Sega@ Dreamcast.

Dreamcast (VMU)
Visual Memory Unit

Sega@'Dreamcast

Table of Contents

Dreamcast VMU SpPecCifiCations ... ssssssssssssssssss s sssssssssssssssessssesssssssssssssssesssssanes i
VMU SPECITICALIONS ... sess s s s s e s sss e s s e s s sns s s sssssssesssssanes VMU-1
OVEIVIEW covrrciriniiisinssssssisiss VMU-1
VIMU OVEIVIEW ...ttt bbb VMU-1
VMU CONFIGUIATION .. VMU-3
VMU FUNCHONS ..coviiiiiiiiiiiiiniii bbb s VMU-6
Mode Settings VMU-8
File Management VMU-9
Management ATEAcccuiuiuiiiiiiiteictctctttt s VMU-10
DAt AT@A ...oviiiiiiicic s VMU-11
RESEIVEA ATEQA ..ot VMU-11
LCD Display VMU-11
XRAM o VMU-11
SCIEEN IMOME ...t e VMU-11
JOOMIS e VMU-12
Screen CONFIGUIALIONccoeuiuiiiuiiiiiicccce e VMU-12
LCD CRATACLETISHICS ..vvevueneerierriincieietrineaeietetsieeeuetetstscsetessasestaetessesescsesessesesesessesestaesesssseassesessentacsesssensacsens VMU-12
MISCEILANEOUSeouvrriiiieieiitrietect ettt ettt ettt s seas VMU-13
Executable File Initiation VMU-13
Downloading an Executable File ..o VMU-13
FHLE SHZE . VMU-13
SUDTOULINE ... VMU-14
INEEITUPES ettt VMU-14
RAM ot s VMU-14
Save Processing During Executable File Operationscccccviiinnniiiinniiciincccccneeaes VMU-14
AULO POWET Off ..ot VMU-14

AUD-iii

The Dreamcast Audio 64 API

Communications FUNCHOMN ...ttt ss e ssssssessanes VMU-15
Maple Bus ProtOCol ...t VMU-15
Synchronous Serial COMMUNICALIONSc.rviviuiuiiiiiiieinicic s VMU-15
Clock Function VMU-15
SEHNGS ettt VMU-15
Alarm Function VMU-16
SLEEP Function VMU-16
SLEEP OPerationccciviiiiiiiiiiiiiiiiiicicinn s s s en s s s n s VMU-16
Buttons VMU-16
Batteries VMU-17
BatteTy Life ..ovommiieieiceeeee e e VMU-17
Processing When Battery Power Is Exhaustedccccccoovriiniiciiiniccccce s VMU-17
Battery Replacementcccccciiiiiiiiiiiiiiicc e VMU-17
POSESCIIPL wvveriririrererirititeteteenicceeeeeeeeeeesssssesesesesssessse bbb sassess b b bsassssessbsssssssssssbsssssssssssssssssasssssans VMU-18
Visual Memory Unit (VMU) Hardware Manualcoerreerrercserercsereressssesesasenenns VMU-i
LI T T VMD-1
General VMD-1
FRALUTIS «.viviviii s VMD-1
System Block DIa@ramc.ouiiiiiiiiic s VMD-5
2. Internal System Configuration ... n e VMD—7
Memory Space VMD—7
Program Counter (PC) ...ttt ss s ssesssesssesenens VMD—38
Internal Program ROM VMD—10
Internal Data MEMOTY ...t sssessssssssssssssssesssnsssseseses ..VMD—10
Flash Memory VMD—15
ACCUMULALOT .t s e e VMD—16
B Register, C Register VMD—16
Program Status Word VMD—17
Stack Pointer VMD—19
The Table Reference Register (TRR) VMD—20
CHANGE Instruction VMD-—-21

AUD-iv

3. Peripheral System Configuration ... sssse s sssanes VMD—23

Input/Output Ports VMD—23
POTt T oot VMD—25
POTE 3 oo VMD—31
POTE 7 o VMD—34

Timer/Counter 0 (T0) VMD—35

Timer 1 (T1) VMD—51

Base Timer . VMD—67

Serial Interface ... VMD—73

Dot Matrix LCD Controller/Driver VMD—9%

External Interrupt Function VMD—102

Port Interrupt Functions VMD—109

VMU Work RAM VMD-115

Flash EEPROM VMD-118

4. Control FUNCHIONS ..o R VMD-121

INtErTUPt FUNCHON .ocviueritiriitiintitniiiniiiiiiiiiiiisisssissssissssssssssessssessssesssssssssassssssssssssssssssssses VMD-121
Types Of INtEITUPLS ...cuviieieiei et VMD-122
Interrupt Function OPeration ... s VMD-123
Circuit CONFIGUIATION. ...c.uiuiuiiiiiiiiiiicccccecee e e e VMD-124
Related REZISLEIScoviieciiic s VMD-124
Interrupt Priority RaNKIiNg ... VMD-127

System Clock Generation Function VMD-129
OVEIVIEW .ttt bbb bbb bbb aen VMD-129
FUNCHONS oot ne e s s VMD-129
Circuit CONfIGUIAtIONc.iviviiiiiiiiiiiiiccic s VMD-130
Related REGISLETScouiiuiiiiiicieict s VMD-132
System Clock Operation MOAEccciiiiiiiiiiiicicceeee e VMD-135

StANADY FUNCHION ...ttt ssssaessssssassesssensasssssessasssneans VMD-137
OVEIVIEBW ottt bbb s bbbt enn VMD-137
4.3.2. Related REGISTETSccovvvveeieeireieececreee et VMD-137
Operating Statuses When in Standbyc.ccoviiiiiiiiiicc e VMD-138
HALT MOGE ...oviiiieciieictte ettt ae s VMD-139
HOLD MOGE ...t s s VMD-140

Reset Function VMD-141
OVEIVIEBW ottt VMD-141
FUNCHON L. VMD-141
Hardware Status During @ Reset ..o s VMD-141

AUD-v

The Dreamcast Audio 64 API

5. INSTIUCHIONS oo bbb bR VMD-145

Instruction Overview VMD-145
Arithmetic Operation INSIIUCHONSc.cccueviuiiieiiieiiicitieieei ettt eans VMD-146
Logical Operation INStIUCHONSc.c.ccucuiuiiiiiiiiiiiicccccccceceece e VMD-147
Data Transfer INSTrUCHONSccciiiiiiiiiiiiic e VMD-147
JUMP INSEIUCHONS . s VMD-147
Conditional Branching INStrUCHONSc..c.cvveuriueunieiieieieiceeecieieeenneeetreeesseiessesesseaessesessese s eseseescsesseaenncs VMD-147
Subroutine INSIrUCHONS ..o VMD-147
Bit Manipulation INSIUCHONSc.ciuiuimiiiiiiiiiiiiccccccc e VMD-147
MiSCEllaNEOUS INSEIUCHON ...voviieuiieiirieiieieirie ettt ettt ettt te st e be st ebe e ebesaesesesestenessenens VMD-147
Macro INSTIUCHIONvcuiiiiiiiiiiiiiii e VMD-148
AAAIESSING ... VMD-148
Program Memory (ROM) AAAIESSINGccveueuerririeuererreniiiereirineerersesisesesesseseesiesseseseaesessesesssessasescessens VMD-148
Data Memory (RAM) and Special Function Register (SFR) Addressingcc.ccocoeuvvuveunininircune. VMD-150

Arithmetic Operation Instructions VMD-153

Logical Operation Instructions VMD-171

Data Transfer Instructions VMD-184

Jump Instructions VMD-195

Conditional Branching Instructions VMD-199

Subroutine Instructions VMD-212

Bit Manipulation INSEIUCIONScuiiviineiinniinnieniinieniinnininesisiesssesssesssssssssssssssssssssses VMD-217

Miscellaneous Instruction VMD-220

Macro Instruction VMD-220

Visual Memory Unit (VMU) Programing Manualccverrcsesercsesescesseeans VMC-i

1. Environment Variables ... sssassans VMC-1

Environment Variables for the L86K Series VMC-1
Setting the Environment Variables (MS-DOS VEISION)cceceuruiurireurieueeneierseeenseeessesensesessssesesenensens VMC-2
Setting the Environment Variables (UNIX VEISION)c..cccovcureuereieieeemereeneierneeerneeesseaesnesessesessesessesens VMC-2

2. File Specification for the Assembler ... ——————— VMC-3

File Name SpecifiCation ... VMC-3
MS-DOS Version File SpecifiCationoceeeiiiciiiniicciecee e VMC-3
UNIX Version File SPecifiCationcccccciiiiiiiiiiiiccccceeceeeeeeee e VMC—H4

Specifying Parameters through the Command Line VMC -4

Specifying Parameters in Response to Prompts ... VMC-5

3. Assembler Option SPeCIfiCation ... s VMC-7

Specification for Upper- & Lower-case Letters in Identifiers VMC-7

Specification for Outputting Debugging Information VMC-7

Specification for Not Optimizing Branching Instructions VMC-8

Specification for Suppressing the Copyright Notice VMC-8

AUD-vi

Reserved Word File Specification . VMC-8

Work Buffer Size Specification VMC-9

Option List Display . VMC-9

4. Environment Variables and the Reserved Word File ... VMC-11

Environment Variables VMC-11

Setting the Environment Variables (MS-DOS VEISION)c.cccceuueuniueuniueinieeiieciniensiessieseneseseseneses VMC-12
Setting the Environment Variables (UNIX VEISION)coccceemnieierrmrericremnenecierennieeeresseseeseesensescecsenees VMC-12

Reserved Word File VMC-12

5. Source File Input FOrmat ... s VMC-13

Statements ... VMC-13

Label Names and Symbol NAmeSieicininniiiintcceisscnnsscscisssescssssssssssssssssssssessssssssnns VMC-14

Comments VMC-14

OPETALOTS .oceeerireiireiiteniiiniiinteinteissesissestssestssessssess st essssesissestssestssestssessssessssessssssssssssessssssssessssessssessane VMC-15

Numeric constants VMC-16

Character Constants VMC-17

Character String Constant VMC-18

Special Symbols VMC-18

I 4 (1] £ PPN VMC-19

Warnings ... VMC-20

Errors VMC-22

FAtal EXTOTS ...cocuevrernrienenenieiencsassnsenssnssnssnsssssnssssssssssssossossssssssonsonsssssssnssnssssssssssssossossssssssossassansnsnsenses VMC-27

7. PSeUdo INSIIUCLIONS ...t sa s s s s s a s a s ann s nnns VMC-31

ORG (SPeCIfy Origin)coiiiiiiciiiecccr e e e VMC-33
ORG EXPIESSION ...ttt VMC-33

WORLD (Select ROM for code storage)cccooiviiiiriiieeeccciin e eeeees VMC-34
WORLD SEIECHON ...evveeveiieiieiieieiteeeeeee ettt sie ettt se e e esessessessessessessensessansensensensessenessensenses VMC-34

CSEG (Declare start of code segment)ccoovviiiiiiiiiiiiiiiccccccccecee e VMC-34
CSEG IMOAE ..ttt ettt ettt et sat et b ettt s ebessss s esessss st ebesssessebesesnasesesesnneans VMC-34

DSEG (Declare start of data segment)ccccccmmeemeeiememmeeeeeeeeeeeeeee e VMC-35
DESG ..ottt ettt ettt bbbt b ettt b et s bbb e s st b b e seas et betese s b teseas s sesens VMC-35

END (ENd Program) ... eerrresssss s e e s s s e s s s e s e e s e e nnna e s s s neeenes VMC-36
END oottt ettt ettt ettt et et te et te et e te et ets et eas et eas et e s et et ete st ete st ete s ete s ere s eretens VMC-36

PUBLIC (Specify external definition name) ... VMC-37
PUBLIC symbol {, SYMDOL}c.cucuiuiiiiiiiieiiiiiceieieieeicceieeeeieteee et ne s senenens VMC-37

EXTERN (Specify external reference name)ooooorrieecciiiiiiiccsssseessce e VMC-38
EXTERN [segmanet:[symbol {,[segment:]Symbol}ccccceurreieremrnicereniecrerrerieerereeeenes VMC-38

OTHER_SIDE_SYMBOL (Declare CHANGE instruction jump label) VMC-38
OTHER SIDE SYMBOL label {,]abel}ccccoeveirieirieirieieieieteiereeeteietesee ettt veseenens VMC-38

AUD-vii

The Dreamcast Audio 64 API

EQU (ASSIGN VAIUER)cooieeeeiiiii ettt s e s e s e e e e e e e nn s VMC-39
symbolname EQU eXPIeSSION ... VMC-39
SET (Assign temporary Value)cccecoiiiiieeiiiiiicecs s s s s e s e s s s e snnsesseees VMC-40
symbolname SET @XPIeSSION ...t VMC—40
DB (Define byte data) ... VMC-41
labelname DB expression {,eXPpreSSion] ... eneenenes VMCH41
DW (Define word data) ... VMC-42
labelname DW expression {,eXPresSSion] ... s VMC—42
DC (Define character string data)ccoee oo, VMC-43
labelname DC “String”cccoceiiiiiiiiiiiiiiii e VMC-43
DS (Define byte area)ccceoiiiiiiiiiieeccc e VMC-44
labelname DS absolute_eXPIeSSIONccoceieiiiiiieiiiicieie et VMC—44
MACRO (Define MAacCrO)coooveiiiieieeeee s VMC-45
name MACRO parameter {, parameter} ... VMC—45
10820 W1 =T o T= = Q0 T T o) PP VMC-47
REPT COUNE ettt ettt sttt ettt et et et e at e st eseebeebesbesbenbenbenbens VMC-47
IRP (CONTINUOUS MACKO) ..o VMC-48
IRP parameter, argument {,argument J...cccccccoeeiiiiiiiiiiicceeeeeeeeeeee e VMC—48
IRPC (Character string mMacro)oceeciiiiiiiiiciccccc e e VMC-49
IRPC parameter, SNcccccouviviiiiiiiiiiiic e VMC—49
ENDM (End macro definition) ... VMC-50
ENDM ..ot s s s VMC-50
EXITM (Interrupt macro eXpansion)ccccciieeeieinininnrerrresss e rennssanes VMC-51
EXITM coooooveoeeoseesssssss st VMC-51
LOCAL (Define local label)ooooeeeiiiiiiii s VMC-52
LOCAL NAME {, NMAMIE} ..oeiviieiietie ettt ettt ettt eteeete e s veeeteeeaaeeteeeaseebeeeaseenseeseseessenseeen VMC-52
IFDEF (Assemble if defined)cccoovviiiii VMC-54
TFDEF SYIMDOL ...cooivoiiieniveaeiisesiesssesssssssssss s sss s ssssessss st sss st sss s sssss st VMC-54
IFNDEF (Assemble if undefined) ... VMC-55
TEINDEF SYIMDOL ...ttt e VMC-55
IFB (Assemble if operand is empty) ... ———— VMC-56
IFB <argument> ... VMC-56
IFNB (Assemble if operand is not empty)cccooeeeiieiiii VMC-57
TFINB <arguments>ccccccoiiiiiiiiiiiiiiiiiic st VMC-57
IFE (Assemble if value of expression is "0")cccccciiiiii VMC-58
IFE @XPIESSION 1.evtititititetetetetetete ittt ettt bbbttt ettt bbbt bbbttt VMC-58
IFNE (Assemble if value of expression is not "0")cccceiiiiecccciireereeeee, VMC-59
IFNE @XPIESSION] ...couiuiiiiiiiiiiiiiiiiiiciici i VMC-59
IFIDN (Assemble if two character strings are identical)cooeeeiiiiiiiennn. VMC-60
IFIDN <String1>, <StNE2>c.ccciiiiiiiiiiiiiici e VMC-60
IFDIF (Assemble if two character strings are not identical)ccceeee. VMC-61
IFDIF <string1>, <StIINE2>cciviiiiiiiiiiiiciicc e VMC-61
ELSE (Assemble in case of condition opposite of the above IF condition) VMC-61
ELSE ettt et ettt ettt ettt e a e st bbb e n e bentens VMC-61

AUD-viii

ENDIF (End conditional assembly) ... VMC-61

EINDIF ..ooovooiviisiassiesssssesesssssss sttt sssessss s ss st VMC-61
PRINTX (Display on VDT during assembly) ... VMC-62
PRINTX “SEING” cvvvvvvreveariesrissesessssssssssseessssssssassssssssssssesssssssssessssssssssssssessssessssssssssssssssssnsses VMC-62
LIST (OULPUL TIST) ceeeeeei st s e e e s e s e e e e e e e nnnnn e e e e e e enes VMC-63
LIST oottt VMC-63
XLIST (Interrupt list OUtPUL)ccoeeeeee e VMC-64
XLIST ettt eese st s VMC-64
MACRO (Output Mmacro eXpanSsion)cceceeiiiiieiceiceceeeeeeeee e VMC-64
MACRO ..ooooeeeveeeeie e VMC-64
XMACRO (Interrupt macro expansion output)ccccrmreeiiiiiiiier e, VMC-64
XMAGCRO ..ooooooeveiees et VMC-64
IF (Output conditional SKip)cccceuuuiiiiiiircc e VMC-65
TF oottt sttt VMC-65
XIF (Interrupt conditional skip output) ... VMC-66
XTF oottt VMC-66
0Nl 91810 B { B0 Y- Yo I8 {1 - PP VMC-66
INCLUDE fIlENAIME ...cuvevveeieeieeieeieiieieietistestestesieseaestessesaeseesessessassessessessessessessessessessessessessesessanses VMC-66
TITLE (Specify list title)coovememeeie e VMC-67
TITLE SENE «ovovieiiiiiciiiiciciccc s VMC-67
PAGE (ENd Of PAQ@)uueei s s s s s s s s s s s s s s nnnnnnnnnnnnnnnns VMC-68
PAGE .ooooovoeooe v VMC-68
cHIP (Define chip that is target of assembly)cccoovriiiiiiiiiiiiiee, VMC-69
CHIP ChiPNamecucuiiiiiciiiic s VMC-69
COMMENT (Output comments to object file) ..., VMC-69
COMMENT commMEeNt_StIINEG ...coviviviviriiiriiiiiiiiitiic s VMC-69
WIDTH (Specify number of columns in listfile)cccccuneeiiiiiiicceees VMC-70
WIDTH NUIMNDET ..ottt ettt ettt et tesse e s e sseesaesreessesseessesssesseessassesssenseensenseenes VMC-70
BANK (Specify RAM area bank) ... VMC-71
BANK @XPIeSSION ...ovviiiiiiiiiiiiiiiinci s s VMC-71
CHANGE (Jump between external and internal ROM) ..., VMC-72
CHANGE SYMDBOL ...t VMC-72
RADIX (Specify default base) ... VMC-72
RADIX @XPISSION ...vvivivititititeteteteietetetete ittt VMC-72
JMPO (Generate optimal JIVIP inStruction)ccoo i VMC-73
JMPO @XPIESSIONoeviiiiiiciei ettt VMC-73
BRO (Generate optimal BR instruction)c.ccoiiiiiiiiiiicc e, VMC-74
BRO @XPIESSION ..ottt VMC-74
CALLO (Generate optimal CAL instruction) ..., VMC-75
CALLO @XPIESSIONviuiiiiiiiiiiiiciiiic st VMC-75
BzO (Generate BZ instruction that will not generate an address error) VMC-75
BZO @XPIeSSIONcviiiiiiiiiiiiiciccic s VMC-75
BNZO (Generate BNZ instruction that will not generate an address error) VMC-76
BNZO @XPIESSIONvviiiiiiiiniiitctcnci s VMC-76

AUD-ix

The Dreamcast Audio 64 API

BPO (Generate BP instruction that will not generate an address error) VMC-76
BPO @XPIESSIONovviiiiiiittitc b VMC-76
BPCO (Generate BPC instruction that will not generate an address error) VMC-77
BPCO @XPIESSION ...vuviiiiiiiiiiiiiiciii s VMC-77
BNO (Generate BN instruction that will not generate an address error) VMC-77
BINO @XPIESSION ...uvvviiiiiiiiiiiiitc e VMC-77
DBNZO (Generate DBNZ instruction that will not generate an address error) VMIC-78
DBNZO @XPIESSIONeiuiiiiiiiiiiiciiiiiicscei st es st ss s st s s VMC-78
BEO (Generate BE instruction that will not generate an address error) VMC-78
BEQO @XPIESSION ...oovvivititetetetctctctctctctctctctct ettt VMC-78
BNEO (Generate BNE instruction that will not generate an address error) VMC-79
BINEQO @XPI@SSION ...evviiiiiiciiiecict ettt bbb VMC-79
8. List File FOrMAt ... s VMC-81
9. Specifying Files for LINKING ...t sssss s s sssssssssssssssssssssasans VMC-85
File Name Specification VMC-85
MS-DOS Version File SpecifiCationcccococciuiiiiiiiiiiiicecceeceeeeeeeeee e senenas VMC-85
UNIX Version File SPecifiCation ...t VMC-86
Specifying Parameters Through the Command line VMC-87
Specifying Parameters in Response t0 PIOMPLSccuerriririenniiinininnninininnnsnsnisssssssssssssssssssssssses VMC -88
Default RESPOISEScocviuiurieiiiicieieieiec et VMC-89
Files Referenced During LinKingiiciiicccctccintcccescssescsesnscseananes VMC-89
10. Specifying Linkage Loader OPtionSs ... ssessss s ssessssessssssessssessessaseases VMC-91
Creating a HEX File for LC868000 Series External ROM ...
CSEG Loading Address Specification Method VMC-91
DSEG Loading Address Specification Method VMC-92
Enabling Duplicate Definition of DSEG Addresseseenirccrminecsceisncnceenssescsesesescanans VMC-92
No Distinction Between Upper-Case and Lower-Case VMC-92
Creating the Loading Map VMC-92
Creating a Local Symbol List VMC-93
Specifying Warning Messages Concerning Operand Data . VMC—94
CSEG FREE Block Optimized Loading VMC-9%4
Specifying Symbol Sort Processing VMC-95
11. Object PIaCEMENt ...t s a e s a e s a s s a e e e s n e nn VMC-97
L7288 = {1 VMC-101
Fatal Errors VMC-101
Non-Fatal Errors VMC-102

AUD-x

13. Program STAMUP ...t VMC-103
File Name Specification VMC-103
MS-DOS Version File Specification ... VMC-103
UNIX Version File SPecifiCationccccceeeurieireiiririneeiceeeereeeeeeeteeeeee e senesenenenes VMC-104
Specifying Parameters Through the Command line VMC-104
Option SPeCfiCatiONccciuiuiuiiiiiiiiiiicceee e VMC-106
Command Line Execution Examples ... VMC-106
Operation Using the PIOMPLS ... VMC-107
Prompt Line EXPanSIONcccoiiviiiininiiiiiiiciesssre s VMC-107
Default RESPONSEoouiiiiiiicicie ettt VMC-107
TA EITOIS oA SRR SRR AR AR R R VMC-109
15. Cross-Reference List ... sssssssssias VMC-111
16. Program STartUp ... s VMC-113
File Name Specification VMC-113
Parameter Specification Method ... VMC-113
Option Specification VMC-114
L7288 =1 £ VMC—115
Fatal Errors ... VMC-115
Visual Memory Unit (VMU) VMU-BIOS Specifications VMB-i
1. VMU-BIOS SPeCIfiCatiOns ... sssssssssses VMB-1
Outline VMB-1
VMU Outline VMB-1
System-BIOS OULHNEcccoooiiiiiiiiiii e VMB-1
Memory Space VMB-2
System BIOS Functions VMB-4
System BIOS Data and Memory Allocation VMB-5
Program LayOut ... VMB-5
SYSEEIN PIOZIAINSevviiiiiicieticciete ettt a bbb VMB-5
OS5 PIOGTAIMS ..ocvviiiiiiiiiccct bbbt VMB-6
HEAET ... s VMB-6
Subroutine Call FIOW ..ot VMB-6
Returning From User Program to Mode Selection Screenccccocceiiiiiiiicicicicceecceeenenens VMB-8
VMU INIHAHZATION .o VMB-9

AUD-xi

The Dreamcast Audio 64 API

Subroutine Description VMB-11
Flash Memory Access FUNCHONSccoccuiiiiiiiiiiicic s VMB-11
Precautions for Using Flash Memory Access SUbroutines ..o, VMB-11
Flash Memory Page Data REAAOULcccvvueuicuicuriciricieicieicieieeeieeeiess e sseaennes VMB-13
Writing to Flash MEMOIYc.ccouiiiiiiiiiiiiiicii s VMB-15
Flash Memory VErifycccocuiiiiiiiiiiiiiccc s VMB-17
ClOCK FUNCHOM. ...ttt VMB-19
Clock Countup TIMET ..ot e VMB-19
Automatic low battery detection function VMB-20
Automatic low battery detection flagc.ccccciiiiiiiiiiceeee e VMB-20
Visual Memory Unit (VMU) Sound Development Specifications VMA-i
1. VMU Sound Development SPecifications ... ssssssessessssessessssessssasesses VMA-1
VMU Sound Output Hardware Outline VMA-1
Sound OUtPUt PINCIPLE ..coiivriivrirntiiniiiniiinitiitiiniiniiniisitssiisesississsesnisisnisissiisssssssssssssssssess VMA-1
TIMeT 1 OULHINE ...t VMA-2
Timer 1 Block Configuration ..o VMA-2
Related REGISTETSc.ccuiuiiiiiiiiiiiciiccccceceee e e VMA-3
MOdE SEHING ..vvviiiiiiic b VMA-4
8-Bit COUNET MO ...ttt VMA-5
Output Waveform and Parameter Settingsccococeeiiiiiiiiiiiiicceeeeceeeeeeenenens VMA-5
8-Bit Counter Mode Setting ... VMA-6
Frequency Response CharacteriStiCs ... VMA-7
Table of Available Output FIeqUENCIESccccoeiuiiuiiiiiiiiiiiiicceccceeceee e VMA-8
Sample Program VMA-13
Table of Defined Variables ... VAP-1
VMU Mode Selection Operation Flow VAP-2

AUD-xii

Sega@ Dreamcast.

Dreamcast VMU Specifications

Sega@ Dreamcast.

1. VMU Specifications

1 Overview

This document describes the VMU, a peripheral device for the next-generation game system KATANA (Dreamcast).

1.1 VMU Overview

The VMU (Visual Memory Unit) is a memory cartridge that not only stores data, but also includes an LCD display
that visually expresses that data.

The VMU connects to KATANA's (preliminary name) special controller, called “SEED” (preliminary name), and can
be used to display subscreens during a game and as a memory card that stores game data files.

The VMU can be connected or disconnected while the game machine is on.

When not connected to a controller, the data files stored in the VMU's memory can be displayed and deleted. Files
can also be copied from one VMU to another by connecting two VMU to each other.

Furthermore, by downloading special executable files (programs) from KATANA, the VMU becomes a compact
portable game player; two-player games are also possible.

VMU-1

VMU Specifications

Figure 1.1 Conceptual Image of the VMU

In the top portion of Fig. 1.1, two VMUs are shown connected to each other as they exchange data.

vMu-2

1.2 VMU Configuration

This section describes the VMU configuration.

¢ Potato Chip (custom IC for the VMU)

Core CPU: | 8 bits: Instruction cycle time:
When connected to game machine = 1[micro]s
When operating on standalone basis = 183[micro]s
Note: Operation on a standalone basis is extremely slow in order to minimize battery
power consumption.
Memory: | Mask-ROM: 16Kbyte System-BIOS IPL
Flash-EEPROM: 64K Program code/data area
64K Data area (of which 28K are reserved for the system)
RAM 512 bytes General purposes (of which 256 bytes are reserved for the system)
512bytes I/0 mapping (can also be used as a Maple buffer)
LCD RAM Bank 1 96 bytes
Bank 2 96 bytes
Bank 3 6 bytes (for icons; used by the system)
Serial I/F: | Uses the following interfaces exclusively:
Maple: LM-Bus
Synchronous SI0: Two 8-bit serial interfaces
Timer: | 16hit For Clock
16bit{or 8bit x2): General purpose; of these, 8 hits are used exclusively for pulse generator output for
alarms
I/0 Port: | Input/output: 16 pins (buttons, serial interfaces)
Input: 4 pins (control pins)
LCD-Driver Controller: | Common: 33 pins
Segment: 48 pins
¢ LCD: LCD: 32 (V) x 48 (H) dots: Monochrome hinary
Icons: 4 types (File, Game, Time, Attention: used by system)
¢ Buzzer: Voltage buzzer: For alarms
* Power supply: Button batteries: CR2032 x 2
External inputs: +bV +3.3V
External outputs: +3.3V

¢ Buttons:

6 buttons:

Four-direction key, A button, B button, Mode button, Suspend button, SLEEP button

¢ Communications connector:

14 pins:

Serial interface, power supply, control

Connected to controller, another VMU, etc.

VMU-3

VMU Specifications

Figure 1.2 External View (preliminary)

Connectors
(communications)

Suspend button

Mode button B button

Four-direction key

B button

A button

RESET

Keychain hole

Front view Rear view

Figure 1.3 External Appearance and configuration (preliminary)

VMU-4

VMU

~
DC/DC Selector
Low voltage +5V
_‘ CR2032 x2
+3.5V 1
% Potato j;
Reset
Resetﬂ; J_ BIOS-ROM
6MHz]
77 L_‘ i CPU-Core < oKBLaKE
32kHz @
FLASH
>
LCD LCD Driver 64KB+64KB
32x48dot -~ S
4-icon pies -
RAM N +5V
— 512B % 0 H A
777 Mbps | U
Qutput Enable }\max] i
S L Buffer L-Maple :antm: i
: A utpu N
8-input ﬂ%ﬂé S L : /0 < > 512B Logic | gupurEanie
-inpu - I
p 7%4]7%4] I Serial x2 o;ptm
7%]] 777 vﬁ::::: 11033V
Buzzer I . \
D1 il
1D0 lvj 1)
3-input U

Ext.
Terminal
14pin

’

Figure 1.4 Block Diagram (preliminary)

VMU-5

VMU Specifications

1.3 VMU Functions

When connected to a game machine, the VMU conforms with the Maple Bus 1.0 Standard Specifications, and
supports the following function types.

1 FT; Storage Function
2 FT, B/W LCD Function

3 FT3 Timer Function

Accordingly, the Function Type (FT) is “00h-00h-00h-OEh”. (FD1 = FT3, FD2 = FT2, FD3 = FT1)

For details, refer to the specifications for each function. An overview of the System-BIOS functions included in the
VMU is provided below.

1

File management

This function manipulates and manages backup files and program files.

Files are managed in 1-block units (512 bytes), and reads and writes are also performed in block units.
FAT operations and file information processing use subroutines in the System-BIOS. For details on file
management methods, refer to section 3, “File Management.”

2) LCD display

3)

When the VMU is connected to a game machine, this function only draws graphics (transferring screen
image data).

This function conforms with the data format that is stipulated in the Maple Bus Function Type
specifications, and sends graphics images from the game machine to the VMU in accordance with the
VMU screen configuration, and then BIOS transfers the resulting image to the LCD display RAM
(XRAM).

The amount of data required for one screen is 32 dots (V) x 48 dots (H) = 1536 bits = 192 bytes.

When the VMU is operating on a standalone basis, this function handles the drawing of graphics. The
icons display the operation mode of the VMU.

File File management

Game Executable file initiation
Time Time display

Attention Memory access in progress

Executable file initiation
This function initiates execution of an executable file (program) that was downloaded from a game
machine.

This function can only be executed while the VMU is operating on a standalone basis. A program can
not be initiated while the VMU is connected to a game machine.

A number of functions that can be provided for executable files are System-BIOS subroutines and can be
used by the executable file simply by calling the subroutine.

4) Communications

When the VMU is connected to a game machine, communications are handled according to the Maple
Bus protocol.

When the VMU is operating on a standalone basis, the VMU supports 8-bit synchronous serial
communications for exchanging data with another VMU.

This function is also provided as a subroutine for executable files. (Not finalized)

VMU-6

5) Clock

This function uses a timer to measure time.

This function is always operating, whether the VMU is connected to a game machine or is operating on
a standalone basis.

6) Alarm
This function sounds a buzzer by means of a pulse generator. This function is also provided as a
subroutine for executable files. (Not finalized)

This function conforms with the data format that is stipulated in the Maple Bus Function Type
specifications, and when the VMU is connected to a game machine, this function allows the game
machine to sound the buzzer.

7) Mode switching
When the VMU is connected to a game machine, the VMU operation mode can be changed by pressing
the mode button.
The mode status is displayed by means of icons.
When the VMU is operating on a standalone basis, the Auto Power Off function can also be used.

8) Character font installation

8 dot (V) x 6 dot (H) alphabet, Katakana, and symbol fonts can be installed in the VMU. These fonts
cannot be called and displayed from an executable file for the VMU that was downloaded from a game
machine.

When the VMU is connected to a game machine and graphics are being displayed from the game
machine side, fonts cannot be used.

Instead, transfer the screen image that is to be displayed as is.
Fonts can only be used by the System-BIOS.

VMU-7

VMU Specifications

2 Mode Settings

The operating mode of the VMU is determined by the connection status and the mode button.

Table 1.1 Modes

Connection Status Mode Button (Icon Display) Operating Mode
Connected to game machine Off System mode

Attention Flash access in progress
Standalone operation Game Executable file initiation

File File operations

Time Clock display

Attention Accessing flash memory

1) System mode

This mode is controlled by the System-BIOS' external control program.

This mode handles communications according to the Maple Bus protocol, memory management, LCD
display, and timer management.

2) Game mode

In this mode, the System-BIOS initiates executable files in flash memory.

All processing is controlled by the executable file, except for the Maple Bus protocol.
Transitions from this mode to another mode are also controlled by the executable file.

To execute a mode, transmission, the executable file calls a subroutine from the System-BIOS.
At that point, all of the contents of RAM and the registers are saved to flash memory.

Note: This save operation requires approximately 8 seconds.

3) File mode

This mode is controlled by the System-BIOS’ file control program.

This mode can display, copy, and delete files in flash memory through button operations.

Refer to other documents for details on the configuration and operation of the file management screen.
4) Time mode

This mode is controlled by the System-BIOS’ timer program. This mode can display a digital clock

(showing the hours, minutes, and seconds), and can be used to set the time. When the VMU returns from
system mode, it enters this mode.

Transitions among the modes occur in response to changes in the connection status and the Mode button + Enter
button being pressed.

However, Game mode can suppress changes in the connection status and the Mode button + Enter button being
pressed. The mode cannot be changed while data is being written to the flash memory.

Attention is a warning indicator that lights for Read/Write ~ while flash memory is being accessed.

VMU-8

Mode button

Game

Mode button

I Time

Enter button
P

‘Memory save

‘Memory restore ‘

Mode
button

‘ Game mode

3 File Management

Mode button

Mode
button

N

Enter button

v

Time mode

Disconnecte

d|Connected

File

Mode
button

Enter
button

A

File mode

Connected

System mode

Figure 1.5 Mode Transitions

_/

)

> ICON display

>0peration mode

e File management in the VMU conforms with FT1: Storage Function in the Maple Bus 1.0 Function Type
Specifications.

e The size of the VMU flash memory is 128K.

* The minimum read /write unit for a file is one block (512 bytes); the entire flash memory is divided into

256 blocks.

However, because 56 blocks are used as a system management area, the size of the area that can be used
to store data is 200 blocks.

One executable file can exist in one partition, with a maximum size of 0080h blocks (64K: block numbers
0000h to 007Fh).

VMU-9

VMU Specifications

Block No.
0000h

007Fh
00C8h

00C7h
00C8h

00F0h
00F1h

00FDh
00FEh

00FFh

Executable file or data area

Data area

Data area
(200block)

Reserved area

Reserved area
(41block)

File information area

Fat area

System area

Management area
(15block)

Figure 1.6 Memory Map

3.1 Management Area

* The 15 blocks at the top of memory (starting form block number 00FFh) are used for the

management area.

* The management area is divided into three areas: the system area, the FAT area, and the file

information area.

e The system area consists of one block, the FAT area consists of one block, and the file information consists

of 13 blocks.

* The system area is write-protected, except during formatting.

* The FAT area has a chain structure in which every two bytes (16 bits) controls one block.

* The file information area allocates 32 bytes to each file, and can therefore manage a maximum of 200 files.

e There is only a root directory; no subdirectories are supported.

* File names consist of 12 bytes (ASCII codes representing up to 12 normal-width characters).

VMU-10

3.2 Data Area

o The data area, where data files can be stored, consists of 200 blocks, from block number 0000h to 00C7h.
e Data files are stored starting from 00C7h towards 0000h, while an executable file starts from 0000h.

e The areas from 0000h to 007Fh and from 0080h to 00FFh are controlled through bank switching; switching
is performed by the System-BIOS automatically.

* Reading and writing flash memory must always be done by calling the System-BIOS subroutines.

3.3 Reserved Area

This area is used by the System-BIOS and in system mode.

4 LCD Display

e The LCD display in the VMU conforms with FT[2]: B/W LCD Function in the Maple Bus 1.0 Function
Type Specifications.

e The LCD that is built into the VMU consists of a 32-dot (V) x 48-dot (H) dot matrix display, and four icons
that indicate he operating mode f the VMU.

* Drawing the LCD is accomplished by storing drawing data in the dedicated drawing RAM.

4.1 XRAM

The LCD’s dedicated drawing RAM is called “XRAM.”

XRAM consists of three banks; the first and second banks are open to executable files, while the third bank is used
by the System-BIOS.

The first bank of XRAM corresponds to the upper half of the LCD (16 x 48 dots), and the second bank of XRAM
corresponds to the lower half of the LCD (16 x 48 dots).

One dot on the LCD corresponds to one bit in XRAM. One byte of XRAM corresponds to 8 dots in a horizontal row
on the LCD, and 6 bytes consist of one entire horizontal row on the LCD.

4.2 Screen Mode

When the VMU is connected to a game machine, the System-BIOS sends drawing data from the game machine
directly to the XRAM as a graphics screen.

Therefore, when using the VMU's display as a game subscreen, etc., transfer the screen image as is to the VMU.

During standalone operation, the character font in the System-BIOS cannot be used for text display on a graphics
screen.

For a graphics screen, write the screen image data as is to XRAM.

VMU-11

VMU Specifications

4.3 Icons

The System-BIOS uses the icons; use by an executable file is prohibited.

| Dot matrix screen
32dots 5 :

E — é # i Icons

File management Clock display
Writing in progress

Executable file initiation

4.4 Screen Configuration

4.5 LCD Characteristics

The screen refresh concept for the LCD display differs from that for a TV.

Once data is transferred to XRAM, it is displayed on the LCD, but only after a delay due to the response speed of
the LCD. When the LCD response is delayed, ghosting or flickering may occur, resulting in a display that is difficult
to see. In addition, during standalone operation or when connected to a game machine, differences in the operating
speeds result in different LCD display speeds. During standalone operation, the display speed is slower.

The recommended refresh rate for the VMU’ LCD is 1Hz for standalone operation and 4Hz when connected to a
game machine.

VMU-12

4.6 Miscellaneous

e There is no contrast adjustment or brightness adjustment for the LCD.
e There is no backlight for the LCD.

e It is not possible to incorporate a design (such as a picture, etc.) in the polarized panel (the back sheet)
with a reflective panel that reflects the light in the LCD.

b Executable File Initiation

e This function initiates an executable file that was downloaded from a game machine.
® The VMU can store and initiate only one executable file at a time.

* The System-BIOS includes subroutines that form that VMU functions. Of these subroutines, several are
provided for executable files, and an executable file can call these subroutines.

* Program development of an executable file is performed using a VMU emulator (preliminary) that runs
under Windows 95.

5.1 Downloading an Executable File

Executable files are stored in flash memory in the area consisting of block numbers 0000h to 007Fh, starting from
the 0000h block. When an executable file is downloaded from a game machine application, confirm that there is
contiguous free space starting from the 0000h block of the VMU. Even if the free space has been confirmed, it still
will not be possible to download an executable file if there is any other file in the area where the executable file is
to be stored (the area from block 0000h to the end of the executable file).

Game machine application processing is as described below:

Get free space in VMU
!
Confirm that there is free space
!
Defragmentation processing (optimization of fragmented file storage)
!

Reconfirm that there is free space after defragmentation processing (Reconfirmation is necessary because it is possible that a block was damaged during
defragmentation.)

!

Download

5.2 File Size

¢ The maximum size of an executable file is 0080h blocks (64K).

VMU-13

VMU Specifications

5.3 Subroutine

A list of the available subroutines is shown below. (not finalized)

Each subroutine uses a RAM area (in the general-purpose RAM area) as a work area.

1) Data communications :Performs synchronized serial communications.
2) Alarm :Sounds the buzzer.

3) Flash memory write :Writes flash memory.

4) Flash memory read : Reads flash memory.

5.4 Interrupts
Alist of external and internal interrupts is provided below. (planned)
Except for the Mode Change interrupt, these interrupts cannot be masked. (planned)

1) Low voltage interrupt

2) Timer interrupt

3) Mode Change interrupt (maskable)
4) SLEEPinterrupt

5.5 RAM

The RAM areas that executable files can use are shown below.

General-purpose RAM: 000h to OFFh (bank 1)

I/O mapping RAM: 000h to 1FFh (Set the address to the specified register and read / write one
byte at a time.)

XRAM: Bank 1, bank 2

5.6 Save Processing During Executable File Operations

Data on the midpoint status of an executable file and parameters for an executable file (such as a game) are saved
by writing the data to an area within the executable file. When creating an executable file (such as a game), set aside
an area within the file for this purpose. Because FAT processing, etc., is not possible due to the hardware design,
such data cannot be saved in a separate file.

In order to link the game machine with an application and then use the saved data from an executable file (such as
a game), load the executable file from the VMU to the game machine, and then read that portion of the file that
contains the saved data.

5.7 Auto Power Off

e The Auto Power Off function puts the VMU into the SLEEP state if no buttons are pressed or no
communications are received for two minutes.

This function can be enabled / disabled by executable files.

VMU-14

6.1

Communications Function

* The VMU is capable of conducting serial communications with other equipment.

® The VMU supports two serial communications protocols: the Maple Bus protocol and full-duplex
synchronous serial communications.

e The System-BIOS switches between the Maple Bus protocol in system mode and synchronous serial
communications in standalone operation mode.

Maple Bus Protocol

* When the VMU is connected to a game machine, the communications connector switches to the Maple
Bus protocol side.

e The entire I/ O mapping RAM becomes a transmission/ receive buffer, and the synchronous serial
side stops.

e The physical connection with the game machine is made through an LM-Bus connection, and the VMU
becomes an expansion device.

* All processing is performed by the System-BIOS; this function is not accessible from an executable file.

e The transfer speed is 2Mbps.

6.2 Synchronous Serial Communications

7.1

* When the VMU is operating on a standalone basis, the communications connector switches to
synchronous serial side, and the Maple Bus protocol side stops.

* There are two synchronous serial interfaces, allowing full duplex communications with other devices.

e Data is transferred one byte at a time, with a maximum transfer speed of 2.4Kbps. (not finalized)

This function is available to executable files as a subroutine.

Clock Function

* The clock function in the VMU conforms with FT3: Timer Function in the Maple Bus 1.0 Function Type
Specifications.

This function can measure time in 500ms units, using a 32KHz crystal resonator and a dedicated counter.

e The System-BIOS controls the clock function; an executable file can only read the clock function.

Settings

¢ On the setting screen, set the year, month, day, and time.

* When the VMU is connected to a game machine, the date and time can be set by the game machine
through the Maple Bus protocol.

VMU-15

VMU Specifications

8 Alarm Function
e The alarm function in the VMU conforms with FT3: Timer Function in the Maple Bus 1.0 Function Type
Specifications.

This function sounds the built-in voltage buzzer.

* Only one alarm can be sounded at one time.

The sound is generated by the pulse generator method; the frequency can be set over a range from 300Hz
to 4KHz, and the duty ratio can be set as desired. (planned)

The volume cannot be adjusted. The sound can be turned on and off.
This function is made available for executable programs as a subroutine. (planned)

* When the VMU is connected to a game machine, the alarm function can be set by the game machine
through the Maple Bus protocol.

9 SLEEPFunction

In order to reduce power consumption when operating on a standalone basis, the VMU is equipped with a
SLEEPfunction.

The VMU enters the SLEEPstate either because the SLEEPbutton is pressed or because the Auto power Off
function was triggered. (Refer to section 5.7, “Auto Power Off”) To return from the SLEEPstate, press the
SLEEPbutton.

9.1 SLEEPOperation

When in Timer mode (clock display) or File mode (file management software), the LCD display shuts off and the
VMU enters the idle state.

SLEEPprocessing in Game mode (after an executable file has been initiated is determined by the executable file.
(We plan to indicate a recommended processing method.)

The contents of RAM and the registers are retained, except in Time mode. In SLEEPmode, all buttons are disabled
except for the SLEEPbutton.

10 Buttons

Four-direction key: This key is used to move the cursor up, down, left, or right, and to scroll the screen.

A button: This button is used primarily to finalize selections.

B button: This button is used primarily to cancel selections.

Mode button: This button changes the mode during standalone operation. Each time this button is
pressed, the mode changes according to the following cycle: File -> Game -> Time -> File
-> Game ->...

SLEEP button: This button changes the mode to the SLEEPstate during standalone operation.

Reset button: This button initiates a “power on” reset, which initializes the entire VMU unit (including

the clock, etc.), except for the contents of flash memory.

VMU-16

11 Batteries
11.1 Battery Life

The VMU is equipped with two CR2032 batteries for standalone operation.
Battery life depends on the status of executable file operations.

If an executable file is continuously executed, with the LCD display on (refresh rate: 1Hz), no alarm outputs, no use
of the communications function, no executable file save processing, and no use of the SLEEP function, the batteries
should last for about one week.

The relationship between operational status and battery life is described below. Take battery life into consideration
when creating executable files.

Flash memory reads: This is the normal state of program execution.

LCD display updates: Battery power consumption increases by a factor of 5 when overwriting
XRAM as compared to when reading flash memory.
Frequent screen updates have an effect on battery life.

Alarm output: Consumes an extremely small amount of power.

Flash memory writes: Consumes 25 times more battery power than when reading flash memory.
Saving the operation status and similar processing should be performed
as infrequently and in as small amounts as possible.

Data exchanges after an executable file has been initiated:
Such operations consume a tremendous amount of battery power. Simple
parameter exchange could be used to reflect the development of game
characters, for example.

File exchanges between two VMUs: Copying an entire file consumes a tremendous amount of battery power.
Because the receiving side in particular must write the data in flash
memory, a large amount of battery power is consumed. In addition, the
larger a file is, the longer the operation will take and the greater that the
power consumption will be.

11.2 Processing When Battery Power Is Exhausted

The System-BIOS constantly monitors the battery voltage.

If the batteries are nearing the end of their life while in Game mode (while an executable file is being executed), the
System-BIOS saves the contents of RAM and the registers. (planned to be implemented through the library,
perhaps)

11.3 Battery Replacement

* The clock settings are initialized when the batteries are replaced.
e Any file that is stored in flash memory is retained.
* When replacing the batteries, always install two brand new CR2032 made by the same manufacturer.

* Make sure that the polarity (+/-) of the batteries is correct when you install them.

VMU-17

VMU Specifications

12 Postscript
The functions of the VMU are subject to change in whole or in part until the release of VMU Specifications

Revision 1.0.

VMU-18

Sega@ Dreamcast.

Visual Memory Unit (VMU)
Hardware Manual

Sega@'Dreamcast

1. Overview

1. General

The POTATO custom chip that is the core of the VMU (Visual Memory System), the memory system for our

next-generation game machine, consists of a CPU core that operates with a minimum bus cycle time of 0.5[micro]s,
128K of flash EEPROM, 20K of ROM, 710 bytes of RAM, a dot-matrix LCD automatic display controller/driver, a
16-bit timer/ counter / pulse generator (or a two-channel x 8-bit timer), a 16-bit timer (or a two-channel x 8-bit timer),

a two-channel x 8-bit synchronous serial interface, a dedicated interface for the next-generation game machine, and
an interrupt function with 13 sources and 10 vectors.

1.1 Features

¢ Flash EEPROM

65,536 x 8 bits: Program /data area
65,536 x 8 bits: Data area
* ROM
16,384 x 8 bits: Program area
4096 x 8 bits: BIOS program area
e RAM
256 x 8 bitsA~2 banks: Calculation area
198 x 8 bits: Display area

256 x 8 bits x 2 banks*: Work area

*When connected with the next-generation game machine, this area is used as a TX/RX buffer for the dedicated interface.

VMD-1

1. Overview

* Bus cycle time/instruction cycle time

The bus cycle time indicates the ROM read time.

Bus cycle time L';S:;::It:: System clock source Oscillating frequency Supply voltage Miscellaneous
05Es 1.0Es CF oscillation 6MHz 3.15_3.8Cu OCR7=1 *1
38Es 75Es Internal RC oscillation 800KHz 3.15_3.8Cu OCR7=1 *1
915k s 183.0E s Crystal (X'tal) oscillation 32KHz 3.15_3.8Cu 0CR7=1 *1

*1e OCR?: This is bit 7 of the Oscillation Control Register (OCR); this bit controls the system clock generation circuit and
the cycle time. Refer to Chapter 4, section 4.2.4, "Related Registers," for further details.

OCR7 =

1: The cycle time is the system clock divided by 6.

* Ports
— Input/output ports: 2 ports (P1, P3)
— Input port: 1 port (P7)
— Segment output port for driving the LCD: 48 lines
— Common output port for driving the LCD: 33 lines

e LCD controller

Display duty: 1/33 duty
Display bias: 1/5 bias
Liquid crystal instruction display: On/Off

Clock for external voltage step-up (external step-up circuit)
Graphic display: 1584-dot maximum display

e Serial interfaces

8-bit serial interface x 2 channels (synchronous)

Built-in 8-bit baud rate generator (The baud rate generator is shared with a two-channel serial
interface.)

Dedicated next-generation game interface (start pattern/end pattern auto discrimination)

Note: The synchronous serial interface and the dedicated next-generation game interface cannot be
used simultaneously.

VMD-2

1. Overview

¢ Timer
Timer O: 16-bit timer/ counter
Built-in 2-bit prescaler + 8-bit programmable prescaler
Timer 1: 16-bit timer/ pulse generator
Base timer: Clock selection function

32.768kHz crystal oscillation, system clock, or timer 0 is selected through the
programmable prescaler output.

500ms overflow signal generation function for clock (when 32.768kHz crystal
oscillation is selected)

Function that generates an overflow signal on every cycle of either 976[micro]s,
3.9ms, 15.6ms, or 62.5ms (when 32.768kHz crystal oscillation is selected)

¢ Interrupts

13 sources, 10 vectors

(1) External interrupt INTO

(2) External interrupt INT1

(3) External interrupt INT2, timer counter TOL (timer 0, lower 8 bits)
(4) External interrupt INT3, base timer

(5) Timer / counter TOH (timer 0, upper 8 bits)

(6) Timer T1L (timer 1, lower 8 bits), timer T1H (timer 1, upper 8 bits)
(7) Serial interface 0 (SIO0)

(8) Serial interface 1 (SIO1)

) Dedicated next-generation game machine interface

(10) Port 3

Built-in interrupt priority register

The microcontroller interrupts can be weighted as one of three levels: low level, high level, and highest
level. The 11 interrupts sources from "external interrupt INT2, timer counter TOL (timer 0, lower 8 bits)"
to "Port 3" can be specified as having an interrupt priority level of either "low level" or "high level." In
addition, external interrupts INTO and INT1 can be specified as having an interrupt priority level of
either "low level" or "highest level.

e Subroutine stack level
A maximum of 128 levels (The stack is set in RAM.)

e Built-in fast multiplication and division instructions
16 bits x 8 bits (execution time: 7 instruction cycles)
16 bits + 8 bits (execution time: 7 instruction cycles)

e Three types of oscillation circuits
RC oscillation circuit (built in): System clock (resistor R and capacitor C built in, no external circuits

required)
CF oscillation circuit: System clock
Crystal oscillation circuit: Clock, system clock, LCD clock

VMD-3

Visual Memory Unit (VMU) Hardware Manual

¢ Standby functions

HALT mode

This mode halts instruction execution, and can be cancelled by either a reset or by the generation of an
interrupt.

HOLD mode

This mode halts CF oscillation, RC oscillation, and crystal oscillation. There are three methods for
canceling HOLD mode:

(1) Input a low level signal to the reset pin.

() Input the specified level to either the P70/INTO pin or the P71/INT1 pin.

3) Input the port 3 interrupt condition.

e Flash EEPROM

Data memory space: 128K bytes
Data memory space overwriting: Used for BIOS program
Overwriting block size: 128K bytes
Erase/program voltage: 3.15t0 3.8V

Number of times overwriting is possible: 50,000 times (writing FF and 00 once each) (Ta = 25°C,
memory management by program)

Program memory space: 64K bytes
Switching between mask ROM/ flash EEPROM program space
Use CHANGE instruction; initially: Mask ROM

Switching from flash EEPROM program space to mask ROM program space can be permitted /
prohibited (EXT register)

VMD-4

1. Overview

1.2 System Block Diagram

| IR PLA
Interrupt controller |4 'S
P I 4 —)| EEPROM controller
! 3
) o EEPROM
Standby controller |4 ' 4 r
v
e _ — PC
= % *
RC | 85§
=
oWt | S < ROM
C—
\ » ACC
»
Base timer 4 > p " Bus interface p ¢
»
> .
s100 «— [Port1 ¢ B register
SI101 4 JEK Port7 P » C register
N
Timer 0 4) —i
—>
Timer 1 4 N > S10 for VMU <
N
3 .
.’ PSW
)| RAMforvmu ¢
4
INTO to 3 Noise filter |4) < RAR
4
XRAM “—) p RAM
) .
LCD display controller |4 > y Stackpointer
»
LCD driver 4) P 4 Port3
N
T 4) EXT register

Figure 1.1 System Block Diagram

VMD-5

Visual Memory Unit (VMU) Hardware Manual

VMD-6

Sega@'Dreamcast

2. Internal System
Configuration

1. Memory Space

POTATO has an internal memory space and a flash memory space.

The internal memory space includes a program memory space (64K) and a data memory space (512 bytes), while
all 64K of program memory space (internal program ROM) can be accessed straight through by incrementing the
pointer sequentially each time that a normal instruction is executed. Addresses 000 to OFFH in the data memory
space are allocated for 256 bytes of data memory (internal RAM). In addition, the 256 bytes from 100 to 1FFH are
allocated for the Special Function Registers (SFR). Internal RAM consists of two banks, with the bank being specified
by bit 1 (RAMBKO) of the Program Status Word (PSW) in the Special Function Registers (SFR). BANK 0 is also used
as the stack area. The accumulator (ACC), PSW, timer, and input/output ports are allocated by the SFR, for a
complete memory-mapped I/O configuration.

The flash memory space consists of a 128K space. This space consists of two 64K banks. Furthermore, only BANK 0
can be handled as a 64K external program memory, and a special macro instruction (CHANGE) is used to switch
between internal and external programs. Writing data to the flash memory space must always be performed by
calling a BIOS program subroutine.

The BIOS program memory space contains (as subroutines) a program for writing data to flash memory and
checking the data that was written, and a preparation program for writing the data. This area is a BIOS-dedicated
program area.

VMD-7

2. Internal System Configuration

VMU game programs must be stored in the external program area (flash memory BANK 0).

Bank 1
64K
Sk *3
Bank 0
*1
SFR
16K *2 RAM BANK 0 RAM BANK 1 64K

Internal program ROM

*2) User program memory space

*3) BIOS program memory space

Internal RAM register

Flash memory

*1) Can be used as a game program area

Figure 2.1 Memory Space

2. Program Counter (PC)

The Program Counter (PC) consists of 16 bits, and stores the program memory (ROM) address that contains the
instruction that should be executed next. The processor executes the instructions in a program on the basis of the

value in the PC. Normally, the PC is incremented for each instruction that is executed, but when a branch

instruction or a subroutine instruction is executed, an interrupt is received, or a reset is executed, a value that is
appropriate for that operation is set in the PC.

The data that is set in the PC for each operation is shown in Table on the next page.

Table 2.1 Program Counter Settings

Type of operation Program counter value

Reset 0000H (internal program space)
External interrupt 0 0003H
External interrupt 1 000BH
External interrupt 2, timer counter TOL interrupt 0013H
External interrupt 3, base timer interrupt 001BH
Timer/counter TOH interrupt 0023H
Timer T1L, timer T1H interrupt 002BH
SI00 interrupt 0033H
SI01 interrupt 003BH

VMD-8

2. Internal System Configuration

Type of operation Program counter value

VMU SI0 interrupt 0043H
Port 3 interrupt 004BH
Unconditional branching JMP al2 PC15 to 12 = Current page
instructions PC11 1000 = 812
JMPF al6 PC15to 00 =a16
BR r8 (PC+2)+1r8[-128_+ 127]
BRF r6 (PC +2) + r16[0~ + 65535]

Conditional branching instructions

BZ, BNZ, BP., BNE BPC, BN, DBNZ, BE

(PC+2o0r+3)
+18[-128_+127]

CALL instructions CALL al2 PC15 to 12 = Current page
PC11t000=a12
CALLF al6 PC15t0 00=2a16

CALLR r6 (PC + 2) + r16[0~ + 65535]

Macro instructions

CHANGE label name (or address)

Value specified by label or address from a different program mode

Note:

e For the sake of convenience, each 4K of ROM space is called a "page."
* The "current page" is the page in the ROM space that includes the instruction that follows the

instruction that is currently being executed.
e If an interrupt is generated while an internal program is running, a subroutine is called using the
setting indicated in the above Table 2-2-1 in the internal program space. If an interrupt is generated
while an external program is running, a subroutine is called in bank 0 of the external program space,
with the lower 16 bits being the value in the above table. In a game program, some interrupt vectors can
not be set as desired. it is always necessary to incorporate the specified program. Refer to Chapter 4,
section 4.1, "Interrupt Function."

VMD-9

Visual Memory Unit (VMU) Hardware Manual

3. Internal Program ROM

The 64K program memory space includes 16K of user program memory and 4K of BIOS program memory (ROM).
In addition, the 256 bytes from FFOOH to FFFFH in the same space as the ROM are used as an option specification
area for creating the mask version.

FFFFH Option specification
FFOOH area—256 bytes
FO00OH
EFFFH
BIOS program area
E0DOH (4K)
DFFFH —
4000H
3FFFH ——
Program area
(16K)
0000H
LC86F8716

Figure 2.2 ROM Space

4. Internal Data Memory

POTATO has 1222 bytes of built-in data memory (RAM), which includes 198 bytes of XRAM and 512 bytes of
VTRBE. In addition, the Special Function Registers (SFR) reside at 100H to 1FFH.

Table 2.2 Data Memory by Type (RAM)

Type POTATO

RAM size 1222 bytes

XRAM Bank 0 180H to 1FBH (36 bytes)

Bank 1 180H to 1FBH (96 bytes)Aj

Bank 2 180H to 185H (6 bytes)

Main RAM Bank 0 000H to OFFH (256 bytes)

Bank 1 000H to OFFH (256 bytes)

VTRBF 166H (256 bytes x 2 banks)

The 16 byte area from 00H to OFH in RAM consists of four banks of indirect address registers: @R0, @R1 (for RAM),
@R2 and @R3 (for SFR), starting from the low address. The indirect address register bank that is used for addressing
is specified by bits 3 and 4 (indirect address register bank flags: IRBKO, 1) of the Program Status Word (PSW). In
addition, this 16-byte area can also be used as normal RAM.

VMD-10

2. Internal System Configuration

The relationship between the indirect address registers and data memory is shown in Table below.

OFH @R3 Bank 3
@R2 (IRBK1=1)
@R1 (IRBK0=1)
0CH @RO
0BH @R3 Bank 2
@R2 (IRBK1=1)
@R1 (IRBK0=0)
08H @RO
07H @R3 Bank 1
@R2 (IRBK1=0)
¢ _Indirect address registers for RAM @R1 (IRBKO0=1)
04H @RO
*@ @RO, @R1
03H @R3 Bank 0
¢ _Indirectaddress registers for SFR @R2 (IRBK1=0)
@R1 (IRBK0=0)
*@ @R2, @R3 00H RO

Figure 2.3 Arrangement of Indirect Address Registers

Table 2.3 Indirect Address Register Map

Bank 0 Bank 1 Bank 2 Bank 3
Indirect address (IRBK1=0) (IRBK1=0) (IRBK1=1) (IRBK1=1)
register name Function (IRBK0=0) (IRBK0=1) (IRBK0=0) (IRBK0=1)
@R0 RAM access RAM 00H RAM 04H RAM 08H RAM OCH
@R1 RAM access RAM 01H RAM 05H RAM 09H RAM 0DH
@R2 SFR access RAM 02H RAM 06H RAM 0AH RAM OEH
@R3 SFR access RAM 03H RAM 07H RAM 0BH RAM OFH

VMD-11

Visual Memory Unit (VMU) Hardware Manual

Table below shows a data memory list. Refer to the respective items for details on the contents of each register.

Table 2.4 Data Memory Map

R=READ X=Undefined
W=WRITE H=Does not exist
Symbol Address R/W Name Initial value
RAM(BANKO) 000H-0FFH R/W Data memory XXXXXXXX
(retained after reset)
RAM(BANK1) 000H-OFFH R/W Data memory XXXXXXXX
(retained after reset)
ACC 100H R/W Accumulator 00000000
PSW 101H R/W Program Status Word 00000000
B 102H R/W B register 00000000
C 103H R/W C register 00000000
TRL 104H R/W Table reference register - low byte | 00000000
TRH 105H R/W Table reference register - high byte | 00000000
SP 106H R/W Stack pointer XXXXXXXX
PCON 107H R/W Power control register HHHHHHOO
IE 108H R/W Master interrupt enable control OHHHHHOO
register
IP 109H R/W Interrupt priority control register 00000000
EXT 10DH R/W External memory control register HHHH0000
OCR 10EH R/W Oscillation control register OHOOHHOO
TOCNT 110H R/W Timer 0 control register 00000000
TOPRR 111H R/W Timer 0 prescaler data 00000000
ToL 112H R Timer 0 low 00000000
TOLR 113H R/W Timer O low reload data 00000000
TOH 114H R Timer 0 high 00000000
TOHR 115H R/W Timer 0 high reload data 00000000
T1CNT 118H R/W Timer 1 control register 00000000
T1LC 11AH R/W Timer 1 low compare data 00000000
TIL 11BH R Timer 1 low 00000000

VMD-12

2. Internal System Configuration

Symbol Address R/W Name Initial value
TILR 11CH W Timer 1 low reload data 00000000
T1HC R/W Timer 1 high compare data 00000000
TH 11DH R Timer 1 high 00000000
T1HR W Timer 1 high reload data 00000000
MCR 120H W Mode control register 00000000
STAD 122H R/W Start address register 00000000
CNR 123H W Character count register H0000000
TDR 124H W Time interrupt register HHO00000
XBNK 125H R/W Bank address register H0000000
VCCR 127H W LCD contrast control register 00000000
SCONO 130H R/W SI00 control register 00H00000
SBUFO 131H R/W SI100 buffer 00000000
SBR 132H R/W SI0 baud rate generator 00000000
SCON1 134H R/W SI01 control register HOH00000
SBUF1 135H R/W SI01 buffer 00000000
Symbol Address R/W Name Initial value
P1 144H R/W Port 1 latch 00000000
P1DDR 145H W Port 1 data direction register 00000000
P1FCR 146H W Port 1 function control register 00000000
P3 14CH R/W Port 3 latch 00000000
P3DDR 14D W Port 3 data direction register 00000000
P3INT 14EH R/W Port 3 interrupt control register HHHHHO00
P7 15CH R Port 7 latch HHHHXXXX
I01CR 15DH R/W External interrupt 0, 1 control 00000000
123CR 15EH R/W External interrupt 2, 3 control 00000000
ISL 15FH R/W Input signal selection HHO00000
VSEL 163H R/W Control register HHHOHHO00
VRMAD1 164H R/W System address register 1 00000000
VRMAD?2 165H R/W System address register 2 HHHHHHHO

VMD-13

Visual Memory Unit (VMU) Hardware Manual

Symbol Address R/W Name Initial value
VTRBF 166H R/W TX/RX buffer XXXXXXXX

BTCR 17FH R/W Base timer control 00000000
RAM(XRAM) 180H-1FBH R/W LCD memory XXXXXXXX

(BANKO) (retained after reset)
RAM(XRAM) 180H-1FBH R/W

(BANKT1)

RAM(XRAM) 180H-185H R/W

(BANK?2)

(1) Direct addressing mode

When executing an instruction such as: MOV #i8, d9

(D In RAM BANKO (PSW 21=0)

Bank 0 4

Bank 1

(D RAM BANK1 (PSW 21=1)

—— Bank 0 address is selected

Bank 1 address is selected —'

(2) Indirect addressing mode

When executing an instruction such as: MOV #i8, @Rj
(@RAM BANK1 (PSW 21=1)

@®RAM BANKO (PSW 21=0)

Bank 0 i 4

Bank 1

{— Rj is selected from this area
In RAM Bank 0 (PSW 21=0)

In RAM Bank 1 (PSW 21=1) ——]

Bank 0
b I Bank 1
Bank 0
¢
0 OF
4 | Bank 1

VMD-14

2. Internal System Configuration

5. Flash Memory

POTATO has a 128K flash memory space.

The flash memory space consists of two 64K banks, and data can be written to and read from flash memory by
referencing the BIOS program. In addition, the data in the ROM space in each bank can be referenced by using the
ROM table reference instruction (LDC). Caution is required because the LDC instruction operates differently with
an internal program as compared to with an external program. In addition, Bank 0 (only) can be used as a 64K
external program memory space. The dedicated macro instruction CHANGE is used to switch between internal
and external programs.

Flash memory size: 64K x2 banks
Banks: Bank 0 and Bank 1
Addresses in each bank: 0000H to FFFFH
FFFFH
Bank 1
64K
0000H
FFFFH
Bank 0
64K
*Only Bank 0 can be used as external program memory.
0000H

Writing and reading the flash memory space 9including external program memory) is accomplished through the
BIOS program. For details, refer to Chapter 3, section 3.10, "Flash EEPROM."

VMD-15

Visual Memory Unit (VMU) Hardware Manual

6. Accumulator

The accumulator is an 8-bit register that is used when performing arithmetic operations on data, transfers, input/
output, and other processing. The accumulator is allocated in address 100H in the data memory space, and is
initialized to 00H when a reset is executed.

e Accumulator (ACC)

Symbol | Address = R/W Bit7 Bit6 Bit5 Bit 4 Bit 3 Bit 2 Bit1 Bit0
ACC 100H R/W ACC7 ACC6 ACC5 ACC4 ACC3 ACC2 ACC1 ACCO
After reset 0 0 0 0 0 0 0 0

7. B Register, C Register

The B register and C register are 8-bit registers that are used in combination with the ACC to set data for arithmetic
operations and to store the results of arithmetic operations when executing multiplication/division instructions.

These registers are allocated to addresses 102H and 103H in the data memory space, and are initialized to 00H when
a reset is executed.

* B register (B)

Symbol Address R/W Bit7 Bit 6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
B 102H R/W B7 B6 B5 B4 B3 B2 B1 BO
After reset 0 0 0 0 0 0 0 0

e C register (C)

Symbol | Address = R/W Bit7 Bit6 Bit5 Bit 4 Bit 3 Bit 2 Bit1 Bit0
C 103H R/W C7 C6 Ch C4 C3 C2 C1 Co
After reset 0 0 0 0 0 0 0 0

When performing multiplication, the multiplicand consists of 16 bits with the upper 8 bits stored in the ACC and
the lower 8 bits stored in the C register, and the multiplier consists of 8 bits, stored in the B register.

The result of the operation (the product) consists of 24 bits, with the highest 8 bits stored in the B register the middle
8 bits stored in the ACC, and the lower 8 bits stored in the C register. In other words, (ACC)(C) ¥ (B) = (B)(ACC)(C).

When performing division, the dividend consists of 16 bits with the upper 8 bits stored in the ACC and the lower 8
bits stored in the C register, and the divisor consists of 8 bits, stored in the B register.

VMD-16

2. Internal System Configuration

The result of the operation (the quotient) consists of 16 bits, with the highest 8 bits stored in the ACC, the lower
8 bits stored in the C register and the remainder stored in the B register. In other words, (ACC)(C) [(B) = (ACC)(C)
mod (B).

ACC C ACC c
X B = B
B Acc c ACC c | B
Product Quotient Remainder

8. Program Status Word

The Program Status Word (PSW) consists of flags that indicate the results of arithmetic operations, and flags that
specify banks for data memory (RAM) and indirect address registers. The PSW is allocated to address 101H in the
data memory space, and each bit is initialized to "0" when a reset is executed.

¢ Program Status Word (PSW)

Symbol = Address | R/'W Bit7 Bit 6 Bit5 Bit 4 Bit3 Bit2 Bit1

PSW 101H R/W CY AC - IRBK1 IRBKO ov RAMBKO P

After reset 0 0 0 0 0 0 0 0
CY (bit 7): Carry flag

CY is set (1) when there is a carry in the result of an arithmetic operation, or when a borrow
is generated in a subtraction or compare operation; CY is reset (0) when neither of these
events occurs. This bit is affected if a rotate instruction that includes CY is executed, and is
reset (0) when a multiplication or division instruction is executed.

AC (bit 6): Auxiliary carry flag

AC is set (1) when there is a carry from bit 3 of the ACC in the result of an arithmetic
operation, or when a borrow is generated in a subtraction operation; CY is reset (0) when
neither of these events occurs.

IRBK1 (bit 4): Indirect address register bank flag 1
IRBKO (bit 3): Indirect address register bank flag 0

These bits specify one of the four banks that comprise the register group that is to be used
as the indirect address register for indirect addressing instructions within each bank of data

memory (RAM).
Bank IRBK1 IRBKO
0 0 0

1 0 1

VMD-17

Visual Memory Unit (VMU) Hardware Manual

OV (bit 2):

RAMBKO (bit 1):

P (bit 0):

Bank IRBK1 IRBKO

2 1 0

3 1 1
Overflow flag

OV is set (1) if an overflow occurs and is reset (0) if it does not.

This bit is set (1) if the act of adding a negative number to a negative number or of
subtracting a positive number from a negative number generates a positive number, or if
the act of adding a positive number to a positive number or subtracting a negative number
from a positive number results in a negative number. In all other cases, this bit is reset (0).
This bit is also set (1) when the contents of the B register are not "0" after a multiplication
or division operation, and is reset if the contents of the B register are "0."

Data memory (RAM) bank flag

This flag specifies the data memory (RAM) bank. When an instruction that accesses RAM
is executed, the RAM address in the specified bank is accessed.

Bank RAMBKO0

0 0

1 1

This bit indicates the accumulator parity (ACC).

This bit is set (1) if the total number of bits that are set in the accumulator is odd, and reset
(0) if the total number of bits that are set in the accumulator is even. This bit is a read-only
bit. This bit cannot be written.

VMD-18

2. Internal System Configuration

9. Stack Pointer

Bank 0 of data RAM is used as stack memory. The Stack Pointer (SP) is an 8-bit register that specifies an address in
this stack area.

The SP is allocated in address 106H in the data memory space. The SP is incremented right before a save to the stack
memory, and is decremented after data is returned from the stack memory.

When a reset is executed, the value of the SP is undefined, and must be initialized at the beginning of the
BIOS program.

e Stack Pointer (SP)

Symbol Address R/W Bit7 Bit 6 Bit5 Bit4 Bit3 Bit2 Bit1
SP 106H R/W SP7 SP6 SP5 SP4 SP3 SP2 SP1 SPO
After reset X X X X X X X X

* When executing a PUSH instruction, the SP is incremented and the data in data memory specified by the
operand is pushed onto the stack. When executing a POP instruction, after the data is stored in data
memory specified by the operand, the SP is decremented.

e Note that if a PUSH or POP instruction is executed after bank 1 is specified, the RAM in bank 0 specified
by the Stack Pointer (SP) is still used as the stack memory. In addition, if the operand is a RAM address,
bank 0 RAM, not bank 1 RAM, is accessed.

* When executing a CALL instruction, the SP is incremented, the lower 8 bits of the PC are saved in the
stack, the SP is incremented again, and the upper 8 bits of the PC are saved. When the RET instruction is
executed, the data specified by the SP is stored in the upper 8 bits of the PC, the SP is decremented, the
data specified by the new value of the SP is stored in the lower 8 bits of the PC, and then the SP is
decremented again.

® When an interrupt is accepted, the SP is incremented, the lower 8 bits of the PC are saved in the stack, the
SP is incremented again, and the upper 8 bits of the PC are saved. When the RETI instruction is executed
in order to return from the interrupt processing, the data specified by the SP is stored in the upper 8 bits
of the PC, the SP is decremented, the data specified by the new value of the SP is stored in the lower 8
bits of the PC, and then the SP is decremented again.

VMD-19

Visual Memory Unit (VMU) Hardware Manual

10. The Table Reference Register (TRR)

The Table Reference Register (TRR) is a 16-bit register that specifies addresses for program memory (ROM) and flash
memory (EEPROM). The low byte (TRL) is allocated to address 104H in the data memory space, and the high byte
(TRH) is allocated to address 105H in the data memory space. This register is initialized to 00H when a reset

is executed.

When executing the table reference instruction (LDC), the data stored in the TRR is added to the data stored in the
ACC, and then the data that is read from the address indicated by the combined value is transferred to the ACC.

When a flash memory write/read is executed (through the BIOS program), the address indicated by the data stored

in the TRR is referenced in the specified bank.

e Table Reference Register (Low) TRL

Symbol Address R/W Bit7 Bit6

TRL 104H R/W TRL7 TRL6

TRLS

TRLA

TRL3

TRL2

TRL1

TRLO

After reset 0 0

* Table Reference Register (High) TRH

Symbol Address R/W Bit7 Bit6
TRH 105H R/W TRH7 TRH6 TRH5 TRH4 TRH3 TRH2 TRH1 TRHO
After reset 0 0 0 0 0 0 0 0

VMD-20

2. Internal System Configuration

11. CHANGE Instruction

Switching between the internal and external program is accomplished by executing the CHANGE instruction.
When executed while currently running an internal program (game program), the mode changes to game program
(internal program), and the program counter is set to the address that is specified by the label or address.

Format:
Change label name (or address)
Operation:

(1) Execution while in internal program mode
* The mode changes from internal program mode to game program mode.

* The program counter is set to the address in the game program specified by the label or address.

(2) Execution while in game program mode

* The mode changes from game program mode to internal program mode.

However, if bit 1 (LDCEXT) of the external memory control register is set, executing the CHANGE
instruction has no effect; the system remains in game program mode, and does not change to the internal
program.

 The program counter is set to the address in the internal program specified by the label or address.

(3) The change in program mode occurs after a dedicated macro instruction is executed.

Example:

Internal program External program
WORLD INTERNAL WORLD EXTERNAL
PC MNEMONIC PC MNEMONIC

247H NOP Y| 1004 NOP
248H CHANGE 100H

480H NOP

600H NOP ¢ 481H CHANGE 600H
WORLD INTERNAL WORLD EXTERNAL
OTHER_SIDE_SYMBOL AAA Public AAA
public BBB OTHER_SIDE_SYMBOL BBB
CHANGE L —
A AAA:
BBB: ¢ CHANGE BBB

VMD-21

Visual Memory Unit (VMU) Hardware Manual

VMD-22

Sega@'Dreamcast

3. Peripheral System
Configuration

1. Input/Output Ports

POTATO has three I/O ports, each allocated to their own address in the Special Function Registers (SFR); in
addition, the input/output direction of ports 1 and 3 is determined by the corresponding data direction register
(PnDDR). Port 1 is also used as a serial interface / next-generation game machine interface, and as a pulse generator
output, and is controlled by a functional control register (P1FCR). In addition, port 7 is also provided as an
input-only port.

When a reset is executed, all ports are set to input mode, and the port latch bits are set to "0."

The following Special Function Registers must be manipulated in order to use the input/output ports:
Port 1 (P1) oP1 ePIDDR ¢P1FCR

Port 3 (P3) *P3 eP3DDR ¢P3INT ¢EXT

Port 7 (P7) o7 (input only)

Note:

e Caution is required when reading port data from an I/ O port, because some instructions read the port
latch, and some instructions read the data that is being applied to the port. The instructions listed below
read the port latch data. Refer to the diagram below.

BPC, DBNZ, INC, DEC, SET1, CLR1, NOT1

VMD-23

3. Peripheral System Configuration

[7]efsfafaf2]1]0]

!
|
vm\l

o
(=]
N VY Y

!
H

mwacw

MPX | ¢—
| mpx]e—
<4—| MPX [¢&——
| mpx]e—
—{mPx Je——
«—{mrx]¢
x| e———
<« mpx]——

PANIYANERVANNYA YA YANNYVANRVAN

Figure 3.1 Data Path When Executing BPC, DBNZ, INC, DEC, SET1, CLR1, and NOT1

VMD-24

3. Peripheral System Configuration

[7]efsfafaf2]1]0]

!
H
I

o
(=]
Y VvV YV

!
H

mwacw

«—mpx]
«—{mpx]e—
Y L —
«—{mpx]¢
L] —
[mpx]e—

—[wrx]e—
—Jwex]e— |

AN AN AN AN AN AN

AN AN

Figure 3.2 Data Path When Executing an Instruction Other Than BPC, DBNZ, INC, DEC, SET1, CLR1, and NOT1

1.1 Port 1

Port 1 can be used for input/output for the VMU serial interface, and for pulse generator output. Port 1 can also be
used for input/output for the next-generation game machine interface. Only SIO (P10 to P15) and the pulse
generator output (P17) can be used from a game program. Use only bit manipulation instructions to access this
register. For details on the SIO output, refer to Chapter 3, section 3.5, "Serial Interface;" for details on the pulse
generator output, refer to Chapter 3, section 3.3, "Timer 1 (T1)."

e Port 1 Latch (P1)

Bit7
P17 P16 P15 P14 P13 P12 P11 P10
Function Pulse Qutput | TEST SCK1 SB1 SO1 SKO SBO S00

VMD-25

Visual Memory Unit (VMU) Hardware Manual

e Port 1 Data Direction Register (P1DDR)

The Port 1 Data Direction Register is a write-only register that corresponds to each data latch bit. It is
essential to note that if a bit manipulation instruction, the INC instruction, the DEC instruction, or the
DBNZ instruction is used on a write-only register, all bits other than the specified bit will be set to "1." The
following instructions are used on PIDDR:

e MOV * MOV @
o ST e ST@
e POP
Symbol | Address Bit7 Bit 6 Bit5 Bit 4 Bit 3
PIDDR 145H W P17DDR P16DDR P15DDR P14DDR P13DDR P12DDR P11DDR P10DDR
After a reset 0 0 0 0 0 0 0 0
Bit name Function
P17DDR (bit 7) |/0 control
0 _ 0: Input mode
P10DDR (bit O} 1: Output mode
P17DDR (bit 7): P17 1/0O control
|
P10DDR (bit 0): P10 1I/0O control

These bits switch the data I/O direction for each bit of port 1 (P17 to P10) between output mode (1) and
input mode (0). When abitis set to "1," the corresponding bit from P17
to P10 enters output mode; when a bit is set to "0," the corresponding
bit from P17 to P10 enters input mode.

Example: When P17DDR = 1, P17 is in output mode.

¢ 3 Port 1 Function Control Register (P1FCR)

The Port 1 Function Control Register is a write-only register. It is essential to note that if a bit manipulation
instruction, the INC instruction, the DEC instruction, or the DBNZ
instruction is used on a write-only register, all bits other than the
specified bit will be set to "1." The following instructions are used on

P1FCR:
e MOV * MOV @
e ST e ST@

e POP

VMD-26

3. Peripheral System Configuration

Symbol Address R/W Bit7 Bit 6 Bit5 Bit 4 Bit3 Bit2 Bit1
PIFCR 146H W P17FCR P16FCR P15FCR P14FCR P13FCR P12FCR P11FCR P10FCR
After a reset 0 0 0 0 0 0 0 0

Bit name Function

P17FCR (bit 7) P17 control function

0: Port data (P17) output
1: PWM output

P16FCR (bit 6) P16 control function

0: Port data (P16) output
1: Buzzer (BUZ) output

P15FCR (hit 5) P15 control function

0: Port data (P15) output
1: Serial interface clock (SCK1) output

P14FCR (bit 4) P14 control function

0: Port data (P14) output
1: Serial interface data (SB1) input/output

P13FCR (hit 3) P13 control function

0: Port data (P13) output
1: Serial interface data (SO1) output

P12FCR (bit 2) P12 control function

0: Port data (P12) output
1: Serial interface clock (SCKO) output

P11FCR (bit 1) P11 control function

0: Port data (P11) output
1: Serial interface data (SBO) input/output

P10FCR (bit 0) P10 control function

0: Port data (P10) output

1: Serial interface data (SO0) output

VMD-27

Visual Memory Unit (VMU) Hardware Manual

P17FCR (bit 7):

P16FCR (bit 6):

P15FCR (bit 5):

P14FCR (bit 4):

P13FCR (bit 3):

P12FCR (bit 2):

P11FCR (bit 1):

P10FCR (bit 0):

P17 function selection

This pin selects either PWM (1) or port data (0) for the P17 output. When
this bit is set to "1," P17 outputs the logical sum of the PWM signal and the
port latch data. When this bit is set to "0," P17 outputs the port latch data.

P16 function selection

This pin selects either the buzzer (1) or port data (0) for the P16 output.
When this bit is set to "1," P16 outputs the logical sum of the buzzer signal
and the port latch data. When this bit is set to "0," P16 outputs the port
latch data.

P15 function selection

This pin selects either the serial clock (1) or port data (0) for the P15 output.
When this bitis set to "1," P15 outputs the logical sum of the serial interface
clock (SCK1) and the port latch data. When this bit is set to "0," P15 outputs
the port latch data.

P14 function selection

This pin selects either serial data (1) or port data (0) for the P14 output.
When this bitis set to "1," P14 outputs the logical sum of the serial interface
data (SB1) and the port latch data. When this bit is set to "0," P14 outputs
the port latch data.

Note that serial interface data can always be input.

P13 function selection

This pin selects either serial data (1) or port data (0) for the P13 output.
When this bitis set to "1," P13 outputs the logical sum of the serial interface
data (SO1) and the port latch data. When this bit is set to "0," P13 outputs
the port latch data.

P12 function selection

This pin selects either the serial clock (1) or port data (0) for the P12 output.
When this bitis set to "1," P12 outputs the logical sum of the serial interface
clock (SCKO) and the port latch data. When this bit is set to "0," P12
outputs the port latch data.

P11 function selection

This pin selects either serial data (1) or port data (0) for the P11 input/
output. When this bit is set to "1," P11 outputs the logical sum of the serial
interface data (SB0) and the port latch data. In bus mode, however, this bit
is an input/output (SB0). When this bit is set to "0," P11 outputs the port
latch data.

Note that serial interface data can always be input.

P10 function selection

This pin selects either serial data (1) or port data (0) for the P13 output.
When this bitis set to "1," P10 outputs the logical sum of the serial interface
data (SO0) and the port latch data. When this bit is set to "0," P10 outputs
the port latch data.

VMD-28

3. Peripheral System Configuration

Note: on Writing Game Programs for the VMU:
Game programs for the VMU must perform the following processing:

. en the VMU is operating on a standalone basis (SIO is not being used)

1. Monitor the 5V detection in port 7.

2. Once the 5V signal has been detected, change bits 2 and 5 of port 1 to port data output mode, and
then output a "0" (zero) from each bits.

Once the above processing is completed, restore the settings that were in effect before the above
processing was performed.

Note:

* When using one of Port 1's independent functions, it is necessary to set the port latch that corresponds
to that function to "0." For example, when using PWM, set P17 = 0.

e The port latch data is read by the following instructions: BPC, DBNZ, INC, DEC, SET1, CLR1 and
NOTI. Other instructions read the data that is applied to the port.

VMD-29

Visual Memory Unit (VMU) Hardware Manual

wacw

P1FCR (146H)

P1DDR (145H)

[7]e]s5][af3]2]1[o]| FrvPe [7]6[5[a]3]2[1]0
L

0 P17/PWM

fwm Output buffer

TS =R
(BRI

|
—
|
§CKO1— 4
|

0 P16/BUZ

0 P15/SCK1
0 P14S11/SB1

0 P13S01

0 P12/SCKO
0 P11/S10/SB

0 P10/P00

N
S m
S m
B e —
SCKO1—
Sm -
—(20] w it
—{0a _;II—D
Input
buffer
MPX 4
<
MPX 4
<
MPX 4
<
MPX 4
<
MPX 4
<
MPX 4
<
MPX 4
A
MPX y
A
Slo0 {4— VMS serial interface circuit
Slof {4— SDCKB Output Enable |¢
‘—
SDCKB Input |4
SDCKB output
SDCKA Output Enable
SDCKA Input
SDCKA Output

Figure 3.3 Port 1 Block Diagram

VMD-30

3. Peripheral System Configuration

1.2 Port 3

Port 3 is an input-only port that is used for the VMU direction keys, buttons (A, B, MODE), and VMU SLEEP button.

e Port 3 Latch (P3)

Symbol Address @ R/W Bit7 Bit6 Bit5 Bit4 Bit 2 Bit 1 Bit 0
P3 14CH R/W P37 P36 P35 P34 P33 P32 P31 P30
Function SLEEP MODE Button B Button A RIGHT LEFT DOWN upP

After reset 0 0 0 0 0 0 0 0

Because bits 0 through 7 of port 3 are programmable and can be pulled up through software, it is necessary for the
user program to substitute ones for P3. when a button is pressed, the corresponding bit goes to "0."

Note: Regarding the direction keys, design game programs so that opposing directions (up-down,
left-right) cannot be pressed simultaneously.

e Port 3 Data Direction Register (P3DDR)14DH

The above register is set by the internal system program.

This register cannot be accessed from a game program.
e Port 3 Interrupt Control Register (P3INT)

Symbol = Address R/W Bit7 Bit 6 Bit5 Bit4 Bit3 Bit2 Bit1
P3INT 14EH R/W - - - - - P32INT P31INT P30INT
After reset H H H H H 0 0 0

Bit name Function

P32INT (bit 2) Port 3 interrupt control flag

0: Prohibits cancellation of HOLD mode when an interrupt is generated by port 3.
1: Enables cancellation of HOLD mode when an interrupt is generated by port 3.

P31INT (bit 1) Port 3 interrupt source flag

0: No interrupt source
1: Interrupt source

P30INT (bit 0) Port 3 interrupt request flag

0: Interrupt request prohibited
1: Interrupt request enabled

VMD-31

Visual Memory Unit (VMU) Hardware Manual

P32INT (bit 2):

P31INT (bit 1):

P30INT (bit 0):

Port 3 interrupt selection flag

This flag selects whether port 3 is to be used for interrupt source
generation or not.

P32INT = 0: Does not generate interrupts on port 3.
P32INT = 1: Generates interrupts on port 3.

Port 3 interrupt source flag

This flag has meaning only when the P32INT flag is set. This flag is
used to monitor the presence/absence of port 3 interrupt sources.

This flag is set (1) when an interrupt source is generated on port 3, and
does not change if no interrupt source is generated. This flag must
be reset by software.

Port 3 interrupt request enable control

This bit enables (1) / disables (0) interrupt requests due to the
generation of an interrupt source on port 3.

P30INT =0: Disables interrupt requests on port 3.

P30INT =1: Enables interrupt requests to vector address 004BH
when an interrupt source is generated on port 3 (when P31INT =1).

VMD-32

3. Peripheral System Configuration

Figure 3.4 Port 3 Block Diagram

P3DDR(14DH)
716)5)14]|3|2|1]0
P CLEL G e
—
—{0 o] mex|[[V o Pu
B Output buffer
u
S Input buffer
N
N
e})
N
e})
|
MPX 4
N
MPX 4
|
MPX 4
N
MPX 4
2N N
b
Port 3 interrupt req éi
g

VMD-33

Visual Memory Unit (VMU) Hardware Manual

1.3 Port7

Port 7 is an input-only port that is used for checking low voltage in the VMU and for checking the connection with
the next-generation game machine. (Refer to Fig. 3-1-8.)

e Port 7 (P7)

Symbol Address R/W Bit7 Bit 6 Bit5 Bit4

P7 15CH R - - - - P73 P72 P71 P70

Function - - - - D1 DO Low 5V
voltage detection

After reset H H H H 0 0 1 0

internal pull-up resistor transistors set the initial input state of bits 7 through 0 of port 7 to "1." When a button is
pressed, the corresponding bit goes to "0."

CTYPE

Pull-up register
)
4 W o P73/INT3/TOIN
X o P72/INT2/TOIN
4 o PT1/INT1
B
U D TYPE
S
Pull-up register %
4 } o P70/INTO
™\J

Figure 3.5 Port 7 Block Diagram

VMD-34

3. Peripheral System Configuration

2. Timer/Counter 0 (TO)

2.1 Overview

POTATO's built-in Timer/Counter 0 (T0) is a 16-bit timer/counter that has the four functions listed below. In
addition, the Timer 0 prescaler is an 8-bit prescaler.

Mode 0: 8-bit reload timer x 2 channels, with programmable prescaler

Mode 1: 8-bit reload timer with programmable prescaler + 8-bit reload counter
Mode 2: 16-bit reload timer with programmable prescaler

Mode 3: 16-bit reload counter

2.2 Functions

* 8-bit reload timer x 2 channels, with programmable prescaler (mode 0)

TO operates as two independent 8-bit reload timers (TOH, TOL) according to the clock from the 10-bit/8-bit
prescaler.

* 8-bit reload timer with programmable prescaler + 8-bit reload counter (mode 1)

* TOH operates as an 8-bit reload timer according to the clock from the 8-bit prescaler. TOL detects and
counts external input signals from the P72/INT2/T0IN and P73/INT3/TOIN pins.

* 16-bit reload timer with programmable prescaler (mode 2)
* TO operates as a 16-bit reload timer (TOH + TOL) according to the clock from the 10-bit/8-bit prescaler.
¢ 16-bit reload counter (mode 3)

e TO operates as a 16-bit reload counter in which the overflow of TOL is used as the clock for TOH. TOL
detects and counts external input signals from the P72/INT2/TOIN and P73 /INT3/TOIN pins.

¢ Interrupt generation

e When the interrupt request enable bit is set, TOH and TOL interrupt requests are generated when the TOH
and TOL registers overflow.

¢ The following Special Function Registers must be manipulated in order to control Timer/Counter 0 (T0).

e TOH e TOHR
e TOL e TOLR

e TOCNT ¢ TOPRR
e ISL ¢ [23CR

VMD-35

Visual Memory Unit (VMU) Hardware Manual

2.3 Circuit Configuration

The configuration of Timer/Counter 0 (T0) is shown in Fig. 3-2-1.
* Prescaler -+ =

The 8-bit prescaler consists of an 8-bit programmable counter, and does not have a cycle clock
divide-by-4 circuit.

The prescaler counts up while the system is running; "00" is set in the divide-by-4 circuit (in the case of the
10-bit prescaler) if the program has changed the prescaler data, and counting begins from the changed data.
The cycle clock is a signal that is generated once per cycle while executing instructions and in HALT mode.

e Timer/Counter 0 Low (TOL) -+ _

This is an 8-bit reload timer/ counter that uses the prescaler output or a signal on an external pin as a clock.
The TOLR data is reloaded upon a TOL overflow in modes 0 or 1 and upon a TOH overflow in modes 2 and
3; the TOLR data is also reloaded when TOLRUN (bit 6 of TOCNT) is reset and system operation is stopped.

e Timer/Counter 0 High (TOH) - ®

This is an 8-bit reload timer that uses the prescaler output or TOL overflow as a clock. The Timer 0 High
Reload (TOHR) register data is reloaded upon a TOH overflow; the TOHR data is also reloaded when
TOHRUN (bit 7 of TOCNT) is reset and system operation is stopped.

e Timer/Counter 0 Control Register (TOCNT) -+ ~

This register sets modes 0 through 3 for TO and controls interrupts.

- B iw prassalsn - 1

Eyela clach S T :l_,. it premcalsc — Bara vismr clack

i ._l Balead pogdinar (TiFR.__f

FIESIETE
¥ ignal
FTNIR _——
dazacte _'L_

caem
- Sgplaswer Latdlacman
[FTEE " - 5 il =

fTeim - F o B 1 alscwen
N
—] : TOLEST = Eeload megioven (TLED -—E .‘

o BB A% Emmmas (TEL)

LT al notan e ¥b it conmmar (TEH) |

TolE

b b Felessd roegroter (TEER) o

TIE| S & | | 2| L] @ ™
IE.!'I.'Elllju'! | | | Lk Sl
] TOHOT
| TOREVT
SEEIEIEIEI R v|e|s|a|a]e|s]e
195 | LEPH) TOCNT | LLoM)

Figure 3.6 Timer/Counter 0 Block Diagram

VMD-36

3. Peripheral System Configuration

2.4 Related Registers

e Timer/Counter 0 Control Register (TOCNT)

Symbol Address R/W Bit7 Bit 6 Bit5 Bit 4 Bit3 Bit2 Bit1
TOCNT 14EH R/W TOHRUN TOLRUN TOLONG TOLEXT TOHOVF TOHIE TOLOVF TOLIE
After reset 0 0 0 0 0 0 0 0
Bit name Function
TOHRUN (bit 7) TOH count control

0: Count stop/data reload

1: Count start

TOLRUN (bit 6) TOL count control

0: Count stop/data reload
1: Count start

TOLONG (hit 5) Timer/counter 0 bit length selection
0: 8 bits
1: 16 bits

TOLEXT (bit 4) TOL input clock selection

0: Prescaler output
1: External pin input signal

In the case of an external pin, specify the pin through the Input Signal Selection (ISL) register.

TOHOVF (bit 3) TOH overflow flag

0: No overflow flag

1: Overflow flag

TOHIE (bit 2) TOH interrupt request enable

0: Interrupt request disabled

1: Interrupt request enabled

TOLOVF (bit 1) TOL overflow flag

0: No overflow flag

1: Overflow flag

TOLIE (bit 0) TOL interrupt request enable

0: Interrupt request disabled

1: Interrupt request enabled

VMD-37

Visual Memory Unit (VMU) Hardware Manual

TOHRUN (bit 7): TOH count control

This bit starts (1) /stops (0) Timer /Counter 0 High (TOH). When this
bitis set to "1," the clock is input to TOH, which begins counting; when
this bitis set to "0," the clock supplied to TOH is stopped and the reload
data (TOHR) is transferred to TOH simultaneously.

TOLRUN (bit 6): TOL count control

This bit starts (1) / stops (0) Timer/ Counter 0 Low (TOL). When this bit
issetto"1," the clock is input to TOL, which begins counting; when this
bit is set to "0," the clock supplied to TOL is stopped and the reload
data (TOLR) is transferred to TOL simultaneously.

TOLONG (bit 6): Timer/Counter 0 bit length selection

This bit selects the TO bit length as either 16 bits (1) or 8 bits (0). When
this bit is set to "1," the bit length of Timer/Counter 0 is 16 bits; when
this bitis set to "0," the bit length is set to 8 bits. Set this bit to "0" when
using modes 0 and 1, and to "1" when using modes 2 and 3.

Mode TOLONG TOLEXT

0 0 0

1 0 1

2 1 0

3 1 1
TOLEXT (bit 4): TOL input clock selection

This bit selects the TOL input clock as either external pin input signal
(1) or as prescaler output (0). When this bitis set to "1," the input signal
from the external input pin (either P72 /INT2/TOIN or P73/INT3/
TOIN) becomes the clock for TOL; when this bit is set to "0," the
prescaler output becomes the clock. The Input Signal Selection (ISL)
register selects either P72/INT2/TOIN or P73/INT3/TOIN as the
external input pin.

TOHOVF (bit 3): TOH overflow flag

This flag is set when an overflow occurs in TOH, and does not change
when no overflow occurs. Therefore, this flag must be reset by
software.

TOHIE (bit 2): TOH interrupt request enable control

This bit enables (1)/disables (0) interrupt requests due to a TOH
overflow. When this bit is set to "1," an interrupt request is generated
to vector address 0023H in response to a TOH overflow; when this bit
is set to "0," no interrupt request is generated.

VMD-38

3. Peripheral System Configuration

TOLOVF (bit 1): TOL overflow flag
This flag is set when an overflow occurs in TOL, and does not change when
no overflow occurs. Therefore, this flag must be reset by software.

In 16-bit mode, this flag is not set even if an overflow occurs in TOL; when
an overflow occurs in TOH, this flag is set at the same time as TOHOVE.

TOLIE (bit 0): TOL interrupt request enable control

This bit enables (1) / disables (0) interrupt requests due to a TOL overflow.
When this bit is set to "1," an interrupt request is generated to vector
address 0013H in response to a TOL overflow; when this bit is set to "0," no
interrupt request is generated.

Note:

* TOHOVF and TOLOVF must be set to "0" by software.

* When operating in 16-bit mode, set TOHRUN and TOLRUN to "1" simultaneously.
e In 16-bit mode, TOHOVF and TOLOVF both go to "1" simultaneously.

e Input Signal Selection register (ISL)

This register is used to select the time constant for the noise elimination filter connected to the P73/INT3/
TOIN pin, and to select the external signal input pin. This register cannot be accessed by game programs.

Use only bit manipulation instructions to access this register.

Symbol Address R/W Bit7 Bit 6 Bit5 Bit 4 Bit3 Bit2 Bit1
ISL 15FH R/W - - ISL5 ISL4 ISL3 ISL2 ISL1 ISLO
After reset H H 0 0 0 0 0 0

VMD-39

Visual Memory Unit (VMU) Hardware Manual

Bit name Function

ISL5 (bit 5) Base timer clock selection
ISLA (bit 4 1SL5 ISL4
1 1 Timer/Counter TO prescaler
1 Cycle clock
X 0 Subclock (crystal oscillator)
ISL3 (bit 3) Buzzer output frequency selection
0: fBST/16
1: fBST/8
ISL2 (bit 2) Noise elimination filter time constant selection
ISL1 {bit1) ISL2 ISL1 Time constant
1 1 16Tcyc
1 64Teyc
X 0 1Teye
ISLO (bit 0) TO clock input pin selection
0: P72/INT2/TOIN pin
1: P73/INT3/TOIN pin
ISL5 (bit 5): Base timer clock selection
ISL4 (bit 4):

These bits select the base timer input clock.

Base timer input clock

Fixed to subclock (crystal oscillator)

ISL3 (bit 3): Buzzer output frequency selection

This bit selects the buzzer output frequency as either fBST/8 (1) or as
fBST/16 (0). When "1" is set, the signal that is output from the buzzer
output pin (BUZ) has a frequency that is 1/8 that of the base timer
input frequency; when "0" is set, the signal that is output has a
frequency that is 1/16 that of the base timer input frequency.

ISL2 (bit 2): Noise elimination filter time constant selection
ISL1 (bit 1):

These bits select the noise elimination filter time constant.

VMD-40

3. Peripheral System Configuration

Time constant

0 0 1Teye

The following table shows the signal and noise ranges for each time constant.

Time constant Noise *1 Noise/signal *2
1Teye < 1Teye 1Teyc - 2Teye 2Tcyc <
*1e A signal that does not meet the indicated time constant is deemed to be noise and is not
accepted by the LSI.
*2e A signal that falls within the indicated range for the time constant may be deemed to be noise
and might not be accepted by the LSI.
*3e A signal that exceeds the indicated time constant is deemed to be the correct signal and is
accepted by the LSI.
ISLO (bit 0): TO clock input pin selection

This bit selects the external signal input pin for the T0 as either P73 /INT3/
TOIN (1) or P72 /INT2/TOIN (0). If "0" is set, P72 /INT2/ TOIN is selected as
the external signal input pin.

e Timer 0 Prescaler Data Register (TOPRR)

The Timer 0 Prescaler Data Register sets the clock cycle for Timer/Counter 0; the clock cycle can be set to
one of 256 levels through an 8-bit programmable counter.

For the 8-bit prescaler, the cycle clock signal is input directly. The clock cycle TPR for Timer/Counter 0 can
be determined by setting the desired data in TOPRR (111H).

8-bit prescaler ‘TPR =1 x Teyc x (256-[TOPRR])(decimal)
Teyc: Cycle clock cycle

Symbol Address R/W Bit 6 Bit5 Bit 4 Bit3 Bit2 Bit1
TOPRR 111H R/W TOPRR7 TOPRR6 TOPRR5 TOPRR4 TOPRR3 TOPRR2 TOPRR1 TOPRRO
After reset 0 0 0 0 0 0 0 0

e Timer 0 Low register (TOL)

This is an 8-bit timer / counter. This timer/ counter detects and counts either the clock from the prescaler or
an external signal from P72 /INT2/TOIN or P73 /INT3/TOIN. When this register overflows, the TOL
overflow flag is set.

VMD-41

Visual Memory Unit (VMU) Hardware Manual

Symbol Address R/W Bit 7 Bit 6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
TOL 112H R TOL7 TOLG6 TOLS TOL4 TOL3 ToL2 TOL1 TOLO
After reset 0 0 0 0 0 0 0 0

 Timer 0 Low Reload register (TOLR)

This is the reload register for Timer/Counter 0 Low (TOL). In 8-bit mode, the reload data is reloaded into
TOL each time that TOL overflows and when TOLRUN = 0; in 16-bit mode, the reload data is reloaded into
TOL each time that TOH overflows and when TOHRUN = 0.

Symbol Address R/W Bit 7 Bit 6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
TOLR 113H R/W TOLR7 TOLR6 TOLR5 TOLR4 TOLR3 TOLR2 TOLR1 TOLRO
After reset 0 0 0 0 0 0 0 0

e Timer 0 High register (TOH)Aj

This is an 8-bit timer / counter. This timer/counter detects and counts either the clock from the prescaler or
TOL overflows. When this register overflows, the TOH overflow flag is set.

Symbol Address R/W Bit7 Bit6 Bit5 Bitd Bit3 Bit2 Bit1
TOH 114H R TOH7 TOH6 TOH5 TOH4 TOH3 TOH2 TOH1 TOHO
After reset 0 0 0 0 0 0 0 0

e Timer 0 High Reload register (TOHR)

This is the reload register for Timer/Counter 0 High (TOH). The reload data is reloaded into TOH each time
that TOH overflows and when TOHRUN = 0.

Symbol | Address = R/W Bit?7 Bit6 Bit5 Bit4 Bit3 117 Bit1 Bit0
TOHR 115H R/W TOHR 7 TOHR6 TOHR5 TOHR4 TOHR3 TOHR2 TOHR1 TOHRO
After reset 0 0 0 0 0 0 0 0

e External Interrupt 2, 3 Control Register (I23CR)
This register sets external input signal detection and interrupts.

Regarding ISLO, refer to the "Input Signal Selection Register" (described later) for details.

VMD-42

3. Peripheral System Configuration

123CR?7 123CR6 123CR3 123CR2 External Signal Counting Condition
1 0 1 - - Count falling edge of P73/INT3/TOIN
1 1 0 - - Count rising edge of P73/INT3/T0OIN
1 1 1 - - Count both edges of P73/INT3/TOIN
0 - - 0 1 Count falling edge of P72/INT2/TOIN
0 - - 1 0 Count rising edge of P72/INT2/TOIN
0 - - 1 1 Count both edges of P72/INT2/TOIN
0 0 0 0 Do not count

Symbol = Address R/W Bit4 Bit3 [:]17 Bit1 Bit0
123CR 15EH R/W 123CR7 123CR6 123CR5 123CR4 123CR3 123CR2 [23CR1 123CRO
After reset 0 0 0 0 0 0 0 0

Bit name Function

123CR7 (bit 7) INT3 rising edge detection control

0: Do not detect
1: Detect

123CR6 (bit 6) INT3 falling edge detection control

0: Do not detect
1: Detect

123CRb (bit 5) INT3 interrupt source

0: No interrupt source
1: Interrupt source

123CR4 (bit 4) INT3 interrupt request enable control

0: Interrupt request disabled
1: Interrupt request enabled

123CR3 (bit 3) INTZ rising edge detection control

0: Do not detect
1: Detect

123CR2 (bit 2) INTZ falling edge detection control

0: Do not detect
1: Detect

123CR1 (bit 1) INT2 interrupt source

0: No interrupt source
1: Interrupt source

123CRO (bit 0) INTZ interrupt request enable control

0: Interrupt request disabled
1:Interrupt request enabled

VMD-43

Visual Memory Unit (VMU) Hardware Manual

123CR?7 (bit 7):

123CR6 (bit 6):

123CR5 (bit 5):

123CR4 (bit 4):

123CR3 (bit 3):

123CR2 (bit 2):

123CR1 (bit 1):

INT3 rising edge detection control

This bit selects whether to detect (1) or not detect (0) the rising edge of
the signal input to the P73 /INT3/TOIN pin. When this bit is set to "1,"
I23CR5 is set (1) when the rising edge of the input signal is detected;
if the INT3 interrupt request is enabled (I23CR4 = 1), then an interrupt
is generated. When this bit is set to "0," the rising edge of the signal is
not detected.

INTS3 falling edge detection control

This bit selects whether to detect (1) or not detect (0) the falling edge
of the signal input to the P73/INT3/TOIN pin. When this bit is set to
"1," 123CRb5 is set (1) when the falling edge of the input signal is
detected; if the INT3 interrupt request is enabled (I123CR4 = 1), then an
interrupt is generated. When this bitis set to "0," the falling edge of the
signal is not detected.

INTS3 interrupt source

This bit is set if the conditions specified by I123CR7 or I123CR6 are met;
if the INT3 interrupt request is enabled, then control jumps to vector
address 001BH and interrupt processing begins. The value of this bit
does not change even when interrupt processing is completed.
Therefore, this bit must be reset by software.

INT3 interrupt request enable

This bit enables (1) or disables (0) external interrupt 3 (INT3). When
this bit is set to "1," and I123CR5 has been set, then INT3 interrupt
processing is executed. When this bit is set to "0," interrupt processing
is not executed.

INT?2 rising edge detection control

This bit selects whether to detect (1) or not detect (0) the rising edge of
the signal input to the P72 /INT2/TOIN pin. When this bit is set to "1,"
I23CR1 is set (1) when the rising edge of the input signal is detected;
if the INT2 interrupt request is enabled (I23CR0 = 1), then an interrupt
is generated. When this bit is set to "0," the rising edge of the signal is
not detected.

INT2 falling edge detection control

This bit selects whether to detect (1) or not detect (0) the falling edge
of the signal input to the P72/INT2/TOIN pin. When this bit is set to
"1," 123CR1 is set (1) when the falling edge of the input signal is
detected; if the INT2 interrupt request is enabled (I23CR0 = 1), then an
interrupt is generated. When this bitis set to "0," the falling edge of the
signal is not detected.

INT2 interrupt source

This bit is set if the conditions specified by I23CR3 or 123CR2 are met;
if the INT2 interrupt request is enabled, then control jumps to vector
address 0013H and interrupt processing begins. The value of this bit
does not change even when interrupt processing is completed.
Therefore, this bit must be reset by software.

VMD-44

3. Peripheral System Configuration

I23CRO (bit 0): INT?2 interrupt request enable control
This bit enables (1) or disables (0) external interrupt 2 (INT2). When
this bit is set to "1," and 123CR1 has been set, then INT2 interrupt
processing is executed. When this bitis set to "0," interrupt processing
is not executed.

Note:

* Edge detection is not performed if 23CR7 and 6 or I23CR3 and 2 are both "0." If both of either pair are
"1," then both edges are detected.

e Input from the P73/INT3/TOIN pin is connected to the noise filter.

2.5 Circuit Configuration and Description of Operation

® Timer 0 mode settings

Mode TOLONG TOLEXT
0 0 0
1 0 1
2 1 0
3 1 1

® Mode 0: 8-bit reload timer x 2 channels, with programmable prescaler

In mode 0, Timer 0 functions as two 8-bit reload timers. The relationship between the timer value and the
reload register (TOLR) setting is as shown below.

Time until TOHOVF is set (1) (decimal) = (256 - TOHR setting) ¥ TPR
Time until TOLOVF is set (1) (decimal) = (256 - TOLR setting) ¥ TPR
TPR: Clock cycle from prescaler

Once the count control bit (TOHRUN, TOLRUN) is set, the counting operation starts. If the bit is reset, the
counting operation stops, and the contents of the reload register (TOHR, TOLR) are transferred to the
counter (TOH, TOL).

If Timer / Counter 0 (TOH, TOL) overflows, the overflow flag (TOHOVF, TOLOVF) is set, and the contents of
the reload register (TOHR, TOLR) are transferred to the counter (TOH, TOL).

If both the overflow flag (TOHOVE TOLOVF) and the interrupt request enable flag (TOHIE, TOLIE) are set,
an interrupt request is sent to the interrupt control circuit.

VMD-45

Visual Memory Unit (VMU) Hardware Manual

_TOH
k7|
Prscakr [Coonter TOH (1 18H) b TOH ove rilw Tiag
T TOHDYF
Cywcle chbok Felosd mgnter TOHR (115H]
_TOL
Sal
Prscakr bt CownterTOL (112H) _.:g:;'::m Tiag

Cyele chogk

E

Rebsd register TOLR {1 1!#1

Figure 3.7 Circuit Configuration for Mode 0: 8-bit Reload Timer x 2 Channels

® Mode 0 Program Example

TOH time s2tting

TOL time setting

|
TO mode setting
TOH, TOL cperation start

{ TOH irﬂerrulgt routineg)

TOH overflow flag clear
|
H"I'EEI'TIJ,E!t

Q Re)

TOH, TOL cperation stop

CLR1
CLR1

BOPFH, TOPRP ; Assume Te = 4T0yC
#30H, TOHR | Set TOH time setting to FO4TCyc
200H, TOLR ; Set TOL time setting to 1024Toye

#0C4H, TOCNT ; Set mode 0.
(Regarding interrupts, set TOH only.)
HA0M, IE

TOCHT, 3 ; Set TOHOVF = 0,

0L ; Read TOL data periodically.

: Return fromintermupt routine

TOCHT, & : Set TOLRUM = 0.
TOCNHT, 7 Set TOHRUN = Q.

VMD-46

3. Peripheral System Configuration

* Mode 1: 8-bit reload timer with programmable prescaler + 8-bit reload counter

¢ 8-bit reload timer
The upper 8 bits of Timer 0 (TOH) operate as an 8-bit reload timer. The relationship between the timer value
and the reload register (TOHR) setting is as shown below.

Time until TOHOVF is set (1) (decimal) = (256 - TOHR setting) x TPR
TPR: Cycle of clock from prescaler

The data in the reload register is loaded into the counter TOH at each interval at which TOHOVF is set. In
addition, the timer operation continues until the TOH count control bit (TOHRUN) is reset. The operation

method is the same as for mode 0.

Set
Friscalkr - Counier TOH {1148 _..Tﬂ'H ovearl o Hag
T { TOHOVF)
Cycle Clock Rgload regster TOMR (1 135H

Figure 3.8 Block Diagram for Mode 1: 8-bit Reload Timer (TOH)

e 8-bit reload counter

The lower 8 bits of Timer 0 (TOL) are used to count the signals input through the external pin. The external
signal is filtered through a noise filter. For details, refer to Chapter 3, section 3.2.4, "Related Registers and

Input Signal Selection Register (ISL)."
The relationship between the counted value and the reload register (TOLR) setting is as follows:

Counted value until TOLOVF is set (1) (decimal) = 256 - (TOLR setting)

If the TOL overflow flag (TOLOVF) is set, the data in the reload register TOLR is transferred to the counter
TOL. In addition, counting continues until the TOL count control bit (TOLRUN) is reset.

||-"\l2.lnr.'-":':-h = FEY
— Cosmier TOL (VS —n oL derhedlg

Rl]

|H|-r. TR TG, .ll'l-cﬂ rlmpgloe idflr i = l|

Bl s e TULE T 1 EH)

Figure 3.9 Block Diagram for Mode 1: 8-bit Reload Counter (TOL)

VMD-47

Visual Memory Unit (VMU) Hardware Manual

* Mode 1 Program Example

Start

Mov WOFEM, TOPRR ; ASsume ke = BiCys
mov BSO0H, TOMR 5 =&t TOH time setting to 1408 Toye.,
Moy #00H, TOLE Set TOL count setting to 256T cyc.

TOH time satting
TOL count setting

Moy #40M,IZ3ICE

Moy #01H, TSL yLlse PYSANTZATOIM for coumter imput,
ITD mode setting Moy #OD4M, TOCHT § Set mode 1,

TOH, TOL operation ‘:1{&1(s [Regardng intermupts, ser TOH only.)
Moy #BOM,IE

¢ TOH interrupt routine

TOH overflow flag clear| copi ToowT, 3 > St TOHOVE = 0,
/In'rerrupt Frm-cesarrg/ o TOL : Bead TOL data penodically.
|
' Return) RETI Return from intermupt
routine.

TOH, TOL stepCLR1 TOCHT, 6 ; Set TOLRUM = 0.
i Jmpcz.nl TOCNT, 7 ; Sat TOHRLN = 0.

End

* Mode 2: 16-bit reload timer with programmable prescaler
Mode 2 connects TOH and TOL in series and uses them as a 16-bit timer.

To start the timer, set the counter control bits (TOHRUN and TOLRUN) for both TOH and TOL
simultaneously.

The relationship between the timer value and the reload register (TOHR, TOLR) settings is as follows:
Time until TOHVOF is set (1) (decimal)
= (65,536 - 256 x (TOHR setting) - (TOLR setting)) x TPR

TPR: Cycle of clock from prescaler
TOLOVF is set at the same time as TOHOVF, and each time that TOHOVF is generated, the reload data (TOLR,

TOHR) is transferred to TOL and TOH, respectively. Timer operation continues until the count control bit is
reset. The operation method is the same as for mode 0.

VMD-48

3. Peripheral System Configuration

Read the Timer 0 (T0) data according to the following procedure:

TOL
N2
TOH
N2
TOL
N2

TOH

LD TOL ; Read TOL data (1).
ST 020H
LD TOH ; Read TOH data.
ST 021H
LD TOL ; Read TOL (2) data again.
BP TOL,7,DES ; When bit 7 of TOL (2) is "0" and
BN 020H,7,DES ; bit 7 of TOL (1) is "1"...
ST 020H
LD TOH : Read TOH (2).
ST 021H
DES: _next program
T o TN o T et
T SnssnEm
Cpmamer febed monlerTOLRCTIEN)| fulond master TONR (8 15HH]

Figure 3.10 Block Diagram for Mode 2: 16-bit Reload Timer

VMD-49

Visual Memory Unit (VMU) Hardware Manual

* Mode 2 Program Example

[Start)
'_|_'

HOA BOFFH, TODPRER § Asauma Ty = 4fcye
TOH tme setting Mov #70d,ToHR 5t TOtime sstting to 1473967 cyc.
l MECET #OFH, TOLR

TO mode setting | MOV WOB4H, ToCHT : 29t moda 2,
TOH, TOL cperation stark ; (Regardnginterrupts, sat TOH onfy.)
o on HEDH,IE

YoH Intermunt rcn..l't:ﬁ':::_:l
|

TOH everflow flag cle\ri
I

el TOOMT, 3 s Ser TOMOWF = 0.
CLEL TOOHT. 1 s Cer TOLOWE =00

Lt i INE Pl : Incrementport 1 data
T (] T "
/ Intermupt T) ._';/ lateh,
*f__ Fisturmn :? RETI : Raturn from mbanmunt
[Foukine

i ,
A : - eree] CLRL TOCHT, & s Set TOLRAN = 0
bk it i d4 CLEL TOOMT, 7 s Sap TOHRLN = 0.

== ===
(_End)

* Mode 3: 16-bit reload counter

Mode 3 connects TOH and TOL in series and uses them as a 16-bit counter. The clock is an external signal
that is input from either P72 /INT2/ TOIN or P73/INT3/TOIN. The external input pin is selected through the
special function register ISL. A noise elimination filter is connected to the P73 /INT3/TOIN pin.

To start the counter, set the counter control bits (TOHRUN and TOLRUN) for both TOH and TOL
simultaneously.

The relationship between the counted value and the reload register (TOHR, TOLR) settings is as follows:

Count until TOHVOF is set (1) (decimal)

= 65,536 - 256 x (TOHR setting) - (TOLR setting)

TOLOVF is set at the same time as TOHOVE, and each time that TOHOVF is generated, the reload data (TOLR,
TOHR) is transferred to TOL and TOH, respectively. Timer operation continues until the count control bit is
reset. The operation method is the same as for mode 0.

VMD-50

3. Peripheral System Configuration

TOL

TOH

TOL

TOH

Read the Timer 0 (T0) data according to the following procedure:

LD
ST
LD
ST
LD
BP
BN
ST
LD
ST
DES:

* Mode 3 Program Example

TOH count setting
I

TO mode satting
TOH, TOL operation sta

¢_TOH nterupt_ routine)

TOH owverflow flag clear
I

/Interru[:-t ::mc@&smg/

|
(. Faturn)]

TCH, TOL opearation stog

ChRiD

L [
Mo

MO
o
T MO

Mo

CLE1
CLR1

INC

RETI

CLREL
CLE1

TOL ; Read TOL data (1).

020H

TOH ; Read TOH data.

021H

TOL ; Read TOL (2) data again.
TOL,7,DES ; When bit 7 of TOL (2) is "0" and
020H,7,DES ; bit 7 of TOL (1) is "1"...

020H

TOH ; Read TOH (2).

021H

_ next program

#50H, TOMR ;Set TO count satbing to 45056,
#00H, TOLR |

Wo4H, 12308 | Select INT 2 falling edge.
#00H, IsL ; Use the P72/INT 2 pin for input.

#0F 4H, TOCNT; Ser mode 3,
: (Regardinginterrupts, set TOH only.)
MWEOH, IE

TOCNT; 3 s Set TOHOVF = 0,
TOCNT, 1 ; Set TOLOVF = 0.

Pl Increment port 1 data latch,

¢ Return from interrupt routine,

TOCNT; & S TOLRM = 0,
TOCNT, T St TOHRUM = O,

Figure 3.11 Block Diagram for Mode 3: 16-bit Reload Counter

VMD-51

Visual Memory Unit (VMU) Hardware Manual

3. Timer 1(T1)

3.1 Overview

POTATO's built-in Timer 1 (T1) is a 16-bit timer that has the four functions listed below.

3.2 F

Mode 0: 8-bit reload timer x 2 channels

Mode 1: 8-bit reload timer + 8-bit reload counter

Mode 2: 16-bit reload timer

Mode 3: Variable bit length pulse generator (9 to 16 bits)

unctions

¢ 8-bit reload timer x 2 channels (mode 0)

T1 operates as two independent 8-bit reload timers (T1H, T1L), using as the clock the signal that is
generated once each cycle (cycle clock) while executing an instruction.

¢ 8-bit reload timer + 8-bit reload counter (mode 1)

T1H operates as an 8-bit reload timer using the cycle clock. T1L operates as an 8-bit pulse generator. The
pulse signal is output from the P17/ pulse signal output pin.

e 16-bit reload timer (mode 2)

TO operates as a 16-bit reload timer using the T1L overflow signal as the clock for T1H. The input clock for
T1L is the cycle clock. Each time that T1L generates an overflow, the T1LR reload data is reloaded in T1L;
the same applies to T1H.

Either the cycle clock or the cycle clock divided by 2 is used as the clock for T1L.

e Variable bit length pulse generator (9 to 16 bits) (mode 3)

T1L and T1H are used to generate a pulse signal of 9 to 16 bits. The pulse signal is output from the P17/
pulse signal output pin.

Either the cycle clock or the cycle clock divided by 2 is used as the clock for T1L.

¢ Interrupt generation

When the interrupt request enable bit is set, T1H and T1L interrupt requests are generated when the T1H
and T1L registers overflow.

The following Special Function Registers must be manipulated in order to control Timer 1 (T1).

OET1H OET1HR OET1IHC
OET1L OET1LR OETILC

OET1CNT OEP1DDR OEP1FCR
OEP1

VMD-52

3. Peripheral System Configuration

3.3 Circuit Configuration

The configuration of Timer 1 (T1) is shown in Fig. 3-3-1.

e Timer 1 Low (T1L) - -

This is an 8-bit reload timer that uses the cycle clock or the cycle clock divided by 2 as a clock. The TILR
data is reloaded upon a T1L overflow; the TILR data is also transferred to T1L when TILRUN (bit 6 of
T1CNT) is set to "0."

e Timer 1 Low Compare Circuit (TILC) - _

This circuit consists of an 8-bit Timer 1 Low Compare Data register (T1LC) and an 8-bit data compare
circuit. This circuit compares the data in T1L and T1LC.

e Timer 1 High (T1H) - ®

This is an 8-bit reload timer that uses the cycle clock or the T1L overflow signal as a clock. The TIHR data
is reloaded upon a T1H overflow; the TIHR data is reloaded even if TITHRUN (bit 7 of TICNT) is reset.

e Timer 1 High Compare Circuit (TTHC) -~

This circuit consists of an 8-bit Timer 1 High Compare Data register (TTHC) and an 8-bit data compare
circuit. This circuit compares the data in TIH and T1IHC.

e Timer 1 Control Register (TICNT) - °

This register sets the modes for T1 and controls interrupts.

Com i 2aiE om0 LD pe——y
i

I kit [g
1
e F om
Tl b gy n. ——F— el I B caanasr (110 =
Pl com ol bl =g Pan | glull —= 17T
Nalgmi =mghw (1700 I

LE1d .

s o o s giia |0 s
[

o= € ball

. W [o Bl Caactan @ [0 1) =

By} =g |7 7=E -

’]|!|-|*‘i=l|:|-£l|l-? s] fs]] | ~[|-|-|-_|-|-n1|-

LL.- o LL))] LEL = UL T P bRy

Figure 3.12 Timer 1 Block Diagram

VMD-53

Visual Memory Unit (VMU) Hardware Manual

3.4 Related Registers

e Timer 1 Control Register (TICNT)

Symbol Address @ R/W Bit7 Bit6 Bith Bitd Bit3 Bit2 Bit1 Bit0
T1CNT 118H R/W TTHRUN T1LRUN T1LONG ELDT1C T1HOVF TTHIE T1LOVF T1LIE
After reset 0 0 0 0 0 0 0 0
Bit name Function
TTHRUN (bit 7) T1H count control

0: Count stop/data reload

1: Count start

T1LRUN (bit 6) T1L count control

0 Count stop/data reload
1: Count start

T1LONG (bit 5) Timer 1 bit length selection

0: 8 bits
1: 16 bits

ELDT1C (bit 4) Pulse generator data update enable control

0: Disabled
1: Enabled

TTHOVF (bit 3) T1H overflow flag

0: No overflow flag

1: Qverflow flag

TTHIE (bit 2) T1H interrupt request enable control

0: Interrupt request disabled

1: Interrupt request enabled

T1LOVF (bit 1) T1L overflow flag

0: No overflow flag

1: Qverflow flag

T1LIE (bit 0) T1L interrupt request enable

0: Interrupt request disabled

1: Interrupt request enabled

VMD-54

3. Peripheral System Configuration

TIHRUN (bit 7):

T1LRUN (bit 6):

T1LONG (bit 5):

ELDTIC (bit 4):

TIHOVF (bit 3):

TIHIE (bit 2):

T1LOVF (bit 1):

T1LIE (bit 0):

T1H count control

This bit starts (1) / stops (0) Timer 1 High (T1H). When this bit is set to
"1," the clock is input to T1H, which begins counting; when this bit is
set to "0," the clock supplied to T1H is stopped and the reload data
(T1HR) is transferred to T1H simultaneously.

T1L count control

This bit starts (1) / stops (0) Timer 1 Low (T1L). When this bit is set to
"1," the clock is input to T1L, which begins counting; when this bit is
set to "0," the clock supplied to T1L is stopped and the reload data
(T1LR) is transferred to T1L simultaneously.

Timer 1 bit length selection

This bit selects the T1 bit length as either 16 bits (1) or 8 bits (0). When
this bit is set to "1," the bit length of Timer 1 is 16 bits; when this bit is
set to "0," the bit length is set to 8 bits. Set this bit to "1" when using
modes 2 and 3, and to "0" when using modes 0 and 1.

Pulse generator data update enable control

This bit enables (1) or disables (0) transfer of the compare data register
(T1HC, T1LC) data that is used to generate the pulse signal to the
compare circuit. When this bit is set to "1," the data is transferred to
the compare circuit, and updated with the new pulse generator data;
if this bit is set to "0," the data is not updated and the same pulse
generator data is output.

To update 16-bit data simultaneously, set this bit to "0," set the data for
each 8 bits, and then set this bit to "1."

T1H overflow flag

This flag is set when an overflow occurs in T1H, and does not change
when no overflow occurs. Therefore, this flag must be reset by
software.

T1H interrupt request enable control

This bit enables (1) / disables (0) interrupt requests due to a TIH
overflow. When this bit is set to "1," an interrupt request is generated
to vector address 002BH in response to a T1H overflow; when this bit
is set to "0," no interrupt request is generated.

T1L overflow flag

This flag is set when an overflow occurs in T1L, and does not change
when no overflow occurs. Therefore, this flag must be reset by
software. TILOVF is set whenever an overflow occurs in T1L,
regardless of the bit length.

T1L interrupt request enable control

This bit enables (1) / disables (0) interrupt requests due to a T1IL
overflow. When this bit is set to "1," an interrupt request is generated
to vector address 002BH in response to a T1L overflow; when this bit
is set to "0," no interrupt request is generated. In 16-bit mode, no
interrupt request is generated in response to a T1L overflow.

VMD-55

Visual Memory Unit (VMU) Hardware Manual

Note:
* TIHOVF and T1LOVF must be set to "0" by software.
* When operating in 16-bit mode, select either the cycle clock or the cycle clock divided by 2 as the clock.
("Ttc" is the clock cycle.)
Tte= Tceyc OF TIHRUN=1OCT1LRUN=1OCT1LONG=1
Tte= 1/2Tcyc OF T1IHRUN=0OCTI1LRUN=1OCT1LONG=1

e Timer 1 Low Register (T1L)

The Timer 1 Low register is an 8-bit timer. This register uses either the cycle clock or the cycle clock divided
by 2 as its clock.

When T1L overflows, the TILR data is transferred and the T1L overflow flag is set. Note that in modes 1
and 3, this register is used to generate pulse signals.

Symbol Address R/W Bit 7 Bit 6 Bit5 Bit4 Bit3 Bit2 Bit1
TIL 11BH R TIL7 T1L6 T1L5 T1L4 T1L3 T2 T1L1 T1L0
After reset 0 0 0 0 0 0 0 0

e Timer 1 Low Reload Register (T1LR)
The Timer 1 Low Reload register is the reload register for the Timer 1 Low (T1L) register.

Each time that T1L overflows and TILRUN = 0, the reload data is reloaded into T1L. Note that in modes 1
and 3, this register is used to generate pulse signals.

Symbol Address R/W Bit 7 Bit 6 Bith Bit4 Bit3 Bit2 Bit1
TILR 11BH W T1LR7 T1LR6 T1LR5 T1LR4 T1LR3 T1LR2 T1LR1 T1LRO
After reset 0 0 0 0 0 0 0 0

T1L and T1LR share the same address. T1L is a read-only register, and T1LR is a write-only register. It is
essential to note that if a bit manipulation instruction, the INC instruction, the DEC instruction, or the
DBNZ instruction is used to write data to the write-only register, bits other than the specified bits will be
set. The following instructions are used with TILR.

e MOV e MOV @
e ST e ST@
e POP

e Timer 1 Low Compare Data Register (T1LC)
This is the compare data register for the Timer 1 Low (T1L) register.

If ELDTIC (bit 4 of TICNT) is set, the data that is set in this register is transferred to the pulse generator
control circuit (compare circuit) the next time that T1L overflows (if TILONG = 0) or the next time that T1H
overflows (if TILONG = 1). When T1LRUN = 0, the value of T1LC is always transferred to the pulse
generator control circuit.

VMD-56

3. Peripheral System Configuration

Symbol Address R/W Bit7 Bit 6 Bit5 Bit 4 Bit3 Bit2 Bit1
T1LC 11AH R/W T1LC7 T1LC6 T1LC5 T1LCA T1LC3 T1LC2 T1LCT T1LCO
After reset 0 0 0 0 0 0 0 0

¢ Timer 1 High Register (T1H)

The Timer 1 High register is an 8-bit timer. This register operates either according to the cycle clock or
overflows in T1L (T1ILOVF).

When T1H overflows, the T1H overflow flag is set. Note that in mode 3, this register is used to generate
pulse signals.

Symbol Address R/W Bit7 Bit 6 Bit5 Bit 4 Bit3 Bit2 Bit1
TH 11DH R T1H7 T1H6 T1H5 T1H4 T1H3 T1H2 TTH1 T1HO
After reset 0 0 0 0 0 0 0 0

e Timer 1 High Reload Register (TTHR)
The Timer 1 High Reload register is the reload register for the Timer 1 High (T1H) register.

Each time that T1H overflows and TIHRUN = 0, the reload data is reloaded into T1H. Note that in mode
3, this register is used to generate pulse signals.

Symbol | Address R/W Bit7 Bit6 Bit5 Bit 4 Bit 3 Bit 2 Bit1 Bit 0
T1HR 11DH w T1HRY T1HR6 T1HR5 T1HR4 T1HR3 T1HR2 T1HR1 T1HRO
After reset 0 0 0 0 0 0 0 0

T1H and T1HR share the same address. T1H is a read-only register, and TIHR is a write-only register. It is
essential to note that if a bit manipulation instruction, the INC instruction, the DEC instruction, or the
DBNZ instruction is used to write data to the write-only register, bits other than the specified bits will be
set. The following instructions are used with TIHR.

* MOV * MOV @
e ST e ST@
e POP

e Timer 1 High Compare Data Register (TTHC)
This is the compare data register for the Timer 1 High (T1H) register.

The data that is set in this register is transferred to the pulse generator control circuit (compare circuit)
according to the same timing as T1LC.

Symbol | Address R/W Bit7 Bit6 Bit5 Bit 4 Bit 3 Bit 2 Bit1 Bit 0
T1HC 11CH R/W T1HCY T1HC6 T1HCS T1HC4 T1HC3 T1HC2 T1HC1 T1HCO
After reset 0 0 0 0 0 0 0 0

VMD-57

Visual Memory Unit (VMU) Hardware Manual

3.5 Circuit Configuration and Description of Operation

* Timer 1 Mode Settings

Mode Clock Cycle TILONG P17FCR P17DDR P17
0 Teye 0 0 X X
1 Teye 0 1 1 0
2 Teye,1/2Teye 1 0 X X
3 Teye,1/2Teye 1 1 1 0

® Mode 0: 8-bit reload timer x 2 channels

When in mode 0, Timer 1 functions as two 8-bit reload timers. The relationship between the timer values
and the value set in the reload register (T1LR) is as shown below.

ime until TTHOVEF is set (1) (decimal) = (256 - T1HR setting) x Tcyc
Time until TILOVF is set (1) (decimal) = (256 - T1LR setting) x Tcyc

Teyc: Cycle clock cycle

If the counter control bit (TTHRUN, TILRUN) is set, the counting operation starts; if the bit is reset, the
counting operation stops and the contents of the reload register (T1HR, T1LR) are transferred to the counter
(T1H, T1L). If Timer 1 (T1H, T1L) overflows, the overflow flag (TTHOVF, TILOVF) is set, and the contents
of the reload register (T1HR, T1LR) are transferred to the counter (T1H, T1L).

In addition, if the overflow flag (TTHOVE, TILOVF) and the interrupt request enable flag (T1HIE, T1LIE)
are both set, then an interrupt request is sent to the interrupt control circuit.

TiH

Cycle clock —= Brbsin m._.-.“, TIH (110H) Il_s- _I]IIHH-::II:EFr;l.;u.-fIa;!

Reload mogster T1 I"H{HEH:I\‘J

Sart

Cycle clock — E-I:-l:-:w:un:-:rT1L{‘|1ElH ||_>. ('T‘]LL?:‘;?DMH:

T1L

Reload eagster TILE (118H)

Figure 3.13 Circuit Configuration of 8-bit Reload Timer x 2 Channels

VMD-58

3. Peripheral System Configuration

® Mode 0 Program Example

=tart
TIH time setting HoAF #50H, T1HR
TIL tirme setting HOW RO0H, T118
T1 mode setting MOV #0C4H, T1CNT
T1H, T1L ocperation start
I
_ TTH intermupt routing)
I
1 71 c X
| TTH cwerflow flag desr | o =HE
I
/ Interrupt p'n:e-'sslng/ e T
I
L. Fatum ™ RETI
N CcLel Tlowr, 6
TTH, TIL cperation stop CLRL TICHT,T

End

® Mode 1: 8-bit reload timer + 8-bit pulse generator
¢ 8-bit reload timer

1 Set TTH time setbing o 176Towe,
» St TIL bme s=iting to 255Toy

s Set mode O, (Regardnintenrupts,

et TTH only,)

p9et TTHOVE = (L

i Bead TIL data periodicaly.

i Beturn from interrupt routine,

voet TILRUMN = 0
p Set TTHRUN = 0,

The upper 8 bits of Timer 1 operate as an 8-bit reload timer. The relationship between the timer value and

the reload register (T1HR) setting is as shown below.

Time until TIHOVF is set (1) (decimal) = (256 - T1HR setting) x Tcyc

Teyc : Cycle clock cycle

The data in the reload register is loaded into the counter T1H at each interval at which TIHOVF is set. In
addition, the timer operation continues until the T1H count control bit (TTHRUN) is reset. The operation

method is the same as for mode 0.

TLH

Sel

Cychr clock —a= S-bifl counterTIH (1 10H)

S

Reload reqister T1HR {1 1DH)

T1H overflow fiag
(T IHOVF)

Figure 3.14 Block Diagram for Mode 1: 8-bit Reload Timer (T1H)

VMD-59

Visual Memory Unit (VMU) Hardware Manual

¢ 8-bit pulse generator

The compare circuit compares the value of T1L, which was counting according to the cycle clock starting
from the reloaded value, with the value in the compare data register TILC. This circuit outputs a "0" until
the values match, at which point it outputs a "1;" this output continues until T1L overflows.

The pulse signal cycle is determined by the reload register TILR. The relationship between the counter
value and the pulse output waveform is shown in Fig. 3-4.

The pulse output waveform is determined by the value of the compare data register TILC and the reload
register TILR. There is a delay in the pulse signal cycle from when the compare data register TILC is
overwritten until the pulse output according to that data is obtained.

Each time that T1L overflows, the T1L overflow flag (TILOVF) is set. the relationship with the pulse output
signal is as shown below.

Pulse output signal low level pulse width (decimal)

= (T1LC setting - T1LR setting) x Tcyc
Pulse output signal cycle (decimal) = (256 - T1LR setting) x Tcyc

Teyc: Cycle clock cycle

Note:
e Programs must be written in such a manner that TILC >= T1LR is always true.

B-bit counter value

/ -

/ o
[TiLE)

[TLLR)

o

Fukse aignal

—— T1LC-T1LE pr——

= ZE5=T]1LE —————————im

Figure 3.15 Relationship Between Counter Value and Pulse Generator Output Waveform

VMD-60

3. Peripheral System Configuration

1 Ciorrpnes dora meganer TILC [lH.Hi

Cytle clock —zli B0 counter TIL 01 18H) T Cofpan mgaker !l—-bPuln signal oulput
[Fead register T ILA {1 1BH)

Figure 3.16 Block Diagram for Mode 1: 8-bit Pulse Generator

* Mode 1 (Pulse Output) Program Example

Fulse 5Igninl cycle Sott

MV gDcOu, TILR STILRE =192 258-192=64

MY gon0H, TILE JTILC =208* 208=-102=16
2L level] pulse width s 16T oy
. P@7Bulae signal cycle 18 B4 Toyc

TI mods n MOV §ROH, FIFCHE ; =L P17 pin Lo pulse signal output
r Bty LRI pp,7 2 L P17 port atch to 07
MY FA0N, PLOOR L Sat P17 pin Lo cutpul mods
TIL operation start BN NODIN,TICNT . Startmode |
| e b =
] 1§]
FELL | = duas
Tk
: pitcy T3 - |
z Tl s K
I
oo hange oL el v sorruzne TG 2RI 2nes
'H"Hﬂﬂ'l- . Dl o ‘
| =

Bhil
LR

s g — a r

iy

VMD-61

Visual Memory Unit (VMU) Hardware Manual

e Mode 2: 16-bit reload timer

In this mode, T1 operates as a 16-bit reload timer. To start the timer, set TILRUN and TILONG
simultaneously. Use the MOV instruction to set these bits.

Either the cycle clock (Tcyc) or the cycle clock divided by 2 (1/2Tcyc) can be selected for the T1L clock cycle
(Ttc). The settings are as shown below.

Ttc = Teyc : TIHRUN=1OCT1LRUN=1, TILONG =1
Ttc= 1/2Tcyc : TIHRUN=0OCT1LRUN=1, TILONG =1

The relationship between the timer value and the value set in the reload registers (TIHR, T1LR) is as shown
below. It is important to note that these relationships differ from those of Timer/Counter 0 (T0).

Time until TIHOVF is set (1) (decimal)
= (256 - T1HR setting) x (256 - T1LR setting) x Ttc

Time until TILOVF is set (1) (decimal) = (256 - T1LR setting) x Ttc
Ttc: T1L clock cycle (Tcyc or 1/2 Teyc)

Each time that TILOVF is generated, the reload data (T1LR) is transferred to T1L; each time that TIHOVF
is generated, the reload data (TTHR) is transferred to TIH. Counting continues until the count control bit is
reset. The operation method is the same as for mode 0.

Read the Timer 1 (T1) data according to the following procedure:

T1L LD TI1L ; Read T1L data (1).
%) ST 020H
T1H LD T1H ; Read T1H data.
%) ST 021H
T1L LD TI1L ; Read T1L (2) data again.
1] BP T1L,7,DES ; When bit 7 of T1L (2) is "0" and
BN 020H,7,DES ;bit 7 of TIL (1) is "1"...
ST 020H
T1H LD TI1H :Read T1H (2).
ST 021H

DES: - - next program

Figure 3.17 Block Diagram for Mode 2: 16-bit Reload Timer

VMD-62

3. Peripheral System Configuration

® Mode 2 Program Example

. - -,
1
i

T 1H me settng M BSOM, T1MR ; =2t T1 tme setting to 43056 Toye,
T L g gatr i) M FIOH; TILE
l - ' tEaact P T pin cutplt port data,
Mond BO0N, pLrCR <
1 mede setting oo
T1H. TIL aoeratein & . 3
5 VL O0eErgtd g oy BORAN, TLOND = Lol mode A

; (Reoprdnginienmupds, sef T 1H onby,)

._-'I 1H .|"F|_1'|._|i".r [in Tiali 0

e ol =% e A Wt T e o o

CLAL TioNT. 3 ;50T :'_'r:::{ "_‘-"'
 Cat e
-\.:jl ::.1_1..! s o 0 PO w LR

| TIH gverfiow flag clear |

! INC Pl : Incréament poert 1 St bt ch

J/ Intermupt processng
I: i

’ — Da e sy g T
f Fetien k. kRTE 1 Baturn fromintanan! routine

-,

- i b - et TILRLM = Q
| 1H, TIL cperabon stog '_fj‘ .'_::;"' g « Sar TIHELN = 0,
— —
L Er.!)

* Mode 3: Variable bit length pulse generator (9 to 16 bits)
In mode 3, Timer 1 (T1L, T1H) functions as a variable bit length pulse generator. The length can vary from
9 to 16 bits, set by T1THR.

In order to run the pulse generator, select "16 bits" (TILONG = 1) for the Timer 1 bit length and set the T1L
count control bits (TILRUN). If the length has been selected as 16 bits, then the control bit TILRUN controls
starting and stopping for all 16 bits. Use the MOV instruction in order to set the Timer 1 Control Register
(T1CNT) bits simultaneously.

Either the cycle clock (Teyc) or the cycle clock divided by 2 (1/2Tcyc) can be selected as the clock cycle (Ttc)
for the pulse generator. The settings are as shown below.

Ttc = Teyc : TIHRUN=1, TILRUN =1, TILONG =1
Ttc= 1/2Tcyc : TIHRUN=0, TILRUN =1, TILONG =1

Each time that T1L overflows, the T1L overflow flag (TILOVF) is set; each time that T1H overflows, the
T1H overflow flag (TIHOVF) is set. Counting continues until the count control bit is reset.

The relationship between the timer value and the value set in the reload registers (T1HR, T1LR) is
as follows.

Time until TIHOVF is set (1) (decimal)
= (256 - T1HR setting) x (256 - T1LR setting) x Ttc
Time until TILOVF is set (1) (decimal) = (256 - T1LR setting) x Ttc
Tte: T1L clock cycle (Teyc or 1/2 Teyc)

VMD-63

Visual Memory Unit (VMU) Hardware Manual

The figure below shows an example of a signal that is output from the P17/ pulse signal output pin in mode 3.

L e e

—~— Smal interva T

Large interval P

Figure 3.18 Mode 3 Pulse Signal Output Waveform

The output signal repeats large interval P, in which small interval T is repeated 256 times.

The number of times that small interval T is repeated is set by TIHR. The "L" level width in small interval
T is set by T1LC in the same manner as in mode 1, with the minimum unit being Ttc. In addition, the total
"L" level width [sigma]TL within the large interval P is set by TILC and T1HC. In addition, the data that
can be acquired by TIHC is limited by the value of TIHR.

For details on the relationship between the output waveform and TIHC and T1LC, refer to Appendix 1,
"Variable Bit Length Pulse Generator."

The relationship between the pulse generator bit length and the values of TILR and T1HR, and the values
of TILC and T1HC are shown in Table below. T1LR is set to 00H.

Table 2.5 Relationship Between Bit Length and T1H/L Register

Pulse Pulse bit length setting (binary) (deleted) "L" level pulse width setting (binary)

Bit length Value of TTHR Value of TILR Value of T1LC (upper bits) Value of T1HC (lower bhits)
16 0000 0000 0000 0000 XXXX XXXX XXXX XXXX

15 1000 0000 0000 0000 XXXX XXXX XXXX XXX0

14 1100 0000 0000 0000 XXXX XXXX XXXX XX00

13 1110 0000 0000 0000 XXXX XXXX XXXX X000

12 1111 0000 0000 0000 XXXX XXXX XXXX 0000

1 1111 1000 0000 0000 XXXX XXXX XXX0 0000

10 11111100 0000 0000 XXXX XXXX XX00 0000

9 11111110 0000 0000 XXXX XXXX X000 0000

X: indicates valid bits.

VMD-64

3. Peripheral System Configuration

For example, if the bit length is set to 16 bits, large interval P consists of 256 repetitions of small interval T:
TP =256 xT

Because small interval T is 256 times Ttc (1/2 or 1/1 of cycle clock), the following is true:
TP =256 x 256 x Ttc=65536 x Ttc

The total "L" level cumulative pulse width OTL+ in large interval P is set by TIHC.
OTL + O[T1IHC]OTtc

Because the "L" level of small interval T can be set by TILC, the total "L" level interval width OTL becomes:
OTL = (256 x [T1LC] x [TIHC]) x Ttc

When T1LC = 03H and T1HC = 0B4H, the following is true:
OTL = (256 x 030{180) x Tcyc=948 x Ttc

The "L" level ratio RL is:
RLOOTL /TPO948/ 65536 @1.44700

Furthermore, when T1LC = OFFH and T1HC = 0FFH, the "L" level ratio becomes:
RL =0OTL /TP =65535/ 65536 @ 99.998

The relationship between the pulse bit length and the pulse width that can be set is shown below.
¢ Large interval P cycle TP
TP O2[BIT]OTtc
e Total "L" level pulse width OTL within large interval P

OTL O(2[BIT] x [TILC]/256 + [TIHC]) x Ttc
* TIHC and T1LC are represented in decimal notation.

* [TIHC] is the valid bit value.

Table 2.6 Relationship Between Bit Length, Pulse Width and Precision

Bit length
[BIT] TILC T1HC STL TP[Ttc] Precision

min. max. min. max. min. max.
16 0 255 0 255 0 65535 65535 1/65535
15 0 255 0 127 0 32767 32767 1/32767
14 0 255 0 63 0 16383 16383 1/16383
13 0 255 0 31 0 8191 8191 1/8191
12 0 255 0 15 0 4095 4095 1/ 4095
" 0 255 0 7 0 2047 2047 1/ 2047
10 0 255 0 3 0 1023 1023 1/1023
9 0 255 0 1 0 511 511 1/ 51

VMD-65

Visual Memory Unit (VMU) Hardware Manual

* TIHC indicates the value of the valid bits indicated by Table on previous page. for example, when the length is 11
bits, the bits from bit 7 to bit 5 are valid, so the maximum value is "7."
Example: Settings (in binary) when using the generator as a 14-bit pulse generator

e Value of TIHR: 1100 0000 B

* Value of T1LR: 0000 0000 B

* Values set in the 14 bits of the pulse generator

LT LA
- ATy = = e —— = L2}
rn.-:*’su,:u‘i-..H--:a;ﬂ.:u-_': I T I Irs

Femt

| g B g B g By I gy |

= Cmal rderva T

L g ol B
Larsleb than Bt bt i 1l Bty tPen
wlary il 3w sl etereal T TE4

The iodowing Pum fypen oof pulos o ofpf s emol] otaroad T Podes O) oo ot 8l m TIHD) tomee o Lepe interand

P ol el D ot TTHO tamas

1} el
' Fael i =

(TILCe1)*Fie

For details on the relationship between the output waveform and TIHC and T1LC, refer to Appendix 1, "Variable
Bit Length Pulse Generator."

Note:

* Follow the procedure described below when setting the "L" level pulse width.

0 Set the data update enable flag ELDT1C to "0."

0 Overwrite T1ILC and T1IHC.

O Set the data update enable flag ELDT1C to "1."

* The delay after the values of TIHC and T1LC are overwritten until the waveform based on the new
data is output is the time required for the maximum pulse after ELDTIC = "1" is set.

* When using 16-bit mode, select either the cycle clock or the cycle clock divided by 2 for the clock.
TtcO Teyc : TIHRUN=1OCT1LRUN=1OCT1LONG=1

TtcO 1/2Tcyc : TIHRUN=0OCT1LRUN=1OCT1LONG=1

VMD-66

3. Peripheral System Configuration

| .hl'llll-pllll!rlllllllﬂﬂl Chpir® by sgarbed V7LD | 1REES

P
e e W T
I'lir-m!uuhl-u#-ll—-! a |
)]
] i

Figure 3.19 Block Diagram for Mode 3: Variable Bit Length Pulse Generator

® Mode 3 Program Example

Bl MOV #0COH, T1HR : Set bit length to 14 s
se signal output MoV #00H, T1LR :
1 Set totd "L" leve pulse
ndnseios | 100 foiwanto 105108
I
MOV #OOH, B1 : Set mode 3.
T1 mode seting ! ’
How #B0H, PIFCR : Use P17 pin as pulse signal
TIH, TIL cperation start | . gaom, p1DOR cutpu Pk
MOV #070H, TICNT
|
|
Tota "L" level pulse width
change
Data update disable CLEL TlLC. 4 s Set ELDTIC = QL
: St tota "L" level pulse
Totd "L™ level pulss MOV WS4H.TILC '
wiclth settng w MOV #0DOH, T1HC width to 2712.5Tcyc.
|
Data update enable EET1 TILC, 4 ;Set ELDTIC = 1,
I
I
TIH T1 CLREL TiowT, 7 St TILRN = O,
» 1L aparation stop CLR1L TI1CNT, & s Set TIHRUM =0,

CEai

VMD-67

Visual Memory Unit (VMU) Hardware Manual

4. Base Timer

4.1 Overview

POTATO's built-in base timer is a 14-bit binary up-counter that has the four functions listed below

¢ Clock timer
* 14-bit binary up counter

e Fast forward mode (when using a 6-bit base timer)

4.2 Function

¢ Clock timer

When the 32.768Khz sub-clock is used for the count clock for the base timer, time can be measured in
0.5-second intervals. The input signal is used to specify "sub clock" as the count clock for the base timer.

¢ 14-bit binary up counter

The 8-bit binary up counter and the 6-bit binary up counter can be used as a 14-bit binary up counter. These
counters can be cleared by software.

e Fast forward mode (when using the 6-bit base timer)

If the 6-bit base timer is used, time can be measured in approximately 2ms intervals when the 32.768KHz
sub-clock is used for the count clock. The bit length can be selected through the Base Timer Control Register
(BTCR).

¢ Interrupt generation

When the interrupt request enable bit is set and an interrupt request is generated from the base timer, an
interrupt request to vector address 001BH is generated. There are two types of interrupt requests from the
base timer: "base timer interrupt 0" and "base timer interrupt 1."

In order to control the base timer, it is necessary to manipulate the following Special Function Registers:

* BTCR e ISL

e PIDDR *P1

* P1FCR

* Timer O-related ¢ Interrupt related

VMD-68

3. Peripheral System Configuration

4.3 Circuit Configuration

The base timer configuration is shown in Fig. below.

e 8-bit binary up counter
The input for this up counter is the signal selected by the Input Signal Select register (ISL).

This counter creates the 4KHz /2KHz buzzer output signal, and generates the base timer interrupt 1 source.
The overflow event of this timer serves as a clock for the 6-bit binary counter.

® 6-bit binary up counter

The input for this 6-bit up counter is the signal selected by the ISL Special Function Register, or the overflow
signal from the 8-bit counter. This counter generates the base timer interrupt 0 and 1 sources. Switching the
input clock is handled through the Base Timer Control Register (BTCR).

..... (3)

The base timer input clock is selected through the Input Signal Select register (ISL) from among " cycle
clock," "timer O prescaler," or "sub-clock."

¢ Base timer input clock source

| b B fe o fo e

[l B oL R 1
A —
- =

Frg gt kg
al B

ri1::1‘74

D A | 14N s b |
.

e o b Rl
T
T e o e | il _l—!"r_r. -,__E. — me
| (T3 =
_ P -
= 14 Ml (L Frye-
— L=
e ks f i 1
%
— T ' Y T I | bl bR
' nl' -ul'-l | —_
- L 1
iz | Pass Dpmar grhpos o O m g
| -} o
|is i a8 bead
(E LT e Rl] "'! -I B i pess pramgt | mmaaad
I
| 1 "
. 1 T
|- W |
EEIR | LT

Figure 3.20 Base Timer Block Diagram

VMD-69

Visual Memory Unit (VMU) Hardware Manual

4.4 Related Registers

* Base Timer Control register (BTCR)

Symbol Address @ R/W Bit 7 Bit 6 Bit5h Bit4 Bit3 Bit2 Bit1
BTCR 17FH R/W BTCR7 BTCR6 BTCR5 BTCR4 BTCR3 BTCR2 BTCR1 BTCRO
After reset 0 0 0 0 0 0 0 0

*In the VMU, game software is prohibited from accessing BTVR7, BTCR6, and BTCRO. Bit manipulation instructions
must always be used when accessing this register.

Bit name Function

BTCR7 (hit 7) Base timer interrupt 0 cycle control
0: 16384/fBST
BTCRG (hit 6) Base timer operation control

1: Base timer operation start

BTCR5 (hit 5) Base timer interrupt 1 cycle control
BTCR4 (bit 4 BTCRY BTCRS BTCR4
X 0 0 32/fBST
X 0 1 128/fBST
0 1 0 512/fBST
0 1 1 2048/fBST
BTCR3 (hit 3) Base timer interrupt 1 source

0: No interrupt source

1: Interrupt source

BTCR2 (bit 2) Base timer interrupt 1 request enable control

0: Interrupt request disable

1: Interrupt request enable

BTCR1 (bit 1) Base timer interrupt 0 source

0:No interrupt source

1:Interrupt source

BTCRO (bit 0) Base timer interrupt 0 request enable control

1:Interrupt source

VMD-70

3. Peripheral System Configuration

BTCR?7 (bit 7):

BTVRG6 (bit 6):

BTCRS (bit 5):

Base timer interrupt 0 cycle control Fixed at "0"

This bit selects either 64 /{BST (1) or 16384f/BST (0) as the base timer
interrupt 0 source generation cycle. When this bit is set to "0," the
interrupt 0 source is generated by an overflow in the 14-bit counter,
and the interrupt source generation interval is 16384/ fBST. When
using fast forward mode, set "1."

Base timer operation control Fixed at "1"

This bit starts (1)/stops (0) the base timer counting operation. When
this bitis set to "1," the 14-bit counter counts up; when this bit is set to
"0," the 14-bit counter is cleared and then stopped.

Base timer interrupt 1 cycle control

BTCR4 (bit 4): These bits select the base timer interrupt 1 source generation cycle.
BTCR7 BTCR4 Base timer interrupt 1 cycle
X 0 32/tBST
X 1 128/fBST
0 0 512/fBST
0 1 2048/fBST
fBST: Input clock frequency
BTCR3 (bit 3): Base timer interrupt 1 source flag

This bit is set at each interval when the base timer 1 source is generated according to the settings of BTCR?,

BTCR?2 (bit 2):

BTCRI1 (bit 1):

BTCRO (bit 0):

5, and 4, and does not change when the source is not generated.
Therefore, this bit must be reset by software.

Base timer interrupt 1 request enable control

This bit enables (1) / disables (0) interrupt requests through base timer
interrupt 1. If this bit is set to "1," then when the base timer 1 interrupt
source is generated an interrupt request to vector address 001BH is
generated; if this bit is set to "0," then no interrupt requests are
generated.

Base timer interrupt 0 source flag

This bit is set at each interval when the base timer 0 source is
generated according to the setting of BTCR?, and does not change
when the source is not generated. Therefore, this bit must be reset by
software.

Base timer interrupt O request enable control Fixed at "0"

This bit enables (1) / disables (0) interrupt requests through base timer
interrupt 0. If this bit is set to "1," then when the base timer 0 interrupt
source is generated an interrupt request to vector address 001BH is
generated; if this bit is set to "0," then no interrupt requests are
generated.

VMD-71

Visual Memory Unit (VMU) Hardware Manual

Note:

® When BTCR7 and 5 =1 (fast forward mode), do not select both the system clock and the base time clock
simultaneously.

* When overwriting BTCR5 and 4, note that BTCR3 may be set to "1" as a result.

e If either the cycle clock or the sub-clock was selected as the base timer clock source, and then

HOLD mode is set while the base timer is still running, then the base timer might miscount due to

the effects of unstable oscillation that initially occurs when the main clock and sub-clock start to oscillate
after HOLD mode is cancelled. When entering HOLD mode, therefore, stopping the base timer is
recommended.

e Input Signal Select register (ISL)

For details, refer to Chapter 3, section 3.2.4, "Input Signal Select Register."

Symbol | Address = R/W Bit7 Bit6 Bit5 Bit 4 Bit 3 Bit 2 Bit1 Bit0
ISL 15FH R/W - - ISL5 ISL4 ISL3 ISL2 ISL1 ISLO
After reset 0 0 0 0 0 0 H H
ISL5 (bit 5) Base timer clock selection
1514 tbit 4 1SL5 1SL4
X 0 Sub-clock (quartz oscillation) fixed
ISL3 (bit 3) Buzzer output frequency selection

0: fBST/16 fixed

ISL2 (bit 2) Noise elimination filter time constant selection

ISL1 {pit1) ISL2 ISL1 Time constant
1 1 16Tcyc
0 1 64Tcyc
X 0 1Teye

ISLO (bit 0) TO clock input pin selection

0: P72/INT2/TOIN pin
1: P73/INT3/TOIN pin

VMD-72

3. Peripheral System Configuration

4.5 Using the Base Timer

e Clock timer

s

Ralated registars

| Counter dear | HTCH

Intermupt Cyche sating

’

Coount peration sart

7

Hext procgram

Clachk prosdessng

BHTCH
L

BTCH

Frogramming sxspin

CLEL

CLEl
CLEL

SETI
EET1

BECR &

WITR, 7
It 4

BECR. O
PR, &

An interrupt 15 generated here,

I e Lt
procesang
roiikinge

el

RETE

BTCE, §

 BEsatmear count shog

+ 1d-bit base tmer mode
1ot mbechock o base timer chocl

5 Baga temar intermupt 0 erable
» Birse lemer Souni start

1 BlEse limer intérnupt
i St flag fo 0L
1 Beturn o man roufins

VMD-73

Visual Memory Unit (VMU) Hardware Manual

5. Serial Interface

5.1 Overview

POTATO has a built-in 2-channel synchronous serial interface with an 8-bit data length that uses port 1. Because the
next-generation game machine interface also uses port 1, use of the next-generation game machine interface must
be prohibited by software if the synchronous serial interface is being used. The main functions of this interface are
listed below.

e 2-channel synchronous serial interface

¢ Transfer clock selection function

e Serial interface SIOO transfer clock polarity switching function
e LSB-first/ MSB-first switching function

* Operation mode switching function

* Overrun detection function

e Transfer bit length control function

5.2 function

e 2-channel synchronous serial interface

Two serial interfaces are provided, with SIO0 using P10 through 12 as I/ O pins and SIO1 using P13 through
15 as I/ O pins.

Normally, in the VMU SIOOQ is uses ad the master and SIO1 is used as the slave.

e Transfer clock selection function

One of the following three clocks can be selected. In addition, the polarity of the transfer clock for SIO0 only
can be selected.

¢ Internal clock
e External clock

e Software clock

* Serial interface SIOO transfer clock polarity switching function (bus can be supported)
The polarity of the transfer clock SCKO for serial interface SIO0 can be switched.

0 When operation is stopped, SCKO = 1 and data output is maintained

0 When operation is stopped, SCKO = 0 and data output is bit 0 of SBUF0

e LSB-first/ MSB-first switching function

It is possible to switch between starting transfers from the LSB or the MSB in data communications over the
serial interface. This setting can be made separately for each channel.

e Overrun detection function

This function generates an error when a clock that exceeds 8 bits is received.

e Transfer bit length control function

This function selects whether to stop operation after 8 bits have been transferred, or to continue transfer
operations after 8 bits have been transferred.

VMD-74

3. Peripheral System Configuration

¢ Interrupt generation
When the interrupt request enable bit is set, the SIO0 and SIO1 interrupt requests are generated by
overflows in an octal counter.

In order to control the serial interfaces, it is necessary to manipulate the following Special Function

Registers:
*SCONO * SCON1 * SBR
*SBUF0 * SBUF1
*P1 ¢ PIDDR ¢ P1IFCR

5.3 Circuit Configuration

The configuration of the serial interfaces is shown in Fig. below.

e Shift register - [J
This consists of an 8-bit shift register (SBUF0 and 1), and operates according to the specified clock.

e Qctal counter - a
This counts the shift clock and detects the end of transfers.

® Baud rate generator -+ [

This consists of an 8-bit register (SBR) for setting data and an 8-bit reload counter. If "internal clock" is
selected for the transfer clock, data transfers are executed according to the clock that is generated here. This
baud rate generator is used for both SIO0 and SIO1.

* Polarity switching circuit
This circuit controls the polarity of the transfer clock before and after serial transfer.

VMD-75

Visual Memory Unit (VMU) Hardware Manual

ruLdack
Tima

FiB Py

e

uuuuuu

FrllEs

il

& BN N0

mEsrd ALNLH]

ki 1 il d I__D" —pm
——E'C@ JIR TR ST TR . s

FI 1 par e | 14440
i fe— =
B0 g Ui easgeall 1 45

F 10 bt 8 i el 14 6
F 10 ot e B

I I
A —| Eiired rile g areerils &
1 1 I H 1
rare
! [|‘“‘I‘}| (I e
[T —— I [bl el ot

LI L ool 115 4 Synal & 1 2101
e higrupl mgesi gl

12 gt cn A

Figure 3.21 Serial Interface (S100) Block Diagram

I nl [-le|-|a|zfz]|a]a
—0) l'l'T"T‘TFr'l'l—| ===|un|u|=-m | l‘llL—D—-hmt

QEEET I EL P

B i b oo sl | 6
Fld parl oo | B4

LU} Ll JEFEY]

Bl] fuscitacosiol | AR)
BT ey ey | o Wy

::I::D—jD—
T Y

P 1% auipui oo sl 454
__L'Cé PIS Renctiym com el o

Fi el laiend 19 HE

Figure 3.22 Serial Interface (SI01) Block Diagram

VMD-76

3. Peripheral System Configuration

5.4 Related Registers

* SIOO0 control register (SCONO)

Symbol Address R/W Bit7 Bit 6 Bit5 Bit 4 ErBit 3 Bit2 Bit1
SCONO 130H R/W SCONO07 SCON06 - SCON04 SCON03 SCON02 SCONO1 SCONOO
After reset H 0 0 0 0 0 0 0

Bit name Function

SCONQ7 (bit 7) Polarity control

0: When operation is stopped, SCK0 = 1 and data output is maintained
1: When operation is stopped, SCKO = 0 and data output is bit 0 of SBUFO

SCONOG (bit 6) Overrun flag

0: No overrun

1: Overrun

SCONO4 (bit 4) Transfer bit length control

0: 8-bit transfer

1: Continuous transfer

SCONO3 (bit 3) Transfer control

0: 0: LSB-first
1: MSB-first

SCONQ2 (bit 2) LSB-/MSB-first select

0: LSB-first
1: MSB-first

SCONO1 (bit 1) Serial transfer end flag

0: Transfer in progress

1: Transfer completed

SCONOO (bit 0) Interrupt request enable

0: Interrupt request disabled

1: Interrupt request enabled

VMD-77

Visual Memory Unit (VMU) Hardware Manual

SCONO07 (bit 7):

SCONO6 (bit 6):

SCONO4 (bit 4):

SCONO03 (bit 3):

SCONO2 (bit 2):

SCONO1 (bit 1):

SCONO0O (bit 0):

SCKaO polarity control

This bit controls the polarity of the transfer clock SCKO that is used by
SIO0. When "1" is set, SCKO becomes "0" when operation of SIO0 has
stopped, and bit 0 of SBUFO is output. This mode permits bus support.
When "0" is set, SCKO becomes "1" when operation of SIO0 has
stopped, and the last data that was transferred is maintained on the
output.

Overrun flag

This flag is used to detect a serial transfer error on SIOO. If a transfer
clock is received (a falling edge is detected) after the transfer of 8 bits
of data has been completed (SCONO1 has been set to "1"), this flag is
set. In addition, when executing a continuous transfer, the overrun
flag is set after every eight bits. This bit is not reset automatically; it
must be reset by software.

Transfer bit length control

This bit selects the SIOO transfer data bit length: continuous (1) or 8
bits (0). When this bit is set to "1," two or more 8-bit bytes of data can
be sent consecutively. This flag does not change after a transfer; it
must be reset by software. When this bit is set to "0," eight bits of data
can be transferred.

SIOO0 operation control

This bit starts (1) /stops (0) SIO0 transfer. When this bit is set to "1," an
8-bit serial transfer on SIOQ starts; when the transfer is completed, this
bit is reset. When this bit is set to "0," SIO0 operation stops.

LSB-/MSB-first select

This bit selects whether to start the transfer of data from the MSB (1)
or the LSB (0). When this bit is set to "1," the MSB is transferred first;
when this bit is set to "0," the LSB is transferred first. This setting
applies to both transmitting and receiving.

SIOO0 transfer end flag

This flag is used to detect the end of a serial transfer. This flag is set
when an 8-bit serial transfer is completed. This bit is not reset
automatically; it must be reset by software. If the falling edge of

a transfer clock is detected while this bit is set to "1," the overrun
flag is set.

SIOO0 interrupt request enable control

This bit enables (1)/ disables (0) interrupt requests due to the end of a
transfer on SIO0. When this bit is set to "1," an interrupt request to
vector address 0033H is generated; when this bit is set to "0," no
interrupt request is generated.

Note:

* The transfer end flag is set to "1" when the transfer of 8 bits is completed, without regard for the
transfer bit length setting. The overrun flag has no effect on the operation of the microcomputer.

VMD-78

3. Peripheral System Configuration

e SIO1 control register (SCON1)

Symbol = Address | R/'W Bit7 Bit 6 Bit5 Bit 4 Bit3 Bit2 Bit1
SCON1 134H R/W - SCON16 - SCON14 SCON13 SCON12 SCON11 SCON10
After reset H 0 H 0 0 0 0 0

Bit name Function

SCON16 (bit 6) Overrun flag

0: No overrun

1: Overrun

SCON14 (bit 4) Transfer bit length control

0: 8-bit transfer
1: Continuous transfer

SCON13 (bit 3) Transfer control

0: Transfer stop

1: Transfer start

SCON12 (bit 2) LSB-/MSB-first select
0: LSB-first
1: MSB-first

SCON11 (bit 1) Serial transfer end flag

0: Transfer in progress
1: Transfer completed

SCON10 (bit 0) Interrupt request enable

0: Interrupt request disabled

1: Interrupt request enabled

VMD-79

Visual Memory Unit (VMU) Hardware Manual

SCON16 (bit 6):

SCON14 (bit 4):

SCONI13 (bit 3):

SCONT12 (bit 2):

SCONT11 (bit 1):

SCONI10 (bit 0):

Overrun flag

This flag is used to detect a serial transfer error on SIO1. If a transfer
clock is received (a falling edge is detected) after the transfer of 8 bits
of data has been completed (SCON11 has been set to "1"), this flag is
set. In addition, when executing a continuous transfer, the overrun
flag is set after every eight bits. This bit is not reset automatically; it
must be reset by software.

Transfer bit length control

This bit selects the SIO1 transfer data bit length: continuous (1) or 8
bits (0). When this bit is set to "1," two or more 8-bit bytes of data can
be sent consecutively. This flag does not change after a transfer; it
must be reset by software. When this bit is set to "0," eight bits of data
can be transferred. In this case, the transfer end flag (SCON11) is set
when the transfer of 8 bits is completed.

SIO1 operation control

This bit starts (1) /stops (0) SIO1 transfer. When this bit is set to "1," an
8-bit serial transfer on SIO1 starts; when the transfer is completed, this
bit is reset. When this bit is set to "0," SIO1 operation stops.

LSB-/MSB-first select

This bit selects whether to start the transfer of data from the MSB (1)
or the LSB (0). When this bit is set to "1," the MSB is transferred first;
when this bit is set to "0," the LSB is transferred first. This setting
applies to both transmitting and receiving.

SIO1 transfer end flag

This flag is used to detect the end of a serial transfer. This flag is set
when an 8-bit serial transfer is completed. This bit is not reset
automatically; it must be reset by software. If the falling edge of a
transfer clock is detected while this bit is set to "1," the overrun flag
is set.

SIO1 interrupt request enable control

This bit enables (1)/ disables (0) interrupt requests due to the end of a
transfer on SIO1. When this bit is set to "1," an interrupt request to
vector address 003bH is generated; when this bit is set to "0," no
interrupt request is generated.

Note:

* The transfer end flag is set to "1" when the transfer of 8 bits is completed, without regard for the
transfer bit length setting. The overrun flag has no effect on the operation of the microcomputer.

VMD-80

3. Peripheral System Configuration

* Baud Rate Generator Register (SBR)

Symbol Address R/W Bit7 Bit 6 Bit5 Bit 4 Bit3 Bit2 Bit1
SBR 132H R/W SBR7 SBR6 SBR5 SBR4 SBR3 SBR2 SBR1 SBRO
After reset 0 0 0 0 0 0 0 0

This register sets the transfer rate when using the internal clock for the transfer clock. This value is shared by both
SIO0 and SIO1. The transfer rate TSBR is derived according to the following equation:

Tlezel = 256 - [SEE setting]l « 2 «Toye iTeye: Cyole clock cycle)

Shift clo ck | L

Transfef————=

Teer

¢ Serial Buffer 0 (SBUFO0)

This register stores each 8 bits of data handled in a serial transfer on SIOO.

Symbol Address R/W Bit7 Bit 6 Bit5 Bit 4 Bit3 Bit2
SBUFO 131H R/W SBUF07 SBUF06 SBUF05 SBUF04 SBUF03 SBUF02 SBUF01 SBUF00
After reset 0 0 0 0 0 0 0 0

VMD-81

Visual Memory Unit (VMU) Hardware Manual

e Serial Buffer 1 (SBUF1)

This register stores each 8 bits of data handled in a serial transfer on SIO1.

Symbol Address = R/W Bit7 Bit 6 Bit5 Bit4 Bit3 Bit2 Bit1
SBUF1 135H R/W SBUF17 SBUF16 SBUF15 SBUF14 SBUF13 SBUF12 SBUF11 SBUF10
After reset 0 0 0 0 0 0 0 0

* Next-generation game machine dedicated interface circuit

The separate function described above uses port 1 as the I/ O port for the next-generation game machine
dedicated interface. The next-generation game machine dedicated interface and the synchronous serial
interface cannot be used simultaneously.

Note:
Note the following points when conducting serial communications through the serial interface:
1 Do not make settings concerning serial communications while the unit is in the reset state.
2 Confirm the connection between two VMU units before making settings concerning serial
communications.
The connection between two VMU units can be confirmed through the value of port 7. When two VMU
units are connected, the values of certain bits in port 7 are as follows:

PORT7 bit3 =1’

PORT7 bit2 =0’
3 When serial communications processing is completed, or if two VMU units are not connected, make
the following settings:

SCONO = 00h
SCONT1 = 00h
P1FCR = 0BFh
P1DDR = 0A4h

The unit may not operate correctly if the settings for executing serial communications are made when
two VMU units are not connected.

VMD-82

3. Peripheral System Configuration

5.5 Serial Interface Operation

A serial transfer on a serial interface is initiated by setting the communications control bit (SCONO03, SCON13) or
the transfer bit length selection bit (SCON04, SCON14). There are two transfer modes:

e Normal mode

Two data lines and one clock line are used for data communications in this mode. SI is the data input line,
and SO is the data output line. This mode is the general-purpose transfer method, and is suited for
communications with a specific partner.

Use normal mode when connecting two VMU units.

® Bus mode (deleted)

YRS

Trnsmtted
alC0

- Eeceived
a101

SCKD SCKI
300 . 311
810 - 301
3CKI BCKO
311 500
301 - 810

Figure 3.23 Connection between VMU Units

WhS2

Feceived
alol

Trnsmutted

S1C0

The transfer mode is set by manipulating the Special Function Registers associated with port 1. (Refer to
Table 3-5-1.) In addition, SIO0 and SIO1 can each be set to either normal mode or bus mode independently.

e Serial transfer timing

The data in the shift register is shifted in synchronization with the falling edge of the serial clock SCKO or
SCK1, and is output on the SO0 or SO1 pin. The data that is input on the SIO or SI1 pin is loaded into the
shift register at the rising edge of the serial clock.

VMD-83

Visual Memory Unit (VMU) Hardware Manual

5.6 Operation Mode Settings

e Normal mode

It is necessary to reset the port latch data corresponding to the output pin or the transfer clock when using
the internal clock. The pins that are used in normal mode are shown in the table below.

Table 2.7 Pins Used in Normal Mode

Input pin

P11/S10/SB0

P14/S11/SB1

Output pin

P10/S00(P11/S10/SB0)

P13/S01(P14/S11/SB1)

Transfer clock

P12/SCK0

P15/SCK1

Note:
Set SCKn high one Tcyc cycle before the start of transfer. If SCKn is set high less than one Tcyc cycle prior
to the start of transfer, the correct data will not be output.

Table 2.8 Settings for Port 1 for SI00 (Special Function Registers)

Pin Function Special Function Register Value
P11/S10/SB0 RX P11DDR =0
P10/S00 X P10=0

P10DDR =1

P10FCR =1
P11/S10/SB0 RX P11DDR =0
P10/S00 General-purpose 1/0 P10FCR =0

Internal clock P12=0
P12DDR =1
P12FCR =1

*For the software clock, the program writes "0" and "1" in alternation to a port (P12), and that output is used as the transfer clock.

VMD-84

3. Peripheral System Configuration

Table 2.9 Settings for Port 1 for SI01 (Special Function Registers)

Function Special Function Register Value
P14/S111/SB1 RX P14DDR =0
P13/S01 General-purpose 1/0 P13FCR =0

*For the software clock, the program writes "0" and "1" in alternation to a port (P15), and that output is used as the transfer clock.

..J BLE E

SEUFL (1ZEH]
I

| I
hift, clock |' J 1

I

§ §
IIEh:'TI shf'lt r-':gllst-:f
J

Pl utput con tred 145H)
511 - ;] {::g P14 funckion con bl 146

Pl port Wkodi | 4-4H)

|I_ PIE pulpart cantmd 145H)
201 <l ij FIZ fimobion con el 14 5H)

—I_ FIZ pert Wbt 1 44H)

Figure 3.24 Signal Path in Normal Mode (Example for SIO1)

Note:
When setting Pn to output, set PnFCR to "1" before PnDDR. If PnDDR is set first, "0" might be output on
Pn when PnDDR is set. This applies to both SIO0 and SIO1.

VMD-85

Visual Memory Unit (VMU) Hardware Manual

5.7 Serial Transfer Clock

The serial transfer clock uses the P12 /SCKO pin for SIO0, and the P15/SCK1 pin for SIO1. One of the following three
types of serial transfer clock can be selected independently for SIO0 and one for SIO1 through the application circuit.
In addition, in the case of SIO0 only, the polarity of the transfer clock can be switched.

¢ Internal clock
e External clock

e Software clock

e Internal clock

The transfer clock is generated by the serial transfer-dedicated baud rate generator (SBR) that is built into
the LSI. This clock is shared by both SIO0 and SIO1. When running either or both of the serial interfaces
according to the internal clock, it is necessary to operate the baud rate generator. In this case, the serial
transfer clock is output from the clock pin (P12/SCKO, P15/SCK1) of the serial interface that is running

according to the internal clock.

The relationship between the transfer rate and the baud rate generator setting is shown below. (The setting
is made with a decimal value.)

TSBR=(256 - [SBR setting]) x 2 x Tcyc (Tcyc: Cycle clock cycle)

Transfer ciock | |

% Transfer r:teé_,.-*

T'I-

kg iy
| el T e |
el [k] L — ,
5|:un|:-4:DT| chea ,_g_ P12/5CKO

SCONL3
SCONL A —i_.
_ ”a—’;j |
G-hil counlar »* -—I-_"}_ — PI5/SCK
0]

Rakad register
g

ntemal bus

Cycle chock

Figure 3.25 Baud Rate Generator Configuration Diagram

Note:
When setting Pn to output, set PnFCR to "1" before PnDDR. If PnDDR is set first, "0" might be output on

Pn when PnDDR is set. This applies to both SIO0 and SIO1.

VMD-86

3. Peripheral System Configuration

e External clock

Serial transfers are performed according to a clock that is input from outside of the LSL

e Software clock

The program writes "0" and "1" in alternation to the port P12 /SCKO or P15/SCK1 pin, and that output is
used as the serial transfer clock.

Clock generation example

Trarsfer clock

SI00 SET17é,2 CLR1 @1, StT1?7&1,2
SI0T 5 o 9

When using these transfer clocks, it is necessary to set the status of the P12/SCKO0 or P15/SCK1 pin.

Table 2.10 Transfer Clock Settings

Pin Function Special Function Register value
P12/SCKO Internal clock P12 =0
P12DDR =1
P12FCR =1
External clock P12DDR =0
Software clock P12 =0/1
P12DDR =1
P12FCR =0
P15/SCK1 Internal clock P15=0
P15DDR =1
P15FCR =1
External clock P15DDR =0
Software clock P15=0/1
P15DDR =1
P15FCR =0
Note:

e Atleast 1/2 of a cycle is needed for the serial data and serial clock pulse width.
When using the sub-clock and external clock, caution is particularly essential. (When using a 32.768kHz
crystal resonator for the sub-clock, the cycle clock cycle is 366[micro]s, so a pulse width of at least
183[micro]s is required.)
e When outputting the serial clock from port 1, observe the following sequence when setting the port 1
registers. If this sequence is not observed, serial transfers will not be performed correctly.

(1) Set PIFCR.

(2) Set PIDDR.

(3) Set SCONN. (Set the transfer control bits.)

VMD-87

Visual Memory Unit (VMU) Hardware Manual

5.8 Serial Transfer Timing

In a serial transfer, the transfer clock SCKO is output at high level (SCKO = 1) before and after an operation is
performed on the SIO0 (when SCONO07 = 0) or SIO1 interface. In addition, the last data to be transferred is
maintained on the output pin. (Refer to Fig. 3-5-7.) However, the transfer clock SCKO is output at low level (SCKO
= 0) before and after an operation is performed on the SIO0 interface when SCON07 = 1. In addition, bit 0 (SBUF00)
of Serial Buffer 0 (SBUFO) is output (and maintained at that level) on the output pin. (Refer to Fig. 3-5-8.) Note that
it is not possible to switch the polarity of the SIO1 interface.

SI100

SCONOQ7=0 When operation is stopped, SCKO = 1 and data output is maintained

SCON07=1 When operation is stopped, SCKO = 0 and data output is bit 0 of SBUFO

SI101
When operation is stopped, SCK1 = 1 and data output is maintained

FLOSS00 5
- Koo ¥ o1 oz oz (o4 X os §os i or

Figure 3.26 Transfer Clock and Output Data (1)

FL0/300 _) .) . .
PL1/S10/SED X oo fe1¥ez o3 foe 05 ¥ pe § D7) SEUEN

Figure 3.27 Transfer Clock and Output Data (2)

VMD-88

3. Peripheral System Configuration

5.9 LSB-/MSB-first Switching Function

When reading or writing the serial transfer buffer, it is possible to reverse the sequence from LSB to MSB. This
function can be used to switch between LSB-first and MSB-first. The switch is made through the Serial Transfer
Control Register (SCONO, SCON1), and is made before reading or writing the serial transfer buffer. In addition, if
the switch is made after reading or writing the serial transfer buffer, the transfer is made in the sequence that was
used when the buffer was read or written.

H I I InliernaIIt:Jus,I r'

0

Si—*7 6 5 4 3 2 1 0 —*30
MSB LSB
S v —

Senal transfer buffer

Figure 3.28 Correspondence Between the Serial Transfer Buffer and the Internal Bus When LSB-first Is Specified

Internal bus

ST sS00
aT 1_"" & § 4 3 2 1 0 * 501

LSE MSE

Senal transfer buffer

Figure 3.29 Correspondence Between the Serial Transfer Buffer and the Internal Bus When MSB-first Is Specified

VMD-89

Visual Memory Unit (VMU) Hardware Manual

Figs. below show the timing charts for LSB-first and MSB-first serial transfer transmission and reception using SIOO.

Internal bus
0
. 5 4 3 1 0 —*301
MSB LSB
M v _—

Senal transfer buffer

Figure 3.30 Correspondence Between the Serial Transfer Buffer and the Internal Bus When LSB-first Is Specified

¢ Internal bus /

- I I I I I I I I 00
a1 " 7 6 5 4 3 2 1 07 Fgo1
LZE MZE

e e

Serial transfer buffer

Figure 3.31 Correspondence Between the Serial Transfer Buffer and the Internal Bus When MSB-first Is Specified

VMD-90

3. Peripheral System Configuration

5.10 Overrun Detection Function

The overrun detection function detects serial communication errors. When the interrupt source flag has been set
(SCONO01, SCON11), the overrun flag (SCON06, SCON16) is set at the falling edge of the transfer clock.

Fig. below shows the timing for normal communications and the timing when an overrun is generated. The
interrupt source flag (SCONO01, SCON11) is set at the rising edge of the transfer clock for the 8th bit of data. If, while
in this state, the falling edge of the transfer clock is detected, the overrun detection flag is set. (Refer to the overrun
generation timing chart.)

Note that the overrun flag has no effect on the operation of the microcomputer.

Note:

* Wait at least 1/2 of a transfer clock cycle after the interrupt source flag has been set to "1" before
checking the overrun flag.

e Even if the transfer mode that is set will exceed 8 bits, the overrun detection function operates
according to the same timing as for an 8-bit transfer.

Mormal communicatesns iming chart (B-Eat trarsfer)
Transfer

dock senia o od tJ vJ tJd 4 |
Su'ae‘:g' mput Wom K m X Ir ¥ Ir X In K Is X I X Iy
OctaCounter 0 X 1 X_ 2 X 3 X 4 X s X & X 7 X o0

Intesrupt A

source flag
Orverrun flag
Owerrun Qeneration Liming chart ;
M F=Overmun gererated
Transfer ¥— L
clock serid L I N I O I | I I o

1
R TR, GE I O T T T
Cctal Counter o }{1}{?}{ Xﬁ}{?;{u

Interrupt P

gource flag

Ohwesrron 13 |

Figure 3.32 Correspondence Between the Serial Transfer Buffer and the Internal Bus When LSB-first Is Specified

24

VMD-91

Visual Memory Unit (VMU) Hardware Manual

5.11 Transfer Bit Length Control Function

When transferring more than 8-bits of serial data, set the transfer bit length control bit SCON04 or SCON14
(continuous transfer).

e Once SCON04 and SCON14 have been set, the serial transfer begins. These bits are not reset even after 8
bits have been transferred.

e The interrupt source flag is set according to the same timing as for an 8-bit transfer (after the completion
of the transfer of 8 bits).

* The overrun detection bits SCON06 and SCON16 are set at the falling edge of the serial clock after the
transfer of eight bits has been completed. (For the timing chart, refer to the section on the overrun
detection function.)

e When the transfer bit length has been set to 8 bits, the transfer starts once the transfer control bit SCON03
or SCONT13 is set. Once the transfer of 8 bits has been completed, the transfer control bit is reset. This
causes the interrupt source flag SCONO1 or SCON11 to be set. In addition, serial transfer stops
automatically.

* When the transfer bit length has been set to "continuous transfer," the transfer starts once the transfer bit
length control bit SCON04 or SCON14 is set, and continues until the bit is reset. The interrupt source flag
is set after 8 bits have been transferred.

5.12 Program Examples

* SIOQ serial transfer (1) (transmission example)

Transfer conditions

e 8-bit transfer

¢ Transfer data: 038H (8 bits)

* MSB-first

¢ Falling edge output

e Normal mode

e Internal clock

e Baud rate: 25.6ms

¢ System clock: 32KHz crystal oscillating sub-clock

Working from the baud rate formula: T[SBR] = (256 - [SBR]) x 2 x Tcyc

\ [SBR] =256 - T[SBR]/(2 x Tcyc)

In this case, T[SBR] =25.6ms, and Tcyc = 366[micro]s, so the value that is to be set in the Baud Rate Generator
register (SBR) is determined as follows:

[SBR] = 256 - 25600/(2 x 366)

@ 221 (decimal) (approx.)

[J ODDH (hexadecimal)

VMD-92

3. Peripheral System Configuration

IE—.I| Baud rate
e

P12/3CH0 pia IR S
] TSR
P1O/200 pin W0 ¥ o0 ¥ 1 oM 1L X 1 ¥ oD ¥ o0 X 0
Hééﬂﬂh W17 ¥ 18 X 15 K 14 X 13 X 12 X 1 ¥ 1
2100 3100 shift register
Upper 4 bits 0oLl o1Ll 1110 1uoa Lo0g oanT 1) 41 0III 1111
Leser 4 hivs 1000 o0mTs SR 00Tale S Y0TeTele /el Tnla e TaTaTs) WataloTe/ \aLoln FE]
Figure 3.33 Timing for Serial Transfer (1)
L Eert k|
SET1 EOCHD, 2 1 Set MSB-first,
:I;ﬂﬁ“ﬁm‘”ﬂﬁﬂﬁ Mo WOIEH, SRUPD O Store the trensfer dabe in SEUFD,
4y 'T Mow WODDH, SBR 1 Sat the transferate TSER
CLE1 PL G « Sot the P10 latch to ™0
500 setting LRl L 2 reagthe Pl2 latch 1o "0."
1 -
Mo WOSH, FiFce (S PIOECR ta™1.c
I
= ¢ Set PIOODDR to "1."
SI0 setting ool dics: : St PI10OR o "0

; 5ot PIZDOR o " 1.7
Sstiih cock 'smt-:hni; ey Wozow,ocm o owitch the system dod to the sub-c
I

| Transferstart | #ET1 BOCND, 3 ¢ Start the S-Bat transfer.

e SIOL1 serial transfer (2) (reception example)

Transfer conditions

¢ 16-bit transfer

e LSB-first

* Bus mode

e External clock

® Same data is output from SO1 as from SB1.

* The upper 8 bits of the data that is loaded is stored in RAM at address #031H, and the lower 8 bits are
stored in RAM at address #030H.

VMD-93

Visual Memory Unit (VMU) Hardware Manual

SCONLE
InterTupt source Fa o o 0P by program,
51.:l:||-||:|L:I ? #‘lfﬁ | —
Figure 3.34 Timing for Serial Transfer (2)
Note:

¢ In this example, misoperation will result if there is a rising edge (B) on the transfer clock during the
interval from the execution of the instruction following SELFO to the execution of the SELF1 instruction.
The transfer rate should allow enough time for the cycle clock cycle.

¢ Set SCKn high one Tcyc cycle before the start of transfer. If SCKn is set high less than one Tcyc cycle
prior to the start of transfer, the correct data will not be output.

* When setting Pn to output, set PnFCR to "1" before PnDDR. If PnDDR is set first, "0" might be output
on Pn when PnDDR is set. This applies to both SIO0 and SIO1.

CLR1 200N, 2 L Eal LEBirsl
SH1 =atting cLE1 Fl, 4 el P14 Bfch Lo-0~
[cLRl B, 3 s ek P13 bch bo=0."
SCK] satting MoV #O8H, PIFCR Bt PISFLR to 1 =
|
1 = MOV W08H, PIDDR ; 52 P13DDR ta =17
SOT satting L Eal P14D0DR b 0~
- &k PISDODR e 0~
S-bit trancher start SET1 SCOML, 4 Elart | B-bit Lransier
(lower 2 bits) BELF0: BN sCal, 1, SELED ; Wail until 85t transfer B complebed
LD EBUF L - Elore dala n AOC
8T w030 ; Horelower 8 bl in RAH at 30
"w
B-bat trensfer start CLRL SCONL, 1 ; Sal the ntermupt source flag to 0.~
(upper B bits) el
SELF1: BN SC0HL, 1, SELF1 , Wait until -bit transfer i completed
LD FBUF 1 ; Hore doba in ACC
BT 031K - Elore upper 8§ BLs n AN &b 31H
e
I Transter end | MOV #O0H, SO0N1 ; End transfor

_End__)

VMD-94

3. Peripheral System Configuration

6. Dot Matrix LCD Controller/Driver

6.1 Overview

The LCD controller/driver automatically reads data that is stored in display RAM and generates the signals to

drive the dot matrix LCD. The display mode is a graphics mode in which one bit of data in display RAM

corresponds to one dot on the LCD.

The dot matrix LCD controller/driver consists of the following circuit blocks:
¢ Display RAM

¢ Display controller register

* LCD power supply circuit

6.2 Functions

e Display duty:1/33 duty
* Display bias:1/5 bias

* Graphics display

¢ Liquid crystal instruction:

Display:

* Graphics display

ON/OFF

1584 dots can be displayed (1 chip)

In order to control the liquid crystal display, it is necessary to manipulate the following Special Function

Control Registers.

*MCR
*STAD
*CNR
*TDR
*VCCR
*XBNK

: LCD on/ off control

: LCD start address control

: Horizontal byte count control

: Display duty control

: LCD contrast control

: Display RAM bank address control

VMD-95

Visual Memory Unit (VMU) Hardware Manual

6.3 Display RAM

Display

RAM consists of three banks of 96 ¥ 8 bits of static RAM. The LCD controller/ driver reads data that is stored

in this display RAM and generates the signals to drive the dot matrix LCD. Before writing or reading data in display
RAM, set the system clock to RC oscillation.

Symbol Address R/W Name Initial value Bank

XRAM 180H - 1FBH R/W Display RAM Undefined Bank
180H - 1FBH Bank
180H - 185H Bank

Not available for use

5,

Lonfiguration of chsplay RAM

. o W . F, | 3 ¥

180H | 181H | 1881 VLSGHAY =7~ A/ BEH,

- - r o B - ..i-r-_-----.-:-.:_.....

1a0M | 191H | 19BH VLOREY L~ A0 VLA,

Baods (3 Pe—— 1 | B T I T
ool B, 1L o Frrrr ..__. F
| | VISP Vs d Wiy

IS T— | S T ._..:'._..-r.'"...':_.t._: Y JINF 8 __...".,.":._"'.__,E

IFOH | IFIH | 1IFBH ['WOHALY 7 A AFH

b — —— - J_.-_.f_. . - e—1

180 | 181H | 188H [N Y /S AAIH

= I | v i Fof A
Bank 1 5 | | /A i Yo s, ,;.._f..
|| TFOH | 1F1M | 1rBH VIEGH A L /R

[i " fl1F & & A - Ry - ? Py ' AT i
Bank 2 |ABMAARMA S S S S AR Y WCR Y S S S Y R

6.4 Display Control Registers

e Mode Control Register (MCR)

This register controls the start/stop of LCD controller operation, cursor display, and the LCD clock division
ratio. The Mode Control Register is a write-only register. It is important to note that if a bit manipulation
instruction, an INC instruction, a DEC instruction, or a DBNZ instruction is used on a write-only register,
bits other than the specified bits will be set. The following instructions are used with the MCR:

e MOV * MOV @
e ST e ST@
e POP

In addition, when accessing this register, bits 7 through 5 and bit 0 must be set to their fixed values.

Symbol Address @ R/W Bit 7 Bit 6 Bit5 Bit 4 Bit3 Bit2 Bit1
MCR 120H W MCR7 MCR6 MCR5 MCR4 MCR3 - - MCRO
After reset 0 0 0 0 0 0 0 0

VMD-96

3. Peripheral System Configuration

Bit name Function

MCR7 (bit 7) LCD clock division selection
MCRE (bit 6] MCR7 | MCR6 | MCRs | Division ratio
MCR5 (bit 5)
0 0 1/1 * Always set MCR7 through MCR5 to "0."
MCR4 (bit 4) LCD clock divide-by-2 circuit selection
0: Selects the signal selected by MCR7 through MCR5, divided by 2, as the LCD clock
1: Selects the signal selected by MCR7 through MCRb, as is, as the LCD clock. (Direct
mode)
MCR3 (bit 3) LCD controller control
0: LCD controller stop
1: LCD controller start/continue
MCRO (bit 0) Display mode selection
1: Graphics mode * Always set MCR4 =1
MCRY7 (bit 7): LCD clock division selection
MCRG6 (bit 6):
MCRS5 (bit 5):
Always set MCR? through MCR5 to "0."
MCR4 (bit 4): This bit controls whether or not to divide by 2 the LCD clock that was

MCRS3 (bit 3):

MCRO (bit 0):

selected by MCR7 through MCR5.

The frame frequency is:

1/2 cycle (MCR4 = 0): 82.7Hz

1/1 cycle (MCR4 = 1): 165.5Hz

LCD controller control

This bit controls LCD controller operation start (1) /stop (0).

When this bit is set to "1," the LCD controller begins to operate. When
this bit is set to "0," the LCD controller stops operating.

Display mode selection
Select graphics mode (1) for the display mode.

Graphics display: MCRO =1

VMD-97

Visual Memory Unit (VMU) Hardware Manual

e LCD display start address control register (STAD)
This register controls the LCD start address.

Symbol Address = R/W Bit 7 Bit 6 Bit5h Bit4 Bit3 Bit2 Bit1
STAD 122H R/W STAD7 STADG STADS STAD4 STAD3 STAD2 STAD1 STADO
After reset 0 0 0 0 0 0 0 0

Bit name Function

STAD7 (bit7) | LCD RAM display start address setting
o STAD? STADG STAD5 STAD4 STAD3 STAD2 STAD1 STADO Start address
STADO (bit 0)
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
7 v 1 1 1 1 1 1 v
1 1 255
STADY (bit 7): LCD RAM display start address setting
[]
STADO (bit 0):

These bits set the starting address of the display data for the LCD. (XRAM 180H is
assumed as STAD = 00H.)

The data changes in two-byte units.

VMD-98

3. Peripheral System Configuration

Start address = XRAM address @ STAD7 STAD6 STADS STAD4 STAD3 STAD2 STAD1 STADO
OH 180H(Bank 0) 0 0 0 0 0 0 0 0
H 182H(Bank 0) 0 0 0 0 0 0 0 1
2H 184H(Bank 0) 0 0 0 0 0 0 1 0
3H 186H(Bank 0) 0 0 0 0 0 0 1 1
4H 188H(Bank 0) 0 0 0 0 0 1 0 0
5H 18AH(Bank 0) 0 0 0 0 0 1 0 1
6H Cannot be set 0 0 0 0 0 1 1 0
7H Cannot be set 0 0 0 0 0 1 1 1
8H 190H(Bank 0) 0 0 0 0 1 0 0 0
9H 192H(Bank 0) 0 0 0 0 1 0 0 1
0AH 194H(Bank 0) 0 0 0 0 1 0 1 0
0BH 196H(Bank 0) 0 0 0 0 1 0 1 1
0CH 198H(Bank 0) 0 0 0 0 1 1 0 0
0DH 19AH(Bank 0) 0 0 0 0 1 1 0 1
OEH Cannot be set 0 0 0 0 1 1 1 0
OFH Cannot be set 0 0 0 0 1 1 1 1
10H TAOH(Bank 0) 0 0 0 1 0 0 0 0
11H 1A2H(Bank 0) 0 0 0 1 0 0 0 1
3DH 1FAH(Bank 0) 0 0 1 1 1 1 0 1
3EH Cannot be set 0 0 1 1 1 1 1 0
3FH Cannot be set 0 0 1 1 1 1 1 1
40H 180H(Bank 1) 0 1 0 0 0 0 0 0
41H 182H(Bank 1) 0 1 0 0 0 0 0 1
7DH TFAH(Bank 1) 0 1 1 1 1 1 0 1
7EH Cannot be set 0 1 1 1 1 1 1 0
7FH Cannot be set 0 1 1 1 1 1 1 1
80H 180H(Bank 2) 1 0 0 0 0 0 0 0
81H 182H(Bank 2) 1 0 0 0 0 0 0 1
82H 184H(Bank 2) 1 0 0 0 0 0 1 0
83H - FFH Cannot be set

VMD-99

Visual Memory Unit (VMU) Hardware Manual

As indicated above, some settings result in misoperation if they are set as the start address. xx6H, xx7H, xxEH, and
xxFH cannot be set.

e Character Number Register (CNR) 123H
This register is set by an internal system program.

Game programs are prohibited from accessing this register.

e Time Division Register (TDR) 124H
This register is set by an internal system program.

Game programs are prohibited from accessing this register.

* Bank Address Register (XBNK)
This register controls the display RAM bank addresses.

Symbol | Address = R/W Bit7 Bit6 Bit5 Bit 4 Bit 3 Bit 2 Bit1 Bit0
XBNK 125H R/W - - - - - - XBNK1 XBNKO
After reset H H H H 0 0 H H
Bit name Function
XRBK1 (bit 1) LCD display RAM start address setting
To XRBK1 XRBKO Bank address
XRBKO (bit 0)

0 0 0

0 1 1

1 0 2

1 1 Setting prohibited

XRBK1 (bit 1):
to
to XRBKO (bit 0): Display RAM bank address control

Data can be written to display RAM at the address specified by the Bank Address
Register. Banks 0 and 1 of RAM data are 96 bytes each; game programs are allowed
to access bank 0 and bank 1 RAM. (Only bit 0 can be set.)

Bank 2 contains only 6 bytes, and is used for icon display. The system program
displays icons.

¢ LCD Contrast Control Register (VCCR)

This register turns the LCD display on and off. Note that there is no built-in contrast control circuit. The
LCD Contrast Control Register is a write-only register. It is important to note that if a bit manipulation
instruction, an INC instruction, a DEC instruction, or a DBNZ instruction is used on a write-only register,
bits other than the specified bits will be set. The following instructions are used with the VCCR:

VMD-100

3. Peripheral System Configuration

e MOV e MOV @
e ST e ST@
e POP

In addition, when accessing this register, bits 5 through 0 must be set to their fixed values.

Symbol = Address R/W Bit7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1
VCCR 127H W VCCR7 VCCR6 VCCR5 VCCR4 VCCR3 VCCR2 VCCR1 VCCRO
After reset 0 0 0 0 0 0 0 0
\VCCR7 (bit 7) LCD display control
0: LCD display off
1: LCD display on
\VCCR6 (bit 6) LCD display RAM access control
0: Access from CPU to display RAM enabled
1: Access from CPU to display RAM disabled
VCCR (bit 5)
to
VVCCRO (bit 0) * Be certain to set VCCR5 through VCCRO to “0."
VCCRY (bit 7): LCD display control

This bit controls the LCD display: ON (1)/OFF (0).

(1} LCDdisplay OMN{(VOCRT = 1)

tEEsEEa16H

PR

1B W

(23 LCDdsplay OFF (VOCRT = 0)
R 2

aja

H
=
.

TR
|-

e
|

s ke

B R
Hdad s bp-bdadsa.

Hp
BLEEL L §
[
s
Fi

|

VMD-101

Visual Memory Unit (VMU) Hardware Manual

Set the LCD display to ON (VCCR?7 = 1) after initiating LCD controller operation (MCR3 = 1).

* Setting sequence
1. MCR3=1
2. VCCR7=1

Be certain to always follows this sequence.

Conversely, when turning the LCD display OFF, make the settings in the following sequence:
1. VCCR7=0
2. MCR3=0

VCCR6 (bit 6): LCD display RAM access control

When the sub-clock (crystal oscillation) has been set for the system
clock and the LCD display is ON, be certain to disable access from the
CPU to the LCD display RAM (VCCR6 = 1) after changing the system
clock. In addition, enable access from the CPU to the LCD display
RAM (VCCR6 = 0) when reading or writing the LCD display RAM, or
when setting the system clock to CF oscillation or RC oscillation while
the LCD is on.

Setting sequence

When changing the system clock from CF oscillation or RC oscillation to crystal oscillation while the LCD
display is on:

VCCR6=1

OCR5=1,0CR4=0

When changing the system clock from crystal oscillation to CF oscillation or RC oscillation while the LCD
display is on:

OCR5=0/1, OCR4 = 1 (CF oscillation), OCR5 = 0, OCR4 = 0 (RC oscillation)

VCCR6=0

VCCRS5 (bit 5) through VCCRO (bit 0):
I
Always set these bits to "0."

Note:
e When the LCD is on, set the VCCR last.

VMD-102

3. Peripheral System Configuration

7. E

xternal Interrupt Function

7.1 Overview

POTATO has a function that detects external input signals on the P70/INTO, P71/INT1, P72/INT2/TOIN, P73/
INT3/TOIN pins and then generates interrupt requests to four vector addresses. The types of signals that are
detected are selected by the program. P70 is used to detect the LM-BUS connection to VMU, and P71 is used to
detect low voltage.

* Pins on which signals are detected and their corresponding vector addresses

Pin Vector address Pin Vector address
P70/INTO 003H P72/INT2/TOIN 013H
P71/INT1 00BH P73/INT3/TOIN 01BH

e Signals that can be detected

The priority ranking of the INT0 and INT1 pin interrupts can be set to either "highest level" or "low level"
through the Master Interrupt Enable Control Register (IE). If "highest level" is set, that interrupt processing
can be executed, regardless of the master interrupt enable setting. The priority ranking of interrupts other
than the INTO and INT1 interrupts can be set to either "high level" or "low level" through the Interrupt
Priority Ranking Control Register (IP). IN addition, a noise elimination filter with a switchable time
constant is connected to the P73/INT3/TOIN pin.

INTO, INT1 ping ——T—— Risingedge ()
—— Falling edge (3.)

— Highlevel (H)

— Low level (L)

INTZ, INT3 pins —— Risingedge ()
—— Falling edge ()

—— Both edges (/%

VMD-103

Visual Memory Unit (VMU) Hardware Manual

¢ Detection of another VMU unit

The statuses of various ports when the unit is connected or not connected to another VMU unit are

shown below.

P70 P72 P73
When connected to a VMU unit Ck Ck Cg
When not connected to a VMU unit | Ck Ck Ck

In order to use the external interrupt function, it is necessary to manipulate the following Special

Function Registers:

¢ [0ICR
e [23CR
e ISL

o IE

7.2 Circuit Configuration

107 CR{150H)

| Fle|s[aJale]1]o)

ntEmuEt et

FCETAIDT FeCpaeET

» HOLD rebe e signa

v HOLD rele see sigral

W | Timer O
Extemd signd input

PROVINTO :j R, [PV
5\ deteotion _j%_'
Lo -
 —
P71/ j A wpy
Lows volt Hlewal |
= Liwwa " I1ZL (15FH mi:-
- |
PF2AHT2 L
FTOM Cj o X
10 e
s S
i s R o [
[LK]] -
151 7 1 .
1
EL{TSFH)

LLEE o A e F

| r':' Ivus g R

EAEIHEIEIFI NN

I23CR(15EH)

Figure 3.35 External Interrupt Circuit Block Diagram

VMD-104

3. Peripheral System Configuration

7.3 Related Registers

¢ External Interrupt 0, 1

Control Register (I01CR)

Symbol Address R/W Bit7 Bit 6 Bit5 Bit 4 Bit3 Bit2 Bit1
[01CR 15DH R/W I01CR7 I01CR6 I01CR5 |01CR4 |01CR3 |01CR2 [01CR1 [01CRO
After reset 0 0 0 0 0 0 0 0

Bit name Function

I01CR7 (bit 7) INT1 detection level/edge selection
101CR6 (bit 6 [01CR7 I01CR6 INT1 interrupt condition
0 0 Falling edge detection
0 1 L level detection
1 0 Rising edge detection
1 1 H level detection
I01CR5 (bit 5) INT1 interrupt source
0: No interrupt source
1: Interrupt source
[01CR4 (bit 4) INT1 interrupt enable control
0: Interrupt disabled
1: Interrupt enabled
I01CR3 (bit 3) INTO detection level/edge selection
I01CR2 (bit 2) |01CR3 |01CR2 INTO interrupt condition
0 0 Falling edge detection
0 1 L level detection
1 0 Rising edge detection
1 1 H level detection
[01CR1 (bit 1) INTO interrupt source
0: No interrupt source
1: Interrupt source
[01CRO (bit 0) INTO interrupt enable control
0: Interrupt disabled
1: Interrupt enabled

VMD-105

Visual Memory Unit (VMU) Hardware Manual

I101CR7 (bit 7): INT1 detection level / edge selection
I01CR6 (bit 6):
These bits select the INT1 interrupt condition for signals input on the
P71/INT1 pin.
101CR7 101CR6 INT1 interrupt condition
0 0 Falling edge detection
0 1 L level detection
1 0 Rising edge detection
1 1 H level detection
I01CR5 (bit 5): INT1 interrupt source

This bit is set if the condition specified by bits I0O1CR7 and 6 is met. If
INT1 interrupts are enabled (I01CR4 = 1), then control jumps to vector
address 000BH and interrupt processing begins. This bit is not reset,
even when interrupt processing is completed. Therefore, it is
necessary for this bit to be reset by software.

I101CR4 (bit 4): INT1 interrupt enable control

This bit enables (1) / disables (0) the acceptance of external interrupt 1
(INT1). When this bit is set to "1," then when I0O1CR5 is set, INT1

interrupt processing is executed; when this bit is set to "0," interrupt
processing is not executed.

I101CR3 (bit 3): INTO detection level / edge selection
I01CR2 (bit 2):
These bits select the INTO interrupt condition for signals input on the
P70/INTO pin.
101CR3 101CR2 INTO interrupt condition
0 0 Falling edge detection
0 1 L level detection
1 0 Rising edge detection
1 1 H level detection
I01CR1 (bit 1): INTO interrupt source

This bit is set if the condition specified by bits I0O1CR3 and 2 is met. If
INTO interrupts are enabled (I01CRO = 1), then control jumps to vector
address 0003H and interrupt processing begins. This bit is not reset,
even when interrupt processing is completed. Therefore, it is
necessary for this bit to be reset by software.

VMD-106

3. Peripheral System Configuration

I101CRO (bit 0): INTO interrupt enable control

This bit enables (1) / disables (0) the acceptance of external interrupt 0
(INTO0). When this bit is set to "1," then when I01CR1 is set, INTO
interrupt processing is executed; when this bit is set to "0," interrupt
processing is not executed.

e External Interrupt 2, 3 Control Register (I23CR)

For details, refer to Chapter 3, section 3.2.4, "External Interrupt 2, 3 Control Register."

Symbol | Address R/W Bit7 Bit6 Bit5 Bit 4 Bit 3 Bit 2 Bit1 Bit 0
123CR 15EH R/W 123CR7 123CR6 123CR5 123CR4 123CR3 123CR2 123CR1 123CRO
After reset 0 0 0 0 0 0 0 0

Bit name Function

123CR7 (bit 7) INT3 rising edge detection control

0: Do not detect
1: Detect

123CR6 (bit 6) INT3 falling edge detection control

0: Do not detect
1: Detect

123CR5 (bit 5) INT3 interrupt source

0: No interrupt source
1: Interrupt source

123CR4 (hit 4) INT3 interrupt enable control

0: Interrupt disabled
1: Interrupt enabled

123CR3 (bit 3)) INT2 rising edge detection control

0: Do not detect
1: Detect

123CR2 (bit 2) INTZ falling edge detection control

0: Do not detect
1: Detect

123CR1 (hit 1) INT2 interrupt source

0: No interrupt source
1: Interrupt source

123CRO (bit 0) INT2 interrupt enable control

0: Interrupt disabled
1: Interrupt enabled

VMD-107

Visual Memory Unit (VMU) Hardware Manual

e Input Signal Select Register (ISL)

For details, refer to Chapter 3, section 3.2.4, "Input Signal Selection Register."

Symbol | Address = R/W Bit7 Bit 6 Bit5h Bit4 Bit3 Bit2 Bit1
ISL 15FH R/W - - ISL5 ISL4 ISL3 ISL2 ISL1 ISLO
After reset H H 0 0 0 0 0 0
Bit name Function
ISL5 (hit 5) Base timer clock selection
ISL4 (bit 4) ISL5 ISLa
1 1 Timer/counter TO prescaler
1 Cycle clock
X 0 Sub-clock (crystal oscillation)
ISL3 (bit 3) Buzzer output frequency selection
0: fBST/16
1: fBST/8
ISL2 (bit 2) Noise elimination filter time constant selection
ISL1 (bit 1) ISL2 ISL1 Time constant
1 1 16Tcyc
1 64Teyc
X 0 1Teyc
ISLO (bit 0) TO clock input pin selection
0: P72/INT2/TOIN pin
1: P73/INT3/TOIN pin

* Master Interrupt Enable Control Register (IE)

Symbol | Address = R/W Bit7 Bit 6 Bit5 Bit 4 Bit 3
IE 108H R/W IE7 - - - - - IE1 IEO
After reset H H 0 0 0 0 0 0

VMD-108

3. Peripheral System Configuration

Bit name Function

IE7 (bit 7) Master interrupt enable control (high level, low level)
0: All interrupt requests disabled
1: All interrupt requests enabled
IET (bit 1) INTO, INT1 interrupt priority control
IE0 (bit 0} IE1 IEO INT1 priority level INTO priority level
0 0 Highest level Highest level
0 Low level Highest level
X 1 Low level Low level

— IE7 (bit 7):Master interrupt enable control

This bit enables (1)/ disables (0) the acceptance of all "high level" and
"low level" interrupts. When this bit is set to "1," all interrupts for
which interrupt requests have been generated are enabled; when this
bit is set to "0," "high level" and "low level" interrupts are disabled.

IE1 (bit 1): INTO, 1 interrupt priority control
IEO (bit 0):
These bits set the priority level for external interrupts INTO and 1.
IE1 IE0 INT1 priority level INTO priority level
0 0 Highest level Highest level
1 0 Low level Highest level
X 1 Low level Low level
Note:

e Although "low level" priority for INTO and 1 is controlled by IE7, "highest level" priority is not.

e It is not possible to set just external interrupt INT1 alone to "highest level.

VMD-109

Visual Memory Unit (VMU) Hardware Manual

8. Port Interrupt Functions

8.1 Overview

In addition to its digital I/ O function, port 3 can be used to generate interrupts or release HOLD mode. This function
can be used to implement a "key-on wakeup" function that releases HOLD mode when a key switch is pressed.

A port interrupt can be implemented through port 3.

8.2 Function

In addition to its digital I/ O function, port 3 also has the following functions:

* Generates an interrupt when it detects a low-level signal.

* Releases HOLD mode when it detects a low-level signal.
After HOLD mode is released, the internal RC oscillation is adopted for the system clock.

In order to use the port interrupt function, it is necessary to manipulate the Special Function Registers shown below.

For port 3 interrupt:
* I3 * P3DDR e P3INT
* IE

8.3 Circuit Configuration

D EQE B

=

i

a
-
rr2[]—po |
|

P23 [—te
PR [e
PES

TaelS|4)S|2)] 1)@

PRLR] 1 D) f HOLD e aae
EEEIDEIE DL
FTMTII4EH] I ! ! { Fart & intsrrapt reqiseat

Figure 3.36 Port 3 Interrupt Circuit Block Diagram

VMD-110

3. Peripheral System Configuration

8.4 Related Registers

e Port 3 Interrupt Control Register (P3INT)
For details, refer to Chapter 3, section 3.1.2, "Port 3 Interrupt Control Register."

Symbol | Address R/W Bit7 Bit6 Bit5 Bit 4 Bit 3 Bit 2 Bit1 Bit 0
P3INT 14EH R/W - - - - - P32INT P31INT P30INT
After reset H H H H H 0 0 0

Bit name Function

P32INT (bit 2) Port 3 interrupt control flag

0: Interrupts through port 3 and HOLD mode release through port 3 disabled.
1: Interrupts through port 3 and HOLD mode release through port 3 enabled.

P31INT (bit 1) Port 3 interrupt source flag

0: No interrupt source
1: Interrupt source

P30INT (bit 0) Port 3 interrupt request enable

0: Interrupt request enabled.
1: Interrupt request disabled.

* Master interrupt enable control register (IE)

For details, refer to chapter 3, section 3.8.3, "Master Interrupt Enable Control Register."

Symbol | Address R/W Bit7 Bit6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
IE 108H R/W IE7 - - - - - IE1 IEO
After reset 0 H H H H H 0 0

Bit name Function

[E7 (bit 7) Master interrupt enable control (high level, low level)

0: All interrupt requests disabled.

1: All interrupt requests enabled.

IET (bit 1) INTO, 1 interrupt priority control

IEQ (bit 0) IE1 IEO INTT priority level INTO priority level
0 0 Highest level Highest level
1 0 Low level Highest level
X 1 Low level Low level

VMD-111

Visual Memory Unit (VMU) Hardware Manual

8.5 Description of Operation

e Port 3 interrupts

Set bit 2 of the port 3 interrupt control register (P3INT) to "1." This selects the port 3 interrupt.

Through a Special Function Register, select the pin in port 3 (P37 through P30) on which the low-level signal
is to be detected.

The following conditions must be met in order to accept a port 3 interrupt:
* The corresponding bit in the Port 3 Control Register (P3DDR) must be set to input mode.
P3mDDR=0(m=0to7)

* The corresponding bit in the Port 3 Register (P3) must be set.
P3n=1(n=0to7)

O If a low-level signal is detected, the interrupt source is set to "1." If the interrupt request enable flag has
been set, an interrupt request is generated, and if the master interrupt enable flag has been set, control
branches to vector address 004BH.

O If the two conditions described in item 2 above are met while in HALT mode, HALT mode is released and
control branches to vector address 004BH.

O If the two conditions described in item 2 above are met while in HOLD mode, HOLD mode is released
and control branches to vector address 004BH. In this case, the internal RC oscillation is selected for the
system clock.

VMD-112

3. Peripheral System Configuration

8.6 State Transitions

e State transitions in HOLD mode

This flowchart applies to port 3 interrupts.

{ Start)

Fort 5 state setting |

1

HOLD setting |

HOLD mode

| HALT mode|

L

Port 2'L" level
detecred?

YES

OLD *HALT
mode releass)

(HOL

aster
interrupt

enable flag
=17

YES

Release HALT mode
and branch to O04BH

1
(_End)

Note:

* When releasing HOLD mode through P3, set other individual interrupt request enable flags to "0."

VMD-113

Visual Memory Unit (VMU) Hardware Manual

e HALT mode in state transition

This flowchart applies to port 3 interrupts.

(Stert)
|

|__Port 3 state setung |

[HALT setung___|

Port 3L’ level
detected?

interrupt
enable flag= 17

and branch to O04BH.

(Er‘t-:l)

VMD-114

3. Peripheral System Configuration

8.7 Program Example

This example applies to port 3 interrupts.

® Program

This program releases HOLD mode without branching to an interrupt routine when a low-level signal is
detected on P37.

&L

[Master imerngst enatie] WEOH, IE 5 Erables all mbarmupts,

Mo
TSt P37 to "1 inorder towse PEY for refese
Port Sintemwpt sstting| OV FEOH. B3 o node.
MO

#72, p3poR : Set P37 toinput mode Set P3F boinput moc
and P35 theough PR30 8o cut pauk mode,

MOV #0SH, pary Enadesport Smtemupts,

[Ao selirg | MoV #02H, pool ; Set to HOLD mode.

— : Port Junterrupt generat &d

[Interrupt processing |

[Intermupt scurce e | cLe1l p3zme, 1 ¢ Oedr port Smternupt source flag.

[Internpt processing end

* Example application circuit

o _ LS

VMD-115

Visual Memory Unit (VMU) Hardware Manual

Figure 3.37 Application Circuit Example

9. VMU Work RAM

9.1 Overview

There are two banks of 256 bytes provided as communications buffers in the new-generation game machine
dedicated interface. As long as a data transfer is not being performed on the LM-BUS, these buffers can also be
accessed as work RAM.

Whether a data transfer is being conducted with the new generation game machine can be determined by
referencing the ASEL flag in the VSEL register. (A data transfer is in progress when ASEL = "1.") Note that a normal
data transfer cannot be guaranteed if this work RAM is accessed while a data transfer is being performed with a
new generation game machine.

9.2 Work RAM Control Registers

VMU Control Register (VSEL)

Symbol Address @ R/W Bit 7 Bit 6 Bit5 Bit 4 Bit3 Bit2 Bit1
VSEL 163H R/W - - - INCE - - SIOSEL ASEL
After reset H H H 0 H H 0 0

Game programs can access only bit 4. A bit manipulation instruction must be used.

INCE (bit 4): VTRBF address counter automatic increment

This bit controls the automatic incrementing of the address counter
when writing / reading VIRBF from the CPU side.

When this bit is set to "1," the address counter is automatically
incremented by one after VIRBF has been accessed from the CPU
side. When this bit is set to "0," the current address is saved after
access.

SIOSEL (bit 1): P1 port usage selection control

This bit controls the selection of whether the P1 port (P10 to P15) is to
be used as anormal I/O port and as I/ O pins for a synchronous serial
interface, or as the new game machine dedicated interface. Always set
this bit to "0" in game program mode.

ASEL (bit 0): VTRBF address input select control

This bit controls the selection of access to VTRBF that is used as a
buffer for the VMU and the new generation game machine dedicated
interface.

Always set this bit to "0" in game program mode. If this bitis set to "1,"
access from the MPU to VIRBF is not possible.

VMD-116

3. Peripheral System Configuration

® Work RAM access address (VRMAD1, 2)

Symbol | Address

VRMAD!1 164H R/W VRMAD7 | VRMAD6 | VRMAD5 | VRMAD4 | VRMAD3 | VRMADZ | VRMAD1 | VRMADO

After reset 0 0 0 0 0 0 0 0

Symbol | Address

VRMAD2 | 165H R/W - - - - - - - VRMAD8

After reset H H H H H H H 0

These registers set the address that is to be accessed from the CPU side in work RAM (VTRBF).
VRMADL1 is the lower 8 bits of the address; VRMAD?2 switches the bank.
When the VSEL bit is set to "1," VRMAD is incremented each time that VTRBF is accessed.

¢ Send/receive buffer (VIRBF)

Symbol Address R/W Bit7 Bit 6 Bit5 Bit 4 Bit3 Bit2 Bit1
VTRBF 166H R/W VTRBF7 VTRBF6 VTRBF5 VTRBF4 VTRBF3 VTRBF2 VTRBF1 VTRBFO
After reset 0 0 0 0 0 0 0 0

This register is used to access the data in the address specified by VRMAD.

When the CPU writes to this register, the data is written to the address specified by VRMAD. when the CPU reads
this register, it reads the data from the address that was specified by VRMAD.

If the VSEL bit is set to "1," VRMAD is incremented automatically each time that this register is accessed.
9.3 Accessing Work RAM

When accessing VMU work RAM, the address that is to be accessed is stored in the VRMADI1 and 2 registers. An
application accesses work RAM by storing the address value in VRMAD1 and 2 and then reading or writing the
VTRBF register.

It is important to note that the VRMADI1 and 2 registers have an auto-increment function. For details, refer to the
next item.

VMD-117

Visual Memory Unit (VMU) Hardware Manual

9.4 Notes on Using the Address Register for Work RAM

Figure below illustrates an access to work RAM.
When a game program accesses work RAM, the address value is specified by the VRMAD1 and 2 registers.

It is essential to note that if the INCE flag in the VSEL register has been set to "1," the value in VRMAD is
automatically incremented each time that game program work RAM is accessed. (No distinction is made between

reads and writes.)

VTREBF VEMADI, 2
work EAM) systermn addressregistar)

VTE.EBF register

MFU ™ dam)

datal | 4— Addressvalue pnor to access

— Addressvalue after acoess
addrasspnorts access+ 1)

WhenlHCE =0

VTR BF VEMADI, 2
fwark RAM) system addressregister)

VTR.BF register

MFL » data |

— Hddressvalue prnor to access
datal

!\H“ Sddressvalue after acoess
e changs)

Figure 3.38 VMU Work RAM Access

VMD-118

3. Peripheral System Configuration

10.

Flash EEPROM

10.1 Overview

POTATO has an internal 128K flash EEPROM (Electrically Erasable Programmable ROM) that can operate with a
single power supply.

10.2

Functions

* Programming and read operations possible with a single power supply
e Capacity: 131072 ¥ 8 bits: Data area
* Programmable/erasable in block (page) units
block = 128 bytes (= 1 page)
e Number of times overwriting is possible
50,000 times/ page (Ta = 25°C) (with memory management by program)
e Built-in step-up voltage circuit for writing
* Overwriting end detection function (detected within subroutine call in the internal BIOS program)
Toggle bit method
Data polling method

* Batch erase of software possible

10.3 Accessing the Data Area EEPROM

The data area can be written by using a PROM writer, and can be read and written by calling a subroutine in the
microcontroller's internal BIOS program.

3.10.3.1 Reading/ Writing Data in a Program

Loading the internal BIOS programs makes it possible to easily access the data area EEPROM.

BIOS programs that are used: FM_WRT_EX (writes data to the data area EEPROM)
FM_VRF_EX (Verifies writing data in the data area EEPROM)
FM_PRD_EX (reads the data in the data area EEPROM)

Data area EEPROM space: 128 x 8 bits x 1024 pages

When accessing (reading or writing) the data area EEPROM, load and use the target internal BIOS
programs from within the program as subroutine calls ("callr" instruction and "callf" instruction).

VMD-119

Visual Memory Unit (VMU) Hardware Manual

e FM_WRT_EX
This subroutine is loaded in order to write data to the data area EEPROM.

Loading this subroutine writes one page (128 x 8 bits). The following settings must be made beforehand in
order to load this subroutine.

(Items that should be set beforehand)

1. Specification of the EEPROM write start
address (17-bit specification)

(1) Lower address (8 bits): Specify in 7FH in RAM (Bank-1).
(2) Upper address (8 bits): Specify in 7EH in RAM (Bank-1).
(3) Bank address (1 bit): Specify in bit 0 of 7DH in RAM (Bank-1).

When setting the lower address, remember that it is not possible to
write data so that it spans two pages.

Because this writing operation is performed one page (128 bytes) at a
time, specify zeroes ("0") for bits 0 through 6 of the lower address.

2. Setting the data that is to be written in EEPROM

¢ Set the data that is to be written in EEPROM in RAM at addresses
80H through OFFH ahead of time.

3. Specification of the method for detecting the end of the EEPROM
writing operation

* There are two methods for detecting the end of the EEPROM writing
operation; specify which of those methods is to be used.

(1) Toggle bit method:Bit 0 of 7CH in RAM (Bank-1) =0
(2) Data polling method:Bit 0 of 7CH in RAM (Bank-1) =1

e Specify which of the above two methods is to be used through bit 0
of 7CH in RAM.

e FM_VRF_EX

This subroutine is used to verify that the data that was written in the data area EEPROM was written
correctly.

Loading this subroutine compares one page of data (128 x 8 bits) written in EEPROM with the original data
(the data in addresses 80H through 0FFH in RAM (Bank-1)).

* When all 128 bytes are correct: Accumulator (ACC) = 00H
* When even one of the 128 bytes is correct: Accumulator (ACC) m00H

This subroutine must be executed after the data has been completely written to EEPROM, but before the
data in addresses 80H through OFFH in ROM has been overwritten.

(Necessary data for loading)
1. Specification of the EEPROM read start address (17-bit specification)

(1) Lower address (8 bits): Specify in 7FH in RAM (Bank-1).
(2) Upper address (8 bits): Specify in 7EH in RAM (Bank-1).
(3) Bank address (1 bit): Specify in bit 0 of 7DH in RAM (Bank-1).

When setting the lower address, remember that it is not possible to read data spanning two pages.

VMD-120

3. Peripheral System Configuration

2. EEPROM data and the comparison data

This subroutine verifies that the data that was written in EEPROM was written correctly. The data that is
compared to the EEPROM data is the data in addresses 80H through OFFH in RAM (Bank-1), starting from
the data in address 80H.

3. End of the EEPROM reading operation
(1) When comparison results do not match
(2) When the lower 7 bits of the address are "7FH"

e FM_PRD_EX
This subroutine is used to read data from the data area EEPROM.

Loading this subroutine reads one page (128 x 8 bits). The following settings must be made beforehand in
order to load this subroutine.

(Ttems that should be set beforehand)
1. Specification of the EEPROM read start address (17-bit specification)

(1) Lower address (8 bits): Specify in 7FH in RAM (Bank-1).
(2) Upper address (8 bits): Specify in 7EH in RAM (Bank-1).
(3) Bank address (1 bit): Specify in bit 0 of 7DH in RAM (Bank-1).

When setting the lower address, remember that it is not possible to read data that spans two pages.

Because this reading operation is performed one page (128 bytes) at a time, specify zeroes ("0") for bits
0 through 6 of the lower address.

2. Data that was read from EEPROM
The data that is read from EEPROM is written in addresses 080H through OFFH in RAM (Bank-1).

Note: When accessing the data area EEPROM, disable all interrupts before making subroutine calls of
the microcomputer's internal OS program. In some cases interrupts cannot be accepted while accessing
the data area EEPROM, which can lead to misoperation.

10.4 Accessing the Program Area EEPROM

The program area is created in the EEPROM. As a rule, when POTATO is shipped, the entire program area is
filled with "FFH." The method provided for the user in order to write program data in the program area is
described below.

10.5 Writing with a PROM Writer

A third-party PROM writer and Sega's Conversion Board (W86F8716Q) can be used to easily write the
program area.

(Refer to Chapter 3, section 3.10.3.2, "Writing / Reading with a PROM Writer.")

Note that using this method after the board has been installed does carry a risk of causing problems with other

VMD-121

Visual Memory Unit (VMU) Hardware Manual

VMD-122

Sega@'Dreamcast

4. Control Functions

1. Interrupt Function

The interrupt function is used to temporarily interrupt the program that the microcomputer is currently executing
and then execute another program in order to address an urgent need. POTATO includes circuits for generating 12

types of interrupt requests. In the VMU, some types of interrupt processing cannot be set as desired from within a
game program. The interrupts are shown in Table on next page.

VMD-121

4. Control Functions

1.1 Types of Interrupts

Table 4.1 List of interrupts

Priority
Priority Internal/ | Vector Interrupt Source Enable Register ranking
ranking | Interrupttype external address | request ED] flag address setting
1 Externalinterrupt | external 0003H P70/INTO pin |01CR1 [01CRO 15DH Highest/low
INTO event detection
2 Externalinterrupt | external 000BH P71/INT1 pin |01CR5 |01CR4 15DH
INT1 event detection
3 Externalinterrupt | external 0013H P72/INT2 pin 123CR1 123CRO 15EH High/low
INT2 event detection
Timer/counter Internal Timer/counter TOL | TOCNT1 TOCNTO 110H
TOL (lower 8 bits) lower 8 bits
overflow
4 Externalinterrupt | external 001BH P73/INT3 pin 123CR5 123CR4 15EH High/low
INT3 event detection
Base timer Internal Base timer BTCR1 BTCRO 17FH
overflow
BTCR3 BTCR2
5 Timer/counter Internal 0023H Timer/counter TOH | TOCNT3 TOCNT2 110H High/low
TOH (upper 8 bits) upper 8 bits
overflow
6 Timer T1 Internal 002BH Timer T1L overflow | T1CNT1 T1CNTO 118H High/low
Timer TTH T1CNT3 T1CNT2
overflow
7 SI00 Internal 0033H SI00 end SCONO1 SCONOO 130H High/low
detection
8 SI01 Internal 003BH SI01 end SCON11 SCON10 134H High/low
detection
9 VMU interrupt Internal 0043H VMU RFB RFBENA 160H/161H High/low
communications
reception end
detection
10 Port 3 interrupt external 004BH Port 3 I low level P31INT P30INT 14EH High/low
(P32INT =1) detection
Note:

e The "priority ranking" indicates the order of priority given to interrupts when multiple interrupts are
generated simultaneously. However, the priority ranking changes when specified in the Interrupt
Priority Control Register (IP).

VMD-122

4. Control Functions

1.2 Interrupt Function Operation

e If an interrupt is generated from an interrupt request source that is shown in Table 4-1-1, the
corresponding interrupt request flag is set.

If the interrupt request enable flag that corresponds to the interrupt request source is set, the
microcomputer's interrupt control circuit is notified of the interrupt request.

e The interrupt control circuit accepts the interrupt according to the priority ranking rules.

Interrupts can have a priority of either "highest level," "high level," or "low level;" in order to enable a high
level or low level interrupt, it is necessary to set the master interrupt enable flag (IE7) in addition to the
individual interrupt enable flags. IE7 controls high level and low level interrupts. In addition, if "highest
level" has been set for INTO or INT1 by the interrupt priority control flags (IE1, 0), interrupt processing is
executed regardless of the master interrupt enable flag.

e The interrupt sources with an interrupt priority ranking from 3 to 9 can be specified as having either "high
level" or "low level" interrupt priority according to the Interrupt Priority Control Register (IP).

e If an interrupt is generated, then after execution of the instruction that is currently being executed is
completed, the interrupt control circuit automatically stores the contents of the program counter (PC) in
the stack (in RAM), and then the microcomputer executes the interrupt service program. Because the
program counter data uses two bytes of the stack, the stack pointer (SP) is incremented by 2. After control
returns from the interrupt service program, the SP is decremented by 2.

e After executing the interrupt service program, the microcomputer executes the RETI instruction in order
to resume execution of the original program.

e Up to three interrupts can be nested.

e Interrupt request flag acceptance processing is not performed while executing the RETI instruction, while
executing any instructions (such as MOV or ST) that write to the Special Function Registers listed below,
or while writing to the data area EEPROM:

o JE

o [P

e PCON
o EXT

1: RETI instruction, &1c. bt f

I"'— ntermupt reguest flag -"-]

% Aol Seclptéd

In order to use the interrupt function, it is necessary to manipulate the following Special Function Registers:
e IE

o IP

¢ SP (because it is undefined after a reset)

* Special Function Registers in the function block that accepts interrupts

VMD-123

Visual Memory Unit (VMU) Hardware Manual

1.3 Circuit Configuration

INT 0 it el g uasd

INT 1 il rregt g uessd
INT 2 il gt e s sd
|—| ™, OO0EH
 — Higites 24 ot | inhe rmapt 543 rasl
TOL ik ermipl mgusst L~
QOO
IHT S wierrgal gt s I, = —
\ 1 %
J Hig h'iow el
- | M
Be e time rinle mupd s et _|_ JFa— — A eyt ol -,
WAPAHH = — - IrilE rTupd
= | , m
TOH mlerrup! mqeil =5 . .I_-"'-..
| 025N E L
o
Tl ekermup! mquest —— T, 05 B E
/ ' z
TUH irde rupt mguast ——— g Sxm 3
— JUF3H
| =
SO0 eAermapl reqg sk DO3EH 1E{ 1 OEH
| Tlelsla]x gy | @
SH0 1 it rregk g usst |
(0434
-
¥ ME mbarmupl g usal J
A —

For 5 inle mupt g eesl —I

e

P O9H)
L LA B E AL
] I

Figure 4.1 Interrupt Function Block Diagram

1.4 Related Registers

* Master Interrupt Enable Control Register (IE)

For details, refer to Chapter 3, section 3.7.3, "Master Interrupt Enable Control Register."

Symbol Address | R/W Bit7 Bit 6 Bith Bit4 Bit3 Bit2 Bit1
IE 108H R/W IE7 - - - - - IE [EO
After reset 0 H H H H H 0 0

VMD-124

4. Control Functions

Bit name Function

[E7 (bit 7) Master interrupt enable control (high level, low level)
0: All interrupt requests disabled
1: All interrupt requests enabled
IET (bit 1) INTO, INT1 interrupt priority control
IEQ {bit 0) IE1 IE0 INT1 priority level INTO priority level
0 0 Highest level Highest level
1 0 Low level Highest level
X 1 Low level Low level

e Interrupt Priority Ranking Control Register (IP)

Symbol | Address R/W Bit7 Bit6 Bit5 Bit 4 Bit 3 Bit 2 Bit1 Bit 0
IP 109H R/W IP7 IP6 IP5 IP4 IP3 IP2 IP1 IPO
After reset 0 0 0 0 0 0 0

IP7 (bit 7)

Port 3 interrupt priority level setting

0: Low level
1: High level

IP5 (bit 5)

SI01 interrupt priority level setting

0: Low level
1: High level

P4 (bit 4)

SI00 interrupt priority level setting

0: Low level

1: High level

IP3 (bit 3)

T1 priority level setting

0: Low level

1: High level

P2 (bit 2)

TOH priority level setting

0: Low level

1: High level

IP1 (bit 1)

INT3 and base timer interrupt priority level setting

0: Low level

1: High level

IPO (bit 0)

INTZ and TOL interrupt priority level setting

0: Low level
1: High level

VMD-125

Visual Memory Unit (VMU) Hardware Manual

IP7 (bit 7):

IP5 (bit 5):

IP4 (bit 4):

IP3 (bit 3):

IP2 (bit 2):

IP1 (bit 1):

IPO (bit 0):

Port 3 interrupt priority level setting

This bit selects either "high" (1) or "low" (0) for the port 3 interrupt
priority level. When this bit is set to "1," the priority level for this
interrupt is set to "high level," giving this interrupt higher priority
than low level INTO and INT1 interrupts (IE0 = 1). When this bit

is set to "0," the priority level for this interrupt is set to "low level."

SIO1 interrupt priority level setting

This bit selects either "high" (1) or "low" (0) for the SIO1 interrupt
priority level. When this bit is set to "1," the priority level for this
interrupt is set to "high level," giving this interrupt higher priority
than low level INTO and INT1 interrupts (IE0 = 1). When this bit
is set to "0," the priority level for this interrupt is set to "low level."

SIOO0 interrupt priority level setting

This bit selects either "high" (1) or "low" (0) for the SIO0 interrupt
priority level. When this bit is set to "1," the priority level for this
interrupt is set to "high level," giving this interrupt higher priority
than low level INTO and INT1 interrupts (IE0 = 1). When this bit

is set to "0," the priority level for this interrupt is set to "low level."

T1 priority level setting

This bit selects either "high" (1) or "low" (0) for the T1 interrupt
priority level. When this bit is set to "1," the priority level for this
interrupt is set to "high level," giving this interrupt higher priority
than low level INTO and INT1 interrupts (IE0 = 1). When this bit
is set to "0," the priority level for this interrupt is set to "low level."

TOH priority level setting

This bit selects either "high" (1) or "low" (0) for the TOH interrupt
priority level. When this bit is set to "1," the priority level for this
interrupt is set to "high level," giving this interrupt higher priority
than low level INTO and INT1 interrupts (IE0 = 1). When this bit

is set to "0," the priority level for this interrupt is set to "low level."

INT3 and base timer interrupt priority level setting

This bit selects either "high" (1) or "low" (0) for the INT3/base
timer interrupt priority level. When this bit is set to "1," the
priority level for this interrupt is set to "high level," giving this
interrupt higher priority than low level INTO and INT1 interrupts
(IE0 = 1). When this bit is set to "0," the priority level for this
interrupt is set to "low level."

INT2 and TOL interrupt priority level setting

This bit selects either "high" (1) or "low" (0) for the INT2/TOL
interrupt priority level. When this bit is set to "1," the priority level
for this interrupt is set to "high level," giving this interrupt higher
priority than low level INTO and INT1 interrupts (IE0 = 1). When
this bitis set to "0," the priority level for this interrupt is set to "low
level."

VMD-126

4. Control Functions

1.5 Interrupt Priority Ranking

The priority ranking of the interrupt levels is as follows:
Highest level > high level > low level
The priority ranking of multiple interrupt sources of the same priority ranking level that are generated

simultaneously is as listed in Table 4-1-1. In addition, the overlapping interrupt control circuit controls overlapping
interrupts, permitting nesting of "low level" Z "high level" £ "highest level" interrupt routines.

Highest level: External interrupts INTO and INT1 (when set to "highest level")
This level is not controlled by the mask interrupt enable flag (IE7).

High level: Those interrupt sources other than INT0 and INT1 that
correspond to the bits that are set in the interrupt priority control
register (IP).

This level is controlled by the mask interrupt enable flag (IE7).

Low level: Those interrupt sources INTO and INT1 for which "low level" is
setin IEQ or IE1, and those interrupt sources other than INT0 and
INT1 that correspond to the bits that are reset (0) in the interrupt
priority control register (IP).

This level is controlled by the mask interrupt enable flag (IE7).

Highest

e TS High #——— PFrioriy ranking —————— Low
Hgk 1 T
!) |_ETE b e n:nl n ||5I'3|111I||um|h-13|

FriariLy
ranking I P

M TS I S T T R T T
CII ege | e | ek | e | e [ek | ks | om | e |

s To ghes the SI00 end erferrupl higher pronty tan the IHTO iplerugd, et IBD o ®1® and IPS 0=l " JBD = 1. [P =

ol OO0E
MTO HTI |
1 57
oL l:--n.-ml T l m I‘E-'I'J l‘i'l:-l l B l:"E'"‘-l
o
! 1
HTZ RET
o MO W WL | e vy TOM LI 500 501 |'-'|'l:'- ||"'¢'13
| ELED | o m | Fr | i = | e | pr

VMD-127

Visual Memory Unit (VMU) Hardware Manual

* To give the SIO1 end interrupt priority between the INT2 interrupt and the INTO interrupt, set IE0 to "1"
and IP5 and IPO to "1." (IE0 = 1, IP = 00100001B)

[T T
[
- _I:L. m:rl]:w L Ti 8100 01 W Fert B
iy
: ! :
[W1 a T T;‘ b:‘:’:_ i T 00 g YHE Feel B
| Ef 0 [T m | e | r | = | e | =

* Notes concerning overlapping interrupts

* When a low-level interrupt request is generated while executing the service program for a high-level
interrupt, the low-level interrupt is accepted after one instruction is executed after the end of the service

program for the high-level interrupt.

* When an interrupt request of the same level as an interrupt request for which a service program is already
being executed is generated, that second interrupt request is not accepted.

VMD-128

4. Control Functions

2. System Clock Generation Function

2.1 Overview

POTATO has three internal oscillation circuits for use as system clock generation circuits: the main clock oscillation
circuit, the sub-clock oscillation circuit, and the RC oscillation circuit. Of these, the RC oscillation circuit has an
internal resistor (R) and capacitor (C), and does not require any external circuitry. The selection of one of these three
clocks as the system clock is made through software.

Note that, in actual practice, battery consumption is high when the main clock oscillation circuit and the RC
oscillation circuit are used, so select the sub-clock as the system clock whenever the other circuits are not needed.

2.2 Functions

* This function generates the system clock, which is the foundation of the execution of instructions by the
microcomputer.

* One of two clocks (sub-clock oscillation or RC oscillation) can be selected as the system clock through
software. Game programs should not use the main clock ascillation.

* This function generates the base timer clock.

® Main clock oscillation and RC oscillation can be halted by software instructions.

(This makes it possible to conserve battery power.)

e This function generates system clock 1 (51), which is the foundation for operation of circuit blocks that
still operate in HALT mode, and system clock 2 (S2), which is the foundation for operation of circuit
blocks that stop operating in HALT mode.

¢ In HOLD mode, main clock oscillation, sub-clock oscillation, and RC oscillation are all stopped.

In order to control the system clock, it is necessary to manipulate the following Special Function Registers:
* OCR

e PCON

VMD-129

Visual Memory Unit (VMU) Hardware Manual

2.3 Circuit Configuration

e Main clock oscillation circuit:--- =

This circuit is made to oscillate by connecting a ceramic oscillation circuit to the CF1 and CF2 pins. If the
main clock is not to be used, connect CF1 to VDD and leave the CF2 pin open.

e Sub-clock oscillation circuit-+ _

This circuit is made to oscillate by connecting a crystal oscillation circuit (32.768kHz typ.) to the XT1 and
XT2 pins.

If the sub-clock is not to be used, connect XT1 to VDD and leave the XT2 pin open.

e Internal RC oscillation circuit:---+ ®

This circuit is made to oscillate by a resistor (R) and capacitor (C) that are built into the microcomputer. After
a reset or the release of HOLD, the system runs according to this clock.

* System clock selector-+ ~

Bits 4 and 5 of the Oscillation Control Register (OCR) are used to select either the sub-clock oscillation
circuit or the RC oscillation circuit as the system clock source. Game programs should not use the main
clock ascillation.

e System clock generation circuit-

System clocks 1 and 2 are generated from the clock source that was selected by the system clock selector.
System clock 1 (S1) runs when executing instructions and when in HALT mode. System clock 2 (S2) runs
when executing instructions. When in HOLD mode, both S1 and S2 stop.

* Oscillation Control Register (OCR)-++- +

This register controls the start and stop of oscillation by the main clock oscillation circuit and the RC
oscillation circuit, switches the system clock source, and controls the cycle time.

» Power Control Register (PCON)--- _
This register sets the standby state (HOLD /HALT mode).

VMD-130

4. Control Functions

| Blog oedal b
' -
o ’
=1 Wy
i 5 berke
¥ gererytion
LT
[g -
-]
-r
b
Tl 11 =
ik '|' = o
] | &1 (Habe 1)
1 Subi ok 16 ﬁ __ St gl e
= gentEton = R — Syifternciodk 1
dimiR -
T2 . ool 2 __E_J'—- 2 (Neted)
I— = L 3
&= 'l l\ Syilafn chek 2
= b Sop e) ik
=] =
s ¥
§ -
: r
T ol ersa | BT - E
[-1 14 “14 -3
= B L
»
w -
1
|' nf HO [“"
LE: 5wl
1 ; Slop :-l.-alilnn_l' | "
ibsnalcimy B
=5t d cp-n-r-n-1-
Y ORI b T PO M 1 OHD

Bode 1 Demtem akak | U510 Chok st 8 e fonditon for op-pmifn o f cimul b bokp thit gl opsnibe o HALT made
Mol 2 Sypwliemn Slsth 20821 Chek thaf o We foand dton lr speryl on F ¢ irao il B kel thil Tk Cparubing i WAL T rrec-de

Figure 4.2 System Clock Generation Circuit Block Diagram
e Status of each block during reset, HALT, and HOLD

Table 4.2 Status of Each Block During Standby

Block State

During reset During HALT During HOLD
Main clock oscillation circuit Oscillates Status when power is suddenly applied Stopped
Internal RC oscillation circuit Oscillates Status when power is suddenly applied Stopped
Sub-clock oscillation circuit Stopped Status when power is suddenly applied Stopped
System clock oscillation circuit Running Running Stopped

Note:
e After a reset or after HOLD is released, the internal RC oscillation clock is automatically selected as

the system clock.

VMD-131

Visual Memory Unit (VMU) Hardware Manual

2.4 Related Registers

¢ Oscillation Control Register

Symbol | Address = R/W Bit 7 Bit 6 Bit5h Bit4 Bit3 Bit2 Bit1

OCR 10EH R/W OCR7 - OCR5 OCR4 - - OCR1 OCRO
After reset 0 H 0- 0 H H 0 0
Bit name Function

OCR7 (bit 7) System clock generation circuit control

0: Cycle time source is 1/12 of the oscillating frequency

1: Cycle time source is 1/6 of the oscillating frequency

OCR5 (bit b) System clock selection
OCR4 (bit 4 0CR5 OCR4 System clock

0 0 Internal RC oscillation

0 1 Do not use

1 0 Sub-clock (crystal oscillation)

1 1 After reset or HOLD release: RC oscillation
OCR1 (bit 1) Internal RC oscillation circuit control

0: Internal RC oscillation circuit operation start/in progress

1: Internal RC oscillation circuit stopped

OCRO (bit 0) Main clock oscillation circuit control

0: Main clock oscillation circuit operation start/in progress

1: Main clock oscillation circuit stopped

OCRY (bit 7): System clock generation circuit control

This bit controls whether the cycle time is to be 1/12 of the source
oscillation frequency, or 1/6. When this bit is set to "1," the cycle
time is implemented as 1/6 of the source oscillation frequency;
when this bit is set to "0," the cycle time is implemented as 1/12 of
the source oscillation frequency.

In the VMU, this bit should be set as shown below:

* Be sure to set '1' when using the sub-clock.

VMD-132

4. Control Functions

System clock 0CR7
Main clock (CF oscillation) 0CR7=1
Internal RC oscillation 0CR7=0/1
Sub-clock (crystal oscillation) 0CR7=1

OCRS5 (bit 5):System clock selection

OCR4 (bit 4):These bits select the system clock. After a reset or after the release of HOLD mode, internal RC
oscillation is selected automatically.

OCR5 OCR4 System clock
0 0 Internal RC oscillation
0 1 Do not use
1 0 Sub-clock (crystal oscillation)
1 1 Do not use
OCR1 (bit 1): Internal RC oscillation circuit control

This bit stops (1)/starts the internal RC oscillation circuit. When
this bit is set to "1," the internal RC oscillation circuit stops; when
this bit is set to "0," the internal RC oscillation circuit starts or
continues to run.

OCRO (bit 0): Main clock oscillation circuit control

This bit stops (1)/starts the main clock oscillation circuit. The
main clock is not used by the VMU, so always set this bit to '1".

Note:

* An adequate amount of time must be provided when starting the oscillation of the main clock. When
the main clock is stopped, the RC clock is running, the RC (or sub-) clock is selected as the system clock,
and you wish to switch the system clock to the main clock, start the main clock first and then wait an
adequate amount of time before actually switching the clock.

* An adequate amount of time at least equal to the time required for starting the main clock (200us) must
be provided when starting the oscillation of the sub-clock (200us). When switching the system clock
source from RC oscillation to the sub-clock after releasing a reset or releasing HOLD mode, start
sub-clock oscillation first and then wait an adequate amount of time before actually switching the clock.

¢ Power Control Register (PCON)

Symbol Address R/W Bit7 Bit 6 Bit5 Bit 4 Bit3 Bit2 Bit1
PCON 107H R/W - - - - - - PCON1 PCONO
After reset H H H H H H 0 0

VMD-133

Visual Memory Unit (VMU) Hardware Manual

Bit name Function

PCONT1 (bit 1) HOLD mode control
0:
1: Set HOLD mode
PCONO (bit 0) HALT mode control
0:
1: Set HALT mode
PCONI1 (bit 1): HOLD mode control

PCONO (bit 0):

This bit selects the standby state. When this bit is set to "1," the
microcomputer enters HOLD mode and, once all oscillation
circuits have stopped, the system stops. When HOLD mode is
released, this bit is automatically reset. Note that setting this bit to
"0" does not change the standby state.

There are three methods for releasing HOLD mode:
* Reset
* Applying the specified level to the P70/INTO or P71/INT1 pin

e Port 3 interrupt source

HALT mode control

This bit selects the standby state. When this bit is set to "1," the
microcomputer enters HALT mode, the program stops at the
address where the HALT was executed, and the oscillation
circuits maintain their current state. HALT mode can be released
an interrupt.

When HALT mode is released, this bit is automatically reset. Note
that setting this bit to "0" does not change the standby state.

When HALT mode is in effect, system clock 2 (S2) stops.

VMD-134

4. Control Functions

2.5 System Clock Operation Mode

There are three system clocks:

¢ Internal RC oscillation clock

After a reset, when the power is turned on, or when HOLD mode is released, this clock is set as the system
clock. Even if there are no external oscillation circuits, the microcomputer runs using just this clock.

e Main clock

The unit enters fast processing mode whenever the main clock is used, but this increases battery
consumption by a factor of ten compared to internal RC oscillation. The main clock should not be used in
game programs.

e Sub-clock

This is a slow processing mode that is used in order to reduce current consumption and make backup
power last longer.

When operating in sub-clock mode, the main clock and the internal RC oscillation clock can be stopped in
order to further reduce current consumption.

Fig. below shows the state transition diagram for the microcomputer when it enters HALT or HOLD mode.

It is important to note that if the main clock or the sub-clock is specified as the system clock in an
application circuit that does not have an external main clock oscillation circuit or sub-clock oscillation
circuit, the microcomputer will cease to operate.

RC OSC : Internal RC oscillation circuit MAIN : Main clock oscillating frequency

MAIN OSC :Main clock oscillation circuit SUB : Sub-clock oscillating frequency

SUB OSC : Sub-clock oscillation circuit PCONO : Power control register bit 0 (HALT control)
Oscillating : Oscillating state PCON1 :Power control register bit 1 (HOLD control)
Stopped : Stopped state OCRO :Oscillation control register bit 0

S1 : System clock 1 OCR1 : Oscillation control register bit 1

S2 : System clock 2 OCR4 :Oscillation control register bit 4

RC : Internal RC oscillating frequency OCR5 : Oscillation control register bit 5

VMD-135

Visual Memory Unit (VMU) Hardware Manual

FES=L P - FES=L
RES=L
RES=H
r
= Foonne |FEO5C Oscilating = Hopped
MAMOSE @ Ossilibing [T MAR 325 pailstng . AN a0 Stopped
SUBOSC ; Osciliting WBOSL © Oscdlathg | | 1= |2u8 osc Stoppod
| R el 5 RC - 7| Stopped
= Stopped | ndernupt |52 R o Shepped
MTO, MT1,FO,0r
OCR4=1 4 OCE4=0 |p2 dotection signal
RCOSC @ Oselltng | poompe |P- 050 ¢ Osciliting
MHMaMDSC - Oscilating [1 MAM 0S50 © Oscilsting PLOMNT=1
SUBOSE : Osiliing B OSE Oscilating
=1 ! MaN | 51 ¢ HMAR i
= ; Stopped | vbeeupt |52 i MAN
OCRI=1_ % DCF1 =0
PG O T Shopped | PCOMODs | PG OBC T Stopped
MaMOSs @ Decilating [1 AN 050 Decillding FCONE=I
- = 1=il= : Ozailing e 0EC 1 Osoiling
=1 AN =1 ! &N
52 Shopped | Titemapt (o2 FAN
QOCRE=0 Qo=
ooRme | 1 2| OCRMeD
FAMOSE ;0 Oscdlaing T MaM 05C ;0 Ozcdlating
B 0EC D OEzilating 2B EC D OEcilating
51 : =13 =1 e
52 ed | Ptempt oo . ae PLNT=1
DCRO=1 o ‘ OCED=0
R (o5 1 Sopped | FCOMC= RO OSC © Slopped
gt pul= Stopped [1 AN 0ss Shopped
— SE D0 ¢ Osilating SUE DsC ! OEilating
1 : que 4| : =1 = -
52 Stopped | PRt |5 U8 FLONT=1
¢~ HALTIODE ™ ¢ WORMALFODE) ¢~ HGLD FOTE =

Figure 4.3 Clock Operation Mode Transition Diagram

*1) Before switching the system clock to the sub-clock, allow enough time to ensure that the oscillation of the
sub-clock has stabilized. For details on the oscillation stabilization time for the sub-clock (32.768kHz crystal
oscillation), refer to the most recent "Semiconductor News."

*2) Before switching the system clock to the main clock, allow enough time to ensure that the oscillation of the main
clock has stabilized. For details on the oscillation stabilization time for the main clock, refer to the most recent

"Semiconductor News."

VMD-136

4. Control Functions

3. Standby function

3.1 Overview

POTATO has two standby modes (HALT and HOLD) that are designed to reduce current consumption during a
loss of power or while a program is in a standby state.

The microcomputer ceases operations while in the standby state.

3.2 4.3.2. Related Registers

* Power Control Register (PCON)
* For details, refer to chapter 4, section 4.2.4, "Related Registers."

Symbol Address = R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit 2 Bit 1 Bit 0
PCON 107H R/W - - - - - - PCON1 PCONO
After reset H H H H H H 0 0
PCONT1 bit 1) HOLD mode control
0:

1: et HOLD mode

PCONO bit 0) HALT mode control

0:
1: et HALT mode

VMD-137

Visual Memory Unit (VMU) Hardware Manual

3.3 Operating Statuses When in Standby

Table 4.3 erating Status of Each Block When in Standby
Item HALT mode = HOLD mode

Setting method

PCONO =1

PCON1 =1

Oscillation circuit | Main

Oscillation continues *1

Oscillation stops

Internal RC
Sub-clock Operation continues
Internal clock S1 Operation continues Operation stops
S2 Operation stops Operation stops
CPU Operation stops Operation stops
/0 port Retains data from directly prior to entering HALT mode | Retains data from directly prior to entering HALT mode
RAM Retains data from directly prior to entering HALT mode | Retains data from directly prior to entering HALT mode
Base timer Operation continues Operation stops
Timer 0 Operation continues Operation stops
Timer 1 Operation continues Operation stops

Serial communications

Operation continues

Operation stops

Interrupt circuit

Operation continues

Operation stops

LCD display controller

Operation continues

Operation stops

Remote control communications
circuit

Operation continues

Operation stops

Watchdog timer

Operation continues, or stops

Operation stops

Release sources

Reset _
Acceptance of interrupt request

Reset
P70/INTO pin, P71/INT1 pin
Port 3 pin

*1) When the sub-clock is the system clock, oscillation can be stopped by a program.
(Internal RC: OCR1 = 1; Main: OCR0 = 1)

VMD-138

4. Control Functions

3.4 HALT Mode

HALT mode stops program execution while each of the oscillation circuits (main clock, sub-clock and internal RC)
continue to operate.

Power consumption can be reduced through intermittent operation of the system by repeatedly setting HALT mode
and then having it released in response to an interrupt.

¢ Setting HALT mode

HALT mode is set by setting bit 0 (PCONO) of the power control register.

¢ Releasing HALT mode

HALT mode is released in one of two ways: "release by reset" and "release upon acceptance of an interrupt
request."

Release by reset

If a low-level signal is applied to the RES pin, HALT mode is released and the microcomputer enters
the reset state. When the RES pin is returned to the high level, operation is identical to a start after a
normal reset.

Release upon acceptance of an interrupt request

If an interrupt source is generated while the master interrupt enable flag (IE7) and the interrupt request
enable flag are both set, an interrupt request is generated and HALT mode is released simultaneously.
Subsequently, the microcomputer enters the interrupt processing routine.

However, if the system is in HALT mode and executing an interrupt service program, and the interrupt
source that was generated has a priority level that is either the same level as the program that is being
executed or lower, then that interrupt is not accepted.

Note:

e If external interrupt INTO or INT1 is set to "highest level," then that interrupt is not affected by the
master interrupt enable flag.

e The interrupt level of a HALT release source should be higher than the interrupt level in effect when
the system entered HALT mode.

Table 4.4 HALT Release Source Interrupt Level

Interrupt level when HALT was entered Interrupt level of HALT release source

Normal level Low level, high level or highest level
Low level High level or highest level

High level Highest level

Highest level (Cannot be released by an interrupt.)
Normal level: State when no interrupt is in effect

VMD-139

Visual Memory Unit (VMU) Hardware Manual

3.5 HOLD Mode

HOLD mode stops each of the oscillation circuits (main clock, sub-clock and internal RC). HOLD mode can be set
in order to maintain data while minimizing current consumption.

¢ Setting HOLD mode
HOLD mode is set by setting bit 1 (PCON1) of the Power Control register (PCON).

¢ Releasing HOLD mode

HOLD mode is released in one of three ways: release by reset; release through P70/INTO level detection or
P71/INT1 level detection; or port 3 low level detection.

Release by reset

If a low-level signal is applied to the RES pin, HOLD mode is released and the microcomputer enters the
reset state. When the RES pin is returned to the high level, operation is identical to a start after a normal
reset.

Release through P70/INTO level detection or P71/INT1 level detection

If the set level is detected on the P70/INTO or P71 /INT1 pin, HOLD mode is released, and the system enters
HALT mode. In this case, if the interrupt request flag for either external interrupt INTO or external interrupt
INT1 is set, the microcomputer enters the corresponding interrupt processing routine; if the interrupt
enable flag for the external interrupt has not been set, the system continues in HALT mode. HALT mode is
released in the same fashion as described in Chapter 4, section 4.3.3, "Release upon acceptance of an
interrupt request." In addition, before setting HOLD mode, it is necessary to set the External Interrupt 0 and
1 Control Register (IO1CR) so that the level (whether high level or low level) is set. That level is detected on
the P70/INTO and P71/INT1 pins.

It is not possible to release HOLD mode with the edge detection setting.

For details on the level detection conditions, refer to Chapter 3, section 3.8, "External Interrupt Function.”
Release through port 3 low level detection

¢ P32INT = 1: Port 3 interrupt and HOLD mode release function
* P32INT = 1 must be set.

Release through port 3 low level detection

When the port 3 interrupt request enable flag is set, and a low-level signal is detected on port 3, the interrupt
request flag is set, HOLD mode is released, and the system enters HALT mode. In this case, if the master
interrupt enable flag has been set, HALT mode is released and the microcomputer enters the interrupt
processing routine. If the master interrupt enable flag is reset (0), the system remains in HALT mode.

Note: When releasing HOLD through port 3, disable any interrupts caused by a source other than port 3.

— |

LD . HELT —— L LR T

HTO b vl b Y i bt
FoeT L e et

Figure 4.4 Standby Function State Transition Diagram

VMD-140

4. Control Functions

4. Reset Function

4.1 Overview

The reset function initializes the microcomputer when the power is turned on or while the microcomputer is
running.

4.2 Function

The microcomputer is equipped with the following two functions.

e External reset function through RES pin

A reset can definitely be initiated by applying a low-level signal to the RES pin for at least 200[micro]s.
However, it is important to note that applying a low-level signal for a shorter duration may also initiate a
reset.

If a suitable time constant is connected to the RES pin externally, the RES pin can also be used to initiate the
power-on reset.

The reset circuit configuration is shown in Fig. above.

E Senchmnizaton
atault

I
=

Figure 4.5 Reset Circuit Block Diagram

4.3 Hardware Status During a Reset

If a reset is generated through the RES pin, all of the hardware is initialized according to the reset signal, which is
synchronized with the system clock.

Once a reset is initiated, the hardware is initialized immediately, even in the case of a power-on reset, because the
system clock switches to internal RC oscillation. After waiting in order to allow the main clock oscillation to
stabilize, the system clock switches to the main clock.

During a reset, the Program Counter is initialized to 0000H. For the initial values of the Special Function Registers,
refer to Table 4-4-1, "Data Memory / Register Map."

The contents of data RAM, the stack pointer, and LCD RAM are maintained. Caution is required after a power-on
reset, however, because these contents are undefined.

VMD-141

Visual Memory Unit (VMU) Hardware Manual

Table 4.5 Initial Values of Each Special Function Register

Symbol Address R/W Name Initial value
RAM(BANKO) 000H-OFFH R/W Data memory XXXXXXXX
(retained after reset)
RAM(BANK1) 000H-OFFH R/W Data memory XXXXXXXX
(retained after reset)

ACC 100H R/W Accumulator 00000000
PSW 101H R/W Program Status Word 00H00000
B 102H R/W B register 00000000
C 103H R/W C register 00000000
TRL 104H R/W Table Reference Register lower byte 00000000
TRH 105H R/W Table Reference Register upper byte 00000000
SP 106H R/W Stack Pointer XXXXXXXX
PCON 107H R/W Power Control Register HHHHHHOO
IE 108H R/W Master Interrupt Enable Control Register OHHHHHOO
P 109H R/W Interrupt Priority Ranking Control Register 00000000
EXT 10DH R/W External Memory Control Register HHHHO0000
OCR 10EH R/W Oscillation Control Register OHOOHHOO
TOCNT 110H R/W Timer 0 Control Register 00000000
TOPRR 111H R/W Timer 0 Prescaler Data 00000000
ToL 112H R Timer 0 Lower 00000000
TOLR 113H R/W Timer O Lower Reload Data 00000000
TOH 114H R Timer 0 Upper 00000000
TOHR 115H R/W Timer 0 Upper Reload Data 00000000
TICNT 118H R/W Timer 1 Control Register 00000000
T1LC 11AH R/W Timer 1 Lower Compare Data 00000000
TIL 11BH R Timer 1 Lower 00000000
TILR W Timer 1 Lower Reload Data 00000000
T1HC 11CH R/W Timer 1 Upper Compare Data 00000000
TTH 11DH R Timer 1 Upper 00000000
TTHR W Timer 1 Upper Reload Data 00000000
MCR 120H W Mode Control Register 00000000
STAD 122H R/W Start Address Register 00000000

VMD-142

4. Control Functions

Symbol Address R/W Name Initial value
CNR 123H W Character Count Register HO000000
TDR 124H W Time Division Register HHO000000
XBNK 125H R/W Bank Address Register HHHHHHOO
VCCR 127H W LCD Contrast Control Register 00000000
SCONO 130H R/W S100 Control Register 00H00000
SBUF0 131H R/W S100 Buffer 00000000
SBR 132H R/W S0 Baud Rate Generator 00000000
SCON1 134H R/W SI01 Control Register HOH00000
SBUF1 135H R/W SI01 Buffer 00000000
Deleted Deleted Deleted Deleted Deleted
Deleted Deleted Deleted Deleted Deleted

P1 144H R/W Port 1 latch 00000000
P1DDR 145H W Port 1 Data Direction Register 00000000
P1FCR 146H W Port 1 Function Control Register 00000000
P3 14CH R/W Port 3 latch 00000000
P3DDR 14DH W Port 3 Data Direction Register 00000000
P3INT 14EH R/W Port 3 Interrupt Control Register HHHHHO00
P7 15CH R Port 7 latch HHHHXXXX
I01CR 15DH R/W External Interrupt 0, 1 Control 00000000
123CR 15EH R/W External Interrupt 2, 3 Control 00000000
ISL 15FH R/W Input Signal Select HHO000000
VSEL 163H R/W Control Register HHHOHHO00
VRMAD1 164H R/W System Address Register 1 00000000
VRMAD?2 165H R/W System Address Register 2 HHHHHHHO
VTRBF 166H R/W TX/RX Buffer XXXXXXXX
BTCR 17FH R/W Base Timer Control 00000000
RAM(XRAM) 180H-1FBH R/W LCD display memory XXXXXXXX
(BANKO) (retained after reset)
FBAA'\IGI%R)AM) 180H-1FBH R/W

RAM(XRAM) 180H-185H R/W

(BANK?2)

VMD-143

Visual Memory Unit (VMU) Hardware Manual

VMD-144

Sega@'Dreamcast

5. Instructions

1. Instruction Overview

The POTATO instruction set includes 70 instructions.

These encompass 45 opcodes, which are grouped into the following eight types of functions:

e Arithmetic operation instructions ADD,ADDC,SUB,SUBC,INC,DEC,MUL,DIV
® Boolean operation instructions AND,OR,XOR,ROL,ROLC,ROR,RORC

e Data transfer instructions LD,STMOV,LDC,PUSH,POPXCH

® Jump instructions JMP,JMPEBR,BRF

e Conditional branching instructions BZ,BNZ,BPBPC,BN,DBNZ,BE,BNE

e Subroutine instructions CALL,CALLECALLR,RET,RETI

¢ Bit manipulation instructions CLR1,SET1,NOT1

e Miscellaneous instruction NOP

e Macro instruction CHANGE

VMD-145

5. Instructions

1.1 Arithmetic Operation Instructions

The arithmetic operation instructions primarily use the accumulator, and include the four basic arithmetic
operations as well as increment and decrement. The results of one of the four basic arithmetic operations are set

in CY, AC, and OV.

¢ CY (Carry Flag)

Operation instruction Operation result cYy
When an addition instruction was executed When a carry is generated from bit 7 (MSB) 1
When no carry is generated from hit 7 (MSB) 0
When a subtraction or compare instruction was executed When a borrow is required for bit 7 (MSB) 1
When a borrow is not required for bit 7 (MSB) 0
When a multiplication instruction was executed . 0

¢ AC (auxiliary carry flag)

Operation instruction Operation result AC

When an addition instruction was executed When a carry is generated from bit 3 1
When no carry is generated from hit 3 0

When a subtraction instruction was executed When a borrow is required for bit 3 1
When a borrow is not required for bit 3 0

* OV (Overflow flag)

Operation instruction Operation result ov

When an addition or multiplication instruction was executed | When a carry is generated from bit 7, and no carry is generated from bit6 | 1
When a carry is generated from bit 6, and no carry is generated from bit 7 | 1
When an overflow error was generated while executing an addition or 1
subtraction instruction involving signed variables
All other cases 0

When a multiplication instruction was executed When the product is 256 or higher 1
When the product is 255 or lower 0

When a division instruction was executed When an attempt was made to divide by zero 1
When dividing by any other number 0

VMD-146

5. Instructions

1.2 Logical Operation Instructions

The Boolean operation instructions are used to perform Boolean operations and to rotate bits. CY is also affected
after executing the RORC or ROLC instruction.

1.3 Data Transfer Instructions

The data transfer instructions are used to write, read, save and replace data in data memory (RAM), the Special
Function Registers (SFR), external data ROM, and external RAM.

1.4 Jump Instructions

Jump instructions unconditionally transfer control to the target instruction.

1.5 Conditional Branching Instructions

A conditional branching instruction determines whether a condition that is specified by the instruction is met (true)
or not (false), and then, if the evaluation is "true," branches to the target address. If the evaluation is "false," the
instruction does not branch; instead, execution continues with the next instruction.

The BE and BNE instructions branch on the basis of a comparison of two 8-bit data bytes. CY is set or reset by these
instructions, according to the results of the comparison.

Operand Carry flag (CY)

#i8,r8 d9.r8 @Rj #i8,18
Relationship #i8>(ACC) (d9)>(ACC) #8>((Rj))

#i8=(ACC) (d9)=(ACC) #i8=((Rj))

#i8<(ACC) (d9)<(ACC) #8<((Rj))

1.6 Subroutine Instructions

Subroutine instructions branch unconditionally and are used to transfer control to the target instruction. The
address of the instruction is stored in the stack so that, after branching a return instruction (RET, RETI) can be used
to return control to the instruction that follows the CALL instruction. The stack is located in data memory (RAM),
and is pointed at by the Stack Pointer (SP). it is necessary to allocate an area in RAM for use by the stack according
to the nesting level of the subroutine.

1.7 Bit Manipulation Instructions

The bit manipulation instructions are used to manipulate individual bits in specified contents of data memory
(RAM) or Special Function Registers (SFR).

1.8 Miscellaneous Instruction

The NOP instruction consumes one machine cycle without doing anything.

VMD-147

Visual Memory Unit (VMU) Hardware Manual

1.9 Macro Instruction

This is POTATO's own standard macro instruction. This macro instruction switches between internal program and
external program execution.

1.10 Addressing

There are several addressing methods that are used for addressing program memory (ROM), data memory (RAM),
and the Special Function Registers (SFR).

1.11 Program Memory (ROM) Addressing

Jump instructions, branching instructions, and subroutine instructions specify the destination address in
program ROM as part of the instruction code. In this case, the address is specified by one of the following
addressing methods:

* 18 (8-bit relative addressing)

This form of addressing permits jumps (branching) to an address within -128 to +127 addresses of the
starting address of the next instruction that follows the instruction that is currently being executed. The
jump is expressed through signed 8-bit data.

[8OH to 7FH: -128 to +127]

* r16 (16-bit relative addressing)

This form of addressing permits jumps anywhere within the 64K program ROM space.
The address is expressed through unsigned 16-bit data.

[0000H to FFFFH: +0 to +65535]

* al2 (12-bit relative addressing)

This form of addressing leaves as is the bits PC15 through PC12 (which represent the current page) of the
starting address (represented by PC15 through PC00) of the next instruction that follows the instruction that
is currently being executed, and replaces the bits PC11 through PC00 with 12-bit addressing data [000H
to FFFH].

This form of addressing permits jumps within a page (PC15 to PC12).

Note:

* Note that, in the above instance, the "current page" will be different from the page where the J]MP
instruction or CALL instruction is located if the JMP instruction or CALL instruction is located at the end
of a page.

* al6 (16-bit absolute addressing)

This form of addressing permits jumps anywhere within the 64K program ROM space.
The address is expressed through 16-bit data.

[0000H to FFFFH: 0 to 65535]

¢ Table jumps

Itis possible to execute a jump by setting the destination address in the stack, and then forcibly loading that
value into the Program Counter (PC) by means of the RET instruction.

VMD-148

5. Instructions

Refer to example 1. In line 1, the Stack Pointer (SP) is set to 09H.

If the RET instruction is executed at this point, a jump will be executed to the address where address 08H
in RAM is the upper byte and address 07H in RAM is the lower byte. Therefore, the jump destination

address is set in lines 2 and 3.

Because the jump destination in this example is PC = 0C13H, line 2 sets the lower byte, 13H, and line 3 sets
the upper byte, 0CH. When the RET instruction in line 4 is executed, the SP is set to 07H and control jumps
to 0C13H. However, because Example 1 requires the SP value to be known ahead of time, normally a PUSH
instruction is used as shown in Example 2.

Example 1:
MOV #09H,SP
MOV #13H,07H
MOV #0CH,08H
RET

Example 2:
MOV #13H,ACC
PUSH ACC
MOV #0CH,ACC
PUSH ACC
RET

In Example 3, the program branches to one of 128 addresses, ranging from 00H to 7FH, depending on the

data in address 70H in RAM

Lines 1 and 2 set the lower byte of the address, while line 4 sets the upper byte of the address. When the
RET instruction in the line 6 is executed, the program branches to the jump table in lines 7 and 8, and then

jumps to the branching destination indicated in those lines.

This technique is called a "table jump," and is an effective tool for branching to multiple addresses

conditionally.
Example 3:
AO: LD
ROL
ADD
PUSH
MOV
PUSH
RET
ORG
Al: JMP
JMP
BO0O: XXXXXX

070H

HLOW(A1)

ACC
#HIGH(A1),ACC
ACC

0C0o0H

B0O0 Jump table
(%]

B7F

VMD-149

Visual Memory Unit (VMU) Hardware Manual

1.12 Data Memory (RAM) and Special Function Register (SFR) Addressing

* d9 (direct addressing)

This form of addressing directly specifies an address in RAM or an SFR with 9 bits (d8 through d0).
Addresses 000H through OFFH:--------- Specifies RAM.

Addresses 100H through TFFH:«e--- Specifies SFR.

* b3 (bit addressing)

This form of addressing uses 3-bit bit addressing data in combination with d9 (direct addressing) to specify
a specific bit in RAM or SFR.

Ed nldmninng s | & = 4 3 2 | D

* @Rj(indirect addressing)

Indirect addressing specifies an address in RAM or SER by setting in a specific address in RAM (called the
"indirect address register") the address in RAM or SFR that is actually to be accessed, and then accessing the
indirect address register. The indirect address registers are labelled @R0, @R1, @R2, and @R3. A specific
indirect address register (one of the four from @R0 to @R3) is specified through the 2-bit indirect addressing
data (j1 and jO). As shown in the table below, four indirect address banks are allocated in the first 16 bytes
(00H through 0FH) of each RAM bank. The RAM bank is set by RAMBKO (bit 1 of the PSW). The indirect
address register bank is set by IRBK1, 0 (bits 4 and 3 of the PSW). Note that when executing an indirect
addressing instruction, RAM in the RAM bank that is set by IRBK1 and 0 and by RAMBKO is used for the
indirect address register and the RAM that is specified by the indirect address register. During a reset, both
IRBKO and IRBK1 are set to "0" and RAMBKO is set to "0" as well, so the respective absolute addresses of
@RO0, @R1, @R2, and @R3 are 00H, 01H, 02H, and 03H in RAM bank 0.

Indirect address registers »«---sseseseserees @R3, @R2, @R1, and @RO
Indirect addressing data (j1, jO) =+ (11) (10) (01) (00)

Table 5.6 Indirect Addressing Register Map

Bank 0 Bank 1 Bank 2 Bank 3
Indirect address (IRBK1=0) (IRBK1=0) (IRBK1=1) (IRBK1=1)
register name Function (IRBK0=0) (IRBKO) (IRBK0=0) (IRBK0=1)
@R0 RAM access RAM 00H RAM 04H RAM 08H RAM 0CH
@R1 RAM access RAM 01H RAM 05H RAM 09H RAM ODH
@R2 SFR access RAM 02H RAM 06H RAM 0AH RAM OEH
@R3 SFR access RAM 03H RAM 07H RAM 0BH RAM OFH

VMD-150

5. Instructions

¢ Example of using indirect addressing
This example illustrates an operation using the indirect address register.

Refer to Example 1. Line 2 sets the immediate data 68H in RAM 9at address 00H). If RAM (address 00H) is
used as an indirect address register, address 68H in RAM will be accessed. For example, line 3 sets the
immediate data 10H in the address that is specified by the indirect address register (@R0), which is address
68H in RAM.

Line 5 adds the contents of the address that is specified by the indirect address register (@R0), which is
address 68H in RAM, and the Accumulator (ACC).

Example 1:

MOV #055H,ACC

MOV #068H,00H

MOV #010H,@R0

ADD #015H

ADD @RO
wWhen BEIEES » G CHaH BakE O w . BB S | (AN RAME

-] L
#ED A ,h‘
A B

B wignees Rl w3

ra e By SR

MR iy #80

|
Aagt B R MakEY RAM Balen R&m [as |

In the following example, an SFR is specified through indirect addressing.

Refer to Example 2. Lines 1 and 2 clear bits 4 and 3 of the PSW and set up RAM addresses 00H through 03H
as the indirect address registers. Line 4 sets the immediate data 02H in address 02H in RAM. If address 02H
in RAM is used as the indirect address register, address 02H in RAM is accessed. For example, in line 5 the
immediate data 12H is set in the SFR (address 02H: B register) that is specified by the indirect address
register @R2.

Line 6 increments the B register, which is accessed through indirect addressing again.

VMD-151

Visual Memory Unit (VMU) Hardware Manual

Example 2:

CLR1 PSW4

CLR1 PSW,3

MOV #0ACH,ACC

MOV #002H,02H

MOV #012H,@R2

INC @R2

The following example changes the bank through the PSW and then specifies an SFR through indirect
addressing.

Refer to Example 3. Lines 1 and 2 set the bank to "2" in the PSW and set up RAM addresses 08H through
OBH as the indirect address registers. Line 4 sets the immediate data 02H in address 0BH in RAM. If address
0BH in RAM is used as the indirect address register, address 02H in RAM is accessed. For example, in line
5 the immediate data 12H is set in the SFR (address 02H: B register) that is specified by the indirect address
register @R2.

Line 6 increments the B register, which is accessed through indirect addressing again.

Example 3:

SET1 PSW,4

CLR1 PSW,3

MOV #0ACH,ACC
MOV #002H,0BH
MOV #012H,@R2
INC @R2

VMD-152

5. Instructions

2. Arithmetic Operation Instructions

ADD #i8 (ADD immediate data to accumulator)

Instruction code

10000001 i7i6i5i4i3i2i1i081H

Number of bytes 2

Number of cycles 1

Function (ACC)€(ACCH#i8

Affected flags CYeCACeCOV

Interrupt acceptance Permitted
Description:

This instruction adds the immediate data (i7 to i0) to the contents of the Accumulator (ACC), and then

sends the result to the ACC.

Example:

MoV
ADD
ADD
ADD

ADD

#055H,ACC
#013H
#00AH
#00FH

#080H

ACC CY AC ov
55H

68H 0 0 0
724 0 1 0
81H 0 1 1
01H 1 0 1

ADD d9 (ADD direct byte to accumulator)

Instruction code 1000001d8 d7d6d5d4d3d2d1d082H~83H

Number of bytes

2

Number of cycles

1

Function (ACC)e ©(ACC)+(d9)
Affected flags CYeCACeCOV
Interrupt acceptance Permitted

VMD-153

Visual Memory Unit (VMU) Hardware Manual

Description:

This instruction adds the contents of data memory (RAM) or a Special Function Register (SFR), as specified
by d8 to dO, to the contents of the Accumulator (ACC), and then sends the result to the ACC.

Example 1:
ACC RAM 23H cY AC ov
MoV #055H,ACC 55H
MOV #068H,023H 55H 68H
ADD #00CH 61H 68H 0 1 0
ADD 023H C9H 68H 0 0 1
Example 2:
ACC B cY AC ov
Mov #070H,ACC 70H
MoV #095H,B 70H 95H
ADD #002H 72H 95H 0 0 0
ADD B 07H 95H 1 0 0

VMD-154

5. Instructions

ADD @Rj (ADD indirect byte to accumulator)

Instruction code 100001j1j084H~87H

Number of bytes

1

Number of cycles

1

Function (ACC)€=(ACC)+(Rj)) j=0,1,2,3
Affected flags CYeCACeCOV
Interrupt acceptance Permitted

Description:

This instruction adds the contents of data memory (RAM) or a Special Function Register (SFR), as specified
by the indirect address register that is specified by j1 and j0, to the contents of the Accumulator (ACC), and

then sends the result to the ACC.

Example 1:
MoV #055H,ACC
MOV #068H,000H
MoV #010H,@R0
ADD #015H
ADD @R0
Example 2:
MOV #0AAH,ACC
MoV #004H,002H
MOV #055H,@R2
ADD #001H
ADD @R2

ACC RAM 00H RAM 68H CY AC ov
55H

55H 68H

55H 68H 10H

6AH 68H 10H 0 0 0
7AH 68H 10H 0 0 0
ACC RAM 02H TRL CY AC ov
AAH

AAH 04H

AAH 04H 55H

ABH 04H 55H 0 0 0
00H 04H 55H 1 1 0

VMD-155

Visual Memory Unit (VMU) Hardware Manual

ADDC #i8 (ADD immediate data and carry flag to accumulator)

Instruction code 10010001 i7i6i5i4i3i2i1i091H
Number of bytes 2
Number of cycles 1
Function (ACC)€=(ACC)+CY}+#i8
Affected flags CYeCACeCOV
Interrupt acceptance Permitted
Description:

This instruction adds the carry flag (CY) and the immediate data (i7 to i0) to the contents of the Accumulator
(ACQ), and then sends the result to the ACC.

Example:
ACC CY AC ov

Mov #055H,ACC 55H

ADD #013H 68H 0 0 0
ADDC #00AH 72H 0 1 0
ADDC #00FH 81H 0 1 1
ADDC #080H 01H 1 0 1
ADDC #001H 03H 0 0 0

VMD-156

5. Instructions

ADDC d9 (ADD direct byte and carry flag to accumulator)

Instruction code 1001001d8 d7d6d5d4d3d2d1d092H~93H

Number of bytes 2

Number of cycles 1

Function (ACC)e ©(ACC)+(CY)+(d9)
Affected flags CYeCACeCOV

Interrupt acceptance Permitted

Description:

This instruction adds the carry flag (CY) and the contents of data memory (RAM) or a Special Function
Register (SFR), as specified by d8 to d0, to the contents of the Accumulator (ACC), and then sends the result

to the ACC.

Example 1:

MoV
MOV
ADD
ADDC
SET1

ADDC

Example 2:

MoV
MOV
ADD
ADDC

ADDC

#055H,ACC
#068H,023H
#00CH
023H
PSW,7

023H

#070H,ACC
#095H,B
#002H

B

B

ACC RAM 23H CY AC ov
55H

55H 68H

61H 68H 0 1 0
C9H 68H 0 0 1
C9H 68H 1 0 1
32H 68H 1 1 0
AcC B CY AC ov
70H

70H 95H

724 95H 0 0 0
07H 95H 1 0 0
9DH 95H 0 0 0

VMD-157

Visual Memory Unit (VMU) Hardware Manual

ADDC @Rj (ADD indirect byte and carry flag to accumulator)

Instruction code 100101j1j094H~97H
Number of bytes 1
Number of cycles 1
Function (ACC)€=(ACC)+(CY)+(Rj)) j=0,1.2,3
Affected flags CYeCACeCOV
Interrupt acceptance Permitted

Description:

This instruction adds the carry flag (CY) and the contents of data memory (RAM) or a Special Function
Register (SFR), as specified by the indirect address register that is specified by j1 and j0, to the contents of
the Accumulator (ACC), and then sends the result to the ACC.

Example 1:
ACC RAM 00H RAM 68H CY AC ov
Mov #055H,ACC 55H
MOV #068H,000H | 55H 68H
Mov #010H,@R0 | 55H 68H 10H
ADD #015H 6AH 68H 10H 0 0 0
ADDC @R0 7AH 68H 10H 0 0 0
SET1 PSW,7 7AH 68H 10H 1 0 0
ADDC @R0 8BH 68H 10H 0 0 1
Example 2:
ACC RAM 02H TRL cY AC ov
MOV #0AAHACC | AAH
MoV #004H,002H | AAH 04H
MOV #055H,@R2 | AAH 04H 55H
ADD #001H ABH 04H 55H 0 0 0
ADDC @R2 00H 04H 55H 1 1 0
ADDC @R2 56H 04H 55H 0 0 0

VMD-158

5. Instructions

SUB #i8 (Subtract immediate data from accumulator)

Instruction code

10100001 i7i6i5i4i3i2i1i0ATH

Number of bytes 2

Number of cycles 1

Function (ACC)€=(ACC) - #i8
Affected flags CYeCACeCOV
Interrupt acceptance Permitted

Description:

This instruction subtracts the immediate data (i7 to i0) from the contents of the Accumulator (ACC), and

then sends the result to the ACC.

Example:

Mov
SuB
SUB
SuB

SuB

#055H,ACC
#013H
#003H
#03FH

#002H

ACC CY AC ov
55H

424 0 0 0
3FH 0 1 0
00H 0 0 0
FEH 1 1 0

VMD-159

Visual Memory Unit (VMU) Hardware Manual

SUB d9 (Subtract direct byte from accumulator)

Instruction code 1010001d8 d7d6d5d4d3d2d1d0A2H~A3H

Number of bytes 2

Number of cycles 1

Function (ACC)€=(ACC) - (d9)

Affected flags CYeCACeCOV

Interrupt acceptance Permitted
Description:

This instruction subtracts the contents of data memory (RAM) or a Special Function Register (SFR), as
specified by d8 to dO, from the contents of the Accumulator (ACC), and then sends the result to the ACC.

Example 1
ACC RAM 23H cY AC ov
Mov #055H,ACC 55H
MOV #068H,023H 55H 68H
SuB #00CH 49H 68H 0 1 0
SuB 023H ETH 68H 1 0 0
Example 2:
ACC RAM cY AC Qv
MOV #080H,ACC 80H
MOV #095H,B 80H 95H
SuB #002H 7EH 95H 0 1 1
SUB B E9H 95H 1 0 1

VMD-160

5. Instructions

SUB @Rj (Subtract indirect byte from accumulator)

Instruction code 101001j1j0A4H~A7H

Number of bytes

1

Number of cycles

1

Function (ACC)€=(ACC) - ((Rj)) j=0,1,2,3
Affected flags CYeCACeCOV
Interrupt acceptance Permitted

Description:

This instruction subtracts the contents of data memory (RAM) or a Special Function Register (SFR), as
specified by the indirect address register that is specified by j1 and j0, from the contents of the Accumulator
(ACQ), and then sends the result to the ACC.

Example 1:
MoV #055H,ACC
MOV #068H,00H
Mov #010H,@R0
SuB #016H
SuB @R0
Example 2:
MOV #0AAH,ACC
MoV #004H,002H
MOV #0AAH,@R2
SuB #001H
SUB @R2

ACC RAM 00H RAM 68H CY AC ov
55H

55H 68H

55H 68H 10H

3FH 68H 10H 0 1 0
2FH 68H 10H 0 0 0
ACC RAM 02H TRL CY AC ov
AAH

AAH 04H

AAH 04H AAH

ASH 04H AAH 0 0 0
FFH 04H AAH 1 1 0

VMD-161

Visual Memory Unit (VMU) Hardware Manual

SUBC #i8 (Subtract immediate data and carry flag from accumulator)

Instruction code 10110001 i7i6i5i4i3i2i1i0B1H
Number of bytes 2
Number of cycles 1
Function (ACC)€=(ACC) - (CY) - #i8
Affected flags CYeCACeCOV
Interrupt acceptance Permitted
Description:

This instruction subtracts the carry flag (CY) and the immediate data (i7 to i0) from the contents of the
Accumulator (ACC), and then sends the result to the ACC.

Example:
ACC CY AC ov

Mov #055H,ACC 55H

SUB #013H 42H 0 0 0
SUBC #003H 3FH 0 1 0
SUBC #03FH 00H 0 0 0
SUBC #002H FEH 1 1 0
SUBC #03EH BFH 0 1 0

VMD-162

5. Instructions

SUBC d9 (Subtract direct byte and carry flag from accumulator)

Instruction code 1011001d8 d7d6d5d4d3d2d1d0B2H~B3H

Number of bytes 2

Number of cycles 1

Function (ACC)(ACC) - (CY) - (d9)

Affected flags CYeCACeCOV

Interrupt acceptance Permitted
Description:

This instruction subtracts the carry flag (CY) and the contents of data memory (RAM) or a Special Function
Register (SFR), as specified by d8 to d0, from the contents of the Accumulator (ACC), and then sends the

result to the ACC.
Example 1:
ACC RAM 23H cY AC ov
MoV #055H,ACC 55H =
MoV #068H,023H 55H 68H
SUB #00CH 49H 68H 0 1 0
SUBC 023H ETH 68H 1 0 0
SUBC 023H 78H 68H 0 1 1
Example 2:
ACC B cY AC ov
MOV #080H,ACC 80H
MoV #095H,B 80H 95H
SUB #002H 7EH 95H 0 1 1
SUBC B E9H 95H 1 0 1
SUBC B 53H 95H 0 0 1

VMD-163

Visual Memory Unit (VMU) Hardware Manual

SUBC @Rj (Subtract indirect byte and carry flag from accumulator)

Instruction code 101101j1j0B4H~B7H

Number of bytes 1
Number of cycles 1
Function (ACC)€(ACC) - (CY) - ((Rj)) j=0,1.2.3
Affected flags CYeCACeCOV
Interrupt acceptance Permitted
Description:

This instruction subtracts the carry flag (CY) and the contents of data memory (RAM) or a Special Function
Register (SFR), as specified by the indirect address register that is specified by j1 and jO, from the contents
of the Accumulator (ACC), and then sends the result to the ACC.

Example 1:
ACC RAM 00H RAM 68H CY AC ov
Mov #055H,ACC 55H
MOV #068H,00H 55H 68H
Mov #040H,@R0 | 55H 68H 40H
SuB #016H 3FH 68H 40H 0 1 0
SUBC @R0 FFH 68H 40H 1 0 0
SUBC @R0 BEH 68H 40H 0 0 0
Example 2:
ACC RAM 02ZH TRL CY AC ov
MOV #0AAH,ACC | AAH
MOV #004H,002H | AAH 04H
MOV #0AAH,@R2 | AAH 04H AAH
SuB #001H A9H 04H AAH 0 0 0
SUBC @R2 FFH 04H AAH 1 1 0
SUBC @R2 54H 04H AAH 0 0 0

VMD-164

5. Instructions

INC d9 (Increment direct byte)

Instruction code 0110001d8 d7d6d5d4d3d2d1d062H~63H

Number of bytes 2

Number of cycles 1

Function (d9)€=(d9)+1
Affected flags

Interrupt acceptance Permitted

Description:
This instruction increments the contents of data memory (RAM) or a Special Function Register (SFR), as
specified by d8 to d0.
Example 1:
ACC
MOV #0FDH,ACC FDH
INC ACC FEH
INC ACC FFH
INC ACC 00H
INC ACC 01H
Example 2:
RAM 7FH
MOV #0FDH,07FH FDH
INC 07FH FEH
INC 07FH FFH
INC 07FH 00H
INC 07FH 01H
Note:

* CY, AC, and OV do not change.

* When this instruction is applied to one of the ports PO through P5, the port latch of that port is selected;

the external signal that is applied to that port is not selected.
Furthermore, applying this instruction to port P7 does not change its status.AB

VMD-165

Visual Memory Unit (VMU) Hardware Manual

INC @Rj (Increment indirect byte)

Instruction code 01100 1j1j064H~67H

Number of bytes 1

Number of cycles 1

Function ((Ri) €((Rj)+1 j=0,1,2.3

Affected flags

Interrupt acceptance Permitted
Description:

This instruction increments the contents of data memory (RAM) or a Special Function Register (SFR), as
specified by the indirect address register that is specified by j1 and j0.

Example 1:
ACC RAM 03H
Mov #000H,003H - 00H
MOV #0FDH,@R3 FDH 00H
INC @R3 FEH 00H
INC @R3 FFH 00H
INC @R3 00H 00H
Example 2:
RAM 7FH RAM 01H
MOV #07FH,001H - 7FH
MoV #0FDH,@R1 FDH 7FH
INC @R1 FEH 7FH
INC @R1 FFH 7FH
INC @R1 00H 7FH
Note:

* CY, AC, and OV do not change.

* When this instruction is applied to one of the ports PO through P5, the port latch of that port is selected;
the external signal that is applied to that port is not selected.

Furthermore, applying this instruction to port P7 does not change its status.

VMD-166

5. Instructions

DEC d9 (Decrement direct byte)

Instruction code 0111001d8 d7d6d5d4d3d2d1d072H~73H

Number of bytes 2

Number of cycles 1

Function (d9)€=(d9)_1
Affected flags

Interrupt acceptance Permitted

Description:

This instruction decrements the contents of data memory (RAM) or a Special Function Register (SFR), as

specified by d8 through d0.

Example 1:
ACC
Mov #002H,ACC 02H
DEC ACC 01H
DEC ACC 00H
DEC ACC FFH
DEC ACC FEH
Example 2:
RAM 7FH
MOV #002H,07FH 02H
DEC 07FH 0TH
DEC 07FH 00H
DEC 07FH FFH
DEC 07FH FEH
Note:

* CY, AC, and OV do not change.

* When this instruction is applied to one of the ports PO through P5, the port latch of that port is selected;
the external signal that is applied to that port is not selected.

Furthermore, applying this instruction to port P7 does not change its status.

VMD-167

Visual Memory Unit (VMU) Hardware Manual

DEC @Rj (Decrement indirect byte)

Instruction code 011101j1j074H~77H

Number of bytes 1

Number of cycles 1

Function ((Ri)€((Rj) -1 j=0,1.2.3

Affected flags

Interrupt acceptance Permitted
Description:

This instruction decrements the contents of data memory (RAM) or a Special Function Register (SFR), as
specified by the indirect address register that is specified by j1 and j0.

Example 1:
ACC RAM 0ZH
Mov #000H,002H - 00H
MOV #002H,@R2 02H 00H
DEC @R2 0TH 00H
DEC @R2 00H 00H
DEC @R2 FFH 00H
Example 2:
RAM 7FH RAM 00H
MOV #07FH,000H - 7FH
MoV #002H,@R0 02H 7FH
DEC @R0 0TH 7FH
DEC @R0 00H 7FH
DEC @R0 FFH 7FH
Note:

* CY, AC, and OV do not change.

* When this instruction is applied to one of the ports PO through P5, the port latch of that port is selected;
the external signal that is applied to that port is not selected.

Furthermore, applying this instruction to port P7 does not change its status.

VMD-168

5. Instructions

MUL (Multiply accumulator and c register times b register)

Instruction code 0011000030H

Number of bytes 1

Number of cycles 7

Function (BNACC)CJ(ACC)C) x (B)

Affected flags CYeCOV

Interrupt acceptance Permitted after 7th cycle
Description:

This instruction multiplies the unsigned 16-bit data that is represented by the Accumulator (ACC) and the
C register (C) by the unsigned 8-bit data that is represented by the B register (B). Of the 24-bit result of the
operation, the lower 8 bits are sent to C, the middle 8 bits are sent to the ACC, and the upper 8 bits are sent

to B.
After the operation, if B is "0" then the overflow flag (OV) is reset, and if B is not "0" then OV is set; the carry
flag (CY) is always reset.
Example 1:
ACC C B CY AC ov
MOV #0C4H,PSW | - - - 1 1 1
MOV #011H,ACC 11H - - 1 1 1
MOV #023H,C 11H 23H - 1 1 1
MOV #052H,B 11H 23H 52H 1 1 1
MUL 7DH 36H 05H 0 1 1
Example 2:
ACC C B CY AC ov
MOV #0C4H,PSW | - - - 1 1 1
MOV #007H,ACC 07H - - 1 1 1
MOV #005H,C 07H 05H - 1 1 1
MOV #010H,B 07H 05H 10H 1 1 1
MUL 70H 50H 00H 0 1 0

VMD-169

Visual Memory Unit (VMU) Hardware Manual

DIV (Divide accumulator and c register by b register)

Instruction code 0100000 040H

Number of bytes 1

Number of cycles 7

Function (ACC)(C).mod(B)(ACC)C) O (B)

Affected flags CYeCOV

Interrupt acceptance Permitted after 7th cycle
Description:

This instruction divides the 16-bit data that is represented by the Accumulator (ACC) (the upper byte) and
the C register (C) (the lower byte) by the contents of the B register (B) (unsigned 8-bit data). The upper byte
of the resulting quotient is sent to the ACC while the lower byte is sent to C; the remainder is sent to B. After
the operation, if B is "0" then the overflow flag (OV) is set, and if B is not "0" then OV is reset; the carry flag
(CY) is always reset.

Example 1:
ACC C B cY AC ov
MoV #0CAHPSW | - - - 1 1 1
MOV #078H,ACC 79H - - 1 1 1
MoV #005H,C 79H 05H - 1 1 1
MOV #007H,B 79H 05H 07H 1 1 1
DIV 11H 49H 06H 0 1 0
Example 2:
ACC C B cY AC ov
MOV #0COHPS | - - - 1 1 0
W
MOV #007H,AC | O7H - - 1 1 0
C
MOV #010H,C 07H 10H - 1 1 0
MOV #000H,B 07H 10H 00H 1 1 0
DIV FFH 10H 00H 0 1 1 Error

VMD-170

5. Instructions

3. Logical Operation Instructions

AND #i8 (AND immediate data to accumulator)

Instruction code

11100001 i7i6i5i4i3i2i1i0ETH

Number of bytes 2

Number of cycles 1

Function (ACC)€(ACC)A#i8

Affected flags

Interrupt acceptance Permitted
Description:

This instruction ANDs the immediate data (i7 to i0) with the contents of the Accumulator (ACC), and then

sends the result to the ACC.

Example 1:

Example 2:

MoV
AND
AND
AND

AND

MOV
AND
AND
AND
AND
AND
AND
AND

AND

#0FFH,ACC
#0FAH
#0AFH
#00FH

#0FOH

#0FFH,ACC
#0FEH
#0FDH
#0FBH
#0F7H
#0EFH
#0DFH
#0BFH

#07FH

ACC

FFH

FAH

AAH

0AH

00H

ACC

FFH

FEH

FCH

F8H

FOH

EOH

C9H

80H

00H

VMD-171

Visual Memory Unit (VMU) Hardware Manual

AND d9 (AND direct byte to accumulator)

Instruction code 1110001d8 d7d6d5d4d3d2d1d0E2H~E3H

Number of bytes 2

Number of cycles 1

Function (ACC)€=(ACC)A(d9)

Affected flags

Interrupt acceptance Permitted
Description:

This instruction ANDs the contents of data memory (RAM) or a Special Function Register (SFR), as
specified by d8 to d0, with the contents of the Accumulator (ACC), and then sends the result to the ACC.

Example 1:
ACC RAM 23H
Mov #0FFH,ACC FFH
MOV #055H,023H FFH 55H
AND 023H 55H 55H
MOV #0AAH,023H 55H AAH
AND 023H 00H AAH
Example 2:
ACC B
MOV #0FFH,ACC FFH
MoV #0FEH B FFH FEH
AND B FEH FEH
MoV #0FDH,B FEH FDH
AND B FCH FDH
MoV #0FBH,B FCH FBH
AND B F8H FBH
MOV #0F7H,B F8H F7H
AND B FOH F7H

VMD-172

5. Instructions

AND @Rj (AND indirect byte to accumulator)

Instruction code 111001j10E4H~E7TH

Number of bytes

1

Number of cycles

1

Function

(ACC)€=(ACC)A((Rj) j=0,1.2,3

Affected flags

Interrupt acceptance

Permitted

Description:

This instruction ANDs the contents of data memory (RAM) or a Special Function Register (SFR), as
specified by the indirect address register that is specified by j1 and jO, with the contents of the Accumulator
(ACQ), and then sends the result to the ACC.

Example 1:

MoV
MOV
Mov
AND
Mov

AND

Example 2:

MoV
MOV
MoV
AND
MoV

AND

#0FFH,ACC
#068H,000H
#0FOH,@R0
@R0
#00FH,@R0

@R0

#0FFH,ACC
#004H,002H
#0EFH,@R2
@R2
#0DFH,@R2

@R2

ACC RAM 00H RAM 68H
FFH

FFH 68H

FFH 68H FOH
FOH 68H FOH
FOH 68H OFH
00H 68H OFH
ACC RAM 02H TRL
FFH

FFH 04H

FFH 04H EFH
EFH 04H EFH
EFH 04H DFH
CFH 04H DFH

VMD-173

Visual Memory Unit (VMU) Hardware Manual

OR #i8 (OR immediate data to accumulator)

Instruction code 11010001 i7i6i5i4i3i2i1i0DTH
Number of bytes 2
Number of cycles 1
Function (ACC)€=(ACC) #i8
Affected flags
Interrupt acceptance Permitted
Description:

This instruction ORs the immediate data (i7 to i0) with the contents of the Accumulator (ACC), and then
sends the result to the ACC.

Example 1:
ACC
Mov #000H,ACC 00H
OR #003H 03H
OR #00CH OFH
OR #030H 3FH
OR #0COH FFH
Example 2:
ACC
MOV #000H,ACC 00H
OR #001H 01H
OR #002H 03H
OR #004H 07H
OR #008H OFH
OR #010H 1FH
OR #020H 3FH
OR #040H 7FH
OR #080H FFH

VMD-174

5. Instructions

OR d9 (OR direct byte to accumulator)

Instruction code 1101001d8 d7d6d5d4d3d2d1d0D2H~D3H

Number of bytes

2

Number of cycles

1

Function

(ACC)€=(ACC)w(d9)

Affected flags

Interrupt acceptance

Permitted

Description:

This instruction ORs the contents of data memory (RAM) or a Special Function Register (SFR), as specified

by d8 to d0, with the contents of the Accumulator (ACC), and then sends the result to the ACC.

Example 1:

Example 2:

Mov
MOV
OR

MOV

OR

MOV
MoV
OR
MoV
OR
MoV
OR
MoV

OR

#000H,ACC
#055H,023H
023H
#0AAH,023H

023H

#000H,ACC
#001H,B

B

#002H,B

B

#004H,B

B

#008H,B

B

ACC RAM 23H
00H

00H 55H
55H 55H
55H AAH
FFH AAH
ACC B
00H

00H 01H
01H 01H
01H 02H
03H 0zH
03H 04H
07H 04H
07H 08H
OFH 08H

VMD-175

Visual Memory Unit (VMU) Hardware Manual

OR @Rj (OR indirect byte to accumulator)

Instruction code 110101j10D4H~D7H
Number of bytes 1
Number of cycles 1
Function (ACC)€=(ACC)((Rj) j=0,1,2,3
Affected flags
Interrupt acceptance Permitted

Description:

This instruction ORs the contents of data memory (RAM) or a Special Function Register (SFR), as specified
by the indirect address register that is specified by j1 and jO, with the contents of the Accumulator (ACC),
and then sends the result to the ACC.

Example 1:
ACC RAM 00H RAM 68H
Mov #000H,ACC 00H
MOV #068H,000H 00H 68H
Mov #0FOH,@R0 00H 68H FOH
OR @R0 FOH 68H FOH
Mov #000FH,@R0 | FOH 68H OFH
OR @R0 FFH 68H OFH
Example 2:
ACC 02H RAM TRL
MOV #0AAHACC | AAH
MOV #004H,002H AAH 04H
MOV #005H,@R2 | AAH 04H 05H
OR @R2 AFH 04H 05H
MOV #050H@R2 | AFH 04H 50H
OR @R2 FFH 04H 50H

VMD-176

5. Instructions

XOR #i8 (XOR immediate data to accumulator)

Instruction code 11000 1j1j0C4H~C7H

Number of bytes

1

Number of cycles

1

Function

(ACC)€=(ACC)v((Rj) j=0,1.2,3

Affected flags

Interrupt acceptance

Permitted

Description:

This instruction XORs the immediate data (i7 to i0) with the contents of the Accumulator (ACC), and then

sends the result to the ACC.

Example 1:

Example 2:

Mov
XOR
XOR
XOR

XOR

MOV
XOR
XOR
XOR
XOR
XOR
XOR
XOR

XOR

#000H,ACC
#00FH
#0FOH
#00FH

#0FOH

#000H,ACC
#001H
#002H
#004H
#008H
#008H
#004H
#002H

#001H

ACC

00H

OFH

FFH

FOH

00H

ACC

00H

01H

03H

07H

OFH

07H

03H

01H

00H

VMD-177

Visual Memory Unit (VMU) Hardware Manual

XOR d9 (XOR direct byte to accumulator)

Instruction code 111100 1d8A@d7d6d5d4d3d2d1dOF2H~F3H
Number of bytes 2
Number of cycles 1
Function (ACC)€=(ACC) (d9)
Affected flags
Interrupt acceptance Permitted
Description:

This instruction XORs the contents of data memory (RAM) or a Special Function Register (SFR), as specified
by d8 to d0, with the contents of the Accumulator (ACC), and then sends the result to the ACC.

Example 1:
ACC RAM 23H
Mov #000H,ACC 00H
MOV #055H,023H 00H 55H
XOR 023H 55H 55H
MOV #0FFH,023H 55H FFH
XOR 023H AAH FFH
Example 2:
ACC B
MOV #0FFH,ACC FFH
MoV #010H,B FFH 10H
XOR B EFH 10H
MoV #020H,B EFH 20H
XOR B CFH 20H
MoV #040H,B CFH 40H
XOR B 8FH 40H
MOV #080H,B 8FH 80H
XOR B OFH 80H

VMD-178

5. Instructions

XOR @Rj (XOR indirect byte to accumulator)

Instruction code 111101j1j0F4H~F7H

Number of bytes 1
Number of cycles 1
Function (ACC)€(ACC) "((Rj) j=0,1,2,3
Affected flags
Interrupt acceptance Permitted
Description:

This instruction XORs the contents of data memory (RAM) or a Special Function Register (SFR), as specified
by the indirect address register that is specified by j1 and j0, with the contents of the Accumulator (ACC),
and then sends the result to the ACC.

Example 1:
ACC RAM 01H RAM 68H
MoV #000H,ACC 00H
MOV #068H,001H 00H 68H
Mov #0FOH,@R1 00H 68H FOH
XOR @R1 FOH 68H FOH
Mov #0FFH,@R1 FOH 68H FFH
XOR @R1 OFH 68H FFH
Example 2:
ACC RAM 03H TRL
MOV #0AAH,ACC AAH
MOV #004H,003H AAH 04H
MOV #0FFH,@R3 AAH 04H FFH
XOR @R3 55H 04H FFH
XOR @R3 AAH 04H FFH
XOR @R3 55H 04H FFH
XOR @R3 AAH 04H FFH

VMD-179

Visual Memory Unit (VMU) Hardware Manual

ROL (Rotate accumulator left)

Instruction code 11100000EOH

Number of bytes 1

Number of cycles 1

Function AT €A €A €A €A EA2 €A1 €AD

Affected flags

Interrupt acceptance Permitted

Description:

This instruction rotates the 8-bit data that is stored in the Accumulator (ACC) one bit to the left. Accordingly,
the data in bit 7 of the ACC moves to bit 0.

Example 1:
ACC
MoV #01H,ACC 0TH 0000 0001B
ROL 02H 0000 00108
ROL 04H 0000 01008
ROL 08H 0000 1000B
ROL 10H 0001 0000B
ROL 20H 0010 0000B
ROL 40H 0100 0000B
ROL 80H 1000 0000B
ROL 0TH 0000 0001B
MOV #55H,ACC 55H 0101 0101B
ROL AAH 1010 1010B
ROL 55H 0101 0101B
ROL AAH 1010 1010B
ROL 55H 0101 0101B

VMD-180

5. Instructions

ROLC (Rotate accumulator left through the carry flag)

Instruction code 1111000 0F0H

Number of bytes

1

Number of cycles

1

Function AT €A €A EAMENIEN €N €A€ECY €
Affected flags CY
Interrupt acceptance Permitted

Description:

This instruction rotates the 8-bit data that is stored in the Accumulator (ACC), including the carry flag (CY),
one bit to the left. Accordingly, the data in bit 7 of the ACC moves to CY, and the contents in CY move to

bit 0.

Example 1:

Mov
SET1

ROLC
ROLC
ROLC
ROLC
ROLC
ROLC
ROLC
ROLC
ROLC
MOV
ROLC
ROLC

ROLC

#01H,ACC

PSW,7

#55H,ACC

ACC CY

01H 0000 0001B

01H 0000 0001B 1
03H 0000 0011B 0
06H 0000 01108 0
0CH 0000 1100B 0
11H 0001 1000B 0
30H 0011 00008 0
60H 0110 0000B 0
COH 1100 00008 0
80H 1000 0000B 1
01H 0000 0001B 1
55H 0101 0101B 1
ABH 1010 1011B 0
56H 0101 01108 1
ADH 1010 1101B 0

VMD-181

Visual Memory Unit (VMU) Hardware Manual

ROR (Rotate accumulator right)

Instruction code 11000000COH

Number of bytes 1
Number of cycles 1
Function OA70ABOASOA40A3OA20AIOAQD
Affected flags
Interrupt acceptance Permitted
Description:

This instruction rotates the 8-bit data that is stored in the Accumulator (ACC) one bit to the right.
Accordingly, the data in bit 0 of the ACC moves to bit 7.

Example 1:
ACC
MoV #01H,ACC 0TH 0000 0001B
ROR 80H 1000 00008
ROR 40H 0100 00008
ROR 20H 0010 00008
ROR 10H 0001 0000B
ROR 08H 0000 1000B
ROR 04H 0000 01008
ROR 02H 0000 00108
ROR 0TH 0000 00018
MOV #51H,ACC 5TH 0101 00018
ROR A8H 1010 1000B
ROR 54H 0101 01008
ROR 2AH 0010 1010B
ROR 15H 0001 0101B

VMD-182

5. Instructions

RORC (Rotate accumulator right through the carry flag)

Instruction code 11010000D0H

Number of bytes

1

Number of cycles

1

Function OCYOA70ABO A5 A4 A3T A20 A0 A
Affected flags CY
Interrupt acceptance Permitted

Description:

This instruction rotates the 8-bit data that is stored in the Accumulator (ACC), including the carry flag (CY),
one bit to the right. Accordingly, the data in bit 0 of the ACC moves to CY, and the contents in CY move

to bit 7.

Example 1:

Mov
SET1

RORC
RORC
RORC
RORC
RORC
RORC
RORC
RORC
RORC
MOV
RORC
RORC

RORC

#01H,ACC

PSW.,7

#55H,ACC

ACC CY

0TH 0000 0001B

01H 0000 0001B 1
80H 1000 00008 1
COH 1100 00008 0
60H 0110 00008 0
30H 0011 00008 0
18H 0001 1000B 0
0CH 0000 1100B 0
06H 0000 01108 0
03H 0000 00118 0
01H 0000 0001B 1
55H 0101 0101B 1
AAH 1010 1010B 1
D5H 1101 0101B 0
6AH 0110 1010B 1

VMD-183

Visual Memory Unit (VMU) Hardware Manual

4. Data Transfer Instructions

LD d9 (Load direct byte to accumulator)

Instruction code 0000001d8 d8d7d6d5d4d3d2d1d0 02H~03H
Number of bytes 2
Number of cycles 1
Function (ACC)€=(d9)
Affected flags
Interrupt acceptance Permitted
Description:

This instruction transfers the contents of data memory (RAM) or a Special Function Register (SFR), as
specified by d8 to d0, to the Accumulator (ACC).

Example 1:
ACC RAM 70H RAM 71H
MOV #OFF,ACC FFH
MOV #055H,070H FFH 55H
MOV #0AAH,071H FFH 55H AAH
LD 070H 55H 55H AAH
LD 071H AAH 55H AAH
Example 2:
ACC B SP
MOV #0FFACC FFH
MOV #0FOH,B FFH FOH
MOV #00FH,SP FFH FOH OFH
LD B FOH FOH OFH
LD SP OFH FOH OFH
LD B FOH FOH OFH

VMD-184

5. Instructions

LDe@Rje(Load indirect byte to accumulator)

Instruction code 00000 1j1j0 04H~07H

Number of bytes

1

Number of cycles

1

Function

(ACC)«€=((Rj)) j=0,1,2,3

Affected flags

Interrupt acceptance

Permitted

Description:

This instruction transfers the contents of data memory (RAM) or a Special Function Register (SFR), as

specified by the indirect address register that is specified by j1 and j0, to the Accumulator (ACC).

Example 1:

Mov
MOV
Mov
MOV
Mov
LD

LD

Example 2:

MOV
MoV
MOV
MoV
MOV
LD

LD

#0FFH,ACC

#070H,000H

#07FH,001H

#0FOH,@R0

#00FH,@R1
@R0

@R1

#OFFACC

#004H,002H

#005H,003H
#0AAH,@R2
#055H,@R3
@R2

@R3

ACC RAM 00H RAM O1H RAM 70H RAM 7FH
FFH

FFH 70H

FFH 70H 7FH

FFH 70H 7FH FOH

FFH 70H 7FH FOH OFH
FOH 70H 7FH FOH OFH
OFH 70H 7FH FOH OFH
ACC RAM 02H RAM 03H B 102H C103H
FFH

FFH 04H

FFH 04H 05H

FFH 04H 05H AAH

FFH 04H 05H AAH 55H
AAH 04H 05H AAH 55H
55H 04H 05H AAH 55H

VMD-185

Visual Memory Unit (VMU) Hardware Manual

ST d9 (Store direct byte to accumulator)

Instruction code 0001001d8 d7d6d5d4d3d2d1d0 12H~13H

Number of bytes 2

Number of cycles 1

Function (d9)€(ACC)

Affected flags

Interrupt acceptance Permitted
Description:

This instruction transfers the contents of the Accumulator (ACC) to data memory (RAM) or a Special
Function Register (SFR), as specified by d8 to d0.

Example 1:
ACC RAM 70H RAM 71H
Mov #0FFH,ACC FFH
MOV #055H,070H FFH 55H
Mov #0AAH,071H FFH 55H AAH
ST 070H FFH FFH AAH
MoV #000H,ACC 00H FFH AAH
ST 071H 00H FFH 00H
Example 2:
ACC B SP
MoV #012H,ACC 12H
MOV #0FOH,B 12H FOH
MoV #00FH,SP 12H FOH OFH
ST B 12H 12H OFH
MoV #034H,ACC 34H 12H OFH
ST SP 34H 12H 34H
ST B 34H 34H 34H

VMD-186

5. Instructions

ST @Rj (Store indirect byte to accumulator)

Instruction code 000101j1j0 14H~17H

Number of bytes

1

Number of cycles

1

Function

((Rj))€(ACC) j=0,1,2,3

Affected flags

Interrupt acceptance

Permitted

Description:

This instruction transfers the contents of the Accumulator (ACC) to data memory (RAM) or a Special

Function Register (SFR), as specified by the indirect address register that is specified by j1 and jO0.

Example 1:

Mov
MOV
Mov
MOV
Mov
ST

ST

Example 2:

MOV
MoV
MOV
MoV
MOV
ST

ST

#0FFH,ACC

#070H,000H

#07FH,001H

#0FOH,@R0

#00FH,@R1
@R0

@R1

#000H,ACC
#004H,002H
#005H,003H
#0AAH,@R2
#055H,@R3
@R2

@R3

ACC RAM 00H RAM O1H RAM 70H RAM 7FH
FFH

FFH 70H

FFH 70H 7FH

FFH 70H 7FH FOH

FFH 70H 7FH FOH OFH

FFH 70H 7FH FFH OFH

FFH 70H 7FH FFH FFH

ACC RAM 02H RAM 03H TRL 104H TRH 105H
00H

00H 04H

00H 04H 05H

00H 04H 05H AAH

00H 04H 05H AAH 55H

00H 04H 05H 00H 55H

00H 04H 05H 00H 00H

VMD-187

Visual Memory Unit (VMU) Hardware Manual

MOV #i8,d9 (Move immediate data to direct byte)

Instruction code 0010001d8 d7d6d5d4d3d2d1d0A@i7i6i5i4i3i2i1i022H~23H
Number of bytes 3
Number of cycles 2
Function (d9)€#i8
Affected flags
Interrupt acceptance Permitted at 2nd cycle
Description:

This instruction transfers immediate data (i7 to i0) to data memory (RAM) or a Special Function Register
(SFR), as specified by d8 to d0.

Example 1:
RAM 00H RAM 01H RAM 0ZH RAM 03H
Mov #0FFH,000H FFH
MOV #0FEH,001H FFH FEH
MoV #0FDH,002H FFH FEH FDH
MOV #0FCH,003H FFH FEH FDH FCH
MoV #0FBH,003H FFH FEH FDH FBH
MOV #0FAH,002H FFH FEH FAH FBH
MoV #0F9H,001H FFH F9H FAH FBH
MOV #0F8H,000H F8H F9H FAH FBH
Example 2:
ACC B TRL
MOV #0FFH,100H FFH
MOV #0FEH,102H FFH FEH
MoV #0FDH,104H FFH FEH FDH
MOV #0FAH,104H FFH FEH FAH
MOV #0F9H,102H FFH F9H FAH
MOV #0F8H,100H F8H F9H FAH

VMD-188

5. Instructions

MOV #i8,@Rj (Move immediate data to indirect byte)

Instruction code

Number of bytes 2

Number of cycles 1

Function ((Rj)€#8 j=0,1,2,3

Affected flags

Interrupt acceptance Permitted
Description:

This instruction transfers immediate data (i7 to i0) to data memory (RAM) or a Special Function Register
(SFR), as specified by the indirect address register that is specified by j1 and jO.

Example 1:
RAM 00H RAM 01H RAM 7EH RAM 7FH
Mov #07FH,000H 7FH
MOV #07EH,001H 7FH 7EH
Mov #0FDH,@R0 7FH 7EH - FDH
MOV #0FCH,@R1 7FH 7EH FCH FDH
Mov #0FBH,@R0 7FH 7EH FCH FBH
MOV #0FAH,@R1 7FH 7EH FAH FBH
MoV #0F9H,@R0 7FH 7EH FAH FOH
MOV #0F8H,@R1 7FH 7EH F8H F9H
Example 2:
RAM 02H RAM 03H ACC 100H B 102H
MoV #000H,002H 00H
MOV #002H,003H 00H 0zH
MOV #0FDH,@R?2 00H 02H FDH
MOV #0FCH,@R3 00H 0zH FDH FCH
MOV #0FBH,@R2 00H 02H FBH FCH
MOV #0FAH,@R3 00H 0zH FBH FAH

VMD-189

Visual Memory Unit (VMU) Hardware Manual

LDC (Load code byte relative to TRR to accumulator)

Instruction code 11000001 C1H

Number of bytes 1

Number of cycles 2

Function (ACC)€=(BNK)((TRR)+(ACC)) [ROM]

Affected flags

Interrupt acceptance Permitted at 2nd cycle
Description:

This instruction transfers contents of the address in program memory (ROM) that is specified by the sum
of the contents of the Table Reference Register (TRR) and the contents of the Accumulator (ACC), to the
ACC. The ROM data that is referenced during internal program operation and external program operation
differs. During internal program operation, internal ROM is referenced; during external program operation,
BANKO of external ROM is referenced.

The LDC instruction cannot reference BANK1 of external ROM.

Example:
ACC TRR TRR +ACC
TRH TRL

MoV #001H,TRH - 01H
Mav #023H,TRL - 01H 23H
MoV #000H,ACC 00H 01H 23H 0123H
LDC 30H 0TH 23H 0153H
Mav #001H,ACC 01H 01H 23H 0124H
LDC FFH 01H 23H 02224
MoV #002H,ACC 02H 0TH 23H 0125H
LDC 57H 01H 23H 017AH
MoV #003H,ACC 03H 01H 23H 0126H
LDC EAH 0TH 23H 020DH

PC ROM

0123H 30H

0124H FFH

0125H 57H

0126H EAH

VMD-190

5. Instructions

PUSH d9 (Push direct byte to stack)

Instruction code 0110000d8 d7d6d5d4d3d2d1d0 60H~61H

Number of bytes 2

Number of cycles 2

Function (SP)€=(SP)+1,((SP)) €=(d9)

Affected flags

Interrupt acceptance Permitted at 2nd cycle
Description:

This instruction increments the Stack Pointer (SP), and then transfers the contents of data memory (RAM)
or a Special Function Register (SFR), as specified by d8 to d0, to the address in RAM specified by the SP.

Example:
ACC B RAM 00H SP RAM 20H RAM 21H RAM 22H
MoV #0AAHACC | AAH
MoV #055H,B AAH 55H
MOV #012H,000H | AAH 55H 12H
MoV #01FH,SP AAH 55H 12H 1FH
PUSH ACC AAH 55H 12H 20H AAH
PUSH B AAH 55H 12H 21H AAH 55H
PUSH 000H AAH 55H 12H 224 AAH 55H 12H
POP B AAH 12H 12H 21H AAH 55H 12H
POP ACC 55H 12H 12H 20H AAH 55H 12H
POP 000H 55H 12H AAH 1FH AAH 55H 12H

VMD-191

Visual Memory Unit (VMU) Hardware Manual

POP d9 (Pop direct byte from stack)

Instruction code 0111000d8 d7d6d5d4d3d2d1d0 70H~71H

Number of bytes 2

Number of cycles 2

Function (d9)€=((SP)),(SP) €=(SP) - 1

Affected flags

Interrupt acceptance Permitted at 2nd cycle
Description:

This instruction transfers the contents of the address in RAM specified by the Stack Pointer (SP) to data
memory (RAM) or a Special Function Register (SFR), as specified by d8 to d0, and then decrements the SP.

Example:
ACC B TRL SP RAM 20H RAM 21H RAM 22H
MoV #0AAHACC | AAH
MoV #055H,B AAH 55H
MoV #012H,TRL AAH 55H 12H
MoV #01FH,SP AAH 55H 12H 1FH
PUSH ACC AAH 55H 12H 20H AAH
PUSH B AAH 55H 12H 21H AAH 55H
PUSH TRL AAH 55H 12H 224 AAH 55H 12H
POP B AAH 12H 12H 21H AAH 55H 12H
POP ACC 55H 12H 12H 20H AAH 55H 12H
POP TRL 55H 12H AAH 1FH AAH 55H 12H

VMD-192

5. Instructions

XCH d9 (Exchange direct byte with accumulator)

Instruction code 110000 1d8 d7d6d5d4d3d2d1d0 C2H~C3H

Number of bytes 2

Number of cycles 1

Function (ACC)€=01(d9)
Affected flags

Interrupt acceptance Permitted

Description:

This instruction exchanges the contents of the Accumulator (ACC) with the contents of data memory

(RAM) or a Special Function Register (SFR), as specified by d8 to d0.

Example 1:

Mov
MOV
XCH
XCH
XCH

XCH

Example 2:

MoV
MOV
XCH
XCH
XCH

XCH

#0FFH,ACC
#055H,023H
023H

023H

023H

023H

#0FFH,ACC
#0FEH,B
B

B

ACC RAM 23H
FFH

FFH 55H
55H FFH
FFH 55H
55H FFH
FFH 55H
ACC B
FFH

FFH FEH
FEH FFH
FFH FEH
FEH FFH
FFH FEH

VMD-193

Visual Memory Unit (VMU) Hardware Manual

XCH @Rj (Exchange indirect byte with accumulator)

Instruction code 110001j1j0 CAH~C7H
Number of bytes 1
Number of cycles 1
Function (ACC)€0I((Rj) j=0,1.2,3
Affected flags
Interrupt acceptance Permitted

Description:

This instruction exchanges the contents of the Accumulator (ACC) with the contents of data memory
(RAM) or a Special Function Register (SFR), as specified by the indirect address register that is specified by

j1 and jO.
Example 1:
ACC RAM 01H RAM 68H
MOV #0FFH,ACC FFH
MOV #068H,001H FFH 68H
MOV #0FOH,@R1 FFH 68H FOH
XCH @R1 FOH 68H FFH
XCH @R1 FFH 68H FOH
XCH @R1 FOH 68H FFH
XCH @R1 FFH 68H FOH
Example 2:
ACC RAM 03H TRL
MOV #0AAH,ACC AAH
MOV #004H,003H AAH 04H
MOV #055H,@R3 AAH 04H 55H
XCH @R3 55H 04H AAH
XCH @R3 AAH 04H 55H
XCH @R3 55H 04H AAH

VMD-194

5. Instructions

5. Jump Instructions
JMP al2 (Jump near absolute address)

Instruction code 00 1a11 1a10a9a8 a7a6abada3a2ala0 28H~2FH,38H~3FH

Number of bytes 2

Number of cycles 2

Function (PC)€=(PC) + 2, (PC11~00) €a12

Affected flags

Interrupt acceptance Permitted at 2nd cycle
Description:

This instruction increments the Program Counter (PC) twice, and then transfers the data all through a0 to

bits 11 through 00 of the PC.

Example 1:
The value of label LA is OFOEH.

NOP

NOP

JMP LA
LA: INC ACC

ROR

Example 2:
The value of label LA is 1FOEH.

NOP

NOP

JMP LA
LA: INC ACC

ROR

PC Instruction code
OFFBH 00H

OFFCH 00H

OFFDH 3FOEH

OFOEH 6300H

OF10H COH

PC Instruction code
OFFCH 00H

OFFDH 00H

OFFEH 3FOEH

1FOEH 6300H

1F10H COH

VMD-195

Visual Memory Unit (VMU) Hardware Manual

JMPF al6 (Jump far absolute address)

Instruction code

00100001 albal4a13a12a11a10a9a8 aZ7ababada3a2ala0 21H

Number of bytes 3

Number of cycles 2

Function (PC)€=a16

Affected flags

Interrupt acceptance Permitted at 2nd cycle

Description:

This instruction transfers the data al5 through a0 to the Program Counter (PC).

Example 1:
The value of label LA is OFOEH.

NOP

NOP

JMPF LA
LA: INC ACC

ROR

Example 2:
The value of label LA is OFOEH.

NOP

NOP

JMPF LA
LA: INC ACC

ROR

PC Instruction code
OFFAH 00H

OFFBH 00H

OFFCH 210FOEH

OFOEH 6300H

OF10H COH

PC Instruction code
OFFCH 00H

OFFDH 00H

OFFEH 210FOEH

OFOEH 6300H

OF10H COH

VMD-196

5. Instructions

BR r8 (Branch near relative address)

Instruction code 00000001 r7r6r5r4r3r2r1ir0 01H

Number of bytes

2

Number of cycles

2

Function

(PC) €(PC) + 2,(PC) €(PC) +r8

Affected flags

Interrupt acceptance

Permitted at 2nd cycle

Description:

This instruction increments the Program Counter (PC) twice, adds the data r7 through r0 to the PC, and
then transfers that result to the PC.

Example 1:

The value of label LA is 0F5FH.

LA:

Example 2:

NOP

NOP

BR LA
INC ACC
ROR

The value of label LA is 1FOEH.

LA:

NOP

NOP

INC ACC

ROR

NOP

NOP

BR LA

PC Instruction code
OF1CH 00H

OF1DH 00H

OF1EH 013FH

OF5FH 6300H

OF61H COH

PC Instruction code
1FOCH 00H

1FODH 00H

1FOEH 6300H

1F10H COH

1F11H 00H

1F12H 00H

1F13H 01F9H

VMD-197

Visual Memory Unit (VMU) Hardware Manual

BRF r16 (Branch far relative address)

Instruction code 00010001 r7r6r5r4r3r2r1r0 r15r14r13r12r11r10r9r811H
Number of bytes 3
Number of cycles 4
Function (PC)€=(PC) + 3,(PC) €=(PC)- 1 +r16
Affected flags
Interrupt acceptance Permitted at 4th cycle
Description:

This instruction increments the Program Counter (PC) three times, then decrements the PC, adds the data
r15 through r0 to the PC, and then transfers that result to the PC.

Example 1:
The value of label LA is 105FH.
PC Instruction code
NOP OF1CH 00H
NOP OF1DH 00H
BRF LA OF1EH 113F0TH
LA: INC ACC 105FH 6300H
ROR 106TH COH
Example 2:
The value of label LA is 1FOEH.
PC Instruction code
NOP 1FFCH 00H
NOP 1FFDH 00H
LA: INC ACC 1FOEH 6300H
ROR 1F10H COH
NOP 1F11H 00H
NOP 1F12H 00H
BRF LA 1F13H 11F8FFH

VMD-198

5. Instructions

6. Conditional Branching Instructions

BZ r8 (Branch near relative address if accumulator is zero)

Instruction code 10000000 r7r6r5rdr3r2r1r080H

Number of bytes 2
Number of cycles 2
Function (PC)€=(PC) + 2, if (ACC) = 0 then (PC)(PC) + r8
Affected flags
Interrupt acceptance Permitted at 2nd cycle
Description:

This instruction increments the Program Counter (PC) twice, and then, if the Accumulator (ACC) is zero,
adds the data r7 through r0 to the PC, and transfers that result to the PC. If the ACC is not zero, the next
instruction is executed.

Example 1:
PC Instruction code ACC
MOV #000H,ACC OF1BH 230000H 00H
BZ LA OF1EH 803FH 00H
LA: INC ACC OF5FH 6300H 01H
ROR OF61H COH 80H

* Because ACC ="0" when the BZ instruction is executed, the program branches to the label LA.

Example 2:
PC Instruction code ACC
MOV #001H,ACC OF1BH 230001H 01H
BZ LA OF1EH 803FH 0TH
DEC ACC OF20H 7300H 00H
ROR OF22H COH 00H
LA: INC ACC

* Because ACC 11"0" when the BZ instruction is executed, the program simply executes the next instruction.

VMD-199

Visual Memory Unit (VMU) Hardware Manual

BNZ r8 (Branch near relative address if accumulator is not zero)

Instruction code 10010000 r7r6r5r4r3r2rir0 90H

Number of bytes 2

Number of cycles 2

Function (PC)€=(PC) + 2, if (ACC) 110 then (PC) €=(PC) + r8
Affected flags

Interrupt acceptance Permitted at 2nd cycle

Description:

This instruction increments the Program Counter (PC) twice, and then, if the Accumulator (ACC) is not
zero, adds the data r7 through r0 to the PC, and transfers that result to the PC. If the ACC is zero, the next
instruction is executed.

Example 1:
PC Instruction code ACC
MOV #001H,ACC OF1BH 230001H 0TH
BNZ LA OF1EH 903FH 01H
LA: INC ACC OF5FH 6300H 02H
ROR OF6TH COH 01H

* Because ACC 11"0" when the BNZ instruction is executed, the program branches to the label LA.

Example 2:
PC Instruction code ACC
MOV #000H,ACC OF1BH 230000H 00H
BNZ LA OF1EH 903FH 00H
DEC ACC OF20H 7300H FFH
ROR 0F22H COH FFH
LA: INC ACC

* Because ACC ="0" when the BNZ instruction is executed, the program simply executes the
next instruction.

VMD-200

5. Instructions

BP d9,b3,r8 (Branch near relative address if direct bit is positive)

011d8 1b2b1b0 d7d6d5d4d3d2d1d0 r7r6r5r4r3r2r1r068H~6FH,78H~7FH

Instruction code

Number of bytes

3

Number of cycles

2

Function

(PC)€=(PC) + 3, if (d9,b3) = 1 then (PC) €(PC) + r8

Affected flags

Interrupt acceptance

Permitted at 2nd cycle

Description:

This instruction increments the Program Counter (PC) three times, and then, if the bit specified by b2 to b0
of the address in data memory (RAM) or the Special Function Register (SFR) that is specified by d8 to d0 is
set (1), this instruction adds the data r7 through r0 to the PC, and transfers that result to the PC. If the bit

specified by b2 to b0 of the address in data memory (RAM) or the Special Function Register that is specified
by d8 to dO is reset (0), the next instruction is executed.

Example 1:
PC Instruction code B
MOV #001H,B OF1AH 230201H 01H
BP B.O.LA OF1DH 78023FH 01H
LA: INC B OF5FH 6302H 02H
NOP OF6TH 00H 02H

* Because bit 0 of B is "1" when the BP instruction is executed, the program branches to the label LA.

Example 2:
PC Instruction code ACC
MOV #080H,ACC OF1AH 230080H 80H
BP ACC,0,LA OF1DH 78003FH 80H
DEC AcC OF20H 7300H 7FH
ROR 0F22H COH BFH
LA: INC AcC

* Because bit 0 of the ACC is "0" when the BP instruction is executed, the program simply executes the
next instruction.

VMD-201

Visual Memory Unit (VMU) Hardware Manual

BPC d9,b3,r8 (Branch near relative address if direct bit is positive, and clear)

Instruction code 010d8 1b2b1b0 d7d6d5d4d3d2d1d0 r7r6r5r4r3r2r1r048H~4FH,58H~5FH
Number of bytes 3
Number of cycles 2
Function (PC)€=(PC) + 3, if (d9,b3) = 1 then (PC) €=(PC) +r8, (d9,b3) =0
Affected flags
Interrupt acceptance Permitted at 2nd cycle
Description:

This instruction increments the Program Counter (PC) three times, and then, if the bit specified by b2 to b0
of the address in data memory (RAM) or the Special Function Register (SFR) that is specified by d8 to d0 is
set (1), this instruction resets that bit, then adds the data r7 through r0 to the PC, and transfers that result to
the PC. If the bit specified by b2 to b0 of the address in data memory (RAM) or the Special Function Register
that is specified by d8 to d0 is reset (0), the next instruction is executed.

Example 1:
PC Instruction code B
MoV #003H,B OF1AH 230203H 03H
BPC B.OLA OF1DH 58023FH 02H
LA: INC B OF5FH 6302H 03H
NOP OF6TH 00H 03H

* Because bit 0 of B is "1" when the BPC instruction is executed, the program branches to the label LA.

Example 2:
PC Instruction code ACC
MoV #080H,ACC OF1AH 230080H 80H
BPC ACC,0,LA OF1DH 58003FH 80H
DEC ACC 0F20H 7300H 7FH
ROR 0F22H CoH BFH
LA: INC AcC

* Because bit 0 of the ACC is "0" when the BPC instruction is executed, the program simply executes the
next instruction.

Note:

* When this instruction is applied to one of the ports P0, P1, P2, P3, P4, or P5, the port latch of that port
is selected; the external signal that is applied to that port is not selected. Furthermore, applying this
instruction to port P7 does not change its status.

VMD-202

5. Instructions

BN d9,b3,r8 (Branch near relative address if direct bit is negative)

Instruction code 100d81b2h1b0 d7d6d5d4d3d2d1d0 r7r6r5r4r3r2r1r0 88H~8FH,98H~9FH
Number of bytes 3
Number of cycles 2
Function (PC)€=(PC) + 3, if (d9,b3) = 0 then (PC) €=(PC) +r8
Affected flags
Interrupt acceptance Permitted at 2nd cycle
Description:

This instruction increments the Program Counter (PC) three times, and then, if the bit specified by b2 to b0
of the address in data memory (RAM) or the Special Function Register (SFR) that is specified by d8 to d0 is
reset (0), this instruction adds the data r7 through r0 to the PC, and transfers that result to the PC. If the bit
specified by b2 to b0 of the address in data memory (RAM) or the Special Function Register that is specified
by d8 to dO is set (1), the next instruction is executed.

Example 1:
PC Instruction code B
MOV #0FEH,B OF1AH 2302FEH FEH
BN B.O.LA OF1DH 98023FH FEH
LA: INC B OF5FH 6302H FFH
NOP OF61H 00H FFH

* Because bit 0 of B is "0" when the BN instruction is executed, the program branches to the label LA.

Example 2:
PC Instruction code ACC
MOV #001H,ACC OF1AH 230001H 01H
BN ACC,0,LA OF1DH 98003FH 01H
DEC AcC OF20H 7300H 00H
ROR 0F22H COH 00H
LA: INC AcC

* Because bit 0 of the ACC is "1" when the BN instruction is executed, the program simply executes the
next instruction.

VMD-203

Visual Memory Unit (VMU) Hardware Manual

DBNZ d9,r8 (Decrement direct byte and branch near relative address if direct byte is not zero)

Instruction code 0101001d8 d7d6d5d4d3d2d1d0 r7r6r5rdr3r2r1r0 52H~53H

Number of bytes 3
Number of cycles 2
Function (PC)€=(PC) + 3, (d9) = (d9) - 1,if (d9) 110 then (PC) €=(PC) + r8
Affected flags
Interrupt acceptance Permitted at 2nd cycle
Description:

This instruction increments the Program Counter (PC) three times, and then decrements the address in data
memory (RAM) or the Special Function Register (SFR) that is specified by d8 to d0. If the contents of the
decremented RAM address or SFR are not zero, this instruction adds the data r7 through r0 to the PC, and
transfers that result to the PC. If the contents of the decremented RAM address or Special Function Register
are zero, the next instruction is executed.

Example 1:
PC Instruction code B
MoV #002H,B OF1AH 230202H 02H
DBNZ B.LA OF1DH 53023FH 01H
LA: INC B OF5FH 6302H 02H
NOP OF6TH 00H 02H

* Because B 11"0" after being decremented when the DBNZ instruction is executed, the program branches

to the label LA.
Example 2:

PC Instruction code ACC
MoV #001H,ACC OF1AH 230001H 01H
DBNZ ACC,LA OF1DH 53003FH 00H
DEC ACC 0F20H 7300H FFH
ROR 0F22H COH FFH

LA: INC ACC

* Because ACC ="0" after being decremented when the DBNZ instruction is executed, the program simply
executes the next instruction.

Note:

* When this instruction is applied to one of the ports PO, P1, P2, P3, P4, or P5, the port latch of that port
is selected; the external signal that is applied to that port is not selected. Furthermore, applying this
instruction to port P7 does not change its status.

VMD-204

5. Instructions

DBNZ @Rj,r8 (Decrement indirect byte and branch near relative address if indirect byte is not zero)

Instruction code 010101j1j0 r7r6r5r4r3r2r1r0 54H~57H
Number of bytes 2

Number of cycles 2

Function (PC) € (PC) + 2, ((Rj)) = ((Rj) - 1,

if ((Rj)) t0 then (PC) " (PC) +r8 j=0,1,2,3

Affected flags

Interrupt acceptance Permitted at 2nd cycle

Description:

This instruction increments the Program Counter (PC) twice, and then decrements the address in data
memory (RAM) or the Special Function Register (SFR) that is specified by the indirect address register that
is specified by j1 and j0. If the contents of the decremented RAM address or SFR are not zero, this instruction
adds the data r7 through r0 to the PC, and transfers that result to the PC. If the contents of the decremented
RAM address or Special Function Register are zero, the next instruction is executed.

Example 1:
PC Instruction code | B RAM 03H
MOV #002H,B OF18H 230202H 02H
MOV #002H,003H OF1BH 220302H 02H 02H
DBNZ @R3,LA OF1EH 573FH 0TH 02H
LA: INC B OF5FH 6302H 02H 02H

* Because B 11"0" after being decremented when the DBNZ instruction is executed, the program branches
to the label LA.

Example 2:

PC Instruction code | ACC RAM 03H
MOV #001H,ACC OF18H 230001H 01H
MoV #000H,003H OF1BH 220300H 0TH 00H
DBNZ @R3 LA OF1EH 573FH 00H 00H
DEC ACC 0F20H 7300H FFH 00H

LA: INC ACC

* Because ACC ="0" after being decremented when the DBNZ instruction is executed, the program simply
executes the next instruction.

Note:

e When this instruction is applied to one of the ports PO, P1, P2, P3, P4, or P5, the port latch of that port
is selected; the external signal that is applied to that port is not selected. Furthermore, applying this
instruction to port P7 does not change its status.

VMD-205

Visual Memory Unit (VMU) Hardware Manual

BE #i8,r8 (Compare immediate data to accumulator and branch near relative address if equal)

Instruction code

Number of bytes

00110001 i7i6i5i4i3i2i1i0 r7r6r5r4r3r2r1r0 31H

3

Number of cycles

2

Function (PC) €=(PC) + 3, if (ACC) = #i8 then (PC) €=(PC) + r8
Affected flags CY
Interrupt acceptance Permitted at 2nd cycle

Description:

This instruction increments the Program Counter (PC) three times, and then compares the immediate data
(i7 to i0) with the contents of the Accumulator (ACC). If the compared data are the same, this instruction
adds the data r7 through r0 to the PC, and then transfers that result to the PC. If the data are not the same,
the next instruction is executed.

Furthermore, if the ACC is less than the immediate data, the carry flag (CY) is set; if the ACC is greater than
or equal to the immediate data, the carry flag (CY) is reset.

ACC< #i8 0 CY=1

ACC > #i8 O CY=0

Example 1:
PC Instruction code | ACC CY
MOV #002H,ACC OF1AH 230002H 02H
BE #002H,LA OF1DH 31023FH 02H 0
LA: INC ACC OF5FH 6300H 03H 0

e Because ACC = 02H when the BE instruction is executed, CY is reset and the program branches to the

label LA.
Example 2:
PC Instruction code | ACC CY
MOV #003H,ACC OF1AH 230003H 03H
BE #004H,LA OF1DH 31043FH 03H 1
DEC ACC 0F20H 7300H 02H 1
LA: INC ACC

* Because ACC < 04H when the BE instruction is executed, CY is set and the program executes the
next instruction.

VMD-206

5. Instructions

BE d9,r8 (Compare direct byte to accumulator and branch near relative address if equal)

Instruction code 0011001d8 d7d6d5d4d3d2d1d0 r7r6r5r4r3r2rir0 32H~33H
Number of bytes 3
Number of cycles 2
Function (PC) €=(PC) + 3, if (ACC) = (d9) then (PC) €=(PC) +r8
Affected flags CY
Interrupt acceptance Permitted at 2nd cycle
Description:

This instruction increments the Program Counter (PC) three times, and then compares the contents of data
memory (RAM) or a Special Function Register (SFR), as specified by d8 to d0, with the contents of the
Accumulator (ACC). If the compared data are the same, this instruction adds the data r7 through r0 to the
PC, and then transfers that result to the PC. If the data are not the same, the next instruction is executed.

Furthermore, if the ACC is less than the contents of data memory (RAM) or the Special Function Register
(SFR), the carry flag (CY) is set; if the ACC is greater than or equal to the contents of data memory (RAM)
or the Special Function Register (SFR), the carry flag (CY) is reset.

ACC <d9 (RAM or SFR) O CY=1

ACC >d9 (RAM or SFR) O CY=0

Example 1:
PC Instruction code | ACC B CY
MOV #002H,ACC | OF17H 230002H 02H
MOV #002H,B OF1AH 230202H 02H 02H
BE B.LA OF1DH 33023FH 02H 02H 0
LA: INC ACC OF5FH 6300H 03H 02H 0

¢ Because ACC = B when the BE instruction is executed, CY is reset and the program branches to the

label LA.
Example 2:
PC Instruction code | ACC B CY
MoV #003H,ACC | OF17H 230003H 03H
\v[0)% #0F2H,B OF1AH 2302F2H 03H F2H
BE B.LA OF1DH 33023FH 03H F2H 1
DEC ACC OF20H 7300H 02H F2H 1
LA: INC ACC

¢ Because ACC < B when the BE instruction is executed, CY is set and the program executes the
next instruction.

VMD-207

Visual Memory Unit (VMU) Hardware Manual

BE @Rj,#i8,r8 (Compare immediate data to indirect byte and branch near relative address if equal)

Instruction code

Number of bytes 3
Number of cycles 2
Function (PC) € (PC) + 3, if ((Rj)) = # i8 then (PC) €(PC) +r8 j=0,1,2,3
Affected flags CY
Interrupt acceptance Permitted at 2nd cycle
Description:

This instruction increments the Program Counter (PC) three times, and then compares the contents of data
memory (RAM) or a Special Function Register (SFR), as specified by the indirect address register that is
specified by j1 and jO, with the immediate data (i7 to i0). If the compared data are the same, this instruction
adds the data r7 through r0 to the PC, and then transfers that result to the PC. If the data are not the same,
the next instruction is executed.

Furthermore, if the contents of data memory (RAM) or the Special Function Register (SFR), as specified by
the indirect address register that is specified by j1 and j0, is less than the immediate data (i7 to i0), the carry
flag (CY) is set; if the contents of data memory (RAM) or the Special Function Register (SFR) are greater than
or equal to the immediate data (i7 to i0), the carry flag (CY) is reset.

@Rj < #i8 0 CY=1
@Rj > #i8 0 CY=CO

Example 1:
PC Instruction code | B RAM 03H CY
MOV #005H,B OF17H 230205H 05H
MOV #002H,003H | OF1AH 220302H 05H 02H
BE @R3,#5H,LA | OF1DH 37053FH 05H 02H 0
LA: INC B OF5FH 6302H 06H 02H 0

* Because B = 05H when the BE instruction is executed, CY is reset and the program branches to the

label LA.
Example 2:
PC Instruction code | ACC RAM 02H cY
MOV #003H,ACC | OF17H 230003H 03H
MoV #000H,002H | OF1AH 220200H 03H 00H
BE @R2#9H,LA | OF1DH 36093FH 03H 00H 1
DEC ACC 0F20H 7300H 02H 00H 1
LA: INC ACC

* Because ACC < 09H when the BE instruction is executed, CY is set and the program executes the
next instruction.

VMD-208

5. Instructions

BNE #i8,r8 (Compare immediate data to accumulator and branch near relative address if not equal)

Instruction code 01000001 i7i6i5i4i3i2i1i0 r7r6r5r4r3r2r1r0 41H
Number of bytes 3
Number of cycles 2
Function (PC) €=(PC) + 3, if (ACC) Tt# i8 then (PC) €=(PC) + 18
Affected flags cY
Interrupt acceptance Permitted at 2nd cycle

Description:

This instruction increments the Program Counter (PC) three times, and then compares the immediate data
(i7 to i0) with the contents of the Accumulator (ACC). If the compared data are not the same, this instruction
adds the data r7 through r0 to the PC, and then transfers that result to the PC. If the data are the same, the
next instruction is executed. Furthermore, if the ACC is less than the immediate data, the carry flag (CY) is
set; if the ACC is greater than or equal to the immediate data, the carry flag (CY) is reset.

ACC<#i80 CY=1
ACC=>#i8 0 CY=0

Example 1:
PC Instruction code ACC cy
MOV #002H,ACC OF1AH 230002H 02H
BNE #000H,LA OF1DH 41003FH 02H 0
LA: INC ACC OF5FH 6300H 03H 0

* Because ACC > 00H when the BNE instruction is executed, CY is reset and the program branches to the

label LA.
Example 2:
PC Instruction code ACC CY
MOV #003H,ACC OF1AH 230003H 03H
BNE #003H,LA OF1DH 41033FH 03H 0
DEC ACC 0F20H 7300H 02H 0
LA: INC ACC

* Because ACC = 03H when the BNE instruction is executed, CY is set and the program executes the
next instruction.

VMD-209

Visual Memory Unit (VMU) Hardware Manual

BNE d9,r8 (Compare direct byte to accumulator and branch near relative address if not equal)

Instruction code 0100001d8 d7d6d5d4d3d2d1d0 r7r6r5rdr3r2r1r0 42H~43H

Number of bytes 3
Number of cycles 2
Function (PC) € (PC) + 3, if (ACC) 11(d9) then (PC) €= (PC) + r8
Affected flags CY
Interrupt acceptance Permitted at 2nd cycle
Description:

This instruction increments the Program Counter (PC) three times, and then compares the contents of data
memory (RAM) or a Special Function Register (SFR), as specified by d8 to d0, with the contents of the
Accumulator (ACC). If the compared data are not the same, this instruction adds the data r7 through r0 to
the PC, and then transfers that result to the PC. If the data are the same, the next instruction is executed.

Furthermore, if the ACC is less than the contents of data memory (RAM) or the Special Function Register
(SFR), the carry flag (CY) is set; if the ACC is greater than or equal to the contents of data memory (RAM)
or the Special Function Register (SFR), the carry flag (CY) is reset.

ACC < d9(RAM or SFR) O CY=1

ACC > d9(RAM or SFR) O CY=0

Example 1:
PC Instruction code | ACC B CY
MOV #002H,ACC | OF17H 230002H 02H
MON #003H,B OF1AH 230203H 02H 03H
BNE B.LA OF1DH 43023FH 02H 03H 1
LA: INC ACC OF5FH 6300H 03H 03H 1

e Because ACC < B when the BNE instruction is executed, CY is set and the program branches to the

label LA.
Example 2:
PC Instruction code | ACC B CY
MOV #0F2H,ACC 0F17H 2300F2H F2H
MOV #0F2H,B OF1AH 2302F2H F2H F2H
BNE B.LA OF1DH 43023FH F2H F2H 0
DEC ACC 0F20H 7300H F1H F2H 0
LA: INC ACC

e Because ACC = B when the BNE instruction is executed, CY is reset and the program executes the
next instruction.

VMD-210

5. Instructions

BNE @Rj,#i8,r8 (Compare immediate data to indirect byte and branch near relative address if not equal)

Instruction code

Number of bytes 3
Number of cycles 2
Function (PC) €(PC) + 3, if ((Rj)) Tt # i8 then (PC) € (PC) +r8 j=0,1,2,3
Affected flags CY
Interrupt acceptance Permitted at 2nd cycle
Description:

This instruction increments the Program Counter (PC) three times, and then compares the contents of data
memory (RAM) or a Special Function Register (SFR), as specified by the indirect address register that is
specified by j1 and jO, with the immediate data (i7 to i0). If the compared data are not the same, this
instruction adds the data r7 through r0 to the PC, and then transfers that result to the PC. If the data are the
same, the next instruction is executed.

Furthermore, if the contents of data memory (RAM) or the Special Function Register (SFR), as specified by
the indirect address register that is specified by j1 and j0, is less than the immediate data (i7 to i0), the carry
flag (CY) is set; if the contents of data memory (RAM) or the Special Function Register (SFR) are greater
than or equal to the immediate data (i7 to i0), the carry flag (CY) is reset.

@Rj < #i8 0 CY=1
@Rj > #i8 0 CY=CO

Example 1:
PC Instruction code | ACC B CY
MOV #002H,ACC | OF17H 230002H 02H
MON #003H,B OF1AH 230203H 02H 03H
BNE B.LA OF1DH 43023FH 02H 03H 1
LA: INC ACC OF5FH 6300H 03H 03H 1

* Because B < 08H when the BNE instruction is executed, CY is set and the program branches to the

label LA.
Example 2:
PC Instruction code ACC RAM 02H CY
MOV #003H,ACC | OF17H 230003H 03H
MOV #000H,002H | OF1AH 220200H 03H 00H
BNE @R2#3H,LA | OF1DH 46033FH 03H 00H 0
DEC ACC OF20H 7300H 02H 00H 0
LA: INC ACC

* Because ACC = 03H when the BNE instruction is executed, CY is reset and the program executes the
next instruction.

VMD-211

Visual Memory Unit (VMU) Hardware Manual

7. Subroutine Instructions
CALL al2 (Near absolute subroutine call)

Instruction code 000a11 1a10a9a8 a7abab5ada3a2ala0 08H~O0FH,18H~1FH
Number of bytes 2
Number of cycles 2
Function (PC) €(PC) +2,(SP) " (SP) + 1,((SP)) €(PC7~0),(SP) €(SP) +1,
((SP)) ~ (PC15~8),(PC11~0) " a12
Affected flags
Interrupt acceptance Permitted at 2nd cycle
Description:

This instruction increments the Program Counter (PC) twice, increments the Stack Pointer (SP), and then
stores the lower byte of the PC in the address in data memory (RAM) that is specified by the SP. This
instruction then increments the Stack Pointer (SP) again, and stores the upper byte of the PC in the address
in RAM specified by the SP. Finally, this instruction then transfers the data all through a0 to bits 11 through

00 of the PC.
Example 1:
The value of label LA is OFOEH.
PC Instruction code | SP RAM 20H RAM 21H
MOV #01FH,SP OFFAH 23061FH 1FH
CALL LA OFFDH 1FOEH 21H FFH OFH
LA: INC ACC OFOEH 6300H 21H FFH OFH
RET OF10H AOH 1FH FFH OFH
NOP OFFFH 00H 1FH FFH OFH
Example 2:
The value of label LA is 1FOEH.
PC Instruction code | SP RAM 20H RAM 21H
MOV #01FH,SP OFFBH 23061FH 1FH
CALL LA OFFEH 1FOEH 21H 00H 10H
LA: INC ACC 1FOEH 6300H 21H 00H 10H
RET 1F10H AOH 1FH 00H 10H
INC ACC 1000H 6300H 1FH 00H 10H

VMD-212

5. Instructions

CALLF al6 (Far absolute subroutine call)

Instruction code 00100000 a15a14a13a12a11a10a9a8A@a7a6a5ada3a2a1a0 20H
Number of bytes 3
Number of cycles 2
Function (PC) €=(PC) + 3,(SP)AC(SP) + 1,((SP)) €(PC7~0),(SP) €(SP) + 1,
((SP)) " (PC15~8),(PC) " a16
Affected flags
Interrupt acceptance Permitted at 2nd cycle
Description:

This instruction increments the Program Counter (PC) three times, increments the Stack Pointer (SP), and
then stores the lower byte of the PC in the address in data memory (RAM) that is specified by the SP. This
instruction then increments the Stack Pointer (SP) again, and stores the upper byte of the PC in the address
in RAM specified by the SP. Finally, this instruction then transfers the data al5 through a0 to bits 15 through

00 of the PC.
Example 1:
The value of label LA is OFOEH.
PC Instruction code | SP RAM 20H RAM 21H
MOV #01FH,SP OFF9H 23061FH 1FH
CALLF LA OFFCH 200FOEH 21H FFH OFH
LA: INC ACC OFOEH 6300H 21H FFH OFH
RET OF10H AOH 1FH FFH OFH
NOP OFFFH 00H 1FH FFH OFH
Example 2:
The value of label LA is OFOEH.
PC Instruction code | SP RAM 20H RAM 21H
MOV #01FH,SP OFFAH 23061FH 1FH
CALLF LA OFFDH 200FOEH 21H 00H 10H
LA: INC ACC OFOEH 6300H 21H 00H 10H
RET OF10H AOH 1FH 00H 10H
INC ACC 1000H 6300H 1FH 00H 10H

VMD-213

Visual Memory Unit (VMU) Hardware Manual

CALLR r16 (Far relative subroutine call)

Instruction code 00010000 r7r6r5r4r3r2r1r0 r15r14r13r12r11r10r9r8 10H

Number of bytes 3
Number of cycles 4
Function (PC) €=(PC) + 3,(SP) €=(SP) + 1,((SP)) €=(PC7~0),(SP) €(SP)+1,
((SP)) " (PC15~8),(PC) " (PC) - 1 + r16
Affected flags
Interrupt acceptance Permitted at 4th cycle
Description:

This instruction increments the Program Counter (PC) three times, increments the Stack Pointer (SP), and
then stores the lower byte of the PC in the address in data memory (RAM) that is specified by the SP. This
instruction then increments the Stack Pointer (SP) again, and stores the upper byte of the PC in the address
in RAM specified by the SP. Finally, this instruction then decrements the PC, adds the data r15 through r0
to the contents of the PC, and transfers the result to the PC.

Example 1:
The value of label LA is 1100H.
PC Instruction code SP RAM 20H RAM 21H
MOV #01FH,SP OFF9H 23061FH 1FH
CALLR LA OFFCH 100201H 21H FFH OFH
LA: INC ACC 1100H 6300H 21H FFH OFH
RET 1102H AQH 1FH FFH OFH
NOP OFFFH 00H 1FH FFH OFH
Example 2:
The value of label LA is 1100H.
PC Instruction code SP RAM 20H RAM 21H
MOV #01FH,SP OFFCH 23061FH 1FH
CALLR LA OFFDH 100101H 21H 00H 10H
LA: INC ACC 1100H 6300H 21H 00H 10H
RET 1102H AQH 1FH 00H 10H
INC ACC 1000H 6300H 1FH 00H 10H

VMD-214

5. Instructions

RET (Return for subroutine)

Instruction code 10100000 A0H

Number of bytes 1
Number of cycles 2
Function (PC15~8) €= ((SP)),(SP) €=(SP) - 1,(PC7~0) €{((SP)),(SP) €=(SP) - 1
Affected flags
Interrupt acceptance Permitted at 2nd cycle
Description:

This instruction transfers the contents of the address in data memory (RAM) that is specified by the Stack
Pointer (SP) to the upper byte of the Program Counter (PC). This instruction then decrements the SP,
transfers the contents of the address in RAM that is specified by the SP to the lower byte of the Program
Counter (PC), and then decrements the SP again.

Example 1:
The value of label LA is OFOEH.
PC Instruction code SP RAM 20H RAM 21H
MOV #01FH,SP OFF9H 23061FH 1FH
CALLF LA OFFCH 200FOEH 21H FFH OFH
LA: INC ACC OFOEH 6300H 21H FFH OFH
RET OF10H AOH 1FH FFH OFH
NOP OFFFH 00H 1FH FFH OFH
Example 2:
The value of label LA is OFOEH.
PC Instruction code | SP RAM 20H RAM 21H
MOV #01FH,SP OFFAH 23061FH 1FH
CALLF LA OFFDH 200F0EH 21H 00H 10H
LA: INC ACC OFOEH 6300H 21H 00H 10H
RET OF10H AOH 1FH 00H 10H
INC ACC 1000H 6300H 1FH 00H 10H

VMD-215

Visual Memory Unit (VMU) Hardware Manual

RETI(Return for interrupt)

Instruction code 10110000BOH

Number of bytes 1
Number of cycles 2
Function (PC15~8) €=((SP)),(SP) €=(SP) - 1,(PC7~0) €=((SP)),(SP) €=(SP) -1
Affected flags
Interrupt acceptance Not permitted
Description:

This instruction transfers the contents of the address in data memory (RAM) that is specified by the Stack
Pointer (SP) to the upper byte of the Program Counter (PC). This instruction then decrements the SP,
transfers the contents of the address in RAM that is specified by the SP to the lower byte of the Program
Counter (PC), decrements the SP again, and then restarts the interrupt acceptance function that was
disabled when an interrupt was accepted.

Example 1:
PC Instruction code
NOP OFFAH 00H
NOP OFFBH 00H
MOV #001H,ACC OFFCH 230001H €External interrupt 0
generated
INC ACC 0003H 6300H
RET1 0005H BOH
NOP OFFFH 00H
Example 2:
PC Instruction code
NOP OFFCH 00H
MOV #00EH,B OFFDH 23020EH €External interrupt 1
generated
INC ACC 0013H 6300H
RET1 0015H BOH
INC ACC 1000H 6300H

VMD-216

5. Instructions

8. Bit Manipulation Instructions

CLR1 d9,b3 (Clear direct bit)

Instruction code

110d8 1b2b1b0 d7d6d5d4d3d2d1d0
C8H~CFH,D8H~DFH

Number of bytes 2

Number of cycles 1

Function (d9,b3) €0

Affected flags

Interrupt acceptance Permitted
Description:

This instruction resets the bit specified by b2 to b0 of the address in data memory (RAM) or the Special

Function Register that is specified by d8 to d0.

Example 1:
ACC

MoV #001H,ACC 01H 0000 0001B

CLR1 ACC,0 00H 0000 0000B
Example 2:

RAM 7FH
MoV #001H,07FH 01H 0000 0001B
CLR1 07FH,0 00H 0000 00008
Note:

* When this instruction is applied to one of the ports P1 or P3, the port latch of that port is selected; the
external signal that is applied to that port is not selected. Furthermore, applying this instruction to port

P7 does not change its status.

VMD-217

Visual Memory Unit (VMU) Hardware Manual

SET1 d9,b3 (Set direct bit)

Instruction code 111d8 1b2b1b0 d7d6d5d4d3d2d1d0 ESH~EFH, F8H~FFH

Number of bytes 2

Number of cycles 1

Function (d9,b3) €1

Affected flags

Interrupt acceptance Permitted
Description:

This instruction sets the bit specified by b2 to b0 of the address in data memory (RAM) or the Special
Function Register that is specified by d8 to d0.

Example 1:
ACC

Mov #000H,ACC 00H 0000 00008

SET1 ACC,7 80H 1000 0000B
Example 2:

RAM 7FH
MOV #001H,07FH 01H 0000 0001B
SET1 07FH.6 41H 0100 0001B
Note:

* When this instruction is applied to one of the ports P1 or P3, the port latch of that port is selected; the
external signal that is applied to that port is not selected. Furthermore, applying this instruction to port
P7 does not change its status.

VMD-218

5. Instructions

NOT1 d9,b3 (Not direct bit)

101d8 1b2b1b0 d7d6d5d4d3d2d1d0 A8BH~AFH, B8H~BFH

Instruction code

Number of bytes 2

Number of cycles 1

Function (d9,b3) €=(d9,b3)
Affected flags

Interrupt acceptance Permitted

Description:

This instruction inverts the bit specified by b2 to b0 of the address in data memory (RAM) or the Special
Function Register that is specified by d8 to d0.

Example 1:
ACC
Mov #000H,ACC 00H 0000 00008
NOT1 ACC,7 80H 1000 00008
NOT1 ACC.7 00H 0000 00008
Example 2:
RAM 7FH
MOV #001H,07FH 01H 0000 0001B
NOT1 07FH.6 41H 0100 0001B
NOT1 07FH,6 0TH 0000 0001B
Note:

* When this instruction is applied to one of the ports P1 or P3, the port latch of that port is selected; the
external signal that is applied to that port is not selected. Furthermore, applying this instruction to port

P7 does not change its status.

VMD-219

Visual Memory Unit (VMU) Hardware Manual

9. Miscellaneous Instruction
NOP (No operation)

Instruction code 0000000000H

Number of bytes 1

Number of cycles 1

Function

Affected flags

Interrupt acceptance Permitted

Description:

This instruction consumes one machine cycle.

10. Macro Instruction
CHANGE label name (or address)

Description:
This is POTATO's own macro instruction.
(1) When executed in internal program mode
*Switches from internal program mode [external program mode
*The program counter is set to the external program address specified by the label or address.
(2) When executed in external program mode
*Switches from external program mode O internal program mode (when LDCEXT = 0)
*The program counter is set to the internal program address specified by the label or address.

(Note:Even if the CHANGE instruction is executed in external program mode when LDCEXT =1, the
system does not enter internal program mode. In actuality, it jumps to the address that was specified
by the CHANGE instruction in the external program.)

(3) The program mode switch is made after executing any special macro instructions.

(4) Interrupts are not accepted while this macro is executing.

VMD-220

Sega@ Dreamcast.

Visual Memory Unit (VMU)
Programing Manual

Sega@ Dreamcast

1. Environment Variables

1. Environment Variables for the L86K Series

The L86K series development support tools use the environment variables described below.

PATH: This variable defines the search path. This is defined by a format that is added to the previously
defined PATH.

Name File that is searched for

M86K Searches for the reserved word file m86krsvd.rwd in the directory defined by PATH.

186K Searches for the reserved word definition symbol file Ic86k.lib in the directory defined by PATH.

CGR86K Searches for the default character generator data file (DEFAULT.CDF for he LC864000 Series,
DEFAULT.GGR in all other cases) in the directory defined by PATH.

CHIPNAME: This variable defines the name of the chip (or series) that is the target of processing.

Name Description

M86K Defines the name of the chip that is the target of the assembly operation. Any CHIP pseudo
instructions (refer to Part 2, "Assembler," Chapter 8, "Pseudo Instructions,” under the item " CHIP
Pseudo Instructions") that are written in the source program are ignored. This environment variable is
referenced when assembling a source program that contains no chip pseudo instructions. If the ROM
size field in the chip name (the last two digits in the chip name) is "00," the ROM size is not checked,
and the assembly operation proceeds on the assumption that there are 64K of ROM.

Su8eK Defines the name of the chip for which option data is to be created. The ROM size field in the chip
name (the last two digits in the chip name) is ignored.

CGR86K Defines the name of the chip for which a character generator data file is to be created. The ROM size
field in the chip name (the last two digits in the chip name) is ignored.

When the last two digits in the chip name for each series are "00," that name does not exist as an actual chip. Such
chip names are defined for convenience sake as having the largest ROM size in their respective series. Using such a
chip name for assembly is valuable when a user wants to know the size of a user-created program.

VMC-1

M86KRSVDFILE: This variable defines the name of the reserved word file.

File that is searched for

MB86K

Defines the file name and the directory where the reserved word file is stored. If this
environment variable is not defined, m86krsvd.rwd is used as the default file name, and
m86krsvd.rwd is searched for in the sequence described in PATH.

M86KWORKFILE: This variable defines the work file name.

File that is searched for

M86K

If the work memory that is dynamically allocated by M86K while the assembly operation is in
progress is too large to fit in main memory, or if there is no EMS memory, or if all of the EMS
memory has been used, this variable specifies the name of a work file that can be used as a
type of extended memory. The name can be specified with a drive name and a path name (for
the MS-DOS version), or a path name (for the UNIX version).

TMP: This variable defines the directory where the work file is stored.

File that is searched for

MB86K

If it is necessary for M86K to create a work file (refer to the item, "M86KWORKFILE") and the
environment variable M86KWORKFILE is not defined, a work file is created in the directory
specified by this environment variable. If this environment variable is not defined, the work
file is created in the current directory. In all of these cases, however, the file name is fixed to
m86kwork.tmp.

1.1 Setting the Environment Variables (MS-DOS Version)

The SET command is used to set the environment variables in MS-DOS. For details on the SET command, refer to

the MS-DOS manual.

Example: Setting the default chip name to LC866200

A> SET CHIPNAME=LC8662000

1.2 Setting the Environment Variables (UNIX Version)

The setenv command is used to set the environment variables in UNIX. For details on the setenv command, refer

to the UNIX manual.

Example: Setting the default chip name to LC866200 host% setenv CHIPNAME LC8662000

Note: UNIX versions are provided for the following tools only: M86K (assembler), L86K (linkage loader)
and LIB86K (library manager).

vMcC-2

Sega@ Dreamcast

2. File Specification for
the Assembler

There are two methods for starting up M86K and passing the necessary data to M86K.
1) Passing all of the information to M86K through the command line
2) Passing all of the information in response to the prompts that are displayed by M86K

Regardless of the method that was used to start up M86K, it can be forcibly terminated by either pressing CTRL+C
(by holding down the CTRL key while pressing the C key) or pressing the STOP key.

1. File Name Specification
1.1 MS-DOS Version File Specification

Upper-case and lower-case letters can be used in any combination in a file name that is specified in the command
line when starting up M86K, or in a file name that is given in response to the M86K prompts. For example, the
following three file names are all equivalent:

sample.asm
SAmple.ASM
SAMPLE.asM

In addition, when a file name is specified with no extension, M86K uses the following default file name extensions.

File format Default extension

Source file ASM
Object file .0BJ
List file LST
Cross-reference file .CRF
Error file .ERR

VMC-3

2. File Specification for the Assembler

1.2 UNIX Version File Specification

A distinction is made between upper-case and lower-case letters used in a file name that is specified in the

command line when starting up M86K, or in a file name that is given in response to the M86K command prompts.

For example, the following three file names are all different:

sample.asm
SAmple. ASM
SAMPLE.asM

In addition, when a file name is specified with no extension, M86K uses the following default file name extensions.

File format Default extension

Source file .asm
Object file .obj
List file st
Cross-reference file .crf
Error file err

2. Specifying Parameters through the Command Line

M86K [option] [source], [object], [list], [cross], [error]

1) option field

Specify the assembler options that are described in Chapter 2. When specifying options, they must be
specified ahead of all of the other fields.

2) source field

Specify the name of the source file that is to be assembled. If the file name extension is omitted from the
specification, the default extension ".ASM" is assumed when the file is searched for. If the file name is
specified with an extension, that extension is given priority. In either case, the drive name and path name
(in the case of the MS-DOS version) or the path name (in the case of the UNIX version) can also be specified.

3) object field

Specify the name of the object file that is to be produced as a result of the assembly operation. The drive
name and path name (in the case of the MS-DOS version) or the path name (in the case of the UNIX version)
can also be specified. If this entire file name is omitted, the source file name is used, except that the file
extension is changed to ".OBJ". If a file with the same file name already exists, the existing file is overwritten.

4) list field

Specify the name of the file to which the assembly results listing is output. The drive name and path name
(in the case of the MS-DOS version) or the path name (in the case of the UNIX version) can also be specified.
If this entire file name is omitted, no list file is created. If a file with the same file name already exists, the
existing file is overwritten.

VMC-4

Visual Memory Unit (VMU) Environment Variables

5) cross field

Specify the file name of the cross-reference list for symbols in the source file that was the target of the
assembly operation. The drive name and path name (in the case of the MS-DOS version) or the path name
(in the case of the UNIX version) can also be specified. If this entire file name is omitted, no symbol
cross-reference list file is created. If a file with the same file name already exists, the existing file is
overwritten.

6) error field

Specify the name of the file in which the error messages that were detected as a result of the assembly
operation are to be stored. The drive name and path name (in the case of the MS-DOS version) or the path
name (in the case of the UNIX version) can also be specified. If this entire file name is omitted, no error file
is created. If a file with the same file name already exists, the existing file is overwritten.

Example:

A> M86K MAIN.ASM,MAIN,, TEST.CXX@

The assembly operation starts, using the file MAIN.ASM (which resides in the current directory) as the source file.
The object file is written to MAIN.OBJ, no list is generated, and the cross-reference list is written in TEST.CXX.

3. Specifying Parameters in Response to Prompts

When starting up the assembler, input the command without specifying a file name. Afterwards, input each of the
file names in response to the prompts that are output by the assembler.

prompt M86K [option]g

SANYO (R) LC86K series Macro Assembler Version X.XX

Copyright (c) SANYO Electric Co., Ltd. 1989-1995. All rights reserved.
Source filename[. ASM]:

Object filename[.0BJ]:

Source listing [NUL.LST]:

Cross reference[NUL.CRF]:

Error messages [NUL.ERR]:

VMC-5

2. File Specification for the Assembler

1) option field
Specify the assembler options described in Chapter 2.

2) Source filename

Specify the name of the source file that is to be assembled. If the file name extension is omitted from the
specification, the default extension ".ASM" (".asm" for UNIX) is assumed when the file is searched for. If the
file name is specified with an extension, that extension is given priority. In either case, the drive name and
path name (in the case of the MS-DOS version) or the path name (in the case of the UNIX version) can also
be specified. This file name can not be omitted. If only the Return key is pressed, the assembler will prompt
the user to input the name of the source file again. In order to interrupt the input operation, either press
CTRL+C (by holding down the CTRL key while pressing the C key) or press the STOP key; doing so will
terminate M86K.

3) Object Filename

Specify the name of the object file that is to be produced as a result of the assembly operation. The drive
name and path name (in the case of the MS-DOS version) or the path name (in the case of the UNIX version)
can also be specified. If this file name is omitted (i.e., only the Return key is pressed), the source file name
is used, except that the file extension is changed to ".OBJ" (".obj" in the case of UNIX). If a file with the same
file name already exists, the existing file is overwritten.

4) List Filename

Specify the name of the file to which the assembly results listing is output. The drive name and path name
(in the case of the MS-DOS version) or the path name (in the case of the UNIX version) can also be specified.
If this file name is omitted (i.e., only the Return key is pressed), no list file is created. If a file with the same
file name already exists, the existing file is overwritten.

5) Cross reference

Specify the file name of the cross-reference list for symbols in the source file that was the target of the
assembly operation. The drive name and path name (in the case of the MS-DOS version) or the path name
(in the case of the UNIX version) can also be specified. If this entire file name is omitted (i.e., only the Return
key is pressed), no symbol cross-reference list file is created. If a file with the same file name already exists,
the existing file is overwritten.

6) Error messages

Specify the name of the file in which the error messages that were detected as a result of the assembly
operation are to be stored. The drive name and path name (in the case of the MS-DOS version) or the path
name (in the case of the UNIX version) can also be specified. If this entire file name is omitted (i.e., only the
Return key is pressed), no error file is created. If a file with the same file name already exists, the existing
file is overwritten.

VMC-6

Sega@'Dreamcast.

3. Assembler Option
Specification

This chapter explains how to use the assembler options to specify and control the operation of M86K. In the MS-DOS
version, all options begin with the assembler option characters "-" or "/", and in the UNIX version all options begin
with the assembler option character "-". In either case, no distinction is made between upper- and lower-case letters

"oen

for the option specification letter. For example, "-I' and "-i" are interpreted as having the same meaning.

1. Specification for Upper- & Lower-case Letters in Identifiers
Option
-1

If this switch is specified, the assembler makes no distinction between upper-case and lower-case letters in
user-defined identifiers (labels, macro names, symbols). If this switch is not specified, a distinction is made between
the upper- and lower-case forms of each letter. the effect of this switch is limited to user-defined identifiers, and does
not apply to mnemonics or SFRs.

2. Specification for Outputting Debugging Information
Option
-D

If this switch is specified, the assembler does not output the symbol information and source line information in
the object file. When debugging an object file that lacks this information, source line mode cannot be used. If this
switch is not specified, both types of information are output in the object file, and source line mode can be used
for debugging.

vmce-7

3. Assembler Option Specification

3. Specification for Not Optimizing Branching Instructions
Option

-J

This switch can be specified when assembling source code that includes pseudo instructions that require
optimization (JMPO, CALLO, BRO); specifying this switch suppresses the optimization operation. As a result,

all pseudo instructions are interpreted as 3-byte instructions regardless of the jump destination. If this switch is
not specified when assembling source code that includes pseudo instructions that require optimization, the

optimization operation is performed. If there are no pseudo instructions that require optimization, the operation
of the assembler is the same, whether this switch is specified or not.

4. Specification for Suppressing the Copyright Notice
Option
-N

If this switch is specified, the copyright notice, etc., is not displayed when the assembler is started up. This switch
is used to keep the display screen "clean" by suppressing all unnecessary display information, aside from error
messages, when starting up the assembler from a utility such as "make".

5. Reserved Word File Specification
Option
R

The character string that starts with the first character that follows this switch and ends with the last character
before the first subsequent space character that is encountered is indicated to the assembler as the name of the
reserved word file. For example, assume that the following specification is made:

m86k -rm86krsvd.rwd source.asm,,source.lst

In this case, the name of the reserved word file is m86krsvd.rwd. This specification takes priority over the
environment variable M86KRSVDFILE.

VMC-8

Visual Memory Unit (VMU) Environment Variables

6. Work Buffer Size Specification

Option

-P

If a numeric value is specified after this switch, that value is adopted as the size of the assembler's internal work
buffer. The work buffer is an area that is used in order to increase processing speed when the assembler is registering
and expanding macros, and is allocated in main memory when the assembler is started up. The default size is 4096

bytes. This is not likely to prove to be inadequate in the case of a typical source program. However, if the buffer size
is too small, the assembler displays the following error message and interrupts processing:

no more PARAMETER buffer (123) 45

(The two digits at the end of the message are internal information, and may vary.) If this type of message is
displayed, use this switch to specify a larger buffer size and then repeat the assembly process. For example, if the
following is specified:

m86k -p8192 source.asm

Then the work buffer size will be 8192 bytes. Only a decimal value can be specified, and must be specified directly
after the switch character "P" with no intervening space. Furthermore, if only the switch is specified, with no valid
number, the buffer size is unchanged and remains at its default of 4096.

7. Option List Display
Option

If this switch is specified, the assembler displays the following list of options that can be used, and then terminates
execution. Note that if this switch is specified, execution terminates, regardless of what other options were specified.

Usage: m86k [option] source,[object],[list],[xref]

option:

/D do not make local symbol table and source line attributes in object file
/I ignore case for user defined symbol

/J do not try to optimize

/N skip displaying copyright message

/Psize parameter buffer size in decimal

/Rfile read ‘file" as reserved word file

vMC-9

Visual Memory Unit (VMU) Environment Variables

VMC-10

Sega@'Dreamcast.

4. Environment Variables and

the Reserved Word File

1. Environment Variables

MB86K references the following environment variables when necessary:

PATH

CHIPNAME

M86KRSVDFILE

M86KWORKFILE

T™MP

: This variable is used as the search path for the reserved word file. for details on the reserved

word file and the search algorithm, refer to section 3.2 in this chapter.

: This variable defines the name of the chip that is the target of the assembly operation. Any

CHIP pseudo instructions that are written in the source program are ignored. (However, if a
chip name that is specified in a CHIP pseudo instruction does not match this variable, a
warning message is generated.) This environment variable is referenced when assembling a
source program that contains no chip pseudo instructions.

: Defines names of the directory in which the reserved words file is stored and the name of that

file. The file specified by this environment variable does not have a default file name
extension. Be sure to specify both file name and extension, and if necessary also the drive
name and path name (for the MS-DOS version) or path name (for the UNIX version).

: If the work memory that is dynamically allocated by M86K while the assembly operation is

in progress is too large to fit in main memory, or if there is no EMS memory, or if all of the EMS
memory has been used, this variable specifies the name of a work file that can be used as a
type of extended memory. The name can be specified with a drive name and a path name (for
the MS-DOS version), or a path name (for the UNIX version).

: If it is necessary for M86K to create a work file (refer to the item, M86KWORKFILE) and the

environment variable M86KWORKEFILE is not defined, a work file is created in the directory
specified by this environment variable. If this environment variable is not defined, the work
file is created in the current directory. In all of these cases, however, the file name is fixed to
m86kwork.tmp.

VMC-11

4. Environment Variables and the Reserved Word File

1.1 Setting the Environment Variables (MS-DOS Version)

The SET command is used to set the environment variables in MS-DOS. For details on the SET command, refer to
the MS-DOS manual.

Example: Setting the default chip name to LC866200

A> SET CHIPNAME=LC8662002

1.2 Setting the Environment Variables (UNIX Version)

The setenv command is used to set the environment variables in UNIX. For details on the setenv command, refer
to the UNIX manual.

Example: Setting the default chip name to LC866200

host% setenv CHIPNAME LC866200g

2. Reserved Word File

The reserved word file is a file that is always loaded by M86K upon startup, and contains various items of
information concerning the chip that is the target of the assembly operation (size of RAM/ROM, SFR mnemonics,
etc.). M86K will not operate correctly without this file. When M86K is started up, it searches for the reserved word
file according to the following procedure:

1) If the file name is explicitly specified through assembler option -R, that file is loaded. If that file does
not exist, or if it is not loadable, an error results.

2) If the environment variable M86KRSVDFILE has been defined, the file specified by that variable is
loaded. If that file does not exist, or if it is not loadable, an error results.

3) If there is a file named m86krsvd.rwd in the directory where M86K.EXE is located, and that file is
loadable, that file is loaded.

4) If there is a file named m86krsvd.rwd in the current directory, and that file is loadable, that file is loaded.

5) M86K searches sequentially through the directory specified in the environment variable PATH, and
loads the first loadable file named m86krsvd.rwd that it finds.

If searching according to the sequence described above still fails to find the reserved word file, an error is generated
and M86K stops executing. Normally, the reserved word file is stored in the same directory where M86K.EXE
resides. Note that the contents of the reserved word file are essential to the normal operation of M86K, and we
cannot bear responsibility for any problems that arise in the operation of M86K resulting from the deletion or
modification of the contents of the reserved word file. Therefore, we strongly recommended that the write-protect
feature for this file be enabled.

VMC-12

Sega@ Dreamcast

5. Source File Input Format

A source file consists of character strings of up to 511 characters per line (including a CR or LF code at the end of
each line). In addition, no distinction is made between upper- and lower-case letters, except in symbols (such as
labels and macro names) that are defined in the source program. For example, both "Nop" and "nop" are recognized
as the mnemonic for the NOP instruction. Furthermore, the distinction made between upper- and lower-case
characters in symbols such as labels can also be disabled by specifying the assembler option "-I".

1. Statements

Statements consist of a combination of mnemonics (which define the object code that is to be produced during the
assembly operation), operands and comments. One line of source code is equivalent to one mnemonic. Multi-line
statements are not supported. Each statement consists of the four fields described below.

[label:] [operation] [operand)] [;comment]

Field Purpose

label A label is applied to a statement so that other statements can use that label to
access the statement. Labels must always be delimited with a colon (":").

operation Specifies the operation of the statement.
operand Defines the data that is the target of the operation of the statement.
comment Describes the statement; has no effect on the assembly operation.

Note: Data that is enclosed in brackets may be omitted.

VMC-13

5. Source File Input Format

2. Label Names and Symbol Names

Label names and symbol names are character strings of any length (but of at least one character). However, only
the first 32 characters of a label name or symbol name are valid. The following characters may be used in a label or
symbol name:

A~Z,a~z,0~9
$
?

@

"nononn "o

In addition, the first character in a label or symbol name must be a letter, "_", ".", or "@". If the assembler option "-i
has not been specified, a distinction is made between upper- and lower-case letters. Furthermore, label names must
be delimited with a colon (":").

3. Comments

Comments begin with a semi-colon (";") and end with a line feed.

VMC-14

Visual Memory Unit (VMU) Environment Variables

4. Operators

The following chart lists the operators that can be used in M86K and their priority. No distinction is made between
upper- and lower-case characters in operators that consist only of letters, such as NOT. NOT and not are recognized
as the same operator.

Operator Description Priority ranking
NOT 1's complement 1
HIGH Upper byte
LOW Lower byte
* Multiplication 2
/ Division
MOD Modulo
+ Addition 3

Subtraction

SHR Right shift 4
SHL Left shift
LAND Logical product 5
LOR Logical sum
LXOR Exclusive logical sum
EQ Equal to 6
NE Not equal to
LT Less than
LE Less than or equal to
GT Greater than
GE Greater than or equal to

VMC-15

5. Source File Input Format

5. Numeric constants

MB86K permits description of numeric constants in four bases: binary, octal, decimal, and hexadecimal. There are
two formats for writing numeric constants: one in which the base is explicitly indicated ("123H"), and one in which
the pseudo instruction RADIX is used to specify the default base beforehand. Values that are written with an
explicitly specified base are converted to the default base. A numeric constant for which no base is explicitly
specified, such as "123," is converted to the base that was specified by the pseudo instruction RADIX. If the pseudo
instruction RADIX has not been used to specify a base, the default base is "decimal."

No matter which method is used to write constants, the assembler processes the values internally in 32-bit format.
In addition, when a numeric constant or the value of an expression that is ultimately returned to a numeric constant
is written as immediate data for an operand, only the bits that are necessary for that operand are stored; the
remaining upper bits are discarded.

Table 6.1 Formats for numeric constants with an explicitly specified base

Base Format Examples
2 Percent sign ("%"), followed by one or more digits 0 and 1 %01111011 %11111111 %0000010000000000
One or more digits 0 and 1, followed by "B" *01111011B 11111111B 0000010000000000B
One or more digits 0 and 1, followed by ".B" 01111011.B 11111111.B 0000010000000000.B
8 One or more digits 0 through 7, followed by ".0" 273.0 377.0 2000.0
10 One or more digits 0 through 9, followed by ".D" 123.D 255D 1024.D
16 Dollar sign ("$"), followed by one or more digits 0 through 9, "a" through "f", or $7B $FF $0400
"A" through "F"
An initial digit 0 through 9, which may be followed by digits 0 through 9, "a" 7BH OFFH 0400H
through "f*, or "A" through "F", followed by "H"
An initial digit 0 through 9, which may be followed by digits 0 through 9, "a" 7B.H OFFH 0400.H
through "f*, or "A" through "F*, followed by ".H"

*No distinction is made between upper- and lower-case characters that are used to specify the base ("B", "O", "D",

and "H"). This is not affected by the assembler option "-i".
*This format is affected by the RADIX setting. For details, refer to the next table.

VMC-16

Visual Memory Unit (VMU) Environment Variables

Table 6.2 Interpretation of numeric constants in a format where the base is not explicitly specified

Format Example Value in base specified by RADIX

2 8 10 16
One or more digits 0 and 1 0101 510 6510 10110 25710
One or more digits 0 through 7 123 error 8310 12310 29110
One or more digits 0 through 9 789 error error 789110 192910
One or more digits 0 and 1, followed by "B "101B 510 510 510 412310
An initial digit 0 through 9, which may be "0FF error error error 25510
followed by digits 0 through 9, "a" through "f*,
or "A" through "F

6. Character Constants

Characters enclosed in single quotes (') are handled as character constants. Character constants are a type of constant,
the value of which is the ASCII code of the character that is specified. In addition to being able to write all printable
ASCII characters, other codes may also be written in the following format. Note that when more than one character
is enclosed in quotes, it is handled as a "character string constant” (see section 4.7), not a "character constant."

Table 6.3 Format for inputting codes within character constants and character string constants

Format Code (hexadecimal) = Remarks

\n 0A Line feed

\r 0D Return

\t 09 Horizontal tab

\b 08 Back space

\f 0cC Paper feed

\ '22 Double quotes

\ 27 Single quotes

\ 5C Yen mark or backslash

\ooo "000" represents an octal number of up to three digits
\hh "hh" represents a hexadecimal number of up to two digits

Example1: ADD# A’
Example2: DB‘A’,/\012,/C’

Example 3: DB " Regarded as a character string constant, and generates an error as an operand for DB.

VMC-17

5. Source File Input Format

7. Character String Constant

A character string consisting of one or more characters that is enclosed in double quotes (") or a character string

consisting of two or more characters that is enclosed in single quotes (') is handled as a character string constant.
A character string constant can be written as an operand for the pseudo instruction DC or .PRINTX. In addition to
being able to write all printable ASCII codes in a character string, it is also possible to write other codes using the
format described in section 4.6.

Example: DC “This is a sample string with special codes \007\r\n”

8. Special Symbols

When an asterisk is used as an operand, it represents the value of the described location.

Example 1: To indicate the value that was six bytes ahead of the location where the instruction is written:
BR *-

Example 2: To indicate the value that was twelve bytes after the location where the instruction is written:

Example 2: To indicate the value that was twelve bytes after the location where the instruction is written:
BR *+12

VMC-18

Sega@ Dreamcast

6. Errors

MB86K detects three levels of errors: fatal errors, errors, and warnings. When a fatal error is detected, M86K
immediately halts execution at that point. This level corresponds to problems such as "the work buffer is too small,
etc." If an error is detected, M86K halts execution once the pass (pass 1 or pass 2) that was being executed at the
moment when the error was detected is completed. This level corresponds to syntax errors, for example. If a
warning is detected, the M86K does not halt execution, because a warning corresponds to minor problems such as
an operand being out of range.

When a fatal error is detected, M86K does not generate all files that are indicated for output. If an error is detected
in pass 1, M86K does not generate all files that are indicated for output; if an error is detected in pass 2, however,
the list file only is generated (if the specification for generating the list file was made). The error display format is
shown below.

filename(linenumber): source line
error message

Example: sample.asm(54): LD xyz
xyz: undefine symbol

The symbol "xyz" is undefined.

VMC-19

6. Errors

1. Warnings

The meanings of the warning level messages that are generated by M86K are described below. Note that "???" in
these messages indicates a variable portion of the message.

???: bit number exceeds limits
In a bit manipulation instruction, the specified bit was outside of the allowable range.

absolute expression expected
An expression in which the value is finalized at the point of assembly is required.

address beyond zero
A negative value was specified for the operand of an ORG instruction.

address exceeds limits
The value that was specified for the operand of an ORG instruction exceeded the size of ROM.

address exceeds ROM size
The address of an assembled instruction exceeded the size of ROM.

chip name is different from one specified by CHIPNAME (??7?).
The operand of the CHIP instruction differs from that which was specified in the environment variable.

END in included file

The END pseudo instruction was found within a source file that was specified by the INCLUDE
pseudo instruction.

ENDF without FUNCTION
ENDF was found even though no function was being defined.

ENDM without MACRO
ENDM was found even though no macro was being defined.

EXITM outside MACRO
EXITM was found even though no macro was being defined.

function code buffer overflow
The contents of the function definition were too large for the buffer.

illegal combination of attributes:???
The attributes (bank and segment) of both elements of a two-element operator do not agree.

illegal style expression
SET or EQU operands had an invalid format.

JMP/CALL placed at the end of memory block (FREE)
AJMP or CALL instruction appeared in which the lower 12-bits of the address were OFFEH or OFFFH.
Because the segment placement mode is "FREE," there may be no problem, depending on the results of
the link, but an error will be generated by the linker if the segment in question was placed at the start
of a memory boundary.

VMC-20

Visual Memory Unit (VMU) Environment Variables

Jump address is out of range (FREE)
The jump destination address is outside of the memory boundary. Because the segment placement
mode is "FREE," there may be no problem, depending on the results of the link, but an error will be
generated by the linker if the segment in question was placed at the start of a memory boundary.

LOCAL outside MACRO
LOCAL was found even though no macro was being defined.

macro name in expression
A symbol that has been registered as a macro was found in an expression.

macro name required
No macro name was found, even though a macro was being defined.

no character in string
No characters were found in a character string constant.

page width must be 72 ~ 132: ??7?
The operand of the WIDTH instruction must be between 72 and 132 (inclusive).

public ??? not defined
The value of a symbol declared in a PUBLIC pseudo instruction has not been defined.

SET conflicts with PUBLIC
An attempt was made to reset a value that was already set (by the SET instruction) for a symbol
declared in a PUBLIC pseudo instruction.

symbol name required
No symbol was found in the operand for PUBLIC, EXTERN, or OTHER_SIDE_SYMBOL.

undefined symbol in expression
An undefined symbol was found in an expression. (This warning is detected in pass 2 only.)

value is out of range
The value is outside of the allowable range. (The "allowable range" varies for each operand.)

zero divide: ??? modulo 0
The right side of the MOD operator is "0."

zero divied: ???/0
The right side of the "/" operator is "0."

VMC-21

6. Errors

2. Errors

The meanings of the error level messages that are generated by M86K are described below. Note that ??? in these
messages indicates a variable portion of the message.

???: 2,8, 10 or 16 required
Only "2," "8," "10," or "16" can be specified as the operand for the pseudo instruction RADIX.

?7?7?: constant required
No numeric constant was found.

???: duplicated label
A duplicate label was found.

???: duplicated symbol
A duplicate symbol was found.

???: illegal character in numeric constant
An invalid character was found within a numeric constant.

?7?7?: no such chip in the table
The symbol that was specified by the CHIP instruction was not found in the reserved word file.

?7??: open error
An error was detected when a file was opened.

???: undefined symbol
An undefined symbol was referenced.

??7?: radix violation
Characters that are not valid for the specified base were found in a numeric constant.

???H,???:out of internal RAM area
The data segment address allocation exceeded the allowable range.

‘not seen
No single quote (') was found on the right end of a character constant.

" not seen
In the case of a format that explicitly specifies the segment in the EXTERN operand, no colon (:) was
found that delimits the segment from the symbol.

0x??7?. RAM address exceeds limits
The data segment address allocation was outside of the allowable range.

address duplicated
A duplicate address area in RAM was specified in the DS pseudo instruction.

address exceeds absolute limits
The address of an assembled instruction exceeded 65535.

VMcC-22

Visual Memory Unit (VMU) Environment Variables

bank number should be 0~15
The bank number must be within the range from 0 to 15.

Branch address beyond zero

A value smaller than address 0 (the start of the code segment in question) was specified as the branch
destination address.

Branch address exceeds limits
The branch destination address exceeded the size of ROM.

CSEG conflicts with WORLD EXTERNAL_DATA
WORLD EXTERNAL_DATA and a pseudo instruction that specifies a segment cannot both be written
within the same source file.

CSEG isn't allowed in macro
A pseudo instruction that specifies a segment cannot be written within a macro definition.

DS must be in DSEG
The DS pseudo instruction can only specify a data segment.

DSEG conflicts with WORLD EXTERNAL_DATA

WORLD EXTERNAL_DATA and a pseudo instruction that specifies a segment cannot both be written
within the same source file.

DSEG isn't allowed in macro
A pseudo instruction that specifies a segment cannot be written within a macro definition.

ELSE without IFxxx
IFxxx corresponding to the pseudo instruction ELSE for conditional assembly was not found.

ENDF not seen
The ENDF pseudo instruction that declares the end of a function definition was not found.

ENDIF without IFxxx
IFxxx corresponding to the pseudo instruction ENDIF for conditional assembly was not found.

ENDM not seen
The ENDM pseudo instruction that declares the end of a macro definition was not found.

external symbol can't be public
An external symbol was declared in a PUBLIC pseudo instruction.

Hardware configuration violation
The instruction (such as the CHANGE instruction) in question has not been implemented for the
specified chip.

identifier expected

Something other than an identifier was found in a macro definition parameter list or in an
EXTERN operand.

VMC-23

6. Errors

illegal character in ??? constant
illegal character in binary constant
An invalid character for the specified base was found within a numeric constant.

illegal symbol type
Declared of a symbol of an in valid type was attempted in a PUBLIC pseudo.

illegal word in external list
A syntax error was found in an EXTERN operand.

instructions can't be in DSEG
An instruction other than DS was found in a data segment.

JMP/CALL placed at the end of memory block (INBLOCK)

AJMP or CALL instruction appeared in which the lower 12-bits of the address were OFFEH or OFFFH.
Because the segment placement mode is "INBLOCK," an error resulted.

Jump address beyond zero

A value smaller than address 0 (the start of the code segment in question) was specified as the jump
destination address.

Jump address exceeds limits
The jump destination address exceeded the size of ROM.

Jump address is out of range (INBLOCK)

The jump destination address is outside of the memory boundary. Because the segment placement
mode is "INBLOCK," a linker error resulted.

local symbol can't be public
Alocal symbol was declared in a PUBLIC pseudo instruction.

lost SET symbol
A symbol that was defined by the SET pseudo instruction was lost from in pass 2. This is possibly due
to an internal error in the assembler.

macro can't be public
A macro was declared in a PUBLIC pseudo instruction.

maximum nesting of macro is 10
The maximum nesting level for macros is 10.

Multiple WORLD specified
Multiple WORLD pseudo instructions were written in the same source file.

name required for macro
No name was found in a macro definition.

no room for source line attribute object
There is insufficient memory to store source line attributes (information for debugging).

VMC-24

Visual Memory Unit (VMU) Environment Variables

no value for EXT
Although the CHANGE instruction is being used, the register EXT was not found in the SFRs.

not the symbol defined by SET

An attempt was made to reset (with the SET command) a value for a symbol that was not the one that
was defined by SET.

operand exceeds limits

The number of repetitions specified by the REPT macro pseudo instruction was not within the range
from 1 to 65,535.

ORG isn't allowed in macro
The ORG pseudo instruction cannot be written within a macro.

other-side symbol isn't allowed
other-side symbol isn't allowed here
A symbol declared with OTHER_SIDE_SYMBOL cannot be specified here.

other-side symbol or absolute constant is required
A symbol declared with OTHER_SIDE_SYMBOL or a constant is required.

positive value required
A negative value cannot be used.

public ??? not defined
There was no definition of a symbol declared in a PUBLIC pseudo instruction. (This problem generates
a "warning" for a symbol that is only declared in a PUBLIC pseudo instruction and has no definition of
value and is not referenced, and generates an "error" when there is no definition of value but the symbol
is referenced.)

string is too long
The length of a character string constant exceeded the limit (255 characters).

symbol name required
No symbol was found on the left side of SET or EQU.

symbol not defined
No symbol was found specified in the operand for PUBLIC, EXTERN, or OTHER_SIDE_SYMBOL. An
internal assembler error is possible.

syntax error
A syntax error was found.

syntax error near ???
A syntax error was found in the vicinity of ???.

too complexed expression for an operand
An expression that was written for an operand was too complex and could not be interpreted.

too many CHIP pseudo operation
Multiple CHIP pseudo instructions were written in one source file.

VMC-25

6. Errors

too nested if-statements
Nesting of pseudo instructions for conditional assembly exceeded the limit (10 levels).

unbalanced conditional assembling controllers
unbalanced IF statement
The end of the source file was found while skipping due to conditional assembly.

unexpected end of file in string
The end of the source file was found within a character string constant.

unexpected end of line in string
The end of the line was found within a character string constant.

unexpected EOF in conditional assembling
The end of the source file was found while skipping due to conditional assembly.

unexpected terminator ??? in conditional assembling

The syntax analysis routine ended abnormally while skipping due to conditional assembly. An internal
assembler error is possible.

unmatched ELSE in skipping
unmatched ENDIF
The end of the source file was found while skipping due to conditional assembly.

WORLD conflicts XSEG

WORLD EXTERNAL_DATA and a pseudo instruction that specifies a segment cannot both be written
within the same source file.

VMC-26

Visual Memory Unit (VMU) Environment Variables

3. Fatal Errors

The meanings of the fatal error level messages that are generated by M86K are described below. Note that ??? in
these messages indicates a variable portion of the message.

???(??7?): chip name not seen
?2??(???): chip name not seen.
???(??7?): decimal value required
???(???): hex-value and reserved-word are required
???(??7?): no chip name list
A syntax error was found in the reserved word file.

???(??7?): no reserved word seen
???(???): ROM size not seen
???(??7?): too many chip names
?2?2?(??7?):???: unknown chip nhame

A syntax error was found in the reserved word file.

???: illegal file name
An invalid character was found in the specified file name.

?7??: no such chip in the table
The chip name that was specified by the environment variable CHIPNAME was not found in the
reserved word file.

???.no such user
The user name specified by "~user" was not found. (UNIX version only)

??7?: open error
An attempt to open the specified file failed.

?2??: unknown flag
An invalid assembler option was specified.

??7?. unreadable
The specified file cannot be loaded.

EMM v3.2 or later is required (v???.??7? found)
The EMS driver version is old and is no longer supported. Driver version 3.2 or later is required.

EMS allocation (??? pages) was failed
EMS memory allocation failed.

EMS deallocation was failed
An error was detected while opening EMS memory.

flushing error in workfile
An error was detected while flushing the work file. (There is no more free space on disk, etc.)

vmce-27

6. Errors

Getting EMM version was failed

Getting EMS status was failed

Getting free page count on EMS is failed

Getting physical page frame address was failed
During EMS memory initialization, an error was detected, such as during the EMS driver version
check, etc.

making temp. name for ??? failed
An error was detected when a temporary name was given to an output file.

Neither CHIP pseudo operation nor CHIPNAME environment variable were defined. Further
execution aborted.

No chip specification has been made through the CHIP pseudo instruction or the environment variable
CHIPNAME; because no chip can be specified as the target chip for assembly, subsequent operation
is halted.

no more MAIN memory (???) ???
Although there is an area remaining that must be allocated in main memory, there is no more space in
main memory available for allocation.

no more memory (??7?)
There is no more memory that can be dynamically allocated (main memory, EMS memory, work files).

no more NODE buffer (???) ???
There is insufficient work area available for analyzing expressions.

no more PARAMETER buffer (?7?) ???
There is insufficient work area available for processing the parameter list for a macro definition or call.

no reserved word file available.
Reading of the reserved word file failed.

no room for file: ???
A file cannot be written to disk because the disk is full.

Pxxxx must be less than 65536
Specify a parameter buffer size of no more than 65535.

read error in workfile (??77?)
An error occurred while reading the work file.

removing ??? failed
Because an error was detected, an attempt was made to delete the output files created up to that point,
but the attempt failed.

renaming ??? ==> 7?7 failed
An error was generated when an attempt was made to change the name of an output file that was
created with a temporary name a regular name.

This error is generated when a file with the same name as the post-change name already exists, and
that file is write-protected.

VMC-28

6. Errors

too many file names
Five or more file names are specified in the command line.

too many nested include files
The number of nested include files exceeded the limit (10 levels).

unlinking work file is failed
An error was detected while deleting a work file.

workfile ???: already exist
workfile ???: open error
An error was detected while creating a new work file.

VMC-29

Visual Memory Unit (VMU) Environment Variables

VMC-30

Sega@ Dreamcast

7. Pseudo Instructions

Unlike normal instructions (instructions that indicate operations of the LC86K itself, such as ADD and MOV),
pseudo instructions are used to issue instructions and make definitions to the assembler, and no machine language
is generated for individual pseudo instructions (except for pseudo instructions that are used for optimization
purposes, such as JMPO, and CHANGE pseudo instructions). In most cases, these pseudo instructions are used in
combination with normal instructions.

Category

Link control

Pseudo instruction

ORG

WORLD

CSEG

DSEG

END

PUBLIC

EXTERN
OTHER_SIDE_SYMBOL

Function

Specify origin

Select ROM for code storage

Specify code segment

Specify data segment

End program

Specify external definition name
Specify external reference name
Declare CHANGE instruction jump label

Symbol definition EQU Assign value
SET Assign temporary value
Data definition DB Define byte
DW Define word
DC Define character string
DS Allocate data area (RAM)
Macro control MACRO Define macro
REPT Repeat macro
IRP Continuous macro
IRPC Character string macro
ENDM End macro definition
EXITM Interrupt macro expansion
LOCAL Define local label

VMC-31

7. Pseudo Instructions

Category Pseudo instruction Function
Conditional assembly IFDEF Assemble if defined
IFNDEF Assemble if undefined
IFB Assemble if operand is empty
IFNB Assemble if operand is not empty
IFE Assemble if value of expression is "0"
IFNE Assemble if value of expression is not "0"
IFIDN Assemble if two character strings are identical
IFDIF Assemble if two character strings are not identical
ELSE Assemble in the case of the condition that is the opposite of the above IF condition
ENDIF End conditional assembly
PRINTX Display on VDT during assembly
LIST Output list
XLIST Interrupt list output
.MACRO Output macro expansion
XMACRO Interrupt macro expansion output
AF Output conditional skip
XIF Interrupt conditional skip output
Miscellaneous INCLUDE Load file
TITLE Specify list title
PAGE End of page
CHIP Define chip that is target of assembly
COMMENT Output comments to object file
WIDTH Specify number of columns in list file
BANK Specify RAM area bank
CHANGE Jump between external and internal ROM
RADIX Specify default base
Optimization JMPO Generate optimal JMP instruction
BRO Generate optimal BR instruction
CALLO Generate optimal CALL instruction
BZ0 Generate BZ instruction that will not generate an address error
BNZO Generate BNZ instruction that will not generate an address error
BPO Generate BP instruction that will not generate an address error
BPCO Generate BPC instruction that will not generate an address error
BNO Generate BN instruction that will not generate an address error
DBNZO Generate DBNZ instruction that will not generate an address error
BEO Generate BE instruction that will not generate an address error
BNEO Generate BNE instruction that will not generate an address error

VMC-32

Visual Memory Unit (VMU) Environment Variables

1. ORG (Specify origin)
ORG expression
The ORG pseudo instruction begins the specification of addresses in program memory (ROM) and data memory

(RAM) from the value of expression. expression must be either a numeric constant or an expression that has a
definite value at the time of assembly.

Example:

page: 1 <org. ASM>

ERR SEQ S LOC. OBJ. SOURCE STATEMENTS

0001 ;a sanpl e program for ORG
0002 chip | 866032
0003 extern waitls
0004 dseg
0005 D 0000 m nl: ds 1
0006 D 0001 m nO: ds 1
0007 cseg
0008 A— " 9°r¢g Oh
0009 C 0000 6201’ | abel 1: inc m n0
0010 C 0002 02071’ Id m n0
0011 C 0004 A13C sub #60
0012 C 0006 900311 bzo | abel 2
0012 C 0009 F600
0013 C 000B 210200’ j npf | abel 3
0014 A— org 100h
0015 C 0100 6200’ | abel 2: inc mnl
0016 C 0102 220100’ nov #00, nmi nO
0017 C 0105 210200’ j mpf | abel 3
0018 A— org 200h
0019 C 0200 100000’ | abel 3: callr wai t 1s
0020 C 0203 210000’ j npf | abel 1
0021 end

VMC-33

7. Pseudo Instructions

2. WORLD (select ROM for code storage)

WORLD selection

This pseudo instruction specifies the ROM where the assembled code should be stored. This pseudo
instruction has meaning only when the target chip is of the LC868000 Series. The following three values can
be specified for selection:

INTERNAL :Store the code in the on-chip ROM.
EXTERNAL :Store the code in the ROM that is connected externally for code storage.
EXTERNAL_DATA :Store the code in the ROM that is connected externally for data storage.

If multiple WORLD pseudo instructions are specified in one file, an error results. If a chip other than one
of the LC868000 Series is specified, and a value other than INTERNAL is selected in the WORLD pseudo
instruction, an error results.

3. CSEG (Declare start of code segment)

CSEG mode

This pseudo instruction declares to the assembler the start of the segment where the program code is to be
stored. If mode is not specified, or if mode is specified as INBLOCK, the start of the segment is located at a
4K boundary. If mode is specified as FREE, the start of the segment has no relation to a 4K boundary.

Example:

page: 1 <cseg. ASw>

ERR SEQ. S LOC. OBJ. SCQURCE STATEMENTS
0001 ; a sanpl e program for CSEG
0002 chip | ¢864024
0003 extern waitls
0004 dseg
0005 D 0000 m nl: ds 1
0006 D 0001 mi no: ds 1
0007 4 cseg i nbl ock™\
0008 C 0000 6201’ | abel 1: inc mi n0

. 0009 C 0002 0201’ I d m no
The local address is 0010 C 0004 A13C sub #60 ¢

reset to "0" at the start

0011 C 0006 900311 bzo | abel 2

of each segment 0011 C 0009 0000
0012 C 000B 210000° _ i npf | abel 3/
0013 e cseg free O\
0014 ¢ 0000 6200’ | abel 2: inc mnl .
0015 ¢ 0002 220100’ mv #00, mi nO|"
0016 ¢ 0005 210000’ \ j mpf | abel 3 /
0017 >~y cseg
0018 C 0000 100000 |l abel 3: callr waitls |¢———
0019 C 0003 210000’ j mpf | abel 1
0020 end

Independent segments

VMC-34

Visual Memory Unit (VMU) Environment Variables

4. DSEG (Declare start of data segment)
DESG

This pseudo instruction declares to the assembler the start of the area in data memory that is to be allocated.

Example:

page: 1 <cseg. ASM>

ERR SEQ S LOC. 0BJ. SOURCE STATEMENTS
0001 ; a sanple program for CSEG
0002 chip | c864024
0003 extern waitls
0004 cseg i nbl ock
0005 C 0000 62071’ /Tabel 1: inc mno O\
0006 C 0002 0201 I d m n0
0007 C 0004 A13C sub #60
0008 C 0006 900311 bzo | abel 2
0008 C 0009 0000
0009 c 000B 210000’ j npf | abel 3
0010 \ cseg free /
0011 ¢ 0000 6200° /Tabel2: inc mnl o O\
0012 c 0002 220100’ nov #00, m n0
0013 ¢ 0005 210000’ j npf | abel 3
0014 \ cseqg %
0015 C 0000 100000’ abel 3: callr wai t 1s
0016 C 0003 210000’ j mpf | abel 1
0017
0018 dseg
0019 D 0000 m nl: ds 1]
0020 D 0001 m nO: ds 1
0021 end

VMC-35

7. Pseudo Instructions

5. END (end program)

END

This pseudo instruction declares the end of the source program. Because the assembler ends the assembly
operation for the pass that is being executed at the moment that this instruction is detected, any statements
that follow this instruction are ignored, even if those statements are valid.

Example:

; a sanple program for END
chip | c866032
cseg
nmov #20h, 01h
nmov #10h, 00h

I d 00h
add of h
end

CStatements that come after the pseudo instruction END are not assembled)

page: 1 <end. ASM>
ERR SEQ S LOC. OBJ. SOURCE STATEMENTS

0001 ; a sanpl e program for END
0002 chip | 866032

0003 cseg

0004 C 0000 220120 nov #20h, 01h

0005 C 0003 220010 nov #10h, 00h

0006 C 0006 0200 Id 00h

0007 C 0008 820F add of h

0008 end

VMC-36

Visual Memory Unit (VMU) Environment Variables

6. PUBLIC (Specify external definition name)

PUBLIC symbol {, symbol}

The PUBLIC pseudo instruction permits symbol, which is defined in this source program, to be referenced
from other source files.

Example:
()
page: 1 <extern. ASM>
ERR SEQ S LOC. 0OBJ. SOURCE STATEMENTS
0001 a sanpl e program for EXTERN
0002 chip | 866032
0003 extern | abel 1, | abel 2 ¢
0004 "“-~\\\\\\\\\\\\
0005 cseg i nbl ock
0006 C 0000 200000’ cal I f | abel 1 \
0007
0008 C 0003 200000’ start: cal | f | abel 2
0009 C 0006 0303 I d c
0010 C 0008 90F9 bnz start
0011
0012 C 000A A300 sub a
0013
L 0014 end)

When referencing a synbol
anot her source file, it

for which the value was defined in
is necessary to declare that synbol

bef orehand with the EXTERN pseudo instruction.

A synbol

t hat

is to be referenced from ot her

source files

nmust be nade visible to those source files by declaring them
with the PUBLIC pseudo instruction.

(page: 1 <public. ASM> h
ERR SEQ S LOC. OBJ. SOURCE STATEMENTS
0001 a sanpl e program for PUBLIC /
0002 chip | 866032
0003 L) public | abel 1, | abel 2 ¢
0004
0005 cseg i nbl ock
0006 C 0000 220000’ | abel 1: mov #00, dat al
0007 C 0003 23033C nov #60, c
0008 C 0006 A0 ret
0009
0010 C 0007 6200’ | abel 2: inc dat al
0011 C 0009 0200 I d datal
0012 C 000B 410A05 bne #10, | abel 3
0013 C 000E 220000’ nov #00, dat al
0014 C 0011 6201’ inc dat a2
0015
0016 C 0013 7303 | abel 3: dec c
0017 C 0015 A0 ret
0018
0019 dseg
0020 D 0000 dat al: ds 1
0021 D 0001 dat a2: ds 1
0022
L 0023 end)

The PUBLI C and EXTERN pseudo instructions can be used

in conbination to permt

defined in other source files.

referencing of synbols that are

vMmcC-37

7. Pseudo Instructions

7. EXTERN (Specify external reference name)

EXTERN [segmanet:]symbol {,[segment:]lsymbol}

The EXTERN pseudo instruction is used in order to allow the specified symbol to be referenced from other
programs. The segment specification permits specification of a segment within either CSEG or DSEG. If
nothing is specified, the code segment CSEG is assumed. For an example of the use of the EXTERN pseudo
instruction, refer to the explanation of the PUBLIC pseudo instruction.

8. OTHER_SlDE_SYMBOL (Declare CHANGE instruction jump label)

OTHER SIDE SYMBOL label {,label}

This pseudo instruction declares an address label that is specified as an operand of the CHANGE
instruction, which is used to switch between internal ROM and external ROM in the LC868000 Series.
Although the label that is declared is a type of external symbol, one difference is that in a source file written
with codes that are stored in internal ROM, the label is declared in external ROM (while in the case of a
source file written with codes that are stored in external ROM, the label is declared in internal ROM). Note
that this pseudo instruction is used only by the LC868000 Series, and generates an error in all other cases.
For an example of the use of the OTHER_SIDE_SYMBOL pseudo instruction, refer to the description of the

CHANGE pseudo instruction.

VMC-38

Visual Memory Unit (VMU) Environment Variables

9. E

QuU (Assign value)

symbolname EQU expression

The EQU pseudo instruction assigns the value expression to symbolname. A symbol that has been defined
by using the EQU pseudo instruction cannot be defined again. Using the EQU pseudo instruction
effectively makes it possible to add visual meaning to constant data, which improves the efficiency with
which maintenance work can be performed.

Example:

is not described between the synbol for which the value is being defined and "EQU"

Wien the defined value can be cal cul ated
that value is shown (in hexadecinal).

Any expression can be described

page: 1 <equ. ASM>

ERR SEQ S LCC. OBJ. SOURCE STATEMENTS
0001 ; a sanple program for EQU
0002 chip | 866032
0003
0004 00000064 | oop_max equ 100
0005 00000001 node_a equ 1
0006 00000002 node_b equ 2
0007 00000003 node_c equ 3
0008
0009 csg i nbl ock
0010 C 0000 220000’ nov #00, |oop_ctr
0011
0012 C 0003 230201 | abel 1: nmov #node_a, b
0013 C 0006 0818’ cal l subl
0014 C 0008 230202 nov #mode_b, b
0015 C 000B 0818’ cal l subl
0016 C 000D 230303 mv #node_c, c
0017 C 0010 6200 inc | oop_ctr
0018 C 0012 0200’ I d | oop_ctr
0019 C 0014 4164EC bne #|l oop_mex, |abel 1
0020 C 0017 A0 ret
0021
0022 C 0018 0302 subl: Id b
0023 C 001A 310107 be #node_a, suj 10
0024 C 001D 310208 be #nmode_b, suj 11
0025 C 0020 310309 be #nmode_c, suj 12
0026 C 0023 A0 suj O: ret
0027
0028 C 0024 1201’ suj 10: st data_a
0029 C 0026 01FB br suj 0
0030 C 0028 1202’ suj 11: st data_b
0031 C 002A 01F7 br suj 0
0032 C 002C 1203’ suj 12: st data_c
0033 C 002E 01F3 br suj 0
0034
0035 dseg
0036 D 0000 | oop_ctr: ds 1
0037 D 0001 data_a: ds 1
0038 D 0002 dat a_b: ds 1
0039 D 0003 data_c: ds 1
0040
0041 end

VMC-39

7. Pseudo Instructions

10. SET (Assign temporary value)

symbolname SET expression

The SET pseudo instruction assigns the value expression to symbolname. A symbol that has been defined
by using the SET pseudo instruction can be defined again with the SET instruction. A symbol that has been
defined by this pseudo instruction cannot be declared in a PUBLIC pseudo instruction or defined again by

using the EQU instruction.

Example:

Wien the defined value can be cal cul ated
that value is shown (in hexadecinal).

page:
ERR SEQ
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022

1 <set.ASM>
S LCC. OBJ.

C 0000 220000

C 0003 6300
C 0005 6302

C 0007 220101

C 000A 7300
C 000C 7302

D 0000

is not described between the synbol for which
the value is being defined and "SET".

SOURCE STATEMENTS
; a sanple program for SEY
chip | c866032
cseg i nbl ock
00000000 dd set 0
nmov #dd, zz+dd

inc a
inc b

00000001 dd set
nov

dec
dec

dseg
zz: ds

end

Any expression can be described, including the synbol for which the value is being defined

VMC-40

7. Pseudo Instructions

11. DB (Define byte data)

labelname DB expression {,expression}

The DB pseudo instruction stores 8-bit data that corresponds to the operand expression in program
memory (ROM). More than one operand can be described; delimit each operand with a comma (","). When
there are two or more operands, they are evaluated in order from left to right, and are stored in sequence
in ascending addresses. If no operand is described between two commas, that operand is regarded as

being "0".

Example:

page: 1 <db. ASM>

ERR SEQ
0001
0002
0003
0004
0005
0005

V 0006

0007
0008
0009

Regardi ng “db area”
the symbol
(warning level) wll

S LOC. 0BJ.

SOURCE STATEMENTS
;a sanple program for DB

chip 1c864032
00001234 area equ 1234h
cseg
C 0000 414243 db A, B, C,0—
C 0003 00
C 0004 34 db area
** WArning, value is out of [range
C 0005 12 —— db hi gh(ar ea)
C 0006 34 — db | oW ar ea)
end
0x41
0x42 4
0x43 |[
0x00
) | 0x34
)| Ox12
L)| 0x34

the value of the lower 8 bits wll

in the above exanpl e, because the val ue of
area has a 16-bit w dth,

a value is out of range error

be generated during the assenbly process. However
be output in the object code.

VMC-41

Visua

I Memory Unit (VMU) Environment Variables

12.

DW (Define word data)

labelname DW expression {,expression}

The DW pseudo instruction is used to store 16-bit data that corresponds to the operand expression in
program memory (ROM). The upper byte is stored first, and the lower byte is stored in the next address (the
higher address). More than one operand can be described; delimit each operand with a comma (","). When
there are two or more operands, they are stored in a continuous area. If no operand is described between
two commas, that operand is regarded as being "0".

Example:

page: 1 <dw. ASM>

ERR SEQ S LOC. OBJ. SOURCE STATEMENTS
0001 ;a sanpl e program for DW
0002 chip 1c864032
0003 00001234 area equ 1234h
0004 cseg
0005 C 0000 004100 dw ‘A,'B,0 ——
0005 C 0003 420000
0006 C 0006 1234 — dw ar ea
0007 C 0008 0012 dw hi gh(ar ea)
0008 C 000A 0034 dw | o ar ea)
0009 end

0x00
0x41
0x00 4
ox42 |[
0x00
0x00 |

> 0x12
0x34
0x00 ¢
0x12

#{ 0x00
0x34

If an 8-bit value is allocated using the DW pseudo instruction
the upper 8 bits of the 16 bits are always conprised of zeroes.

VMC-42

7. Pseudo Instructions

13. DC (Define character string data)

labelname DC “string”

The DC pseudo instruction stores the contents of string (a character string constant) as the ASCII code
values of each character in sequence in program memory (ROM). For details on character string constants,
refer to section 4.7.

Example:
73
[

cseg i nbl ock 7l 61
org 1234h =3 6d
nmessO: dc “sanpl e message #00\n” 51 70
messl: dc “sanpl e nmessage #01\0”) od 6¢
tabl e: dw mess0 =0 65
dw messi1 5 20

c
6d
12 65 65
34 20 73
“— 6d 73
12 65 61
47 73 67
. . 13 65
when this segnent is allocated —— 61 20
starting fromaddress O 67 >3
65 30
20 30
=

30

00

VMC-43

Visual Memory Unit (VMU) Environment Variables

14. DS (Define byte area)

labelname DS absolute_expression

The DS pseudo instruction allocates an area consisting of the number of bytes specified by
absolute_expression in data memory (RAM). The description of absolute_expression must be in absolute
format (in which all of the values are determined). This pseudo instruction cannot be used unless it comes
after the DSEG pseudo instruction.

Example:

page: 1 <ds.ASM>

ERR SEQ S LCC. 0BJ. SOURCE STATEMENTS
0001 ; a sanple program for DS
0002 chip 1c¢864032
0003 dseg
0004 —— D 0000 ar ea0: ds 1
0005 | — D 0001 areal: ds 2
0006 cseg inblock
0007 C 0000 0200’ start: Id area0
0008 C 0002 1201’ st areal
0009 C 0004 1202’ st areal+l
0010 end
dseg
) ar eal:
L—pareal:

In the above exanple, a one-byte area is allocated under
the name areaO, and another two-byte area under the nane
areal inmmediately after area0.

VMC-44

7. Pseudo Instructions

15. MACRO (Define macro)

name MACRO parameter {, parameter}

The MACRO pseudo instruction defines macros. The main body of the macro definition is formed by all of
the statements that follow the MACRO pseudo instruction until the ENDM pseudo instruction is reached.
name calls the macro that was defined. Because name is required so that it can be replaced with the main
body of the macro definition, it must be specified. because parameters is a list of parameters, they should
be specified in accordance with the contents of the macro that was defined.

Note that when calling other macros from within a macro, or when using a pseudo instruction, such as IFB,

n_n nn non

that requires "<" or ">", sufficient "<" and ">" are needed for the nesting level.

Example:
/_push macr o)
push acc
push ¢ 44— Stores the registers acc, ¢, and b in the stack.
push b
_ endm J
/_pop nmecr o)
pop b
pop c 4——— Pops the values stored in the stack in the order b, ¢, and acc.
pop acc
_ endm J
/_shl macr o count N
ifne count
rept count
rolc
endm
el se
.printx “logical shift count is zero !!\007"
endi f
_ endm Y,

3

Generates the code for performng the nunber of left shifts specified by the paraneters.
However, if the paraneter is "0," no code for performing shifts is generated.

cseg
start: _push

_shl

_shl

_shl 1

_pop

4— This is the description in the source program

The result of assenbly of the above source code is shown on the follow ng page.

VMC-45

Visual Memory Unit (VMU) Environment Variables

0027

0027+1
0027+2
0027+3
0028

0028+1
0028+2
0028+3
0028+4
0028+5
0028+6
0028+7
0029

0029+1
0029+2
0029+4
0029+4
0029+1
0029+2
0029+5
0029+6
0029+7
0030

0030+1
0030+2
0030+4
0030+1
0030+5
0030+6
0030+7
0031

0031+1
0031+2

start: _push
C 0000 6100
C 0002 6103
C 0004 6102

C 0006 FO
C 0007 FO

C 0008 FO

C 0009 7102
C 000b 7103

push acc

push
push
_shl
i fne
rept
rolc
endm
el se
. printx
endi f
_shl 2
ifne 2
rept 2
endm
endm
rolc
rolc

el se
.printx
endi f
_shl 1
infe 1
rept 1
endm
rolc

el se
.print
endi f
_pop
pop
pop

O oOooTo

"l ogi ca

"1 ogi ca

"l ogi ca

shift count

shift count

shift count

is ze

is ze

is ze ro !'\007"

VMC-46

7. Pseudo Instructions

16. REPT (Repeat macro)

REPT count

The REPT pseudo instruction is used to repeat a series of statements from the REPT pseudo instruction up
to the ENDM pseudo instruction the number of times specified by count. An integer from 1 to 65,535
(inclusive) can be specified for count.

Example: Filing locations where there is no program code with NOP (when the boundary is at 256)

page: 1 <rept.ASM>
S LCC. 0BJ.

ERR SEQ
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0013
0013+1
0013+2
0013+3

0013+240 C
0013+241 C

O0O0O0O0000

C
C

0013+242 C

0014

0000
0003
0005
0007
0009
000B
000D

000E
00OF
0010

00FD
OOFE
OOFF

230000
1200
6300
1201
6300
1202
A0

00
00
00

00
00

SOURCE STATEMENTS
; a sanple program for REPT

chip
cseg
start: nov
st
inc
st
inc
st
last: ret
rept
endm
nop -
nop
nop

nop

| c864024
i nbl ock
#0, acc
00h
acc The main body of the
01h macro definition is
acc :
not displ ayed
02h P ay

255-(last-start)

Expanded st at ement

e

nop
end

VMC-47

Visual Memory Unit (VMU) Environment Variables

17. IRP (Continuous macro)

IRP parameter, argument {,argument }...

The IRP pseudo instruction repeats a series of statements from the IRP pseudo instruction up to the ENDM
pseudo instruction the number of times specified by argument. During the repetition, each time that parameter
appears in one of the statements, an item in the argument field is substituted for parameter, in order.

Example:
N
_push macro
irp reg_nane, acc, b, psw, ¢
push reg_nane

endm

endm
_pop necro
irp reg_nane, c, psw, b, acc
push reg_nane

endm

endm
J
N
0016
0017 _push
0017+1 irp reg_nane, acc, b, psw, ¢
0017+3 endm
0017+1 C 0000 6100 push acc
0017+2 C 0002 6102 push b
0017+3 C 0004 6101 push psw
0017+4 C 0006 6103 push c
0018 _pop
0018+1 irp reg_nane, ¢, psw, b, acc
0018+3 endm
0018+1 C 0008 6103 push c
0018+2 C 000A 6101 push psw
0018+3 C 000C 6102 push b
L 0018+4 C 000E 6100 push acc)

VMC-48

7. Pseudo Instructions

18. IRPC (Character string macro)

IRPC parameter, string

The IRPC pseudo instruction repeats a series of statements from the IRPC pseudo instruction up to the
ENDM pseudo instruction a number of times equal to the number of characters in string. Unlike character
string constants, string is not enclosed in quotes, etc. In addition, it is not possible to input a code that begins
with the yen symbol. During the repetition, each occurrence of parameter in one of the statements is
replaced with a character in string; this replacement is repeated until all of the characters in string have been

used.

Example:

; a sanple programfor | RPC
chip 1¢c866032
dseg

buf &x:

Delimiter when paraneter occurs as part of an identifier

irpc x,01234567¢——string

ds 2
endm

end

Each occurrence of paraneter

par anet er

is replaced with a character fromstring

page: 1 <irpc. ASM>
S LOC. 0BJ.

ERR SEQ
0001
0002
0003
0004
0006
0006+1
0006+2
0006+3
0006+4
0006+5
0006+6
0006+7
0006+8
0007

O 00000 O0O0

0000
0002
0004
0006
0008
000A
000C
000E

Expansion

~ Results Pz

SQURCE STATEMENTS

; a sanple program for

buf 0:
buf 1:
buf 2:
buf 3:
buf 4:
buf 5:
buf 6:
buf 7:

end

chip
dseg
irpc
endm
ds
ds
ds
ds
ds
ds
ds
ds

| 866032

x, 01234567

NN NDNDNDNDDNDDN

I RPC

VMC-49

Visual Memory Unit (VMU) Environment Variables

19. ENDM (End macro definition)

ENDM

The ENDM pseudo instruction declares the end of a macro definition statement.

Example:
Macro definition start
Macro definition start
"macroand "irp" are
each paired with an
_push nmacro / "endm" pseudo instruction
irp reg_nane, <<acc, b, psw, ¢c>> ‘/7
push reg_nane
endm
endm '\
Macro definition end

Macro definition end

VMC-50

7. Pseudo Instructions

20. EXITM (Interrupt macro expansion)

EXITM

The EXITM pseudo instruction interrupts macro expansion. This pseudo instruction is used in combination
with conditional assembly pseudo instructions in order to obtain expansion results that differ according to
the arguments that are given to identical macros.

Example:

page: 1 <exitm ASM>

ERR SEQ S LOC. OBJ. SQURCE STATEMENTS
0001 ; a sanple program for EXITM Because one
0002 chip LC866032 pair of"<>" is
0003 r push macro al, a2, a3, a4 / del eted during
0004 ifb <<al>> macro expansion,
0005 .printx “not enough argunent” doubl e symbol s
0006 ‘ exitm ("<>") are required
0007 endi f
0008 i fnb <<a2>> /z
0009 push al
0010 push a2
0011 push a3
0012 push a4
0013 endi f
0014 endm
0015 cseg i nbl ock
0016 rpush acc, b, psw, c
0016+1 ifb <acc>
0016+2 .printx “not enough argunent”
0016+3 exitm
0016+4 endi f
0016+5 i fnb
0016+6 C 0000 6100 push acc
0016+7 C 0002 6102 push b
0016+8 C 0004 6101 push psw
0016+9 C 0006 6103 push ©
0016+10 endi f 4
0017 rpush
0017+1 ifb <>
0017+2 .printx “not enough argunent”
0017+3 exitm
0018 end
Because the first argunent is
given, this portion is assenbled.

Because there is no second argunent, this portion is expanded; when
EXITM i s recogni zed, expansion is halted.

VMC-51

Visual Memory Unit (VMU) Environment Variables

21.

LOCAL (Define local label)

LOCAL name {, name}

The LOCAL pseudo instruction is used to declare a label that can be used within a macro definition. If the
name declared by the LOCAL pseudo instruction appears within a macro expansion, the macro assembler
substitutes a new name for name that will not conflict with any other names.

Example:
; a sample program for LOCAL

b _ne

skip:

over:

under:

In the above example, the BRO pseudo instruction is used to define the BNEO macro instruction that
automatically generates an instruction word according to the branching destination. The results of

chip 1c864008
macro val,dst
local skip
be val,skip
bro dst
endm
cseg
b _ne #0, over
org 200h

b _ne #0, under
nop

nop
end

assembly are shown on the next page.

VMC-52

7. Pseudo Instructions

page: 1 <local.ASM>
ERR SEQ S LOC. OBJ. SOURCE STATEMENTS

0001 ; a sanpl e program for LOCAL
0002 chip | 864008
0003 b_ne macro val, dst
0004 | ocal ski p
0005 be val , skip
0006 bro dst
0007 ski p:
0008 endm
0009
0010 cseg
0011 b_ne #0, over
0011+1 | ocal _LoooooooL_
0011+2 C 0000 310003 be #0, _L0O000000L 4——
0011+3 C 0003 11FBO1 bro over
0011+4 _L000000OL_: ¢
0012
0013 org 200h
0014 over: b_ne #0, under
0014+1 | ocal _L0000001L_
0014+2 C 0200 310002 be #0, _LO000001L_ 44—
0014+3 C 0203 0101 bro under
0014+4 _LO000001L_: ¢
0015 C 0205 00 nop
0016 C 0206 00 under : nop
0017 end
The identifier declared by LOCAL is replaced by a uni que nane.

The nanme generated has the format L######L_(Wher e##t##t## i s a serial nunber, starting with 000000

VMC-53

Visual Memory Unit (VMU) Environment Variables

22.

IFDEF (Assemble if defined)

IFDEF symbol

The IFDEF pseudo instruction assembles the source program until either ELSE or ENDIF appears
subsequently, but only if symbol has already been defined.

Example:

page: 1 <ifdef.ASM>

ERR SEQ S LOC. OBJ. SOURCE STATEMENTS
0001 ; a sanple program for | FDEF
0002 chip | c864024
0003 00000001 abc equ 1
0004 dseg
0005 D 0000 count : ds 1
0006
0007 cseg i nbl ock
0008 C 0000 230010 nov #10h, acc
0009 i fdef abc
0010 C 0003 8302 add b |
0011 C 0005 1200’ st count
0012 el se
0013 inc acc
0014 endi f
0015 C 0007 A303 sub c
0016 i fdef efg
0017 add count ¢—
0018 endi f
0019 end
Because efg is an undefined synbol, this portion is not assenbl ed.
Because abc is a defined synbol, this portion is assenbl ed.

VMC-54

7. Pseudo Instructions

23. IFNDEF (Assemble if undefined)

IFNDEF symbol

The IFNDEF pseudo instruction assembles the source program until either ELSE or ENDIF appears
subsequently, but only if symbol has not been defined.

Example:

page: 1 <ifndef.ASM>

ERR SEQ
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019

Because efg is an undefined synbol,

S LOC. 0OBJ.

00000001

D 0000

C 0000 230010

C 0003 6300

C 0005 A303

C 007 8200

SOURCE STATEMENTS

a sanpl e program for | FDEF

abc

count :

chip
equ
dseg
ds

cseg
nmov
i fdef

el se
inc
endi f
sub
i fdef

endi f
end

this portion is not assenbl ed.

| c864024
1

1

i nbl ock

#10h, acc
abc

add b

st count

acc

efg
add count 4—

Because abc is a defined synbol,

this portion is assenbl ed.

VMC-55

Visual Memory Unit (VMU) Environment Variables

24. IFB (Assemble if operand is empty)

IFB <argument>

The IFB pseudo instruction assembles the source program until either ELSE or ENDIF appears
subsequently, but only if argument is empty. If the argument contains any space or tab characters, it is
regarded as not being empty. argument must be enclosed in <>.

Example:

page: 1 <ifb.ASM>

ERR SEQ S LOC. OBJ. SOURCE STATEMENTS
0001 ; a sanple programfor |FB
0002 chip | c864016
0003 tifb nacr o arg
0004 'fb <<arg>> 4 gocause one pai r
0005 tne a of "<>" is deleted
0006 el se during macro expansion
0007 e b Gouble symbols (raat)
0008 endi f y
0009 endm are required.
0010
0011 tifb XXX
0011+1 ifb <XXX>
0011+2 inc a
0011+3 el se
0011+4 C 0000 6302 inc b 4
0011+5 endi f
0012 tifb
0012+1 ifb <>
0012+2 C 0002 6300 inc a 4
0012+3 el se
0012+4 inc b
0012+5 endi f
0013 end
Because the argunment for IFBis enpty, this portion is assenbl ed.
Because the argument for IFB is not enpty, this portion is not assenbl ed.

VMC-56

7. Pseudo Instructions

25. IFNB (Assemble if operand is not empty)

IFNB <argument>

The IFNB pseudo instruction assembles the source program until either ELSE or ENDIF appears
subsequently, but only if argument is not empty. If the argument contains any space or tab characters, it is
regarded as not being empty. argument must be enclosed in <>.

Example:

page: 1 <ifnb. ASM>

ERR SEQ S LOC. OBJ. SOURCE STATEMENTS

0001 ; a sanple program for |FNB

0002 chip | 864016

0003 tifb macr o arg

0004 b <<arg>>4— gocause one pai r

0005 tne a of "<>" is deleted

0006 el se during macro expansi on

0007 i b Gouble symbols (net)

0008 endi f y

0009 endm are required.

0010

0011 tifb XXX

0011+1 i fnb <XXX>

0011+2 C 00006300 inc a ¢

0011+3 el se

0011+4 inc b

0011+5 endi f

0012 tifb

0012+1 i fnb <>

0012+2 inc a

0012+3 el se

0012+4 C 0002 6302 inc b 4

0012+5 endi f

0013 end

Because the argument for IFNB is enpty, this portion is not assenbl ed.
Because the argument for IFNB is not enpty, this portion is assenbled.

VMC-57

Visual Memory Unit (VMU) Environment Variables

26. IFE (Assemble if value of expression is "0")

IFE expression

The IFE pseudo instruction assembles the source program until either ELSE or ENDIF appears
subsequently, but only if the value of expression is "0."

Example:

page: 1 <ife.ASM>

ERR SEQ S LOC. 0BJ. SOURCE STATEMENTS

0001 ; a sanple programfor |FE

0002 chip | 866032

0003 cseg

0004 00000003 aa set 3

0005 ife aa- 2

0006 inc 70h

0007 el se

0008 C 0000 7270 dec 70h 4

0009 endi f

0010 00000002 aa set aa-1

0011 ife aa- 2

0012 C 0002 6270 inc 70h 4—

0013 el se

0014 dec 70h

0015 endi f

0016 end

Because the value of the expression is "0,", this portion is assenbl ed.
Because the val ue of the expression is not "0,", this portion is not assenbl ed.

VMC-58

7. Pseudo Instructions

27. IFNE (Assemble if value of expression is not "0")

IFNE expression]

The IFNE pseudo instruction assembles the source program until either ELSE or ENDIF appears
subsequently, but only if the value of expression is not 0.

Example:

page: 1 <ifne. ASM>

ERR SEQ S LOC. 0BJ. SOURCE STATEMENTS

0001 ; a sanple program for |FNE

0002 chip | 866032

0003 cseg

0004 00000003 aa set 3

0005 i fne aa- 2

0006 C 0000 6270 inc 70h ¢

0007 el se

0008 dec 70h

0009 endi f

0010 00000002 aa set aa-1

0011 i fne aa- 2

0012 inc 70h

0013 el se

0014 C 0002 7270 dec 70h 4

0015 endi f

0016 end

Because the value of the expression is "0,", this portion is not assenbl ed.
Because the value of the expression is not "0,", this portion is assenbl ed.

VMC-59

Visual Memory Unit (VMU) Environment Variables

28. IFIDN (Assemble if two character strings are identical)

IFIDN <string1>, <string2>

The IFIDN pseudo instruction assembles the source program until either ELSE or ENDIF appears
subsequently, but only if string] and string? are identical. string1 and string2 must be enclosed in <>. The
comparison includes any space or tab characters within the <>.

Example:

page:

ERR SEQ
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0012+1
0012+2
0012+3
0012+4
0012+5
0013
0013+1
0013+2
0013+3
0013+4
0013+5
0014

Because the two character strings are different,

1 <ifidn. ASM

S LOC. 0BJ.

C 0000 6300

C 0002 7300

SOURCE STATEMENTS
a sanpl e program for

chip
cseg

| FI DN
| c866032

tifidn nacro argl, arg2

ifidn

el se

endi f
endm

tifidn
ifidn
el se
endi f
tifidn
ifidn
el se

endi f
end

<<ar gl>>, <<ar g2>>
inc a

Because one pair

is deleted

during nmacro expansi on,
doubl e symbols ("<>")
are required.

dec a of "<>
sanme, sane

<same>, <sanme>

i nc a 4

dec a

sanme, not_sane

<sane>, <not _sane>
inc a

dec a ¢

this portion is not

assenbl ed.

Because the two character strings are identical,

this portion is assenbl ed.

VMC-60

7. Pseudo Instructions

29.

30.

31.

IFDIF (Assemble if two character strings are not identical)

IFDIF <string1>, <string2>

The IFDIF pseudo instruction assembles the source program until either ELSE or ENDIF appears
subsequently, but only if stringl and string?2 are different. stringl and string2 must be enclosed in <>.
The comparison includes any space or tab characters within the <>.

Example:

page: 1 <ifdif.ASM>

ERR SEQ S LOC. OBJ. SOURCE STATEMENTS
0001 ; a sanple programfor |FDF
0002 chip | 866032
0003 cseg
0004 tifidn nmacr o argl, arg2
0005 ifdif <<ar gl>>, <<arg2>>
0006 inc a
0007 el se Because one pair
0008 dec a of "<>" is deleted
0009 endi f during macro expansion,
0010 endm doubl e synbols ("<>")
0011 are required.
0012 tifidn same, sane
0012+1 i fdif <same>, <same>
0012+2 inc a 4
0012+3 el se
0012+4 C 0000 7300 dec a
0012+5 endi f
0013 tifidn sane, not_sane
0013+1 ifdif <sane>, <not _sane>
0013+2 C 0002 6300 inc a
0013+3 el se
0013+4 dec a 4
0013+5 endi f
0014 end
Because the two character strings are different, this portion is assenbl ed.
Because the two character strings are identical, this portion is not assenbl ed.

ELSE (Assemble in case of condition opposite of the above IF condition)

ELSE

The ELSE pseudo instruction assembles the source program if the opposite of the preceding IF condition is
true, until ENDIF appears. For an example, refer to the description of the IFDEF pseudo instruction, etc.

ENDIF (End conditional assembly)

ENDIF

The ENDIF pseudo instruction declares the end of conditional assembly. For an example, refer to the
description of the IFDEF pseudo instruction, etc.

VMC-61

Visual Memory Unit (VMU) Environment Variables

32.

PRINTX (Display on VDT during assembly)

.PRINTX “string”

The .PRINTX pseudo instruction outputs the contents of string character string constants on the VDT
during the assembly process. For details on character string constants, refer to section 4.7.

Example:
Source program Display on screen
; a sanple program for . PRI NTX /SANYO (R) LCB6K series Macro As
chip 1c866000 Copyright (c) SANYO El ectric Co
switch equl
.printx “Start”
cseg inbl ock Pass 1.....
.printx “..CSEG M Start
| d count —;. . CSEG
add b).Oondi tion#l
st dat al .. DSEG
fEnd
i fdef switch Source file: pprintx
.printx “Condition#l” Chi p nane: LC866000
inc dat al ROM si ze: 64k bytes
el se RAM si ze: 384 bytes
——) .printx “Condition#2” XRAM si ze: 128 bytes
dec dat al Pass 2....
endi f
Start
dseg .. CSEG
.printx “..DSEG — Condi ti on#1
count: ds 1 .. DSEG
datal: ds 1 \End
.printx “end” —— — _ _______ °"‘“‘‘‘"/”/”/"=
end
Because this portion is not assenbl ed due to the | FDEF pseudo instruction,

the corresponding output is also not displayed.

VMC-62

7. Pseudo Instructions

33. LIST (Output list)

.LIST

The .LIST pseudo instruction releases the status in which list file output was halted by the XLIST

pseudo instruction.

Example:

; a sanple program for LIST
chip 1c866200
cseg inblock
nov #00, count

I d count
add #10h
st b

The lines that follow the line where . XLI ST appears do not
appear in the list file. Counting of the line continues,

however, so no di sagreenent

in line nunmbering occurs.

.xli st
abc equ 10h
dseg
count: ds 4
After the .LIST pseudo instruction, output to the |ist
file resunes.
st
cseg inblock
I d b
sub #abc
st count
end
page: 1 <plist.ASW
ERR SEQ S LOC. 0BJ. SOURCE STATEMENTS
0001 ; a sanple program for LIST
0002 chip | 866200
0003 cseg i nbl ock
0004 C 0000 220000’ nov #00, count
0005 C 0003 0200’ Id count
0006 C 0005 8110 add #10h
0007 C 0007 1302 st b
) 0008
0014 list 4
0015 cseg i nbl ock
0016 C 0000 0302 I d b
0017 C 0002 A110’ sub #abc
0018 C 0004 1200 st count
0019 end

VMC-63

Visual Memory Unit (VMU) Environment Variables

34. XLIST (Interrupt list output)

XLIST

The .XLIST pseudo instruction interrupts output to the list file. For an example, refer to the description of
the .LIST pseudo instruction.

35. .MACRO (Output macro expansion)

.MACRO

The MACRO pseudo instruction expands the main body of a macro and outputs it to the list file when the
macro is called.

Example:
a sanpl e program for . MACRO

chip 1c¢866200

t.mac nacro
inc a
tnc b . XMACRO di sabl es out put of the macro
endm expansion results to the list file.

) Note that the codes that are generated by

fsﬁgc i nbl ock the expanded statenents are al so not out put
. XMacr o
t. mac
. Macro
t. mac . MACRO resunes output of the
end expansion results to the list file.

page: 1 <pracr o. ASM>

ERR SEQ S LOC. OBJ. SOURCE STATEMENTS
0001 ; a sanpl e program for . MACRO
0002 chip | 866200
0003 t. mac macr o
0004 inc a
0005 inc b
0006 endm
0007
0008 cseg i nbl ock
0009 t. mac
0009+1C 0000 6300 i nc a
0009+2C 0002 6302 inc b
0010 . Xmacr o
0011 t.mac 4
0012 . macr o
0013 t. mac
0013+1C 0008 6300 inc a 4
0013+2C 000A 6302 inc b Y
0014 end

36. . XMACRO (Interrupt macro expansion output)
.XMACRO

The .XMACRO pseudo instruction temporarily interrupts the output to the list file of the results of
expansion of the macro main body when a macro is called. For an example, refer to the explanation of the
MACRO item.

VMC-64

7. Pseudo Instructions

37.

IF

AF (Output conditional skip)

The .IF pseudo instruction expands source program statements that were skipped during conditional
instruction execution and outputs them to the list file.

Example:
a sanple programfor .IF

chip 1 866200

t.oif macro argl
ifb <<argl>>
inc a . . .
el se .XIF disables the output to the list file of
i nc b statenments that were ski pped by conditional assenbly
endi f psuedo instructions. Lines wich were not skipped
endm because the specified condition was matched are
cseg i nbl ock output to the list file, regardless of the .XIF
tif psuedo instructio
CXi f
t.if abc
i f
toif def .IF enables the output to the list file of
end statements that were skipped by conditiona

assenbly psuedo instructions.

page: 1 <pif.ASM>

ERR SEQ S LOC. 0OBJ. SQURCE STATEMENTS
0001 a sanple programfor .IF
0002 chip | c866200
0003
0004 t.if macro argl
0005 ifb <<argl>>
0006 inc a
0007 el se
0008 inc b
0009 endi f
0010 endm
0011 cseg i nbl ock
0012 t.if
0012+1 ifb <>
0012+2 C 0000 6300 inc a
0012+3 el se
0012+4 inc b
0012+5 endi f
0013 CXxi f
0014 t.if abc
0014+1 ifb <abc> y
0014+3 el se
0014+4 C 0002 6302 inc b
0014+5 endi f
0015 i f
0016 t.if def
0016+1 ifb <def > P
0016+2 inc a N
0016+3 el se
0016+4 C 0004 6302 inc b
0016+5 endi f
0017 end

VMC-65

Visual Memory Unit (VMU) Environment Variables

38. .XIF (Interrupt conditional skip output)

XIF
The .XIF pseudo instruction disables the expansion in the list file of source program statements that were

skipped during conditional instruction execution. For an example, refer to the explanation of the .IF pseudo
instruction.

INCLUDE (Load file)

INCLUDE filename

39.

The INCLUDE pseudo instruction loads and assembles the source file specified by filename while
assembling the source program. The filename specification must include the extension. The INCLUDE
pseudo instruction can be nested up to nine levels. If the loaded file contains the END pseudo instruction,
the assembly process stops there.

Example:
I NCLUDE. ASM
; a sanple program for | NCLUDE
I NCLUDE | NCLUDEL1. ASM ~
end \A W
| NCLUDE2. ASM . | NCLUDE | NCLUDE2. ASM
chip | ¢866200 o
cseg
nmov #0, acc
MB6K | NCLUDE, , | NCLUDE;
page: 1 <include. ASM>
ERR SEQ S LCC. OBJ. SOURCE STATEMENTS
0001 ; a sanpl e program for | NCLUDE
0002 I NCLUDE | NCLUDE1. ASM
1/ 0001 I NCLUDE | NCLUDE2. ASM
2/ 0001 chip | ¢866200
2/ 0002 cseg
2/ 0003 C 0000 230000 nov #0, acc
0003 end

I ndi cates the Include nesting |evel

VMC-66

7. Pseudo Instructions

40. TITLE (specify list title)

TITLE string

The parameter string of the TITLE pseudo instruction specifies a title for the list file. Unlike character string
constants, string is not enclosed in quotes, etc. In addition, it is not possible to input a code that begins with
the yen symbol.

Example:

string is displayed here on all pages.

g
page: 1 <title.ASM> sanple programis title for the listing
ERR SEQ S LOC. OBJ. SOURCE STATEMENTS
0001 ; a sanple programfor TITLE
0002 TITLE sanpl e progranis title for the listing
0003 chip | 864024
0004 cseg
0005 C 0000 00 nop
0006 end

VMC-67

Visual Memory Unit (VMU) Environment Variables

41. PAGE (End of page)

PAGE

The PAGE pseudo instruction forcibly ends a page during output to a list file. The end-of-page character is
inserted directly before this pseudo instruction.

Example:

Source file
; a sanpl e program for PAGE
chip 1c866032

page
cseg
page
nop
page
end
List file
-
page: 1 <page. ASM>
ERR SEQ S LOC. 0OBJ. SOURCE STATEMENTS
0001 ; a sanpl e program for PAGE
0002 chip | 866032
-
page: 2 <page. ASM>
ERR SEQ S LOC. 0OBJ. SOURCE STATEMENTS
0003 page
0004 cseg
~ (
page: 3 <page. ASM>
ERR SEQ S LOC. 0OBJ. SOURCE STATEMENTS
0005 page
0006 C 0000 00 nop
~ ()
page: 4 <page. ASM>
ERR SEQ S LOC. 0OBJ. SOURCE STATEMENTS
0007 page
0008 end
N
. J

VMC-68

7. Pseudo Instructions

42. CHIP (Define chip that is target of assembly)

CHIP chipname

The CHIP pseudo instruction notifies the assembler about which chip is the target of the assembly process.
The assembler switches the reserved word list and checks the memory size on the basis of chipname. This
pseudo instruction is written at the top of a source file, before any other instructions or pseudo instructions.
If this pseudo instruction is not found, the assembler references the value of the environment variable
CHIPNAME. If the name of the chip that is declared by this pseudo instruction does not match the name
indicated by the environment variable CHIPNAME, a "warning-level" error is generated.

43. COMMENT (Output comments to object file)

COMMENT comment_string

The COMMENT pseudo instruction gives comments that are output to the assembled object file. Unlike
character string constants, comment_string is not enclosed in quotes, etc. In addition, it is not possible to
input a code that begins with the yen symbol. comment_string is stored in the object file starting from the
680th byte. A comment may consist of up to 255 characters.

Example:

Source file
; a sanpl e program for COMVENT
chip 1c866024
comment This is a comment string enbedded into OBJ file
cseg
nop
end

Obj ect file dunp (showi ng only the necessary portion)
Nunber of characters (one byte)

00000260 00 00 00 OO0 OO OO OO 00-00|{00 00 00 00 00 OO0 OO
00000270 00 00 00 OO 00 60 00 00-80(01 00 00 80 00 00 00"
00000280 C6 92 40 2B 4D 38 36 4B-20|20 20 20 63 6F 6D 6D **+MB6K conm
00000290 65 6E 74 2E 41 53 4D 20-6316F 6D 6D 65 6E 74 20 ent. ASM comment
000002A0 4C 43 38 36 36 30 32 34-[30[54 68 69 73 20 69 73 LC8660240This is
000002B0 20 61 20 63 6F 6D 6D 65-6E 74 20 73 74 72 69 6E a comment strin
000002C0 67 20 65 6D 62 65 64 64-65 64 20 69 6E 74 6F 20 g enbedded into
000002D0 4F 42 4A 20 66 69 6C 65-00 00 01 01 00 01 00 05 OBJ file........

000002E0 00 01 00 00 00 00 00 00-00 00 EO 00 00 00 OO C4 *
000002F0 00 00 00 00 C4 00 00 00-00 24 00 00 01 00 04 01*....$......
00000300 00 00 00 24 .08

VMC-69

Visual Memory Unit (VMU) Environment Variables

44. WIDTH (Specify number of columns in list file)

WIDTH number

The WIDTH pseudo instruction specifies the number of columns in the list file (i.e., the number of
characters per line). A number from 72 to 132 can be specified for number, but specifying the value equal to
the number of columns in the source file plus at least 28 is recommended whenever possible. Furthermore,
although this pseudo instruction can be described any number of times within one source file, normally it
is only described once at the start of file. Note that if this pseudo instruction is not found, the default list file
width is 132 columns.

Example:

Al though WDTH is evaluated in both pass 1 and pass 2,
the list file is generated only in pass2. Therefore, the
| ast evaluated result for WDTH in pass 1 is reflected
here, so this line waps around at this position.

1 2 3 4 5 6 7 8

12345678901234567890123456789012345678901234567890123456789012345678901234567890

page: 1 <wi dth. ASM>

ERR SEQ
0001
0002
0003
0003
0004
0005
0005
0006
0007

S LOC. 0BJ. SOURCE STATEMENTS
; a sanple program for WDTH
chip | c866200
cseg ; this is along line to indicat
e WDTH s effect
W DTH 72
C 0000 00 nop ; this is also a long line
to indicate WDTH s effect
W DTH 78
end

Because a line feed character is inserted at the 72nd character,
the line waps around at this position.

VMC-70

7. Pseudo Instructions

45. BANK (Specify RAM area bank)

BANK expression

The BANK pseudo instruction gives the bank number for symbols that were defined by the DS pseudo
instruction in the RAM area described subsequent to the DSEG pseudo instruction.

Example:

page: 1 <bank. ASM>

ERR SEQ S LCC. OBJ. SOURCE STATEMENTS
0001 ; a sanple program for BANK
0002 chip | 866032
0003 cseg i nbl ock
0004
0005 C 0000 220000’ nmov #0, dat al
0006
0007 C 0003 6200’ inc dat al
0008 C 0005 0200’ I d datal
0009 C 0007 1201’ st dat a2
0010
0011 C 0009 6200’ inc dat aa
0012 C 000B 0200’ I d dat aa
0013 C 000D 1202’ st dat ac
0014
0015 dseg
0016 bank 0
0017 D 0000 dat al: ds 1
0018 D 0001 dat a2: ds 1 —
0019 D 0002 dat a3: ds 1
0020
0021 bank 1
0022 D 0000 dat aa: ds 1 |
0023 D 0001 dat ab: ds 1
0024 D 0002 dat ac: ds 1
0025
0026 end
These synbols are assigned to bank 1.
These synbols are assigned to bank O.

VMC-71

Visual Memory Unit (VMU) Environment Variables

46.

47.

CHANGE (Jump between external and internal ROM)

CHANGE symbol

CHANGE is a special jump instruction that is used to switch between executing code stored in external
ROM and code stored in internal ROM. The operand symbol is limited to symbols that have been declared
by the pseudo instruction OTHER_SIDE_SYMBOL. Note that this pseudo instruction is a special instruction
for the LC868000 only, and will generate an error if executed by any other type of chip.

Example:

page: 1 <change. ASM>

ERR SEQ S LOC. 0BJ. SOURCE STATEMENTS
0001 ; a sanpl e program for CHANGE
0002 chip | 868032
0003 ot her _si de_synbol far_away
0004
0005 cseg
0006 C 0000 Bg8OD21’ change far_away

0006 C 0003 0000

RADIX (Specify default base)

RADIX expression

The RADIX pseudo instruction specifies the base to which the value of a numeric constant is converted
when the base of that constant is not explicitly indicated. Only certain values can be specified for expression:
2, 8,10, and 16. Once this pseudo instruction is executed, the specified base remains valid until a different
base is specified by another RADIX pseudo instruction. If this pseudo instruction is not specified, the
default base is 10.

Example:

XXX SET 10 - Interpreted as 10 10, Since the default base is 10.
RADIX 16

XXX SET 10 - Interpreted as 16 10 Since the base was set to 16.
RADIX 2

XXX SET 10 - Interpreted as 2 10 Since the base was set to 2.

VMC-72

7. Pseudo Instructions

48 JM PO (Generate optimal JMP instruction)

JMPO expression

The JMPO pseudo instruction compares the current location with expression, and generates a JMP if the
two locations are in the same block (i.e., the addresses are identical except for the lower 12 bits). If the two
locations are not within the same block, or if the value of the destination address cannot be specifically
determined because it is an external symbol, then JMP generates a JMPF.

Example:

Generates a JMP instruction when the current |ocation and "expression" are within
the same nenory bl ock

page: 1 <jnpo. ASM>

ERR SEQ S LOC. OBJ. SOURCE STATEMENTS
0001 ; a sanple program for JMPO
0002 chip | 866032
0003 cseg
0004 C 0000 2803’ j mpo near
0005 C 0002 00 nop
0006 C 0003 00 near: nop
0007 C 0004 211000 j npo far
0008
0009 org 1000h
0010 C 1000 00 far: nop
0011 end

Generates a JMPF instruction when the current |ocation and "expression" are
in different nmenory bl ocks

VMC-73

Visual Memory Unit (VMU) Environment Variables

49. BRO (Generate optimal BR instruction)

BRO expression

The BRO pseudo instruction compares the current location with expression, and generates a BR if the
branching destination is within a range of +127 and -128. If the branching destination is outside of a range
of +127 and -128, then BRO generates a BRE.

Example:

Generates a BR instruction when the branching destination is within

a range of +127 and -128

page: 1 <bro. ASM>

ERR SEQ S LOC. OBJ.
0001
0002
0003
0004 C 0000 0101
0005 C 0002 00
0006 C 0003 00
0007 C 0004 11FA00
0008
0009
0010 C 0100 00
0011

Generates a BRF instruction when the branching destination is outside of

a range of +127 and -128

SOURCE STATEMENTS
a sanpl e program for BRO

near:

far:

chip | c866032
cseg

bro near

nop

nop

bro far

org 1000h
nop
end

VMC-74

7. Pseudo Instructions

50. CALLO (Generate optimal CAL instruction)

CALLO expression

The CALLO pseudo instruction compares the current location with expression, and generates a CALL if
the two locations are in the same block (i.e., the addresses are identical except for the lower 12 bits). If the
two locations are not within the same block, or if the value of the destination address cannot be specifically
determined because it is an external symbol, then CALLO generates a CALLE.

Example:

Cenerates a CALL instruction when the current |ocation and "expression" are
within the sane nenory bl ock

page: 1 <call o. ASM>

ERR SEQ S LOC. 0BJ. SOURCE STATEMENTS
0001 ; a sanpl e program for CALLO
0002 chip |1 866032
0003 cseg
0004 C 0000 0805’ callo near
0005 C 0002 201000 callo far
0006
0007 C 0005 00 near: nop
0008 C 0006 A0 ret
0009
0010 org 1000h
0011 C 1000 00 far: nop
0012 C 1001 A0 ret
0013 end

Generates a CALLF instruction when the current |ocation and expression are in
di fferent nenory bl ocks

51. BZO (Generate BZ instruction that will not generate an address error)

BZO expression

The BZO macro generates instruction codes that are equivalent to the BZ instruction, with no restriction on
the difference between the location of the instruction and the branching destination in the same segment

within the same source. The BZO macro uses the BNZ instruction, which is the logical opposite of the BZ
instruction, and the BRO instruction. expression describes the branching destination.

Code generation macro:

; X Branch near relative address if accumulator is zero ***
bzo macro 8

local _next_

bnz _hext_

bro 8
next:

endm

VMC-75

Visual Memory Unit (VMU) Environment Variables

52. BNZO (Generate BNZ instruction that will not generate an address error)

BNZO expression

The BNZO macro generates instruction codes that are equivalent to the BNZ instruction, with no restriction
on the difference between the location of the instruction and the branching destination in the same segment
within the same source. The BNZO macro uses the BZ instruction, which is the logical opposite of the BNZ
instruction, and the BRO instruction. expression describes the branching destination.

Code generation macro:

; T Branch near relative address if accumulator is not zero ***
bnzo macro r8

local _next_

bz _next_

bro r8
next:

endm

53. BPO (Generate BP instruction that will not generate an address error)

BPO expression

The BPO macro generates instruction codes that are equivalent to the BP instruction, with no restriction on
the difference between the location of the instruction and the branching destination in the same segment
within the same source. The BPO macro uses the BZ instruction, the BR instruction, and the BRO
instruction. expression describes the branching destination.

Code generation macro:

; Fx Branch near relative address if direct bit is positive ***
bpo macro do,b3,r8
local _next_
local _true_
bp do,b3,_true_
br _next_
true: bro r8
next:
endm

VMC-76

7. Pseudo Instructions

54.

55.

BPCO (Generate BPC instruction that will not generate an address error)

BPCO expression

The BPCO macro generates instruction codes that are equivalent to the BPC instruction, with no restriction
on the difference between the location of the instruction and the branching destination in the same segment
within the same source. The BPCO macro uses the BPC instruction, the BR instruction, and the BRO
instruction. expression describes the branching destination.

Code generation macro:

;T Branch near relative address if direct bit is positive,
; and clear ***
bpco macro do,b3,r8
local _next_
local _true_
bpc do,b3,_true
br _next_
true: bro 8
_next _:
endm

BNO (Generate BN instruction that will not generate an address error)

BNO expression

The BNO macro generates instruction codes that are equivalent to the BN instruction, with no restriction
on the difference between the location of the instruction and the branching destination in the same segment
within the same source. The BNO macro uses the BN instruction, the BR instruction, and the BRO
instruction. expression describes the same value as in the BN instruction.

Code generation macro:

;T Branch near relative address if direct bit is negative ***
bno macro d9,b3,r8
local _next_
local _true_
bn do,b3,_true
br _next_
true: bro 8
_next _:
endm

VMcC-77

Visual Memory Unit (VMU) Environment Variables

56. DBNZO (Generate DBNZ instruction that will not generate an address error)

DBNZO expression

The DBNZO macro generates instruction codes that are equivalent to the DBNZ instruction, with no
restriction on the difference between the location of the instruction and the branching destination in the
same segment within the same source. The DBNZO macro uses the DBNZ instruction, the BR instruction,
and the BRO instruction. expression describes the same value as in the DBNZ instruction.

Code generation macro:

; Fx Decrement direct byte and branch near relative address
; if direct byte is not zero **
dbnzo macro do,r8
local _next_
local _true_
dbnz do, true_
br _next_
true: bro r8
_next :
endm

57. BEO (Generate BE instruction that will not generate an address error)

BEO expression

The BE macro generates instruction codes that are equivalent to the BE instruction, with no restriction on
the difference between the location of the instruction and the branching destination in the same segment
within the same source. The BE macro uses the BNE instruction and the BRO instruction. expression"
describes the same value as in the BE instruction.

Code generation macro:

; T Compare immediate data or accumulator and branch
; near relative address if equal ***
beo macro arg0,argl,arg2
local _next_
local _txen_
ifb <<arg2>>
bne arg0,_next_
bro argl
next:
else
bne arg0,argl, txen_
bro arg2
txen:
endif
endm

VMC-78

7. Pseudo Instructions

58. BNEO (Generate BNE instruction that will not generate an address error)

BNEO expression

The BNEO macro generates instruction codes that are equivalent to the BNE instruction, with no restriction
on the difference between the location of the instruction and the branching destination in the same segment
within the same source. The BNEO macro uses the BE instruction and the BRO instruction. expression
describes the same value as in the BNE instruction.

Code generation macro:

;T Compare immediate data or accumulator and branch
; near relative address if equal ***
bneo macro arg0,argl,arg2
local _next_
local _txen_
ifb <<arg2>>
be arg0,_next
bro argl
next:
else
be arg0,argl, txen
bro arg2
txen:
endif
endm

VMC-79

Visual Memory Unit (VMU) Environment Variables

VMC-80

Sega@'Dreamcast.

8. List File Format

The list file generated by M86K has the format shown below. Basically, this format shows the contents of the source
file as is, with line numbers and machine language codes listed on the left. The placement of the lines and columns
was designed with the format of the printout in mind. In short, one page consists of 60 lines (including the header),
and one line consists of 132 columns. (If the source line is longer than 132 characters, it wraps around.) On the left
side, the column positions are fixed so that various types of information can be displayed. Horizontal tabs that are
included in the source lines are converted into spaces so that there is no visible change in positioning.

VMC-81

Visual Memory Unit (VMU) Environment Variables

Page nunber —— Source file nanme St at tlannet
|
(v v
Header 4 { page: 1 <sanpl e. AS\> v
ERRSEQ S LOC. OBJ. SOURCE STATEMENTS

0001 ; a sanple for source listing

Li ne nunber 0002 .
) 0003 chip LC866032

0004

I ncl ude | evel 0005 i nql ude Mecr os. asm o
) 1/ 0001 ; a header file that contains shared nacro definitions

1/ 0002

1/ 0003 clr_reg nmacro XXX

1/ 0004 nov #0, XXX
Synbol val ue 1/ 0005 endm

0006 ‘/

0007 cseg

0008 0000007B PARAML equ 123
Expanded | i ne nunber 0009

0010 clr_reg acc

0010+1 C 0000 230000 nov #0, acc

0011 C 0003 23407B nov #PARAML, pO
Segnent type 0012 Pal

0013 r ept 10
Address 0015 R endm

0015+1 C 0006 00 nop

0015+2 C 0007 00 nop

0015+3 C 0008 00 nop

0015+4 C 0009 00 nop

0015+5 C 000A 00 nop

0015+6 C 000B 00 nop

0015+7 C 000C 00 nop

0015+8 C 000D 00 nop

0015+9 C 000E 00 nop
Code 0015+10 C 00OF 00 nop

0016

0017 C 0010 73616D nesso: dc “sanpl e message #00?n”

0017 C 0013 706C65

0017 C 0016 206D65

0017 C 0019 737361

0017 C 001C 676520

0017 C 001F 233030

0017 C 0022 0A

0018

0019 end

.

VMC-82

8. List File Format

Header:

Page number:

Source file name:

Statement:

Line number:

Include level:

Symbol value:

Expanded line number:

Segment type:

Address:

Code:

The header appears at the start of each page, and consists of a blank line to allow space
for binding, the page number, the source file name, and headings for each column
position in the main body of the list.

Pages are numbered sequentially, starting from "1."

This indicates the name of the source file for which assembly was specified. If the drive
name and path name were also specified when the file was specified, they are shown
as well.

Indicates the contents of the source file, the results of expansion of a macro call when
list output was not suppressed, and the results of expansion when include files are
loaded.

These are the line numbers in the source file (in decimal format). When a single line in
the source file becomes two or more lines in the list file (for example, when the code
portion spans several lines), the same line number is repeated.

This indicates the nesting level of nested include files. This does not appear on lines
that show the contents of the source file. This level is "1" for lines that show the contents
of a file that is included directly from the source file. This digit becomes "2" for a file
that is included from a level 1 include file. This number is separated from the line
number by a slash.

When a value is set in a symbol, if the value is definite at the time of assembly, that
value is shown as an 8-digit hexadecimal number. If the value is not definite, nothing
is shown.

This number indicates that a given line was not in the original source file, but was
generated as a result of a macro call (including repeated macros). A sequential number,
starting from "1," is added to the line number in the sequence of expansion. When one
macro call is completed and a different one appears, the sequential numbers that are
assigned start again from "1."

When the corresponding line generates code in CSEG or DSEG, the segment type is
indicated by a single character. An upper-case "C" indicates "CSEG INBLOCK," a
lower-case "c¢" indicates "CSEG FREE," and "D" indicates DSEG.

When the corresponding line generates code in CSEG or DSEG, the address where the
first byte of the code is located is indicated with a four-digit hexadecimal number. Note
that "address" as used here refers to the offset from the start of the segment in question.

When the code that is generated as a result of assembling the source line should be
written in ROM, that code is depicted as two-digit hexadecimal codes, sufficient for the
required number of bytes. A maximum of three bytes of codes are displayed for one
line, with the two digits the farthest to the left representing the bytes corresponding to
the smallest address. If the length of the code exceeds three bytes, the code is displayed
on a newly generated line that has the same line number.

VMC-83

Visual Memory Unit (VMU) Environment Variables

VMC-84

Sega@ Dreamcast

9. Specifying Files for Linking

There are two methods for starting up L86K and passing the necessary information to L86K.

1) Passing all of the information to L86K through the command line
2) Passing all of the information in response to the prompts that are displayed by L86K

Regardless of the method that was used to start up L86K, it can be forcibly terminated by either pressing CTRL+C
(by holding down the CTRL key while pressing the C key) or pressing the STOP key.

1. File Name Specification
1.1 MS-DOS Version File Specification

Upper-case and lower-case letters can be used in any combination in a file name that is specified in the command
line when starting up L86K, or in a file name that is given in response to the L86K prompts. For example, the
following three file names are all equivalent:

sample.obj
SAmMpIE.OBJ
SAMPLE.OBJ

VMC-85

Visual Memory Unit (VMU) Environment Variables

In addition, when a file name is specified with no extension, L86K uses the following default file name extensions.

File format Default extension

Object file .0BJ
Execution file EVA
Library file LB

Option file .0PT
Font file .CGR
External ROM data file Hnn

nn is a numeric value that is specified through option -B.
1.2 UNIX Version File Specification

A distinction is made between upper-case and lower-case letters in a file name that is specified in the command line
when starting up L86K, or in a file name that is given in response to the L86K command prompts. For example, the
following three file names are all different:

sample.obj
SAmMpIE.OBJ
SAMPLE.OBJ

In addition, when a file name is specified with no extension, L86K uses the following default file name extensions.

File format Default extension

Object file .0bj
Execution file .eva
Library file lib

Option file .opt
Font file .cgr
External ROM data file hnn

nn is a numeric value that is specified through option -B.

VMC-86

9. Specifying Files for Linking

2. Specifying Parameters Through the Command line

L86Koption]objectfiles,[evafile][[libraryfile]]]l[;lo

1) option field

This field specifies the linker loader options that are described in section 2.1. When specifying an
option, specify it in front of any field desired.

2) objectfiles field

This field specifies the names of the objects to be linked, the link start address, and the library names.
At least one file name is required. When specifying multiple file names, separate the file names with a
space character. If all of the file names do not fit on one line, place a plus (+) symbol at the end of the
line. If the object file extension .OBJ is omitted from a file name, the .OB]J extension is automatically
assumed. If “.LIB” is specified as the extension for a file name, the library is linked as well.

3) evafile field

4)

This field specifies the name of a file that can be executed on (downloaded to) the EVA86K. If this file
name is not specified, the first file name that was specified in the objectfiles field is assumed, except that
the extension is changed to .EVA.

Libraryfile field

This field specifies the name of the library. If no library is required, this field does not need to
be specified.

vMmcC-87

Visual Memory Unit (VMU) Environment Variables

Example:
A>L86K MAIN SUBO SUB1,TEST, TEST.LIBg

This command line links the object modules MAIN.OB]J, SUB0.OB]J, SUB1.0OBJ, MAIN.OPT and
MAIN.CGR. (In models that have internal EEPROM and fixed data, this line links the special option file
described later as the option file.) If there are any undefined symbols when MAIN.OBJ, SUB0.OBJ and
SUB1.0BJ are linked, a search for the same symbols as the undefined symbols is conducted in TEST.LIB, and
the module that includes those symbols is linked.

3. Specifying Parameters in Response to Prompts

When specifying parameters for the linkage loader in response to prompts, input the following command on the
command line.

L86K[option]a
L86K prompts the necessary input by displaying the following lines one at a time:
SANYO (R) LC86K series Linkage Loader Version 4.00
Copyright (c) SANYO Electric Co., Ltd. 1989-1995. All rights reserved.
Object modules[.OBJ]:
EVA filename[basefilename.EVAY:
Libraries[.LIB]:
Option filename[basefilename.OPT]:
Font filename[basefilename.CGR]:

L86K does not display the next line until a response has been input for the previous prompt. Section 1.1, "Specifying
File Names," explains the rules for specifying file names in response to these prompts.

The responses to the prompts correspond to the fields in the L86K command line, except for Option filename and
Font filename. (For details on the L86K command line, refer to section 1.2, "Specifying Parameters Through the
Command Line.") The correspondence between the prompts and the command line fields is shown below:

Prompt Command line field
Object modules objectfiles

EVA filename evafile

Libraries libraryfiles

When using the L86K prompts, after responses have been input for the above four items, input for the following
two items is prompted.

Option filename :Input the name of the option file corresponding to the evafile target chip.

Font filename :Input the font file name if the evafile target chip belongs to the LC86100 Series, the
LC864000 Series, or the LC868000 Series. (This prompt is not displayed if the target
chip belongs to any series other than the LC86100 Series, the LC864000 Series, or the
LC868000 Series.)

If the last character that is typed in the response line is a plus sign (+), the prompt moves to the next line, allowing
you to continue inputting the response to the same prompt. In this situation, the plus sign must come at the very
end of a complete file or library name, path name, or drive name.

VMC-88

9. Specifying Files for Linking

Default Responses

To select the default response to the current prompt, simply press Return, without specifying a file name
(or inputting anything else). The next prompt is then displayed.

To select the default response for the current prompt and all of the remaining prompts, type a semicolon
(;) followed immediately by Return. Once the semicolon is input, it is not possible to input a response to
any of the remaining prompts for that link session. Use this option in order to use the default responses or
to save time. However, the semicolon cannot be input for the Object modules prompt, because that prompt
has not default response.

The default responses to the L86K prompts are listed below.

Prompt Default

EVA filename: The first object file name that is specified for the Object modules prompt. The .OBJ
extension is replaced with the .EVA extension.

Libraries: No library search is conducted.

Option filename: The file name specified for the EVA filename prompt. The .EVA extension s
replaced with the .OPT extension. However, in models that have internal flash
EEPROM and fixed data, the special option file described later becomes the default.

Font filename: The file name specified for the Option filename prompt. The .OPT extension is
replaced with the .CGR extension.

4. Files Referenced During Linking

L86K always references the following files during linking.

LC86K.LIB

Information concerning the system that is referenced by EVA86K, and the flash EEPROM access program are both
stored in LC86K.LIB. L86K gets the system information concerning the link target CPU from LC86K.LIB during the
linking process, and stores it in the EVA file.

In addition, if the option file name specification is omitted in the case of an object file for which the link target is a
model that has internal flash EEPROM and fixed data, the following special option file is referenced:

LCnn00.OPT: nn is a two-digit integer that corresponds to the model name in question.

For details concerning models that have internal flash EEPROM and fixed data, refer to the users manual.

LC86K.LIB and LIBnn00.OPT must reside in a directory that is equivalent to the directory where L86K.EXE is
stored, or in the directory that is set by the environment variable "PATH".

VMC-89

Visual Memory Unit (VMU) Environment Variables

VMC-90

Sega@ Dreamcast

10. Specifying Linkage
Loader Options

This section explains how to use the linkage loader options in order to specify and control the tasks performed by
L86K. In the MS-DOS version, all options begin with the linkage loader option character, either "/" or "-". In the
UNIX version, all options begin with the linkage loader option character "-"

1. Creating a HEX File for LC868000 Series External ROM

Option
-B=bank number

The -B option specifies the bank number of the external ROM data file in the LC868000 Series (WORLD
EXTERNAL_DATA). Specify a hexadecimal value (from 1 to FF) for bank number. The bank number that is specified
here becomes the data file extension.

Example:

A> 86K /B=1 SAMPLE;
The data file that is created here is SAMPLE.HOL1.

2. CSEG Loading Address Specification Method
Option
-C=address

The -C option, which is valid for the object module that is described immediately after this option, specifies the code
segment loading address. Specify a hexadecimal value for address.

If this option is omitted, L86K loads the code segment of the object module at any suitable position.

VMC-91

Visual Memory Unit (VMU) Environment Variables

3. DSEG Loading Address Specification Method
Option
-D=address

The -D option, which is valid for the object module that is described immediately after this option, specifies the data
segment loading address. Specify a hexadecimal value for address.

If this option is omitted, L86K loads the data segment of the object module at any suitable position.

4. Enabling Duplicate Definition of DSEG Addresses
Option
-E

When the -E option is specified, no error is generated if multiple symbols are defined in the same address in DSEG.

5. No Distinction Between Upper-Case and Lower-Case
Option
I

Under the default setting, L86K makes a distinction between upper- and lower-case, but if the -I option is specified,
no distinction is made between upper- and lower-case.

6. Creating the Loading Map
Option
-P

The -P option creates a file in which the link results map (a list of the link status of each segment and the placement
of public symbols) is written. The file name of this map file is the name specified in the EVA file field in the command
line or prompt, with the extension changed to .MAP. Note that no map file is created if a fatal error that makes it
impossible for the linking process to continue occurs.

VMC-92

10. Specifying Linkage Loader Options

7. Creating a Local Symbol List
Option
-L

The -L option is valid only when combined with the -P option. The -L option adds a list of local symbols to each
module in the map file.

Segnent attributes
In the case of the INBLOCK attribute, CSEGI;
Modul e nare in the case of the FREE attribute, CSEGF

PAGE 1
Li nkage date: Wed Dec 09 13:28:02 1992

LC86K series Linkage map |i st

Segnent bl ock start address

sanpl el. EVA | oadi ng map

nmodul e segnent no. /start addreaa size next address

* CSEG — Segnent bl ock size (unit: byte)
) sampl el CSEG | 0000 00040004

sanpl e2 CSEG F 1 0004 0005 0009
sanpl e2 CSEG F 2 0009 0003 000C N
Segnent bl ock end address +1

public synbol Iist

synbol segnent address In the case of a DSEG synbol,
ACC DSEG 0: 0100 [EQU] a bank nunber and address
ADCR DSEG 0: 0160 [EQU] are out put
ADRR DSEG 0:0161 [EQU]

local symbol Iist In the case of a DSEG synbol

a bank nunber and address
are out put

synbol segnment address
** sanpl el **
11 CSEG 0000

Local synbols are output for each nodul e

** sanpl e2 **
|2 CSEG 0004

VMC-93

Visual Memory Unit (VMU) Environment Variables

8. Specifying Warning Messages Concerning Operand Data
Option

-W

The -W option displays a warning message when the value of an operand described for JMP, etc., is outside of the

valid range. (In the case of JMP, the operand is 12 bits, so the valid range of values for the operand is 0 to 4095.) (The
value that is stored in the instruction code consists only of valid bits; overflow bits are discarded.)

9. CSEG FREE Block Optimized Loading

L86K normally links (allocates) according to the CSEG section described in the object module and the sequence
specified in the command module, but when it does so L86K aligns the executable file segment data (code segments)
with 4096-byte boundaries. This results in a number of empty areas within the code segment area.

L86K has four placement functions that allocate each segment block in the optimal position in order to minimize the
occurrence of such empty areas and therefore use memory efficiently.

Each of these loading methods is described below.
Option:
-A

The -A option loads all code segment blocks that are the target of the linking process in order, based on size. While
doing so, if a segment block that crosses a 4096-byte boundary has the INBLOCK attribute, that block is aligned with
the boundary; if the segment block has the FREE attribute, that block is placed normally without being aligned with
the boundary.

Option:
-F

The -F option is valid only when used in combination with the -A option. After linking code segment blocks that
have the INBLOCK attribute in the sequence specified in the command line, this option allocates code segments that
have the FREE attribute in those empty areas that appear due to the reason described above. (If there is no more
space to allocate code segments that have the FREE attribute, those segments are allocated after the final address in
order, based on size.)

Option:
-O

The -O option is valid only when used in combination with the -A option. After linking code segment blocks that
have the INBLOCK attribute in order, based on their size, this option allocates code segments that have the FREE
attribute in empty areas. (If there is no more space to allocate to code segments that have the FREE attribute, those
segments are allocated after the final address in order, based on size.)

Option:
-R

The -R option is valid only when used in combination with the -A option. After linking code segment blocks that
have the INBLOCK attribute in order, based on their size, this option allocates code segments that have the FREE
attribute in empty areas. If any two consecutive 4096-byte areas each contain empty area, the two empty areas are
brought together by repositioning the second INBLOCK code segment; a code segment with the FREE attribute is
then assigned to the newly formed area. (If there is no more space to allocate to code segments that have the FREE
attribute, those segments are allocated after the final address in order, based on size.)

VMC-94

10. Specifying Linkage Loader Options

10. Specifying Symbol Sort Processing
Option:

If the total number of public symbol definitions in all of the link target object files (including the relevant SFR
definitions in LC86K.LIB) exceeds 8192 definitions, or if the total number of local symbol definitions in all of the
link target object files exceeds 8192 definitions, symbol sort processing will become slower. A message that indicates
the progress of the sort processing is displayed while processing is in progress:

Public(Local) symbol table: Sorting .. nn / nn blocks
Public(Local) symbol table: Sorting(merge) .. nn %

If the -S option is specified, however, symbol sort processing is not performed in these circumstances; instead, the
following message is displayed and link processing is interrupted:

** Link Error, Public symbol table overflow: nn symbols

The number of symbols display4ed here is the number of symbols in excess of 8192.

VMC-95

Visual Memory Unit (VMU) Environment Variables

VMC-96

Sega@ Dreamcast

11. Object Placement

As explained in section "CSEG FREE Block Optimized Loading," the placement of objects when optimization is
specified for the linking process differs from the placement that results during normal linking processing. There are
four methods of optimization loading. The placement of objects when each of these optimization methods is
specified is described below.

-A

In CSEG, there are two placement specifications: the INBLOCK specification (which places objects within 4096-byte
boundaries), and the FREE specification (which places objects with no regard for 4096-byte boundaries). When -A
is specified, blocks are placed in the optimal position in order, based on size, regardless of the INBLOCK/FREE
specification. (In this case, segments for which INBLOCK is specified are aligned with 4K-byte boundaries, while
segments with the FREE specification are not aligned with the boundaries.)

For example, assume that the following group of objects exists:

>
=]
o
o

inblock

inblock

inblock
free

1K 1.5K 25K 2K
bytes bytes bytes bytes

If these are linked with the -A option specified, the INBLOCK/FREE segment blocks are placed in the optimal
positions in order, based on their size. The result is as follows:

L86K-AABCD;

(]
o
=]
>

inblock
free

inblock

inblock

4K bytes 4K bytes

VMC-97

Visual Memory Unit (VMU) Environment Variables

In the case of this example, because the segment (object D) that is placed on top of a 4096-byte boundary has the

FREE attribute specified, object D is not aligned with the boundary. If object D had the INBLOCK attribute, the result
would be as follows:

o
-]
o
>

inblock
inblock
inblock
inblock

4K bytes 4K bytes
-A-F

When -A and -F are specified, the INBLOCK segment blocks are placed in the order described in the command line,
and then the FREE segment blocks are placed in the optimal positions in order, based on their size.

For example, assume that the following group of objects exists:

>

w
o
o
m

X X X
S H S 2]
= - = = -
= = =

1.5K 1K 1K 3K 1.5K

bytes bytes bytes bytes bytes

If these objects are linked with -A-F specified, A, C, and D are placed in the order indicated in the command line (D
is aligned with a 4096-byte boundary), and then E and B are placed in the optimal positions in that order.

L86K-A-FABCDE;
-A-O

When -A and -O are specified, the INBLOCK segment blocks are placed in the optimal positions in order, based on
their size, and then the FREE segment blocks are placed in the optimal positions in order, based on their size.

For example, assume that the following group of objects exists:

A C E D B
- - -
2l 2] 8 2]
= = = = -—
] £]
f f i
4K bytes 4K bytes

If these objects are linked with -A-O specified, D, A, and C are placed in the optimal positions in that order, and then
B is placed in the optimal position.

-A-R

When -A and -R are specified, the INBLOCK segment blocks are placed in the optimal positions in order, based on
their size, and then, if any two consecutive 4096-byte areas each contain empty area, the two empty areas are

brought together by repositioning the second segment; a segment block with the FREE attribute is then assigned to
the newly formed area.

VMC-98

11. Object Placement

For example, assume that the following group of objects exists:

>

=]
o
o

- - -

[® © [

g o g g

= 4 = =

£ £ £

2K 1K 1.5K 3K
bytes bytes bytes bytes

If these objects are linked with -A-R specified, D, A, and C are placed in the optimal positions in that order. A and
C are then repositioned at the rear of their 4096-byte area. B is then placed in the empty area between D and A.

D B A ¢
- - -
© ® © ©
] e | 2| =
-= = -= =
= - E| =

4K bytes 4K bytes

In addition, in all optimization methods, if an empty area is created within an object by the ORG pseudo instruction,
that area also becomes available as a target for segment block placement.

For example, assume that the following group of objects exists:

A B c

- -
2 2 8
= =2 -

= =

Pal
3K bytes/+ 1K bytes 1.5K 1K
bytes bytes

1K of empty area created by ORG

If these objects are linked normally without optimization, the result is as shown below.

If these objects are linked with optimization specified, ORG produces an empty area within segment block A,
as follows:

VMC-99

Visual Memory Unit (VMU) Environment Variables

4K bytes 4K bytes

Furthermore, if the optimization specification and the loading address specification (-C option) are both made, and
the first segment of that file has the FREE specification, the placement of that segment block (only) follows the
loading address specification. (Subsequent FREE blocks are subject to optimization.)

VMC-100

Sega@ Dreamcast

12. Errors

1. Fatal Errors

If a fatal error is detected while the linking process is in progress, L86K displays a message on the VDT and
interrupts processing. The error messages that are displayed by L86K are listed below.

Chip name unmatched
An attempt was made to link object modules for different chips.

Data file specified
A data file was specified for EVA file creation.

Data segment size exceeds
An attempt was made to link DSEG objects in excess of the RAM size.

External undefine symbol
External reference symbol not found.

lllegal bank number specifed
There is an error in the external ROM bank number specification.

lllegal file format
The specified file is not intended for the LC86K Series.

lllegal option specified
Illegal option was specified.

Internal module not specified
No internal program file was specified in a link.

VMC-101

Visual Memory Unit (VMU) Environment Variables

Loading address multiple assignment
An attempt was made to assign different objects to the same address.

No such file or directory
Specified file not found.

Program file specified
A program file was specified for the creation of an external ROM data file.

Public symbol multiple define
Duplicate definition of a public symbol.

Segment size exceeds
An attempt was made to link objects that would exceed the segment size.

WORLD attribute unmatched
A program file with the WORLD INTERNAL or WORLD EXTERNAL attribute co-exists with a data
file that has the WORLD EXTERNAL_DATA attribute.

2. Non-Fatal Errors

If a non-fatal error is detected while the linking process is in progress, L86K displays a message on the VDT and
continues processing. The error messages that are displayed by L86K are listed below.

Cannot access file: LC86K.LIB
The library LC86K.LIB, in which the reserved words are registered, does no exist. LC86K.LIB is a library
in which reserved words for each chip are registered, and must reside in either the current directory, or
in the directory that is pointed to by the environment variable PATH.

Module not in library
Reserved words for the target chip are not registered in LC86K.LIB.

Operand data overflow
The value that was described in an operand field within the prescribed range. (The range differs
according to the statement.)

Operand data type mismatch
An illegal segment symbol was specified in the operand field.

VMC-102

Sega@'Dreamcast.

13. Program Startup

There are two methods for starting up LIB86K and passing the necessary information to LIB86K.

1) Passing all of the information to LIB86K through the command line
2) Passing all of the information in response to the prompts that are displayed by LIB86K

Regardless of the method that was used to start up LIB86K, it can be forcibly terminated by either pressing CTRL+C
(by holding down the CTRL key while pressing the C key) or pressing the STOP key.

1. File Name Specification
1.1 MS-DOS Version File Specification

Upper-case and lower-case letters can be used in any combination in a file name that is specified in the command
line when starting up LIB86K, or in a file name that is given in response to the LIB86K prompts. For example, the
following three file names are all equivalent:

sample.obj.
SAmMpIE.OBJ.
SAMPLE.OBJ

In addition, when a file name is specified with no extension, LIB86K uses the following default file name extensions.

File format Default extension

Library file LIB
Object file .0BJ
List file None

VMC-103

Visual Memory Unit (VMU) Environment Variables

1.2 UNIX Version File Specification

A distinction is made between upper-case and lower-case letters in a file name that is given in response to the
LIB86K command prompts. For example, the following three file names are all different:

sample.obj.
SAmMpIE.OBJ.
SAMPLE.OBJ

In addition, when a file name is specified with no extension, LIB86K uses the following default file name extensions.

File format Default extension

Library file lib
Object file .0bj
List file None

2. Specifying Parameters Through the Command line
LIB86K[option] oldlibrary[commands] [, [listfile] [, [newlibrary]]] [;]e

1) option field
The only option that can be specified in the option field is /?.
2) oldlibrary field

This field specifies the library that is the target of processing. This field cannot be omitted. If the extension of the
library file is .LIB, the extension may be omitted. However, if the user's library file has an extension other than .LIB,
the extension may not be omitted. Because there is no default library file, if no library file is specified, an error
message is output. Furthermore, if a non-existent file name is specified, the following prompt is displayed:

Library file does not exist. Create? (y/n)

If creating a new library file, input "Y". If any character other than "Y" is input, processing is interrupted and control
returns to the OS. If a semicolon is appended at the end of the name of an existing library file, a library conformity
check is performed. The conformity check determines whether all of the modules in the library can be used. If an
error is detected, an error message is output.

"monnon

The commands field is used to specify command symbols such as "+", +","*" and "-*" as instructions for
program operation. Multiple operations can be performed by specifying one object file name or module name with
one command. If a command is omitted, changes cannot be made to a library file.

VMC-104

13. Program Startup

Command Meaning

+: This is the module addition command symbol. The module in the object file that is
described immediately after the command symbol is added at the end of oldlibrary. It is
not possible to link libraries together.

- This is the module deletion command symbol. The module that is specified immediately
after the command symbol is deleted from oldlibrary.

-+ This is the module replacement command symbol. The module in the object file that is
described immediately after the command symbol is substituted for a module in oldlibrary.
Module replacement is accomplished by deleting the currently existing module and then
adding the module with the same name at the end of the library.

This is the module copy command symbol. The module that is specified immediately after
the command symbol is searched for in oldlibrary, and then the contents are written to an
object file with the same name. The copied module remains in oldlibrary.

- This is the module move command symbol. The module that is specified immediately after
the command symbol is searched for in oldlibrary, and then the contents are written to an
object file with the same name. This is the same operation as the module copy operation,
except that the module that was copied does not remain in oldlibrary.

4) listfile field

The Listfile field specifies the file that outputs the public symbol list, external reference symbol list, and the module
name list in the library. If this field is omitted, the data is displayed on the standard output.

5) newlibrary field

The newlibrary field specifies the name of the library that is the output target. If this field is not specified, the
extension of oldlibrary is changed to .BAK before beginning processing, and then the data in oldlibrary is saved as
newlibrary.

VMC-105

Visual Memory Unit (VMU) Environment Variables

Option Specification

/?

Specifying this option outputs a help message on the screen. In the UNIX version, this option must be
enclosed in double quotation marks.

Command Line Execution Examples

Example 1:

Example 2:

Example 3:

Example 4:

LIB86K HOME-+ROM,; o

In this example, a module named ROM is deleted from the library named HOME, and the
object file ROM.OBJ is added to the end of the library.

LIB86K HOME-ROM+ROM,; o
LIB86K HOME+ROM-ROM; o

In the top line above, a module named ROM is deleted from the library named HOME, and
then the object file ROM.OB]J is added to the library. In the bottom line,
however, the object file ROM.OB]J is added to HOME and then the ROM
module is deleted. Therefore, in the case of the top line, a module named ROM
remains in the library, while in the case of the bottom line, there is no module
named ROM remaining in the library. This is because the processing is
performed in the same sequence in which the command symbols are specified.

LIB86K HOME,LCROSS.PUBg

In this example, a conformity check is performed on HOME.LIB and then a cross-reference
file named LCROSS.PUB is created.

LIB86K FIRST -*STUFF*MORE,,SECONDg

This example copies the module STUFF from the library FIRST.LIB to a file named
STUFE.OBJ and then deletes the module STUFF from the library. The module
MORE is also copied from the library to MORE.OB], but also remains in the
library. The new library is SECOND.LIB, and is the same as FIRST.LIB except
that the STUFF module has been deleted.

VMC-106

13. Program Startup

3. Operation Using the Prompts

If only LIB86K is input on the command line, as shown below, then each field can be input one at a time in response
to the prompts that are displayed on the screen.

LIB86K[option]a
For LIB86K , the following fields are displayed one at a time:

Library name:

Operations:

List file:

Output library:
As the prompts are displayed one at a time, LIB86K waits for input form the user. As each item is input, the next
prompt is displayed and then LIB86K waits for input again.

Each of the responses to the prompts correspond to each of the fields in the command line. The correspondence
between the prompts and the command line fields is shown below.

Prompt Command line field

Library name: This corresponds to the oldlibrary field. If a semicolon (";") is input after the file name, a
library conformity check is performed.?

Operations: This corresponds to the command field.
List file: This corresponds to the listfile field.
Output library: This corresponds to the newlibrary field.

Prompt Line Expansion

If an ampersand (&) is input at the end of the input at the Operations prompt, the Operations prompt is
displayed again, allowing additional processing to be specified.

Default Response

Default values are set for items other than the Library name prompt. The default setting can be selected by
inputting either a semicolon or just pressing the Return key. The defaults for each prompt are shown below.

Prompt Default value

Operations: Makes no changes to the library file.

List file: Selects the standard output for the list file output destination. No list file is generated.
Output library: Sets the original name as the output library file name.

VMC-107

Visual Memory Unit (VMU) Environment Variables

VMC-108

Sega@ Dreamcast

14. Errors

The error messages are explained below.

cannot access file
LIB86K cannot open the specified file.

cannot create new library
Either the disk or root directory is full, or else the library file is a read-only file that is write-protected.

cannot rename old library

Because the .BAK version is read-only and is protected, LIB86K cannot rename an old library to a name
with the .BAK extension.

comma or newline missing
In the command line, an expected comma or Return was not found.

error reading from library
LIB86K can not read data from the specified library file.

error writing to new library
The disk or root directory is full.

insufficient memory
Could not allocate the memory needed in order to run LIB86K.

interrupted by user
The user halted LIB86K by pressing CTRL+C.

invalid library header
The input library file has an invalid format.

module not in library; ignored
The module specified for replacement was not found in the library.

output-library specification ignored
In addition to a new library name, an output library was specified.

syntax error : illegal file specification
A command operator such as the minus sign was specified without a module name.

VMC-109

Visual Memory Unit (VMU) Environment Variables

VMC-110

Sega@ Dreamcast

15. Cross-Reference List

The cross-reference list format is shown below.

LC86K series Library Analysis List PAGE 1
Tue Feb 18 13:56:12 1992
Number of Module count: 2 Library create date: Wed Oct 16 15:34:53 1991
Library update date: Tue Feb 18 10:55:23 1992
Including Modules: 1 2
Module name: 1 Source name: 1.ASM
Assembler name: SASM 1.0 Assembly date: Tue Oct 22 15:54:43 1991

Target chip name: LC866232
Including Public symbols:
Including External symbols:
test sample labell

Module name: 2 Source name: 2.ASM
Assembler name: SASM 1.0 Assembly date: Tue Oct 22 15:54:43 1991
Target chip name: LC866232
Including Public symbols:
Including External symboals:
labell label2 label3

VMC-111

Visual Memory Unit (VMU) Environment Variables

VMC-112

Sega@'Dreamcast.

16. Program Startup

1. File Name Specification

Upper-case and lower-case letters can be used in any combination in a file name that is specified in the EVA2HEX
command line. For example, the following three file names are all equivalent:

sample.eva
SAmMpLE.EVA
SAMPLE.EVA

In addition, when a file name is specified with no extension, EVA2HEX uses the following default file

name extensions.
File format Default extension

EVA file EVA

HEX file HEX

2. Parameter Specification Method
EVA2HEX][option] EVA_filename [HEX_filename]a
1) option field
This field specifies the options described in section 1.3. Specify the option field after the command name.

2) EVA_filename field

This field specifies the name of the file after debugging is completed (the file with the ".EVA" extension).
(This file is known as the EVA file.)

3) HEX_filename field

This field specifies the name of the Intellec HEX format file. (This file is known as the HEX file.) If the
HEX _filename is omitted, it is identical to EVA_filename. If an external ROM data file is converted, the
extension is .HOO.

* EVA2HEX does not support prompts for parameter input.

VMC-113

Visual Memory Unit (VMU) Environment Variables

Startup Example 1: A>EVA2HEX PROG012¢
EVA file >> HEX file, external ROM HEX file
PROGO012.EVAPROGO012.HEX, PROG012.H00

Startup Example 2: A>EVA2HEXe
The following message (simple help) is displayed.
SANYO LC86000 Series EVA-file to HEX-file generator V1.00A
Copyright (C) SANYO Electric Co.,Ltd. 1992
Usage: eva2hex [optiona] EVA filename [HEX filename]

Optiona: /I ... information on/ off (default: on)

3. Option Specification

nonn

The option begins with "/". "-" cannot be used.
Option
/1

The /I option disables the display (on the VDT) of information on the progress of the conversion process when
converting an EVA file to a HEX file. If this option is not specified, information on the progress of the conversion
process is displayed while conversion is in progress.

Monitor Display Example:

SANYO LC86000 Series EVA-file to HEX-file genetator V1.00A
Copyright (C) SANYO Electric Co.,Ltd. 1992

EVAfil e nane: A. eva 4—— EVAfile
ROM dat a packed: FF (hex) €4—— Default data

Chi p nane: LC868016 4— Model nane

ModuLe nane: (A) Internal CSEG (In) 0000 - 0063 records: 0007

ModuLe nane: |B| Internal CSEG (In) 0064 - 00DB records: 0008
—p| ModuLe nane: \C) Internal CSEG (In) 00DC - 02DD records: 00033

CCGROM dat a bLock records: 00256
Optional data bLock records: 00016

Program nane |inked
to the above EVA file

Addresses and record | ength
of specified programs

Record | engths of each type of data

Conversion progress information

VMC-114

Sega@ Dreamcast

17. Errors

1. Fatal Errors

If a fatal error is detected while EVA2HEX is running, EVA2HEX displays a message on the VDT and interrupts
processing. The error messages that are displayed by EVA2HEX are listed below.

Error message: Fatal error :messages.....
‘filename’ File not cLose.

Cannot close file filename.
‘filename’ File not create.

Cannot create file filename.
‘filename’ File not open.

File filename not found.
‘filename’ not EVA file format.

File filename is not an EVA-format file.
filename’ user disk full.

Disk became full while writing filename.
Chipname undefined.

Model name in EVA file is incorrect.
ROM size over. (ROM size: XXXX)

The program size exceeded the ROM size.
Tablename allocation error.

Memory allocation for tablename failed due to insufficient memory.

VMC-115

Visual Memory Unit (VMU) Environment Variables

VMC-116

Sega@ Dreamcast.

Visual Memory Unit (VMU)
VMU-BIOS Specifications

Sega@ Dreamcast.

1. VMU-BIOS Specifications

1. Outline

This document describes the System BIOS functions of the backup memory system “VMU” designed for the
new-generation game machine (preliminary).

2. VMU Outline

“VMU” stands for “Visual Memory Unit”. The VMU is a backup memory cartridge equipped with a liquid-crystal
display and operation buttons.

When connected to a dedicated controller in the new-generation game machine (preliminary), the VMU serves as a
file backup memory and it can also display game sub screens on its LCD.

When not connected to the new-generation game machine, the VMU can function as a stand alone unit that allows
displaying and deleting stored files. Two VMU units can be connected to allow file transfer.

Another application of the VMU is as a highly portable miniature game machine, using simple application
programs downloaded from the new-generation game machine to the VMU. (Such application programs are called
“user programs”.)

2.1 System-BIOS Outline

The functions described above are implemented by several programs that are contained in an internal ROM on the
VMU. These programs are called “OS programs”. OS programs consist of subroutines which can be called by user
programs. Two program types (system program and header) are used to call up subroutines. The entire system
consisting of OS programs, system programs, and headers is called the “System-BIOS”.

OS program subroutines are divided into subroutines that serve mainly for accessing the flash memory and
subroutines for calculating time data. Application developers can use the System-BIOS to call these subroutines in
user programs. This makes it easy for application developers to use VMU functions without having to deal with
detailed VMU specifications.

VMB-1

1. VMU-BIOS Specifications

3. Memory Space

VMU uses two types of memory space: internal memory space and external memory space.

Internal memory space consists of the internal program area and internal RAM. The external memory space is made
up of flash memory.

The internal program area is 64 kilobytes and contains the OS programs and system programs. User programs can
reference this area as needed. The internal program area is allocated as shown in the memory map in Fig. 3.1. (For
information on OS programs and system programs, please refer to section 5.)

The flash memory space is 128 kilobytes, divided into two banks of 64 kilobytes each. Bank-0 is the program area
and bank-1 the data area. User programs are stored in the program area. A memory map of the flash memory is
shown in Fig. 3.2. (For information on the internal and external program area and BIOS usage, please refer to section
4 and the following sections.)

The internal RAM has a memory space of 1222 bytes, divided into the following four sections: main RAM, special
register area, LCD video RAM (XRAM), work RAM (VTRBE).

The main RAM is 512 bytes, divided into two banks of 256 bytes each. Because bank-0 is reserved for the System
BIOS, user programs are generally prohibited from writing to bank-0 (except for certain cases listed in appendix 1).

The special register area is allocated to VMU specific registers (timer register, LCD control register, etc.). For
information on registers and corresponding addresses, please refer to the VMU user's manual.

The LCD video RAM (XRAM) consists of three banks which serve for storing LCD image data. (For information on
RAM usage, please refer to the VMU user's manual.)

The work RAM is 512 bytes and serves as a buffer when VMU carries out data transfer according to the Maple Bus
protocol. When the VMU is operating as a standalone unit and data transfer according to the Maple Bus protocol
is therefore not being carried out, user programs can use this area.

A memory map of the internal RAM is shown in Fig. below. (The access procedure for the work RAM differs from
normal RAM access. For information, please refer to the VMU user's manual.)

VMB-2

Visual Memory Unit (VMU) VMU-BIOS Specifications

000h

OFFh
100h

17Fh
180h

1FFh

00000000h

3FFFh

System programs
16K byte

Reserved area

E000h

EFFFh

0S programs
4K byte

FFFFh

Reserved area

Figure 1.1 Internal program space

Bank 1
Figure 1.2 Flash memory space
Main RAM Main RAM
Bank 0 Bank 1
Special register area
SFR
LCD video RAM LCD video RAM LCD video RAM
XRAM-0 XRAM-1 XRAM-2

*Bank 0 of the main RAM is reserved for system programs. Except for special cases, user programs cannot use this area.

Figure 1.3 Internal RAM space

000h

1FFh

Work RAM

VTRBF

VMB-3

1. VMU-BIOS Specifications

4. System BIOS Functions

This section explains the System BIOS functions provided for VMU.

User programs running on the VMU can access System BIOS functions by calling special subroutines. However,
there are certain limitations on which System BIOS functions (subroutines) can be called by user programs.

The following functions are provided by the System BIOS.

® System initialization

— VMU initialization function

¢ VMU execution mode selection

VMU comes with the following three execution modes:

1) Game data and user program management and editing
2) User program startup and return

3) Time display and adjustment

For details on execution mode selection, please refer to appendix 2.
* Subroutines
— Flash Memory Access Functions

1) Flash Memory Page Data Readout
2) Writing to Flash Memory
3) Flash Memory Verify

— Clock Function

1) Clock Countup Timer

For details on VMU initialization, please refer to section 6. For details on subroutines, please refer to section 7.

VMB-4

Visual Memory Unit (VMU) VMU-BIOS Specifications

5. System BIOS Data and Memory Allocation

VMU comes with certain programs for using the System BIOS functions. These programs can be classified into the
following three types:

1) OS programs
2) System programs
3) Header

5.1 Program Layout

The actual programs are arranged in memory as follows.

Internal memory space External memory space
0000h
System programs Header
0100h
(preliminary)
Bank 0 Bank 1

Reserved area

Program/Data area Data area

0S programs

Reserved area

FFFFh

Figure 1.4 VMU memory map
Details are explained below.

System programs

System programs are required for using the VMU as a memory device. Major system programs are the file
management system, clock functions, and programs for data transfer according to the Maple standard. A
program for calling subroutines from the external memory space (user programs) is also located here. (A
flow diagram showing the call-up process of specified subroutines is shown in section 5.2.)

The VMU initialization program is located in this area. For details on the initialization program, please refer
to section 6.

VMB-5

1. VMU-BIOS Specifications

OS programs

The VMU program subroutines are located here. For information on subroutines that can be called by user
programs, please refer to section 7.

The method of accessing to this area is also shown in section 5.2.

Header

Contains information about internal memory space processing routines and return procedures from the
internal memory space. Because this area also contains interrupt vectors for internal use by user programs,
its source code is being made available to application developers. It also contains information about return
from user programs to the mode selection screen. User programs must use this information to return to the
file management system. (For details on mode selection screen, please refer to Appendix 2.) Within the
given specifications, the area content may be modified by developers.

5.2 Subroutine Call Flow

This section explains the operation flow that occurs when a user programs calls OS program subroutines and then
returns to the user program. An actual flow diagram is shown in Fig. below

External memory space Internal memory space
(header, user program) (system program, 0S program)
LABEL MNEMONIC LABEL MNEMONIC
WORLD EXTERNAL 2 WORLD INTERNAL
OTHER SIDE SYSBOL os_call OTHER SIDE SYSBOL os_ret
PUBLIC os_ret PUBLIC os_call
jmp main os_call: 3
)y os_int: iy callf os_main
change os_call /// change os_ret ¢——
:p _head_ret:
6 1 RET return to main / os_main:
os_ret: Il (actual OS program) 4« 4
——— br_hrad_ret 5 //
main: ret
callf os int start call flow

Figure 1.5 OS program call flow

VMB-6

Visual Memory Unit (VMU) VMU-BIOS Specifications

Label processing description

* external memory space

main: Main program in user program
os_int: This subroutine shifts processing to internal memory space.

In the example, processing passes to the internal memory space when the
subroutine is called, and the main program resumes upon return from the internal
memory space. This subroutine is included in the header.

os_ret: Subroutine for returning to external memory space.

The “change” command serves to return to this label from the internal memory
space. After returning, processing moves to the interrupt return routine in
the header.

¢ internal memory space

os_call: Serves to call an OS program and return to the external memory space.

After the OS program subroutine has executed, processing returns to the external
memory space.

0s_main: Main OS program which executes the various subroutines.

The sample flow shown in Fig. 5.2 assumes that a user program is executing in the external memory space.

1

2)

3)

4)

5)

6)

When wishing to use an OS program during execution of an external program, call the “os_int”
subroutine. Interrupt processing routines which need to jump to an OS program contain an “os_int”
subroutine.

The “change” command in the os_int subroutine jumps to the OS program call routine (os_call) placed
in the internal program area.

The OS program call routine calls the actual OS program subroutine (os_main). From this point on, the
OS program starts to execute.

When the OS program execution is finished, the RET command jumps to the next address of the call
command in the OS program call routine. In the OS program call routine, the call command is always
followed by a change command which moves processing to the external program area.

After returning from the OS program subroutine, the change command passes processing over to the
external program. This program contains a subroutine (os_ret) that is called when returning from an
internal program. The subroutine position is fixed. These programs are distributed to application
developers as a library. Such programs are called headers. (The sample program contains the headers
“os_int” and “os_ret”.)

From the above described external program return routine, processing returns to the “os_int” subroutine
and then by the RET command to the main program (main).

Note: Label names in the sample program are all preliminary. Label names will be different in the actual
System-BIOS.

* 4

change” command

The “change” command serves to move processing from the external memory space to the internal memory
space, or from the internal memory space to external memory. By executing this command, a program that
is currently executing in internal memory space (or external memory space) moves to external memory
space (or internal memory space). The program counter is reset to the specified label (or address).

vVMB-7

1. VMU-BIOS Specifications

5.3 Returning From User Program to Mode Selection Screen

When a user program is executing, if the user presses the MODE button on VMU, the user program will terminate
immediately and processing will return to the mode selection screen.

This section explains the operation flow from user program to the mode selection screen when the MODE button
is pressed while a user program is executing.

External memory space Internal memory space
(header, user program) (system program, OS program)
LABEL MNEMONIC LABEL MNEMONIC
WORLD EXTERNAL WORLD INTERNAL
OTHER SIDE SYSBOL int_ret PUBLIC int_ret
jmp main int_ret:

jmp mode_main ——
:p user_end /

; (Saving of data by user program) mode_main: /

_change int_ret . (mode selection screen program)
main:

I~ interrupt generated ret
when MODE button pressed
jmp main

>3

Figure 1.6 Operation flow of returning to mode selection

Label processing description

* external memory space
main: Main program in a user program.

A user program must contain description to allow for pressing of the MODE button to
jump to the OS program return subroutine.

user_end: Subroutine to terminate a user program in execution and move processing to the OS
program. If data in the executing user program needs to be saved, then be sure to include this
information in the user program so that the subroutine will save it before returning to the OS program.
(The OS program does not keep data.)

¢ internal memory space

int_ret: Return routine to serve as entry to returning to the internal memory space when a user
program terminates. When processing returns to the internal memory area, the mode selection
program will start.

mode_main: Mode selection program.

For details on mode selection specification, please refer to Appendix 2.

VMB-8

Visual Memory Unit (VMU) VMU-BIOS Specifications

The sample program flow in Fig. 5.3 assumes the user program is executing in the external memory space.

1) While an external program is executing, pressing the MODE button will jump to the user_end
subroutine. In the user_end subroutine, the “change” command will shift processing to the internal
memory space. Therefore, if data in the executing user program needs to be saved, then be sure to save
it before executing the “change” command.

2) When program control jumps from the user program to the user_end subroutine, the “change”
command inside the user_end subroutine will shift processing to the mode_ret subroutine in the
internal memory space.

3) When processing moves from the external memory space to the mode_ret subroutine, the mode
selection program will start.

* 4

change” command

The “change” command serves to move processing from the external memory space to the internal memory
space, or from the internal memory space to external memory. By executing this command, a program that
is currently executing in the internal memory space (or external memory space) moves to the external

memory space (or internal memory space). The program counter is reset to the specified label (or address).

5.4 VMU Initialization

This section explains the initialization that is performed at VMU startup.

The VMU is automatically initialized in the following cases.

1. VMU is connected to new-generation game machine, and power to new-generation game machine is
turned ON

2. Reset switch on VMU is pressed

3. Battery is inserted in VMU

Initialization comprises the following steps.

1) Clear main RAM
e Write ‘00h’ to entire main RAM area (bank 0, bank 1).

* Initialization does not change XRAM values.

All registers are initialized by a hardware reset first, and then again by software. For information on the
register values after a hardware reset, please refer to the VMU user's manual.

2) Set system clock and cycle time
* Switch system clock to sub-clock (crystal quartz oscillator).

* Set cycle time to 1/6 system clock.
(The cycle time is used as reference for command execution. For details, please refer to the VMU
user's manual.)

3) Set base timer
* Select 14-bit base timer mode.
* Switch base timer clock to sub-clock (crystal quartz oscillator).

* Enable base timer 0 interrupt and start counting.

For details regarding base timer 0 operation, please refer to the VMU user's manual.

VMB-9

1. VMU-BIOS Specifications

The base timer 0 is used by the clock function. For details regarding the clock function, please refer to section 7.3.

4) Set master interrupt
* Enable master interrupt.

(The master interrupt flag controls enabling / disabling of all interrupts with “High level” and “Low
level” priority.)

5) Set LCD driver

® Activate LCD controller.

e Set LCD clock to 1/2 of LCD driver input clock.
e Set LCD start address to’000h” of XRAM.

* Set character register.

* Set time allocation register.

® Set LCD to ON.

6) Setport1

® Set port 1 to all-bit input.

e Set bit 7 of port 1 to audio output pin.

* After initialization, bit 7 of port 1 is set to input mode. Therefore a user program will need to again select
the output mode.

* Set bit 5 — bit 0 of port 1 (serial interface for VMU) to synchronous operation. For details regarding the
synchronous serial interface, please refer to the VMU user's manual.

7) Setport3

e Pull up all bits of port 3.

¢ Set port 3 to all-bit input.

* Enable interrupt triggering and HOLD mode cancel by port 3.
¢ Enable interrupt trigger request by port 3.

8) Initialize Maple Bus interface circuit

e Initialize Maple Bus interface circuit.

9) Set work RAM

* Enable use of work RAM.

VMB-10

1. VMU-BIOS Specifications

6. Subroutine Description

This section describes the subroutines available in the System BIOS.

6.1 Flash Memory Access Functions

The following subroutines are available for flash memory access.

1) Flash Memory Page Data Readout
Read 128 bytes of data from the flash memory space.

2) Write to Flash Memory
Write 128 bytes of data to the flash memory space.

3) Flash Memory Verify
Verify data written to the flash memory.

* When accessing the flash memory, the main clock in use must be switched to 600 kHz. For details, please
refer to the next section.

Precautions for Using Flash Memory Access Subroutines

When accessing the flash memory space, the following points must be observed.
VMU uses three types of system clock as reference for command execution (see Fig. 7.1).

When VMU is operating as a standalone unit, the quartz oscillator clock (32 kHz) will normally be used.
However, for accessing the flash memory, the clock must be switched to the internal (RC) oscillator (600
kHz) before calling a flash memory access subroutine. After subroutine execution is completed, switch back
to the previously used clock.

For information on the timing for clock switching, see Fig. below.

System clock source Oscillation frequency | Command cycle time
Ceramic (CF) oscillator 6 MHz 1.0us
Internal (RC) oscillator 600 kHz 10.0 us

Quartz (X'TAL) oscillator 32 kHz 183.0 us

Figure 1.7 System clock table

VMB-11

Visual Memory Unit (VMU) VMU-BIOS Specifications

C External memory)

‘ User program ’

C Internal memory space

)

0S program

Call OS call routine

N\

Return to user program

Call OS routine starts

Change clock to 600 kHz

Call 0S program

N

Return from 0S program |(

Change clock to 32 Khz

Call OS Routine ends

/

\I Subroutine execution starts

/ Subroutine execution completed

Figure 1.8 Flow diagram for clock switching during flash memory access

32 kHz clock
600 kHz clock

VMB-12

1. VMU-BIOS Specifications

Flash Memory Page Data Readout

Subroutine name:

Arguments:

Return value:
Function:

Description:

fm_prd_ex (org 0120h)
High-order start address for flash memory read: fmadd_h (RAM bank-1 07Eh)

Low-order start address for flash memory read: fmadd_1 (RAM bank-1 07Fh)
Bank address for flash memory read: fmbank (RAM bank-1 07Dh)
Read data (128 bytes): 080h - OFFh of RAM bank-1

Read one continuous page of data (128 bytes) from specified address

By calling this subroutine, a program can read one page of data (128 bytes) from
flash memory.

Before using this subroutine, the following settings must be made.
* Select RAM bank to use
(1) Select RAM bank-1 (Set bit 1 of PSW to “1”)
For information on the PSW register, please refer to the VMU user's manual.
e Set start address for flash memory read
(2) High-order address (8 bit): set to fmadd_h (07Eh of RAM bank-1)
(3) Low-order address (8 bit): set to fmadd_1 (07Fh of RAM bank-1)
e Select flash memory bank to read
(4) Select flash memory bank-0
(Set 07Dh of RAM bank 1 to’00h’)

* If another value is set, normal operation is not assured.
The read data are written to 080h - OFFh of RAM bank-1.

When making read settings, observe the following points.

* Data extending to 2 pages cannot be read. The read start address must therefore
always be set to the beginning of each page.

The start address of each page can be calculated according to the following equation:
start address value (2 byte) = 080h x page number (0 - 511)

(Because readout is performed in single-page units, bit 0 — bit 6 of the lower-level
address must always be set to “0”. If an address other than the start address of a page
is set, normal operation is not assured.)

* The read-out data overwrite any previous content of the RAM.

* Register values after subroutine completion

VMB-13

Visual Memory Unit (VMU) VMU-BIOS Specifications

*fmadd_h=AOh
When fmadd_l is set to 80h (page no. 321)

000h

FFFh
000h

080h

OFFh

Note that the following (memory) registers will have different values before the
subroutine is called and after the subroutine has completed:

* ACC (accumulator)

e TRL (table lookup register lower byte)

e TRH (table lookup register higher byte)

¢ r0 (RAM indirect address register)
*About pages

Beginning at the top, the flash memory space is subdivided into 128-byte units called
pages. Flash memory is managed in page units. Because 1 bank of the flash memory

space is 64 kilobytes, it has 512 pages.

“fm_prd_ex” execution is shown in Fig. 7.3.

Flash memory space

MainRAM

Bank 0

A080h

128 byte DATA Bank 0
A100h ”

-

e

FFFh

128 byte DATA i

0000h
Bank 1

Figure 1.9 Execution of fm_prd_ex

VMB-14

1. VMU-BIOS Specifications

Writing to Flash Memory

Subroutine name:

Arguments:

Return value:

Function:

Description:
continuous

fm_wrt_ex (org 0100h)
High-order start address for flash memory write: ~ fmadd_h (RAM bank-1 07Eh)
Low-order start address for flash memory write: fmadd_1 (RAM bank-1 07Fh)
Bank address for flash memory write: fmbank (RAM bank-1 07Dh)
Flash memory write data (128 bytes): RAM bank-1 080h - OFFh
Data write end detection algorithm:

Bit 0 of RAM bank-1 07Ch

(toggle bit method (0)/ data polling method (1))
result of write: ACC (accumulator)

(Normal termination: 00h. Abnormal termination: FFh)

Write one continuous page of data (128 bytes) to the flash memory, starting at the
specified address

By calling this subroutine, a program can write a page of data (128 bytes) to a

area in the flash memory, starting at the specified address.

Before using this subroutine, the following settings must be made.

* Select RAM bank to use
(1) Select RAM bank 1 (Set bit 1 of PSW to “1”)
* Prepare data to be written to flash memory
(2) Store data to be written to flash memory in RAM bank 1, 080h - OFFh
e Select flash memory bank to read
(3) Select flash memory bank 0
(Set 07Dh of RAM bank 1 to’00h’)
* If another value is set, normal operation is not assured.
* Set address for accessing flash memory
(4) High-order address (8 bit): set to 07Eh of RAM bank-1
(5) Low-order address (8 bit): set to 07Fh of RAM bank-1
* Specify data write end detection algorithm
(6) Set data write end detection algorithm in 07Ch of RAM bank-1, as follows.
(6-1) Use toggle bit method: set 07Ch to 00h
(6-2) Use data polling method: set 07Ch to 01h
* If another value is set, normal operation is not assured.
When making write settings, observe the following points.

e fm_wrt_ex is a subroutine specifically for user programs. This subroutine can
write only to the area where the user program is located. For this reason, be sure
to secure an area within the user program before performing the data write.

* Data extending to 2 pages cannot be written. The write start address must
therefore always be set to the beginning of each page.

The start address of each page can be calculated according to the following equation:
start address value (2 byte) = 080h x page number (0 - 511)

VMB-15

Visual Memory Unit (VMU) VMU-BIOS Specifications

(Because writing is performed in single-page units, bit 0 - 6 of the lower-level address must
always be set to “0”. If an address other than the start address of a page is set, normal
operation is not assured.)

For information on pages, please refer to section 7.1.2.

* Register values after subroutine completion

Note that the following (memory) registers will have different values before the subroutine
is called and after the subroutine has completed:

¢ ACC (accumulator)
* B (B register)

¢ C (C register)

 TRL (table lookup register lower byte)
* TRH (table lookup register higher byte)

* 10 (RAM indirect access register)

fm_wrt_ex execution is shown in Fig.7.4.

*fmadd_h=A0Oh

When fmadd_l is set to 80h (page no. 321)

MainRAM

000h

FFFh

Bank 0

Bank 1

080h

OFFh

128 byte DATA

7

A080h

A100h

e

FFFh
0000h

Flash memory space

128 byte DATA

S

Figure 1.10 Execution of fm_wrt_ex

Bank 0

Bank 1

VMB-16

1. VMU-BIOS Specifications

Flash Memory Verify

Subroutine name:

Arguments:

Return value:

Function:

fm_vrf_ex (org 0110h)

High-order address flash memory address for verify start: fmadd_h (RAM bank 1 07Eh)
Low-order address flash memory address for verify start: fmadd_l (RAM bank 1 07Fh)
Flash memory bank address for verify operation: fmbank (RAM bank 1 07Dh)
Data (128 bytes) for verify operation: RAM bank 1 080h - OFFh
Verify result: accumulator (ACC) (normal end: 00h?error end: other than 00h)

Serves to verify whether data were written correctly to flash memory. For use after writing

data to flash memory with fm_wrt_ex (see section 7.1.4).

Description:

This subroutine compares the 128 byte data specified when calling fm_wrt_ex with the
data actually written to flash memory. Therefore the subroutine can only be used
immediately after the fm_wrt_ex subroutine was called.

When calling this subroutine, the same arguments as used for the preceding fm_wrt_ex
must be specified. If different arguments are specified, data verify will not be carried
out properly.

After calling this subroutine, if all 128 bytes of data were found to match, 00h will be set
in ACC, and the routine returns. If a data mismatch was detected, a value other then 00h
will be set in ACC, and the routine returns.

* Register values after subroutine completion

Note that the following (memory) registers will have different values before the
subroutine is called and after the subroutine has completed.

¢ TRL (table lookup register lower byte)
* TRH (table lookup register higher byte)

* 10 (RAM indirect access register)

fm_vrf_ex execution is shown in Fig. below.

VMB-17

Visual Memory Unit (VMU) VMU-BIOS Specifications

*fmadd_h=A0
fmadd_I=80 * (page no. 321)

Fmbank= 01

000h

FFFh
000h

080h

OFFh

Flash memory space

MainRAM
Bank 0
A080h
128 byte DATA
A100h v
Bank 1
128 byte DATA
\ FFFh
0000h
Comparedata contents
y 4 h
Data match / \ Data do not match
ACC ACC

00h

00h setin ACC

Not 00h

Value other than 00h set in ACC

Figure 1.11 Execution of fm_vrf_ex

Bank 0

Bank 1

VMB-18

1. VMU-BIOS Specifications

6.2 Clock Function

The clock functions implemented in VMU are as follows.

Time data automatic update

Clock Countup Timer

Subroutine name:
Arguments:

Return value:

Function:

Description:

timer_ex

None

Year: year_h (RAM bank 0 017h, 18h)
Month: mon_h (RAM bank 0 019h)
Day: day_h (RAM bank 0 01Ah)
Hour: hour_h (RAM bank 0 01Bh)
Minute: min_h (RAM bank 0 01Ch)
Second: sec_h (RAM bank 0 01Dh)

* The year data are configured as 2 bytes, with the higher-level in byte in 17h and the
lower level byte in 18h. Because “year_h" is assigned to RAM bank, 017h, address 018h
can be accessed by specifying “year_h+1".

When the subroutine is called, it obtains the time data and places them in the specified
location in RAM bank 0. (For information on the specified location, please refer to
Appendix 1.)

This subroutine is a time counter using the base timer interrupt. To enable use of the
subroutine, the following settings for the base timer interrupt must be made.

¢ Base timer interrupt settings

This subroutine uses only the base timer 0 interrupt. The base timer interrupt is to be
set as shown below.

(1) Base timer count stop (BTCR 6 bit ='0")
(2) 14 bit base timer mode selected (BTCR 7 bit ='0)
(3) Sub clock used as base timer clock (ISL 4 bit ='0)

(4) Base timer interrupt 0 enabled (BTCR 0 bit ="1")
(5) Base timer count start (BTCR 6 bit ="1")

Because the base timer 0 interrupt is used by the timer_ex subroutine, user programs
may not access this interrupt. Otherwise, normal operation is not assured.

This subroutine should be called after jumping to the interrupt vector of the base timer
interrupt 0 source. Also, be sure to clear the base timer 0 interrupt source (BTCR 1

bit ="0").

(If this is not performed, the clock function will not operate properly.)

All time data obtained by this subroutine are in hex format. Conversion into decimal
format must be performed by the user program.

VMB-19

Visual Memory Unit (VMU) VMU-BIOS Specifications

7. Automatic low battery detection function

Visual Memory comes with the ability to automatically detect low battery.

The following explains how this function works.

7.1 Automatic low battery detection flag

Visual Memory can automatically check the battery's power consumption and when necessary display a
low battery warning message on the screen. Gamedevelopers can use the automatic low battery detection

flag to enable ordisable this function.

The following describes how to use this function.

Register to use:

Register values:

How it work:

Explanation:

06Eh (Bank-0)
00h (enable the automatic low battery detection function)
FFh (disable the automatic low battery detection function)

(If any value other than the above ones is used, then normal operation
cannot be guaranteed.)

The automatic low battery detection function constantly monitors the
battery's voltage and if the voltage falls below a certain level it will
stop the current program, wait for 3 seconds, then display the battery
warning message on the screen.

The automatic low battery detection function consists of tasks from
detecting low voltage to displaying the low battery warning message.

When the automatic low battery detection flag is set to 00h,the
automatic low battery detection function is enabled and when the
battery is low it will display the low battery warning message,
regardless of the current task of Visual Memory. If the flag is set to FFh,
then the automatic low battery detection function is disabled.

When the user program is performing the following tasks, be sure to turn off the automatic low battery

detection function:

1. Communicating with another Visual Memory via the serial interface

2. Writing to the flash memory space

VMB-20

1. VMU-BIOS Specifications

VMB-21

Visual Memory Unit (VMU) VMU-BIOS Specifications

VMB-22

Sega@'Dreamcast

Visual Memory Unit (VMU)
Sound Development
Specifications

Sega@ Dreamcast.

1. VMU Sound
Development Specifications

1. VMU Sound Output Hardware Outline

VMU can use an internal timer (timer 1) to produce sound output.

The following two output methods are possible.

e 8-bit pulse generator output
* Variable bit length pulse generator output (9 - 16bits)

Both methods use the timer 1 circuit. Normally, the 8-bit pulse generator output method is used.

2. Sound Output Principle

This section describes the VMU sound output method.

VMU sound output uses timer 1.

VMA-1

1. VMU Sound Development Specifications

2.1 Timer 1 Outline

This section describes timer 1 that is used for VMU sound output.
Timer 1 incorporated in the VMU is a 16-bit timer with the following four functions.

Mode 0: 8-bit reload timer x 2 channels

Mode 1: 8-bit reload timer + 8-bit pulse generator
Mode 2: 16-bit reload timer

Mode 3: Variable bit length pulse generator (9 - 16bits)

Among these modes, VMU uses mode 1 for sound output.

For information on using the other modes, please refer to the VMU Hardware manual.

Timer 1 Block Configuration

This section describes the block configuration of timer 1.

A configuration diagram of timer 1 is shown in Fig. 2.1.
e Timer 1 lower level (T1L) - 1

This is an 8-bit reload timer using the cycle clock or cycle clock 1/2 signal as clock signal.

At the overflow of T1L, the T1IR data are reloaded. When TILRUN (T1CNT, bit6) is set to “0”, the TILR
data are transferred to T1L.

e Timer 1 lower level comparator (T1LC) - 2

This circuit consists of the 8-bit timer 1 lower level comparison data register (T1LC) and an 8-bit data
comparator circuit. The circuit compares the T1L and T1LC data.

e Timer 1 higher level (T1H) - 3

This is an 8-bit reload timer using the cycle clock or the T1L overflow as clock signal.

At the overflow of T1H, the THR data are reloaded. Reload also occurs when TIHRUN (T1CNT, bit7)
is reset.

e Timer 1 higher level comparator (TTHC) - 4

This circuit consists of the 8-bit timer 1 higher level comparison data register (TTHC) and an 8-bit data
comparator circuit. The circuit compares the TIH and TIHC data.

e Timer 1 control register (TICNT) ------ 5

Serves for T1 mode setting and interrupt control.

VMA-2

Visual Memory Unit (VMU) Sound Development Specifications

Comparison data ,
register (T1LC)
@
Comparator
1/2cycle clock ®
|—> — . |
Cycle clock »| Selector 8-bit counter (T1L) »[Puise generator] _, — Piezo beep
T 1 »| control circuit Port1 circuit
Reload register (T1LR) |« P P P
TILOVF [
Comparison data
register (TTHC)) 7/} 2;
®
Comparator
®
E Selector i 8-bit counter (T1L) |7
Reload register (TLR) i«
TILONG
T1HOVF
TILOVF |
®)
[[efs]efs]z]1]o] [7]s]s[e]s]2[1]o] [7[e]s]e]s]2]1]o]
T1CNT(118h) P1FCR P1DDR
Figure 1.1 VMU Timer 1 Block Diagram
Related Registers
The following registers are required for controlling timer 1.
¢ T1L (11Bh) Timer 1 lower level counter register
*T1LR (11Bh) Timer 1 lower level reload register
*T1LC (11Ah) Timer 1 lower level comparison data register
*T1CNT (118h) Timer 1 control register
o1 (114h) Port 1 latch register
*P1DDR (145h) Port 1 data direction register
*P1FCR (146h) Port 1 control register
*OCR (10Eh) Resonance control register

For details on the above timer, please refer to section 3.3 of the VMU Hardware manual.

VMA-3

1. VMU Sound Development Specifications

Table 1.1

Mode Setting

This section describes how to set timer 1 to the mode for VMU sound output (mode 1).

The following four registers are required for setting the mode.

TICNT (bit5: TILONG)
P1 (bit7: P17)

P1DDR (bit7: P17DDR)
P1FCR (bit7: P17DDR)

The register values for the modes are listed in the table below, along with the cycle clock used for
each mode.

Clock cycle TILONG P17FCR P17DDR

1 Teye 0 1 1 0

Time 1 Mode Setting

Tcyc in the table is the cycle clock.
To use the sound output capability of VMU, be sure to set the system clock to the sub-clock (32 KHz).
At other system clock settings, correct sound output may not be obtained.

The cycle clock is defined as follows.
System clock 32 KHz (Tcyc = 183.0 us)

For information on setting the system clock, please refer to the VMU Hardware manual.

* Problems when using other system clock settings

Besides the 32 KHz clock, the VMU can use a 600 KHz and 6 MHz system clock, but when the latter two
are selected, the following problems occur.

* 600KHz When the 600 KHz clock is selected, the output frequency tolerance will be -50%, +100%,
which will cause a wide fluctuation in the actual output sound.

* 6MHz When the 6 MHz clock is selected, power consumption will increase considerably,
resulting in a shorter battery life.

VMA-4

Visual Memory Unit (VMU) Sound Development Specifications

2.2 8-Bit Counter Mode

This section describes VMU sound output when using 8-bit counter mode. For information on basic operation,
please refer to the VMU Hardware manual.

Output Waveform and Parameter Settings

This section describes the signal waveform that can be output in 8-bit counter mode, and lists the
parameters that determine the waveform.

The output waveform is shown in Figure below.
8-bitcounter value (T1L)

A

255 -~

[T1LC] setting value

[T1LR] setting value

P Time (t)

Output sound signal

—>» TICTILR [€— E
' I:I Beeper output
| 256-TILR———p!

Figure 1.2 Ouiput waveform

VMA-5

1. VMU Sound Development Specifications

8-Bit Counter Mode Setting

This section describes the sound signal output procedure in 8-bit counter mode.

To output a sound signal in 8-bit counter mode, make the settings as described below.

1. Set the parameters (T1LR, TILC) according to the desired output waveform.

Use equations (1) and (2) given below to define the waveform.
Sound output signal L level pulse width (decimal)
= (T1LC setting value - T1LR setting value) X Tcyc--Equation (1)
Sound output signal cycle (decimal)
= (256 - TILR setting value) X Tayc:s -ssseeessseeeessseeesses Equation (2)
Teyc: cycle clock
For details on output waveform and parameters, please refer to section 2.2.1.

2. Select the mode for timer 1.

The following four registers are required for setting the mode.

TICNT (bit5: TILONG)
P1 (bit7: P17)
PIDDR (bit7: P17DDR)
PIFCR (bit7: P17FCR)

The register values for the modes are listed in the table below, along with the cycle clock used for
each mode.

Table 1.2 Time 1 Mode Setting

TILONG P17FCR P17DDR

VMA-6

1. VMU Sound Development Specifications

3. Start the count for timer 1 (lower 8bits)

To start/stop the timer, make the following settings.

Waveform parameter update Set TICNT bit4 (ELDT1C) to “1”. Note that the waveform
parameters set in step 1 do not become effective until this setting
is made.

If the parameters were changed while TICNT bit4 was “1”, the
parameter setting value becomes effective immediately after
the change.

Timer 1 count start Set TICNT bit6 (TILRUN) to “1”.

To stop audio output in the 8-bit counter made, make the Following setting.

4. Set the timer1(T1L) count stop flag (TICNT bit6)to “0”.

While timer 1 (lower 8bits) is operating, the waveform parameters can be changed. To output sound of a
different frequency without interruption, change the waveform output parameters without stopping timer

1. (Leave TICNT bit4 [ELDT 1C]) set to “1”.)

Frequency Response Characteristics

The frequency response of the beeper in the VMU is shown below.
The T1LR value indicates the frequency range that can be output by the VMU.

For details, please refer to the explanation of the relationship between T1LR value and output frequency in
section 2.3.

Visual Memory frequent responce

. /

. /N
. /A
. TN

} ///\/

60

Volume(db) ¢j

58

Y A [[[) [) [) e

TILR

VMA-7

Visual Memory Unit (VMU) Sound Development Specifications

2.3 Table of Available Output Frequencies

The output frequencies (theoretical values) available with a system clock of 32 KHz are listed below.

Due to limitations of the beeper, not all frequencies can actually be output. You should use the recommended
frequencies indicated in the table.

The L level pulse width of the output signal is set to 1/2 of the output signal cycle (duty factor = 50%).

Table 1.3 Waveform Parameters and Output Frequencies

Frequency Frequency Frequency Frequency
TiLR(hex) | TILC(hex) (Hz) TiLR(hex) | TILC(hex) (Hz) TiLR(hex) | TILC(hex) (Hz) TiLR(hex) | TILC(hex) (Hz)

00 80 21.346 40 94 28.461 80 A8 42.691 Co E0 85.383
01 80 21.429 41 A0 28.610 81 Co 43.027 C1 EO 86.738
02 81 21514 42 Al 28.760 82 C1 43.369 C2 E1 88.137
03 81 21.599 43 Al 28913 83 C1 43716 C3 E1 89.582
04 82 21.684 44 A2 29.066 84 C2 44.068 C4 E2 91.075
05 82 2177 45 A2 29.222 85 C2 44.427 C5 E2 92.618
06 83 21.858 46 A3 29.379 86 C3 44791 C6 E3 94.215
07 83 21.946 47 A3 29.538 87 C3 45.161 C7 E3 95.868
08 84 22.034 48 A4 29.698 88 C4 45537 C8 E4 97.580
09 84 22123 49 Ad 29.861 89 C4 45.920 C9 E4 99.354
0A 85 22.213 4A A5 30.025 8A C5 46.309 CA E5 101.194
0B 85 22.304 4B A5 30191 8B C5 46.705 CB E5 103.103
0c 86 22.395 4c A6 30.358 8C C6 47.108 cC E6 105.086
oD 86 22.488 4D A6 30.528 8D C6 47.517 CD E6 107.147
OE 87 22.580 4F A7 30.699 8E C7 47.934 CE E7 109.290
OF 87 22674 4F A7 30.873 8F C7 48.358 CF E7 111.520
10 88 22.769 50 A8 31.048 90 C8 48.790 i) E8 113.843
1 88 22.864 51 A8 31.226 91 C8 49.230 D1 E8 116.266
12 89 22.960 52 A9 31.405 92 C9 49.677 D2 E9 118.793
13 89 23.057 53 A9 31.587 93 C9 50.133 D3 E9 121.433
14 8A 23.155 54 AA 31.770 94 CA 50.597 D4 EA 124.193
15 8A 23.253 55 AA 31.956 95 CA 51.070 D5 EA 127.081
16 8B 23.352 56 AB 32.144 96 CB 51.552 D6 EB 130.107

VMA-8

1. VMU Sound Development Specifications

Frequency Frequency Frequency Frequency
TiLR(hex) = TILC(hex) | (Hz) TILR(hex) = TILC(hex) | (Hz) TILR(hex) = TILC(hex) | (Hz) TiLR(hex) = TILC(hex) | (Hz)
17 8B 23.453 57 AB 32.334 97 CB 52.043 D7 EB 133.280
18 8C 23.554 58 AC 32.527 98 cC 52.543 D8 EC 136.612
19 8C 23.656 59 AC 32.721 99 CC 53.053 D9 EC 140.115
1A 8D 23.759 5A AD 32919 9A CD 53.573 DA ED 143.802
1B 8D 23.862 5B AD 33.118 9B CD 54.104 DB ED 147.689
1C 8E 23.967 5C AE 33.320 9C CE 54.645 DC EE 151.791
1D 8E 24.073 50 AE 33.524 PD CE 55.197 DD EE 156.128
1E 8F 24179 5E AF 33.731 9E CF 55.760 DE EF 160.720
1F 8F 24.287 5F AF 33.941 9F CF 56.335 DF EF 165.590
20 90 24.395 60 BO 34.153 AD Do 56.922 E0 FO 170.765
21 90 24.504 61 BO 34.368 Al i) 57.521 E1 FO 176.274
22 91 24615 62 B1 34.585 A2 D1 58.133 E2 F1 182.149
23 91 24.726 63 B1 34.806 A3 D1 58.758 E3 F1 188.430
24 92 24.839 64 B2 35.029 A4 D2 59.397 E4 F2 195.160
25 92 24.952 65 B2 35.255 A5 D2 60.049 E5 F2 202.388
26 93 25.066 66 B3 35.484 AB D3 60.716 E6 F3 210.172
27 93 25.182 67 B3 35.716 A7 D3 61.399 E7 F3 218.579
28 94 25.299 68 B4 35.951 A8 D4 62.096 E8 F4 227.687
29 94 25.416 69 B4 36.189 A9 D4 62.810 E9 F4 237.586
2A 95 25.535 B6A B5 36.430 AA D5 63.540 EA F5 248.385
2B 95 25.655 6B B5 36.674 AB D5 64.288 EB F5 260.213
2C 96 25.776 6C B6 36.922 AC D6 65.053 EC F6 273.224
2D 96 25.898 6D B6 37.173 AD D6 65.837 ED F6 287.604
2k 97 26.021 6E B7 37.428 AE D7 66.640 EE F7 303.582
2F 97 26.146 6F B7 37.686 AF D7 67.463 EF F7 321.440
30 98 26.272 70 B8 37.948 BO D8 68.306 FO F8 341.530
31 98 26.398 Al B8 38.213 B1 D8 69.171 F1 F8 364.299
32 99 26.527 72 B9 38.482 B2 D9 70.057 F2 F9 390.320
33 99 26.656 73 B9 38.755 B3 D9 70.967 F3 F9 420.345

VMA-9

Visual Memory Unit (VMU) Sound Development Specifications

Frequency Frequency Frequency Frequency
TILR(hex) | TILC(hex) (Hz) TILR(hex) | TILC(hex) (Hz) TILR(hex) | TILC(hex) (Hz) TILR(hex) | TILC(hex) (Hz)

34 9A 26.787 74 BA 39.032 B4 DA 71.901 F4 FA 455.373
35 9A 26.919 75 BA 39.313 B5 DA 72.860 F5 FA 496.771
36 9B 27.052 76 BB 39.598 B6 DB 73.844 F6 FB 546.448
37 9B 27.186 77 BB 39.887 B7 DB 74.856 F7 FB 607.165
38 9C 21.322 78 BC 40.180 B8 DC 75.896 F8 FC 683.060
39 9C 27.460 79 BC 40.478 B9 DC 76.965 F9 FC 780.640
3A D 27.598 7A BD 40.780 BA DD 78.064 FA FD 910.747
3B 9D 27.738 7B BD 41.086 BB DD 79.195 FB FD 1092.896
3C 9k 27.880 7C BE 41.398 BC DE 80.360 FC FE 1366.120
3D 9k 28.023 7D BE 4714 BD DE 81.559 FD FE 1821.494
3k 9F 28.167 7E BF 42.034 BE DF 82.795 FE FF 2732.240
3F 9F 28.313 7F BF 42.360 BF DF 84.069 FF FF 5464.481
00 80 21.346 40 94 28.461 80 A8 42.691 Co E0 85.383
01 80 21.429 41 AD 28.610 81 Co 43.027 C1 E0 86.738
02 81 21.514 42 Al 28.760 82 C1 43.369 C2 E1 88.137
03 81 21.599 43 Al 28913 83 C1 43716 C3 E1 89.582
04 82 21.684 44 A2 29.066 84 C2 44.068 C4 E2 91.075
05 82 21771 45 A2 29.222 85 C2 44.427 C5 E2 92.618
06 83 21.858 46 A3 29.379 86 C3 44791 C6 E3 94.215
07 83 21.946 47 A3 29.538 87 C3 45.161 C7 E3 95.868
08 84 22.034 48 Ad 29.698 88 C4 45,537 C8 E4 97.580
09 84 22123 49 A4 29.861 89 C4 45.920 C9 E4 99.354
0A 85 22.213 4A A5 30.025 8A C5 46.309 CA E5 101.194
0B 85 22.304 4B A5 30191 8B C5 46.705 CB E5 103.103
0C 86 22.395 4C A6 30.358 8C C6 47.108 CC E6 105.086
0D 86 22.488 4D Ab 30.528 8D C6 47517 CD E6 107.147
U= 87 22.580 4F A7 30.699 8E C7 47.934 CE E7 109.290
OF 87 22674 4F A7 30.873 8F C7 48.358 CF E7 111.520
10 88 22.769 50 A8 31.048 90 C8 48.790 DO E8 113.843

VMA-10

1. VMU Sound Development Specifications

Frequency Frequency Frequency Frequency
TiLR(hex) = TILC(hex) | (Hz) TILR(hex) = TILC(hex) | (Hz) TILR(hex) = TILC(hex) | (Hz) TiLR(hex) = TILC(hex) | (Hz)

1 88 22.864 51 A8 31.226 91 C8 49.230 D1 E8 116.266
12 89 22.960 52 A9 31.405 92 C9 49.677 D2 E9 118.793
13 89 23.057 53 A9 31.587 93 C9 50.133 D3 E9 121.433
14 8A 23.155 54 AA 31.770 94 CA 50.597 D4 EA 124.193
15 8A 23.253 55 AA 31.956 95 CA 51.070 D5 EA 127.081
16 8B 23.352 56 AB 32.144 96 CB 51.552 D6 EB 130.107
17 8B 23.453 57 AB 32.334 97 CB 52.043 D7 EB 133.280
18 8C 23.554 58 AC 32.527 98 cC 52.543 D8 EC 136.612
19 8C 23.656 59 AC 32.721 99 CC 53.053 D9 EC 140.115
1A 8D 23.759 5A AD 32919 9A CD 53.573 DA ED 143.802
1B 8D 23.862 5B AD 33.118 9B CD 54.104 DB ED 147.689
1C 8E 23.967 5C AE 33.320 9C CE 54.645 DC EE 151.791
1D 8E 24.073 50 AE 33.524 PD CE 55.197 DD EE 156.128
1E 8F 24179 5E AF 33.731 9E CF 55.760 DE EF 160.720
1F 8F 24.287 5F AF 33.941 9F CF 56.335 DF EF 165.590
20 90 24.395 60 BO 34.153 AD Do 56.922 EO0 FO 170.765
21 90 24.504 61 BO 34.368 Al i) 57.521 E1 FO 176.274
22 91 24.615 62 B1 34.585 A2 D1 58.133 E2 F1 182.149
23 91 24.726 63 B1 34.806 A3 D1 58.758 E3 F1 188.430
24 92 24.839 64 B2 35.029 A4 D2 59.397 E4 F2 195.160
25 92 24.952 65 B2 35.255 A5 D2 60.049 E5 F2 202.388
26 93 25.066 66 B3 35.484 Ab D3 60.716 E6 F3 210.172
27 93 25.182 67 B3 35.716 A7 D3 61.399 E7 F3 218.579
28 94 25299 68 B4 35.951 A8 D4 62.096 E8 F4 227.687
29 94 25.416 69 B4 36.189 A9 D4 62.810 E9 F4 237.586
2A 95 25.535 6A B5 36.430 AA D5 63.540 EA F5 248.385
2B 95 25.655 6B B5 36.674 AB D5 64.288 EB F5 260.213
2C 96 25.776 6C B6 36.922 AC D6 65.053 EC F6 273.224
2D 96 25.898 6D B6 37.173 AD D6 65.837 ED F6 287.604

VMA-11

Visual Memory Unit (VMU) Sound Development Specifications

Frequency Frequency Frequency Frequency
TILR(hex) | TILC(hex) (Hz) TILR(hex) | TILC(hex) (Hz) TILR(hex) | TILC(hex) (Hz) TILR(hex) | TILC(hex) (Hz)

2k 97 26.021 6E B7 37.428 AE D7 66.640 EE F7 303.582
2F 97 26.146 6F B7 37.686 AF D7 67.463 EF F7 321.440
30 98 26.272 70 B8 37.948 BO D8 68.306 FO F8 341.530
31 98 26.398 71 B8 38.213 B1 D8 69.171 F1 F8 364.299
32 99 26.527 72 B9 38.482 B2 D9 70.057 F2 F9 390.320
33 99 26.656 73 B9 38.755 B3 D9 70.967 F3 F9 420.345
34 9A 26.787 74 BA 39.032 B4 DA 71.901 F4 FA 455.373
35 9A 26.919 75 BA 39.313 B5 DA 72.860 F5 FA 496.771
36 9B 27.052 76 BB 39.598 B6 DB 73.844 F6 FB 546.448
37 9B 27.186 77 BB 39.887 B7 DB 74.856 F7 FB 607.165
38 9C 21.322 78 BC 40.180 B8 DC 75.896 F8 FC 683.060
39 9C 27.460 79 BC 40.478 B9 DC 76.965 F9 FC 780.640
3A D 27.598 7A BD 40.780 BA DD 78.064 FA FD 910.747
3B 9D 27.738 7B BD 41.086 BB 0D 79.195 FB FD 1092.896
3C 9k 27.880 7C BE 41.398 BC DE 80.360 FC FE 1366.120
3D 9k 28.023 7D BE 4714 BD DE 81.559 FD FE 1821.494
3k 9F 28.167 7E BF 42.034 BE DF 82.795 FE FF 2732.240
3F 9F 28.313 7F BF 42.360 BF DF 84.069 FF FF 5464.481

VMA-12

1. VMU Sound Development Specifications

3. Sample Program

Timer 1 initial setting

Sound output signal setting

Signal frequency setting

Timer 1 setting

Timer 1 start

Sound output signal setting

change

(L level pulse width change)

‘ Sound output stop ’

nov #A3h, ocr
nov #000h, TI1LR
nov #080h, TI1LC
nov #080h, P1FCR
clrl P1, 7
nov #80h, P1DDR
nmov #0D4h, TI1CNT
Output waveform —
nmov #040h, TI1LC
Output waveform —
nmov #000h, TI1CNT

;set systemclock to 32 kHz
:set clock division ratioto 1/6

; TILR=0 - 256-0=256
; TILC=128 - 256-128=128
;L level pulse width 128 Tcyc

;sound signal cycle 256 Tcyc

;set P17 to sound output npde
;set sound out put port

; set output of P17

; updat e wavef orm par anet er
;start counter (sound output start)

128 x Teyc
[256 x Teye

; TILC=64 - 256-64=192
;L level pulse width 192 Tcyc
;sound signal cycle 256 Tcyc

192 x Tcyc —

256 x Teye

; stop updating wavef orm paranet er
;stop counter (sound output stop)

VMA-13

Visual Memory Unit (VMU) Sound Development Specifications

VMA-14

Sega@ Dreamcast.

A. Table of Defined Variables

System BIOS requires the following variables.

Time data variables

year
mon
day
hour
min
sec
year_h
mon_h
day_h
hour_h
min_h
sec_h
sec_f
leaf f

010h (bank-0)
012h (bank-0)
013h (bank-0)
014h (bank-0)
015h (bank-0)
016h (bank-0)
017h (bank-0)
019h (bank-0)
01Ah (bank-0)
01Bh (bank-0)
01Ch (bank-0)
01Dh (bank-0)
01Eh (bank-0)
01Fh (bank-0)

Low battery detection function

06Eh (bank-0)

Flash memory variables

fmbank
fmadd_h
fmadd_1

Year (BCD 4 digits) * Not generated by timer_ex subroutine
Month (BCD 2 digits) * Not generated by timer_ex subroutine
Day (BCD 2 digits) * Not generated by timer_ex subroutine
Hour (BCD 2 digits) * Not generated by timer_ex subroutine
Minute (BCD 2 digits) * Not generated by timer_ex subroutine
Second (BCD 2 digits) * Not generated by timer_ex subroutine
Year (HEX 4 digits)

Month (HEX 2 digits)

Day (HEX 2 digits)

Hour (HEX 2 digits)

Minute (HEX 2 digits)

Second (HEX 2 digits)

Work RAM (used by timer, prohibited to user programs)

Work RAM (used by timer, prohibited to user programs)

Automatic low battery detection flag

(Register name is not set.)

07Dh (bank-1) Flash memory bank designation
07Eh (bank-1) Flash memory address (upper 8 bit)
07Fh (bank-1) Flash memory address (lower 8 bit)

Note:

The automatic low battery detection function cannot work if the user program performs saving data

away when low battery is detected. The user program must monitor the low battery detection flag (bit
1 of PORT7) and handle it accordingly. For information on low battery detection flag, please refer to the
VMU hardware manual.

VAP-1

User’'s Manual Supplement

VMU Mode Selection Operation Flow

The following explains the various VMU modes and their selection.

The figure shows the VMU mode selection flow diagram.

RESET or power on

Time data
Adjustment mode

Press MODE button

q Press A button

Mode selection screen

-

e

“election) | | Soecion = elecion
@000 CeOO eole] Jo
File mode Game mode Time mode

Fig. Appendix 2-1 Mode selection flow diagram

VAP-2

Each of the modes comes with the following functions.

* Mode selection screen

¢ File mode

e Game mode

e Time mode

This screen allows selection and execution of one of the three VMU modes.
Pressing the MODE button each time selects a new mode, and pressing the
A button enters the selected mode. The icon indicates the current mode.
Please refer to Fig. Appendix 2-1 for the modes and their corresponding icon.

This mode handles game data and user program management and editing.
Pressing the MODE button while in this mode will return to the mode
selection screen.

This mode executes user programs stored on VMU. Pressing the MODE
button while in this mode will return to the mode selection screen.

Because the BIOS does not support return processing from the game mode to
the mode selection screen, be sure to handle the return processing in the user
program. For information on the return processing to the mode selection
screen, please refer to section 5.3.

This mode handles current time display and adjustment. Pressing the MODE
button while in this mode will return to the mode selection screen. Also, while
in this mode, pressing the left cursor key as well as the A button at the same
time will enter the time setting mode.

VAP-3

User’'s Manual Supplement

VAP-4

	Dreamcast (VMU) Visual�Memory Unit
	Table of Contents

	Dreamcast VMU Specifications
	1. VMU Specifications
	1 Overview
	1.1 VMU Overview
	1.2 VMU Configuration
	1.3 VMU Functions

	2 Mode Settings
	3 File Management
	3.1 Management Area
	3.2 Data Area
	3.3 Reserved Area

	4 LCD Display
	4.1 XRAM
	4.2 Screen Mode
	4.3 Icons
	4.4 Screen Configuration
	4.5 LCD Characteristics
	4.6 Miscellaneous

	5 Executable File Initiation
	5.1 Downloading an Executable File
	5.2 File Size
	5.3 Subroutine
	5.4 Interrupts
	5.5 RAM
	5.6 Save Processing During Executable File Operations
	5.7 Auto Power Off

	6 Communications Function
	6.1 Maple Bus Protocol
	6.2 Synchronous Serial Communications

	7 Clock Function
	7.1 Settings

	8 Alarm Function
	9 SLEEP Function
	9.1 SLEEP Operation

	10 Buttons
	11 Batteries
	11.1 Battery Life
	11.2 Processing When Battery Power Is Exhausted
	11.3 Battery Replacement

	12 Postscript

	Visual Memory Unit (VMU) Hardware Manual
	1. Overview
	1. General
	1.1 Features
	1.2 System Block Diagram

	2. Internal System Configuration
	1. Memory Space
	2. Program Counter (PC)
	3. Internal Program ROM
	4. Internal Data Memory
	5. Flash Memory
	6. Accumulator
	7. B Register, C Register
	8. Program Status Word
	9. Stack Pointer
	10. The Table Reference Register (TRR)
	11. CHANGE Instruction

	3. Peripheral System Configuration
	1. Input/Output Ports
	1.1 Port 1
	1.2 Port 3
	1.3 Port 7

	2. Timer/Counter 0 (T0)
	2.1 Overview
	2.2 Functions
	2.3 Circuit Configuration
	2.4 Related Registers
	2.5 Circuit Configuration and Description of Operation

	3. Timer 1 (T1)
	3.1 Overview
	3.2 Functions
	3.3 Circuit Configuration
	3.4 Related Registers
	3.5 Circuit Configuration and Description of Operation

	4. Base Timer
	4.1 Overview
	4.2 Function
	4.3 Circuit Configuration
	4.4 Related Registers
	4.5 Using the Base Timer

	5. Serial Interface
	5.1 Overview
	5.2 function
	5.3 Circuit Configuration
	5.4 Related Registers
	5.5 Serial Interface Operation
	5.6 Operation Mode Settings
	5.7 Serial Transfer Clock
	5.8 Serial Transfer Timing
	5.9 LSB-/MSB-first Switching Function
	5.10 Overrun Detection Function
	5.11 Transfer Bit Length Control Function
	5.12 Program Examples

	6. Dot Matrix LCD Controller/Driver
	6.1 Overview
	6.2 Functions
	6.3 Display RAM
	6.4 Display Control Registers

	7. External Interrupt Function
	7.1 Overview
	7.2 Circuit Configuration
	7.3 Related Registers

	8. Port Interrupt Functions
	8.1 Overview
	8.2 Function
	8.3 Circuit Configuration
	8.4 Related Registers
	8.5 Description of Operation
	8.6 State Transitions
	8.7 Program Example

	9. VMU Work RAM
	9.1 Overview
	9.2 Work RAM Control Registers
	9.3 Accessing Work RAM
	9.4 Notes on Using the Address Register for Work RAM

	10. Flash EEPROM
	10.1 Overview
	10.2 Functions
	10.3 Accessing the Data Area EEPROM
	10.4 Accessing the Program Area EEPROM
	10.5 Writing with a PROM Writer

	4. Control Functions
	1. Interrupt Function
	1.1 Types of Interrupts
	1.2 Interrupt Function Operation
	1.3 Circuit Configuration
	1.4 Related Registers
	1.5 Interrupt Priority Ranking

	2. System Clock Generation Function
	2.1 Overview
	2.2 Functions
	2.3 Circuit Configuration
	2.4 Related Registers
	2.5 System Clock Operation Mode

	3. Standby function
	3.1 Overview
	3.2 4.3.2. Related Registers
	3.3 Operating Statuses When in Standby
	3.4 HALT Mode
	3.5 HOLD Mode

	4. Reset Function
	4.1 Overview
	4.2 Function
	4.3 Hardware Status During a Reset

	5. Instructions
	1. Instruction Overview
	1.1 Arithmetic Operation Instructions
	1.2 Logical Operation Instructions
	1.3 Data Transfer Instructions
	1.4 Jump Instructions
	1.5 Conditional Branching Instructions
	1.6 Subroutine Instructions
	1.7 Bit Manipulation Instructions
	1.8 Miscellaneous Instruction
	1.9 Macro Instruction
	1.10 Addressing
	1.11 Program Memory (ROM) Addressing
	1.12 Data Memory (RAM) and Special Function Register (SFR) Addressing

	2. Arithmetic Operation Instructions
	3. Logical Operation Instructions
	4. Data Transfer Instructions
	5. Jump Instructions
	6. Conditional Branching Instructions
	7. Subroutine Instructions
	8. Bit Manipulation Instructions
	9. Miscellaneous Instruction
	10. Macro Instruction

	Visual Memory Unit (VMU) Programing Manual
	1. Environment Variables
	1. Environment Variables for the L86K Series
	1.1 Setting the Environment Variables (MS-DOS Version)
	1.2 Setting the Environment Variables (UNIX Version)

	2. File Specification for the�Assembler
	1. File Name Specification
	1.1 MS-DOS Version File Specification
	1.2 UNIX Version File Specification

	2. Specifying Parameters through the Command Line
	3. Specifying Parameters in Response to Prompts

	3. Assembler Option Specification
	1. Specification for Upper- & Lower-case Letters in Identifiers
	2. Specification for Outputting Debugging Information
	3. Specification for Not Optimizing Branching Instructions
	4. Specification for Suppressing the Copyright Notice
	5. Reserved Word File Specification
	6. Work Buffer Size Specification
	7. Option List Display

	4. Environment Variables and the Reserved Word File
	1. Environment Variables
	1.1 Setting the Environment Variables (MS-DOS Version)
	1.2 Setting the Environment Variables (UNIX Version)

	2. Reserved Word File

	5. Source File Input Format
	1. Statements
	2. Label Names and Symbol Names
	3. Comments
	4. Operators
	5. Numeric constants
	6. Character Constants
	7. Character String Constant
	8. Special Symbols

	6. Errors
	1. Warnings
	2. Errors
	3. Fatal Errors

	7. Pseudo Instructions
	1. ORG (Specify origin)
	ORG expression

	2. WORLD (Select ROM for code storage)
	WORLD selection

	3. CSEG (Declare start of code segment)
	CSEG mode

	4. DSEG (Declare start of data segment)
	DESG

	5. END (End program)
	END

	6. PUBLIC (Specify external definition name)
	PUBLIC symbol {, symbol}

	7. EXTERN (Specify external reference name)
	EXTERN [segmanet:]symbol {,[segment:]symbol}

	8. OTHER_SIDE_SYMBOL (Declare CHANGE instruction jump label)
	OTHER SIDE SYMBOL label {,label}

	9. EQU (Assign value)
	symbolname EQU expression

	10. SET (Assign temporary value)
	symbolname SET expression

	11. DB (Define byte data)
	labelname DB expression {,expression}

	12. DW (Define word data)
	labelname DW expression {,expression}

	13. DC (Define character string data)
	labelname DC “string”

	14. DS (Define byte area)
	labelname DS absolute_expression

	15. MACRO (Define macro)
	name MACRO parameter {, parameter}

	16. REPT (Repeat macro)
	REPT count

	17. IRP (Continuous macro)
	IRP parameter, argument {,argument }...

	18. IRPC (Character string macro)
	IRPC parameter, string

	19. ENDM (End macro definition)
	ENDM

	20. EXITM (Interrupt macro expansion)
	EXITM

	21. LOCAL (Define local label)
	LOCAL name {, name}

	22. IFDEF (Assemble if defined)
	IFDEF symbol

	23. IFNDEF (Assemble if undefined)
	IFNDEF symbol

	24. IFB (Assemble if operand is empty)
	IFB <argument>

	25. IFNB (Assemble if operand is not empty)
	IFNB <argument>

	26. IFE (Assemble if value of expression is "0")
	IFE expression

	27. IFNE (Assemble if value of expression is not "0")
	IFNE expression]

	28. IFIDN (Assemble if two character strings are identical)
	IFIDN <string1>, <string2>

	29. IFDIF (Assemble if two character strings are not identical)
	IFDIF <string1>, <string2>

	30. ELSE (Assemble in case of condition opposite of the above IF condition)
	ELSE

	31. ENDIF (End conditional assembly)
	ENDIF

	32. PRINTX (Display on VDT during assembly)
	.PRINTX “string”

	33. LIST (Output list)
	.LIST

	34. .XLIST (Interrupt list output)
	.XLIST

	35. .MACRO (Output macro expansion)
	.MACRO

	36. .XMACRO (Interrupt macro expansion output)
	.XMACRO

	37. .IF (Output conditional skip)
	.IF

	38. .XIF (Interrupt conditional skip output)
	.XIF

	39. INCLUDE (Load file)
	INCLUDE filename

	40. TITLE (Specify list title)
	TITLE string

	41. PAGE (End of page)
	PAGE

	42. CHIP (Define chip that is target of assembly)
	CHIP chipname

	43. COMMENT (Output comments to object file)
	COMMENT comment_string

	44. WIDTH (Specify number of columns in list file)
	WIDTH number

	45. BANK (Specify RAM area bank)
	BANK expression

	46. CHANGE (Jump between external and internal ROM)
	CHANGE symbol

	47. RADIX (Specify default base)
	RADIX expression

	48. JMPO (Generate optimal JMP instruction)
	JMPO expression

	49. BRO (Generate optimal BR instruction)
	BRO expression

	50. CALLO (Generate optimal CAL instruction)
	CALLO expression

	51. BZO (Generate BZ instruction that will not generate an address error)
	BZO expression

	52. BNZO (Generate BNZ instruction that will not generate an address error)
	BNZO expression

	53. BPO (Generate BP instruction that will not generate an address error)
	BPO expression

	54. BPCO (Generate BPC instruction that will not generate an address error)
	BPCO expression

	55. BNO (Generate BN instruction that will not generate an address error)
	BNO expression

	56. DBNZO (Generate DBNZ instruction that will not generate an address error)
	DBNZO expression

	57. BEO (Generate BE instruction that will not generate an address error)
	BEO expression

	58. BNEO (Generate BNE instruction that will not generate an address error)
	BNEO expression

	8. List File Format
	9. Specifying Files for Linking
	1. File Name Specification
	1.1 MS-DOS Version File Specification
	1.2 UNIX Version File Specification

	2. Specifying Parameters Through the Command line
	3. Specifying Parameters in Response to Prompts
	Default Responses

	4. Files Referenced During Linking

	10. Specifying Linkage Loader�Options
	1. Creating a HEX File for LC868000 Series External ROM
	2. CSEG Loading Address Specification Method
	3. DSEG Loading Address Specification Method
	4. Enabling Duplicate Definition of DSEG Addresses
	5. No Distinction Between Upper-Case and Lower-Case
	6. Creating the Loading Map
	7. Creating a Local Symbol List
	8. Specifying Warning Messages Concerning Operand Data
	9. CSEG FREE Block Optimized Loading
	10. Specifying Symbol Sort Processing

	11. Object Placement
	12. Errors
	1. Fatal Errors
	2. Non-Fatal Errors

	13. Program Startup
	1. File Name Specification
	1.1 MS-DOS Version File Specification
	1.2 UNIX Version File Specification

	2. Specifying Parameters Through the Command line
	Option Specification
	Command Line Execution Examples

	3. Operation Using the Prompts
	Prompt Line Expansion
	Default Response

	14. Errors
	15. Cross-Reference List
	16. Program Startup
	1. File Name Specification
	2. Parameter Specification Method
	3. Option Specification

	17. Errors
	1. Fatal Errors

	Visual Memory Unit (VMU) VMU-BIOS Specifications
	1. VMU-BIOS Specifications
	1. Outline
	2. VMU Outline
	2.1 System-BIOS Outline

	3. Memory Space
	4. System BIOS Functions
	5. System BIOS Data and Memory Allocation
	5.1 Program Layout
	System programs
	OS programs
	Header

	5.2 Subroutine Call Flow
	5.3 Returning From User Program to Mode Selection Screen
	5.4 VMU Initialization

	6. Subroutine Description
	6.1 Flash Memory Access Functions
	Precautions for Using Flash Memory Access Subroutines
	Flash Memory Page Data Readout
	Writing to Flash Memory
	Flash Memory Verify

	6.2 Clock Function
	Clock Countup Timer

	7. Automatic low battery detection function
	7.1 Automatic low battery detection flag

	Visual Memory Unit (VMU) Sound Development Specifications
	1. VMU Sound Development�Specifications
	1. VMU Sound Output Hardware Outline
	2. Sound Output Principle
	2.1 Timer 1 Outline
	Timer 1 Block Configuration
	Related Registers
	Mode Setting

	2.2 8-Bit Counter Mode
	Output Waveform and Parameter Settings
	8-Bit Counter Mode Setting
	Frequency Response Characteristics

	2.3 Table of Available Output Frequencies

	3. Sample Program

	A. Table of Defined Variables
	VMU Mode Selection Operation Flow

