too long

String exceeds maximum permissible length.

The new variable value is the wrong type for the
destination variable.

You have attempted to assign a value of the wrong type to a vari-
able, such as a string to an integer variable.

typedef name expected

Unexpectedly encountered something other than a typedef name
while evaluating an expression.

Unable to step from here.

The debugger cannot step execution from this point.

Unable to step out from here.

The debugger cannot step out from this point.

undefined identifier

Undefined identifier encountered while evaluating an expression.

unexpected token

Unexpected token encountered while evaluating an expression.

unknown error "^0"

An internal error that was not expected to reach the user.
Debugger User Guide DBGÐ167

Troubleshooting
Debugger Error Messages
unterminated comment

A closing comment bracket is missing.

Variable or expression cannot be used as an address.

For example, if r is a Rect, *(char*)r is invalid.

Warning - this SYM file has some invalid or
inconsistent data. The debugger may show incorrect
information.

Your symbolics file may have been corrupted.

'*' or '&' expected

Unexpectedly encountered something other than a pointer or refer-
ence operator while evaluating an expression.
DBGÐ168 Debugger User Guide

Index
Symbols
$ in variable name 159
? in variable name 159

A
active pane 30
ANSI

C code in Pascal project 163
escape sequence 147

Apple menu (debugger) 150
array window 50, 94

setting base address 50
arrays

setting size 124
assembly

memory display 33, 37
register display 33, 37
viewing 27, 37, 44, 162

B
Break on C++ Exception command (debugger) 142
breakpoint

clearing 47, 83
clearing all 142
conditional 47, 84
conditional expression 107
conditional, and loops 85
conditional, creating 85
defined 81
effect of temporary breakpoint on 83
missing 155
setting 82, 156
setting in breakpoint window 47
setting in browser window 44
temporary 70, 83
viewing 83

breakpoint window 47, 84
Breakpoints Window command (debugger) 47, 83
browser source pane 43
browser window

compared to program window 39
navigating code in 75
setting breakpoint in 44

C
C language

entering escape sequences 147
viewing character strings 147

C string
entering data as 99
viewing data as 95

C String command (debugger) 147
C++

debugging 123, 126
ignoring object constructors 129
methods, alphabetizing 42, 122

call-chain navigation 73
changing

font and color in debugger 81
memory 53
memory, dangers of 54
registers 55
variable values 98

Character command (debugger) 147
Clear All Breakpoints command (debugger) 83,

142
Clear command 90
Clear command (debugger) 46, 48, 139
Clear Current Watchpoint command 90, 144
Clear Watchpoint command 48, 144
clearing breakpoint 47, 83
Clipboard

while in the debugger 139
Close All Variable Windows command

(debugger) 43, 149
Close command (debugger) 136
Collapse All command 92, 143
conditional breakpoint 47, 84

and loops 85
creating 85
expressions and 107

control buttons 33
Control menu (debugger) 140
conventions 11

figures 12
host terminology 12
keyboard shortcuts 13

Copy command (debugger) 48, 139
Debugger User Guide DBGÐ169

Index
Copy to Expression command (debugger) 46, 99,
144

creating a conditional breakpoint 85
current-statement arrow 35, 140

at breakpoint 81
defined 66
dragging 70
in browser window 44

Cut command (debugger) 138

D
data formats

availability 96
for variables 98

Data menu (debugger) 143
data type

anon 159
casting 145
enumerated 159
multiple 100
showing 94, 143
viewing structured 32

debug column in project window 24
Debug command 25, 152
debugger

control buttons 33
defined 9, 61
font selection 81
launch problems 152
launching 62
launching from a project 25
low-level 142
running directly 26

Debugger Preferences file 142
Debugger Settings 132
debugger, integrated 14
debugging

C++ 123
preparing a file 23
preparing a project 21
static constructors 126

Default command (Debugger) 146
Default size for unbound arrays 124
default size for unbound arrays 124
deleting expressions 46

dereferencing handles 32
Disable Debugger command 22
dump memory 52, 146

E
Edit command (debugger) 78, 137
Edit menu (debugger) 138
Enable Debugger command 21, 22, 152
Enable Debugging command 152
entering data

formats 98
Enumeration command (debugger) 147
error

QC 129
escape sequence

entering 147
viewing characters as 147

Expand command 92, 143
expanding variables 32, 52, 92, 143
expression

and registers 109
and structure members 111
and variables 111
as source address 108
attaching to breakpoint 107
creating 106
defined 105
deleting 46
dragging 106, 107
examples 111
formal syntax 112
in breakpoint window 107
in expression window 106
in memory window 108
limitations 109
literals 111
logical 111
pointers in 111
reordering 46
special features 108

expression window
adding caller variables 100
adding items 99
and variables 99
changing order of items 100
DBGÐ170 Debugger User Guide

Index
defined 46
Expressions Window command (debugger) 46, 99

F
figure conventions 12
file

preparing for debugging 23
File menu (debugger) 136
file modification dates, ignoring 125
file pane 39, 41, 42

and global variables 41
and Global Variables item 93
navigating code with 75

Find command 78, 79, 139
Find command (debugger) 139
Find Next command 78, 80, 139
Find Next command (debugger) 80
Find Selection command 81, 139
Find Selection command (debugger) 80
Fixed command (debugger) 148
Floating Point command (debugger) 147
font selection in debugger 81
formats

entering data in 98
FPU register window 33, 37
FPU registers 102
FPU Registers command (debugger) 54
Fract command (debugger) 148
function pane 39, 45
function pop-up menu 39, 45

sorting alphabetically 39, 45

G
General Registers command (debugger) 54
global variables

in browser window 93
in locals pane 32
in Variables pane 93

globals pane 39, 42, 93

H
handles

dereferencing 32

Hexadecimal command (debugger) 146
Hide Breakpoints command (debugger) 149
Hide Expressions command (debugger) 149
Hide FPU Registers command (debugger) 149
Hide Processes command (debugger) 148
Hide Registers command (debugger) 149
Hide Watchpoints command (debugger) 149
host terminology conventions 12

I
infinite loops

escaping from 72
integrated debugger 14

K
keyboard conventions 13

Solaris 14
Kill 65
Kill command (debugger) 67, 72, 141

in toolbar 33
killing execution 72

compared to stopping 73

L
launch application

automatically 126
launching debugger 62

directly 26
from a project 25
problems 152

linear code navigation 73
local variables

viewing in debugger 92
Log System Messages 133
log window 48
logical expression 111
loops and conditional breakpoints 85
loops, infinite

escaping from 72
lvalue 53

M
Macintosh
Debugger User Guide DBGÐ171

Index
ROM Monitor program 142
MacsBug

switching between, and MW Debug 142
manual style 11
memory dump 52, 94, 146
memory window 52, 94

changing address 53
changing contents of 53

memory, changing 53
methods (C++)

alphabetizing 42, 122
mixed

viewing 37, 44
modification dates

in debugger 126
multiple data types 100

N
navigating code

by call chain 73
by file pane 75
in browser window 75
linear 73
using source code 77

New Expression command (debugger) 143

O
ObjectSupportLib 18
Open all class files in directory hierarchy 126
Open Array Window command (debugger) 43,

144
Open command (debugger) 136
Open Variable Window command (debugger) 43,

143
opening

a symbolics file 136

P
pane 41

active 30
resizing 30, 39
selecting items in 30, 40

Pascal string
entering data as 99

viewing data as 95
Pascal String command (debugger) 147
Pascal, spurious C code in 163
Paste command (debugger) 139
pointer types 97
PPCTraceEnabler 18
preferences

Always prompt for source file location if file
not found 125

At startup, prompt for SYM file if none
specified 124

Attempt to use dynamic type of C++ or Object
Pascal objects 123

Automatically launch applications when SYM
file opened 126

Confirm ÒKill ProcessÓ when closing or
quitting 126, 136

Default size for unbound arrays 124
DonÕt step into runtime support code 129
Ignore file modification dates 125
In variable panes, show variable types by

default 121
QC-aware 129
Save breakpoints 121
Save expressions 121
Save window settings in local Ò.dbgÓ files 120
Select stack crawl window when task is

stopped 128
Set breakpoint at program main when launch-

ing applications 127
Settings & Display 120, 121
Show tasks in separate windows 123
show variable types by default 95
Sort functions by method name in browser 42,

121
Use temporary memory for SYM data 124, 154

Preferences command (Debugger) 140
Preparing 21
Process Pane 57
process window 57
Processes Window command (debugger) 57
processor registers 102
Program Arguments 132
program counter. See current-statement arrow
Program to Launch for Debugging Shared Libs,

DLLs and Code Resources 133
DBGÐ172 Debugger User Guide

Index
Program window
at launch 62

program window 30
compared to browser window 39
contents 30

project
preparing for debugging 21

project window
debug column 24

Q
QC-aware (Mac OS) 129
Quit command (debugger) 138

R
RAM Doubler 88
RamDoubler 153
register coloring 158
register window 33, 37
registers 102

changing values 54, 55
FPU 102
in expressions 109
viewing 33, 37, 54, 55
viewing memory pointed to by a 100

reordering expressions 46
ResEdit 143
resizing panes 30, 39
return to project environment 78
routine pop-up menu. See function pop-up menu.
Run 65
Run command 25, 66, 88, 136, 140, 152

in toolbar 33
running debugger

See launching debugger 62

S
Save A Copy As 137
Save As command (debugger) 48, 137
Save command (debugger) 48, 137
Select All command (debugger) 139
selecting items in a pane 30, 40
Set Watchpoint command 89, 144
setting breakpoint 47, 82

sharing files between projects 163
shortcut conventions 13

Solaris 14
Show Breakpoints command (debugger) 149
Show Expressions command (debugger) 149
Show FPU Registers command (debugger) 54, 102,

149
Show Processes command (debugger) 57, 148
Show Registers command (debugger) 102, 149
Show Types command (debugger) 143, 159
show variable types by default 95
Show Watchpoints command (debugger) 149
Show/Hide Toolbar 34
Signed Decimal command (debugger) 146
skipping statements 70
Solaris

keyboard conventions 14
Source Browser pane 39
source code

font and color 81
navigation 77
viewing 162

source file location 125
source pane 34
source pop-up menu 39, 44
Speed Doubler 88
stack

viewing routine calls 31
stack contents, viewing 102
stack crawl pane 31, 73
static constructors

debugging 126
Step Into 65
Step Into command (debugger) 68, 141

in toolbar 33
Step Out 65
Step Out command (debugger) 69, 141, 142

in toolbar 33
Step Over 65
Step Over command

in toolbar 33
Step Over command (debugger) 68, 141
stepping

into routines 68
Debugger User Guide DBGÐ173

Index
into runtime code 129
out of routines 69
through code 68

Stop 65
Stop command (debugger) 67, 71, 140

in toolbar 33
stopping execution 71

compared to killing 73
Strings

Viewing as C String
See C String command 147

Viewing as Pascal String
See Pascal String command 147

Switch to Monitor command (debugger) 142
Switch To MW Debugger command 78
switch to project environment 78
Symbolics file

and debugging 22
contents 27
defined 22, 27
multiple open files 40
opening 136

symbolics file
opening 26

syntax coloring 81

T
Tasks Pane 58
temporary breakpoint 70

effect on regular breakpoint 83
setting 83

temporary memory
debugger use of 154

temporary variables 159
threads

viewing 57
__throw() 142
tracing code 68
troubleshooting

breakpoints 155, 156
bus error 156
changing variable values 157
data types 160
Enable Debugging 152
error on launch 153

launching debugger 152
no source code 162
outdated source files 162
Run command 153
slow launching 154
source code view 162
strange data types 159
strange variable names 159
undefined indentifier 161
variable doesnÕt change 157

type. See data type.
typographical conventions 11

U
undefined identifier 161
Undo command (debugger) 138
Unsigned Decimal command (debugger) 146
Use External Editor 123

V
Variable Change Hilite 124
variable window 50, 94
variables

automatically closing windows 50
changing value 98
data formats 98
enumerated 147
expanding 32, 52, 92, 143
global 41, 42, 93
global in browser window 93
in expression window 99
in separate windows 94
local 32, 92, 99
opening a window for 43
placing in separate windows 43
static 42
strange names 159
temporary 159

Variables pane 92
and global variables 93

variables pane 32
View As command (debugger) 144
View Memory As command 52
View Memory As command (debugger) 50, 101,

146
DBGÐ174 Debugger User Guide

Index
View Memory command 52
View Memory command (debugger) 101, 146
viewing

breakpoints 83
call chain 31
code as assembly 27, 37, 44
code as mixed 37, 44
data as multiple types 100
global variables 42, 93
local variables 92
memory 94
memory at an address 100
pointer types 97
registers 33, 37, 55
stack 102
watchpoints 90

virtual memory
and debugger 154

W
watchpoint 149

clearing 48, 90
defined 88
restrictions on 89
setting 89
viewing 90
watchpoint window 48

Watchpoint Hilite 124
watchpoint window 48, 149

opening 48
watchpoints

on 68K machines 88
Watchpoints Window command 90
Watchpoints Window command (debugger) 48
Window menu (debugger) 148
Working Directory 132
Debugger User Guide DBGÐ175

Index
DBGÐ176 Debugger User Guide

	Introduction
	Overview of the Debugger Manual
	Metrowerks Year 2000 Compliance
	Read the Release Notes!
	Manual Conventions
	Typographical conventions
	Host Conventions
	Figure Conventions
	Keyboard Conventions

	What’s New
	System Requirements
	Windows
	Mac�OS
	Solaris

	Installing MW Debug
	Starting Points
	Where to Learn More

	Getting Started
	Getting Started Overview
	Preparing for Debugging
	Setting Up a Target for Debugging
	Setting Up a File for Debugging
	Generating Symbolics Information

	Launching the Debugger
	Using the Integrated Debugger
	Launching MW Debug from the IDE (Mac OS)
	Launching MW Debug Directly

	Symbolics Files

	What You See
	What You See Overview
	Program Window
	Stack Crawl Pane
	Variables Pane
	Debugger Toolbar
	Source Pane

	Browser Window
	File Pane
	Function Pane
	Globals Pane
	Browser Source Pane
	Function Pop-up Menu

	Expression Window
	Breakpoint Window
	Watchpoint Window
	Log Window
	Variable Window
	Array Window
	Memory Window
	Register Window
	Process Window
	Process Pane
	Tasks Pane
	Process Window Toolbar

	Basic Debugging
	Basic Debugging Overview
	Starting Up
	Running, Stepping, and Stopping Code
	Current-Statement Arrow
	Running Your Code
	Stepping a Single Line
	Stepping Into Routines
	Stepping Out of Routines
	Skipping Statements
	Stopping Execution
	Killing Execution

	Navigating Code
	Linear Navigation
	Call-Chain Navigation
	Browser Window Navigation
	Source-Code Navigation
	Using the Find Dialog
	Changing Font and Color

	Breakpoints
	Setting Breakpoints
	Clearing Breakpoints
	Temporary Breakpoints
	Viewing Breakpoints
	Conditional Breakpoints
	Impact of Optimizing Code on Breakpoints

	Watchpoints
	Setting Watchpoints
	Clearing Watchpoints
	Viewing Watchpoints

	Viewing and Changing Data
	Viewing Local Variables
	Viewing Global Variables
	Putting Data in a New Window
	Viewing Data Types
	Viewing Data in a Different Format
	Viewing Data as Different Types
	Changing the Value of a Variable
	Using the Expression Window
	Viewing Raw Memory
	Viewing Memory at an Address
	Viewing Processor Registers

	Editing Source Code

	Expressions
	Expressions Overview
	How Expressions are Interpreted
	Expressions in the Expression Window
	Expressions in the Breakpoint Window
	Expressions in the Memory Window

	Using Expressions
	Special Expression Features
	Expression Limitations

	Example Expressions
	Expression Syntax

	Debugger Preferences
	Debugger Preferences Overview
	MW Debug Preference Panels
	Settings
	Display
	Symbolics
	Program Control
	Win32 Settings
	Windows Java Settings
	Windows Runtime Settings

	Integrated Debugger Target Panels
	Target Settings
	x86 Exceptions (Windows)

	Debugger Menus
	Debugger Menus Overview
	File Menu
	Edit Menu
	Control Menu
	Data Menu
	Window Menu
	Help menu (Windows)
	Apple Menu (Mac OS)

	Troubleshooting
	About Troubleshooting
	General Problems
	Problems Launching the Debugger
	The debugger won’t launch
	Debug does nothing
	Errors reported on launch (Mac OS)
	Slow launching (Mac OS)

	Problems Running/Crashing the Debugger
	Project works in the debugger, crashes without

	Problems with Breakpoints
	Statements don’t have breakpoints
	Breakpoints don’t respond

	Problems with Variables
	A variable doesn’t change
	Variables are assigned incorrect values
	Strange variables
	Strange data types
	Unrecognized data types
	“undefined identifier” in the expression window

	Problems with Source Files
	No source-code view
	Outdated source files
	Sharing source code between projects
	Spurious ANSI C code in Pascal projects

	Debugger Error Messages

	Index

