

Hitachi Microcomputer
Support Software

SH Series Cross Assembler

Hitachi Microcomputer Support
Software

SH Series Cross Assembler

Notice

When using this document, keep the following in mind:

1. This document may, wholly or partially, be subject to change without notice.

2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the
whole or part of this document without Hitachi’s permission.

3. Hitachi will not be held responsible for any damage to the user that may result from
accidents or any other reasons during operation of the user’s unit according to this document.

4. Circuitry and other examples described herein are meant merely to indicate the
characteristics and performance of Hitachi’s semiconductor products. Hitachi assumes no
responsibility for any intellectual property claims or other problems that may result from
applications based on the examples described herein.

5. No license is granted by implication or otherwise under any patents or other rights of any
third party or Hitachi, Ltd.

6. MEDICAL APPLICATIONS: Hitachi’s products are not authorized for use in MEDICAL
APPLICATIONS without the written consent of the appropriate officer of Hitachi’s sales
company. Such use includes, but is not limited to, use in life support systems. Buyers of
Hitachi’s products are requested to notify the relevant Hitachi sales offices when planning to
use the products in MEDICAL APPLICATIONS.

i

Contents

Preface1

Overview.... ...3

Section 1 Overview ..5

Section 2 Relationships between the Software
Development Support Tools ...7

Programmer’s Guide ..9

Section 1 Program Elements...10
1.1 Source Statements.. 10

1.1.1 Source Statement Structure ... 10
1.1.2 Coding of Source Statements .. 11
1.1.3 Coding of Source Statements across Multiple Lines.. 12

1.2 Reserved Words... 13
1.3 Symbols ... 17

1.3.1 Functions of Symbols.. 17
1.3.2 Coding of Symbols ... 18

1.4 Constants ... 20
1.4.1 Integer Constants .. 20
1.4.2 Character Constants .. 21
1.4.3 Floating-Point Numbers .. 22
1.4.4 Fixed-Point Numbers .. 25

1.5 Location Counter ... 27
1.6 Expressions.. 29

1.6.1 Elements of Expression... 29
1.6.2 Operation Priority ... 31
1.6.3 Detailed Description on Operation .. 34
1.6.4 Notes on Expressions .. 36

1.7 Character Strings.. 37
1.8 Local Label.. 38

1.8.1 Local Label Functions .. 38
1.8.2 Description Method of Local Label... 39
1.8.3 Scope of Local Labels... 39

Section 2 Basic Programming Knowledge..40
2.1 Sections ... 40

ii

2.1.1 Section Types by Usage.. 40
2.1.2 Absolute Address Sections and Relative Address Sections.................................. 44

2.2 Absolute and Relative Values .. 46
2.2.1 Absolute Values.. 46
2.2.2 Relative Values... 46

2.3 Symbol Definition and Reference .. 47
2.3.1 Symbol Definition .. 47
2.3.2 Symbol Reference... 48

2.4 Separate Assembly... 50
2.4.1 Separate Assembly.. 50
2.4.2 Declaration of Export Symbols and Import Symbols... 51

Section 3 Executable Instructions...53
3.1 Overview of Executable Instructions.. 53
3.2 Notes on Executable Instructions ... 59

3.2.1 Notes on the Operation Size.. 59
3.2.2 Notes on Delayed Branch Instructions .. 70
3.2.3 Notes on Address Calculations.. 72

Section 4 Assembler Directives..77
4.1 Overview of the Assembler Directives ... 77
4.2 Assembler Directive Reference.. 79

4.2.1 Target CPU Assembler Directive.. 79
4.2.2 Section and Location Counter Assembler Directives... 81
4.2.3 Symbol Handling Assembler Directives.. 90
4.2.4 Data and Data Area Reservation Assembler Directives 98
4.2.5 Export and Import Assembler Directives .. 128
4.2.6 Object Module Assembler Directives.. 135
4.2.7 Assemble Listing Assembler Directives.. 145
4.2.8 Other Assembler Directives .. 160

Section 5 File Inclusion Function...167

Section 6 Conditional Assembly Function..171
6.1 Overview of the Conditional Assembly Function ... 171

6.1.1 Preprocessor variables .. 171
6.1.2 Replacement Symbols... 172
6.1.3 Conditional Assembly... 173
6.1.4 Iterated Expansion .. 175
6.1.5 Conditional Iterated Expansion... 175

6.2 Conditional Assembly Directives ... 177
.ASSIGNA Integer Preprocessor Variable Definition (Redefinition Is Possible) 178
.ASSIGNC Character Preprocessor Variable Definition (Redefinition Is Possible)...... 180

iii

.DEFINE Definition of Preprocessor Replacement Character String 182

.AIF,.AELIF,.AELSE,.AENDI Conditional Assembly with Comparison 184

.AIFDEF, .AELSE,.AENDI Conditional Assembly with Definition............................ 186

.AREPEAT,.AENDR Iterated Expansion... 188

.AWHILE, .AENDW Conditional Iterated Expansion .. 190

.AERROR Error Generation During Preprocessor Expansion...................................... 192

.EXITM Expansion Termination... 193

.ALIMIT Maximum Count Specification for .AWHILE Expansion in Preprocessor ... 195

Section 7 Macro Function...197
7.1 Overview of the Macro Function.. 197
7.2 Macro Function Directives... 199

.MACRO,.ENDM Macro Definition ... 200

.EXITM Expansion Termination... 203
7.3 Macro Body ... 204
7.4 Macro Call ... 208
7.5 Character String Manipulation Functions ... 210

.LEN Character String Length Count.. 211

.INSTR Character String Search ... 212

.SUBSTR Character Substring Extraction... 213

Section 8 Automatic Literal Pool Generation Function...................................215
8.1 Overview of Automatic Literal Pool Generation .. 215
8.2 Extended Instructions Related to Automatic Literal Pool Generation 215
8.3 Size Mode for Automatic Literal Pool Generation.. 216
8.4 Literal Pool Output .. 217

8.4.1 Literal Pool Output after Unconditional Branch .. 218
8.4.2 Literal Pool Output to the .POOL Location... 218

8.5 Literal Sharing ... 219
8.6 Literal Pool Output Suppression... 220
8.7 Notes on Automatic Literal Pool Output .. 221

Section 9 SH-DSP Instructions...225
9.1 Program Contents... 225

9.1.1 Source Statements... 225
9.1.2 Parallel Operation Instructions.. 225
9.1.3 Data Move Instructions... 226
9.1.4 Coding of Source Statements Across Multiple Lines... 227

9.2 DSP Instructions.. 228
9.2.1 DSP Operation Instructions... 228
9.2.2 Data Move Instructions... 232

9.3 Notes on Executable Instructions ... 236

iv

User’s Guide..238

Section 1 Executing the Assembler ..239
1.1 Command Line Format .. 239
1.2 File Specification Format... 240
1.3 SHCPU Environment Variable... 241

Section 2 Command Line Options..243
2.1 Overview of Command Line Options... 243
2.2 Command Line Option Reference.. 245

2.2.1 Target CPU Command Line Option.. 245
2.2.2 Object Module Command Line Options.. 246
2.2.3 Assembly Listing Command Line Options.. 250
2.2.4 File Inclusion Function Command Line Option .. 259
2.2.5 Conditional Assembly Command Line Options .. 261
2.2.6 Assembler Execution Command Line Option ... 264
2.2.7 Japanese Character Description Command Line Options 267
2.2.8 Automatic Literal Pool Generation Command Line Option................................. 271
2.2.9 Command Line Input Command Line Option ... 273

Appendix ... 275

Appendix A Limitations and Notes on Programming277

Appendix B Sample Program...279
B.1 Sample Program Specifications ... 279
B.2 Coding Example.. 280

Appendix C Assemble Listing Output Example ...283
C.1 Source Program Listing... 284
C.2 Cross-Reference Listing .. 285
C.3 Section Information Listing... 286

Appendix D Error Messages ..289
D.1 Error Types ... 289
D.2 Error Message Tables.. 292

Appendix E Differences from Former Version...313
E.1 CPU .. 313
E.2 Constants... 314
E.3 Added Assembler Directives ... 314
E.4 Automatic Literal Pool Generation .. 314
E.5 Added Command Line Option... 315

v

E.6 Tag File Output ... 315

Appendix F ASCII Code Table ..317

Supplement 318

Supplement 1 Extended Instruction REPEAT for SH-DSP.............................319
1.1 REPEAT Description ... 319
1.2 Coding Examples... 320
1.3 Notes on Extended Instruction REPEAT.. 322

Supplement 2 Error Messages Related to REPEAT ..325

vi

1

Preface

This manual describes the SH Series Cross Assembler, which supports development of software
for Hitachi Super H RISC Engine Family (hereafter referred to as SH microprocessor).

This manual is organized as follows:

Overview: Gives an overview of the functions of the assembler.
Programmer’s Guide: Describes the assembly language syntax and programming

techniques.
User’s Guide: Describes the use (invocation) of the assembler program itself and

the command line options.
Appendix: Describes assembler limitations and error messages.

Read the following manuals before use of the assembler.

For information concerning the SH microprocessor hardware, refer to the hardware manual of
the microprocessor.

For information concerning the SH microprocessor executable instructions, refer to the
programming manual of the microprocessor.

For information concerning software development support tools:

“SH Series C Compiler User’s Manual”
“H Series Linkage Editor User’s Manual”
“H Series Librarian User’s Manual”
“SH Series Simulator/Debugger User’s Manual”

Notes:

The following symbols have special meanings in this manual.

• <item>: <specification item>

• ∆: Blank space(s) or tab(s)

• %: The OS prompt (indicates the input waiting state)

• (RET): Press the Return (Enter) key.

• ... : The preceding item can be repeated.

• []: The enclosed item is optional (i.e., can be omitted.)

• Numbers are written as follows in this manual.

• Binary: A prefix of “B’ ” is used.

• Octal: A prefix of “Q’ ” is used.

• Decimal: A prefix of “D’ ” is used.

2

• Hexadecimal: A prefix of “H’ ” is used.

• However, when there is no specification, the number without a prefix is decimal.

UNIX is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

MS-DOS is an operating system administrated by the Microsoft Corporation (United States).

SPARC is a CPU and workstation administrated by SPARC International, Inc.
HP9000/700 series is a trademark of Hewlett-Packard Company.
NEWS is a trademark of Sony Corporation.
PC-9800 series is a trademark of NEC Corporation.
IBM PC is a registered trademark of International Business Machines Corporation.

3

Overview

4

5

Section 1 Overview

The “SH Series Cross Assembler” (referred to below as the (or this) assembler) converts source
programs written in assembly language into a format that can be handled by SH
microprocessors, and outputs the result as an object module. Also, the results of the assembly
processing are output as an assemble listing.

This assembler provides the following functions to support efficient program development:

• Assembler directives

Give the assembler various instructions.

• File inclusion function

Includes files into a source file.

• Conditional assembly function

Selects source statements to be assembled or repeats assembly according to a specified
condition.

• Macro function

Gives a name to a sequence of statements and defines it as one instruction.

• Automatic literal pool generation function

Interprets data transfer instructions MOV.W #imm, MOV.L #imm, and MOVA #imm that
are not provided by the SH microprocessor as extended instructions and expands them into
SH microprocessor executable instructions and constant data (literals).

Figure 1-1 shows the function of the assembler.

Assembly-language
source program

Assembler

Object module Assemble listing

File inclusion Included file

• Assembler directives
• Conditional assembly
• Macro
• Automatic literal pool generation

Figure 1-1 Function of the Assembler

6

7

Section 2 Relationships between the Software
Development Support Tools

The following software development support tools are available for the SH microprocessors.

• SH Series C Compiler (Referred to below as the C compiler.)

• H Series Linkage Editor (Referred to below as the linkage editor.)

• H Series Librarian (Referred to below as the librarian.)

• H Series Object Converter (Referred to below as the object converter.)

• SH Series Simulator/Debugger (Referred to below as the simulator/debugger.)

These tools assist in the efficient development of application software.

Figure 2-1 shows the relationships between the software development support tools.

C-language
source program

Editor

C compiler

Assembly-language
source program

Object
module

Librarian

Linkage editor Library
file

Load
module

Object converter

Simulator/debugger S-type-format
load module

Assembler

CPU information analyzer

CPU
information
file

Figure 2-1 Relationships between the Software Development Support Tools

8

Supplement:

Use a general purpose editor (a text editor) to edit source programs.

The C compiler converts programs written in the C-language into either object modules or
assembly-language source programs.

The librarian converts object modules and relocatable load modules into library files. We
recommend handling processing that is common to multiple programs as a library file. (This has
several advantages, including allowing modules to be easily managed.)

The linkage editor links together object modules and library files to produce load modules
(executable programs).

The object converter converts load modules into the S-type format. (The S-type format is a
standard load module format.)

The simulator/debugger assists debugging microprocessor software.

Load modules created by this development support system can be input to several types of
emulator. (Emulators are systems for debugging microprocessor system hardware and software.)
Also, S-type-format load modules can be input into most EPROM programmers.

9

Programmer’s Guide

10

Section 1 Program Elements

1.1 Source Statements

If source programs are compared to natural language writing, a source statement will correspond
to “a sentence.” The “words” that make up a source statement are reserved words and symbols.

1.1.1 Source Statement Structure

The figure below shows the structure of a source statement.

[<label>] [∅<operation>[∅<operand(s)>]] [<comment>]

Example:

~

LABEL1: MOV.L @R0,R1 ; This is an example of a source statement.

~

Label

Operation
Operands

Comment

(1) Label

A symbol or a local symbol is written as a tag attached to a source statement.

A symbol is a name defined by the programmer.

(2) Operation

The mnemonic of an executable instruction, an extended instruction, an SH-DSP instruction,
an assembler directive, or a directive statement is written as the operation.

Executable instructions must be SH microprocessor instructions.

Extended instructions are instructions that are expanded into executable instructions and
constant data (literals). For details, refer to Programmer’s Guide, 8, “Automatic Literal Pool
Generation Function”.

SH-DSP instructions are instructions that control the DSP of the SH-DSP microprocessor.
For details, refer to Programmer’s Guide, 9, “SH-DSP Instruction.”

Assembler directives are instructions that give directions to the assembler.

11

Directive statements are used for file inclusion, conditional assembly, and macro functions.
For details on each of these functions, refer to Programmer’s Guide, 5, “File Inclusion
Function”, 6, “Conditional Assembly Function”, or 7, “Macro Function”.

(3) Operand

The object(s) of the operation’s execution are written as the operand.

The number of operands and their types are determined by the operation. There are also
operations which do not require any operands.

(4) Comment

Notes or explanations that make the program easier to understand are written as the
comment.

1.1.2 Coding of Source Statements

Source statements are written using ASCII characters. Character strings and comments can
include Japanese kana and kanji characters (shift JIS code or EUC code).

In principle, a single statement must be written on a single line. The maximum length of a line is
255 bytes.

(1) Coding of Label

The label is written as follows:

Written starting in the first column,

Or:

Written with a colon (:) appended to the end of the label.

Examples:

LABEL1 ; This label is written starting in the first column.

LABEL2: ; This label is terminated with a colon.

--

 LABEL3 ; This label is regarded as an error by the assembler,

 ; since it is neither written starting in the first column

 ; nor terminated with a colon.

(2) Coding of Operation

The operation is written as follows:

 When there is no label:

Written starting in the second or later column.

 When there is a label:

Written after the label, separated by one or more spaces or tabs.

Examples:

 ADD R0,R1 ; An example with no label.

12

 LABEL1: ADD R1,R2 ; An example with a label.

CAUTION!

Since white spaces and tabs are ASCII characters, each space or tab requires a byte of
storage.

(3) Coding of Operand

The operand is written following the operation field, separated by one or more spaces or tabs.

Examples:

 ADD R0,R1 ; The ADD instruction takes two operands.

 SHAL R1 ; The SHAL instruction takes one
operand.

(4) Coding of Comment

The comment is written following a semicolon (;).

The assembler regards all characters from the semicolon to the end of the line as the
comment.

Examples:

 ADD R0,R1 ; Adds R0 to R1.

1.1.3 Coding of Source Statements across Multiple Lines

A single source statement can be written across several lines in the following situations:

• When the source statement is too long as a single statement.

• When it is desirable to attach a comment to each operand.

Write source statements across multiple lines using the following procedure.

1. Insert a new line writing a comma that separates operands as the point to break the line.

2. Insert a plus sign (+) in the first column of the next line.

3. Continue writing the source statement following the plus sign.

Spaces and tabs can be inserted following the plus sign.

Examples:

 .DATA.L H’FFFF0000,

+ H’FF00FF00,

+ H’FFFFFFFF

; In this example, a single source statement is written across three lines.

A comment can be attached at the end of each line.

13

Examples:

 .DATA.L H’FFFF0000, ; Initial value 1.

+ H’FF00FF00, ; Initial value 2.

+ H’FFFFFFFF ; Initial value 3.

; In this example, a comment is attached to each operand.

1.2 Reserved Words

Reserved words are names that the assembler reserves as symbols with special meanings.

Reserved words must not be used as symbols. Reserved words are different depending on the
CPU type. Table 1-1 lists the reserved words.

14

Table 1-1 List of Reserved Words

Reserved Word SH1 SH2 SH3 SH3E SH-DSP
Register name R0 O O O O O

R1 O O O O O

R2 O O O O O

R3 O O O O O

R4 O O O O O

R5 O O O O O

R6 O O O O O

R7 O O O O O

R8 O O O O O

R9 O O O O O

R10 O O O O O

R11 O O O O O

R12 O O O O O

R13 O O O O O

R14 O O O O O

R15 O O O O O

SP* O O O O O

SR O O O O O

GBR O O O O O

VBR O O O O O

MACH O O O O O

MACL O O O O O

PR O O O O O

PC O O O O O

SSR × × O O ×
SPC × × O O ×

Note: R15 and SP indicate the same register.

15

Table 1-1 List of Reserved Words (cont)

Reserved Word SH1 SH2 SH3 SH3E SH-DSP

Register name R0_BANK × × O O ×

R1_BANK × × O O ×

R2_BANK × × O O ×

R3_BANK × × O O ×

R4_BANK × × O O ×

R5_BANK × × O O ×

R6_BANK × × O O ×

R7_BANK × × O O ×

FR0 × × × O ×

FR1 × × × O ×

FR2 × × × O ×

FR3 × × × O ×

FR4 × × × O ×

FR5 × × × O ×

FR6 × × × O ×

FR7 × × × O ×

FR8 × × × O ×

FR9 × × × O ×

FR10 × × × O ×

FR11 × × × O ×

FR12 × × × O ×

FR13 × × × O ×

FR14 × × × O ×

FR15 × × × O ×

FPUL × × × O ×

FPSCR × × × O ×

MOD × × × × O

RE × × × × O

RS × × × × O

DSR × × × × O

A0 × × × × O

A0G × × × × O

16

Table 1-1 List of Reserved Words (cont)

Reserved Word SH1 SH2 SH3 SH3E SH-DSP

Register name A1 × × × × O

A1G × × × × O

M0 × × × × O

M1 × × × × O

X0 × × × × O

X1 × × × × O

Y0 × × × × O

Y1 × × × × O

Operator STARTOF O O O O O

SIZEOF O O O O O

HIGH O O O O O

LOW O O O O O

HWORD O O O O O

LWORD O O O O O

$EVEN O O O O O

$ODD O O O O O

$EVEN2 O O O O O

$ODD2 O O O O O

Location counter $ O O O O O

Symbol meaning: O : Used as reserved word

 × : Not used as reserved word

Reference:

CPU type → Programmer’s Guide, 4.2.1, “Target CPU Assembler Directive”
Operators → Programmer’s Guide, 1.6.1, “Expression Elements”
Location counter→ Programmer’s Guide, 1.5, “Location Counter”
Symbols → Programmer’s Guide, 1.3, “Symbols”

17

1.3 Symbols

1.3.1 Functions of Symbols

Symbols are names defined by the programmer, and perform the following functions.

• Address symbols................. Express data storage and branch destination addresses.

• Constant symbols Express constants.

• Aliases of register names.... Express general registers.

• Section names Express section names. *

Note: A section is a part of the program, and the linkage editor regards it as a unit of
processing.

The following shows examples of symbol usages.

18

Examples:

 ∼
 BRA SUB1 ; BRA is a branch instruction.
 ; SUB1 is the address symbol of the destination.
 ∼
SUB1:

 ∼
--

 ∼
MAX: .EQU 100 ; . EQU is an assembler directive that sets a value to a
 ; symbol.
 MOV # MAX,R0 ; MAX expresses the constant value 100.

 ∼
--

 ∼
MIN: .REG R0 ; .REG is an assembler directive that defines a register
 ; alias.
 MOV.B #100, MIN ; MIN is an alias for R0.

 ∼
--

 ∼
 .SECTION CD,CODE,ALIGN=4

 ; .SECTION is an assembler directive that declares a section.
 ; CD is the name of the current section.
 ∼

1.3.2 Coding of Symbols

(1) Available Characters

The following members of the ASCII character can be used.

 Alphabetical uppercase and lowercase letters (A to Z, a to z)

 Numbers (0 to 9)

 Underscore (_)

 Dollar sign ($)

19

The assembler distinguishes uppercase letters from lowercase letters in symbols.

(2) First Character in a Symbol

The first character in a symbol must be one of the following.

 Alphabetical uppercase and lowercase letters (A to Z, a to z)

 Underscore (_)

 Dollar sign ($)

CAUTION!

The dollar sign character used alone is a reserved word that expresses the location counter.

Reference:

 Reserved words → Programmer’s Guide, 1.2, “Reserved Words”

(3) Maximum Length of a Symbol

A symbol may contain up to 32 characters.

The assembler ignores any characters after the first 32.

(4) Names that Cannot Be Used as Symbols

Reserved words cannot be used as symbols. The following names must not be used because
they are used as internal symbols by the assembler.

_$$nnnnn (n is a number from 0 to 9.)

Note: Internal symbols are necessary for assembler internal processing. Internal symbols are
not output to assemble listings or object modules.

20

1.4 Constants

1.4.1 Integer Constants

Integer constants are expressed with a prefix that indicates the radix.

The radix indicator prefix is a notation that indicates the radix of the constant.

• Binary numbers The radix indicator “B’” plus a binary constant.

• Octal numbers The radix indicator “Q’” plus an octal constant.

• Decimal numbers The radix indicator “D’” plus a decimal constant.

• Hexadecimal numbers The radix indicator “H’” plus a hexadecimal constant.

The assembler does not distinguish uppercase letters from lowercase letters in the radix
indicator.

The radix indicator and the constant value must be written with no intervening space.

Examples:

 .DATA.B B’10001000 ;

 .DATA.B Q’210 ; These source statements express the same

 .DATA.B D’136 ; numerical value.

 .DATA.B H’88 ;

The radix indicator can be omitted. Integer constants with no radix indicator are normally
decimal constants, although the radix for such constants can be changed with the .RADIX
assembler directive.

Reference:

Interpretation of integer constants without a radix specified
→ Programmer’s Guide, 4.2.7, “Other Assembler Directives”, .RADIX

Supplement:

“Q” is used instead of “O” to avoid confusion with the digit 0.

21

1.4.2 Character Constants

Character constants are considered to be constants that represent ASCII codes.

Character constants are written by enclosing up to 4 ASCII characters in double quotation
marks.

The following ASCII characters can be used in character constants.

ASCII codes {’09 (tab)
{’20 (space) to H’ 7E (tilde)

Examples:

.DATA.L “ABC” ; This is the same as .DATA.L H’00414243.

.DATA.W “AB” ; This is the same as .DATA.W H’4142.

.DATA.B “A” ; This is the same as .DATA.B H’41.

; The ASCII code for A is: H’41

; The ASCII code for B is: H’42

; The ASCII code for C is: H’43

In addition, Japanese kana and kanji characters in shift JIS code or EUC code can be used. When
using Japanese characters in shift JIS code or EUC code, be sure to specify the SJIS or EUC
command line option, respectively. Note that the shift JIS code and EUC code cannot be used
together in one source program.

Use two double quotation marks in succession to indicate a single double quotation mark in a
character constant.

Example:

.DATA.B “ ““ “ ; This is a character constant consisting of a single

 double quotation mark.

.DATA.L “ “ ; Japanese kanji characters.

.DATA.B “ ““ “ ; This is a character constant consisting of a single

 double quotation mark.

.DATA.L “ “ ; Japanese kanji characters.

References:

SJIS command line option
→ User’s Guide, 2.2.7, “Japanese Character Command Line Options,” -SJIS

22

EUC command line option
→ User’s Guide, 2.2.7, “Japanese Character Command Line Options,” -EUC

1.4.3 Floating-Point Numbers

Floating-point numbers can be specified as operands in floating-point operation instructions
(FPU instructions) and assembler directives for reserving floating-point numbers.

Floating-Point Number Representation:

Floating-point numbers can be represented in decimal and hexadecimal.

• Decimal representation

F ' [{ ± }] n [. [m]] [S [[±] x x]]
. m

F’ Indicates that the number is decimal. It cannnot be omitted.

n[. [m]] n indicates the integer part in decimal. m indicates the fraction part in decimal.

. m Either the integer part or the fraction part can be omitted. If the sign (±) is omitted, the
assembler assumes it is positive.

S Indicates that the number is in single precision.

[[±]xx] Indicates the exponent part in decimal. If omitted, the assembler assumes 0. If
the sign (±) is omitted, the assembler assumes it is positive.

Example:

F’0.5S-2 = 0.5 × 10-2 = 0.005 = H’3BA3D70A

F’.123S3 = 0.123 × 103 = 123 = H’42F60000

F’0.999 = 0.999 = H’3F7FBF76

Hexadecimal representation

H’XXXXXXXX[.S}

H’ Indicates that the number is hexadecimal. It cannot be omitted.

XXXXXXXX Indicates the bit pattern of the floating-point constant in hexadecimal.
If the bit pattern is shorter than the specified data length, it is aligned
to the right end of the reserved area and 0s are added to the remaining
bits in the reserved area. If the bit pattern is longer than the specified
data length, the right-side bits of the bit pattern are allocated for the
specified data length and the remaining bits of the bit pattern are
ignored.

S Indicates that the number is in single precision.

This format directly specifies the bit pattern of the floating-point constant to represent data
that is difficult to represent in decimal format, such as 0s for single-precision data length or
infinity.

23

Example:

H’00000000.S = H’00000000

H’FFFF.S = H’0000FFFF

H’123456789AB = H’456789AB

Floating-Point Data Range:

Table 1-2 lists the floating-point data types.

Table 1-2 Floating-Point Data Types

Data Type Description

Normalized number The absolute value is between the underflow and overflow
boundaries including the boundary values.

Zero The absolute value is between 0 and the underflow boundary,
including 0.

Infinity The absolute value is larger than the overflow boundary.

Not-a-Number (NAN) A value that is not a numerical value. Includes sNAN (signaling NAN)
and qNAN (quiet NAN).

These data types are shown on the following number line. NAN cannot be shown on the number
line because it is not handled as a numerical value.

Negative normalized

number

		 Decimal	 Hexadecimal

(1)	Negative overflow boundary:	 –3.40282366e38	 H'FF7FFFFF

(2)	Negative underflow boundary:	 –1.17549436e–38	 H'80800000

(3)	Positive underflow boundary:	 1.17549436e–38	 H'00800000

(4)	Positive overflow boundary:	 3.40282366e38	 H'7F7FFFFF

Zero Positive normalized

number

(1) (2) 0 (3) (4)

+∞–∞

24

Floating-Point Data Format:

The floating-point data format consists of a sign bit, an 8-bit exponent part, and a 23-bit fraction
part.

31 30 23 22 0

S

	 :	 Decimal point

S	 :	 Sign bit

E	 :	 Exponent part

F	 :	 Fraction part

E F

• Sign bit

Indicates the sign of a value. Positive and negative are represented by 0 and 1, respectively.

• Exponent part

Indicates the exponent of a value. The actual exponent value is obtained by subtracting the
bias value (127) from the value specified in this exponent part.

• Fraction part

Each bit has its own significance and corresponds to 2-1, 2-2, ..., 2-23 from the start bit,
respectively.

A floating-point number is represented using S, E, and F as follows:

2E-127 . (-1)s . (1.F)

(1.F) = 1 + b0 × 2-1 + b1 × 2-2 + + b22 × 2-23

bi (0 ≤ i ≤ 22) indicates the value (0 or 1) of the “i”th bit in the fraction part.

Table 1-3 shows the floating-point representation for each data type.

Table 1-3 Floating-Point Representation for Each Data Type

Data Type Exponent (E) Fraction (F) Representation

Normalized number 1 ≤ E ≤ 254 Any value (-1)s . 2E-127. (1.F)

Zero = 0 = 0 (-1)s . 0 +0 = H’00000000
-0 = H’80000000

Infinity = 255 = 0 (-1)s . + = H’00000000
- = H’80000000

NAN = 255 ! = 0 sNAN: Bit 22 is 1.
qNAN: Bit 22 is 0.

25

1.4.4 Fixed-Point Numbers

Fixed-point numbers can be specified as operands in the assembler directive for reserving fixed-
point numbers.

Fixed-Point Number Representation:

Fixed-point numbers express real numbers ranging from -1.0 to 1.0 in decimal.

Word size and long word size are available for fixed-point numbers.

• Word-size fixed-point numbers

Two-byte signed integers expressing real numbers ranging from -1.0 to 1.0.

The real number expressed by 2-byte signed integer x (-32,768 < = x < = 32,767) is x/32768.

Example:

 Fixed-point number Word-size representation

 -1.0 H’8000

 -0.5 H’C000

 0.0 H’0000

 0.5 H’4000

 1.0 H’7FFF

• Long word-size fixed-point numbers

Four-byte signed integers expressing real numbers ranging from -1.0 to 1.0. The real number
expressed by 4-byte signed ingeter x (-2,147,483,648 < = x < = 2,147,483,647) is
x/2147483648.

Example:

 Fixed-point number Long word-size representation

 -1.0 H’80000000

 -0.5 H’C0000000

 0.0 H’00000000

 0.5 H’40000000

 1.0 H’7FFFFFFF

Fixed-Point Data Format:

• The fixed-point data format consists of a sign bit and a 15-bit fraction part in word size, and
a sign bit and a 31-bit fraction part in long word size. The decimal point is assumed to be
fixed on the right of the sign bit.

• Word size

26

FS

1514 0
	 :	 Decimal point

S	 :	 Sign bit

F	 :	 Fraction part

• Long word size

FS

3130 0

• Sign bit (S)

Indicates the sign of a value. Positive and negative are represented by 0 and 1, respectively.

• Fraction part (F)

Each bit has its own significance and corresponds to 2-1, 2-2, ..., 2-31 from the start bit,
respectively.

Valid Range for Fixed-Point Numbers:

In long-word size, 31 bits can represent nine digits of data in decimal, but the assembler handles
ten digits in decimal as a valid number, rounds the 35th bit in RN (round to the nearer absolute
value) mode, and uses the high-order 31 bits of the result as fixed-point data.

Note: The actual fixed-point data range is -1.0 to 0.9999999999, but the assembler assumes 1.0
as 0.9999999999 and represents it as H’7FFFFFFF.

27

1.5 Location Counter

The location counter expresses the address (location) in memory where the corresponding object
code (the result of converting executable instructions and data into codes the microprocessor can
regard) is stored.

The value of the location counter is automatically adjusted according to the object code output.

The value of the location counter can be changed intentionally using assembler directives.

Examples:

 ∼
.ORG H’00001000 ; This assembler directive sets the location counter to
 ; H’00001000.

.DATA.W H’FF ; The object code generated by this assembler directive has
 ; a length of 2 bytes.
 ; The location counter changes to H’00001002.

.DATA.W H’F0 ; The object code generated by this assembler directive has
 ; a length of 2 bytes.
 ; The location counter changes to H’00001004.

.DATA.W H’10 ; The object code generated by this assembler directive has
 ; a length of 2 bytes.
 ; The location counter changes to H’00001006.

.ALIGN 4 ; The value of the location counter is corrected to be a multiple
 ; of 4.
 ; The location counter changes to H’00001008.

.DATA.L H’FFFFFFFF ; The object code generated by this assembler directive has
 ; a length of 4 bytes.
 ; The location counter changes to H’0000100C.

 ; .ORG is an assembler directive that sets the value of the location counter.
 ; .ALIGN is an assembler directive that adjusts the value of the location counter.
 ; .DATA is an assembler directive that reserves data in memory.
 ; .W is a specifier that indicates that data is handled in word (2 bytes) size.
 ; .L is a specifier that indicates that data is handled in long word (4 bytes) size.

 ∼
References:

Setting the value of the location counter

28

→ Programmer’s Guide, 4.2.2, “Section and Location Counter Assembler Directives” .ORG

Correcting the value of the location counter
→ Programmer’s Guide, 4.2.2, “Section and Location Counter Assembler Directives”

.ALIGN

The location counter is referenced using the dollar sign symbol.

Examples:

LABEL1: .EQU $; This assembler directive sets the value of the

 ; location counter to the symbol LABEL1.

 ; .EQU is an assembler directive that sets the value to a symbol.

29

1.6 Expressions

Expressions are combinations of constants, symbols, and operators that derive a value, and are
used as the operands of executable instructions and assembler directives.

1.6.1 Elements of Expression

An expression consists of terms, operators, and parentheses.

(1) Terms

The terms are the followings:

 A constant

 The location counter reference ($)

 A symbol (excluding aliases of the register name)

 The result of a calculation specified by a combination of the above terms and an operator.

An independent term is also a type of expression.

(2) Operators

Table 1-4 shows the operators supported by the assembler.

Table 1-4 Operators

Operator Type Operator Operation Coding

Arithmetic operations + Unary plus + <term>

- Unary minus - <term>

+ Addition <term1> + <term2>

- Subtraction <term1> - <term2>

* Multiplication <term1> * <term2>

/ Division <term1> / <term2>

Logic operations ~ ^ Unary negation ~ <term>

& Logical AND <term1> & <term2>

| Logical OR <term1> | <term2>

~ ^ Exclusive OR <term1> ~ <term2>

Shift operations << Arithmetic left shift <term 1> << <term 2>

>> Arithmetic right shift <term 1> >> <term 2>

30

Table 1-4 Operators (cont)

Operator Type Operator Operation Coding

Section set
operations*

STARTOF Derives the starting address
of a section set.

STARTOF <section name>

SIZEOF Derives the size of a section
set in bytes.

SIZEOF <section name>

Even/odd operations $EVEN 1 when the value is a
multiple of 2, and 0
otherwise

$EVEN <symbol>

$ODD 0 when the value is a
multiple of 2, and 1
otherwise

$ODD <symbol>

$EVEN2 1 when the value is a
multiple of 4, and 0
otherwise

$EVEN2 <symbol>

$ODD2 0 when the value is a
multiple of 4, and 1
otherwise

$ODD2 <symbol>

Extraction operations HIGH Extracts the high-order byte HIGH <term>

LOW Extracts the low-order byte LOW <term>

HWORD Extracts the high-order word HWORD <term>

LWORD Extracts the low-order word LWORD <term>

Note: See the supplement below.

Supplement:

In this assembly language, programs are divided into units called section. Sections are the
units in which linkage processing is performed.

When there are multiple sections of the same type and same name within a given program,
the linkage editor links them into a single “section set”.

Reference:

Sections → Programmer’s Guide, 2.1, “Sections”

(3) Parentheses

Parentheses modify the operation priority.

See the next section, section 1.6.2, “Operation Priority”, for a description of the use of
parentheses.

31

1.6.2 Operation Priority

When multiple operations appear in a single expression, the order in which the processing is
performed is determined by the operator priority and by the use of parentheses. The assembler
processes operations according to the following rules.

<Rule 1>

Processing starts from operations enclosed in parentheses. When there are multiple parentheses,
processing starts with the operations surrounded by the innermost parentheses.

<Rule 2>

Processing starts with the operator with the highest priority.

<Rule 3>

Processing proceeds in the direction of the operator association rule when operators have the
same priority.

Table 1-5 shows the operator priority and the association rule.

Table 1-5 Operator Priority and Association Rules

Priority Operator Association Rule

1 (high) + - ~ ^ STARTOF SIZEOF
$EVEN $ODD $EVEN2 $ODD2
HIGH LOW HWORD LWORD*

Operators are processed from right to left.

2 * / Operators are processed from left to right.

3 ↓ + - Operators are processed from left to right.

4 << >> Operators are processed from left to right.

5 & Operators are processed from left to right.

6 (low) | ~ ^ Operators are processed from left to right.

Note: The operators of priority 1 (highest priority) are for unary operation.

32

The figures below show examples of expressions.

Example 1:

 1 + (2 - (3 + (4 - 5)))

(a)

(b)

(c)

(d)

The assembler calculates this expression in the order (a) to (d).

The result of (a) is -1}
The result of (b) is 2}
The result of (c) is 0}
The result of (d) is 1}

The final result of this calculation is 1.

Example 2:

– H'FFFFFFF1 + H'000000F0 *
(a) (b) (d)

(c)

(e)

H'00000010 | H'000000F0 & H'0000FFFF

The assembler calculates this expression in the order (a) to (e).

The result of (a) is H’0000000F}
The result of (b) is H’00000F00}
The result of (c) is H’00000F0F}
The result of (d) is H’000000F0}
The result of (e) is H’00000FFF}

The final result of this calculation is H’00000FFF.

33

Example 3:

- - H'0000000F
(a)

(b)

(c)

(d)

~ ~

The assembler calculates this expression in the order (a) to (d).

The result of (a) is H’FFFFFFF0}
The result of (b) is H’00000010}
The result of (c) is H’FFFFFFEF}
The result of (d) is H’00000011}

The final result of this calculation is H’00000011.

34

1.6.3 Detailed Description on Operation

STARTOF Operation: Determines the start address of a section set after the specified sections
are linked by the linkage editor.

SIZEOF Operation: Determines the size of a section set after the specified section are linked
by the linkage editor.

Example:

 .CPU SH1

 .SECTION INIT_RAM,DATA,ALIGN=4

 .RES.B H'100

 .SECTION INIT_DATA,DATA,ALIGN=4

INIT_BGN .DATA.L (STARTOF INIT_RAM).......................; (1)

INIT_END .DATA.L (STARTOF INIT_RAM) + (SIZEOF INIT_RAM)...; (2)

;

;

 .SECTION MAIN,CODE,ALIGN=4

INITIAL:

 MOV.L DATA1,R6

 MOV #0,R5

 MOV.L DATA1+4,R3

 BRA LOOP2

 MOV.L @R3,R4

LOOP1:

 MOV.L R5,@R4

 ADD #4,R4

LOOP2:

 MOV.L @R6,R3

 CMP/HI R3,R4

 BF LOOP1

 RTS

 NOP

DATA1:

 .DATA.L INIT_END

 .DATA.L INIT_BGN

 .END

(1) Determines the start address of section INIT_RAM.

(2) Determines the end address of section INIT_RAM.

Initializes the data area in section

INIT_RAM to 0.

35

HIGH Operation: Extracts the high-order byte from the low-order two bytes of a 4-byte value.

H'00 H'00 H'00 H'xx
31 24 23 16 15 8 7 0

H'xx
31 24 23 16 15 8 7 0

After operationBefore operation

Example:

LABEL .EQU H’00007FFF

 .DATA HIGH LABEL; Reserves integer data H’0000007F on memory.

LOW Operation: Extracts the lowest-order one byte from a 4-byte value.

H'00 H'00 H'00 H'xx
31 24 23 16 15 8 7 0

H'xx
31 24 23 16 15 8 7 0

After operationBefore operation

HWORD Operation: Extracts the high-order two bytes from a 4-byte value.

H'0000 H'xxxx
31 16 15 0

H'xxxx
31 16 15 0

After operationBefore operation

LWORD Operation: Extracts the low-order two bytes from a 4-byte value.

H'0000 H'xxxx
31 16 15 0

H'xxxx
31 16 15 0

After operationBefore operation

36

Even/Odd Operation: Determines if the value of the address symbol is a multiple of 2 or 4.

Table 1-6 shows the even/odd operations.

Table 1-6 Even/Odd Operations

Operator Operation

$EVEN 1 when the value is a multiple of 2, and 0 otherwise

$ODD 0 when the value is a multiple of 2, and 1 otherwise

$EVEN2 1 when the value is a multiple of 4, and 0 otherwise

$ODD2 0 when the value is a multiple of 4, and 1 otherwise

Example:

To obtain the current program counter value using an $ODD2 operator.

LAB:

 MOVA @(0,PC),R0

 ADD #-4+2 * $ODD2 LAB,R0 ; $ODD2 gives 0 when LAB is

 ; a multiple of 4, and gives 1 when

 ; LAB is not a multiple of 4.

1.6.4 Notes on Expressions

(1) Internal Processing

The assembler regards expression values as 32-bit signed values.

Example:
~H’F0

The assembler regards H’F0 as H’000000F0.

Therefore, the value of ~H’F0 is H’FFFFFF0F. (Note that this is not H’0000000F.)

 (2) Arithmetic Operators

Where values must be determined at assembly, the multiplication and division operators
cannot take terms that contain relative values (values which are not determined until the end
of the linkage process) as their operands.

Example:

.IMPORT SYM

.DATA SYM/10 ; Correctly assembled.

.ORG SYM/10 ; An error will occur.

Also, a divisor of 0 cannot be used with the division operator.

37

(3) Logic Operators

The logic operators cannot take terms that contain relative values as their operands.

Reference:

Relative values → Programmer’s Guide, 2.2, “Absolute and Relative Values”.

1.7 Character Strings

Character strings are sequences of character data.

The following ASCII characters can be used in character strings.

ASCII codes {H’09 (tab)
{H’20 (space) to H’7E (tilde)

A single character in a character string has as its value the ASCII code for that character and is
represented as a byte sized data object. In addition, Japanese kana and kanji characters in shift
JIS code or EUC code can be used. When using Japanese characters in shift JIS code or EUC
code, be sure to specify the SJIS or EUC command line option, respectively. If not specified,
Japanese characters are handled as the Japanese code specified by the host machine.

Character strings are written enclosed in double quotation marks.

Use two double quotation marks in succession to indicate a single double quotation mark in a
character string.

Examples:

 .SDATA “ Hello! ” ; This statement reserves the character string data
 ; Hello!

 .SDATA “ “ ; This statement reserves the character string data
 ;

 .SDATA “““Hello!””” ; This statement reserves the character string data
 ; “Hello!”

 ; .SDATA is an assembler directive that reserves
 ; character string data in memory.

Supplement:

The difference between character constants and character strings is as follows.

Character constants are numeric values. They have a data size of either 1 byte, 2 bytes, or 4
bytes.

Character strings cannot be handled as numeric values. A character string has a data size
between 1 byte and 255 bytes.

38

References:

SJIS command line option
→ User’s Guide, 2.2.7, “Japanese Character Command Line Options,” -SJIS

EUC command line option
→ User’s Guide, 2.2.7, “Japanese Character Command Line Options,” -EUC

1.8 Local Label

1.8.1 Local Label Functions

A local label is valid locally between address symbols. Since a local label does not conflict with
the other labels outside its scope, the user does not have to consider other label names. A local
label can be defined by writing in the label field in the same way as a normal address symbol,
and can be referenced by an operand.

An example of local label descriptions is shown below.

Example:

LABEL1: ; Local block 1 start

?0001:

 ∼
 CMP/EQ R1,R2

 BT ?0002 ; Branches to ?0002 of local block 1

 BRA ?0001 ; Branches to ?0001 of local block 1

?0002:

 ∼
LABEL2: ; Local block 2 start

?0001:

 ∼
 CMP/GE R1,R2

 BT ?0002 ; Branches to ?0002 of local block 2

 BRA ?0001 ; Branches to ?0001 of local block 2

?0002:

LABEL3: ; Local block 3 start

Note: A local label cannot be referenced during debugging.
 A local label cannot be specified as any of the following items:

39

• Macro name

• Section name

• Object module name

• Label in .ASSIGNA, .ASSIGNC, .EQU, .ASSIGN, .REG, or .DEFINE

• Operand in .EXPORT, .IMPORT, or .GLOBAL

1.8.2 Description Method of Local Label

First Character:

A local label is a character string starting with a question mark (?).

Usable Characters:

The following ASCII characters can be used in a local label, except for the first character:

• Alphabetical uppercase and lowercase letters (A to Z and a to z)

• Numbers (0 to 9)

• Underscore (_)

• Dollar sign ($)

The assembler distinguishes uppercase letters from lowercase ones in local labels.

Maximum Length:

The length of local label characters is between 2 and 16 characters. If 17 or more characters are
specified, the assembler will not recognize them as a local label.

1.8.3 Scope of Local Labels

The scope of a local label is called a local block. A local block is divided by address symbols,
and by the .SECTION directive.

The local label defined within a local block can be referenced in that local block.

A local label belonging to a local block is interpreted as being unique even if its spelling is the
same as local labels in other local blocks; it does not cause an error.

Note: The address symbols defined by the .EQU or .ASSIGN directive are not interpreted as
delimiters for the local block.

40

Section 2 Basic Programming Knowledge

2.1 Sections

If source programs are compared to natural language writing, a section will correspond to a
“chapter.” The section is the processing unit used when the linkage editor links object modules.

2.1.1 Section Types by Usage

Sections are classified by usage into the following types.

• Code section

• Data section

• Common section

• Stack section

• Dummy section

(1) Code Section

The following can be written in a code section:

 Executable instructions

 Extended instructions

Assembler directives that reserve initialized data.

Examples:

 .SECTION CD, CODE,ALIGN=4 ; This assembler directive declares a
 ; code section with the name CD.
 MOV.L X,R1 ; This is an executable instruction.
 MOV R1,R2

 ∼
 .ALIGN 4

X: .DATA.L H’FFFFFFFF ; This assembler directive reserves
 ; initialized data. ∼

41

(2) Data Section

The following can be written in a data section:

 Assembler directives that reserve initialized data.

 Assembler directives that reserve uninitialized data.

Examples:

 .SECTION DT1,DATA,ALIGN=4	 ; 	 This assembler directive declares

	 ;	 a data section with the name DT1.

 .DATA.W H'FF00	 ; 	 These assembler directives reserve

 .DATA.B H'FF	 ; 	 initialized data.

	

 .SECTION DT2,DATA,ALIGN=4	 ; 	 This assembler directive declares

	 ; 	 a data section with the name DT2.

 .RES.W 10	 ;	 These assembler directives reserve

 .RES.B 10	 ;	 data areas that do not have initial

	 ;	 values.

	

~

~

 (3) Common Section

A common section is used as a section to hold data that is shared between files when a source
program consists of multiple source files.

The following can be written in a common section:

 Assembler directives that reserve initialized data.

 Assembler directives that reserve uninitialized data.

Supplement:

The linkage editor reserves common sections with the same name to the same area in
memory. In the example shown in figure 2-1, the common section CM declared in file A and
the common section CM declared in file B are reserved to the same area in memory.

42

File A File B

Common section CM

Memory

Common section CM

Program

Common section CM

Figure 2-1 Memory Reservation of Common Section

(4) Stack Section

The section that the SH microprocessor uses as a stack area (an area for temporary data
storage) is called the stack section.

The following can be written in the stack section:

 Assembler directives that reserve uninitialized data.

Examples:

 .SECTION ST, STACK,ALIGN=4 ; This assembler directive declares a
 ; stack section with the name ST.

 .RES.B 1024 ; This assembler directive reserves a
 ; stack area of 1024 bytes.

STK:

(5) Dummy Section

A dummy section is a hypothetical section for representing data structures. The assembler
does not output dummy sections to the object module.

The following can be written in a dummy section:

 Assembler directives that reserve uninitialized data.

Examples:

 .SECTION DM, DUMMY ; This assembler directive declares
 ; a dummy section with the name DM.

 .RES.B 1 ; The assembler does not output the

A: .RES.B 1 ; section DM to the object module.

B: .RES.B 2

 ∼
Specific methods for specifying data structures are described in the supplement on the next
page.

43

Supplement:

As shown in figure 2-2, it is possible to access areas in memory by using address symbols from a
dummy section.

Data structure

Reference

point

Address

symbol A

Address

symbol B

Item A

Item B

Dummy

section

Memory

The start of

area 1

The start of area

1 plus A

The start of area

1 plus B

Item A

Item B
Area 1

The start of

area 2

The start of area

2 plus A

The start of area

2 plus B

Item A

Item B
Area 2

Figure 2-2 Data Structure Example Using Dummy Section

Example:

In the example above, assume that R1 holds the starting address of area 1 and R2 holds the
starting address of area 2.

 MOV.L @(B,R1),R0 ; Moves the contents of item B in area 1 to R0.

 MOV.L R0,@(B,R2) ; Moves the contents of R0 to item B in area 2.

 ∼

44

CAUTION!

1. The following cannot be used in stack and dummy sections:

a. Executable instructions

b. Extended instructions

c. Assembler directives that reserve initialized data
(.DATA, .DATAB, .SDATA, .SDATAB, .SDATAC, .SDATAZ, .FDATA, .FDATAB,
and .XDATA)

2. When using a data or common section, be sure to keep in mind whether that section is
reserved to ROM or RAM.

2.1.2 Absolute Address Sections and Relative Address Sections

A section can be classified as either an absolute address section or as a relative address section
depending on whether absolute start addresses are given to the sections at assembly.

(1) Absolute Address Section

The memory location of absolute address sections is specified in the source program, and
cannot be changed by the linkage editor. In this assembly language, locations in an absolute
address section are expressed as absolute addresses, which are addresses that express the
position in memory itself.

Examples:

.SECTION ABS,DATA, LOCATE=H’0000F000 ; ABS is an absolute address section.
 ; The starting address of section ABS is
 ; the absolute address H’0000F000.

.DATA.W H’1111 ; The constant H’1111 is reserved at
 ; he absolute address H’0000F000.

.DATA.W H’2222 ; The constant H’2222 is reserved at
 ; he absolute address H’0000F002.

(2) Relative Address Section

The location in memory of relative sections is not specified in the source program, but rather
is determined when the sections are linked by the linkage editor. In this assembly language,
locations in a relative address section are expressed as relative addresses, which are
addresses that express the position relative to the start of the section itself.

45

Examples:

.SECTION REL,DATA, ALIGN=4 ; REL is a relative address section.
 ; The starting address of section REL is
 ; determined after linkage.

.DATA.W H’1111 ; The constant H’1111 is reserved at the
 ; relative address H’00000000.

.DATA.W H’2222 ; The constant H’2222 is reserved at the
 ; relative address H’00000002.

Supplement:

Dummy sections correspond neither to relative nor to absolute address sections.

46

2.2 Absolute and Relative Values

Absolute values are determined when assembly completes. Relative values are not determined
until the linkage editor completes.

2.2.1 Absolute Values

The following are the absolute values handled by the assembler.

(1) Constants

 Integer constants

 Character constants

 Symbols that have a value that is one of the above (hereafter referred to as constant
symbols).

(2) Absolute Address Values

 The location counter referenced in an absolute address section

 The location counter referenced in a dummy section

 Symbols that have a value that is one of the above (hereafter referred to as absolute
address symbols).

(3) Other Absolute Values

Expressions whose value is determined when assembly completes.

2.2.2 Relative Values

The following are the relative values handled by the assembler.

(1) Relative Address Values

 The location counter referenced in a relative address segment

 Symbols that have the above as a value (hereafter referred to as relative address symbols).

(2) External Reference Values

Symbols that reference another file (hereafter referred to as import symbols).

(3) Other Relative Values

Expressions whose value is not determined until the linkage editor completes.

47

2.3 Symbol Definition and Reference

2.3.1 Symbol Definition

(1) Normal Definition

The normal method for defining a symbol is to write that symbol in the label field of a source
statement. The value of that symbol will then be the value of the location counter at that
point in the program.

Examples:

 .SECTION DT1,DATA,LOCATE=H'0000F000	 ; 	 This statement declares an

			 ; 	 absolute address section.

X1: .DATA.W H'1111	 ; 	 The value of X1 becomes H'0000F000.

X2: .DATA.W H'2222	 ; 	 The value of X2 becomes H'0000F002.

	

 .SECTION DT2,DATA,ALIGN=4	 ; 	 This statement declares a relative

	 ; 	 address section.

Y1: .DATA.W H'1111	 ; 	 The value of Y1 is determined when

	 ; 	 the linkage editor completes, and its

	 ; 	 value is the start address of the section.

Y2: .DATA.W H'2222	 ; 	 The value of Y2 is determined when

	 ; 	 the linkage editor completes, and its

	 ; 	 value is the start address of the section

	 ;	 plus 2.

~

48

 (2) Definition by Assembler Directive

Symbols can be defined by using assembler directives to set an arbitrary value or a special
meaning.

Examples:

 .SECTION DT1,DATA,ALIGN=4 ; DT1 is the section name.
 ; A section name is also a type of symbol
 ; t hat expresses the start address of
 ; a section.
 ; However, the syntactic handling of address
 ; symbols and section names is different.

 X: .EQU 100 ; The value of X is 100.
 ; X cannot be redefined.

 Y: .ASSIGN 10 ; The value of Y is 10.
 ; Y can be redefined.

 Z: .REG R1 ; Z becomes an alias of the general
 ; register R1.
 ; Z cannot be redefined.

2.3.2 Symbol Reference

There are three forms of symbol reference as follows:

• Forward reference

• Backward reference

• External reference

Supplement:

Figure 2-3 shows the meaning of the terms forward and backward as used in this manual.

File

Backward

Forward

Source program start

Source program end

Reference position

Figure 2-3 Meaning of the Terms Forward and Backward

49

Figure 2-4 shows the meaning of the term external as used in this manual.

File

Reference position

File

External

Figure 2-4 Meaning of the Term External

(1) Forward Reference

Forward reference means referencing a symbol that is defined forward from the point of
reference.

Examples:

 ∼
 BRA FORWARD ; BRA is a branch instruction.

 ; This is a forward reference to the symbol FORWARD.

 ∼
FORWARD:

 ∼
(2) Backward Reference

Backward reference means referring to a symbol that is defined backward from the point of
reference.

Examples:

 ∼
BACK:

 ∼
 BRA BACK ; BRA is a branch instruction.

 ; This is a backward reference to the symbol BACK.

 ∼
(3) External Reference

When a source program consists of multiple source files, a reference to a symbol defined in
another file is called an external reference. External reference is described in the next
section, 2.4, “Separate Assembly”.

50

2.4 Separate Assembly

2.4.1 Separate Assembly

Separate assembly refers to the technique of creating a source program in multiple separate
source files, and finally creating a single load module by linking together those source files’
object modules using the linkage editor.

The process of developing software often consists of repeatedly correcting and reassembling the
program. In such cases, if the source program is partitioned, it will be only necessary to
reassemble the source file that was changed. As a result, the time required to construct the
complete program will be significantly reduced.

If a source program is collected

together in a single file...

File

Processing 1

Processing 2

Processing 4

Processing 5

Processing 6

If a source program is partitioned

into several files...

File

Processing 1

Processing 5

File

: Part of the source program that
 requires changes.

: Range of the program that must

 be reassembled.

Processing 2

File

Processing 6

File

File

Processing 4

Processing 3 Processing 3
File

Figure 2-5 Relationship between the Changed Range of the Source Program and the
Range of the Program that must be Reassembled

51

The procedure involved in separate assembly consists of steps 1 to 4.

1. Investigate methods for partitioning the program.

Normally, programs are partitioned by function.

Note that the memory reservation of the section must also be considered at this point.

2. Divide the source program into separate files and edit those files accordingly.

3. Assemble the individual files.

4. Link the individual object modules into a single load module.

2.4.2 Declaration of Export Symbols and Import Symbols

When a source program consists of multiple files, referencing a symbol defined in one file from
another file is called “external reference” or “import.” When referencing a symbol externally
(this declaration is called “external definition” or “export”), it is necessary to declare to the
assembler that “this symbol is shared between multiple files.”

(1) Export Symbol Declaration

This declaration is used to declare that the definition of the symbol is valid in other files.
.EXPORT or .GLOBAL directive is used to make this declaration.

(2) Import Symbol Declaration

This declaration is used to declare that a symbol defined in another file is referenced.
.IMPORT or GLOBAL directive is used to make this declaration.

Examples:

In this example the symbol MAX is defined in file A and referenced in file B.

52

File A:

 ∼
 .EXPORT MAX ; Declares MAX to be an export symbol.
MAX: .EQU 100 ; Defines MAX.

 ∼
File B:

 ∼
 .IMPORT MAX ; Declares MAX to be an import symbol.

 MOV #MAX,R0 ; References MAX.

 ∼
Reference:

Symbol Export and Import
→ Programmer’s Guide, 4.2.5, “Export and Import Assembler Directives”, .EXPORT,

.IMPORT, .GLOBAL

53

Section 3 Executable Instructions

3.1 Overview of Executable Instructions

The executable instructions are the instructions of SH microprocessor. SH microprocessor
interprets and executes the executable instructions in the object code stored in memory.

An executable instruction source statement has the following basic form.

[<symbol>:] <mnemonic>[.<operation size>] [<addressing mode>[,<addressing mode]] [;<comment>]�

Label Operation Operand Comment

This section describes the mnemonic, operation size, and addressing mode. The other elements
are described in detail in section 1, “Program Elements”, in the Programmer’s Guide.

(1) Mnemonic

The mnemonic expresses the executable instruction. Abbreviations that indicate the type of
processing are provided as mnemonics for SH microprocessor instructions.

The assembler does not distinguish uppercase and lowercase letters in mnemonics.

(2) Operation Size

The operation size is the unit for processing data. The operation sizes vary with the
executable instruction. The assembler does not distinguish uppercase and lowercase letters in
the operation size.

Specifier Data Size

B Byte

W Word (2 bytes)

L Long word (4 bytes)

S Single precision (4 bytes)

(3) Addressing Mode

The addressing mode specifies the data area accessed, and the destination address. The
addressing modes vary with the executable instruction. Table 3-1 shows the addressing
mode.

54

Table 3-1 Addressing Modes

Addressing Mode Name Description

Rn Register direct The contents of the specified register.

@Rn Register indirect A memory location. The value in Rn gives the start
address of the memory accessed.

@Rn+ Register indirect with
post-increment

A memory location. The value in Rn (before being
incremented*1) gives the start address of the
memory accessed.
SH microprocessor first uses the value in Rn for
the memory reference, and increments Rn
afterwards.

@-Rn Register indirect with
pre-decrement

A memory location. The value in Rn (after being
decremented*2) gives the start address of the
memory accessed.
SH microprocessor first decrements Rn, and then
uses that value for the memory reference.

@(disp,Rn) Register indirect with
displacement*3

A memory location. The start address of the
memory access is given by: the value of Rn plus
the displacement (disp).
The value of Rn is not changed.

@(R0,Rn) Register indirect with
index

A memory location. The start address of the
memory access is given by: the value of R0 plus
the value of Rn.
The values of R0 and Rn are not changed.

@(disp,GBR) GBR indirect with
displacement

A memory location. The start address of the
memory access is given by: the value of GBR plus
the displacement (disp).
The value of GBR is not changed.

@(R0,GBR) GBR indirect with
index

A memory location. The start address of the
memory access is given by: the value of GBR plus
the value of R0.
The values of GBR and R0 are not changed.

@(disp,PC) PC relative with
displacement

A memory location. The start address of the
memory access is given by: the value of the PC
plus the displacement (disp).

Notes 1 to 3 = See next page.

55

Table 3-1 Addressing Modes (cont)

Addressing Mode Name Description

symbol PC relative specified
with symbol

[When used as the operand of a branch
instruction]
The symbol directly indicates the destination
address.
The assembler derives a displacement (disp) from
the symbol and the value of the PC, using the
formula: disp = symbol - PC.

[When used as the operand of a data move
instruction]
A memory location. The symbol expresses the
starting address of the memory accessed.
The assembler derives a displacement (disp) from
the symbol and the value of the PC, using the
formula: disp = symbol - PC.

[When used as the operand of an instruction that
specifies the RS or RE register (LDRS or LDRE
instruction)]
Refer to Programmer’s Guide, 9.3, “Notes on
Executable Instructions.”

#imm Immediate Expresses a constant.

Notes: 1. Increment
The amount of the increment is 1 when the operation size is a byte, 2 when the

operation size is a word (two bytes), and 4 when the operation size is a long word
(four bytes).

2. Decrement
The amount of the decrement is 1 when the operation size is a byte, 2 when the

operation size is a word, and 4 when the operation size is a long word.
3. Displacement

A displacement is the distance between two points. In this assembly-language,
the unit of displacement values is in bytes.

56

The values that can be used for the displacement vary with the addressing mode and the
operation size.

Table 3-2 Allowed Displacement Values

Addressing Mode Displacement*

@(disp,Rn) When the operation size is byte (B):
H’00000000 to H’0000000F (0 to 15)

When the operation size is word (W):
H’00000000 to H’0000001E (0 to 30)

When the operation size is long word (L):
H’00000000 to H’0000003C (0 to 60)

@(disp,GBR) When the operation size is byte (B):
H’00000000 to H’000000FF (0 to 255)

When the operation size is word (W):
H’00000000 to H’000001FE (0 to 510)

When the operation size is long word (L):
H’00000000 to H’000003FC (0 to 1020)

@(disp,PC) [When used as an operand of a move instruction]

When the operation size is word (W):
H’00000000 to H’000001FE (0 to 510)

When the operation size is long word (L):
H’00000000 to H’000003FC (0 to 1020)

[When used as an operand of an instruction that sets the RS or RE
register (LDRS or LDRE)]

H’FFFFFF00 to H’000000FE (-256 to 254)

Note: Units are bytes, numbers in parentheses are decimal.

57

Table 3-2 Allowed Displacement Values (cont)

Addressing Mode Displacement*

symbol [When used as a branch instruction operand]

When used as an operand for a conditional branch instruction (BT, BF,
BF/S, or BT/S):
{H’00000000 to H’000000FF (0 to 255)
{H’FFFFFF00 to H’FFFFFFFF (-256 to -1)

When used as an operand for an unconditional branch instruction
(BRA or BSR)
{H’00000000 to H’00000FFF (0 to 4095)
{H’FFFFF000 to H’FFFFFFFF (-4096 to -1)

[When used as the operand of a data move instruction]

When the operation size is word (W):
H’00000000 to H’000001FE (0 to 510)

When the operation size is long word (L):
H’00000000 to H’000003FC (0 to 1020)

[When used as an operand of an instruction that sets the RS or RE
register (LDRS or LDRE)]

H’FFFFFF00 to H’000000FE (-256 to 254)

Note: Units are bytes, numbers in parentheses are decimal.

Reference:

LDRS, LDRE
→ Programmer’s Guide, 9.3, “Notes on Executable Instructions”

58

The values that can be used for immediate values vary with the executable instruction.

Table 3-3 Allowed Immediate Values

Executable Instruction Immediate Value

TST, AND, OR, XOR H’00000000 to H’000000FF (0 to 255)

MOV {H’00000000 to H’000000FF (0 to 255)
{H’FFFFFF80 to H’FFFFFFFF (-128 to -1) *

ADD, CMP/EQ {H’00000000 to H’000000FF (0 to 255)
{H’FFFFFF80 to H’FFFFFFFF (-128 to -1) *

TRAPA H’00000000 to H’000000FF (0 to 255)

SETRC H’00000001 to H’000000FF (1 to 255)

Note: Values in the range H’FFFFFF80 to H’FFFFFFFF can be written as positive decimal
values.

Reference:

SETRC
→ Programmer’s Guide, 9.3, “Notes on Executable Instructions”

CAUTION!

The assembler corrects the value of displacements under certain conditions.

Condition Type of Correction

When the operation size is a word and the
displacement is not a multiple of 2

→
→
→

The lower bit of the displacement is
discarded, resulting in the value being a
multiple of 2.

When the operation size is a long word and
the displacement is not a multiple of 4

→
→
→

The lower 2 bits of the displacement are
discarded, resulting in the value being a
multiple of 4.

When the displacement of the branch
instruction is not a multiple of 2

→
→
→

The lower bit of the displacement is
discarded, resulting in the value being a
multiple of 2.

Be sure to take this correction into consideration when using operands of the mode @(disp,Rn),
@(disp,GBR), and @(disp,PC).

Example:

MOV.L @(63,PC),R0

The assembler corrects the 63 to be 60, and generates object code identical to that for the
statement MOV.L @(60,PC),R0, and warning number 870 occurs.

59

3.2 Notes on Executable Instructions

3.2.1 Notes on the Operation Size

The operation sizes that can be specified vary with the mnemonic and the addressing mode
combination.

SH1 Executable Instruction and Operation Size Combinations:

Table 3-4 shows the SH1 allowable executable instruction and operation size combinations.

Table 3-4 SH1 Executable Instruction and Operation Size Combinations (Part 1)

1. Data Move Instructions Operation Sizes

Mnemonic Addressing Mode B W L
Default when
Omitted

MOV #imm,Rn O ∆ ∆ B *1

MOV @(disp,PC),Rn × O O L

MOV symbol,Rn × O O L

MOV Rn,Rm × × O L

MOV Rn,@Rm O O O L

MOV @Rn,Rm O O O L

MOV Rn,@-Rm O O O L

MOV @Rn+,Rm O O O L

MOV R0,@(disp,Rn) O O O L

MOV Rn,@(disp,Rm) × × O L *2

MOV @(disp,Rn),R0 O O O L

MOV @(disp,Rn),Rm × × O L *3

MOV Rn,@(R0,Rm) O O O L

MOV @(R0,Rn),Rm O O O L

MOV R0,@(disp,GBR) O O O L

MOV @(disp,GBR),R0 O O O L

MOVA #imm,R0 × × ∆ L

MOVA @(disp,PC),R0 × × O L

MOVA symbol,R0 × × O L

Notes: See next page.

60

Table 3-4 SH1 Executable Instruction and Operation Size Combinations (Part 1) (cont)

1. Data Move Instructions Operation Sizes

Mnemonic Addressing Mode B W L
Default when
Omitted

MOVT Rn × × O L

SWAP Rn,Rm O O × W

XTRCT Rn,Rm × × O L

Symbol meanings:
Rn, Rm A general register (R0 to R15)
SR Satus register
VBR Vector base register
PR Procedure register
R0 General register R0 (when only R0 can be specified)
GBR Global base register
MACH, MACL Accumulator register
PC Program counter
imm An immediate value
symbol A symbol
disp A displacement value
B Byte
L Long word (4 bytes)
W Word (2 bytes)

Valid specification
× Invalid specification:
The assembler regards instructions with this combination as the specification being
omitted.
∅ The assembler regards them as extended instructions.

Notes: 1. In size selection mode, the assembler selects the operation size according to the imm
value.

2. In this case Rn must be one of R1 to R15.
3. In this case Rm must be one of R1 to R15.

References:

Extended instructions
→ Programmer’s Guide, 8.2, “Extended Instructions Related to Automatic Literal Pool

Generation”

Size selection mode
→ Programmer’s Guide, 8.3, “Size Mode for Automatic Literal Pool Generation”

61

Table 3-4 SH1 Executable Instruction and Operation Size Combinations (Part 2)

2. Arithmetic Operation Instructions Operation Sizes

Mnemonic Addressing Mode B W L
Default when
Omitted

ADD Rn,Rm × × O L

ADD #imm,Rn × × O L

ADDC Rn,Rm × × O L

ADDV Rn,Rm × × O L

CMP/EQ #imm,R0 × × O L

CMP/EQ Rn,Rm × × O L

CMP/HS Rn,Rm × × O L

CMP/GE Rn,Rm × × O L

CMP/HI Rn,Rm × × O L

CMP/GT Rn,Rm × × O L

CMP/PZ Rn × × O L

CMP/PL Rn × × O L

CMP/STR Rn,Rm × × O L

DIV1 Rn,Rm × × O L

DIV0S Rn,Rm × × O L

DIV0U (no operands) × × × —

EXTS Rn,Rm O O × W

EXTU Rn,Rm O O × W

MAC @Rn+,@Rm+ × O × W

MULS Rn,Rm × O O L *

MULU Rn,Rm × O O L *

NEG Rn,Rm × × O L

NEGC Rn,Rm × × O L

SUB Rn,Rm × × O L

SUBC Rn,Rm × × O L

SUBV Rn,Rm × × O L

Note: The object code generated when W is specified is the same as that generated when L is
specified.

62

Table 3-4 SH1 Executable Instruction and Operation Size Combinations (Part 3)

3. Logic Operation Instructions Operation Sizes

Mnemonic Addressing Mode B W L
Default when
Omitted

AND Rn,Rm × × O L

AND #imm,R0 × × O L

AND #imm,@(R0,GBR) O × × B

NOT Rn,Rm × × O L

OR Rn,Rm × × O L

OR #imm,R0 × × O L

OR #imm,@(R0,GBR) O × × B

TAS @Rn O × × B

TST Rn,Rm × × O L

TST #imm,R0 × × O L

TST #imm,@(R0,GBR) O × × B

XOR Rn,Rm × × O L

XOR #imm,R0 × × O L

XOR #imm,@(R0,GBR) O × × B

63

Table 3-4 SH1 Executable Instruction and Operation Size Combinations (Part 4)

4. Shift Instructions Operation Sizes

Mnemonic Addressing Mode B W L
Default when
Omitted

ROTL Rn × × O L

ROTR Rn × × O L

ROTCL Rn × × O L

ROTCR Rn × × O L

SHAL Rn × × O L

SHAR Rn × × O L

SHLL Rn × × O L

SHLR Rn × × O L

SHLL2 Rn × × O L

SHLR2 Rn × × O L

SHLL8 Rn × × O L

SHLR8 Rn × × O L

SHLL16 Rn × × O L

SHLR16 Rn × × O L

Table 3-4 SH1 Executable Instruction and Operation Size Combinations (Part 5)

5. Branch Instructions Operation Sizes

Mnemonic Addressing Mode B W L
Default when
Omitted

BF symbol × × × —

BT symbol × × × —

BRA symbol × × × —

BSR symbol × × × —

JMP @Rn × × × —

JSR @Rn × × × —

RTS (no operands) × × × —

64

Table 3-4 SH1 Executable Instruction and Operation Size Combinations (Part 6)

6. System Control Instructions Operation Sizes

Mnemonic Addressing Mode B W L
Default when
Omitted

CLRT (no operands) × × × —

CLRMAC (no operands) × × × —

LDC Rn,SR × × O L

LDC Rn,GBR × × O L

LDC Rn,VBR × × O L

LDC @Rn+,SR × × O L

LDC @Rn+,GBR × × O L

LDC @Rn+,VBR × × O L

LDS Rn,MACH × × O L

LDS Rn,MACL × × O L

LDS Rn,PR × × O L

LDS @Rn+,MACH × × O L

LDS @Rn+,MACL × × O L

LDS @Rn+,PR × × O L

NOP (no operands) × × × —

RTE (no operands) × × × —

SETT (no operands) × × × —

SLEEP (no operands) × × × —

STC SR,Rn × × O L

STC GBR,Rn × × O L

STC VBR,Rn × × O L

STC SR,@-Rn × × O L

STC GBR,@-Rn × × O L

STC VBR,@-Rn × × O L

STS MACH,Rn × × O L

STS MACL,Rn × × O L

STS PR,Rn × × O L

STS MACH,@-Rn × × O L

STS MACL,@-Rn × × O L

STS PR,@-Rn × × O L

TRAPA #imm × × O L

65

SH2 Executable Instruction and Operation Size Combinations:

Table 3-5 shows the executable instruction and operation size combinations for the SH2
instructions added to those of the SH1.

Table 3-5 SH2 Executable Instruction and Operation Size Combinations (Part 1)

1. Arithmetic Operation Instructions Operation Sizes

Mnemonic Addressing Mode B W L
Default when
Omitted

MAC @Rn+,@Rm+ × O O W

MUL Rn,Rm × × O L

DMULS Rn,Rm × × O L

DMULU Rn,Rm × × O L

DT Rn × × × —

Table 3-5 SH2 Executable Instruction and Operation Size Combinations (Part 2)

2. Branch Instructions Operation Sizes

Mnemonic Addressing Mode B W L
Default when
Omitted

BF/S symbol × × × —

BT/S symbol × × × —

BRAF Rn × × × —

BSRF Rn × × × —

SH3 Executable Instruction and Operation Size Combinations:

Table 3-6 shows the executable instruction and operation size combinations for the SH3
instructions added to those of the SH2.

Table 3-6 SH3 Executable Instruction and Operation Size Combinations (Part 1)

1. Data Move Instructions Operation Sizes

Mnemonic Addressing Mode B W L
Default when
Omitted

PREF @Rn × × × —

66

Table 3-6 SH3 Executable Instruction and Operation Size Combinations (Part 2)

2. Shift Instructions Operation Sizes

Mnemonic Addressing Mode B W L
Default when
Omitted

SHAD Rn,Rm × × O L

SHLD Rn,Rm × × O L

Table 3-6 SH3 Executable Instruction and Operation Size Combinations (Part 3)

3. System Control Instructions Operation Sizes

Mnemonic Addressing Mode B W L
Default when
Omitted

CLRS (No operands) × × × —

SETS (No operands) × × × —

LDC Rm,SSR × × O L

LDC Rm,SPC × × O L

LDC Rm,Rn_BANK × × O L

LDC @Rm+,SSR × × O L

LDC @Rm+,SPC × × O L

LDC @Rm+,Rn_BANK × × O L

STC SSR,Rn × × O L

STC SPC,Rn × × O L

STC Rm_BANK,Rn × × O L

STC SSR,@-Rn × × O L

STC SPC,@-Rn × × O L

STC Rm_BANK,@-Rn × × O L

LDTLB (No operands) × × × —

Symbol meanings:
Rn_BANK Bank general register
SSR Save status register
SPC Save program counter

67

SH3E Executable Instruction and Operation Size Combinations:

Table 3-7 shows the executable instruction and operation size combinations for the SH3E
instructions added to those of the SH3.

Table 3-7 SH3E Executable Instruction and Operation Size Combinations (Part 1)

1. Data Move Instructions Operation Sizes

Mnemonic Addressing Mode B W L S
Default when
Omitted

FLDI0 FRn × × × O S

FLDI1 FRn × × × O S

FMOV @Rm,FRn × × × O S

FMOV FRm,@Rn × × × O S

FMOV @Rm+,FRn × × × O S

FMOV FRm,@-Rn × × × O S

FMOV @(R0,Rm),FRn × × × O S

FMOV FRm,@(R0,Rn) × × × O S

FMOV FRm,FRn × × × O S

Symbol meanings:
FRm,FRn Floating-point register
FR0 FR0 floating-point register
FPUL FPU low register
FPSCR FPU status control register
S Single precision (4 bytes)

68

Table 3-7 SH3E Executable Instruction and Operation Size Combinations (Part 2)

2. Arithmetic Operation Instructions Operation Sizes

Mnemonic Addressing Mode B W L S
Default when
Omitted

FABS FRn × × × O S

FADD FRm,FRn × × × O S

FCMP/EQ FRm,FRn × × × O S

FCMP/GT FRm,FRn × × × O S

FDIV FRm,FRn × × × O S

FMAC FR0,FRm,FRn × × × O S

FMUL FRm,FRn × × × O S

FNEG FRn × × × O S

FSQRT FRn × × × O S

FSUB FRm,FRn × × × O S

Table 3-7 SH3E Executable Instruction and Operation Size Combinations (Part 3)

3. System Control Instructions Operation Sizes

Mnemonic Addressing Mode B W L S
Default when
Omitted

FLDS FRm,FPUL × × × O S

FLOAT FPUL,FRn × × × O S

FSTS FPUL,FRn × × × O S

FTRC FRm,FPUL × × × O S

LDS Rm,FPUL × × O × L

LDS @Rm+,FPUL × × O × L

LDS Rm,FPSCR × × O × L

LDS @Rm+,FPSCR × × O × L

STS FPUL,Rn × × O × L

STS FPUL,@-Rn × × O × L

STS FPSCR,Rn × × O × L

STS FPSCR,@-Rn × × O × L

69

SH-DSP Executable Instruction and Operation Size Combinations:

Table 3-8 shows the executable instruction and operation size combinations for the SH-DSP
instructions added to those of the SH2.

Table 3-8 SH-DSP Executable Instruction and Operation Size Combinations (Part 1)

1. Repeat Control Instructions Operation Sizes

Mnemonic Addressing Mode B W L
Default when
Omitted

LDRS @(disp,PC) × × O L

LDRS symbol × × O L

LDRE @(disp,PC) × × O L

LDRE symbol × × O L

SETRC Rn × × × —

SETRC #imm × × × —

Symbol meanings:
MOD Modulo register
RS Repeat start register
RE Repeat end register
DSR DSP status register
A0 DSP data register (A0, X0, X1, Y0, or Y1 can be specified.)

70

Table 3-8 SH-DSP Executable Instruction and Operation Size Combinations (Part 2)

2. System Control Instructions Operation Sizes

Mnemonic Addressing Mode B W L
Default when
Omitted

LDC Rn,MOD × × O L

LDC Rn,RS × × O L

LDC Rn,RE × × O L

LDC @Rn+,MOD × × O L

LDC @Rn+,RS × × O L

LDC @Rn+,RE × × O L

LDS Rn,DSR × × O L

LDS Rn,A0 × × O L

LDS @Rn+,DSR × × O L

LDS @Rn+,A0 × × O L

STC MOD,Rn × × O L

STC RS,Rn × × O L

STC RE,Rn × × O L

STC MOD,@-Rn × × O L

STC RS,@-Rn × × O L

STC RE,@-Rn × × O L

STS DSR,Rn × × O L

STS A0,Rn × × O L

STS DSR,@-Rn × × O L

STS A0,@-Rn × × O L

3.2.2 Notes on Delayed Branch Instructions

The unconditional branch instructions are delayed branch instructions. SH microprocessors
execute the delay slot instruction (the instruction directly following a branch instruction in
memory) before executing the delayed branch instruction.

If an instruction inappropriate for a delay slot is specified, the assembler issues error number 150
or 151.

Table 3-9 shows the relationship between the delayed branch instructions and the delay slot
instructions.

71

Table 3-9 Relationship between Delayed Branch Instructions and Delay Slot Instructions

Delayed Branch

Delay Slot BF/S BT/S BRAF BSRF BRA BSR JMP JSR RTS RTE

BF × × × × × × × × × ×
BT × × × × × × × × × ×
BF/S × × × × × × × × × ×
BT/S × × × × × × × × × ×
BRAF × × × × × × × × × ×
BSRF × × × × × × × × × ×
BRA × × × × × × × × × ×
BSR × × × × × × × × × ×
JMP × × × × × × × × × ×
JSR × × × × × × × × × ×
RTS × × × × × × × × × ×
RTE × × × × × × × × × ×
TRAPA × × × × × × × × × ×
MOV @(disp,PC),Rn ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

symbol,Rn ∅ ∅ × × ∅ ∅ × × × ×
MOVA @(disp,PC),R0 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

symbol,R0 ∅ ∅ × × ∅ ∅ × × × ×
Extended
instructions

MOV.L #imm,Rn × × × × × × × × × ×

MOV.W #imm,Rn × × × × × × × × × ×
MOVA #imm,R0 × × × × × × × × × ×

Any other instruction O O O O O O O O O O

Symbol meanings:

O Normal, i.e., the assembler generates the specified object code.
∅ Warning 871

Note on the value of PC: PC = <destination address for the delayed
branch instruction> + 2
The assembler generates the specified object code.

× Error 150 or 151
The instruction specified is inappropriate as a delay slot instruction.
The assembler generates object code with a NOP instruction (H’0009).

72

CAUTION!

If the delayed branch instruction and the delay slot instruction are coded in different sections,
the assembler does not check the validity of the delay slot instruction.

Reference:

Extended Instructions
→ Programmer’s Guide, 8.2, “Extended Instructions Related to Automatic Literal Pool

Generation”

3.2.3 Notes on Address Calculations

When the operand addressing mode is PC relative with displacement, i.e., @(disp,PC), the value
of PC must be taken into account in coding. The value of PC can vary depending on certain
conditions.

(1) Normal Case

The value of PC is the first address in the currently executing instruction plus 4 bytes.

Examples: (Consider the state when a MOV instruction is being executed at absolute
address H’00001000.)

H'00001004PC

H'00001000

H'0000100C

Memory

2 bytes

Absolute addresses

Area being

accessed

disp = 8 bytes

MOV.L @(8,PC),R0

Figure 3-1 Address Calculation Example (Normal Case)

73

(2) During the Delay Slot Instruction

The value of PC is destination address for the delayed branch instruction plus 2 bytes.

Examples: (Consider the state when a MOV instruction is being executed at absolute
address H’00001000.)

H'00001000

H'00001010

Memory

2 bytes

BRA L1

H'00001008PC

L1 = H'00001006

Absolute addresses

Branch destination for the

delayed branch

Area being

accessed

disp = 8 bytes

MOV.L @(8,PC),R0

Figure 3-2 Address Calculation Example (When the Value of PC Differs Due to a Branch)

Supplement:

When the operand is the PC relative specified with the symbol, the assembler derives the
displacement taking account of the value of PC when generating the object code.

74

(3) During the Execution of Either a MOV.L @(disp,PC),Rn or a MOVA @(disp,PC),R0

When the value of PC is not a multiple of 4 SH microprocessors correct the value by
discarding the lower 2 bits when calculating addresses.

Examples:

1. When SH microprocessor corrects the value of PC

(Consider the state when a MOV instruction is being executed at address H’00001002.)

H'00001006
H'00001004

PC

Memory

2 bytes

Address
H'00001002

H'0000100C Area being accessed
The value of the PC

is corrected to be

a multiple of 4.

disp = 8 bytes

MOV.L @(8,PC),R0

Figure 3-3 Address Calculation Example (When SH Microprocessor Corrects
the Value of PC)

2. When SH microprocessor does not correct the value of PC

(Consider the state when a MOV instruction is being executed at address H’00001000.)

H'00001004PC

Memory

2 bytes

Address
H'00001000

H'0000100C Area being accessed

disp = 8 bytes
The value of the PC

is not changed.

MOV.L @(8,PC),R0

Figure 3-4 Address Calculation Example (When SH Microprocessor Does Not Correct
the Value of PC)

75

Supplement:

When the operand is the PC relative specified with the symbol, the assembler derives the
displacement taking account of the value of PC when generating the object code.

76

77

Section 4 Assembler Directives

4.1 Overview of the Assembler Directives

The assembler directives are instructions that the assembler interprets and executes. Table 4-1
lists the assembler directives provided by this assembler.

Table 4-1 Assembler Directives

Type Mnemonic Function

Target CPU .CPU Specifies the target CPU.

Section and the location
counter

.SECTION

.ORG

.ALIGN

Declares a section.

Sets the value of the location counter.

Corrects the value of the location counter.

Symbols .EQU

.ASSIGN

.REG

.FREG

Sets a symbol value (reset not allowed).

Sets a symbol value (reset allowed).

Defines the alias of a register name.

Defines a floating-point register name.

Data and data area
reservation

.DATA

.DATAB

.SDATA

.SDATAB

.SDATAC

.SDATAZ

.FDATA

.FDATAB

.XDATA

.RES

.SRES

.SRESC

.SRESZ

.FRES

Reserves integer data.

Reserves integer data blocks.

Reserves character string data.

Reserves character string data blocks.

Reserves character string data (with length).

Reserves character string data (with zero
terminator).

Reserves floating-point data.

Reserves floating-point data blocks.

Reserves fixed-point data.

Reserves data area.

Reserves character string data area.

Reserves character string data area (with length).

Reserves character string data area (with zero
terminator).

Reserves floating-point data area.

78

Table 4-1 Assembler Directives (cont)

Type Mnemonic Function

Export and import symbol .EXPORT

.IMPORT

.GLOBAL

Declares export symbols.

Declares import symbols.

Declares export and import symbols.

Object modules .OUTPUT

.DEBUG

.ENDIAN

.LINE

Controls object module output.

Controls the output of symbolic debug information.

Selects big endian or little endian.

Changes line number.

Assemble listing .PRINT

.LIST

.FORM

.HEADING

.PAGE

.SPACE

Controls assemble listing output.

Controls the output of the source program listing.

Sets the number of lines and columns in the
assemble listing.

Sets the header for the source program listing.

Inserts a new page in the source program listing.

Outputs blank lines to the source program listing.

Other directives .PROGRAM

.RADIX

.END

Sets the name of the object module.

Sets the radix in which integer constants with no
radix specifier are interpreted.

Declares the end of the source program.

79

4.2 Assembler Directive Reference

4.2.1 Target CPU Assembler Directive

This assembler provides the following assembler directive concerned with the target CPU.

.CPU Specifies the target CPU.

.CPU Target CPU Specification

Syntax

∆.CPU∆<target CPU>

Statement Elements

1. Label
The label field is not used.

2. Operation
Enter the .CPU mnemonic.

3. Operands

Enter the target CPU.

Specification Target CPU

SH1 Assembles program for SH1

SH2 Assembles program for SH2

SH3 Assembles program for SH3

SH3E Assembles program for SH3E

SHDSP Assembles program for SH-DSP

This directive determines the target CPU. If it is omitted, the CPU specified by the SHCPU
environment variable becomes valid.

Reference: SHCPU environment variable
→ User’s Guide, 1.3, “SHCPU Environment Variable”

Description

1. .CPU is the assembler directive that specifies the target CPU for which the source program is
assembled.

2. The following CPU can be selected:

80

SH1
SH2
SH3
SH3E
SHDSP

3. Specify this directive at the beginning of the source program. If it is not specified at the
beginning, an error will occur. However, directives related to assembly listing can be written
before this directive.

4. When several .CPU directives are specified, only the first specification becomes valid.

5. The assembler gives priority to target CPU specification in the order of -CPU, .CPU, and the
SHCPU environment variable.

Coding Example

.CPU SH2

.SECTION A,CODE,ALIGN=4

MOV.L R0,R1

MOV.L R0,R2

Assembles program for SH2.

Reference: -CPU
→ User’s Guide, 2.2.1, “CPU Command Line Option” -CPU

81

4.2.2 Section and Location Counter Assembler Directives

This assembler provides the following assembler directives concerned with sections and the
location counter.

.SECTION Declares a section.

.ORG Sets the value of the location counter.

.ALIGN Adjusts the value of the location counter to a multiple of the boundary alignment
value.

82

.SECTION Section Declaration

Syntax

∅.SECTION∅<section name> [,<section attribute>
 [,{LOCATE= <start address>|ALIGN=<boundary alignment value>}]]

Statement Elements

1. Label
The label field is not used.

2. Operation
Enter the .SECTION mnemonic.

3. Operands

 First operand: the section name

The rules for section names are the same as the rules for symbols.
References: Naming sections

→ Programmer’s Guide, 1.3.2, “Coding of Symbols”

 Second operand: the section attribute

Attribute Section Type

CODE Code section

DATA Data section

STACK Stack section

COMMON Common section

DUMMY Dummy section

The shaded section indicates the default value when the specifier is omitted.

When the specification is omitted, the section will be a code section.

 Third operand: start address or boundary alignment value

Specification Section Type

LOCATE = <start address> Absolute address section

ALIGN = <boundary alignment value> Relative address section

No specification Relative address section (boundary
alignment value = 4)

The specification determines whether the section type will be an absolute address section
or a relative address section.

83

Description

1. .SECTION is the section declaration assembler directive.
A section is a part of a program, and the linkage editor regards it as a unit of processing. The
following describes section declaration using the simple examples shown below.

.END

.SECTION DT,DATA,ALIGN=4

.SECTION DM,DUMMY

Source program

.SECTION CD,CODE,ALIGN=4

Source statement set 1*

Source statement set 2

Source statement set 3

This statement declares the start of

section CD.

This part of the source program

belongs to section CD.

This statement declares the start

of section DT.

This part of the source program

belongs to section DT.

This statement declares the start of

section DM.

This part of the source program

belongs to section DM.

This statement declares the end of the

source program.

Note: This example assumes that the .SECTION

directive does not appear in any of the source

statement sets 1 to 3.

2. It is possible to redeclare (and thus restart, i.e., re-enter) a section that was previously
declared in the same file. The following is a simple example of section restart.

.END

.SECTION DT,DATA,ALIGN=4

.SECTION CD

Source program

.SECTION CD,CODE,ALIGN=4

Source statement set 1*

Source statement set 2

Source statement set 3

Note: This example assumes that the .SECTION
directive does not appear in any of the source

statement sets 1 to 3.

This statement declares the start of

section CD.

This part of the source program

belongs to section CD.

This statement declares the restart

of section CD.

This part of the source program

also belongs to section CD.

(This part of the program is a

continuation of source statement set 1.)

84

CAUTION!
When using the .SECTION directive to restart a section, the second and third operands must
be omitted. (The original specifications when first declaring the section remain valid.)

3. Use LOCATE = <start address> as the third operand when starting an absolute address
section. The start address is the absolute address of the start of that section.
The start address must be specified as follows:

 The specification must be an absolute value,
and,

 Forward reference symbols must not appear in the specification.

The values allowed for the start address are from H’00000000 to H’FFFFFFFF. (From -
2,147,483,648 to 4,294,967,295 in decimal.)

4. Use ALIGN = <boundary alignment value> to start a relative address section. The linkage
editor will adjust the start address of the section to be a multiple of the boundary alignment
value.
The boundary alignment value must be specified as follows:

 The specification must be an absolute value,

and,

 Forward reference symbols must not appear in the specification.

The values allowed for the boundary alignment value are powers of 2, e.g. 20, 21, 22, ..., 231.
For code sections, the values must be 4 or larger powers of 2, e.g. 22, 23, 24, ..., 231.

5. The assembler provides a default section for the following cases.

 The use of executable instructions when no section has been declared.

 The use of data reservation assembler directives when no section has been declared.

 The use of the .ALIGN directive when no section has been declared.

 The use of the .ORG directive when no section has been declared.

 Reference to the location counter when no section has been declared.

 The use of statements consisting of only the label field when no section has been
declared.

The default section is the following section.

 Section name: P

 Section type: Code section

Relative address section (with a boundary alignment value of 4)

85

Coding Example

 .ALIGN 4

 .DATA.L H'11111111

 .SECTION CD,CODE,ALIGN=4

 MOV R0,R1

 MOV R0,R2

 .SECTION DT,DATA,LOCATE=H'00001000

 X1: .DATA.L H'22222222

 .DATA.L H'33333333

 .END

;	 This section of the program belongs to the default section P.

;	 The default section P is a code section, and is a relative

;	 address section with a boundary alignment value of 4.

;	 This section of the program belongs to the section CD.

;	 The section CD is a code section, and is a relative address

;	 section with a boundary alignment value of 4.

;	 This section of the program belongs to the section DT.

;	 The section DT is a data section, and is an absolute address

;	 section with a start address of H'00001000.

~

~

~

Note: This example assumes the .SECTION directive does not appear in the parts indicated by
“∼”.

86

.ORG Location-Counter-Value Setting

Syntax

∅.ORG∅<location-counter-value>

Statement Elements

1. Label
The label field is not used.

2. Operation
Enter the .ORG mnemonic.

3. Operands

Enter the new value for the location counter.

Description

1. .ORG is an directive that sets the value of the location counter. The .ORG directive is used to
place executable instructions or data at a specific address.

2. The location-counter-value must be specified as follows:

 The specification must be an absolute value or an address within the section,
and,

 Forward reference symbols must not appear in the specification.

The values allowed for the location-counter-value are from H’00000000 to H’FFFFFFFF.
(From -2,147,483,648 to 4,294,967,295 in decimal.)
When the location-counter-value is specified with an absolute value, the following condition
must hold:

<location-counter-value> ≥ <section start address> (when compared as unsigned values)
3. The assembler handles the value of the location counter as follows.

 The value is regarded as an absolute address value within an absolute address section.

 The value is regarded as a relative address value (relative distance from the section head)
within a relative address section.

87

Coding Example

.SECTION DT,DATA,LOCATE=H’FFFF0000

 .DATA.L H’11111111

 .ORG H’FFFF0010 ; This statement sets the value of the location

 counter.

 .DATA.L H’22222222 ; The integer data H’22222222 is stored at

 ; absolute address H’FFFF0010.

 ∼

Memory

4 bytes

Absolute address

H’FFFF0000

Absolute address

H’FFFF0010

Locations from H’FFFF0004

to H’FFFF000F are not

changed due to the use of

the .ORG assembler directive.

H'11111111

H'22222222

Explanatory Figure for the Coding Example

88

.ALIGN Location-Counter-Value Correction

Syntax

∅.ALIGN ∅<boundary alignment value>

Statement Elements

1. Label

The label field is not used.

2. Operation

Enter the .ALIGN mnemonic./

3. Operands

Enter the boundary alignment value.

Description

1. .ALIGN is an directive that corrects the location-counter-value to be a multiple of the
boundary alignment value. Executable instructions and data can be allocated on specific
boundary values (address multiples) by using the .ALIGN directive.

2. The boundary alignment value must be specified as follows:

 The specification must be an absolute value,

and,

 Forward reference symbols must not appear in the specification.

The values allowed for the boundary alignment value are powers of 2, e.g. 20, 21, 22, ..., 231.
The boundary alignment value specified by .ALIGN directive must be less than or equal to
the boundary alignment value specified by .SECTION directive.

3. When .ALIGN is used in a relative section the following must be satisfied:

Boundary alignment value specified by .SECTION ≥ Boundary alignment value specified
by .ALIGN

4. When .ALIGN is used in a code section, the assembler inserts NOP instructions in the object
code* to adjust the value of the location counter. Odd byte size areas are filled with H’09.

Note: This object code is not displayed in the assemble listing.

When .ALIGN is used in a data dummy, or stack section, the assembler only adjusts the
value of the location counter, and does not fill in any object code in memory.

89

Coding Example

.SECTION P,code

 ∼
 .DATA.B H’11
 .DATA.B H’22
 .DATA.B H’33

 . ALIGN 2 ; This statement adjusts the value of the location
 .DATA.W H’4444 ; counter to be a multiple of 2.

 . ALIGN 4 ; This statement adjusts the value of the location
 .DATA.L H’55555555 ; counter to be a multiple of 4.
 ∼

H'11 H'22 H'33
H'4444

H'55555555

Memory
4-byte

boundary

4 bytes

: Codes filled in by

 the assembler.

H'09
H'0009

Explanatory Figure for the Coding Example

This example assumes that the byte sized integer data H'11 is originally located at the

4-byte boundary address. The assembler will insert the filler data as shown in the figure

below.

90

4.2.3 Symbol Handling Assembler Directives

This assembler provides the following assembler directives concerned with symbols.

.EQU Sets a symbol value.

.ASSIGN Sets and resets a symbol value.

.REG Defines the alias of a register name.

.FREG Defines a floating-point register name.

91

.EQU Symbol Value Setting (Resetting Not Allowed)

Syntax

<symbol>[:] ∅.EQU∅<symbol value>

Statement Elements

1. Label
Enter the symbol to which a value is to be set.

2. Operation
Enter the .EQU mnemonic.

3. Operands

Enter the value to be set to the symbol.

Description

1. .EQU is an assembler directive that sets a value to a symbol.
Symbols defined with the .EQU directive cannot be redefined.

2. The symbol value must be specified as follows:

 The specification must be an absolute value, an address value, or an import symbol
value*

and,

 Forward reference symbols must not appear in the specification.

The values allowed for the symbol value are from H’00000000 to H’FFFFFFFF. (From -
2,147,483,648 to 4,294,967,295 in decimal.)

Note: An import value, import value + constant, or import value - constant can be specified.

92

Coding Example

 ∼
X1: .EQU 10 ; The value 10 is set to X1.

X2: .EQU 20 ; The value 20 is set to X2.

 CMP/EQ #X1,R0 ; This is the same as CMP/EQ #10,R0.

 BT LABEL1

 CMP/EQ #X2,R0 ; This is the same as CMP/EQ #20,R0.

 BT LABEL2

 ∼

93

.ASSIGN Symbol Value Setting (Resetting Allowed)

Syntax

<symbol>[:] ∅.ASSIGN ∅<symbol value>

Statement Elements

1. Label
Enter the symbol to which a value is to be set.

2. Operation
Enter the .ASSIGN mnemonic.

3. Operands

Enter the value to be set to the symbol.

Description

1. .ASSIGN is an assembler directive that sets a value to a symbol.
Symbols defined with the .ASSIGN directive can be redefined with the .ASSIGN directive.

2. The symbol value must be specified as follows:

 The specification must be an absolute value or an address value,

and,

 Forward reference symbols must not appear in the specification.

The values allowed for the symbol value are from H’00000000 to H’FFFFFFFF. (From -
2,147,483,648 to 4,294,967,295 in decimal.)

3. Definitions with the .ASSIGN directive are valid from the point of the definition forward in
the program.

4. Symbols defined with .ASSIGN have the following limitations:

 They cannot be used as export or import symbols.

 They cannot be referenced from the simulator/debugger.

94

Coding Example

 ∼
X1: .ASSIGN 1

X2: .ASSIGN 2

 CMP/EQ #X1,R0 ; This is the same as CMP/EQ #1,R0.

 BT LABEL1

 CMP/EQ #X2,R0 ; This is the same as CMP/EQ #2,R0.

 BT LABEL2

 ∼
X1: .ASSIGN 3

X2: .ASSIGN 4

 CMP/EQ #X1,R0 ; This is the same as CMP/EQ #3,R0.

 BT LABEL3

 CMP/EQ #X2,R0 ; This is the same as CMP/EQ #4,R0.

 BF LABEL4

 ∼

95

.REG Register Name Alias Definition

Syntax

<symbol>[:] ∅.REG∅<register name>
 or
<symbol>[:] ∅.REG∅(<register name>)

Statement Elements

1. Label
Enter the symbol to be defined as the alias of a register name.

2. Operation
Enter the .REG mnemonic.

3. Operands

Enter the register name for which the alias of a register name is being defined.

Description

1. .REG is the assembler directive that defines the alias of a register name.
The alias of a register name defined with .REG can be used in exactly the same manner as
the original register name.
The alias of a register name defined with .REG cannot be redefined.

2. The alias of a register name can only be defined for the general registers (R0 to R15, and
SP).

3. Definitions with the .REG directive are valid from the point of the definition forward in the
program.

4. Symbols defined with .REG have the following limitations:

 They cannot be used as import or export symbols.

 They cannot be referenced from the simulator/debugger.

96

Coding Example

 ∼
MIN: .REG R10

MAX: .REG R11

 MOV #0,MIN ; This is the same as MOV #0,R10.

 MOV #99,MAX ; This is the same as MOV #99,R11.

 CMP/HS MIN,R1

 BF LABEL

 CMP/HS R1,MAX

 BF LABEL

 ∼

97

.FREG Floating-Point Register Name Alias Definition

Syntax

<symbol>[:] ∅.FREG∅<floating-point register name>
 or
<symbol>[:] ∅.FREG∅(<floating-point register name>)

Statement Elements

1. Label
Enter the symbol to be defined as a floating-point register name.

2. Operation
Enter the .FREG mnemonic.

3. Operands

Enter the floating-point register name for which the alias is to be defined.

Description

1. .FREG is the assembler directive that defines the alias of a floating-point register name.
The alias of a floating-point register name defined with .FREG can be used in exactly the
same manner as the original register name.
The alias of a floating-point register name defined with .FREG cannot be redefined.

2. The alias can only be defined for the floating-point registers (FR0 to FR15).
3. Definitions with the .FREG are valid from the point of the definition forward in the program.
4. Symbols defined with .FREG have the following limitations:

 They cannot be used as import or export symbols.

 They cannot be referenced from the simulator/debugger.

Coding Example

 ∼
MAX: .FREG FR11

 FMOV @FR1,MAX ; This is the same as FMOV @FR1,FR11.

 FCMP/EQ MAX,FR2 ; This is the same as FCMP/EQ FR11,FR2.

 BF LABEL

 ∼

98

4.2.4 Data and Data Area Reservation Assembler Directives

This assembler provides the following assembler directives that are concerned with data and data
area reservation.

.DATA Reserves integer data.

.DATAB Reserves integer data blocks.

.SDATA Reserves character string data.

.SDATAB Reserves character string data blocks.

.SDATAC Reserves character string data (with length).

.SDATAZ Reserves character string data (with zero terminator).

.FDATA Reserves floating-point data.

.FDATAB Reserves floating-point data block.

.XDATA Reserves fixed-point data.

.RES Reserves data area.

.SRES Reserves character string data area.

.SRESC Reserves character string data area (with length).

.SRESZ Reserves character string data area (with zero terminator).

.FRES Reserves floating-point data area.

99

.DATA Integer Data Reservation

Syntax

[<symbol>[:]] ∅.DATA[.<operation size>] ∅<integer data>
 [,<integer data>...]

Statement Elements

1. Label
Enter a reference symbol if required.

2. Operation

 Mnemonic

Enter .DATA mnemonic.

 Operation size

Specifier Data Size

B Byte

W Word (2 bytes)

L Long word (4 bytes)

The shaded section indicates the default value when the specifier is omitted.

 The specifier determines the size of the reserved data.

 The long word size is used when the specifier is omitted.

3. Operands

Enter the values to be reserved as data in the operand field.

Description

1. .DATA is the assembler directive that reserves integer data in memory.
2. Arbitrary values, including relative values and forward reference symbols, can be used to

specify the integer data.
3. The range of values that can be specified as integer data varies with the operation size.

Operation Size Integer Data Range*

B H’00000000 to H’000000FF (0 to 255)
H’FFFFFF80 to H’FFFFFFFF (-128 to -1)

W H’00000000 to H’0000FFFF (0 to 65,535)
H’FFFF8000 to H’FFFFFFFF (-32,768 to -1)

L H’00000000 to H’7FFFFFFF (0 to 4,294,967,295)
H’80000000 to H’FFFFFFFF (-2,147,483,648 to -1)

Note: Numbers in parentheses are decimal.

100

Coding Example

 ∼
 .ALIGN 4 ; (This statement adjusts the value of the
 location counter.)

X: .DATA.L H’11111111 ;

 .DATA.W H’2222,H’3333 ; These statements reserve integer data.

 .DATA.B H’44,H’55 ;

 ∼

Memory

4 bytes

11

22

44

11

22

55

11

33

11

33

Note:

Address symbol

X

The data in this figure

is hexadecimal.

Explanatory Figure for the Coding Example

101

.DATAB Integer Data Block Reservation

Syntax

[<symbol>[:]] ∅.DATAB[.<operation size>] ∅<block count>,<integer data>

Statement Elements

1. Label
Enter a reference symbol if required.

2. Operation

 Mnemonic

Enter .DATAB mnemonic.

 Operation size

Specifier Data Size

B Byte

W Word (2 bytes)

L Long word (4 bytes)

The shaded section indicates the default value when the specifier is omitted.

 The specifier determines the size of the reserved data.

 The long word size is used when the specifier is omitted.

3. Operands

 First operand: block count

Enter the number of times the data value is repeated as the first operand.

 Second operand: integer data

Enter the value to be reserved as the second operand.

Description

1. .DATAB is the assembler directive that reserves the specified number of integer data items
consecutively in memory.

2. The block count must be specified as follows:

 The specification must be an absolute value,

and,

 Forward reference symbols must not appear in the specification.

Arbitrary values, including relative values and forward reference symbols, can be used to
specify the integer data.

102

3. The range of values that can be specified as the block size and as the integer data varies with
the operation size.

Operation Size Block Size Range*

B H’00000001 to H’FFFFFFFF (1 to 4,294,967,295)

W H’00000001 to H’7FFFFFFF (1 to 2,147,483,647)

L H’00000001 to H’3FFFFFFF (1 to 1,073,741,823)

Operation Size Integer Data Range*

B H’00000000 to H’000000FF (0 to 255)
H’FFFFFF80 to H’FFFFFFFF (-128 to -1)

W H’00000000 to H’0000FFFF (0 to 65,535)
H’FFFF8000 to H’FFFFFFFF (-32,768 to -1)

L H’00000000 to H’7FFFFFFF (0 to 4,294,967,295)
H’80000000 to H’FFFFFFFF (-2,147,483,648 to -1)

Note: Numbers in parentheses are decimal.

103

Coding Example

 ∼
 .ALIGN 4 ; (This statement adjusts the value of the
 ; location counter.)

X: .DATAB.L 1,H’11111111 ;

 .DATAB.W 2,H’2222 ; This statement reserves two blocks of integer

 .DATAB.B 3,H’33 ; data.

 ∼

Memory

4 bytes

11

22

33

11

22

33

11

22

33

11

22

Address symbol

X

Note:

The data in this figure

is hexadecimal.

Explanatory Figure for the Coding Example

104

.SDATA Character String Data Reservation

Syntax

[<symbol>[:]] ∅.SDATA∅”<character string>“[,”<character string>“...]

Statement Elements

1. Label

Enter a reference symbol if required.

2. Operation

Enter the .SDATA mnemonic.

3. Operands

Enter the character string(s) to be reserved.

Description

1. .SDATA is the assembler directive that reserves character string data in memory.

Reference: Character strings → Programmer’s Guide, 1.7, “Character Strings”
2. A control character can be appended to a character string.

The syntax for this notation is as follows.
“<character string>“<<ASCII code for a control character>>

The ASCII code for a control character must be specified as follows.

 The specification must be an absolute value,

and,

 Forward reference symbols must not appear in the specification.

105

Coding Example

 ∼
 .ALIGN 4 ; (This statement adjusts the value of
 ; the location counter.)

X: .SDATA “AAAAA” ; This statement reserves character string data.

 .SDATA “““BBB””” ; The character string in this example includes
 ; double quotation marks.

 .SDATA “ABAB”<H’07> ; The character string in this example has
 ; a control character appended.

 ∼

Memory

4 bytes

41

41

42

41

41

22

22

42

41

42

41

07

41

42

42

Notes:

Address

symbol

X

The data in this figure is

hexadecimal.

The ASCII code for “A” is: H'41.
The ASCII code for “B” is: H'42.

The ASCII code for “"” is: H'22.

2.

1.

Explanatory Figure for the Coding Example

106

.SDATAB Character String Data Blocks Reservation

Syntax

[<symbol>[:]] ∅.SDATAB∅<block count>,”<character string>“

Statement Elements

1. Label
Enter a reference symbol if required.

2. Operation
Enter the .SDATAB mnemonic.

3. Operands

 First operand: <block count>

Enter the number of character strings as the first operand.

 Second operand: <character string>

Enter the character string to be reserved as the second operand.

Description

1. .SDATAB is the assembler directive that reserves the specified number of character strings
consecutively in memory.

Reference: Character strings → Programmer’s Guide, 1.7, “Character Strings”
2. The <block count> must be specified as follows:

 The specification must be an absolute value,

and,

 Forward reference symbols must not appear in the specification.

A value of 1 or larger must be specified as the block count.
The maximum value of the block count depends on the length of the character string data.
(The length of the character string data multiplied by the block count must be less than or
equal to H’FFFFFFFF (4,294,967,295) bytes.)

3. A control character can be appended to a character string.
The syntax for this notation is as follows.

“<character string>“<<ASCII code for a control character>>

The ASCII code for a control character must be specified as follows.

 The specification must be an absolute value,

and,

 Forward reference symbols must not appear in the specification.

107

Coding Example

 ∼
 .ALIGN 4 ; (This statement adjusts the value of the
 ; location counter.)

X: .SDATAB 2,”AAAAA” ; This statement reserves two character
 ; string data blocks.

 .SDATAB 2,”””BBB””” ; The character string in this example
 ; includes double quotation marks.

 .SDATAB 2,”ABAB”<H’07> ; The character string in this example has
 ; a control character appended.

 ∼

Memory

4 bytes

41

41

41

42

42

41

07

42

41

41

41

42

42

42

41

07

41

41

22

22

42

41

42

41

41

42

22

22

42

41

Notes: The data in this figure is

hexadecimal.

1.	

The ASCII code for “A” is: H'41.
The ASCII code for “B” is: H'42.

The ASCII code for “"” is: H'22.

2.

Address

symbol

X

Explanatory Figure for the Coding Example

108

.SDATAC Character String Data Reservation (With Length)

Syntax

[<symbol>[:]] ∅.SDATAC∅”<character string>“[,”<character string>“...]

Statement Elements

1. Label

Enter a reference symbol if required.

2. Operation

Enter the .SDATAC mnemonic.

3. Operands

Enter the character string(s) to be reserved.

Description

1. .SDATAC is the assembler directive that reserves character string data (with length) in
memory.
A character string with length is a character string with an inserted leading byte that indicates
the length of the string.
The length indicates the size of the character string (not including the length) in bytes.

Reference: Character strings → Programmer’s Guide, 1.7, “Character Strings”
2. A control character can be appended to a character string.

The syntax for this notation is as follows.
“<character string>“<<ASCII code for a control character>>

The ASCII code for a control character must be specified as follows.

 The specification must be an absolute value,

and,

 Forward reference symbols must not appear in the specification.

109

Coding Example

 ∼
 .ALIGN 4 ; (This statement adjusts the value of the
 ; location counter.)

X: .SDATAC “AAAAA” ; This statement reserves character string
 ; data (with length).

 .SDATAC “““BBB””” ; The character string in this example
 ; includes double quotation marks.

 .SDATAC “ABAB”<H’07> ; The character string in this example has
 ; a control character appended.

 ∼

Memory

4 bytes

05

41

42

05

42

41

41

42

41

07

41

05

42

42

41

22

22

41

Notes: The data in this figure is

hexadecimal.

1.	

The ASCII code for “A” is: H'41.
The ASCII code for “B” is: H'42.

The ASCII code for “"” is: H'22.

2.

Address

symbol

X

Explanatory Figure for the Coding Example

110

.SDATAZ Character String Data Reservation (With Zero Terminator)

Syntax

[<symbol>[:]] ∅.SDATA∅”<character string>“[,”<character string>“...]

Statement Elements

1. Label
Enter a reference symbol if required.

2. Operation
Enter the .SDATAZ mnemonic.

3. Operands
Enter the character string(s) to be reserved.

Description

1. .SDATAZ is the assembler directive that reserves character string data (with zero terminator)
in memory.
A character string with zero terminator is a character string with an appended trailing byte
(with the value H’00) that indicates the end of the string.

Reference: Character strings → Programmer’s Guide, 1.7, “Character Strings”
2. A control character can be appended to a character string.

The syntax for this notation is as follows.
“<character string>“<<ASCII code for a control character>>

The ASCII code for a control character must be specified as follows.

 The specification must be an absolute value,

and,

 Forward reference symbols must not appear in the specification.

111

Coding Example

 ∼
 .ALIGN 4 ; (This statement adjusts the value of the
 ; location counter.)

X: .SDATAZ “AAAAA” ; This statement reserves character string
 ; data (with zero terminator).

 .SDATAZ “““BBB””” ; The character string in this example
 ; includes double quotation marks.

 .SDATAZ “ABAB”<H’07> ; The character string in this example has
 ; a control character appended.

 ∼

Memory

4 bytes

41

41

42

41

07

41

00

42

42

00

41

22

22

41

41

42

00

42

Notes: The data in this figure is

hexadecimal.

1.	

The ASCII code for “A” is: H'41.
The ASCII code for “B” is: H'42.

The ASCII code for “"” is: H'22.

2.

Address

symbol

X

Explanatory Figure for the Coding Example

112

.FDATA Floating-Point Data Reservation

Syntax

[<symbol>[:]] ∅.FDATA[.S] ∅<floating-point data>
 [,<floating-point data>...]

Statement Elements

1. Label
Enter a reference symbol if required.

2. Operation

 Mnemonic

Enter .FDATA mnemonic.

 Operation size

Enter S for single precision.
3. Operands

Enter the values to be reserved as data.

Description

1. .FDATA is the assembler directive that reserves floating-point data in memory.
2. .FDATA can be specified for any CPU.

Reference: Floating-point numbers
→ Programmer’s Guide, 1.4.3, “Floating-Point Numbers”

113

Coding Example

 .ALIGN 4 ; (This statement adjusts the value of the
 ; location counter.)

 ∼
X: .FDATA.S F’12.34 ; This statement reserves a 4-byte area
 ; 414570A3 (F’12.34).

 .FDATA.S H’F800000.S ; This statement reserves a 4-byte area
 ; 7F800000 (H’F800000.S).

 ~

Memory

4 bytes

41

7F

45

80

70

00

A3

00

Address symbol

X

Explanatory Figure for the Coding Example

114

.FDATAB Floating-Point Data Block Reservation

Syntax

[<symbol>[:]] ∅.FDATAB[.S] ∅<block count>,<floating-point data>

Statement Elements

1. Label
Enter a reference symbol if required.

2. Operation

 Mnemonic

Enter .FDATAB mnemonic.

 Operation size

Enter S for single precision.

3. Operands

 First operand: block count

Enter the number of times the data value is repeated as the first operand.

 Second operand: floating-point data

Enter the floating-point number to be reserved as the second operand.

Description

1. .FDATAB is the assembler directive that reserves the specified number of floating-point data
items consecutively in memory.

2. The block count must be specified as follows:

 The specification must be an absolute value,

and,

 Forward reference symbols, export symbols, and relative symbols must not appear in
specification.

3. The range of values that can be specified as the block count must be from 1 to
1,073,741,823.

Reference: Floating-point number
→ Programmer’s Guide, 1.4.3, “Floating-Point Numbers”

115

Coding Example

 .ALIGN 4 ; (This statement adjusts the value of the
 ; location counter.)

 ∼
X: .FDATAB.S 2,H’7F800000.S ; This statement reserves two blocks of 4-byte
 ; areas 7F800000 (H’7F800000.S).

 ∼

Memory

4 bytes

7F

7F

80

80

00

00

00

00

Address symbol

X

Explanatory Figure for the Coding Example

116

.XDATA Fixed-Point Data Reservation

Syntax

[<symbol>[:]] ∅.XDATA[.<operation size>] ∅<fixed-point data>
 [,<fixed-point data>...]

Statement Elements

1. Label
Enter a reference symbol if required.

2. Operation

 Mnemonic

Enter .XDATA mnemonic.

 Operation size

Specifier Data Size

W Word (2 bytes)

L Long word (4 bytes)

The shaded section indicates the default value when the specifier is omitted.

 The specifier determines the size of the reserved data.

 The long word size is used when the specifier is omitted.

3. Operands

Enter the fixed-point number to be reserved as data in the operand field.

Description

1. .XDATA is the assembler directive that reserves fixed-point data in memory.

Reference: Fixed-point number
→ Programmer’s Guide, 1.4.4, “Fixed-Point Numbers”

117

Coding Example

 .ALIGN 4 ; (This statement adjusts the value of the
 ; location counter.)

 ∼
X: . XDATA.L 0.5 ; This statement reserves 4-byte area
 ; (H’40000000).

 . XDATA.W 0.75,0.25 ; This statement reserves 2-byte areas
 ; (H’6000) and (H’2000).

 ∼

Memory

4 bytes

40

60

00

00

00

20

00

00

Address symbol

X

Explanatory Figure for the Coding Example

118

.RES Data Area Reservation

Syntax

[<symbol>[:]] ∅.RES[.<operation size>] ∅<area count>

Statement Elements

1. Label

Enter a reference symbol if required.

2. Operation

 Mnemonic

Enter .RES mnemonic.

 Operation size

Specifier Data Size

B Byte

W Word (2 bytes)

L Long word (4 bytes)

The shaded section indicates the default value when the specifier is omitted.

The specifier determines the size of one area.
The long word size is used when the specifier is omitted.

3. Operands

Enter the number of areas to be reserved in the operand field.

Description

1. .RES is the assembler directive that reserves data areas in memory.
2. The area count must be specified as follows:

 The specification must be an absolute value,

and,

 Forward reference symbols must not appear in the specification.

3. The range of values that can be specified as the area count varies with the operation size.

Operation Size Area Count Range*

B H’00000001 to H’FFFFFFFF (1 to 4,294,967,295)

W H’00000001 to H’7FFFFFFF (1 to 2,147,483,647)

L H’00000001 to H’3FFFFFFF (1 to 1,073,741,823)

Note: Numbers in parentheses are decimal.

119

Coding Example

 ∼
 .ALIGN 4 ; (This statement adjusts the value of the location
 ; counter.)

X: .RES.L 2 ; This statement reserves two long word size areas.

 .RES.W 3 ; This statement reserves three word size areas.

 .RES.B 5 ; This statement reserves five byte size areas.

 ∼

Memory

4 bytes

�����������������������
�����������������������
�����������������������
�����������������������

������������
������������
������������
������������

Address symbol

X

Explanatory Figure for the Coding Example

120

.SRES Character String Data Area Reservation

Syntax

[<symbol>[:]] ∅.SRES∅<character string area size>
 [,<character string area size>...]

Statement Elements

1. Label
Enter a reference symbol if required.

2. Operation
Enter the .SRES mnemonic.

3. Operands

Enter the sizes of the areas to be reserved.

Description

1. .SRES is the assembler directive that reserves character string data areas.
2. The character string area size must be specified as follows:

 The specification must be an absolute value,

and,

 Forward reference symbols must not appear in the specification.

The values that are allowed for the character string area size are from H’00000001 to
H’FFFFFFFF (from 1 to 4,294,967,295 in decimal).

121

Coding Example

 ∼
 .ALIGN 4 ; (This statement adjusts the value of the location
 ; counter.)

X: .SRES 7 ; This statement reserves a 7-byte area.

 .SRES 6 ; This statement reserves a 6-byte area.

 ∼

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

Memory

4 bytes

Address symbol

X

Explanatory Figure for the Coding Example

122

.SRESC Character String Data Area Reservation (With Length)

Syntax

[<symbol>[:]] ∅.SRESC∅<character string area size>
 [,<character string area size>...]

Statement Elements

1. Label
Enter a reference symbol if required.

2. Operation
Enter the .SRESC mnemonic.

3. Operands

Enter the sizes of the areas (not including the length) to be reserved.

Description

1. .SRESC is the assembler directive that reserves character string data areas (with length) in
memory.
A character string with length is a character string with an inserted leading byte that indicates
the length of the string.
The length indicates the size of the character string (not including the length) in bytes.

Reference: Character strings → Programmer’s Guide, 1.7, “Character Strings”
2. The character string area size must be specified as follows:

 The specification must be an absolute value,

and,

 Forward reference symbols must not appear in the specification.

The values that are allowed for the character string area size are from H’00000000 to
H’000000FF (in decimal, from 0 to 255).

3. The size of the area reserved in memory is the size of the character string area itself plus 1
byte for the count.

123

Coding Example

 ∼
 .ALIGN 4 ; (This statement adjusts the value of the location
 ; counter.)

X: .SRESC 7 ; This statement reserves 7 bytes plus 1 byte for
 ; the count.

 .SRESC 6 ; This statement reserves 6 bytes plus 1 byte for
 ; the count.

 ∼

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

Memory

4 bytes

Address symbol

X

Explanatory Figure for the Coding Example

124

.SRESZ Character String Data Area Reservation (With Zero Terminator)

Syntax

[<symbol>[:]] ∅.SRESZ∅<character string area size>
 [,<character string area size>...]

Statement Elements

1. Label
Enter a reference symbol if required.

2. Operation
Enter the .SRESZ mnemonic.

3. Operands

Enter the sizes of the areas (not including the terminating zero) to be reserved.

Description

1. .SRESZ is the assembler directive that allocates character string data areas (with zero
termination).
A character string with length is a character string with an appended trailing byte (with the
value H’00) that indicates the end of the string.

Reference: Character strings → Programmer’s Guide, 1.7, “Character Strings”
2. The character string area size must be specified as follows:

 The specification must be an absolute value,

and,

 Forward reference symbols must not appear in the specification.

The values that are allowed for the character string area size are from H’00000000 to
H’000000FF (in decimal, from 0 to 255).

3. The size of the area reserved in memory is the size of the character string area itself plus 1
byte for the terminating zero.

125

Coding Example

 ∼
 .ALIGN 4 ; (This statement adjusts the value of the location
 ; counter.)

X: .SRESZ 7 ; This statement reserves 7 bytes plus 1 byte for
 ; the terminating byte.

 .SRESZ 6 ; This statement reserves 6 bytes plus 1 byte for
 ; the terminating byte.

 ∼

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

Memory

4 bytes

Address symbol

X

Explanatory Figure for the Coding Example

126

.FRES Floating-Point Data Area Reservation

Syntax

[<symbol>[:]] ∅.FRES[S] ∅<area count>

Statement Elements

1. Label
Enter a reference symbol if required.

2. Operation

 Mnemonic

Enter .FRES mnemonic.

 Operation size

Enter S for single precision.

3. Operands

Enter the number of areas (the number of single-precision data items).

Description

1. .FRES is the assembler directive that reserves floating-point data areas in memory.
2. The area count must be specified as follows:

 The specification must be an absolute value,

and,

 Forward reference symbols, import symbols, and relative symbols must not appear in the
specification.

127

Coding Example

 .ALIGN 4 ; (This statement adjusts the value of the location
 ; counter.)

 ∼
X: .FRES 2 ; This statement reserves two areas.

 .FRES 3 ; This statement reserves three areas.

 ∼

Memory

4 bytes

Address symbol

X

Explanatory Figure for the Coding Example

128

4.2.5 Export and Import Assembler Directives

This assembler provides the following assembler directives concerned with export and import.

.EXPORT Declares export
symbols.

This declaration allows symbols defined in the current file to
be referenced in other files.

.IMPORT Declares import
symbols.

This declaration allows symbols defined in other files to be
referenced in the current file.

.GLOBAL Declares export and
import symbols.

This declaration allows symbols defined in the current file to
be referenced in other files, and allows symbols defined in
other files to be referenced in the current file.

129

.EXPORT Export Symbols Declaration

Syntax

∅.EXPORT∅<symbol>[,<symbol>...]

Statement Elements

1. Label
The label field is not used.

2. Operation
Enter the .EXPORT mnemonic.

3. Operands

Enter the symbols to be declared as export symbols.

Description

1. .EXPORT is the assembler directive that declares export symbols.
An export symbol declaration is required to reference symbols defined in the current file
from other files.

2. The following can be declared to be export symbols.

 Constant symbols (other than those defined with the .ASSIGN directive)

 Absolute address symbols (other than address symbols in a dummy section)

 Relative address symbols

3. To reference a symbol as an import symbol, it is necessary to declare it to be an export
symbol, and also to declare it to be an import symbol.

Import symbols are declared in the file in which they are referenced using either the
.IMPORT or the .GLOBAL directive.

130

Coding Example

(In this example, a symbol defined in file A is referenced from file B.)

File A:

 .EXPORT X ; This statement declares X to be an export
 ; symbol.

 ∼
X: .EQU H’10000000 ; This statement defines X.

 ∼
File B:

 .IMPORT X ; This statement declares X to be an import symbol

 ∼
 .ALIGN 4

 .DATA.L X ; This statement references X.

 ∼

131

.IMPORT Import Symbols Declaration

Syntax

∅.IMPORT∅<symbol>[,<symbol>...]

Statement Elements

1. Label
The label field is not used.

2. Operation
Enter the .IMPORT mnemonic.

3. Operands

Enter the symbols to be declared as import symbols.

Description

1. .IMPORT is the assembler directive that declares import symbols.
An import symbol declaration is required to reference symbols defined in another file.

2. Symbols defined in the current file cannot be declared to be import symbols.
3. To reference a symbol as an import symbol, it is necessary to declare it to be an export

symbol, and also to declare it to be an import symbol.

Export symbols are declared in the file in which they are defined using either the .EXPORT
or the .GLOBAL directive.

132

Coding Example

(In this example, a symbol defined in file A is referenced from file B.)

File A:

 .EXPORT X ; This statement declares X to be an export symbol

 ∼
X: .EQU H’10000000 ; This statement defines X.

 ∼
File B:

 .IMPORT X ; This statement declares X to be an import
 ; symbol.

 ∼
 .ALIGN 4

 .DATA.L X ; This statement references X.

 ∼

133

.GLOBAL Export and Import Symbols Declaration

Syntax

∅.GLOBAL∅<symbol>[,<symbol>...]

Statement Elements

1. Label
The label field is not used.

2. Operation
Enter the .GLOBAL mnemonic.

3. Operands

Enter the symbols to be declared as export symbols or as import symbols.

Description

1. .GLOBAL is the assembler directive that declares symbols to be either export symbols or
import symbols.
An export symbol declaration is required to reference symbols defined in the current file
from other files. An import symbol declaration is required to reference symbols defined in
another file.

2. A symbol defined within the current file is declared to be an export symbol by a .GLOBAL
declaration.
A symbol that is not defined within the current file is declared to be an import symbol by a
.GLOBAL declaration.

3. The following can be declared to be export symbols.

 Constant symbols (other than those defined with the .ASSIGN assembler directive)

 Absolute address symbols (other than address symbols in a dummy section)

 Relative address symbols

4. To reference a symbol as an import symbol, it is necessary to declare it to be an export
symbol, and also to declare it to be an import symbol.
Export symbols are declared in the file in which they are defined using either the .EXPORT
or the .GLOBAL directive.

Import symbols are declared in the file in which they are referenced using either the
.IMPORT or the .GLOBAL directive.

134

Coding Example

(In this example, a symbol defined in file A is referenced from file B.)

File A:

 .GLOBAL X ; This statement declares X to be an export
 ; symbol.

 ∼
X: .EQU H’10000000 ; This statement defines X.

 ∼
File B:

 .GLOBAL X ; This statement declares X to be an import
 ; symbol.

 ∼
 .ALIGN 4

 .DATA.L X ; This statement references X.

 ∼

135

4.2.6 Object Module Assembler Directives

This assembler provides the following assembler directives concerned with object modules.

.OUTPUT Controls object module and debug information output.

.DEBUG Controls the output of symbolic debug information.

.ENDIAN Selects big endian or little endian.

.LINE Changes line number.

136

.OUTPUT Object Module Output Control

Syntax

∅.OUTPUT∅<output specifier>[,<output specifier>]

Statement Elements

1. Label
The label field is not used.

2. Operation
Enter the .OUTPUT mnemonic.

3. Operands: <output specifier>

Output Specifier Output Control

OBJ An object module is output.

NOOBJ No object module is output.

DBG Debug information is output in the object module.

NODBG No debug information is output in the object module.

The shaded section indicates the default value when the specifier is omitted.

The output specifiers control object module and debug information output.

Description

1. .OUTPUT is the assembler directive that controls object module and debug information
output.

2. If the .OUTPUT directive is used two or more times in a program with inconsistent output
specifiers, an error occurs.

Example: ∼
.OUTPUT OBJ
.OUTPUT NODBG
 ∼

← OK

 ∼
.OUTPUT OBJ
.OUTPUT NOOBJ
 ∼

← Error

3. Specifications concerning debug information output are only valid when an object module is
output.

4. The assembler gives priority to command line option specifications concerning object
module and debug information output.
References: Object module output

→ User’s Guide, 2.2.2, “Object Module Command Line Options” -OBJECT -NOOBJECT
Debug information output

→ User’s Guide, 2.2.2, “Object Module Command Line Options” -DEBUG -NODEBUG

137

Coding Example

Note: This example and its description assume that no command line options concerning object
module or debug information output were specified.

 .OUTPUT OBJ ; An object module is output.
 ; No debug information is output.

 ∼

 .OUTPUT OBJ,DBG ; Both an object module and debug information
 ; is output.

 ∼

 .OUTPUT OBJ,NODBG ; An object module is output.

 ; No debug information is output.

 ∼
Supplement:

Debug information is required when debugging a program using the simulator/debugger, and is
part of the object module.

Debug information includes information about source statements and information about
symbols.

138

.DEBUG Symbolic Debug Information Output Control

Syntax

∅.DEBUG∅<output specifier>

Statement Elements

1. Label
The label field is not used.

2. Operation
Enter the .DEBUG mnemonic.

3. Operands: output specifier

Output Specifier Output Control

ON Symbolic debug information is output starting with the next
source statement.

OFF Symbolic debug information is not output starting with the next
source statement.

The shaded section indicates the default value when the specifier is omitted.

The output specifier controls symbolic debug information output.

Description

1. .DEBUG is the assembler directive that controls the output of symbolic debug information.
This directive allows assembly time to be reduced by restricting the output of symbolic
debug information to only those symbols required in debugging.

2. The specification of the .DEBUG directive is only valid when both an object module and
debug information are output.
References: Object module output

→ Programmer’s Guide, 4.2.6, “Object Module Assembler Directives”, .OUTPUT

→ User’s Guide, 2.2.2 “Object Module Command Line Options”
-OBJECT -NOOBJECT

Debug information output

→ Programmer’s Guide 4.2.6, “Object Module Assembler Directives”, .OUTPUT

→ User’s Guide, 2.2.2, “Object Module Command Line Options”
-DEBUG -NODEBUG

139

Coding Example

 ∼
 .DEBUG OFF ; Starting with the next statement, the assembler
 ; does not output symbolic debug information.

 ∼
 .DEBUG ON ; Starting with the next statement, the assembler
 ; outputs symbolic debug information.

 ∼
 .DEBUG OFF ; Starting with the next statement, the assembler
 ; does not output symbolic debug information.

 ∼
 .DEBUG ON ; Starting with the next statement, the assembler
 ; outputs symbolic debug information.

 ∼
Supplement:

The term “symbolic debug information” refers to the parts of debug information concerned with
symbols.

140

.ENDIAN Endian Selection

Syntax

 ∅.ENDIAN ∅[<endian>]

 <endian>:{BIG|LITTLE}

Statement Elements

1. Label
The label field is not used.

2. Operation

Enter the .ENDIAN mnemonic.

3. Operands: endian

Endian Output Control

BIG Assembles program in big endian

LITTLE Assembles program in little endian

The shaded section indicates the default value when the specifier is omitted.

Description

1. .ENDIAN is the assembler directive that selects the big endian or little endian.
2. The endian specified by an .ENDIAN directive is valid until the next .ENDIAN is specified.
3. If the -ENDIAN option has been specified, the .ENDIAN is invalidated.

Reference: -ENDIAN

→ User’s Guide, 2.2.2 “Object Module Command Line Options” -ENDIAN

141

Coding Example

1. When the big endian is selected

 .ENDIAN BIG ; This statement selects the big endian.

 ∼
X: .DATA.L H’12345678 ;

 .DATA.W H’1234,H’5678 ; These statements reserve integer data.

 .DATA.B H’12,H’34 ;

 ∼

Memory

4 bytes

12

12

12

34

34

34

56

56

78

78

Note:

Address symbol

X

The data in this figure

is hexadecimal.

Explanatory Figure for the Coding Example

142

2. When the little endian is selected

 .ENDIAN LITTLE ; This statement selects the little endian.

 ∼
X: .DATA.L H’12345678 ;

 .DATA.W H’1234,H’5678 ; These statements reserve integer data.

 .DATA.B H’12,H’34 ;

 ∼

Memory

4 bytes

78

34

12

56

12

34

34

78

12

56

Note:

Address symbol

X

The data in this figure

is hexadecimal.

Explanatory Figure for the Coding Example

143

.LINE Line Number Modification

Syntax

 ∅.LINE ∅[“<file name>“,]<line number>

Statement Elements

1. Label
The label field is not used.

2. Operation
Enter the .LINE mnemonic.

3. Operands

 First operand: file name

Enter the file name referred to at error message output or at debugging.

 Second operand: line number

Enter the line number referred to at error message output or at debugging.

Description

1. .LINE is the assembler directive that changes the file name and line number referred to at
error message output or at debugging.

2. The line number and the file name specified with a .LINE directive is valid until the next
.LINE.

3. In an SH C Compiler of version 3.0 or higher, the .LINE directive that corresponds to the
line number in the C source file is generated when the debug option is specified and an
assembler source is output.

4. If the file name is omitted, the file name is not changed, but only the line number is changed.

144

Coding Example

shc –code=asmcode -debug test.c

	 C source program (test.c)

 int func()

 {

 int i,j;

 j=0;

 for (i=1;i<=10;i++){

 j+=i;

 }

 return(j);

 }

	 Assembly source program (test.src)

 .EXPORT _func

 .SECTION P,CODE,ALIGN=4

 .LINE "/asm/test.c",1

_func: ; function: func

 ; frame size=0

 .LINE "/asm/test.c",5

 MOV #0,R5

 .LINE "/asm/test.c",6

 MOV #10,R6

 MOV #1,R4

L212:

 .LINE "/asm/test.c",7

 ADD R4,R5

 ADD #1,R4

 .LINE "/asm/test.c",6

 CMP/GT R6,R4

 BF L212

 .LINE "/asm/test.c",10

 RTS

 .LINE "/asm/test.c",9

 MOV R5,R0

 .END

→

145

4.2.7 Assemble Listing Assembler Directives

This assembler provides the following assembler directives for controlling the assemble listing.

.PRINT Controls assemble listing output.

.LIST Controls the output of the source program listing.

.FORM Sets the number of lines and columns in the assemble listing.

.HEADING Sets the header for the source program listing.

.PAGE Inserts a new page in the source program listing.

.SPACE Outputs blank lines to the source program listing.

Supplement:

The assemble listing is a listing to which the results of the assembly are output, and includes a
source program listing, a cross-reference listing, and a section information listing.

Reference: For a detailed description of the assemble listing, see appendix C, “Assemble
Listing Output Example”.

146

.PRINT Assemble Listing Output Control

Syntax

∅.PRINT ∅<output specifier>[,<output specifier>...]

Statement Elements

1. Label
The label field is not used.

2. Operation
Enter the .PRINT mnemonic.

3. Operands: output specifier

Output Specifier Assembler Action

LIST An assemble listing is output.

NOLIST No assemble listing is output.

SRC A source program listing is output in the assemble listing.

NOSRC No source program listing is output in the assemble listing.

CREF A cross-reference listing is output in the assemble listing.

NOCREF No cross-reference listing is output in the assemble listing.

SCT A section information listing is output in the assemble listing.

NOSCT No section information listing is output in the assemble listing.

The shaded sections indicate the default settings when the specifier is omitted.

The output specifier controls assemble listing output.

Description

1. .PRINT is the assembler directive that controls assemble listing output.
2. If the .PRINT directive is used two or more times in a program with inconsistent output

specifiers, an error occurs.

Example: ∼
.PRINT LIST
.PRINT NOSRC
 ∼

← OK

 ∼
.PRINT LIST
.PRINT NOLIST
 ∼

← Error

3. The output specifiers concerned with the source program listing, the cross-reference listing,
and the section information listing are only valid when an assemble listing is output.

4. The assembler gives priority to command line option specifications concerning assemble
listing output.

147

References: Assemble listing output

→ User’s Guide, 2.2.3, “Assemble Listing Command Line Options”
-LIST -NOLIST
-SOURCE -NOSOURCE
-CROSS_REFERENCE -NOCROSS_REFERENCE
-SECTION -NOSECTION

Coding Example

Note: This example and its description assume that no command line options concerning
assemble listing output are specified.

 .PRINT LIST ; All types of assemble listing are output.

 ∼

 .PRINT LIST,NOSRC,NOCREF

 ; Only a section information listing is output.

 ∼

148

.LIST Source Program Listing Output Control

Syntax

∅.LIST ∅<output specifier>[,<output specifier>...]

 Output specifier: {ON|OFF|COND|NOCOND|DEF|NODEF|CALL|NOCALL|

NOEXP|CODE|NOCODE}

Statement Elements

1. Label
The label field is not used.

2. Operation
Enter the .LIST mnemonic.

3. Operands

Enter the output specifiers.

Description

1. .LIST is the assembler directive that controls output of the source program listing in the
following three ways:
a Selects whether or not to output source statements.
b Selects whether or not to output source statements related to the conditional assembly and

macro functions.

c Selects whether or not to output object code lines.

2. Output is controlled by output specifiers as follows:

149

Output Specifier

Type Output Not output Object Description

a ON OFF Source statements The source statements following this directive

b COND NOCOND Failed condition Condition-failed .AIF or .AIFDEF directive
statements

DEF NODEF Definition Macro definition statements
.AREPEAT and .AWHILE definition statements
.INCLUDE directive statements
.ASSIGNA and .ASSSIGNC directive
statements

CALL NOCALL Call Macro call statements,
.AIF, AIFDEF, and .AENDI directive statements

EXP NOEXP Expansion Macro expansion statements
.AREPEAT and .AWHILE expansion
statements

c CODE NOCODE Object code lines The object code lines exceeding the source
statement lines

The shaded sections indicate the default settings when the specifier is omitted.

3. The specification of the .LIST directive is only valid when an assemble listing is output.
References: Source program listing output

→ Programmer’s Guide, 4.2.7, “Assemble Listing Assembler Directives”, .PRINT

→ User’s Guide, 2.2.3, “Assemble Listing Command Line Options”,
-LIST -NOLIST -SOURCE -NOSOURCE

4. The assembler gives priority to command line option specifications concerning source
program listing output.
Reference: Output on the source program listing

→ User’s Guide, 2.2.3, “Assemble Listing Command Line Options”
-SHOW -NOSHOW

5. .LIST directive statements themselves are not output on the source program listing.

150

Coding Example

 .LIST NOCOND,NODEF
 .MACRO SHLRN COUNT,Rd

SHIFT .ASSIGNA \COUNT

 .AIF \&SHIFT GE 16
 SHLR16 \Rd
SHIFT .ASSIGNA \&SHIFT-16
 .AENDI

 .AIF \&SHIFT GE 8
 SHLR8 \Rd
SHIFT .ASSIGNA \&SHIFT-8
 .AENDI

 .AIF \&SHIFT GE 4
 SHLR2 \Rd
 SHLR2 \Rd
SHIFT .ASSIGNA \&SHIFT-4
 .AENDI

 .AIF \&SHIFT GE 2
 SHLR2 \Rd
SHIFT .ASSIGNA \&SHIFT-2
 .AENDI

 .AIF \&SHIFT GE 1
 SHLR \Rd
 .AENDI
 .ENDM

 SHLRN 23,R0
 .END

This statement controls source program
listing output.

These statements define a general-
purpose multiple-bit shift procedure as a
macro instruction.

Macro call

151

 Source Listing Output of Coding Example

The .LIST directive suppresses the output of the macro definition, .ASSIGNA and .ASSIGNC
directive statements, and .AIF and .AIFDEF condition-failed statements.

*** SH SERIES ASSEMBLER Ver. 3.0 *** 07/09/95 16:33:49
 PAGE 1
PROGRAM NAME =
 31 31
 32 32 SHLRN 23,R0
 33 M
 35 M
 36 M .AIF 23 GE 16
 37 00000000 4029 C SHLR16 R0
 39 M .AENDI
 40 M
 41 M .AIF 7 GE 8
 45 M
 46 M .AIF 7 GE 4
 47 00000002 4009 C SHLR2 R0
 48 00000004 4009 C SHLR2 R0
 50 M .AENDI
 51 M
 52 M .AIF 3 GE 2
 53 00000006 4009 C SHLR2 R0
 55 M .AENDI
 56 M
 57 M .AIF 1 GE 1
 58 00000008 4001 C SHLR R0
 59 M .AENDI
 60 33 .END
 *****TOTAL ERRORS 0
 *****TOTAL WARNINGS 0
 ∼

152

.FORM Assemble Listing Line Count and Column Count Setting

Syntax

∅.FORM∅<size specifier>[,<size specifier>...]

Statement Elements

1. Label
The label field is not used.

2. Operation
Enter the .FORM mnemonic.

3. Operands: size specifier

Size Specifier Listing Size

LIN=<line count> The specified value is set to the number of lines per page.

COL=<column count> The specified value is set to the number of columns per line.

These specifications determine the number of lines and columns in the assemble listing.

Description

1. .FORM is the assembler directive that sets the number of lines per page and columns per line
in the assemble listing.

2. The line count and column count must be specified as follows:

 The specifications must be absolute values,

and,

 Forward reference symbols must not appear in the specifications.

The values allowed for the line count are from 20 to 255.
The values allowed for the column count are from 79 to 255.

3. The .FORM directive can be used any number of times in a given source program.
4. The assembler gives priority to command line option specifications concerning the number

of lines and columns in the assemble listing.
References: Setting the line count in assemble listing

→ User’s Guide, 2.2.3, “Assemble Listing Command Line Options” -LINES
Setting the column count in assemble listing

→ User’s Guide, 2.2.3, “Assemble Listing Command Line Options” -COLUMNS
5. When there is no specification of command line option or .FORM assembler directive

specification for the line count or the column count, the following values are used:

 Line count............. 60 lines

 Column count 132 columns

153

Coding Example

Note: This example and its description assume that no command line options concerning the
assemble listing line count and/or column count are specified.

 ∼
 .FORM LIN=60, COL=200 ; Starting with this page, the number of lines
 ; per page in the assemble listing is 60 lines.
 ; Also, starting with this line, the number of
 ; columns per line in the assemble listing is
 ; 200 columns.

 ∼
 .FORM LIN=55, COL=150 ; Starting with this page, the number of lines
 ; per page in the assemble listing is 55 lines.
 ; Also, starting with this line, the number of
 ; columns per line in the assemble listing is
 ; 150 columns.

 ∼

154

.HEADING Source Program Listing Header Setting

Syntax

∅.HEADING∅”<character string>“

Statement Elements

1. Label
The label field is not used.

2. Operation
Enter the .HEADING mnemonic.

3. Operands: character string

Enter the header for the source program listing.

Description

1. .HEADING is the assembler directive that sets the header for the source program listing.
A character string of up to 60 characters can be specified as the header.
Reference: Character strings

→ Programmer’s Guide, 1.7, “Character Strings”
2. The .HEADING directive can be used any number of times in a given source program.

The range of validity for a given use of the .HEADING directive is as follows:

 When the .HEADING directive is on the first line of a page, it is valid starting with that
page.

 When the .HEADING directive appears on the second or later line of a page, it is valid
starting with the next page.

155

Coding Example

 ∼
 .HEADING “““SAMPLE.SRC”” WRITTEN BY YAMADA”

 ∼

"SAMPLE.SRC" WRITTEN BY YAMADA

Header

Source program listing

Page boundary

Second line

Explanatory Figure for the Coding Example

156

.PAGE Source Program Listing New Page Insertion

Syntax

∅.PAGE

Statement Elements

1. Label
The label field is not used.

2. Operation
Enter the .PAGE mnemonic.

3. Operands

The operand field is not used.

Description

1. .PAGE is the assembler directive that inserts a new page in the source program listing at an
arbitrary point.

2. The .PAGE directive is ignored if it is used on the first line of a page.
3. .PAGE directive statements themselves are not output to the source program listing.

157

Coding Example

 ∼
 MOV R0,R1
 RTS
 MOV R0,R2

 .PAGE ; A new page is specified here since the

 ; section changes at this point.
 .SECTION DT,DATA,ALIGN=4
 .DATA.L H’11111111
 .DATA.L H’22222222
 .DATA.L H’33333333

 ∼

 18 00000022 6103 18 MOV R0,R1

 19 00000024 000B 19 RTS

 20 00000026 6203 20 MOV R0,R2

 *** SH SERIES ASSEMBLER Ver. 3.0 *** 10/10/95 10:23:30
 PROGRAM NAME =

 23 00000000 23 .SECTION DT,DATA,ALIGN

 24 00000000 11111111 24 .DATA.L H'11111111

 25 00000004 22222222 25 .DATA.L H'22222222
 26 00000008 33333333 26 .DATA.L H'33333333

Note:

Source program listing

New

page

See appendix C, “Assemble Listing Output Example”, for an explanation of the contents of the

source program listing.

Explanatory Figure for the Coding Example

158

.SPACE Source Program Listing Blank Line Output

Syntax

∅.SPACE[∅<line count>]

Statement Elements

1. Label
The label field is not used.

2. Operation
Enter the .SPACE mnemonic.

3. Operands: line count
Enter the number of blank lines.

A single blank line is output if this operand is omitted.

Description

1. .SPACE is the assembler directive that outputs the specified number of blank lines to the
source program listing. Nothing is output for the lines output by the .SPACE directive; in
particular line numbers are not output for these lines.

2. The line count must be specified as follows:

 The specification must be an absolute value,

and,

 Forward reference symbols must not appear in the specification.

Values from 1 to 50 can be specified as the line count.
3. When a new page occurs as the result of blank lines output by the .SPACE directive, any

remaining blank lines are not output on the new page.

4. .SPACE directive statements themselves are not output to the source program listing.

159

Coding Example

 .SECTION DT1,DATA,ALIGN=4

 .DATA.L H’11111111

 .DATA.L H’22222222

 .DATA.L H’33333333

 .DATA.L H’44444444 ; Inserts five blank lines at the point

 .SPACE 5 ; where the section changes.

 .SECTION DT2,DATA,ALIGN=4

 ∼

 *** SH SERIES ASSEMBLER Ver. 3.0 *** 10/10/95 10:23:30

 PROGRAM NAME =

 1 00000000 1 .SECTION DT1,DATA,ALIGN=4

 2 00000000 11111111 2 .DATA.L H'11111111

 3 00000004 22222222 3 .DATA.L H'22222222
 4 00000008 33333333 4 .DATA.L H'33333333

 5 0000000C 44444444 5 .DATA.L H'44444444

 7 00000000 7 .SECTION DT2,DATA,ALIGN=4

 ~

Note:

Source program listing

See appendix C, “Assemble Listing Output Example”, for an explanation of the contents of the source

program listing.

Explanatory Figure for the Coding Example

160

4.2.8 Other Assembler Directives

This assembler provides the following additional assembler directives.

.PROGRAM Sets the name of the object module.

.RADIX Sets the radix in which integer constants with no radix specifier are
interpreted.

.END Declares the end of the source program.

161

.PROGRAM Object Module Name Setting

Syntax

∅.PROGRAM∅<object module name>

Statement Elements

1. Label

The label field is not used.

2. Operation

Enter the .PROGRAM mnemonic.

3. Operands: <object module name>

Enter a name that identifies the object module.

Description

1. .PROGRAM is the assembler directive that sets the object module name.
The object module name is a name that is required by the H Series Linkage Editor or the H
Series Librarian to identify the object module.

2. Object module naming conventions are the same as symbol naming conventions.
The assembler distinguishes upper-case and lower-case letter in object module names.
Reference: Coding of symbols

→ Programmer’s Guide, 1.3.2, “Coding of Symbols”
3. Setting the object module name with the .PROGRAM directive is valid only once in a given

program. (The assembler ignores the second and later specifications of the .PROGRAM
directive.)

4. If there is no .PROGRAM specification of the object module name, the assembler will set a
default (implicit) object module name.
The default object module name is the file name of the object file (the object module output
destination).

Example: Object file name

Object module name

PROG

File name

↓

PROG

=

obj

File format

*

=

·

Note: When MS-DOS is used, the file format is written in uppercase letters.

162

Reference: User’s Guide, 1.2, “File Specification Format”

5. The object module name can be the same as a symbol used in the program.

Coding Example

.PROGRAM PROG1 ; This statement sets the object module name to be
 ; PROG1.

 ∼

163

.RADIX Default Integer Constant Radix Setting

Syntax

∅.RADIX ∅<radix specifier>

Statement Elements

1. Label
The label field is not used.

2. Operation
Enter the .RADIX mnemonic.

3. Operands: radix specifier

Radix Specifier Radix of Integer Constants with No Radix Specification

B Binary

Q Octal

D Decimal

H Hexadecimal

The shaded section indicates the default setting when the specifier is omitted.

This specifier sets the radix (base) for integer constants with no radix specification.

Description

1. .RADIX is the assembler directive that sets the radix (base) for integer constants with no
radix specification.

2. When there is no radix specification with the .RADIX directive in a program, integer
constants with no radix specification are interpreted as decimal numbers.

3. If hexadecimal (radix specifier H) is specified as the radix for integer constants with no radix
specification, integer constants whose first digit is A through F must be prefixed with a 0
(zero). (The assembler interprets expressions that begin with A through F to be symbols.)

4. Specifications with the .RADIX directive are valid from the point of specification forward in
the program.

164

Coding Example

 ∼
 .RADIX D

X: .EQU 100 ; This 100 is decimal.

 ∼
 .RADIX H

Y: .EQU 64 ; This 64 is hexadecimal.

 ∼
 .RADIX H

Z: .EQU 0F ; A zero is prefixed to this constant “0F” since it would
 ; be interpreted as a symbol if it were written as simply
 ; “F”.

 ∼

165

.END Source Program End Declaration

Syntax

∅.END[∅<start address>]

Statement Elements

1. Label
The label field is not used.

2. Operation
Enter the .END mnemonic.

3. Operands: start address

Enter the start address for simulation if required.

Description

1. .END is the assembler directive that declares the end of the source program.
Assembly processing terminates at the point that the .END directive appears.

2. If a start address is specified with the .END directive in the operand field, the
simulator/debugger starts simulation from that address.

3. The start address must be specified with either an absolute value or an address value.

4. The value of the start address must be an address in a code section.

Coding Example

 .SECTION CD,CODE,ALIGN=4

START:

 ∼
 .END START ; This statement declares the end of the source
 ; program.
 ; The simulator/debugger starts simulation from
 ; the address indicated by the value of the
 ; symbol START.

166

167

Section 5 File Inclusion Function

The file inclusion function allows source files to be inserted into other source files at assembly
time. The file inserted into another file is called an included file.

This assembler provides the .INCLUDE directive to perform file inclusion. The file specified
with the .INCLUDE directive is inserted at the location of the .INCLUDE directive.

Example:

Source program

 .INCLUDE "FILE.H"			 Included file FILE.H

						

 .SECTION CD1,CODE,ALIGN=4 ON: .EQU 1

 MOV #ON,R0				 OFF: .EQU 0

				 ↓ ↓ ↓ ↓ ↓ ↓ ↓

			 File included result (source list)		

 .INCLUDE "FILE.H"

 ON: .EQU 1

 OFF: .EQU 0

 .SECTION CD1,CODE,ALIGN=4

 MOV #ON,R0

~

~

168

.INCLUDE File Inclusion

Syntax

∅.INCLUDE ∅”<file name>“

Statement Elements

1. Label

The label field is not used.

2. Operation

Enter the .INCLUDE mnemonic.

3. Operands

Enter the file to be included.

Description

1. .INCLUDE is the file inclusion assembler directive.

2. If no file format is specified, only the file name is used as specified (the assembler does not
assume any default file format).

Reference: User’s Guide, 1.2, “File Specification Format”

3. The file name can include the directory. The directory can be specified either by the absolute
path (path from the route directory) or by the relative path (path from the current directory).

Note: The current directory for the .INCLUDE directive in a source file is the directory
where the assembler is initiated. The current directory for the .INCLUDE directive
in an included file is the directory where the included file exits.

4. Included files can include other files. The nesting depth for file inclusion is limited to 30
levels (multiplex state).

5. The directory name specified by .INCLUDE can be changed by -INCLUDE.

Reference: -INCLUDE

→ User’s Guide, 2.2.4, “File Inclusion Function Command Line Option”

169

Coding Example

This example assumes the following directory configuration and operations:

dir1 dir2

file1.src file2.h file3.h

/

• Starts the assembler from the route directory (/)

• Inputs source file /dir1/file1.src

• Inserts file2.h in file1.src

• Inserts file3.h in file2.h

The start command is as follows:

%asmsh /dir1/file1.src (RET)

file1.src must have the following inclusion directive:

 .INCLUDE “dir2/file2.h” ; / is the current directory (relative path specification).

or

 .INCLUDE “/dir2/file2.h” ; Absolute path specification

file2.h must have the following inclusion directive:

 .INCLUDE “file3.h” ; /dir2 is the current directory (relative path specification).

or

 .INCLUDE “/dir2/file3.h” ; Absolute path specification

CAUTION!

When using MS-DOS, change the slash (/) in the above example as follows depending on the
version of MS-DOS.

• Japanese version: Yen mark (¥)

• English version: Backslash (\)

170

171

Section 6 Conditional Assembly Function

6.1 Overview of the Conditional Assembly Function

The conditional assembly function provides the following assembly operations:

• Replaces a character string in the source program with another character string.

• Selects whether or not to assemble a specified part of a source program according to the
specified condition.

• Iteratively assembles a specified part of a source program.

6.1.1 Preprocessor variables

Preprocessor variables are used to write assembly conditions. Preprocessor variables are of either
integer or character type.

1. Integer preprocessor variables

Integer preprocessor variables are defined by the .ASSIGNA directive (these variables can be
redefined).

When referencing integer preprocessor variables, insert a backslash (\)* and an ampersand
(&) in front of them.

Example:
 FLAG: .ASSIGNA 1

 ∼
 .AIF \&FLAG EQ 1 ; MOV R0,R1 is assembled
 MOV R0,R1 ; when FLAG is 1.
 .AENDI
 ∼

Note: When using a Japanese version of MS-DOS, use ¥ instead of \ .

2. Character preprocessor variables

Character preprocessor variables are defined by the .ASSIGNC directive (these variables can
be redefined).

When referencing character preprocessor variables, insert a backslash (\)* and an ampersand
(&) in front of them.

172

Example:
 FLAG: .ASSIGNC “ON”

 ∼
 .AIF “ \&FLAG” EQ “ON” ; MOV R0,R1 is assembled

 MOV R0,R1 ; when FLAG is “ON”.

 .AENDI

 ∼
Note: When using a Japanese version of MS-DOS, use ¥ instead of \ .

6.1.2 Replacement Symbols

The .DEFINE directive specifies symbols that will be replaced with the corresponding character
strings at assembly. A coding example is shown below.

 Example:
 SYM1: .DEFINE “R1”

 ∼∼
 MOV.L SYM1,R0 ; Replaced with MOV.L R1,R0.
 ∼∼

173

6.1.3 Conditional Assembly

The conditional assembly function determines whether or not to assemble a specified part of a
source program according to the specified conditions. Conditional assembly is classified into
two types: conditional assembly with comparison and conditional assembly with definition.

Conditional Assembly with Comparison:

Selects the part of program to be assembled according to whether or not the specified condition
is satisfied. A coding example is as follows:

.AIF <comparison condition 1>�

 <Statements to be assembled when condition 1 is satisfied>�

.AELIF <comparison condition 2>� �

 <Statements to be assembled when condition 2 is satisfied>�

.AELSE

 <Statements to be assembled when both conditions are not satisfied>

.AENDI�

~

~
This part can be omitted.

174

 Example:

 ∼
 .AIF “\&FLAG” EQ “ON”

 MOV R0,R10 ; Assembled when FLAG

 MOV R1,R11 ; is ON.

 MOV R2,R12 ;

 .AELSE

 MOV R10,R0 ; Assembled when FLAG

 MOV R11,R1 ; is not ON.

 MOV R12,R2 ;

 .AENDI

 ∼
Conditional Assembly with Definition:

Selects the part of program to be assembled by whether or not the specified replacement symbol
has been specified. A coding example is as follows:

.AIFDEF <definition condition>�

 <Statements to be assembled when the specified replacement symbol is defined>�

.AELSE� �

 <Statements to be assembled when the specified replacement symbol is not defined>�

.AENDI

~

~ This part can be omitted.

 Example:
 ∼
 .AIFDEF FLAG
 MOV R0,R10 ; Assembled when FLAG is defined with
 MOV R1,R11 ; the .DEFINE directive after the .AIFDEF
 MOV R2,R12 ; directive in the program.
 .AELSE
 MOV R10,R0 ; Assembled when FLAG is not defined with
 MOV R11,R1 ; the .DEFINE directive after the .AIFDEF
 MOV R12,R2 ; directive in the program.

175

 .AENDI
 ∼
6.1.4 Iterated Expansion

A part of a source program can be iteratively assembled the specified number of times. A coding
example is shown below.

 ∼
 .AREPEAT <count>

 < Statements to be iterated>

 .AENDR

 ∼
Example:

 ; This example is a division of 64-bit data by 32-bit data.

 ; R1:R2 (64 bits) ÷ R0 (32 bits) = R2 (32 bits): Unsigned

 TST R0,R0 ; Zero divisor check

 BT zero_div

 CMP/HS R0,R1 ; Overflow check

 BT over_div

 DIV0U ; Flag initialization

 .AREPEAT 32

 ROTCL R2 ; These statements are iterated 32 times.

 DIV1 R0,R1 ;

 .AENDR

 ROTCL R2 ; R2 = quotient

6.1.5 Conditional Iterated Expansion

A part of a source program can be iteratively assembled while the specified condition is
satisfied. A coding example is shown below.

 ∼
 .AWHILE <condition>

 < Statements to be iterated>

 .AENDW

 ∼

176

 Example:

 ; This example is a multiply and accumulate

 ; operation.

TblSiz: .ASSIGNA 50 ; TblSiz: Data table size

 MOV A_Tbl1,R1 ; R1: Start address of data table 1

 MOV A_Tbl2,R2 ; R2: Start address of data table 2

 CLRMAC ; MAC register initialization

 .AWHILE \&TblSize GT 0 ; While TblSiz is larger than 0,

 MAC.W @R0+,@R1+ ; this statement is iteratively assembled.

TblSiz: .ASSIGNA \&TblSiz-1 ; 1 is subtracted from TblSiz.

 .AENDW

 STS MACL,R0 ; The result is obtained in R0.

177

6.2 Conditional Assembly Directives

This assembler provides the following conditional assembly directives.

.ASSIGNA Defines an integer preprocessor variable. The defined variable can
be redefined.

.ASSIGNC Defines a character preprocessor variable. The defined variable can
be redefined.

.DEFINE Defines a preprocessor replacement character string.

.AIF

.AELIF

.AELSE

.AENDI

Determines whether or not to assemble a part of a source program
according to the specified condition. When the condition is satisfied,
the statements after the .AIF are assembled. When not satisfied, the
statements after the .AELIF or .AELSE are assembled.

.AIFDEF

.AELSE

.AENDI

Determines whether or not to assemble a part of a source program
according to the replacement symbol definition. When the
replacement symbol is defined, the statements after the .AIFDEF are
assembled. When not defined, the statements after the .AELSE are
assembled.

.AREPEAT

.AENDR
Repeats assembly of a part of a source program (between
.AREPEAT and .AENDR) the specified number of times.

.AWHILE

.AENDW
Assembles a part of a source program (between .AWHILE and
.AENDW) iteratively while the specified condition is satisfied.

.AERROR Processes an error during preprocessor expansion.

.EXITM Terminates .AREPEAT or .AWHILE iterated expansion.

.ALIMIT Specifies the maximum count of .AWHILE expansion.

178

.ASSIGNA Integer Preprocessor Variable Definition (Redefinition Is Possible)

Syntax

 <preprocessor variable>[:] ∅.ASSIGNA∅<value>

Statement Elements

1. Label

Enter the name of the preprocessor variable.

2. Operation

Enter the .ASSIGNA mnemonic.

3. Operands

Enter the value to be assigned to the preprocessor variable.

Description

1. .ASSIGNA is the assembler directive that defines a value for an integer preprocessor
variable. The syntax of integer preprocessor variables is the same as that for symbols. The
assembler distinguishes uppercase and lowercase letters.

2. The preprocessor variables defined with the .ASSIGNA directive can be redefined with the
.ASSIGNA directive.

3. The values for the preprocessor variables must be the following:

 Constant (integer constant and character constant)

 Defined preprocessor variable

 Expression using the above as terms

4. Defined preprocessor variables are valid from the point of specification forward in the source
program.

5. Defined preprocessor variables can be referenced in the following locations:

 .ASSIGNA directive

 .ASSIGNC directive

 .AIF directive

 .AELIF directive

 .AREPEAT directive

 .AWHILE directive

 Macro body (source statements between .MACRO and .ENDM)

When referencing integer preprocessor variables, insert a backslash (\)* and an ampersand
(&) in front of them.

\&<preprocessor variable>[‘]

To clearly distinguish the preprocessor variable name from the rest of the source statement,
an apostrophe (‘) can be added.

179

Note: When using a Japanese version of MS-DOS, use ¥ instead of \ .

6. When a preprocessor character string is defined by a command line option, the .ASSIGNA
directive specifying the preprocessor valiable having the same name as the character string is
invalidated.

Coding Example

 ; This example generates a general-purpose multiple-bit

 ; shift instruction which shifts bits to the right by the

 ; number of SHIFT.

RN: .REG (R0) ; R0 is set to Rn.

SHIFT: .ASSIGNA 27 ; 27 is set to SHIFT

 .AIF \&SHIFT GE 16 ; Condition: SHIFT ≥ 16

 SHLR16 Rn ; When the condition is satisfied, Rn is shifted to the right by 16 bits.

SHIFT: .ASSIGNA \&SHIFT-16 ; 16 is subtracted from SHIFT.

 .AENDI

 .AIF \&SHIFT GE 8 ; Condition: SHIFT ≥ 8

 SHLR8 Rn ; When the condition is satisfied, Rn is shifted to the right by 8 bits.

SHIFT: .ASSIGNA \&SHIFT-8 ; 8 is subtracted from SHIFT.

 .AENDI

 .AIF \&SHIFT GE 4 ; Condition: SHIFT ≥ 4

 SHLR2 Rn ; When the condition is satisfied, Rn is shifted to the right by 4 bits.

 SHLR2 Rn ;

SHIFT: .ASSIGNA \&SHIFT-4 ; 4 is subtracted from SHIFT.

 .AENDI

 .AIF \&SHIFT GE 2 ; Condition: SHIFT ≥ 2

 SHLR2 Rn ; When the condition is satisfied, Rn is shifted to the right by 2 bits.

SHIFT: .ASSIGNA \&SHIFT-2 ; 2 is subtracted from SHIFT.

 .AENDI

 .AIF \&SHIFT EQ 1 ; Condition: SHIFT = 1

 SHLR Rn ; When the condition is satisfied, Rn is shifted to the right by 1 bit.

 .AENDI

The expanded results are as follows:

 SHLR16 R0 ; When the condition is satisfied, Rn is shifted to the right by 16 bits.

 SHLR8 R0 ; When the condition is satisfied, Rn is shifted to the right by 8 bits.

 SHLR2 R0 ; When the condition is satisfied, Rn is shifted to the right by 2 bits.

 SHLR1 R0 ; When the condition is satisfied, Rn is shifted to the right by 1 bit.

180

.ASSIGNC Character Preprocessor Variable Definition (Redefinition Is Possible)

Syntax

 <preprocessor variable>[:] ∅.ASSIGNC∅”<character string>“

Statement Elements

1. Label

Enter the name of the preprocessor variable.

2. Operation

Enter the .ASSIGNC mnemonic.

3. Operands

Enter the character string enclosed with double quotation marks (“).

Description

1. .ASSIGNC is the assembler directive that defines a character string for an character
preprocessor variable. The syntax of character preprocessor variables is the same as that for
symbols. The assembler distinguishes uppercase and lowercase letters.

2. The preprocessor variables defined with the .ASSIGNC directive can be redefined with the
.ASSIGNC directive.

3. Character strings are specified by characters or preprocessor variables enclosed by double
quotation marks (“).

4. Defined preprocessor variables are valid from the point of specification forward in the source
program.

5. Defined preprocessor variables can be referenced in the following locations:

 .ASSIGNA directive

 .ASSIGNC directive

 .AIF directive

 .AELIF directive

 .AREPEAT directive

 .AWHILE directive

 Macro body (source statements between .MACRO and .ENDM)

When referencing character preprocessor variables, insert a backslash (\)* and an ampersand
(&) in front of them.

\&<preprocessor variable>[‘]

To clearly distinguish the preprocessor variable name from the rest of the source statement,
an apostrophe (‘) can be added.

Note: When using a Japanese version of MS-DOS, use ¥ instead of \ .

181

6. When a preprocessor character string is defined by a command line option, the .ASSIGNC
directive specifying the preprocessor variable having the same name as the character string is
invalidated.

Coding Example

FLAG: .ASSIGNC “ON” ; “ ON” is set to FLAG.

 ∼
 .AIF “\&FLAG” EQ “ON” ; MOV R0,R1 is assembled

 MOV R0,R1 ; when FLAG is “ON”.

 .AENDI

 ∼
FLAG: .ASSIGNC “\&FLAG “ ; A space (“ “) is added to FLAG.

FLAGA:.ASSIGNC “OFF” ; “OFF” is added to FLAGA.

FLAG: .ASSIGNC “\&FLAG’AND \&FLAGA”

 ; An apostrophe (‘) is used to distinguish FLAG and

 ; AND.

 ; FLAG finally becomes “ON AND OFF”.

 ∼

182

.DEFINE Definition of Preprocessor Replacement Character String

Syntax

 <symbol>[:] ∅.DEFINE ∅”<replacement character string>“

Statement Elements

1. Label

Enter a symbol to be replaced with a character string.

2. Operation

Enter the .DEFINE mnemonic.

3. Operands

Enter a replacement character string enclosed with double quotation marks (“).

Description

1. .DEFINE is the assembler directive that specifies that the symbol is replaced with the
corresponding character string.

2. The differences between the .DEFINE directive and the .ASSIGNC directive are as follows.

 The symbol defined by the .ASSIGNC directive can only be used in the preprocessor
statement; the symbol defined by the .DEFINE directive can be used in any statement.

 The symbols defined by the .ASSIGNA and the .ASSIGNC directives are referenced by
the “\&symbol” format; the symbol defined by the .DEFINE directive is referenced by
the “symbol” format.

 The .DEFINE symbol cannot be re-defined.

3. The .DEFINE directive specifying a symbol is invalidated when the same replacement
symbol has been defined by a command line option.

Coding Example

 SYM1: .DEFINE “R1”

 ∼
 MOV.L SYM1,R0 ; Replaced with MOV.L R1,R0.

 ∼

183

Notes

1. A hexadecimal number starting with an alphabetical character a to f or A to F will be
replaced when the same character string is specified as a replacement symbol by .DEFINE.
Add 0 to the beginning of the number to stop replacing such number.

A0: .DEFINE “0”

 MOV.B #H’A0,R0 ; Replaced with MOV.B #H’0,R0.

 MOV.B #H’0A0,R0 ; Not replaced.

2. A radix indication (B’, Q’, D’, or H’) will also be replaced when the same character string is
specified as a replacement symbol by .DEFINE. When specifying a symbol having only one
character, such as B, Q, D, H, b, q, d, or h, make sure that the corresponding radix indication
is not used.

B .DEFINE “H”

 MOV.B #B’10,R0 ; Replaced with MOV.H #H’10,R0.

184

.AIF,.AELIF,.AELSE,.AENDI Conditional Assembly with Comparison

Syntax

 Æ.AIFÆ<term1>Æ<relational operator>Æ<term2>

 <Source statements assembled if the AIF condition is satisfied>

Æ.AELIFÆ<term1>Æ<relational operator>Æ<term2>

 <Source statements assembled if the AELIF condition is satisfied>

Æ.AELSE

<Source statements assembled if all the conditions are not satisfied>

 Æ.AENDI

Statement Elements

1. Label

The label field is not used.

2. Operation

Enter the .AIF, .AELIF (can be omitted), .AELSE (can be omitted), or .AENDI mnemonic.

3. Operands

.AIF: Enter the condition. Refer to the description below.

.AELIF: Enter the condition. Refer to the description below.

.AELSE: The operand field is not used.

.AENDI: The operand field is not used.

Description

1. .AIF, .AELIF, .AELSE, and .AENDI are the assembler directives that select whether or not
to assemble source statements according to the condition specified. The .AELIF and .AELSE
directives can be omitted.

2. .AELIF can be specified repeatedly between .AIF and .AELSE.

3. The condition must be specified as follows:

.AIF ∆<term1> ∆<relational operator> ∆<term2>

.AELIF ∆<term1> ∆<relational operator> ∆<term2>

Terms are specified with numeric values or character strings. However, when a numeric
value and a character string are compared, the condition always fails.

Numeric values are specified by constants or preprocessor variables.

185

Character strings are specified by characters or preprocessor variables enclosed by double
quotation marks (“). To specify a double quotation mark in a character string, enter two
double quotation marks (“ “) in succession.

4. The following relational operators can be used:

EQ: term1 = term2
NE: term1 _ term2
GT: term1 > term2
LT: term1 < term2
GE: term1 ≥ term2
LE: term1 ≤ term2

Note: Numeric values are handled as 32-bit signed integers. For character strings, only EQ and
NE conditions can be used.

Coding Example

 ∼
 .AIF \&TYPE EQ 1

 MOV R0,R3 ; These statements

 MOV R1,R4 ; are assembled

 MOV R2,R5 ; when TYPE is 1.

 .AELIF \&TYPE EQ 2

 MOV R0,R6 ; These statements

 MOV R1,R7 ; are assembled

 MOV R2,R8 ; when TYPE is 2.

 .AELSE

 MOV R0,R9 ; These statements

 MOV R1,R10 ; are assembled

 MOV R2,R11 ; when TYPE is not 1 nor 2.

 .AENDI

 ∼

186

.AIFDEF, .AELSE,.AENDI Conditional Assembly with Definition

Syntax

 Æ.AIFDEFÆ<replacement symbol>

 <statements to be assembled when the specified replacement symbol is defined>

 Æ.AELSE

 <statements to be assembled when the specified replacement symbol is not defined>

 Æ.AENDI

Statement Elements

1. Label

The label field is not used.

2. Operation

Enter the .AIFDEF, .AELSE (can be omitted), or .AENDI mnemonic.

3. Operands

.AIFDEF: Enter the condition. Refer to the description below.

.AELSE: The operand field is not used.

.AENDI: The operand field is not used.

Description

1. .AIFDEF, .AELSE, and .AENDI are the assembler directives that select whether or not to
assemble source statements according to the replacement symbol definition.

2. The condition must be specified as follows.

.AIFDEF ∆<replacement symbol>

The replacement symbol must be defined by the .DEFINE directive.

When the specified replacement symbol is defined by the command line option or in the
source statements before this directive, the condition is regarded as satisfied. When the
replacement symbol is defined after this directive or is not defined, the condition is regarded
as unsatisfied.

187

Coding Example

 ∼
 .AIFDEF FLAG

 MOV R0,R3 ; These statements are assembled when

 MOV R1,R4 ; FLAG is defined with .DEFINE directive.

 .AELSE

 MOV R0,R6 ; These statements are assembled when

 MOV R1,R7 ; FLAG is not defined with .DEFINE directive.

 .AENDI

 ∼

188

.AREPEAT,.AENDR Iterated Expansion

Syntax

 ∅.AREPEAT <count>

 <Source statements iteratively assembled>

 ∅.AENDR

Statement Elements

1. Label

The label field is not used.

2. Operation

Enter the .AREPEAT or .AENDR mnemonic.

3. Operands

.AREPEAT: Enter the number of iterations.

.AENDR: The operand field is not used.

Description

1. .AREPEAT and .AENDR are the assembler directives that assemble source statements by
iteratively expanding them the specified number of times.

2. The source statements between the .AREPEAT and .AENDR directives are iterated the
number of times specified with the .AREPEAT directive. Note that the source statements are
simply copied the specified number of times, and therefore, the operation does not loop at
program execution.

3. Counts are specified by constants or preprocessor variables.

4. Nothing is expanded if a value of 0 or smaller is specified.

189

Coding Example

 ; This example is a division of 64-bit data by 32-bit data.

 ; R1:R2 (64 bits) ÷ R0 (32 bits) = R2 (32 bits): Unsigned

 TST R0,R0 ; Zero divisor check

 BT zero_div

 CMP/HS R0,R1 ; Overflow check

 BT over_div

 DIV0U ; Flag initialization

 .AREPEAT 32

 ROTCL R2 ; These statements are

 DIV1 R0,R1 ; iterated 32 times.

 .AENDR

 ROTCL R2 ; R2 = quotient

190

.AWHILE, .AENDW Conditional Iterated Expansion

Syntax

 ∅.AWHILE∆<term1> ∅<relational operator> ∆<term2>

 <Source statements iteratively assembled>

 ∅.AENDW

Statement Elements

1. Label

The label field is not used.

2. Operation

Enter the .AWHILE or .AENDW mnemonic.

3. Operands

.AWHILE: Enter the condition to iteratively expand source statements.

.AENDW: The operand field is not used.

Description

1. .AWHILE and .AENDW are the assembler directives that assemble source statements by
iteratively expanding them while the specified condition is satisfied.

2. The source statements between the .AWHILE and .AENDW directives are iterated while the
condition specified with the .AWHILE directive is satisfied. Note that the source statements
are simply copied iteratively, and therefore, the operation does not loop at program
execution.

3. The condition must be specified as follows:

.AWHILE∅<term1> ∅<relational operator> ∅<term2>

Terms are specified with numeric values or character strings. However, when a numeric
value and a character string are compared, the condition always fails.

Numeric values are specified by constants or preprocessor variables.

Character strings are specified by characters or preprocessor variables enclosed by double
quotation marks (“). To specify a double quotation mark in a character string, enter two
double quotation marks (“ “) in succession.

Conditional iterated expansion terminates when the condition finally fails.

An infinite loop occurs if a condition which never fails is specified. Accordingly, the
condition for this directive must be carefully specified.

4. The following relational operators can be used:

191

EQ: term1 = term2
NE: term1 _ term2
GT: term1 > term2
LT: term1 < term2
GE: term1 ≥ term2
LE: term1 ≤ term2

Note: Numeric values are handled as 32-bit signed integers. For character strings, only EQ and
NE conditions can be used.

Coding Example

 ; This example is a multiply and accumulate

 ; operation.

TblSiz: .ASSIGNA 50 ; TblSiz: Data table size

 MOV A_Tbl1,R1 ; R1: Start address of data table 1

 MOV A_Tbl2,R2 ; R2: Start address of data table 2

 CLRMAC ; MAC register initialization

 .AWHILE \&TblSize GT 0 ; While TblSiz is larger than 0,

 MAC.W @R0+,@R1+ ; this statement is iteratively assembled.

TblSiz:.ASSIGNA \&TblSiz-1 ; 1 is subtracted from TblSiz.

 .AENDW

 STS MACL,R0 ; The result is obtained in R0.

192

.AERROR Error Generation During Preprocessor Expansion

Syntax

∅.AERROR

Statement Elements

1. Label

The label field is not used.

2. Operation

Enter the .AERROR mnemonic.

3. Operands

The operand field is not used.

Description

1. When the .AERROR directive is assembled, error 667 is generated and the assembler is
terminated with an error.

2. The .AERROR directive can be used to check values such as preprocessor variables.

Coding Example

 ∼
 .AIF \&FLG eq 1

 MOV R1,R10

 MOV R2,R11

 .AELSE

 .AERROR ; When \&FLG is not 1, an error is generated.

 .AENDI

 ∼

193

.EXITM Expansion Termination

Syntax

∅.EXITM

Statement Elements

1. Label

The label field is not used.

2. Operation

Enter the .EXITM mnemonic.

3. Operands

The operand field is not used.

Description

1. .EXITM is the assembler directive that terminates an iterated expansion (.AREPEAT to
.AENDR) or a conditional iterated expansion (.AWHILE to .AENDW).

2. Either expansion is terminated when this directive appears.

3. This directive is also used to exit from macro expansions. The location of this directive must
be specified carefully when macro instructions and iterated expansion are combined.

Reference: Macro expansion

→ Programmer’s Guide, 7.2, “Macro Function Directives”

194

Coding Example

 ∼
COUNT .ASSIGNA 0 ; 0 is set to COUNT.

 .AWHILE 1 EQ 1 ; An infinite loop (condition is always satisfied) is

 ; specified.

 ADD R0,R1

 ADD R2,R3

COUNT .ASSIGNA \&COUNT+1 ; 1 is added to COUNT.

 .AIF \&COUNT EQ 2 ; Condition: COUNT = 2

 .EXITM ; When the condition is satisfied

 .AENDI ; .AWHILE expansion is terminated.

 .AENDW

 ∼
When COUNT is updated and satisfies the condition specified with the .AIF directive, .EXITM is
assembled. When .EXITM is assembled, .AWHILE expansion is terminated.

The expansion results are as follows:

 ADD R0,R1 When COUNT is 0

 ADD R2,R3

 ADD R0,R1 When COUNT is 1

 ADD R2,R3

After this, COUNT becomes 2 and expansion is terminated.

195

.ALIMIT Maximum Count Specification for .AWHILE Expansion in Preprocessor

Syntax

∅.ALIMIT <count>

Statement Elements

1. Label

The label field is not used.

2. Operation

Enter the .ALIMIT mnemonic.

3. Operands

Enter the maximum count of statement expansion.

Description

1. During conditional iterated (.AWHILE to .AENDW) expansion, if the statement expansion
count exceeds the maximum value specified by the .ALIMIT directive, warning 854 is
generated and the expansion is terminated.

2. If the .ALIMIT directive is not specified, the maximum count is 65,535.

Coding Example

 .ALIMIT 20

 ∼
FLG: .ASSIGNA 0

 .AWHILE \&FLG eq 0 ; Expansion is terminated after performed

 NOP ; 20 times, and a warning message is output.

 .AENDW

 ∼

196

197

Section 7 Macro Function

7.1 Overview of the Macro Function

The macro function allows commonly used sequences of instructions to be named and defined as
one macro instruction. This is called a macro definition. Macro instructions are defined as
follows:

 ∼
 .MACRO <macro name>
 <macro body>
 .ENDM
 ∼

A macro name is the name assigned to a macro instruction, and a macro body is the statements
to be executed as the macro instruction.

Using a defined macro instruction by specifying the name is called a macro call. Macro
instructions are called as follows:

 ∼
 <defined macro name>
 ∼

An example of macro definition and macro call is shown below.

Example:

 ∼
 .MACRO SUM ; Processing to obtain the sum of R0, R1, R2,
 MOV R0,R10 ; and R3 is defined as macro instruction SUM.
 ADD R1,R10
 ADD R2,R10
 ADD R3,R10
 .ENDM
 ∼
 SUM ; This statement calls macro instruction SUM.
 ; Macro body MOV R0,R10
 ; ADD R1,R10
 ; ADD R2,R10
 ; ADD R3,R10
 ; is expanded from the macro instruction.

Parts of the macro body can be replaced when expanded by the following procedure:

198

1. Macro definition

a. Declare formal parameters in the .MACRO directive.

b. Use the formal parameters in the macro body. Formal parameters must be identified in
the macro body by placing a backslash (\) in front of them.

2. Macro call

Specify macro parameters in the macro call.

When the macro instruction is expanded, the formal parameters are replaced with their
corresponding macro parameters.

Example:

 ∼
 .MACRO SUM ARG1 ; Formal parameter ARG1 is defined.
 MOV R0, \ARG1 ; ARG1 is referenced in the macro body.
 ADD R1, \ARG1
 ADD R2, \ARG1
 ADD R3, \ARG1
 .ENDM

 ∼
 SUM R10 ; This statement calls macro instruction SUM
 ; specifying macro parameter R10.
 ; The formal parameter in the macro body is
 ; replaced with the macro parameter, and
 ; MOV R0,R10
 ; ADD R1,R10
 ; ADD R2,R10
 ; ADD R3,R10 is expanded.

199

7.2 Macro Function Directives

This assembler provides the following macro function directives.

.MACRO

.ENDM
Defines a macro instruction.

.EXITM Terminates macro instruction expansion.

200

.MACRO,.ENDM Macro Definition

Syntax

 ∅.MACRO∆<macro name>[∅<formal parameter>[=<default>]
 [,<formal parameter>...]]
 ∅.ENDM

Statement Elements

1. Label

The label field is not used.

2. Operation

Enter the .MACRO or .ENDM mnemonic.

3. Operands

.MACRO: Enter the name and formal parameters for the macro instruction to be defined.
When formal parameters are defined, their defaults can be defined (defaults can be omitted).

.ENDM: The operand filed is not used.

Description

1. .MACRO and .ENDM are the assembler directives that define a macro instruction (a
sequence of source statements that are collectively named and handled together).

2. Macro definition

Naming as a macro instruction the source statements (macro body) between the .MACRO
and .ENDM directives is called a macro definition.

3. Macro name

Macro names are the names assigned to macro instructions.

4. Formal parameters

Formal parameters are specified so that parts of the macro body can be replaced by specific
parameters at expansion time. Formal parameters are replaced with the character strings
(macro parameters) specified at macro expansion (macro call).

 Formal parameter syntax

The syntax for formal parameters is the same as that for symbols. The assembler
distinguishes uppercase and lowercase letters.

 Formal parameter reference

Formal parameters are used (referenced) at the part to be replaced in the the macro
body.

The syntax of formal parameter reference in macro bodies is as follows:

\<formal parameter name>[‘] *

To clearly distinguish the preprocessor variable name from the rest of the source
statement, an apostrophe (‘) can be added.

201

Note: When using a Japanese version of MS-DOS, use ¥ instead of \ .

5. Formal parameter defaults

Defaults for formal parameters can be specified in macro definitions. The default specifies
the character string to replace the formal parameter when the corresponding macro parameter
is omitted in a macro call.

The default must be enclosed by double quotation marks (“) or angle brackets (<>) if any of
the following characters are included in the default.

 Space

 Tab

 Comma (,)

 Semicolon (;)

 Double quotation marks (“)

 Angle brackets (< >)

The assembler inserts defaults at macro expansion by removing the double quotation marks
or angle brackets that enclose the character strings.

6. Restrictions on macro definitions

 Macros cannot be defined in the following locations:

 Macro bodies (between .MACRO and .ENDM directives)

 Between .AREPEAT and .AENDR directives

 Between .AWHILE and .AENDW directives

 The .ENDM directive cannot be used within a macro body.

 No symbol can be inserted in the label field of the .ENDM directive. The .ENDM
directive is ignored if its label field is not blank, but no error is generated in this case.

202

Coding Example

 ∼
 .MACRO SUM ; Processing to obtain the sum of R0, R1, R2,

 MOV R0,R10 ; and R3 is defined as macro instruction SUM.

 ADD R1,R10

 ADD R2,R10

 ADD R3,R10

 .ENDM

 ∼
 SUM ; This statement calls macro instruction SUM

 ; Macro body MOV R0,R10

 ; ADD R1,R10

 ; ADD R2,R10

 ; ADD R3,R10 is expanded.

203

.EXITM Expansion Termination

Syntax

∅.EXITM

Statement Elements

1. Label

The label field is not used.

2. Operation

Enter the .EXITM mnemonic.

3. Operands

The operand field is not used.

Description

1. .EXITM is the assembler directive that terminates a macro expansion. This directive can be
specified within the macro body (between the .MACRO and .ENDM directives).

2. Expansion is terminated when this directive appears.

3. This directive is also used to exit from iterated expansions specified with the .AREPEAT or
.AWHILE directive. The location of this directive must be specified carefully when macro
instructions and iterated expansion are combined.

204

Coding Example

	 .MACRO SUM P1

	 MOV R0,R10

	 ADD R1,R10

	 ADD R2,R10�	

 \P1

	 ADD R3,R10

	 .ENDM�

	 �

	

 SUM .EXITM

.EXITM is expanded at (2) and macro expansion is terminated. Only the statements indicated

by (1) are expanded.

(1)

(2)

~

7.3 Macro Body

The source statements between the .MACRO and .ENDM directives are called a macro body.
The macro body is expanded and assembled by a macro call.

1. Formal parameter reference

Formal parameters are used to specify the parts to be replaced with macro parameters at
macro expansion.

The syntax of formal parameter reference in macro bodies is as follows:

\<formal parameter name>[‘] *

To clearly distinguish the formal parameter name from the rest of the source statement, add
an apostrophe (‘).

Note: When using a Japanese version of MS-DOS, use ¥ instead of \ .

205

Coding example:

 .MACRO PLUS1 P,P1 ; P and P1 are formal parameters.

 ADD #1, \P1 ; Formal parameter P1 is referenced.

 .SDATA “ \P ’1” ; Formal parameter P is referenced.

 .ENDM

 PLUS1 R,R1 ; PLUS1 is expanded.

 ∼
Expanded results are as follows:

 ADD #1,R1 ; Formal parameter P1 is referenced.

 .SDATA “R1” ; Formal parameter P is referenced.

2. Preprocessor variable reference

Preprocessor variables can be referenced in macro bodies.

The syntax for preprocessor variable reference is as follows:

\&<preprocessor variable name>[‘] *

To clearly distinguish the formal parameter name from the rest of the source statement, add
an apostrophe (‘).

Note: When using a Japanese version of MS-DOS, use ¥ instead of \ .

Coding example:

 .MACRO PLUS1

 ADD #1,R \&V1 ; Preprocessor variable V1 is referenced.

 .SDATA “ \&V ’1” ; Preprocessor variable V is referenced.

 .ENDM

V .ASSIGNC “R” ; Preprocessor variable V is defined.

V1 .ASSIGNA 1 ; Preprocessor variable V1 is defined.

 PLUS1 ; PLUS1 is expanded.

Expanded results are as follows:

 ADD #1,R1 ; Preprocessor variable V1 is referenced.

 .SDATA “R1” ; Preprocessor variable V is referenced.

3. Macro generation number

The macro generation number facility is used to avoid the problem that symbols used within
a macro body will be multiply defined if the macro is expanded multiple times. To avoid this
problem, specify the macro generation number marker as part of any symbol used in a
macro. This will result in symbols that are unique to each macro call.

The macro generation number marker is expanded as a 5-digit decimal number (between
00000 and 99999) unique to the macro expansion.

The syntax for specifying the macro generation number marker is as follows:

206

\@ *

Note: When using a Japanese version of MS-DOS, use ¥ instead of \ .

Two or more macro generation number markers can be written in a macro body, and they
will be expanded to the same number in one macro call.

CAUTION!

Because macro generation number markers are expanded to numbers, they must not be
written at the beginning of symbol names.

Reference: Programmer’s Guide, 1.3.2, “Coding of Symbols”

Coding example:

 .MACRO RES_STR STR, Rn

 MOV.L #str\@ ,\Rn

 BRA end_str\@

 NOP

str\@ .SDATA “\STR”

 .ALIGN 2

end_str\@

 .ENDM

 RES_STR “ONE”,R0

 RES_STR “TWO”,R1

Expanded results are as follows:

 MOV.L #str00000,R0

 BRA end_str00000

 NOP

str00000 .SDATA “ONE”

 .ALIGN 2

end_str00000

 MOV.L #str00001,R1

 BRA end_str00001

 NOP

str00001 .SDATA “TWO”

 .ALIGN 2

end_str00001

Different symbols are generated each time

RES_STR is expanded.

207

4. Macro replacement processing exclusion

When a backslash (\) appears in a macro body, it specifies macro replacement processing.
Therefore, a means for excluding this macro processing is required when it is necessary to
use the backslash as an ASCII character.

The syntax for macro replacement processing exclusion is as follows:

\(<macro replacement processing excluded character string>) *

Note: When using a Japanese version of MS-DOS, use ¥ instead of \ .

The backslash and the parentheses will be removed in macro processing.

Coding example:

 .MACRO BACK_SLASH_SET

 \(MOV #”\”,R0) ; \ is expanded as an ASCII character.

 .ENDM

Expanded results are as follows:

 MOV #”\”,R0 ; \ is expanded as an ASCII character.

5. Comments in macros

Comments in macro bodies can be coded as normal comments or as macro internal
comments. When comments in the macro body are not required in the macro expansion code
(to avoid repeating the same comment in the listing file), those comments can be coded as
macro internal comments to suppress their expansion.

The syntax for macro internal comments is as follows:

\;<comment> *

Note: When using a Japanese version of MS-DOS, use ¥ instead of \ .

Coding example:

 .MACRO PUSH Rn

 MOV.L \Rn,@-R15 \; \Rn is a register.

 .ENDM

 PUSH R0

Expanded results are as follows (the comment is not expanded):

 MOV.L R0,@-R15

6. Character string manipulation functions

Character string manipulation functions can be used in the body of a macro. The following
character string manipulation functions are provided.

.LEN Character string length.

.INSTR Character string search.

.SUBSTR Character string substring.

References:

208

.LEN → Programmer’s Guide, 7.5, “Character String Manipulation Functions”, .LEN

.INSTR → Programmer’s Guide, 7.5, “Character String Manipulation Functions”, .INSTR

.SUBSTR → Programmer’s Guide, 7.5, “Character String Manipulation Functions”, .SUBSTR

7.4 Macro Call

Expanding a defined macro instruction is called a macro call. The syntax for macro calls is as
follows:

Syntax

 [<symbol>] <macro name>[<macro parameter> [,<macro parameter> ...]]

Statement Elements

1. Label

Enter a reference symbol if required.

2. Operation

Enter the macro name to be expanded. The macro name must have been already defined
before a macro call.

3. Operands

Enter character strings as macro parameters to replace formal parameters at macro
expansion. The formal parameters must have been declared in the macro definition with
.MACRO.

Description

1. Macro parameter specification

Macro parameters can be specified by either positional specification or keyword
specification.

 Positional specification

The macro parameters are specified in the same order as that of the formal parameters
declared in the macro definition.

 Keyword specification

Each macro parameter is specified following its corresponding formal parameter,
separated by an equal sign (=).

2. Macro parameter syntax

Macro parameters must be enclosed by double quotation marks (“) or angle brackets (<>) if
any of the following characters are included in the macro parameters:

 Space

 Tab

 Comma (,)

 Semicolon (;)

209

 Double quotation marks (“)

 Angle brackets (< >)

Macro parameters are inserted by removing the double quotation marks or angle brackets
that enclose character strings at macro expansion.

Coding Example

	.MACRO SUM FROM=0,TO=9

	MOV R\FROM,R10

COUNT	.ASSIGNA \FROM+1

	.AWHILE \&COUNT LE \TO

	MOV R\&COUNT,R10

COUNT	.ASSIGNA \&COUNT+1

	.AENDW

	.ENDM

	SUM 0,5

	SUM TO=5

; Macro instruction SUM and formal

;	parameters FROM and TO are defined.

	

	Macro body is coded

	using formal parameters.

	

	Both will be expanded

	into the same statements.

Expanded results are as follows (the formal parameters in the macro body are replaced with
macro parameters):

 MOV R0, R10
 MOV R1, R10
 MOV R2, R10
 MOV R3, R10
 MOV R4, R10
 MOV R5, R10

210

7.5 Character String Manipulation Functions

This assembler provides the following character string manipulation functions.

.LEN Counts the length of a character string.

.INSTR Searches for a character string.

.SUBSTR Extracts a character string.

211

.LEN Character String Length Count

Syntax

 .LEN[∅](“<character string>“)

Description

1. .LEN counts the number of characters in a character string and replaces itself with the
number of characters in decimal with no radix.

2. Character strings are specified by enclosing the desired characters in double quotation marks
(“). To specify a double quotation mark in a character string, enter two double quotation
marks in succession.

3. Macro formal parameters and preprocessor variables can be specified in the character string
as shown below.

.LEN(“\<formal parameter>“)

.LEN(“\&<preprocessor variable>“) *

Note: When using a Japanese version of MS-DOS, use ¥ instead of \ .

4. This function can only be used within a macro body (between .MACRO and .ENDM
directives).

Coding Example:

 ∼
 .MACRO RESERVE_LENGTH P1

 .ALIGN 4

 .SRES .LEN(“\P1”)

 .ENDM

 ∼
 RESERVE_LENGTH ABCDEF

 RESERVE_LENGTH ABC

Expanded results are as follows:

 .ALIGN 4

 .SRES 6 ; “ABCDEF” has six characters.

 .ALIGN 4

 .SRES 3 ; “ABC” has three characters.

212

.INSTR Character String Search

Syntax

 .INSTR[∅](“<character string 1>“,”<character string 2>“
[,<start position>])

Description

1. .INSTR searches character string 1 for character string 2, and replaces itself with the
numerical value of the position of the found string (with 0 indicating the start of the string) in
decimal with no radix. .INSTR is replaced with -1 if character string 2 does not appear in
character string 1.

2. Character strings are specified by enclosing the desired characters in double quotation marks
(“). To specify a double quotation mark in a character string, enter two double quotation
marks in succession.

3. The <start position> parameter specifies the search start position as a numerical value, with 0
indicating the start of the string. Zero is used as default when this parameter is omitted.

4. Macro formal parameters and preprocessor variables can be specified in the character strings
and as the start position as shown below.

.INSTR(“\<formal parameter>“, ...)

.INSTR(“\&<preprocessor variable>“, ...) *

Note: When using a Japanese version of MS-DOS, use ¥ instead of \ .

5. This function can only be used within a macro body (between the .MACRO and .ENDM
directives).

Coding Example:

 ∼
 .MACRO FIND_STR P1
 .DATA.W .INSTR(“ABCDEFG”,”\P1”,0)
 .ENDM

 ∼
 FIND_STR CDE

 FIND_STR H

Expanded results are as follows:
 .DATA.W 2 ; The start position of “CDE” is 2 (0 indicating the
 beginning of the string) in “ABCDEFG”
 .DATA.W -1 ; “ABCDEFG” includes no “H”.

213

.SUBSTR Character Substring Extraction

Syntax

 .SUBSTR[∅](“<character string>“,<start position>,<extraction
length>)

Description

1. .SUBSTR extracts from the specified character string a substring starting at the specified
start position of the specified length. .SUBSTR is replaced with the extracted character
string enclosed by double quotation marks (“).

2. Character strings are specified by enclosing the desired characters in double quotation marks
(“). To specify a double quotation mark in a character string, enter two double quotation
marks in succession.

3. The value of the extraction start position must be 0 or greater. The value of the extraction
length must be 1 or greater.

4. If illegal or inappropriate values are specified for the <start position> or <extraction length>
parameters, this function is replaced with a blank space (“ “).

5. Macro formal parameters and preprocessor variables can be specified in the character string,
and as the start position and extraction length parameters as shown below.

.SUBSTR(“\<formal parameter>“, ...)

.SUBSTR(“\&<preprocessor variable>“, ...) *

Note: When using a Japanese version of MS-DOS, use ¥ instead of \ .

6. This function can only be used within a macro body (between the .MACRO and .ENDM
directives).

Coding Example:

 ∼
 .MACRO RESERVE_STR P1=0,P2
 .SDATA .SUBSTR(“ABCDEFG”,\P1,\P2)
 .ENDM

 ∼
 RESERVE_STR 2,2
 RESERVE_STR ,3 ; Macro parameter P1 is omitted.

Expanded results are as follows:
.SDATA “CD”
 .SDATA “ABC”

214

215

Section 8 Automatic Literal Pool Generation Function

8.1 Overview of Automatic Literal Pool Generation

To move 2-byte or 4-byte constant data (referred to below as a “literal”) to a register, a literal
pool (a collection of literals) must be reserved and referred to in PC relative addressing mode.
For literal pool location, the following must be considered:

• Is data stored within the range that can be accessed by data move instructions?

• Is 2-byte data aligned to a 2-byte boundary and is 4-byte data aligned to a 4-byte boundary?

• Can data be shared by several data move instructions?

• Where in the program should the literal pool be located?

The assembler automatically generates from a single instruction a .DATA directive and a PC
relative MOV or MOVA instruction, which moves constant data to a register.

For example, this function enables program (a) below to be coded as (b):

(a)

 MOV.L DATA1,R0

 MOV.L DATA2,R1

 ∼
 .ALIGN 4

DATA1 .DATA.L H’12345678

DATA2 .DATA.L 500000

(b)

 MOV.L #H’12345678,R0

 MOV.L #500000,R1

 ∼
8.2 Extended Instructions Related to Automatic Literal Pool Generation

The assembler automatically generates a literal pool corresponding to an extended instruction
(MOV.W #imm, Rn; MOV.L #imm, Rn; or MOVA #imm, R0) and calculates the PC relative
displacement value.

An extended instruction source statement is expanded to an executable instruction and literal
data as shown in table 8-1.

216

Table 8-1 Extended Instructions and Expanded Results

Extended Instruction Expanded Result

MOV.W #imm, Rn MOV.W @(disp, PC), Rn and 2-byte literal data

MOV.L #imm, Rn MOV.L @(disp, PC), Rn and 4-byte literal data

MOVA #imm, R0 MOVA @(disp, PC), R0 and 4-byte literal data

8.3 Size Mode for Automatic Literal Pool Generation

Automatic literal pool generation has two modes: size specification mode and size selection
mode. In size specification mode, a data move instruction (extended instruction) whose
operation size is prespecified is used to generate a literal pool. In size selection mode, when a
move instruction without size specification is written, the assembler automatically checks the
imm operand value and selects a suitable-size move instruction.

Table 8-2 shows data move instructions and size mode.

Table 8-2 Data Move Instructions and Size Mode

Data Move Instruction Size Specification Mode Size Selection Mode

MOV #imm, Rn Executable instruction Selected by assembler

MOV.B #imm, Rn Executable instruction Executable instruction

MOV.W #imm, Rn Extended instruction Extended instruction

MOV.L #imm, Rn Extended instruction Extended instruction

Size Specification Mode:

In this mode, a data move instruction without size specification (MOV #imm,Rn) is handled as a
normal executable instruction. This mode is used when -AUTO_LITERAL is not specified as
the command line option.

Size Selection Mode:

In this mode, when a data move instruction without size specification (MOV #imm,Rn) is
written, the assembler checks the imm operand value and automatically generates a literal pool
if necessary. The imm value is checked for the signed value range.

This mode is used when -AUTO_LITERAL is specified as the command line option.

Table 8-3 shows the instructions selected depending on imm value range.

217

Table 8-3 Instructions Selected in Size Selection Mode

imm Specification imm Value Range* Selected Instruction

Constant or back-reference
absolute value

H’FFFFFF80 to H’0000007F
(-128 to 127)

MOV.B #imm, Rn

H’FFFF8000 to H’FFFFFF7F
(-32,768 to -129)
H’00000080 to H’00007FFF
(128 to 32,767)

MOV.W #imm, Rn
Expansion result:
[MOV.W @(disp, PC), Rn and
2-byte literal data]

H’80000000 to H’FFFF7FFF
(-2,147,483,648 to -32,769)
H’00008000 to H’7FFFFFFF
(32,768 to 2,147,483,647)

MOV.L #imm, Rn
Expansion result:
[MOV.L @(disp, PC), Rn and
4-byte literal data]

Relative value or forward-
reference absolute value

Does not depend on imm
value

MOV.L #imm, Rn
Expansion result:
[MOV.L @(disp, PC), Rn and
4-byte literal data]

Note: The values in parentheses () are decimal.

Reference:

-AUTO_LITERAL
→ User’s Guide, 2.2.8, “Automatic Literal Pool Output Command Line Option”

8.4 Literal Pool Output

The literal pool is output to one of the following locations:

• After an unconditional branch and its delay slot instruction

• Where a .POOL directive has been specified by the programmer

The assembler outputs the literal corresponding to an extended instruction to the nearest output
location following the extended instruction. The assembler gathers the literals to be output as a
literal pool.

CAUTION!

When a label is specified in a delay slot instruction, no literal pool will be output to the location
following the delay slot.

218

8.4.1 Literal Pool Output after Unconditional Branch

An example of literal pool output is shown below.

Source program
		 .SECTION CD1,CODE,LOCATE=H'0000F000

CD1_START:

 MOV.L #H'FFFF0000,R0

 MOV.W #H'FF00,R1�	

 MOV.L #CD1_START,R2�	

 MOV #H'FF,R3�	

 RTS�	

 MOV R0,R10	�	

 .END

	↓ ↓ ↓ ↓ ↓ ↓ ↓
Automatic literal pool generation result (source list)
	 1 0000F000	1 .SECTION CD1,CODE,LOCATE=H'0000F000

	 2 0000F000	2 CD1_START�	

	 3 0000F000 5004	3 MOV.L #H'FFFF0000,R0�	

	 4 0000F002 1103	4 MOV.W #H'FF00,R1�	

	 5 0000F004 5205	5 MOV.L #CD1_START,R2�	

	 6 0000F006 6300	6 MOV #H'FF,R3�	

	 7 0000F008 000B	7 RTS�	

	 8 0000F00A 6A03	8 MOV R0,R10�	

	 9	 **** BEGIN-POOL ****�	

	10 0000F00C FF00	 DATA FOR SOURCE-LINE 4�	

	11 0000F00E 0000	 ALIGNMENT CODE�	

	12 0000F010 FFFF0000	 DATA FOR SOURCE-LINE 3�	

	13 0000F014 0000F000	 DATA FOR SOURCE-LINE 5�	

	14	 **** END-POOL ****� 	
	15	9 .END

8.4.2 Literal Pool Output to the .POOL Location

If literal pool output location after unconditional branches is not available within the valid
displacement range (because the program has a small number of unconditional branches), the
assembler outputs error 402. In this case, a .POOL directive must be specified within the valid
displacement range.

The valid displacement range is as follows:

• Word-size operation: 0 to 511 bytes

• Long word-size operation: 0 to 1023 bytes

219

When a literal pool is output to a .POOL location, a branch instruction is also inserted to jump
over the literal pool.

An example of literal pool output is shown below.

Source program
 .SECTION CD1,CODE,LOCATE=H'0000F000�

CD1_START�	

 MOV.L #H'FFFF0000,R0�	

 MOV.W #H'FF00,R1�	

 MOV.L #CD1_START,R2�	

 MOV #H'FF,R3�	

 .POOL

 .END

 ↓ ↓ ↓ ↓ ↓ ↓ ↓
Automatic literal pool generation result (source list)
	 1 0000F000	1 .SECTION CD1,CODE,LOCATE=H'0000F000

	 2 0000F000	2 CD1_START:�	

	 3 0000F000 5012	3 MOV.L #H'FFFF0000,R0�	

	 4 0000F002 110E	4 MOV.W #H'FF00,R1�	

	 5 0000F004 5216	5 MOV.L #CD1_START,R2�	

	 6 0000F006 6300	6 MOV #H'FF,R3�	

	 7 0000F008 	7 .POOL�	

	 8 	 **** BEGIN-POOL ****�	

	 9 0000F008 A006	 BRA TO END-POOL�	

	10 0000F00A 0009	 NOP�	

	11 0000F00C FF00	 DATA FOR SOURCE-LINE 4�	

	12 0000F00E 0000	 ALIGNMENT CODE�	

	13 0000F010 FFFF0000	 DATA FOR SOURCE-LINE 3�	

	14 0000F014 0000F000	 DATA FOR SOURCE-LINE 5�	

	15	 **** END-POOL ****�	

	16	8 .END

8.5 Literal Sharing

When the literals for several extended instructions are gathered into a literal pool, the assembler
makes the extended instructions share identical immediate data.

The following operand forms can be identified and shared:

• Symbol

• Constant

• Symbol ± constant

220

In addition to the above, expressions that are determined to have the same value at assembly
processing may be shared.

However, extended instructions having different operation sizes do not share literal data even
when they have the same immediate data.

An example of literal data sharing among extended instructions is shown below.

Source program
 .SECTION CD1,CODE,LOCATE=H'0000F000�

CD1_START:�	

 MOV.L #H'FFFF0000,R0�	

 MOV.W #H'FF00,R1�	

 MOV.L #H'FFFF0000,R2�	

 MOV #H'FF,R3�	

 RTS�	

 MOV R0,R10	�	

 .END

 ↓ ↓ ↓ ↓ ↓ ↓ ↓
Automatic literal pool generation result (source list)
	 1 0000F000	1 .SECTION CD1,CODE,LOCATE=H'0000F000

	 2 0000F000	2 CD1_START:�	

	 3 0000F000 5004	3 MOV.L #H'FFFF0000,R0�	

	 4 0000F002 1103	4 MOV.W #H'FF00,R1�	

	 5 0000F004 5204	5 MOV.L #H'FFFF0000,R2�	

	 6 0000F006 6300	6 MOV #H'FF,R3�	

	 7 0000F008 000B	7 RTS�	

	 8 0000F00A 6A03	8 MOV R0,R10�	

	 9 	 **** BEGIN-POOL ****�	

	10 0000F00C FF00	 DATA FOR SOURCE-LINE 4�	

	11 0000F00E 0000	 ALIGNMENT CODE�	

	12 0000F010 FFFF0000	 DATA FOR SOURCE-LINE 3,5�	

	13 	 **** END-POOL ****�	

	14 	9 .END

8.6 Literal Pool Output Suppression

When a program has too many unconditional branches, the following problems may occur:

• Many small literal pools are output

• Literals are not shared

In these cases, suppress literal pool output as shown below.

221

 ∼
 <delayed branch instruction>
 <delay slot instruction>
 .NOPOOL ∼
Example

Source program
�
CASE1:�	
 MOV.L #H'FFFF0000,R0 --------- Extended instruction 1
 RTS�	
 NOP�	
 .NOPOOL --------- No literal pool is output here�
CASE2:	�	
 MOV.L #H'FFFF0000,R0 --------- Extended instruction 2
 RTS�	
 NOP
 --------- Literal pool is output here�
	
 ↓ ↓ ↓ ↓ ↓ ↓ ↓
Automatic literal pool generation result (source list)
�	
	20 0000F000	20 CASE1:�	
	21 0000F000 5001	21 MOV.L #H'FFFF0000,R0�	
	22 0000F002 000B	22 RTS�	
	23 0000F004 0009	23 NOP�	
	24 	24 .NOPOOL�	
	25 0000F006 	25 CASE2:�	
	26 0000F006 5001	26 MOV.L #H'FFFF0000,R0�	
	27 0000F008 000B	27 RTS�	
 28 0000F00A 0009	28 NOP�	
	29 	 **** BEGIN-POOL ****�	
	30 0000F00C FFFF0000	 DATA FOR SOURCE-LINE 21,26�	
	31 	 **** END-POOL ****

~

~

~

~

8.7 Notes on Automatic Literal Pool Output

1. If an error occurs when an extended instruction is written

a. Extended instructions must not be specified in delay slots (error 151).

b. Extended instructions must not be specified in relative sections having a boundary
alignment value of less than 2 (error 152).

c. MOV.L #imm, Rn or MOVA #imm, R0 must not be specified in relative sections having
a boundary alignment value of less than 4 (error 152).

2. If an error occurs when a .POOL directive is written

222

.POOL directives must not be written after unconditional branches (error 522).

3. If an error occurs when a .NOPOOL directive is written

.NOPOOL directives are valid only when written after delay slot instructions. If written at
other locations, the .NOPOOL directive causes error 521.

4. If the displacement of an executable instruction exceeds the valid range when an extended
instruction is expanded

The assembler generates a literal pool and outputs error 402 for the instruction having a
displacement outside the valid range.

Solution: Move the literal pool output location (for example, by the .NOPOOL
directive), or change the location or addressing mode of the instruction causing the error.

5. If the literal pool output location cannot be found

If the assembler cannot find a literal pool output location satisfying the following conditions
in respect to the extended instruction,

 Same file

 Same section

 Forward direction

the assembler outputs, at the end of the section which includes the extended instruction, the
literal pool and a BRA instruction with a NOP instruction in the delay slot to jump around
the literal pool, and outputs warning 876.

6. If the displacement from the extended instruction exceeds the valid range

If the displacement of the literal pool from the extended instruction exceeds the valid range,
error 402 is generated.

Solution: Output the literal pool within the valid range (for example, using the .POOL
directive.)

7. Differences between size specification mode and size selection mode

The former version of the assembler can only use the size specification mode, but the size
selection mode is added to this new assembler version. If the source program created before
for the former version is assembled in the size selection mode by the new version, the imm
values of data move instructions without size specifications will differ by H’00000080 to
H’000000FF (128 to 255) from these asembled by the former version.

An example of source listing output in the size specification mode and size selection mode is
shown below.

223

Source program
 .SECTION CD1,CODE,LOCATE=H'0000F000�
 MOV.L #H'FF,R0�	
 MOV.W #H'FF,R1�	
 MOV.B #H'FF,R2�	
 MOV #H'FF,R3�	
 RTS
 MOV R0,R10
 .END

 ↓ ↓ ↓ ↓
Automatic literal pool output in size specification mode (source listing)
	 1 0000F000	1 .SECTION CD1,CODE,LOCATE=H'0000F000
	 2 0000F000 5004	2 MOV.L #H'FF,R0
	 3 0000F002 1103	3 MOV.W #H'FF,R1
	 4 0000F004 63FF	4 MOV.B #H'FF,R2
	 5 0000F006 63FF	5 MOV #H'FF,R3
	 6 0000F008 000B	6 RTS
	 7 0000F00A 6A03	7 MOV R0,R10
	 8	 ***** BEGIN-POOL *****
	 9 0000F00C 00FF	 DATA FOR SOURCE-LINE 3
	10 0000F00E 0000	 ALIGNMENT CODE
	11 0000F010 000000FF	 DATA FOR SOURCE-LINE 2
	12	 ***** END-POOL *****
	13	8 .END

The contents of R3 is H'FFFFFFFF.

Automatic literal pool output in size selection mode (source listing)
	 1 0000F000	1 .SECTION CD1,CODE,LOCATE=H'0000F000
	 2 0000F000 5004	2 MOV.L #H'FF,R0
	 3 0000F002 1103	3 MOV.W #H'FF,R1
	 4 0000F004 63FF	4 MOV.B #H'FF,R2
	 5 0000F006 1102	5 MOV #H'FF,R3
	 6 0000F008 000B	6 RTS
	 7 0000F00A 6A03	7 MOV R0,R10
	 8	 ***** BEGIN-POOL *****
	 9 0000F00C 00FF	 DATA FOR SOURCE-LINE 3,5
	10 0000F00E 0000	 ALIGNMENT CODE
	11 0000F010 000000FF	 DATA FOR SOURCE-LINE 2
	12	 ***** END-POOL *****
	13	8 .END

The contents of R3 is H'000000FF.

Example:

224

225

Section 9 SH-DSP Instructions

9.1 Program Contents

9.1.1 Source Statements

The SH-DSP instructions are classified into two types: executable instructions and DSP
instructions. The DSP instructions have a different instruction set and description format from
those for the SH-series microcomputer. For the DSP instructions, many operations can be
included in one statement. The DSP instruction operation is as follows:

1. DSP operation: Specifies operations between DSP registers.

PABS, PADD, PADDC, PAND, PCLR, PCMP, PCOPY, PDEC, PDMSB, PINC, PLDS,
PMULS, PNEG, POR, PRND, PSHA, PSHL, PSTS, PSUB, PSUBC, PXOR

2. X data transfer operation: Specifies data transfer between a DSP register and X data memory.

MOVX, NOPX

3. Y data transfer operation: Specifies data transfer between a DSP register and Y data memory.

MOVY, NOPY

4. Single data transfer operation: Specifies data transfer between a DSP register and memory.

MOVS

Reference:

Executable instructions
→ Programmer’s Guide, 3, “Executable Instructions”

9.1.2 Parallel Operation Instructions

Parallel operation instructions specify DSP operations as well as data transfer between a DSP
register and X or Y data memory at the same time. The instruction size is 32 bits. The
description format is as follows:

[<label>][∅<DSP operation part>][∅<data transfer part>][<comment>]

DSP Operation Part Description Format:

[<condition> ∆]<DSP operation> ∆<operand>[∆<DSP operation> ∆<operand>]

• Condition: Specifies how parallel operation instruction is executed as follows:

DCT: The instruction is executed when the DC bit is 1.
DCF: The instruction is executed when the DC bit is 0.

• DSP operation: Specifies DSP operation.

226

Only the pairs of the two instructions (PADD and PMULS, PSUB and PMULS) can be
combined.

Data Transfer Part Description Format:

[<X data transfer operation>[∅<operand>]]
[∅<Y data transfer operation>[∅<operand>]]

Be sure to specify X data transfer and Y data transfer in this order. Inputting an instruction is not
required when the data move instruction is NOPX or NOPY.

Example:

LABEL1: PADD A0,M0,A0 PMULS X0,Y0,M0 MOVX.W @R4+,X0 MOVY.W @R6+,Y0 ;DSP Instruction

 DCT PINC X1,A1 MOVX.W @R4,X0 MOVY.W @R6+, Y0

 PCMP X1, M0 MOVX.W @R4, X0 Y Memory transfer is omitted

Label DSP operation part

DSP operation part

DSP operation part Data transfer part Comment

Data transfer part

Data transfer part Comment

9.1.3 Data Move Instructions

Two types of data move instructions are available: combination of X data memory transfer and
Y data memory transfer, and single data transfer. The description formats are as follows:

Combination of X Data Memory Move and Y Data Memory Move Instructions:

[<label>][∅<X data transfer operation>[∅<operand>]]
[∅<Y data transfer operation>[∅<operand>]][<comment>]

Be sure to specify X data memory transfer and Y data memory transfer in this order. Inputting
an instruction is not required when the data move instruction is NOPX or NOPY. Note that both
X data memory and Y data memory cannot be omitted, unlike the parallel operation instruction.

Example:

LABEL2: MOVX.L @R4,X0 ; Data move instruction
(Y data memory transfer is omitted)

 MOVX.W @R4,X0 MOVY.W @R6+, Y0

Single Data Move Instruction:

[<label>][∅<single data transfer operation> ∅<operand>][<comment>]

Specifies the MOVS instruction.

227

Example:

LABEL3: MOVS.W @-R2,A0 ; Single data transfer

9.1.4 Coding of Source Statements Across Multiple Lines

For the DSP instructions, many operations can be included in one statement, and therefore,
source statements become long and complicated. To make programs easy to read, source
statements for DSP instructions can be written across multiple lines by separating between an
operand and an operation, in addition to separating by a comma between operands.

Write source statements across multiple lines using the following procedure.

1. Insert a new line between an operand and an operation.

2. Insert a plus sign (+) in the first column of the next line.

3. Continue writing the source statement following the plus sign.

Spaces and tabs can be inserted following the plus sign.

228

Example:

 PADD A0,M0,X0
+ PMULS A1,Y1,M0
+ MOVX @R4,x0
+ MOVY @R6,Y1

; A single source statement is written across four lines.

9.2 DSP Instructions

9.2.1 DSP Operation Instructions

Table 9-1 lists DSP instructions in mnemonic.

Table 9-1 DSP Instructions in Mnemonic

Instruction Name Mnemonic

DSP arithmetic operation instructions PADD, PSUB, PCOPY, PDMSB, PINC, PNEG, PMULS,
PADDC, PSUBC, PCMP, PDEC, PABS, PRND, PCLR,
PLDS, PSTS

DSP logic operation instructions POR, PAND, PXOR

DSP shift operation instructions PSHA, PSHL

Operation Size:

For the DSP operation instructions, operation size cannot be specified.

Addressing Mode:

Table 9-2 lists addressing modes for the DSP operation instructions.

Table 9-2 Addressing Modes for DSP Operation Instructions

Addressing Mode Description Format

DSP register direct Dp (DSP register name)

Immediate data #imm

• DSP register direct

Table 9-3 lists registers that can be specified in DSP register direct addressing mode. For Sx,
Sy, Dz, Du, Se, Sf, and Dg, refer to table 9-5, DSP Operation Instructions.

229

Table 9-3 Registers that Can Be Specified in DSP Register Direct Addressing Mode

DSP Register

A0 A1 M0 M1 X0 X1 Y0 Y1

Dp Sx Yes Yes Yes Yes

Sy Yes Yes Yes Yes

Dz Yes Yes Yes Yes Yes Yes Yes Yes

Du Yes Yes Yes Yes

Se Yes Yes Yes Yes Yes

Sf Yes Yes Yes Yes

Dg Yes Yes Yes Yes

• Immediate data

Immediate data can be specified for the first operand of the PSHA and PSHL instructions.
The following items can be specified:

 Value type

Constants, symbols, or expressions can be specified.

 Symbol types

Symbols including relative symbols and import symbols can be specified as immediate
data.*

 Value range

Table 9-4 lists the specifiable value ranges.

Table 9-4 Ranges of Immediate Data

Instruction Range

PSHA instruction H’FFFFFFE0 to H’00000020 (-32 to 32)

PSHL instruction H’FFFFFFF0 to H’00000010 (-16 to 16)

Note: When a relative symbol or import symbol is specified as immediate data, the linkage
editor checks the value in the rage from H’FFFFFFC0 to H’0000003F (-64 to 63).

230

Combination of Multiple DSP Operation Instructions:

The PADD instruction and the PMULS instruction, or the PSUB instruction and the PMULS
instruction can be specified in combination. These two types of combinations are basically one
DSP instruction. The PADD (or PSUB) operand and a PMULS operand are separately described
so that programs can be read easily.

Example:

PADD A0,M0,A0 PMULS X0,Y0,M0 NOPX MOVY.W @R6+, Y0
PSUB A1,M1,A1 PMULS X1,Y1,M1 MOVX @R4+,X0 NOPY

Note: Warning 701 is displayed if the same register is specified as the destination registers
when multiple DSP operation instructions are specified in combination.

Example:

PADD A0,M0,A0 PMULS X0,Y0,A0 → Warning 701

Conditional DSP Operation Instructions:

Conditional DSP operation instructions specify if the program is executed according to the DC
bit of the DSR register.

DCT: When the DC bit is 1, the instruction is executed.
DCF: When the DC bit is 0, the instruction is executed.

Conditional DSP operation instructions are the following:

PADD, PAND, PCLR, PCOPY, PDEC, PDMSB, PINC, PLDS, PNEG, POR, PSHA, PSHL,
PSTS, PSUB, PXOR

DSP Operation Instruction List:

Table 9-5 lists DSP operation instructions. For the registers that can be specified as Sx, Sy, Dz,
Du, Se, Sf, and Dg, refer to table 9-3, Registers that Can Be Specified in DSP Register Direct
Addressing Mode.

231

Table 9-5 DSP Operation Instructions

Mnemonic Addressing Mode Mnemonic Addressing Mode

PABS Sx, Dz

PABS Sx, Dz

PADD Sx, Sy, Dz

PADD Sx, Sy, Du PMULS Se, Sf, Dg

PADDC Sx, Sy, Dz

PAND Sx, Sy, Dz

PCLR Dz

PCMP Sx, Sy

PCOPY Sx, Dz

PCOPY Sy, Dz

PDEC Sx, Dz

PDEC Sy, Dz

PDMSB Sx, Dz

PDMSB Sy, Dz

PINC Sx, Dz

PINC Sy, Dz

PLDS Dz, MACH

PLDS Dz, MACL

PMULS Se, Sf, Dg

PNEG Sx, Dz

PNEG Sy, Dz

POR Sx, Sy, Dz

PRND Sx, Dz

PRND Sy, Dz

PSHA #imm, Dz

PSHA Sx, Sy, Dz

PSHL #imm, Dz

PSHL Sx, Sy, Dz

PSTS MACH, Dz

PSTS MACL, Dz

PSUB Sx, Sy, Dz

232

Table 9-5 DSP Operation Instructions (cont)

Mnemonic Addressing Mode Mnemonic Addressing Mode

PSUB Sx, Sy, Du PMULS Se, Sf, Dg

PSUBC Sx, Sy, Dz

PXOR Sx, Sy, Dz

9.2.2 Data Move Instructions

Mnemonics:

Two types of data move instructions are available: dual memory move instructions and single
memory move instructions.

Dual memory move instructions specify data move, at the same time, between x memory and a
DSP register, and between Y memory and a DSP register.

Single memory move instructions specify data move between arbitrary memory and a DSP
register. Table 9-6 lists data move instructions in mnemonic.

Table 9-6 Data Move Instructions in Mnemonic

Classification Mnemonic

Dual memory move X memory move NOPX
MOVX

Y memory move NOPY
MOVY

Single memory move MOVS

Operation Size:

NOPX and NOPY instructions: Operation size cannot be specified.

MOVX and MOVY instructions: Only word size (.W) can be specified. If omitted, word size
is specified.

MOVS instruction: Word size (.W) or long word size (.L) can be specified. If
omitted, long word size is specified.

233

Addressing Mode:

Table 9-7 lists addressing modes that can be specified for the data move instructions.

Table 9-7 Addressing Modes of Data Move Instructions

Addressing mode Description

DSP register direct Dz

Register indirect @Az

Register indirect with post-increment @Az+

Register indirect with index/post-increment @Az+Iz

Register indirect with pre-decrement @-Az

Register indirect with index/post-increment is a special addressing mode for the DSP data move
instructions. In this mode, after referring to the contents indicated by register Az, register Az
contents are incremented by the value of the Iz register.

Registers that Can Be Specified in Addressing Modes:

Table 9-8 lists registers that can be specified in the DSP register direct, register indirect, register
indirect with post-increment, register indirect with index/post-increment, and register indirect
with pre-decrement addressing modes. For Dx, Dy, Ds, Da, Ax, Ay, As, Ix, Iy, and Is, refer to
table 9-9, Data Move Instructions.

Table 9-8 Registers that Can Be Specified in Addressing Modes for Data Move
Instructions

SH Register DSP Register

R2 R3 R4 R5 R6 R7 R8 R9 A0 A1 M0 M1 X0 X1 Y0 Y1 A0GA1G

Dz Dx Yes Yes

Dy Yes Yes

Ds Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Da Yes Yes

Az Ax Yes Yes

Ay Yes Yes

As Yes Yes Yes Yes

Iz Ix Yes

Iy Yes

Is Yes

234

Note: Warning 703 is displayed if the destination register for the DSP instruction and the
destination register for the data transfer instruction are the same register, and if the
instructions are in the same statement.

Example:

PADD A0,M0,Y0 NOPX MOVY.W @R6+,Y0 → Warning 703

Data Move Instruction List:

Table 9-9 lists data move instructions. For registers that can be specified for Dx, Dy, Ds, Da, Ax,
Ay, As, Ix, Iy, and Is, refer to table 9-8, Registers that Can Be Specified in Addressing Modes
for Data Move Instructions.

235

Table 9-9 Data Move Instructions

Classification Mnemonic Addressing Mode

 X data move instructions NOPX

MOVX.W @Ax, Dx

MOVX.W @Ax+, Dx

MOVX.W @Ax+Ix, Dx

MOVX.W Da, @Ax

MOVX.W Da, @Ax+

MOVX.W Da, @Ax+Ix

Y data move instructions NOPY

MOVY.W @Ay, Dy

MOVY.W @Ay+, Dy

MOVY.W @Ay+Iy, Dy

MOVY.W Da, @Ay

MOVY.W Da, @Ay+

MOVY.W Da, @Ay+Iy

Single data move instructions MOVS.W @-As, Ds

MOVS.W @As, Ds

MOVS.W @As+, Ds

MOVS.W @As+Is, Ds

MOVS.W Ds, @-As

MOVS.W Ds, @As

MOVS.W Ds, @As+

MOVS.W Ds, @As+Is

MOVS.L @-As, Ds

MOVS.L @As, Ds

MOVS.L @As+, Ds

MOVS.L @As+Is, Ds

MOVS.L Ds, @-As

MOVS.L Ds, @As

MOVS.L Ds, @As+

MOVS.L Ds, @As+Is

236

9.3 Notes on Executable Instructions

Displacement Value Range:

The PC-relative displacement value for the LDRS and LDRE instructions must be within the
range from H’FFFFFF00 to F’000000FE (-256 to 254). If a symbol is specified as an operand for
these instructions, the symbol location must be within the above range in PC-relative mode.

Immediate Value Range:

The immediate value for the SETRC instruction must be within the range from H’00000001 to
H’000000FF (1 to 255). If 0 is specified, warning 835 is output and 0 is set in the object code. In
this case, the repeat count becomes one.

Note:

If an external reference symbol is specified as the immediate value for the SETRC instruction,
the linkage editor checks the range from H’00000000 to H’000000FF (0 to 255).

Reference:

Executable instructions
→ Programmer’s Guide, 3, Executable Instructions

RS and RE Register Setting:

The repeat start address and end address are set in the RS and RE registers by the LDRS and
LDRE instructions, respectively. The address values depend on the number of instructions in the
repeat loop. Table 9-10 shows the number of instructions in the repeat loop and address setting.

Table 9-10 Number of Instructions in Repeat Loop and Address Setting

Number of Instructions

Register One Two Three Four or More

RS register Repeat_Start0 + 8 Repeat_Start0 + 6 Repeat_Start0 + 4 Repeat_Start

RE register Repeat_Start0 + 4 Repeat_Start0 + 4 Repeat_Start0 + 4 Repeat_End3 + 4

• Repeat_Start0:Address of the instruction before the repeat start address

• Repeat_Start: Repeat start address

• Repeat_End3: Address of the location three instructions before the repeat end address

237

An example of RS and RE register setting is shown below.

Example:

; When two instructions are in the repeat loop

 LDRS RptStart0 + 6 ; Repeat start address setting

 LDRE RptStart0 + 4 ; Repeat end address setting

 SETRC #10 ; Repeat count setting

RptStart0: ; Address of the instruction before the repeat start

 ; address

 NOP

 PADD A0,M0,A0 ; Repeat start address

 PCMP X1,M0 ; Repeat end address

; When four instructions are in the repeat loop

 LDRS RptStart ; Repeat start address setting

 LDRE RptEnd3 + 4 ; Repeat end address setting

 SETRC #10 ; Repeat count setting

 NOP

RptStart: ; Repeat start address

 PADD A0,M0,A0

RptEnd3: ; Address of the location three instructions before

 ; the repeat end address

 PSUB A1,M1,A1

 PMULS X0,Y0,M0

 PINC X0,A1

 PCMP X1,M0 ; Repeat end address

238

User’s Guide

239

Section 1 Executing the Assembler

1.1 Command Line Format

To start the assembler, enter a command line with the following format when the host computer
operating system is in the input wait state.

> asmsh ∆ <input source file> [,<input source file>...][[∆] <command line options> ...]

(1) (2) (3)

(1) Assembler start command.

(2) Name of input source file. Multiple source files can be specified at the same time.

(3) Command line options, which specify the assembly method in more detail.

CAUTION!

When multiple source files are specified on the command line, the unit of assembly processing
will be the concatenation of the specified files in the specified order.

In this case, the .END directive must appear only in the last file.

Supplement:

The assembler returns the operating system a return code that reports whether or not the
assembly processing terminated normally. The return value indicates the level of the errors
occurred as follows.

Normal termination 0

Warnings occurred 0

 Errors occurred MS-DOS: 2

 UNIX: 1

Fatal error occurred MS-DOS: 4

 UNIX: 1

The return code can be changed with -ABORT.

Reference:

-ABORT
→ User’s Guide, 2.2.6, “Assembler Execution Command Line Options,” -ABORT

240

1.2 File Specification Format

Files handled by the assembler are specified in the following format.

<file name>.[<file format>]

The term “file name” as used in this manual normally refers to both the file name and the file
format.

Example:

(File name)
file.src A file with the file name file and the file format src.
prog.obj A file with the file name prog and the file format obj.

The file format is used as an identifier to distinguish the contents of the file. Thus two files with
differing formats are different files even if the file name is the same.

Example:

file.src}
file.obj}

These file names specify different files.

The assembler handles the following types of file.

• Source file

This is a source program file. If a source program file is specified without the file format, the
file format src will be supplied.

• Object file

This is an output destination file for object modules. If an object file is specified without the
file format, the file format obj will be supplied. If an object file is not specified to the
assembler, a file with the same name as the source file (the first file) and with the file format
obj* will be used.

• Listing file

This is an output destination file for assemble listings. If a listing file is specified without the
file format, the extension lis will be supplied. If a listing file is not specified to the
assembler, a file with the same name as the source file (the first file) and with the file format
lis* will be used.

Note: When MS-DOS is used, the file format is in uppercase letters.

241

1.3 SHCPU Environment Variable

The assembler assembles the program for the CPU specified by the SHCPU environment
variable. The following shows how to specify the environment variable.

For UNIX:

• C Shell

setenv SHCPU <target CPU>

• Bourne/Korn Shell

SHCPU=<target CPU>

export SHCPU

For MS-DOS:

SET SHCPU=<target CPU>

The target CPU can be selected from SH1, SH2, SH3, SH3E, and SHDSP.

The priority of target CPU specification is in the order of -CPU, .CPU directive, and SHCPU
environment variable.

Note: Be sure to specify this environment variable in uppercase letters.

242

243

Section 2 Command Line Options

2.1 Overview of Command Line Options

Command line options are detailed specifications of the assembly processing. Table 2-1 shows
an overview of the command line options.

Table 2-1 Command Line Options

Section
Number Command Line Option Function

2.2.1 Target CPU specifications

-CPU Specifies target CPU

2.2.2 Object module specifications

-[NO]OBJECT

-[NO]DEBUG

-ENDIAN

Controls output of object module

Controls output of debugging information

Selects big endian or little endian

2.2.3 Assembly listing specifications

-[NO]LIST

-[NO]SOURCE

-[NO]CROSS_REFERENCE

-[NO]SECTION

-[NO]SHOW

-LINES

-COLUMNS

Controls output of assembly listing

Controls output of source program listing

Controls output of cross-reference listing

Controls output of section information listing

Controls output of part of source program listing

Specifies the number of lines in assemble listing

Specifies the number of columns in assemble listing

2.2.4 File inclusion function specifications

-INCLUDE Specifies the include file directory

2.2.5 Conditional assembly specifications

-ASSIGNA

-ASSIGNC

-DEFINE

Defines integer preprocessor variable

Defines character preprocessor variable

Defines replacement character string

2.2.6 Assembler execution specifications

-EXPAND

-ABORT

Outputs preprocessor expansion result

Changes the error level at which the assembler is
abnormally terminated

244

Table 2-1 Command Line Options (cont)

Section
Number Command Line Option Function

2.2.7 Japanese character description specifications

-SJIS

-EUC

-OUTCODE

Interprets Japanese characters in source file as shift
JIS code

Interprets Japanese characters in source file as EUC
code

Specifies the Japanese code for output to object
code

2.2.8 Automatic literal pool generation specifications

-AUTO_LITERAL Specifies size mode for automatic literal pool
generation

2.2.9 Command line specifications

-SUBCOMMAND Inputs command line from a file

Supplement:

The assemble listing is a listing to which the results of the assembly processing are output, and
consists of a source program listing, a cross-reference listing, and a section information listing.

References: See appendix C, “Assemble Listing Example”, for a detailed description of the
assemble listing.

245

2.2 Command Line Option Reference

2.2.1 Target CPU Command Line Option

This assembler provides the following command line option concerned with the target CPU.

-CPU This command line option specifies the target CPU.

-CPU Target CPU Specification

Syntax

-CPU=<target CPU>

Description

1. The -CPU option specifies the target CPU for the source program to be assembled.

2. The following CPUs can be specified.

 SH1

 SH2

 SH3

 SH3E

 SH-DSP

Relationship with Assembler Directives

Command Line
Option Assembler Directive

SHCPU Environment
Variable Result

-CPU (regardless of any
specification)

(no specification) Target CPU specified by -
CPU

(no specification) .CPU <target CPU> (no specification) Target CPU specified by
.CPU

(no specification) SHCPU = <target CPU> Target CPU specified by
SHCPU environment
variable

(no specification) SH1

References: Target CPU
→ Programmer’s Guide, 4.2.1, “Target CPU Assembler Directive,” .CPU

SHCPU environment variable
→ User’s Guide, 1.3, “SHCPU Environment Variable”

246

2.2.2 Object Module Command Line Options

This assembler provides the following command line options concerned with object modules.

-OBJECT
-NOOBJECT

These command line options control output of an object module.

-DEBUG
-NODEBUG

These command line options control output of debug information.

-ENDIAN This command line option selects big endian or little endian.

247

-OBJECT
 -NOOBJECT Object Module Output Control

Syntax

-OBJECT [= <object output file>]

-NOOBJECT

The abbreviated forms are indicated by bold face.

Description

1. The -OBJECT option specifies output of an object module.

The -NOOBJECT option specifies no output of an object module.

2. The object output file specifies the output destination for the object module.

3. When the object output file parameter is omitted, the assembler takes the following actions:

 If the file format is omitted:

The file format obj is supplied. *

 If the specification is completely omitted:

The file format obj is appended to the name of the input source file (the first specified
source file). *

Note: When MS-DOS is used, the file format is in uppercase letters.

CAUTION!

Do not specify the same file for the input source file and the output object file. If the same file is
specified, the contents of the input source file will be lost.

Relationship with Assembler Directives

The assembler gives priority to specifications made with command line options.

Command Line Option Assembler Directive Result

-OBJECT (regardless of any specification) An object module is output.

-NOOBJECT (regardless of any specification) An object module is not output.

(no specification) .OUTPUT OBJ An object module is output.

.OUTPUT NOOBJ An object module is not output.

(no specification) An object module is output.

248

-DEBUG
 -NODEBUG Debug Information Output Control

Syntax

-D EBUG

-NODEBUG

The abbreviated forms are indicated by bold face.

Description

1. The -DEBUG option specifies output of debug information.

The -NODEBUG option specifies no output of debug information.

2. The -DEBUG and -NODEBUG options are only valid in cases where an object module is
being output.

References: Object module output

→ Programmer’s Guide, 4.2.6, “Object Module Assembler Directives”, .OUTPUT

→ User’s Guide, 2.2.2, “Object Module Command Line Options”,
-OBJECT -NOOBJECT

Relationship with Assembler Directives

The assembler gives priority to specifications made with command line options.

Command Line Option Assembler Directive Result

-DEBUG (regardless of any specification) Debug information is output.

-NODEBUG (regardless of any specification) Debug information is not output.

(no specification) .OUTPUT DBG Debug information is output.

.OUTPUT NODBG Debug information is not output.

(no specification) Debug information is not output.

Supplement:

Debug information is information required when debugging a program using the
simulator/debugger or the emulator, and is part of the object module. Debug information
includes information about source statement lines and information about symbols.

249

-ENDIAN Big Endian or Little Endian Selection

Syntax

-ENDIAN[=<endian>]

Endian:{ BIG| LITTLE}

The abbreviated form is indicated by bold face.

Description

1. The -ENDIAN option selects big endian or little endian for the target CPU.

2. The default is big endian.

Relationship with Assembler Directives

The assembler gives priority to specifications made with command line options.

Command Line Option Assembler Directive Result

-ENDIAN=BIG (regardless of any specification) Assembles in big endian

-ENDIAN=LITTLE (regardless of any specification) Assembles in little endian

(no specification) .ENDIAN BIG Assembles in big endian

.ENDIAN LITTLE Assembles in little endian

(no specification) Assembles in big endian

Reference: .ENDIAN
→ Programmer’s Guide, 4.2.6, “Object Module Assembler Directives,” .ENDIAN

250

2.2.3 Assembly Listing Command Line Options

This assembler provides the following command line options concerned with the assemble
listing.

-LIST
-NOLIST

These command line options control output of an assemble listing.

 -SOURCE
-NOSOURCE

These command line options control output of a source program
listing.

-CROSS_REFERENCE
-NOCROSS_REFERENCE

These command line options control output of a cross-reference
listing.

-SECTION
-NOSECTION

These command line options control output of a section information
listing.

-SHOW
-NOSHOW

These command line options control output of the source program
listing.

-LINES This command line option sets the number of lines in the assemble
listing.

-COLUMNS This command line option sets the number of columns in the
assemble listing.

251

-LIST
 -NOLIST Assemble Listing Output Control

Syntax

-LIS T [=<listing output file>]

- NOLIST

The abbreviated forms are indicated by bold face.

Description

1. The -LIST option specifies output of an assemble listing.

The -NOLIST option specifies no output of an assemble listing.

2. The listing output file specifies the output destination file for the assemble listing.

3. When the listing output file parameter is omitted, the assembler takes the following actions:

 If the file format is omitted:

The file format lis is supplied. *

 If the specification is completely omitted:

The file format lis is appended to the name of the input source file (the first specified
source file). *

4. Do not specify the same file for the input source file and the listing output file.

Note: When MS-DOS is used, the file format is in uppercase letters.

CAUTION!

Do not specify the same file for the input source file and the output object file. If the same file is
specified, the contents of the input source file will be lost.

Relationship with Assembler Directives

The assembler gives priority to specifications made with command line options.

Command Line Option Assembler Directive Result

-LIST (regardless of any specification) An assemble listing is output.

-NOLIST (regardless of any specification) An assemble listing is not output.

(no specification) .PRINT LIST An assemble listing is output.

.PRINT NOLIST An assemble listing is not output.

(no specification) An assemble listing is not output.

252

-SOURCE
-NOSOURCE Source Program Listing Output Control

Syntax

-SOURCE

- NOSOURCE

The abbreviated forms are indicated by bold face.

Description

1. The -SOURCE option specifies output of a source program listing to the assemble listing.

The -NOSOURCE option specifies no output of a source program listing to the assemble
listing.

2. The -SOURCE and -NOSOURCE options are only valid in cases where an assemble listing is
being output.

References: Assemble listing output

→ Programmer’s Guide, 4.2.7, “Assemble Listing Assembler Directives”, .PRINT

→ User’s Guide, 2.2.3, “Assemble Listing Command Line Options”,
-LIST -NOLIST

Relationship with Assembler Directives

The assembler gives priority to specifications made with command line options.

Command Line Option Assembler Directive
Result (When an Assemble
Listing Is Output)

-SOURCE (regardless of any specification) A source program listing is
output.

-NOSOURCE (regardless of any specification) A source program listing is not
output.

(no specification) .PRINT SRC A source program listing is
output.

.PRINT NOSRC A source program listing is not
output.

(no specification) A source program listing is
output.

253

-CROSS_REFERENCE
-NOCROSS_REFERENCE Cross-Reference Listing Output Control

Syntax

-CROSS_REFERENCE

-NOCROSS_REFERENCE

The abbreviated forms are indicated by bold face.

Description

1. The -CROSS_REFERENCE option specifies output of a cross-reference listing to the
assemble listing.

The -NOCROSS_REFERENCE option specifies no output of a cross-reference listing to the
assemble listing.

2. The -CROSS_REFERENCE and -NOCROSS_REFERENCE options are only valid in cases
where an assemble listing is being output.

References: Assemble listing output

→ Programmer’s Guide, 4.2.7, “Assemble Listing Assembler Directives”, .PRINT

→ User’s Guide, 2.2.3, “Assemble Listing Command Line Options”,
-LIST -NOLIST

Relationship with Assembler Directives

The assembler gives priority to specifications made with command line options.

Command Line Option Assembler Directive
Result (When an Assemble
Listing Is Output)

-CROSS_REFERENCE (regardless of any specification) A cross-reference listing is output.

-NOCROSS_REFERENCE (regardless of any specification) A cross-reference listing is not
output.

(no specification) .PRINT CREF A cross-reference listing is output.

.PRINT NOCREF A cross-reference listing is not
output.

(no specification) A cross-reference listing is output.

254

-SECTION -NOSECTION Section Information Listing Output Control

Syntax

-SE CTION

-NOSECTION

The abbreviated forms are indicated by bold face.

Description

1. The -SECTION option specifies output of a section information listing to the assemble
listing.

The -NOSECTION option specifies no output of a section information listing to the assemble
listing.

2. The -SECTION and -NOSECTION options are only valid in cases where an assemble listing
is being output.

References: Assemble listing output

→ Programmer’s Guide, 4.2.7, “Assemble Listing Assembler Directives”, .PRINT

→ User’s Guide, 2.2.3, “Assemble Listing Command Line Options”,
-LIST -NOLIST

Relationship with Assembler Directives

The assembler gives priority to specifications made with command line options.

Command Line Option Assembler Directive
Result (When an Assemble
Listing Is Output)

-SECTION (regardless of any specification) A section information listing is
output.

-NOSECTION (regardless of any specification) A section information listing is not
output.

(no specification) .PRINT SCT A section information listing is
output.

.PRINT NOSCT A section information listing is not
output.

(no specification) A section information listing is
output.

255

-SHOW
-NOSHOW Source Program Listing Output Control

Syntax

<UNIX>

-SHOW [= <output type>[,<output type> ...]]

-NOSHOW [= <output type>[,<output type> ...]]

<MS-DOS>

/SH OW [=(<output type>[,<output type> ...])]

/NOSHOW [=(<output type>[,<output type> ...])]

 When only one output type is specified, the parentheses can be omitted.

Output type: { CONDITIONALS| DEFINITIONS| CALLS| EXPANSIONS|CODE}

The abbreviated forms are indicated by bold face.

Description

1. The -SHOW option specifies output of preprocessor function source statements and object
code lines in the source program listing.

The -NOSHOW option suppresses output of specified preprocessor function source
statements and object code display lines in the source program listing.

2. The items specified by output types will be output or suppressed depending on the option.
When no output type is specified, all items will be output or suppressed.

-SHOW: Output
-NOSHOW: No output (suppress)

3. The following output types can be specified:

Output Type Object Description

CONDITIONALS Failed condition Condition-failed .AIF or .AIFDEF statements

DEFINITIONS Definition Macro definition parts,
.AREPEAT and .AWHILE definition parts,
.INCLUDE directive statements
.ASSIGNA and .ASSSIGNC directive statements

CALLS Call Macro call statements,
.AIF, .AIFDEF, and .AENDI directive statements

EXPANSIONS Expansion Macro expansion statements
.AREPEAT and .AWHILE expansion statements

CODE Object code lines The object code lines exceeding the source
statement lines

256

References: Source program listing output

→ Programmer’s Guide, 4.2.7, “Assemble Listing Assembler Directives”, .PRINT

→ User’s Guide, 2.2.3, “Assemble Listing Command Line Options”, -LIST -NOLIST -
SOURCE -NOSOURCE

Relationship with Assembler Directives

The assembler gives priority to specifications made with command line options.

Command Line Option Assembler Directive Result

-SHOW=<output type> (regardless of any specification) The object code is output.

-NOSHOW=<output type> (regardless of any specification) The object code is not output.

(no specification) .LIST <output type> (output) The object code is output.

.LIST <output type> (suppress) The object code is not output.

(no specification) The object code is output.

257

-LINES Setting of the Number of Lines in the Assemble Listing

Syntax

-LIN ES=<line count>

The abbreviated form is indicated by bold face.

Description

1. The -LINES option sets the number of lines on a single page of the assemble listing. The
range of valid values for the line count is from 20 to 255.

2. The -LINES option is only valid in cases where an assemble listing is being output.

References: Assemble listing output

→ Programmer’s Guide, 4.2.7, “Assemble Listing Assembler Directives”, .PRINT

→ User’s Guide, 2.2.3, “Assemble Listing Command Line Options”,
-LIST -NOLIST

Relationship with Assembler Directives

The assembler gives priority to specifications made with command line options.

Command Line Option Assembler Directive Result

-LINES=<line count> (regardless of any specification) The number of lines on a page is
given by -LINES.

(no specification) .FORM LIN=<line count> The number of lines on a page is
given by .FORM.

(no specification) The number of lines on a page is
60 lines.

258

-COLUMNS Setting of the Number of Columns in the Assemble Listing

Syntax

-COLUMNS=<column count>

The abbreviated form is indicated by bold face.

Description

1. The -COLUMNS option sets the number of columns in a single line of the assemble listing.
The range of valid values for the column count is from 79 to 255.

2. The -COLUMNS option is only valid in cases where an assemble listing is being output.

References: Assemble listing output

→ Programmer’s Guide, 4.2.7, “Assemble Listing Assembler Directives”, .PRINT

→ User’s Guide, 2.2.3, “Assemble Listing Command Line Options”,
-LIST -NOLIST

Relationship with Assembler Directives

The assembler gives priority to specifications made with command line options.

Command Line Option Assembler Directive Result

-COLUMNS=
<column count>

(regardless of any specification) The number of columns in a line
is given by -COLUMNS.

(no specification) .FORM COL=<column count> The number of columns in a line
is given by .FORM.

(no specification) The number of columns in a line
is 132 columns.

259

2.2.4 File Inclusion Function Command Line Option

This assembler provides the following command line option concerned with the file inclusion
function.

-INCLUDE This command line option specifies the include file directory.

260

-INCLUDE Include File Directory Specification

Syntax

-I NCLUDE=<directory name>[,<directory name....]

The abbreviated form is indicated by bold face.

Description

1. The -INCLUDE option specifies the include file directory.

2. The directory name depends on the naming rule of the host machine used.

3. As many directory name as can be input in one command line can be specified.

4. The current directory is searched, and then the directories specified by the -INCLUDE are
searched in the specified order.

Relationship with Assembler Directives

Command Line Option Assembler Directive Result

-INCLUDE (regardless of any specification) (1) Directory specified by
.INCLUDE

(2) Directory specified by -
INCLUDE*

(no specification) .INCLUDE <file name> Directory specified by .INCLUDE

Note: The directory specified by the -INCLUDE option is added before that specified by
.INCLUDE.

Note

asmsh aaa.mar -include=/usr/tmp,/tmp (UNIX)

(.INCLUDE “file.h” is specified in aaa.mar.)

The current directory, /usr/tmp, and /tmp are searched for file.h in that order.

Reference: .INCLUDE
→ Programmer’s Guide, 5, “File Inclusion Functionn”

261

2.2.5 Conditional Assembly Command Line Options

This assembler provides the following command line options concerned with conditonal
assembly.

-ASSIGNA This command line option defines integer preprocessor variable.

-ASSIGNC This command line option defines character preprocessor variable.

-DEFINE This command line option defines replacement character string.

262

-ASSIGNA Integer Preprocessor Variable Definition

Syntax

-AS SIGNA=<preprocessor variable>=<integer constant>
[,<preprocessor variable>=<integer constant>...]

The abbreviated form is indicated by bold face.

Description

1. The -ASSIGNA option sets an integer constant to a preprocessor variable.

2. The naming rule of preprocessor variables is the same as that of symbols.

3. An integer constant is specified by combining the radix (B’, Q’, D’, or H’) and a value. If the
radix is omitted, the value is assumed to be decimal.

4. An integer constant must be within the range from -2,147,483,648 to 4,294,967,295. To
specify a negative value, use a radix other than decimal.

Relationship with Assembler Directives

Command Line Option Assembler Directive Result

-ASSIGNA .ASSIGNA* Value specified by -ASSIGNA

(no specification) Value specified by -ASSIGNA

(no specification) .ASSIGNA Value specified by .ASSIGNA

Note: When a value is assigned to a preprocessor variable by the -ASSIGNA option, the
definition of the preprocessor variable by .ASSIGNA is invalidated.

Note

When the host machine uses UNIX as the OS, specify a backslash (\) before the apostrophe (‘) of
the radix. If a preprocessor variable includes a dollar mark ($), specify a backslash (\) before the
dollar mark.

Example:

asmsh aaa.mar -assigna=_\$=H\’FF (UNIX)

Value H’FF is assigned to preprocessor variable _$. All references (\&_$) to preprocessor
variable _$ in the source program are set to H’FF.

Reference: .ASSIGNA
→ Programmer’s Guide, 6.2, “Conditional Assembly Directive,” .ASSIGNA

263

-ASSIGNC Character Preprocessor Variable Definition

Syntax

-AS SIGNC=<preprocessor variable>=“<character string>“
[,<preprocessor variable>=“<character string>“...]

The abbreviated form is indicated by bold face.

Description

1. The -ASSIGNC option sets a character string to a preprocessor variable.

2. The naming rule of preprocessor variables is the same as that of symbols.

3. A character string must be enclosed by double-quotation marks (“).

4. Up to 255 characters (bytes) can be specified for a character string.

Relationship with Assembler Directives

Command Line Option Assembler Directive Result

-ASSIGNC .ASSIGNC directive* Character string specified by -ASSIGNC

(no specification) Character string specified by -ASSIGNC

(no specification) .ASSIGNC directive Character string specified by .ASSIGNC

Note: When a character string is assigned to a preprocessor variable by the -ASSIGNC option,
the definition of the preprocessor variable by .ASSIGNC is invalidated.

Note

To specify the following characters in a character string when the host machine uses UNIX as
the OS, specify a backslash (\) before the characters. To specify character strings before and
after the following characters, enclose the character strings by double-quotation marks (“).

• Exclamation mark (!)

• Double-quotation mark (“)

• Dollar mark ($)

• Back quotation mark (`)

asmsh aaa.mar -assignc=_\$=“ON”\!”OFF” (UNIX)

Character string ON!OFF is assigned to preprocessor variable _$. All references (\&_$) to
preprocessor variable _$ in the source program are set to ON!OFF.

Reference: .ASSIGNC
→ Programmer’s Guide, 6.2, “Conditional Assembly Directive,” .ASSIGNC

264

-DEFINE Replacement Character String Definition

Syntax

-DEFINE=<replacement symbol>=“<character string>“
[,<replacement symbol>=“<character string>“...]

The abbreviated form is indicated by bold face.

Description

1. The -DEFINE option defines that the specified symbol is replaced with the corresponding
character string by the preprocessor.

2. Differences between -DEFINE and -ASSIGNC are the same as those between .DEFINE and
.ASSIGNC.

Relationship with Assembler Directives

Command Line Option Assembler Directive Result

-DEFINE .DEFINE directive* Character string specified by -DEFINE

(no specification) Character string specified by -DEFINE

(no specification) .DEFINE directive Character string specified by .DEFINE

Note: When a character string is assigned to a replacement symbol by the -DEFINE option, the
definition of the replacement symbol by .DEFINE is invalidated.

Reference: .DEFINE
→ Programmer’s Guide, 6.2, “Conditional Assembly Directive,” .DEFINE

2.2.6 Assembler Execution Command Line Option

This assembler provides the following command line options concerned with assembler
execution.

-EXPAND This command line option outputs preprocessor expansion result.

-ABORT This command line option changes the error level at which the assembler is
abnormally terminated.

265

-EXPAND Preprocessor Expansion Result Output

Syntax

-EX PAND[=<output file name>]

The abbreviated form is indicated by bold face.

Description

1. The -EXPAND option outputs an assembler source file for which macro expansion,
conditional assembly, and file inclusion have been performed.

2. When this option is specified, no object will be generated.

3. If no output file is specified, the file name becomes as follows:

 When the file format (extension) is omitted:

.exp is used.*

 When both the file name and file format (extension) is omitted:

The input source file name specified first is used as the file name body and .exp is used as
extension.*

4. Do not specify the same file name for the input and output files.

Note: When MS-DOS is used, the file format is in uppercase letters.

266

-ABORT Change of Error Level at Which the Assembler Is Abnormally Terminated

Syntax

-AB ORT=<error level>

Error level:{ WARNING|ERROR}

The abbreviated form is indicated by bold face.

Description

1. The -ABORT option specifies the error level and changes the return value to the OS
depending on the assembly result.

2. The return value to the OS is as follows:

Number of Cases Return Value to OS when Option Specified

ABORT=WARNING ABORT=ERROR *

Warning Error Fatal Error MS-DOS UNIX MS-DOS UNIX

0 0 0 0 0 0 0

1 or more 0 0 2 1 0 0

— 1 or more 0 2 1 2 1

— — 1 or more 4 1 4 1

Note: The underline indicates the default option setting.

3. When the return value to the OS becomes 1 or larger, the object module is not output.

4. The -ABORT option is valid only when the object module output is specified.

267

2.2.7 Japanese Character Description Command Line Options

This assembler provides the following command line options concerned with Japanese
characters description in source files.

-SJIS This command line option interpretes Japanese kanji characters in source files as
shift JIS code.

-EUC This command line option interpretes Japanese kanji characters in source files as
EUC code.

-OUTCODE This command line option specifies the Japanese kanji code for output to object file.

268

-SJIS Interpretation of Japanese Characters as Shift JIS Code

Syntax

-SJIS

Description

1. The -SJIS option enables Japanese characters to be written in character strings and
comments.

SJIS Japanese characters in character strings and comments are interpreted as
shift JIS code.

No specification Japanese characters in character strings and comments are interpreted as
Japanese code specified by the host machine.

2. Do not specify this option together with the -EUC option.

Reference: Shift JIS code
→ Programmer’s Guide, 1.4.2 “Character Constants”

269

-EUC Interpretation of Japanese Characters as EUC Code

Syntax

-EUC

Description

1. The -EUC option enables Japanese characters to be written in character strings and
comments.

EUC Japanese characters in character strings and comments are interpreted
EUC code.

No specification Japanese characters in character strings and comments are interpreted as
Japanese code specified by the host machine.

2. Do not specify this option together with the -SJIS option.

Reference: EUC code
→ Programmer’s Guide, 1.4.2 “Character Constants”

270

-OUTCODE Specification of Japanese Code for Output to Object File

Syntax

-OUTCODE=<Japanese code>

<Japanese code>:{SJIS|EUC}

The abbreviated form is indicated by bold face.

Description

1. The -OUTCODE option converts Japanese characters in the source file to the specified
Japanese kanji code for output to the object file.

2. The Japanese code output to the object file depends on the -OUTCODE specification and the
code (-SJIS or -EUC) in the source file as follows:

Japanese Code in Source File

-OUTCODE
Specification -SJIS -EUC No Specification

SJIS Shift JIS code Shift JIS code Shift JIS code

EUC EUC code EUC code EUC code

No specification Shift JIS code EUC code Default code

Default code is as follows.

Host Machine Default Code

SPARC station EUC code

HP9000 700 series Shift JIS code

RISC NEWS series Shift JIS code

PC9800 series
IBM PC and its compatible machine

Shift JIS code

Reference: Japanese code in the source file
→ User’s Guide, 2.2.7 “Japanese Character Description Command Line Options”

-SJIS
→ User’s Guide, 2.2.7 “Japanese Character Description Command Line Options”

-EUC

271

2.2.8 Automatic Literal Pool Generation Command Line Option

This assembler provides the following command line option concerned with automatic literal
pool generation.

-AUTO_LITERAL This command line option specifies the size mode for automatic
literal pool generation.

272

-AUTO_LITERAL Size Mode Specification for Automatic Literal Pool Generation

Syntax

-AUTO_LITERAL

The abbreviated form is indicated by bold face.

Description

1. The -AUTO_LITERAL option specifies the size mode for automatic literal pool generation.

 When this command line option is specified, automatic literal pool generation is
performed in size selection mode, and the assembler checks the imm value in the data
move instruction without operation size specification (MOV #imm,Rn) and automatically
generates a literal pool if necessary.

 When this option is not specified, automatic literal pool generation is performed in size
specification mode, and the data move instruction without size specification is handled as
a 1-byte data move instruction.

2. In the size selection mode, the imm value in the data move instruction without operation size
specification is handled as a signed value. Therefore, a value within the range from
H’00000080 to H’000000FF (128 to 255) is regarded as word-size data.

Selected Size or Error

imm Value Range*
Size Selection
Mode

Size Specification
Mode

H’80000000 to H’FFFF7FFF (-2,147,483,648 to -
32,769)

Long word Warning 835

H’FFFF8000 to H’FFFFFF7F (-32,768 to -129) Word Warning 835

H’FFFFFF80 to H’0000007F (-128 to 127) Byte Byte

H’00000080 to H’000000FF (128 to 255) Word Byte

H’00000100 to H’00007FFF (256 to 32,767) Word Warning 835

H’00008000 to H’7FFFFFFF (32,768 to
2,147,483,647)

Long word Warning 835

Note: The value in parentheses () is in decimal.

Reference: Size selection mode
Size specification mode
→ Programmer’s Guide, 8.3 “Size Mode for Automatic Literal Pool Generation”

273

2.2.9 Command Line Input Command Line Option

This assembler provides the following command line option concerned with command line
input.

-SUBCOMMAND This command line option inputs command line specifications from a file.

274

-SUBCOMMAND Command Line Specification Input from File

Syntax

-SUBCOMMAND=<subcommand file name>

The abbreviated form is indicated by bold face.

Description

1. The -SUBCOMMAND option inputs command line specifications from a file.

2. Specify input file names and command line options in the subcommand file in the same order
as for normal command line specifications.

3. Only one input file name or one command line option can be specified in one line in the
subcommand file.

4. This option must be specified at the end of a command line. The remaining files and options
are read from the specified subcommand file.

5. This option must not be specified in a subcommand file.

Example:

asmsh aaa.src -subcommand=aaa.sub

The subcommand file contents are expanded to a command line and assembled.

 aaa.sub contents

 bbb.src

 -list

 -noobj

The above command line and file aaa.sub are expanded as follows:

asmsh aaa.src,bbb.src -list -noobj

Notes

1. One line of a command file can include a maximum of 300 bytes.

2. One command file can include a maximum of 32,767 bytes.

275

Appendix

276

277

Appendix A Limitations and Notes on Programming

Table A-1 Limitations and Notes on Programming

No. Item Limitation

1 Character types ASCII characters, shift JIS code, EUC code

2 Upper/lower-case letter
distinction

Symbols (including section names)}
Object module names}

Distinguished

Reserved words}
Executable instruction mnemonics}
Assembler directive mnemonics}
Operation sizes}
Integer constant radixes}

Not
distinguished

3 Line length Up to 255 bytes

4 Program length (in lines) Up to 65,535 lines

5 Character constants Up to 4 characters

6 Symbol length Up to 32 characters

7 Number of symbols Up to 65,535 symbols

8 Number of import symbols Up to 65,535 symbols

9 Number of export symbols Up to 65,535 symbols

10 Section size Up to H’FFFFFFFF bytes

11 Number of sections Up to 65,535 sections

12 Number of macro generation
numbers

Up to 100,000 numbers

13 Number of literals Up to 100,000 literals

278

279

Appendix B Sample Program

This appendix presents a sample program written for this assembler.

B.1 Sample Program Specifications

Functional Specification

Macros and subroutines for addition, subtraction, multiplication, and division of fixed-point
data in the following format:

<parameter 1> OP <parameter 2> → result
OP: +, -, ×, ÷

Note: Operation results are rounded off. Neither underflow nor overflow is checked.

Data Format

Register Integer part Fraction part

Decimal point
Sign bit

The location of the decimal point is set in preprocessor variable POINT as the number of bits
from the MSB.

Inputs and Outputs

Inputs: Set parameter 1 in register Parm1.
Set parameter 2 in register Parm2.
For addition and subtraction, parameters 1 and 2 can be specified as macro

parameters.
Output: The result is stored in register Parm 1.

Macro and Subroutine Usage

Addition (+): Macro call FIX_ADD [parameter 1], [parameter 2]
Subtraction (-): Macro call FIX_SUB [parameter 1], [parameter 2]
Multiplication (×): Subroutine call FIX_MUL
Division(÷): Subroutine call FIX_DIV

Registers to be Used

Define the following registers with the .REG directive:
Parm1, Parm 2, WORK 1, WORK2, WORK3, WORK4

280

B.2 Coding Example

 .MACRO FIX_ADD Rs=Parm2, Rd=Parm1

 ADD \Rs,\Rd

 .ENDM

 .MACRO FIX_SUB Rs=Parm2,Rd=Parm1

 SUB \Rs,\Rd

 .ENDM

FIX_MUL:

 DIV0S Parm1,Parm2	 ;	

 MOVT WORK1	 ; Stores the sign of the result in WORK1.

 CMP/PZ Parm1	 ;	

 BT MUL01	 ;		 If (Parm1 < 0), Parm1 = –Parm1

 NEG Parm1,Parm1	 ;

MUL01 CMP/PZ Parm2	 ;

 BT MUL02	 ;		 If (Parm2 < 0), Parm2 = –Parm2

 NEG Parm2,Parm2	 ;

MUL02 MULU Parm1,Parm2	 ;	 Parm1 (low) * Parm2 (low)

 SWAP.W Parm1,Parm1	 ;

 STS MACL,WORK2	 ;

 MULU Parm1,Parm2	 ;	 Parm1 (high) * Parm2 (low)

 SWAP.W Parm1,Parm1	 ;

 SWAP.W Parm2,Parm2	 ;

 STS MACL,WORK3	 ;

 MULU Parm1,Parm2	 ;	 Parm1 (low) * Parm2 (high)

 SWAP.W Parm1,Parm1	 ;

 STS MACL,WORK4	 ;

 MULU Parm1,Parm2	 ;	 Parm1 (high) * Parm2(high)

 CLRT	 ;

 STS MACL,Parm1	 ;

 MOV WORK3,Parm2	 ;

 SHLR16 WORK3	 ;

 SHLL16 Parm2	 ;

 ADDC Parm2,WORK2	 ;

 ADDC WORK3,Parm1	 ;		 Sums 16-bit multiplication results.

 MOV WORK4,Parm2	 ;

 SHLR16 WORK4	 ;

 SHLL16 Parm2	 ;

 ADDC WORK4,Parm1	 ;

 .AREPEAT \&POINT	 ;

 SHLL Parm2	 ;		 Corrects decimal point location.

 ROTCL Parm1	 ;

 .AENDR	 ;

 SHLR WORK1	 ;

 BF MUL03	 ;		 Adds the sign.

 NEG Parm1,Parm1	 ;	

MUL03 RTS

 NOP

(Continued on following page.)

281

FIX_DIV:

 MOV #0,WORK1	 ;	

 DIV0S WORK1,Parm1	 ;		 If dividend is a negative value,

 SUBC WORK1,Parm1	 ;		 converts to 1's complement.

 .AREPEAT \&POINT	 ;	

 SHAR Parm1	 ;		 Corrects decimal point location.

 ROTCR WORK1	 ;	

 .AENDR	 ;	

 DIV0S Parm2,Parm1	 ;

 .AREPEAT 32	 ;	

 ROTCL WORK1	 ;		 Parm1:WORK1/Parm2 → WORK1

 DIV1 Parm2,Parm1	 ;	

 .AENDR	 ;	

 ROTCL WORK1	 ;

 MOV #0,Parm1	 ;	

 ADDC Parm1,WORK1	 ;		 Converts to 2's complement.

 MOV WORK1,Parm1	 ;	

 RTS

 NOP

282

283

Appendix C Assemble Listing Output Example

The assemble listing shows the result of the assemble processing. The assemble listing consists
of a source program listing, a cross-reference listing, and a section information listing.

This appendix describes the content and output format of the assemble listing using the assembly
of the source program shown below as an example. This uses the sample program shown in
appendix B to calculate the following:

1.5 × 2.25 + 3 ÷ 5

POINT .ASSIGNA 16
Parm1 .REG (R0)
Parm2 .REG (R1)
WORK1 .REG (R2)
WORK2 .REG (R3)
WORK3 .REG (R4)
WORK4 .REG (R5)

 .SECTION SAMPLE,CODE,ALIGN=4
 .INCLUDE “appendix B”

a .REG (R8)
b .REG (R9)
c .REG (R10)
d .REG (R11)

start
 STS PR,@-SP
 MOV.L #H’00018000,a
 MOV.L #H’00024000,b
 MOV.L #H’00030000,c
 MOV.L #H’00050000,d

 MOV a,Parm1
 MOV b,Parm2
 BSR FIX_MUL
 NOP
 MOV Parm1,a
 MOV c,Parm1
 MOV d,Parm2
 BSR FIX_DIV
 NOP
 FIX_ADD a
 MOV Parm1,a
 LDS @SP+,PR
 RTS
 NOP
 .END

284

C.1 Source Program Listing

The source program listing lists information related to the source statements, including the line
number and the corresponding object code.

Figure C-1 shows an example of a source program listing.

*** SH SERIES ASSEMBLER Ver. 3.0 *** 07/12/95 19:52:40

PROGRAM NAME = ”SAMPLE”

 1 1 .HEADING ”””SAMPLE”””

 2 2 POINT .ASSIGNA 16

 3 3 Parm1 .REG (R0)

 4 4 Parm2 .REG (R1)

 5 5 WORK1 .REG (R2)

 6 6 WORK2 .REG (R3)

 7 7 WORK3 .REG (R4)

 8 8 WORK4 .REG (R5)

 20 00000000 9 I1 FIX_MUL:

 21 00000000 2107 10 I1 DIV0S Parm1,Parm2 ;

 22 00000002 0229 11 I1 MOVT WORK1 ;

 23 00000004 4011 12 I1 CMP/PZ Parm1 ;

 24 00000006 8900 13 I1 BT MUL01 ; if (Parm1

 25 00000008 600B 14 I1 NEG Parm1,Parm1 ;

 237 ***** BEGIN-POOL *****

 238 00000180 A008 BRA TO END-POOL

 239 00000182 0009 NOP

 240 00000184 00018000 DATA FOR SOURCE-LINE 217

 241 00000188 00024000 DATA FOR SOURCE-LINE 218		

 242 0000018C 00030000 DATA FOR SOURCE-LINE 219

 243 00000190 00050000 DATA FOR SOURCE-LINE 220

 244 ***** END-POOL *****

 245 39 .END

 ****TOTAL ERRORS 0

 ****TOTAL WARNINGS 0

~

~

(7)

(1) (2) (3) (4) (5) (6)

(8)

(9)

Figure C-1 Source Program Listing Output Example

(1) Line numbers (in decimal)

(2) The value of the location counter (in hexadecimal)

(3) The object code (in hexadecimal). The size of the reserved area in bytes is listed for areas
reserved with the .RES, .SRES, .SRESC, and .SRESZ assembler directives.

(4) Source line numbers (in decimal)

(5) Expansion type. Whether the statement is expanded by file inclusion, conditional assembly
function, or macro function is listed.

In: File inclusion (n indicates the nest level).

C: Satisfied conditional assembly, performed iterated expansion, or satisfied conditional
iterated expansion

285

M: Macro expansion

(6) The source statements

(7) The header setup with the .HEADING assembler directive.

(8) The literal pool

(9) The total number of errors and warnings. Error messages are listed on the line following the
source statement that caused the error.

C.2 Cross-Reference Listing

The cross-reference listing lists information relating to symbols, including the attribute and the
value.

Figure C-2 shows an example of a cross-reference listing.

*** SH SERIES ASSEMBLER Ver. 3.0 *** 07/12/95 19:52:40

*** CROSS REFERENCE LIST

NAME SECTION ATTR VALUE SEQUENCE

FIX_DIV SAMPLE 00000088 94* 229

FIX_MUL SAMPLE 00000000 20* 224

MAN03 UDEF 00000000 89

MUL01 SAMPLE 0000000A 24 26*

MUL02 SAMPLE 00000010 27 29*

Parm1 REG 3* 21 23 25

 37 37 39 41

 69 71 73 75

 96 97 102 104

 122 124 126 128

 150 152 154 156

 174 176 178 180

 198 200 202 204

Parm2 REG 4* 21 26 28

 44 45 47 49

 70 72 74 76

 144 146 148 150

 168 170 172 174

(1) (2) (3) (4) (5)

Figure C-2 Cross-Reference Listing Output Example

(1) The symbol name

(2) The name of the section that includes the symbol (first eight characters)

(3) The symbol attribute

286

EXPT Export symbol

IMPT Import symbol

SCT Section name

REG Symbol defined with the .REG assembler directive

ASGN Symbol defined with the .ASSIGN assembler directive

EQU Symbol defined with the .EQU assembler directive

MDEF Symbol defined two or more times

UDEF Undefined symbol

No symbol
attribute (blank)

A symbol other than those listed above

(4) The value of symbol (in hexadecimal)

(5) The list line numbers (in decimal) of the source statements where the symbol is defined or
referenced. The line number marked with an asterisk is the line where the symbol is defined.

C.3 Section Information Listing

The section information listing lists information related to the sections in a program, including
the section type and section size.

Figure C-3 shows an example of a section information listing.

*** SH SERIES ASSEMBLER Ver. 3.0 *** 07/12/95 19:52:40

*** SECTION DATA LIST

SECTION ATTRIBUTE SIZE START

SAMPLE REL-CODE 000000194

 (1) (2) (3) (4)

Figure C-3 Section Information Listing Output Example

(1) The section name

(2) The section type

287

REL Relative address section

ABS Absolute address section

CODE Code section

DATA Data section

COMMON Common section

STACK Stack section

DUMMY Dummy section

(3) The section size (in hexadecimal, byte units)

(4) The start address of absolute address sections

288

289

Appendix D Error Messages

D.1 Error Types

(1) Command Errors

These are errors related to the command line that starts the assembler. These errors can
occur, for example, in cases where there are errors in the source file or command line option
specifications.

The assembler outputs the error message to standard error output (usually the display).*1 The
format of these messages is as follows:*2

“ “, line <line number>:<error number> (E) <message>

Example:

“ “, line 0: 10(E) NO INPUT FILE SPECIFIED

Notes: 1. The assembler outputs the message to standard output when MS-DOS is used.

2. The format is as follows when MS-DOS is used:

(<line number>): <error number>(E)<message>

Example:

(0): 10(E) NO INPUT FILE SPECIFIED

(2) Source Program Errors

These are syntax errors in the source program.

The assembler outputs the error message to standard output (usually the display) or the
source program listing. (If a source program listing is output during assembly, these
messages are not output to standard output.)*1

The format of these messages is as follows:*2

“<source file name>“,line <line number>: <error number>(E)<message>

“<source file name>“,line <line number>: <error number>(W)<message>

290

Example:

“PROG.SRC”,line 25: 300(E) ILLEGAL MNEMONIC

“PROG.SRC”,line 33: 811(W) ILLEGAL SYMBOL DEFINITION

Notes: 1. The assembler outputs the message to standard output or the source program listing
when MS-DOS is used.

2. The format is as follows when MS-DOS is used:

<source file name>(<line number>): <error number>(E)<message>

<source file name>(<line number>): <error number>(W)<message>

Example:

PROG.SRC(25): 300(E) ILLEGAL MNEMONIC

PROG.SRC(33): 811(W) ILLEGAL SYMBOL DEFINITION

The source program error numbers are classified as follows:

100 to 199 General source program syntax errors

200 to 299 Errors in symbols

300 to 349 Errors in operations and/or operands

350 to 399 Errors in DSP instructions

400 to 499 Errors in expressions

500 to 599 Errors in assembler directives

600 to 699 Errors in file inclusion, conditional assembly, or macro function

700 to 799 Warnings in DSP instructions

800 to 999 General source program warnings

(3) Fatal Errors

These are errors related to the assembler operating environment, and can occur, for example,
if the available memory is insufficient.

The assembler outputs a message to standard error output.*1 The format of these messages is
as follows:*2

“ “, line <line number>:<error number> (F) <message>

291

Example:

“ “, line 0: 903(F) LISTING FILE OUTPUT ERROR

Notes: 1. The assembler outputs the message to standard output when MS-DOS is used.

2. The format is as follows when MS-DOS is used:

(<line number>): <error number>(F)<message>

Example:

(0): 903(F) LISTING FILE OUTPUT ERROR

Assembly processing is interrupted when a fatal error occurs.

292

D.2 Error Message Tables

Table D-1 Command Error Messages

10 Message:
 Meaning:
Recovery procedure:

NO INPUT FILE SPECIFIED
There is no input source file specified.
Specify an input source file.

20 Message:
Meaning:
Recovery procedure:

CANNOT OPEN FILE <file name>
The specified file cannot be opened.
Check and correct the file name and directory.

30 Message:
Meaning:
Recovery procedure:

INVALID COMMAND PARAMETER
The command line options are not correct.
Check and correct the command line options.

40 Message:
Meaning:
Recovery procedure:

CANNOT ALLOCATE MEMORY
All available memory is used up during processing.
This error only occurs when the amount of available user memory is
extremely small. If there is other processing occurring at the same
time as assembly, interrupt that processing and restart the
assembler. If the error still occurs, check and correct the memory
management employed on the host system.

50 Message:
Meaning:
Recovery procedure:
Supplement:

COMPLETED FILE NAME TOO LONG <file name>
The file name including the directory is too long.
Shorten the total length of the file name and directory path.
It is possible that the object module output by the assembler after
this error has occurred will not be usable with the
simulator/debugger.

293

Table D-2 Source Program Error Messages

General Source Program Syntax Errors

100 Message:
Error description:
Recovery procedure:

OPERATION TOO COMPLEX
Too complex operation.
Simplify the expression for the operation.

101 Message:
Error description:
Recovery procedure:

SYNTAX ERROR IN SOURCE STATEMENT
Syntax error in source statement.
Check and correct the whole source statement.

102 Message:
Error description:
Recovery procedure:

SYNTAX ERROR IN DIRECTIVE
Syntax error in assembler directive source statement.
Check and correct the whole source statement.

104 Message:
Error description:
Recovery procedure:

LOCATION COUNTER OVERFLOW
The value of location counter exceeded its maximum value.
Reduce the size of the program.

105 Message:
Error description:

Recovery procedure:

ILLEGAL INSTRUCTION IN STACK SECTION
Executable instruction, extended instruction, or assembler directive
that reserves data in stack section.
Remove the instruction, extended instruction, or directive in the
stack section.

106 Message:
Error description:
Recovery procedure:

TOO MANY ERRORS
Error display terminated due to too many errors.
Check and correct the whole source statement.

108 Message:
Error description:
Recovery procedure:

ILLEGAL CONTINUATION LINE
Illegal continuation line.
Check and correct continuation line.

109 Message:
Error description:
Recovery procedure:

LINE NUMBER OVERFLOW
The number of lines being assembled exceeded 65,535 lines.
Subdivide the program into multiple files.

150 Message:
Error description:

Recovery procedure:

INVALID DELAY SLOT INSTRUCTION
Illegal executable instruction placed following delayed branch
instruction in memory.
Change the order of the instruction so that the instruction does not
immediately follow a delayed branch instruction.

294

Table D-2 Source Program Error Messages (cont)

151 Message:
Error description:

Recovery procedure:

ILLEGAL EXTENDED INSTRUCTION POSITION
Extended instruction placed following a delayed branch instruction in
memory.
Place an executable instruction following the delayed branch
instruction.

152 Message:
Error description:

Recovery procedure:

ILLEGAL BOUNDARY ALIGNMENT VALUE
Illegal boundary alignment value specified for a section including
extended instructions.
Specify 2 or a larger multiple of 2 as a boundary alignment value.

153 Message:
Error description:
Recovery procedure:

ILLEGAL ADDRESS
Executable or extended instruction placed at an odd address.
Place executable and extended instructions at even addresses.

Symbol Errors

200 Message:
Error description:
Recovery procedure:

UNDEFINED SYMBOL REFERENCE
Undefined symbol reference.
Define the symbol.

201 Message:
Error description:
Recovery procedure:

ILLEGAL SYMBOL OR SECTION NAME
Reserved word specified as symbol (or section name).
Correct the symbol or section name.

202 Message:
Error description:
Recovery procedure:

ILLEGAL SYMBOL OR SECTION NAME
Illegal symbol (or section name).
Correct the symbol or section name.

203 Message:
Error description:
Recovery procedure:

ILLEGAL LOCAL LABEL
Illegal local label.
Correct the local label.

Operation and Operand Errors

300 Message:
Error description:
Recovery procedure:

ILLEGAL MNEMONIC
Illegal operation.
Correct the operation.

301 Message:
Error description:

Recovery procedure:

TOO MANY OPERANDS OR ILLEGAL COMMENT
Too many operands of executable instruction, or illegal comment
format.
Check and correct the operands and comment.

304 Message:
Error description:
Recovery procedure:

LACKING OPERANDS
Too few operands.
Correct the operands.

295

Table D-2 Source Program Error Messages (cont)

307 Message:
Error description:
Recovery procedure:

ILLEGAL ADDRESSING MODE
Illegal addressing mode in operand.
Correct the operand.

308 Message:
Error description:
Recovery procedure:

SYNTAX ERROR IN OPERAND
Syntax error in operand.
Correct the operand.

DSP Instruction Errors

350 Message:
Error description:
Recovery procedure:

SYNTAX ERROR IN SOURCE STATEMENT (<mnemonic>)
There are syntax error(s) in the DSP instruction statement.
Correct the source statement.

351 Message:

Error description:
Recovery procedure:

ILLEGAL COMBINATION OF MNEMONICS
(<mnemonic>, <mnemonic>)
Illegal combination of DSP operation instructions is specified.
Correct the combination of DSP operation instructions.

352 Message:
Error description:
Recovery procedure:

ILLEGAL CONDITION (<mnemonic>)
Illegal condition for DSP operation instructions is specified.
Cancel the condition or change the DSP operation instruction.

353 Message:
Error description:
Recovery procedure:

ILLEGAL POSITION OF INSTRUCTION (<mnemonic>)
The DSP operation instruction is specified in an illegal position.
Specify the DSP operation instruction in the correct position.

354 Message:
Error description:
Recovery procedure:

ILLEGAL ADDRESSING MODE (<mnemonic>)
The addressing mode of the DSP operation instruction is illegal.
Correct the operand.

355 Message:
Error description:
Recovery procedure:

ILLEGAL REGISTER NAME (<mnemonic>)
The register name of the DSP operation instruction is illegal.
Correct the register name.

357 Message:
Error description:
Recovery procedure:

ILLEGAL COMBINATION OF MNEMONICS (<mnemonic>)
An illegal data transfer instruction is specified.
Correct the data transfer instruction.

371 Message:

Error description:
Recovery procedure:

ILLEGAL COMBINATION OF MNEMONICS
(<mnemonic>, <mnemonic>)
The combination of data transfer instructions is illegal.
Correct the combination of data transfer instructions.

296

Table D-2 Source Program Error Messages (cont)

372 Message:
Error description:

Recovery procedure:

ILLEGAL ADDRESSING MODE (<mnemonic>)
An illegal addressing mode for the data transfer instruction operand
is specified.
Correct the operand.

373 Message:
Error description:
Recovery procedure:

ILLEGAL REGISTER NAME (<mnemonic>)
An illegal register name for the data transfer instruction is specified.
Correct the register name.

Expression and Operation Errors

400 Message:
Error description:
Recovery procedure:

CHARACTER CONSTANT TOO LONG
Character constant is longer than 4 characters.
Correct the character constant.

402 Message:
Error description:
Recovery procedure:

ILLEGAL VALUE IN OPERAND
Operand value out of range for this instruction.
Change the value.

403 Message:
Error description:

Recovery procedure:

ILLEGAL OPERATION FOR RELATIVE VALUE
Attempt to perform multiplication, division, or logic operation on
relative value.
Correct the expression.

406 Message:
Error description:

Recovery procedure:

ILLEGAL OPERAND
An expression is specified at the location where floating-point data
must be specified.
Specify floating-point data.

407 Message:
Error description:
Recovery procedure:

MEMORY OVERFLOW
Memory overflow during expression calculation.
Simplify the expression.

408 Message:
Error description:
Recovery procedure:

DIVISION BY ZERO
Attempt to divide by 0.
Correct the expression.

409 Message:
Error description:
Recovery procedure:

REGISTER IN EXPRESSION
Register name in expression.
Correct the expression.

411 Message:
Error description:
Recovery procedure:

INVALID STARTOF/SIZEOF OPERAND
STARTOF or SIZEOF specifies illegal section name.
Correct the section name.

297

Table D-2 Source Program Error Messages (cont)

412 Message:
Error description:
Recovery procedure:

ILLEGAL SYMBOL IN EXPRESSION
Relative value specified as shift value.
Correct the expression.

450 Message:
Error description:
Recovery procedure:

ILLEGAL DISPLACEMENT VALUE
Illegal displacement value. (Negative value is specified.)
Correct the displacement value.

452 Message:
Error description:

Recovery procedure:

ILLEGAL DATA AREA ADDRESS
PC-relative data move instruction specifies illegal address for data
area.
Access a correct address according to the instruction operation size.
(4-byte boundary for MOV.L and MOVA, and 2-byte boundary for
MOV.W.)

453 Message:
Error description:

Recovery procedure:

LITERAL POOL OVERFLOW
More than 510 extended instructions exist that have not output
literals.
Output literal pools using .POOL.

Assembler Directive Errors

500 Message:
Error description:
Recovery procedure:

SYMBOL NOT FOUND
Label not defined in directive that requires label.
Insert a label.

501 Message:
Error description:

Recovery procedure:

ILLEGAL ADDRESS VALUE IN OPERAND
Illegal specification of the start address or the value of location
counter in section.
Correct the start address or value of location counter.

502 Message:
Error description:

Recovery procedure:

ILLEGAL SYMBOL IN OPERAND
Illegal value (forward reference symbol, import symbol, or relative
address symbol) specified in operand.
Correct the operand.

503 Message:
Error description:
Recovery procedure:

UNDEFINED EXPORT SYMBOL
Symbol declared for export symbol not defined in the file.
Define the symbol. Alternatively, remove the export symbol
declaration.

504 Message:
Error description:

Recovery procedure:

INVALID RELATIVE SYMBOL IN OPERAND
Illegal value (forward reference symbol or import symbol) specified
in operand.
Correct the operand.

298

Table D-2 Source Program Error Messages (cont)

505 Message:
Error description:
Recovery procedure:

ILLEGAL OPERAND
Misspelled operand.
Correct the operand.

506 Message:
Error description:
Recovery procedure:

ILLEGAL OPERAND
Illegal element specified in operand.
Correct the operand.

508 Message:
Error description:
Recovery procedure:

ILLEGAL VALUE IN OPERAND
Operand value out of range for this directive.
Correct the operand.

510 Message:
Error description:
Recovery procedure:

ILLEGAL BOUNDARY VALUE
Illegal boundary alignment value.
Correct the boundary alignment value.

512 Message:
Error description:
Recovery procedure:

ILLEGAL EXECUTION START ADDRESS
Illegal execution start address.
Correct the execution start address.

513 Message:
Error description:
Recovery procedure:

ILLEGAL REGISTER NAME
Illegal register name.
Correct the register name.

514 Message:
Error description:
Recovery procedure:

INVALID EXPORT SYMBOL
Symbol declared for export symbol that cannot be exported.
Remove the declaration for the export symbol.

516 Message:
Error description:
Recovery procedure:

EXCLUSIVE DIRECTIVES
Inconsistent directive specification.
Check and correct all related directives.

517 Message:
Error description:

Recovery procedure:

INVALID VALUE IN OPERAND
Illegal value (forward reference symbol, an import symbol, or
relative-address symbol) specified in operand.
Correct the operand.

518 Message:
Error description:
Recovery procedure:

INVALID IMPORT SYMBOL
Symbol declared for import defined in the file.
Remove the declaration for the import symbol.

520 Message:
Error description:

Recovery procedure:

ILLEGAL .CPU DIRECTIVE POSITION
CPU is not specified at the beginning of the program, or specified
more than once.
Specify .CPU at the beginning of the program once.

299

Table D-2 Source Program Error Messages (cont)

521 Message:
Error description:
Recovery procedure:

ILLEGAL .NOPOOL DIRECTIVE POSITION
.NOPOOL placed at illegal position.
Place .NOPOOL following a delayed branch instruction.

522 Message:
Error description:
Recovery procedure:

ILLEGAL .POOL DIRECTIVE POSITION
.POOL placed following a delayed branch instruction.
Place an executable instruction following the delayed branch
instruction.

523 Message:
Error description:
Recovery procedure:

ILLEGAL OPERAND
Illegal .LINE directive operand.
Correct the operand.

525 Message:
Error description:

Recovery procedure:

ILLEGAL .LINE DIRECTIVE POSITION
LINE directive specified during macro expansion or conditional
iterated expansion.
Change the specified position of the .LINE directive.

File Inclusion, Conditional Assembly, and Macro Errors

600 Message:
Error description:
Recovery procedure:

INVALID CHARACTER
Illegal character.
Correct it.

601 Message:
Error description:
Recovery procedure:

INVALID DELIMITER
Illegal delimiter character.
Correct it.

602 Message:
Error description:
Recovery procedure:

INVALID CHARACTER STRING FORMAT
Character string error.
Correct it.

603 Message:
Error description:
Recovery procedure:

SYNTAX ERROR IN SOURCE STATEMENT
Source statement syntax error.
Reexamine the entire source statement.

604 Message:
Error description:
Recovery procedure:

ILLEGAL SYMBOL IN OPERAND
Illegal operand specified in a directive.
No symbol or location counter ($) can be specified as an operand of
this directive.

610 Message:
Error description:
Recovery procedure:

MULTIPLE MACRO NAMES
Macro name reused in macro definition (.MACRO directive).
Correct the macro name.

300

Table D-2 Source Program Error Messages (cont)

611 Message:
Error description:
Recovery procedure:

MACRO NAME NOT FOUND
Macro name not specified (.MACRO directive).
Specify a macro name in the name field of the .MACRO directive.

612 Message:
Error description:
Recovery procedure:

ILLEGAL MACRO NAME
Macro name error (.MACRO directive).
Correct the macro name.

613 Message:
Error description:

Recovery procedure:

ILLEGAL .MACRO DIRECTIVE POSITION
.MACRO directive appears in macro body (between .MACRO and
.ENDM directives), between .AREPEAT and .AENDR directives, or
between .AWHILE and .AENDW directives.
Remove the .MACRO directive.

614 Message:
Error description:

Recovery procedure:

MULTIPLE MACRO PARAMETERS
Identical formal parameters repeated in formal parameter
declaration in macro definition (.MACRO directive).
Correct the formal parameters.

615 Message:
Error description:

Recovery procedure:

ILLEGAL .END DIRECTIVE POSITION
.END directive appears in macro body (between .MACRO and
.ENDM directives).
Remove the .END directive.

616 Message:
Error description:

Recovery procedure:

MACRO DIRECTIVES MISMATCH
An .ENDM directive appears without a preceding .MACRO directive,
or an .EXITM directive appears outside of a macro body (between
.MACRO and .ENDM directives), outside of .AREPEAT and .AENDR
directives, or outside of .AWHILE and .AENDW directives.
Remove the .ENDM or .EXITM directive.

618 Message:
Error description:
Recovery procedure:

MACRO EXPANSION TOO LONG
Line with over 255 characters generated by macro expansion.
Correct the definition or call so that the line is less than or equal to
255 characters.

619 Message:
Error description:

Recovery procedure:
Supplement:

ILLEGAL MACRO PARAMETER
Macro parameter name error in macro call, or error in formal
parameter in a macro body (between .MACRO and .ENDM
directives).
Correct the formal parameter.
When there is an error in a formal parameter in a macro body, the
error will be detected and flagged during macro expansion.

301

Table D-2 Source Program Error Messages (cont)

620 Message:
Error description:
Recovery procedure:

UNDEFINED PREPROCESSOR VARIABLE
Reference to an undefined preprocessor variable.
Define the preprocessor variable.

621 Message:
Error description:
Recovery procedure:

ILLEGAL .END DIRECTIVE POSITION
.END directive in macro expansion.
Remove the .END directive.

622 Message:
Error description:
Recovery procedure:

‘)’ NOT FOUND
Matching parenthesis missing in macro processing exclusion.
Add the missing macro processing exclusion parenthesis.

623 Message:
Error description:
Recovery procedure:

SYNTAX ERROR IN STRING FUNCTION
Syntax error in character string manipulation function.
Correct the character string manipulation function.

624 Message:
Error description:

Recovery procedure:

MACRO PARAMETERS MISMATCH
Too many macro parameters for positional specification in macro
call.
Correct the number of macro parameters.

631 Message:
Error description:

Recovery procedure:

END DIRECTIVE MISMATCH
Terminating preprocessor directive does not agree with matching
directive.
Reexamine the preprocessor directives.

640 Message:
Error description:
Recovery procedure:

SYNTAX ERROR IN OPERAND
Syntax error in conditional assembly directive operand.
Reexamine the entire source statement.

641 Message:
Error description:
Recovery procedure:

INVALID RELATIONAL OPERATOR
Error in conditional assembly directive relational operator.
Correct the relational operator.

642 Message:
Error description:

Recovery procedure:

ILLEGAL .END DIRECTIVE POSITION
.END directive appears between .AREPEAT and .AENDR directives
or between .AWHILE and .AENDW directives.
Remove the .END directive.

643 Message:
Error description:

Recovery procedure:

DIRECTIVE MISMATCH
.AENDR or .AENDW directive does not form a proper pair with
.AREPEAT or .AWHILE directive.
Re-examine the preprocessor directives.

302

Table D-2 Source Program Error Messages (cont)

644 Message:
Error description:

Recovery procedure:

ILLEGAL .AENDW OR .AENDR DIRECTIVE POSITION
.AENDW or .AENDR directive appears between .AIF and .AENDI
directives.
Remove the .AENDW or .AENDR directive.

645 Message:
Error description:

Recovery procedure:

EXPANSION TOO LONG
Line with over 255 characters generated by .AREPEAT or .AWHILE
expansion.
Correct the .AREPEAT or .AWHILE to generate lines of less than or
equal to 255 characters.

650 Message:
Error description:
Recovery procedure:

INVALID INCLUDE FILE
Error in .INCLUDE file name.
Correct the file name.

651 Message:
Error description:
Recovery procedure:

CANNOT OPEN INCLUDE FILE
Could not open .INCLUDE file.
Correct the file name.

652 Message:
Error description:
Recovery procedure:

INCLUDE NEST TOO DEEP
File inclusion nesting exceeded 30 levels.
Limit the nesting to 30 or fewer levels.

653 Message:
Error description:
Recovery procedure:

SYNTAX ERROR IN OPERAND
Syntax error in .INCLUDE operand.
Correct the operand.

660 Message:
Error description:
Recovery procedure:

.ENDM NOT FOUND
Missing .ENDM directive following .MACRO.
Insert an .ENDM directive.

662 Message:
Error description:
Recovery procedure:

ILLEGAL .END DIRECTIVE POSITION
.END directive appears between .AIF and .AENDI directives.
Remove the .END directive.

663 Message:
Error description:
Recovery procedure:

ILLEGAL .END DIRECTIVE POSITION
.END directive appears in included file.
Remove the .END directive.

664 Message:
Error description:
Recovery procedure:

ILLEGAL .END DIRECTIVE POSITION
.END directive appears between .AIF and .AENDI directives.
Remove the .END directive.

303

Table D-2 Source Program Error Messages (cont)

665 Message:
Error description:

Recovery procedure:

EXPANSION TOO LONG
Lines with over 255 characters are generated by the .DEFINE
directive.
Correct the .DEFINE directive to generate lines of less than or equal
to 255 characters.

667 Message:
Error description:

Recovery procedure:

SUCCESSFUL CONDITION .AERROR
Statement including the .AERROR directive was processed in the
.AIF condition.
Correct the conditional statement so that the .AERROR directive is
not processed.

668 Message:
Error description:
Recovery procedure:

ILLEGAL VALUE IN OPERAND
Error in the operand of the directive.
Specify, as the operand of this directive, a symbol defined by
.DEFINE directive.

304

Table D-3 Source Program Warning Messages

DSP Instruction Warnings

700 Message:
Error description:

Recovery procedure:

ILLEGAL VALUE IN OPERAND (<mnemonic>)
The operand value of the DSP operation instruction exceeds the
specifiable range.
Correct the operand value within the specifiable range.

701 Message:

Error description:

Recovery procedure:

MULTIPLE REGISTER IN DESTINATION
(<mnemonic>, <mnemonic>)
The same register is specified as multiple destination operands of
the DSP instruction.
Specify the register correctly.

702 Message:
Error description:

Recovery procedure:

ILLEGAL OPERATION SIZE (<mnemonic>)
The operation size of the DSP operation instruction or the data
transfer instruction is illegal.
Cancel or correct the operation size.

703 Message:

Error description:

Recovery procedure:

MULTIPLE REGISTER IN DESTINATION
(<mnemonic>, <mnemonic>)
The same register is specified as the destination registers of the
DSP operation instruction and data transfer instruction.
Specify the register correctly.

General Source Program Warnings

800 Message:
Error description:
Recovery procedure:
Supplement:

SYMBOL NAME TOO LONG
A symbol exceeded 251 characters.
Correct the symbol.
The assembler ignores the characters starting at the 252nd
character.

801 Message:
Error description:
Recovery procedure:
Supplement:

MULTIPLE SYMBOLS
Symbol already defined.
Remove the symbol redefinition.
The assembler ignores the second and later definitions.

807 Message:
Error description:
Recovery procedure:
Supplement:

ILLEGAL OPERATION SIZE
Illegal operation size.
Correct the operation size.
The assembler ignores the incorrect operation size specification.

305

Table D-3 Source Program Warning Messages (cont)

808 Message:
Error description:
Recovery procedure:
Supplement:

ILLEGAL CONSTANT SIZE
Illegal notation of integer constant.
Correct the notation.
The assembler may misinterpret the integer constant, i.e., interpret it
as a value not intended by the programmer.

810 Message:
Error description:
Recovery procedure:
Supplement:

TOO MANY OPERANDS
Too many operands or illegal comment format.
Correct the operand or the comment.
The assembler ignores the extra operands.

811 Message:
Error description:
Recovery procedure:
Supplement:

ILLEGAL SYMBOL DEFINITION
Specified label in assembler directive that cannot have a label.
Remove the label specification.
The assembler ignores the label.

813 Message:
Error description:

Recovery procedure:
Supplement:

SECTION ATTRIBUTE MISMATCH
A different section type is specified on section restart (reentry), or, a
section start address is respecified at the restart of absolute section.
Do not respecify the section type or start address on section reentry.
The specification of starting section remains valid.

815 Message:
Error description:
Recovery procedure:
Supplement:

MULTIPLE MODULE NAMES
Respecification of object module name.
Specify the object module name once in a program.
The assembler ignores the second and later object module name
specifications.

816 Message:
Error description:
Recovery procedure:

Supplement:

ILLEGAL DATA AREA ADDRESS
Illegal allocation of data or data area.
Locate the word data or data area on the even address. Locate the
long word data or data area on an address of a multiple of 4.
The assembler corrects the location of the data or data area
according to the size of it.

817 Message:
Error description:
Recovery procedure:

Supplement:

ILLEGAL BOUNDARY VALUE
A boundary alignment value less than 4 specified for a code section.
The specification is valid, but if an executable instruction or extended
instruction is located at an odd address, error 153 occurs.
Special care must be taken when specifying 1 for code section
boundary alignment value.

306

Table D-3 Source Program Warning Messages (cont)

825 Message:
Error description:

Recovery procedure:
Supplement:

ILLEGAL INSTRUCTION IN DUMMY SECTION
Executable instruction, extended instruction, or assembler directive
that reserves data or data area in dummy section.
Remove the instruction or directive.
The assembler ignores the instruction or directive.

826 Message:
Error description:
Recovery procedure:
Supplement:

ILLEGAL PRECISION
The floating-point constant is not in single precision (.S).
Specify single precision.
The assembler assumes single precision.

832 Message:
Error description:
Recovery procedure:
Supplement:

MULTIPLE ‘P’ DEFINITIONS
Symbol P already defined before a default section is used.
Do not define P as a symbol if a default section is used.
The assembler regards P as the name of the default section, and
ignores other definitions of the symbol P.

835 Message:
Error description:
Recovery procedure:
Supplement:

ILLEGAL VALUE IN OPERAND
Operand value out of range for this instruction.
Correct the value.
The assembler generates object code with a value corrected to be
within range.

836 Message:
Error description:
Recovery procedure:
Supplement:

ILLEGAL CONSTANT SIZE
Illegal notation of integer constant.
Correct the notation.
The assembler may misinterpret the integer constant, i.e., interpret it
as a value not intended by the programmer.

837 Message:
Error description:
Recovery procedure:

Supplement:

SOURCE STATEMENT TOO LONG
The length of a source statement exceeded 255 bytes.
Rewrite the source statement to be within 255 bytes by, for example,
rewriting the comment. Alternatively, rewrite the statement as a
multi-line statement.
The assembler ignores byte number 256, and regards the
characters starting at byte 257 as the next statement.

838 Message:
Error description:

Recovery procedure:

ILLEGAL CHARACTER CODE
The shift JIS code or EUC code is specified outside character strings
and comments, or the SJIS or EUC command line option is not
specified.
Specify the shift JIS code or EUC code in character strings or
comments. Specify the SJIS or EUC command line option.

307

Table D-3 Source Program Warning Messages (cont)

839 Message:
Error description:

Recovery procedure:

ILLEGAL FIGURE IN OPERAND
Fixed-point data having six or more digits is specified in word size, or
that having 11 or more digits is specified in long-word size.
Reduce the digits to the limit.

840 Message:
Error description:
Recovery procedure:
Supplement:

OPERAND OVERFLOW
Floating-point data overflows.
Modify the value.
The assembler assumes +_ when the value is positive and -_ when
negative.

841 Message:
Error description:
Recovery procedure:
Supplement:

OPERAND UNDERFLOW
Floating-point data underflows.
Modify the value.
The assembler assumes +0 when the value is negative and -0 when
negative.

850 Message:
Error description:
Recovery procedure:

ILLEGAL SYMBOL DEFINITION
Symbol specified in label field.
Remove the symbol.

851 Message:
Error description:
Recovery procedure:

MACRO SERIAL NUMBER OVERFLOW
Macro generation counter exceeded 99999.
Reduce the number of macro calls.

852 Message:
Error description:
Recovery procedure:

UNNECESSARY CHARACTER
Characters appear after the operands.
Correct the operand(s).

854 Message:
Error description:

Recovery procedure:

.AWHILE ABORTED BY .ALIMIT
Expansion count has reached the maximum value specified by
.ALIMIT directive, and expansion has been terminated.
Check the condition for iterated expansion.

308

Table D-3 Source Program Warning Messages (cont)

870 Message:
Error description:

Recovery procedure:

Supplement:

ILLEGAL DISPLACEMENT VALUE
Illegal displacement value.

(Either the displacement value is not an even number when the
operation size is word, or the displacement value is not a multiple of
4 when the operation size is long word.)
Take account of the fact that the assembler corrects the
displacement value.
The assembler generates object code with the displacement
corrected according to the operation size.

(For a word size operation the assembler discards the low order bit
of the displacement to create an even number, and for a long word
size operation the assembler discards the two low order bits of the
displacement to create a multiple of 4.)

871 Message:
Error description:

Recovery procedure:

Supplement:

PC RELATIVE IN DELAY SLOT
Executable instruction with PC relative addressing mode operand is
located following delayed branch instruction.
Take account of the fact that the value of PC is changed by a
delayed branch instruction.
The assembler generates object code exactly as specified in the
program.

874 Message:
Error description:

Recovery procedure:
Supplement:

CANNOT CHECK DATA AREA BOUNDARY
Cannot check data area boundary for PC-relative data move
instructions.
Note carefully the data area boundary at linkage process.
The assembler only outputs this message when a data move
instruction is included in a relative section, or when an import symbol
is used to indicate a data area.

875 Message:
Error description:

Recovery procedure:

Supplement:

CANNOT CHECK DISPLACEMENT SIZE
Cannot check displacement size for PC-relative data move
instructions.
Note carefully the distance between data move instructions and data
area at linkage.
The assembler only outputs this message when a data move
instruction is included in a relative section, or when an import symbol
is used to indicate a data area.

309

Table D-3 Source Program Warning Messages (cont)

876 Message:
Error description:
Recovery procedure:

Supplement:

ASSEMBLER OUTPUTS BRA INSTRUCTION
The assembler automatically outputs a BRA instruction.
Specify a literal pool output position using .POOL, or check that the
program to which a BRA instruction is added can run normally.
When a literal pool output location is not available, the assembler
automatically outputs literal pool and a BRA instruction to jump over
the literal pool.

880 Message:
Error description:
Recovery procedure:

END NOT FOUND
No .END in the program.
Add an .END.

310

Table D-4 Fatal Error Messages

901 Message:
Error description:
Recovery procedure:

SOURCE FILE INPUT ERROR
Source file input error.
Check the hard disk for adequate free space. Create the required
free space by deleting unnecessary files.

902 Message:
Error description:
Recovery procedure:

MEMORY OVERFLOW
Insufficient memory. (Unable to process the temporary information.)
Subdivide the program.

903 Message:
Error description:
Recovery procedure:

LISTING FILE OUTPUT ERROR
Output error on the list file.
Check the hard disk for adequate free space. Create the required
free space by deleting unnecessary files.

904 Message:
Error description:
Recovery procedure:

OBJECT FILE OUTPUT ERROR
Output error on the object file.
Check the hard disk for adequate free space. Create the required
free space by deleting unnecessary files.

905 Message:
Error description:
Recovery procedure:

MEMORY OVERFLOW
Insufficient memory. (Unable to process the line information.)
Subdivide the program.

906 Message:
Error description:
Recovery procedure:

MEMORY OVERFLOW
Insufficient memory. (Unable to process the symbol information.)
Subdivide the program.

907 Message:
Error description:
Recovery procedure:

MEMORY OVERFLOW
Insufficient memory. (Unable to process the section information.)
Subdivide the program.

908 Message:
Error description:
Recovery procedure:

SECTION OVERFLOW
The number of sections exceeded 65,535.
Subdivide the program.

909 Message:
Error description:
Recovery procedure:

SYMBOL OVERFLOW
The number of symbols exceeded 65,535.
Subdivide the program.

910 Message:
Error description:
Recovery procedure:

SOURCE LINE NUMBER OVERFLOW
The number of source program lines exceeded 65,535.
Subdivide the program.

311

Table D-4 Fatal Error Messages (cont)

911 Message:
Error description:
Recovery procedure:

IMPORT SYMBOL OVERFLOW
The number of import symbols exceeded 65,535.
Reduce the number of import symbols.

912 Message:
Error description:
Recovery procedure:

EXPORT SYMBOL OVERFLOW
The number of export symbols exceeded 65,535.
Reduce the number of export symbols.

933 Message:
Error description:
Recovery procedure:

ILLEGAL ENVIRONMENT VARIABLE
The specified target CPU is incorrect.
Correct the target CPU.

935 Message:
Error description:
Recovery procedure:

SUBCOMMAND FILE INPUT ERROR
Subcommand file input error.
Check the hard disk for adequate free space. Create the required
free space by deleting unnucessary files.

950 Message:
Error description:
Recovery procedure:

MEMORY OVERFLOW
Insufficient memory.
Separate the source program.

951 Message:
Error description:
Recovery procedure:

LITERAL POOL OVERFLOW
More than 100,000 internal symbols are used for literal pools.
Separate the source program.

952 Message:
Error description:
Recovery procedure:

LITERAL POOL OVERFLOW
Literal pool capacity overflow.
Insert unconditional branch before overflow.

953 Message:
Error description:
Recovery procedure:

MEMORY OVERFLOW
Insufficient memory.
Separate the source program.

954 Message:
Error description:

Recovery procedure:

LOCAL BLOCK NUMBER OVERFLOW
The number of local blocks that are valid in the local label exceeded
100,000.
Separate the source program.

956 Message:
Error description:
Recovery procedure:

EXPAND FILE INPUT/OUTPUT ERROR
File output error for preprocessor expansion.
Check the hard disk for adequate free space. Create the required
free space by deleting unnecessary files.

312

Table D-4 Fatal Error Messages (cont)

957 Message:
Error description:
Recovery procedure:

MEMORY OVERFLOW
Insufficient memory.
Separate the source program.

958 Message:
Error description:
Recovery procedure:

MEMORY OVERFLOW
Insufficient memory.
Separate the source program.

313

Appendix E Differences from Former Version

The differences between this new version (SH-series cross assembler v.3.0) and the former
version (SH-series cross assembler v.2.0) are described below.

E.1 CPU

This version includes assembly functions for the SH-DSP and SH3E in addition to the SH1,
SH2, and SH3, and the following items are added or changed.

• Reserved words

• Executable instructions

• .CPU assembler directive

• CPU command line option

• SH-DSP instructions

The target CPU is specified by the CPU command line option or .CPU directive in the former
version, but in the new version, it can also be specified by the SHCPU environment variable.

The SHCPU environment variable value specification is the same as that for the C compiler or
the simulator debugger, and therefore this value can be referenced in common by these tools.

When the target CPU is specified several times by -CPU, .CPU, and SHCPU, the target CPU is
selected based on the following priorities:

Priority 1: -CPU specification
Priority 2: .CPU specification
Priority 3: SHCPU specification

References:

Reserved words
→ Programmer’s Guide, 1.2, “Reserved Words”

Executable instructions
→ Programmer’s Guide, 3, “Executable Instructions”

.CPU assembler directive
→ Programmer’s Guide, 4.2.1, “Assembler Directive Related to CPU”

-CPU command line option
→ User’s Guide, 2.2.1, “CPU Command Line Option”

SH-DSP instructions
→ Programmer’s Guide, 9, “SH-DSP Instructions”

SHCPU environment variable
→ User’s Guide, 1.3, “SHCPU Environment Variable”

314

E.2 Constants

In the new version, fixed-point constants and floating-point constants can be used in addition to
integer constants and character constants.

• Fixed-point constants are used in the SH-DSP.

• Floating-point constants are used in the SH3E.

References:

Fixed-point constants
→ Programmer’s Guide, 1.4.4, “Fixed-Point Constants”

Floating-point constants
→ Programmer’s Guide, 1.4.3, “Floating-Point Constants”

E.3 Added Assembler Directives

Table E-1 lists the assembler directives and assembler statements added to the new version.

Table E-1 Added Assembler Directives and Statements

Assembler Directive
or Statement Function

Reference in
Programmer’s Guide

.FREG Alias for floating-point register 4.2.3

.FDATA Floating-point constant reservation 4.2.4

.FDATAB Floating-point constant block reservation 4.2.4

.XDATA Fixed-point constant reservation 4.2.4

.AIFDEF Conditional assembly with definition 6.2

E.4 Automatic Literal Pool Generation

The new version includes the size selection mode, in which the assembler checks the imm value
of th data move instruction without operation size (MOV #imm,Rn) and automatically generates
a literal pool if necessary.

References:

Size selection mode

→ Programmer’s Guide, 8.3, “Size Mode for Automatic Literal Pool Generation”
→ User’s Guide, 2.2.8, “Command Line Option Related to Automatic Literal Pool

Generation”

315

E.5 Added Command Line Option

Table E-2 lists the command line option added to the new version.

Table E-2 Added Command Line Option

Command Line Option Function Reference

OUTCODE Output Japanese code
selection

User’s Guide, 2.2.7

AUTO_LITERAL Size mode selection User’s Guide, 2.2.8

References:

Size mode
→ Programmer’s Guide, 8.3, “Size Mode for Automatic Literal Pool Generation”
→ User’s Guide, 2.2.8, “Command Line Option Related to Automatic Literal Pool

Generation”

E.6 Tag File Output

If an error or a warning occurs at assembly, the former version outputs a tag file, but the new
version does not. To create a tag file, output the error or warning information to a file using the
redirection function.

Example

asmsh test.src >& test.tag (UNIX)

asmsh test.src > test.tag (MS-DOS)

Error and warning information is output to test.tag.

316

317

Appendix F ASCII Code Table

Table F-1 ASCII Code Table

Upper 4 Bits

Lower 4 Bits 0 1 2 3 4 5 6 7

0 NUL DLE SP 0 @ P ` p

1 SOH DC1 ! 1 A Q a q

2 STX DC2 “ 2 B R b r

3 ETX DC3 # 3 C S c s

4 EOT DC4 $ 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v

7 BEL ETB ‘ 7 G W g w

8 BS CAN (8 H X h x

9 HT EM) 9 I Y i y

A LF SUB * : J Z j z

B VT ESC + ; K [k {

C FF FS , < L \ l |

D CR GS - = M] m }

E SO RS . > N ^ n ~

F SI US / ? O _ o DEL

318

Supplement

319

Supplement 1 Extended Instruction REPEAT for SH-DSP

The REPEAT extended instruction makes the assembler to automatically generate the SH-DSP
loop control instructions (LDRS, LDRE, and SETRC).

The values set in the RS and RE registers depend on the number of instructions to be repeated.
The REPEAT extended instruction automatically calculates the values to be set in the RS and
RE registers according to the number of the instructions to be repeated, and generates the LDRS
and LDRE instructions using the calculated values.

Reference: Values to be set in the RS and RE registers
→ Programmer’s Guide, 9.3, Notes on Executable Instructions

1.1 REPEAT Description

Syntax

[<symbol>[:]] ∆REPEAT∆<start address>,<end address>[,<repeat count>]

Statement Elements

1. Start and end addresses

Enter the labels of the start and end addresses of the repeat loop.

2. Repeat count

Enter the repeat count in immediate value or general register name.

Description

1. REPEAT automatically generates DSP instructions LDRS and LDRE to repeat the
instructions in the range from the start address to the end address.

2. When the repeat count is specified, REPEAT generates a SETRC instruction. When the
repeat count is omitted, SETRC is not generated.

320

1.2 Coding Examples

To Repeat Four or More Instructions (Basic Example):

 REPEAT RptStart,RptEnd,#5

 PCLR Y0

 PCLR A0

RptStart: MOVX @R4+,X1 MOVY @R6+,Y1

 PADD A0,Y0,Y0 PMULS X1,Y1,A0

1 DCT PCLR A0

 AND R0,R4

RptEnd: AND R0,R6

This program repeats execution of five instructions from RptStart to RptEnd five times.

The expanded results are as follows:

 LDRS RptStart

 LDRS RptEnd3+4

 SETRC #5

 PCLR Y0

 PCLR A0

RptStart: MOVX @R4+,X1 MOVY @R6+,Y1

RptEnd3: PADD A0,Y0 PMULS X1,Y1,A0 ; The label is not generated actually.

 DCT PCLR A0

 AND R0,R4

RptEnd: AND R0,R6

To Repeat One Instruction: Specify the same label as the start and end addresses.

 REPEAT Rpt,Rpt,R0

 MOVX @R4+,X1 MOVY @R6,Y1

Rpt: PADD A0,Y0,Y0 PMULS X1,Y1,A0 MOVX @R4+,X1 MOVY @R6+,Y1

The expanded results are as follows:

 LDRS RptStart0+8

 LDRE RptStart0+4

 SETRC R0

RptStart0: MOVX @R4+,X1 MOVY @R6,Y1 ; The label is not generated actually.

Rpt: PADD A0,Y0,Y0 PMULS X1,Y1,A0 MOVX @R4+,X1 MOVY @R6+,Y1

321

To Repeat Two Instructions:

 REPEAT RptStart,RptEnd,#10

 PCLR Y0

RptStart: MOVX @R4+,X1 MOVY @R6+,Y1

RptEnd: PADD A0,Y0,Y0 PMULS X1,Y1,A0

The expanded results are as follows:

 LDRS RptStart0+6

 LDRE RptStart0+4

 SETRC #10

RptStart0: PCLR Y0 ; The label is not generated actually.

RptStart: MOVX @R4+,X1 MOVY @R6+,Y1

RptEnd: PADD A0,Y0,Y0 PMULS X1,Y1,A0

To Repeat Three Instructions:

 REPEAT RptStart,RptEnd,R0

 PCLR Y0

RptStart: MOVX @R4+,X1 MOVY @R6+,Y1

 PMULS X1,Y1,A0

RptEnd: PADD A0,Y0,Y0

The expanded results are as follows:

 LDRE RptStart0+4

 LDRS RptStart0+4

 SETRC R0

RptStart0: PCLR Y0 ; The label is not generated actually.

RptStart: MOVX @R4+,X1 MOVY @R6+,Y1

 PMULS X1,Y1,A0

RptEnd: PADD A0,Y0,Y0

322

To Omit Repeat Count: When the repeat count is omitted, the assembler does not generate
SETRC. To separate the LDRS and LDRE from the SETRC, omit the repeat count.

 REPEAT RptStart,RptEnd

 ; The LDRS and LDRE are expanded here.

 MOV #10,R0

OuterLoop:

 SETRC 16

 PCLR Y0

 PCLR A0

RptStart: MOVX @R4+,X1 MOVY @R6+,Y1

 PADD A0,Y0,Y0 PMULS X1,Y1,A0

 DCT PCLR A0

 AND R0,R4

RptEnd: AND R0,R6

 DT R0

 BF OuterLoop

1.3 Notes on Extended Instruction REPEAT

Start and End Addresses: Only the labels in the same section or the local labels in the same
local block can be specified as the start and end addresses.

The start address must be after (at a higher address than) the REPEAT extended instruction. The
end address must be after (at a higher address than) the start address.

Reference: Local labels
→ Programmer’s Guide, 1.8, Local Label

Instructions Inside Loops:

• If one of the following assembler directives that reserve a data item or a data area or an
.ORG directive is used inside a loop, the assembler outputs a warning message and counts
the directive as one of the instructions to be repeated. If an .ALIGN directive is used inside a
loop to adjust the boundary alignment, the assembler outputs a warning message and counts
the directive as one of the instructions to be repeated.

Directives generating a warning inside loops:
.DATA, .DATAB, .SDATA, .SDATAB, .SDATAC, .SDATAZ, .FDATA, .FDATAB,
.XDATA, .RES, .SRES, .SRESC, .SRESZ, .FRES, .ALIGN, and .ORG

• The assembler stops automatic generation of literal pools within a loop. Therefore, even
when an unconditional branch is used in a loop, no literal pool is generated. If a .POOL

323

directive is used in a loop, the assembler outputs a warning message and ignores the .POOL
directive.

Instruction Immediately before Loop: If three or less instructions are to be repeated, the
instruction immediately before the loop must be an executable instruction or a DSP instruction.
Therefore, when three or less instructions are to be repeated and if one of the following is
located immediately before the start address of the loop, the assembler outputs a warning
message.

• Assembler directive that reserves a data item or a data area, or .ORG directive

.DATA, .DATAB, .SDATA, .SDATAB, .SDATAC, .SDATAZ, .FDATA, .FDATAB,

.XDATA, .RES, .SRES, .SRESC, .SRESZ, .FRES, or .ORG

• Literal pool generated by the automatic literal pool output function

If an unconditional branch instruction and a delay slot instruction are located immediately
before a loop, or if a .POOL directive is located immediately before a loop, a literal pool
may be automatically generated. To stop literal pool generation before a loop, use a
.NOPOOL directive immediately after the delay slot instruction.

• One alignment byte generated by an .ALIGN Directive

• When an .ALIGN directive is used immediately after an odd address before a loop, one
alignment byte may be generated (for example, .ALIGN 4 is specified when the location
counter value is 3). In this case, the contents of the byte before a loop is not an executable
instruction, and an error message is output. If two or more alignment bytes are generated
before a loop, their contents is a NOP instruction and the program can be correctly executed.

Others:

• One or more executable or DSP instructions must be located between a REPEAT extended
instruction and the start address. Otherwise, the assembler outputs an error message.

• No REPEAT extended instruction must be located between a REPEAT extended instruction
and the end address. If REPEAT extended instructions are nested, the assembler outputs an
error message, the first REPEAT is valid, and the other REPEAT instructions are ignored.

324

325

Supplement 2 Error Messages Related to REPEAT

Tables 2-1 and 2-2 show the error messages and the warning message related to REPEAT,
respectively.

Table 2-1 Error Messages Related to REPEAT

160 Message:
Error description:

Recovery procedure:

REPEAT LOOP NESTING
Another REPEAT is located between a REPEAT and the end
address
Correct the REPEAT location.

161 Message:
Error description:

Recovery procedure:

ILLEGAL START ADDRESS FOR REPEAT LOOP
No executable or DSP instructions are located between a REPEAT
and start address.
Use one or more executable or DSP instructions between the
REPEAT and start address.

162 Message:
Error description:

Recovery procedure:

Supplement:

ILLEGAL DATA BEFORE REPEAT LOOP
Illegal data is found immediately before the loop specified by a
REPEAT instruction.
If an assembler directive is located before the loop, correct the
directive. If a literal pool is located before the loop, use a
.NOPOOL directive to stop literal pool output.
When three or less instructions are to be repeated, an executable or
DSP instruction must be located before the loop.

460 Message:
Error description:

Recovery procedure:

ILLEGAL SYMBOL
A backward reference symbol, an undefined symbol, or a symbol
other than label is specified as an operand of a REPEAT, or the
start address is larger than (after) the end address.
Correct the operand.

461 Message:
Error description:
Recovery procedure:

SYNTAX ERROR IN OPERAND
Illegal operand.
Correct the operand.

462 Message:
Error description:

Recovery procedure:

ILLEGAL VALUE IN OPERAND
The distance between a REPEAT and the label exceeds the
allowable range.
Correct the location of the REPEAT or label.

463 Message:
Error description:

Recovery procedure:

NO INSTRUCTION IN REPEAT LOOP
No instruction is found in a loop, or no instruction is found at the end
address.
Write an instruction between the start and end addresses, or specify
an address storing an instruction as the end address.

326

Table 2-2 Warning Message Related to REPEAT

881 Message:
Error description:
Recovery procedure:
Supplement:

ILLEGAL DIRECTIVE IN REPEAT LOOP
An illegal assembler directive is found in a loop.
Delete the directive.
If a directive that reserves a data item or a data area, an .ALIGN
directive, or an .ORG directive is used in a loop, the assembler
counts the directive as one of the instructions to be repeated.

	ASMSH_E_USER.PDF
	Contents
	Preface
	Overview
	Section 1 Overview
	Section 2 Relationships between the Software Development Support Tools

	Programmer’s Guide
	Section 1 Program Elements
	1.1 Source Statements
	1.2 Reserved Words
	1.3 Symbols
	1.4 Constants
	1.5 Location Counter
	1.6 Expressions
	1.7 Character Strings
	1.8 Local Label

	Section 2 Basic Programming Knowledge
	2.1 Sections
	2.2 Absolute and Relative Values
	2.3 Symbol Definition and Reference
	2.4 Separate Assembly

	Section 3 Executable Instructions
	3.1 Overview of Executable Instructions
	3.2 Notes on Executable Instructions

	Section 4 Assembler Directives
	4.1 Overview of the Assembler Directives
	4.2 Assembler Directive Reference

	Section 5 File Inclusion Function
	Section 6 Conditional Assembly Function
	6.1 Overview of the Conditional Assembly Function
	6.2 Conditional Assembly Directives

	Section 7 Macro Function
	7.1 Overview of the Macro Function
	7.2 Macro Function Directives
	7.3 Macro Body
	7.4 Macro Call
	7.5 Character String Manipulation Functions

	Section 8 Automatic Literal Pool Generation Function
	8.1 Overview of Automatic Literal Pool Generation
	8.2 Extended Instructions Related to Automatic Literal Pool Generation
	8.3 Size Mode for Automatic Literal Pool Generation
	8.4 Literal Pool Output
	8.5 Literal Sharing
	8.6 Literal Pool Output Suppression
	8.7 Notes on Automatic Literal Pool Output

	Section 9 SH-DSP Instructions
	9.1 Program Contents
	9.2 DSP Instructions
	9.3 Notes on Executable Instructions

	User’s Guide
	Section 1 Executing the Assembler
	1.1 Command Line Format
	1.2 File Specification Format
	1.3 SHCPU Environment Variable

	Section 2 Command Line Options
	2.1 Overview of Command Line Options
	2.2 Command Line Option Reference

	Appendix
	Appendix A Limitations and Notes on Programming
	Appendix B Sample Program
	B.1 Sample Program Specifications
	B.2 Coding Example

	Appendix C Assemble Listing Output Example
	C.1 Source Program Listing
	C.2 Cross-Reference Listing
	C.3 Section Information Listing

	Appendix D Error Messages
	D.1 Error Types
	D.2 Error Message Tables

	Appendix E Differences from Former Version
	E.1 CPU
	E.2 Constants
	E.3 Added Assembler Directives
	E.4 Automatic Literal Pool Generation
	E.5 Added Command Line Option
	E.6 Tag File Output

	Appendix F ASCII Code Table

	Supplement
	Supplement 1 Extended Instruction REPEAT for SH-DSP
	1.1 REPEAT Description
	1.2 Coding Examples
	1.3 Notes on Extended Instruction REPEAT

	Supplement 2 Error Messages Related to REPEAT

