SEGA

H Series Linkage Editor,
Librarian, Object Converter
User’s Manual

SEGA

Table of Contents

Part I Linkage Editor Guide..... HSL-1
SECHION 1T OVEIVIEW ...ttt a s e a s a st st aea e s s sens HSL-3
Linkage Editor FUNCHONS ..ottt HSL—+4
Object Module and Load Module. ... HSL-4

1.3 Unit and SECHOI ..o s HSL-5
Section 2 Linkage Editor FUNCHONSo.oiieeiiiiniiiniinnniiinniniinsisiensisiinssssssisssssssessssssssssesssssassesssssassesssses HSL-7
2.1 MOdULE LINKAZE ...ttt HSL-7
2.1.1 Section LINKaAGe........ccciiiiiiiiiiiiciic s HSL-7
2.1.2 Inclusion from Library Files............cccooriiiiiiiiiiccce e HSL-17
2.1.3 Exclusion of Module LINKINGccccccoiiiiiiiiiiiiiicccccccceccceceeeenenes HSL-19
2.2 Address RESOIUIONcvuimimiiiiiiiiiiiiiici s HSL-19
2.2.1 Import Symbol ReSOIUHONccuiiiiiiic e HSL-19
2.2.2 Address Resolution within @ MOdUIEc.ccccvveuicunicinicinicinicieceeieeeeeeseeeeee s HSL-21
2.2.3 Suppressing the Listing of Unresolved SymbOIS.........c.ccceeueieeerneeeinieerneerneeerneecrneenneeens HSL-24
2.3 Load Module File Re-INPUL.......cccoooiiiiiiiic e HSL-24
2.3.1 Automatic Unit EXChangeccoveeiiuiiiiniciccicnccce e seens HSL-25
2.3.2 Forced Unit EXChanGec.cccuvuiuriiiriiieiieicicsccisticstcseictete et seeens HSL-26
2.4 MUIHNKAZEoooviiet ettt sttt HSL-26
2.5 DEbUZGING SUPPOTLvmiiiiiiiiiiiiiiiiciciceeeeie e HSL-27
2.6 AAAIess CRECK ..ot HSL-28
2.7 Support for Storing Program in ROMccriiiiiiiiiccccte e HSL-28

Section 3 Executing the Linkage Editor ...ttt sese e sssesens HSL-31
3.1 Command Line FOrmat..........ccccooiiiimiiiiiiiiiiicss s HSL-32
3.2 Executing by Command LIne..........cccccciiiiiiiiiiiicccccccee s HSL-32
3.3 Controlling by SUDCOMMANSc.ccuiuiiiiiiiiiiiiccccecccce e HSL-33

3.3.1 Executing in Interactive Mode...........oooruiiiiiiiiic HSL-34
3.3.2 Executing from a Subcommand File.............ccccccoiiiiiiiiiiiiiicce HSL-34
3.4 Terminating the Linkage EdItOrc.ccceeiieinieiniciiciricictseceeieeeeetenesesesesseeessesesesessssessssesenaes HSL-36

HSL-iii

User’s Manual Supplement

Section 4 Linkage Editor Options and Subcommands...........ocveninnisenineninenininienienieieieee
4.1 Option and Subcommand FOrmats...........ccceeiiiiiiniiiiiiiii e

4.2 List of Options and SUbcOMMANS............cceuiiiiiiiiiiiccece e

4.3 File CONLTOL ...ttt

4.3.1 INPUT—Specifies INput FIlescccccoceiiiiiiiiiiieecceieiceeeeieieereeeneeeneseneneneenenenenes

4.3.2 OUTPUT—Specifies an Output File........oooviiiii e

4.3.3 LIBRARY—Specifies Library Files ... e

4.3.4 PRINT—Specifies a List FIle.......ccccceiiiiiiiiiieecceieeeieeeeieeeeneie e senesenenes

4.3.5 EXCLUDE—Excludes Modules from Linkingccccccceuevoreeninineiiiiiceeece e

4.3.6 DIRECTORY—Specifies Directory Name Replacementcccccoceeueiuicicecuccccccnenes

4.4 MemOTy ALLOCAtiON.....cuciiiienititititctcciceeee e bbb bbb e bbb
4.4.1 START—Specifies Start Address and Linkage Order of Sections...........c.cccccceeiiiiiiiiiccnenns

4.4.2 ENTRY—Specifies Execution Start Addresscocceeeiuiuieiieiieeeeeeeeeeeeeeeneneeenenenenes

4.4.3 ALIGN_SECTION—Specifies Linkage of Sections Having Different Boundary
ALGNMENt VAIUE ..o

4.4.4 CHECK_SECTION—Specifies Section ChecK...........cccovcuricuiiiniciricirieieeieseieieieseienseeseseenesans
4.4.5 AUTOPAGE—Specifies Autopaging FUNCHON.cccccuiiiiiiiiiiiiccceeeceeeeeeeree e
4.4.6 CPU - Specifies Address Check Using a CPU Information Fileccccocovuirniniciiciicninicicnnne.
4.4.7 CPUCHECK—Specifies Error Output at Address Check Using CPU Information File
4.4.8 ROM—Specifies Support of Storing Program in ROMcccccccceiiiiiiiiicceeeeceeeeeeenenes
4.5 Execution Control
4.5.1 EXCHANGE—Forcibly Replaces Units..........cccccoccuiiiiiiiiiiiiiiieeececeeeee e enenenenas
4.5.2 SUBCOMMAND—Specifies a Subcommand File..........c.cccocovvivniiiiiiiiiiiie,
4.5.3 FORM—Specifies Output Load Module File Formatcccoovoiiiiiiiiccecccnen,
4.5.4 DEBUG—Specifies Output of Debugging Information............cccccceeeeiiiiiiicicccceeeccenenns
4.5.5 SDEBUG—Specifies Output of Debugging Information to a File..........ccccooviiiiiiiiicnnn,
4.5.6 END—Specifies End of Subcommand INput...........ccooeiiiiiiiiicc,
4.5.7 EXIT—Specifies End of Linkage Operationc.ccccccceuiiiiicieiiieicceeeeeeeeeeneneneneenenenenas
4.5.8 ABORT—Specifies Forced End of Linkage Operation ...,
4.5.9 ECHO—Specifies Subcommand File Echo-Backccoccuiiiiiiiiciiiiiiciccccccece,
4.5.10 UDF—Specifies Display of Undefined Symbols..........ccccccciiiiiiiiiiiiiiicececcceeeeenenes
4.5.11 UDFCHECK—Specifies Output of an Error for Undefined Symbol...........cccccvvviiiiiniiincnnnnnn,
4.6 Debugging Support
4.6.1 LIST—Displays Interim Linkage INformationcccccoceeieiieiiieceeecceeeeeeereneeenenenenas
4.6.2 RENAME—Changes the Names of Units, Export Symbols, or Import Symbolsc..........
4.6.3 DELETE—Deletes Units or Export Symbolsccccccciiuiiiiiiiiiiiiiiicccccccccceeceeennas
4.6.4 DEFINE—Forcibly Defines an Import Symbol..........c.cccccciiiiieiiiiiiecceeeeeeerereeenenenenas
Section 5 Input to the Linkage Editor
5.1 Object MOdUIE FILES.......c.cciiiiiiiiiccccccce e
5.2 Relocatable Load Module Files ...
5.3 LADIary Files.......oouoiiiicieii e
5.4 Default LIbrary FIles ...t
Section 6 Output from the Linkage Editor .
6.1 LINKAGE LISS ...
6.2 Load ModUle File ... s
6.3 CONSOLE MESSAZES......oviiieiectiiicicte ettt sttt

HSL-iv

Table of Contents

Section 7 Error Messages HSL-89
Section 8 Restrictions HSL-101
Appendix A Example of Use of Linkage Editor. ..HSL-103
Appendix B File Name Specifications...... .HSL-116
Part IT Librarian Guide HSL-117
Section 1 Overview HSL-119
Section 2 Librarian Functions .HSL-121
2.1 Creating LIDTary Filesccciiiiiiiieeeccceeeeeee ettt e nene HSL-121

2.2 Editing Existing Library FIles..........cocoviiiiiiiiccc s HSL-122

2.3 Extracting Modules from a Library File...........ccccccoooiiiiiiiiiiiiiicccccceccceeeeeeeenee HSL-123

2.4 Displaying the Contents of @ Library File.........cccccoiiiiiiniiniciciniiiccsecciceesesieseseeseienanne HSL-123
Section 3 Executing the Librarian.. .HSL-125
3.1 Command Line FOrmatcccovviiiiiiiiiiiiiiii s HSL-126

3.2 Executing by Command Line ..o HSL-127

3.3 Executing by SUbcommandsccccoiiiiiiiiiiiiii e HSL-128

3.3.1 Executing in Interactive MOde.........ccccceiuiuiiiiiiiiiiccceecceeeeieeene e nenene HSL-128

3.3.2 Executing from a Subcommand Fileoooi HSL-129

3.4 Terminating Librarian Operations.............ccceiiiiiiiiiiiiiiccceeceeeeee s HSL-130
Section 4 Librarian Options and Subcommands ..HSL-131
4.1 Option and Subcommand FOImatscoouruiiiiiiieiiic s HSL-131

4.2 List of Options and SUbCOMMANASceuvvviririririiiiirrrrr e HSL-135

4.3 File CONEIOL.....oiiiiiiiiiiiii s HSL-139

4.3.1 LIBRARY—Specifies the Library File to Be Edited.........ccccccocviunininiiniininiciiciicii, HSL-139

4.3.2 OUTPUT—Specifies an Output Library File ..o HSL-140

4.3.3 DIRECTORY—Specifies Directory Name Replacement...........ccccvviivivivniniiiiiicnennnnn HSL-141

4.4 Execution Control. ... HSL-142
4.4.1 SUBCOMMAND—Specifies a Subcommand File..........ccooeiriiiiiiinniiiecccreeeeeeeeee HSL-142

4.4.2 CREATE—Creates a Library File.........ccoooiii s HSL-143

4.4.3 ADD—AdAS MOAUIEScooviiiiiiictict s HSL-144

4.4.4 REPLACE—RePIaces MOAUIEScccvrururereriiereriricereiereeeeeeeeeeeeeeeeeteeeeee e HSL-146

4.4.5 DELETE—Deletes MOAUIES...........cccovuviriiiiiiiiiniiiiiiiiss s HSL-148

4.4.6 EXTRACT—EXtracts MOAULESccccouvuviriiiiiriiiiiiiiiiiciicsn s HSL-149

4.4.7 RENAME—Modifies Section NameSccccovviviimiiiiiiiiiiiiiis s HSL-150

4.4.8 END—Specifies End of Subcommand INput ... HSL-151

4.4.9 EXIT—Specifies End of Librarian Operations ... HSL-151

4.4.10 ABORT—ADborts Librarian Operations............ccceevrrrerererirerireninenrrreeeeeseseseeeeeeeseeeseeeseseseseseeeenes HSL-152

4.5 List Display HSL-153
4.5.1 LIST—Displays Contents of a Library File..........ccccocoviiiiiiniiiiiccrecceceeeeeeeeee HSL-153

4.5.2 SLIST—Displays Section Names of Library Filecccccocovrrrrrrnnninrnreeceeeeeeeeeeeeeeeenes HSL-154
Section 5 Input to the Librarian..... .HSL-157
5.1 Object MOAULE FIIEScciiiiiiiiiiiiicccecececee e e nene HSL-157

5.2 Relocatable Load Module Files ... HSL-157

5.3 LIDTATY FILES ... s HSL-157

HSL-v

User’s Manual Supplement

Section 6 Output from the Librarian HSL-159
0.1 LIDTATY FILES.....ouieieieiei ettt ettt HSL-159

6.2 LIbrarian ListS ... HSL-159

6.3 Section Name LiStS ... HSL-162

6.4 CONSOIE MESSAZES.......curuiiiiiririniiiiii s HSL-163
SECtiON 7 EXTOT MESSAZES ..uveuirrrririsisrisisrisissisiesisiesisnssisssisssissessssssssssssssssssssssssesssnsses HSL-165
Section 8 ReSHICHONS c...uiviuiueveriritititctetctitcccceeeeseeeseee s se s bbb bbb bbb bbb s s b bes HSL-171
Appendix A Examples of Librarian Usage . HSL-173
A.1 Librarian Execution by Command Line..........ccccccoiiiiiiiiiininiiiccceeenens HSL-173

A.2 Librarian Execution by Subcommands............ccceuiiiiioiiiciiiic e HSL-175
Appendix B Note on Librarian Usage in MS-DOS System.... ... HSL-177
Part III Object Converter Guide HSL-179
Section 1 Object Format Conversion HSL-181
1.1 Executing the Object Format CONVEISIONcccvuiiiiiniiiiiiciciciiciscccc s HSL-181

1.2 EXTOT MESSAZES......ocvvveiettettetetetett ettt HSL-184
Index..... HS1L-187
Linkage Editor HSL-207
ODbJECt FOIMAL ...ttt e HSL-208
SPECIICALIONSviviiiiviiiiic s HSL-208

ELF OPHOI oottt HSL-209

SYSROF OPHOIN .ottt HSL-209

SYSROFPLUS OPHOI ...ttt ssssse s sssssssens HSL-209

Function Extension of the START Option/Subcommandccccccuviccuricirincunineninicneennes HSL-210

Symbol Address OULPULc.ccceuiiiiiuiiiiiiccceeceee e e HSL-211

Specification for Temporary File DIireCtory ... HSL-213

Specification Modification ..o HSL-213

EITOr MESSAZESoviviiiiiiiiitc e HSL-213

Librarian HSL-215
ODbject FOIMALooiiiiiiiiii e HSL-215

[53 1T A Q03 L 3 =3 OOt HSL-215
ODbjJect FOIMAL «...vvieceiiect et HSL-215
Divided Output of Converted Filescccocoiiiiiiiiiiiiiicceeeeceeee e HSL-215
SPECIHICALION ..o s HSL-215

D@SCIIPHION ..ottt bbbttt HSL-216

Restrictions 0N USEccuciiiiieieicicicicicictcccett ettt HSL-216

EXAMIPIES ..ottt HSL-216

Added OPHONScoouiiiicie e HSL-216

Command FOrmat ..o HSL-216

RECORD OPHON .oucviiiiiiiiiiiisicsc s sss s sssns HSL-216

59 OPHION .ot s HSL-216

EITOT MESSAZESoviviiiiiiiiiitc e HSL-217

HSL-vi

H Series Linkage Editor, Librarian,
and Object Converter

User's Manual

HITACHI

ADE-702-139
Rev. 1.0
December 1997
Hitachi, Ltd.
McS-Setsu

o P
Hitachi ~2

semiconductor -

Notice

When using this document, keep the following in mind:

1
2.

This document may, wholly or partially, be subject to change without notice.

All rights are reserved: No one is permitted to reproduce or duplicate, in any form,
the whole or part of this document without Hitachi’s permission.

Hitachi will not be held responsible for any damage to the user that may result from
accidents or any other reasons during operation of the user’s unit according to this
document.

Circuitry and other examples described herein are meant merely to indicate the
characteristics and performance of Hitachi’s semiconductor products. Hitachi
assumes no responsibility for any intellectual property claims or other problems that
may result from applications based on the examples described herein.

No licenseis granted by implication or otherwise under any patents or other rights of
any third party or Hitachi, Ltd.

MEDICAL APPLICATIONS: Hitachi’s products are not authorized for usein
MEDICAL APPLICATIONS without the written consent of the appropriate officer
of Hitachi’s sales company. Such use includes, but is not limited to, useinlife
support systems. Buyers of Hitachi’s products are requested to notify the relevant
Hitachi sales offices when planning to use the productsin MEDICAL
APPLICATIONS.

Preface

This manual explains how to use the H Series Linkage Editor, Librarian, and Object Converter,
which work on MS-DOS** or UNIX*2, This manual consistsof the following three parts:

« Part ILinkage Editor Guide
e Partll Librarian Guide
e Partlll Object Converter Guide

Users are encouraged to consult the user’s manuals for other H Series cross-software. Relevant
manuals include:

e HB8S, H8/300 Series Cross Assembler User's Manual
» HB8S, H8/300 Series C Compiler User’s Manual
» HB8S, H8/300 Series Simulator/Debugger User’s Manual

e H8/500 Series Cross Assembler User's Manual
» HB8/500 Series C Compiler User’s Manual
» H8/500 Series Simulator/Debugger User’s Manual

e SH Series Cross Assembler User’s Manual
e SH Series C Compiler User's Manual
e SH Series Simulator/Debugger user’s Manual

Notes: 1. MS-DOSisan operating system administrated by Microsoft Corporation.

2. UNIX isaregistered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited.

Notes: The following symbols have special meaning in this manual.

<item> : Specificationitem

{1} : One of the items between the brackets isto be selected.
[] : The enclosed item is optional (i.e., can be omitted)

. The preceding item can be repeated.

A . Blank space(s) or tab(s)

(RET) : Pressthe Return (Enter) key.
File extensions are in uppercase letters on MS-DOS.
Hexadecimal datain this manual is prefixed by H'. (Example: H'1000)

Data without prefix isin decimal unless otherwise specified.

Contents

Part | Linkage Editor GUIAE..........cc.ccouciueicieeecceesseeees s 1
SECHON L OVEIVIEW. ...ttt 3
1.1 Linkage Editor FUNCLIONS. ..ottt 4
1.2 Object Module and Load MOGUIE...........ccciriirieinineseeieeee s 4
G T O 1] =T o RS = o 1 o ST SPT 5
Section 2 Linkage Editor FUNCLIONS ... 7
2.1 MOAUIE LINKAGE. ... ittt sttt sbe bbbt ae et e b e e e e e 7
211 SECON LINKAOE.......ciieeeireeieieei ettt 7
2.1.2 Inclusion from Library FIlES ..o s 17
2.1.3 Exclusion of Module LinKingcceeeerereereeieeieeesesesesese e seessesseseeseeseesessessens 19
2.2 AJJreSS RESOIULION.cviiirireretiiriiet sttt ee 19
221 Import Symbol RESOIULIONcoeiuiiiiiiiiiee e 19
2.2.2 Address Resolution within aModUIE............cooieiiirierinnee e 21
2.2.3 Suppressing the Listing of Unresolved SymbolS..........cccoeveiniininincee 24
2.3 Load MOdUIE File RE-INPULc.oviieiiiereeie ettt s st 24
2.3.1 Automatic Unit EXChaNQE........ccceievirrieiereceeeseee st enens 25
2.3.2 Forced Unit EXChaNGE.......ccciiiiieiierieieie ettt ste et s ea e eneas 26
24 MUIIINKBOE ..ottt et b e e e e eaeas 26
25 DEDUGGING SUPPOIT....uiiuiitiiteitirtentesieseeriesie e e seeese st esessesiesaesbesbesbesbesbeseessesbesseseeeenseneeneeneas 27
2.6 AQArESS CRECKc.ecuiieiiieeiiiteee ettt sttt ettt b et b e e eb e et eb e e ebesnene e 28
2.7 Support for Storing Program in ROM ...t 28
Section 3 Executing the Linkage EdItor ..o 31
3.1 Command LiNE FOIMEL.........coeirieieriieriiesiies e 32
3.2 Executing by Command LiNe.........coiiiiieieeieieeeeeenicne et s 32
3.3 Controlling by SUBCOMMENGScccoiiiiiiiiee e 33
331 Executing in INtEraCtive MOEc.coveueriiirieirieesiereese e 34
3.3.2 Executing from a Subcommand File.........cceroeriiircene s 34
34 Terminating the Linkage EAITOrcccceiueiieieiceeesese s enea 36
Section 4 Linkage Editor Options and Subcommands.............cccovvvvrrrrerenenn 37
4.1 Option and SUBCOMMEN FOIMELS.........ccoieiiieinieiriereee e 37
4.2 List of Options and SUBCOMMENGS..........ccoeiirieiriennere e 40
4.3 FIlE CONIIOL ...ttt 44
431 INPUT—SPeCITieS INPUE FIIES......ccovicieeceseeeeecee et 44
432 OUTPUT—Specifiesan OUtpUL Filecceoiiiririeiircc e 45

4.3.3 LIBRARY—SpecifiesLibrary FIles.......cccoiiiiiiniee e 46

434 PRINT—SPeCifieSaLiSt File ... 47

435 EXCLUDE—Excludes Modules from LinKing.........cccccoeeeverienienienieneneseseiee 48
436 DIRECTORY—Specifies Directory Name Replacement..........cccoceevvererencnienenn 49
44 MEMONY ATOCEIION.cuiieeiiiieierteeete ettt st st s be e b seene s 50
441 START—Specifies Start Address and Linkage Order of Sections...........ccc.c...... 50
4.4.2 ENTRY—Specifies Execution Start Address........ooveeveeevevecesieve e 52
443 ALIGN_SECTION—Specifies Linkage of Sections Having Different Boundary
ALIGNMENE VEIUBS. ...ttt s 53
444 CHECK_SECTION—Specifies Section ChecK.........covveroinrncennreceen 54
445 AUTOPAGE—Specifies Autopaging FUNCLION.........cccoeiriirieiiriiini s 55
4.4.6 CPU — Specifies Address Check Using a CPU Information File..........cc.cccveuue.. 56
44,7 CPUCHECK—Specifies Error Output at Address Check Using CPU
INFOrMELTION FlE.....ocvieceiece e 57
448 ROM—Specifies Support of Storing Program in ROMccccoceveiineienieniene 58
A5 EXECULION CONIOLetiieiiiieereeeeee ettt sttt s e e s e seeeeseeseeseeseeseeseenean 59
451 EXCHANGE—Forcibly Replaces UNitS......ccoooveireiineiineiesenese e 59
45.2 SUBCOMMAND—Specifies a Subcommand File........ccccevvevreeceninnieninnenniee 60
453 FORM—Specifies Output Load Module File Format..........cccceeveeveeneneneninnnenn, 61
454 DEBUG—Specifies Output of Debugging Information............ccoceeeeveneienienenee 62
455 SDEBUG—Specifies Output of Debugging Information to aFile...................... 63
456 END—Specifies End of Subcommand INPUL..........cceoereireereieniineeseeseeeeen 64
457 EXIT—Specifies End of Linkage Operation...........ccoeeeveereieneienencsenesenesieens 65
458 ABORT—Specifies Forced End of Linkage Operation..........ccocvevvvivveveniennieen 66
459 ECHO—Specifies Subcommand File ECho-Backccccoveveieeciciiiiciciei 66
4.5.10 UDF—Specifies Display of Undefined Symbols.........ccoooieinninininiicncnic 67
4.5.11 UDFCHECK—Specifies Output of an Error for Undefined Symboal 68
4.6 DEDUGUING SUPPOIT....cecuiieeiirieierteestesest et sttt et et e b b e b e b seebe e ebeseebeseene s 69
46.1 LIST—Displays Interim Linkage INformation............ccoeevevninninnensenecsienn 69
4.6.2 RENAME—Changes the Names of Units, Export Symboals, or Import Symbols 70
4.6.3 DELETE—Deletes Unitsor Export Symbols.........ccccoeveviieceninesesese e 72
4.6.4 DEFINE—Forcibly Definesan Import Symbolccccocvvniniiininiene e 73
Section 5 Input to the Linkage EAITOr ... 75
51 ODJECt MOUUIE FITES ...t e e 75
52 Relocatable Load MOUIE FIlES.........covviiirreirciirree et 75
LG T 1o = VA T = PO 75
54 Default Library FIlES. ...t 75
Section 6 Output from the Linkage Editor ... 77
B.1 LiNKAOE LISES ...iicuirieieieeiirieerte sttt sttt b e st b e s b e s b e 77
6.2 LOAO MOTUIE Rl ...t 85

6.3 CONSOIE MESSAGES....c.eeeeueeieeeeeeete et et st ste e te s et e e st et et et e s eseese e e eseereesesaestesteseesaenteseesaens 85

SECtiON 7 EXTOr MESSAQES.......cocvieeieteeeeeie ettt 89

SECHION 8 RESIICHONS......cocveicieieicicieicieieie ettt sesesenes 101
Appendix A Example of Use of Linkage Editor............coovevvvveiveieceiiccccceenns 103
Appendix B File Name SpeCifiCations...........cccvevieiieeiii e 116
Part 11 Librarian GUIE..........ccoooeiieieeeseseee e 117
SECHON L OVEIVIEW ..ttt sttt ettt nr e 119
Section 2 Librarian FUNCLIONS..........cocoiiriiiieneee e e 121
21 Creating Library FilES.... ..ottt e 121
2.2 Editing EXisting Library FIIESccoiiiiiiircere sttt 122
2.3 Extracting Modulesfrom aLibrary File........ccceniiniieeee e 123
2.4 Displaying the Contents of aLibrary Fil€......ccccveieieieceeececece e 123
Section 3 Executing the Librarian............cccoovviieiieiiicie e 125
31 CommaNd LiNE FOMMEL........ccueiiiierieieiieie ettt s a e e e e eneas 126
3.2 Executing by Command LiNE.........ccouoiirinieirieerie et 127
3.3 Executing by SUDCOMMENTS..........ccruiiriiriniiiririeesie et 128
3.3.1 Executing in INteraCtive MOGEcccvvveieiriene e 128
3.3.2 Executing from a Subcommand Fil€..........cccoeveeieiniiie i 129
34 Terminating Librarian OPerations.........ccocoeirererierieriereeieeeseee s s 130
Section 4 Librarian Options and Subcommands...........ccccceveereeienieenesieeseeneens 131
4.1 Option and SUBCOMMEN FOIMELS.........ccviueirieiriereree e 131
4.2 List of Options and SUDCOMMENGS.........cceirirererereereereeeeeeeeese e e e sse e seeseeeeneeeesens 135
T T =T o 11 (o] OSSO 139
431 LIBRARY—Specifiesthe Library Fileto Be Edited............ccooviniiininiinicienn 139
4.3.2 OUTPUT—Specifiesan Output Library File ... 140
4.3.3 DIRECTORY—Specifies Directory Name Replacement............cccoeeereenieennen. 141
44 EXECULION CONLIOL.....eteieeeeieeeeeeeeetes e see e stesee e e seeaesee e e e esessessessessesaesaesseseseensnnsnnsenensens 142
441 SUBCOMMAND—Specifiesa Subcommand File........ccccoovvvvvieninvnnnnicneenenn 142
442 CREATE—Createsalibrary File......cocooiiioiiiiiiececce e 143
443 ADD—AdAS MOUUIES........corirerieiiiririeirerre et 144
444 REPLACE—RePIaceS MOUUIES.......ccoouiiiieeiieie e 146
445 DELETE—DEeeSMOUUIES.......c.ccoiiieeeiiirinieeineresieie et 148
4.4.6 EXTRACT—EXIraCtS MOUUIES.......cceiveeeeeeeeeterire s se e s eee e e 149
447 RENAME—Modifies Section NamMeS..........ccoevrirrinninnenees e 150
448 END—Specifies End of Subcommand INPUL.........ccceeeriereiienieiesene e 151

449 EXIT—Specifies End of Librarian Operations...........ccocveverenereneenieneeneeeeene 151

4410 ABORT—ADorts Librarian Operations............ccoerereereereereeieniresesiese s e e 152

R IR 1= 1= o - T 153
451 LIST—Displays Contentsof aLibrary File.........ccocoroniiniiniincncncen 153
452 SLIST—Displays Section Names of Library File........ccocooveiieiniiieiiincieen 154
Section 5 Input to the Librarian............cccccccccccccccccceeee e 157
51 ObJeCt MOQUIE FTES ..ot 157
5.2 Relocatable Load Module FIlES.........cooiiiiiiiee e 157
5.3 LIBIaIY FlES ..t 157
Section 6 Output from the Librarian ..., 159
o0 T I o Y 1 =SSO 159
6.2 LiDrarian LiStS.. ..o et 159
6.3 SECLON NBME LISES... ettt sttt besbe et sb e b b e sbe b e 162
6.4 CONSOIE MESSAGES.......ccueieiiieierieierteeri ettt ettt b et b et b et b et b et sttt 163
SECHION 7 EXTOr MESSAQES ...t 165
SECHION 8 RESIICHONS ...ttt 171
Appendix A Examples of Librarian USage.........c.ccooreneneeneenseneseineenneeees 173
A.1 Librarian Execution by COmMMEaNd LiNE........ccceieriririirieirieirieesieeseese e 173
A.2 Librarian Execution by SUDCOMMENGS..........ccvivvirieiiririe e 175
Appendix B Noteon Librarian Usagein MS-DOS System...........cccooceeveveerenneee. 177
Part [11 Object Converter GUITE. ... 179
Section 1 Object Format CONVErSION............cc.oovueiieiiiesieieseseiss s 181
1.1 Executing the Object FOrmat CONVEIrSION........ccceiueiieiieriesieiereeseeeeeee e ere e sreste e sresrenee s 181
1.2 EXTON MESSAGESeiueetieueeteeee ettt ettt sttt sttt b et e b e e e e s b e e s e eae e s e sreeneesneeseeenneseeennenrean 184
INAEX st 187
Figures
Figure1-1 Program Development ProCEAUIE.............cccvviieriesiesesesesie et 3
Figure1-2 Interrelation among Module, Unit, and SECtion...........ccceoeririerinenencnene e 5
Figure2-1 Grouping Sections Having the Same Name.........ccccooeiirinienenene e 7
Figure2-2 SImpPle LiNKAOE......cociieeieeeee ettt e bbb 8
Figure2-3 CommON LiNKBOE.......cccoirieirieiirieiirieirieries ettt 8
Figure 2-4 DUMMY LiNKAGEeiviieiesiereeeeee ettt s e se e se e ere e snesreneennens 9
Figure 2-5 Example of Section Linkage with a Specified Linkage Orderccccvevvvinnnn 10

Figure2-6 Example of Section Linkage without a Specified Linkage Orderc.ccocevuenee. 11

Figure 2-7
Figure 2-8

Figure 2-9

Figure 2-10
Figure 2-11
Figure 2-12
Figure 2-13
Figure 2-14
Figure 2-15
Figure 2-16
Figure 2-17
Figure 2-18
Figure 2-19
Figure 2-20
Figure 2-21
Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 6-5
Figure 6-6
Figure 6-7
Figure 6-8
Figure 6-9
Figure A-1
Figure A-2
Figure A-2
Figure A-2
Figure A-2
Figure A-3
Figure A-3
Figure A-3
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4

Example of Section Linkage for Same Section Name but Different Attributes.....
Linking of Page Type Modules (Neither Autopaging nor Start Address

Example of Module Linking (Input Object Modules)ccoererereneieeieeeeane
Example of Module Linking (Input Library FHIeS)ccccoviiiniiiiineeeeen
Example of Module Linking (Output Load Modul€)ccveriiiniieninniieeenn
Example of Module Containing Non-Referenced Import Symbol ...
Resolution of Import SYMBOIS.......ccccveeereeeesecece e
Address Resolution within @MOdUIE............ccerrieiiiinrers e
Load Module File Re-Input FUNCLIONcooiiiiiiirireeeeer e
Automatic Unit EXCNaNQE........cocooiiiiiiie et
MUItiliNKBgE FUNCLIONcueiviiieieieseese et
Memory Map for Storing Program in ROM ...
Symbol Address for Storing Program in ROMcccvevvevnneneseseesesereeeeeenes
Typical Output of INPUL INFOrMELEIONc.ccveieeeeeeeecee e
Typical Link Map List Output USiNg PRINT ..o
Typical Link Map List Output USING LISTcoooiiiiiiiinineee e
Typical Export Symbol List Output Using PRINTccviiiiiieeecneeee
Typical Export Symbol List Output USINg LISTccooiiiiiriirireneenecseeene
Typica Unresolved Import Symbol List Output Using PRINTccoovvvvericreenn
Typical Unresolved Import Symbol List Output USing LISTccccevevievecienenee
Typical RENAME/DELETE LiSt....ccoiiiiiirieieenerisieieneses et
TYPICEA DEFINE LiSt....cocuciieiiricieiierisieie sttt
Subcommand File “ exlinK.SUD” ..o
Linkage List “programl.map” (Input INfOrmation)..........cccoeeereeenerenenenenesenennnn.
Linkage List “programl.map” (Link Map LiSt) ..ccccceeeeveeererrsenesevesese s
Linkage List “programl.map” (Export Symbol List)cccccceeveveieievesieiceeeenne
Linkage List “programl.map” (Undefined Symbol List)cooereiineieiiiienennene
Linkage List “example.map” (Input INformation)............c.cooeererereneneneerrieeenane
Linkage List “examplemap” (Link Map List)ccccoeerieniirinenisceeiee
Linkage List “examplemap” (Export Symbol List)cccoveeereeineinennencneene
Creating aNew Library File......oio e
AdAiNG AMOUUIE........oceeie et
Deleting aMOUUIEccoeeie e e e
RePIACiNg @MOAUIE.........oouiie e e
EXEracting MOGUIES..........coiiiiiciicrecst e
Librarian List FOMMEL........cccoviirerierereeeeseeeeeeiese e see e see e seeseeseseeseensesesneenessens
Librarian List (with (S) specification on UNIX)cccoevvvienievnncneneseeeeeseeeenens
Librarian List (no (S) specification on UNIX)ccccoveivvieeeniiecece e
SeCtion Name LisSt FOIMEL ... s

23

Figure 6-5
Figure A-1
Figure A-2
Figure 1-1

Tables

Table 3-1
Table 3-2
Table4-1
Table6-1
Table 7-1
Table 7-2
Table 7-3
Table 8-1
Table A-1
Table A-2
Table 3-1
Table 3-2
Table4-1
Table4-2
Table 7-1
Table 7-2
Table 7-3
Table8-1
Table1-1

e 10 g\ F= TSN TS 163

Results of Librarian Execution by Command Line..........cccooevrerienienienenesenenens 174
Results of Librarian Execution by Subcommandcccoevrineineineicneieneenn 176
S-TypPe ODJECE FOIMEL ..o 182
Notes on Linkage Editor USAgE..........coceriririiiniinie et 31
Return Code Depending 0N Error LEVE!ocooeeieieieeeeeeecreee e 36
List of Options and SUBCOMMENGS...........coeerieirieierieereeees e 40
List Of INfOrmative MESSAJES........ccirieieririeriee ettt 87
List of Warning MESSAgESccveeeeeererestesestestesteseesessseseesessessessessessessessessessesenns 20
LiSt Of EFTOr MESSAgES. ...c.veiveeeieeeeetieteeteste s e stestes e saesaessesae s eseesesseesestessessestesseseens 95
List Of Fatal Error MESSAgES........cocerueriereriiniesie et s 97
Restrictions on Linkage Editor PrOCESSINGcoeverererenieieereeesesese s 101
LiSt Of INPUE FITES. ..ot 103
List of Modulesin Library File ... 104
How Command Line Specification Determines the Form of Execution................ 127
Return Code Depending on Error LEVEccocvceieieseciceeeeeceses e 130
List of Options and SUDCOMMENGS..........cocerererieriere e 135
Interrelation among Options and SUDCOMMEANGS...........coererrerierierienenene e 137
List Of Warning MESSAgESc.eruruerieerieierieie ittt seebe e snene e 166
LiSt Of ErrOr MESSBgES......c.coveertierieriete sttt ettt st s eb e s be i 167
List Of Fatal Error MESSAgES.ccevererereseestesieseestesieseeseeseeeeessessessessessessesssssensenn 169
Restrictions on Librarian ProCESSINGccocvviiiiiieie e 171

Object Format Converter Error MESSAgEScouerveiererreeererenesiesie e sre st s 185

Part |
Linkage Editor Guide

(This pageisintentionally left blank.)

Section1 Overview

The growing need for large-scale, complex microcomputer programs has led to the common
practice of developing a program in separate parts and using a high-level language. In generating a
program in this fashion, a compiler or an assembler is used to convert source programs into object
modules. After that, alinkage editor is employed to link and edit the modules into one load
modulefile.

The H Series Linkage Editor (hereafter, referred to as the Linkage Editor) inputs object module
files output by an assembler or C compiler, links and edits them, and generates a single load
modulefile.

Figure 1-1 illustrates the program devel opment procedure using the Linkage Editor.

Assembly- C-language
language source program
source program

Preprocessor C compiler

'

| Librarian | Assembler

Libraries % Object modules

|\ Linkage Editor

*
|
'CfPU Absolute Relocatable
Informa- | |pad module
tion file load module

;

| Object converter || In-circuit emulator | | Simulator/Debugger

1

Load module
(S-type)

Note: * The Linkage Editor described in this manual.

Figure1-1 Program Development Procedure

HITACHI 3

The Linkage Editor has the following features:

(1) Linkage can be executed by command-line specifications or by subcommands. These two
methods allow flexible control over the Linkage Editor to match the desired application.

(2) The load module file output by the Linkage Editor can be re-input and re-edited to generate a
new load modulefile.

(3) Data used by a simulator/debugger or in-circuit emulator in symbolic debugging can be
included in the load module file by specifying options.

11 Linkage Editor Functions
The Linkage Editor provides the following five basic functions.

Module Linkage: The module linkage function links and edits object modules output by a
compiler or assembler.

Address Resolution: The address resolution function determines absol ute addresses for external
reference symbols so that references can be made between modules. It also determines absolute
addresses for relative addresses.

Load Module File Re-input: The re-input function enables aload module file output by the
Linkage Editor to be input again.

Multilinkage: The multilinkage function enables the linkage process to be carried out multiple
times during one execution of the Linkage Editor.

Debugging Support: The debugging support function allows display of interim linkage results
and provisional correction of errors.

12 Object Module and L oad Module

An object module is output as aresult of compiling or assembling a source program. A load
moduleis obtained by using the Linkage Editor to link object modules.

There are two load module formats: absolute and relocatable. An absolute load module has been
assigned absolute addresses, and isin executable form. It does not contain rel ocation information
for relinking and relocation. A relocatable load module has been assigned relative addresses and
contains relocation information. This information enables the relocatable load module to be
re-input into the Linkage Editor for relinking and relocation. The load module format is selected
by the FORM option or subcommand. For details on the FORM option and subcommand, refer to
section 4.5.3, “FORM—Specifies Output Load Module File Format.”

4 HITACHI

Object modules, absolute load modules, and relocatable load modules are collectively referred to
as modulesin this manual.

Modules are either page type or non-page type, depending on the H series microcomputer. The
two types differ asto the method of assigning addresses when modules are linked. H8/500 series
modules are page type, whereas H8S, H8/300 series and SH series modules are non-page type.

1.3 Unit and Section

A unit in amodule refersto a compile unit or assembly unit. An object module output by a
compiler or assembler consists of asingle unit. A load module which represents multiple object
modules that have been linked by the Linkage Editor contains more than one unit.

A unit isdivided into sections. The Linkage Editor processes one section at atime.

The interrelation among module, unit, and section isillustrated in figure 1-2.

Module

,,,,,,,,,,

Figure1-2 Interrelation among Module, Unit, and Section

A section has a name for identification, an attribute describing its content and usage, and a format:
either absolute or relocatable. Even if two sections have the same name, they are treated as
separate sections when their attributes or formats are different.

HITACHI 5

Section attributes and formats are classified as follows.

(1) Attributes

0 Code: An area containing instructions or constants.
0 Data A variable area with values that are changed by the program.
0 Stack: A stack or work areawhich cannot be initialized.
0 Common: A variable areaused in common by multiple modules.
O Dummy: Used, for example, to define the structure of avariable area; does not generate
any actual object code.
(2) Formats
O Absolute: A section in which absolute addresses have aready been assigned.
O Relocatable: A section in which absolute addresses have not yet been assigned.

6 HITACHI

Section 2 Linkage Editor Functions

This section gives a more detailed description of the basic functions provided by the Linkage
Editor. The following discussion and examples will make reference to various options and
subcommands used to control the Linkage Editor. Additional information on these options and
subcommands can be found in section 3, “ Executing the Linkage Editor,” and section 4, “Linkage
Editor Options and Subcommands.”

21 Module Linkage

The Linkage Editor reads modules from specified input files and links these modules to generate
one load module. Modules are linked by each section, a section being the smallest compl ete part
making up a module.

211 Section Linkage

A sectionislinked only if it isrelocatable. Since absolute sections have aready been assigned
absolute addresses, no further linking is performed. Relocatable sections are linked according to
the procedure described below.

(1) Grouping of Sectionswith the Same Name

Sections having the same name but found in more than one unit are grouped.

Unit X Unit Y
Section A Section A Grouping of sections named A
Section B Section B Grouping of sections named B
Section C Section C Grouping of sections named C

Figure2-1 Grouping Sections Having the Same Name

HITACHI 7

A warning message is output when sections have the same name but different attributes. Such
sections are then processed as separate sections.

(2) Linking of Sectionswith the Same Name
Sections having the same name are linked in one of three ways, depending on their attributes.

(a) Simplelinkage
Sections with the code, data, or stack attribute and having the same name are allocated
consecutively, in the order in which the modules were input.

Unit X UnitY Linkage of sections named A
Section A + Section A - Sectio_n Ain
Unit X
Section Ain
UnitY

Figure2-2 SimpleLinkage

(b) Common linkage

Sections with the common attribute and having the same name are allocated at the same
address. The address area all ocated is equal to the size of the largest section.

Unit X UnitY Linkage of sections named B
: - oy
Section B £ - A -
---Unit X

Figure2-3 Common Linkage

(c) Dummy linkage

Sections with the dummy attribute are not linked, because they do not have any actual
existence in the object modulefile.

8 HITACHI

Unit X UnitY

Figure2-4 Dummy Linkage
(3) Linking of different sections

If asection linking order is specified when the Linkage Editor is executed, sections are linked in
that order. If the section linking order is not specified, sections are linked in the order in which

they were input.

(a) With a specified linkage order

HITACHI 9

Unit X UnitY Unit Z

Section A Section A Section A Section A: Code section

Section B Section B Section B: Common section

Section C Section C Section C: Dummy section

Section D Section D: Data section

Section linkage order A—D —B

il

Section A (X)
Section A (Y)
Section A (Z)

Section D (X)
Section D (Y)

Figure2-5 Example of Section Linkage with a Specified Linkage Order

The section linkage order can be specified only when the load module output by the Linkage
Editor has the absolute format. The linkage order is specified using the START option or
subcommand.

10 HITACHI

(b) Without a specified linkage order

Unit X

Section A

Section B

Section C

uUnitY

Section A

Section C

Section D

Unit Z

Section A

Section B

N

il

Section A:

Section B:

Section C:

Section D:

Data section

Common section

Dummy section

Code section

Sections are input in the order 1 through 4

Section A (X)
Section A (Y)
Section A (2)

Section D (Y)
Section D (2)

Figure2-6 Example of Section Linkage without a Specified Linkage Order

HITACHI 11

Sections having the same name but different attributes are linked in the order in which they are
input.

Unit X Unit Y Unit Z
Section A 1 Section A 2 Section A 3
<data> <stack> <code>

Sections are input in the order of 1 through 3

Section A (X)
<data>

Section A (Y)
<stack>

Section A (2)
<code>

Figure2-7 Example of Section Linkage for Same Section Name but Different Attributes

12 HITACHI

(4) Addressassignment

Addresses are assigned to each section. Absolute addresses are assigned when the output |oad
module file has the absolute format. The section linkage order and start address can be specified
using the START option or subcommand. Absolute addresses are assigned to each section in
order, beginning with the start address. If no start address is specified, absolute addresses are
assigned beginning from address zero.

If sections with absolute format are linked to sections with rel ocatable format, the same absolute
address may be assigned to more than one section. In that case, the Linkage Editor displays a

warning message.

When page type modules are linked, if addresses are assigned section by section, one section may
overlap a page boundary. In this case the Linkage Editor will display awarning message.
However, executing aload module one of whose sections overlaps a page boundary is extremely
troublesome. For this reason the Linkage Editor is provided with an autopaging function, which
prevents any section in a unit from overlapping the page boundary by allocating the section to the
top of the next page. Use of this function is designated by means of the AUTOPAGE option or
subcommand. The different methods of assigning addresses to page type modules are shown in
figure 2-8 (neither autopaging nor start address specified), figure 2-9 (autopaging specified, start
address not specified), and figure 2-10 (autopaging and start address specified).

When the output load module file has the relocatable format, addresses in each section are
assigned relative to the beginning of the section. The output format is specified using the FORM
option or subcommand.

HITACHI 13

Unit X uUnit Y Unit Z

Section A: Code section

Section A

Section C| Section B: Common section
Section C: Dummy section

Section D: Data section

X Section D
Section D

Section linkage order specified as: A— D — B

Section A (X)

Section A (Y)

Page boundary —

Section A in Unit Z
Section A () | | ©verlaps page boundary

Section D (X) Section D in Unit X
overlaps page boundary

Page boundary —

Section D (Y Section D in Unit Y

overlaps page boundary

Page boundary —

Section B

Figure2-8 Linking of Page Type Modules (Neither Autopaging nor Start Address
Specified)

14 HITACHI

Unit X Unit Y Unit Z
Section A: Code section
Section A
Section C Section B: Common section
< < A V|
Section C: Dummy section
Section D

Section D

Section D: Data section

Page boundary

Page boundary

Page boundary

Page boundary

Section A (X)

Section A (Y)

Section A (Z)

Section D (X)

Section D (Y

> Section B,

Section linkage order specified as: A— D —B

Figure2-9 Linking of Page Type Modules (Autopaging Specified, Start Address Not

Specified)

HITACHI 15

Unit X Unit Y Unit Z

Section A: code section

Section A

RSN . N)
Section B: common section
Section C: dummy section

Section D: data section

Section D
Section D

Section linkage order specified as: A— D —B

Start address —»

Section A (X)

Page boundary —
Section A (Y)

Page boundary —

Section A (2)

Page boundary —

Section D (X)

Page boundary —

Section D (Y

Page boundary —
>Section B,

Figure2-10 Linking of Page Type Modules (Autopaging and Start Addr ess Specified)

16 HITACHI

212 Inclusion from Library Files

The Linkage Editor can link object modules and relocatable load modules input from library files
created with the H Series Librarian, and include these modules in the output load module.
Inclusion from library filesis accomplished in either of the following two ways.

(2) Inclusion by Specifying the Module Name: Particular modulesin alibrary file can be
included by specifying the library file name and module name when input file names are
specified. Input file names are specified on the command line or by the INPUT subcommand.

(2) Automatic Inclusion: After all specified modules have been input, the Linkage Editor begins
resolving external reference symbols (after this, external reference symbol iscalled “import
symbol™). If an import symbol is not defined in any of the modules, the Linkage Editor
searches the specified library files. If it finds a module defining the unresolved import symbol,
the Linkage Editor automatically inputs and links this module. If the unresolved import symbol
is not defined in any of these library files, the Linkage Editor searches one or more default
library files defined in advance by the user. Again, if it finds a module defining the unresolved
import symbol, the Linkage Editor automatically inputs and links this module.

If no module in the default libraries defines the unresolved import symbol, an undefined import
symbol error occurs.

A detailed explanation of default librariesis given in section 5.4, “Default Library Files.”

Library files are classified into system library files and user library files. The Linkage Editor first
searches user library files. When modules containing externally defined symbols (after this,
externally defined symbol is called “export symbol™) of the same name exist both in a specified
system library file and in auser library file, the module in the user library fileislinked. The order
in which two or more user library files or system library files are searched depends on the order in
which they are specified.

A library file can contain both page type and non-page type modules. If both types of modules are
input into the Linkage Editor at the same time, an error will occur. Care must therefore be taken
both when creating library files and when specifying them.

Library files are specified using the LIBRARY option or subcommand. On the designation of
library files as system files or user files, see Part 11, Librarian Guide.

An example of the order of module linking when library files are specified is given below.

(1) Object modules aand b are input by the INPUT subcommand.

HITACHI 17

Module a

IMPORT X1, Z1
MOV @X1, RO
MOV @71, R1

Module b

IMPORT X2, Y2
MOV @X2, RO
MOV @Y2, R1

Figure2-11 Example of Module Linking (Input Object Modules)

(2) Library fileslibl, lib2, and lib3 are input in that order by the LIBRARY subcommand.

Library lib1 Library lib2 Library lib3
Module 10 Module 20 Module 30
.EXPORT X2 .EXPORT Y1 .EXPORT Z1
Module 11 Module 21 Module 31
.EXPORT X1 .EXPORT Y2 .EXPORT Z2

Figure2-12 Example of Module Linking (Input Library Files)

(3) The Linkage Editor first collects al import symbols declared in the input files, then searches
for export symbolsin thefirst specified library. If asymbol isfound, the module defining it is

linked.

If two or more symbols are declared in separate modules in the same library, the modules are

linked in their order of appearance in the library. If a symbol is not found in that library, the
next specified library is searched.

In the above example, modules are linked in the following order.

Module a

Module b

Module 10

Module 11

Module 21

Module 30

Figure2-13 Example of Module Linking (Output L oad Module)

18 HITACHI

213 Exclusion of Module Linking

An option or subcommand selects whether or not to link modules that define non-referenced
import symbols. In the following coding example symbol abc is declared as an import symbol, but
is not referenced in any executable statement. If exclusion is specified, the module defining
symbol abc in alibrary file will not be linked.

IMPORT xyz, abc
MOV.W @xyz, RO

.END

Figure2-14 Example of Module Containing Non-Referenced Import Symbol

In a C language program, import symbols are described by an extern declaration, but these
symbols are not necessarily referenced. (For example, alarge number of non-referenced import
symbols are declared in stdio.h.) The exclusion function reduces program size by excluding
unnecessary modules. Exclusion of such modulesis specified by the EXCLUDE option or
subcommand.

2.2 Address Resolution

When a source program is assembled, the absolute addresses of certain symbols cannot be
decided. These include symbols imported from another module and symbolsin relocatable
sections of the same module. The Linkage Editor determines absolute addresses for these symbols
and sets the absol ute addresses to the reference positions.

221 Import Symbol Resolution

When importing symbols from a separate modul e, the assembler outputs import information in the
object program. It aso declares export of symbols that can be imported in other modules. Asa
result, export information is output in the object program. The Linkage Editor relates this import
and export information. In addition, it uses address information specified by options or
subcommands to determine absol ute addresses for the export symbols, and replaces corresponding
import symbols with the absolute addresses.

The example given in figure 2-15 illustrates how import symbols are resolved. The modules,
sections, and subcommands used in the figure are explained below.

HITACHI 19

(1) Modulea

« Thismodule consists of one section, section X, having a size of 5000 (hexadecimal) bytes.
e Symbol $4in module b isimported at position Al.
e Symbol S2 in module b isimported at position A2.

(2) Moduleb

e Thismodule consists of sections X and Y.

* Thesize of section X is 2000 (hexadecimal) bytes.

e Thesizeof section Y is 3000 (hexadecimal) bytes.

e Slisthestart of section Y. S2 islocated 1000 (hexadecimal) bytes from S1.
» S3isthe start of section X. $4 islocated 1200 (hexadecimal) bytes from S3.

(3) Modulec

« Thismodule consists of one section, section Z, having a size of 4000 (hexadecimal) bytes.
e Symbol S3in module b isimported at position C1.
¢ Symbol S1inmodule b isimported at position C2.

(4) Subcommands

I NPUTAa, b, c
STARTAX, Y, Z(10000)
EXIT

Three modules a, b, and ¢ areinput to the Linkage Editor. Sections are linked in the order X, Y, Z.
The start addressis 10000 (hexadecimal).

20 HITACHI

Module a

Al - e
e ! 10000
Section X ! 5000 bytgs Al
A2 ! (hexadecimal) -
S o A2 ;
b b SRRt
L 15000 | .
b A ~7/1 o
- : S3 =1+
b | sS4 :
Do | 17000 !
L o s1 7
Module b L L sz
R i) - o ! | 1A000
S1 Ul -{--- 3000 bytes R S —
! 1 (hexadecimal) c1
| Section Y | |
| | R R C
| : | C2
gy SectionX i | 2000 bytes 1E000
%{J‘ ”””””” (hexadecimal)
Module ¢ Absolute address of S1: 17000 (hexadecimal)
b Section Z c1 Absolute address of S2: 18000 (hexadecimal)
(S 4000 bytes Absolute address of S3: 15000 (hexadecimal)
! co (hexadecimal) Absolute address of S4: 16200 (hexadecimal)
hoeees - Set 16200 (hexadecimal) to position Al.
Set 18000 (hexadecimal) to position A2.

Set 15000 (hexadecimal) to position C1.
Set 17000 (hexadecimal) to position C2.

Figure2-15 Resolution of Import Symbols

2.2.2 Address Resolution within a Module

When a symbol defined in arelocatable section of a module is referenced within the same module,
the assembler expresses the symbol address as arelative address from the start of the section. The
Linkage Editor uses this relative address value and address information specified by options or
subcommands to decide the absolute address. It then replaces the relative address with the absolute
addresses.

The example given in figure 2-16 illustrates the resolution of addresses within amodule. The
modules, sections, and subcommands used in the figure are explained below.

HITACHI 21

(1) Modulea
« Thismodule consists of one section, section X, having a size of 5000 (hexadecimal) bytes.
(2) Moduleb

e Thismodule consists of sections X, Y, and Z.

* The size of the section X is 6000 (hexadecimal) bytes.

e Thesize of the section Y is 1000 (hexadecimal) bytes.

* Thesize of the section Z is 2000 (hexadecimal) bytes.

e Bl references S1.

* B2 references S3.

* B3references S2.

e Slislocated 3000 (hexadecimal) bytes from the start of section X.
e S2islocated 4500 (hexadecimal) bytes from the start of section X.
» S3islocated 5000 (hexadecimal) bytes from the start of section X.

(3) Subcommands

I NPUTAa, b
STARTAX, Y, Z(10000)
EXIT

22 HITACHI

Two modules aand b are input to the Linkage Editor.

start address is 10000 (hexadecimal).

Sections are linked inthe order X, Y, Z. The

Module a
Section X
Module b
1. % Section Y
Section X
S1
B2
——————— {—
S2
s3 -
)
B3
Section Z

5000 bytes
(hexadecimal)

1000 bytes
(hexadecimal)

6000 bytes
(hexadecimal)

2000 bytes
(hexadecimal)

10000

15000

S1
-3,
————————— —
-
S3 |
{71 3
B1
— ;
B3 3

Logical address of S1: 18000 (hexadecimal)
Logical address of S2: 19500 (hexadecimal)
Logical address of S3: 1A000 (hexadecimal)

Set 18000 (hexadecimal) to position B1.
Set 1A000 (hexadecimal) to position B2.
Set 19500 (hexadecimal) to position B3.

Figure2-16 AddressResolution within a Module

HITACHI 23

2.2.3 Suppressing the Listing of Unresolved Symbols

For arelocatable load module, the display of unresolved symbol names can be suppressed. This
can be selected by the UDF option or subcommand.

2.3 Load Module File Re-Input

Load module files have to be recreated using the Linkage Editor when a program has been
modified or import symbols remain unresolved. The re-input function eliminates the need to
specify each object module separately. By simply specifying the existing load module file and the
object module files that were modified (or the object module files containing the export symbols),
this function will recreate the load modulefile.

If modules are to be replaced, the re-input function carries out the replacement on a unit basis. A
detailed explanation of unit replacement is given in section 2.3.1, “ Automatic Unit Exchange.”

The load module file to be re-input can be specified on the command line or using the INPUT
subcommand.

Only load module filesin relocatable format can be re-input. The FORM option or subcommand is
used to specify the rel ocatable format when creating aload module file.

An overview of the load module file re-input function is shown in figure 2-17.

Load module file a

Load module file d

Object module file b

Linkage Unit U3

editor Unit U4

Unit U5

Object module file ¢

(o {

Figure2-17 Load Module File Re-Input Function

24 HITACHI

Load module file aand object module files b and ¢ are input to the Linkage Editor, which outputs
anew load modulefile d. Load module file d consists of units U1, U2, U3, U4, U5, and U6.

231 Automatic Unit Exchange

When the Linkage Editor finds units with the same name in two or more modules, it gives
inclusion priority to the unit in the module that was specified first. To replace unitsin aload
module file, first specify files containing the replacement units, then specify the relevant load
module file. Thiswill produce the same result as using the EXCHANGE subcommand. This
function is called automatic unit exchange.

By using automatic unit exchange, new load module files can be created by simply changing the
specified order of fileinput. This feature is convenient when it is necessary to modify programs
frequently, such as during debugging.

An example of the procedure for automatic unit exchange is shown in figure 2-18.

Subcommand contents

(1) Automatic)
exchange Load module file d

2 e e

|
;

Load module file a

Object module file b

(" [oness |

(2) No automatic

exchange Load module file d

= INPUTa, b, C ,,,,,,

Object module file¢ |- = OUTPUTAd

----------------- |
(o]

Figure2-18 Automatic Unit Exchange

HITACHI 25

(1) Automatic Exchange: Object module files ¢ and b and load module file aare input in that
order. Unit U2 in load modulefile ais not included by the Linkage Editor since unit U2 in load
module file ¢ has already been input.

(2) No Automatic Exchange: Load module file aand object module filesb and c are input in that
order. Unit U2 in load modulefile c is not included by the Linkage Editor since unit U2 in load
module file a has already been input.

232 Forced Unit Exchange

In addition to using automatic unit exchange, the EXCHANGE subcommand can also specify the
units to be replaced. This function is called forced unit exchange.

By specifying the following subcommands, the result of forced unit exchange will be the same as
that of the automatic unit exchange shown in figure 2-18.

Forced unit exchange Automatic unit exchange
INPUTAa, b INPUT Ac, b, a
EXCHANGE Ac - OUTPUT Ad

OUTPUT Ad

In this example of forced unit exchange, the Linkage Editor inputs units U1, U2, U3, and U4 in
load module file aand unit U5 in object module file b, then forcibly replaces the unit U2 already
input with unit U2 in object module file c. Load module file d output by the Linkage Editor
contains units U1, U3, and U4 from file a, unit U5 from file b, and unit U2 from file c. Thus load
module file d has the same unit configuration as load module file d shown in the example of
automatic file exchange in figure 2-18.

24 Multilinkage

The Linkage Editor can handle up to 256 input files in one linkage process. When there are
multiple input files, one way to link them isto re-input the load module file. The multilinkage
function allows several linkage processes to be completed with just one execution of the Linkage
Editor, instead of executing it separately for each linkage process.

The END subcommand indicates the end of one linkage process of the multilinkage function. The
end of the final linkage process, however, is specified by the EXIT subcommand.

An example of the multilinkage function is shown in figure 2-19.

26 HITACHI

Input files Subcommand contents

 LUINPUTAffilel

| LINPUTAfflen |

n files
| OUTPUTAIM1
 FORMAR Relocatable
END . load module file
VINPUTAIMLrel
=l NPUTAffle n+1 |
m files 3 LINPUTAfflem !
‘ 1 OUTPUTAIM2 . Relocatable
- ' FORMAR : load module file
ifile m END
'' ' Im2
L INPUTAIm2.rel /
\ INPUTA ifile m+1

‘ OUTPUTA Im3 ! load module file
- / EXIT Im3
S s

i~""% indicates one
---+ linkage process

o files INPUTAifile o Absolute

Note: When the default library is used during multi-linkage process, the modules in the
default library are linked in the first linkage process. When the modules must be
linked in the final linkage process, specify the NOLIBRARY command in the
processes except the final process.

Figure2-19 Multilinkage Function

Debugging Support

Debugging support functions confirm the interim linkage results at the program debugging stage
and make provisional recovery from errorsin load module files. Debugging support functions
include displaying interim linkage information as well as defining, changing, and deleting export
and import symbol names. A brief explanation of each function is given below.

(1) Display of Interim Linkage Information: Thisfunction isused during subcommand input

when it is desired to see information about the load module being processed by the Linkage

HITACHI 27

Editor. Specifying the LIST subcommand outputs interim linkage information to the standard
output device.

Three types of linkage information are displayed.
(a) Linkage map

(b) Unresolved import symbols

(c) Export symbols

(2) Change and Deletion of Unit Names, Export Symbol Names, and I mport Symbol Names:
These functions can change or delete any duplicated names of units, export symbols, and
import symbols. Noted that names of import symbols cannot be del eted.

Names are changed by the RENAME subcommand and are deleted by the DELETE
subcommand.

(3) Forced Definition of Import Symbols: This function defines provisional values for import
symbols. The values defined with this function are valid only for the linkage operation being
processed.

The forced definition of these symbol values is specified using the DEFINE option or
subcommand.

2.6 Address Check

When an absolute load module is created with the Linkage Editor, addresses must be assigned to
sections in accordance with the target CPU memory map. If not, the load module cannot be loaded
to memory.

The address check function provided with the Linkage Editor confirms the validity of section
address assignments on the basis of CPU memory map information (hereinafter called “CPU
information”). This CPU information is read from a specified file.

To check an address, the CPU option or subcommand specifies the CPU information file. The
CPU information file is created using the CPU information analysis program (CIA) included in the
simulator/debugger. Note that the CPU information analysis program is not available for CPUs
other than the H8S, H8/300, and SH series; thus the address check function can be used only with
these series.

Regarding the method of creating a CPU information file, refer to the H8/300 Series or SH Series
Simulator/Debugger User’s Manual or the SH Series Simulator/Debugger User’s Manual .

2.7 Support for Storing Program in ROM

When auser program is coded in C language and the load module is to be stored in ROM, data
sections having initial value (D sections) will also be stored in ROM. To assist the user, the
Linkage Editor carry out the following operations.

28 HITACHI

(1) An area of the same size as the D section (called the D' section) isreserved in the RAM area
of the output load module. The memory map of the load module looks like this:

Program area ?

Constant area ROM area

Initialized data area (D)

Initialized data area (D’) ?
Non-initialized data RAM area
variable area (B) ¢

Area reserved for data having initial value

Figure2-20 Memory Map for Storing Program in ROM

(2) When avariable declared in the D section is referenced, its address is changed to point to the
RAM area. The variable address becomes:

Start address of D section + relative address within section
The ROM ability support function changes this to:

Start address of D’ section + relative address within section
Example: MOV @a, RO

The address of symbol “a” declared in the D section becomes (x) + (y) as shown in figure 2-21.
Thisaddressis also stored on the object code.

Start address

of D section Relative address
within section (y)

D section

Symbol a

Start address : -
of D' section (X) Relative address | 0 SSCtON

within section (y)

Figure2-21 Symbol Addressfor Storing Program in ROM

(3) Datais copied from ROM to RAM in the start-up routine.
The copy processisincluded in the start-up routine. The procedure for including this processis
described in the C Compiler User’s Manual.

HITACHI 29

(This page isintentionally left blank.)

30 HITACHI

Section 3 Executing the Linkage Editor

To execute the Linkage Editor, start Linkage Editor by entering a command line. This command
line specifies the names of filesto be input, and also specifies options giving various instructions
to the Linkage Editor. If these instructions are sufficient, the Linkage Editor can be executed using
the command line aone. If further instruction are needed, they can be given in subcommands.

Specifying Command Line: This method executes linkage by simply specifying the input files
and options on the command line. It is used when only afew files are to be input and the linkage
operation isrelatively straightforward.

Specifying Subcommands: This method, in addition to a command line, uses subcommands to
control the Linkage Editor. The subcommands specify files to be input and output, and execution
control parameters for the Linkage Editor. This method is used when alarge number of files or
modules are specified, when the order in which sections are to be linked specified, or when
multilinkage function is used. There are two ways of specifying subcommands. Oneisdirect
input from the keyboard or other input device in interactive mode and the other isinput from a
subcommand file.

For file name specifications, refer to appendix B, File Name Specifications. Table 3-1 shows the
notes on Linkage Editor usage.

Table3-1 Noteson Linkage Editor Usage

os Notes

MS-DOS Before using this Linkage Editor, set the MS-DOS configuration file
(CONFIG.SYS) with the editor as follows.

FI LES=20 (1)
SHELL=a: \ conmand. com a:\ /p| (2)

1. The number of files that is allowed to open at one time during Linkage Editor
operation.

2. Directory path specification that is required when COMMAND.COM is
reloaded.

UNIX The OS shell (command interpreter) checks the command line before passing
control to the Linkage Editor. Use characters that the OS allows on the command
line.

HITACHI 31

3.1 Command Line For mat

The following format is used for the Linkage Editor command line.

I nkA[<i nput file name>[{,|A}<input file name>]...]
[[A] - <option name>[[A] -<option nane>...]] (RET)

Command Name: “Ink” isinput to start up the Linkage Editor.

Input File Names: Names of filesto beinput in the Linkage Editor are specified. These can be
object module files or relocatable |oad module files. When more than one file is specified, the
names are delimited by acomma. (,).

If the file type is not specified with the input file name, the Linkage Editor automatically assumes
that the typeis*“.obj.”

Option Names: Each option name must be preceded by a hyphen (-). When an option name
follows an input file name or another option name, one or more spaces or tabs can be inserted to
delimit the names, or they can be entered continuously. Option names are described in detail in
section 4, Linkage Editor Options and Subcommands.

Specifying the Execution Mode: Command line specification determines whether linkageisto
be executed by the command line only or subcommands are to be used as well.

(8) Specifying execution by command line: If one or more input files are specified on the
command line and no subcommand file is specified, module linkage will be executed
according to the command line only.

(b) Specifying subcommands: If no input files are specified on the command line, or a
subcommand file is specified, the Linkage Editor will be controlled by the subcommands.

3.2 Executing by Command Line

In this method, input files are specified on the command line, and the Linkage Editor executes
module linkage according to the information specified in the command line alone. Output files and
other instructions to the Linkage Editor are specified in the form of options. Command line
execution is sufficient for performing linkage operations when the number of input filesis small,
and when there is ho need for detailed instructions to the Linkage Editor such as the order in
which sections are to be linked. Examples of execution by command line only are given below.
For details on options in these examples, see section 4, Linkage Editor Options and
Subcommands.

EXAMPLE 1

| nkAadd, sub, mul , di vA- OQUTPUT=ar i t hA- ENTRY=mrai n (RET)

32 HITACHI

Four files “add.obj,” “sub.obj,” “mul.obj,” and “div.obj” are input to the Linkage Editor. They are
linked and output as absolute load module file “arith.abs.” Export symbol “main” isthe start
address for execution of the output load module file. No linkage list is output.

EXAMPLE 2:

| nkAmai n, key, di spl ay, pri nt - OQUTPUT=cal c- PRI NT=cal c- FORM=R- DEBUG (RET)

Four files“main.obj,” “key.obj,” “display.obj,” and “print.obj” areinput to the Linkage Editor.
They are linked and output as rel ocatable load module file “calc.rel.” Debugging informationis
incorporated in this load module file. Linkage list “calc.map” is to be outpuit.

3.3 Controlling by Subcommands

When alarge number of files or modules must be input, or when complex section islinked, the
command line alone may not be sufficient to contain all the specifications. In such cases,
subcommands are used to control the Linkage Editor. Subcommands can be entered one at atime
in interactive mode, from the keyboard or other standard input device, or a subcommand file
consisting of a group of subcommands can be created in advance, and subcommands can be
entered from this subcommand file.

I nteractive Mode: Can be used when the number of subcommandsis relatively small. This
method is also useful when the Linkage Editor is employed during program debugging, whereitis
desired to check interim linkage results or make provisional recovery from errors.

Subcommand File: A subcommand fileis used to control the Linkage Editor when the number
of subcommandsislarge, or the procedures to be carried out are mostly routine.

A subcommand file is used by specifying the SUBCOMMAND option on the command line. The
name of the subcommand file to be input is specified as a parameter of the SUBCOMMAND
option.

The Linkage Editor can use a subcommand file even when subcommands are input interactively.
Specify the SUBCOMMAND subcommand with the subcommand file name as a parameter.

HITACHI 33

331 Executing in I nteractive M ode

In this method, subcommands required for Linkage Editor operations are input directly from the
standard input device. Execution proceeds by this method when no input files are specified on the
command line and the SUBCOMMAND option is not specified. Use the interface mode when the
number of subcommands to be input is relatively small, or when it is desired to confirm linkage
results while inputting subcommands, as in the first stage of program debugging. When the
debugging support function is used, the interface mode is the most suitable.

An example showing input of subcommands in interactive mode is given below. Functions of the
subcommands listed here are detailed in section 4, Linkage Editor Options and Subcommands.

EXAMPLE:
Ink (RET) e @
INPUTAMain (RET) 2
I NPUTAsend, recei ve, exchange (RET).....)
I NPUTAaccount (RET).................... 4
LI BRARYAsyslib (RET)................... (5)
PRINTA # (RET) (6)
FORMAR (RET) ..\ttt (7
EXIT (RET)., (8)

(1) Command line, starting up the Linkage Editor in interactive mode.

(2) Inputs object module file “ main.obj.”

(3) Inputs three object module files “send.obj,” “receive.obj,” and “exchange.obj.”
(4) Inputs object module file “ account.obj.”

(5) Inputs library file “sydlib.lib.”

(6) Outputs linkage list to standard output device.

(7) Creates aload module in rel ocatable format.

(8) Outputs load module file “main.rel” and ends the linkage operation.

332 Executing from a Subcommand File

In this method, a subcommand file is used which has been created in advance and which contains
the subcommands necessary for Linkage Editor operations. This subcommand file is specified as a
parameter of the SUBCOMMAND option or subcommand. This method is used when the number
of subcommands to be specified is large, or the same linkage processis carried out repeatedly. It
saves trouble of inputting subcommands from the keyboard one at atime.

34 HITACHI

A subcommand file is created using an editor. An example of executing from a subcommand file
is given below. Functions of the subcommands listed here are detailed in section 4, Linkage Editor
Options and Subcommands.

EXAMPLE 1:
| nkA- SUBCOWAND=pr gl nk. sub (RET)..... (0]

Contents of subcommand file “prglnk.sub”:

QUTPUTAfunction. ()]
INPUTAsi n,cos,tan..................... (©)]
I NPUTAasi n, acos,atan. 4
| NPUTAhsi n, hcos, htan. 5)
INPUTAl 09, 10910, (6)
FORMAA. . oo e @)
EXI T, (8)

(1) Command line, starting up the Linkage Editor and entering subcommands from subcommand
file“prgink.sub.”

(2) Names the output file as“function.” Either “.rel” or “.abs’ is assumed, because thefile typeis
omitted.

(3) Inputs object module files “ sin.obj,” “cos.obj,” and “tan.obj.”

(4) Inputs object module files “asin.obj,” “acos.obj,” and “atan.obj.”
(5) Inputs object module files “hsin.obj,” “hcos.obj,” and “htan.obj.”
(6) Inputs object module files “log.obj” and “log10.0bj.”

(7) Creates aload module in absolute format. The file type for the output file name becomes
“.abs.”

(8) Outputs load module file “function.abs’ and ends the linkage operation.

EXAMPLE 2:
Ink (RET) ... (1)
SUBCOVWAND pgm nk.sub (RET)......... 2

(1) Command line, starting up the Linkage Editor. Module linkage is executed interactively,
because no parameters are specified.

(2) Inputs subcommands from “pgmink.sub.”

If thereis no EXIT subcommand in the subcommand file, the Linkage Editor waits for further

subcommand inpuit.

HITACHI 35

34 Terminating the Linkage Editor

When terminated, the Linkage Editor returns an error level to the system as areturn code. This
return code controls the execution of acommand file.

The return code has the values shown in table 3-2, depending on the error level.
Table3-2 Return Code Dependingon Error Level

Return Code

Error Level MS-DOS UNIX
Normal termination 0 0
Warning 0 0
Error 2 1
Fatal error 4 1

36 HITACHI

Section 4 Linkage Editor Options and Subcommands

Options and subcommands specify file names and give the Linkage Editor various instructions,
such asthe order in which sections are to be linked. Options and subcommands have four types of
functions: file control, memory allocation, execution control, and debugging support. These
functions can be used independently or in combination to edit load modules in various ways.

(1) File Control Functions: File control functions specifiesinput files and output filesto the
Linkage Editor. Input files include object module files, rel ocatable load module files and
library files. Output files are load modulefiles and list files.

(2) Memory Allocation Functions. Memory allocation functions can inform the Linkage Editor
the order in which sections are to be linked and give their start addresses. They can also
specify the address at which the output load module isto start executing. These functions
change the order in which sections are linked, or create aload module that is to execute from a
specified address.

(3) Execution Control Functions: Execution control functions specify the form in which the
Linkage Editor is to input and output information, and end Linkage Editor operations. They
input subcommands from a subcommand file, or incorporate debugging information in aload
module.

(4) Debugging Support Functions: Debugging support functions display contents of aload
module during a linkage operation, or change information such as export and import symbol
names, etc. These are useful at the program debugging stage, for confirming interim linkage
results, or for provisional recovery from errors.

Options and subcommands have the same names and have equivalent functions, but are specified
using different formats. Moreover, some specifications can be made only with either
subcommands or options. Section 4.1, Option and Subcommand Formats, and section 4.2, List of
Options and Subcommands, should accordingly be read carefully.

For details on the functions and means of specifying each option and subcommand, refer to
sections 4.3, File Contral, through 4.6, Debugging Support.

41 Option and Subcommand Formats

(1) Option and Subcommand Structure:

(@) Name: The name part gives the name of the option or subcommand. For details, see
section 4.2, List of Options and Subcommands.

(b) Parameters: The parameter part gives information such as the name of files on which the
option or subcommand operates, and address values. There are different requirements and
methods of specification depending on the option or subcommand. See sections 4.3, File
Control, 4.4, Memory Allocation, 4.5, Execution Control, and 4.6, Debugging Support.

HITACHI 37

Options and subcommands differ asto the way of separating the name from the parameters.
Options use an equals sign (=), while subcommands use one or more spaces or tabs.

Option format
<Name>=<par anet er s>

Subcommand format
<Name>A<par anet er s>

EXAMPLES:
-QUTPUT=l oadf Option
QUTPUTAl cadf Subcommand

In these examples, “OUTPUT” isthe name, and “loadf” isthe parameter.

(2) Continuation Specification for a Subcommand: When a subcommand istoo long to be
specified on one line (generally, up to 500 characters per line, but it will depend on the OS), a
continuation specifier isused. Thisis an ampersand (&) at the end of theline. It must always
be placed in between two parameters; if it is placed within a parameter, it will be interpreted as
part of the parameter. If a character (other than a space or tab) is typed after the ampersand, an
error will occur and the subcommand will not be continued.

If continuation is specified in interactive mode, a hyphen (-) appears as a prompt for further
input.
EXAMPLES:
: I NPUTA obj 00, | i b(mod0, nod1), & (RET)
—obj 01, obj 02 (RET)
Continuation specifier

: I NPUTA obj 00, | i b(nodO, nod1), ob& (RET)

| 1 Processed under the file name ob& due
Not a continuation line to specification within parameter

38 HITACHI

(3) Specifying Commentsin a Subcommand File: A comment specifier adds notes or other
commentsin a subcommand file. The specifier is a semicolon (;) placed on a subcommand
line, indicating that the rest of the line isacomment. At least one space or tab must set off the
semicolon from the subcommand name or parameter.

When a semicolon is placed at the beginning of a subcommand line, the entire lineistaken as a
comment.

EXAMPLES:
; EXAMPLE OF LI NKAGE SUBCOMVAND

...... The entire line is acomment.
LI BRARYAsysl i bA; | NDI CATES LI BRARY FI LE

...... “INDICATESLIBRARY FILE" isacomment.
I NPUTAobj ect . rel ; abc

...... object.rel;abc” istreated as one parameter.

HITACHI 39

4.2 List of Options and Subcommands

There are 20 options and 29 subcommands. The options and subcommands are listed in table 4-1.

Options and subcommands can be written either in uppercase or lowercase letters.

Table4-1 List of Optionsand Subcommands
Option/ Sub-
No. Type Subcommand Name Function Option command Section
1 File INPUT Specifies input file No Yes 4.3.1
control OUTPUT* (NOOUTPUT) Specifies output file Yes Yes 432
LIBRARY (NOLIBRARY)* Specifies library file Yes Yes 433
PRINT (NOPRINT)* Specifies list file Yes Yes 4.3.4
EXCLUDE (NOEXCLUDE)* Excludes modules from Yes Yes 435
linking
DIRECTORY Specifies directory name No Yes 4.3.6
replacement
2 Memory START Specifies section start Yes Yes 441
allocation address and linking order
ENTRY Specifies execution start Yes Yes 4.4.2
address
ALIGN_SECTION Specifies linkage of Yes Yes 443
sections having different
boundary alignment
values
CHECK_SECTION Specifies section check Yes Yes 444
AUTOPAGE (NOAUTOPAGE)* Specifies automatic Yes Yes 445
paging
CPU Specifies address check Yes Yes 4.4.6
CPUCHECK Specifies output of errors Yes Yes 447
at address check
ROM Specifies support of Yes Yes 4.4.8

storing program in ROM

Notes: 1. The shortest permissible abbreviated forms are underlined.

2. Yes and No in the table indicate whether an item can be used as an option or

subcommand.
3. An asterisk indicates the default option or subcommand.

40 HITACHI

Table4-1 List of Options and Subcommands (cont)
Option/ Sub-
No. Type Subcommand Name Function Option command Section
3 EXCHANGE Substitutes units No Yes 45.1
SUBCOMMAND Specifies subcommand Yes Yes 45.2
file
EFORM Specifies format of Yes Yes 45.3
output load module file
EBUG (NODEBUG)* Specifies output of Yes Yes 45.4
debugging information
SDEBUG Specifies output of Yes Yes 455
debugging information to
a file
END Terminates No Yes 4.5.6
subcommand input
EXIT Terminates linkage No Yes 457
operation
ABORT Aborts linkage operation No Yes 4.5.8
ECHO* (NOECHO) Specifies subcommand Yes Yes 4.5.9
file echo-back
UDF* (NOUDF) Specifies display of Yes Yes 4.5.10
undefined symbols
UDFCHECK Specifies output of error Yes Yes 4511
for undefined symbol
4 Debugging LIST Displays interim linkage No Yes 46.1
support information
RENAME Changes name of unit, No Yes 4.6.2
export symbol, or import
symbol
DELETE Deletes unit or export No Yes 46.3
symbol
DEFINE Forcibly defines import Yes Yes 4.6.4
symbol
Notes: 1. The shortest permissible abbreviated forms are underlined.
2. Yes and No in the table indicate whether an item can be used as an option or
subcommand.
3. An asterisk(*) indicates the default option or subcommand.

HITACHI 41

(1) Negative Form of Options and Subcommands: For some options and subcommands, a
negative form starting with “NO” can be specified. Parameters cannot be specified with
negative-form options and subcommand. There are eight negative option/subcommand forms,
asfollows:

(&) NOOUTPUT: Suppresses output of load module file
(b) NOLIBRARY: Specifiesnon-use of alibrary file
(c) NOPRINT: Suppresses output of alist file
(d) NOEXCLUDE: Specifieslinking of modules
(e) NOAUTOPAGE: Suppresses automatic paging
(f) NODEBUG: Suppresses output of debugging information
(g) NOECHO: Suppresses echo-back of a subcommand file
(h) NOUDF: Suppresses display of undefined symbols
(2) Option Default: When an option is omitted, the following are the default choices.
(@) OUTPUT (no parameters)
(b) NOLIBRARY
(c) NOPRINT
(d) NOEXCLUDE
(e) NOAUTOPAGE
(f) FORM=A
(g) NODEBUG
(h) ECHO
(i) UDF
(3) Abbreviating Option and Subcommand Names: Names of options and subcommands can

be abbreviated to the point where the name can still be distinguished from other names. For
example, consider the name “DEBUG.”

D: Cannot be distinguished from DELETE or DEFINE, so an error occurs
DE: Cannot be distinguished from DELETE or DEFINE, so an error occurs
DEB: Recognized as DEBUG

DEBU: Recognized as DEBUG

DEBUG: Recognized as DEBUG

DEBUGS: No such name, so an error occurs

(4) Range of Validity of Options. When only acommand lineis specified, linkage is executed
based only on the options specified. When subcommands are specified, options specified in the
command line remain valid up to the first END subcommand specified (or up to the EXIT
subcommand when no END is specified). However, if subcommands are specified which
conflict with the function of an option, an error message is displayed, the option becomes
invalid, and execution proceeds according to the subcommand specification. After the first
END subcommand, all subsequent subcommand specifications are valid.

42 HITACHI

EXAMPLE:

I nk A - NOOUTPUT (RET ionisi
nk (RED | The NOOUTPUT option isin effect,

: so no output fileis created.
: END (RET)

The OUTPUT subcommand is now valid,

: MF:)UTA Foadfile (RET) so output file “loadfile.abs’ is created.

In the following sections the format below is used to describe each option and subcommand.

Heading for each option
4 Or subcommand

No. INPUT
Format Name Option Subcommand Negative Form

Option or subcommand
name, and format for
specifying parameters;
—— underline indicates
arameters shortest abbreviation

Function ~—— Summary of option or
subcommand functions

Explanation -+ Detailed description
of functions, and
restrictions

Examples ~—— Examples of option
or subcommand
specifications

HITACHI 43

4.3 File Control

431 INPUT—Specifies I nput Files

Format Name Option Subcommand Negative Form

None INPUT None

Parameters <Input file name>[(<module name>[,<module hame>...])]
[{,|A} <Input file name> [(< module name>[,<module name>...])]...]

Function Specifies files and modules to be input.

Explanation (1) Outline of functions:

» Thefiles specified by parameters, or the specified modulesin those files, are
input to the Linkage Editor.

» Threekinds of files can be specified: object module files, load module files, and
library files.

* Modules can be specified only for library files, in which case only the specified
modules from the library file will be input.

« |f thefile typeis omitted from afile name, the Linkage Editor will
automatically assume the type as follows.

No module name specified: “.obj”
M odule name specified: “lib”

(2) Restrictionsin use:

« Among load module files, only relocatable load modules can be specified. If an
absolute load module is specified, an error will occur and the file will not be
input.

» If amodule other than that in alibrary file is specified, an error will occur and
the file will not be input.

* The maximum number of input files that can be treated in one linkage process
is 256, including library files. If more than 256 files are specified, an error will
occur, and only the first 256 files specified will be input. To process more than
256 files, use the multilinkage function.

» Page type and non-page type modules must not be input at the sametime. If
they are, an error will occur and the Linkage Editor will stop execution.

Examples | NPUTAmai n

« Inputsthe object module file “main.ob;j.”
I NPUTAf uncl i b(sin,cos),tan.o

* Inputsthemodules“sin” and “cos” from library file “funclib.lib,” and inputs
the object module file “tan.o.”

44 HITACHI

432 OUTPUT—Specifiesan Output File

Format Name Option Subcommand Negative Form
OUTPUT OUTPUT NOOQUTPUT
Parameters [<Output file name>]

Function Specifies aload module output file name.

Explanation (1) Outline of functions:

« Outputs the load module generated by the Linkage Editor to the specified file.

» If thefile typeis omitted from the file name, the Linkage Editor will
automatically assign afile type according to the format of the load modulefile,
asfollows.

Absolute format “.abs”

Relocatable format “.rel”
The format of the load module file is specified using the FORM option or
subcommand. If no specification is made, absolute format is used.

« If no output file nameis specified using the OUTPUT option or subcommand,
the output file is given the name of the first specified input file plus the above
filetype.

e |If the NOOUTPUT option or subcommand is specified, no load modulefile
will be output.

(2) Restrictionsin use:
» No parameters can be specified with the NOOUTPUT option or subcommand.

» If an output file nameis specified, it must be different from all input file names.

Examples - QUTPUT=pr gl oad
Outputs load module file “prgload.abs’ (or “prgload.rel™).
- QUTPUT

Outputs load module file with the name of the first specified object module
file plus*”.abs’ (or “.rel”).

OQUTPUTAMai n. 10
Outputs load module file “main.10.”

HITACHI 45

433 LIBRARY—SpecifiesLibrary Files

Format

Name Option Subcommand Negative Form

LIBRARY LIBRARY NOL IBRARY

Parameters <Library file name>[,<library file name>...]

Function

Specifiesinput library files.

Explanation

(1) Outline of functions:

Specifies library files which the Linkage Editor isto search if there are
unresolved import symbols after linkage operations among specified input files
are completed.

If both user library files and system library files are specified, the Linkage
Editor will search the user library filesfirst.

If no filetypeis specified with the library file name, the Linkage Editor
automatically assumesthisto be “.lib.”

If the NOLIBRARY option or subcommand is specified, there will be no input
from alibrary file (including default libraries). When linkage is controlled by
subcommand specification, however, the range of validity of thisoptionis
limited. For details see Range of Validity of Options under section 4.2.

(2) Restrictionsin use:

Only library files created using the H Series Librarian can be input to the
Linkage Editor.

The maximum number of input files that can be treated in one linkage operation
is 256, including library files. If more than 256 files are specified, an error will
occur, and only the first 256 files specified will be input. To process more than
256 files, use the multilinkage function.

Page type and non-page type modules must not be input at the same time. If
both types of modules are input together, an error will occur and the Linkage
Editor will stop execution.

No parameters must be specified with the NOLIBRARY option or
subcommand.

Examples

- LI BRARY=sysl i b.

Specifieslibrary file“sydib.”

LI BRARYAsyst em debug

Specifieslibrary files“system.lib” and “debug.lib.”

46 HITACHI

434 PRINT—Specifiesa List File

Format Name Option Subcommand Negative Form
PRINT PRINT NOPRINT
Parameters [<List file name>
#
Function Specifiesalist file for output of linkage list.
Explanation (1) Outlineof functions:
« Outputs alinkage list to the specified list file.
« If the parameter “#” is specified, the list fileis output to the standard output
device.
e 1f no PRINT option or subcommand is specified, or if the NOPRINT option or
subcommand is specified, the linkage list will not be output.
» If nofiletypeis specified with the list file name, the Linkage Editor will
automatically assumethisto be“.map.”
* Onthe contents of the linkage list, see section 6.1, Linkage Lists.
(2) Restrictionsin use:
* No parameters must be specified with the NOPRINT option or subcommand.
Examples - PRI NT=li nkage

Outputs alinkage list to list file “linkage.map.”
PRI NTAeart h. prn

Outputs alinkage list to list file “earth.prn.”

HITACHI 47

435 EXCLUDE—Excludes Modules from Linking

Format

Name Option Subcommand Negative Form

EXCLUDE EXCLUDE NOEXCLUDE

Parameters None

Function

Specifies that modules defining non-referenced import symbols should not be
linked.

Explanation

(1) Outline of functions:

If an import symbol is not referenced, the module defining it is not linked.
When the NOEXCLUDE option or subcommand is specified, modules defining
non-referenced import symbols are linked. The defining modules are also
linked if the EXCLUDE option or subcommand is omitted.

(2) Restrictionsin use:

The EXCLUDE subcommand cannot be used after input files have been
specified by the INPUT or EXCHANGE subcommand.

The EXCLUDE option or subcommand can be specified only when the output
load module is in absolute format. When the multilinkage function is used to
create an absolute load module in the final linkage process, if the default library
function is also used, the modules from the default library will beincluded in
the first linkage process. If you want the default library to be included in the last
linkage process, specify the NOLIBRARY subcommand for the intermediate
linkage processes.

Examples

- EXCLUDE

If an import symbol is not referenced, the module defining it is not linked.

48 HITACHI

436 DIRECTORY —Specifies Directory Name Replacement

Format Name Option Subcommand Negative Form

None DIRECTORY None

Parameters <Symbol name>(<Directory name>)

Function Defines a symbol as an alias of adirectory. This function enables along directory
name to be input with a simple symbol name.

Explanation < Directory name dias definition
A symbol nameis defined as an alias of adirectory with the DIRECTORY
subcommand.
DIRECTORY A<symbol name>(<directory hame>)
« Directory name reference

To refer to adirectory name, enclose the defined symbol name with a dollar
mark ($) and aslash (/) (adollar mark ($) and a back-slash (\) in MS-DOS
system). If the symbol name has not been defined, the Linkage Editor does not
replace it with a directory name.

$<symbol name>/ —> Replaced with <directory hame>/

» Symbol names for up to 16 directory names can be defined.

Examples DI RECTORYAsynbol (dir1/dir2)
| NPUTA$synbol / fil el. obj
Defines symbol “symbol” as an alias of directory “dirl/dir2”.

Replaces $symbol/with dirl/dir2, and as aresult, specifies file name
“dirl/dir2/filel.obj”.

HITACHI 49

4.4 Memory Allocation

441 START—Specifies Start Addressand Linkage Order of Sections

Format Name Option Subcommand Negative Form
START START None
Parameters Option
UNIX: <Section name>[,<section name>...][/[<page address>:]<start address>]
[,<section name>[,<section name>...][/[<page address>:]<start address>]...]
MS- <Section name>[,<section name>...][([<page address>:]<start address>)]
DOS: [,<section name>[,<section name>...][([<page address>:]<start address>)]...]
Sub- <Section name>[,<section name>...][([<page address>:]<dtart address>)]
com- [,<section name>[,<section name>...][([<page address>:]<start address>)]...]
mand
Function Specifies the order in which sections are linked, and their start addresses.
Explanation (1) Outline of functions:

Sections are allocated from the specified address and in the specified order.

If the start addressis not specified and only the section linkage order is
specified, and sections are assigned addresses starting from zero.

Page address can be specified only for page type modules. If the page addressis
not specified, it is assumed to be zero.

The page address and start address are specified in hexadecimal notation.

When sections not specified in the parameters are input, those sections are
assigned after the series of sections with the highest specified start address.

If no START option or subcommand is specified, sections will be allocated to
addresses starting from zero in the order of appearance.

The START option or subcommand can be specified more than once.
Hexadecimal numbers must start with numbers O through 9.

(2) Restrictionsin use:

If the load module to be output isin rel ocatable format, the START option or
subcommand must not be used.

If apage addressis specified for non-page type modules, an error will occur
and the Linkage Editor will stop execution.

EX: OABCD Correct designation
ABCD Incorrect designation

50 HITACHI

Explanation e

Page addresses must be assigned in the range from 0 through OFF
(hexadecimal).

The range of start addresses that can be specified varies with the H series
model.

H8/500 series: 0 through OFFFF (hexadecimal)

H8/300 series: 300HA: 0 through OFFFFFF (hexadecimal)
Others: 0 through OFFFF (hexadecimal)

H8/S series: 2600A and 2000A: 0 through OFFFFFFFF (hexadecimal)
Others: 0 through OFFFF (hexadecimal)
SH series: 0 through OFFFFFFFF (hexadecimal)

Examples

- START=CODE, DATA, BSS, STACK
Links sectionsin the order “CODE,” “DATA,” “BSS,” “STACK,” and
allocates them to addresses starting from 0 (hexadecimal)
- START=CONTROL, BANKO, BANK1(OF00) (M5- DOS)
- START=CONTROL, BANKO, BANK1/ OF00 (UNI X)
Links sectionsin the order “CONTROL,” “BANKO,” “BANK1,” and
allocates them to addresses starting from OF00 (hexadecimal).
STARTACONTROL, BANKO, BANK1(0: OF0O0)
Links sections in the order “CONTROL,” “BANKO,” “BANK1,” and
allocates them to addresses starting from OF0O0 (hexadecimal) in page O.
STARTARAMD, RAML(8000) , ROML, ROV2(1000) , ROVD
Links sections “RAMO” and “RAM1” in that order and alocates them to
addresses starting from 8000 (hexadecimal). Sections “ROM1” and
“ROMZ2" arelinked in that order and are allocated to addresses starting from
1000 (hexadecimal). Section “ROMO” is allocated to addresses starting
from zero.

HITACHI 51

442 ENTRY —Specifies Execution Start Address

Format Name Option Subcommand Negative Form
ENTRY ENTRY None
Parameters <Export symbol>
Function Specifies the start address for executing aload module.
Explanation (1) Outline of functions:

« Setsthe address of an export symbol as the execution start address of aload
modul e to be output.

« If no ENTRY option or subcommand is specified and the output load module
format is absolute, the execution start address becomes the start address of the
first code section in the output load module.

(2) Restrictionsin use:

« If an ENTRY option or subcommand is specified more than once, the last
specified addressis valid.

Examples - ENTRY=PRG_ENT

Specifies the address of export symbol “PRG_ENT” as the execution start
address.

ENTRYAMAI N

Specifies the address of export symbol “MAIN" as the execution start
address.

52 HITACHI

443 ALIGN_SECTION—Specifies Linkage of Sections Having Different Boundary
Alignment Values

Format Name Option Subcommand Negative Form
ALIGN_SECTION ALIGN_SECTION None
Parameters None

Function Specifies address assignment for sections having the same name but different
boundary alignment values (specified with the ALIGN operand in the .SECTION
directive of the assembler), handling the sections as the same one.

Explanation Outline of functions:

» Sections having the same name but different boundary alignment values can be
generated by using the ALIGN operand in the .SECTION directive of the
assembler. In this case, the Linkage Editor usually does not handle these
sections as the same section when assigning addresses because they have
different boundary alignment values. Specifying the ALIGN_SECTION option
enabl es these sections to be handled as the same section.

Examples - ALI GN_SECTI ON

Assigns addresses for sections having different boundary alignment values
handling the sections as the same section.

HITACHI 53

444 CHECK_SECTION—Specifies Section Check

Format Name Option Subcommand Negative Form
CHECK_SECTION CHECK_SECTION None
Parameters None
Function Outputs awarning and continues processing if a section that has not been specified
with the START option/subcommand is found in an input file.
Explanation (1) Outline of functions:

e Checkswhether the input files include a section whose start address has not
been specified with the START option/subcommand, and outputs warning
message 120 when such a section is found.

(2) Restrictionsin use:

* Processing continues after the warning message is outpuit.

Examples - CHECK_SECTI ON

Checks whether the input files include a section whose start address has not
been specified and outputs a warning when such a section is found.

54 HITACHI

445 AUTOPAGE—Specifies Autopaging Function

Format Name Option Subcommand Negative Form
AUTOPAGE AUTOPAGE NOAUTOPAGE
Parameters None

Function Specifies autopaging in assignment of addresses to page type modules.

Explanation (1) Outlineof functions:
* When apage type module is linked, addresses are assigned by automatic
paging.
* If the AUTOPAGE option or subcommand is not specified, or if the
NOAUTOPAGE option or subcommand is specified, addresses are not
assigned by automatic paging.

(2) Restrictionsin use:

» The AUTOPAGE option or subcommand must not be specified when linking
non-page type modules are linked. Such specification will result in an error, and
the Linkage Editor will stop execution.

« If the NOAUTOPAGE option or subcommand is specified when page type
modules are linked, sections may overlap page boundaries. If overlap occurs,
the Linkage Editor displays awarning.

Examples AUTOPAGE
Assigns addresses by autopaging.

- NOAUTOPAGE
Assigns addresses without regard to page boundaries.

HITACHI 55

446 CPU — Specifies Address Check Using a CPU Information File

Format

Name Option Subcommand Negative Form

CPU CPU None

Parameters <CPU information file name>

Function

Specifies execution of an address check using a CPU information file.

Explanation

(1) Outline of functions:

The validity of addresses assigned to each section is checked, based on CPU

information. In the following cases the section address assignment is regarded

asinvalid, and the Linkage Editor displays awarning. The sections, however,

are output to the load module file without changing the addresses.

() When sections are assigned addresses in areas other than memory.

(b) When one section is assigned to addresses overlapping memory areas
having different memory types and attributes.

If no file typeis specified with the CPU information file, the Linkage Editor

will automatically assume thisto be“.cpu.”

(2) Restrictionsin use:

In the following cases the Linkage Editor displays awarning, and the CPU

option or subcommand isinvalid.

() Relocatable format is specified for load module output with the FORM
option or subcommand.

(b) The information format of the CPU information fileisinvalid.

(c) A CPU information fileis specified for linkage processing of object
modules that are not for the H8S, H8/300, or SH series.

When a CPU option or subcommand is specified more than once, awarning

message is displayed, and only the last-specified file is valid.

Examples

- CPU=ci nf

Inputs CPU information file “cinf.cpu.”

CPUAC300. i nf

Inputs CPU information file “c300.inf.”

56 HITACHI

447 CPUCHECK—SpecifiesError Output at Address Check Using CPU Information
File

Format Name Option Subcommand Negative Form
CPUCHECK CPUCHECK None

Parameters None

Function Changes the warning message into an error message when an address check is
executed with the CPU option/subcommand using the CPU information file.

Explanation (1) Outline of functions:

* Outputs error 329 and aborts processing when memory allocation does not
match the memory layout specified in the CPU information file. This error
occurs in the same conditions as those generating a warning when the CPU
option/subcommand is specified (see section 4.4.6).

(2) Redtrictionsin use:
* When neither the CPU option nor subcommand is specified, the CPUCHECK
option/subcommand isignored.

Examples - CPUCHECK

Specifies error message output in the conditions that generate a warning at
CPU option/subcommand execution and aborts processing in these cases.

HITACHI 57

448 ROM —Specifies Support of Storing Program in ROM

Format Name Option Subcommand Negative Form
ROM ROM None
Parameters UNIX: <Section 1>/<Section 2>[,<Section 1>/<Section 2>...]
MS-DOS: (<Section 1>,<Section 2>)[(<Section 1>,<Section 2>),...]
<Section 1>: Section name of source initialized data areain ROM
<Section 2>: Section name of destination initialized dataareain RAM
Function Reserves a RAM areafor updating initialized data values stored in ROM.
Explanation (1) Outline of functions:
« Inthe output load module, a section with the same section size as the specified
section 1 isreserved as section 2. Section 2 has the same section attributes as
section 1.
* Referencesto symbols declared in section 1 are relocated to addressesin
section 2. Specify arelocatable section as section 1.
* Upto 64 pairs of section 1 and section 2 pairs can be specified.
« For details of the support of storing program in ROM, see section 2.7, Support
of Storing Program in ROM.
(2) Restrictionsin use:
« The ROM option or subcommand cannot be specified when the output 1oad
modul e has the relocatable format.
« If two sections have the same name and this name is specified as section 1, the
section input first is selected.
« Aneror occursif section 1 does not exist.
e A dummy section cannot be specified as section 1.
* When an existing section is specified as section 2, the following conditions
must be satisfied.
(a) Thesize of section 2 in each unit isO.
(b) Section 2 isthe relocatable section.
(c) Both section 1 and section 2 have the same attribute.
Examples - ROVED/ RAM_SCT (UNI X)

- ROVE(D, RAM SCT) (M5- DOS)

Reserves section RAM_SCT, equal in size to section D, in the output |oad
module. References to symbols allocated to section D are relocated to
addresses on RAM_SCT.

58 HITACHI

45 Execution Control

451 EXCHANGE—Forcibly Replaces Units

Format Name Option Subcommand Negative Form
None EXCHANGE None

Parameters <Input file name>[(<unit name>[,<unit name>...])]

Function Replaces unitsin an input file by units of the same name in the load module being
processed by the Linkage Editor.

Explanation (1) Outlineof functions:
« Unitsin the specified input file are replaced by units of the same name in the
load module being processed by the Linkage Editor.

* Anobject module file or load module file can be specified as the input file.

» If aload moduleis specified as the input file without specifying unit names, all
the unitsin that load module file will be usable for replacement.

« If nofiletypeisgiven with the input file name, the Linkage Editor will
automatically assume “.obj” asthefile type.

* Unitsare replaced after al input files have been included. If more than one
EXCHANGE subcommand is specified, units will be replaced in the order of
specification.

(2) Redtrictionsin use:
* An absolute load module must not be specified. If an absolute load moduleis
specified, an error will occur, and the file will not be input.

e Alibrary file must not be specified asthe input file. If alibrary fileis specified,
an error will occur, and the file will not be input.

Examples EXCHANGEAdat ai n
Replaces unitsin the object module file “datain.obj” by units of the same
name in the load module file being processed.
EXCHANGEAf uncti on. rel (tan, at an)
Replaces the units “tan” and “atan” in relocatable load module file

“function.rel” by units of the same name in the load module file being
processed.

HITACHI 59

452 SUBCOMM AND—Specifiesa Subcommand File

Format Name Option Subcommand Negative Form
SUBCOMMAND SUBCOMMAND None
Parameters <Subcommand file name>
Function Specifies a subcommand file for input.

Explanation (1) Outline of functions:

e Subcommands are input from the specified subcommand file.

e |If the SUBCOMMAND option is not specified on the command line, and no
input file is specified there, the Linkage Editor will link modules according to
the subcommands input in interactive mode.

e |If the SUBCOMMAND option is not specified on the command line but one or
more input files are specified there, the Linkage Editor will link modules
according to the command line specification.

(2) Restrictionsin use:

* When a subcommand file is specified on the command line together with input
files or other options, the subcommand file is executed as the last option,
regardless of its specification position. For example:

Ink inl,in2 - SUB = |inkage.sub - FORM = R
1) 2 (©)
This command line is interpreted and executed in the order (3), (2), (2). If
FORM=A is specified in linkage.sub, FORM=A isvalid (because it is
interpreted afterward).
e The SUBCOMMAND subcommand cannot be specified in a subcommand file.

Examples

- SUBCOMVAND=I i nkage. sub

Inputs subcommand file “linkage.sub” and links modules according to the
contents of thisfile.

60 HITACHI

453 FORM —Specifies Output L oad Module File For mat

Format Name Option Subcommand Negative Form
EFORM FORM None
Parameters A
R
Function Specifies the output load module file format as either absolute or relocatable.
Explanation (1) Outline of functions:
* If parameter “A” is specified, the load module file will be output in absolute
format.
» If parameter “R” is specified, the load module file will be output in relocatable
format.
« If no FORM option or subcommand is specified, the load module will be output
in absolute format.
(2) Restrictionsin use:
e The parameter “R” cannot be specified when the ROM or START option or
subcommand is specified.
Examples - FORMFR

Outputs the load module file in relocatable format.

FORMAA

Outputs the load module file in absolute format.

HITACHI 61

454 DEBUG—Specifies Output of Debugging Information

Format Name Option Subcommand Negative Form

DEBUG DEBUG NODEBUG

Parameters None

Function Specifiesincorporation of debugging information in the output load module file.

Explanation (1) Outline of functions:
 Incorporates debugging information in the output load modulefile. This
information is required for symbolic debugging using the Simulator/Debugger.
» If no DEBUG option or subcommand is specified, or if the NODEBUG option
or subcommand is specified, debugging information will not be incorporated in
the output load module file.

(2) Restrictionsin use:
e |If the NOOUTPUT option or subcommand is specified, the DEBUG option or
subcommand isignored.

Examples DEBUG
Incorporates debugging information in the output load module file.
- NODEBUG
Does not incorporate debugging information in the output load module file.

62 HITACHI

455 SDEBUG—Specifies Output of Debugging Information to a File

Format Name Option Subcommand Negative Form
SDEBUG SDEBUG None
Parameters None

Function Outputs a debugging information file separately from aload module. Some
debuggers require the object and debugging information as separate files. In this
case, the SDEBUG option/subcommand must be specified.

Explanation (1) Outline of functions:
« Outputs a debugging information file separately from aload module.

Object file: File extension .abs.
Debugging file: File extension .dbg.

* When the debugging information is output as a separate file, the time for
downloading the load module at debugging can be reduced.

(2) Restrictionsin use:

« When therelocatable format is specified for the output load module, the
SDEBUG option/subcommand cannot be used.

« |If the NOOUTPUT option/subcommand is specified, the SDEBUG
option/subcommand is ignored.

Examples - SDEBUG
Outputs a debugging file and an object file separately.

HITACHI 63

456 END—Specifies End of Subcommand I nput

Format Name Option Subcommand Negative Form

None END None

Parameters None

Function Temporarily endsinput of subcommands and begins linkage operation (after which
subcommand input is resumed).

Explanation (1) Outline of functions:
e Temporarily ends input of subcommands and begins a linkage operation. After
the linkage operation is completed, the Linkage Editor isinitialized and
subcommand input is resumed.

« When the multilinkage function is used to perform multiple linkage operations
during a course of Linkage Editor execution, the END subcommand indicates
the end of one linkage process.

* When the multilinkage function is not used, or when the end of the final linkage

process is specified in a multilinkage operation, use the EXIT subcommand in
place of the END subcommand.

(2) Restrictionsin use:
< If, for asingle linkage process, the END subcommand is specified without
specifying input files, an error will occur.

Examples END
Temporarily ends subcommand input and begins a linkage operation.

64 HITACHI

457 EXIT—Specifies End of Linkage Operation

Format Name Option Subcommand Negative Form

None EXIT None

Parameters None

Function Ends subcommand input and begins linkage operation (subcommand input is not
resumed).

Explanation Outline of functions:

» Ends subcommand input and begins linkage operation. After the linkage
operation is completed, ends the Linkage Editor execution.

* When execution is controlled from a subcommand file, if no EXIT
subcommand is specified, the Linkage Editor waits for further subcommand
input.

« If, for asingle linkage process, the EXIT subcommand is specified without
specifying input files, an error will occur.

Examples EXIT
Ends subcommand input and begins linkage operation.

HITACHI 65

458 ABORT—Specifies Forced End of Linkage Operation

Format Name Option Subcommand Negative Form
None ABORT None

Parameters None

Function Forcibly ends linkage operation.

Explanation Outline of functions:
« Forcibly ends Linkage Editor operation.
* The ABORT subcommand is useful to interrupt Linkage Editor operation when
amistake such as subcommand input mistake has been made.

Examples ABORT
Brings Linkage Editor execution to aforced end.

459 ECHO—Specifies Subcommand File Echo-Back

Format Name Option Subcommand Negative Form
ECHO ECHO NOECHO

Parameters None

Function Specifies whether or not to suppress echo-back of subcommands when a
subcommand file is executed.

Explanation Outline of functions:
e The ECHO option or subcommand displays subcommands on the console when
asubcommand fileis executed. Subcommands are displayed even if the ECHO
option or subcommand is not specified.

e The NOECHO option or subcommand suppresses display of subcommands on
the console when a subcommand file is executed.

Examples - ECHO

Displays executed subcommands on the console when a subcommand file is
executed.

66 HITACHI

4510 UDF—Specifies Display of Undefined Symbols

Format Name Option Subcommand Negative Form
UDF UDF NOUDF

Parameters None

Function Specifies whether to display awarning message when an undefined symbol
remains.

Explanation (1) Outlineof functions:
» Warning message 105 is displayed if an undefined symbol remains when a
relocatable load moduleis created. This messageis also displayed if an
undefined symbol remains when the UDF option or subcommand is omitted.

* When the NOUDF option or subcommand is specified, awarning message is
not displayed if there is an undefined symbol when arelocatable load moduleis
created.

(2) Restrictionsin use:
e The NOUDF option or subcommand is ignored when an absolute load module
is created.

Examples - FORVFER- NOUDF

Does not display awarning message if there is an undefined symbol when
the relocatable load moduleis created.

HITACHI 67

4511 UDFCHECK—Specifies Output of an Error for Undefined Symbol

Format Name Option Subcommand Negative Form
UDFCHECK UDFCHECK None

Parameters None

Function Displays an error message for an undefined symbol and stops absolute load module
generation.

Explanation (1) Outline of functions:

« Outputs error message 221 and stops absolute load modul e generation when an
undefined import symbol isfound. (When the UDFCHECK is not specified,
warning message 105 is output instead and absolute load module generation
continues.)

(2) Restrictionsin use:
* When relocatable load module generation is specified, the UDFCHECK
option/subcommand is ignored.

Examples - UDFCHECK

Displays an error message for an undefined symbol and stops absol ute load
modul e generation.

68 HITACHI

4.6 Debugging Support

46.1 L1ST—Displays Interim Linkage I nformation

Format Name Option Subcommand Negative Form
None LIST None
Parameters M
U
X
Function Displays linkage information of an input file.

Explanation (1) Outline of functions:

* Outputs linkage information to the standard output device concerning the files

currently being input.

« Content of the displayed information depends on the specified parameters, as

follows.

M: Displaysalink map
U: Displays unresolved import symbols
X: Displays export symbols

(2) Restrictionsin use:

» Todisplay linkage information according to the input files, the information

displayed isrestricted as follows.

0O When parameter M is specified

The start address of a relocatable section is always 0.

0O When parameter U is specified

The display shows import symbols for which there is no corresponding
export symbol in the input files specified in INPUT subcommands up to the

location of the LIST subcommand.

Examples LI STAM

Displays alinkage map for the load module being processed.

LI STAU

Displays unresolved import symbols in the load module being processed.

HITACHI 69

46.2 RENAM E—Changes the Names of Units, Export Symbols, or Import Symbols

Format Name Option Subcommand Negative Form
None RENAME None

Parameters UN=<unit name 1> (<unit name 2>)

ER=<unit name>.<import symbol 1>
(<import symbol 2>)

ED=<unit name>.<export symbol 1>
(<export symbol 2>)

UN=<unit name 1>(<unit name 2>)

ER=<unit name>.<import symbol 1>

; (<import symbol 2>)

ED=<unit name>.<export symbol 1>
(<export symbol 2>)

Function Changes the names of units, export symbols or import symbolsin input files.

Explanation (1) Outline of functions:

« Changes the names of the specified units, export symbols, or import symbolsin
input files to the name designated in parentheses (“()”).

* Theunit name specified following “UN=" is changed to the unit namein
parentheses.

* Theimport symbol name specified following “ER=" is changed to the name in
parentheses. The import symbol name is preceded by the name of the unit in
which the symbol exists, and is set off from the unit name by a period (.).

* The export symbol name specified following “ED="'is changed to the name in
parentheses. The export symbol name is preceded by the name of the unit in
which the symbol exists, and is set off from the unit name by a period (.).

70 HITACHI

Explanation (2) Restrictionsin use:
« The RENAME subcommand will affect the input files specified only in the first
INPUT subcommand after the RENAME subcommand.

* Only the following five subcommands can be specified immediately after the
RENAME subcommand:

(@) INPUT subcommand

(b) EXCHANGE subcommand
(¢) RENAME subcommand
(d) DELETE subcommand

(e) ABORT subcommand

When more than one RENAM E subcommands are specified, or when RENAME
and DEL ETE subcommands are specified together, operation takes place in the
order of specification.

Examples RENAMEAUN=dat al i st (dat al st 1)

Renames unit “datalist” as “ datalst1.”
RENAMVEAED=cnt | . TRUNK(P_TRUNK) , ER=cnt | 1. REC_DATA(RECV_DATA)

Changes export symbol “TRUNK” in unit “cntl” to “P_TRUNK.”
Likewise, changesimport symbol “REC_DATA” in unit “cntl1” to
“RECV_DATA.

HITACHI 71

46.3 DEL ETE—Deéletes Unitsor Export Symbols

Format Name Option Subcommand Negative Form
None DELETE None
Parameters [yN=<unit name>
ED=<unit name >.<export symbol name>

, | UN=<unit name>
ED=<unit name>.<export symbol hame>

Function Specifies deletion of units or export symbols from input files.

Explanation (1) Outline of functions:
« Deletes the specified units or export symbols from input files.

* Inthe case of aunit, the unit specified following “UN="is deleted.

* Inthe case of an export symbol, the symbol specified following “ED=" is
deleted. The export symbol nameis set off by aperiod (.) from the name of the
unit in which it exists.

(2) Restrictionsin use:

e The DELETE subcommand will not affect input files already specified. This
subcommand must be specified prior to specification of the input filesin which
the name of the unit or export symbol to be deleted is found.

« Thefollowing five subcommands can be specified immediately after the
DELETE subcommand:

(@) INPUT subcommand

(b) EXCHANGE subcommand
(c) DELETE subcommand

(d) RENAME subcommand
(e) ABORT subcommand

* When RENAME and DELETE subcommands are specified together, operation
takes place in the order of specification.

Examples DELETEAUN=snap_uni t
Deletes unit “snap_unit.”
DELETEAUN=dummy, ED=nai n. DUMW_ENTER

Deletes unit “dummy.” Also, deletes export symbol “DUMMY _ENTER” in
unit “main.”

72 HITACHI

464 DEFINE—For cibly Defines an Import Symbol

Format Name Option Subcommand Negative Form
DEFINE DEFINE None
Parameter Option
UNIX: <numeric value>

<Import symbol name>/ ¢ [<page address>:]<address>
<export symbol name>
<numeric value>

[<page address>:]<address>

<export symbol name>

[,<import symbol name>/

]

<numeric value>
[<page address>:]<address>))
<export symbol name>

e
e
e
.
e
e

MS-DOS:
<Import symbol name>(

[,<import symbol name>({ [<page address>:]<address>

<export symbol name>

)]

Sub-
command <Import symbol name> (

<numeric value>

[<page address>:]<address> ;)

<export symbol name>

<numeric value>

[,<Import symbol name> ({ [<page address>:]<address> !)...]
<export symbol name>

Function Specifies forced definition of import symbols.

Explanation (1) Outline of functions:
» Forcibly defines each specified import symbol with the specified numeric
value, address or export symbol value.

» Page address can be specified only for page type modules. If the page addressis
not specified, zero is assumed.

« Numeric values, page addresses, and addresses are specified in hexadecimal
notation.

HITACHI 73

Explanation

(2) Restrictionsin use:

When the assigned value is that of an export symbol, it must be one that has
already been defined.

If apage addressis specified for non-page type modules, an error will occur
and the Linkage Editor will stop execution.

Hexadecimal numbers must start with the numbers O through 9.
The range of page addressesis 0 through OFF (hexadecimal).
The range of addresses that can be specified varies with the H series model.

H8/500 series: 0 through OFFFF (hexadecimal)

H8/300 series: 300HA: 0 through OFFFFFF (hexadecimal)
Others: 0 through OFFFF (hexadecimal)

H8S series: 2600A and 2000A: 0 through OFFFFFF (hexadecimal)
Others: 0 through OFFFF (hexadecimal)

SH series: 0 through OFFFFFFFF (hexadecimal)

Values defined by the DEFINE subcommand cannot be used in relocatable |oad
modules.

When the EXCLUDE option or subcommand is specified, non-referenced
import symbols specified by the DEFINE subcommand are ignored.

Examples

- DEFI NE=PORT10(OE8) (M- DOS)
- DEFI NE=PORT10/ OE8 (UNI X)

Defines undefined import symbol “PORT10” as a symbol having the value
OE8 (hexadecimal).

DEFI NEAMAI N_RTN(PRG_EXI T)

Defines undefined import symbol “MAIN_RTN” as having the same value
as export symbol “PRG_EXIT.”

74 HITACHI

Section 5 Input to the Linkage Editor

51 Object ModuleFiles

The Linkage Editor can accept as input the object module files output by the H Series C Compiler
or Assembler.

5.2 Relocatable Load M odule Files

Relocatable load module files output by this Linkage Editor can be re-input. Absolute load module
files cannot be re-input.

5.3 Library Files

Library files created using the H Series Librarian can be input to the Linkage Editor. Modulesin
library files can be specified individually, or the LIBRARY option or subcommand can be used to
input modules contained in library files automatically. See further under section 4.3.3,
LIBRARY—Specifies Library Files.

54 Default Library Files

A library file created by the H Series Librarian can be input implicitly without specifying the
LIBRARY option or subcommand. Thisis called the default library function.

A default library isinput when the following three conditions are satisfied:

* Alogica namereserved as a default library name is assigned to the library file before the
library filesisinput to the Linkage Editor.

e The NOLIBRARY option or subcommand is not specified.

e Anunresolved import symbol remains after the libraries specified by the LIBRARY option or
subcommand have been searched.

The Linkage Editor inputs the library files assigned to the following logical namesin the order 1,
2, 3, and searches for modules that define unresolved import symbols.

1. HLNK_LIBRARY1
2. HLNK_LIBRARY2
3. HLNK_LIBRARY3

HITACHI 75

The user can specify library files corresponding to these logical names by using the setenv
command for UNIX system and the SET command for MS-DOS system.

EXAMPLE:

set HLNK LI BRARYl=user.lib (Ms-DQOS)

User library user.lib is assigned to the logical name HLNK_LIBRARY 1.

76 HITACHI

Section 6 Output from the Linkage Editor

6.1 LinkageLists

When the PRINT option or subcommand or the LIST subcommand is specified, the contents of a
load module file being processed are output to the standard output device or to afile, asfollows.

(2) Input information (PRINT only)
(2) Link map list (PRINT or LIST M)
(3) Export symboal list (PRINT or LIST X)

(4) Unresolved import list ~ (PRINT or LIST U)
(5) RENAME/DELETE list (PRINT only)
(6) DEFINE list (PRINT only)

The output formats for these lists are shown below.

HITACHI 77

(1) Input Information: Information input as command line parameters, interactive mode
subcommands, or subcommand filesis output in the format shown in figure 6-1.

H SERI ES LI NKAGE EDI TOR Ver. 5.3
LI NK COMWAND LI NE
LNK -sub=func. sub

@)

LI NK SUBCOMVANDS

inp nain

renane ed=sin. si n0(sinl)

del ete ed=sin.sin3

inp sin

defi ne undef 1(100), undef 2(si nl)

print fmap

inp cos

inp tan 2
inp calc.lib(division)

forma

rom (SECT1, SECIN)

out func

exit

** sin0 IS RENAMED TO sinl

** sin3 | S DELETED

** 105 UNDEFI NED EXTERNAL SYMBOL (di vi sion. undef 3)

Figure6-1 Typical Output of Input Information

(1) Shows the character string input on the command line.

(2) Shows the character strings input as subcommands in interactive mode, or input from a
subcommand file. Also shows error messages or informative messages in response to this
input.

78 HITACHI

(2) Link Map List:

(@) When the PRINT option or subcommand is specified, information on each section is output
in the format shown in figure 6-2.

H SERI ES LI NKAGE EDI TOR Ver. 5.3

SECTI ON NAME

ATTRIBUTE : CODE NOSHR ROM

@
SECT1

@

* TOTAL ADDRESS *

©)

(4)

LI NKAGE EDI TOR LI NK MAP LI ST

* % %

START - END LENGTH
UNI T NAME
H 00000000 - H 00000004 H 00000005
(5) mai n (6)
(7)
H 00000006 - H 00000017 H 00000012
sin
H 00000018 - H 00000019 H 00000002
cos
H 0000001a - H 0000002d H 00000014
tan
H 0000002e - H 00000043 H 00000016
di vi si on
H 00000000 - H 00000043 H 00000044
(9) (10)

PAGE: 1

MODULE NAME

mai n

®

sin

cos

tan

di vi si on

Figure6-2 Typical Link Map List Output Using PRINT

(b) When parameter “M” is specified in the LIST subcommand, information on each fileis
output in the format shown in figure 6-3.

HITACHI 79

H SERI ES LI NKAGE EDI TOR Ver. 5.3 PAGE:

*xx LI NKAGE EDI TOR LI NK MAP LI ST ***

FI LE NAMVE : mai n. OBJ
11)

MODULE NAME : nmai n

(8)
UNI T NAMVE : mai n

(1)
SECTI ON NAME ATTRI BUTE

START - END LENGTH
SECT1 CODE NOSHR
(1) H 00000000 - H 00000004 H 00000005

®) (6)

Figure6-3 Typical Link Map List Output Using LIST

(1) Shows section namesin the order in which sections are linked.
(2) Showsthe attribute as follows.
DATA: dataor common section
CODE: code section
DUMMY: dummy section
STACK: stack section
RESV: reserved
UNDEF: undefined
*****: Unu%d
(3) Showsthefollowing link attributes.
SHR: common link
NOSHR: simplelink
DUMMY: dummy link
UNDEF: link attribute undefined
*****: Unu%d
(4) Displayed for a section related to the support of storing program in ROM

ROM: ROM section (section 1 in the ROM option or subcommand)
RAM: RAM section (section 2 in the ROM option or subcommand)

(5) Shows start address and end address of the object in hexadecimal notation. In the case of
page type modules, the page address and address are separated by a colon (:) asfollows.

80 HITACHI

H'XXXX 1 XXXX
1 I address
page address

(6) Shows size of object in hexadecimal notation.

(7) Shows unit name.

(8) Shows module name.

(9) Shows start address and end address of the section.

In the case of page type modules, the page address and address are separated by acolon (:) as
follows.

H'XXXX © XXXX
[N address
page address

(20 Shows total size of the section.
(11) Showsthe file name (LIST only).

(3) Export SymbolsList: Thislist isoutput when there are export symbols.

(@) When the PRINT option or subcommand is specified, alist is output in the format shown in
figure 6-4.

H SERI ES LI NKAGE EDI TOR Ver. 5.3 PAGE: 1

*xx LI NKAGE EDI TOR EXTERNALLY DEFI NED SYMBOLS LI ST ***

SYMBOL NAME ADDR TYPE
cosl H 0000000A EQU
sinl H 0000004A DAT
sin2 H 0000005B DAT

@ @ ®)

Figure6-4 Typical Export Symbol List Output Using PRINT

(b) When parameter “X” is specified by the LIST subcommand, alist is output as shown in
figure 6-5.

HITACHI 81

H SERI ES LI NKAGE EDI TOR Ver. 5.3 PAGE: 1

*xx LI NKAGE EDI TOR EXTERNALLY DEFI NED SYMBOLS LI ST ***

SYMBOL NAME ADDR TYPE
cosl H 0000000A EQU
sinl H 00000000 DAT
sin2 H 00000011 DAT

(1) @) 3)

Figure6-5 Typical Export Symbol List Output Using LIST

(2) Shows export symbolsin alphabetical order.

(2) Shows the value of each export symbol in hexadecimal notation. In the case of page type
modules, the page address and address are separated by a colon (:) asfollows.

H'XXXX @ XXXX
[N address
page address

(3) Shows the type of symbol as follows.
DAT: data/variable name
EQU: symbol name defined as constant value
ENT: entry name
***: undefined/unused

(4) Unresolved Import Symbol List: Thislist is output only when there are remaining undefined
symbols.

(@) When the PRINT option or subcommand is specified, alist is output in the format shown in
figure 6-6.

82 HITACHI

H SERI ES LI NKAGE EDI TOR Ver. 5.3 PAGE: 1

*xx LI NKAGE EDI TOR UNRESCLVED EXTERNAL REFERENCE LI ST ***

FI LE NAVE :calc.lib
(1)
MODULE NAME : division
@)
UNI T NAME : division
(3)
SYMBOL NAME TYPE
undef 3 *rx
4) (5)

Figure6-6 Typical Unresolved Import Symbol List Output Using PRINT

(b) When parameter “U” is specified by the LIST command, alist is output as shown in figure
6-7.

H SERI ES LI NKAGE EDI TOR Ver. 5.3 PAGE: 1

*xx LI NKAGE EDI TOR UNRESCOLVED EXTERNAL REFERENCE LI ST ***

FI LE NAVE : calc.lib

(1)
MODULE NAME : division

(2)
UNI T NAVE : division

(3)
SYMBOL NAMVE TYPE
undef 1 * ok x
undef 2 * ok x
undef 3 * ok x

4) (5)

Figure6-7 Typical Unresolved Import Symbol List Output Using L1ST

(1) Shows name of file containing undefined symbol.

(2) Shows name of module containing undefined symbol.
(3) Shows name of unit containing undefined symbol.

(4) Shows undefined symbol names in aphabetical order.
(5) Shows undefined symbol attributes as follows.

HITACHI 83

DAT: datalvariable name
ENT: entry name
*** . undefined/unused

(5) RENAME/DELETE List: Whenthe RENAME or DELETE subcommands are used to
change the name of units or symbols or delete units or symbols, specification of the PRINT
option or subcommand results in output of alist in the format shown in figure 6-8.

H SERI ES LI NKAGE EDI TOR Ver. 5.3 PAGE: 1
il LI NKAGE EDI TOR RENAME/ DELETE LI ST =~ ***

FILE NAME : sin.OBJ
1)
UNIT NAME : sin
(2)

FROM NAME TO NAME TYPE RENANME/ DELETE
si n0 sinl ED RENAME
sin3 (4) ED DELETE

©) ®) (6)

Figure6-8 Typical RENAME/DELETE List

(2) Shows names of files containing the unit or symbol to be renamed or deleted in the order input.
(2) Shows the unit name. If the unit was renamed or deleted, the old unit name is shown.

(3) Shows the name before changed.

(4) Shows the name after changed. No name is shown in case of a DELETE.

(5) Shows the type specified by subcommand, as follows.

UN: unit name
ED: export symbol
ER: import symbol
(6) Shows whether the subcommand was a RENAME or a DELETE.

(6) DEFINE List: When animport symbol isforcibly defined using the DEFINE option or
subcommand, specification of the PRINT option or subcommand resultsin output of alistin
the format shown in figure 6-9.

84 HITACHI

H SERI ES LI NKAGE EDI TOR Ver. 5.3 PAGE: 1

*oxx LI NKAGE EDI TOR DEFI NE LI ST ***

UNDEFI NED SYMBCL DEFI NED SYMBOL DEFI NED VALUE
undef 1 H 00000100
undef 2 sinl H 0000004A

@) @ ©)

Figure6-9 Typical DEFINE List

(1) Shows forcibly defined symbol name.
(2) Shows the name of the export symbol which is specified.

(3) Showsthe value of the defined symbol in hexadecimal notation. In the case of page type
modules, the page address and address are separated by acolon (:) asfollows.

H'XXXX © XXXX
1 address
page address

6.2 Load ModuleFile

The Linkage Editor links a number of object modules or relocatable load module files and outputs
them as a single load module file. Depending on the specification made with the FORM option or
subcommand, the load modulefile is output in either absolute or rel ocatable format. A detailed
explanation of the FORM option and subcommand is given in section 4.5.3, FORM — Specifies
Output Load Module File Format.

6.3 Console M essages
The Linkage Editor shows the following messages on the standard output device.

(1) Opening Message: Thisis displayed when Linkage Editor command name “LNK” isinput.
H SERI ES LI NKAGE EDI TOR Ver. 5.3
Copyright (C) Htachi, Ltd. 1989

Li censed Material of Hitachi, Ltd.

(2) Normal Completion Message: Thisis displayed when the load module file editing has been
completed normally.
‘ LI NKAGE EDI TOR COVWPLETED

HITACHI 85

(3) Abort Message: Thisis displayed when the load module file editing is ended before
completion, due either to an error or to specification of an ABORT subcommand.

\ LI NKAGE EDI TOR ABORT \

(4) Subcommand Request Prompt: In interactive mode, a colon (:) indicates that the Linkage
Editor is waiting for subcommand input.

(5) Subcommand Continuation Prompt: When continuation of a subcommand is specified
during interactive mode execution, a minus sign (-) indicates that the Linkage Editor is waiting
for continuation of the input.

(6) Informative Message: |nformative messages indicate the result of Linkage Editor processing,
for example when units are replaced or when an export symbol is renamed. The messages are
output in the following format.

** A <information>

!

1st column

A list of informative messagesis given in table 6-1. A unit name can be displayed as <Externa
name> in table 6-1.

86 HITACHI

Table6-1 List of Informative M essages

(Informative Message)

No. (Meaning of Message)
1 <Unit name 1> IS REPLACED WITH <unit name 2>(<file name>)

<Unit name 1> has been replaced by <unit name 2> from <file name>.

2 <External name 1> 1S RENAMED TO <external name 2>

Name of <external name 1> has been changed to that of <external name 2>.

3 <External name> IS DELETED

<External name> has been deleted.

4 DUPLICATE UNIT-(<unit name>) IN (<file name>) IS DELETED

More than one units of the same name <unit name> have been found, and the unit of that
name in <file name> has been deleted.

5 <Ilmport symbol name> CANNOT DEFINE
<Import symbol name> could not be found, and therefore could not be forcibly defined.
6 <External name> CANNOT RENAMED

<External name> could not be found, and therefore could not be renamed.

7 <External name> CANNOT DELETED

<External name> could not be found, and therefore could not be deleted.

8 <Unit name> CANNOT REPLACED

<Unit name> could not be found, and therefore could not be replaced.

HITACHI 87

(This pageisintentionally left blank.)

88 HITACHI

Section 7 Error Messages

When incorrect options or subcommands are specified, or if an error is detected during the linkage
process, an error message is output. The Linkage Editor outputs error messages in the following
form.

** A <Error nunber>A<error nessage>[(<additional information>)]

T

1st column

Error Number: Thefirst digit indicates the level of the error (xx represent the second and third
digits).

Ixx: Warning Processing of the particular module is skipped.
2xx: Error : In the case of input from the command line or a subcommand

file, processing is stopped. In interactive mode, processing of the subcommand is stopped
when the error is detected, and the next subcommand is requested.

3xx: Fatal error : Processing is stopped.
A list of errorsis given below in tables 7-1, 7-2, and 7-3 in the following format.

Error Number |Error Message Additional Information

Nature of Error

Linkage Editor actions and corrective actions

Notation used in table: —: No additional information

HITACHI 89

Table7-1 List of Warning M essages

101 DUPLICATE OPTION/SUBCOMMAND Option/subcommand name
The same option or subcommand was specified more than once.
Only the last-specified option or subcommand is valid.
102 IDENTIFIERCHARACTEREXCEEDS 251 Name
Name of a unit, section, or symbol over 251 characters was specified.
Name is valid up to 251st character. The rest is ignored.
104 DUPLICATE SYMBOL Symbol name
The same export symbol is defined more than once.
Only the first appearing symbol is valid.
105 UNDEFINED EXTERNAL SYMBOL Unit name, symbol name
An undefined symbol was imported.
The import is invalid, and zero is assumed as the value.
106 REDEFINED SYMBOL Symbol name
A previously defined symbol was defined using the DEFINE subcommand or option.
The DEFINE specification is invalid.
107 SECTION ATTRIBUTE MISMATCH Section name
Two sections with the same name but different attributes or boundary alignment were input.
The sections are processed as separate sections.
108* RELOCATION SIZE OVERFLOW Unit name, section name—offset
value
Relocation result exceeds the relocation size.
Result is rounded off to fit the relocation size.
109 ENTRY POINT MULTIPLY DEFINED —
Execution start addresses were specified in more than one object modules.
The first appearing execution start address is valid.
110 SECTION ADDRESS EXCEED PAGE BOUNDARY Section name
A section overlaps a page boundary.
Specify the AUTOPAGE option or subcommand.
111 DUPLICATE SECTION NAME Section name

Same section name was specified in options or subcommands.

The first section is valid.

90 HITACHI

Table7-1 List of Warning M essages (cont)

112 ILLEGAL CPU INFORMATION FILE FORMAT —
The file format of the CPU information file is incorrect.
The CPU option or subcommand specification is invalid.
113 CONFLICTING DEVICE TYPE —
The specified CPU information file is for a different CPU from that for which the input object
module is intended.
The CPU information file specification is invalid.
114 SECTION IS NOT IN SAME MEMORY AREA Section name: Xxxx-yyyy
A section overlaps different memory areas. Addresses xxxx to yyyy are not allocated to one
memory area.
The section is output to the load module without change.
115 INACCESSIBLE ADDRESS RANGE Section name
A section was assigned to a memory area that cannot be used.
The section is output to the load module without change.
116 INVALID CPU OPTION/SUBCOMMAND —
The CPU option or subcommand was specified for a relocatable load module file.
The CPU option or subcommand specification is invalid.
117 ADDRESS SPACE DUPLICATE —
Sections overlap.
The load module is output as is.
118 INVALID UDF OPTION/SUBCOMMAND —
The NOUDF option or subcommand was specified for an absolute output load module.
The NOUDF option or subcommand is invalid.
119 RELOCATION VALUE IS ODD Unit name, section name—offset
value
Relocation value for the displacement is odd.
The LSB is rounded down to fit to the relocation size.
120 START ADDRESS NOT SPECIFIED FOR Section name
SECTION
A section that has not been specified with the START option/subcommand was found.
Check the section name.
121 CANNOT FIND SECTION Section name

The specified section cannot be found.

The section specification is ignored.

HITACHI 91

Table7-1 List of Warning M essages (cont)

122 TOOLONGSUBCOMMANDLINE —

Symbols are replaced with the corresponding directory names, and the file name exceeds
511.

The file name is valid up to the 511th character.
123 TOO MANY DIRECTORY COMMANDS —

More than 16 directory names have been specified with the DIRECTORY subcommand.

Up to 16th specification is valid.
124 NO DEBUG INFORMATION —

The DEBUG or SDEBUG option/subcommand has been specified for the file having no
debugging information.

Specify the debug option at compilation or assembly.

Note: The following describes the generating condition, generating program examples, and

corrective actions for warning 108 (RELOCATIONSIZEOV ERFLOW).

Warning Generating Condition: When the linkage editor determines the program addresses, if a
data size designated at assembly or compilation is exceeded, warning message 108 is output.

Warning Generating Program Examples:

H8S, H8/300 series

Example 1
. EXPORT SymL . | MPORT SymL
SymL . EQU H 1000 .
MOV. B #SYML, RIL (1)
Program 1 Program 2

When the above two programs are assembled and linked, the instruction at (1) references

SYM1in byte size and therefore the referenced value must be within the range from -128 to
+255. However, SYM1 is defined as H'1000 (4096) in program 1, which exceeds the range,

and warning 108 is output.
Example 2

. EXPORT

SYMR .EQU

SYMR
H Q0

@

. I MPORT

MoV

SYme

@YM2: 8, ROL

©)

Program 3

92 HITACHI

Program 4

When the above two programs are assembled and linked, SYM 2 isreferenced in 8-bit absolute
addressing mode at (3). The access range in 8-bit absolute addressing is 65280 to 65535
(H'FFO0 to H'FFFF). However, SYM 2 isdefined as H'CO at (2), which exceeds the range, and
warning 108 is output. In this case, @SY M 2:8 accesses address H'FFCO, and therefore, when
@H'FFCO isthe target address, this warning message can be ignored.

H8/500 series
Example 3
. EXPORT SYM3 * . | MPORT SYM3

SYMB .EQU H FF

Nd\/ @ SYMB_8, R2), R3 (4)

Program 5 Program 6

When the above two programs are assembled and linked, the instruction at (4) references
SYM3 in 8-bit size and therefore the referenced value must be within the range from -128 to
+127. However, SYM3 is defined as H'FF (255) in program 5, which exceeds the range, and
warning 108 is output.

Example 4

. SECTI ON SEC1, CODE
SYm . EQU $; Sets a location value to a symbol

MOV @YM4: 8, R0 ; Transfers 2-byte data at the address pointed
to by the location (5)

When the above program is assembled and linked with specifying the start address of section
(SEC1) as address 1000 (hexadecimal), the SY M4 value becomes H'1000, which exceeds the
1-byte data size, and warning 108 is output. In this case, when the base register (BR) is set to
H'10 before the instruction at (5) is executed, this message can be ignored.

Example 5

. EXPORT SYM3 * . | MPORT SYM3
SYMB . EQU H FF .

NDl\/ @ SYM3_ 8, R2), R3 (4)

Program 7 Program 8
When the above two programs are assembled and linked, the SYM5 value referenced at (6) is
defined as H'2000 in program 9, which exceeds the 1-byte data size, and warning 108 is output.
In the same way as example 4, when the base register (BR) is set to H'20 before the instruction
at (6) is executed, this message can be ignored.

HITACHI 93

Corrective Actions: When the warning message cannot be ignored, take the following corrective
actions.

» HB8S, H8/300 series
In example 1, the following two corrective actions can be taken:

O Modifying the instruction operation size to word
Modify, at (1) in program 2, MOV.B to MOV.W and R1L to R1.

O Extracting the high-order or low-order one byte of the label (SYM1) value
To extract the high-order byte, modify #SYM1 to #HIGH SYM1 at (1).
To extract the low-order byte, modify #SYM1 to #LOW SYM1.

In example 2, modify H'CO to H'FFCO at (2) in program 3.
e HB8/500 series

In example 3, modify SYM3:8 to SYM3:16 at (4) in program 6 when the label (SYM3) value
exceeds the 1-byte data size.

In example 4, modify @SY M4:8 to @SY M4:16 at (5) in the program.
In example 5, modify @SYM5:8 to @SYM5:16 at (6) in program 8.

Warning Message 108 Output Format: Output in the following format:
** 108 RELOCATIONSIZEOVERFLOW (<unit name> . <section hame> - <offset value>)

This message means that the data overflow has occurred <offset value> addresses after the start
address of the section indicated by <unit name> . <section name>. Here, <unit name> means the
file name.

94 HITACHI

Table7-2 List of Error Messages

201

ILLEGAL SUBCOMMAND/OPTION ‘—

An illegal subcommand (or option) was specified.

Specify a valid subcommand (or option).

202

SYNTAX ERROR ‘—

Syntax of the specified subcommand (or option) is incorrect.

Check the syntax and respecify the subcommand (or option).

203

TOO LONG SUBCOMMAND LINE ‘—

Length of the subcommand entry exceeds 255 characters.

Respecify, keeping the length within 255 characters.

204

ILLEGAL SUBCOMMAND SEQUENCE ‘—

Order of subcommand specification is invalid.

Check the order of subcommand specification and respecify.

207

ILLEGAL SECTION NAME ‘Section name

The specified section name is invalid.

Specify a proper section name.

208

ILLEGAL SYMBOL NAME ‘Symbol name

The specified symbol name is invalid.

Specify a proper symbol name.

210

TOO MANY INPUT FILES ‘—

Attempt was made to input more than 256 input files at one time.

Create a relocatable load module file, then specify the remaining input files by re-inputting
the load module file.

211

CANNOT FIND FILE ‘File name

The specified file cannot be found.

Check the specified file name, then respecify.

212

CANNOT FIND UNIT ‘Unit name

The specified unit cannot be found.

Check the specified unit name, then respecify.

213

CANNOT FIND MODULE ‘Module name

The specified module cannot be found.

Check the specified module name, then respecify.

HITACHI 95

Table7-2 List of Error Messages (cont)

214 |DUPLICATE START ADDRESS SPECIFIED ‘—

The same start address was specified more than once.

Change the start address, then re-input.

216 |PAGE ADDRESS EXCEEDED ‘—

A page address exceeds the permitted range.

Check the page address and respecify.

217 |SUBCOMMAND COMMAND IN SUBCOMMAND —
FILE

The SUBCOMMAND subcommand appeared in a subcommand file.

Remove the SUBCOMMAND subcommand from the subcommand file.

219 |INVALID ADDRESS ‘address

The specified address exceeds the permitted range.

The specified address exceeds the address range of the specified device. Check the value
of the specified address, then re-execute.

220 |TOO MANY ROM COMMANDS ‘—

More than 10 pairs of section names were specified in a ROM subcommand.

Specify 10 pairs or less.

221 |CANNOT CREATE ABSOLUTE MODULE ‘Module name

An undefined import symbol was found.

Resolve the address for the symbol.

222 |DIVISION BY ZERO IN RELOCATION VALUE ‘Unit name . section name—offset

The input object file includes a division by zero.

Check the relocation operation and make the object file that has no division by zero.

96 HITACHI

Table7-3 List of Fatal Error Messages

301 ILLEGAL COMMAND PARAMETER —

An illegal command parameter was specified.

Check the command parameters and re-execute.

302 CANNOT OPEN FILE File name

The file cannot be opened.

Check the specified file name. If the file name is correct, the disk may be full, or there may
be a disk hardware problem. After checking the problem, re-execute.

303 CANNOT READ INPUT FILE File name

The file cannot be input.

Check the specified file name. If the file name is correct, the disk may be full, or there may
be a disk hardware problem. After checking the problem, re-execute.

304 CANNOT WRITE OUTPUT FILE File name

The file cannot be output.

Check the specified file name. If the file name is correct, the disk may be full, or there may
be a disk hardware problem. After checking the problem, re-execute.

305 CANNOT CLOSE FILE File name

The file cannot be closed.

Check the specified file name. If the file name is correct, the disk may be full, or there may
be a disk hardware problem. After checking the problem, re-execute.

306 ILLEGAL FILE FORMAT File name

The specified file format is incorrect.

Check the file contents and specified file name, then re-execute. This message is output
when the object file format is illegal, for example because there are two or more import
symbols with the same name in the same unit, or two external symbol names were made
identical by the RENAME subcommand.

307 ILLEGAL RECORD FORMAT File name

There is an illegal record in the specified file, or division by zero occurred.

Check the source program contents. Re-assemble or recompile, then re-execute.

308 SECTION ADDRESS OVERFLOW Section name of the specified device

The address allocated to a section exceeds the allowable range.

The address allocated to the section exceeds the address range of the specified device.
Change the section start address or rearrange the user program, then re-execute.

HITACHI 97

Table7-3 List of Fatal Error M essages (cont)

309 ADDRESS OVERFLOW —
The specified address exceeds the address range allowed for the particular CPU.
Check the specified address, then re-execute.
310 MEMORY OVERFLOW —
There is no space remaining in the Linkage Editor’'s usable memory.
Expand the memory or revise the user program, then re-execute.
311 PROGRAM ERROR nnn
There is an error in the Linkage Editor program.
The Linkage Editor is inoperable. Check the program error number (nnn), then contact your
Hitachi representative.
312 ILLEGAL START ADDRESS ALIGNMENT Address
The specified address conflicts with the boundary alignment number of the object module.
Check the boundary alignment number of the object module, then re-execute.
314 CANNOT FIND SECTION Section name
The specified section name cannot be found.
Check the section name, then respecify.
319 AUTOPAGE SPECIFIED AT NON-PAGE TYPE —
The AUTOPAGE option/subcommand was specified when non-page type files were input.
Check the input file contents, then respecify.
321 PAGE ADDRESS OVERFLOW —
The page address overflows the allowable range.
Change the section start address or the user program so that the page address will be
within the allowable range of 0 - OFF (hexadecimal), then re-execute.
322 PAGE ADDRESS SPECIFIED AT NON-PAGE —
TYPE
For a non-page type input file, a page address was specified with the START or DEFINE
option/subcommand.
Check the specified file name and option or subcommand content, then re-execute.
323 SECTION SPECIFIED AT ROM OPTION/ Section name

SUBCOMMAND DOES NOT EXIST

A section specified in a ROM command does not exist.

Check the section name, and respecify.

98 HITACHI

Table7-3 List of Fatal Error M essages (cont)

325 ILLEGAL START SECTION Section name
A section specified by a START command has an illegal attribute.
Check the section attributes, and respecify.
326 CANNOT READ —
Input failed from a file (including the standard input device).
Check the specified file name. If the file name is correct, the disk may be full, or there may
be a disk hardware problem. After checking the problem, re-execute.
327 SYMBOL ADDRESS OVERFLOW Symbol name
The address assigned to a symbol exceeded the permitted range for the specified device.
Change the section start address or rearrange the user program, then re-execute.
328 ILLEGAL ROM SECTION Section name
Section 2 specified in a ROM subcommand or option is invalid.
The size of section 2 is not 0, section 2 is the absolute section or the attribute of section 2 is
different from that of section 1. Check the size and attribute of section 2, and respecify.
329 INVALID MEMORY MAP —
Memory allocation does not match the one specified in the CPU information file, or it
overlaps different types of memory.
Check the CPU information file and the input files.
330 ILLEGAL FILE FORMAT (INPUT ABSOLUTE FILE) —
An absolute load module was input.
Check the input files and respecify them.
331 ILLEGAL FILE FORMAT (MISMATCH OBJECT —
FORMAT VERSION)
The input files have different object formats.
Check the input files and respecify them.
332 ILLEGAL FILE FORMAT (INPUT MISMATCH CPU —

TYPE)

The input files are not for the H series or SH series.

Check the input files and respecify them.

HITACHI 99

(This pageisintentionally left blank.)

100 HITACHI

Section 8 Restrictions

Restrictions on the Linkage Editor are shown in table 8-1. If the numerical restrictions are
exceeded, linkage operations cannot be performed.

Table8-1 Restrictionson Linkage Editor Processing

No. Item Restrictions Remarks
1 Number of input files 256 max.
2 Input file formats + Object module file output by

assembler or compiler.
» Relocatable load module file.
» Library file created using
Librarian.
3 Address/notation Hexadecimal only. H8/500 series: 0-OFFFF
The range depends on the H H8/300 series:
series type. « 300HA: 0-OFFFFFF
e Others: 0-OFFFF
H8S series:
e 2600A and 2000A: 0-
OFFFFFFFF
» Others: 0-OFFFF
SH series: 0-OFFFFFFFF

4 Names of modules, Up to 251 characters.
units, sections,

symbols

5 Number of modules, 65,535. Assumes no prior restrictions on
units, sections, memory of system on which
export symbols, Linkage Editor is executed.

import symbols

HITACHI 101

(This pageisintentionally left blank.)

102 HITACHI

Appendix A Example of Use of Linkage Editor

In this sample application, the 11 object modules and one library file shown in table A-1 are input

into the Linkage Editor.

TableA-1 List of Input Files

pd
°

File Name

Type of File

main.obj

init.obj

cmndanl.obj

cmndprc.obj

table.obj

term.obj

keyin.obj

file.obj

O | 0| N ||| W |N|PF

printer.obj

[EnY
o

display.obj

[
[

commu.obj

Object module file

[EnY
N

function.lib

Library file

Library file “function.lib” consists of the 14 modules listed in table A-2.

HITACHI 103

TableA-2 List of Modulesin Library File

No. Module Name

mvdata

upshft

comp

expr

rmargin

Imargin

sum

number

O | N~ W|N|F

Zerosprs

=
o

aschin

[EEY
[E

binasc

[EEY
N

cnvbed

=
w

portio

[EEN
»

dos

Linkage Execution: Input the following command to execute module linkage. In this example,
subcommands are input from subcommand file “exlink.sub,” and execution is controlled by these
subcommands.

| nkA- SUBCOMVAND=ex| i nk. sub (RET)

The contents of subcommand file “exlink.sub” are shown in figure A-1.

104 HITACHI

; First Linkage Process

form r ; Relocatabl e Load Mdul e
i nput mai n ; Input "main.obj"

i nput init ; Input "init.obj"

i nput cmmdanl ; Input "cmmdanl . obj"

i nput cmmdprc ; Input "cmmdprc. obj"

i nput tabl e ; Input "table.obj"

i nput term ; Input "termobj"
l'ibrary function ; Library "function.lib"
out put programl ; Qutput "progrant.rel”
print programl ; Print "prograntl. map"

end

; Second Linkage Process

i nput progrant. rel ; Input "prograntl.rel”

i nput keyin ; Input "keyin.obj"

i nput file ; Input "file.obj"

i nput printer ; Input "printer.obj"

i nput di spl ay ; Input "display.obj"

i nput conmu ; Input "conmu. obj "

library function ; Library "function.lib"
; Sequence of Sections

start prograni, progran®, function, gl obal , | ocal ,f_| ocal , stack_area

out put exanpl e ; CQut put "exanpl e. abs”

print exampl e ; Print "exanpl e. map”

exit

Figure A-1 Subcommand File*“exlink.sub”

Asfigure A-1 shows, two linkage processes are carried out, using the multilinkage function. In the
first linkage process, six object module files and the library file are input, and relocatable load
modulefile “programl.rel” and linkage list “ programl.map” are output. In the second linkage
process, load module file “programl.rel” isre-input, and the remaining object module files are
input. Absolute load module file “ example.abs” and linkage list “example.map” are outpuit.

Linkage list, “programl.map” output in the first linkage processis shown in figure A-2. Linkage
list “example.map” output in the second linkage process is shown in figure A-3.

HITACHI 105

H SERI ES LI NKAGE EDI TOR Ver.

LI NK COVMAND LI NE
| nk - subconmmand=exl i nk. sub

LI NK SUBCOMVANDS

; First Linkage Process

form r ;
i nput mai n ;
i nput init ;
i nput cmmdanl ;
i nput cmmdpr c ;
i nput tabl e ;
i nput term ;
l'ibrary function ;
out put progrant ;
print prograni ;
end

** 105 UNDEFI NED EXTERNAL
** 105 UNDEFI NED EXTERNAL
** 105 UNDEFI NED EXTERNAL
** 105 UNDEFI NED EXTERNAL
** 105 UNDEFI NED EXTERNAL
** 105 UNDEFI NED EXTERNAL
** 105 UNDEFI NED EXTERNAL

5.3

Rel ocat abl e Load Modul e

I nput
I nput
I nput
I nput
I nput
I nput

"mai n. obj "
"init.obj"
"cmmdanl . obj "
"cmmdprc. obj "
"tabl e. obj"
"term obj"

Li brary "function.!lib"

Qut put
Print

SYMBOL(
SYMBOL(
SYMBOL(
SYMBOL(
SYMBOL(
SYMBOL(
SYMBOL(

"programt.rel"
"programt. map"

mai n. keyi n)
cmrmdprc. printer)
crmdprce. file)
cmdpr c. keyi n)
cmdpr c. conmu)
cmmdpr c. di spl ay)
termfile)

FigureA-2 LinkagelList “programl.map” (Input Information)

106 HITACHI

SECTI ON NAMVE

ATTRI BUTE :

progr ant

* TOTAL ADDRESS *

ATTRI BUTE

| ocal

* TOTAL ADDRESS *

ATTRI BUTE

gl obal

* TOTAL ADDRESS *

ATTRI BUTE :

stack_area

* TOTAL ADDRESS *

H SERI ES LI NKAGE EDI TOR Ver.

* k% %

START

CODE NOSHR

H 00000000

H 0000034a

H 00000468

H 0000055e

H 000007e8

H 00000000

DATA NOSHR

H 00000000

H 00001e20

H 00001e40

H 00003c80

H 000222c0

H 00000000

DATA NOSHR

H 00000000

H 00000000

STACK NOSHR

H 00000000

H 00000000

LI NKAGE EDI TOR LI NK MAP LI ST

END

5.

3 PAGE: 1

* k% %

LENGTH

UNI'T NAME MODULE NAME

H 00000349
mai n

H 00000467
init

H 0000055d
cmmdanl

H 000007e7
cmdprc

H 0000091f
term

H 0000091f

H 00001ELF
mai n

H 00001e3f
init

H 00003c7f
cmmdanl

H 000222bf
cmdprc

H 000222df
term

H 000222df

H 000015cf
tabl e
H 000015cf

H 00lelfff
tabl e
H 00lelfff

H 0000034a
mai n
H 0000011e
initialize
H 000000f 6
comand_anal i ze
H 0000028a
comand_process
H 00000138
term nate
H 00000920

H 00001e20
mai n
H 00000020
initialize
H 00001e40
conmand_anal i ze
H 0001e640
conmand_pr ocess
H 00000020
termnate
H 000222e0

H 000015d0
gl obal _tabl e
H 000015d0

H 001e2000
gl obal _tabl e
H 001e2000

Figure A-2 LinkagelList “programl.map” (Link Map List)

HITACHI 107

H SERI ES LI NKAGE EDI TOR Ver.

* % %

SECTI ON NAMVE START

ATTRI BUTE : CODE NOSHR

function H 00000000
H 0000001c
H 00000110
H 00000164

* TOTAL ADDRESS * H 00000000

ATTRI BUTE :

f _local

DATA NOSHR

H 00000000

H 0000000c

H 0000011c

* TOTAL ADDRESS * H 00000000

END

5.3

LI NKAGE EDI TOR LI NK MAP LI ST

LENGTH

UNI'T NAME

H 0000001b
conp
H 0000010f
expr
H 00000163
nvdat
H 00000193
upshft
H 00000193

H 0000000b
conp
H 0000011b
expr
H 0000011f
upshft
H 0000011f

H 0000001c
H 000000f 4
H 00000054
a

H 00000030

H 00000194

H 0000000c

H 00000110

H 00000004

H 00000120

PAGE: 2

* % %

MODULE NAME

conmpare_string
expressi on
nove_data_string

upshi ft _character

conpare_string
expressi on

upshi ft _character

108 HITACHI

Figure A-2 LinkagelList “programl.map” (Link Map List) (cont)

H SERI ES LI NKAGE EDI TOR Ver. 5.3

rEx LI NKAGE EDI TOR EXTERNALLY DEFI NED SYMBOLS LI ST

SYMBOL NAME

cmmdanl
cmdpr ¢
cmmdt bl
conp
expr
flthbl
header
init
keybuf
mai n
nvdat a
pr buf

r ecbuf
st ackar ea
term
upshft

ADDR

H 00000000
H 00000000
H 000000C8
H 00000000
H 00000000
H 000003C8
H 00000000
H 00000000
H 000001C8
H 00000000
H 00000000
H 000014C8
H 000013C8
H 00000000
H 00000000
H 00000000

TYPE

DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT

PAGE: 1

* % %

Figure A-2 LinkagelList “programl.map” (Export Symbol List)

HITACHI 109

H SERI ES LI NKAGE EDI TOR Ver. 5.3 PAGE:

*** LI NKAGE EDI TOR UNRESOLVED EXTERNAL REFERENCE LI ST ***

FI LE NAVE ;. main. obj
MODULE NAME ;. main
UNI T NAME © main
SYMBOL NAME TYPE
keyin *oxx
FI LE NAVE . cmdprc. obj
MODULE NAME . command_process
UNI'T NAMVE : cmmdprc
SYMBCL NAME TYPE
conmu >k
di spl ay *oxx
file * ok
keyin *oxx
printer *oxx
FI LE NAVE . term obj
MODULE NAME : terminate
UNI T NAVE term
SYMBOL NAME TYPE
file *k

Figure A-2 LinkageList “programl.map” (Undefined Symbol List)

110 HITACHI

H SERI ES LI NKAGE EDI TOR Ver. 5.3
LI NK COMVAND LI NE

LI NK SUBCOMVANDS

1

; Second Li nkage Process

i nput progrant. rel ; Input "progrant.rel”

i nput keyin ; Input "keyin.obj"

i nput file ; Input "file.obj"

i nput printer ; Input "printer.obj"

i nput di spl ay ; I nput "display.obj"

i nput commu ; I nput "commu. obj"

library function ; Library "function.lib"
; Sequence of Sections

start progrant, progran®, function, gl obal , | ocal , f_| ocal , stack_area

out put exanpl e ; Qutput "exanpl e. abs"

print exanpl e ; Print "exanpl e. map"

exit

FigureA-3 LinkageList “examplemap” (Input Information)

HITACHI 111

H SERI ES LI NKAGE EDI TOR Ver.

* ok %

SECTI ON NAME START

ATTRI BUTE :
programl

CODE NOSHR
H 00000000

H 0000034a
H 00000468
H 0000055e
H 000007e8
* TOTAL ADDRESS *

H 00000000

ATTRI BUTE :
pr ogr ang

CODE NOSHR
H 00000920

H 00000b20
H 00000c48
H 00000d4a
H 00000e62
* TOTAL ADDRESS *

H 00000920

ATTRI BUTE :
function

CODE NOSHR
H 00001128

H 00001144

H 00001238

H 0000128c

H 000012bc

H 00001344

H 00001374

5.3

END LENGTH

UNI T NAME

H 00000349 H 0000034a
mai n
H 00000467 H 0000011e
init
H 0000055d H 000000f 6
cmdanl
H 0000028a
cmdprc
H 00000138
term
H 00000920

H 000007e7
H 0000091f

H 0000091f

H 00000b1f H 00000200
keyi n
H 00000c47 H 00000128
file

H 00000d49 H 00000102
printer

H 00000118
di spl ay

H 000002c6
commu

H 00000808

H 00000e61
H 00001127

H 00001127

H 00001143 H 0000001c
conp
H 00001237 H 000000f 4
expr
H 0000128b H 00000054
nmvdat a
H 00000030
upshft
H 00000088
| margin
H 00000030
nunber
H 00000080
rmargin

H 000012bb

H 00001343

H 00001373

H 000013f 3

PAGE: 1

LI NKAGE EDI TOR LI NK MAP LI ST ***

MODULE NAME

progrant
progrant
progrant
progrant

prograntl

i nput _keyboard
file io

out put _printer
di spl ay_consol e

communi cati on

programl

progr aml

progr aml
programl
left_margin
nunbering_itens

right_margin

Figure A-3 Linkagelist “examplemap” (Link Map List)

112 HITACHI

SECTI ON NAMVE

ATTRI BUTE :
function

* TOTAL ADDRESS *

ATTRI BUTE :
gl obal

* TOTAL ADDRESS *

ATTRI BUTE :
| oca

H SERI ES LI NKAGE EDI TOR Ver. 5.3

* % %

START

CODE NOSHR

H 000013f 4

H 0000140c

H 000014c8

H 00001534

H 00001574

H 00001640

H 00001648

H 00001128

DATA NOSHR

H 00001658

H 00001658

DATA NOSHR

H 00002c28

H 00004a48

H 00004a68

H 000068a8

H 00024ee8

H 00024f 08

H 00025128

H 00025308

H 0002544c

END

H 0000140b

H 000014c7

H 00001533

H 00001573

H 0000163f

H 00001647

H 00001657

H 00001657

H 00002c27

H 00002c27

H 00004a47

H 00004a67

H 000068a7

H 00024ee7

H 00024f 07

H 00025127

H 00025307

H 0002544b

H 0002554f

LI NKAGE EDI TOR LI NK MAP LI ST

LENGTH
UNI T NAME

H 00000018
sum

H 000000bc
zerosprs

H 0000006¢c
aschin

H 00000040
bi nasc

H 000000cc
cnvbcd

H 00000008
dos

H 00000010
portio

H 00000530

H 000015d0
tabl e
H 00015d0

H 00001e20
mai n

H 00000020
init

H 00001e40
cmmdanl

H 0001e640
cmmdpr c

H 00000020
term

H 00000220
keyi n

H 000001e0
file

H 00000144
printer

H 00000104
di spl ay

PAGE

* kK

MODULE NAME

sumitens

zer o_suppress
ascii_to_binary
bi nary_to_asci
convert_to_bcd
interface_of dos

interface_of port

prograntl

programl
programl
programl
programl
programl
i nput _keyboard
file_io
out put _printer

di spl ay_consol e

Figure A-3 LinkageList “example.map” (Link Map List) (cont)

HITACHI 113

H SERI ES LI NKAGE EDI TOR Ver. 5.3

* Kk k

H 00025720

H 00025830

H 00025834

H 00025844

H 00025848

H 00025858

H 0002587c¢

H 00025884

H 00025888

SECTI ON NAMVE START
ATTRI BUTE : DATA NOSHR

| oca

* TOTAL ADDRESS *

ATTRI BUTE : DATA NOSHR
f_loca

* TOTAL ADDRESS *

ATTRI BUTE: STACK NOSHR
stack_area

* TOTAL ADDRESS *

H 00025550

H 00002c28

H 00025714

H 00025714

H 000258d0

H 000258d0

LI NKAGE EDI TOR LI NK MAP LI ST

END LENGTH
UNIT NAME

H 00025713 H 000001c4
commu

H 00025713 H 00022aec

H 0002571f H 0000000c
conp
H 0002582f H 00000110
expr

H 00025833 H 00000004
upshft

H 00000010
| margin

H 00000004
nunber

H 00000010
rmargin

H 00000024
zerosprs

H 00000008
aschin

H 00000004
bi nasc

H 00000048
cnvbcd

H 000001bc

H 00025843

H 00025847

H 00025857

H 0002587b

H 00025883

H 00025887

H 000258cf

H 000258cf

H 002078cf H 001e2000
tabl e

H 002078cf H 001e2000

PAGE: 3

* Kk k

MODULE NAME

conmuni cati on

progr antl

progr antl

progr antl
left_margin
nunbering_itens
right_margin
zer o_suppr ess
ascii_to_binary
bi nary_to_asci

convert _to_bcd

progr antl

Figure A-3 LinkageList “example.map” (Link Map List) (cont)

114 HITACHI

H SERI ES LI NKAGE EDI TOR Ver. 5.3

*oxk LI NKAGE EDI TOR EXTERNALLY DEFI NED SYMBOLS LI ST

SYMBOL NAME

aschin
bi nasc
cmdanl
cmdprc
cmdt bl
cnvbcd
commu
conp

di spl ay
dos
expr
file
fltb
header
init
keybuf
keyin

| margi n
mai n
nmvdat a
nunber
portio
pr buf
printer
r ecbuf
rmargin
st ackar ea
sum
term
upshft
zerosprs

ADDR

H 000014c8
H 00001534
H 00000468
H 0000055e
H 00001720
H 00001574
H 00000e62
H 00001128
H 00000d4a
H 00001640
H 00001144
H 00000b20
H 00001a20
H 00001658
H 0000034a
H 00001820
H 00000920
H 000012bc
H 00000000
H 00001238
H 00001344
H 00001648
H 00002b20
H 00000c48
H 00002a20
H 00001374
H 000258d0
H 000013f 4
H 000007e8
H 0000128c
H 0000140c

TYPE

DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT

PACE: 1

* % %

Figure A-3 LinkageList “examplemap” (Export Symbol List)

HITACHI 115

Appendix B File Name Specifications

File names are specified in the following format:

path name main filename filetype
@ @) (©)
(1) Path name

Specify the directory path of the directory containing thefile, using slashes (/) in UNIX or
back-dlashes (\) in MS-DOS to delimit directory names. The default value is the current
directory.

(2) Main file name
Specify the name of thefile.
(3) Filetype
Specify the type of file separated from the main file name by a period (.).

The generd rules of file naming for the Linkage Editor conform to the operating-system (OS)
rules.

Example 1 (MS-DOS): \usr \tool\ prog .typ
A

A
T— Filetype

Main file name

Path name

Example 2 (UNIX): /usr/tool/ prog .typ
i

[}
?— File type

Main file name

Path name

Note: If the same name is specified for the input file and output file, the input file contents will
be lost. Do not use the same name for the input and output files.

116 HITACHI

Part |1
Librarian Guide

(This pageisintentionally left blank.)

118 HITACHI

Section1 Overview

A program is usually developed by dividing it into functional modules and creating a separate
source program for each module. Next, each source program module is compiled or assembled to
create an object module. The object modules are then linked together using alinkage editor,
resulting in an executable program.

The H Series Librarian introduced in this manual (hereafter called the Librarian) playsavital role
in this process. It brings together the many object modules output by the C compiler and
assembler, aswell as relocatable load modules output by the linkage editor, to make library files.

The Librarian provides the following advantages.

Simplified M odule Management: The many modules making up a program (including
relocatable load modules as well as object modules) are stored in alibrary file for the particular
program. They can then be dealt with al at once. Moreover, it is possible to create generic library
files that can be used later to streamline the creation of other programs.

A library file can be edited by adding, deleting, or replacing individual modules. In thisway the
modules can be kept up to date.

Enhanced Linkage: The Linkage Editor can search library filesto find, extract, and link modules
that define unresolved import symbols. Use of the library files thus makes linkage editing more
efficient.

HITACHI 119

(This page isintentionally left blank.)

120 HITACHI

Section 2 Librarian Functions

2.1 Creating Library Files

This function makes it possible to create new library files, and to enter object modules output by
the C compiler or assembler as well as rel ocatable load modules output by the linkage editor.

Figure 2-1 isanillustration of the library file creation concept.

Entered modules New library file
)
Module A
Module A

Creation

Module B |:> Module B
Module C
Module C

Figure2-1 CreatingaNew Library File

HITACHI 121

2.2 Editing Existing Library Files
Modules can be added to, deleted from, or replaced in existing library files.

Adding Modules: Modules can be added to aready existing library files. The concept of module
addition isillustrated in figure 2-2.

Existing library file Edited library file

Module A Module A
Update

Modie & :> Modie B

Module C Module C

Module D

Addition

Module D Q

A

Figure2-2 AddingaModule

Deleting Modules: Unnecessary modules can be deleted from existing library files. Figure 2-3
illustrates the modul e deletion concept.

Existing library file Edited library file
Module A
[Module A
Module B
Deletion —p»
Module C

Module D

Figure2-3 DeletingaModule

122 HITACHI

Replacing Modules: Modulesin existing library files can be replaced with new modules. The
concept of module replacement isillustrated in figure 2-4.

Existing library file Edited library file
Replacement Module A Module A
Update
Module B' Module B |:> Module B'
Module D Module D

Figure2-4 ReplacingaModule

2.3 Extracting Modulesfrom a Library File

Modules can be extracted from existing library files and used to create new library files. The
concept of module extraction isillustrated in figure 2-5.

Existing library file New library file

Module A
Extraction
Extraction > Module B |:>

> Module C

Figure2-5 Extracting Modules

2.4 Displaying the Contentsof aLibrary File

A librarian list giving information about the modules and export symbolsin alibrary file can be
output to a standard output device or alist file. A librarian list tells when the library file was
created and when it was last revised, indicates when each module was stored, and gives the names
of export symbols and other useful information.

For further details, see section 6.2, Librarian Lists.

HITACHI 123

(This page isintentionally left blank.)

124 HITACHI

Section 3 Executing the Librarian

To execute the Librarian, start the Librarian by entering a command line. The command line
specifies the name of the library file to be edited and various options, which give instructions to
the Librarian. If these instructions are sufficient, the Librarian can be executed using the command
line alone. If further instructions are needed, they can be given in subcommands.

Command Line Execution: The Librarian can be executed smply by specifying alibrary file
and options on the command line. The method is useful when library editing isrelatively
straightforward.

Subcommand Execution: The Librarian can aso be executed by entering both a command line
and subcommands. The subcommands specify input and output files and parameters that control
the Librarian. This method is useful for specifying alarge number of files or modules, or for
editing two or more library files together. Subcommands can be entered interactively, or from a
subcommand file. Details are given in section 3.3, Executing by Subcommands.

File names used on the command line and in the subcommands are specified in the following
format:

path name main filename filetype

) 2 ©)

(1) Path name

Specify the directory path of the directory containing thefile, using slashes (/) in UNIX system
and back-slashes (\) in MS-DOS system to delimit directory names. The default valueisthe
current directory.

(2) Main file name
Specify the name of thefile.

(3) Filetype
Specify the type of file separated from the main file name by a period (.). If omitted, the
implicit typeis used.

The general rules of file naming for the Librarian conform to the operating-system (OS) rules.

HITACHI 125

Note: The OS shell (command interpreter) checks the command line before passing control to
the Librarian. Use characters that the OS allows on the command line.

Example (UNIX): lusr /tool/ prog .typ

A A
?— Filetype

Main file name

Path name

Example (MS-DOS): \usr \tool\ prog .typ
[}

A
?— File type

Main file name

Path name

3.1 Command Line Format

The following format is used for the Librarian command line.

Ibr[Al<library file nanme>][[A]-<option name>[[A]-<option nanme>...]]]
(RET)

e Command name: “Ibr” isthe command that starts the Librarian.

e Library file name: To edit or extract modules from an existing library file, type the name
of the library file in the command line.

e Option names: Each option name must start with a hyphen (-). One or more spaces or

tabs can also be used to separate an option name from a preceding option name or library file
name, but these spaces or tabs are not required. Option names are described in detail in section
4, Librarian Options and Subcommands. The Librarian edits the library file according to the
order in which the options are specified.

Specifying the M ode of Execution: The content of the command line determines whether the
Librarian will be executed by the command line specifications only, or by subcommands. See
table 3-1.

126 HITACHI

Table3-1 How Command Line Specification Deter mines the Form of Execution

Option Specification

Option Other

Library File than CREATE or
Name No Option SUBCOMMAND*' CREATE Option*' SUBCOMMAND
Specification Specified Option Specified Specified Specified
Library file name —** — — Executed by
specified specifying
command line
No library file Executed by Executed by Executed by —
name specified specifying specifying specifying command
subcommands subcommands line
Notes: 1. For SUBCOMMAND and CREATE options, see section 4, Librarian Options and
Subcommands.

2. The combinations of option and library file names indicated by dashes (—) are not
permitted. An error will occur, and the librarian will not be executed.

3.2 Executing by Command Line

In command line execution, the Librarian is executed according to the information specified in the
command line alone. Editing procedures and other conditions are specified to the Librarian in the
form of options. When the editing process is straightforward and simple, command line
specification is sufficient for creating or updating a library. Examples of execution by command
line are given below.

Example 1:

| br A- CREATE- sysl i b. i b- ADD=obj 00. obj, prg.lib (RET)

1) @)
(1) Creates anew library file named sydlib.lib.
(2) Adds the modules in object module file obj00.0bj and library file prg.lib to sydib.lib.

The CREATE option by itself will not create alibrary file unless modules are added using the
ADD option.

HITACHI 127

Example 2:

I brA syslib.|ib-ADD=obj 00. obj - DELETE=nod| (RET)

@ @) ©)

(1) Designates library file sydib.lib as the file to be edited.
(2) Adds the module in object module file obj00.0bj to sydib.lib.
(3) Deletes existing module mod1 from syslib.lib.

3.3 Executing by Subcommands

Since the number of characters that can be typed on the command lineis limited, the command
line may not be able to accommodate a large number of specifications. In such cases,
subcommands are used to execute the Librarian. Subcommands can be input interactively, one at a
time, from the keyboard or other standard input device. Alternatively, a subcommand file
consisting of a group of subcommands can be created in advance, and subcommands can be input
from this subcommand file.

331 Executing in Interactive Mode

When no library fileis specified in the command line and there are no option specifications,
execution proceeds in interactive mode. A colon (:) appears on the screen as a prompt, indicating
that the Librarian is waiting for a subcommand to be input. In this way you can enter the necessary
subcommands. This method is useful when the number of subcommandsis relatively small, or
when you want to check Librarian lists as you enter the subcommands.

An example of execution by interactive input of subcommandsis given below. Functions of the
subcommands listed here are detailed in section 4, Librarian Options and Subcommands.

Example:
I br (RET) (1)
CREATEAprg.lib (RET) (2
ADDAmai n. obj (RET) (3
ADDAsend. obj , recei ve. obj , exchange. obj (RET) ..(4)
ADDAaccount . obj (RET) ..(5)
LI STA(S) (RET) ...(6)
: EXIT (RET) (7

(1) Startsthe Librarian in interactive mode.
(2) Creates anew library file named prg.lib.

128 HITACHI

(3) Adds the module in main.obj to prg.lib.

(4) Adds the modules in send.obyj, receive.obj and exchange.obj to prg.lib.

(5) Adds the module in account.obj to prg.lib.

(6) Outputs alibrarian list, including symbol information, to the standard output device.
(7) Terminates the Librarian operation.

332 Executing from a Subcommand File

This method uses a subcommand file that was created in advance and that contains the
subcommands necessary for Librarian operations. This subcommand fileis then specified on the
command line as a parameter of the SUBCOMMAND option. This method is useful when many
subcommands must be specified, or when the same editing processis carried out repeatedly. It
eliminates the need to input subcommands from the keyboard or other standard input device each
time.

Use an editor to create the subcommand file. An example of execution from a subcommand fileis
given below. Functions of the subcommands listed here are detailed in section 4, Librarian
Options and Subcommands.

| br ASUBCOMVAND=pr gl i b. sub (RET))]

Contents of subcommand file prglib.sub:

CREATEAf unction.lib

ADDAsi n. obj , cos. obj , t an. obj
ADDAasi n. obj , acos. obj , at an. obj
ADDAhsi n. obj , hcos. obj , ht an. obj
ADDAI og. obj , | 0g10. obj

EXIT

CREATEAf unction. lib (2 ... (2
ADDAsi n. obj , cos. obj , t an. obj .. (3 ... (3)
ADDAasi n. obj , acos. obj , at an. obj .. (4

ADDAhsi n. obj , hcos. obj , ht an. obj .. (5)

ADDAI og. obj , | 0g10. obj ... (6)

EXIT

(1) Startsthe Librarian and inputs subcommands from subcommand file prglib.sub.
(2) Creates anew library file function.lib.
(3) Adds the modules in object module files sin.obj, cos.obj and tan.obj to function.lib.

HITACHI 129

(4) Adds the modules in object module files asin.obj, acos.obj and atan.obj to function.lib.
(5) Adds the modules in object module files hsin.obj, hcos.obj and htan.obj to function.lib.
(6) Adds the modules in object module files log.obj and 10g10.0bj to function.lib.

(7) Terminates Librarian operations.

3.4 Terminating Librarian Operations

When the Librarian terminates operations, it gives the system a return code indicating an error
level. The return code can be used to control the execution of a command file. The error code has
the values shown in table 3-2, depending on the error level.

Table3-2 Return Code Dependingon Error Level

Return Code

Error level UNIX MS-DOS
Normal termination 0 0
Warning 0 0
Error 1 2
Fatal error 1 4

130 HITACHI

Section 4 Librarian Options and Subcommands

Options and subcommands tell the Librarian what editing operations to perform. The three main
functions of options and subcommands are file control, execution control, and list display. These
functions can be used individually or in combination to create and edit library files.

Options and subcommands have the same names and equivalent functions, but are specified in
different formats. Moreover, there are some specifications which can be made only with options,
and others only with subcommands. Sections 4.1, Option and Subcommand Formats, and 4.2, List
of Options and Subcommands, must accordingly be read carefully. Option and subcommand
functions are outlined below.

File Control Functions: File control functions indicate the name of the library file to be edited, or
the name of alibrary file to which extracted modules are to be output.

Execution Control Functions: Execution control functionsinstruct the Librarian to perform
editing operations, or terminate its processing. These functions are used, for example, to input
subcommands from a subcommand file, to create anew library file, or to update alibrary file.

List Display Functions: List display functions are used to display information such as names of
modules stored in alibrary file, or export symbol names.

4.1 Option and Subcommand Formats

Option and Subcommand Structure:
(a) Name

The name gives the name of the option or subcommand. For the names, refer to section 4.2, List of
Options and Subcommands.

HITACHI 131

(b) Parameters

The parameters give the names of files,** module,*? etc. on which the option or subcommand
operates. There are different requirements and methods of specification depending on the type of
option or subcommand. For details, refer to section 4.3, File Control, section 4.4, Execution
Control, and section 4.5, List Display.

Options and subcommands differ asto the way of separating the name from the parameters.
Options use an equal sign (=), while subcommands use one or more spaces or tabs.

Option format

<Nane>=<par anet er s>

Subcommand format

<Name>A<par anet er s>
Examples:

—QUTPUT=I bf : option

QUTPUTAI bf . subcommand

In these examples, OUTPUT isthe name, and |bf is the parameter.

Notes: 1. A file name consists of three parts: the path name, main file name, and file type.
If thefiletypeis omitted, afile typeis assumed as follows.

Library file b
Object modulefile . .obj
Relocatable load modulefile : .obj
Subcommand file : .sub
List file st

2. A module name is the name defined in an object module or relocatable load module. In
module names, uppercase |etters are distinguished from lowercase letters. The pairs of
names below, for example, are treated as different names.

Examples. modull «<——» MODUL1
abcde <«——» Abcde

132 HITACHI

Continuation Specification in a Subcommand: When a subcommand istoo long to be specified
on one line (generally, up to 500 characters per line, but it will depend on the OS), a continuation
specifier isused. A continuation specifier is an ampersand (&) at the end of the line. It must
always be placed between two parameters; if it is placed within a parameter, it will not be treated
as a continuation specifier. Also, if acharacter (including a space or tab) is typed after the
ampersand, an error will occur and the subcommand will not be continued.

In interactive input of subcommands, a hyphen (-) appears as a prompt for further input after
continuation has been specified.

Examples:

: ADDAObj 00. | i b(md0, mod1) , & (RET)

-1 bh91,ibh92 (RET) Continuation specifier
: ADDAobj 00. | i b(npd0, npd1), ob& (RET)
-/
| N Specifying continuation
in the middle of a
parameter generates an error

A subcommand line in a subcommand file can be continued in the same way. The line after aline
with the continuation specifier becomes the continuation line.

Example:

Subcommand file
DELETEDSUBL, SUB2, & (RET) 4 Continuation specifier

sub3 (RET) o Continuationline

HITACHI 133

Specifying Commentsin a Subcommand File: A comment specifier is used to place notes or
other comments in a subcommand file. The specifier isasemicolon (;) placed on a subcommand
line, indicating that the rest of the line is a comment. If the semicolon follows a subcommand
name or parameter, it must be separated by at least one space or tab.

If the semicolon is placed at the beginning of a subcommand line, the entirelineis treated as a
comment.

Examples:
; EXAMPLE OF LI BRARI AN SUBCOVIVAND

... the entire line is a comment.
LI BRARYAsysl i bA; | NDI CATES LI BRARY FI LE

... INDICATES LIBRARY FILE isacomment.
ADDAnpdul e. obj ; abc

... module.obj;abc is treated as a single parameter;
abc is not treated as a comment.

134 HITACHI

4.2 List of Options and Subcommands
There are 10 options and 15 subcommands, aslisted in table 4-1.

Table4-1 List of Optionsand Subcommands

No. Type Name*1 Function Opt.*? Sub.**> Section
1 File control LIBRARY Specifies the library file to be No Yes 43.1
edited
OUTPUT Specifies an output library file Yes Yes 4.3.2
DIRECTORY Specifies directory name No Yes 433

replacement

2 Execution = SUBCOMMAND Specifies a subcommand file Yes No 4.4.1

control CREATE Creates a library file Yes Yes 442
ADD Adds modules Yes Yes 4.4.3
REPLACE Replaces modules Yes Yes 4.4.4
DELETE Deletes modules Yes Yes 4.4.5
EXTRACT Extracts modules Yes Yes 4.4.6
RENAME Modifies section names Yes Yes 4.4.7
END End of subcommand input No Yes 4.4.8
EXIT End of Librarian operations No Yes 4.4.9
ABORT Aborts Librarian operations No Yes 4.4.10
3 List display LIST Displays contents of library file Yes Yes 45.1
SLIST Displays section names of Yes Yes 45.2
library file

Notes: 1. The underlined letters of a name are the shortest permissible abbreviated form.

2. The Opt. and Sub. columns indicate whether a name is available as an option or
subcommand.

HITACHI 135

Abbreviating Option and Subcommand Names. Names of options and subcommands can be
abbreviated to the point where the name can still be distinguished from other names. As an
example, consider the name EXTRACT.

E : Cannot be distinguished from EXIT or END, so an error occurs.
EX : Cannot be distinguished from EXIT, so an error occurs.

EXT : Recognized as EXTRACT.

EXTRA : Recognized as EXTRACT.

EXTRACT : Recognized as EXTRACT.
EXTRACTS : No such name, so an error occurs.

Interrelation among Different Options and Subcommands: Once an option or a subcommand has
been specified, other options or subcommands with conflicting functions cannot be specified. This
interrelationship is shown in table 4-2.

136 HITACHI

Table4-2

Interrelation among Options and Subcommands

Later Specification of Option/Subcommand

2
% > W 5w %
Specified 8 % E % E g <§(E’ 5 — E
Option/ @ X W o a 4 £ z & L 5 2 o £ O
Subcommand = <D(F oA O & 8 5 o @» 4O O 2
SUBCOMMAND x O O O O O 0O o o o o o o o o
LIBRARY (0] X x O O O O O 0O o o o o o o
CREATE 0O x x O O O x x x O O O O o o
ADD o X x O O O x O x O O O O o o
REPLACE O X x O O O «x x x O O O O O o
DELETE 0O x x O O O x x x O O O O o o
EXTRACT O x x x x x O x O O O O O O o
RENAME O x x O O O x O x O O O O O o
OUTPUT (0] x x x x x O O x O O O O O o
DIRECTORY 0O 0O o o o o o o o o o o o o o
LIST O x x O O O O 0O O o o o o o o
SLIST (0] X x O O O O O O o o o o o o
END (@) O (@] X X X X X X O X X X X (@]
EXIT X X X X X X X X X X X X X X (@]
ABORT X X X X X X X X X X X X X X X

O: Later specification enabled.

x : Later specification disabled, since it conflicts with already specified option or subcommand.

Examples:

| br (RET)
: LI BRARYAf unclib.lib (RET)

: CREATEAnewW i b. lib (RET) -«—— A CREATE subcommand cannot be specified

: END (RET)
: LI ST (RET)

“EXI T (RET)

after aLIBRARY subcommand. An error occurs,
and the CREATE subcommand isignored.

Specifying aLIST subcommand after an End
subcommand generates an error. After END, only the
LIBRARY, CREATE, EXIT or ABORT subcommand
isvalid.

HITACHI 137

In the following sections, the format below is used to describe each option and subcommand.

]

Section number

Format Name Option Subcommand
Parameters

Function

Explanation

Examples

Heading for each option or
subcommand

Section number and heading
for option or subcommand

Option or subcommand
name and format for
specifying parameters

The underlined part of the name
isthe shortest abbreviated form

Summary of option or
subcommand functions

Detailed description of
functions and restrictions

Examples of option or
subcommand specifications

138 HITACHI

4.3 File Control

431 LIBRARY—Specifiesthe Library Fileto Be Edited

Format Name LIBRARY Option Subcommand
No Yes

Parameters <Library file name>

Function Specifies an existing library file for editing.

Explanation (1) This subcommand is specified at the beginning of an editing operation that edits

an existing library file or extracts modules from an existing library file.

(2) Only alibrary file created by this Librarian can be specified.

(3) When no file type is specified as part of the library file name, the typeis
assumed to be .lib.

(4) This subcommand cannot be used together with the CREATE subcommand,
which specifies creation of anew library file.

(5) If, astheresult of editing an existing library file, the number of modules
becomes zero, the library file will not be updated.

(6) The accessright to the updated library file is the same as the access right to a
newly created file. Note that the accessright prior to the update is not
preserved.

Examples LI BRARYAsysl i b
Specifies editing of the library file sydlib.lib.

HITACHI 139

432 OUTPUT—Specifiesan Output Library File

Format Name OUTPUT Option Subcommand
Yes Yes
Parameters Option UNIX <Library file name>

MS-DOS <Library file name> H ©) H
L)

Subcommand <Library file name> H (S H
L)

Function Specifiesalibrary file for output of extracted modules.

Explanation (1) Specify the OUTPUT option or subcommand whenever amodule isto be

extracted from an existing library file.

(2) Specify anew library file name. When no file type is specified as part of the
library file name, the type is assumed to be .lib.

(3) The attribute (S) or (U) is assigned to the output file. If unspecified, the
attribute is assumed to be (U).
(S) ... System library
(V) ... User library
This attribute determines the order of priority in which library files are searched
by the Linkage Editor. A user library has higher search priority. The (S) and (U)
parameters cannot be included when OUTPUT is specified as an option in
UNIX system.

(4) OUTPUT can be specified either before or after the EXTRACT option or
subcommand, which specifies extraction of modules.

(5) OUTPUT cannot be used together with the CREATE, ADD, DELETE, or
REPLACE options or subcommands.

(6) When the number of extracted modulesis zero, the library file specified by the
OUTPUT option or subcommand is not created.

Examples —QUTPUT=pr 0g86
Outputs modules extracted using the EXTRACT subcommand to afile
named prog86.lib as a user library.
OQUTPUTAc! i b. o(S)

Outputs modules extracted using the EXTRACT subcommand to afile
named clib.o as a system library.

140 HITACHI

433 DIRECTORY —Specifies Directory Name Replacement

Format Name DIRECTORY Option Subcommand
No Yes

Parameters ~ <Symbol name>(<directory name>)

Function Defines asymbol as an alias of adirectory. This function enables along directory
name to be input with asimple symbol name.

Explanation (1) Directory name alias definitionA symbol name is defined asan adlias of a
directory with the DIRECTORY subcommand.

DIRECTORY A <symbol name> (<directory name>)

(2) Directory name referenceTo refer to adirectory name, enclose the defined
symbol name with adollar sign ($) and adash (/) (adollar sign ($) and a back-
dash (\) in MS-DOS system). If the symbol name has not been defined, the
Librarian does not replace it with a directory name.
$<symbol name>/ —> Replaced with <directory name>/

(3) Symbol name for up to 16 directory names can be defined.

Examples DI RECTORYAsynbol (di r1/dir?2)
ADDA$synbol /fil el. obj

Defines symbol “symbol” as an alias of directory “dirl/dir2".Replaces
$symbol/dirl/dir2, and as aresult, specifies file name dirl/dir2/filel.obj.

HITACHI 141

4.4 Execution Control

441 SUBCOMM AND—Specifiesa Subcommand File

Format Name SUBCOMMAND Option Subcommand
Yes Yes

Parameters <Subcommand file name>

Function I nputs subcommands from a specified file.

Explanation (1) Inputsand processes subcommands from a specified subcommand file one at a

time.

(2) When no EXIT subcommand is specified, the Librarian waits for command
input.

(3) When no file type is specified as part of the file name, the typeis assumed to be
.sub.

(4) When a SUBCOMMAND option is used together with other options, the
SUBCOMMAND is processed last regardless of the option specification order.

Examples —SUBCOMVAND=makel i b

I nputs subcommands from the subcommand file makelib.sub for usein
editing alibrary file.

142 HITACHI

442 CREATE—Createsalibrary File

Format Name CREATE Option Subcommand
Yes Yes
Parameters Option UNIX: <Library file name>
MS-DOS: <Library file name> H ((S)) H
U

Subcommand <Library file name> H (S H
)

Function Createsanew library file.

Explanation (1) Specified at the beginning of a group of options or subcommands ending with
END or EXIT.

(2) Specify anew library file name. When no file type is specified as part of the
library file name, the type is assumed to be .lib.

(3) The attribute (S) or (U) is assigned to the output file. If unspecified, the
attribute is assumed to be (U).
(S) ... System library
(V) ... User library
This attribute determines the order of priority in which library files are searched
by the Linkage Editor. A user library has higher search priority. The (S) and (U)
parameters cannot be included when CREATE is specified as an option in
UNIX system.

(4) CREATE cannot be used together with the LIBRARY subcommand.
(5) If the number of modulesis zero, no library file is created.

Examples —CREATE=userlib.lib
Creates userlib.lib as anew user library.
CREATEAsi sl i b(S)
Creates sidib.lib as a new system library.
CREATEAdat ax

Creates datax.lib as anew user library.

HITACHI 143

443 ADD—Adds M odules

Format Name

ADD Option Subcommand

Yes Yes

Parameters

Option

UNIX: <Object module file name>
<Relocatable load module file name> ; [{Al}..]
<Library file name>

MS-DOS: | <Object module file name>
<Relocatable load module file name> {AalL}..]
<Library file name>[(<module name>[{A|,} ...])]

Sub- <Object module file name>

command

<Relocatable load module file name> {AlL}..]
<Library file name>[(<module name>[{A],} ...])]

Function Adds modules from specified filesto alibrary file.

Explanation (1) ADD isused to store modulesin anew library file, or add modulesto an
existing library file.
(2) When only afile nameis specified, if nofile typeis specified, the typeis
assumed to be .obj. When amodule name is specified after afile name, thefile
isassumed to be alibrary file, soif no filetypeis specified, the type is assumed

to be .lib.

(3) When only certain modules from alibrary file are to be added, specify the
module names after the library file name. Up to 10 module names can be
specified. However, module names can not be included when ADD is specified

asan option in UNIX ?stem.
Library file name

Example:

144 HITACHI

Explanation (4) When modulesin alibrary file are specified, the specified module names are
sorted in alphabetical order and the modules are added in that order. They are

not added in the order of specification.
Example: are added

(5) When the names of modulesin alibrary file are not specified, all modulesin the

library file are added.
Example: T Libraryfilename

(6) When a module to be added has the same name as a module already in the
library file being edited, or when an export symbol defined in the module to be
added has the same name as an export symbol in the library file being edited, a
warning message is displayed and the module is not added.

(7) The name of an object module or relocatable |oad module is the name defined
in the module. The LIST option or subcommand confirms which modules are
stored in alibrary file.

(8) ADD cannot be used together with the EXTRACT or OUTPUT options or
subcommands.

(9) Errors will occur and the parameters after the error occurs will not be processed
when:

(a) A specified file does not exist.

(b) A specified module does not exist in alibrary file.

(c) The content of the specified fileisinvalid.

(d) The number of modules to be stored exceeds 32,767.
(e) Memory capacity isinsufficient to add more modules.
(f) The number of input files exceeds 256.

Examples —ADD=nod1, nod2, nodx. o

Adds al modules from the object module files mod1.obj, mod2.obj and
modx.o.

ADDAI of nc(keyi n, crtout)

Adds the two modules keyin and crtout from the library fileiofnc.lib.
ADDAsyslib.lib

Adds al modules from the library file sydlib.lib.

HITACHI 145

444 REPL ACE—Replaces Modules

Format Name REPLACE Option Subcommand

Yes Yes

Parameters Option
UNIX: rObject module file name>

<Relocatable load modulefile name> » [{Al}...]
<Library file name>

MS-DOS: | <Object module file name>
<Relocatable load module file name> {AalL}..]
<Library file name>[(<module name>[{A|,} ...])]

Sub- <Object module file name>

command ¢ <Relocatable load module file name> {alL}..]

<Library file name>[(<module name>[{A],} ...])]

Function Substitutes modules in a specified file for modules of the same name in the library
file being edited.

Explanation (1) When amodulein the library file being edited has the same name as a module
in the specified file, the former is replaced by the latter. If thereis no module
with the same name in the library file being edited, the module is simply added.

(2) When only afile nameis specified and no file typeis specified, the typeis
assumed to be .obj. When amodule name is specified after a file name and no
filetypeis specified, thefileis assumed to be alibrary file and the typeis
assumed to be .lib.

(3) To substitute only certain modules from alibrary file, specify the module
names after the library file name. Up to 10 module names can be specified.
However, module names cannot be included when REPLACE is specified as an

option in UNIX system.
Example: I Library file name

146 HITACHI

Explanation (4) When modulesin library files are specified, the specified module names are
sorted in aphabetical order and modules are replaced in that order. They are not
replaced in the order of specifications. .
Example: 5, 1, 4, 3, 2... Order of replacement

(5) When the names of modulesin alibrary file are not specified, all modulesin the

file are substituted.
Example: T Libraryfilename

(6) The name of an object module or relocatable |oad module is the name defined
in the module. The LIST option or subcommand confirms which modules are
stored in alibrary file.

(7) REPLACE cannot be used together with EXTRACT or OUTPUT options or
subcommands.

(8) Thefollowing cases will result in error, and the parameters after the error
position will not be processed.

(a) A specified file does not exist.

(b) A specified module does not exist in alibrary file.

(c) The content of the specified fileisinvalid.

(d) The number of modules to be stored exceeds 32,767.
(e) Memory capacity is insufficient to perform substitution.
(f) The number of input files exceeds 256.

(9) The process of replacing a module involves deleting the module of the same
name in the library file being edited, then inputting the module from the file
specified by the REPLACE option or subcommand and storing it in the library
file. The following special caution is thus required: If amodule to be
substituted contains an export symbol aready defined in another module in the
library file, the old module will be deleted, but the replacement module will not
be stored.

HITACHI 147

Examples —REPLACE=userlib.lib

Stores all modulesin thelibrary file userlib.lib in the library file being
edited, replacing modules with the same name.

REPLACEAI oadx. rel , | oady. rel
Substitutes the modules in the relocatable load module files loadx.rel and
loady.rel for modules of the same name in the library file being edited.

REPLACEAdat ax(menber), onf
Substitutes the module named member in library file datax.lib, and the

modules in the object module file omf.obj for modules of the same namein
thelibrary file being edited.

445 DELETE—Deletes M odules

Format Name DELETE Option Subcommand

Yes Yes

Parameters <Module name> [{Al }...]

Function Deletes specified modules from the library file being edited.

Explanation (1) If a specified module does not exist in the library file, an error occurs, and the
parameters after the error occurrence are not processed.
(2) The name of an object module or rel ocatable load module is the name defined
in the module. The LIST option or subcommand confirms which modules are
stored in alibrary file.

(3) DELETE cannot be used together with EXTRACT or OUTPUT options or
subcommands.

Examples —DELETE=i nchar, out char

Deletes the two modules inchar and outchar.
DELETEAdat at bl , sort

Deletes the two modules datatbl and sort.

148 HITACHI

4.4.6 EXTRACT—Extracts M odules

Format Name EXTRACT Option Subcommand
Yes Yes

Parameters <Module name> [{A,} ...]

Function Extracts specified modules from the library file being edited.

Explanation (1) The extracted modules are output in library file format with the file name
specified by the OUTPUT option or subcommand.

(2) The name of an object module or rel ocatable load module is the name defined
in the module. The LIST option or subcommand confirms which modules are
stored in alibrary file.

(3) If aspecified module does not exist in the library file, an error occurs, and the
parameters after the error occurrence are not processed.

(4) EXTRACT cannot be used together with the CREATE, ADD, DELETE or
REPLACE options or subcommands.

Examples —EXTRACT=add, sub, nul , di v
Extracts the four modules add, sub, mul, and div from the library file being
edited.
EXTRACTAal pha, upper, | ower, digit,cntrl
Extracts the five modules a pha, upper, lower, digit, and cntrl from the
library file being edited.

HITACHI 149

4.4.7 RENAM E—M odifies Section Names

Format Name ENAME Option Subcommand
Yes Yes
Parameters ~ <module name>[,...] (<section name 1>=<section name 2>[,...])
Function Modifies section namesin library filesin module units.
Explanation (1) The section namesin library files can be modified to freely allocate sectionsto
memory at linkage.
(2) The section namesin alibrary file including a relocatable 1oad module cannot
be modified.
(3) When a section name in the module including debugging information is
modified, symbolswill not be referenced correctly at debugging.
Examples RENAMEAN, n2, n8(A=Al, B=B1, C=Cl)

Modifies sections A, B, and C in module m1 to Al, B1, and C1, section A
in module m2 to A1, and section B in module m3 to B1.

ex.lib ex.lib

ml Section A ml| Section Al

| SectonB | | Section B1 |

| seconc | | Section C1 |
m2 Section A m2| Section Al

| SecionM | — | SectonM |

| secionN | | SectionN |
m3 Section B m3| Section B1

| Sectonx | | Section X |

| sectiony | | SectionY |

150 HITACHI

448 END—Specifies End of Subcommand I nput

Format Name END Option Subcommand
No Yes

Parameters None

Function Outputs a newly created or updated library file.

Explanation (1) When more than onelibrary fileis edited in one Librarian execution, the editing
of each library fileisterminated by an END subcommand.
(2) Specification of the END subcommand causes the Librarian to output the edited
library file. If, however, the number of modules stored in the library file is zero,
the library fileis not created or updated.

Examples END
Outputs alibrary file.

449 EXIT—SpecifiesEnd of Librarian Operations

Format Name EXIT Option Subcommand
No Yes

Parameters None

Function Terminates Librarian operations.

Explanation (1) The EXIT subcommand is used to terminate a set of Librarian operations
executed by the subcommand specification.

(2) When executing from a subcommand file, all subcommands following after an
EXIT subcommand are ignored. If the EXIT subcommand is not specified, a
warning message will be displayed.

(3) When the EXIT subcommand is used, the immediately preceding END
subcommand can be omitted. In that case the EXIT subcommand serves also as
an END subcommand, causing the library file to be output before terminating
the Librarian operation.

Examples EXIT
Terminates Librarian operations.

HITACHI 151

4410 ABORT—AbortsLibrarian Operations

Format Name BORT Option Subcommand

No Yes

Parameters None

Function Aborts Librarian operations.

Explanation (1) When executing by the subcommand specification, the ABORT subcommand
can be used to abort editing operations.

(2) When the ABORT subcommand is specified, the library file being edited will
not be created or updated. If, however, alist file was output by aLIST
subcommand before the ABORT subcommand, the list file will remain
unchanged.

Examples ABORT
Aborts Librarian operations.

152 HITACHI

45 List Display

451 L1ST—Displays Contentsof aLibrary File

Format

Name LIST Option Subcommand

Yes Yes

Parameters Option UNIX: [<List file name>]
MS-DOS: [[<List file name>][(9)]]

Subcommand [[<List file name>][(9)]]

Function

Outputs alist of the contents of the library file being edited to the standard output
device or to afile.

Explanation

(1) The names of modules stored in the library file, export symbol hames, and other
information is output on alist. For the list format, see section 6.2, Librarian
Lists.

(2) When no list file name is specified, the list is output to the standard output
device.

(3) When alist file name is specified, thelist is output to afile. Specify anew list
file name; the list cannot be appended to an existing file. If an existing fileis
specified, the existing file contents will be replaced.

(4) When no file type is specified as part of thelist file name, the type is assumed
to be .Ist.

(5) To obtain alist of export symbols designated in modules, specify the (S)
parameter. If the (S) parameter is not specified, only the module names will be
listed. The (S) parameter cannot be included when LIST is specified as an
optionin UNIX system.

(6) The LIST option or subcommand can be specified any number of times during
the editing process. The library file contents at the point of specification will be
listed.

Examples

—LI ST
Outputs alist to the standard output device.
Export symbols are not shown.
LI ST
Outputs alist to the standard output device.
Export symbols are not shown.
LI STAl'i bx(S)
Outputs alist including export symbols to afile named libx.Ist.

HITACHI 153

452 SL1ST—Displays Section Names of Library File

Format

Name SLIST Option Subcommand

Yes Yes

Parameters [<List file name>]

Function

Outputs alist of the contents of the library file being edited to the standard output
deviceor to afile.

Explanation

(1) The names of modules stored in the library file, export symbol names, names of
the sections containing export symbol names, and other information is output
on alist. For thelist format, see section 6.3, Section Name Lists.

(2) When no list file name is specified, the list is output to the standard output
device.

(3) When alist file name is specified, the list is output to afile. Specify anew list
file name; the list cannot be appended to an existing file. If an existing fileis
specified, the existing file contents will be replaced.

(4) When no file type is specified as part of the list file name, the type is assumed
to be .sct.

(5) The SLIST option or subcommand can be specified any number of times during
the editing process. The library file contents at the point of specification will be
listed.

Examples

—SLI ST

Outputs a section name list to the standard output device.
SLI STAI i bx

Outputs a section name list to a file named libx.sct.

154 HITACHI

(This pageisintentionally left blank.)

HITACHI 155

Section 5 Input to the Librarian

51 Object ModuleFiles

Object module files output from a C compiler or assembler can be input to the Librarian and
stored as modulesin library files.

5.2 Relocatable Load M odule Files

A relocatable load module file output from the Linkage Editor can be input and stored in alibrary
file as one module.

5.3 Library Files

The Librarian inputs the library file it is editing. Also, modules to be stored in this library file can
be input from other library files. Either specified modules can beinput, or al the modulesin a
library file can be input at one time.

Input can be made only from library files created using this Librarian.

HITACHI 157

(This pageisintentionally left blank.)

158 HITACHI

Section 6 Output from the Librarian

6.1 Library Files

The Librarian combines two or more modules into a single output library file. It also updates an
existing library file, or extracts modules from an existing library file, and outputs the result in
library file format.

6.2 Librarian Lists

When the LIST option or subcommand is specified, alist of the library file contentsis output to
the standard output device or to afile. The format of alibrarian list is shown in figure 6-1.

Library file name: (1)

H SERI ES LI NKAGE EDI TOR Ver. 5.3
LI NK COVMAND LI NE
LNK -sub=func. sub
(1)

LI NK SUBCOMVANDS

inp main

rename ed=si n. si n0(sinl)

del ete ed=sin.sin3

inp sin

define undef 1(100), undef 2(si nl)

print fmap

inp cos

inp tan 2)
inp calc.lib(division)

forma

rom (SECT1, SECLN)

out func

exit

** sin0 IS RENAMED TO sinl

** sin3 | S DELETED

** 105 UNDEFI NED EXTERNAL SYMBCOL (divi si on. undef 3)

Figure6-1 Librarian List Format

HITACHI 159

(1) Showsthe library file name. If the nameistoo long to fit on onelineit is continued to the next
line. When modules are extracted from an existing library file, the list shows the contents of
the existing library file.

(2) Showsthe library file attribute.

SYSTEM: System library

USER: User library
(3) Shows the total number of modules stored in the library file, in decimal notation.
(4) Shows the total number of export symbolsin the library file, in decimal notation.

(5) Shows the date and time of library file creation. Thisinformation is given in the following
f?rmat.

day

(6) Shows the date and time of the most recent library file update. When library files are newly
created using the CREATE option or subcommand, this shows the date of creation. The format
isthe same as for the creation date, above.

(7) Shows the names of modules stored in the library file, in alphabetical order.
(8) Shows the kind of editing operation performed on the module.

BLANK : A module stored in an existing library file
(A) An added module
(R) : A replacement module

(B) . An extracted module

Modules deleted by the DELETE option or subcommand are not listed.
(9) Shows the date and time a module was stored in the library file. The format is the same as for
the library file creation date and revision date.

(10 When the (S) parameter is specified with the LIST subcommand, the export symbolsin
each module are shown. These symbol names are listed in aphabetical order two on each line.

An example of alist when the (S) parameter is specified with the LIST subcommand isgiven in
figure 6-2. Figure 6-3 shows alist without the (S) specification.

160 HITACHI

H SERI ES LI NKAGE EDI TOR Ver. 5.3 PAGE:
* kK LI NKAGE EDI TOR LI NK MAP LI ST * kK
SECTI ON NAMVE START - END LENGTH
UNI T NAME MODULE
ATTRI BUTE : CODE NOSHR ROM
2 (3) (4)
SECT1 H 00000000 - H 00000004 H 00000005
1) (5) nai n (6) mai n
(7) (8)
H 00000006 - H 00000017 H 00000012
sin sin
H 00000018 - H 00000019 H 00000002
cos cos
H 0000001a - H 0000002d H 00000014
tan tan
H 0000002e - H 00000043 H 00000016
di vi sion di vi
* TOTAL ADDRESS * H 00000000 - H 00000043 H 00000044
Figure6-2 Librarian List (with (S) specification on UNIX)
H SERI ES LI NKAGE EDI TOR Ver. 5.3 PAGE: 1
*kx LI NKAGE EDI TOR LI NK MAP LI ST *xx
FI LE NAME : mai n. OBJ
11)
MODULE NAME : nmai n
(8)
UNI T NAME : nmai n
(7)
SECTI ON NAMVE ATTRI BUTE
START - END LENGTH
SECT1 CODE NOSHR
(@) H 00000000 - H 00000004 H 00000005
(5) (6)

Figure6-3 Librarian List (no (S) specification on UNIX)

HITACHI 161

si on

6.3 Section NameLists

When the SLIST option or subcommand is specified, alist of the section contents of the library
file are output to the standard output device or to afile. The format of a section name list is shown
in figure 6-4.

H SERI ES LI NKAGE EDI TOR Ver. 5.3 PAGE: 1

FRE LI NKAGE EDI TOR EXTERNALLY DEFI NED SYMBOLS LIST ***

SYMBCOL NAME ADDR TYPE
cosl H 0000000A EQU
sinl H 0000004A DAT
sin2 H 0000005B DAT

1)) (3)

Figure6-4 Section NamelList Format

(2) Showsthe library file name. If the name istoo long to fit on onelineit is continued to the next
line. When modules are extracted from an existing library file, the list shows the contents of
the existing library file.

(2) Showsthe library file attribute.

SYSTEM: System library
USER: User library

(3) Showsthe total number of modules stored in the library file, in decimal notation.

(4) Shows the total number of export symbolsin the library file, in decimal notation.

(5) Shows the date and time of library file creation. Thisinformation is given in the following
f?rmat.

day

(6) Shows the date and time of the most recent library file update. When library files are newly
created using the CREATE option or subcommand, this shows the date of creation. The format
isthe same as for the creation date, above.

(7) Shows the names of modules stored in the library file, in aphabetical order.

(8) Shows the date and time a module was stored in the library file. The format is the same as for
the library file creation date and revision date.

(9) Shows the export symbolsin each module.
(20 Shows the name of the section containing the export symbol name.

162 HITACHI

An example of alist specified with the SLIST subcommand is given in figure 6-5.

H SERI ES LI NKAGE EDI TOR Ver. 5.3

il LI NKAGE EDI TOR EXTERNALLY DEFI NED SYMBOLS LI ST

SYMBOL NAME

cosl
sinl
sin2

@)

ADDR

H 0000000A
H 00000000

H 00000011

@)

PACE: 1

* % %
TYPE

EQU
DAT
DAT

®)

Figure6-5 Section NamelList

6.4 Console M essages

The Librarian displays the following messages on the standard output device.

Opening Message: Displayed when the librarian command isinput.

H SERIES OBJECT LIBRARI AN Ver.
Copyright (C Hitachi, Ltd. 1988
Li censed Material of Htachi, Ltd.

1.4

Normal Completion Message: Displayed when library file editing has ended normally.

OBJECT LIBRARI AN COVPLETED

Abort Message: Displayed when the library file editing is aborted by either an error or an

ABORT subcommand.

‘ OCBJECT LIBRARI AN ABORT

Subcommand Prompt: Indicates that the Librarian isin subcommand input wait state during

interactive execution.

Subcommand Continuation Symbol: Request for a continuation line, when continuation of a
subcommand is specified during interactive execution.

‘ -

HITACHI 163

(This pageisintentionally left blank.)

164 HITACHI

Section 7 Error Messages

The Librarian outputs error messages in the following form.
** <Error number> <Error message> [(<Additional information>)]

Error Number: Thefirst digit indicates the level of the error. (xx represents the second and third
digits.)

e 1Ixx:Warning: Processing of a particular module is skipped.
e 2xx:Error If started by input from the command line or a subcommand file,

processing is stopped. In interactive mode, processing of the subcommand is stopped when the
error is detected, and a prompt is displayed for the next subcommand.

e 3xx: Fatal error : Processing is stopped.

A list of error messagesis given below in tables 7-1, 7-2 and 7-3, in the following format.

Error number |Error message Additional information

Description of error

Corrective action, etc.

Note: Additional information includes the name of the file in which the error occurred, or the
module name or symbol hame. In the list of errors, — means that no additional information
is given.

HITACHI 165

Table7-1 List of Warning M essages

101 DUPLICATE MODULE ‘Module name
An attempt was made to add a module already stored in the library file.

Processing of the module is skipped.

102 |DUPLICATE SYMBOL ‘Module name ** Symbol name
An attempt was made to add an export symbol already present in the library file.
Processing of the module is skipped.

103 IDENTIFIER CHARACTER EXCEEDS 251 ‘Module name
A module name of more than 251 characters was specified.

The name is valid up to the 251st character. The rest is ignored.
104 |[EXIT SUBCOMMAND NOT FOUN—ASSUMED ‘—
No EXIT subcommand was specified.
Processing continues as though an EXIT subcommand had been specified.

105 |SUBCOMMAND LINE LENGTH TOO LONG ‘—

Symbols are replaced with the corresponding directory names, and the file name exceeds
511.
The file name is valid up to the 511th character.
106 [TOO MANY DIRECTORY COMMANDS ‘—
More than 16 directory names have been specified with the DIRECTORY subcommand.
Up to 16th specification is valid.
107 MODULE COUNT 0 —
The total number of modules becomes zero.
Processing is terminated. Check the specification for editing modules.

108 |SECTION NOT FOUND ‘Module name ** Section name
The specified section cannot be found.

Check the section name and respecify it.

109 |[CANNOT PRINT SECTION LIST ‘Module name
The SLIST option or subcommand is specified for the file containing a relocatable load
module.

Specify the SLIST option or subcommand only for absolute modules.

110 |CANNOT RENAME SECTION NAME ‘Module name

The RENAME option or subcommand is specified for the file containing a relocatable load
module.

Specify the RENAME option or subcommand only for absolute modules.

166 HITACHI

Table7-2 List of Error Messages

201

INVALID SUBCOMMAND/OPTION ‘—

The option or subcommand specified is invalid in this context.

Specify a valid option or subcommand.

202

SYNTAX ERROR ‘—

Syntax of the specified option or subcommand is incorrect.

Check the syntax and respecify the option or subcommand.

203

SUBCOMMAND LINE LENGTH TOO LONG ‘—

Length of the subcommand entry exceeds 128 characters.

Respecify, keeping the length within 128 characters.

204

CONFLICTING SUBCOMMAND ‘—

Subcommands are specified in the wrong order, or an illegal combination of subcommands
is specified.

Check the order of subcommands and respecify.

205

ILLEGAL FILE NAME ‘—

The specified file name is not valid.

Specify a correct file name.

206

ILLEGAL MODULE NAME ‘—

The specified module name is not valid.

Specify a correct module name.

207

MODULE NOT FOUND ‘Module name

The specified module cannot be found.

Check the name of the module, then respecify.

208

MISSING OUTPUT FILE NAME ‘—

No output file was specified with the EXTRACT option or subcommand.

Use the OUTPUT option or subcommand to specify an output file.

209

TOO MANY INPUT FILES ‘—

More than 12 input files were specified for input at the same time.

First output the library file, then re-input the library file and input the remaining files.

210

TOO MANY MODULES ‘—

The number of modules exceeds the allowable number.

No more modules can be stored in the library file now being created or edited. Store any
additional modules in a separate library file.

HITACHI 167

Table7-2 List of Error Messages (cont)

211 |TOO MANY SYMBOLS \—

The number of symbols exceeds the allowable number.

The library file now being created or edited cannot contain any more symbols. Modules with
additional symbols must be stored in a separate library file.

212 |ILLEGAL FILE FORMAT ‘—

The specified file format is incorrect.

Check the file contents and re-execute.
213 |MEMORY OVERFLOW —

There is no space remaining in the Librarian’s usable memory.

Obtain additional memory and re-execute.
214 |FILE NOT FOUND ‘File name

The specified file cannot be found.

Check the directory and the specified file name, then respecify.
215 |DUPLICATE SECTION ‘Module name ** Section name

The specified section is in a module.

Check the section name and respecify it.
216 |ILLEGAL SECTION NAME ‘—

The specified section name is illegal.

Check the section name and respecify it.

168 HITACHI

Table7-3 List of Fatal Error Messages

301 |INVALID COMMAND PARAMETER ‘—
An improper command parameter was specified.
Check the command parameters and re-execute.
302 |CONFLICTING OPTION —
There is a contradiction among different options specified.
Check the order of option specification, then respecify.
303 |CANNOT OPEN FILE File name
File cannot be opened, or the CREATE or OUTPUT option or subcommand specified an
already existing file.
Check the specified file name. If the file name is correct, the disk may be full, or there may
be a disk hardware error. Correct the problem, then re-execute.
If an existing file was specified by the CREATE or OUTPUT option or subcommand, delete
the existing file, then re-execute.
304 |CANNOT INPUT FILE ‘File name
File cannot be input.
Check the specified file name. If the file name is correct, there may be a disk hardware
error. Correct the problem, then re-execute.
305 |CANNOT OUTPUT FILE ‘File name
File cannot be output.
Check the specified file name. If the file name is correct, the disk may be full, or there may
be a disk hardware error. Correct the problem, then re-execute.
306 |CANNOT CLOSE FILE File name
File cannot be closed.
Check the specified file name. If the file name is correct, the disk may be full, or there may
be a disk hardware error. Correct the problem, then re-execute.
307 |CANNOT READ —
Because forcible termination was specified, processing is aborted.
Re-execute the processing.
308 |MEMORY OVERFLOW —

The memory space is insufficient for the librarian.

Check the operating environment and re-execute the processing.

HITACHI 169

Note: Inthe UNIX system, the Librarian uses temporary files with names in the format shown
below. These temporary file names may appear as additional information in error

Mmessages.

An_n‘rm.TEM P
A

5 digits, decimal

170 HITACHI

Section 8 Restrictions

Restriction on the Librarian are shown in table 8-1. If the numerical restrictions are exceeded,
Librarian operations will not operate correctly.

Table8-1 Restrictionson Librarian Processing

No. Iltem Limits Remarks

1 The number of modules 32,767 max. Assumes that the system on
that can be stored in a which Librarian runs has
library file adequate memory.

2 The number of symbols that 65,535 max.
can be present in a library
file

3 The number of input files 256 max. Total number of files specified

by LIBRARY, ADD, or
REPLACE not including
subcommand files.

4 The number of modules 10 max. When specifying a library file
that can be specified in a with ADD or REPLACE.
library file

5 Length of file name 128 characters max. Includes default file-type

characters. File name format
depends on OS.

6 Length of module name 251 characters max.

7 Length of symbol name 251 characters max.

8 Input file formats e Object module file output

by assembler or C
compiler.

* Relocatable load module
file.

e Library file created using
this Librarian.

HITACHI 171

(This pageisintentionally left blank.)

172 HITACHI

Appendix A Examplesof Librarian Usage

A.l Librarian Execution by Command Line

| br A- CREATE=f unc- ADD=abs, nod, sqrt, exp,l og (RET) . (1) Creation

@ (b)
| br Af unc- ADD=si n, cos- DELETE=abs, nod- LI ST (RET) ...(2) Editing
N N
(© (d) (€ ()
| br Af unc- EXTRACT=sqrt, exp- OQUTPUT=newf nc (RET) ...(3) Extraction
— .
©) (h) 0]

(a) The CREATE option is specified at the beginning of the option line to create anew library file.

(b) The file names for the modules to be entered are specified using the ADD option.

(c) The name of thelibrary fileto be edited is specified.

(d) The file names for modules to be added to the existing library file are specified using the ADD
option.

(e) The names of the modules to be deleted from the existing library file are specified using the
DELETE option.

(f) The LIST option is specified to confirm the editing results.

(9) An existing library file from which modules are to be extracted is specified.

(h) The names of the modules to be extracted are specified using the EXTRACT option.

(i) The name of anew library file to which the extracted modules are to be output is specified
using the OUTPUT option.

Thisprocessisillustrated in figure A-1.

HITACHI 173

1

; First Linkage Process

1

form r ; Rel ocatable Load Mdul e
i nput mai n ; Input "main.obj"

i nput init ; Input "init.obj"

i nput cmmdanl ; Input "cmmdanl . obj "

i nput cmmdpr c ; Input "crmmdprc. obj "

i nput tabl e ; Input "table.obj"

i nput term ; Input "termobj"
l'ibrary function ; Library "function.lib"
out put pr ogr aml ; Qutput "progrant.rel”
print progr aml ; Print "prograntl. map"
end

1

; Second Linkage Process

i nput programt. rel ; Input "programl.rel"

i nput keyi n ; Input "keyin.obj"

i nput file ; Input "file.obj"

i nput printer ; Input "printer.obj"

i nput di spl ay ; Input "display.obj"

i nput conmu ; Input "commu. obj "

l'ibrary function ; Library "function.lib"
; Sequence of Sections

start programd, progran®, function, gl obal , | ocal ,f_| ocal, stack_area

out put exanpl e ; Qutput "exanpl e. abs"

print exanpl e ; Print "exanpl e. map"

exit

Figure A-1 Resultsof Librarian Execution by Command Line

174 HITACHI

A.2 Librarian Execution by Subcommands

| br (RET)
CREATEAf unc_(RET)

ADDAsqrt, exp, |l og, sin, cos (RET)

END (RET
LI BRARYAf unc (RET)

REPLACEASI n. new, cos. new, t an. new (RET)

END (RET

LI BRARYAf unc (RET)

LI ST (RET)
EXTRACTAsqrt, exp (RET)
OUTPUTAnewf nc (RET)
END (RET

EXIT (RET)

(a) The Librarian is started.

..(d
...(b)
..(c) ¢ (1) Creation
.(d)
...(e)
..(f) ¢ (2 Editing
-(9)
...(h)
(i)
..(0)) } (3) Extraction
(k)
()
...(m)

(b) The CREATE subcommand is specified at the beginning of the option line to create a new

library file.

(c) Thefile names of modulesto be loaded are specified using the ADD subcommand.

(d) The END subcommand is specified to terminate the creation process.

(e) The name of the library file to be edited is specified.

(f) Modulesin the existing library file are replaced, using the REPLACE subcommand. Thefile

names of the modulesto be replaced is specified.

(g) The END subcommand is specified to terminate the editing process.

(h) An existing library fileis designated for extraction of modules.

(i) The LIST subcommand is specified to confirm the contents of the existing library file.

(i) The names of the modulesto be extracted are specified using the EXTRACT subcommand.
(k) The name of anew library file to which the extracted modules are to be output is specified

using the OUTPUT subcommand.

() The END subcommand is specified to terminate the extraction process.
(m) The EXIT subcommand is specified to terminate the Librarian program.

This processisillustrated in figure A-2.

HITACHI 175

N
sqrt.obj func.lib
exp.obj exp
(1) Creation
exp > log >
b) to (d .
log.obj (b) to (d) sin
sin.obj
sin sin.new
cos.obj sin'
cos cos.new
J
cos'
File name g tan.new

Module name —»
J

(2) Editing

(e)to(g)

func.lib

{ sqrt ,

exp

log

sin'

cos'

tan'

(3) Extraction

- O

(h) to (1)

List

=

newfnc.lib

exp

176 HITACHI

Figure A-2 Resultsof Librarian Execution by Subcommand

Appendix B Note on Librarian Usagein MS-DOS System

Before using this Librarian, set the MS-DOS configuration file (CONFIG.SY S) with the editor as
follows.

FI LES=20 (1)
SHELL=a: \ command. com a: \ (2)
I'p

(1) The number of filesthat is allowed to open at one time during Librarian operation.
(2) Directory path specification that is required when COMMAND.COM s reloaded.

HITACHI 177

(This pageisintentionally left blank.)

178 HITACHI

Part I11
Object Converter Guide

(This pageisintentionally left blank.)

180 HITACHI

Section 1 Object Format Conversion

To input the load modules output by the Linkage Editor into an emulator or PROM programmer,
they must first be converted to S-type object format using the Object Format Converter.

11 Executing the Object Format Conversion
The command line format for starting the Object Format Converter is asfollows.
cnvsA<input file name>[A<output file nane>] (RET)

For details on file names, refer to appendix B, File Name Specifications, in Part |, Linkage Editor
Guide.

Command Name: The Object Format Converter is started up by specifying the command “cnvs.”

Input File Name: The name of an absolute-format load module file to be input to the Object
Format Converter is specified. Relocatable load module files cannot be specified.

If the file type is omitted from the file name, the Object Format Converter automatically assumes
thisto be “.abs’ when it inputs thefile.

Output File Name: The name of the S-type object file to be output by the Object Format
Converter is specified. If the file type is omitted from the file name, the Object Format Converter
automatically assumesthisto be“.mot” when it outputs thefile.

Examples of command line specification are given below.

cnvsAprogl. | mdAprogl. sty (RET) (1)
cnvsAproglAprogl (RET) 2

(2) File“progl.Imd” isinput, and file “ progl.sty” is output.
(2) File“progl.abs’ isinput, and file “progl.mot” is output.

The S-type object format is shown in figure 1-1.

HITACHI 181

Assembly- C-language
language source program
source program

Librarian Assembler

a Libraries 4@ Object modules

*

C compiler

|\ Linkage Editor |

_CfPU Absolute Relocatable
Informa- load module
ion filo load module

' '

| Object converter || In-circuit emulator | | Simulator/Debugger
v

Load module
(S-type)

Figure1l-1 S-Type Object Format

182 HITACHI

(c) End record (S9, S8, and S7 record)
(i) When load address is between 0 and OFFFF (hexadecimal)

s|lo9|o0 3 (LF) *3

5339 30‘33 XX‘XX‘XX‘XX XX‘XX 0A

Check sum *2
Entry address (2 bytes)

Byte count *1
Record format
Record header

(ii) When load address is between 10000 and OFFFFFF (hexadecimal)

s|8|0 4 (LF) *3

53|38 30‘34 XX‘XX‘XX‘XX‘XX‘XX XX‘XX 0A

' !

Entry address (3 bytes) Check sum *2
Byte count *1
Record format
Record header

(iii) When load address is between 1000000 and OFFFFFFFF (hexadecimal)

s|7|0 5 (LF) 3

53|37 30‘35 XX‘XX‘XX‘XX‘XX‘XX‘XX‘XX XX‘XX 0A

' !

Entry address (4 bytes) Check sum *2
Byte count *1
Record format
Record header

Notes: 1. The byte count is the number of bytes from the load address (or entry address) to the
check sum.
2. The check sum is the 1's complement of the sum of the data values from the byte count
to the byte before the check sum, in byte units.
3. “LF” indicates the line feed code.

Figure1-1 S-Type Object Format (cont)

HITACHI 183

12 Error Messages

When errors are made in command specification, or when an error is detected during the
conversion process, the Object Format Converter outputs error messages in the following format.

** A <Error numnber>A <error message>[(<additional information>)]

!

1st column

A list of error messagesis given below in table 1-1 in the following format.

Error Number |Error Message Additional Information

Nature of Error

Converter actions and corrective actions

Notation used in table: —: No additional information

184 HITACHI

Table1-1 Object Format Converter Error Messages

301 |INVALID COMMAND PARAMETER ‘—
An improper command parameter was specified.
Check the command parameters and re-execute.
302 |FILE NOT FOUND File name
The specified file cannot be found.
Check the directory and the specified file name, then re-execute.
303 |CANNOT OPEN FILE File name
File cannot be opened.
Check the specified file name. If the file name is correct, the disk may be full, or there may
be a disk hardware problem. After checking the problem, re-execute.
304 |CANNOT READ FILE ‘File name
File cannot be input.
Check the specified file name. If the file name is correct, there may be a disk hardware
problem. After checking the problem, re-execute.
305 |CANNOT WRITE FILE ‘File name
File cannot be output.
Check the specified file name. If the file name is correct, the disk may be full, or there may
be a disk hardware problem. After checking the problem, re-execute.
306 |CANNOT CLOSE FILE ‘File name
File cannot be closed.
Check the specified file name. If the file name is correct, the disk may be full, or there may
be a disk hardware problem. After checking the problem, re-execute.
307 |ILLEGAL FILE FORMAT ‘File name
The specified file format is incorrect.
Check the file contents, then re-execute.
308 |ILLEGAL FILE NAME ‘File name
An illegal file name was specified.
Specify a correct file name.
309 |MEMORY OVERFLOW ‘—

Insufficient memory is available for use by the Object Format Converter.

Expand the memory or revise the user program, then re-execute.

HITACHI 185

(This pageisintentionally left blank.)

186 HITACHI

A
Abbreviating name 44, 142
ABORT 70, 162
Abort message 93, 175
Absolute 6, 7
Format 11, 13, 30, 49, 65
Load module 4
Absolute address 13, 20, 22
ADD 151
Addition 128, 151
Additional information 95, 177, 196
Address
Assignment 13
Resolution 4, 20, 22, 23
Suppressing the listing of unresolved
symbols 24
Addresscheck 30
Specification 60
ALIGN_SECTION 57
Assembler 3,4, 81, 125
Attribute 86, 146, 150
Automatic inclusion 17
AUTOPAGE 59
Autopaging 13

C

C Compiler 3,81, 125

CHECK_SECTION 58

Command line 34
Execution 4, 33, 34, 133
Format 34

Common linkage 8, 86

Console messages 93, 175

Contentsdisplay 129

Continuation specification 139

CPU 30, 60

CPUCHECK 61

CPU information file 30, 60

CREATE 150

Creation 127, 150

Creation date 170

I ndex

D
DEBUG 66
Debugging
Information 4, 66
Information output specification 66
Support 4, 29, 39, 74
Support function 39
Default library 17, 81
File 81
Logical name 81
DEFINE 78
DEFINE list 83,92
DELETE 29, 77, 157
Deletion 128, 157
DIRECTORY 53, 148
Dummy linkage 9, 86

E

ECHO 71

Echo-back specification 71
END 27,68, 160

Enter 127

ENTRY 56

Error 177

Error messages 95, 101, 102, 177, 180, 181,

196
EXCHANGE 27,63
EXCLUDE 19, 52
Execution control 39, 63
Function 39, 137
Execution mode specification 34, 132
Execution start address specification 56
EXIT 27,69, 161
Export
Number of symbols 107
Symbol 17,24, 75
Symbol deletion 77
Symbol list 83, 88
Symbol name 77
Symbol name change 29, 75
Symbol name deletion 29
EXTRACT 158
Extraction 6, 158

HITACHI 187

F
Fatal error 95
Message 103, 104, 105, 181, 182
File
Control 39, 47, 137
Control function 39
Type 34,47, 48, 49, 50, 60
Filename 131, 137
Length 183
Specification 122
FORM 4,13, 24, 65
Format 5,12
Format conversion 193

H
HLNK_LIBRARY1-3 81

I

Import
Forced definition 29, 78
Number of symbols 107
Symbol 17, 18, 19, 20, 75
Symbol name 78
Symbol name change 29, 75
Symbol name deletion 29
Symbol resolution 20, 21

Informative message 93

INPUT 17, 24, 47

Input file
Format 107, 183
Name 34
Number of files 107, 183
Specification 47

Input information (list) 83

Interactive mode 35, 36, 134
Execution 36

Interim linkage information display 29, 74

L

Librarian 17, 81, 125
Abort 162
List 169
Termination 136, 161

Library 18

LIBRARY 17,50, 145

188 HITACHI

Library file 17, 47, 50, 81, 125, 167
Attribute 169
Input from library file 17
Name 132
Specification 17, 50
Link attribute 86
Linkage editor 7, 125
Example of usage 109
Execution 33, 110
Input to Linkage Editor 81
Output 83, 92, 93
Re-input 81
Termination 38
Linkagelist 51, 83, 112, 113, 114, 115, 1186,
117, 118, 119, 120, 121
Linkage operation
End specification 69
Abort specification 70
Link map list 83, 85
LIST 29, 74, 163
List display 137, 163
List file specification 50
Load module 3,4, 47,72
File 3,4,24, 25,92, 93
File re-input function 4, 24

M

Memory allocation 39
Function 39

Module 4,5, 125
Exclusion of module linking 19, 52
Linkage 4,7,17,18, 19
Name 47,107, 137
Name length 107, 183
Name specification 17, 48
Number of modules 107, 183
Specification 81

Multilinkage function 4, 27

N

Name 40, 137
NOAUTOPAGE 59
NODEBUG 66
NOECHO 71
NOEXCLUDE 52

NOLIBRARY 50
Non-pagetype 5, 17, 47, 50, 54, 59, 79
Non-referenced import symbol 52

Module containing non-referenced import

symbol 19
NOOUTPUT 49
NOPRINT 51
Normal completion message 93, 175
NOUDF 72

O
Object
Format conversion 193
Module 3, 4,17, 18, 125
Modulefile 3, 81, 167
Object converter
Error message 196, 197
Execution 193

Input filename 193
Output file name 193
Start-up command 193
Opening message 93, 175
Option 39, 42, 137, 141
Defaults 46
Format 40, 137
Name 34, 132
Negative form 45
Range of validity 46
Structure 40, 137
OUTPUT 49, 146
Output file specification 49
Output load module file format specification
65

P

Pagetype 5,17, 47, 50, 54, 59, 78
Linkage 13, 14, 15, 16

Parameter 40, 137

PRINT 51,83

R

Re-input function 4

Relative address 13, 22

Relocatable 6
Format 7,13, 49, 65
Load module 4,17, 47
Load modulefile 81, 167

Relocation information 4
RENAME 29, 75, 159
RENAME/DELETE list 83, 91
REPLACE 154

Replacement 129, 154
Restrictions 107, 183

Return code 38, 136

ROM 62

S
SDEBUG 67
Section 5
Attribute 5, 8,9
Grouping 7
Linkage 7,8, 10, 11, 12
Linkage order 9, 13,54
Name 5, 107
Namelist 172
Number of sections 107
Start address specification 54
Simplelinkage 8, 86
Simulator/debugger 4, 30
SLIST 165
START 10,54
Start-up command 34, 132, 193
Store 151
S-type object format 193
Subcommand 35, 39, 42, 111, 141
Comment specification 41, 139
Continuation prompt 93
Continuation specification 41, 175
End of input 68, 161
Execution 4, 33, 35, 134
File 35, 37, 64, 149
File execution 37, 135
File specification 64
Format 40, 137
Negative form 44
Request prompt 93, 175
Structure 40
SUBCOMMAND 35, 37, 64, 149
Support of storing program in ROM 30, 62
Symbol
Number of symbols 107, 183
Symbol name 107
Length 183
System library file 17, 50, 146, 150

HITACHI 189

U
UDF 24,72
UDFCHECK 73
Undefined symbol
Display specification 72
Unit 5,7,75
Automatic exchange 25
Deletion 77
Forced exchange (replace) 27, 63
Name 75, 107
Name change 29
Name deletion 29
Number of units 107
Unresolved import symbol 17
Unresolved import symbol list 83, 89
Updating date 170
User library file 17, 50, 146, 150

w

Warning 95, 177

Warning message 8, 12, 72, 96, 97, 98, 178
Warning 108 message 98

190 HITACHI

EGA

1. User’s Manual Supplement

Linkage Editor

This section overviews the functions added in the H series linkage editor version 6.0. Table 1.1 lists the added
functions.

Functions Added in the Linkage Editor Version 6.0

Options/Subcommands,

Environment Variables Functions
Object format ELF*1 Outputs ELF/DWAREF object format
(ELF/DWAREF)
SYSROF Outputs SYSROF object format (compatible
with the former object format)
SYSROFPLUS Outputs SYSROF/ DWAREF object format
Function extension of the START | START Allocates multiple sections to the same
option/subcommand address
Symbol address output FSYMBOL Outputs resolved externally defined symbol
(export symbol) to a file
Specification for temporary file HLNK_TMP Specifies the directory of the output
directory temporary file
Others ENTRY Outputs the warning message 125 at
invalidation

HSL-207

User’s Manual Supplement

Object Format
ELF/DWAREF can be specified as the object/ debugging information format.
Specifications

The output object format can be specified using the options/subcommands listed in table 1.2.

Options/Subcommands for Each Object Format

Options/Subcommands Object Formats

ELF ELF/DWARF
SYSROF SYSROF (compatible with the former object format)
SYSROFPLUS SYSROF/DWARF

When the specification of object format is omitted, SYSROF object file is output. Five types of object formats can be
specified in combination with ELE, SYSROF, or SYSROFPLUS option/subcommand and the debugging information
output options/subcommands (DEBUG/SDEBUG). Specify according to the debugger to be used.

Options/subcommands for Each Debugger

Option/Subcommand

Usable Debugger Object Formats Debugging Information to
be Output

Debugger that supports ELF/ DWARF ELF*1 DEBUG

Hitachi integrated development manager V.4 + E8000 | ELF*1 SDEBUG

Hitachi integrated development manager V.4 + E7000 | SYSROFPLUS*1 SDEBUG

Hitachi integrated development manager V.3 + E7000 | SYSROF SDEBUG

Hitachi debugging interface V.2 + E6000 SYSROF DEBUG

Note: To specify the ELF or the SYSROFPLUS option and the debugging information output specification

(DEBUG/SDEBUG) at the same time, use the following compiler or assembler.
SuperH RISC engine C/C++ compiler version 5.0 or later

SuperH RISC engine cross assembler version 4.0 or later

H8S, H8/300 series C/C++ compiler version 3.0 or later

HS8S, H8/300 series cross assembler version 3.0 or later

The object program and library generated with the compiler or assembler that supports the ELF or SYSROFPLUS
object format, and those that are generated with the former version of the compiler or assembler can be linked.
Note, however, that when the ELF or SYSROFPLUS option is specified at linkage, the debugging information on the
object program and library generated with the former version of the compiler or assembler is deleted.

HSL-208

1. User’s Manual Supplement

ELF Option

To output the ELF/ DWARF object format, specify the ELF option. When Hitachi Integrated Development Manager
is used, specify the SDEBUG option at linkage.

Exanpl e:

shc testl.c - debug

shc test2.c - debug

asnsh test3.src - debug

I nk testl, test2,test3 -elf - debug

SYSROF Option

To output the SYSROF object format, specify the SYSROF option.

Exanpl e:

shc testl.c - debug

shc test2.c - debug

asnsh test3.src - debug

I nk testl, test2,test3 -sysrof - debug

SYSROFPLUS Option

To output the SYSROF / DWAREF object format, specify the SYSROFPLUS option. Specify the SDEBUG option as the
debugging information output option.

Exanpl e:

shc testl.c - debug

shc test2.c - debug

asnsh test3.src - debug

I nk testl, test2,test3 - sysrof pl us - sdebug

HSL-209

User’s Manual Supplement

Function Extension of the START Option/Subcommand
Multiple sections can be allocated to the same address.
Specification

To allocate multiple sections to the same address, specify the START option/subcommand and specify by
delimiting the sections that are allocated to the same address with a colon (:).

ot i on:
MB- DOS version: - START=<section>[, <section>.][:<section>[, <section>.].](<start address>)
UN X version: -START=<section>[, <section>.][:<section>[,<section>.].]/<start address>
Subconmmand:
START <section>[, <section>.][:<section>[,<section>.].](<start address>)

Note: Note: Underline indicates the shortest abbreviation to be input.

Restrictions on Use

1) Multiple sections cannot be allocated to the same address when the page-type module (H8/500 series)
is used.

2) When multiple sections are allocated to the same address, the symbol cannot be referenced from
different sections. (RAM_sct2 symbol cannot be referenced from RAM_sctl in figure 1.1.)

Examples

Using this function, multiple programs / data that do not exist at the same time can be transferred from the external
ROM to the high-speed internal RAM and the programs can be executed.

Allocation of Multiple Sections to the Same Address

ROM RAM RAM
H'800000 . . H'FO0000
Sct1 Copies at execution) RAM_ sct1 > oA oo
File A [
Set2 > RAM_sct3 > RAM_ sctd
Sct3 // /
File B /
Sct4 .
H'FFFFFF
State 1 State 2
H'8FFFFF

HSL-210

1. User’s Manual Supplement

Conmand speci fi cati on:
| nk - subcommand=t est . sub

Contents of test. sub:

INPUT A B

ROM (Sctl, RAM sct 1), (Sct 3, RAM sct 3)

ROM (Sct2, RAM sct 2), (Sct 4, RAM sct 4)

START Sctl, Sct 2, Sct 3, Sct4 (800000)

START RAMsctl, RAMsct3: RAMsct2, RAMsct4 (0F00000)

Descri pti on:

RAM sct1 and RAM sct2 are allocated starting fromthe sane address. RAM sct 3 and RAM sct 4
are allocated linked with RAM sct1 and RAM sct2, respectively.

Symbol Address Output

This function outputs the externally defined symbols that are resolved by the linkage editor, in the assembler
directive format to a file. The address of the external reference symbols can be resolved by assembling and linking
the output file without linking the object program including the symbol definition.

Specification

To output a symbol address, specify the sections including the externally defined symbol with the FSYMBOL
option/subcommand.

pti on:
- FSYMBOL=<sect i on>[, <secti on>.]
Subcomand:
FSYMBCL <section>[, <section>.]
Note: Note: Underline indicates the shortest abbreviation to be input.
Description

Using the above option/subcommand, the externally defined symbol resolved by the linkage editor can be output
to a file in the assembler directive format. The output file name is the load module name with file extension .fsy
added to it.

Restrictions on Use

1) When the output load module is in the relocatable format, this option/subcommand cannot be used.

2) If the externally defined symbol exceeds 238 characters, the warning message 126 is displayed, and
characters after the 238th character will be invalidated.

3) If the specified section does not exist, the warning message 127 is displayed, and processing continues.
When all of the specified sections do not exist, the file is not output.

Examples

Using this function, the address of a symbol in the common ROM can be resolved and the common ROM can be
appropriated. This example modifies the function A of product A to function B and develops product B.

HSL-211

User’s Manual Supplement

Symbol Address Output Example

ROM1

Function A

ROM2

Common
functions

ROM3

Common
data

P

The externally defined symbols in sct2 and sct3 are output to a file.

roduct A

Exanpl e of external ly defined synbol
I nk ROML, ROMR, ROVB

)

Externally >

defined
symbol

FUNCA fsy

Assembler

Linkage
editor

{ Converter

- out put =FUNCA

Exanpl e of file FUNCA fsy output:
; H SERES LI NKAGE ED TOR GENERATED FI LE 1997. 10. 10

; T synbol

= sct2,sct3

; SECTI ON NAME = sctl

.export synil

syni: h’ OOFF0080
.export syn®

syng: h’ 0OOFF0100

; SECTION NAME = sct2
.export syn8

syn8: h’ 00OFF0180

.end

Exanpl e of assenbly and rel i nkage:

asnsh ROw

asnsh FUNCA f sy

| nk

ROV, FUNCA

»ROM4 | Function B
ROM2 Com_mon
functions
Common
ROM3 data
Product B

file output specification:
-fsynbol =sct 2, sct 3

Common ROM

The ROM4 externally defined symbols can be resolved without linking the object file for ROM2 and ROM3.

Note:

Symbols in function A cannot be referenced from the common functions when using this function.

HSL-212

1. User’s Manual Supplement

Specification for Temporary File Directory

The directory to which the temporary file is output can be specified using the environment variable HLNK_TMP.

Ms-DCS version: set H.NK TMP=<di rect ory>
UN X version: setenv HLNK TMP<di r ect ory>

Specification Maodification
ENTRY Option

If the output load module is in relocatable format and the execution start address (entry point) is a constant value,
the warning message 125 is displayed, and the specification is invalidated.

Linkage List

The linkage list output format has been modified from 132 columns /line to 80 columns/line.

Extension of Limitation of Input Files

Input files that can be handled at one linkage processing by the linkage editor is extended from 256 files to 65535
files.

Error Messages

The error messages added in the version 6.0 are listed in table below.

Error Messages

Code | Error Message

125 CANNOT SET ENTRY POINT

The relocatable format is specified as the output load module, and the external reference symbol of a
constant is specified as the execution start address.

Specify the absolute format for the output load module, or omit the execution start address
specification.

126 TOO LONG CHARACTER NUMBER(FSYMBOL)

The number of characters for a symbol within the section specified with the FSYMBOL option/
subcommand exceeds 238 characters.

Specify 238 characters or less for the symbol name.

127 EXTERNAL SYMBOL 0O(<section>)

The externally defined symbol does not exist within the specified section.

Check the section name.

HSL-213

User’s Manual Supplement

Code | Error Message

128 ILLEGAL SYMBOL REFERENCE(<symbol>)

A symbol reference was attempted between the sections allocated to the same address.

Change the program so that symbol is not referenced from the section allocated to the same address.

333 CANNOT OPEN INTERNAL FILE

A temporary file cannot be opened.

Check the directory specified with the environment variable HLNK_TMP. If the directory is correct, the
disk space is insufficient, or a hardware error may have occurred. Check and re-execute.

334 CANNOT CLOSE INTERNAL FILE

A temporary file cannot be closed.

Check the directory specified with the environment variable HLNK_TMP. If the directory is correct, the
disk space is insufficient, or a hardware error may have occurred. Check and re-execute.

335 CANNOT DELETE INTERNAL FILE

The temporary file cannot be deleted.

Check the directory specified with the environment variable HLNK_TMP. If the directory is correct, the
disk space is insufficient, or a hardware error may have occurred. Check and re-execute.

336 CANNOT OUTPUT INTERNAL FILE

The temporary file cannot be output.

Check the directory specified with the environment variable HLNK_TMP. If the directory is correct, the
disk space is insufficient, or a hardware error may have occurred. Check and re-execute.

337 CANNOT READ INTERNAL FILE

The temporary file cannot be read.

Check the directory specified with the environment variable HLNK_TMP. If the directory is correct, the
disk space is insufficient, or a hardware error may have occurred. Check and re-execute.

338 DUPLICATE START ADDRESS SPECIFIED IN PAGE TYPE

An attempt was made to allocate multiple sections at the same address when the page-type file is input.

Multiple sections cannot be allocated at the same address when the page-type file is input.

HSL-214

1. User’s Manual Supplement

Librarian

Object Format

When ELF/DWARF or SYSROF/DWAREF is used as the object format, the H Series Librarian Version 2.0 or later
must be used. For a description of the object format and the compiler and the assembler that supports ELF/
DWAREF or SYSROF/DWARE, refer to section 1.1, Object Format.

Object Converter

This section overviews the functions added in the H Series Object Converter Version 2.0. Table 3.1 lists the added
functions.

Functions Added in the Object Converter Version 2.0

Functions Option Description

Object format — Supports ELF/DWAREF object format

Divided output of converted files — Outputs files divided into arbitrary address ranges
Unification of output record RECORD Outputs a certain data record (S1, S2, S3)

Output of S9 record 59 Outputs an S9 record as the end record

Object Format

When the ELF option/subcommand is specified with the linkage editor, use the H Series Converter Version 2.0
or later.

Divided Output of Converted Files

An object program converted to an S-type format can be divided into the arbitrary address ranges and output
to files.

Specification

To divide and output the converted file, specify the input file name, output file name, the address range, the output
file name, and the address range. Then,delimit the first address range and the output file name with a space.

Not to divide the converted file:
cnvs <input file> [<output file>]

To divide the converted fil e:

cnvs <input file> <output file>=<start address>, <end address>[D<out put file>=<start
addr ess>, <end addr ess>.]

HSL-215

User’s Manual Supplement

Description

1) When the start address and the end address are specified after the output file, the object program within
the specified range is converted to the S-type object program.

2) The start address and the end address must be specified in hexadecimal.

3) To specify the page-type format, enter the page address, the start address, the page address, and the end
address, in that order, and delimit the page address and the start and end addresses with a colon (:).

Restrictions on Use

1) When a negative value is specified for the start address or the end address, or when the end address is
smaller than the start address, the error message 311 is displayed.

2) When the object program does not exist in the specified range, the warning message 101 is displayed.

Examples

None- page type (HBS series, HB/ 300 series, SuperH R SC engine):
cnvs test.abs testl. not=0, FFFF test2. not=10000, 1FFFF

Page type (HB/500 series):
cnvs test.abs testl.not=0:0,0: FFFF test2. mot=1:0, 1: FFFF

Added Options

The following options have been added in the H Series Object Converter Version 2.0.

1) RECORD option
2) S9 option

Command Format

Wien specifying an option, the conmand format is as foll ows:
cnvs <input file> D<output file> D<output file>.]][[D -<option>.]

RECORD Option

The RECORD option outputs data records in a certain record format (S1, S2, or S3) regardless of the load address.
If a load address larger than the specified record exists, the error message 310 is displayed and processing is
terminated.

Exanpl e:
To output all the data records in the S2 format:
cnvs test.abs test.mot -record=s2

HSL-216

1. User’s Manual Supplement

S9 Option

Some ROM programmers can be used only when the end record is in the S9 format. Even when the entry address
exceeds H'10000 and the S9 option is used, the S9 record is output at the end. At this time, the entry address of the
59 record is H'0.

Exanpl e:
To output the S9 record at the end:
cnvs test.abs test.nmot -s9

Supplement: For details on the S object format, refer to the section describing the object converter in the H Series
Linkage Editor, Librarian, Object Converter User’s Manual.

Error Messages

The error messages added in the version 2.0 are listed in table 3.2.

Error Messages

Code Error Message

101 NO OBJECT IN SPECIFIED ADDRESS RANGE

The object program does not exist in the specified address range.

Check the start and end addresses.

310 LOAD ADDRESS OVERFLOW

The load address exceeds the data record specified with the RECORD option.

Change the data record specified with the RECORD option, or omit the RECORD option.

311 ILLEGAL ADDRESS RANGE SPECIFIED

The specified start address or the end address is not correct.

Respecify the start or end address.

HSL-217

User’s Manual Supplement

HSL-218

	H_E_USER.PDF
	Preface
	Contents
	 Part I Linkage Editor Guide
	Section 1 Overview
	1.1 Linkage Editor Functions
	1.2 Object Module and Load Module
	1.3 Unit and Section

	Section 2 Linkage Editor Functions
	2.1 Module Linkage
	2.2 Address Resolution
	2.3 Load Module File Re-Input
	2.4 Multilinkage
	2.5 Debugging Support
	2.6 Address Check
	2.7 Support for Storing Program in ROM

	Section 3 Executing the Linkage Editor
	3.1 Command Line Format
	3.2 Executing by Command Line
	3.3 Controlling by Subcommands
	3.4 Terminating the Linkage Editor

	Section 4 Linkage Editor Options and Subcommands
	4.1 Option and Subcommand Formats
	4.2 List of Options and Subcommands
	4.3 File Control
	4.4 Memory Allocation
	4.5 Execution Control
	4.6 Debugging Support

	Section 5 Input to the Linkage Editor
	5.1 Object Module Files
	5.2 Relocatable Load Module Files
	5.3 Library Files
	5.4 Default Library Files

	Section 6 Output from the Linkage Editor
	6.1 Linkage Lists
	6.2 Load Module File
	6.3 Console Messages

	Section 7 Error Messages
	Section 8 Restrictions
	Appendix A Example of Use of Linkage Editor
	Appendix B File Name Specifications

	Part II Librarian Guide
	Section 1 Overview
	Section 2 Librarian Functions
	2.1 Creating Library Files
	2.2 Editing Existing Library Files
	2.3 Extracting Modules from a Library File
	2.4 Displaying the Contents of a Library File

	Section 3 Executing the Librarian
	3.1 Command Line Format
	3.2 Executing by Command Line
	3.3 Executing by Subcommands
	3.4 Terminating Librarian Operations

	Section 4 Librarian Options and Subcommands
	4.1 Option and Subcommand Formats
	4.2 List of Options and Subcommands
	4.3 File Control
	4.4 Execution Control
	4.5 List Display

	Section 5 Input to the Librarian
	5.1 Object Module Files
	5.2 Relocatable Load Module Files
	5.3 Library Files

	Section 6 Output from the Librarian
	6.1 Library Files
	6.2 Librarian Lists
	6.3 Section Name Lists
	6.4 Console Messages

	Section 7 Error Messages
	Section 8 Restrictions
	Appendix A Examples of Librarian Usage
	A.1 Librarian Execution by Command Line
	A.2 Librarian Execution by Subcommands

	Appendix B Note on Librarian Usage in MS-DOS System

	Part III Object Converter Guide
	Section 1 Object Format Conversion
	1.1 Executing the Object Format Conversion
	1.2 Error Messages

	Index

