SEGA

Katana
CodeScape
User Guide

CodeScape User Guide

CodeScape for Set 5

User Guide

Version 2.1.0a Build 86

Cross Products Ltd

23 The Calls, Leeds, West Yorkshire, LS2 7EH
telephone: +44 113 242 9814
facsimile: +44 113 242 6163
www.crossprod.co.uk
email sales: enquiry@crossprod.co.uk
email support: support@crossprod.co.uk

Legal Notice
IMPORTANT

The information contained in this publication is subject to change without notice. This
publication is supplied "as is" without warranty of any kind, either express or implied,
including but not limited to the implied warranties or conditions of merchantability or
fitness for a particular purpose. In no event shall Cross Products be liable for errors
contained herein or for incidental or consequential damages, including lost profits, in
connection with the performance or use of this material whether based on warranty,
contract, or other legal theory.

This publication contains proprietary information which is protected by copyright. No part
of this publication may be reproduced in any form, or stored in a database or retrieval
system, or transmitted or distributed in any form by any means, electronic, mechanical
photocopying, recording, or otherwise, without the prior permission of Cross Products
Limited.

CodeScape User Guide
Revision History
\ersion 2.1.0a, 86 July 1998

Release Candidate 1, 7 October 1996, Beta 2, 26 August 1996, Beta 1, 26 July 1996 - 97, 2.0.0,
March1998, \ersion 2.0.5a, May 1998

© 1998 Cross Products Limited. All rights reserved.

Microsoft, MS-DOS, and Windows are registered trademarks and Windows NT is a
trademark of Microsoft Corporation in the United States and other countries. CodeScape
and SNASM are registered trademarks of Cross Products Limited in the United Kingdom
and other countries. Brief is a registered trademark of Borland International. CodeWright
is a registered trademark of Premia Corporation. Multi-Edit is a trademark of American
Cybernetics, Inc. All other trademarks or registered trademarks are the property of their
respective owners.

CodeScape User Guide

Contents

Beforeyou begin =~ ., 1
Document conventions ., 1
Thisrelease ., 2

The CodeScape software .. 3
Using and configuring the interface ... 5
The commands on the menubar 6

The commands on the toolbars 8

View, hide, dock, and move toolbars ... 9

Commands oneachtoolbar . 11

How windows and regionswork ... 21
Usingwindows e 22

UsiNng regions e 24
Configuring regions 28
Targetwindow . 30

Target Processor display e, 31

Project Build window ... 32

The Sourceregion e 33

The Disassembly region e, 37

The Call Stack region 42

The Watch and Local Watch regions ..., 43

The Watchregion .., 45

The Local Watch region .., 48

The Memoryregion e 51

The Register region e 59
Hitachi target processor register region display 63
Thelogregion e 66

The Editregion 68
Opening and saving files 70
Searchandreplace ., 71

Cutting and pastingtext . 73

Using bookmarks ., 74

Interacting with target processors ... 75
Connecting to atarget processor e 76

Add filestoa project 78

Restarting aprogram ... 81

Contents

Working with sessions ..

Working with projects
Setting up a project build environment
Settingup aneditor L
Setting up an external editor

Setting up the project commands

Debugging .
Running and stopping programs
Stepping over code e
Interrupting program execution
Breakpoints .

Configuring breakpoints
Breakpoint expression format ...

Simulating atarget
Using the Simulator’s shortcut menu
Information generated by the Simulator
Reading the results of simulation

Profiling program files

Using the Profiler's shortcut menu

The profile display types ...

EXPressions .
CICH++expressions i
Assembler expressions i

Expression evaluator dialog box (ALT+E)

Using the command-line ...,
Running CodeScape from the command-line

Appendix A: Frequent operations
Shortcut and Access keys on the Menu bar
Shortcut and Access keys on the shortcut menus

83

87
88
91
92
93

95

96
102
103
104
110
118
123
123
126
131
132

133

135

139
140
143
145

147
148

151
152
158

Before you begin

Document conventions

NOTE: Notes call attention to important features or instructions.

Typographic conventions in this user guide

Convention Description

SPACEBAR Capital letters are used for the names of keys on
the keyboard, filenames, and extensions.

ALT+F4 If two or more keys must be pressed
simultaneously, the keys are linked with a plus
sign (+).

ALT, F, X If two or more keys must be pressed in

succession, the keys are linked with a comma (,).

select this box Italics are used to denote text boxes and check
boxes that are on CodeScape’s interface.

emphasis Bold text is used to denote emphasis.

input and output This font is used to denote, user input, and
program output including error messages.

command-line This font is used for command-line options.

Before you begin

This release

The CodeScape 2.1.0 release includes:
» A CD-ROM that contains the CodeScape debugger, and online documentation including
context-sensitive help.
» A printed hardware setup guide, a software reference manual, and two tutorials.

NOTE: ContactTechnical Supportifanyoftheseitemsare missing.

Audience

This manual is for programmers that write for targets under Windows® 95, or Windows NT™ 3.51/
4.0. It will also be of use to technical support and software test engineers.

This guide

Using and configuring the interfaceintroduces CodeScape’s debugging environment and how to
use it. It describes the commands on the menu bar, toolbars, and shortcut menus. It explains how to
set up and use windows and regions for your project.

Interacting with target processorsexplains how to connect to, initialize and reset a target
processor. This includes: restarting a program, and saving and loading binary parts of a program.

Working with sessionsexplains how to use the commands for working with sessions. This includes
how to: open new and existing sessions, save a session, save a session with a new name, close a
session, view and use the recently used files list, and exit CodeScape.

Working with projects describes how to set up and use your project build environment including
how to set up an MS-DOS or Windows editor. It also tells you how to build your project within
CodeScape and what to do if CodeScape returns errors after a compile.

Debugging project filesexplains the various ways you can debug your project files, including:
stepping source code, setting watch and data breakpoints, and simulating assembly code.

Using the command-linedescribes all of the command-line commands.

CodeScape User Guide

The CodeScape software

CodeScape is a fast, intuitive, Windows-based debugging tool that runs on Windows® 95, or
Windows NT™ 3.51/4.0 machines.

To run, CodeScape requires:
* An IBM™ PC or compatible with Pentium™ 90 processor or above.
* Windowd1 95 or Windows NT™ 3.51/4.0.
* 32 MB or more of RAM.

CodeScape’s debugging features let you find, isolate, and fix bugs in your original source, or
disassembled code.

Run CodeScape to:

1) Edit your project files.
2) Compile and link your project files.
3) Debug your project and test it for errors.
4) Then do one of the following:
« If debugging returns errors, repeat steps 1 to 3 above.
-OR-
« If debugging does not return errors, Build your project.

Before you begin

Using and configuring
the Interface

You can control CodeScape using a mouse or keyboard. CodeScape has many useful toolbars that
can be docked, floating, or hidden. Region specific shortcut menus are available for the most used
functions.

The user interface consists of:

* The Menu bar.
» Toolbars.
* Windows.
* Regions.

Using and configuring the interface

The commands on the menu bar
File menu ALT+F
The commands in the File menu are for working with sessions, resetting the target, loading program

files, restarting program file execution, and saving and loading binary information. Use Save binary
and Load binary to move large blocks of data in and out of memory.

The File menu also displays a list of recently used session files. You cannot hide this list or change
the number of files displayed.

NOTE: When you load a new session, or exit CodeScape, a message
appears prompting you to save any changes to the current session.

Edit menu ALT+E

The commands in the Edit menu are for cutting and pasting in the Edit region, and for performing
searches. The Edit menu becomes available when you open a window, create a region, or load a
session.

View menu ALT+V

The commands in the View menu are for showing and hiding toolbars, and configuring regions.

Project menu ALT+P

The commands in the Project menu are for configuring the current project and building it from
within CodeScape.

Debug menu ALT+D

The commands in the Debug menu are for controlling program execution, stepping code, and using
breakpoints. You can set the cursor to the PC (program counter) and vice-versa. The default origin
is set to the value of the PC. You can also lock the view to an Expression that contains the PC, a
register, or memory.

You can simulate a target's processor operations on your computer. All of CodeScape’s debugging
functions are available when the Simulator is running. You can also run the Profiler to examine the
run-time behavior of your program file.

CodeScape User Guide

Region menu ALT+R

The commands in the Region menu are for splitting (creating new) regions, changing a region’s type,
and updating all regions. The Region menu is available when you open or create a window, region,
or session.

Window menu ALT+W

Use the Window menu to open a new window. When you open a new window, the Edit and Region
menus appear on the Menu bar, and additional commands appear on the Window menu which are for
arranging multiple windows in CodeScape.

The Window menu also displays a list of region types and highlights the currently active region.
When you have more than one region in a window frame, the active region within that frame appears
in the list. You cannot hide this list or change the number of regions displayed.

Help menu F1

Use the Help menu to get on-line Help and view CodeScape version information.

Region specific shortcut menus
Each region has two shortcut menus:

1) The Region Type menu has commands for changing the region’s type. To see the menu:
* Press CTRL+SHIFT+F10.
-OR-
» CTRL+Right-click anywhere in the region.

2) The Region Actions menu has region specific commands, and global commands for
controlling program execution or manipulating breakpoints. To see the menu:

* Press SHIFT+F10.
-OR-
» Right-click anywhere in the region.

Using and configuring the interface

The commands on the toolbars

The toolbars provide access to the main debugging functions. To uEsothar Configuration
check box to show or hide toolbars:
» Right-click the status bar.
-OR-
* Click View, Toolbar.

Then select or deselect toolbars from the list.

Use the:

Breakpoint toolbar

Toolbars and their uses

For:

Point and click access to the most common breakpoint
actions.

Debug toolbar

Point and click access for debugging actions.

Processor Combo toolbar

Point and click access for selecting a target
processor, configuring a target processor, and
loading program files.

Project Build window

Viewing status information about a project build.

Region toolbar

Setting and changing a region’s type.

Region Combo toolbar

Setting the rate at which a region’s display is
updated, and changing a region’s type.

Splitter toolbar

Splitting regions using the mouse.

Standard toolbar

Point and click access for opening a new window, and
creating, opening, and saving Sessions.

Target window

Viewing the current processor for the current
target. The toolbar also provides point and click
access for loading program files and configuring the
current processor.

Target Combo toolbar

Viewing and configuring the current target.

Edit toolbar

Point and click access to the editing actions.

NOTE: The Target and Project Build windows can be docked at the
top and bottom of the main window, or left free floating.

CodeScape User Guide

View, hide, dock, and move toolbars
NOTE: For more information see Toolbars and their uses.

View toolbars

Do one of the following:

 Right-click the status bar.
-OR-

» Right-click on a blank area of any toolbar. Select the toolbar.
-OR-

* Click View, Toolbar... Select theolbar check box. Click OK.

Hide toolbars

1) Right-click on a blank area of any toolbar.
2) Clear the toolbar from the list.

If the toolbar is undocked:

* Right-click on the toolbar title bar and click Hide.
-OR-

» On the toolbar title bar, click=

If the toolbar is docked:

1) Click View, then point to Toolbar...
2) Clear thaoolbar check box. Click OK.

Dock toolbars

Do one of the following:

» Drag the toolbar to an edge of the main window.
-OR-
» Double-click the title bar. The toolbar will be docked at its last docked position.

Using and configuring the interface

Move toolbars

1) Do one of the following:
» On the toolbar title bar, right-click and click Move.
-OR-
* Click the toolbar title bar.
2) Drag the toolbar to the required position.

NOTE: YoucannotdocktheTargetwindowortheBuildwindowifyou
are still pressing CTRL.

10

CodeScape User Guide

Commands on each toolbar

The commands on the toolbars provide access to the main debugging functions. You can also use the
keyboard shortcuts for most debugging operations. Access keys support all operations; see Appendix
A.

Breakpoint toolbar

Break.paint

Ol ®| 8] &/

Commands on the Breakpoint toolbar

To issue this command:

Toggle Breakpoint F5

Enable Breakpoint none available

& &

Disable Breakpoint none available

]

Configure Breakpoint(s) EI CTRL+F5

Reset All Breakpoints EI ALT+F5

Enable All Breakpoints @I CTRL+SHIFT+F5
Disable All Breakpoints ﬁl CTRL+ALT+F5
Remove All Breakpoints SHIFT+F5

2

11

Using and configuring the interface

Debug toolbar

B
o) I 5 e I o T U 1 S

_

—
il
i
—
il

Commands on the Debug toolbar

To issue this command: Click:

Run all Processor(s) 1= CTRL+F9
Stop all Processor(s) = none available
Run |z F9
Run to Address ;I SHIFT+F9
cm
Run to Cursor _I ALT+F9
-1
Stop @ F9
Single Step (into) - F7

Forced Step (into) :I none available
F=

Step Over = F8

Step Out = CTRL+F8

Unstep vz CTRL+F7

Step RunIn = SHIFT+F7

Step Run Out ot SHIFT+F8

Step Run

Step Run Until

12

CodeScape User Guide

To issue this command: Click:

Set Cursor to PC e CTRL+SHIFT+P
Set PC to Cursor ﬂl CTRL+ALT+P
Restart p= CTRL+SHIFT+R

Processor Combo toolbar

Combo

SHZ-MASTER- (T1:P1y =]
SHZ-MASTER - (T1:P1

The Processor Combo toolbar shows the current processor for the current target. The toolbar also
provides point and click access for loading program files and configuring the current processor.

Commands on the Processor Combo toolbar

To issue this command:

Load Program File i CTRL+SHIFT+C

Configure Processor 25 none available

13

Using and configuring the interface

Project Build window

The Project Build window appears and automatically displays the specified build utility’s output
about the build. You can dock the Project Build window at the top and bottom of the main window,
or leave it free floating. Any standard format errors and warnings are shown in the Project Build
window. You can scroll through the information as it is generated, or press F4 to move through any
listed errors one at a time. If you use:

» CodeScape’s Edit region it automatically opens your project file at the line containing the
first error or warning. You can then use the Project Build window to navigate to all
subsequent errors. If there is no active Edit region CodeScape creates one for you.

» An external editor, double-click an entry in the Project Build window to invoke the editor
and open the source file at the line containing the error or warning. Some external editors
do not support this option and will open without displaying the line at which the error
occurred.

14

CodeScape User Guide

Region Combo toolbar

R eqgion Combo

Mo Type I EIE|E|E|

Laocal watch

memory
Register
Source
Watch
Editor
Call Stack

The Region combo toolbar lets you set the rate at which a region’s display updates, and change a
region’s type.

Commands on the Region Combo toolbar

To set this command: Click:

Region configuration

E]

Window update rate

L]

Stop all window updates

1=

Update all regions

El

15

Using and configuring the interface

Region toolbar

R eqgion

]
||| e = | oo [B

The Region toolbar lets you set or change a region’s type.

Commands on the Region toolbar

To create this region: Or press:
Disassembly EI ALT+1
Log ALT+2
Local Watch EI ALT+3
Memory ALT+4
Register EI ALT+5
Source ALT+6
Watch _I ALT+7
&
Edit & ALT+8
Call Stack EI ALT+9

NOTE: To stop the display from updating in all regions press
CTRL+SHIFT+U.

16

CodeScape User Guide

Splitter toolbar

Splitter

s [-p| [4] %]

The Splitter toolbar lets you split existing regions to create new regions.

Commands on the Splitter toolbar

To issue this command:

Split Left ﬂ CTRL+SHIFT+LEFT ARROW
Split Right ﬂ CTRL+SHIFT+RIGHT ARROW
Split Up j CTRL+SHIFT+UP ARROW

n
Split Down ﬂ CTRL+SHIFT+DOWN ARROW
Delete Region ﬂ CTRL+D

17

Using and configuring the interface

Standard toolbar

Standard

0| DleE| FEs =78

The Standard toolbar provides point and click access for opening a new window, and creating,
opening, and saving sessions.

Commands on the Standard toolbar

To issue this command:

New window EI CTRL+N

New Session EI CTRL+SHIFT+N
Open Session _q.| CTRL+O

=

Save Session EI CTRL+S

Cut il CTRL+X

Copy CTRL+C

Paste EI CTRL+V

Print @I CTRL+P

About Box EI none available
Help EI F1

18

CodeScape User Guide

Target Combo toolbar

Target Combo

]
SEGA EATAMNA on SCSI Host ID#0 : Device 1D#3 j |

The Target Combo toolbar shows the current target and lets you to configure it.

Commands on the Target Combo toolbar

To issue this command:

Target Configure

NOTE: The Serial Setup button only appears if you are connected
to a target with a serial port.

Target window
The Target window shows all the targets that CodeScape is connected to and the processors available
in each target. The processor status for each target is shown in the Target processor display.

When you create a new window, CodeScape uses the target information from the selected processor
on the target. The Target window provides point and click access for selecting a target processor.

NOTE: TheTargetwindowcanbedockedatthetopandbottomofthe
main window, or left free floating.

19

Using and configuring the interface

Edit toolbar

Editar |

BleE[@] =] aala] 6% %]

The Edit toolbar provides point and click access to the editing actions.

To issue this command:

Create a new Editor file. none available

[

Open an existing Editor file. none available

&

Save the current Editor file. none available

Undo the last action. CTRL+Z

I

Redo the last action. none available

i

Search for a string. CTRL+F

=

Replace the current selection. none available

Toggle a Book Mark on or off. none available

Move to the next Book Mark in the file. none available

Move to the previous Book Mark in the file. none available

@& & | =

Delete all Book Marks. none available

[

20

How windows and regions
work

A Window is a frame that you can configure as a Region and split to create multiple Regions.
A Region lets you view information about your project.

To view a project’s regions simultaneously you can:

* Open and close, minimize and maximize, cascade, and tile multiple windows.

» Split windows into multiple regions to display different types of information such as
memory contents and source code.

* Resize windows.

» Resize regions by moving the Splitter bars.

» Proportionally resize a window's regions.

Configuring regions

Use the Region Configuration dialog box to configure fonts and colors for each region type, each
individual region, and each processor. This lets you to differentiate between processors, show
associated regions, and represent changes in memory.

NOTE: Synchronize the cursors in the Source and Disassembly
regions to compare your source code with its compiled assembly
code.

21

How windows and regions work

Using windows

Open a new window
» Click Window, then click New window.
-OR-

* Click El on the Standard toolbar.
-OR-
* Press CTRL+N.

Minimize a window

« On the window title bar click=l
-OR-
* On the System menu, click Minimize.

Maximize a window

« On the window title bar click2l
-OR-
* On the System menu, click Maximize.

Close a window

» On the window title bar click=l
-OR-

* On the System menu, click Close.
-OR-

e Press CTRL+F4.

NOTE: If you delete the only region in a window, the window is
deleted as well.

Close all windows

» Click Window, then click Close all Windows.

22

CodeScape User Guide

Move a window

1) Click the window's title bar.
2) Drag the window to the required position.

Move between windows

* Press CTRL+TAB.

Resize a window

1) Point to the window boarder.
2) Click and drag the window outline to the required size.

To proportionally resize a region in a window:

1) Click Window, then select Proportional resizing.
2) Point to the window’s border.
3) Click and drag the window to the required size.

Load the current session when CodeScape restarts

 Click Window, then click to select Load last session on startup.

Cascade all windows
» Click Window, then click Cascade.

Tile all windows
» Click Window, then click Tile.

Arrange Icons

To arrange all minimized region windows at the bottom of the session window:

 Click Window, then click Arrange Icons.

23

How windows and regions work

Using regions

Change a region’s type
To change a region’s type:

 Click Region, then point to Type, then click a region type.

. O??r;e Region Combo box, select a region type from the drop down list.
. C-:(Ii)ci-a Region Type icon on the Region toolbar.

. C-Z('?ISI-_+Right-cIick, then click a region type.

Navigate a region

To scroll through a region:

» Use the LEFT ARROW and RIGHT ARROW keys to move the cursor a single character
at a time.

» Use the UP ARROW and DOWN ARROW keys to move the cursor up and down a line
at a time.

» Use PAGE UP and PAGE DOWN to move up and down a page at a time.

» Use the HOME and END keys to move to the first visible line and the last visible line of
a file.

To move through a region’s fields:

» To move the cursor to the next field, press TAB.
» To move the cursor to the previous field, press SHIFT+TAB.

NOTE: Attheendofafieldthecursorwillmovetothenextfield;
attheendofthelastfield the cursorwillmovetothe nextline.

24

CodeScape User Guide

Move between regions

To move to the region to the left:

» Click anywhere in the region to the left.
-OR-
* Press CTRL+LEFT ARROW.

To move to the region to the right:

 Click anywhere in the region to the right.

-OR-
* Press CTRL+RIGHT ARROW.

To move to the region above:

 Click anywhere in the region above.
-OR-
* Press CTRL+UP ARROW.

To move to the region below:

 Click anywhere in the region below.
-OR-
* Press CTRL+DOWN ARROW.

Create new regions

To create a new region:

* Open a new window (CTRL+N).
-OR-
» Split an existing region.

25

How windows and regions work

Split regions

To split a region to the left:

* Click Region, point to Split, then click Left.
-OR-

« Click *F| on the Splitter toolbar.

-OR-
* Press CTRL+SHIFT+LEFT ARROW.

To split a region to the right:

 Click Region, point to Split, then click Right.
-OR-

« Click =* on the Splitter toolbar.

-OR-
* Press CTRL+SHIFT+RIGHT ARROW.

To split a region above:

 Click Region, point to Split, then click Up.
-OR-

« Click 4 on the Splitter toolbar.

-OR-
* Press CTRL+SHIFT+UP ARROW.

To split a region below:

 Click Region, point to Split, then click Down.
-OR-

. Click #the Splitter toolbar.
-OR-
* Press CTRL+SHIFT+DOWN ARROW.

26

CodeScape User Guide

Delete a region

Make the region active, then do one of the following:

 Click Region, click Delete.
-OR-

Click Xl on the Splitter toolbar.
-OR-

-OR-
Press CTRL+D.

NOTE: Ifthereisonlyoneregioninawindow,deletingitdeletes
the window as well.

To update the display in all current regions:

 Click Region, then click Update all regions now.
-OR-
* Press CTRL+U.

In the region, press CTRL+Right-click and click Delete Region.

27

How windows and regions work

Configuring regions

Region Configuration dialog box

In the Region Configuration dialog box are tab commands for configuring fonts and colors, and
setting the update rate for a single region, a region type, and each processor.

To Configure an active region:

» Right-click, click Properties...
-OR-
+ On an active region’s title bar, double-cli=

The Region Configuration dialog box appears.

Do the following:

1) Setthe Mode and specify any commands inTdrget processotext box.
2) Specify any options in the Target, Processor, or Region type lists.
3) Then do one of the following:

 Click Apply to view your configuration changes without leaving the dialog
box.

-OR-
 Click OK to set the configuration changes for your project.

Using the Region Configuration dialog box

To configure: Select:

Thecurrentlyactiveregion Apply to active region only.

in a project.

All regions of a selected Apply to all regions of selected type.

type on all processors. Then select a Region type.

A specific Target Apply to all regions of the selected target.

Processor,andRegiontype. Then select a Target Processor, and a Region
type.

28

CodeScape User Guide

Set the color and font

Use the Color and Font tab commands to differentiate between processors, show associated regions,
and represent changes in memory.

To set the color attributes for the specified Mode:

1)
2)
3)
4)
5)

Select the Color tab.

Select the attribute whose color you want to change.
Set the region Foreground color.

Set the region Background color.

Click OK.

To set the font type and size for the specified Mode:

1)
2)
3)
4)
5)

Select the Font tab.

Click Change font.

Specify the region Font, Font style, and Size.
Set the Effects you require.

Click OK.

Set the region update rates

Use the Update Rate tab to specify when CodeScape will update information in each region.

If the update rate for a region’s display interrupts the target causing jitter in your program, set the
Foreground and Background sliders to Min.

To specify when CodeScape will update information in a region:

1
2)

3)

Select the Update tab.

Drag the Foreground slider to set the update rate for when the region has focus. Set the
slider to Max to continually update the display (approximately 14Hz). Set the slider to
Min to update the display at approximately 1/10th of the Max setting.

Drag the Background slider to set the update rate for when the region does not have
focus. Set the slider to Max to continually update the display. Set the slider to Min to
prevent updates to the display.

29

How windows and regions work

Target window

NOTE: TheTargetwindow canbedockedatthetopandbottomofthe
main window, or left free floating.

When you run CodeScape it scans for valid targets and displays them in the Target window. The
Target window shows all the targets that CodeScape is connected to and the processors available in
each target. The processor status for each target is shown in the Target processor display.

When you create a new window, CodeScape uses the target information from the selected processor
on the target.

Using the shortcut menu on the Target window

Controlling target processor execution

Right-click, then click:

Configure Processor... Set the update rate for the current processor.
Simulate Processor Run the Simulator.
Execution Run, stop, and restart your program. Run your

program until it executes a specified address.

Run all of your program files simultaneously.

Stop all of your programs running
simultaneously.Use the single stepping commands,
or run the step commands.

Breakpoints Add, enable, disable, configure, reset, orremove
data breakpoints.

Reset Target Perform a soft reset or a hard reset. If you
reset the target you are prompted to reload the
Program File.

Load Program File Downloadaprogramfile tothe selected processor

on the target.

30

CodeScape User Guide

Target Processor display

To show the processor(s) for a target:

» Double-click on the target status line.
-OR-

* Click = .

To hide the processor(s) for a target:

» Double-click on the target display line.

-OR-
* Click = .

31

How windows and regions work

Project Build window

The Project Build window appears and automatically displays the specified build utility’s output
about the build. You can dock the Project Build window at the top and bottom of the main window,
or leave it free floating.

Any standard format errors and warnings are shown in the Project Build window. You can scroll
through the information as itis generated, or press F4 to move through any listed errors one at a time.
If you use:

» CodeScape’s Edit region it automatically opens your project file at the line containing the
first error or warning. You can then use the Project Build window to navigate to all
subsequent errors. If there is no active Edit region CodeScape creates one for you.

» An external editor, double-click an entry in the Project Build window to invoke the editor
and open the source file at the line containing the error or warning. Some external editors
do not support this option and will open without displaying the line at which the error
occurred.

Using the shortcut menu on the Project Build window

Configure, make, then build a project

Right-click, then click:

Setup Project... Specify file locations for making a project
current and building it.

Setup Editor... Specify the editor that you want to use for
your project.
Make Make your project current by building it.

32

CodeScape User Guide

The Source region

In the Source region there are commands for debugging your original source code.

When you edit your source code the changes are displayed in the corresponding Source region when
the display is updated. A * appears in a Source region'’s title bar if you edit your source code and do
not re-build the program file. Always save any changes that you make to a file edited in an external
editor before using the Make option to compile and build your project in CodeScape.

NOTE: Place the mouse pointer over a variable or expression to
quickly view its’ value.

NOTE: Before you edit a program file from a UNIX target, convert
it to a DOS readable format using a utility such as to_dos (use
to_unix to return the file to a UNIX format).

NOTE: IfnodebuginformationappearsinaSourceregion,compile
all source files for your project with debugging turned on.

Using the shortcut menu in a Source region

The commands on the shortcut menu are for debugging in the region and configuring the source view.
Right-click anywhere in the region to access the shortcut menu.

Copy in the Source region

1) Inthe Source region, select the text you want to copy by highlighting it.
2) Right-click, then click Copy.

The selection is copied, then pasted to the clipboard.
Lock the display origin to an expression

1) On the Source region title bar cliisl
The Goto Address... dialog box appears.

2) Enter an expression for the region origin.
3) Click OK.

33

How windows and regions work

Configuring the Source view

Right-click, then click: To show the:

Show Address Corresponding address for the first line of
code generated by the source code line.

-OR-

Show Line Nos. Line numbers for each line of source in the
left-hand column.

Accessing the debugging commands in a Source region

Right-click, then select: To click commands to:

Execution Run, stop, and restart your program. Run your
program to the cursor position, or until it
executes a specified address. Run all of your
program files simultaneously. Stop all of your
programs running simultaneously.Use the single
stepping commands, or run the step commands.

Breakpoints Toggleabreakpoint on or off. Enable, disable,
configure, reset, and remove breakpoints.

Setting the cursor and the display in a Source region

Right-click, then click:

Set Cursor to PC Show the source code from the value of the PC.
Set PC to Cursor Change the PC at the current cursor position.
Goto Address... Enteran expression for the region origin to go

to.
Goto Source File... Select the required source file.
Tools Searchinthe Source region. Find the nextitem

in the search.

Tab Width... Enter a value to set the tab size in spaces.

Properties Configure fontsand colors. Set the update rate
for a single region, a region type, and each
processor. Change the tab settings.

34

CodeScape User Guide

Synchronize the cursors in a Source and Disassembly region

1) In the Source region:
» Right-click and click Synchronize Cursor.
-OR-
» On the Source region title bar clic%l
2) Inthe Disassembly region:
» Right-click and click Synchronize Cursor.
-OR-
» On the Disassembly region title bar cliZ|

The cursors for the Disassembly and Source regions are now synchronized. When you move the

cursor in the region with focus, the cursor in the synchronized region shows the corresponding line
of code.

NOTE: Youcanonlysynchronizeregionsthatareinthesamewindow
and are connected to the same target processor.

Goto an address

1) Do one of the following:
 Click Edit, then click Go To (CTRL+G).
-OR-
* Right-click, click Goto Address.

The Goto Address dialog box appears. (This dialog box works in the same way as the
Expression Evaluator.)

2) Enter an expression for the address to go to.
3) Click OK.

35

How windows and regions work

Go to a source file referenced in the program file

1) Right-click and click Goto Source File.
The List Files in Program File dialog box appears.

2) Select the required source file.
3) Click OK.

If the path is incorrect an error message appears in the Source region. Click Project, then click Edit
Source Path and enter the correct path for the source files.

NOTE: Code is not generated for data-only files, or if the -g
command is not set when compiling. If code is not generated an
error message appears.

Evaluate a specific expression

1) Select an expression in the region.
2) Right-click, click Evaluate...

Change the tab settings

1) Right-click, point to Properties then click Tab Width...
The Change Tab Size dialog box appears.

2) Enter a value for the number of spaces used to represent a tab.
3) Click OK.

Search in the Source region

1) Right-click in the Source region, click Tools, then click Find.
2) Type the Search string in tkénd whattext box.

3) To search for whole words and not parts of a larger word, seledttioch whole word
only check box.

4) If the search is case sensitive, selectMiagéch casecheck box.
5) Click OK.

The search will start from the current cursor position and continue until the end of the file.

NOTE: Right-click,thenclickFind nexttocontinue searchingfor
the same item.

36

CodeScape User Guide

The Disassembly region

In a Disassembly region there are commands for debugging your program at instruction level
(assembly code).

NOTE: Place the mouse pointer over a variable or expression to
quickly view its’ value.

Using the shortcut menu in a Disassembly region

The commands on the shortcut menu are for debugging in the region and configuring the disassembly
view. Right-click anywhere in the region to access the shortcut menu.

Copy in the Disassembly region

1) In the Disassembly region, select the text you want to copy by highlighting it.
2) Right-click, then click Copy.

The selection is copied, then pasted to the clipboard.

Lock the Disassembly region
You can lock the view origin to the PC, a register, or a memory location.

1) On the Disassembly region title bar clic® . The Goto Address dialog box appears.
2) In theExpressiortext box, enter a valid expression:
* Value of the PC to lock the view to the PC. Click OK.
-OR-
» Name of the register to lock the view to a register. Click OK.
-OR-
 In theExpressiortext box, enter the address of the memory location to lock
the view to a memory location. Click OK.

NOTE: To unlock the view origin, click e again.

37

How windows and regions work

Configuring the disassembly view

Right-click, then click: To show the:

Show Address Location address of the disassembled code.

Show Labels Symbolic label replacement of the disassembled
code.

Show Opcode Words Op-code in words for the disassembled region.

Show Hexadecimal Operand values in hexadecimal.

Show Uppercase Instructions in upper case.

Show Symbols Operand values as symbols.

Show EAs & Lits Effective address and literals.

Accessing the debugging commands in a Disassembly region

Right-click, then select:

Execution Run, stop, and restart your program. Run your
program to the cursor position, or until it
executes a specified address. Run all of your
program files simultaneously. Stop all of your
programs running simultaneously.Use the single
stepping commands, or run the step commands.

Breakpoints Toggleabreakpoint on or off. Enable, disable,
configure, reset, and remove breakpoints.

38

CodeScape User Guide

Setting the cursor and the display in a Disassembly region

Right-click, then click:

Set Cursor to PC Show the source code from the value of the PC.
Set PC to Cursor Change the PC at the current cursor position.
Goto Address... Enteran expression for the region origin to go

to.
Tools Search in the Disassembly region. Repeat the

last search run. Specify an address to
disassemble to a file.

Properties Configure fontsandcolors. Set the update rate
for a single region, a region type, and each
processor. Change the tab settings.

Synchronize the cursors in a Disassembly and Source region

1) In the Disassembly region:
» Right-click and click Synchronize Cursor.
-OR-
* On the Disassembly region title bar clicl
2) In the Source region:
» Right-click and click Synchronize Cursor.
-OR-
* On the Source region title bar clic%l
The cursors for the Disassembly and Source regions are now synchronized. When you move

the cursor in the region with focus, the cursor in the synchronized region will show the
corresponding line of code.

NOTE: Youcanonlysynchronizeregionsthatareinthe samewindow
and are connected to the same target processor.

39

How windows and regions work

Goto an address

1) Do one of the following:
« Click Edit, then click Go To (CTRL+G).
-OR-
 Right-click, click Goto Address.
The Goto Address dialog box appears.
2) Enter an expression for the address to go to.
3) Click OK.

Evaluate a specific expression

1) Select an expression in the region.
2) Right-click, click Evaluate...

Search in the Disassembly region

1) Right-click in the Disassembly region, point to Tools, then click Find.
2) Type the Search string in tNi¢hat am | searching fotext box.
3) Type the Start address in tBearch fromtext box.
4) If the search is case sensitive, selectGhee sensitiveheck box.
5) Select one of the following radio buttons:

» Length (the amount of data).

-OR-

* End Address.

6) Type the search item in the text box below.

7) Select one of the following radio buttons: All fields (default), Words, Opcode, OpSrc,
OpDest, or Label (address).

8) Click OK.

NOTE: Right-click then click Find next to continue searching for
the same item.

40

CodeScape User Guide

Specify an address to disassemble to a file

This general purpose dialog box is for writing a block of memory or disassembly in hexadecimal to

a file.

1)
2)
3)
4)

5)

Right-click in the Source region, point to Tools, then click Disassemble to File.
In theDestination Filenameext box, enter the name of the file to write to.
In theStart Addressext box, enter the start address in hexadecimal.
Do one of the following:

» Select Length and enter the length in hexadecimal.

-OR-

» Select End Address and enter the end address in hexadecimal.

Click OK.

41

How windows and regions work

The Call Stack region

Use the Call Stack region to view a list of active function calls. Viewing the Call Stack can help you
trace the course of function execution. When the target stops, for example if a breakpoint occurs,
CodeScape displays the name, label, or address of the current function at the top of the list in the
Call Stack region. Execution trace history is shown below the current function with its start point at
the bottom of the list.

To use the Call Stack to navigate to a specific function call in active Source, Disassembly, Watch,
and Local Watch regions:

» Double click on a function in the Call Stack region.
CodeScape highlights the function as it occurs in the active regions.

Using the shortcut menu in a Call Stack region

Right-click, then select: To click commands to:

Show Parameter Names Toggle thedisplay of the function parameteron
or off.

Show Parameter Types Toggle the display of the function parameter

types on or off.

Show Parameter Values Toggle the display of the function parameter
values on or off.

Show Parameter Registers Toggle the display of the function parameter
registers on or off.

Show Octal Display function values in octal.

Show Decimal Display function values in decimal.

Show Hexadecimal Display function values in hexadecimal.
Execution Run, stop, and restart your program. Run your

program until it executes a specified address.
Run all of your program files simultaneously.
Stop all of your programs running
simultaneously.Use the single stepping
commands, or run the step commands.

Breakpoints Toggleabreakpoint on or off. Enable, disable,
configure, reset, and remove breakpoints.

Properties Configurefontsand colors. Set the update rate
for a single region, a region type, and each
processor.

42

CodeScape User Guide

The Watch and Local Watch regions

The Watch and Local Watch regions display variables and expressions, one per row.

Each row has four columns, the expression appears in the third column and its value (if applicable)
appears in the fourth column. If the:

 First column contains a ‘.’ you can place a watch point on the expression.
» Second column contains a ‘+' you can expand the expression.
» Second column contains a ‘-’ you can collapse the expression.

In a Watch or Local Watch region, you can:

 Highlight changes in data values between execution steps.
« Edit the value of an expression in the Watch region and the Local Watch region.

NOTE: You can only edit the actual expression in a Watch region.

C++ name demangling in a Watch or Local Watch region

C++ name de-mangling is performed on all variable names. This means that you can enter the symbol
for a name as it appears in your original source. You can browse data to:

» Expand and collapse branches of the hierarchical view of the structure.
» See exactly where the structures are in memory.
 Edit the values of any variables.

All C types are supported including:

* structs

* unions

* arrays

e enumeration (enum)
« floats / double

43

How windows and regions work

Expanding expressions

When you expand an expression, each child expression is indented and shown directly below the
parent.

For example:

parent
child
child

Expressions are added to expanded:
 Pointers, to show the dereferenced item.

» Arrays. An expression is added for each element of the array.
 Structures. An expression is added for each member.

44

CodeScape User Guide

The Watch region

In the Watch region you can enter variables and expressions. The scope of variables in a Watch region
is global. If an expression goes out of scope during program execution, a message appears.

« If an expression’s value can be determined, as is the case for a static variable, its value is
shown in the region.

« If an expression’s value cannot be determined, no value is shown.

« If an expression comes back into scope, its value is shown.

Using the shortcut menu in a Watch region

Right-click, then select: To click commands to:

Cut Cut the current selection in the Editor file
and paste it to the clipboard.

Copy Copy the current selection in the Editor file
and paste it to the clipboard.

Paste Insert the contents of the clipboard at the
current cursor position.

Delete Delete part of a structure.

Open / Close Expand / collapse a structure or array.

Insert Insert a new watch expression.

Append Insert a variable at the end of the current
list.

Show Octal Display watch expressions in octal.

Show Decimal Display watch expressions in decimal.

Show Hexadecimal Display watch expressions in hexadecimal.

Edit Watch Value... Modify the value of a variable or watch
expression.

Execution Run, stop, and restart your program. Run your
program until it executes a specified address.
Run all of your program files simultaneously.
Stop all of your programs running
simultaneously.Use the single stepping
commands, or run the step commands.

45

How windows and regions work

Right-click, then select: To click commands to:

Breakpoints Toggleabreakpoint on or off. Enable, disable,
configure, reset, and remove breakpoints.

Highlight Changes See where in memory an expression changed.

Properties Configurefontsand colors. Set the update rate
for a single region, a region type, and each
processor.

Browsing data in a Watch region
Add a symbol or variable

In a Watch region do one of the following:

» Right-click, click Insert to add a symbol or variable at the current cursor position.
-OR-

» Right-click, click Append to add symbol or a variable at the end of the current list of
variables.
-OR-

» Press return to enter a new symbol or variable at the current cursor position.

Expand a structure or array

Select the structure or array you want to expand, then:

* Click on ‘+'.
-OR-
* Press SPACEBAR.
-OR-
* Right-click and click Open/Close.

Collapse a structure or array

Select the structure or array you want to collapse, then:

* Click on *-'.
-OR-
* Press SPACEBAR.
-OR-
» Right-click and click Open/Close.

46

CodeScape User Guide

Editing variables in a Watch region

Modify the value of a variable or watch expression

Do one of the following:

» Select the value to be changed. Press ENTER.
-OR-
* Press CTRL+ALT+E.

The Expression Evaluator dialog box appears. Enter a valid expression. Click OK.
Edit a variable’s data value (structure, array or union)

1) Double-click the value to be edited.
2) Edit the value.
3) Do one of the following:
* Press ENTER.
-OR-
» Press CTRL+ALT+E to display the Expression Evaluator dialog box.

To delete a parent expression and all child expressions:

1) Expand the structure or array.
2) Select the component you want to delete, then:
* Right click and click Delete.
-OR-
* Press DELETE.

NOTE: Ifyoudeleteaparentexpression,anychildexpressionsare
also removed from the region.

To delete a parent expression and move all child expressions up
one level:

1) Expand the structure or array.
2) Select the component you want to delete.
3) Press SHIFT+DELETE.

47

How windows and regions work

The Local Watch region

The Local Watch region automatically displays all local variables in view from the current position
of the PC (program counter). Variables are automatically added to the display when they are in the

scope of a function.

NOTE: Ifthereismorethanonevariableofthesamenameinscope,
all but the inner most variable of that name are shown in gray.

NOTE: Ifthere are two variables in the same scope with the same

name they are shown in italics.

Using the shortcut menu in a Local Watch region

Right-click, then select:

To click commands to:

Copy Copy the current selection in the Editor file
and paste it to the clipboard.

Delete Delete the current selection.

Open / Close Expand / collapse a structure or array.

Show Octal Display local watch expressions in octal.

Show Decimal Display local watch expressions in decimal.

Show Hexadecimal

Display local watch expressions in hexadecimal.

Edit Local Value

Modify the value of a variable or watch
expression.

Execution

Run, stop, and restart your program. Run your
program until it executes a specified address.
Run all of your program files simultaneously.
Stop all of your programs running
simultaneously.Use the single stepping
commands, or run the step commands.

Breakpoints

Toggleabreakpoint on or off. Enable, disable,
configure, reset, and remove breakpoints.

Highlight Changes

See where in memory an expression changed.

Properties

Configurefontsand colors. Setthe updaterate
for a single region, a region type, and each
processor.

48

CodeScape User Guide

Browsing data in Local Watch region
Expand a structure or array

Select the structure or array you want to expand, then:

» Click on ‘+'.
-OR-
* Press SPACEBAR.
-OR-
 Right-click and click Open/Close.

Collapse a structure or array

Select the structure or array you want to collapse, then:

* Click on ‘-".
-OR-
* Press SPACEBAR.
-OR-
* Right-click and click Open/Close.

Editing variables in a Local Watch region

Modify the value of a variable or watch expression

1) Do one of the following:

» Select the value to be changed. Press ENTER.

-OR-
e Press CTRL+ALT+E.
The Expression Evaluator dialog box appears.
2) Enter a valid expression.
3) Click OK.

49

How windows and regions work

To delete a parent expression and all child expressions:

1) Expand the structure or array.
2) Select the component you want to delete, then:
 Right click and click Delete.
-OR-
* Press DELETE.

NOTE: Ifyoudeleteaparentexpression,anychildexpressionsare
also removed from the region.

To delete a parent expression and move all child expressions up
one level:

1) Expand the structure or array.
2) Select the component you want to delete.
3) Press SHIFT+DELETE.

50

CodeScape User Guide

The Memory region

Use the Memory region to view the target's memory contents from a specific address. In a Memory
region you can view memory as ACSII characters, Bytes, Words, or Longs. Write protect an area of
memory to prevent memory contents changing in the current memory region.

NOTE: As you scroll through a Memory window the slider speed
increases. Click on the top (or bottom) of the slider to return
it to the centre position.

Using the shortcut menu in a Memory region

Right-click, then select: To click commands to:

Display Bytes Display memory as bytes.

Display Words Display memory as words.

Display Longs Display memory as longs.

Display Quadwords Display memory as quadwords.

Display ASCII Display the ASCII value for each byte memory.

Highlight Changes

See where the target's memory changed.

Set Bytes Per Line... Display a specific number of bytes per line.
Edit ASCII Change an ASCII value in the Memory region.
Edit Memory Value Change a value in the Memory region.

Follow Pointer

Follow a pointer in memory.

Goto Address... Set the origin.
Write Protect Toggle write protect.
Execution Run, stop, and restart your program. Run your

program to the cursor position, or until it
executes a specified address. Run all of your
program files simultaneously. Stop all of your
programs running simultaneously.Use the single
stepping commands, or run the step commands.

Breakpoints

Toggleabreakpoint on or off. Enable, disable,
configure, reset, and remove breakpoints.

51

How windows and regions work

Right-click, then select: To click commands to:

Tools Search for a patterninmemory. Repeat the last
search. Fill arange of memory with data. Write
a block of memory in hexadecimal to a file.

Properties Configurefontsand colors. Setthe updaterate
for a single region, a region type, and each
processor.

Viewing Memory
View Memory regions

Do one of the following:

 Click Region, point to Type and click Memory.
-OR-

* On the Region toolbar, cIicI .
-OR-
* In any region, CTRL+Right-click and click Memory.

Set the origin

1) Right-click and click Goto Address...
The Goto Address... dialog box appears.

2) Enter an address or symbol for the new origin.

3) If you enter an invalid symbol a warning appears with an command to invoke the
Origin dialog box.

4) Click OK.

NOTE: Theoriginisinitially settothe value ofthe PC.You can
also set the origin to an expression.

52

CodeScape User Guide

Always display memory from a specified address

1) Do one of the following:
* Click Edit, then click Go To... (CTRL+G).
-OR-
» Right-click and click Goto Address...
The Goto Address... dialog box appears.
2) Type or select a memory location or expression from the Expression list.

3) Select Lock, click OK.

Follow a pointer in memory

1) Select the memory location holding the value of the pointer.
2) Right-click and click Follow Pointer (CTRL+T).

The Memory region origin changes to display memory from the location specified by the
value of the pointer.

Write a block of memory in hexadecimal to file

1) Inthe Memory region, right click, point to Tools and then click Hex Dump to File. The
Hex Dump to File dialog box appears.

2) IntheDestination Filenaméext box, enter the name of the file to write to. In$iart
Addresdgext box, enter the start address in hexadecimal.

3) Then do one of the following:
» Select Length and enter the length of the memory block in hexadecimal.

-OR-
» Select End Address and enter the end address in hexadecimal.

4) Click OK.

The specified block of memory is written to a file.

53

How windows and regions work

Editing memory
Change values in the Memory region

1) In a Memory region, do one of the following:
» Use the + and - keys to increment or decrement the current value.
-OR-
» Double-click or press ENTER, then type over the existing byte, word, or long
value.
-OR-
 Right-click, click Edit memory value...
-OR-
* Press CTRL+ALT+E.
The Expression Evaluator dialog box appears.
2) Enter a valid expression.
3) Click OK.

NOTE: Make sure you enter valid values for the current radix.
CodeScape displays all Memory values in hexadecimal.

Filling memory with specific data
To fill a range of memory with a specific data:

1) In a Memory region, right-click and select Tools..., click Fill...
2) Enter a value in thEill Expressiontext box.
3) Enter a value in th8tart Addresgext box.
4) Select End address, or Length.
5) Enter a value in the text box below.
6) Select the Mode as Text (ASCII), Byte, Word, Long, or Quad.
7) Do one of the following:
» SelectConvert Native Endiarto show the real memory value.
-OR-
» DeseleciConvert Native Endiarto store memory as byte sequences.
8) Click OK.

54

CodeScape User Guide

Searching memory

To define and search an area of memory for a specified pattern of data:

1)
2)
3)

4)

5)

6)
7
8)
9)

In a Memory region, right-click and select Tools...
Click Find. The Find In Memory dialog box appears.

Enter a search string in thend Patterntext box.
In Binary, Octal, Decimal, and Hex modes the search pattern is delimited by either
commas or semi-colons (optional).

Enter a value in th8tart Addresgext box.
The default value is the start address of the region. If you have not run a search, the
address at the start of the current memory block is used.

Select End Address, or Length.
The default value for the end address is the last displayed byte in the Memory region.

Enter a value in the text box below.

Select the Width as either Byte, Word, or Long.

Select Forward or Reverse to specify the direction of the search.
Click OK.

NOTE: If a specified search is not valid, ‘Invalid Address’
appears in the field(s) that require editing.

NOTE: Ifamatchisfounditsaddressappears. Asearchskipsover
any sensitive areas such as invalid memory areas, write-only
memory, and memory reserved for the monitors.

55

How windows and regions work

Width

Width aligns the search pattern with the data in the target’s memory. This specifies how the search
pattern and the memory contents are compared. The allowable width depends on the search mode

selected.

Valid mode and width combinations

For this mode: Valid widths are:
Binary Binary, Word, Long
Decimal Byte

Hex Binary, Word, Long
Text N/A

These patterns are equivalent with Hex and Byte widths set:

FF,FF,FF,FF,34,DC
FF,FF;FF;FF;34,DC
FFFFFFFF34DC

The \ specifier

Use the \ specifier to include special characters in text searches.

NOTE: Always enclose a text search string in quotes.

Example

The pattern "How are you\?" searches for "How are you?"

56

CodeScape User Guide

The ? wildcard
The wild card character ‘?’ can be used in Binary and Hex modes. Use ‘?’ to specify a nibble in Hex

mode and a bit in Binary mode that always results in a successful match.

Example

In Hex mode:

FF?F matches FFOF,FF1F,FF2F,...,FFFF
In Binary mode:
????1111 matches 00001111,00011111,...,11111111

The @ wildcard
The wild card character, ‘@’, can be used in Text modes. Use ‘@’ to specify a double-byte character.
Automatic padding

The search pattern is automatically left-padded for the Binary, Decimal, and Hex modes. The
padding type is either ‘0’ or ‘?’ depending on the delimiter used.

57

How windows and regions work

Delimit with commas
Delimit a search pattern with commas (the default) to left-pad it with zeros. For example, in Hex
mode with Byte width:

FFFFFFFF34DC and FF,FF,FF,FF,34,DC do the same search.

The comma separator in is implied in the first search pattern. More examples, in Hex mode and Word
width, are:

f,87d,a automatically pads toOO0F,087D, 000A

f87da automatically pads toOO0F,87DA

, automatically pads to0000

NOTE: A single comma used on its own produces the pattern 0000.
Usethisfeature carefully. Forexample:,7 automatically padsto
0000,0007

Delimit with semi-colons

Delimit a search pattern with semi-colons to pad it with the ‘?’ wild card. Examples, in Hex mode
and Word width, are:

f;8d;a automatically pads to???F,?87D,???A
f;87da automatically pads to???F,87DA
; automatically pads to????

Equivalent search patterns

Use the comma and semi-colon delimiters to do the same search pattern in different ways. The
following patterns are the same when the Hex and Byte widths are set:

FF,FF,FF,FF,34,DC

FF,FF;FF;FF;34,DC

FFFFFFFF34DC
You can mix the comma and semi-colon delimiters to produce precise search patterns. For example,
in Hex mode and Long width: f;fOfOfofO, fffffff?,7; pads to:

58

CodeScape User Guide

The Register region

The Register region shows the contents of a processor’s register block and flags.

Using the shortcut menu in a Register region

Right-click, then select:

To click commands to:

Increment Register

Apply the current Increment Value (1 is the
default) to the contents of the register.

Decrement Register

Apply the current Decrement Value (1 is the
default) to the contents of the register.

Change Inc/Dec Value...

Change the Increment/Decrement Value.

Highlight Changes

See where changes occurred during the last

operation.

Write Protect To prevent data from being written to the
currently active Register region.

Edit Register Change the selected register value.

Column Format

Display registers in two, or four columns.
Select Auto to tell CodeScape to choose.

Show Banked Registers

Toggle the banked register display on or off.

Show Float Registers

Toggle the floating point register display on
or off.

Execution

Run, stop, and restart your program. Run your
program to the cursor position, or until it
executes a specified address. Run all of your
program files simultaneously. Stop all of your
programs running simultaneously.Use the single
stepping commands, or run the step commands.

Breakpoints

Toggleabreakpoint on or off. Enable, disable,
configure, reset, and remove breakpoints.

Tools Save the current Register Block. Restore the
last saved Register Block.
Properties Configurefontsand colors. Set the update rate

for a single region, a region type, and each
processor.

59

How windows and regions work

View the Registers region

Click Region, point to Type and click Register.

Change the display format

The registers are displayed in the available area by default. You can set the display to two or four

columns.
Display registers in two columns

Do one of the following:

* Right-click, point to Column Format, then click 2 Columns.
-OR-
* Press CTRL+2.

Display registers in four columns

Do one of the following:

* Right-click, point to Column Format, then click 4 Columns.
-OR-
* Press CTRL+4.

Display registers in the available area
Do one of the following:
» Right-click, point to Column Format, then click Auto Format.

-OR-
* Press CTRL+O0.

60

CodeScape User Guide

Edit register values
Change the value of a register

1) Move the insertion point to the register value you want to change.
2) Do one of the following:
» Use + or - to increment or decrement the current value.
-OR-
» Type the new value at the insertion point.
-OR-

» Double click a register, type a value or expression, press ENTER. The
Expression Evaluator dialog box appears.

-OR-
* Press CTRL+ALT-E to invoke the Expression Evaluator dialog box.

NOTE: Any alphanumeric characters are shown in upper case.

Change the Increment/Decrement Value

1) Right-click and click Change Inc/Dec Value...
The Register Increment/Decrement dialog box appears.

2) Type a value for the amount by which to increment or decrement a register. Click OK.

Write protect a register

1) Right-click in the region.
2) Then do one of the following:
« If Write protect is not selected, click Write Protect.
-OR-
« If Write protect is selected, exit the shortcut menu.

NOTE: Write protect only stops register values being changed in
the region that is write protected. If you create and edit new
Register regions, the changes appear in the write protected
region.

61

How windows and regions work

Enter an expression for the instruction at the current PC

1) Double-click the register value, then:
» Enter the expression. Press ENTER.
-OR-
 Right-click and click Edit Register... (CTRL+ALT+E).
The Register Evaluation dialog box appears.
2) Enter the expression.
3) Click OK.

NOTE: Ifyouenteraninvalidexpression,theRegisterEvaluation
dialog box appears showing the Invalid Register Expression.

Save the state of the registers

Right-click, point to Tools, then click Save Register.

NOTE: Theregisterstatesforeachtargetprocessorare savedone
at a time and cannot be stacked. The state of the registers is
stored internally to CodeScape, not in a file.

Retrieve the state of the registers

Right-click, point to Tools then click Restore Register.

62

CodeScape User Guide

Hitachi target processor register region display
General registers

The Register region shows the values of Hitachi's 16 general registers (Rn) numbered R0-R15.

RO works as a fixed source register or destination register in some instructions, and as an index
register in:

« Indirect indexed register addressing mode.

« Indirect indexed GBR addressing mode.

R14 works as the frame pointer during debugging.

R15works as a hardware stack pointer (SP) during exception processing.
Control registers

The Register region shows the values of the SR (Status Register), GBR (Global Base Register), and
VBR (Vector Base Register).

System registers

The Register region displays the MACH and MACL (high and low multiply and accumulate
registers), PR (Procedure Register), and PC (Program Counter). The MACH and MACL registers
store the results of multiply and accumulate operations. The PR stores a return address from a
subroutine procedure.

To change the value of a status register:

1) Move the insertion point to the register value you want to change.
2) Do one of the following:

» Use + or - to increment or decrement the current value.
-OR-
» Type the new value at the insertion point.
-OR-
» Press CTRL+ALT+E to invoke the Expression Evaluator dialog box.

NOTE: Any alphanumeric characters are shown in upper case.

63

How windows and regions work

To set the status register (SR, SSR, or FPSR) flags:

1) Move the insertion point to the flag you want to set.
2) Then:
» Press 1 set the current flag.
The bit's flag appears in upper-case.
-OR-
» Press 0 to clear the current flag.
The bit's flag appears in lower-case.

NOTE: Press SPACEBAR to toggle the status registers.

Flags shown in the Registers region after a Target Processor reset

This flag: Represents this value:

T bit The MOVT, CMP/cond, TAS, TST, BT (BT/S), BF (BF/S), SETT
and CLRT instructions use the T bit to show true (1) or

false (0).

The ADDV/C, SUBV/C, DIVOU/S, DIV1, NEGC, SHAR/L, SHLR/L,
ROTR/Land ROTCR/Linstructions also use the T bit to show
carry/borrow or overflow/underflow.

S bit Used by the multiply/accumulate instruction.

Bits2,3and10-31 Always reads as 0 and must be written as 0.
(Reserved bits.)

Bits 13-110 Interrupt mask bits.

M and Q bits Used by the DIVOU/S and DIV1 instructions.

64

CodeScape User Guide

SEA and DEA

The Register region shows the value of the SEA (Source Effective Address) and DEA (Destination
Effective Address). The SEA and DEA show the source effective address (read from) on the left-hand
side and the contents of that address (write to) on the right-hand side.

Highlight recently changed attributes

Recently changed attributes are shown briefly in red (default).

To use another color to highlight a changed attribute, do the following:

1)
2)
3)
4)
5)
6)

Click View, then click Properties.

Specify the Mode.

Select the Color tab.

In the Attribute region, select Highlight data changed.
In the Effects region, select a new Foreground color.
Click OK.

NOTE: You cannot highlight changed attributes by setting a
different Background color.

65

How windows and regions work

The Log region

The Log region automatically appears and displays all messages generated by the current target.

For example, you can use printf () in your code to output a message to the Log region when a
breakpoint triggers.

NOTE: Textstrings longer than 132 characters are truncated when
displayed in the Log region.

Using the shortcut menu in a Log region

Right-click, then select: To click commands to:

Configure Log... Configure the current Log window.

Print... Print the contents of the current Log window.

Save To File... Save the contents of the active Log window to
file.

Execution Run, stop, and restart your program. Run your

program to the cursor position, or until it
executes a specified address. Run all of your
program files simultaneously. Stop all of your
programs running simultaneously.Use the single
stepping commands, or run the step commands.

Breakpoints Toggleabreakpoint on or off. Enable, disable,
configure, reset, and remove breakpoints.

Reset Log Clear the contents of the Log window.

Properties Configure fontsand colors. Set the update rate
for a single region, a region type, and each
processor.

66

CodeScape User Guide

Print the log

1) Make the Log region active.
2) Do one of the following:
* Click File, then click Print (CTRL+P).
-OR-
* Right-click and click Print.

NOTE: CodeScape uses your Windows default printer. To specify a
differentprinteror printsettings, click File, then click Print
Setup...

Save the log

Right-click and click Save to File.

Clear the Log region

Right-click and click Reset Log.

Configure the Log region

1) Inthe Log region, right-click and click Configure Log.
The Log Window Settings dialog box appears.

2) Enter a name for the log. The name is used only to title the log region.
3) To set the Log Type, select:
» Any (default) to accept breakpoints and standard output.
-OR-
» Standard.
-OR-
» Breakpoint.

4) Drag the slider to set the size of the buffer. The buffer size can be in the range 10-1,000
lines. The default size is 255 lines.

67

How windows and regions work

The Edit region

The default editor is CodeScape’s Edit region where you can manage, edit, and print source files.

When you edit your source code the changes are displayed in the corresponding Source region when
the display is updated. A * appears in a Source region’s title bar if you edit your source code and do
not re-build the program file. Always save any changes that you make to a file edited in an external
editor before using the Make option to compile and build your project in CodeScape.

Any standard format errors and warnings are shown in the Project Build window. You can scroll
through the information as itis generated, or press F4 to move through any listed errors one at atime.
If you use:

» CodeScape’s Edit region it automatically opens your project file at the line containing the
first error or warning. You can then use the Project Build window to navigate to all
subsequent errors. If there is no active Edit region CodeScape creates one for you.

» An external editor, double-click an entry in the Project Build window to invoke the editor
and open the source file at the line containing the error or warning. Some external editors
do not support this option and will open without displaying the line at which the error
occurred.

NOTE: Before you edit a program file from a UNIX target, convert
it to a DOS readable format using a utility such as to_dos (use
to_unix to return the file to a UNIX format).

68

CodeScape User Guide

Using the shortcut menu in an Edit region

Right-click, then select:

To click commands to:

New Create a new Editor file.

Open... Open an existing Editor file.

Save Save the current Editor file.

Save As... Save the current Editor file with a specific
name.

Undo... Undo the last action.

Redo... Redo the last action.

Cut Cut the current selection in the Editor file
and paste it to the clipboard.

Copy Copy the current selection in the Editor file
and paste it to the clipboard.

Paste Insert the contents of the clipboard at the

current cursor position.

Toggle Boomark

Toggle the current bookmark on or off.

Tabs... Enter a new tab value.

Find... Search for a string.

Replace... Replace the current selection.

GoTo... Change the line number of the origin address.
Properties Configure fonts and colors in the region.

Syntax Highlighting

Turn syntax coloring on or off. Turn case
sensitivity on or off. Specify a color for any

or all of the following items in your code:
keywords, quotes, comments, default text, and
the background.

69

How windows and regions work

Opening and saving files
Open an existing file

1) Right-click and click Open.
The File Open dialog box appears.

2) Select the required file. Click Open.
Open a new file

» Right-click and click New.
Save afile

» Right-click and click Save.

NOTE: If you use the save command for an un-named file, the File
Save As dialog box appears.

Save a file with a new name

1) Right-click and click Save As.
The File Save As dialog box appears.

2) Enter a new name for the file. Click Save.

70

CodeScape User Guide

Search and replace

Perform searches

1) Move the insertion point to where you want to start searching from.
2) Do one of the following:

* Click Edit, then click Find...
-OR-
* Right-click, click Find...
The Find dialog box appears.

3) Inthe Find What text box, enter the search string.
4) In the Direction field, select Up, or Down.
5) Select any of the following options:

» Match Case to find only strings that match the case of the characters in your
search string exactly.

» Regular expression if you entered a regular expression in the Find What text
box.

» Wrap around search to continue searching after the end of the document has
been reached.

6) Do one of the following:

« Click Find Next to continue searching without replacing a found item.
-OR-

» Click Mark All to add a bookmark to all lines containing your search string.

71

How windows and regions work

Search for and replace a string

1) Move the insertion point to where you want to start replacing from.
2) Do one of the following:

« Click Edit, then click Replace...
-OR-
 Right-click, click Replace...

The Replace dialog box appears.

3) Inthe Find What text box, enter the search string.
4) In the Replace With text box, enter the new string.
5) In the Direction field, select Up, or Down.

6) Select any of the following options:

Match Case to find only strings that match the case of the characters in your search string

exactly.

» Regular expression if you entered a regular expression in the Find What text
box.

» Wrap around search to continue searching after the end of the document has
been reached.

7) Do one of the following:

* Click Find Next to continue searching without replacing a found item.

-OR-

» Click Replace to replace the first instance of your search string.

-OR-

» Click Replace All to replace all instances of your search string.

72

CodeScape User Guide

Cutting and pasting text
Move text

1) Select the text that you want to move by highlighting it.

2) Click Edit, then click Cut (CTRL+X).

3) Putinsertion point where you want to paste the information.
4) Click Edit, then click Paste (CTRL+V).

The text is removed from the original location and appears in its new location.
Copy text

1) Select the text you want to copy by highlighting it.

2) Click Edit, then click Copy (CTRL+C).

3) Putinsertion point where you want to paste the information.
4) Click Edit, then click Paste (CTRL+V).

The information is copied from its original location and appears in its new location.

73

How windows and regions work

Using bookmarks

You can set bookmarks to mark frequently accessed lines in your source file. Bookmarks are
removed when the file containing them is closed or reloaded. Bookmarks store only the current line,
not the column offset of the cursor. When a line containing a bookmark is deleted, the bookmark is
also removed.

To set a bookmark:

1) Move the insertion point to the line where you want to set a bookmark.

2) Right-click, then click Toggle Bookmark.
An indicator appears in the margin next to the text.

To set a bookmark at all lines that contain a specific string:

1) Right-click, then click Find.
2) Inthe Find What text box, enter the search string.

3) Click Mark All.
An indicator appears in the margin of each line that contains the specified string.

To remove a bookmark:

1) Move the insertion point to the line containing the bookmark you want to remove.

2) Right-click, then click Toggle Bookmark.
The indicator disappears from the margin next to the text.

74

Interacting with target
processors

In the File menu are the commands for: working with target processors, adding files to a project,
restarting programs, and saving projects.

NOTE: If you load a session file on a target that is different
from the type it was created on, CodeScape loads the session
without loading the program file.

You cannot add or remove targets during a session.

75

Interacting with target processors

Connecting to a target processor

Initialize a target

When you run CodeScape it automatically connects to all detected targets (and prompts you to load
the monitor if necessary).

Reset a target

You may be prompted to reset the target. If this occurs, do a soft reset. This restores the state of the
target and re-initializes the monitors.

NOTE: You may be prompted to reload the Program File after
resetting the target.

To do a Soft Reset:

* Click File, point to Reset, then click Soft Reset.
-OR-
« In the Target window, right-click and point to Reset Target then click Soft Reset.

If a Soft Reset fails, you will be prompted to do a Hard Reset. This will reset the target and reload
the monitors. You will be prompted to reload your project after a Hard Reset.

To do a hard reset:

 Click File, point to Reset, then click Hard Reset.
-OR-
« In the Target window, point to Reset Target, then click Hard Reset.

NOTE: You will be prompted to reload the monitor after a Hard
Reset.

76

CodeScape User Guide

Set the processor update rate

Set the processor update rate to tell CodeScape when to update information to the target.

If the update rate interrupts the target causing jitter in your program:

1) On the Processor Combo toolbar cIEl
The Processor Update Rate dialog box appears.

2) Select the Target that you want to set the update rate for.
3) Select the Processor on which your program is loaded.
4) Do one of the following:
» Set the slider to Min.
-OR-
» Select Disable updates to this processor, to stop all region displays from
updating.
5) Click OK.

NOTE: When you set this option it automatically overrides the
region update rate set in the Region Configuration dialog box.

77

Interacting with target processors

Add files to a project

Load a program file

1

2)
3)
4)

5)
6)

7

8)

Do one of the following:
* Click File, then click Load Program File (CTRL+SHIFT+C).
-OR-
* In the Target window, right click and point to Load Program File...
The Load Program File dialog box appears.
Select the Target from tH@rgetlist box.
Select the Processor from tReocessotist box.
In the Program File text box, do one of the following:
* Click browse to select a file.
-OR-
» Type the path and file name in tReogram Filetext box.

In theLoad Optiongext box, select one of the following radio buttons: Load Binary
Only, Load Symbols/Debug only, or Load Both Binary and Symbols/Debug.

Select Reset Options to specify the options you want to use for re-loading the program
file on the target. The default is Reset Enabled, Soft Reset.

Select Enable Run Options (disabled by default) then select:
* Run, to run the specified program file when it is loaded.
-OR-

* Run to and enter an address or expression to run to, when the program file is
loaded.

Click OK.

78

CodeScape User Guide

Saving and loading binary
Move large blocks of data in and out of memory

Use Save binary and Load binary to move large blocks of data in and out of memory. This is useful
for loading and saving bitmaps, or processor specific code to a selected area of memory.

1) Do one of the following:
* Click File, then click Load binary.
-OR-
* Click File, then click Save binary.
The Write Binary to Memory dialog box appears.
2) Enter the Source file name.
3) Specify the start address.
4) Do one of the following:
» Select End, then in the text box below, specify the end address.
-OR-
» Select Length, then in the text box below, specify the length of the address.
5) Click OK.

NOTE: You cannot write Binary to sensitive areas of memory such
asinvalidmemoryareas,read-onlymemory,andmemoryreservedfor
the monitors. If asensitive area of memory is within a specified
range,amessageappears promptingyouthatthe areaof memorywas
skipped.

79

Interacting with target processors

Load the binary part of a program file

1)

2)
3)
4)
5)
6)

Do one of the following:
* Click File, then click Load Program File... (CTRL+SHIFT+C).
-OR-
* In the Target window, right click and point to Load Program File...
The Load Program File dialog box appears.
Select the Target from tH@rgetlist box.
Select the Processor from tReocessottext box.
Enter the location of the program file in tReopgram Filetext box.
Click Load Binary Only.
Click OK.

Load the symbolic debugging information part of a program file

1

2)
3)

4)
5)

Do one of the following:
* Click File, then click Load Program File (CTRL+SHIFT+C).
-OR-
« In the Target window, right click and point to Load Program File...
The Load Program File dialog box appears.
Select the Target from tH@rgetlist box.
Do one of the following:

» Select the Processor from the Processor list box. Type the name and path of
the program file in th®rogram Filetext box.

-OR-
» Click Browse and find the required file.
Click Load Symbolic Debugging information Only.
Click OK.

80

CodeScape User Guide

Restarting a program

Restart loads the binary part of the current program file and resets the PC to the entry point (if
known). If the program file's last modification time has changed, symbolic information is loaded.

Load the binary part of the current program file

Click Debug, point to Execution then click Restart (CTRL+SHIFT+R).
-OR-

In the Target window, right-click and point to Execution, then click Restart.
-OR-

On the Debug toolbar, cIicEl .
-OR-
Right-click in any region, click Execution, then click Restart.

81

Interacting with target processors

82

Working with sessions

The commands for working with sessions are on the File menu.

CodeScape automatically saves the following debug information when you save a session:

» The configuration of Windows and Regions.

» The Project build information.

» The path for locating source files.

» The directory that contains CodeScape’s source files.
» Which program files to load on each target processor.
* Any breakpoints that have been set.

NOTE: The next time that you open the session CodeScape will
automatically load this information for you.

NOTE: If you load a session file on a target that is different
from the type it was created on, CodeScape loads the session
without loading the program file.

NOTE: You cannot add or remove targets during a session.

83

Working with sessions

File menu commands

To open a new session:

1)

2)
3)

Click File, Session New.
The New dialog box appears.

Enter a file name using the extension. SSN.
Click OK.

To open an existing session:

1)

2)
3)
4)

Click File, Session Open...
The Open dialog box appears.

Select a location in tHeook intext box.
Select a file in th&ile nametext box.
Click OK.

NOTE: If you open a new session you must load a program file.

To save a session:

» Click File, Session Save.

To save a session with a new name:

1)

2)
3)
4)

Click File, Session Save As...
The Save As dialog box appears.

Enter a location the in tHgave Intext box.
Enter a new Session file name in thke nametext box.
Click OK.

To close a session:

» Click File, Session Close.

NOTE: You may be prompted to save the current session before
CodeScape opens a new session.

84

CodeScape User Guide

Recently used files list

The File menu displays a list of recently used session files.

To open a recent session file:

1) Click File.
2) Click the Session that you want to open from the list.

NOTE: You cannot hide this list or change the number of files
displayed.

To exit CodeScape:

» Click File, Exit.

When you exit CodeScape, it prompts you to save the following debug information:

» The configuration of Windows and Regions.

» The Project build information.

The path for locating source files.

» The directory that contains CodeScape’s source files.
» Which program files to load on each target processor.
» Any breakpoints that have been set.

NOTE: The nexttime that you open the session CodeScape can load
this information for you.

85

Working with sessions

86

Working with projects

Use the Project menu to configure, make, and build your project.

The commands on the Project menu let you set up the following:

» A project build environment.

» An editor.

The path for locating source files.

» A directory for CodeScape’s source files.
The fileserver refresh rate.

NOTE: CodeScapeusesaprojectfile(forGNU.Cthisisamakefile)
to link compiled source files when you build your project.

87

Working with projects

Setting up a project build environment

To configure a project, specify the project build utility that you want to use, then provide it with a
command line, a filename, and an environment file.

To configure, make, and build a project:

1) Click Project, then click Setup Project.

2)

3)
4)
5)

6)
7

Do one of the following:

» Type the project’s name and path location in the Project File text box. (For
example, makefile.)

-OR-

» Select a recent project from the Project File list. (For example, makefile.)
-OR-

 Click Browse, then search for a project file. (For example, makefile.)

Enter the project build utility’s name and path location in the Program Build text box.
(For example, make, or SNASMSH2.)

Type any command line parameters that should be passed to the make command in the
Command Line Modifiers text box. (For example, -f for GNU make.)

Enter the project environment file’'s name and path location in the Environment File
text box. This may be the same directory as the program build file.

Click OK to accept the project build environment.
Make the project current and build it in one of the following ways:

* Click Project, then click Make.
-OR-

» On the Project Build window, right-click, click Make.
-OR-

* Press CTRL+M.

The Project Build window appears and automatically displays the specified build utility’s output
about the build. Any standard format errors and warnings are shown in the Project Build window.

If a build error occurs, double-click an entry to invoke the editor and open the source file at the line
containing the error or warning. To advance to the next error or warning press F4. Some external
editors do not support this option and will open without displaying the line at which the error

occurred.

88

CodeScape User Guide

The environment file
To create an environment file:

1) Start an MS-DOS window and create the environment that you require to run the
project build file that may use, for example, Hitachi C, GNU C, or SNASMSH2.
2) Create a file that contains the environment strings required by the project build file.

For example, to create a file that contains the environment strings required to run the
Hitachi tools, type set>hitachi.env

The variables you can set for GNU C

Use the variable: To specify:

TMPDIR the directory to use for
temporary files.

GCC_EXEC_PREFIX a prefix to use in the
names of the subprograms
executed by the compiler.

COMPILER_PATH path of the compiler.

LIBRARY_PATH the path of the library.

C_INCLUDE_PATHCPLUS_INCLUDE_PATHOBJC_INCLUDE_PATH

DEPENDENCIES_OUTPUT how to output
dependencies for the
makefile.

89

Working with projects

To make, and build a project:

Make the project current and build it in one of the following ways:

* Click Project, then click Make.
-OR-

» On the Project Build window, right-click, click Make.
-OR-

* Press CTRL+M.

The Project Build window appears and automatically displays the specified build utility’s output
about the build. Any standard format errors and warnings are shown in the Project Build window. If
a build error occurs, double-click an entry to invoke the editor and open the source file at the line
containing the error or warning.

NOTE: The Target and Project Build windows can be docked at the
top and bottom of the main window, or left free floating.

90

CodeScape User Guide

Setting up an editor

The default editor is CodeScape’s Edit region where you can edit existing files and create new ones,
but you can configure CodeScape to use an external editor.

CodeScape supports the following external editors: Notepad, MS-DOS Editor, Multi-Edit for
Windows, Multi-Edit for DOS, Codewright, Brief, and Vi for MS-DOS/UNIX. You can add and
remove editors in this list.

When you select a default external editor, CodeScape displays the following:

» The manufacturer’'s default installation path location in the Editor Path text box.

» The command to invoke the editor in the Editor Command text box.

» The editor's command line parameter to go to a line. For example, if you select Multi Edit
for Windows, %f /L%I appears in the Editor Arguments text box.

When you open a file in the editor, CodeScape replaces %f with the file's name, and %l with the first
line of that file. (Older versions of CodeScape use xxxxx instead of %l to represent the first line of a
file.)

If a build error occurs when you make and build your project, CodeScape replaces %l with the line
number containing the error or warning and displays it in the Project Build window. You can scroll
through the information as it is generated, or press F4 to move through any listed errors one at a time.

If the editor you select does not support this option, leave this field blank.

NOTE: Toremove an editor: in Editor Name list select the editor
thatyouwanttoremove, clickRemove. Toeditthe string, without
removing the editor from the list, press Delete.

91

Working with projects

Setting up an external editor

1) Click Project, then click Setup Editor.

2) Enter the name of the editor in the Editor Name list.

3) Enter the editor’s path location in the Editor Path text box.

4) Enter the command followed to invoke the editor in the Editor Command text box.

5) Enter %f, then the editor's command line parameter to go to a line, then %l in the
Editor Arguments text box.
When you open a file in the editor, CodeScape replaces %f with the file's name, and
%I with the first line of that file. (Older versions of CodeScape use xxxxx instead of
%I to represent the first line of a file.)
If a build error occurs when you make and build your project, CodeScape replaces %l
with the line number containing the error or warning and displays it in the Project
Build window. If the editor you select does not support this option, leave this field
blank.

6) Do one of the following:

« If you selected a Windows based editor, select the Editor Is Windows Based
check box.

-OR-
« If you selected an MS-DOS editor, clear the Editor Is Windows Based check
box.
7) Click OK.

If you have set up a new editor, CodeScape automatically adds it to the Editor Name
list when you click OK.

NOTE: Toremove an editor: in Editor Name list select the editor
thatyouwanttoremove, clickRemove. Toeditthestring, without
removing the editor from the list, press Delete.

NOTE: Alwayssavefileseditedinan external editor beforeusing
CodeScape’s Make option to compile and build your project in
CodeScape.

92

CodeScape User Guide

Setting up the project commands

Set the path for locating source files

In the Source File Search Path dialog you can: set, change, or remove a directory path name for
CodeScape to look for your program’s project files.

1) Click Project, then click Edit Source Path...
The Source File Search Path dialog box appears.
2 Do one of the following:
» Type in the Path of the Source files.
-OR-
 Click Browse and select the required directory.
2) Click Add.

Remove a path from the Source File Search Path

1) Click Project, then click Edit Source Path...
The Source File Search Path dialog box appears.

2) Do one of the following:
» Type in the path of the Source files.
-OR-
 Click Browse and select the required directory.
3) Click Remove.

93

Working with projects

Set a directory for CodeScape’s source files

Set or change relative path name of the default directory for your fileserver based operations in the
Set fileserver directory dialog box. (This can be the same as the directory you set in Source File
Search Paths.)

Do the following:

1) Click Project, then click Set FileServer Root Directory.
2) Enter the Path of the default directory that you wish to use for fileserver operations.
3) Click OK.

NOTE: Ifthedisplayupdaterateinterruptsthetargetwhenitis
loading information to the fileserver directory on you computer,
click Project then select Enable Fileserver Optimization.

NOTE: Any configuration commands you set are saved in a session
file when you exit including software breakpoints and watches,
and program update rates.

Enable fileserver refresh rate optimization
If the display update rate interrupts the target when it is loading information to the fileserver
directory on you computer, click Project then tiekable Fileserver Optimization

This disables updates to the display while data is being transferred from the target to your computer.
This is useful if, for example, if you are loading a large bitmap from the target to the fileserver
directory on your computer.

NOTE: You can toggle this option on or off.

94

Debugging

Debugging operations are:

» Tracing through your program code.

» Checking variables and structures.

» Adding and configuring breakpoints to control program execution.

» Simulating a target’'s processor operations to optimize tight assembler loops in your
program.

 Profiling the run-time behavior of a program file to find out where it spends its time, and
how functions are called when it executes. You can use information generated by the
Profiler to identify any inefficient sections of code.

NOTE: Before you edit a program file from a UNIX target, convert
it to a DOS readable format using a utility such as to_dos (use
to_unix to return the file to a UNIX format).

NOTE: Thetoolbarsprovideaccesstothemaindebuggingfunctions.
Use the Toolbar Configuration check box to show or hide toolbars.

95

Debugging

Running and stopping programs
Run a program

1) In the Target region, select the processor where your program is loaded.
2) Do one of the following:
* Click Debug, then click Run (F9).
-OR-
 Right-click, point to Execution then click Run.
-OR-
* On the Debug toolbar, cIicEl .

NOTE: Programexecutionwillrununtilyoustopit,orifanerror
occurs.

NOTE: Whenyourprogramisrunningyou canstopitby pressing F9.

Run all processors simultaneously

Do one of the following:

 Click Debug, point to Execution then click Run All (CTRL+F9).
-OR-

» Right-click, point to Execution then click Run All.
-OR-

- On the Debug toolbar, clicl®| .

NOTE: Programexecutionwill stopatabreakpoint,orifanerror
occurs.

96

CodeScape User Guide

Run a program to the cursor position

In an active Source or Disassembly region, do one of the following:

 Click Debug, point to Execution then click Run to Cursor (ALT+F9).
-OR-

 Right-click, point to Execution then click Run to Cursor.
-OR-

» On the Debug toolbar, cIicil .

You can add breakpoints using Run to Cursor at any time during program execution, program
execution stops when a breakpoint is encountered. Program execution will stop at the cursor position,
or at a breakpoint, or if an error occurs.

Run a program until it executes a specified address

1) Do one of the following:
 Click Debug, point to Execution then click Run to Address (SHIFT+F9).
-OR-
» Right-click, point to Execution then click Run to Address.
-OR-
* On the Debug toolbar, clicﬂl .

2) Type an address in & pressiortext box of the Run to Address/Instructions dialog
box.

3) Click OK.

The address is the name of a function or, an expression that resolves to an address.

You can add breakpoints using Run to Address at any time during program execution, program
execution stops when a breakpoint is encountered. Program execution will stop at the specified
address, or at a breakpoint or if an error occurs.

97

Debugging

Stop a program
To stop a program running, in the Target region, select the processor on which your program is

loaded, then do one of the following:

» Right-click in the Target window, point to Execution then right-click then click Stop.
-OR-

* On the Debug toolbar, cIi .
-OR-

 Click Debug, point to Execution then click Stop.
-OR-

* Press F9.

NOTE: The processor will stop immediately.

Stop all programs simultaneously

To stop all programs running simultaneously, do one of the following:

» Right-click in the Target window, point to Execution then, click Stop All.
-OR-

« On the Debug toolbar, clic&l .
-OR-
 Click Debug, point to Execution then click Stop All.

NOTE: All processors will stop immediately.

98

CodeScape User Guide

Stepping into (tracing) code

Trace functions are available either on the debug toolbar or on shortcut keys.

You can choose either source level tracing in an active Source region, or instruction level in an active
Disassembly region. If you trace without a Source or Disassembly region open, tracing acts as if a
Disassembly region is open.

NOTE: You can trace a program at any time while debugging. All
trace operations immediately stop program execution.

NOTE: All trace operations can be interrupted by breakpoints.

Single step a line of source code

Do one of the following:

 Click Debug, then click Step (F7).
-OR-
» On the Debug toolbar cIicEl .
In an active Disassembly region (or any non-source region), the target executes the instruction at the
PC.

In an active Source region, the target executes the instruction at the PC. It stops when all low-level
assembly instructions generated by the single source instruction have been executed. This includes:

 All instructions for a source macro instruction.
» Any C instructions that generate several assembler instructions.

Subsequent source lines (called by the current source line) may be in a different function or file, as
determined by the execution flow.

NOTE: Execution trace history is generated when single stepping.

NOTE: Atrapinstructionistreatedasasubroutine(aBSRorJSR).
Trap 32 is reserved by CodeScape and treated as a single
instruction. Use Forced Step Into to step into the trap 32
routine. Stepping into trap 32 may cause the monitor to fail.

99

Debugging

Animate Step Run

Select Animate Step Run (default) to update all regions as each instruction executes.

 Click Debug, then click Animate Step Run.

CodeScape will trace instructions and display updated information in the active window until a
breakpoint occurs, or until another command is issued, for example start/stop.

Step Run Until...

1) Do one of the following:
 Click Debug, then click Step Run Until...
-OR-
» On the Debug toolbar cIicLlf_l .
2) Enter an expression to run to in the Expression Evaluator.

CodeScape will trace instructions and display updated information in the active window
until a breakpoint occurs, or until another command is issued, for example start/stop.

NOTE: If the expression evaluates to a zero result, tracing
continues.

Force step a line of source code at the disassembly level

Do one of the following:

 Click Debug, then click Forced Step Into (SHIFT+F7).
-OR-

* On the Debug toolbar cIicEl .

In a Disassembly region, Forced Step Into causes individual assembly instructions to be traced one
at a time where this is normally not allowed, for example stepping into a trap 32.

In a Source region, the target executes the instruction at the PC with the current register values then
stops at each individually generated assembler instruction. Each individual assembler instruction is
traced using the disassembly-level Single Step instead of the source-level Single Step.

Step into mechanism, that is a Trap, Line-A, Line-F, or subroutine is entered and program execution
halted inside. In the case of a single source instruction generating many assembly instructions you
will need to press SHIFT+F7 several times on the source instruction before progressing to the next
source instruction.

100

CodeScape User Guide

Undo a step

 Click Debug, then click Unstep (CTRL+F7).
-OR-

» On the Debug toolbar cIicL‘El)

CodeScape keeps a history of trace actions. Trace history is built-up and discarded automatically.

When you Unstep, only the current state of the processor and memory contents are untraced. You can
Unstep:

* Instructions that are executed as a series of individual disassembly instructions.
» Traces in Source and Disassembly regions as long as there is a trace history left.

NOTE: Youcannotuse Unstep ifblocks of instructions are stepped
over.

NOTE: Wherecodeis steppedover, alltrace history tothis point
is lost.

101

Debugging

Stepping over code

Execution trace history is generated when stepping over. This is useful when you need to undo a step
operation. Step Over performs a single step if Step Over is not relevant in the current context.

Step over a line of source code

Do one of the following:

 Click Debug, then click Step Over (F8).
-OR-

* On the Debug toolbar cIicEl .

In disassembled code, the target executes the instruction at the PC then stops. A Trap, JSR or BSR
is treated as a single instruction and program execution halted on the next instruction in memory
when the routine is complete.

In source code, the target executes the instruction at the PC then stops when the source file reference
has changed. When stepping over a function call, the entire function is executed. Execution is halted
on the next source line.

NOTE: You cannot step over conditional branches.
NOTE: Execution trace history is generated when stepping over.

Stepping in and out of code

Use Step Run In to run to then stop at the start of each successively nested function calls. Use Step
Run Out to run to and stop after each successively nested function call has completed.

Step Run In

» Click Debug, then click Step Run In (SHIFT+F7).
-OR-

» Right-click in a region, click Execution, then click Step Run In.
-OR-

* On the Debug toolbar cIicEl .

CodeScape will run to the start of the next function and then stop.

102

CodeScape User Guide

Step Run Out

 Click Debug, then click Step Run Out (SHIFT+F8).
-OR-

 Right-click in a region, click Execution, then click Step Run Out.
-OR-

» On the Debug toolbar cIicEl .

CodeScape will run to the end of the current function and then stop.

Interrupting program execution
Stop a program running

Do one of the following:

* In the Target window, right-click and click Stop.
-OR-

» On the Debug toolbar, clic®l
-OR-
» Press F9.

NOTE: All trace operations immediately stop program execution.

103

Debugging

Breakpoints

CodeScape has extensive software and hardware debugging features including breaking on data
accesses within memory ranges and on external peripheral access.

NOTE: All breakpoint operations can be performed at any time
through the Configure breakpoint(s) dialog box.

Adding breakpoints

You can add a breakpoint in Source, Disassembly, Memory, and Watch regions. You can add
breakpoints at any time during program execution. Program execution stops when a breakpoint
occurs. Add breakpoints using the menus, shortcut menus, or toolbars.

To add a code breakpoint:

1) Right-click, click Goto Address.
2) On the Breakpoint toolbar, cIicﬂl to set a breakpoint.

3) Right-click, click Execution, click Run. Your program will run until the breakpoint
occurs.

NOTE: You can set a maximum of two Hardware breakpoints for each
SH2 processor on a Sega Saturn target.

104

CodeScape User Guide

Add a breakpoint at the current cursor position

In a Source or Disassembly region you can add code breakpoints. In a Watch or Memory region you
can add data breakpoints.

In any region, place the cursor in the required position then:

 Click Debug, then point to Breakpoints then click Toggle Breakpoint (F5).
-OR-

 Right-click, point to Breakpoints then click Toggle Breakpoint.
-OR-

» On the Breakpoint toolbar, clicﬂl .

When a breakpointis set and enabled in a Source or Disassembly region, the breakpoin'ﬂlat icon,

appears in the first column. When a breakpoint is disabled, the breakpoint disablﬁlicon, , appears
in the first column.

When a watched variable is visible in the Watch region, the watched variable icon appears. In a
Memory region the background color of the specified address changes.

A breakpoint is set with the following default behavior:

» Code breakpoint execution is halted once it has been triggered and no other action, such
as logging, is performed. Code breakpoints are implemented in hardware if a ROM
address is encountered or software otherwise.

» Watch breakpoints are triggered by any read or write data access to hardware. A message
appears when the breakpoint has been triggered and all conditions have been met by
default.

All breakpoint locations are tested to make sure that they are placed and configured correctly. If a
problem is found a message appears prompting you to re-configure the breakpoint.

NOTE: To change the default behavior of a breakpoint see To
Configure a Breakpoint.

NOTE: Youcanaddabreakpointonlytoalinethatgeneratescode.
(Shownbya“."in column one of a Source region or Watch region,
or at any point in the Disassembly region.)

105

Debugging

Removing breakpoints

In any region, place the cursor on the required breakpoint then:

 Click Debug, point to Breakpoints then click Toggle Breakpoint (F5).
-OR-

» Right-click, point to Breakpoints then click Toggle Breakpoint.
-OR-

» On the Breakpoint toolbar, clicﬂl .
-OR-

« In the Configure breakpoint(s) dialog box (CTRL+F5), select the breakpoint that you
want to disable then click Remove.

The breakpoint set icoL‘,@l , Will disappear from the code window.
Remove all breakpoints

In any region, place the cursor on the required breakpoint then:

 Click Debug, point to Breakpoints then click Remove all Breakpoints (SHIFT+F5).
-OR-

» On the Breakpoint toolbar, clicﬁl .
-OR-

» Right-click, point to Breakpoints then click Remove all Breakpoints.
-OR-

* In the Configure breakpoint(s) dialog box , click Remove All (CTRL+F5).

106

CodeScape User Guide

Enabling and disabling breakpoints
Enable a disabled breakpoint
In any region, place the cursor on the required breakpoint then:

Click Debug, point to Breakpoints then click Enable Breakpoint.
-OR-
 Right-click, point to Breakpoints then click Enable Breakpoint.
-OR-

» On the Breakpoint toolbar, clicﬁl .
-OR-

* In the Configure breakpoint(s) dialog box (CTRL+F5), click Code Settings and select
Breakpoint Enabled.

The breakpoint set icon will change frcﬁl ﬂl to show that the breakpoint is enabled.
Disable an enabled breakpoint

In any region, place the cursor on the required breakpoint then:

» Click Debug, point to Breakpoints then click Disable Breakpoint.
-OR-

 Right-click, point to Breakpoints then click Disable Breakpoint.
-OR-

» On the Breakpoint toolbar, clicﬁl .
-OR-

* In the Configure breakpoint(s) dialog box (CTRL+F5), click Code Settings and clear
Breakpoint is Enabled.

The breakpoint set icon will change frcﬂl ﬁl to show that the breakpoint is disabled.

107

Debugging

Enable all breakpoints

Do one of the following:

 Click Debug, point to Breakpoints then click Enable all Breakpoints
(CTRL+SHIFT+F5).
-OR-

» Right-click, point to Breakpoints then click Enable all Breakpoints.
-OR-

» On the Breakpoint toolbar, clic@l .
Disable all breakpoints

Do one of the following:

 Click Debug, point to Breakpoints then click Disable all Breakpoints (CTRL+ALT+F5).
-OR-

» Right-click, point to Breakpoints then click Disable all Breakpoints.
-OR-

» On the Breakpoint toolbar, clicﬁl .

108

CodeScape User Guide

Resetting breakpoints
Reset all breakpoints

Do one of the following:
» Click Debug, point to Breakpoints then click Reset all Breakpoints (ALT+F5).
-OR-
 Right-click, point to Breakpoints then click Reset all Breakpoints.
-OR-

» On the Breakpoint toolbar, clicﬂl .

NOTE: Resetting all breakpoints sets all conditional values,
including the current count, to their starting conditions.

Reset the trigger count for a breakpoint
* In the Configure breakpoint(s) dialog box select the breakpoint, click Reset.
Reset only the current value of the count for a breakpoint

« Inthe Configure breakpoint(s) dialog box select the breakpoint, click General Conditions
and click Reset Current.

109

Debugging

Configuring breakpoints

CodeScape enables breakpoint configuration including data accesses within memory ranges and
breakpoints on external peripheral devices.

To configure a breakpoint:

 Click Debug, point to Breakpoints then click Configure Breakpoint(s)... (CTRL+F5).
-OR-

» Right-click, point to Breakpoints then click Configure Breakpoint(s)...
-OR-

» On the Breakpoint toolbar, clicil .

NOTE: Youcanaddabreakpointandconfigureitmanuallyusingthe
Configure breakpoint(s) dialog box.

NOTE: Watch breakpoints trigger on data access, and code
breakpointstriggeronthe fetch-execute phaseoftheinstruction
cycle.

The Configure breakpoint(s) dialog box

In the Configure breakpoint(s) dialog box you can:

» Add, remove, and configure code and watch breakpoints.

» Enable or disable a breakpoint, set its location, and the resources it will use.
» Specify when a breakpoint will occur.

» Configure a prompt for when a breakpoint occurs.

110

CodeScape User Guide

Using the Code Settings tab

Code breakpoints trigger on instruction execution. When a code breakpoint triggers the PC is at the
same instruction in the pipeline. The Code Settings tab becomes available when you add or select a
code breakpoint to configure.

1) Do one of the following:
» Select a code breakpoint to configure from the list.
-OR-
* Click code to add a code breakpoint to configure.

2) Select Breakpoint Enabled (default), to enable a breakpoint.
You may be prompted to re-configure a disabled breakpoint. This can occur during
code execution, restoring sessions, or when attributes could not be validated when
configuring commands within this dialog box. A disabled breakpoint does not affect
code execution or use any hardware resources.

3) Specify the position in memory where the code will stop on execution. Lrotiation
Expressiortext box:

» Enter the required expression.
-OR-
* Click Define. The Breakpoint Location Expression dialog box appears.
Evaluate the expression to set the location address.
4) Then do one of the following:
» Select C/C++, to use C/C++ expression syntax.
-OR-
» Select Assembly, to use SHx assembly language syntax.
5) In the Implementation mechanism group box:

» Select Automatic and CodeScape will manage breakpoint resources.
Breakpoints are implemented in software by default. If this is not possible
then hardware resources are used.

-OR-

» Select Software to specify a software breakpoint.
-OR-

» Select Hardware to set a hardware breakpoint that is specific to your target
processor.

NOTE: You can setamaximum of two Hardware breakpoints for each
SH2 processor on a Sega Saturn target.

111

Debugging

Using the Watch Settings tab

Watch (data) breakpoints trigger on memory data access. When a Watch breakpoint triggers the PC
is several instructions ahead of that breakpoint in the pipeline.

The Watch Settings tab becomes available when you select or add a watch breakpoint to configure.

1)

2)

3)

4)

5)

6)

Do one of the following:

» Select a watch breakpoint to configure from the list.
-OR-
 Click Watch to add a watch breakpoint to configure.
Select Breakpoint Enabled (default), to enable a breakpoint.
You may be prompted to re-configure a disabled breakpoint. This can occur during
code execution, restoring sessions, or when attributes are not validated during

command configuration in this dialog box. A disabled breakpoint does not affect code
execution or use any hardware resources.

Specify the position in memory where the breakpoint is accessed. In the Location
Expression text box:

» Enter the required expression.
-OR-

» Click Define. The Breakpoint location expression dialog box appears.
Evaluate the expression to set the location address.

Select Include Data Condition to change the Watch Access breakpoint into a Watch
Data breakpoint that uses the features of the UBC (User Break Controller). Enter the
required Data Expression, then click Define. The Breakpoint watch data expression
dialog box appears. Evaluate the expression to set the location address.

Then do one of the following:

» Select C/C++, to use C/C++ expression syntax.
-OR-
» Select Assembly, to use the Assembler’'s expression syntax.
In the Implementation mechanism group box:

» Select Automatic and CodeScape will manage breakpoint resources.
Breakpoints are implemented in software by default. If this is not possible
then hardware resources are used.

-OR-

112

CodeScape User Guide

» Select Software to specify a software breakpoint.
-OR-
» Select Hardware to set a hardware breakpoint that is specific to your target
processor.
7) Under Access Size, enter the Access Size required (the default is Any). When you use
Toggle to add a watch breakpoint its size, if known, will be used instead of Any.
8) Under Access Type, select the Access Type required. The default is Both read and write
access.

NOTE: Ifyouplaceawatch(data)breakpointonamemberofaunion
itwill trigger forallmembers ofthat size, regardless of type.

This also applies to anonymous unions, except that two members of
the same size appear astwo variables sharing the same addressin
memory.

113

Debugging

Using the General Conditions tab

The General Conditions tab is for defining conditions that must be valid before a breakpoint is
triggered. You can condition a breakpoint by memory access type and data value, and confirm that
it executed on the correct trigger count.

1)
2)

3)

4)
5)
6)
7

8)

To use a conditional expression select Include Conditional Expression.
Do one of the following:

» Enter a valid expression in the Include Conditional Expression text box.
-OR-
 Click Define to open the Breakpoint condition expression dialog box, then
define the expression.
Do one of the following:

» Select C/C++, to use C/C++ expression syntax.
-OR-
» Select Assembly, to use the Assembler’'s expression syntax.

The expression is evaluated for a logical result where a value of zero represents false
and non-zero values represent true.

Select Include Trigger Count Condition to include the trigger condition. The condition
is true when the Current Count reaches the specified Trigger Count value.

Enter the value for the Current Count to reach to make the Trigger Count Condition
true.

Under Counters, check that the value in the Current box matches the value you set in
the Trigger box. Click Reset Current to return the current count to zero.

Select when to increment the count. The default is to increment the Current Count
whenever the breakpoint occurs or is evaluated.

If both expression and count conditions are included, select when to break in the
expression. The default is OR.

114

CodeScape User Guide

Using the Trigger Actions tab

Use the commands on the Trigger Actions tab to specify how CodeScape responds when a
breakpoint has triggered.

Select any or all of the following radio buttons:

Select Halt execution when conditions match to stop the program executing when the
breakpoint conditions have been met. Clear this check box to continue execution after all
other requested actions have been performed.

Select Single shot - breakpoint is discarded when conditions match to discard the
breakpoint after it has been triggered and all conditions have been met.

Select Message box prompt when conditions match. CodeScape will display a message
when the breakpoint has been triggered and all conditions have been met.

Select Beep when conditions match. Your computer will beep when the breakpoint has
been triggered and all conditions have been met.

Select Cause processor simulation to and specify whether the Simulator should Start or
Stop when the breakpoint has been triggered.

Select Log Expression and choose either to produce a log when the breakpoint has been
triggered or every time. Enter a valid Log expression.

NOTE: If there is no Log region for the Target Processor,
CodeScape creates one.

115

Debugging

Using the Advanced tab to specify options for a code breakpoint

NOTE: The Location Address text box is read-only. To set the
location, click the Code Settings tab.

NOTE: TheASIDMaskSelectorfieldissettoitsdefaultstateand
cannot be configured. It will be enabled in future releases.

On the Advanced tab are commands for using the Hardware Implementation Mechanism. These
commands apply only to Watch breakpoints and Code breakpoints.

1) Select Location Mask to specify which bits of the Location Address to mask out. Set
Location Mask bits to 1 to ignore the corresponding Location Address bit, O otherwise.

2) IntheBreak Modeext box select either:
» Before Execution.
-OR-
 After Execution.

Using the Advanced tab to specify options for a watch breakpoint

NOTE: The Location Address text box is read-only. To set the
location, click the Code Settings tab.

NOTE: TheASIDMaskSelectorfieldissettoitsdefaultstateand
cannot be configured. It will be enabled in future releases.

On the Advanced tab are commands for using the Hardware Implementation Mechanism. These
commands apply only to Watch breakpoints and Code breakpoints.

1) Select Location Mask to specify which bits of the Location Address to mask out. Set
Location Mask bits to 1 to ignore the corresponding Location Address bit, O otherwise.

2) IntheData Masktext box, set Data Mask bits to 1 to ignore the corresponding Data
Address bit, 0 otherwise.

3) Inthe Bus cycle field, select the bus cycles to include, either CPU, or Peripheral
(DMA), or both.

116

CodeScape User Guide

Using the Global tab to specify the debug environment for Hitachi
SH4-EVA processors

On the Global tab are commands for setting the target processor’'s debug environment. The Global
tab appears when you connect to an SH4-EVA target processor and you can specify any of the
available options.

1) Inthe Global ASE Break Conditions for SH4-EVA CPU field:
» Select Enable on-chip access detection and CodeScape will generate an
on-chip I/O exception.
The values displayed are the last on-chip address accessed, and the last on-chip data
access when the exception occurred.

» Select Enable break after LDTLB instruction execution and CodeScape will
generate an LDTLB instruction break.

The values displayed are the last PTEH loaded, and the last PTEL loaded into the
MMU.

2) Inthe Global UBC Exception Handler Option field, select Use DBR vector (default).
CodeScape will use the debug stub default exception handler for UBCs. This lets you

define exception handling routines in your program, and to modify the VBR without
affecting the behavior of UBC breakpoints.

117

Debugging

Breakpoint expression format

CodeScape has a powerful expression formatting facility for controlling the display of expressions
in Log windows. Formatting is controlled with formatting expressions which work in a similar way

to the C ‘print(f)’ function. The expressions consist of a formatting string followed by any number

of comma separated expressions. The expressions are numbered from 0 and can be any valid slot
expression referencing register names or memory locations. The syntax for a formatting expression
is:

["FormattingString"|FormattingString,] [Expression]...

Format specification

Start a specification with a ‘%’ symbol and follow with one or more command modifiers. Terminate
the specification with a with a format specifier. The formatting string is one or more format
specifications.

To separate multiple specifications:

* Use spaces.
-OR-
» Enclose the sequence in quotes and separate each specification with a comma.

The syntax for the format specification is:
%[Pointer][Width][Repeat]Specifier

% denotes the start of a format specification. The Specifier controls the optional modifiers that affect
the expression’s display.

Command modifiers controlled by the Specifier

This expression item: Denotes an command modifier that:
Pointer Repositions the parameter pointer.

Width Specifies the display width of the expression.
Repeat Specifies the number of items to display.

Each expression must have the same number of operands as format specifications (‘%' characters).
Insufficient operands will cause CodeScape to generate an error. All expression operands must
evaluate. If an operand evaluates to a section relative address the string appears as
"SectionName:Value".

118

CodeScape User Guide

Format specifier character

The format specifier character is for controlling pointers and formatting instructions that affect the
display of an expression.

Format specifier characters and their effects

Use this character: For this effect:

D, d Decimal signed integer.

C.c ASCII character.

U,u Decimal unsigned integer.

0,0 Octal unsigned integer.

X, H Hexadecimal unsigned integer using ‘A’-‘F’.
X, h Hexadecimal unsigned integer using ‘a’‘f".
S,s Pointer to null terminated ASCII string.

Tt Displays the time in the form HH/MM/SS

! Display parameter expression as a string.
i Pointer to instruction to disassemble.

Using the pointer parameter, examples

Use this character: For this effect:

%d Format parameter as a decimal signed integer.

%u Format parameter as a decimal unsigned integer.

%H Format parameter as a hexadecimal unsigned integer
(using ‘A" ‘F).

119

Debugging

The pointer modifier

A parameter pointer holds the position of the current expression, the first expression starting at
position 0. The command pointer modifier repositions the parameter pointer and follows directly

after the ‘%’ symbol. The modifier consists of a decimal number, optionally preceded by a ‘+' or -
symbol and terminated with a ‘#’ symbol.

Syntax
[+]-]INumber#

The symbol syntax of the pointer modifier

Use this character: To:

+- Reposition the parameter pointer relative to its
current position.

Number Denote an absolute value for the parameter
pointer or the size of the relative movement if
used in conjunction with ‘+ or ‘.

NOTE: If you setthe pointer to a value before the first pointer
parameter, CodeScape sets it to the first parameter. If you set
the pointer to a value after the last parameter, subsequent
specifiersbecomeinvalidandarecopiedverbatimintothedisplay
string.

Examples

A formatting string to show three parameters as decimal signed integers in reverse order:
%2#d %1#d %0#d

A formatting string that displays its parameter in hexadecimal, and then in decimal:
"%0#x,%-1#d"

120

CodeScape User Guide

The width modifier

The optional width modifier specifies the display width for the expression. It follows the # modifier
(or ‘%’ symbol if no pointer modifier is specified). The width is either a decimal number or the value
of the next parameter expression.

Syntax
[-][Number|*]

The symbol syntax of the width modifier

The symbol syntax: Denotes that the field width is:

Left justified. If the ‘-* symbol is not set, the
field is right justified.

Number A decimal number. Prefix the number with a zero to pad
the display field with zeroes.

* Set by the value of the next parameter expression.

NOTE: For‘%s’ formats, the width specifies the maximum number of
characters to display.

Using the width modifier, examples

The symbol syntax: Denotes that the field width is:

%4x As a 4 digit right justified hexadecimal unsigned
integer (using ‘a’-'f").

%-8s As an 8 character left justified string.

%08X As an 8 digit hexadecimal unsigned integer (using
‘A’-‘F’) and pad with zeroes.

%3#-15S As the 4th parameter as a 15 character left justified
string.

%*s As a string according to the value of the next
parameter.

Y%4#*d As a 4 digit right justified decimal signed integer

according to the value of the next parameter.

121

Debugging

The repeat modifier

The optional repeat modifier controls the number of items displayed and follows the pointer and
width modifiers (if specified). The modifier consists of a ‘@’ symbol followed by an optional size
modifier and terminated with the number of items to be displayed.

Displayed items are separated with:

« A comma if the format specifier is decimal or octal.
» Spaces if the specifier is hexadecimal.
» No commas or spaces if the specifier is characters.

The endianess of the target processor is preserved when fetching multi-byte items.

NOTE: The repeat modifier has no effect if the format specifier
is a string or instruction.

Syntax
@[Size]Number
where:

The symbol syntax of the repeat modifier

The symbol syntax: Signifies:

@ The start of the repeat modifier.

Size The size of items fetched from memory.

Number A decimal number denoting the number of items to be
displayed.

Optional command-line characters

b Byte
w Word
t Triple
| Long

CodeScape User Guide

Simulating a target

The Simulator is an optimizing tool for Hitachi SH series processors. It uses real targets for the
Memory and Register regions.

When you single step in a Simulator region the cursor is shown at the instruction currently executing
in the pipeline. During simulation the PC fetches instructions ahead of the current instruction. Some
instructions are not executed because of changes in the program flow. For example, instructions
fetched after a branch. When you single step in any other CodeScape region, the cursor is shown at
the PC (program counter).

The Simulator enables you to optimize timing critical sections of Assembly code by simulating a
target’s processor operations. For example, you can set breakpoints to simulate a function that is part
of a loop in your program.

NOTE: You cannot run the Profiler and the Simulator at the same
time.

NOTE: For details about processor pipeline operations, refer to
therelevantHitachiProgrammingManual.Foracopyofthemanual,
contactyour Hitachi supplier, or connectto the Hitachi Japanese
web site at http://www.hitachi.co.jp

NOTE: Memory timings do not model SDRAM banks (6000000-607FFFF,
6080000-60FFFFF).

Using the Simulator’s shortcut menu

Select: To:

Highlight Cache Misses See inwhichslota pipeline operation missed the
cache.

Highlight Pipeline Stalls See in which slot a pipeline operation stalled.

Show Stall Type Show the type of stall generated.

Show Only Active Stages Show active / all pipeline stages used.

Show Uppercase Show instructions in upper case.

Show Symbols Show operand values as symbols.

123

Debugging

Select: To:

Show EAs & Lits. Show the effective address and literals.

Print Print the results of program simulation.

Save to file... Save the results of program simulation to a file.
Execution Run, stop, and restart your program. Run your

program to the cursor position, or until it
executes a specified address. Run all of your
program files simultaneously. Stop all of your
programs running simultaneously.

Use the single stepping options, or run the step
options.

Breakpoints

Toggle a breakpoint on or off. Enable, disable,
configure, reset, and remove breakpoints.

Running the Simulator

When you run the Simulator it generates information about the pipeline operation for each Assembly
instruction. It also highlights any loss of performance in the processor cache and the pipeline. Use
the Simulator’s shortcut menu commands to configure the Simulator and access the debugging

functions.

In the Target region, select the processor that you want to simulate:

» Select Debug, click Simulate Processor.

-OR-

» Right-click in the Target region, then click Simulate Processor.

-OR-

e Press CTRL+ALT+Z.

NOTE: You cannot run the Profiler and the Simulator at the same

time.

124

CodeScape User Guide

Running restrictions

The Simulator does not support the following features:

+ DMA.

» Timers.

* Division unit.

» Power down mode.

» Memory mapped registers except for the CCR.
» External interrupts.

The Simulator disables external interrupts when it is running. If you use the sleep instruction you
cannot wake the Simulator from sleep/standby mode.

Internal exceptions and interrupts are:

» Simulate NOP (no operation) and inform CodeScape of the appropriate exception.

» TRAPA 32 which is used for FileServer operation, software breakpoint operation, and
hardware breakpoint operation.

» Address errors, illegal slot, and invoked instructions as reported on the processor status
line.

Debugging operations in the Simulator

All of CodeScape’s debugging functions are available when the Simulator is running. The debugging
functions include commands for: controlling program execution, stepping code, using breakpoints,
and setting the cursor to the PC and visa versa.

When you single step in a Simulator region the cursor is shown at the instruction currently executing
in the pipeline. During simulation the PC fetches instructions ahead of the current instruction. Some
instructions are not executed because of changes in the program flow. For example, instructions
fetched after a branch. When you single step in any other CodeScape region, the cursor is shown at
the PC (program counter).

Simulation results

During program simulation the Simulator generates information about pipeline operation for each
Assembly instruction. You can read any loss of processor performance from the simulation results
shown in the Simulator’s regions, or by printing the results.

125

Debugging

Information generated by the Simulator

When you simulate your project each instruction is executed in a Simulated slot (time). As the
Simulator steps through time a linear description of pipeline operation is shown in its regions:

» The Address in memory for each line of source code.

» The Op-code for each instruction.

The CPU time taken to execute each instruction at an address in memory.
» The Disassembly of the op-code for each instruction.

Slot information for each stage of pipeline operation:

1) The vertical cursor indicates the time taken by the processor to execute an
instruction for each slot.

2) The horizontal cursor indicates the instruction that is being allocated time in
the active slot.
» Processor status information.

Execution time

The execution time is the CPU time accumulated from the start of an instruction’s ‘ex’ (execution)
phase to the start of the next instruction’s ‘ex’ phase.

Processor status information
Data displayed on the status bar for an active slot

This status area: Describes:

Diagnosis: The type of stall encountered and what caused it.

Cache: Cache memory operation stalls which occur when there is
a read/write miss.

System clock: The total time taken for processor operations upto the
current cursor position.

NOTE: The information generated by the Simulator can be saved in
a configuration file with the extension *.sim.

126

CodeScape User Guide

Pipeline interaction

The Simulator evaluates an instruction’s functionality at the appropriate stage of the pipeline. The
following instruction tells the processor to read 32 bits from the address stored in r0, then put the
results in r3.

mov.L@r0,r3

When the instruction executes in a simulated slot (time) the following instruction stages are shown
in the simulated pipeline:
IF|ID|EX|MA|WB

During the instruction’s execution the following operations take place:

» At the IF stage the op-code for the instruction is read from memory.

At the ID stage the instruction is decoded.

At the EX stage instruction execution starts, and the contents of register r0 is read.

At the MA stage memory is accessed at register rO and the value is stored on the data bus.
At the WB stage the value stored on the data bus is written back to memory at register r3.

Instruction execution in the Pipeline region

The

mnemonic: Indicates:

IF Instruction fetch.

if Dummy instruction fetch where external memory is
not accessed.

ID Instruction decoded / issued (All SH series

processors.)Instruction decoded / issued /
register read. (SH4 processors only.)

D Decode stage locked.

d Register read only. (SH4 processors only.)

EX Instruction execution.

SX Execution phase, the SX stage used.

SX* SX stage locked not used.

NA Memory not accessed / no operation address.
MA Memory accessed / operation address.

127

Debugging

The

mnemonic: Indicates:

MAm Memory accessed / multiplier use. (SH2 processors
only.)

mm Multiplier busy. (SH2 processors only.)

WB Register write back (data stored to registers
after operation).

FO Floating point 0 stage accessed. (Special Stage
inner product / transforms).

F1 Floating point 1 stage accessed.

F1* Floating point 1 stage locked and not accessed.

f1 Floating point 1 stage partial usage (can overlap

with other f1's but not F1).

F2 Floating point 2 stage accessed.

F3 Floating point 3 stage accessed. (Special Stage
divide / square root).

FS Floating point store / writeback.

>FPSCR< Floating point status register updated.

NOTE: In the *.sim file all of the instructions are represented
bythemnemonicslistedaboveexcept,>FPSCR<whichisrepresented
by FC, and Mam which is represented Mm.

128

CodeScape User Guide

Processor operation

The CPU time accumulated by each slot is highlighted to show the state of the processor when an
operation went off. Different colors and mnemonics’ describe pipeline interaction at each phase.

Processor operation in the Pipeline region

An operation colored: Indicates that the processor:
Black Was OK

Red Stalled

Blue Missed the cache

Pink Stalled and missed the cache

Pipeline stalls

Where a stage from one instruction is in contention with a stage of the next or previous instruction a
stall occurs. This slows down the operation of the pipeline. Simulation may show a stall in the
processor’s pipeline.

Remove a stall, in one of the following ways:

» Reorder the instruction sequence to remove an Instruction sequence stall.
-OR-
* Move an instruction address in memory to remove an Instruction alignment stall.

NOTE: For details about contention in instruction stages and
execution states refer to the Hitachi Programming Manual for the
7600 Series.

129

Debugging

Pipeline instruction stalls recognized by the Simulator

If possible, increase the speed

Shows this type of stall: of pipeline execution by:

r> A memory access conflicting To align instructions that access
with an instruction fetch. memory on longword boundaries.
(SH1 and SH2 processors
only.)

W> A write back from the So that instructions that follow
registry when a memory memory loads do not immediately use
access is incomplete. the same destination register.

x> A multiplier usage stall. So that instructions that use the
(SH1 / SH2 processors only.) multiplier execute

non-consecutively.

> An instruction generated You cannot do anything about this
stall. stall type. TRAP, TAS, RTE always

stall.

R> Two instructions trying to So that instructions using the same
lock the same register. (SH4 register execute sequentially to
processors only.) ensure that they are not dual

issued.

s> The SX stage of the So that the instruction that locks
instruction being in use. the SX stage executes before

instructions that use the SX stage
non-consecutively.

> A floating point pipeline So that it uses instructions in the
stall, caused by multiple FO, or F1, or F3 stages once.
use of the: FO, or F1, or F3
stages.

c> One or more control group You cannot do anything about this
instructions being dual stall type.
issued.

9> Instructions of the same So that instructions of the same
type occurring together and type (suchasEX +EX,LS+LS, BR+
causing a dispatch failure. BR, FE + FE) do not occur together.

> An unknown stall type.

NOTE: For details about pipeline instruction stalls refer to the
Hitachi Programming Manual for the 7600 Series.

130

CodeScape User Guide

Reading the results of simulation

The Simulator generates information about pipeline operation for each Assembly instruction during
program simulation. Any loss of processor performance appears in the results shown in the
Simulator’s regions. You can print the simulation results. (For an example of how to read the
simulation results refer to the Simulator tutorial.)

131

Debugging

Profiling program files

The Profiler is a powerful analysis tool that lets you examine the run-time behavior of program files
written for Hitachi SH series processors.

You can configure the Profiler to analyze your program with two levels of detail: statistical and trace.
The Profiler can help you to find out where your program spends its time, and how functions are
called when it executes. You can use information generated by the Profiler to identify any inefficient
sections of code.

NOTE: To ensure accurate results, setthe debug stub to run with
the cache off when you trace profile. To do this, run DACHECK.
For more information refer to the Help supplied with DACHECK.

NOTE: You cannot run the Profiler and the Simulator at the same
time.

Opening the Profiler

In the Target region, select the processor that you want to profile:

* Click Debug, then click Profiler.
-OR-

» Right-click in the Target region, then click Profiler.
-OR-

* Press CTRL+ALT+X.

132

CodeScape User Guide

Using the Profiler’s shortcut menu

Select:

File

To:

Loador saveprogram profileinformation.Program
profiles are saved using the extension *.prf.

Enable Profiler

Start or stop profiling your program file.

Trace Tree Profile Display

Find out for each function, the functions that
called it, and the functions it called.

Function Profile Display

Find out for each function, the functions that
calledit, and the functions it called. Also, how
much time your program spent in each function,
and how many times each function is called.

Function Profile Filter

Arrange the view to show one of the following:
all functions, all tagged functions, or all
untagged functions.

Untag All

Untag all currently tagged functions.

Sort

Arrange the column view of the active Function
Profile Display.

Source Display

View your program’s original source code.

Disassembly Display

View your program at instruction level (assembly
code).

Rename Function...

Enter a new name for a specific function.

Profiler Display Setup...

Specify the profile display options.

Setup...

Specifyoptions for Statistical Profiling, or EVA
Trace Profiling.

NOTE: To ensure accurate results, set the debug stub to run with
the cache offwhenyoutraceprofile. Todothis, run DACHECK. For
more information refer to the Help supplied with DACHECK.

NOTE: If you choose Trace Tree Profile Display, you must run the

Profiler before you run your program.

NOTE: Tosetatagonaspecificfunction,double-clickit’'sentry

in the Profiler.

133

Debugging

Options on the Profiler’s toolbar

To issue this command: Click:

Start profiling the current program file. J
ON

Stop profiling the current program file .

Toggle the display between a Trace Tree Profileanda | e

Function Profile. r'e':-.

Switch the display from Show All functions to Show All

Tagged functions. Q
Switch the display from Show All Tagged functions to
Show All Not Tagged functions. Q

Switch the display from Show All Not Tagged functions to -
Show All functions. J

Go to the next tagged function in the list. ﬂ

Display the program file’s original source code.

Display the program file at instruction level (assembly
code). @

Toggle the sort options.

4

NOTE: To ensure accurate results, setthe debug stub to run with
the cache off when you trace profile. To do this, run DACHECK.
For more information refer to the Help supplied with DACHECK.

NOTE: If you want to Trace Profile, you must run the Profiler
before you run your program.

NOTE: Tosetatagonaspecificfunction,double-clickitsentry
in the Profiler.

134

CodeScape User Guide

The profile display types

You can view the profile of your program using:

» The Trace Tree Profile Display.
-OR-
» The Function Profile Display.

The Trace Tree Profile Display

The Trace Tree Profile Display tells you for each function; the functions that called it, and the
functions it called. A Trace Profile also shows, the total amount of time your program spends
executing each function, and how much time it spends in each function and its children.

NOTE: To ensure accurate results, set the debug stub to run with
the cache offwhenyoutraceprofile. Todothis, run DACHECK. For
more information refer to the Help supplied with DACHECK.

The Function Profile Display

The Function Profile Display lists the functions called. You can use the sort options on the shortcut
menu to view the profile relative to: function hit, function count (and children), function clock cycle
(and children). The Function Profile Filter lets you specify how you view tagged functions.

NOTE: Tosetatagonaspecificfunction,double-clickitsentry
in the Profiler.

135

Debugging

Setting the display

To specify the display options for the current profile:

1) Right-click in the Profiler, then click Profiler Display Setup.
The Profiler Display Setup dialog box appears.

2) Inthe Column Data text box select one of the following options:

« Display Both.
-OR-
 Display Counts / Cycles.
-OR-
 Display Percent.
3) Inthe Columns text box, select any of the following options:

« Display Hits.

Display C1.

Display C1 + Children.
Display C2.

Display C2 + Children.
4) Click OK.

136

CodeScape User Guide

Configuring the Profiler

The options on the Profiler Setup Dialog let you specify how your profile information is generated.

To configure the Profiler:

1) Right-click in the Profiler, then click Setup.
The Profiler Setup Dialog appears.

2) Do one of the following:

» Select Statistical Profiling then specify the Sample Period, and how long you
want the Profiler to run for.

Statistical Profiling lists only the number of times a function or line of source
code is called (hits), but it is the fastest way to profile your program.

-OR-

» Select EVA Trace Profiling then select the Performance Measurement
Counters you want to use.

EVA Trace Profiling lets you generate function and trace profiles providing
more detail about how specific functions are called.

3) Select the Interrupt Profile Trace Filter to prevent the profiler generating data on
interrupt or exception subroutines.

NOTE: For details about the Performance Measurement Counters
options, refer to the Hitachi Programming Manual for your
processor. For a copy of the manual, contact your Hitachi

supplier.

NOTE: To ensure accurate results, set the debug stub to run with
the cache offwhenyoutraceprofile. Todothis, run DACHECK. For
more information refer to the Help supplied with DACHECK.

137

Debugging

Debug operations in the Profiler

All of CodeScape’s debugging functions are available when the Profiler is running. The debugging
functions include commands for: controlling program execution, stepping code, using breakpoints,
and setting the cursor to the PC and visa versa.

NOTE: You can only set one Start breakpoint and one Stop
breakpoint for the Profiler.

Searching for a function
To search for a function:

1) Move the insertion point to where you want to start searching from.

2) Type the Search string in the current profile.
The Profiler automatically finds, and displays the nearest match.

3) To continue the search press ENTER.
NOTE: You can search for strings, whole words, or parts of words.

NOTE: TheProfilerlooksforexactmatchesfirst,thenthenearest
matches in descending order.

Changing the name of a specific function
To rename a function:

1) Select the function that you want to rename.

2) Right-click, click Rename Function...
The Rename Function dialog box appears.

3) Enter the new name for the selected function.
4) Click OK.

138

EXpressions

The expression evaluator dialog is used for several operations, including: Edit Register, and Goto

Address. In the dialog you can use the C/C++ expression evaluator or the Assembler’s expression
evaluator.

139

Expressions

C/C++ expressions

The C/C++ expression evaluator accepts expressions in a C-like format.

Operator precedence

Operator Type Usage Description
() Primary Parenthesis
Brackets

[Primary pointer{expr] Subscripting
Binary object.member Member selection

-> Binary pointer->member Member selection

sizeof() Unary sizeof(expr) Size of object.

sizeof() Unary sizeof(type) Size of type
Unary - expr Unary Minus

+ Unary +expr Unary Plus

~ Unary ~ expr Bitwise NOT

! Unary ! expr Logical NOT

* Unary * expr De-reference

& Unary & Ivalue Address of

* Binary expr *expr Multiply

/ Binary expr/expr Divide

% Binary expr % expr Modulo (remainder)

+ Binary expr + expr Add (plus)
Binary expr - expr Subtract (minus)

<< Binary expr << expr Shift Left

>> Binary expr >> expr Shift Right

< Binary expr < expr Less than

140

CodeScape User Guide

Operator Type Usage Description

<= Binary expr <= expr Less than or equal

> Binary expr > expr Greater than

>z Binary expr => expr Greater than or
equal

== Binary expr == expr Equal

1= Binary expr 1= expr Not Equal

& Binary expr & expr Bitwise AND

A Binary expr ™ expr Bitwise Exclusive

| Binary expr | expr Bitwise Inclusive

&& Binary expr && expr Logical AND

I Binary expr || expr I(_)oRgicaI Inclusive

Constants (Floating or
Integer)

Operands that the C/C++ operators act on

Operand Definition

Constants can be: hexadecimal numbers prefixed
with ‘Ox’. Octal numbers prefixed with ‘O’, or
unsigned numbers postfixed with a ‘U’.
Characters, for example ‘A’, are not accepted.

Registers

The name of a valid register.

Symbols

Symbol names take into account their type. For
example a variable defined as (char chr = ‘A’)
would return ‘A’ when evaluated. To get the
address of the object ‘&chr’ is required.

141

Expressions

Operator limitations:

» Typecasts. Typecasts of basic type, such as int, float, unsigned int, int *, char *, are valid.
Typecasts to user defined type such as, struct basic *, are not valid.

» Scope operator, ::’. The scope operator is valid as part of a class element name, for
example, c_basic::print.

« Assignment operators, such as =, +=, *=, ++, --, are not implemented in this release.

* File/line number format is not implemented in this release.

142

CodeScape User Guide

Assembler expressions

The assembler expression evaluator is fully compatible with SNASM2.

Operator precedence:

Operator Type Usage Description
() Primary (expr) Parenthesis
Brackets
[Primary [expr] Address of
Unary - expr Negative expr
+ Unary +expr Positive expr
~ Unary ~ expr Bitwise NOT
<< Binary expr << expr Shift left
>> Binary expr >> expr Shift right
& Binary expr & expr Logical AND
! Unary ! expr Logical NOT
Binary | expr Logical Inclusive
OR
A Binary ~expr Logical Exclusive
OR
* Binary expr * expr Multiply
/ Binary expr / expr Divide
% Binary expr % expr Modulo (remainder)
+ Binary expr + expr Add (plus)
Binary expr - expr Subtract (minus)
= Binary expr = expr Equals
<> Binary expr <> expr Not Equals
< Binary expr < expr Less Than

143

Expressions

Operator Type Usage Description

<= Binary expr <= expr Less Than or
Equals

> Binary expr > expr Greater Than

>z Binary expr >= expr Greater Than or
Equals

Operands that the assembly operators act on

Operand Definition

Constants Constants can be defined in several operators to denote
(Integer) different radix:
Variable X_<number> where X is a
Hex single digit base
Decimal prefix‘$’ or‘0x’
Binary postfix ‘h’
prefix ‘# postfix
it
prefix ‘%’ postfix
e
Registers The name of a valid register.
Symbols Symbols are evaluated to labels, so avariable of type (char chr
="A’), would return the address of (label to) the variable A
when evaluated. Labels can be qualified by:
b, .w', “.I" for byte, word or long respectively
[symbol]@b, [symbol]@w, [symbol]@I
:<number> for the filename line number

CodeScape User Guide

Expression evaluator dialog box (ALT+E)

The Expression Evaluator is a general purpose dialog box used for several operations, including: Edit
Register, and Goto Address.

The options on the Expression Evaluator

Use the: To:

Expression Combo box Edit an existing expression, or select one from the
history list.

Result box View the results of an expression evaluation

including any error messages.

ExpressionFormatradio Select C/C++, or Assembly as the expression format.
buttons

Default radix radio Select binary, octal, decimal, or hex, as the radix
buttons to use for the expression, or specify another radix

inthe Othertexthox. For Cexpressions this permits
only control of the output radix.

Evaluate button Evaluate an expression in the Expression Combo text
box.
Symbol button Use the Symbol Completion dialog box to search for a

symbol from those available in the program file.

File button View a list of all the files used to build the
programfile intheList Filesin ProgramFile dialog
box. The dialog box also provides access to the
address for "file:line number" information.

Lock check box Lock the current expression to a file or symbol.

145

Expressions

Symbol Completion dialog box (ALT+S)
Use the Symbol Completion dialog box to search for a symbol in the program file.
Options on the Symbol Completion dialog box

Use the: To:

Search String text box Enter the first few characters of the symbol
to search for.

Only Search For Symbols Within Search for symbols in scope (select the check
Scope check box box), or to search for symbols in the whole
program (deselect the check box).

Possible Completions text box View a list of all symbols that match the
current Search String.

Lookup button Click Lookup to start another search.
OK button Accept the current search string.
Cancel button Ignore current search string.

146

Using the command-line

Use the command-line commands to specify how CodeScape will run. For example, CodeScape can
run from another application such as the Codewright editor, or from a batch file.

147

Running CodeScape from the command-line

To run CodeScape from the command-line, type CodeScape then one or more optional switches.
Always separate switches a space, but do not use spaces within the argument of a switch.

The command-line syntax is:
codescape[Switch]...

Command-line switches

Run the CodeScape Help file and view information on using the command-line.

[-117?

Run CodeScape without the splash screen appearing.
[-//Inologo

Crosslib Verbose mode. This switch displays additional information in the Log window as each
command of the Cross Products Fileserver library (LIBCROSS) executes.

[-11c

Use Project Info. This switch invokes CodeScape using the session file specified by SessionFile. The
session file contains information on how to connect to targets. It includes: the object files in use for
each target, update rates, breakpoints, watch expressions, log expressions, and window positions and
displays. If no memory ranges are specified in the session file CodeScape will look for them in
DEFAULT.SSN.

[-|i=Session

Use this switch to specify which target (t#) and processor (p#) to use, and which program file to load.
The processor is identified by its processor ID # (0-7) where 1=Master and 2=Slave. The program
file is specified by ProgramFile. Using this switch to specify an object file for a target will override
the setting in the session file.

Commands are downloading the binary from the object file (b), and suppressing debug information

(n).
[-|Nt#p#[b][n]):[ProgramFile]

NOTE: The ncommand does not require code or symbols. If you use
the n command without the b command it will have no effect.

148

CodeScape User Guide

Files used by CodeScape

Filename Description

SessionFile This file contains the information needed to restore a
previous debugging session.

ProgramFile The object file. This contains binary and optionally,
source level debug and symbol table information produced
by the assembler or compiler.

To change file or folder properties:

1) Click the file or folder whose properties you want to change.
2) On the File menu, click Properties.

NOTE: You candrag afile'siconinto adocument, or even drag a
shortcut icon.

Using the command-line, examples

Example: 1

To invoke CodeScape and restore a debugging session according to the information contained in a
session file SESSION.SSN, type:
codescape-i=session

Example: 2

This example invokes CodeScape and restores the debugging session. The binary (...b...) from the file
TEST.COF is downloaded to target 7 (-t7...:test) but no symbolic information is loaded (...n...).
codescape/t7plbn:test

Example: 3

The n command does not require code or symbols. If you use the n command without the b command
it will have no effect. The following example illustrates how not to invoke CodeScape:
codescape-tlpln:test

149

150

Appendix A: Freqguent
operations

Keyboard shortcuts are available for frequently used debugging operations. All operations are
supported by Access keys which are shown on each menu item by an underlined letter.

There are Keyboard shortcuts and Access keys for options on:

» The Menu bar.
» Each region’s shortcut menu.

151

Appendix A: Frequent operations

Shortcut and Access keys on the Menu bar
To use the keyboard to access items that appear on the Menu bar:

» Press F10, select an item with the cursor keys, press ENTER.
-OR-
» Press the menu’s keyboard shortcut, select an item with the cursor keys, press ENTER.
File menu ALT+F

Using the keyboard to access File menu commands

Pressthiskeyboard

shortcut:
Create a new session. CTRL+SHIFT+N
Open an existing session. CTRL+O
Close an open session. none available
Save an open session. CTRL+S
Save a session with a specific name. none available
Reset the target with a soft reset. none available
Reset the target with a hard reset. none available
Load a program file. CTRL+SHIFT+C
Restart a session. CTRL+SHIFT+R
Save the binary part of a file. none available
Load the binary part of a file. none available
Print contents of the active region. CTRL+P
Setup the printing commands. none available
Exit CodeScape. ALT+F4

152

CodeScape User Guide

Edit menu ALT+E

Using the keyboard to access Edit menu commands

Pressthiskeyboard

shortcut:

Undo the last operation. CTRL+Z
Cut the current selection. CTRL+X
Copy the current selection. CTRL+C
Paste an item from the clipboard. CTRL+V
Find a search item. CTRL+F
Find the next search item. F3

Replace a search item.

none available

Goto a specified address.

CTRL+G

View menu ALT+V

Using the keyboard to access View menu commands

Select or clear a toolbar from the
display list.

Pressthiskeyboard

shortcut:

none available

Show the Status bar.

none available

To change the properties of the
active region.

none available

153

Appendix A: Frequent operations

Project menu ALT+P

Using the keyboard to access Project menu commands

Setup the current project commands.

Pressthiskeyboard

shortcut:

none available

Setup the editor commands.

none available

Build the current project.

CTRL+M

Edit path for a project’s source
files.

none available

Set the FileServer directory.

none available

ToggleFileserveroptimizationonor
off.

ALT+P

Debug menu ALT+D

Using the keyboard to access Debug menu commands

Access the processor execution
commands.

Pressthiskeyboard

shortcut:

none available

Run all processors simultaneously.

CTRL+F9

Stop all processors.

none available

Run a processor. F9

Run a processor until it executes a SHIFT+F9
specified address.

Run a processor to the cursor ALT+F9
position.

Stop processor execution. F9
Single step a line of code. F7

Forced Step Into a line of code.

none available

154

CodeScape User Guide

Pressthiskeyboard

shortcut:
Step over a line of code. F8
Undo a step. CTRL+F7

Enable Animate Step Run.

none available

Step Run Into a line of code. SHIFT+F7
Step Run Out of a line of code. SHIFT+F8
Step Run a line of code. ALT+F7
Step Run Until. ALT+F8

Restart processor execution.

CTRL+SHIFT+R

Access breakpoint operations.

none available

Toggle a breakpoint.

F5

Enable a breakpoint.

none available

Disable a breakpoint.

none available

Configure breakpoint(s).

CTRL+F5

Reset all breakpoints.

ALT+F5

Enable all breakpoints.

CTRL+SHIFT+F5

Disable all breakpoints.

CTRL+ALT+F5

Remove all breakpoints.

SHIFT+F5

Set the cursor to the PC.

CTRL+SHIFT+P

Set the PC to the cursor.

CTRL+ALT+P

Goto Address...

CTRL+G

155

Appendix A: Frequent operations

Region menu ALT+R

Using the keyboard to access Region menu commands

Access the region split commands.

Press this keyboard

shortcut:

none available

ISF%Itit the active region to the CTRL+SHIFT+LEFT ARROW
eft.

Split the active region to the CTRL+SHIFT+RIGHT ARROW
right.

Split the active region up. CTRL+SHIFT+UP ARROW
Split the active region down. CTRL+SHIFT+DOWN ARROW
Delete the active region. CTRL+D

Access the region type list.

none available

regions.

Create a disassembly region. ALT+1
Create a log region. ALT+2
Create a local watch region. ALT+3
Create a memory region. ALT+4
Create a register region. ALT+5
Create a source region. ALT+6
Create a watch region. ALT+7
Create an edit region. ALT+8
Create a call stack region. ALT+9
Update the display in all current CTRL+U

NOTE: To stop the display from updating in all regions press

CTRL+SHIFT+U.

156

CodeScape User Guide

Window menu ALT+W

Using the keyboard to access Window menu commands

Pressthiskeyboard

shortcut:
Create a new window. CTRL+N
Cascade all windows. none available
Tile all windows. none available
Arrangeallminimizedregionwindows none available

at the bottom of the session window.

Proportionally resize windows. none available

Load the last loaded session file none available
the next time CodeScape is run.

Close all windows. none available

Help menu ALT+H, or F1

Using the keyboard to access Help menu commands

Pressthiskeyboard

To view: shortcut:
The Help contents page. F1

The Help topics list. F1

CodeScape version information none available
and copyright.

157

Appendix A: Frequent operations

Shortcut and Access keys on the shortcut menus
Press TAB to move to and activate a region, then:
» Press SHIFT+F10, select an item with the cursor keys, then press ENTER.

Source region

Using the keyboard commands in the Source region

Press this keyboard

Synchronize the cursor.

shortcut:

none available

Show the corresponding address for the first CTRL+A
line of code generated by the source code.
Show line numbers for each line of code. CTRL+L

Access the processor execution commands.

none available

Run all processors.

CTRL+F9

Stop all processors from running.

none available

Run a processor. F9

Run a to a specific address. SHIFT+F9
Run a processor to the current cursor position. ALT+F9
Stop processor execution. F9
Single step a line of code. F7
Forced step over a line of code. SHIFT+F7
Step over a line of code. F8

Undo a step. CTRL+F7
Step Out of a line of code. CTRL+F8

Enable Animated Step Run.

none available

Step Run In to a line of code.

SHIFT+F7

158

CodeScape User Guide

Press this keyboard

shortcut:
Step Run Out of a line of code. SHIFT+F8
Step Run a line of code. ALT+F7
Step Run Until. ALT+F8

Restart processor execution.

CTRL+SHIFT+R

Access breakpoint operations.

none available

Toggle a breakpoint.

F5

Disable a breakpoint.

none available

Configure breakpoint(s).

CTRL+F5

Reset all breakpoints.

ALT+F5

Enable all breakpoints.

CTRL+SHIFT+F5

Disable all breakpoints.

CTRL+ALT+F5

Remove all breakpoints.

SHIFT+F5

Set the cursor to the PC.

CTRL+SHIFT+P

Set the PC to the cursor.

CTRL+ALT+P

Go to a specified address.

CTRL+G

Go to a specific source file.

CTRL+SHIFT+F5

Access the region’s tools.

none available

Change the properties of the active region.

none available

Set the color and font for the active region.

none available

Set the tab width for the active region.

CTRL+T

Set the region update rate for the active
region.

none available

159

Appendix A: Frequent operations

Disassembly region

Using the keyboard commands in the Disassembly region

Synchronize the cursor.

Pressthiskeyboard

shortcut:

none available

Show the location address of the disassembled code. CTRL+A
Show the symbolic label replacement of the CTRL+B
disassembled code.

Show the opcode words for the disassembled region. CTRL+W
Show the operand values in hexadecimal. CTRL+H
Toggle the display between uppercase and lowercase. CTRL+L
Show the symbols for each line of code. CTRL+Y
Show the effective address and literals. CTRL+I

Access the processor execution commands.

none available

Run all processors.

CTRL+F9

Stop all processors.

none available

Run a processor. F9

Run a processor to a specified address. SHIFT+F9
Run a processor to the current cursor position. ALT+F9
Stop processor execution. F9
Single step a line of code. F7

Force step into a line of code.

none available

Step over a line of code. F8
Undo a step. CTRL+F7
Enable Animated Step Run. none available

Step Run In to a line of code.

SHIFT+F7

160

CodeScape User Guide

Pressthiskeyboard

shortcut:
Step Run Out of a line of code. SHIFT+F8
Step Run a line of code. ALT+F7
Step Run Until. ALT+F8

Restart processor execution.

CTRL+SHIFT+R

Access breakpoint operations.

none available

Toggle a breakpoint.

F5

Enable a breakpoint.

none available

Disable a breakpoint.

none available

Configure breakpoint(s)

CTRL+F5

Reset all breakpoints.

ALT+F5

Enable all breakpoints.

CTRL+SHIFT+F5

Disable all breakpoints.

CTRL+ALT+F5

Remove all breakpoints.

SHIFT+F5

Set the cursor position to the PC.

CTRL+SHIFT+P

Set the PC to the cursor position. CTRL+ALT+G
Go to a specified address. CTRL+P
Search in the active region CTRL+F

161

Appendix A: Frequent operations

Call Stack region

Using the Keyboard commands in the Call Stack region

Show Parameter Name

Pressthiskeyboard

shortcut:

none available

Show Parameter Types

none available

Show Parameter Values

none available

Show Parameter Registers

none available

Cycle through the available bases.
(Octal, Decimal, and Hexadecimal.)

CTRL+H

Access the processor execution commands.

none available

Run all processors.

CTRL+F9

Stop all processors.

none available

Run a processor. F9

Run a processor to a specified address. SHIFT+F9
Run a processor to the current cursor position. ALT+F9
Stop processor execution. F9
Single step a line of code. F7

Force step into a line of code.

none available

Step over a line of code.

F8

Undo a step.

CTRL+F7

Enable Animated Step Run.

none available

Step Run In to a line of code. SHIFT+F7
Step Run Out of a line of code. SHIFT+F8
Step Run a line of code. ALT+F7

162

CodeScape User Guide

Pressthiskeyboard

shortcut:
Step Run Until. ALT+F8
Restart processor execution. CTRL+SHIFT+R
Access breakpoint operations. none available
Toggle a breakpoint. F5
Enable a breakpoint. none available
Disable a breakpoint. none available
Configure breakpoint(s) CTRL+F5
Reset all breakpoints. ALT+F5
Enable all breakpoints. CTRL+SHIFT+F5
Disable all breakpoints. CTRL+ALT+F5
Remove all breakpoints. SHIFT+F5

163

Appendix A: Frequent operations

Watch region

Using the keyboard commands in the Watch region

Press this keyboard

shortcut:

Cut the selection and paste it to the clipboard. CTRL+X
Copy the selection and paste it to the clipboard. CTRL+C
Paste the contents of the clipboard at the cursor. CTRL+V
Delete part of a structure. DELETE
Expand/collapse a structure or array. SPACE
Insert a new watch expression. CTRL+
Insert a variable at the end of the current list. CTRL+A
Toggle the display through the available bases CTRL+H
(Show Octal, Show Decimal, Show Hexadecimal).

Modify the value of a variable or watch expression. CTRL+ALT+E
Search for a symbol or a value. CTRL+G,ALT+S

Access the processor execution commands.

none available

Run all processors.

CTRL+F9

Stop all processors from running.

none available

Run a processor. F9
Run a to a specific address. SHIFT+F9
Stop processor execution. F9
Single step a line of code. F7
Forced step over a line of code. SHIFT+F7
Step over a line of code. F8
Undo a step. CTRL+F7
Step Out of a line of code. CTRL+F8

164

CodeScape User Guide

Press this keyboard

shortcut:

Enable Animated Step Run.

none available

Step Run In to a line of code. SHIFT+F7
Step Run Out of a line of code. SHIFT+F8
Step Run a line of code. ALT+F7

Step Run Until. ALT+F8
Restart processor execution. CTRL+SHIFT+R

Access breakpoint operations.

none available

Toggle a breakpoint.

F5

Disable a breakpoint.

none available

Configure breakpoint(s). CTRL+F5

Reset all breakpoints. ALT+F5

Enable all breakpoints. CTRL+SHIFT+F5
Disable all breakpoints. CTRL+ALT+F5
Remove all breakpoints. SHIFT+F5
Search for a symbol in the Expression Evaluator. ALT+S

165

Appendix A: Frequent operations

Local Watch region

Using the keyboard commands in the Local Watch region

Press this
keyboard shortcut;
Copy the selection and paste it to the clipboard. CTRL+C
Delete an expression or part of an expression DELETE
structure.
Expand / collapse a structure or array. SPACE
Toggle the display through the available bases (Show CTRL+H
Octal, Show Decimal, Show Hexadecimal).
Modify the value of a variable or watch expression. CTRL+ALT+E
Access the processor execution commands. none available
Run all processors. CTRL+F9
Stop all processors. none available
Run a processor. F9
Run a processor to a specified address. SHIFT+F9
Stop processor execution. F9
Restart processor execution. CTRL+SHIFT+R
Access breakpoint operations. none available
Configure breakpoint(s) CTRL+F5
Reset all breakpoints. ALT+F5
Enable all breakpoints. CTRL+SHIFT+F5
Disable all breakpoints. CTRL+ALT+F5
Remove all breakpoints. SHIFT+F5
Highlight changes. none available
Change the properties of the active region. none available

166

CodeScape User Guide

Press this

keyboard shortcut:

Search for a symbol in the Expression Evaluator. ALT+S

167

Appendix A: Frequent operations

Memory region

Using the keyboard commands in the Memory region

Pressthiskeyboard

shortcut:

Display the ASCII value for each byte of memory. CTRL+A
Display memory as bytes. CTRL+B
Display memory as words. CTRL+W
Display memory as longs. CTRL+L
Display memory as quadwords. CTRL+Q

See where the target’s memory changed.

none available

Toggle write protect.

CTRL+SHIFT+W

Set bytes per line.

CTRL+ SHIFT+L

Change a value in the Memory region.

CTRL+ALT+E

Access the processor execution commands.

none available

Run all processors.

CTRL+F9

Stop all processors.

none available

Run a processor. F9
Run a processor to a specified address. SHIFT+F9
Stop processor execution. F9
Single step a line of code. F7

Force step into a line of code.

none available

Step over a line of code.

F8

Undo a step.

CTRL+F7

Enable Animated Step Run.

none available

Step Run In to a line of code.

SHIFT+F7

168

CodeScape User Guide

Pressthiskeyboard

shortcut:
Step Run Out of a line of code. SHIFT+F8
Step Run a line of code. ALT+F7
Step Run Until. ALT+F8

Restart processor execution.

CTRL+SHIFT+R

Access breakpoint operations.

none available

Toggle a breakpoint.

F5

Enable a breakpoint.

none available

Disable a breakpoint.

none available

Configure breakpoint(s)

CTRL+F5

Reset all breakpoints.

ALT+F5

Enable all breakpoints.

CTRL+SHIFT+F5

Disable all breakpoints. CTRL+ALT+F5
Remove all breakpoints. SHIFT+F5
Follow a pointer in memory. CTRL+F

Goto a specific address in memory. CTRL+G

Toggle write protect.

CTRL+SHIFT+W

Access the region’s tools.

none available

Search for a pattern in memory.

CTRL+F

Continue a search.

F3

Fill a range of memory with specific data

none available

Write a block of memory in hexadecimal to a file.

none available

Change the properties of the active region.

none available

169

Appendix A: Frequent operations

Register region

Using the keyboard commands in the Register region

Apply the current Increment Value (1 is the default)
to the contents of the register.

Pressthiskeyboard

shortcut:

Apply the current Decrement Value (1 is the default)
to the contents of the register.

Change the Increment/Decrement Value.

none available

See where changes occurred during the last operation.

none available

Prevent data from being written to the currently
active Register region.

CTRL+SHIFT+W

Change the selected register value.

CTRL+ALT+E

Access the column format commands.

none available

Display registers in two columns. CTRL+2
Display registers in four columns. CTRL+4
Tell CodeScape to set the column format. CTRL+0
Show banked registers. CTRL+B
Show float registers. CTRL+L

Access the processor execution commands.

none available

Run all processors.

CTRL+F9

Stop all processors.

none available

Run a processor. F9

Run a processor to a specified address. SHIFT+F9
Run a processor to the current cursor position. ALT+F9
Stop processor execution. F9
Single step a line of code. F7

170

CodeScape User Guide

Pressthiskeyboard

shortcut:

Force step into a line of code.

none available

Step over a line of code.

F8

Undo a step.

CTRL+F7

Enable Animated Step Run.

none available

Step Run In to a line of code. SHIFT+F7
Step Run Out of a line of code. SHIFT+F8
Step Run a line of code. ALT+F7

Step Run Until. ALT+F8
Restart processor execution. CTRL+SHIFT+R

Access breakpoint operations.

none available

Toggle a breakpoint.

F5

Enable a breakpoint.

none available

Disable a breakpoint.

none available

Configure breakpoint(s) CTRL+F5

Reset all breakpoints. ALT+F5

Enable all breakpoints. CTRL+SHIFT+F5
Disable all breakpoints. CTRL+ALT+F5
Remove all breakpoints. SHIFT+F5

Access the region’s tools.

none available

Save the current registers block.

none available

Restore the current registers block.

none available

Change the properties of the active region.

none available

171

Appendix A: Frequent operations

Log region

Using the keyboard commands in the Log region

Pressthiskeyboard

shortecut:
Configure the current log window. none available
Print the contents of the current log window. CTRL+P
Save the contents of the current log window to file. CTRL+S
Access the processor execution operations. none available
Run all processors. CTRL+F9
Stop all processors. none available
Run the selected processor. F9
Run the selected processor to a specific address. SHIFT+F9
Stop the selected processor. F9
Restart the selected processor. CTRL+SHIFT+R
Access breakpoint operations. none available
Configure breakpoint(s) CTRL+F5
Reset all breakpoints. ALT+F5
Enable all breakpoints. CTRL+SHIFT+F5
Disable all breakpoints. CTRL+ALT+F5
Remove all breakpoints. SHIFT+F5
Clear the contents of the log window. none available
Change the properties of the active region. none available

172

CodeScape User Guide

Edit region

Using the keyboard commands in the Edit region

Pressthiskeyboard

shortecut:
Create a new Editor file. none available
Open an existing Editor file. none available
Save the current Editor file. none available
Save the current Editor file with a specific name. none available
Cutthe current selection in the Editor file and paste CTRL+X

it to the clipboard.

Copy the current selection in the Editor file and CTRL+C
paste it to the clipboard.

Insert the contents of the clipboard at the current CTRL+V
cursor position.

Enter a new tab value. none available
Undo the action. none available
Search for a string. none available
Replace the current selection. none available
Change the line number of the origin address. none available
Change the properties of the active region. none available

173

Appendix A: Frequent operations

174

	Katana CodeScape User Guide
	Legal Notice
	CodeScape User Guide

	Contents
	Before you begin
	Document conventions
	This release

	The CodeScape software

	Using and configuring the interface
	The commands on the menu bar
	The commands on the toolbars
	View, hide, dock, and move toolbars

	Commands on each toolbar

	How windows and regions work
	Using windows
	Using regions
	Configuring regions
	Target window
	Target Processor display
	Project Build window

	The Source region
	The Disassembly region
	The Call Stack region
	The Watch and Local Watch regions
	The Watch region
	The Local Watch region

	The Memory region
	The Register region
	Hitachi target processor register region display

	The Log region
	The Edit region
	Opening and saving files
	Search and replace
	Cutting and pasting text
	Using bookmarks

	Interacting with target processors
	Connecting to a target processor
	Add files to a project
	Restarting a program

	Working with sessions
	Working with projects
	Setting up a project build environment
	Setting up an editor
	Setting up an external editor

	Setting up the project commands

	Debugging
	Running and stopping programs
	Stepping over code
	Interrupting program execution
	Breakpoints
	Configuring breakpoints
	Breakpoint expression format

	Simulating a target
	Using the Simulator’s shortcut menu
	Information generated by the Simulator
	Reading the results of simulation

	Profiling program files
	Using the Profiler’s shortcut menu
	The profile display types

	Expressions
	C/C++ expressions
	Assembler expressions
	Expression evaluator dialog box (ALT+E)

	Using the command-line
	Running CodeScape from the command-line

	Appendix A: Frequent operations
	Shortcut and Access keys on the Menu bar
	Shortcut and Access keys on the shortcut menus

