SEGA

CodeWarrior®
SH Assembler
Reference

I\

metrowerks s

Because of last-minute changes to CodeWarrior, some of the information in this manual may be inaccurate.
Please rea d the Release Notes for the latest up-to-date information.

Revised: 990128-Ift

Metrowerks CodeWarrior copyright ©1993-1999 by Metrowerks Inc. and its licensors. All
rights reserved.

Documentation stored on the compact disk(s) may be printed by licensee for personal use.
Except for the foregoing, no part of this documentation may be reproduced or transmitted
in any form by any means, electronic or mechanical, including photocopying, recording, or
any information storage and retrieval system, without permission in writing from Metrow-
erks Inc.

Metrowerks, the Metrowerks logo, CodeWarrior, and Software at Work are registered
trademarks of Metrowerks Inc. PowerPlant and PowerPlant Constructor are trademarks of
Metrowerks Inc.

All other trademarks and registered trademarks are the property of their respective owners.

ALL SOFTWARE AND DOCUMENTATION ON THE COMPACT DISK(S) ARE
SUBJECT TO THE LICENSE AGREEMENT IN THE CD BOOKLET.

How to Contact Metrowerks:

U.S.A. and international Metrowerks Corporation
9801 Metric, Suite 100
Austin TX 78758
U.S.A.

Canada Metrowerks Inc.
1500 du College, Suite 300
Ville St-Laurent, QC
Canada H4L 5G6

Ordering Voice: (800) 377-5416
Fax: (512) 873-4901

World Wide Web http://www.metrowerks.com
Registration information register@metrowerks.com
Technical support support@metrowerks.com
Sales, marketing, & licensing sales@metrowerks.com

CompuServe go Metrowerks

Table of Contents

1 Introduction 5

2 Assembler Syntax

3 Using Macros

4 Using Directives

Overview of the Assembler Manual .

What Are the Metrowerks Assemblers.

Conventions Used in This Manual
Where to Learn More .

Assembler Syntax Overview .
Statement Syntax .
Symbol Syntax .
Symbol Scope
Local Labels .
Global Equates.
Relocatable Labels .
Constant Syntax .
Integer Constants
Floating Point Constants
Character Constants
Expression Syntax
Forward Equate Syntax .
Data Alignment

Using Macros Overview .
Defining Macros .
Macro Definition Syntax
Using Macro Arguments
Creating Unique Labels .

Referring to the Number of Arguments :

Invoking Macros .

Using Directives Overview.
Macro Directives . Ce
Conditional Preprocessor D|rect|ves

SH Assembler Reference ASM-3

Section Control Directives35

Scope Control Directives.40

Symbol Definition Directives. 41

Data Declaration Directives 43
Integer type declarations 43

String type declarations.45

Floating point type declarations 46

Assembler Control Directives 47

Debugging Directives.5l

5 SH Assembler Settingso oL 53
Assembler Settings Overview 53

The Assembler SettingsPanel 54

Index e e 57

ASM-4 SH Assembler Reference

A

eem. INntroduction

This manual describes the syntax for the Metrowerks Assemblers,
and uses SH assembler for the examples.

Overview of the Assembler Manual

This manual describes Metrowerks Assemblers, a collection of as-
semblers for several different processors. This manual describes the
syntax for statements, macros, and directives.

This manual assumes you are already familiar with assembler and
the processor you’re writing code for.

The chapters in this manual include:

= Assembler Syntax Overview

« Using Macros Overview

= Using Directives Overview

= Assembler Settings Overview

For more information on the instruction mnemonics and register
names for a particular processor, see the books described in “Where
to Learn More.”

What Are the Metrowerks Assemblers

The Metrowerks Assemblers is a collection of assemblers for several
different processors. They share an identical syntax for statements,
directives, and macros. They differ only in the instruction mnemon-
ics and register names that are used for each processor.

The SH Assembler supports all instructions for the SH-4 processor.

SH Assembler Reference ASM-5

Introduction

Conventions Used in This Manual

NOTE: The assembler commands described in this manual refer
to the Metrowerks Assembler itself and should not be confused
with the inline assembler included in the Metrowerks C/C++ com-
pilers. See the Dreamcast Targeting Manual and the C Compilers
Reference for additional information on using the C/C++ inline as-
sembler.

Conventions Used in This Manual

This manual includes syntax examples that describe how to use cer-
tain statements, Table 1.1 describes how to interpret these state-
ments.

Table 1.1 Understanding Syntax Examples
If the text
looks like... Then...
literal Include it in your statement exactly as it’s printed.
metasymbol Replace the symbol with an appropriate value. The text after the
syntax example describes what the appropriate values are.
alb|c Use one and only one of the symbols in the statement: either a, b,

[a]

orc.

Include this symbol only if necessary. The text after the syntax ex-
ample describes when to include it.

Where to Learn More

The assembler uses the standard mnemonics and register names as
defined in the following documents:

e SH: SH-4 Hardware Manual, Hitachi Ltd.

ASM-6 SH Assembler Reference

A

mmmr. Assembler Syntax

The chapter describes the sytax rules required to write a source file
for the Metrowerks Assemblers.

Assembler Syntax Overview

This chapter explains how to write a source file for the Metrowerks
Assemblers. You should already be familiar with Assemblers and
with the machine operations for the processor you’re writing for.
This chapter does not describe the instructions for the processors.
For more information, see “Where to Learn More.”

This chapter covers the following topics:
= Statement Syntax
= Symbol Syntax

Symbol Scope
Constant Syntax

Expression Syntax

Forward Equate Syntax

Data Alignment

Statement Syntax

An assembly language statement may be one these types:
= Instruction statement
< Directive statement
= Macro statement

SH Assembler Reference ASM-7

Assembler Syntax

Statement Syntax

Listing 2.1

A statement can be no more than 1000 characters long. You cannot
split a statement across multiple source lines, and you cannot put
more than one statement on a source line.

A statement has the following syntax:

Statement syntax
[label] operation [operands] [comment]

Here are the parts of an assembler statement:

Label By default, a label ends in a colon (;) and can begin in any
column. If you’re porting existing code that doesn’t follow this con-
vention, turn off the Labels must end with "' option. With the op-
tion turned off, a symbol is a label if it starts in column 1 or if it ends
with a colon (©).

For more information on labels, see “Symbol Syntax.”

Operation The operation is a name for one of the following:

= A machine operation. To find out which machine instruc-
tions are allowed for a particular chip, see “Where to Learn
More.”

= A macro call. For more information on macros, see “Using
Macros Overview.”

= An assembler directive. For a list of all the assembler direc-
tives, see “Using Directives Overview.”

Instruction, directive, and macro names are case insensitive.
For example MOV Mov, and mov all name the same
instruction.

Operands The operands specify the data that the operation uses.
The type of the operation determines how many operands are re-
quired, if any. To separate operands, use a comma (,).

Comments Comments are text that the Metrowerks Assembler
ignores and are useful for documenting your code. The Metrowerks
Assembler ignores any text between a semicolon (;) and the end of
the line. To help you port existing code, the Metrowerks Assembler
treats the following text as a comment:

ASM-8 SH Assembler Reference

Assembler Syntax
Symbol Syntax

< In all current assemblers, it ignores any text between an as-
terisk (*) at the beginning of the line and the end of the line.
Note that the asterisk must be the first character in the line. It
has other meanings when it occurs elsewhere in a line. Also
note that some future assemblers may use an asterisk at the
beginning of the line for another purpose.

< In all current assemblers, if you turn off the Allow space in
operand field option, it ignores any text between a space
character in the operand field and the end of the line. How-
ever, some future assemblers may use this for another pur-
pose.

Symbol Syntax

A symbol is a combination of characters that represents a value, such
as an address, nhumeric constant, string constant, or character con-
stant. The two types of symbols are labels and equates. A label is a
symbol that represents an address. An equate is a symbol that repre-
sents any value and that you create with a.equ or.set directive.

A symbol’s name has unlimited length and can contain the follow-
ing:
= The first character must be one of these:

— Ifit’'s not a local label, a-z, A-Z, a period (.), a question
mark (?), or underscore ().

— Ifitis alocal label, at-sign (@).

= Each remaining character must be one of a-z, A-Z, numerals
0-9, underscore (), question mark (?), dollar sign ($), or pe-
riod (.).

The Case sensitive identifiers option lets you choose whether sym-
bols are case-sensitive. If the option is on, symbols are case sensi-
tive, so SYM1 syml, and Sym1lare three different symbols, for ex-
ample. If the option is off, symbols are not case-sensitive, so SYM1
syml, and Symlare the same symbol, for example. By default, this
option is on.

To refer to the the program counter use one of these characters: pe-
riod (.), dollar sign ($), or asterisk (*).

SH Assembler Reference ASM-9

Assembler Syntax

Symbol Scope

Symbol Scope

In general, a symbol has file-wide scope: you can access it anywhere
within the file it is defined and only within the file it is defined.

A label can also have local scope: you can access it forwards and
backwards until a non-local label is encountered. To create a local
label, begin its name with an at-sign (@).

An equate can also have global scope: you can access it from other
files. To create an global equate, use the .global or .public di-
rectives.
In this section we discuss:

e Local Labels

= Global Equates

NOTE: An equate cannot have local scope. A local label cannot
have global scope while a normal label can.

Local Labels

Labels whose names begin with the at-sign (@) character are local.
The scope of a local label extends forwards and backwards until a
non-local label is encountered. A forward equate (described in “For-
ward Equate Syntax’”) does not end the scope.

Lines generated by macro expansion have their own name scope for
local labels:

= A non-local label in an expanded macro does not end the
scope of locals in the unexpanded source

= The scope of local labels defined in macros does not extend
outside the macro.

The following example illustrates the scope of local labels in macros.

ASM-10 SH Assembler Reference

Assembler Syntax
Symbol Scope

Listing 2.2 The scope of local labels in a macro

MAKEPOS .MACRO
tst #1,r0
bra @SKIP
neg 10
@SKIP: ;Scope of this label is within the macro
.ENDM
START:
mov.l COUNT, r1
cmp/eq #1,rl
bra @SKIP
MAKEPOS
@SKIP: ;Scope of this label is START to END
;excluding lines arising from
;macro expansion
add #1,r0
END: rts

In this example, the @SKIPlabel defined in the macro does not con-
flict with the @SKIPlabel defined in the main body of code.

Within a macro, the Metrowerks Assembler replaces the unique
label symbol (\@) with a unique label name which you can use as a
local label or a forward equate. For more information on unique la-
bels see “Creating Unique Labels.” For more information on for-
ward equates, see “Forward Equate Syntax.”

NOTE: You cannot export local labels and that local labels do not
appear in debugging tables.

Global Equates

An equate can also have global scope: you can access it from other
files. To declare an equate to have global scope, use the .global di-
rective, like this:

SH Assembler Reference ASM-11

Assembler Syntax
Symbol Scope

Listing 2.3 Declaring a global equate

CONST .set 256
.global CONST

To access the equate from another file, use the .extern directive,
like this:

Listing 2.4 Importing a global equate

.extern CONST
add CONST, rl1

Alternatively, you can also use the .public directive to both de-
clare and import a global equate. If the specified equate is already
defined, it’s declared global. If the specified equate isn’t defined, it’s
imported.

The name of your symbol may change when you import a global
equate from C or C++. View the disassembly of the source file and
look in the symbol table for the hashed symbol name. For example,
you may have a source file in which you define the following global
variable:

unsigned long this_long = 0x12345678;
When you view the disassembly of the source file, you will see that

the name has changed. In this example, an underscore character '
was added to the name.

** SYMBOL TABLE (.symtab) ***
no value size bind type other shndx name
13 0x00000000 0x00000004 GLOBAL OBJECT 0x00 .data _this_long

Relocatable Labels

The Metrowerks Assembler assumes a flat 32-bit memory space.
You can specify the relocation of a 32-bit label with the following ex-
pressions.

ASM-12 SH Assembler Reference

Assembler Syntax
Symbol Scope

NOTE: Some expressions are not allowed in all assemblers.

Table 2.1 Relocatable label expressions

This...

Represents this

label

label @I
label@h

label@ha

label @sdax

label@got

The offset from the label to the base of its section, re-
located by the section base address. It’s also the PC-
relative target of a branch or call. It is a 32-bit ad-
dress.

The low 16-bits of the symbol's relocated address

The high 16-bits of this address. You can OR this
with label@I to produce the full 32-bit relocated ad-
dress

The adjusted high 16-bits of this address You can
add this to label@I to produce the full 32-bit relo-
cated address

For labels in a small data section, the offset from the
base of the small data section to the label. This syn-
tax is not allowed for labels in other sections.

For chips with a global offset table, the offset from
the base of the global offset table to the 32-bit entry
for label

SH Assembler Reference ASM-13

Assembler Syntax
Constant Syntax

Constant Syntax

The Metrowerks Assembler recognizes three kinds of constants:

* |nteger Constants

= Floating Point Constants

e Character Constants

The syntax for each type of constant is the same in all assemblers.

Integer Constants

This table lists the preferred notation for integer contants. This nota-
tion works for all Metrowerks Assemblers.

Table 2.2 Preferred integer constant notation

For

numbers of Use...

this type...

Decimal A string of decimal digits, such as 12345678 .

Hexadecimal A dollar sign ($) followed by a string of hexadec-
imal digits, such as $deadbeef .

Binary A percent sign (%9 followed by a string of binary
digits, such as %01010001.

To help you port existing code, the current assemblers also support
the notation in the following table. However, some future assem-
blers may use this notation for other purposes:

ASM-14 SH Assembler Reference

Assembler Syntax
Constant Syntax

Table 2.3 Alternate integer constant notation

For
numbers of Use...
this type...

Hexadecimal 0x followed by a string of hexadecimal digits,
such as Oxdeadbeef .

Hexadecimal 0 followed by a string of hexadecimal digits,
such as Odeadbeef , and ending with an h, such

as Odeadbeefh .

Decimal A string of decimal digits followed by d, such as
12345678d .

Binary A string of binary digits followed by a b, such as
01010001b .

Note that the Metrowerks assemblers store and manipulate integer
constants using 32-bit signed arithmetic.

Floating Point Constants

You can specify floating point constants in either hexadecimal or
decimal format. A floating point constant in decimal format must
contain either a decimal point or an exponent, e.g. 1E-10 or 1.0 .

You can use floating point constants only in data generation direc-
tives like .float and .double , or in floating point instructions.
You cannot use them in expressions.

Character Constants

A character constant must be enclosed in single quotes, and can be
up to 4-characters wide depending on the context; for example, ‘A" ,
'‘ABC' , and 'TEXT".

To specify a single quote (') within a character constant, use two
single quote characters; for example, 'IT'S' . A character constant
can also contain any of these escape sequences.

SH Assembler Reference ASM-15

Assembler Syntax
Expression Syntax

Table 2.4 Escape sequences

Sequence Description

\b Backspace

\n Line feed (ASCII character 10)
\r Return (ASCII character 13)

\t Tab

\" Double quote

\\ Backslash

\nnn Octal value of \nnn

A character constant is zero-extended to 32 bits during computa-
tion. You can use a character constant anywhere you can use an in-
teger constant.

Expression Syntax

The Metrowerks Assemblers evaluate expressions using 32-bit
signed arithmetic. They do not check for arithmetic overflow.

Since there is no common set of operators in the existing assemblers
for different processors, the Metrowerks assemblers use an expres-
sion syntax similar to the one for the C language. Expressions use
the C language arithmetic rules for such things as parentheses and
associativity, and they use the same operators.

All the Metrowerks Assemblers support the operators listed in these
tables:

ASM-16 SH Assembler Reference

Assembler Syntax
Expression Syntax

Table 2.5 Binary operators

Operator Description

+ add

- subtract

* multiply

/ divide

% modulo

I logical OR

&& logical AND

| bitwise OR

& bitwise AND

n bitwise XOR

<< shift left

>> shift right (zeros are shifted into high order bits)
== equal to

I= not equal to

<= less than or equal to

>= greater than or equal to
< less than

> greater than

SH Assembler Reference ASM-17

Assembler Syntax
Expression Syntax

Table 2.6 Unary operators

Operator Description

+ unary plus
- unary minus

~ unary bitwise complement

All the current Metrowerks Assemblers also allow the operations
listed in Table 2.7. However, some future assemblers may reserve
these operators for other purposes.

Table 2.7 Alternate operators

Operator Description

<> not equal to
I modulo

! logical OR
Il logical XOR

ASM-18 SH Assembler Reference

Assembler Syntax
Forward Equate Syntax

The operators have the following precedence, with the highest pri-

ority first:

1. unary + - ~
2. * %

3. binary + -
4, << >>

5. < <= > >=
6. == I=

7. &

8. A

9. |

10. &&

11. I

Forward Equate Syntax

The Metrowerks Assemblers allow forward equates: This lets you
refer to a symbol in a file before it is defined. When an assembler
comes across an expression it cannot resolve because the expression
references a symbol whose value is not known, the assembler re-
tains the expression and marks it as unresolved. After the assembler
reads the whole file, it re-evaluates unresolved expressions and, if
necessary, repeatedly re-evaluates them until it resolves them all or
it cannot resolve them any further. If the assembler cannot resolve
an expression, it raises an error.

However, the assembler must be able to immediately resolve any
expression whose value affects the location counter.

NOTE: Note that if the assembler can make a reasonable as-
sumption about the location counter, the expression is allowed.
For example, in a forward branch instruction for a 68K processor,
you can specify a default assumption of 8, 16, or 32 hits.

SH Assembler Reference ASM-19

Assembler Syntax
Data Alignment

Thus, the code in Listing 2.5 is allowed.

Listing 2.5 Valid forward equate

Jong alloc_size
alloc_size .set rec_size +4
; a valid forward equate on next line
rec_size .set table start-table end

table_start:

taioié_end:

However, the code in the following example is not allowed. The as-
sembler cannot immediately resolve the expression in the .space
directive, so the effect on the location counter is unknown.

Listing 2.6 Invalid forward equate

;invalid forward equate on next line
rec_size .set table_start-table end
.space rec_size
table_start:

taioié_end:

Data Alignment

By default, all data is aligned on a natural boundary for the data size
and for the target processor family. You may turn off alignment
with the alignment argument to the .option directive, described

in “option.”

An assembler does not align data automatically in the .debug sec-
tion. For more information on the .debug section, see “Debugging
Directives.”

ASM-20 SH Assembler Reference

Assembler Syntax
Data Alignment

SH Assembler Reference ASM-21

Assembler Syntax
Data Alignment

ASM-22 SH Assembler Reference

A

meem. USINg Macros

This chapter describes how to define and use macros.

Using Macros Overview

The Metrowerks Assemblers let you use the same macro language
for any of the target processors. Note that the macro language is
broadly similar to Hitachi assembler syntax with some extensions.
This chapter describes the following:

= Defining Macros

= |Invoking Macros

Defining Macros

This section describes how to define a macro. It tells you about the
following:

< Macro Definition Syntax

= Using Macro Arguments

« Referring to the Number of Arguments

e Creating Unique Labels

Macro Definition Syntax

A macro definition is a sequence of assembly statements that defines
the name of a macro, the format of its call, and the assembly state-
ments to process when it’s invoked. It looks like this:

SH Assembler Reference ASM-23

Using Macros
Defining Macros

Listing 3.1 A macro definition
name: .macro [paraml]| param2]. ..
; macro body
.endm
The name is a label used to invoke the macro. You can include an op-
tional list of parameters, like paraml and param2, which are oper-
ands passed to the macro and are used in the macro body. The macro
body consists of assembler statements that are substituted for a
macro call when you invoke the macro.
The macro definition must end with .endm . If you want to stop
macro processing before .endm is reached (for example, the macro
may contain conditional assembly), use .mexit
Using Macro Arguments
You can refer to parameters directly by name. Here is the setup
macro, which moves an integer into dO and branches to the label
_final_setup
Listing 3.2 The setup macro
setup: .macro name

mov.l #name, r0
bsr _final_setup

.endm
If you invoke it like this:
Listing 3.3 Calling setup
setup 'VECT'

It’s expanded like this:

ASM-24 SH Assembler Reference

Using Macros
Defining Macros

Listing 3.4 Expanded setup

MOV.L #VECT', RO
BSR _set it up_

When you refer to named macro parameters in the macro body, you
can precede or follow the macro parameter with &&. This lets you
embed the parameter in a string. For example, here is the smallnum
macro, which creates a small float by appending the string E-50 to
the macro’s argument:

Listing 3.5 The smallnum macro

smallnum: .macro mantissa
float mantissa&&E-50
.endm

If you invoke it like this:

Listing 3.6 Invoking smallnum

smallnum 10

It’s expanded like this:

Listing 3.7 Expanding smallnum

float 10E-50

Creating Unique Labels

You can generate unique labels within a macro with the symbol \@.
Each time you invoke the macro, the assembler generates a unique
symbol of the form ??nnnn, such as ??0001 , or 7?0002 each time

the macro is called.

SH Assembler Reference ASM-25

Using Macros
Defining Macros

Also, a local label, which is any label that begins with @ has a scope
which is restricted to only the expansion of the macro. For more in-
formation, see “Symbol Scope.”

Unique labels and symbols (those that use \@) are referred to in
your code with the same methods used for regular labels and sym-
bols. The \@ sequence gets replaced by a unique string which is in-
cremented each time the macro is invoked.

Listing 3.8 Unique label macro

my_macro: .macro
foo\@ = my_count
my_count .set my_count + 1
add fred\@, r1
bra label\@
add r1,r2
labe\@:
nop
.endm

If the macro in Listing 3.8 is called twice (with my_count initialized
to 0), it gets assembled into something like Listing 3.9.

ASM-26 SH Assembler Reference

Using Macros
Invoking Macros

Listing 3.9 Unique label assembler output
0x00000000: foo??0000 = my_count
0x00000001: my_count .set my count+ 1
0x00000008: add fred??0000, r1
0x0000000c: bra label??0000
0x00000010: add ri1,r2
0x00000014: label??0000
0x00000014: nop
0x00000000: my_macro
0x00000000: fred??0001 = my_count
0x00000001: my_count .set my count+ 1
0x00000008: add fred??0001, r1
0x0000000c: bra label??0001
0x00000010: add ri1,r2
0x00000014: label??0001
0x00000014: nop
0x00000000:

Referring to the Number of Arguments

To refer to the number of non-null arguments passed to a macro,
use the special symbol narg . You can use it only during macro ex-

pansion.

Invoking Macros

Listing 3.10

To invoke a macro, simply use its name in your assembler listing.

When invoking a macro, you must separate parameters with com-
mas. To pass a parameter that includes a comma, enclose the param-
eter in angle brackets. For example, here is a statement that calls a

macro named moveit , that expands to the mov.|

instruction

Invoking moveit with an argument that contains commas

moveit.l <@(1020,pc)>, r15

SH Assembler Reference ASM-27

Using Macros
Invoking Macros

ASM-28 SH Assembler Reference

A

memm. USIng Directives

This chapter describes the directives that are available in any
Metrowerks Assembler.

Using Directives Overview

This chapter documents how to use assembler directives in a
Metrowerks Assembler. Some directives are not available in every
assembler. The directive’s description notes which assemblers sup-
port the directive.

By default, directives must begin with a period (.). However if you
turn off the Directives begin with "' option in the Assembler set-
tings panel, you can leave out the period.

The rest of this chapter lists the directives, arranged in these catego-
ries:

« Macro Directives

Conditional Preprocessor Directives

Section Control Directives

Scope Control Directives

Symbol Definition Directives

Data Declaration Directives

Assembler Control Directives

Debugging Directives

SH Assembler Reference ASM-29

Using Directives
Macro Directives

Macro Directives

The following directives let you create macros. For more informa-
tions on macros, see “Using Macros Overview.”

= macro -begins a macro definition.
< endm-ends a macro definition.

= mexit —terminates a macro’s expansion before it reaches
endm.

macro

label .macro[paraml, param2...]

Begins the definition of a macro named label, with the specified pa-
rameters.

endm

.endm
Ends a macro definition.

mexit

.mexit

Ends the expansion of macro before it reaches .endm..

ASM-30 SH Assembler Reference

Using Directives
Conditional Preprocessor Directives

Conditional Preprocessor Directives

Conditional directives create a conditional assembly block. If you
wrap some code with .ifdef and .endif you can control
whether that code is included in compilation. This is useful for mak-
ing several different builds that are slightly different.

You must use conditional directives together to form a complete
block. The Metrowerks Assemblers also contain several variations
of .if to make it easier to make blocks that test strings for equality,
test whether a symbol is defined, and more. Here are the directives.

= if —begins conditional assembly and uses any Boolean ex-
pression.

= ifdef —begins conditional assembly and tests whether a
symbol is defined.

= ifndef —begins conditional assembly and tests whether a
symbol is not defined.

= ifc _-begins conditional assembly and tests whether two
strings are equal.

= ifnc _-begins conditional assembly and tests whether two
strings are not equal.

= endif —ends conditional assembly.

e glseif —marks another test to make, if the first test returned
false.

= ¢elif —marks another test to make, if the first test returned

false. This is just like elseif .

« else —marks statements to execute if none of the tests suc-
ceeded.

= ifeq ifne iflt ifle ifgt ifge —are additional condi-
tional assembly statements for backwards compatibility.

SH Assembler Reference ASM-31

Using Directives
Conditional Preprocessor Directives

Jif bool-expr

Specifies the beginning of conditional assembly, where bool-expr is a
boolean expression. If bool-expr is true, the assembler processes the
statements associated with the .if directive. If bool-expr is false, the
assembler skips the statements associated with the .if directive.

Each .if directive must have a matching .endif directive.

NOTE: A boolean expression is a special type of arithmetic ex-
pressions. A boolean expression that evaluates to zero result is in-
terpreted as false, and a boolean expression that evaluates to a
nonzero result is interpreted as true. For more information on ex-
pressions, see “Expression Syntax.”

ifdef
ifdef symbol

Specifies the beginning of conditional assembly, where symbol is a
the name of a symbol that has been defined. If name has been previ-
ously defined, the assembler processes the statements associated
with the .ifdef directive. If name has not been previously defined,
the assembler skips the statements associated with the .ifdef di-
rective.

Each .ifdef directive must have a matching .endif directive.

ifndef
.ifndef symbol

Specifies the beginning of conditional assembly, where symbol is the
name of a symbol that has not been defined. If name has not been
previously defined, the assembler processes the statements associ-
ated with the .ifndef directive. If name has been previously de-
fined, the assembler skips the statements associated with the .ifn-
def directive.

ASM-32 SH Assembler Reference

Using Directives
Conditional Preprocessor Directives

Each .ifndef directive must have a matching .endif directive.
ifc

Jdfc stringl, string2
Specifies the beginning of conditional assembly, where stringl and
string2 are two strings that are equal. The comparison is case-sensi-
tive. If the strings are equal, the assembler processes the statements

associated with the .ifc directive. If the strings are not equal, the
assembler skips the statements associated with the .ifc directive.

Each .ifc directive must have a matching .endif directive.

ifnc

ifnc stringl, string2

Specifies the beginning of conditional assembly, where stringl and
string2 are two strings that are not equal. The comparison is case-
sensitive. If the strings are not equal, the assembler processes the
statements associated with the .ifnc directive. If the strings are
equal, the assembler skips the statements associated with the .ifnc
directive.

Each .ifnc directive must have a matching .endif directive.

endif

.endif
Marks the end of conditional assembly. Each type of .if ~ directive
must have a matching .endif directive.
elseif

.elseif bool-expr
Marks the beginning of conditional assembly statements to be pro-
cessed if the Boolean expression for an .if directive and the pre-
ceding .elseif directives are false, but the bool-expr in this

.elseif statement is true. An .if directive does not need an
.elseif directive.

SH Assembler Reference ASM-33

Using Directives

Conditional Preprocessor Directives

If the Boolean expression for an .if directive is false, the assembler
skips the statements associated with the .if directive and evaluates
the Boolean expression for the first .elseif directive. If that Bool-
ean expression is true, the assembler processes the statements asso-
ciated with that .elseif statement. Otherwise, it evaluates the
Boolean expression in the next .elseif ~ statement. The assembler
continues evaluating the Boolean expressions in succeeding

.elseif statement until it comes to a Boolean expression that eval-
uates to true. If none of the .elseif ~ directives in the .if -.endif
block have a Boolean expression that evaluates to true, the assem-
bler processes the statements associated with the block’s .else
statement, if there is one.

elif
.elif bool-expr
This is the same as elseif.

else

.else
Marks the beginning of conditional assembly statements to be pro-
cessed if the Boolean expression for an .if directive and its associ-

ated .elseif directives are false. An .if directive does not need
an .else directive.

ifeq ifne iflt ifle ifgt ifge

.ifeq ; if equal

.ifne ; if not equal

flt ; if less than

.ifle ; if less than or equal
ifgt ; if greater than

ifge ; if greater than or equal

For compatibility with other assemblers, these directives are also
supported.

ASM-34 SH Assembler Reference

Using Directives
Section Control Directives

Section Control Directives

These directives mark the different sections of an assembly file. All
are available in all current Metrowerks Assemblers, but some future
assemblers may not support all of them.

text —specifies an executable code section.

data —specifies an initialized read-write data section.
rodata —specifies an initialized read-only data section.
bss —specifies an uninitialized read-write data section.
sdata —specifies a small initialized read-write data section.
sdata2 -specifies small initialized read-only data section.
sbss —specifies a small uninitialized read-write data section.
debug —specifies a debug section.

previous -reverts to the previous section.

offset _—defines a record.

section -specifies a section of any type.

text

text

Specifies an executable code section. This must be in front of the ac-
tual code in a file.

data

.data

Specifies an initialized read-write data section.

rodata

.rodata

Specifies an initialized read-only data section.

SH Assembler Reference ASM-35

Using Directives
Section Control Directives

bss

.bss
Specifies an uninitialized read-write data section.

sdata

.Sdata
Specifies a small initialized read-write data section.

sdata2
.sdata2

Specifies a small initialized read-only data section.

shss

.Sbss
Specifies a small uninitialized read-write data section.

debug
.debug

Specifies a debug section. If you enable the debugger, the assembler
automatically generates some debug information for your project.
However, you use special directives in the debug section that pro-
vide the debugger with more detailed information. For more infor-
mation on the debug directives, see “Debugging Directives.”

previous

.previous

Reverts to the previous section. This switch toggles between the cur-
rent section and the previous section.

ASM-36 SH Assembler Reference

Using Directives
Section Control Directives

offset
.offset [expr]
Defines a record. The optional parameter expr specifies the initial lo-

cation counter. The record definition extends until the start of the
next section. Within a record, you can use only the following direc-

tives:
.equ set textequ
.align .org .Space
.byte .short Jong
.space .ascii .asciz
float .double

The data declaration directives (like .byte and .short) don’t allo-
cate any storage. They just update the location counter.

Here is a sample record definition:

Listing 4.1 A record definition with the offset directive

.offset
top: short 0O
left: .short O
bottom: short 0O
right: short O
rectSize .equ *

section

.section name[, alignment][type [flags |
Specifies a section of name name with type type. Use this general
form to create arbitrary relocatable sections, including sections to be

loaded at an absolute address. These are the arguments to .section.
Note that only the name argument is required.

= The name is the name of the section. It can be an symbol.

= The type and flags are both numeric, being the ELF section
type/flags. The defaults for these fields are the type and flags

SH Assembler Reference ASM-37

Using Directives
Section Control Directives

for the code section. The following example specifies a sec-
tion named vector with an alignment of 4 bytes:

.section vector,4

The possible ELF section types are defined in Table 4.1, and
the possible ELF section flags are defined in Table 4.2.

Table 4.1 ELF Section Types

Type Name

NULL
PROGBITS
SYMTAB
STRTAB
RELA
HASH
DYNAMIC
NOTE
NOBITS
REL
SHLIB
DYNSYM

© 00 N oo o B~ W N -, O

e =
= O

ASM-38 SH Assembler Reference

Using Directives
Section Control Directives

Table 4.2 ELF Section Flags

Flag Name
0x00000001 WRITE
0x00000002 ALLOC
0x00000004 EXECINSTR
0xF0000000 MASKPROC
0x10000000 GPREL

SH Assembler Reference ASM-39

Using Directives
Scope Control Directives

Scope Control Directives

The Metrowerks Assemblers provide directives that let you use
equates outside the files they’re defined in. Equates are symbols de-
clared with .set or .equ , described in “Symbol Definition Direc-
tives”. These are the directives:

= global -declares that equates are exported.
= extern -declares that equates are imported.

= public -declares that equates are public.

global
.global equate [, equate]...
Declares that the listed equates are exported, that is, available to

other files. Equates are symbols declared with .set or .equ , de-
scribed in “Symbol Definition Directives”.

Use the .extern or .public directive to reference the symbols in
another file.

You cannot export labels.

extern
.extern equate [, equate]...
Declares that the listed equates are imported: available to this file

but defined in another file. Equates are symbols declared with .set
or .equ , described in “Symbol Definition Directives”.

Use the .global or.public directive to export the symbols from
another file.

You cannot import labels.

public
.public equate [, equate]...

Declares that the listed equates are public. If the equates are already
defined, the assembler exports them, that is, makes them available

ASM-40 SH Assembler Reference

Using Directives
Symbol Definition Directives

to other files. If the equates are not already defined, the assembler
imports them, that is, makes them available to this file but defined
in another file

Equates are symbols declared with .set or .equ , described in
“Symbol Definition Directives”. You cannot import labels.

Symbol Definition Directives

The following directives let you create equates:
= set —temporarily assigns a value to a symbol.

= equal sign (=)-temporarily assigns a value to a symbol and is
available for compatibility with other assemblers.

= egu—permanently assigns a value to a symbol.

- textequ —defines a symbol that is substituted for some arbi-
trary text.

set

symbol .set expr
Temporarily assigns the value expr to the symbol equate. You may
change equate’s value later. The symbol equate appears in the label
field of the line, and the value expr appears in the operand field.
equal sign (=)

symbol = expr
Temporarily assigns the value expr to the symbol symbol. You may

change symbol’s value later. The symbol symbol appears in the label
field of the line, and the value expr appears in the operand field.

This directive is equivalent to .set , and is available only for com-
patibility with other company’s assemblers. Some future assemblers
may not support this directive.

SH Assembler Reference ASM-41

Using Directives
Symbol Definition Di

rectives

Listing 4.2

equ
symbol .equ expr
Permanently assigns the value expr to the symbol symbol. You can-
not change symbol’s value. The symbol symbol appears in the label
field of the line, and the value expr appears in the operand field.
textequ
symbol .textequ " string"
Defines a symbol symbol that is substituted with any arbitrary text

string. This directive helps you port existing code by letting you
give new names to machine instructions, directives, and operands.

Whenever you use symbol, the assembler replaces it with string be-
fore performing any other processing on that source line. Here are
some useful examples.

Some textequ examples

dc.b .textequ ".byte"
endc .textequ ".endif"

ASM-42 SH Assembler Reference

Using Directives
Data Declaration Directives

Data Declaration Directives

The Metrowerks Assembler has directives that initialize data. They
are split into three sections:

= “Integer type declarations”
— byte —declares an initialized block of bytes.

— short —declares an initialized block of 16-bit short inte-
gers.

— long —declares an initialized block of 32-bit short integers.
— space —declares a block of zero-initialized bytes.
= “String type declarations”

— ascii__—declares a block of storage for a string.

— asciz _-declares a zero-terminated block of storage for a
string.

= “Floating point type declarations”

— float _—declares an initialized block of 32-bit floating-
point numbers.

— double —declares an initialized block of 64-bit floating-
point numbers.

Integer type declarations

These directives initialize blocks of integer data:
= byte —declares an initialized block of bytes.
= short —declares an initialized block of 16-bit short integers.
= long —declares an initialized block of 32-bit short integers.
= space —declares a block of zero-initialized bytes.
- fill __—declares a block of zero-initialized bytes.

SH Assembler Reference ASM-43

Using Directives

Data Declaration Directives

byte

[label] .byte expr[, expr]...
Declares an initialized block of bytes with the name label. The as-
sembler allocates one 8-bit byte for each expression expr. Each ex-
pression must fit in the specified size.
short

[label] .short expr[, expr]...
Declares an initialized block of 16-bit short integers with the name
label. The assembler allocates 16 bits for each expression expr. Each
expression must fit in the specified size.
long

[label] .long expr[, expr]...
Declares an initialized block of 32-bit short integers with the name

label. The assembler allocates 32 bits for each expression expr. Each
expression must fit in the specified size.

space

[label] .space expr

Declares a block of zero-initialized bytes with the name label. The as-
sembler allocates a block expr bytes long and initializes each byte to
zero.

fill

[label] fill expr

Declares a block of zero-initialized bytes with the name label. The as-
sembler allocates a block expr bytes long and initializes each byte to
ZEero.

ASM-44 SH Assembler Reference

Using Directives
Data Declaration Directives

Table 4.3

String type declarations

These directives initialize blocks of character data:
= ascii _—declares a block of storage for a string.

e asciz -declares a zero-terminated block of storage for a
string.

Note that a string can also contain any of these escape sequences.

Escape sequences

Sequence Description
\b Backspace
\n Line feed (ASCII character 10)
\r Return (ASCII character 13)
\t Tab
\" Double quote
\\ Backslash
\nnn Octal value of \nnn
ascii
[label] .ascii " string"

Declares a block of storage for the string string with the name label.
The assembler allocates an 8-bit byte for each character in string.

asciz

[label] .asciz " string"
Declares a zero-terminated block of storage for the string string with
the name label. The assembler allocates an 8-bit byte for each charac-

ter in string, and then allocates an extra block at the end that’s ini-
tialized to zero.

SH Assembler Reference ASM-45

Using Directives
Data Declaration Directives

Floating point type declarations

These directives initialize blocks of floating-point data:

- float —declares an initialized block of 32-bit floating-point

numbers.
= double -declares an initialized block of 64-bit floating-point
numbers.
float
[1abel] .float value[, value]...

Declares an initialized block of 32-bit floating-point numbers with
the name label. The assembler allocates 32 bits for each value value.
Each value must fit in the specified size.

double
[label] .double value[, value]...
Declares an initialized block of 64-bit floating-point numbers with

the name label. The assembler allocates 64 bits for each value value.
Each value must fit in the specified size.

ASM-46 SH Assembler Reference

Using Directives
Assembler Control Directives

Assembler Control Directives

These directives let you control how the assembler emits code:

« align -aligns the location counter to the next multiple of an
expression.

= endian -specifies the byte ordering for the target processor.
e error__—prints an error message.

= include —causes the assembler to switch input to another
file.

= pragma —allows you to enable and disable certain code gener-
ation capabilities.

= org —changes the location counter.
= option -sets various assembler options.

align
.align - expr

Aligns the location counter to the next multiple of the expression
expr. The expression expr must be a power of 2, such as 2, 4, 8, 16, or
32.
endian

.endian big | little
Specifies the byte ordering for the target processor. You can use this
directive only on processors that let you change the byte ordering.
error

.error " error"

Prints error to the Errors & Warnings window in the CodeWarrior
IDE.

SH Assembler Reference ASM-47

Using Directives
Assembler Control Directives

include

.include filename
Causes the assembler to switch input to filename. The assembler
takes input from the specified file until the end of the file is reached.

Then the assembler continues to take input from the assembly state-
ment line that follows the .include directive.

The file specified by filename can have an .include directive for an-
other file.
pragma

.pragma pragma-type setting
Tells the assembler to assemble the code using a given pragma set-
ting. Refer to the C Compiler Reference for a list of relevant pragma
statements.
org

.0rg expr
Changes the location counter to expr. The addresses of the following
assembly statements start at the new value of the location counter.
The value of expr must be greater than the current value of the loca-
tion counter.
option

.option keyword setting
Sets the assembler options, as described in the table below. Specify-

ing reset sets the option to it’s previous setting. Using reset a second
time resets the option to the setting before the current setting.

ASM-48 SH Assembler Reference

Using Directives
Assembler Control Directives

Table 4.4 Option keywords

This keyword

Does this

alignment offlon|reset

branchsize 8|16|32

colon offlon|reset

space off|on|reset

period off|on|reset

case offlon|reset

no_at_macros off | on

Controls whether data is aligned on natural bound-
ary. This does not correspond any option in the set-
tings panel.

Specifies the size of forward branch displacement.
This is allowed only for the x86 and 68K assemblers.
This does not correspond any option in the settings
panel

Specifies whether labels must end with a colon (2). If
it’s on, every label needs a colon. If it’s off , a labels
doesn’t need a colon if it starts in the first column.
This corresponds to the Labels must end witha "'
option, described in “Labels must end with ":".”

Specifies whether space allowed in operand field. If
it’s on, operand fields may contain spaces. If it’s

off , aspace in the operand field signals the start of
a comment. This corresponds to the Allow space in
operand field option, described in “Allow space in

operand field.”

Specifies whether a period (.) is required in directive
names. If it’s on, each directive must start with a pe-
riod. If it’s off, directives don’t need to start with pe-
riods. This corresponds to the Directives begin
with "." option, described in “Directives begin with

Specifies where identifiers are case sensitive. If it's
on, identifiers are case sensitive. If it’s off, identifiers
aren’t case sensitive. This corresponds to the Case
sensitive identifiers option, described in “Case sen-
sitive identifiers.”

If true, don't allow macros which use $AT. If false,
warn if user uses $AT.

SH Assembler Reference ASM-49

Using Directives
Assembler Control Directives

You can prevent the assembler from inserting a NOP (no operation)
instruction after jumps and branches, and instead substitute the in-
struction of your choice. To do this, specify .option reorder

off in the standalone assembler.

The standalone assembler inserts the NOP by default. However, in
the inline assembler, NOP won’t be inserted for you.

ASM-50 SH Assembler Reference

Using Directives
Debugging Directives

Debugging Directives

These directives are allowed only in the .debug section of an as-
sembly file. If you enable the debugger, the assembler automatically
generates some debug information for your project. However, you
can use these directives in the debug section to provide the debug-
ger with more detailed information.

- file —writes debugging information to a specified output
file.

= function —specifies information on a subroutine.

= line —specifies the absolute line number for the following
code.

= size -specifies the length of a symbol.
= type —specifies whether a symbol is a function or object.
file
file " filename"
Writes the debugging information for this file into filename. If this

option isn’t used, the debugging information is written to the
project file.

function
function " func”, label, length
Specifies that the subroutine func begins at label and is length bytes
long.
line
Jine number
Specifies the absolute line number in the current source file which

generated the following code or data. The first line in the file is
numbered 1.

SH Assembler Reference ASM-51

Using Directives
Debugging Directives

size

.Size symbol, expr
Specifies that symbol is of expr bytes long.
type

type symbol, type

Specifies that symbol is of type type, where type can be either
@function or @object .

ASM-52 SH Assembler Reference

A

mem. SH Assembler
Settings

This chapter describes the options you can set for the Metrowerks
Assemblers.

Assembler Settings Overview

There are several different assemblers available, one for each target
processor family. Each assembler has several options you control
through a settings panel. To modify the settings for an assembler,
choose Project Settings on the Edit menu. In the resulting dialog
box, select the name of the assembler to see its settings panel.

Figure 5.1 Assembler settings panel for SH Assembler

E SH &zzembler

_ Source Format
¥ Labelz Must End with '

W Directives Begin with "'
¥ Caze Sensitive |dentifiers
W Allow Space In Operand Field

[T Generate Listing File

Frefis File:

SH Assembler Reference ASM-53

SH Assembler Settings
The Assembler Settings Panel

All of the settings panels are very similar to that shown in Figure
5.1, which shows the SH Assembler panel. The Source format sec-
tion is the same for all.

The Assembler Settings Panel

The individual settings available to you are:
= Labels must end with "'

Directives begin with "'

Case sensitive identifiers

Allow space in operand field

Generate listing file
Prefix file

Labels must end with "'

The Labels must end with ;' option lets you choose whether labels
must end in a colon (:). If this option is on, a label must ends in a
colon (:) and can begin in any column. If this option is off, a symbol
is a label if it starts in column 1 or if it ends with a colon (:). This op-
tion is especially useful if you're porting existing code that doesn’t

follow this convention. For more information on labels, “Symbol
Syntax.”

This option is on by default. It corresponds to the colon parameter
of the .option directive, described in “option.”

Directives begin with "'

The Directives begin with "' option lets you choose whether you
must put a period at the beginning of each directive name. If this
option is on, a directive must begin with a period (.). If you turn this
option off, you can leave out the period. For more information on
directives, see “Using Directives Overview.”

This option is on by default. It corresponds to the period parame-
ter of the .option directive, described in “option.”

ASM-54 SH Assembler Reference

SH Assembler Settings
The Assembler Settings Panel

Case sensitive identifiers

The Case sensitive identifiers option lets you choose whether sym-
bols are case-sensitive. If the option is on, symbols are case sensi-
tive, so SYM1 syml, and Sym1lare three different symbols, for ex-
ample. If the option is off, symbols are not case-sensitive, so SYM1
syml, and Symlare the same symbol, for example. For more infor-
mation on symbols, see “Symbol Syntax.”

Note that instruction, directive, and macro names are always case
insensitive, regardless of this option’s setting.

This option is on by default. It corresponds to the case parameter
of the .option directive, described in “option.”

Allow space in operand field

The Allow space in operand option lets you choose if you can start
a comment with a space in the operand field. If you turn this option
on, spaces in the operand field are allowed. If you turn off this op-
tion, it ignores any text between a space character in the operand
field and the end of the line. For more information on comments,
see “Statement Syntax.”

This option is on by default. It corresponds to the space parameter
of the .option directive, described in “option.”

Generate listing file

The Generate listing file option creates a text file that lets you com-
pare your source code with the machine code the assembler pro-
duced. If you turn this option on, it creates a listing file using the

source name and “list ’. For example, test.asm becomes
test.asm.list . If you turn this option off, it doesn’t create a list-
ing file.

This option is off by default.
Prefix file

The Prefix file field lets you specify a file that the assembler pro-
cesses before every assembly file in your project. It’s as though you

SH Assembler Reference ASM-55

SH Assembler Settings
The Assembler Settings Panel

put the same .include directive at the beginning of every assembly
file.

This field is blank by default.

ASM-56 SH Assembler Reference

Index

Symbols

= (equal sign) symbol definition directive 41
@ (unique label symbol) 25
@ symbol 11

A

align assembler control directive 47
alignment keyword 49
Allow space in operand field 9
Alternate operators 18
ascii data declarative directive 45
asciz data declarative directive 45
Assembler Control Directives

align 47

endian 47

error 47

include 48

option 48

org 48

pragma 48
assembler control directives 47-49
at-sign (@) 10

B

Binary operators 17
branchsize keyword 49
byte data declarative directive 44

C

case keyword 49
Case sensitive identifiers 9, 49, 55
Character Constants 15
colon keyword 49
Comments statement syntax 8
Conditional Directives

elif 34

else 34

elseif 33

endif 33

if 32

ifc 33

ifdef 32

ifeq 34

ifge 34

ifgt 34

ifle 34

iflt 34

ifnc 33

ifndef 32
ifne 34

conditional directives 31-34

D

Data Declarative Directives

ascii 45

asciz 45

byte 44

double 46

fill 44

float 46

long 44

short 44

space 44
data declarative directives 43-46
data section control directive 35
debug 20
debug section control directive 36
Debugging directives

file 51

function 51

line 51

size 52

type 52
debugging directives 51-52
defining macros 23-27
Directives begin with '." 29, 49, 54
double data declarative directive 46

E

ELF 37

elif conditional directive 34

else conditional directive 34

elseif conditional directive 33
endian assembler control directive 47

SH Assembler Reference ASM-57

Index

endif conditional directive 33 Labels must end with '
endmdirective 30 ' 8,54
equ symbol definition directive 42 Labels must end with a"
equate 9 ' 49
error assembler control directive 47 labels, creating unique 25-??
extern 12 line debugging directive 51
extern scope control directive 40 literal 6

local label 10
F label, local 10

fle debugging directive 51 long data declarative directive 44

fill data declarative directive 44 M
float data declarative directive 46
Floating Point Constants 15 macro body 24
forward equate 10 macro definition 23
forward equates 19 macro directive 30
function debugging directive 51 macro directives 30
metasymbol 6
G mexit directive 30
Generate listing file 55 N
global 10,11
global equate 10 name 24
global scope control directive 40
O
I offset section control directive 37
if conditional directive 32 Operands statement syntax 8
ifc conditional directive 33 Operation statement syntax 8
ifdef conditional directive 32 option 20
ifeq conditional directive 34 option assembler control directive 48
ifge conditional directive 34 Option keywords

alignment 49

ifgt conditional directive 34 .
branchsize 49

ifle conditional directive 34

iflt conditional directive 34 case 49

i diti | directive 33 colon 49
!nc con ||o_n_a |re€: |ve_ period 49
ifndef conditional directive 32 space 49

ifne conditional directive 34

include assembler control directive 48
Integer Constants 14 P
invoking macros 27-??

org assembler control directive 48

period keyword 49
L pragma assembler control directive 48
Prefix file 55
previous section control directive 36
pss section control directive 36

label 8,9
Label statement syntax 8

ASM-58 SH Assembler Reference

Index

public 10, 12

public scope control directive 40
R

rodata section control directive 35
S

sbss section control directive 36
Scope Control Directives

extern 40
global 40
public 40

scope control directives 40-41
sdata section control directive 36
sdata2 section control directive 36
Section Control Directives

data 35

debug 36

offset 37

previous 36

pss 36

rodata 35

sbss 36

sdata 36

sdata2 36

section 37

text 35
section control directives 35-38
section section control directive 37
set symbol definition directive 41
SH Assembler panel 54
short data declarative directive 44
size debugging directive 52
space data declarative directive 44
space keyword 49

symbol 9

Symbol Definition Directives
= (equal sign) 41
equ 42
set 41
textequ 42

symbol definition directives 41-42
symbol scope 10-13
syntax

Comments 8

Label 8

Operands 8

Operation 8
syntax, constant 14-16
syntax, expression 16-19
syntax, forward equate 19-??
syntax, statement 7-9
syntax, symbol 9

T

text section control directive 35

textequ symbol definition directive 42

type debugging directive 52

U

Unary operators 18

SH Assembler Reference ASM-59

Index

ASM-60 SH Assembler Reference

	Introduction
	Overview of the Assembler Manual
	What Are the Metrowerks Assemblers
	Conventions Used in This Manual
	Where to Learn More

	Assembler Syntax
	Assembler Syntax Overview
	Statement Syntax
	Symbol Syntax
	Symbol Scope
	Local Labels
	Global Equates
	Relocatable Labels

	Constant Syntax
	Integer Constants
	Floating Point Constants
	Character Constants

	Expression Syntax
	Forward Equate Syntax
	Data Alignment

	Using Macros
	Using Macros Overview
	Defining Macros
	Macro Definition Syntax
	Using Macro Arguments
	Creating Unique Labels
	Referring to the Number of Arguments

	Invoking Macros

	Using Directives
	Using Directives Overview
	Macro Directives
	Conditional Preprocessor Directives
	Section Control Directives
	Scope Control Directives
	Symbol Definition Directives
	Data Declaration Directives
	Integer type declarations
	String type declarations
	Floating point type declarations

	Assembler Control Directives
	Debugging Directives

	SH Assembler Settings
	Assembler Settings Overview
	The Assembler Settings Panel

	Index

