

Dreamcast
GNUPro

™

 Toolkit
Advanced Topics

Rebuilding from Source
GNU Online Documentation

Reporting Problems
Legal Notices

Comparing & Merging Differences

Important InformMation

This documentation has been provided courtesy of CYGNUS. The contents are applicable to GNUProª Toolkit
development, however, all references to development support offered by CYGNUS should be ignored.

Technical support for this product as it applies to the Sega Dreamcastª development environment should be
directed to Sega Third Party Developer Technical Support at 415/701-4060. Future updates and/or additional
information may also be found at SegaÕs DTS Website at,

http//:www.dts.sega.com/NextGen

Frontispiece

ii ■ GNUPro Advanced Topics GNUPro Toolkit

Copyright © 1988-1998 Cygnus

Permission is granted to make and distribute verbatim copies of this documentation
provided the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this documentation
under the conditions for verbatim copying, provided also that the “GNU General
Public License” is included exactly as in the original, and provided that the entire
resulting derived work is distributed under the terms of a permission notice identical
to this one.

Permission is granted to copy and distribute translations of this documentation into
another language, under the above conditions for modified versions.

This documentation has been prepared by Cygnus.

All rights reserved.

GNUProTM, the GNUProTM logo, and the Cygnus logo are trademarks of Cygnus. All
other brand and product names are trademarks of their respective owners.

To contact the Cygnus Technical Publications staff, email: doc@cygnus.com .

Part #: 300-400-10100046

CYGNUS GNUPro Advanced Topics ■ iii

Frontispiece

G
N

U
P

ro
A

dv
an

ce
d

T
op

ic
s

GNUPro Warrant y
The GNUPro Toolkit is free software, covered by the GNU General Public License,
and you are welcome to change it and/or distribute copies of it under certain
conditions. This version of GNUPro Toolkit is supported for customers of Cygnus.

For non-customers, GNUPro Toolkit software has NO WARRANTY.

Because this software is licensed free of charge, there are no warranties for it, to the
extent permitted by applicable law. Except when otherwise stated in writing, the
copyright holders and/or other parties provide the software “as is” without warranty of
any kind, either expressed or implied, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. The entire risk as to
the quality and performance of the software is with you. Should the software prove
defective, you assume the cost of all necessary servicing, repair or correction.

In no event, unless required by applicable law or agreed to in writing, will any
copyright holder, or any other party who may modify and/or redistribute the program
as permitted above, be liable to you for damages, including any general, special,
incidental or consequential damages arising out of the use or inability to use the
program (including but not limited to loss of data or data being rendered inaccurate or
losses sustained by you or third parties or a failure of the program to operate with any
other programs), even if such holder or other party has been advised of the possibility
of such damages.

Frontispiece

iv ■ GNUPro Advanced Topics GNUPro Toolkit

How to Contact C ygnus
Use the following means to contact Cygnus.

Cygnus Headquarters
1325 Chesapeake Terrace
Sunnyvale, CA 94089 USA
Telephone (toll free): +1 800 CYGNUS-1
Telephone (main line): +1 408 542 9600
Telephone (hotline): +1 408 542 9601
FAX: +1-408 542 9699
(Faxes are answered 8 a.m.–5 p.m., Monday through Friday.)
email: info@cygnus.com
Website: www.cygnus.com .

Cygnus United Kingdom
36 Cambridge Place
Cambridge CB2 1NS
United Kingdom
Telephone: +44 1223 728728
FAX: +44 1223 728728
email: info@cygnus.co.uk/

Cygnus Japan
Nihon Cygnus Solutions
Madre Matsuda Building
4-13 Kioi-cho Chiyoda-ku
Tokyo 102-0094
Telephone: +81 3 3234 3896
FAX: +81 3 3239 3300
email: info@cygnus.co.jp
Website: http://www.cygnus.co.jp/

Use the hotline (+1 408 542 9601) to get help, although the most reliable way to
resolve problems with GNUPro Toolkit is by using email: bugs@cygnus.com .

CYGNUS GNUPro Advanced Topics ■ v

G
N

U
P

ro
A

dv
an

ce
d

T
op

ic
s

Contents

GNUPro Warranty ...iii
How to Contact Cygnus ... iv

Rebuilding from Source

Configuration...3
Configuring the install location ..4
Configuring the target...5
Running configure ...6

Building and installing binaries..7
Single host-target builds ...8
Multiple host builds...9

Troubleshooting ...11
Error messages and warnings...12
Sending Cygnus your problem reports..14
configure problem reporting...15
build problem reporting ...16

Patching..17

Contents

vi ■ GNUPro Advanced Topics GNUPro Toolkit

GNU Online Documentation

GNU online documentation overview ...21
Using info ...22

Reading info files..23
Command line options...24
Moving the cursor ...26
Moving text within a window ..28
Selecting a new node...29
Searching an info file ..31
Selecting cross references ...32

Parts of an xref ..32
Selecting xrefs ..33

Manipulating multiple windows..34
The mode line...34
Window commands ..34
The Echo Area ...35

Printing out nodes...38
Miscellaneous commands..39
Manipulating variables ...41

Making info files from Texinfo files ...45
Controlling paragraph formats...46
Command line options for makeinfo ..47
What makes a valid info file? ...49
Defaulting the Prev , Next , and Up..50

Reporting Problems

Introduction to send-pr ..55
Installing send-pr on your system..57

Setting a default site ..58
Installing send-pr by itself..59

Processing send-pr problem reports ..61
Valid Categories..67

Details about send-pr and PRMS ..73
States of Problem Reports...74
Problem report format ..75

Mail header fields ..77
Problem report fields ...77

CYGNUS GNUPro Advanced Topics ■ vii

Contents

G
N

U
P

ro
A

dv
an

ce
d

T
op

ic
s

Editing and sending PRs ...83
Creating new Problem Reports...84
Using send-pr from within Emacs..87
Invoking send-pr from the shell ...90
Helpful hints ..92

Comparing & Merging Differences

Overview of diff and patch ..97
What comparison means..99

Hunks...101
Suppressing differences in blank and tab spacing ..102
Suppressing differences in blank lines ..103
Suppressing case differences...104
Suppressing lines matching a regular expression...105
Summarizing which files differ..106
Binary files and forcing text comparisons ..107

diff output formats ...109
Two sample input files...110
Showing differences without context...111

Detailed description of normal format ..111
An example of normal format ..112

Showing differences in their context ...113
Context format ...113
Unified format..115
Showing which sections differences are in ..116
Showing alternate file names...117

Showing differences side by side...119
Controlling side by side format...120

An example of side by side format ...120
Making edit scripts...120
ed scripts ...120
Forward ed scripts ..122
RCS scripts...122

Merging files with if-then-else ..124
Line group formats...124
Line formats ...127
Detailed description of if-then-else format..129
An example of if-then-else format..129

Contents

viii ■ GNUPro Advanced Topics GNUPro Toolkit

Comparing directories ...131
Making diff output prettier ..133

Preserving tabstop alignment ...134
Paginating diff output ..135

diff performance tradeoffs...137
Comparing three files ..139

A third sample input file..140
Detailed description of diff3 normal format..141
diff3 hunks ...142
An example of diff3 normal format..143

Merging from a common ancestor ..145
Selecting which changes to incorporate ...147
Marking conflicts ..148
Generating the merged output directly ...150
How diff3 merges incomplete lines..151
Saving the changed file ...152

Interactive merging with sdiff ...153
Specifying diff options to sdiff ..154
Merge commands ..155

Merging with patch ...157
Selecting the patch input format ...159
Applying imperfect patches...160

Applying patches with changed white space..160
Applying reversed patches ...160
Helping patch find inexact matches...161

Removing empty files...163
Multiple patches in a file...164
Messages and questions from patch ..165

Tips for making patch distributions ..167
Invoking cmp...169

Options to cmp ..170
Invoking diff ...171

Options to diff ..172
Invoking diff3 ...179

Options to diff3 ..180
Invoking patch ...183

Applying Patches in Other Directories ...185
Backup File Names ...186

CYGNUS GNUPro Advanced Topics ■ ix

Contents

G
N

U
P

ro
A

dv
an

ce
d

T
op

ic
s

Reject File Names ...188
Options to patch ..189

Invoking sdiff ...193
Options to sdiff ..194

Incomplete lines ...197
Future projects ...199

Suggested projects for improving GNU diff and patch200
Handling changes to the directory structure ...200
Files that are neither directories nor regular files ..200
File names that contain unusual characters..200
Arbitrary limits ..201
Handling files that do not fit in memory ..201
Ignoring certain changes ...201
Reporting bugs...201

Index ... 203

Contents

x ■ GNUPro Advanced Topics GNUPro Toolkit

GNPRO TOOLKIT TM

Rebuildin g from Source
98r1

July, 1998

CYGNUS

Frontispiece

2 ■ Rebuilding from Source GNUPro Toolkit

Copyright © 1988-1998 Cygnus

Permission is granted to make and distribute verbatim copies of this documentation
provided the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this documentation
under the conditions for verbatim copying, provided also that the “GNU General
Public License” are included exactly as in the original, and provided that the entire
resulting derived work is distributed under the terms of a permission notice identical
to this one.

Permission is granted to copy and distribute translations of this documentation into
another language, under the above conditions for modified versions.

This documentation has been prepared by Cygnus.

All rights reserved.

GNUProTM, the GNUProTM logo, and the Cygnus logo are trademarks of Cygnus. All
other brand and product names are trademarks of their respective owners.

To contact the Cygnus Technical Publications staff, email: doc@cygnus.com .

CYGNUS Rebuilding from Source ■ 3

1:
 C

on
fig

ur
at

io
n

Confi guration

The following documentation explains how to configure your system before you
rebuild the binaries from source code for a given toolchain.

You’ll need to provide the following specifications when rebuilding:

• Where to install the binaries; see “Configuring the install location” on page 4.

• Which target system will run your final target machine’s code; see “Configuring
the target” on page 5.

• Preparing sources so that you get what you expect; see “Running configure” on
page 6

1

Configuring the install location

4 ■ Rebuilding from Source GNUPro Toolkit

Confi gurin g the install location
The --prefix= option specifies the base installation path for the entire toolkit. In the
following descriptions, the name of your current GNUPro software release is written
in italics as release_name .

• To install the GNUPro Toolkit in /opt/cygnus/ release_name , use the following
example’s directive.

--prefix=/opt/cygnus/ release_name

• To install the GNUPro Toolkit in /usr/cygnus/ release_name , use the following
example’s directive.

--prefix=/usr/cygnus/ release_name

GNUPro binaries are typically located in /usr/cygnus/ release_name .

To rebuild the GNUPro Toolkit for a Windows system and install it in the same
location as the Cygnus binaries, use the following input.
--prefix=/usr/cygnus / release_name
–-exec-prefix=/usr/cygnus / release_name /H-sparc-sun-solaris2

--exec-prefix= is useful for sites with multiple host architectures in a networked,
shared file system.

WARNING! The values of both --prefix= and --exec-prefix= must be
absolute pathnames.

The correct --exec-prefix= value for your release uses the
following example’s usage (where release_name is the current
version’s name).

/usr/cygnus/ release_name /H-hostspec .

See also “Multiple host builds” on page 9.

CYGNUS Rebuilding from Source ■ 5

Configuring the target

1:
 C

on
fig

ur
at

io
n

Confi gurin g the tar get
If you are targeting an embedded system, remember at configure time to specify the
option, --target= . The -–target= value is printed on the CD-ROM you receive
from Cygnus. It will be a hyphenated string indicating target and output format.

For example, m68k-elf or powerpc-eabi would be two such target names with their
appropriate file formats.

NOTE: To build a native toolkit, do not use --target= . For instance,
programs such as the GNU debugger or the GNU compiler will run
on an IRIX 5 system and output programs which also run on an IRIX
5 system. In this situation, the --target= option is unnecessary.

configure will default to native configuration when using --target .

WARNING! For VxWorks users building a cross toolkit with the target board
running the VxWorks from Wind River Systems, remember to add
the --with-includes= command option to configure , designating
the value for header files with your VxWorks distribution.

If the VxWorks tools are in /opt/wrs/vxworks-5.2/ , then the
header files are probably in /opt/wrs/vxworks-5.2/h .

Add the --with-includes=/opt/wrs/vxworks-5.2/h command
option when you run configure . If you do not add this command line
option, your toolchain will not work.

Running configure

6 ■ Rebuilding from Source GNUPro Toolkit

Runnin g configure
The first and most important step in preparing source code to run on your system is to
configure it so that, when built, the program exhibits the behavior you expect. The
configuration process automatically prepares a Makefile containing default and/or
customized information for your site and for your hardware/software system. If you
are building for more than one platform, you must configure, compile, and install on
each platform.

Source code is normally in /usr/cygnus/ release_name /src . Good practice is to
configure and build the source in another directory; any other clean directory will do.
The build process may take hundreds of megabytes of disk space.

WARNING! Never build your toolkit in the source directory.

The default action for configure is to configure a native toolchain for the host on
which you run the script. At minimum, specify –-prefix= to point to your installation
directory. For cross-compiler toolchains, you must also specify --target . The
following examples use a directory for the build location with the following name.
/usr/cygnus/release_name/build.

To configure a toolchain in /opt/cygnus targeting an Hitachi SH embedded board,
use the following example’s steps.
% mkdir /usr/cygnus/ release_name /build
% cd /usr/cygnus/ release_name /build
% /usr/cygnus/ release_name /src/configure --target=sh-hms\
% --prefix=/opt/cygnus/ release_name

To configure a native toolchain, use the following example.
% mkdir /usr/cygnus/ release_name /build
% cd /usr/cygnus/ release_name /build
% /usr/cygnus/ release_name /src/configure
% --prefix=/opt/cygnus/ release_name \

NOTE: --target = is only for cross development.--target = is unneccessary
for native configuration. configure will default to native
configuration when using --target .

Expect configure to take approximately 15-45 minutes to run, depending on the load
of your build system, the toolchain being configured and the sources used.

CYGNUS Rebuilding from Source ■ 7

2:
 B

ui
ld

in
g

an
d

in
st

al
lin

g
bi

na
rie

s

Buildin g and installin g binaries

After you configure the toolchain, build and install the binary programs.

For single host-target builds, see “Single host-target builds” on page 8 for details.

For multiple host builds, see “Multiple host builds” on page 9 for details.

Some vendor-supplied make programs do not build the toolkit correctly, so for
simplicity, use GNU make to rebuild from source. A precompiled copy of GNU make
is in GNUPro Toolkit.

If you are not familiar with make, see “Overview of make” in GNU Make in GNUPro
Utilities.

2

Single host-target builds

8 ■ Rebuilding from Source GNUPro Toolkit

Single host-tar get builds
In this example, a copy of GNU make is in /usr/local/bin and is called make.

1. Move to the build directory, using instructions like the following input.
% cd /usr/cygnus/ release_name /build

Then, use the following instruction to run make.
% /usr/local/bin/make all

2. This takes a while to complete. When make all finishes, install the tools with the
following input.

% /usr/local/bin/make install

3. When you have verified that your toolchain is functioning properly, you may
remove the build directory to conserve disk space.

CYGNUS Rebuilding from Source ■ 9

Multiple host builds

2:
 B

ui
ld

in
g

an
d

in
st

al
lin

g
bi

na
rie

sMultiple host builds
GNUPro Toolkit uses two options so that you can have a directory named
/usr/cygnus/ release_name , with multiple hosts and target versions in one place.

The host-specific files are in /usr/cygnus/ release_name /H- hostspec . hostspec
stands for the canonical name describing the host. For instance, for an Hitachi SH
system, “sh-hms-coff ” is the canonical name.

A compiler, for whatever target it’s addressing, is a host-specific program, which
means that it only runs on one host system. A help file is host-independent and, so, it
is independent of its host system. So, imagine you have, for instance, Hitachi SH
systems and IBM PowerPC running AIX 4.2 on one network. There is support for
native compilers on both systems, and you want a single /usr/cygnus directory that
can be NFS-mounted on all of your Windows NT machines. Use the following
process.

1. Place all the programs that run on Hitachi SH systems in the following location.
/usr/cygnus/ release_name /sh-hms-coff

2. Place all the programs that run on PowerPC systems in the following location.
/usr/cygnus/ release_name /powerpc-ibm-aix4.2

This shares the man pages, text configuration files, and other files for GNUPro
Toolkit.

GNUPro Toolkit is designed for this kind of multiple-host environment. Set up the
tools this way by adding a –exec-prefix= command line option to configure when
configuring the toolkit.

Multiple host builds

10 ■ Rebuilding from Source GNUPro Toolkit

CYGNUS Rebuilding from Source ■ 11

3:
 T

ro
ub

le
sh

oo
tin

g

Troubleshootin g

The following documentation discusses warnings or error messages that may display
during your build process. Each message has a troubleshooting approach
accompanying it for resolution of the problem that you’re addressing.

3

Error messages and warnings

12 ■ Rebuilding from Source GNUPro Toolkit

Error messa ges and warnin gs
The following warnings or error messages may display.

Make: Fatal error: Don’t know how to make target foo.c

The most likely problem is that you are not using GNU make.
Use the --version option for telling which version you are running; if
you have this error message, run the command, make –-version .
If you are not using GNU make, the make program will not recognize the
–-version option.

Incorrect compiler used.

When configure runs, it looks for an appropriate compiler, first gcc , then
cc . If neither of these is correct, specify the name of the compiler at
configuration time. We recommend that you always build with gcc .
Specify the compiler by setting the $CC environment variable before
running configure . In the following example, the correct compiler is in
/usr/progressive/bin/gcc .

• If you are using C shell, use a command similar to the following example’s input
(where /opt/vendor/bin/ is the path of the compiler, not-your-usual-cc).

% set CC /opt/vendor/bin/not-your-usual-cc
% configure ...
% make

• In the Bourne shell (/bin/sh) or the Korn shell, use the following example’s input
(where /opt/vendor/bin/ is the path of the compiler, not-your-usual-cc).

% CC=/opt/vendor/bin/not-your-usual-cc
% export CC
% configure ...
% make

If you still experience configuration problems, first try to rerun configure by
adding the command line option, --verbose . It’s best to redirect the output to a
log file while running this process.

• If you are using C shell, use a command similar to the following example’s input.

% configure -–verbose ... >& configure.out

• With Bourne shell, use the following example’s input.

% configure -–verbose ... >configure.out 2>&1

Some seemingly unrelated problems arise after applying patches or making other
changes. For instance, sometimes file dependencies get confused. With any
trouble you have building, an easy step to take is to remove your build directory
completely and then rebuild in an empty build direrctory, using input like the

CYGNUS Rebuilding from Source ■ 13

Error messages and warnings

3:
 T

ro
ub

le
sh

oo
tin

g

following example (where release_name is the version name of the GNUPro
Toolkit which you are using).

% rm -rf /usr/cygnus/ release_name /build
% mkdir /usr/cygnus/ release_name /build

For more information on installing GNUPro Toolkit, see Installation in Getting
Started with GNUPro Toolkit.

If it’s not obvious which part of the toolkit is failing, check the last line in the log
that begins “Configuring... ” such as, with the debugging tool, gdb , you’d see
“Configuring gdb... ” before configure stops.

configure also creates a config.log file in each sub-directory in which it runs
tests. Check the end of the config.log that failed for specific information about
what went wrong. The last page (25-30 lines) of this file should be plenty, but if in
doubt, send the entire file. For help, contact Cygnus using send-pr . For
information on contacting Cygnus technical support, see “How to Contact
Cygnus” on page iv.

Sending Cygnus your problem reports

14 ■ Rebuilding from Source GNUPro Toolkit

Sendin g Cygnus your problem reports
If the cause of the problem is still not clear, send in a problem report. To send a report,
use email: bugs@cygnus.com .

For a complete description of the automatic problem reporting system, see Reporting
Problems in GNUPro Advanced Topics.

See also “configure problem reporting” on page 15 and “build problem reporting” on
page 16.

CYGNUS Rebuilding from Source ■ 15

configure problem reporting

3:
 T

ro
ub

le
sh

oo
tin

g

configure problem reportin g
If your configuration problems are still confusing, send in a configure problem
report. Send us a copy of the top-level config.status file. This file shows which
command line options were used to configure the toolkit.

config.status (assuming the example pathnames we’ve used) should be in
/usr/cygnus/ release_name /build/config.status .

The --verbose option for configure produces the entire output from the last
directory. For instance, if configure fails in the gas directory, send in everything after
the line which reads “Configuring gas... ” and, if in doubt, send us a copy of all the
output generated by configure --verbose ; so that Cygnus technical support staff can
more easily determine the problem and quickly resolve it.

build problem reporting

16 ■ Rebuilding from Source GNUPro Toolkit

build problem reportin g
If your build problems are still confusing, send in a build problem report.

IMPORTANT: Use “build ” for your Problem Report category.

First, verify that you’re using GNU make, using the process outlined in the
examples with the “Make: Fatal error: Don’t know how to make target

foo.c ” error (see “Error messages and warnings” on page 12).

We’ll need the following information.

• Send us the top-level config.status file. This file will indicate which command
line options were used to configure the toolkit. This file should be (using the
example pathnames that we’ve used so far) at
/usr/cygnus/ release_name /build/config.status .

• Send us the output of the make command that is failing. Only the output from the
last directory is probably useful, just as with a configure Problem Report. If in
doubt, send the entire output from make and Cygnus technical support staff will
determine the problem and resolve it

CYGNUS Rebuilding from Source ■ 17

4:
 P

at
ch

in
g

Patchin g

After a problem report (PR) has been submitted to Cygnus, and the corrective source
code has been written and tested, compare the old and new contents of the source
directory, using the Unix ‘diff ’ command and the output is sent out as a “patch.”

To apply the patch to your source code, you will need to move to the source directory
(cd into the src). The full default pathname is /usr/cygnus/ release_name /src .
release_name could be replaced with ‘gnupro-98r1 ’ if that is appropriate. Save the
patch as a file, such as /tmp/patch , and run the patch program.
patch -p < /tmp/patch

You do not need to edit out all the non-patch text from the file, /tmp/patch . The
patch program will recognize where the real patch begins.

IMPORTANT! Do not cut-and-paste the patch with a windowing system like X-Windows;
tab characters are important and they are usually not preserved correctly when
using cut-and-pasting methods.

See also “Invoking patch” on page 183 and “Options to patch” on page 189 in
Comparing and Merging Files. If the patch is rejected, there will be a filename ending
in ‘ .rej ’ in the source directory. For instance, if the patch was against the file
‘src/gcc/reload.c ’, and the patch was rejected, the rejection would be called
‘src/gcc/reload.c.rej ’. Although it will take a while to run, you can search all files

4

18 ■ Rebuilding from Source GNUPro Toolkit

for a rejected patch with a command like the following example.
% find . -name ‘*.rej’ -print

GNPRO TOOLKIT TM

GNU Online
Documentation

98r1
July, 1998

CYGNUS

Frontispiece

20 ■ GNU Online Documentation GNUPro Toolkit

Copyright © 1988-1998 Free Software Foundation

Permission is granted to make and distribute verbatim copies of this documentation
provided the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this documentation
under the conditions for verbatim copying, provided also that the “GNU General
Public License” are included exactly as in the original, and provided that the entire
resulting derived work is distributed under the terms of a permission notice identical
to this one.

Permission is granted to copy and distribute translations of this documentation into
another language, under the above conditions for modified versions.

This document was written by Brian J. Fox: bfox@ai.mit.edu

This documentation has been prepared by Cygnus.

All rights reserved.

GNUProTM, the GNUProTM logo, and the Cygnus logo are trademarks of Cygnus. All
other brand and product names are trademarks of their respective owners.

To contact the Cygnus Technical Publications staff, email: doc@cygnus.com .

CYGNUS GNU Online Documentation ■ 21

1:
 G

N
U

 o
nl

in
e

do
cu

m
en

ta
tio

n
ov

er
vi

ew

GNU online documentation
overview

The GNU info program is online documentation used to view help files on an ASCII
terminal. info files are the result of processing Texinfo files with the program,
Makeinfo , using the Emacs editing command: M-x texinfo-format-buffer .

Texinfo is a documentation language allowing printed and online documentation (an
info file) to be produced from a single source file. The following documentation
discusses info in more detail.

• “Using info” on page 22

• “Reading info files” on page 23

• “Making info files from Texinfo files” on page 45

1

Using info

22 ■ GNU Online Documentation GNUPro Toolkit

Usin g info
info is organized into nodes, corresponding to the chapters and sections of printed
books. You can follow them in sequence just like in the printed book or, using menus,
go quickly to the node having the information you need.

info has hot references; if one section refers to another, you can tell info to take you
immediately to that other section. You can get back again easily to take up your
reading where you left off. Naturally, you can also search for particular words and
phrases.

The best way to get started with the online documentation system is to use a
programmed tutorial by running info itself. You run info by just typing its name—no
options or arguments are necessary—at your shell prompt (shown here as ‘#’), as in
the following example.
info

info displays its first screen, a menu of available documentation, and waits. To
request a tutorial for learning info , type h. Or, from Emacs document browsing
mode, in the window’s command buffer, type C-h, i.

You can exit Info any time by typing q.

info also displays a summary of all its commands when you type ?.

CYGNUS GNU Online Documentation ■ 23

2:
 R

ea
di

ng
 i

n
fo

 fi
le

s

Readin g info files

You can read the documentation for GNU software either on paper, as with any other
instruction manual, or as online info files, using an ordinary ASCII terminal.

You can browse through the online documentation with GNU Emacs. The program,
info , is a small program intended just for the purpose of viewing help files.

info files are generated by the program, Makeinfo , from a Texinfo source file.

Texinfo is a documentation markup language designed to allow the same source file to
generate either printed or online documentation. The Texinfo language is described in
Texinfo: The GNU Documentation Format.

2

Command line options

24 ■ GNU Online Documentation GNUPro Toolkit

Command line options
GNU info accepts several options to control the initial node being viewed, and to
specify which directories to search for info files. The following is a template showing
an invocation of GNU info from the shell.
info [-- option-name option-value] menu-item ...

The following option-names are available when invoking info from the shell.
--directory directory-path
-d directory-path

Adds directory-path to the list of directory paths searched when Info needs to
find a file. You may issue --directory multiple times; once for each directory
which contains info files.

Alternatively, you may specify a value for the environment variable, INFOPATH; if
--directory is not given, the value of INFOPATH is used. The value of INFOPATH
is a colon separated list of directory names. If you do not supply INFOPATH or
--directory-path , a default path is used.

--file filename
-f filename

Specifies a particular info file to visit. Instead of visiting the file, dir , info will
start with (filename) Top as the first file and node.

--node nodename
-n nodename

Specifies a particular node to visit in the initial file loaded. This is especially

useful in conjunction with --file †.

You can specify --node multiple times. For an interactive Info session, each
nodename is visited in its own window. For a non-interactive Info (such as when
--output is given), each node-name is processed sequentially.

--output filename

-o filename

Specify filename as the name of a file to output to. Each node that Info visits will
be output to filename instead of interactively viewed. A value of ‘-’ for filename

specifies the standard output.
--subnodes

This option only has meaning given in conjunction with --output . It means to
recursively output the nodes appearing in the menus of each node being output.
Menu items which resolve to external info files are not output, and neither are
menu items which are members of an index. Each node is only output once.

† Of course, you can specify both the file and node in a --node command; but don’t forget to escape the open and
close parentheses from the shell as in: info --node ’(emacs)Buffers’

CYGNUS GNU Online Documentation ■ 25

Command line options

2:
 R

ea
di

ng
 i

n
fo

 fi
le

s

--help

-h

Produces a relatively brief description of the available Info options.
--version

Prints the version information of info and exits.
menu-item

Remaining arguments to info are treated as the names of menu items. The first
argument would be a menu item in the initial node visited, while the second
argument would be a menu item in the first argument’s node. You can easily move
to the node of your choice by specifying the menu names which describe the path
to that node, as in the following example.

info emacs buffers

This input example selects the menu item ‘Emacs’ in the node ‘(dir)Top ’, and
then selects the menu item ‘Buffers ’ in the node ‘(emacs)Top ’.

Moving the cursor

26 ■ GNU Online Documentation GNUPro Toolkit

Movin g the cursor
Many people find that reading screens of text page by page is made easier when one
is able to indicate particular pieces of text with some kind of pointing device. Since
this is the case, GNU info (both the Emacs and standalone versions) have several
commands which let you move the cursor about the screen. The notation in this
documentation to describe keystrokes is identical to the notation used within the
Emacs manual, and the GNU Readline manual. See “Characters, Keys and
Commands” in GNU Emacs Manual, if you are unfamiliar with the notation.

The following table lists the basic info cursor movement commands.

Each entry consists of the key sequence to type to perform the cursor movement: a

command like M-x†, and a short description of what it does.

Cursor motion also uses a numeric argument; for further discussion, see
“Miscellaneous commands” on page 39. A numeric argument executes a command
that many times; for example, 4 given to next-line moves the cursor down 4 lines.

A negative numeric argument reverses the motion; thus, an argument of -4 for the
next-line command moves the cursor up 4 lines.
C-n (next-line)

Moves the cursor down to the next line.

C-p (prev-line)
Move the cursor up to the previous line.

C-a (beginning-of-line)
Move the cursor to the start of the current line.

C-e (end-of-line)
Moves the cursor to the end of the current line.

C-f (forward-char)
Move the cursor forward a character.

C-b (backward-char)
Move the cursor backward a character.

M-f (forward-word)
Moves the cursor forward a word.

M-b (backward-word)
Moves the cursor backward a word.

M-< (beginning-of-node)

† M-x is also a command; it invokes execute-extended-command . See “Keyboard Input” in the GNU Emacs
Manual for more detailed information.

CYGNUS GNU Online Documentation ■ 27

Moving the cursor

2:
 R

ea
di

ng
 i

n
fo

 fi
le

s

b
Moves the cursor to the start of the current node.

M-> (end-of-node)
Moves the cursor to the end of the current node.

M-r (move-to-window-line)
Moves the cursor to a specific line of the window. Without a numeric argument,
M-r moves the cursor to the start of the line in the center of the window. With a
numeric argument of n, M-r moves the cursor to the start of the nth line in the
window.

Moving text within a window

28 ■ GNU Online Documentation GNUPro Toolkit

Movin g text within a window
Sometimes you are looking at a full screen of text, and only part of the current
paragraph you are reading is visible on the screen. The commands detailed in the
following section are used to shift which part of the current node is visible on the
screen.
SPC / Spacebar (scroll-forward)

C-v
Shifts the text in this window up to show more of the node which is currently
below the bottom of the window. A numeric argument shows that many more
lines at the bottom of the window; a numeric argument of 4 shifts all text in the
window up 4 lines (discarding the top 4 lines), and shows four new lines at the
bottom of the window. Without a numeric argument, Spacebar takes the bottom
two lines of the window and places them at the top of the window, redisplaying
almost a completely new screenful of lines.

Del /Delete (scroll-backward)

M-v
Shifts the text in this window down, the inverse of scroll-forward.

scroll-forward and scroll-backward moves forward and backward through
the node structure of the file. If you press Spacebar while viewing the end of a
node, or Del while viewing the beginning of a node, what happens is controlled by
the variable scroll-behavior . See “Manipulating Variables,” page Manipulating
variables for more information.

C-l (redraw-display)
Redraws the display from scratch, or shifts the line whit the cursor to a specified
location. With no numeric argument, ‘C-l’ clears the screen, and then redraws its
entire contents. With a numeric argument of n, the line with the cursor is shifts to
the nth line of the window.

C-x w (toggle-wrap)
Toggles the state of line wrapping in the current window. Normally, when lines
wrap when they are longer than the screen width,; i.e., they continue on the next
line. Lines which wrap display a ‘\ ’ in the rightmost column of the screen. You
can cause such lines to be terminated at the rightmost column by changing the
state of line wrapping in the window with C-x, w. When a line contains more than
one screen width, ‘$’ appears in the rightmost column of the line, and the
remainder is invisible.

CYGNUS GNU Online Documentation ■ 29

Selecting a new node

2:
 R

ea
di

ng
 i

n
fo

 fi
le

s

Selectin g a new node
The following documentation details the numerous info commands which select a
new node to view in the current window.

The most basic node commands are ‘n’, ‘ p’, ‘ u’, and ‘l’.

When you are viewing a node, the top line of the node contains some info pointers
which describe where the next, previous, and up nodes are. info uses this line to move
about the node structure of the file when you type the following commands.
n (next-node)

Selects the Next node.

p (prev-node)
Selects the Prev (previous) node.

u (up-node)
Selects the Up node.

You can easily select a node that you have already viewed in this window by using the
‘ l’ command (this name stands for last), to actually move through the list of already
visited nodes for this window. ‘l’ with a negative numeric argument moves forward
through the history of nodes for this window, so you can quickly step between two
adjacent (in viewing history) nodes.
l (history-node)

Selects the most recently selected node in this window.

Two additional commands make it easy to select the most commonly selected nodes;
they are ‘t’ and ‘d’.
t (top-node)

Selects the node Top in the current info file.

d (dir-node)
Selects the directory node (i.e., the node, (dir)).

The following are some other commands which immediately result in the selection of
a different node in the current window.
< (first-node)

Selects the first node which appears in this file. This node is most often ‘Top’, but
it doesn’t have to be.

> (last-node)
Selects the last node which appears in this file.

] (global-next-node)
Moves forward or down through node structure. If the node that you are currently
viewing has a ‘Next ’ pointer, that node is selected. Otherwise, if this node has a

Selecting a new node

30 ■ GNU Online Documentation GNUPro Toolkit

menu, the first menu item is selected. If there is no ‘Next ’ and no menu, the same
process is tried with the ‘Up’ node of this node.

[(global-prev-node)
Moves backward or up through node structure. If the node that you are currently
viewing has a ‘Prev ’ pointer, that node is selected. Otherwise, if the node has an
‘Up’ pointer, that node is selected, and if it has a menu, the last item in the menu is
selected.

global-next-node and global-prev- node behave the same as simply scrolling
through the file with Spacebar and Del; see scroll-behavior in “Manipulating
variables” on page 41 for more information.

g (goto-node)
Reads the name of a node and selects it. No completion is done while reading the
node name, since the desired node may reside in a separate file. The node must be
typed exactly as it appears in the info file. A file name may be included as with
any node specification, as in the following example.

g(emacs)Buffers

This input finds the ‘Buffers ’ node in the ‘emacs’ info file.

C-x, k (kill-node)
Kills a node. The node name is prompted for in the echo area, with a default of the
current node. Killing a node means that info tries hard to forget about it,
removing it from the list of history nodes kept for the window where that node is
found. Another node is selected in the window which contained the killed node.

C-x, C-f (view-file)
Reads the name of a file and selects the entire file.

C-x, C-f filename , is equivalent to typing g(filename)*

C-x, C-b (list-visited-nodes)
Makes a window containing a menu of all of the currently visited nodes. This
window becomes the selected window, and you may use the standard info
commands within it.

C-x, b (select-visited-node)
Selects a node which has been previously visited in a visible window. This is
similar to C-x, C-b followed by ‘m’, but no window is created.

CYGNUS GNU Online Documentation ■ 31

Searching an info file

2:
 R

ea
di

ng
 i

n
fo

 fi
le

s

Searchin g an info file
GNU info allows you to search for a sequence of characters throughout an entire info
file, search through the indices of an info file, or find areas within an info file which
discuss a particular topic.
s (search)

Reads a string in the echo area and searches for it.

C-s (isearch-forward)
Interactively searches forward through the info file for a string you type.

C-r (isearch-backward)
Interactively searches backward through the info file for a string as you type it.

i (index-search)
Looks up a string in the indices for this info file, and selects the node that the
found index entry points to.

, (next-index-match)
Moves to the node containing the next matching index item from the last ‘i’
command.

The most basic searching command is ‘s’ (search). The ‘s’ command prompts you
for a string in the echo area, and then searches the remainder of the info file for an
occurrence of that string. If the string is found, the node containing it is selected, and
the cursor is left positioned at the start of the found string. Subsequent ‘s’ commands
show you the default search string within ‘[’ and ‘]’; pressing Enter, instead of typing a
new string will use the default search string.

Incremental searching is similar to basic searching, but the string is looked up while
you are typing it, instead of waiting until the entire search string has been specified.

Selecting cross references

32 ■ GNU Online Documentation GNUPro Toolkit

Selectin g cross references
We have already discussed the ‘Next ’, ‘ Prev ’, and ‘Up’ pointers which appear at the
top of a node. In addition to these pointers, a node may contain other pointers which
refer you to a different node, perhaps in another info file. Such pointers are called
cross references, or xrefs for short.

Parts of an xref
Cross references have two major parts: the first part is called the label; it is the name
that you can use to refer to the cross reference, and the second is the target; it is the
full name of the node to which the cross reference points.

The target is separated from the label by a colon ‘: ’; first, the label appears, and then
the target. For instance, the following example’s input shows a cross reference menu,
where the single colon separates the label from the target.
* Foo Label: Foo Target. More information about Foo.

The ‘. ’ is not part of the target; it serves only to let info know where the target name
ends.

A shorthand way of specifying references allows two adjacent colons to stand for a
target name, as in the following example.
* Foo Commands:: Commands pertaining to Foo.

In the previous example, the name of the target is the same as the name of the label, in
this case Foo Commands.

You will normally see two types of cross references while viewing nodes: menu
references, and note references. Menu references appear within a node’s menu; they
begin with a ‘* ’ at the beginning of a line, and continue with a label, a target, and a
comment which describes what the contents of the node pointed to contains.

NOTE: References appear within the body of the node text; they begin with *Note ,
and continue with a label and a target.

Like ‘Next ’, ‘ Prev ’ and ‘Up’ pointers, cross references can point to any valid node.
They are used to refer you to a place where more detailed information can be found on
a particular subject.

See “Cross References” in Texinfo, The GNU Documentation Format, for more
information on creating your own Texinfo cross references.

CYGNUS GNU Online Documentation ■ 33

Selecting xrefs

2:
 R

ea
di

ng
 i

n
fo

 fi
le

s

Selecting xrefs
The following lists the info commands that operate on menu items.
1 (menu-digit)
2 ... 9

Within an info window, pressing a single digit, (such as ‘1’), selects that menu
item, and places its node in the current window. For convenience, there is one
exception; pressing ‘0’ selects the last item in the node’s menu.

0 (last-menu-item)
Select the last item in the current node’s menu.

m (menu-item)
Reads the name of a menu item in the echo area and selects its node. Completion
is available while reading the menu label.

M-x find-menu

Moves the cursor to the start of this node’s menu.

The following lists the info commands which operate on note cross references.

f (xref-item)
r

Reads the name of a note cross reference in the echo area and selects its node.
Completion is available while reading the cross reference label.

Finally, the next few commands operate on both menu or note references.
Tab (move-to-next-xref)

Moves the cursor to the start of the next nearest menu item or note reference in the
current node. You can also then use the following command, Return
(select-reference- this-line), to select the menu or note reference.

M-Tab (move-to-prev-xref)
Moves the cursor to the start of the nearest previous menu item or note reference
in the current node.

Enter / Return(select-reference-this-line)
Selects the menu item or note reference appearing on the line where the cursor
currently is.

Manipulating multiple windows

34 ■ GNU Online Documentation GNUPro Toolkit

Manipulatin g multiple windows
A window is a place to show the text of a node. Windows have a view area where the
text of the node is displayed, and an associated mode line, which briefly describes the
node being viewed.

GNU info supports multiple windows appearing in a single screen; each window is
separated from the next by its modeline. At any time, there is only one active window,
that is, the window in which the cursor appears. There are commands available for
creating windows, changing the size of windows, selecting which window is active,
and for deleting windows.

The mode line
A mode line is a line of inverse video which appears at the bottom of an info window.
It describes the contents of the previously displayed window; this information
includes the name of the file and node appearing in that window, the number of screen
lines it takes to display the node, and the percentage of text that is above the top of the
window. It can also tell you if the indirect tags table for this info file needs to be
updated, and whether or not the info file was compressed when stored on disk. The
following is a sample mode line for a window containing an uncompressed file named
‘dir ’, showing the node ‘Top’.
-----Info: (dir)Top, 40 lines --Top-------------------------

ˆˆˆ ˆˆˆ ˆˆ
(file)Node #lines where

When a node comes from a file which is compressed on disk, this is indicated in the
mode line with two small ‘z ’s. In addition, if the info file containing the node has
been split into subfiles, the name of the subfile containing the node appears in the
modeline as well.
--zz-Info: (emacs)Top, 291 lines --Top-- Subfile: emacs-1.Z-

When info makes a node internally, such that there is no corresponding info file on
disk, the name of the node is surrounded by asterisks (‘* ’). The name itself tells you
what the contents of the window are; the following sample mode line shows an
internally constructed node showing possible one possible completion.
-----Info: *Completions*, 7 lines --All---------------------

Window commands
To view more than one node at a time, info can display more than one window. Each
window has its own mode line (see “The mode line” on page 34) and history of nodes
viewed in that window (for information on history-node , see “Selecting a new node”
on page 29).

CYGNUS GNU Online Documentation ■ 35

The Echo Area

2:
 R

ea
di

ng
 i

n
fo

 fi
le

s

C-x, o (next-window)
Selects the next window on the screen. The echo area can only be selected if it is
already in use, and you have left it temporarily. Normally, C-x, o simply moves
the cursor into the next window on the screen, or if you are already within the last
window, into the first window on the screen. Given a numeric argument, C-x, o
moves over that many windows. A negative argument causes C-x, o to select the
previous window on the screen.

M-x (prev-window)
Selects the previous window on the screen. This is identical to C-x, o with a
negative argument.

C-x, 2 (split-window)
Splits the current window into two windows, both showing the same node. Each
window is one half the size of the original window, and the cursor remains in the
original window. The variable, automatic-tiling , can cause all of the windows
on the screen to be resized for you automatically; for more information on
automatic-tiling , see “Manipulating variables” on page 41.

C-x, 0 (delete-window)
Deletes the current window from the screen. If you have made too many windows
and your screen appears cluttered, this is the way to get rid of some of them.

C-x, 1 (keep-one-window)
Deletes all of the windows excepting the current one.

Esc C-v (scroll-other-window)
Scrolls the other window, in the same fashion that ‘C-v’ might scroll the current
window. Given a negative argument, the other window is scrolled backward.

C-x,ˆ (grow-window)Grows (or shrinks) the current window. Given a numeric
argument, grows the current window that many lines; with a negative numeric
argument, the window is shrunk instead.

C-x, t (tile-windows)
Divides the available screen space among all of the visible windows. Each
window is given an equal portion of the screen in which to display its contents.
The variable automatic-tiling can cause tile-windows to be called when a
window is created or deleted. For more information on automatic-tiling , see
“Manipulating variables” on page 41.

The Echo Area
The echo area is a one line window which appears at the bottom of the screen. It is
used to display informative or error messages, and to read lines of input from you
when that is necessary. Almost all of the commands available in the echo area are
identical to their Emacs counterparts, so please refer to GNU Emacs documentation

The Echo Area

36 ■ GNU Online Documentation GNUPro Toolkit

for greater depth of discussion on the concepts of editing a line of text.

The following briefly details the commands that are available while input is being
read in the echo area.
C-f (echo-area-forward)

Moves forward a character.

C-b (echo-area-backward)
Moves backward a character.

C-a (echo-area-beg-of-line)
Moves to the start of the input line.

C-e (echo-area-end-of-line)
Moves to the end of the input line.

M-f (echo-area-forward-word)
Moves forward a word.

M-b (echo-area-backward-word)
Moves backward a word.

Cd (echo-area-delete)
Deletes the character under the cursor.

Del (echo-area-rubout)
Deletes the character behind the cursor.

C-g (echo-area-abort)
Cancels or quits the current operation. If completion is being read, C-g discards
the text of the input line which does not match any completion. If the input line is
empty, C-g aborts the calling function.

RET (echo-area-newline)
Accepts (or forces completion of) the current input line.

C-q (echo-area-quoted-insert)
Inserts the next character verbatim; for example, so you can insert control
characters into a search string.

printing character (echo-area-insert)
Inserts the character.

M-Tab (echo-area-tab-insert)
Inserts a Tab character.

Ctrl-t (echo-area-transpose-chars)
Transposes the characters at the cursor.

The next group of commands deal with killing and yanking text. For an in depth
discussion of killing and yanking, see “Killing and Moving Text” in the GNU Emacs
Manual.

CYGNUS GNU Online Documentation ■ 37

The Echo Area

2:
 R

ea
di

ng
 i

n
fo

 fi
le

s

M-d (echo-area-kill-word)
Kills the word following the cursor.

M-Del (echo-area-backward-kill-word)
Kills the word preceding the cursor.

C-k (echo-area-kill-line)
Kills the text from the cursor to the end of the line.

C-x, Del (echo-area-backward-kill-line)
Kills the text from the cursor to the beginning of the line.

C-y (echo-area-yank)
Yanks back the contents of the last kill.

M-y (echo-area-yank-pop)
Yanks back a previous kill, removing the last yanked text first.

Sometimes when reading input in the echo area, the command that needed input will
only accept one of a list of several choices. The choices represent the possible
completions, and you must respond with one of them. Since there are a limited number
of responses you can make, info allows you to abbreviate what you type, only typing
as much of the response as is necessary to uniquely identify it. In addition, you can
request info to fill in as much of the response as is possible; this is called completion.

The following commands are available when completing in the echo area.
Tab (echo-area-complete)
SPACEBAR

Inserts as much of a completion as is possible.

? (echo-area-possible-completions)
Displays a window containing a list of the possible completions of what you have
typed so far. For example, say the available choices are the following if you typed
an ‘f’, followed by ‘?’.

bar foliate
food forget

Possible completions would contain the choices which begin with ‘f ’.
foliate food forget

Pressing Spacebar or Tab would result in ‘fo ’ appearing in the echo area, since all
of the choices which begin with ‘f ’ continue with ‘o’. Now, typing ‘l’ followed by
pressing Tab results in ‘foliate ’ appearing in the echo area, since that is the only
choice which begins with ‘fol ’.

Esc Ctrl-v (echo-area-scroll-completions-window)
Scrolls the completions window, if that is visible, or, if not, the other window.

Printing out nodes

38 ■ GNU Online Documentation GNUPro Toolkit

Printin g out nodes
You may wish to print out the contents of a node as a quick reference document for
later use. info provides you with a command for printing.

In general, we recommend that you use the C program utility, Makeinfo , to create an
info file from a Texinfo source file and then, by using the command, texify , format
the document and print the DVI (Device Independent) file.

See Texinfo, The GNU Documentation Format manual for more details.

info also provides you with a command for printing.
M-x print-node

Pipes the contents of the current node through the command in the environment
variable, INFO_PRINT_COMMAND. If the variable doesn’t exist, the node is simply
piped to lpr .

CYGNUS GNU Online Documentation ■ 39

Miscellaneous commands

2:
 R

ea
di

ng
 i

n
fo

 fi
le

s

Miscellaneous commands
GNU info contains several commands which self-document GNU info as the
following discussions help to clarify.
M-x describe-command

Reads the name of an info command in the echo area and then displays a brief
description of what that command does.

M-x describe-key

Reads a key sequence in the echo area, and then displays the name and
documentation of the info command which a given key sequence invokes.

M-x describe-variable

Reads the name of a variable in the echo area and then displays a brief description
of what the variable affects.

M-x where-is

Reads the name of an info command in the echo area, and then displays a key
sequence which can be typed in order to invoke that command.

C-h (get-help-window)

?
Creates (or moves into) the window displaying *Help* , and places a node
containing a quick reference card into it. This window displays the most concise
information about GNU info available.

h (get-info-help-node)
Tries hard to visit the node (info)Help . The info file, ‘ info.texi ,’ distributed
with GNU info , contains this node. Of course, the file must first be processed
with makeinfo , and then placed into the location of your info directory.

The following are the commands for creating a numeric argument.
C-u (universal-argument)

Starts (or multiplies by 4) the current numeric argument. ‘C-u’ is a good way to
give a small numeric argument to cursor movement or scrolling commands.

C-u, C-v scrolls the screen 4 lines, while ‘C-u, C-u, C-n’ moves the cursor down
16 lines.

M-1 (add-digit-to-numeric-arg)

M-2... M-9
Adds the digit value of the invoking key to the current numeric argument. Once
info is reading a numeric argument, you may just type the digits of the argument,
without the M prefix. For example, you might give C-1 a numeric argument of 32
by using the keystroke sequence, C-u, 3, 2, C-1 or M-3, 2, C-1.

C-g is used to abort the reading of a multi-character key sequence, to cancel

Miscellaneous commands

40 ■ GNU Online Documentation GNUPro Toolkit

lengthy operations (such as multi-file searches) and to cancel reading input in the
echo area.

C-g (abort-key)
Cancels current operation.

q (quit)
Exits info .

If the operating system tells info that the screen is 60 lines tall, and it is actually only
40 lines tall, the following is a way to tell info that the operating system is correct.
M-x set-screen-height

Reads a height value in the echo area and sets the height of the displayed screen to
that value.

Finally, info provides a convenient way to display footnotes which might be
associated with the current node that you are viewing:
Esc C-f (show-footnotes)

Shows the footnotes (if any) associated with the current node in another window.
You can have info automatically display the footnotes associated with a node
when the node is selected by setting the variable, automatic-footnotes ; for
more information on automatic-footnotes , see “Manipulating variables” on
page 41.

CYGNUS GNU Online Documentation ■ 41

Manipulating variables

2:
 R

ea
di

ng
 i

n
fo

 fi
le

s

Manipulatin g variables
GNU info contains several variables whose values are looked at by various info
commands. You can change the values of these variables, and thus change the
behavior of info to more closely match your environment and info file reading
manner.
M-x set-variable

Reads the name of a variable, and the value for it, in the echo area and then sets
the variable to that value. Completion is available when reading the variable
name; often, completion is available when reading the value to give to the
variable, but that depends on the variable itself. If a variable does not supply
multiple choices to complete over, it expects a numeric value.

M-x describe-variable

Reads the name of a variable in the echo area and then displays a brief description
of what the variable affects.

What follows is a list of the variables that you can set in info .
automatic-footnotes

When set to On, footnotes appear and disappear automatically. This variable is On
by default. When a node is selected, a window containing the footnotes which
appear in that node is created, and the footnotes are displayed within the new
window. The window that info creates to contain the footnotes is called
‘ *Footnotes* ’. If a node is selected which contains no footnotes, and a
‘ *Footnotes* ’ window is on the screen, the ‘*Footnotes* ’ window is deleted.
Footnote windows created in this fashion are not automatically tiled so that they
can use as little of the display as is possible.

automatic-tiling

When set to On, creating or deleting a window resizes other windows. This
variable is Off by default. Normally, typing ‘Ctrl-x, 2’ divides the current window
into two equal parts. When automatic-tiling is set to On, all of the windows are
resized automatically, keeping an equal number of lines visible in each window.
There are exceptions to the automatic tiling; specifically, the windows
‘ *Completions* ’ and ‘*Footnotes* ’ are not resized through automatic tiling;
they remain their original size.

visible-bell

When set to On, GNU info attempts to flash the screen instead of ringing the bell.
This variable is Off by default.

Of course, info can only flash the screen if the terminal allows it; in the case that
the terminal does not allow it, the setting of this variable has no effect.

However, you can set the errors-ring-bell variable to Off to make Info

Manipulating variables

42 ■ GNU Online Documentation GNUPro Toolkit

perform quietly.
errors-ring-bell

When set to On, errors cause the bell to ring. The default setting of this variable is
On.

gc-compressed-files

When set to On, info garbage collects files which had to be uncompressed. The
default value of this variable is Off . Whenever a node is visited in info , the info
file containing that node is read into core, and info reads information about the
tags and nodes contained in that file. Once the tags information is read by info , it
is never forgotten. However, the actual text of the nodes does not need to remain
in core unless a particular info window needs it. For non-compressed files, the
text of the nodes does not remain in core when it is no longer in use. But
decompressing a file can be a time consuming operation, and so info tries hard
not to do it twice. gc-compressed-files tells info it is okay to garbage collect
the text of the nodes of a file which was compressed on disk.

show-index-match

When set to On, the portion of the matched search string is highlighted in the
message which explains where the matched search string was found. The default
value of this variable is On. When info displays the location where an index
match was found, (for more information on next-index-match , see “Searching
an info file” on page 31), the portion of the string that you had typed is highlighted
by displaying it in the inverse case from its surrounding characters.

scroll-behaviour

Controls what happens when forward scrolling is requested at the end of a node,
or when backward scrolling is requested at the beginning of a node. The default
value for this variable is Continuous . There are three possible values for this
variable:
Continuous

Tries to get the first item in this node’s menu, or failing that, the ‘Next ’ node,
or failing that, the ‘Next ’ of the ‘Up’. This behavior is identical to using the ‘]’
(global-next-node) and ‘[’ (global-prev- node) commands.

Next Only
Only tries to get the ‘Next ’ node.

Page Only
Simply gives up, changing nothing. If scroll-behaviour is Page Only , no
scrolling command can change the node that is being viewed.

scroll-step

The number of lines to scroll when the cursor moves out of the window. Scrolling
happens automatically if the cursor has moved out of the visible portion of the
node text when it is time to display. Usually the scrolling is done so as to put the

CYGNUS GNU Online Documentation ■ 43

Manipulating variables

2:
 R

ea
di

ng
 i

n
fo

 fi
le

s

cursor on the center line of the current window. However, if the variable
scroll-step has a nonzero value, info attempts to scroll the node text by that
many lines; if that is enough to bring the cursor back into the window, that is what
is done. The default value of this variable is 0, thus placing the cursor (and the text
it is attached to) in the center of the window. Setting this variable to 1 causes a
kind of smooth scrolling which some people prefer.

ISO-Latin
When set to On, info accepts and displays ISO Latin characters. By default, Info
assumes an ASCII character set. ISO-Latin tells info that it is running in an
environment where the European standard character set is in use, and allows you
to input such characters to info , as well as display them.

Manipulating variables

44 ■ GNU Online Documentation GNUPro Toolkit

CYGNUS GNU Online Documentation ■ 45

3:
 M

ak
in

g
in

fo
 fi

le
s

fr
om

 T
ex

in
fo

fil

es

Makin g info files
from Texinfo files

Makeinfo is the program that builds info files from Texinfo files. Before reading this
documentation, you should be familiar with reading info files. If you want to run
Makeinfo on a Texinfo file prepared by someone else, this documentation contains
most of what you need to know. However, to write your own Texinfo files, you should
also read Texinfo, The GNU Documentation.

3

Controlling paragraph formats

46 ■ GNU Online Documentation GNUPro Toolkit

Controllin g paragraph formats
In general, Makeinfo fills the paragraphs that it outputs to the info file. Filling is the
process of breaking up and connecting lines such that the output is nearly justified.
With Makeinfo , you can control the following.

• The width of each paragraph (the fill-column).

• The amount of indentation that the first line of the paragraph receives (the
paragraph-indentation).

CYGNUS GNU Online Documentation ■ 47

Command line options for makeinfo

3:
 M

ak
in

g
in

fo
 fi

le
s

fr
om

 T
ex

in
fo

fil

es

Command line options for makeinfo
The following command line options are available for Makeinfo .
-I dir

Adds dir to the directory search list for finding files which are included with the
@include command. By default, only the current directory is searched.

-D var

Defines the texinfo flag, var . This is equivalent to ‘@set var ’ in the Texinfo file.
-U var

Makes the Texinfo flag, var , undefined. This is equivalent to ‘@clear var ’ in the
Texinfo file.

--error-limit num

Sets the maximum number of errors that Makeinfo will print before exiting (on the
assumption that continuing would be useless). The default number of errors
printed before Makeinfo gives up on processing the input file is 100.

--fill-column num

Specifies the maximum right-hand edge of a line. Paragraphs that are filled will be
filled to this width. The default value for fill-column is 72.

--footnote-style style

Sets the footnote style to style . style should either be ‘separate ’ to have
Makeinfo create a separate node containing the footnotes which appear in the
current node, or ‘end ’ to have Makeinfo place the footnotes at the end of the
current node.

--no-headers

Suppress the generation of menus and node headers. This option is useful together
with the ‘--output file ’ and ‘--no-split ’ options (see following options) to
produce a simple formatted file (suitable for printing on a dumb printer) from
Texinfo source. If you do not have TEX, these two options may allow you to get
readable hard copy.

--no-split

Suppress the splitting stage of Makeinfo . In general, large output files (where the
size is greater than 70k bytes) are split into smaller subfiles, each one
approximately 50k bytes.

If you specify ‘--no-split ’, Makeinfo will not split up the output file.
--no-pointer-validate
--no-validate

Suppress the validation phase of Makeinfo . Normally, after the file is processed,
some consistency checks are made to ensure that cross references can be resolved,
and so forth. See “What makes a valid info file?” on page 49.

Command line options for makeinfo

48 ■ GNU Online Documentation GNUPro Toolkit

--no-warn

Suppress the output of warning messages. This does not suppress the output of
error messages, simply warnings. You might want this if the file you are creating
has texinfo examples in it, and the nodes that are referenced don’t actually exist.

--no-number-footnotes

Suppress the automatic numbering of footnotes. The default is to number each
footnote sequentially in a single node, resetting the current footnote number to 1 at
the start of each node.

--output file
-o file

Specify that the output should be directed to file instead of the file name
specified in the @setfilename command found in the Texinfo source. file can be
the special token ‘- ’, which specifies standard output.

--paragraph-indent num

Sets the paragraph indentation to num. The value of num is interpreted as follows:

❖ A value of 0 (or ‘none’) means not to change the existing indentation (in the
source file) at the start of paragraphs.

❖ A value less than zero means to indent paragraph starts to column zero by
deleting any existing indentation.

❖ A value greater than zero is the number of spaces to leave at the front of each
paragraph start.

--reference-limit num

When a node has many references in a single Texinfo file, this may indicate an
error in the structure of the file. num is the number of times a given node may be
referenced before Makeinfo prints a warning message about it (with @prev, @next ,
or @note appearing in an @menu, for example).

--verbose

Causes Makeinfo to inform you as to what it is doing. Normally Makeinfo only
outputs text if there are errors or warnings.

--version

Displays the Makeinfo version number.

CYGNUS GNU Online Documentation ■ 49

What makes a valid info file?

3:
 M

ak
in

g
in

fo
 fi

le
s

fr
om

 T
ex

in
fo

fil

es

What makes a valid info file?
If you have not used ‘--no-pointer-validate ’ to suppress validation, Makeinfo will
check the validity of the final info file. Mostly, this means ensuring that nodes you
have referenced really exist. What follows is a complete list of what is checked.

• If a node reference such as Prev , Next or Up is a reference to a node in this file
(meaning that it is not an external reference such as ‘(DIR) ’), then the referenced
node must exist.

• In a given node, if the node referenced by the Prev is different than the node
referenced by the Up, then the node referenced by the Prev must have a Next
which references this node.

• Every node except Top must have an Up field.

• The node referenced by Up must contain a reference to this node, other than a Next
reference. Obviously, this includes menu items and followed references.

• If the Next reference is not the same as the Next reference of the Up reference, then
the node referenced by Next must have a Prev reference pointing back at this
node. This rule still allows the last node in a section to point to the first node of the
next chapter.

Defaulting the Prev , Next , and Up

50 ■ GNU Online Documentation GNUPro Toolkit

Defaultin g the Prev , Next , and Up
If you write the @node commands in your Texinfo source file without Next , Prev , and
Up pointers, Makeinfo will fill in the pointers from context (by reference to the menus
in your source file). Although the definition of an info file allows a great deal of
flexibility, there are some conventions that you are urged to follow. By letting
Makeinfo default the Next , Prev , and Up pointers you can follow these conventions
with a minimum of effort.

A common error occurs when adding a new node to a menu; often the nodes which are
referenced in the menu do not point to each other in the same order as they appear in
the menu.

Makeinfo node defaulting helps with this particular problem by not requiring any
explicit information beyond adding the new node (so long as you do include it in a
menu). The node to receive the defaulted pointers must be followed immediately by a
sectioning command, such as @chapter or @section , and must appear in a menu that
is one sectioning level or more above the sectioning level that this node is to have.

What follows is an example of how to use this feature.
@setfilename default-nodes.info
@node Top
@chapter Introduction
@menu
* foo:: the foo node
* bar:: the bar node
@end menu
@node foo
@section foo
this is the foo node.
@node bar
@section Bar
This is the Bar node.
@bye

The previous input produces the following output.
Info file default-nodes.info, produced by Makeinfo, -*- Text -*-

from input file default-nodes.texinfo.

File: default-nodes.info, Node: Top

Introduction ************
* Menu:

* foo:: the foo node
* bar:: the bar node

CYGNUS GNU Online Documentation ■ 51

Defaulting the Prev , Next , and Up

3:
 M

ak
in

g
in

fo
 fi

le
s

fr
om

 T
ex

in
fo

fil

es

File: default-nodes.info, Node: foo, Next: bar, Up: Top
foo
===

this is the foo node.

File: default-nodes.info, Node: bar, Prev: foo, Up: Top

Bar
===

This is the Bar node.

Defaulting the Prev , Next , and Up

52 ■ GNU Online Documentation GNUPro Toolkit

GNPRO TOOLKIT TM

Reportin g Problems
98r1

July, 1998

CYGNUS

Frontispiece

54 ■ Reporting Problems GNUPro Toolkit

Copyright © 1988-1998 Cygnus

All rights reserved.

GNUProTM, the GNUProTM logo, and the Cygnus logo are trademarks of Cygnus. All
other brand and product names are trademarks of their respective owners.

Permission is granted to make and distribute verbatim copies of this documentation
provided the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this documentation
under the conditions for verbatim copying, provided also that the “GNU General
Public License” are included exactly as in the original, and provided that the entire
resulting derived work is distributed under the terms of a permission notice identical
to this one.

Permission is granted to copy and distribute translations of this documentation into
another language, under the above conditions for modified versions.

This documentation has been prepared by Cygnus.

To contact the Cygnus Technical Publications staff, email: doc@cygnus.com .

CYGNUS Reporting Problems ■ 55

1:
 In

tr
od

uc
tio

n
to

se

n
d

-p
r

Introduction to send-pr

With GNUPro Toolkit, users have send-pr available to submit support questions and
problem reports to a central Support Site with their electronic mail. The following
documentation discusses managing the submission of reports.

• “Installing send-pr on your system” on page 57

• “Processing send-pr problem reports” on page 61

• “Details about send-pr and PRMS” on page 73

• “Editing and sending PRs” on page 83

send-pr is part of a collection of programs known collectively as PRMS, the GNU
Problem Report Management System. PRMS consists of several programs that
formulate and partially administer a database of Problem Reports, or PRs, at a central
Support Site. A PR goes through several states in its lifetime; PRMS tracks the PR and
all information associated with it through each state and acts as an archive for PRs
which have been closed.

In general, you can use any editor and mailer to submit valid Problem Reports, as long
as the format required by PRMS is preserved. send-pr automates the process,
however, ensuring that certain fields necessary for automatic processing are present.

send-pr is strongly recommended for all initial problem-oriented correspondence
with your Support Site. The organization you submit Problem Reports to supplies an
address to which further information can be sent; the person responsible for the

1

56 ■ Reporting Problems GNUPro Toolkit

category of the problem you report directly contacts you.

Because send-pr exists as a shell script (in /bin/sh) and as an Elisp file for use with
a text editor like GNU Emacs, it can be used from any machine on a network that is
running a shell script and/or Emacs.

Cygnus uses PRMS and send-pr extensively for their support activities, finding
problem tracking to be a crucial part of everyday business.

Using electronic mail, customers can communicate their problems effectively to
Cygnus and then automatically receive confirmation and notification of changes
regarding the status of the problems that they reported.

Cygnus supports the GNU compiling tools on over 150 native and cross-platform
environments. GNUPro Toolkit contains PRMS and send-pr .

CYGNUS Reporting Problems ■ 57

2:
 In

st
al

lin
g

se
n

d
-p

r
 o

n
yo

ur
 s

ys
te

m

Installin g send-pr on your
system

If you receive send-pr as part of the GNUPro Toolkit software, it installs with the rest
of the distribution. If you are using PRMS at your site as well, you must decide where
send-pr sends Problem Reports by default; see “Setting a default site” on page 58 and
“Installing send-pr by itself” on page 59.

2

Setting a default site

58 ■ Reporting Problems GNUPro Toolkit

Settin g a default site
send-pr is capable of sending Problem Reports to any number of Support Sites, using
mail aliases which have ‘-prms ’ appended to them. send-pr automatically appends
the suffix, so that when you type send-pr site , the Problem Report goes to the
address noted in the ‘aliases ’ file as ‘site -prms ’ (where site is the designation for
your site). You can do this in the Emacs version of send-pr by invoking the program
with the keystroke combination, C-u, M-x, and typing send-pr in the buffer.

You are prompted for site . site is also used to error-check the ‘>Category: ’ field, as
a precaution against sending mistaken information (and against sending information
to the wrong site). You may also simply type send-pr from the shell (or using the
keystroke combination, M-x, and typing send-pr in the buffer), and the Problem
Report that you generate will be sent to the site, usually the site from which you
received your distribution of send-pr . If you use PRMS at your own organization, the
default is usually your local address for reporting problems. To change this, simply
edit the file, Makefile , before installing and change the line, PRMS_SITE =site , to
reflect the site where you wish to send PRs by default.

CYGNUS Reporting Problems ■ 59

Installing send-pr by itself

2:
 In

st
al

lin
g

se
n

d
-p

r
 o

n
yo

ur
 s

ys
te

m

Installin g send-pr by itself
Install send-pr by using the following steps (you may need root access in order to
change the ‘aliases ’ file and to install send-pr):

1. Unpack the distribution into a directory which we refer to as srcdir .

2. Edit the file ‘Makefile ’ to reflect local conventions. Specifically, you should edit
the variable, ‘prefix ’, to alter the installation location.

The default is ‘/usr/local ’. All files are installed under ‘prefix ’ (see the
following discussion).

3. Run, using the following command.
make all install [info] [install-info] [clean]

The targets mean the following:

❖ all
Builds send-pr and install-sid

❖ install

Installs the following:

■ install-sid

■ send-pr into ‘prefix /bin ’

send-pr. † into ‘prefix /man/man1 ’

■ site is the list of valid categories for the Support Site from which you
received send-pr . This installs as ‘prefix /lib/prms/ site ’

■ send-pr.el into ‘ prefix /lib/emacs/lisp ’

❖ info (optional)
Builds ‘send-pr.info ’ from ‘send-pr.texi ’ (‘ send-pr.info ’ is included
with this distribution)

❖ install-info (optional)
Installs ‘send-pr.info ’ into ‘ prefix/info ’

❖ clean (optional)
Removes all intermediary build files that can be rebuilt from source code

4. Run, using the following command.
install-sid your-sid

your-sid is the identification code you received with send-pr . send-pr
automatically inserts this value into the template field, >Submitter-Id: . If

† If your main Emacs lisp repository is in a different directory from this one, substitute that directory for
‘prefix /lib/emacs/lisp ’.

Installing send-pr by itself

60 ■ Reporting Problems GNUPro Toolkit

you’ve downloaded send-pr from the Net, use ‘net ’ for this value.

5. Place the following line in the path pointing to
prefix /lib/emacs/lisp/default.el or instruct your users to place the
following line in their ‘.emacs ’ files.

(autoload ’send-pr “send-pr” “Submit a Problem Report.”)

6. Create a mail alias for the Support Site where you received send-pr , and for
every site with which you wish to use send-pr to communicate.

Each alias must have a suffix of ‘-prms ’.

The Support Site(s) will provide the correct addresses where these aliases should
point. send-pr automatically searches for these aliases when you use the
following input.

send-pr cygnus send-pr customername send-pr site ...

send-pr also uses site to determine the categories of problems accepted by the
site in question by looking in a path something like the following location
corresponds.

prefix /lib/prms/ site

CYGNUS Reporting Problems ■ 61

3:
 P

ro
ce

ss
in

g
se

n
d

-p
r

 p
ro

bl
em

re

po
rt

s

Processin g send-pr
problem reports

With each shipment of the GNUPro Toolkit, customers receive the latest version of
send-pr with an up-to-date listing of valid categories (values for the >Category: field;
see “Valid Categories” on page 67 for a complete list of the categories).

As an example, let’s pretend that you’re having a problem compiling some software
and that you’re using the GNU C compiler that Cygnus supports. Assume that you’re
getting an error in the g++ program wherein the prestidigitation routines don’t
match with the sources, whatsitsname .

You’ve made sure you’re following the rules of the program and checked and found
that the bug isn’t already known (see the list of reported bugs in “Problems Fixed in
this Release” in Installation in Getting Started with GNUPro Toolkit).

In other words, you’re pretty sure you’ve found a bug and you’re going to report the
bug using send-pr .

It really doesn’t matter whether you use send-pr from the shell or from within Emacs.
If you use Emacs as a primary editor, calling send-pr from the shell is likely to start
send-pr anyway in an Emacs buffer.

Since your company, Imaginary Software, Ltd., uses GNU software extensively, you’re
pretty familiar with Emacs; so, from Emacs, in the buffer, use the keystroke
combination, M-x (the diamond key called “Meta” simultaneously pressed with, in this
case, the x key) and then type send-pr in the buffer.

You’ll then get a PR form (like the following example shows) to display on your

3

62 ■ Reporting Problems GNUPro Toolkit

monitor.

You need to set certain information into each field, so you compile all the information
you know about your problem. You have some sample code which you know should
work, although it doesn’t, so you’ll include it.

SEND-PR: -*- text -*-

SEND-PR: Lines starting with ‘SEND-PR’ will be removed

SEND-PR: automatically as well as all comments (the text

SEND-PR: enclosed in ‘<’ and ‘>’).

SEND-PR: < Please consult the manual if you are not sure

SEND-PR: how to fill out a problem report.>

SEND-PR:

SEND-PR: Choose from the following categories:

SEND-PR:

SEND-PR: bfd binutils bison byacc config

SEND-PR: cvs diff doc emacs flexg++

SEND-PR: gas gcc gdb globgprof grep

SEND-PR: info ispell kerberos ld libg++

SEND-PR: libiberty make makeinfo mas newlib

SEND-PR: other patch rcs readline send-pr

SEND-PR: test texindex texinfo texinfo.tex

SEND-PR:

To: cygnus-bugs@cygnus.com

Subject:

From: jeffrey@imaginary.com

Reply-To: jeffrey@imaginary.com

X-send-pr-version: send-pr 3.98-98r2

>Submitter-Id: imaginary

>Originator: Jeffrey Osier

>Organization: Imaginary Software, Ltd.

>Confidential: <[yes | no] (one line) >

>Synopsis: < synopsis of the problem (one line) >

>Severity: <[non-critical | serious | critical] (one line) >

>Priority: <[low | medium | high] (one line) >

>Category: <name of the product (one line) >

>Class: <[sw-bug | doc-bug | change-request | support] (oneline) >

CYGNUS Reporting Problems ■ 63

3:
 P

ro
ce

ss
in

g
se

n
d

-p
r

 p
ro

bl
em

re

po
rt

s

What follows is a complete PR which you would send using the keystroke
combination, C-c, C-c.

>Release: < release number or tag (oneline) >

>Environment: < machine , os , target , libraries (multiple lines) >

System: SunOS imaginary.com 4.1.1 1 sun4

Architecture: sun4

>Description: < precise description of the problem (multiple lines) >

>How-To-Repeat: < code /input /activities to reproduce (multiple lines) >

>Fix:

-----Emacs: *send-pr* (send-pr Fill)----All---------------------

>Category: other[]

SEND-PR: Lines starting with ‘SEND-PR’ will be removed

SEND-PR: automatically as well as all comments.

SEND-PR: ...

SEND-PR:

To: cygnus-bugs@cygnus.com

Subject: g++ routines don’t match

From: jeffrey@imaginary.com

Reply-To: jeffrey@imaginary.com

X-send-pr-version: send-pr 3.98-98r2

>Submitter-Id: imaginary

>Originator: Jeffrey Osier

>Organization: Imaginary Software, Ltd.

>Confidential: no

>Synopsis: g++ routines don’t match

>Severity: serious

>Priority: medium

>Category: g++

>Class: sw-bug

>Release: progressive-98r2

>Environment:

System: SunOS imaginary.com 4.1.1 1 sun4

Architecture: sun4 (SPARC)

64 ■ Reporting Problems GNUPro Toolkit

You use the keystroke combination, C-c, C-c, and off the report goes to Cygnus. Soon
afterward, you get the reply that the bug has been accepted and forwarded to the
responsible party.

A while later, you get a further analysis.

>Description:

The following code I fed into the g++ came

back with a strange error. apparently, the prestidigitation

routine doesn’t match with the whatsitsname in all cases.

>How-To-Repeat: call g++ using the following code.

... code sample ...

>Fix:

-----Emacs: *send-pr* (send-pr Fill)----All---------------------

To send the problem report use: C-c C-c

From: prms (PRMS management)

Sender: prms-admin

Reply-To: hacker@cygnus.com

To: jeffrey@imaginary.com

Subject: Re: g++/1425: routines don’t match

Thank you very much for your problem report.

It has the internal identification: g++/1425.

The individual assigned to look at your bug is: hacker

(F.B. Hacker)

Category: g++

Responsible: hacker

Synopsis: g++ routines don’t match

Arrival-Date: Sat Feb 30 03:12:55 1997

To: jeffrey@imaginary.com

From: hacker@cygnus.com

Subject: Re: g++/1425: routines don’t match

Reply-To: hacker@cygnus.com

Got your message, Jeff. It seems that g++was confusing the
prestidigitation routines with the realitychecker when lexically
parsing the whatsitsname.

CYGNUS Reporting Problems ■ 65

3:
 P

ro
ce

ss
in

g
se

n
d

-p
r

 p
ro

bl
em

re

po
rt

s

About the same time, you get another message, showing the problem has been
analyzed and Cygnus is working on a solution.

Sometime later, you get more mail from F.B.:

And then, you use ftp to get the fix for the bug. And again, you receive another status

I’m working on robustisizing g++ now.

How about lunch next week?

--

F.B. Hacker

Cygnus, Sunnyvale, CA 408 542 9601

#include <std-disclaimer.h>

From: hacker@cygnus.com

To: jeffrey@imaginary.com

Subject: Re: g++/1425: doesn’t match prestidig

Reply-To: hacker@cygnus.com

‘F.B. Hacker’ changed the state to ‘analyzed’.

State-Changed-From-To: open-analyzed

State-Changed-By: hacker

State-Changed-When: Fri Feb 31 1997 08:59:16 1997

State-Changed-Why: figured out the problem, working on a patch

this afternoon

--

F.B. Hacker

Cygnus, Sunnyvale, CA 408 542 9601

#include <std-disclaimer.h>

To: jeffrey@imaginary.com

From: hacker@cygnus.com

Subject: Re: g++/1425: routines don’t match

Reply-To: hacker@cygnus.com

There’s a patch now that you can ftp over and check out.

F.B. Hacker

Cygnus, Sunnyvale, CA 408 542 9601

#include <std-disclaimer.h>

66 ■ Reporting Problems GNUPro Toolkit

message.

The bug has gone into feedback status now, until you get the patch, install it and test
it. When everything tests well, you mail F.B. back and tell him the bug’s been fixed,
and he can change the state of the PR from feedback to closed .

From: hacker@cygnus.com

To: jeffrey@imaginary.com

Subject: Re: g++/1425: doesn’t match prestidig

Reply-To: hacker@cygnus.com

‘F.B. Hacker’ changed the state to ‘feedback’.

State-Changed-From-To: analyzed-feedback

State-Changed-By: hacker

State-Changed-When: Fri Feb 31 1997 23:43:16 1997

State-Changed-Why:

got the patch finished, notified Jeff at Imaginary Software

--

F.B. Hacker

Cygnus, Sunnyvale, CA 408 542 9601

#include <std-disclaimer.h>

CYGNUS Reporting Problems ■ 67

Valid Categories

3:
 P

ro
ce

ss
in

g
se

n
d

-p
r

 p
ro

bl
em

re

po
rt

s

Valid Cate gories
The following list describes valid entries for >Category: .
bfd

GNU binary file descriptor library.
binutils

GNU utilities for binary files (ar , nm, size ...).
bison

GNU parser generator.
byacc

Free parser generator.
config

Cygnus Software configuration and installation.
cvs

Concurrent Version System.

diff
GNU diff program.

doc

Documentation and manuals.
emacs

GNU Emacs editor and related functions.
flex

GNU lexical analyzer.
g++

GNU C++ compiler.
gas

GNU assembler.
gcc

GNU C compiler.
gdb

GNU source code debugger.
glob

The filename globbing functions.
gprof

GNU profiler.
grep

GNU grep program.
info

GNU info hypertext reader.

Valid Categories

68 ■ Reporting Problems GNUPro Toolkit

ispell

GNU spelling checker.
kerberos

Kerberos authentication system.
ld

GNU linker.
libc

Cygnus C Library.
libg++

GNU C++ class library.
libiberty

GNU ‘ libiberty ’ library.
libm

Cygnus Math Library.
make

GNU make program.
makeinfo

GNU utility to build Info files from Texinfo documents.
mas

GNU Motorola syntax assembler.
newlib

Cygnus C and Math Libraries.
patch

GNU bug patch program.
prms

GNU Problem Report Management System.
rcs

Revision Control System.
readline

GNU readline library.
send-pr

GNU Problem Report submitting program.
test

Category to use when testing send-pr .
texindex

GNU documentation indexing utility.
texinfo

GNU documentation macros.

CYGNUS Reporting Problems ■ 69

Valid Categories

3:
 P

ro
ce

ss
in

g
se

n
d

-p
r

 p
ro

bl
em

re

po
rt

s

other

Anything which is not covered by the previous categories.

Valid Categories

70 ■ Reporting Problems GNUPro Toolkit

CYGNUS Reporting Problems ■ 71

Valid Categories

3:
 P

ro
ce

ss
in

g
se

n
d

-p
r

 p
ro

bl
em

re

po
rt

s

Valid Categories

72 ■ Reporting Problems GNUPro Toolkit

CYGNUS Reporting Problems ■ 73

4:
 D

et
ai

ls
 a

bo
ut

se

n
d

-p
r

 a
nd

 P
R

M
S

Details about send-pr
and PRMS

A Problem Report is a message that describes a problem you are having with a body
of work. send-pr organizes this message into a form which can be understood and
automatically processed by PRMS, the GNU Problem Report Management System. A
Problem Report is organized into fields which contain data describing you, your
organization, and the problem you are announcing (see “Problem report format” on
page 75). Problem Reports go through several defined states in their life-times, from
open to closed (see the next discussion, “States of Problem Reports” on page 74).

4

States of Problem Reports

74 ■ Reporting Problems GNUPro Toolkit

States of Problem Reports
Each PR goes through a defined series of states between origination and closure. The
originator of a PR receives notification automatically of any state changes.
open

The initial state of a Problem Report where the PR has been filed and the
responsible person(s) notified.

analyzed

The responsible person has analyzed the problem, giving a preliminary evaluation
of the problem and an estimate of the amount of time and resources necessary to
solve the problem. It should also suggest possible workarounds.

feedback

The problem has been solved, and the originator has been given a patch or other
fix. The PR remains in this state until the originator acknowledges that the
solution works.

closed

A Problem Report is closed only when any changes have been integrated,
documented, and tested, and the individual who submitted the problem report has
confirmed the solution.

suspended

Work on the problem is postponed. This happens if a timely solution is unlikely or
is not cost-effective at the present time. The PR continues to exist, though a
solution is not being actively sought. If the problem cannot be solved at all, it
should be closed rather than suspended.

CYGNUS Reporting Problems ■ 75

Problem report format

4:
 D

et
ai

ls
 a

bo
ut

se

n
d

-p
r

 a
nd

 P
R

M
S

Problem report format
The format of a PR is designed to reflect the nature of PRMS as a database.
Information is arranged into fields, and kept in individual records (PRs).

Problem Report fields are denoted by a keyword which begins with ‘>’ and ends with
‘ : ’, as in ‘>Confidential: ’. Fields belong to one of the following three data types:
Enumerated, Text, or MultiText.

Enumerated
One of a specific set of values, varying according to the field. The value for each
keyword must be on the same line as the keyword. These values are not
configurable (yet).

For each Enumerated keyword, the possible choices are listed in the send-pr
template as a comment. See the descriptions of fields for each field’s explanations
in detail.

The following fields are Enumerated format: >Confidential: , >Severity: ,
>Priority: , >Class: , >State: and >Number: .

Text
One single line of text which must begin and end on the same line (i.e., before a
newline) as the keyword. See the descriptions of fields below for explanations of
each field in detail.

The following fields are Text format: >Submitter-Id: , >Originator: ,
>Synopsis: , >Category: , >Release: , >Responsible: and >Arrival-Date: .

MultiText
Text of any length may occur in this field. MultiText may span multiple lines and
may also include blank lines. A MultiText field ends only when another keyword
appears. See the descriptions of fields for each field’s explanations in detail.

The following fields are MultiText format: >Organization: , >Environment: ,
>Description: , >How-To-Repeat: , >Fix: , >Audit-Trail: , and
>Unformatted: .

A Problem Report contains two different types of fields: Mail Header fields (see
“Mail header fields” on page 77), used by the mail handler for delivery, and Problem
Report fields (see “Problem report fields” on page 77), containing information
relevant to the Problem Report and to the individual who submitted the problem’s
report. A Problem Report is essentially a specially formatted electronic mail message.

The following is an example Problem Report. Mail headers are at the top, followed by
PRMS fields, which begin with ‘>’ and end with ‘: ’. The ‘Subject: ’ line in the mail
header and the ‘>Synopsis: ’ field are usually duplicates of each other.

Message-Id : message-identification

Problem report format

76 ■ Reporting Problems GNUPro Toolkit

Date : date
From: address
Reply-To : address
To: bug-address
Subject: subject
>Number: PRMS-id
>Category : category
>Synopsis : synopsis
>Confidential : yes or no
>Severity : critical , serious , or non-critical

>Priority: high , medium or low
>Responsible: responsible
>State: open , analyzed , suspended , feedback , or closed

>Class: sw-bug , doc-bug , change-request , support , or duplicate

>Submitter-Id: submitter-id
>Arrival-Date: date
>Originator: name
>Organization: organization
>Release: release
>Environment: environment
>Description: description
>How-To-Repeat: how-to-repeat
>Fix: fix

>Audit-Trail: appended-messages...
State-Changed-From-To: from- to
State-Changed-When: date
State-Changed-Why: reason
Responsible-Changed-From-To: from- to

Responsible-Changed-When: date
Responsible-Changed-Why: reason
>Unformatted : miscellaneous

See “Mail header fields” on page 77 for discussion of the mail headers at the top of
problem reports. See “Problem report fields” on page 77 for discussion of the other
fields and their contents.

CYGNUS Reporting Problems ■ 77

Mail header fields

4:
 D

et
ai

ls
 a

bo
ut

se

n
d

-p
r

 a
nd

 P
R

M
S

Mail header fields
A Problem Report may contain any mail header field described in the Internet
standard RFC-822. However, only the fields which identify the sender and the subject
are required by send-pr .
To:

The pre-configured mail address for the Support Site where the PR is to be sent,
automatically supplied by send-pr .

Subject:

A terse description of the problem. This field normally contains the same
information as the ‘>Synopsis: ’ field.

From:

Usually supplied automatically by the originator’s mailer, containing the
originator’s electronic mail address.

Reply-To:

A return address to which electronic replies can be sent; in most cases, the same
address as the From: field.

Problem report fields
The other fields present whenever using send-pr are what the following discussions
explain.
>Submitter-Id:

(Text)
A unique identification code assigned by the Support Site. It is used to identify all
Problem Reports coming from a particular site. (Submitters without a value for
this field can invoke send-pr with the PRMS option, --request-id , to apply for
one from the support organization. Problem reports from those not affiliated with
the support organization should use the default value of ‘net ’ for this field.)

>Originator:

(Text)
Originator’s real name. The default is the value of the originator’s environment
variable, NAME.

>Organization:

(MultiText)
The originator’s organization. The default value is set with the variable,
DEFAULT_ORGANIZATION, in the send-pr shell script.

Problem report fields

78 ■ Reporting Problems GNUPro Toolkit

>Confidential:

(Enumerated)
Use of this field depends on the originator’s relationship with the support
organization; contractual agreements often have provisions for preserving
confidentiality. Conversely, a lack of a contract often means that any data
provided will not be considered confidential. Submitters should contact the
support organization directly if this is an issue. If the originator’s relationship to
the support organization provides for confidentiality, then, if the value of the field
is ‘yes ’ the support organization treats the PR as confidential; any code samples
provided are not made publicly available (such as in regression test suites). The
default value is ‘yes ’.

>Synopsis:

(Text)
One-line summary of the problem. send-pr copies this information to the
‘Subject: ’ line when you submit a Problem Report.

>Severity:

(Enumerated)
The severity of the problem. Accepted values include the following input.
critical

The product, component or concept is completely non-operational or some
essential functionality is missing. No workaround is known.

serious

The product, component or concept is not working properly or significant
functionality is missing. Problems that would otherwise be considered
‘critical ’ are rated ‘serious ’ when a workaround is known.

non-critical

The product, component or concept is working in general, but lacks features,
has irritating behavior, does something wrong, or doesn’t match its
documentation.

The default value is ‘serious ’.
>Priority:

(Enumerated)
How soon the originator requires a solution. Accepted values include the
following input.
high

A solution is needed as soon as possible.
medium

The problem should be solved in the next release.
low

The problem should be solved in a future release.

CYGNUS Reporting Problems ■ 79

Problem report fields

4:
 D

et
ai

ls
 a

bo
ut

se

n
d

-p
r

 a
nd

 P
R

M
S

The default value is ‘medium’.
>Category:

(Text)
The name of the product, component or concept where the problem lies. The
values for this field are defined by the Support Site.

>Class:

(Enumerated)
The class of a problem uses one of the following subjects as input.
sw-bug

A general product problem. (‘sw’ stands for software.)
doc-bug

A problem with the documentation.
change-request

A request for a change in behavior, etc.
support

A support problem or question.

duplicate (pr-number)

Duplicate PR. pr-number should be the number of the original PR.

The default is ‘sw-bug ’.
>Release:

(Text)
Release or version number of the product, component or concept.

>Environment:

(MultiText)
Description of the environment where the problem occurred: machine
architecture, operating system, host and target types, libraries, pathnames, etc.

>Description:

(MultiText)
Precise description of the problem.

>How-To-Repeat:

(MultiText)
Example code, input, or activities to reproduce the problem. The support
organization uses example code both to reproduce the problem and to test whether
the problem is fixed. Include all preconditions, inputs, outputs, conditions after
the problem, and symptoms. Any additional important information should be
included. Include all the details that would be necessary for someone else to
recreate the problem reported, however obvious. Sometimes seemingly arbitrary
or obvious information can point the way toward a solution. See “Helpful hints”
on page 92.

Problem report fields

80 ■ Reporting Problems GNUPro Toolkit

>Fix:

(MultiText)
A description of a solution to the problem, or a patch solving the problem. (This
field is most often filled in at the Support Site; it is provided in case the submitter
has solved the problem.)

PRMS adds the following fields when the PR arrives at the Support Site.
>Number:

(Enumerated)
The incremental identification number for this PR.

The ‘>Number: ’ field is often paired with the ‘>Category: ’ field in subsequent
messages, as in the following input.

category/number

This is for historical reasons as well as because PRs are stored in sub-directories
which are named by category.

>State:

(Enumerated)
The current state of the PR. Accepted values use the following descriptions. (The
initial state of a PR is ‘open ’; see “States of Problem Reports” on page 74 for
more discussion.)
open

The PR has been filed and the responsible person notified.
analyzed

The responsible person has analyzed the problem.
feedback

The problem has been solved, and the originator has been given a patch or
other fix.

closed

The changes have been integrated, documented, and tested, and the originator
has confirmed that the solution works.

suspended

Work on the problem has been postponed.
>Responsible:

(Text)
The person responsible for this category.

>Arrival-Date:

(Text)
The time that this PR was received by PRMS. The date is provided automatically
by PRMS.

CYGNUS Reporting Problems ■ 81

Problem report fields

4:
 D

et
ai

ls
 a

bo
ut

se

n
d

-p
r

 a
nd

 P
R

M
S

>Audit-Trail:

(MultiText)
Tracks related electronic mail as well as changes in the ‘>State: ’ and
‘>Responsible: ’ fields with the following sub-fields:

State-Changed-<From>-<To>: oldstate>-< newstate

The old and new ‘>State: ’ field values.

Responsible-Changed-<From>-<To>: oldresp>-< newresp

The old and new ‘>Responsible: ’ field values.

State-Changed-By: name

Responsible-Changed-By: name
The name of the maintainer who effected the change.

State-Changed-When: timestamp

Responsible-Changed-When: timestamp
The time the change was made.

State-Changed-Why: reason ...

Responsible-Changed-Why: reason ...
The reason for the change.

The ‘>Audit-Trail: ’ field also contains any mail messages received by PRMS
related to the submitted PR, in the order in which the electronic mail was received.
>Unformatted:

(MultiText)
Any random text found outside the fields in the original Problem Report.

Problem report fields

82 ■ Reporting Problems GNUPro Toolkit

CYGNUS Reporting Problems ■ 83

5:
 E

di
tin

g
an

d
se

nd
in

g
P

R
s

Editin g and sendin g PRs

You can invoke send-pr from a shell prompt or from within GNU Emacs using the
keystroke combination, M-x (using the diamond-shaped ‘Meta’ key simultaneously
with the ‘x’ key), and then typing send-pr in the buffer.

5

Creating new Problem Reports

84 ■ Reporting Problems GNUPro Toolkit

Creatin g new Problem Reports
Invoking send-pr presents a PR template with a number of fields already filled in.
Complete the template as thoroughly as possible to make a useful bug report. Submit
only one bug with each PR. A template consists of the following three sections.

• Comments
The top several lines of a blank template consist of a series of comments that pro-
vide some basic instructions for completing the Problem Report, as well as a list
of valid entries for the ‘>Category: ’ field. These comments are all preceded by
the ‘SEND-PR:’ string and are erased automatically when the PR is submitted. The
instructional comments within ‘<’ and ‘>’ are also removed. (Only these com-
ments are removed; lines you provide that happen to have those characters in
them, such as examples of shell-level redirection, are not affected.)

• Mail Header
send-pr creates a standard mail header. send-pr completes all fields except the
‘Subject: ’ line with default values. See “Problem report format” on page 75.

• PRMS fields
These are the informational fields that PRMS uses to route your Problem Report
to the responsible party for further action. They should be filled out as completely
as possible. (See “Processing send-pr problem reports” on page 61, “Problem
report format” on page 75, and “Helpful hints” on page 92.)

The default template contains your pre-configured ‘>Submitter-Id: ’.

send-pr attempts to determine values for the ‘>Originator: ’ and ‘>Organization: ’
fields (see “Problem report format” on page 75). send-pr will set the ‘>Originator: ’
field to the value of the NAME environment variable if it has been set; similarly,
‘>Organization: ’ will be set to the value of ORGANIZATION. send-pr also attempts to
find out some information about your system and architecture, and, in the
‘>Environment: ’ field, places it if found.

You may submit problem reports to different Support Sites from the default site by
specifying the alternate site when you invoke send-pr . Each site has its own list of
categories for which it accepts Problem Reports. (See “Setting a default site” on page
58.)

send-pr also provides the mail header section of the template with default values in
the ‘To: ’, ‘ From: ’, and ‘Reply-To: ’ fields. The ‘Subject: ’ field is empty.

The template begins with a comment section like the following example.
SEND-PR: -*- send-pr -*-
SEND-PR: Lines starting with ‘SEND-PR’ will be removed

CYGNUS Reporting Problems ■ 85

Creating new Problem Reports

5:
 E

di
tin

g
an

d
se

nd
in

g
P

R
s

SEND-PR: automatically as well as all comments (the text
SEND-PR: below enclosed in ‘<’ and ‘>’).
SEND-PR:
SEND-PR: Please consult the document ‘Reporting Problems’ if
SEND-PR: you are not sure how to fill out a problem report.
SEND-PR: Choose from the following categories:

The template also contains a list of valid >Category: values for the Support Site to
whom you are submitting this Problem Report. One (and only one) of these values
should be placed in the >Category: field. For an example of a complete sample bug
report (from template to completed PR), see “Processing send-pr problem reports” on
page 61. For a complete list of valid categories, type ‘send-pr -L ’ at your prompt.
See “Valid Categories” on page 67 for a sample list of categories.

The mail header is just below the comment section. Fill out the ‘Subject: ’ field, if it
is not already completed using the value of ‘>Synopsis: ’. The other mail header
fields contain default values.
To: support-site
Subject: complete this field
From: your-login@your-site
Reply-To: your-login@your-site
X-send-pr-version: send-pr version

support-site in the ‘To: ’ field is an alias for the Support Site to which you wish to
submit this PR.

The rest of the template contains PRMS fields. Each field is either automatically
completed with valid information (such as your ‘>Submitter-Id: ’) or contains a
one-line instruction specifying the information that field requires in order to be
correct. For example, the ‘>Confidential: ’ field expects a value of ‘yes ’ or ‘no ’, and
the answer must fit on one line; similarly, the ‘>Synopsis: ’ field expects a short
synopsis of the problem, which must also fit on one line. Fill out the fields as
completely as possible. See “Helpful hints” on page 92 for suggestions as to what
kinds of information to include.

In this example, words in italics are filled in with pre-configured information, asin the
following example report.
>Submitter-Id: submitter’s identification
>Originator: submitter’s name here
>Organization: submitter’s organization
>Confidential:<[yes | no] (one line)>
>Synopsis: < synopsis of the problem (one line)>
>Severity: <[non-critical | serious | critical] (one line)>
>Priority: <[low | medium | high] (one line)>
>Category: < name of the product (one line)>
>Class: <[sw-bug | doc-bug | change-request | support]>
>Release: < version (one line)>

Creating new Problem Reports

86 ■ Reporting Problems GNUPro Toolkit

>Environment: < machine, operating system, target, libraries >
(multiple lines)

>Description: < precise description of the problem >
(multiple lines)

>How-To-Repeat: < code/input/activities to reproduce >
(multiple lines)

>Fix: < how to correct or work around the problem, if known >
(multiple lines)

When you finish editing the Problem Report, send-pr mails it to the address named in
the ‘To: ’ field in the mail header. send-pr checks that the complete form contains a
valid ‘>Category: ’.

Your copy of send-pr should have already been customized on installation to reflect
your ‘>Submitter-Id: ’. See “Installing send-pr on your system” on page 57. If you
don’t know your ‘>Submitter-Id: ’, you can request it using ‘send-pr

--request-id ’. If your organization is not affiliated with the site you send Problem
Reports to, a good generic ‘>Submitter-Id: ’ to use is ‘net ’.

If your PR has an invalid value in one of the Enumerated fields (see “Problem report
format” on page 75), send-pr places the PR in a temporary file named
‘ /tmp/pbad nnnn ’ on your machine. nnnn is the process identification number given to
your current send-pr session. If you are running send-pr from the shell, you are
prompted as to whether or not you wish to try editing the same Problem Report again.
If you are running send-pr from Emacs, the Problem Report is placed in the buffer
‘ *send-pr-error* ’; you can edit this file and then submit it using the keystroke
combination, M-x , and then typing prms-submit-pr in the buffer. Any further mail
concerning this Problem Report should be cc: ’d to the PRMS mailing address as well,
with the category and identification number in the ‘Subject: ’ line of the message like
the following example shows.
Subject: Re: pr category / prms - id : original message subject

Messages arriving with ‘Subject: ’ lines of this form are automatically appended to
the report in the ‘>Audit-Trail: ’ field in the order received.

CYGNUS Reporting Problems ■ 87

Using send-pr from within Emacs

5:
 E

di
tin

g
an

d
se

nd
in

g
P

R
s

Usin g send-pr from within Emacs
You can use an interactive send-pr interface from within GNU Emacs to fill out your
Problem Report. We recommend that you familiarize yourself with Emacs before
using this feature (see “Introduction” in The GNU Emacs Manual).

Call send-pr with the keystroke combination, M-x, along with typing send-pr † in the
buffer.

send-pr responds with a Problem Report template pre-configured for the Support Site
from which you received send-pr .

If you use send-pr locally, the default Support Site is probably your local site.

You may also submit problem reports to different Support Sites from the default site.
To use this feature, invoke send-pr with the keystroke combination, C-u, M-x, along
with typing send-pr in the buffer.

send-pr prompts you for the name of a site . site is an alias on your local machine
which points to an alternate Support Site.

send-pr displays the template and prompts you in the minibuffer with the following
line.
>Category: other

Delete the default value ‘other ’ in the minibuffer and replace it with the keyword
corresponding to your problem (the list of valid categories is in the topmost section of
the PR template). For example, if the problem you wish to report has to do with the
GNU C compiler, and your support organization accepts bugs submitted for this
program under the category ‘gcc ’, delete ‘other ’ and then type gcc and press Enter.
send-pr replaces the following line.
>Category: < name of the product (one line)>

The previous example’s input is replaced in the template with the following, and
send-pr moves on to another field.
>Category: gcc

send-pr provides name completion in the minibuffer. For instance, you can also type
gc and use the TAB key, and send-pr attempts to complete the entry for you. Typing g

and using the TAB key may not have the same effect if several possible entries begin
with ‘g’. In that case send-pr cannot complete the entry because it cannot determine
whether you mean ‘gcc ’ or, for instance, ‘gdb ’, since both of those are possible
categories. send-pr continues to prompt you for a valid entry until you enter one.

† If using the keystroke combination, M-x, and then typing send-pr doesn’t work, see your system administrator for
loading send-pr .

Using send-pr from within Emacs

88 ■ Reporting Problems GNUPro Toolkit

send-pr prompts you interactively to enter each field for which there is a range of
specific choices. If you attempt to enter a value which is not in the range of acceptable
entries, send-pr responds with the message, [No match] , and allows you to change
the entry until it contains an acceptable value. This avoids unusable information (at
least in these fields) and also avoids typographical errors which could cause problems
later.

send-pr prompts you for the following fields.
>Category:
>Confidential: (default: no)
>Severity: (default: serious)
>Priority: (default: medium)
>Class: (default: sw-bug)
>Release:
>Synopsis: (this value is copied to Subject:)

After you complete these fields, send-pr places the cursor in the ‘>Description: ’
field and displays the following message in the minibuffer.
To send the problem report use: C-c C-c

At this point, edit the file in the main buffer to reflect your specific problem, putting
relevant information in the proper fields. See “Processing send-pr problem reports” on
page 61 for a sample problem report. send-pr provides the following keystroke
combinations, called bindings, to make moving around in a template buffer more
simple.

C-c, C-f
M-x change-field

Changes the field under the cursor. edit-pr prompts you then for a new value.

M-C, b

M-x, prms-backward-field

Moves the cursor to the beginning of the value of the current field.

M-C, f
M-x prms-forward-field

Moves the cursor to the end of the value of the current field.
M-p
M-x prms-previous-field

Moves the cursor back one field to the beginning of the value of the previous
field.

M-n

M-x prms-next-field

Moves the cursor forward one field to the beginning of the value of the next field.

send-pr takes over again when you use the keystroke combination, C-c C-c, and
sends the message. send-pr reports any errors in a separate buffer, which remains in

CYGNUS Reporting Problems ■ 89

Using send-pr from within Emacs

5:
 E

di
tin

g
an

d
se

nd
in

g
P

R
s

existence until you send the PR properly (or, of course, until you explicitly kill the
buffer). For detailed instructions on using Emacs, see “Introduction” in The GNU
Emacs Manual.

Invoking send-pr from the shell

90 ■ Reporting Problems GNUPro Toolkit

Invokin g send-pr from the shell
send-pr [site]

[-f problem-report | --file problem -report]

[-t mail -address | --to mail -address]
[--request-id]
[-L | --list] [-P | --print]
[-V | --version] [-h | --help]

site is an alias on your local machine which points to an address used by a Support
Site. If this argument is not present, the default site is usually the site which you
received send-pr from, or your local site if you use PRMS locally. See “Setting a
default site” on page 58.

Invoking send-pr with no options calls the editor named in your environment
variable, EDITOR, on a default PR template.

If the environment variable, PR_FORM, is set, its value is used as a file name which
contains a valid template.

If PR_FORM points to a missing or unreadable file, or if the file is empty, send-pr
generates an error message and opens the editor on a default template.

The following commands and arguments are what to use for PRs.
-f problem-report
--file problem-report

Specifies a file, problem-report , where a completed Problem Report already
exists. send-pr sends the contents of the file without invoking an editor.

If problem-report is ‘- ’, send-pr reads from standard input.
-t mail-address
--to mail-address

Sends the PR to mail-address .

The default is preset when send-pr is configured.

This option is not recommended; instead, use the argument, site , on the
command line.

-c mail-address
--cc mail-address

Places mail-address in the Cc: header field of the message to be sent.
--request-id

Sends a request for a >Submitter-Id: to the Support Site.
-L

–list

Prints the list of valid >Category: values on standard output. No mail is sent.

CYGNUS Reporting Problems ■ 91

Invoking send-pr from the shell

5:
 E

di
tin

g
an

d
se

nd
in

g
P

R
s

-s severity
--severity severity

Sets the initial value of the >Severity: field to severity (meaning the state of
severity).

-P
--print

Displays the PR template.

If the variable, PR_FORM, is set in your environment, the file it specifies is printed.

If PR_FORM is not set, send-pr prints the standard blank form.

If the file specified by PR_FORM doesn’t exist, send-pr displays an error message.
No mail is sent.

-V
--version

Displays the send-pr version number and a usage summary. No mail is sent.
-h
--help

Displays a usage summary for send-pr . No mail is sent.

Helpful hints

92 ■ Reporting Problems GNUPro Toolkit

Helpful hints
There is no orthodox standard for submitting effective bug reports, though you might
do well to consult the section on submitting bugs for GNU gcc in “Reporting Bugs” in
Using GNU CC.

The following contains instructions on what kinds of information to include and what
kinds of mistakes to avoid.

In general, common sense (assuming such an animal exists) dictates the kind of
information that would be most helpful in tracking down and resolving problems in
software.

• Include anything you would want to know if you were looking at the report from
the other end. There’s no need to include every minute detail about your environ-
ment, although anything that might be different from someone else’s environment
should be included (your path, for instance).

• Narratives are often useful, given a certain degree of restraint. If a person respon-
sible for a bug can see that A was executed, and then B and then C, knowing that
sequence of events might trigger the realization of an intermediate step that was
missing, or an extra step that might have changed the environment enough to
cause a visible problem. Again, restraint is always in order (comments such as “I
set the build running, went to get a cup of coffeeColumbian, cream, no sug-
artalked to Sheila on the phone, and then THIS happened...” is not exemplary of
restraint) and be sure to include anything relevant.

• Richard Stallman writes, “The fundamental principle of reporting bugs usefully is
this: report all the facts. If you are not sure whether to state a fact or leave it out,
state it!” This holds true across all problem reporting systems, for computer soft-
ware or social injustice or motorcycle maintenance. It is especially important in
the software field due to the major differences seemingly insignificant changes
can make (a changed variable, a missing semicolon, etc.).

• Submit only one problem with each Problem Report. If you have multiple prob-
lems, use multiple PRs. This aids in tracking each problem and also in analyzing
the problems associated with a given program.

• It never hurts to do a little research to find out if the bug you’ve found has already
been reported. See “Problems Fixed in this Release” in Installation in Getting
Started with GNUPro Toolkit for a list of known bugs which come with the soft-
ware; see your system administrator if you don’t have a copy of this documenta-
tion.

CYGNUS Reporting Problems ■ 93

Helpful hints

5:
 E

di
tin

g
an

d
se

nd
in

g
P

R
s

• The more closely a PR adheres to the standard format, the less interaction is
required by a database administrator to route the information to the proper place.
Keep in mind that anything that requires human interaction also requires time that
might be better spent in actually fixing the problem. It is therefore in everyone’s
best interest that the information contained in a PR be as correct as possible (in
both format and content) at the time of submission.

Helpful hints

94 ■ Reporting Problems GNUPro Toolkit

GNPRO TOOLKIT TM

Comparin g & Merging
Differences

98r1
July, 1998

CYGNUS

Frontispiece

96 ■ Comparing & Merging Differences GNUPro Toolkit

Copyright © 1988-1998 Free Software Foundation

Permission is granted to make and distribute verbatim copies of this documentation
provided the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this documentation
under the conditions for verbatim copying, provided also that the “GNU General
Public License” are included exactly as in the original, and provided that the entire
resulting derived work is distributed under the terms of a permission notice identical
to this one.

Permission is granted to copy and distribute translations of this documentation into
another language, under the above conditions for modified versions.

This documentation has been prepared by Cygnus.

All rights reserved.

GNUProTM, the GNUProTM logo, and the Cygnus logo are trademarks of Cygnus. All
other brand and product names are trademarks of their respective owners.

To contact the Cygnus Technical Publications staff, email: doc@cygnus.com .

GNU diff was written by Mike Haertel, David Hayes, Richard Stallman, Len Tower,
and Paul Eggert. Wayne Davison designed and implemented the unified output
format.

The basic algorithm is described in “An O(ND) Difference Algorithm and its
Variations” by Eugene W. Myers, in Algorithmica; Vol. 1, No. 2, 1986; pp. 251–266;
and in “A File Comparison Program” by Webb Miller and Eugene W. Myers, in
Software—Practice and Experience; Vol. 15, No. 11, 1985; pp. 1025–1040.

The algorithm was independently discovered as described in “Algorithms for
Approximate String Matching” by E. Ukkonen, in Information and Control; Vol. 64,
1985, pp. 100–118.

GNU diff3 was written by Randy Smith.

GNU sdiff was written by Thomas Lord.

GNU cmp was written by Torbjorn Granlund and David MacKenzie.

patch was written mainly by Larry Wall; the GNU enhancements were written
mainly by Wayne Davison and David MacKenzie. Parts of the documentation are
adapted from a material written by Larry Wall, with his permission.

CYGNUS Comparing & Merging Differences ■ 97

1:
 O

ve
rv

ie
w

 o
f

d
iff

 a
nd

 p
a

tc
h

Overview of diff and patch

Computer users often find occasion to ask how two files differ. Perhaps one file is a
newer version of the other file. Or maybe the two files initially were identical copies
that were then changed by different people.

You can use the diff command to show differences between two files, or each
corresponding file in two directories. diff outputs differences between files line by
line in any of several formats, selectable by command line options. This set of
differences is often called a diff or patch .

The following documentation discusses using the commands and other related
commands.

• “What comparison means” on page 99

• “diff output formats” on page 109

• “Comparing directories” on page 131

• “Making diff output prettier” on page 133

• “diff performance tradeoffs” on page 137

• “Comparing three files” on page 139

• “Merging from a common ancestor” on page 145

• “Interactive merging with sdiff” on page 153

1

98 ■ Comparing & Merging Differences GNUPro Toolkit

• “Merging with patch” on page 157

• “Tips for making patch distributions” on page 167

• “Invoking cmp” on page 169

• “Invoking diff” on page 171

• “Invoking diff3” on page 179

• “Invoking patch” on page 183

• “Invoking sdiff” on page 193

• “Incomplete lines” on page 197

• “Future projects” on page 199

For files that are identical, diff normally produces no output; for binary (non-text)
files, diff normally reports only that they are different.

You can use the cmp command to show the offsets and line numbers where two files
differ. cmp can also show all the characters that differ between the two files, side by
side. Another way to compare two files character by character is the Emacs command,
M-x compare-windows . See “Comparing Files” in The GNU Emacs Manual for
more information, particularly on that command.

You can use the diff3 command to show differences among three files. When two
people have made independent changes to a common original, diff3 can report the
differences between the original and the two changed versions, and can produce a
merged file that contains both persons’ changes together with warnings about
conflicts.

You can use the sdiff command to merge two files interactively.

You can use the set of differences produced by diff to distribute updates to text files
(such as program source code) to other people. This method is especially useful when
the differences are small compared to the complete files. Given diff output, you can
use the patch program to update, or patch, a copy of the file. If you think of diff as
subtracting one file from another to produce their difference, you can think of patch as
adding the difference to one file to reproduce the other.

This documentation first concentrates on making diff s, and later shows how to use
diff s to update files.

CYGNUS Comparing & Merging Differences ■ 99

2:
 W

ha
t c

om
pa

ris
on

 m
ea

ns

What comparison means

There are several ways to think about the differences between two files. One way to
think of the differences is as a series of lines that were deleted from, inserted in, or
changed in one file to produce another file. diff compares two files line by line, finds
groups of lines that differ, and reports each group of differing lines. It can report the
differing lines in several formats, which have different purposes. See the following
documentation for more information.

• “Hunks” on page 101

• “Suppressing differences in blank and tab spacing” on page 102

• “Suppressing differences in blank lines” on page 103

• “Suppressing case differences” on page 104

• “Suppressing lines matching a regular expression” on page 105

• “Summarizing which files differ” on page 106

• “Binary files and forcing text comparisons” on page 107

GNU diff can show whether files are different without detailing the differences. It
also provides ways to suppress certain kinds of differences that are not important to
you. Most commonly, such differences are changes in the amount of white space

2

100 ■ Comparing & Merging Differences GNUPro Toolkit

between words or lines. diff also provides ways to suppress differences in alphabetic
case or in lines that match a regular expression that you provide. These options can
accumulate; for example, you can ignore changes in both white space and alphabetic
case.

Another way to think of the differences between two files is as a sequence of pairs of
characters that can be either identical or different. cmp reports the differences between
two files character by character, instead of line by line. As a result, it is more useful
than diff for comparing binary files. For text files, cmp is useful mainly when you
want to know only whether two files are identical.

To illustrate the effect that considering changes character by character can have
compared with considering them line by line, think of what happens if a single
newline character is added to the beginning of a file. If that file is then compared with
an otherwise identical file that lacks the newline at the beginning, diff will report that
a blank line has been added to the file, while cmp will report that almost every
character of the two files differs.

diff3 normally compares three input files line by line, finds groups of lines that differ,
and reports each group of differing lines. Its output is designed to make it easy to
inspect two different sets of changes to the same file.

CYGNUS Comparing & Merging Differences ■ 101

Hunks

2:
 W

ha
t c

om
pa

ris
on

 m
ea

ns

Hunks
When comparing two files, diff finds sequences of lines common to both files,
interspersed with groups of differing lines called hunks. Comparing two identical files
yields one sequence of common lines and no hunks, because no lines differ.
Comparing two entirely different files yields no common lines and one large hunk that
contains all lines of both files. In general, there are many ways to match up lines
between two given files. diff tries to minimize the total hunk size by finding large
sequences of common lines interspersed with small hunks of differing lines. For
example, suppose the file ‘F’ contains the three lines ‘a’, ‘ b’, ‘ c ’, and the file ‘G’
contains the same three lines in reverse order ‘c ’, ‘ b’, ‘ a’. If diff finds the line ‘c ’ as
common, then the command ‘diff F G’ produces the following output:
1,2d0
< a
< b
3a2,3
> b
> a

But if diff notices the common line ‘b’ instead, it produces the following output:
1c1
< a

> c
3c3
< c

> a

It is also possible to find ‘a’ as the common line. diff does not always find an optimal
matching between the files; it takes shortcuts to run faster. But its output is usually
close to the shortest possible. You can adjust this tradeoff with the ‘--minimal ’ option
(see “diff performance tradeoffs” on page 137).

Suppressing differences in blank and tab spacing

102 ■ Comparing & Merging Differences GNUPro Toolkit

Suppressin g differences in blank and tab
spacin g

The ‘-b ’ and ‘--ignore-space-change ’options ignore white space at line end, and
considers all other sequences of one or more white space characters to be equivalent.
With these options, diff considers the following two lines to be equivalent, where ‘$’
denotes the line end:
Here lyeth muche rychnesse in lytell space. -- John Heywood$
Here lyeth muche rychnesse in lytell space. -- John Heywood $

The ‘-w ’ and ‘--ignore-all-space ’ options are stronger than ‘-b ’. They ignore
difference even if one file has white space where the other file has none. White space
characters include tab, newline, vertical tab, form feed, carriage return, and space;
some locales may define additional characters to be white space. With these options,
diff considers the following two lines to be equivalent, where ‘$’ denotes the line end
and ‘̂M’ denotes a carriage return:
Here lyeth muche rychnesse in lytell space. -- John Heywood$
He relyeth much erychnes seinly tells pace. --John Heywood ˆM$

CYGNUS Comparing & Merging Differences ■ 103

Suppressing differences in blank lines

2:
 W

ha
t c

om
pa

ris
on

 m
ea

ns

Suppressin g differences in blank lines
The ‘-B ’ and ‘--ignore-blank-lines ’ options ignore insertions or deletions of blank
lines. These options normally affect only lines that are completely empty; they do not
affect lines that look empty but contain space or tab characters. With these options, for
instance, consider a file containing only the following.
1. A point is that which has no part.

2. A line is breadthless length.
-- Euclid, The Elements, I

The last example is considered identical to another file containing only the following.
1. A point is that which has no part.
2. A line is breadthless length.

-- Euclid, The Elements, I

Suppressing case differences

104 ■ Comparing & Merging Differences GNUPro Toolkit

Suppressin g case differences
GNU diff can treat lowercase letters as equivalent to their uppercase counterparts, so
that, for example, it considers ‘Funky Stuff ’, ‘ funky STUFF ’, and ‘fUNKy stuFf ’ to
all be the same. To request this, use the ‘-i ’ or ‘ --ignore-case ’ option.

CYGNUS Comparing & Merging Differences ■ 105

Suppressing lines matching a regular expression

2:
 W

ha
t c

om
pa

ris
on

 m
ea

ns

Suppressin g lines matchin g a regular
expression

To ignore insertions and deletions of lines that match a regular expression, use the ‘-I
regexp ’ or ‘ --ignore-matching-lines= regexp ’ option. You should escape regular
expressions that contain shell meta-characters to prevent the shell from expanding
them.

For example, ‘diff -I ‘ˆ[0-9]’ ’ ignores all changes to lines beginning with a digit.

However, ‘-I ’ only ignores the insertion or deletion of lines that contain the regular
expression if every changed line in the hunk—every insertion and every
deletion—matches the regular expression.

In other words, for each non-ignorable change, diff prints the complete set of
changes in its vicinity, including the ignorable ones.

You can specify more than one regular expression for lines to ignore by using more
than one ‘-I ’ option. diff tries to match each line against each regular expression,
starting with the last one given.

Summarizing which files differ

106 ■ Comparing & Merging Differences GNUPro Toolkit

Summarizin g which files differ
When you only want to find out whether files are different, and you don’t care what
the differences are, you can use the summary output format. In this format, instead of
showing the differences between the files, diff simply reports whether files differ.
The ‘-q ’ and ‘--brief ’ options select this output format.

This format is especially useful when comparing the contents of two directories. It is
also much faster than doing the normal line by line comparisons, because diff can
stop analyzing the files as soon as it knows that there are any differences.

You can also get a brief indication of whether two files differ by using cmp. For files
that are identical, cmp produces no output. When the files differ, by default, cmp
outputs the byte offset and line number where the first difference occurs. You can use
the ‘-s ’ option to suppress that information, so that cmp produces no output and
reports whether the files differ using only its exit status (see “Invoking cmp” on page
169).

Unlike diff , cmp cannot compare directories; it can only compare two files.

CYGNUS Comparing & Merging Differences ■ 107

Binary files and forcing text comparisons

2:
 W

ha
t c

om
pa

ris
on

 m
ea

ns

Binar y files and forcin g text comparisons
If diff thinks that either of the two files it is comparing is binary (a non-text file), it
normally treats that pair of files much as if the summary output format had been
selected (see “Summarizing which files differ” on page 106), and reports only that the
binary files are different. This is because line by line comparisons are usually not
meaningful for binary files.

diff determines whether a file is text or binary by checking the first few bytes in the
file; the exact number of bytes is system dependent, but it is typically several
thousand. If every character in that part of the file is non-null, diff considers the file
to be text; otherwise it considers the file to be binary.

Sometimes you might want to force diff to consider files to be text. For example, you
might be comparing text files that contain null characters; diff would erroneously
decide that those are non-text files. Or you might be comparing documents that are in
a format used by a word processing system that uses null characters to indicate special
formatting. You can force diff to consider all files to be text files, and compare them
line by line, by using the ‘-a ’ or ‘ --text ’ option. If the files you compare using this
option do not in fact contain text, they will probably contain few newline characters,
and the diff output will consist of hunks showing differences between long lines of
whatever characters the files contain.

You can also force diff to consider all files to be binary files, and report only whether
they differ (but not how). Use the ‘--brief ’ option for this.

In operating systems that distinguish between text and binary files, diff normally
reads and writes all data as text. Use the ‘--binary ’ option to force diff to read and
write binary data instead. This option has no effect on a Posix-compliant system like
GNU or traditional Unix. However, many personal computer operating systems
represent the end of a line with a carriage return followed by a newline. On such
systems, diff normally ignores these carriage returns on input and generates them at
the end of each output line, but with the ‘--binary ’ option diff treats each carriage
return as just another input character, and does not generate a carriage return at the end
of each output line. This can be useful when dealing with non-text files that are meant
to be interchanged with Posix-compliant systems.

If you want to compare two files byte by byte, you can use the cmp program with the
‘ -l ’ option to show the values of each differing byte in the two files. With GNU cmp,
you can also use the ‘-c ’ option to show the ASCII representation of those bytes. See
“Invoking cmp” on page 169 for more information.

If diff3 thinks that any of the files it is comparing is binary (a non-text file), it
normally reports an error, because such comparisons are usually not useful. diff3

Binary files and forcing text comparisons

108 ■ Comparing & Merging Differences GNUPro Toolkit

uses the same test as diff to decide whether a file is binary. As with diff , if the input
files contain a few non-text characters but otherwise are like text files, you can force
diff3 to consider all files to be text files and compare them line by line by using the
‘ -a ’ or ‘ --text ’ options.

CYGNUS Comparing & Merging Differences ■ 109

3:
 d

iff
 o

ut
pu

t f
or

m
at

s

diff output formats

diff has several mutually exclusive options for output format. The following
documentation discusses the output and formats.

• “Two sample input files” on page 110

• “Showing differences without context” on page 111

• “Showing differences in their context” on page 113

• “Showing differences side by side” on page 119

• “Controlling side by side format” on page 120

• “Merging files with if-then-else” on page 124

3

Two sample input files

110 ■ Comparing & Merging Differences GNUPro Toolkit

Two sample input files
The following are two sample files that we will use in numerous examples to illustrate
the output of diff and how various options can change it. The following is the file,
‘ lao ’.
The Way that can be told of is not the eternal Way;
The name that can be named is not the eternal name.
The Nameless is the origin of Heaven and Earth;
The Named is the mother of all things.
Therefore let there always be non-being,
 so we may see their subtlety,
And let there always be being,
 so we may see their outcome.
The two are the same,
But after they are produced,
 they have different names.

The following is the file, ‘tzu ’.
The Nameless is the origin of Heaven and Earth;
The named is the mother of all things.

Therefore let there always be non-being, so we may see their
 subtlety,
And let there always be being,
 so we may see their outcome.
The two are the same,
But after they are produced,
 they have different names.
They both may be called deep and profound.
Deeper and more profound,
The door of all subtleties!

In this example, the first hunk contains just the first two lines of ‘lao ’, the second
hunk contains the fourth line of ‘lao ’ opposing the second and third lines of ‘tzu ’, and
the last hunk contains just the last three lines of ‘tzu ’.

CYGNUS Comparing & Merging Differences ■ 111

Showing differences without context

3:
 d

iff
 o

ut
pu

t f
or

m
at

s

Showin g differences without context
The normal diff output format shows each hunk of differences without any
surrounding context. Sometimes such output is the clearest way to see how lines have
changed, without the clutter of nearby unchanged lines (although you can get similar
results with the context or unified formats by using 0 lines of context). However, this
format is no longer widely used for sending out patches; for that purpose, the context
format (see “Context format” on page 113) and the unified format (see “Unified
format” on page 115) are superior. Normal format is the default for compatibility with
older versions of diff and the Posix standard.

Detailed description of normal format
The normal output format consists of one or more hunks of differences; each hunk
shows one area where the files differ. Normal format hunks look like the following:
change-command
< from-file-line
< from-file-line ...

> to-file-line
> to-file-line ...

There are three types of change commands. Each consists of a line number or
comma-separated range of lines in the first file, a single character indicating the kind
of change to make, and a line number or comma-separated range of lines in the second
file. All line numbers are the original line numbers in each file. The types of change
commands are the following.
l ar

Add the lines in range r of the second file after line l of the first file. For example,
‘8a12,15 ’ means append lines 12–15 of file 2 after line 8 of file 1; or, if changing
file 2 into file 1, delete lines 12–15 of file 2.

f c t

Replace the lines in range f of the first file with lines in range t of the second file.
This is like a combined add and delete, but more compact. For example,
‘5,7c8,10 ’ means change lines 5–7 of file 1 to read as lines 8–10 of file 2; or, if
changing file 2 into file 1, change lines 8–10 of file 2 to read as lines 5–7 of file 1.

r dl

Delete the lines in range r from the first file; line l is where they would have
appeared in the second file had they not been deleted. For example, ‘5,7d3 ’ means
delete lines 5–7 of file 1; or, if changing file 2 into file 1, append lines 5–7 of file
1 after line 3 of file 2.

An example of normal format

112 ■ Comparing & Merging Differences GNUPro Toolkit

An example of normal format
The following is the output of the command ‘diff lao tzu ’ (see “Two sample input
files” on page 110 for the complete contents of the two files).

Notice that the following example shows only the lines that are different between the
two files.
1,2d0
< The Way that can be told of is not the eternal Way;
< The name that can be named is not the eternal name.
4c2,3
< The Named is the mother of all things.

> The named is the mother of all things.
>
11a11,13
> They both may be called deep and profound.
> Deeper and more profound,
> The door of all subtleties!

CYGNUS Comparing & Merging Differences ■ 113

Showing differences in their context

3:
 d

iff
 o

ut
pu

t f
or

m
at

s

Showin g differences in their context
Usually, when you are looking at the differences between files, you will also want to
see the parts of the files near the lines that differ, to help you understand exactly what
has changed. These nearby parts of the files are called the context.

GNU diff provides two output formats that show context around the differing lines:
context format and unified format. It can optionally show in which function or section
of the file the differing lines are found.

If you are distributing new versions of files to other people in the form of diff output,
you should use one of the output formats that show context so that they can apply the
diffs even if they have made small changes of their own to the files. patch can apply
the diffs in this case by searching in the files for the lines of context around the
differing lines; if those lines are actually a few lines away from where the diff says
they are, patch can adjust the line numbers accordingly and still apply the diff
correctly. See “Applying imperfect patches” on page 160 for more information on
using patch to apply imperfect diffs.

Context format
The context output format shows several lines of context around the lines that differ. It
is the standard format for distributing updates to source code.

To select this output format, use the ‘-C lines ’, ‘ --context[= lines] ’, or ‘ -c ’ option.
The argument lines that some of these options take is the number of lines of context
to show. If you do not specify lines,it defaults to three. For proper operation, patch
typically needs at least two lines of context.

Detailed description of context format
The context output format starts with a two-line header, which looks like the
following.
*** from-file from-file-modification-time
--- to-file to-file-modification time

You can change the header’s content with the ‘-L label ’ or ‘ --label= label ’ option;
see “Showing alternate file names” on page 117. Next come one or more hunks of
differences; each hunk shows one area where the files differ. Context format hunks
look like the following.

*** from-file-line-range ****
 from-file-line
 from-file-line ...
--- to-file-line-range ----

Context format

114 ■ Comparing & Merging Differences GNUPro Toolkit

 to-file-line
 to-file-line...

The lines of context around the lines that differ start with two space characters. The
lines that differ between the two files start with one of the following indicator
characters, followed by a space character:

‘ ! ’
A line that is part of a group of one or more lines that changed between the two
files. There is a corresponding group of lines marked with ‘!’ in the part of this
hunk for the other file.

‘+’
An “inserted” line in the second file that corresponds to nothing in the first file.

‘ - ’
A “deleted” line in the first file that corresponds to nothing in the second file.

If all of the changes in a hunk are insertions, the lines of from-file are omitted. If all
of the changes are deletions, the lines of to-file are omitted.

An example of context format
Here is the output of ‘diff -c lao tzu ’ (see “Two sample input files” on page 110
for the complete contents of the two files). Notice that up to three lines that are not
different are shown around each line that is different; they are the context lines. Also
notice that the first two hunks have run together, because their contents overlap.
*** lao Sat Jan 26 23:30:39 1991
--- tzu Sat Jan 26 23:30:50 1991

*** 1,7 ****
- The Way that can be told of is not the eternal Way;
- The name that can be named is not the eternal name.
 The Nameless is the origin of Heaven and Earth;
! The Named is the mother of all things.
 Therefore let there always be non-being,
 so we may see their subtlety,
 And let there always be being,
--- 1,6 ----
 The Nameless is the origin of Heaven and Earth;
! The named is the mother of all things.
!
 Therefore let there always be non-being,
 so we may see their subtlety,
 And let there always be being,

*** 9,11 ****
--- 8,13 ----
 The two are the same,

CYGNUS Comparing & Merging Differences ■ 115

Unified format

3:
 d

iff
 o

ut
pu

t f
or

m
at

s

 But after they are produced,
 they have different names.
+ They both may be called deep and profound.
+ Deeper and more profound,
+ The door of all subtleties!

An example of context format with less context
The following example shows the output of ‘diff --context=1 lao tzu ’ (see “Two
sample input files” on page 110 for the complete contents of the two files). Notice that
at most one context line is reported here.
*** lao Sat Jan 26 23:30:39 1991
--- tzu Sat Jan 26 23:30:50 1991

*** 1,5 ****
- The Way that can be told of is not the eternal Way;
- The name that can be named is not the eternal name.
 The Nameless is the origin of Heaven and Earth;
! The Named is the mother of all things.
 Therefore let there always be non-being,
--- 1,4 ----
 The Nameless is the origin of Heaven and Earth;
! The named is the mother of all things.
!
 Therefore let there always be non-being,

*** 11 ****
--- 10,13 ----
 they have different names.
+ They both may be called deep and profound.
+ Deeper and more profound,
+ The door of all subtleties!

Unified format
The unified output format is a variation on the context format that is more compact
because it omits redundant context lines. To select this output format, use the ‘-U

lines ’, ‘ --unified[= lines] ’, or ‘ -u ’ option. The argument linesis the number of
lines of context to show. When it is not given, it defaults to three. At present, only
GNU diff can produce this format and only GNU patch can automatically apply diffs
in this format. For proper operation, patch typically needs at least two lines of context.

Detailed description of unified format
The unified output format starts with a two-line header, which looks like this:
--- from-file from-file-modification-time
+++ to-file to-file-modification-time

Showing which sections differences are in

116 ■ Comparing & Merging Differences GNUPro Toolkit

You can change the header’s content with the ‘-L label ’ or ‘ --label= label ’ option;
see See “Showing alternate file names” on page 117. Next come one or more hunks of
differences; each hunk shows one area where the files differ. Unified format hunks
look like the following
@@ from-file-range to-file-range @@
line-from-either-file
line-from-either-file...

The lines common to both files begin with a space character. The lines that actually
differ between the two files have one of the following indicator characters in the left
column:

‘+’ A line was added here to the first file.

‘-’ A line was removed here from the first file.

An example of unified format
Here is the output of the command, ‘diff -u lao tzu ’ (see “Two sample input files”
on page 110 for the complete contents of the two files):
--- lao Sat Jan 26 23:30:39 1991
+++ tzu Sat Jan 26 23:30:50 1991
@@ -1,7 +1,6 @@
-The Way that can be told of is not the eternal Way;
-The name that can be named is not the eternal name.
 The Nameless is the origin of Heaven and Earth;
-The Named is the mother of all things.
+The named is the mother of all things.
+
 Therefore let there always be non-being,
 so we may see their subtlety,
 And let there always be being,
@@ -9,3 +8,6 @@
 The two are the same,
 But after they are produced,
 they have different names.
+They both may be called deep and profound.
+Deeper and more profound,
+The door of all subtleties!

Showing which sections differences are in
Sometimes you might want to know which part of the files each change falls in. If the
files are source code, this could mean which function was changed. If the files are
documents, it could mean which chapter or appendix was changed. GNU diff can
show this by displaying the nearest section heading line that precedes the differing
lines. Which lines are “section headings” is determined by a regular expression.

CYGNUS Comparing & Merging Differences ■ 117

Showing alternate file names

3:
 d

iff
 o

ut
pu

t f
or

m
at

s

Showing lines that match regular expressions
To show in which sections differences occur for files that are not source code for C or
similar languages, use the ‘-F regexp ’ or ‘ --show-function-line= regexp ’ option.
diff considers lines that match the argument, regexp , to be the beginning of a section
of the file. Here are suggested regular expressions for some common languages:

C, C++, Prolog
‘ ˆ[A-Za-z_] ’

Lisp
‘ ˆ(’

Texinfo
‘ ˆ@\(chapter\|appendix\|unnumbered\|chapheading\) ’

This option does not automatically select an output format; in order to use it, you must
select the context format (see “Context format” on page 113) or unified format (see
“Unified format” on page 115). In other output formats it has no effect.

The ‘-F ’ and ‘--show-function-line ’ options find the nearest unchanged line that
precedes each hunk of differences and matches the given regular expression. Then
they add that line to the end of the line of asterisks in the context format, or to the ‘@@’
line in unified format. If no matching line exists, they leave the output for that hunk
unchanged. If that line is more than 40 characters long, they output only the first 40
characters. You can specify more than one regular expression for such lines; diff tries
to match each line against each regular expression, starting with the last one given.
This means that you can use ‘-p ’ and ‘-F ’ together, if you wish.

Showing C function headings
To show in which functions differences occur for C and similar languages, you can
use the ‘-p ’ or ‘ --show-c-function ’ option. This option automatically defaults to the
context output format (see “Context format” on page 113), with the default number of
lines of context. You can override that number with ‘-C lines ’ elsewhere in the
command line. You can override both the format and the number with ‘-U lines ’
elsewhere in the command line.

The ‘-p ’ and ‘--show-c-function ’ options are equivalent to ‘-F’ˆ[_a-zA-Z$]’ ’ if the
unified format is specified, otherwise ‘-c -F’ˆ[_a-zA-Z$]’ ’ (see “Showing lines that
match regular expressions” on page 117).

GNU diff provides them for the sake of convenience.

Showing alternate file names
If you are comparing two files that have meaningless or uninformative names, you

Showing alternate file names

118 ■ Comparing & Merging Differences GNUPro Toolkit

might want diff to show alternate names in the header of the context and unified
output formats.

To do this, use the ‘-L label ’ or ‘ --label= label ’ option. The first time you give this
option, its argument replaces the name and date of the first file in the header; the
second time, its argument replaces the name and date of the second file. If you give
this option more than twice, diff reports an error. The ‘-L ’ option does not affect the
file names in the pr header when the ‘-l ’ or‘ --paginate ’ option is used (see
“Paginating diff output” on page 135). The following are the first two lines of the
output from ‘diff -C2 -Loriginal -Lmodified lao tzu ’:
*** original
--- modified

CYGNUS Comparing & Merging Differences ■ 119

Showing differences side by side

3:
 d

iff
 o

ut
pu

t f
or

m
at

s

Showin g differences side b y side
diff can produce a side by side difference listing of two files. The files are listed in
two columns with a gutter between them. The gutter contains one of the following
markers:

white space
The corresponding lines are in common. That is, either the lines are identical, or
the difference is ignored because of one of the ‘--ignore ’ options (see
“Suppressing differences in blank and tab spacing” on page 102).

‘ | ’
The corresponding lines differ, and they are either both com-plete or both
incomplete.

‘<’
 The files differ and only the first file contains the line.

‘>’
The files differ and only the second file contains the line.

‘ (’
Only the first file contains the line, but the difference is ig-nored.

‘) ’
Only the second file contains the line, but the difference is ignored.

‘ \ ’
The corresponding lines differ, and only the first line is in-complete.

‘ / ’
The corresponding lines differ, and only the second line is incomplete.

Normally, an output line is incomplete if and only if the lines that it contains are
incomplete; see “Incomplete lines” on page 197. However, when an output line
represents two differing lines, one might be incomplete while the other is not. In this
case, the output line is complete, but its the gutter is marked ‘\ ’ if the first line is
incomplete, ‘/ ’ if the second line is.

Side by side format is sometimes easiest to read, but it has limitations. It generates
much wider output than usual, and truncates lines that are too long to fit. Also, it relies
on lining up output more heavily than usual, so its output looks particularly bad if you
use varying width fonts, nonstandard tab stops, or nonprinting characters.

You can use the sdiff command to interactively merge side by side differences. See
“Interactive merging with sdiff” on page 153 for more information on merging files.

Controlling side by side format

120 ■ Comparing & Merging Differences GNUPro Toolkit

Controllin g side b y side format
The ‘-y ’ or ‘ --side-by-side ’ option selects side by side format. Because side by side
output lines contain two input lines, they are wider than usual. They are normally 130
columns, which can fit onto a traditional printer line. You can set the length of output
lines with the ‘-W columns ’ or ‘ --width= columns ’ option. The output line is split into
two halves of equal length, separated by a small gutter to mark differences; the right
half is aligned to a tab stop so that tabs line up. Input lines that are too long to fit in
half of an output line are truncated for output. The ‘--left-column ’ option prints only
the left column of two common lines. The ‘--suppress-common-lines ’ option
suppresses common lines entirely.

An example of side by side format
The following is the output of the command ‘diff -y -W 72 lao tzu ’ (see “Two
sample input files” on page 110 for the complete contents of the two files).
The Way that can be told of is <
The name that can be named is <
The Nameless is the origin of The Nameless is the origin of
The Named is the mother of all | The named is the mother of all
 >
Therefore let there always be Therefore let there always be
 so we may see their subtlet so we may see their subtlet
And let there always be being And let there always be being
 so we may see their outcome so we may see their outcome
The two are the same, The two are the same,
But after they are produced, But after they are produced,
they have different names. they have different names.

> They both may be called deep
> Deeper and more profound,

> The door of all subtleties!

Making edit scripts
Several output modes produce command scripts for editing from-file to produce
to-file .

ed scripts
diff can produce commands that direct the ed text editor to change the first file into
the second file. Long ago, this was the only output mode that was suitable for editing
one file into another automatically; today, with patch , it is almost obsolete. Use the
‘ -e ’ or‘ --ed ’ option to select this output format. Like the normal format (see
“Showing differences without context” on page 111), this output format does not show

CYGNUS Comparing & Merging Differences ■ 121

ed scripts

3:
 d

iff
 o

ut
pu

t f
or

m
at

s

any context; unlike the normal format, it does not include the information necessary to
apply the diff in reverse (to produce the first file if all you have is the second file and
the diff). If the file ‘d’ contains the output of ‘diff -e old new’, then the command,
‘ (cat d && echo w) | ed - old ’, edits ‘old ’ to make it a copy of ‘new’.

More generally, if ‘d1 ’, ‘ d2 ’, ... ,‘dN’ contain the outputs of ‘diff -e old new1’, ‘ diff

-e new1 new2’, ... ,‘diff -e newN-1 newN’, respectively, then the command, ‘(cat

d1 d2 ...dN && echo w) | ed - old ’, edits ‘old ’ to make it a copy of ‘newN’.

Detailed description of ed format
The ed output format consists of one or more hunks of differences. The changes
closest to the ends of the files come first so that commands that change the number of
lines do not affect how ed interprets line numbers in succeeding commands. ed format
hunks look like the following:
change-command
to-file-line
to-file-line...

 Because ed uses a single period on a line to indicate the end of input,

GNU diff protects lines of changes that contain a single period on a line by writing
two periods instead, then writing a subsequent ed command to change the two periods
into one. The ed format cannot represent an incomplete line, so if the second file ends
in a changed incomplete line, diff reports an error and then pretends that a newline
was appended.

There are three types of change commands. Each consists of a line number or
comma-separated range of lines in the first file and a single character indicating the
kind of change to make. All line numbers are the original line numbers in the file. The
types of change commands are:

‘ l a’
Add text from the second file after line l in the first file. For example, ‘8a ’ means
to add the following lines after line 8 of file 1.

‘ r c ’
Replace the lines in range r in the first file with the following lines. Like a
combined add and delete, but more compact. For example, ‘5,7c’ means change
lines 5–7 of file 1 to read as the text file 2.

‘ r d’
Delete the lines in range r from the first file. For example, ‘5,7d’ means delete
lines 5–7 of file 1.

Forward ed scripts

122 ■ Comparing & Merging Differences GNUPro Toolkit

Example ed Script
The following is the output of ‘diff -e lao tzu ’ (see “Two sample input files” on
page 110 for the complete contents of the two files):
11a
They both may be called deep and profound.
Deeper and more profound,
The door of all subtleties!
.
4c
The named is the mother of all things.

.
1,2d

Forward ed scripts
diff can produce output that is like an ed script, but with hunks in forward (front to
back) order. The format of the commands is also changed slightly: command
characters precede the lines they modify, spaces separate line numbers in ranges, and
no attempt is made to disambiguate hunk lines consisting of a single period. Like ed
format, forward ed format cannot represent incomplete lines. Forward ed format is not
very useful, because neither ed nor patch can apply diffs in this format. It exists
mainly for compatibility with older versions of diff. Use the ‘-f ’ or ‘ --forward-ed ’
option to select it.

RCS scripts
The RCS output format is designed specifically for use by the Revision Control
System, which is a set of free programs used for organizing different versions and
systems of files. Use the ‘-n ’ or ‘ --rcs ’ option to select this output format. It is like
the forward ed format (see “Forward ed scripts” on page 122), but it can represent
arbitrary changes to the contents of a file because it avoids the forward ed format’s
problems with lines consisting of a single period and with incomplete lines. Instead of
ending text sections with a line consisting of a single period, each command specifies
the number of lines it affects; a combination of the ‘a’ and ‘d’ commands are used
instead of ‘c ’. Also, if the second file ends in a changed incomplete line, then the
output also ends in an incomplete line. The following is the output of ‘diff -n lao

tzu ’ (see “Two sample input files” on page 110 for the complete contents of the two
files):
d1 2
d4 1
a4 2
The named is the mother of all things.

CYGNUS Comparing & Merging Differences ■ 123

RCS scripts

3:
 d

iff
 o

ut
pu

t f
or

m
at

s

a11 3
They both may be called deep and profound.
Deeper and more profound,
The door of all subtleties!

Merging files with if-then-else

124 ■ Comparing & Merging Differences GNUPro Toolkit

Merging files with if-then-else
You can use diff to merge two files of C source code. The output of diff in this
format contains all the lines of both files. Lines common to both files are output just
once; the differing parts are separated by the C preprocessor directives, #ifdef name
or #ifndef name, #else , and #endif . When compiling the output, you select which
version to use by either defining or leaving undefined the macro name.

To merge two files, use diff with the ‘-D name’ or ‘ --ifdef= name’ option. The
argument, name, is the C preprocessor identifier to use in the #ifdef and #ifndef
directives. For example, if you change an instance of wait (&s) to waitpid (-1, &s,

0) and then merge the old and new files with the ‘--ifdef=HAVE_WAITPID ’ option,
then the affected part of your code might look like the following declaration.

do {
#ifndef HAVE_WAITPID

if ((w = wait (&s)) < 0 && errno != EINTR)
#else /* HAVE_WAITPID */
if ((w = waitpid (-1, &s, 0)) < 0 && errno != EINTR)
#endif /* HAVE_WAITPID */

return w; }
while (w != child);

You can specify formats for languages other than C by using line group formats and
line formats.

Line group formats
Line group formats let you specify formats suitable for many applications that allow
if-then-else input, including programming languages and text formatting languages. A
line group format specifies the output format for a contiguous group of similar lines.
For example, the following command compares the TeX files ‘old ’ and ‘new’, and
outputs a merged file in which old regions are surrounded by
‘ \begin{em} ’-‘ \end{em} ’ lines, and new regions are surrounded by
‘ \begin{bf} ’-‘ \end{bf} ’ lines.
diff \
 --old-group-format=’\begin{em}
%<\end{em}
’ \
 --new-group-format=’\begin{bf}
%>\end{bf}

’ \
 old new

The following command is equivalent to the previous example, but it is a little more

CYGNUS Comparing & Merging Differences ■ 125

Line group formats

3:
 d

iff
 o

ut
pu

t f
or

m
at

s

verbose, because it spells out the default line group formats.
diff \
 --old-group-format=’\begin{em}
%<\end{em}
’ \
 --new-group-format=’\begin{bf}
%>\end{bf} ’
\
 --unchanged-group-format=’%=’ \
 --changed-group-format=’\begin{em}
%<\end{em}
\begin{bf}
%>\end{bf}
’ \
 old new

Here is a more advanced example, which outputs a diff listing with headers containing
line numbers in a “plain English” style.
diff \
--unchanged-group-format=’’ \
 --old-group-format=’-------- %dn line%(n=1?:s) deleted at %df:
%<’ \
 --new-group-format=’-------- %dN line%(N=1?:s) added after %de:
%>’ \
 --changed-group-format=’-------- %dn line%(n=1?:s) changed at %df:
%<-------- to:
%>’ \
 old new

To specify a line group format, use diff with one of the options listed below. You can
specify up to four line group formats, one for each kind of line group. You should
quote format , because it typically contains shell metacharacters.

‘ --old-group-format= format ’
These line groups are hunks containing only lines from the first file. The default
old group format is the same as the changed group format if it is specified;
otherwise it is a format that outputs the line group as-is.

‘ --new-group-format= format ’
These line groups are hunks containing only lines from the second file. The
default new group format is same as the the changed group format if it is
specified; otherwise it is a format that outputs the line group as-is.

‘ --changed-group-format= format ’
These line groups are hunks containing lines from both files. The default changed
group format is the concatenation of the old and new group formats.

Line group formats

126 ■ Comparing & Merging Differences GNUPro Toolkit

‘ --unchanged-group-format= format ’
These line groups contain lines common to both files. The default unchanged
group format is a format that outputs the line group as-is.

In a line group format, ordinary characters represent themselves; conversion
specifications start with ‘%’ and have one of the following forms.

‘%<’
Stands for the lines from the first file, including the trailing newline. Each line is
formatted according to the old line format (see “Line formats” on page 127).

‘%>’
Stands for the lines from the second file, including the trailing newline. Each line
is formatted according to the new line format.

‘%=’
Stands for the lines common to both files, including the trail-ing newline. Each
line is formatted according to the unchanged line format.

‘%%’
Stands for ‘%’.

‘%c’ C’ ’
Where C is a single character, stands for C. C may not be a backslash or an
apostrophe. For example, ‘%c’:’ ’ stands for a colon, even inside the ‘then-’ part of
an if-then-else format, which a colon would normally terminate.

‘%c’\ O’ ’
Stands for the character with octal code O ,where O is a string of 1, 2, or 3 octal
digits. For example, ‘%c’\0’ ’ stands for a null character.

‘Fn’
Stands for n’s value formatted with F where F is a printf conversion specification
and n is one of the following letters.

‘e’
The line number of the line just before the group in the old file.

‘ f ’
The line number of the first line in the group in the old file; equals e + 1.

‘ l ’
The line number of the last line in the group in the old file.

‘m’
The line number of the line just after the group in the old file; equals l + 1.

 ‘n’
The number of lines in the group in the old file; equals l-f + 1.

CYGNUS Comparing & Merging Differences ■ 127

Line formats

3:
 d

iff
 o

ut
pu

t f
or

m
at

s

‘E, F, L, M, N ’
Likewise, for lines in the new file.

The printf conversion specification can be ‘%d’, ‘ %o’, ‘ %x’, or ‘%X’, specifying
decimal, octal, lower case hexadecimal, or upper case hexadecimal output
respectively. After the ‘%’ the following options can appear in sequence: a ‘- ’
specifying left-justification; an integer specifying the minimum field width; and a
period followed by an optional integer specifying the minimum number of digits.
For example, ‘%5dN’ prints the number of new lines in the group in a field of width
5 characters, using the printf format, “%5d” .

‘ (A=B?T: E) ’
If A equals B, then T, else, E. Aand Bare each either a decimal constant or a single
letter interpreted as above. This format spec is equivalent to T if A’s value equals
B’s; otherwise it is equivalent to E. For example, ‘%(N=0?no:%dN)

line%(N=1?:s) ’ is equivalent to ‘no lines ’ if N (the number of lines in the group
in the the new file) is 0, to ‘1 line ’ if N is 1, and to ‘%dN lines ’ otherwise.

Line formats
Line formats control how each line taken from an input file is output as part of a line
group in if-then-else format. For example, the following command outputs text with a
one-column change indicator to the left of the text. The first column of output is ‘- ’
for deleted lines, ‘| ’ for added lines, and a space for unchanged lines. The formats
contain newline characters where newlines are desired on output.
diff \
 --old-line-format=’-%l
’ \
 --new-line-format=’|%l
’ \
 --unchanged-line-format=’ %l
’ \
 old new

To specify a line format, use one of the following options. You should quote format ,
since it often contains shell metacharacters.

‘ --old-line-format= format ’
Formats lines just from the first file.

 ‘--new-line-format= format ’
Formats lines just from the second file.

‘ --unchanged-line-format= format ’
Formats lines common to both files.

‘ --line-format= format ’
Formats all lines; in effect, it simultaneously sets all three of the previous options.

Line formats

128 ■ Comparing & Merging Differences GNUPro Toolkit

In a line format, ordinary characters represent themselves; conversion specifications
start with ‘%’ and have one of the following forms.

‘%l ’
Stands for the the contents of the line, not counting its trail-ing newline (if any). This
format ignores whether the line is incomplete; see “Incomplete lines” on page 197.

‘%L’
Stands for the the contents of the line, including its trailing newline (if any). If a line is
incomplete, this format preserves its incompleteness.

‘%%’
Stands for ‘%’.

‘%c’ C’ ’
Stands for C, where C is a single character. C may not be a backslash or an apostrophe.
For example, ‘%c’:’ ’ stands for a colon.

‘%c’\ O’ ’
Stands for the character with octal code O where O is a string of 1, 2, or 3 octal digits.
For example, ‘%c’\0’ ’ stands for a null character.

‘Fn ’
Stands for the line number formatted with F where F is a printf conversion
specification. For example, ‘%.5dn ’ prints the line number using the printf format,
“%.5d” . See “Line group formats” on page 124 for more about printf conversion
specifications.

The default line format is ‘%l ’ followed by a newline character.

If the input contains tab characters and it is important that they line up on output, you
should ensure that ‘%l ’ or ‘%L’ in a line format is just after a tab stop (e.g., by
preceding ‘%l ’ or ‘%L’ with a tab character), or you should use the ‘-t ’ or
‘ --expand-tabs ’ option.

Taken together, the line and line group formats let you specify many different formats.
For example, the following command uses a format similar to diff ’s normal format.
You can tailor this command to get fine control over diff ’s output.
diff \
 --old-line-format=’< %l
’ \
 --new-line-format=’> %l

’ \
 --old-group-format=’%df%(f=l?:,%dl)d%dE
%<’ \
 --new-group-format=’%dea%dF%(F=L?:,%dL)
%>’ \

CYGNUS Comparing & Merging Differences ■ 129

Detailed description of if-then-else format

3:
 d

iff
 o

ut
pu

t f
or

m
at

s

 --changed-group-format=’%df%(f=l?:,%dl)c%dF%(F=L?:,%dL)
%<---
%>’ \
 --unchanged-group-format=’’ \
 old new

Detailed description of if-then-else format
For lines common to both files, diff uses the unchanged line group format. For each
hunk of differences in the merged output format, if the hunk contains only lines from
the first file, diff uses the old line group format; if the hunk contains only lines from
the second file, diff uses the new group format; otherwise, diff uses the changed
group format.

The old, new, and unchanged line formats specify the output format of lines from the
first file, lines from the second file, and lines common to both files, respectively.

The option ‘--ifdef= name’ is equivalent to the following sequence of options using
shell syntax:
--old-group-format=’#ifndef name %<#endif /* not name */ ’ \
--new-group-format=’#ifdef name %>#endif /* name */ ’ \
--unchanged-group-format=’%=’ \ --changed-group-format=’#ifndef name
%<#else /* name */ %>#endif /* name */ ’

You should carefully check the diff output for proper nesting. For example, when
using the the ‘-D name’ or ‘ --ifdef= name’ option, you should check that if the
differing lines contain any of the C preproces-sor directives ‘#ifdef ’, ‘ #ifndef ’,
‘#else ’, ‘ #elif ’, or ‘#endif ’, they are nested properly and match. If they don’t, you
must make corrections manually. It is a good idea to carefully check the resulting code
any-way to make sure that it really does what you want it to; depending on how the
input files were produced, the output might contain duplicate or otherwise incorrect
code.

The patch ‘ -D name’ option behaves just like the diff ‘ -D name’ option, except it
operates on a file and a diff to produce a merged file; see “Options to patch” on page
189.

An example of if-then-else format
The following is the output of ‘diff -DTWO lao tzu ’ (see “Two sample input files”
on page 110 for the complete contents of the two files):
#ifndef TWO
The Way that can be told of is not the eternal Way;
The name that can be named is not the eternal name.
#endif /* not TWO */
The Nameless is the origin of Heaven and Earth;

An example of if-then-else format

130 ■ Comparing & Merging Differences GNUPro Toolkit

#ifndef TWO
The Named is the mother of all things.
#else /* TWO */
The named is the mother of all things.

#endif /* TWO */
Therefore let there always be non-being,
so we may see their subtlety,
And let there always be being,
so we may see their outcome.
The two are the same,
But after they are produced,
they have different names.
#ifdef TWO
They both may be called deep and profound.
Deeper and more profound,
The door of all subtleties!
#endif /* TWO */

CYGNUS Comparing & Merging Differences ■ 131

4:
 C

om
pa

rin
g

di
re

ct
or

ie
s

Comparin g directories

You can use diff to compare some or all of the files in two directory trees. When both
file name arguments to diff are directories, it compares each file that is contained in
both directories, ex-amining file names in alphabetical order. Normally diff is silent
about pairs of files that contain no differences, but if you use the ‘-s ’
or‘--report-identical-files ’ option, it reports pairs of identical files. Normally
diff reports subdirectories common to both directories without comparing
subdirectories’ files, but if you use the ‘-r ’ or ‘ --recursive ’ option, it compares
every corresponding pair of files in the directory trees, as many levels deep as they go.

For file names that are in only one of the directories, diff normally does not show the
contents of the file that exists; it reports only that the file exists in that directory and
not in the other. You can make diff act as though the file existed but was empty in the
other directory, so that it outputs the entire contents of the file that actually exists. (It is
output as either an insertion or a deletion, depending on whether it is in the first or the
second directory given.) To do this, use the ‘-N ’ or ‘ --new-file ’ option.

If the older directory contains one or more large files that are not in the newer
directory, you can make the patch smaller by using the ‘-P ’ or
‘ --unidirectional-new-file ’ options instead of ‘-N ’. This option is like ‘-N ’
except that it only inserts the contents of files that appear in the second directory but
not the first (that is, files that were added). At the top of the patch, write instructions

4

132 ■ Comparing & Merging Differences GNUPro Toolkit

for the user applying the patch to remove the files that were deleted before applying
the patch. See “Tips for making patch distributions” on page 167 for more discussion
of making patches for distribution.

To ignore some files while comparing directories, use the ‘-x pattern ’ or
‘ --exclude= pattern ’ option. This option ignores any files or subdi-rectories whose
base names match the shell pattern pattern. Unlike in the shell, a period at the start of
the base of a file name matches a wildcard at the start of a pattern. You should enclose
pattern in quotes so that the shell does not expand it. For example, the option ‘-x
’*.[ao]’ ’ ignores any file whose name ends with ‘.a ’ or ‘ .o ’.

This option accumulates if you specify it more than once. For example, using the
options ‘-x ’RCS’ -x ’*,v’ ’ ignores any file or subdirectory whose base name is
‘RCS’ or ends with ‘,v ’.

If you need to give this option many times, you can instead put the patterns in a file,
one pattern per line, using the ‘-X file’ or ‘--exclude-from- file ’ option.

If you have been comparing two directories and stopped partway through, later you
might want to continue where you left off. You can do this by using the ‘-S file ’
or‘--starting-file- file ’ option. This compares only the file, file , and all
alphabetically subsequent files in the topmost directory level.

CYGNUS Comparing & Merging Differences ■ 133

5:
 M

ak
in

g
d

iff
 o

ut
pu

t p
re

tti
er

Makin g diff output prettier

diff provides several ways to adjust the appearance of its output. These adjustments
can be applied to any output format. For more information, see “Preserving tabstop
alignment” on page 134 and “Paginating diff output” on page 135.

5

Preserving tabstop alignment

134 ■ Comparing & Merging Differences GNUPro Toolkit

Preservin g tabstop ali gnment
The lines of text in some of the diff output formats are preceded by one or two
characters that indicate whether the text is inserted, deleted, or changed. The addition
of those characters can cause tabs to move to the next tabstop, throwing off the
alignment of columns in the line. GNU diff provides two ways to make tab-aligned
columns line up correctly.

The first way is to have diff convert all tabs into the correct number of spaces before
outputting them.

Select this method with the ‘-t ’ or ‘ --expand-tabs ’ option. diff assumes that
tabstops are set every 8 columns. To use this form of output with patch , use the ‘-l ’
or ‘--ignore-white-space ’ option (see “Applying Patches in Other Directories” on
page 185 for more information).

The other method for making tabs line up correctly is to add a tab character instead of
a space after the indicator character at the beginning of the line. This ensures that all
following tab characters are in the same position relative to tabstops that they were in
the original files, so that the output is aligned correctly. Its disadvantage is that it can
make long lines too long to fit on one line of the screen or the paper. It also does not
work with the unified output format which does not have a space character after the
change type indicator character.

Select this method with the ‘-T ’ or ‘ --initial-tab ’ option.

CYGNUS Comparing & Merging Differences ■ 135

Paginating diff output

5:
 M

ak
in

g
d

iff
 o

ut
pu

t p
re

tti
er

Paginatin g diff output
It can be convenient to have long output page-numbered and time-stamped. The ‘-l ’
and ‘--paginate ’ options do this by sending the diff output through the pr program.
The following is what the page header might look like for ‘diff -lc lao tzu ’:
Mar 11 13:37 1991 diff -lc lao tzu Page 1

Paginating diff output

136 ■ Comparing & Merging Differences GNUPro Toolkit

CYGNUS Comparing & Merging Differences ■ 137

6:
 d

iff
 p

er
fo

rm
an

ce
 tr

ad
eo

ffs

diff performance tradeoffs

GNU diff runs quite efficiently; however, in some circumstances you can cause it to
run faster or produce a more compact set of changes. There are two ways that you can
affect the performance of GNU diff by changing the way it compares files.

Performance has more than one dimension. These options improve one aspect of
performance at the cost of another, or they improve performance in some cases while
hurting it in others.

The way that GNU diff determines which lines have changed always comes up with
a near-minimal set of differences. Usually it is good enough for practical purposes. If
the diff output is large, you might want diff to use a modified algorithm that
sometimes produces a smaller set of differences. The ‘-d ’ or ‘ --minimal ’ option does
this; however, it can also cause diff to run more slowly than usual, so it is not the
default behavior.

When the files you are comparing are large and have small groups of changes
scattered throughout them, use the ‘-H ’ or ‘ --speed-large-files ’ option to make a
different modification to the algorithm that diff uses. If the input files have a constant
small density of changes, this option speeds up the comparisons without changing the
output. If not, diff might produce a larger set of differences; however, the output will
still be correct.

6

138 ■ Comparing & Merging Differences GNUPro Toolkit

Normally diff discards the prefix and suffix that is common to both files before it
attempts to find a minimal set of differences. This makes diff run faster, but
occasionally it may produce non-minimal output.

The ‘--horizon-lines= lines ’ option prevents diff from discarding the last lines
lines of the prefix and the first lines lines of the suffix. This gives diff further
opportunities to find a minimal output.

CYGNUS Comparing & Merging Differences ■ 139

7:
 C

om
pa

rin
g

th
re

e
fil

es

Comparin g three files

Use the program diff3 to compare three files and show any differences among them.
(diff3 can also merge files; see “Merging from a common ancestor” on page 145).

The “normal” diff3 output format shows each hunk of differences without
surrounding context. Hunks are labeled depending on whether they are two-way or
three-way, and lines are annotated by their location in the input files.

See “Invoking diff3” on page 179 for more information on how to run diff3 .

The following documentation discusses comparing files.

• “A third sample input file” on page 140

• “Detailed description of diff3 normal format” on page 141

• “diff3 hunks” on page 142

• “An example of diff3 normal format” on page 143

7

A third sample input file

140 ■ Comparing & Merging Differences GNUPro Toolkit

A third sample input file
The following is a third sample file that will be used in examples to illustrate the
output of diff3 and how various options can change it. The first two files are the
same that we used for diff (see “Two sample input files” on page 110). This is the
third sample file, called ‘tao ’:
The Way that can be told of is not the eternal Way;
The name that can be named is not the eternal name.
The Nameless is the origin of Heaven and Earth;
The named is the mother of all things.

Therefore let there always be non-being,
 so we may see their subtlety,
And let there always be being,
 so we may see their result.
The two are the same,
But after they are produced,
 they have different names.

 -- The Way of Lao-Tzu, tr. Wing-tsit Chan

CYGNUS Comparing & Merging Differences ■ 141

Detailed description of diff3 normal format

7:
 C

om
pa

rin
g

th
re

e
fil

es

Detailed description of diff3 normal
format

Each hunk begins with a line marked ‘====’. Three-way hunks have plain ‘====’
lines, and two-way hunks have ‘1’, ‘ 2’, or ‘3’ appended to specify which of the three
input files differ in that hunk. The hunks contain copies of two or three sets of input
lines each preceded by one or two commands identifying the origin of the lines.

Normally, two spaces precede each copy of an input line to distinguish it from the
commands. But with the ‘-T ’ or‘ --initial-tab ’ option, diff3 uses a tab instead of
two spaces; this lines up tabs correctly.

See “Preserving tabstop alignment” on page 134 for more information.

Commands take the following forms.

 ‘ file : l a’
This hunk appears after line l of file, file , and contains no lines in that file. To
edit this file to yield the other files, one must append hunk lines taken from the
other files. For example, ‘1:11 a’ means that the hunk follows line 11 in the first
file and contains no lines from that file.

‘ file : r c ’
This hunk contains the lines in the range r of file file. The range r is a
comma-separated pair of line numbers, or just one number if the range is a
singleton. To edit this file to yield the other files, one must change the specified
lines to be the lines taken from the other files. For example, ‘2:11,13c ’ means
that the hunk contains lines 11 through 13 from the second file.

If the last line in a set of input lines is incomplete, it is distinguished on output from a
full line by a following line that starts with ‘\’ (see “Incomplete lines” on page 197).

diff3 hunks

142 ■ Comparing & Merging Differences GNUPro Toolkit

diff3 hunks
Groups of lines that differ in two or three of the input files are called diff3 hunks, by
analogy with diff hunks (see “Hunks” on page 101). If all three input files differ in a
diff3 hunk, the hunk is called a three-way hunk; if just two input files differ, it is a
two-way hunk. As with diff, several solutions are possible. When comparing the files
‘A’, ‘ B’, and ‘C’, diff3 normally finds diff3 hunks by merging the two-way hunks
output by the two commands ‘diff A B’ and ‘diff A C’. This does not necessarily
minimize the size of the output, but exceptions should be rare. For example, suppose
‘F’ contains the three lines ‘a’, ‘ b’, ‘ f ’, ‘ G’ contains the lines ‘g’, ‘ b’, ‘ g’, and ‘H’
contains the lines ‘a’, ‘ b’, ‘ h’. ‘ diff3 F G H ’ might output the following:
====2
1:1c
3:1c
a
2:1c
g
====
1:3c
f
2:3c
g
3:3c
h

because it found a two-way hunk containing ‘a’ in the first and third files and ‘g’ in
the second file, then the single line ‘b’ common to all three files, then a three-way
hunk containing the last line of each file.

CYGNUS Comparing & Merging Differences ■ 143

An example of diff3 normal format

7:
 C

om
pa

rin
g

th
re

e
fil

es

An example of diff3 normal format
Here is the output of the command ‘diff3 lao tzu tao ’ (see “A third sample input
file” on page 140 for the complete contents of the files). Notice that it shows only the
lines that are different among the three files.
====2
1:1,2c
3:1,2c
 The Way that can be told of is not the eternal Way;
 The name that can be named is not the eternal name.
2:0a
====
1 1:4c
 The Named is the mother of all things.
2:2,3c
3:4,5c
 The named is the mother of all things.

====3
1:8c
2:7c
 so we may see their outcome.
3:9c
 so we may see their result.
====
1:11a
2:11,13c
 They both may be called deep and profound.
 Deeper and more profound,
 The door of all subtleties!
3:13,14c

 -- The Way of Lao-Tzu, tr. Wing-tsit Chan

An example of diff3 normal format

144 ■ Comparing & Merging Differences GNUPro Toolkit

CYGNUS Comparing & Merging Differences ■ 145

8:
 M

er
gi

ng
 fr

om
 a

 c
om

m
on

 a
nc

es
to

r

Merging from a common
ancestor

When two people have made changes to copies of the same file, diff3 can produce a
merged output that contains both sets of changes together with warnings about
conflicts. One might imagine programs with names like diff4 and diff5 to compare
more than three files simultaneously, but in practice the need rarely arises. You can
use diff3 to merge three or more sets of changes to a file by merging two change sets
at a time.

diff3 can incorporate changes from two modified versions into a common preceding
version. This lets you merge the sets of changes represented by the two newer files.
Specify the common ancestor version as the second argument and the two newer
versions as the first and third arguments, like this: diff3 mine older yours .

You can remember the order of the arguments by noting that they are in alphabetical
order.

You can think of this as subtracting older from yours and adding the result to mine , or
as merging into mine the changes that would turn older into yours . This merging is
well-defined as long as mine and older match in the neighborhood of each such
change. This fails to be true when all three input files differ or when only older
differs; we call this a conflict. When all three input files differ, we call the conflict an
overlap.

8

146 ■ Comparing & Merging Differences GNUPro Toolkit

diff3 gives you several ways to handle overlaps and conflicts. You can omit overlaps
or conflicts, or select only overlaps, or mark conflicts with special ‘<<<<<<< ’ and
‘>>>>>>> ’ lines.

diff3 can output the merge results as an ed script that that can be applied to the first
file to yield the merged output. However, it is usually better to have diff3 generate
the merged output directly; this bypasses some problems with ed.

CYGNUS Comparing & Merging Differences ■ 147

Selecting which changes to incorporate

8:
 M

er
gi

ng
 fr

om
 a

 c
om

m
on

 a
nc

es
to

r

Selectin g which chan ges to incorporate
You can select all unmerged changes from olderto yoursfor merging into minewith the
‘ -e ’ or ‘ --ed ’ option. You can select only the nonover-lapping unmerged changes
with ‘ -3 ’ or ‘ --easy-only ’, and you can select only the overlapping changes with
‘ -x ’ or ‘ --overlap-only ’.

The ‘-e ’, ‘ -3 ’ and ‘-x ’ options select only unmerged changes, i.e., changes where
mine and yours differ; they ignore changes from older to yours where mine and
yoursare identical, because they assume that such changes have already been
merged. If this assumption is not a safe one, you can use the options, ‘-A ’ or
‘ --show-all ’ (see “Marking conflicts” on page 148). The following is the output of
the command, diff3 , with each of these three options (see “A third sample input file”
on page 140 for the complete contents of the files). Notice that ‘-e ’ outputs the union
of the disjoint sets of changes output by ‘-3 ’ and ‘-x ’.

Output of ‘diff3 -e lao tzu tao ’:
11a

 -- The Way of Lao-Tzu, tr. Wing-tsit Chan
.
8c
 so we may see their result.
.

Output of ‘diff3 -3 lao tzu tao ’:
8c
 so we may see their result.
.

Output of ‘diff3 -x lao tzu tao ’:
11a

-- The Way of Lao-Tzu, tr. Wing-tsit Chan
.

Marking conflicts

148 ■ Comparing & Merging Differences GNUPro Toolkit

Markin g conflicts
diff3 can mark conflicts in the merged output by bracketing them with special
marker lines. A conflict that comes from two files A and B is marked as follows:
<<<<<<< A
lines from A
=======
lines from B
>>>>>>> B

A conflict that comes from three files, A, B and C, is marked as follows:
<<<<<<< A
lines from A
||||||| B
lines from B
=======
lines from C
>>>>>>> C

The ‘-A ’ or ‘ --show-all ’ option acts like the ‘-e ’ option, except that it brackets
conflicts, and it outputs all changes from older to yours , not just the unmerged
changes. Thus, given the sample input files (see “A third sample input file” on page
140), ‘diff3 -A lao tzu tao ’ puts brackets around the conflict where only ‘tzu ’
differs:
<<<<<<< tzu
=======
The Way that can be told of is not the eternal Way;
The name that can be named is not the eternal name.
>>>>>>> tao

And it outputs the three-way conflict as follows:
<<<<<<< lao
||||||| tzu
They both may be called deep and profound.
Deeper and more profound,
The door of all subtleties!
=======

-- The Way of Lao-Tzu, tr. Wing-tsit Chan
>>>>>>> tao

The ‘-E ’ or‘ --show-overlap ’ option outputs less information than the ‘-A ’ or
‘ --show-all ’ option, because it outputs only unmerged changes, and it never outputs
the contents of the second file. Thus the ‘-E ’ option acts like the ‘-e ’ option, except
that it brackets the first and third files from three-way overlapping changes. Similarly,
‘ -X ’ acts like ‘-x ’, except it brackets all its (necessarily overlapping) changes. For

CYGNUS Comparing & Merging Differences ■ 149

Marking conflicts

8:
 M

er
gi

ng
 fr

om
 a

 c
om

m
on

 a
nc

es
to

r

example, for the three-way overlapping change above, the ‘-E ’ and ‘-X ’ options
output the following:
<<<<<<< lao
 =======

 -- The Way of Lao-Tzu, tr. Wing-tsit Chan
>>>>>>> tao

If you are comparing files that have meaningless or uninformative names, you can use
the ‘-L label ’ or ‘ --label= label ’ option to show alternate names in the ‘<<<<<<< ’,
‘ ||||||| ’ and ‘>>>>>>> ’ brackets. This option can be given up to three times, once
for each input file. Thus ‘diff3 -A -L X -L Y -L Z A B C ’ acts like ‘diff3 -A A B
C’, except that the output looks like it came from files named ‘X’, ‘ Y’ and ‘Z’ rather
than from files named ‘A’, ‘ B’ and ‘C’.

Generating the merged output directly

150 ■ Comparing & Merging Differences GNUPro Toolkit

Generatin g the mer ged output directl y
With the ‘-m’ or ‘ --merge ’ option, diff3 outputs the merged file directly. This is
more efficient than using ed to generate it, and works even with non-text files that ed
would reject. If you specify ‘-m’ without an ed script option, ‘-A ’ (‘ --show-all ’) is
assumed.

For example, the command ‘diff3 -m lao tzu tao ’ (see “A third sample input file”
on page 140 for a copy of the input files) would output the following:
<<<<<<< tzu
=======
The Way that can be told of is not the eternal Way;
The name that can be named is not the eternal name.
>>>>>>> tao
The Nameless is the origin of Heaven and Earth;
The Named is the mother of all things.
Therefore let there always be non-being,
 so we may see their subtlety,
And let there always be being,
 so we may see their result.
The two are the same,
But after they are produced,
 they have different names.
<<<<<<< lao
||||||| tzu
They both may be called deep and profound.
Deeper and more profound,
The door of all subtleties!
=======

-- The Way of Lao-Tzu, tr. Wing-tsit Chan
>>>>>>> tao

CYGNUS Comparing & Merging Differences ■ 151

How diff3 merges incomplete lines

8:
 M

er
gi

ng
 fr

om
 a

 c
om

m
on

 a
nc

es
to

r

How diff3 merges incomplete lines
With ‘ -m’, incomplete lines (see“Incomplete lines” on page 197) are simply copied to
the output as they are found; if the merged output ends in an conflict and one of the
input files ends in an incomplete line, succeeding ‘||||||| ’, ‘ ======= ’ or‘ >>>>>>> ’
brackets appear somewhere other than the start of a line because they are appended to
the incomplete line.

Without ‘-m’, if an ed script option is specified and an incomplete line is found, diff3
generates a warning and acts as if a newline had been present.

Saving the changed file

152 ■ Comparing & Merging Differences GNUPro Toolkit

Savin g the chan ged file
Traditional Unix diff3 generates an ed script without the trailing ‘w’ and and ‘q’
commands that save the changes. System V diff3 generates these extra commands.
GNU diff3 normally behaves like traditional Unix diff3 , but with the ‘-i ’ option it
behaves like System V diff3 and appends the ‘w’ and ‘q’ commands.

The ‘-i ’ option requires one of the ed script options ‘-AeExX3 ’, and is incompatible
with the merged output option ‘-m’.

CYGNUS Comparing & merging differences ■ 153

9:
 In

te
ra

ct
iv

e
m

er
gi

ng
 w

ith

sd
iff

Interactive mer ging with sdiff

With sdiff , you can merge two files interactively based on a side-by-side format
comparison with ‘-y ’ (see “Showing differences side by side” on page 119). Use ‘-o

file ’ or ‘ --output= file ’ to specify where to put the merged text. See “Invoking
sdiff” on page 193 for more details on the options to sdiff .

Another way to merge files interactively is to use the Emacs Lisp package, emerge .
See “Merging Files with Emerge” in The GNU Emacs Manual for more information.

9

Specifying diff options to sdiff

154 ■ Comparing & merging differences GNUPro Toolkit

Specif ying diff options to sdiff
The following sdiff options have the same meaning as for diff . See “Options to
diff” on page 172 for the use of these options.
-a -b -d -i -t -v
-B -H -I regexp

--ignore-blank-lines --ignore-case
--ignore-matching-lines= regexp --ignore-space-change
--left-column --minimal --speed-large-files
--suppress-common-lines --expand-tabs
--text --version --width= columns

For historical reasons, sdiff has alternate names for some options. The ‘-l ’ option is
equivalent to the ‘--left-column ’ option, and similarly ‘-s ’ is equivalent to
‘ --suppress-common-lines ’. The meaning of the sdiff ‘ -w ’ and ‘-W’ options is
interchanged from that of diff : with sdiff , ‘-w columns ’ is equivalent to
‘ --width= columns ’, and ‘-W’ is equivalent to ‘--ignore-all-space ’. sdiff without
the ‘-o ’ option is equivalent to diff with the ‘-y ’ or ‘ --side-by-side ’ option (see
“Showing differences side by side” on page 119).

CYGNUS Comparing & merging differences ■ 155

Merge commands

9:
 In

te
ra

ct
iv

e
m

er
gi

ng
 w

ith

sd
iff

Merge commands
Groups of common lines, with a blank gutter, are copied from the first file to the
output. After each group of differing lines, sdiff prompts with ‘%’ and pauses,
waiting for one of the following commands. Follow each command using the Enter
key.

‘e’
Discard both versions. Invoke a text editor on an empty temporary file, then copy
the resulting file to the output.

‘eb ’
Concatenate the two versions, edit the result in a temporary file, then copy the
edited result to the output.

 ‘el ’
Edit a copy of the left version, then copy the result to the output.

‘er ’
Edit a copy of the right version, then copy the result to the output.

‘ l ’
Copy the left version to the output.

‘q’
Quit.

‘ r ’
Copy the right version to the output.

‘s ’
Silently copy common lines.

‘v ’
Verbosely copy common lines. This is the default.

The text editor invoked is specified by the EDITOR environment variable if it is set.
The default is system-dependent.

Merge commands

156 ■ Comparing & merging differences GNUPro Toolkit

CYGNUS Comparing & Merging Differences ■ 157

10
: M

er
gi

ng
 w

ith

p
a

tc
h

Merging with patch

patch takes comparison output produced by diff and applies the differences to a
copy of the original file, producing a patched version. With patch , you can distribute
just the changes to a set of files instead of distributing the entire file set; your
correspondents can apply patch to update their copy of the files with your changes.
patch automatically determines the diff format, skips any leading or trailing headers,
and uses the headers to determine which file to patch. This lets your correspondents
feed an article or message containing a difference listing directly to patch .

patch detects and warns about common problems like forward patches. It saves the
original version of the files it patches, and saves any patches that it could not apply. It
can also maintain a patchlevel.h file to ensures that your correspondents apply diffs
in the proper order.

patch accepts a series of diffs in its standard input, usually separated by headers that
specify which file to patch. It applies diff hunks (see “Hunks” on page 101) one by
one. If a hunk does not exactly match the original file, patch uses heuristics to try to
patch the file as well as it can. If no approximate match can be found, patch rejects
the hunk and skips to the next hunk. patch normally replaces each file, f , with its new
version, saving the original file in ‘f .orig ’, and putting reject hunks (if any) into
‘ f .rej ’.

10

158 ■ Comparing & Merging Differences GNUPro Toolkit

See “Invoking patch” on page 183 for detailed information on the options to patch.
See “Backup File Names” on page 186 for more in-formation on how patch names
backup files. See “Reject File Names” on page 188 for more information on where
patch puts reject hunks.

CYGNUS Comparing & Merging Differences ■ 159

Selecting the patch input format

10
: M

er
gi

ng
 w

ith

p
a

tc
h

Selectin g the patch input format
patch normally determines which diff format the patch file uses by examining its
contents. For patch files that contain particularly confusing leading text, you might
need to use one of the following options to force patch to interpret the patch file as a
certain format of diff . The output formats shown in the following discussion are the
only ones that patch can understand.

‘ -c ’
‘ --context ’

context diff.

‘ -e ’
‘ --ed ’

ed script.

 ‘-n ’
‘ --normal ’

normal diff.

‘ -u ’
‘--unified ’

unified diff.

Applying imperfect patches

160 ■ Comparing & Merging Differences GNUPro Toolkit

Appl ying imperfect patches
patch tries to skip any leading text in the patch file, apply the diff, and then skip any
trailing text. Thus you can feed a news article or mail message directly to patch , and it
should work. If the entire diff is indented by a constant amount of white space, patch
automatically ignores the indentation. However, certain other types of imperfect input
require user intervention.

Applying patches with changed white space
Sometimes mailers, editors, or other programs change spaces into tabs, or vice versa.
If this happens to a patch file or an input file, the files might look the same, but patch
will not be able to match them properly. If this problem occurs, use the ‘-l ’
or‘--ignore-white-space ’ option, which makes patch compare white space loosely
so that any sequence of white space in the patch file matches any sequence of
whitespace in the input files. Non-whitespace characters must still match exactly.
Each line of the context must still match a line in the input file.

Applying reversed patches
Sometimes people run diff with the new file first instead of second. This creates a
diff that is “reversed”. To apply such patches, give patch the ‘-R ’ or‘ --reverse ’
option. patch then attempts to swap each hunk around before applying it. Rejects
come out in the swapped format. The ‘-R ’ option does not work with ed scripts
because there is too little information in them to reconstruct the reverse operation.
Often patch can guess that the patch is reversed. If the first hunk of a patch fails,
patch reverses the hunk to see if it can apply it that way. If it can, patch asks you if
you want to have the ‘-R ’ option set; if it can’t, patch continues to apply the patch
normally. This method cannot detect a reversed patch if it is a normal diff and the first
command is an append (which should have been a delete) since appends always
succeed, because a null context matches anywhere. But most patches add or change
lines rather than delete them, so most reversed normal diffs begin with a delete, which
fails, and patch notices.

If you apply a patch that you have already applied, patch thinks it is a reversed patch
and offers to un-apply the patch. This could be construed as a feature. If you did this
inadvertently and you don’t want to un-apply the patch, just answer ‘n’ to this offer
and to the subsequent “apply anyway” question—or use the keystroke sequence, C-C,
to kill the patch process.

CYGNUS Comparing & Merging Differences ■ 161

Helping patch find inexact matches

10
: M

er
gi

ng
 w

ith

p
a

tc
h

Helping patch find inexact matches
For context diffs, and to a lesser extent normal diffs, patch can detect when the line
numbers mentioned in the patch are incorrect, and it attempts to find the correct place
to apply each hunk of the patch. As a first guess, it takes the line number mentioned in
the hunk, plus or minus any offset used in applying the previous hunk. If that is not the
correct place, patch scans both forward and backward for a set of lines matching the
context given in the hunk.

First patch looks for a place where all lines of the context match. If it cannot find such
a place, and it is reading a context or unified diff, and the maximum fuzz factor is set
to 1 or more, then patch makes another scan, ignoring the first and last line of context.
If that fails, and the maximum fuzz factor is set to 2 or more, it makes another scan,
ignoring the first two and last two lines of context are ignored. It continues similarly if
the maximum fuzz factor is larger.

The ‘-F lines ’ or‘ --fuzz= lines ’ option sets the maximum fuzz factor to lines . This
option only applies to context and unified diffs; it ignores up to lines lines while
looking for the place to install a hunk. Note that a larger fuzz factor increases the odds
of making a faulty patch. The default fuzz factor is 2; it may not be set to more than
the number of lines of context in the diff, ordinarily 3.

If patch cannot find a place to install a hunk of the patch, it writes the hunk out to a
reject file (see “Reject File Names” on page 188 for information on how reject files
are named). It writes out rejected hunks in context format no matter what form the
input patch is in. If the input is a normal or ed diff, many of the contexts are simply
null. The line numbers on the hunks in the reject file may be different from those in
the patch file; they show the approximate location where patch thinks the failed
hunks belong in the new file rather than in the old one.

As it completes each hunk, patch tells you whether the hunk succeeded or failed, and
if it failed, on which line (in the new file) patch thinks the hunk should go. If this is
different from the line number specified in the diff, it tells you the offset. A single
large offset may indicate that patch installed a hunk in the wrong place. patch also
tells you if it used a fuzz factor to make the match, in which case you should also be
slightly suspicious.

patch cannot tell if the line numbers are off in an ed script, and can only detect wrong
line numbers in a normal diff when it finds a change or delete command. It may have
the same problem with a context diff using a fuzz factor equal to or greater than the
number of lines of context shown in the diff (typically 3). In these cases, you should
probably look at a context diff between your original and patched input files to see if
the changes make sense. Compiling without errors is a pretty good indication that the
patch worked, but not a guarantee.

Helping patch find inexact matches

162 ■ Comparing & Merging Differences GNUPro Toolkit

patch usually produces the correct results, even when it must make many guesses.
However, the results are guaranteed only when the patch is applied to an exact copy of
the file that the patch was generated from.

CYGNUS Comparing & Merging Differences ■ 163

Removing empty files

10
: M

er
gi

ng
 w

ith

p
a

tc
h

Removin g empt y files
Sometimes when comparing two directories, the first directory con-tains a file that the
second directory does not. If you give diff the ‘-N ’ or ‘ --new-file ’ option, it outputs
a diff that deletes the contents of this file. By default, patch leaves an empty file after
applying such a diff. The ‘-E ’ or ‘ --remove-empty-files ’ option to patch deletes
output files that are empty after applying the diff.

Multiple patches in a file

164 ■ Comparing & Merging Differences GNUPro Toolkit

Multiple patches in a file
If the patch file contains more than one patch, patch tries to apply each of them as if
they came from separate patch files. This means that it determines the name of the file
to patch for each patch, and that it examines the leading text before each patch for file
names and prerequisite revision level (see “Tips for making patch distributions” on
page 167 for more on that topic). For the second and subsequent patches in the patch
file, you can give options and another original file name by separating their argument
lists with a ‘+’. However, the argument list for a second or subsequent patch may not
specify a new patch file, since that does not make sense. For example, to tell patch to
strip the first three slashes from the name of the first patch in the patch file and none
from subsequent patches, and to use ‘code.c ’ as the first input file, you can use:
patch -p3 code.c + -p0 < patchfile .

The ‘-S ’ or ‘ --skip ’ option ignores the current patch from the patch file, but
continue looking for the next patch in the file. Thus, to ignore the first and third
patches in the patch file, you can use: patch -S + + -S + < patch file .

CYGNUS Comparing & Merging Differences ■ 165

Messages and questions from patch

10
: M

er
gi

ng
 w

ith

p
a

tc
h

Messages and questions from patch
patch can produce a variety of messages, especially if it has trouble decoding its
input. In a few situations where it’s not sure how to proceed, patch normally prompts
you for more information from the keyboard. There are options to suppress printing
non-fatal messages and stopping for keyboard input. The message ‘Hmm... ’ indicates
that patch is reading text in the patch file, attempting to determine whether there is a
patch in that text, and if so, what kind of patch it is. You can inhibit all terminal output
from patch , unless an error occurs, by using the ‘-s ’, ‘ --quiet ’, or ‘ --silent ’
option. There are two ways you can prevent patch from asking you any questions. The
‘ -f ’ or‘ --force ’ option assumes that you know what you are doing. It assumes the
following:

• skip patches that do not contain file names in their headers;

• patch files even though they have the wrong version for the ‘Prereq: ’ line in the
patch;

• assume that patches are not reversed even if they look like they are.

The ‘-t ’ or ‘ --batch ’ option is similar to ‘-f ’, in that it suppresses questions, but it
makes somewhat different assumptions:

• skip patches that do not contain file names in their headers (the same as ‘-f ’);

• skip patches for which the file has the wrong version for the ‘Prereq: ’ line in the
patch;

• assume that patches are reversed if they look like they are.

patch exits with a non-zero status if it creates any reject files. When applying a
set of patches in a loop, you should check the exit status, so you don’t apply a later
patch to a partially patched file.

Messages and questions from patch

166 ■ Comparing & Merging Differences GNUPro Toolkit

CYGNUS Comparing & Merging Differences ■ 167

11
: T

ip
s

fo
r

m
ak

in
g

pa
tc

h
di

st
rib

ut
io

ns

Tips for makin g patch
distributions

The following discussions detail some things you should keep in mind if you are
going to distribute patches for updating a software package.

Make sure you have specified the file names correctly, either in a context diff header
or with an ‘Index: ’ line. If you are patching files in a subdirectory, be sure to tell the
patch user to specify a ‘-p ’ or ‘ --strip ’ option as needed. Take care to not send out
reversed patches, since these make people wonder whether they have already applied
the patch.

To save people from partially applying a patch before other patches that should have
gone before it, you can make the first patch in the patch file update a file with a name
like ‘patchlevel.h ’ or‘ version.c ’, which contains a patch level or version number.
If the input file contains the wrong version number, patch will complain immediately.

An even clearer way to prevent this problem is to put a ‘Prereq: ’ line before the
patch. If the leading text in the patch file contains a line that starts with ‘Prereq: ’,
patch takes the next word from that line (normally a version number) and checks
whether the next input file contains that word, preceded and followed by either white
space or a newline. If not, patch prompts you for confirmation before proceeding.
This makes it difficult to accidentally apply patches in the wrong order.

Since patch does not handle incomplete lines properly, make sure that all the source

11

168 ■ Comparing & Merging Differences GNUPro Toolkit

files in your program end with a newline whenever you release a version.

To create a patch that changes an older version of a package into a newer version, first
make a copy of the older version in a scratch directory. Typically you do that by
unpacking a tar or shar archive of the older version.

You might be able to reduce the size of the patch by renaming or removing some files
before making the patch. If the older version of the package contains any files that the
newer version does not, or if any files have been renamed between the two versions,
make a list of rm and mv commands for the user to execute in the old version directory
before applying the patch. Then run those commands yourself in the scratch directory.

If there are any files that you don’t need to include in the patch because they can easily
be rebuilt from other files (for example, ‘TAGS’ and output from yacc and makeinfo),
replace the versions in the scratch directory with the newer versions, using rm and ln
or cp .

Now you can create the patch. The de-facto standard diff format for patch
distributions is context format with two lines of context, produced by giving diff the
‘ -C 2’ option. Do not use less than two lines of context, because patch typically needs
at least two lines for proper operation.

Give diff the ‘-P ’ option in case the newer version of the package contains any files
that the older one does not. Make sure to specify the scratch directory first and the
newer directory second.

Add to the top of the patch a note telling the user any rm and mv commands to run
before applying the patch. Then you can remove the scratch directory.

CYGNUS Comparing & Merging Differences ■ 169

12
: I

nv
ok

in
g

cm
p

Invokin g cmp

The cmp command compares two files, and if they differ, tells the first byte and line
number where they differ.

Its arguments are: cmp options ... from-file [to-file] .

The file name ‘- ’ is always the standard input. cmp also uses the standard input if one
file name is omitted.

An exit status of 0 means no differences were found, 1 means some differences were
found, and 2 means trouble.

12

Options to cmp

170 ■ Comparing & Merging Differences GNUPro Toolkit

Options to cmp
The following is a summary of all of the options that GNU cmp accepts. Most options
have two equivalent names, one of which is a single letter preceded by ‘- ’, and the
other of which is a long name preceded by ‘-- ’. Multiple single letter options (unless
they take an argument) can be combined into a single command line word: ‘-cl ’ is
equivalent to ‘-c -l ’.

‘ -c ’
Print the differing characters. Display control characters as a ‘ˆ ’ followed by a
letter of the alphabet and precede characters that have the high bit set with ‘M-’
(which stands for “meta”).

‘ --ignore-initial= bytes ’
Ignore any differences in the the first bytes bytes of the input files. Treat files
with fewer than bytes bytes as if they are empty.

‘ -l ’
Print the (decimal) offsets and (octal) values of all differing bytes.

‘ --print-chars ’
Print the differing characters. Display control characters as a ‘ˆ ’ followed by a
letter of the alphabet and precede characters that have the high bit set with ‘M-’
(which stands for “meta”).

‘ --quiet ’
‘ -s ’
‘ --silent ’

Do not print anything; return exit status indicating whether files differ.

‘ --verbose ’
Print the (decimal) offsets and (octal) values of all differing bytes.

 ‘-v ’
‘ --version ’

Output the version number of cmp.

CYGNUS Comparing & Merging Differences ■ 171

13
: I

nv
ok

in
g

d
iff

Invokin g diff

diff options ... from-file to-file is the format for running the diff command.

In the simplest case, diff compares the contents of the two files from-file and
to-file . A file name of ‘- ’ stands for text read from the standard input. As a special
case, ‘diff - - ’ compares a copy of standard input to itself. If from-file is a
directory and to-file is not, diff compares the file in from-file whose file name is
that of to-file , and vice versa. The non-directory file must not be ‘- ’. If both
from-file and to-file are directories, diff compares corresponding files in both
directories, in alphabetical order; this comparison is not recursive unless the ‘-r ’ or
‘ --recursive ’ option is given. diff never compares the actual contents of a directory
as if it were a file. The file that is fully specified may not be standard input, because
standard input is nameless and the notion of “file with the same name” does not apply.

diff options begin with ‘- ’, so normally from-file and to-file may not begin with
‘ - ’. However, ‘-- ’ as an argument by itself treats the remaining arguments as file
names even if they begin with ‘- ’.

An exit status of 0 means no differences were found, 1 means some differences were
found, and 2 means trouble.

13

Options to diff

172 ■ Comparing & Merging Differences GNUPro Toolkit

Options to diff
The following is a summary of all of the options that GNU diff accepts. Most options
have two equivalent names, one of which is a single letter preceded by ‘- ’, and the
other of which is a long name preceded by ‘-- ’. Multiple single letter options (unless
they take an argument) can be combined into a single command line word: ‘-ac ’ is
equivalent to ‘-a -c ’. Long named options can be abbreviated to any unique prefix of
their name. Brackets ([and]) indicate that an option takes an optional argument.

‘ - lines ’
Show lines (an integer) lines of context. This option does not specify an output
format by itself; it has no effect unless it is combined with ‘-c ’ (see “Context
format” on page 113) or ‘-u ’ (see “Unified format” on page 115). This option is
obsolete. For proper operation, patch typically needs at least two lines of context.

‘ -a ’
Treat all files as text and compare them line-by-line, even if they do not seem to
be text. See “Binary files and forcing text comparisons” on page 107.

 ‘-b ’
Ignore changes in amount of white space. See “Suppressing differences in blank
and tab spacing” on page 102.

‘ -B ’
Ignore changes that just insert or delete blank lines. See “Suppressing differences
in blank lines” on page 103.

‘ --binary ’
Read and write data in binary mode. See “Binary files and forcing text
comparisons” on page 107.

‘ --brief ’
Report only whether the files differ, not the details of the differences. See
“Summarizing which files differ” on page 106.

‘ -c ’
Use the context output format. See “Context format” on page 113.

‘ -C lines ’
‘ --context[= lines] ’

Use the context output format, showing lines (an integer) lines of context, or
three if lines is not given. See “Context format” on page 113. For proper
operation, patch typically needs at least two lines of context.

‘ --changed-group-format= format ’
Use format to output a line group containing differing lines from both files in
if-then-else format. See “Line group formats” on page 124.

CYGNUS Comparing & Merging Differences ■ 173

Options to diff

13
: I

nv
ok

in
g

d
iff

‘ -d ’
Change the algorithm perhaps find a smaller set of changes. This makes diff
slower (sometimes much slower). See “diff performance tradeoffs” on page 137.

‘ -D name’
Make merged ‘#ifdef ’ format output, conditional on the pre-processor macro
name. See “Merging files with if-then-else” on page 124.

‘ -e ’
‘ --ed ’

Make output that is a valid ed script. See “ed scripts” on page 120.

‘ --exclude= pattern ’
When comparing directories, ignore files and subdirectories whose basenames
match pattern . See “Comparing directories” on page 131.

‘ --exclude-from= file ’
When comparing directories, ignore files and subdirectories whose basenames
match any pattern contained in file . See “Comparing directories” on page 131.

 ‘--expand-tabs ’
Expand tabs to spaces in the output, to preserve the align-ment of tabs in the input
files. See “Preserving tabstop alignment” on page 134.

‘ -f ’
Make output that looks vaguely like an ed script but has changes in the order they
appear in the file. See “Forward ed scripts” on page 122.

‘ -F regexp ’
In context and unified format, for each hunk of differences, show some of the last
preceding line that matches regexp . See “Suppressing lines matching a regular
expression” on page 105.

‘ --forward-ed ’
Make output that looks vaguely like an ed script but has changes in the order they
appear in the file. See “Forward ed scripts” on page 122.

‘ -h ’
This option currently has no effect; it is present for Unix compatibility.

‘ -H ’
Use heuristics to speed handling of large files that have nu-merous scattered small
changes. See “diff performance tradeoffs” on page 137.

‘ --horizon-lines= lines ’
Do not discard the last lines lines of the common prefix and the first lines lines
of the common suffix. See “diff performance tradeoffs” on page 137.

Options to diff

174 ■ Comparing & Merging Differences GNUPro Toolkit

‘ -i ’
Ignore changes in case; consider uppercase and lowercase letters equivalent. See
“Suppressing case differences” on page 104.

‘ -I regexp ’
Ignore changes that just insert or delete lines that match regexp . See “Suppressing
lines matching a regular expression” on page 105.

‘ --ifdef= name’
Make merged if-then-else output using name. See “Merging files with
if-then-else” on page 124.

‘ --ignore-all-space ’
Ignore white space when comparing lines. See “Suppressing differences in blank
and tab spacing” on page 102.

‘ --ignore-blank-lines ’
Ignore changes that just insert or delete blank lines. See “Suppressing differences
in blank lines” on page 103.

 ‘--ignore-case ’
Ignore changes in case; consider upper- and lower-case to be the same. See
“Suppressing case differences” on page 104.

‘ --ignore-matching-lines= regexp ’
Ignore changes that just insert or delete lines that match regexp . See “Suppressing
lines matching a regular expression” on page 105.

‘ --ignore-space-change ’
Ignore changes in amount of white space. See “Suppressing differences in blank
and tab spacing” on page 102.

‘ --initial-tab ’
Output a tab rather than a space before the text of a line in normal or context
format. This causes the alignment of tabs in the line to look normal. See
“Preserving tabstop alignment” on page 134

‘ -l ’
Pass the output through pr to paginate it. See “Paginating diff output”
on page 135.

‘ -L label ’
Use label instead of the file name in the context format (see “Detailed
description of context format” on page 113) and unified format (see “Detailed
description of unified format” on page 115) headers. See “RCS scripts”
on page 122.

CYGNUS Comparing & Merging Differences ■ 175

Options to diff

13
: I

nv
ok

in
g

d
iff

‘ --label= label ’
Use label instead of the file name in the context format (see “Detailed
description of context format” on page 113) and unified format (see “Detailed
description of unified format” on page 115) headers.

‘ --left-column ’
Print only the left column of two common lines in side by side format. See
“Controlling side by side format” on page 120.

‘ --line-format= format ’
Use format to output all input lines in if-then-else format. See “Line formats”
on page 127.

‘ --minimal ’
Change the algorithm to perhaps find a smaller set of changes. This makes diff
slower (sometimes much slower). See “diff performance tradeoffs” on page 137.

‘ -n ’
Output RCS-format diffs; like ‘-f ’ except that each command specifies the
number of lines affected. See“RCS scripts” on page 122.

‘ -N ’
‘ --new-file ’

In directory comparison, if a file is found in only one directory, treat it as present
but empty in the other directory. See “Comparing directories” on page 131.

 ‘--new-group-format= format ’
Use format to output a group of lines taken from just the second file in
if-then-else format. See “Line group formats” on page 124.

‘ --new-line-format= format ’
Use format to output a line taken from just the second file in if-then-else
format. See “Line formats” on page 127.

‘ --old-group-format= format ’
Use format to output a group of lines taken from just the first file in if-then-else
format. See “Line group formats” on page 124.

‘ --old-line-format= format ’
Use format to output a line taken from just the first file in if-then- else format.
See “Line formats” on page 127.

‘ -p ’
Show which C function each change is in. See “Showing C function headings”
on page 117.

Options to diff

176 ■ Comparing & Merging Differences GNUPro Toolkit

‘ -P ’
When comparing directories, if a file appears only in the second directory of the
two, treat it as present but empty in the other. See “Comparing directories”
on page 131.

‘ --paginate ’
Pass the output through pr to paginate it. See “Paginating diff output”
on page 135.

‘ -q ’
Report only whether the files differ, not the details of the differences. See
“Summarizing which files differ” on page 106.

‘ -r ’
When comparing directories, recursively compare any sub-directories found. See
“Comparing directories” on page 131.

‘ --rcs ’
Output RCS-format diffs; like ‘-f ’ except that each command specifies the
number of lines affected. See “RCS scripts” on page 122.

‘ --recursive ’
When comparing directories, recursively compare any sub-directories found. See
“Comparing directories” on page 131.

‘ --report-identical-files ’
Report when two files are the same. See “Comparing directories” on page 131.

‘ -s ’
Report when two files are the same. See “Comparing directories” on page 131.

 ‘-S file ’
When comparing directories, start with the file, file . This is used for resuming an
aborted comparison. See “Comparing directories” on page 131.

‘ --sdiff-merge-assist ’
Print extra information to help sdiff . sdiff uses this option when it runs diff .
This option is not intended for users to use directly.

‘ --show-c-function ’
Show which C function each change is in. See “Showing C function headings”
on page 117.

‘ --show-function-line= regexp ’
In context and unified format, for each hunk of differences, show some of the last
preceding line that matches regexp . See “Suppressing lines matching a regular
expression” on page 105.

CYGNUS Comparing & Merging Differences ■ 177

Options to diff

13
: I

nv
ok

in
g

d
iff

‘ --side-by-side ’
Use the side by side output format. See “Controlling side by side format”
on page 120.

‘ --speed-large-files ’
Use heuristics to speed handling of large files that have nu-merous scattered small
changes. See “diff performance tradeoffs” on page 137.

‘ --starting-file= file ’
When comparing directories, start with the file, file . This is used for resuming an
aborted comparison. See “Comparing directories” on page 131.

‘ --suppress-common-lines ’
Do not print common lines in side by side format. See “Controlling side by side
format” on page 120.

‘ -t ’
Expand tabs to spaces in the output, to preserve the alignment of tabs in the input
files. See “Preserving tabstop alignment” on page 134.

‘ -T ’
Output a tab rather than a space before the text of a line in normal or context
format. This causes the alignment of tabs in the line to look normal. See
“Preserving tabstop alignment” on page 134.

‘ --text ’
Treat all files as text and compare them line-by-line, even if they do not appear to
be text. See “Binary files and forcing text comparisons” on page 107.

‘ -u ’
Use the unified output format. See “Unified format” on page 115.

 ‘--unchanged-group-format= format ’
Use format to output a group of common lines taken from both files in
if-then-else format. See “Line group formats” on page 124.

‘ --unchanged-line-format= format ’
Use format to output a line common to both files in if-then-else format. See “Line
formats” on page 127.

‘ --unidirectional-new-file ’
When comparing directories, if a file appears only in the second directory of the
two, treat it as present but empty in the other. See “Comparing directories”
on page 131.

‘ -U lines ’
‘ --unified[= lines] ’

Use the unified output format, showing lines (an integer) lines of context, or

Options to diff

178 ■ Comparing & Merging Differences GNUPro Toolkit

three if lines is not given. See “Unified format” on page 115. For proper
operation, patch typically needs at least two lines of context.

‘ -v ’
‘ --version ’

Output the version number of diff .

‘ -w ’
Ignore white space when comparing lines. See“Suppressing differences in blank
and tab spacing” on page 102.

‘ -W columns ’
‘ --width= columns ’

Use an output width of columns in side by side format. See “Controlling side by
side format” on page 120.

‘ -x pattern ’
When comparing directories, ignore files and subdirectories whose basenames
match pattern . See“Comparing directories” on page 131.

‘ -X file ’
When comparing directories, ignore files and subdirectories whose basenames
match any pattern contained in file . See “Comparing directories” on page 131.

‘ -y ’
Use the side by side output format. See “Controlling side by side format”
on page 120.

CYGNUS Comparing & Merging Differences ■ 179

14
: I

nv
ok

in
g

d
iff

3

Invokin g diff3

The diff3 command compares three files and outputs descriptions of their
differences.

Its arguments are as follows: diff3 options ... mine older yours .

The files to compare are mine , older , and yours . At most one of these three file
names may be ‘- ’, which tells diff3 to read the standard input for that file. An exit
status of 0 means diff3 was successful, 1 means some conflicts were found, and 2
means trouble.

14

Options to diff3

180 ■ Comparing & Merging Differences GNUPro Toolkit

Options to diff3
The following is a summary of all of the options that GNU diff3 accepts. Multiple
single letter options (unless they take an argument) can be combined into a single
command line argument.

‘ -a ’
Treat all files as text and compare them line-by-line, even if they do not appear to
be text. See “Binary files and forcing text comparisons” on page 107.

‘ -A’
Incorporate all changes from older to yours into mine, sur-rounding all conflicts
with bracket lines. See “Marking conflicts” on page 148.

‘ -e ’
Generate an ed script that incorporates all the changes from older to yoursinto
mine. See “Selecting which changes to incorporate” on page 147.

‘ -E ’
Like ‘ -e ’, except bracket lines from overlapping changes’ first and third files. See
“Marking conflicts” on page 148. With ‘-e ’, an overlapping change looks like
this:

<<<<<<< mine

lines from mine
=======

lines from yours
>>>>>>> yours

‘ --ed ’
Generate an ed script that incorporates all the changes from older to yours into
mine. See “Selecting which changes to incorporate” on page 147.

‘ --easy-only ’
Like ‘ -e ’, except output only the non-overlapping changes. See “Selecting which
changes to incorporate” on page 147.

‘ -i ’
Generate ‘w’ and ‘q’ commands at the end of the ed script for System V
compatibility. This option must be combined with one of the ‘-AeExX3 ’ options,
and may not be combined with ‘-m’. See “Saving the changed file” on page 152.

‘ --initial-tab ’
Output a tab rather than two spaces before the text of a line in normal format. This
causes the alignment of tabs in the line to look normal. See “Preserving tabstop
alignment” on page 134.

CYGNUS Comparing & Merging Differences ■ 181

Options to diff3

14
: I

nv
ok

in
g

d
iff

3

‘ -L label ’
‘ --label= label ’

Use the label, label , for the brackets output by the ‘-A’, ‘ -E ’ and ‘-X ’ options.
This option may be given up to three times, one for each input file. The default
labels are the names of the input files. Thus ‘diff3 -L X -L Y -L Z -m A B C’
acts like ‘diff3 -m A B C’, except that the output looks like it came from files
named ‘X’, ‘ Y’ and ‘Z’ rather than from files named ‘A’, ‘ B’ and ‘C’. See “Marking
conflicts” on page 148.

‘ -m’
‘ --merge ’

Apply the edit script to the first file and send the result to standard output. Unlike
piping the output from diff3 to ed, this works even for binary files and
incomplete lines. ‘-A’ is assumed if no edit script option is specified. See
“Generating the merged output directly” on page 150.

‘ --overlap-only ’
Like ‘-e ’, except output only the overlapping changes. See “Selecting which
changes to incorporate” on page 147.

‘ --show-all ’
Incorporate all unmerged changes from older to yours into mine , surrounding all
overlapping changes with bracket lines. See “Marking conflicts” on page 148.

‘ --show-overlap ’
Like ‘ -e ’, except bracket lines from overlapping changes’ first and third files. See
“Marking conflicts” on page 148.

‘ -T ’
Output a tab rather than two spaces before the text of a line in normal format. This
causes the alignment of tabs in the line to look normal. See “Preserving tabstop
alignment” on page 134.

‘ --text ’
Treat all files as text and compare them line-by-line, even if they do not appear to
be text. See “Binary files and forcing text comparisons” on page 107.

‘ -v ’
‘ --version ’

Output the version number of diff3 .

‘ -x ’
Like ‘-e ’, except output only the overlapping changes. See “Selecting which
changes to incorporate” on page 147.

Options to diff3

182 ■ Comparing & Merging Differences GNUPro Toolkit

‘ -X ’
Like ‘-E ’, except output only the overlapping changes. In other words, like ‘-x ’,
except bracket changes as in ‘-E ’. See “Marking conflicts” on page 148.

‘ -3 ’
Like ‘-e ’, except output only the nonoverlapping changes. See “Selecting which
changes to incorporate” on page 147.

CYGNUS Comparing & Merging Differences ■ 183

15
: I

nv
ok

in
g

p
a

tc
h

Invokin g patch

Normally patch is invoked using: patch < patchfile.

The full format for invoking patch is:
patch options ...[origfile [patchfile]] [+ options ...[origfile]]...

If you do not specify patchfile ,or if patchfile is ‘- ’, patch reads the patch (that is,
the diff output) from the standard input.

You can specify one or more of the original files as orig arguments; each one and
options for interpreting it is separated from the others with a ‘+’. See “Multiple
patches in a file” on page 164 for more information.

If you do not specify an input file on the command line, patch tries to figure out from
the leading text (any text in the patch that comes before the diff output) which file to
edit. In the header of a context or unified diff, patch looks in lines beginning with
‘ *** ’, ‘ --- ’, or ‘+++’; among those, it chooses the shortest name of an existing file.
Otherwise, if there is an ‘Index: ’ line in the leading text, patch tries to use the file
name from that line. If patch cannot figure out the name of an existing file from the
leading text, it prompts you for the name of the file to patch.

If the input file does not exist or is read-only, and a suitable RCS or SCCS file exists,
patch attempts to check out or get the file before proceeding. By default, patch
replaces the original input file with the patched version, after renaming the original

15

184 ■ Comparing & Merging Differences GNUPro Toolkit

file into a backup file (see “Backup File Names” on page Backup File Names for a
description of how patch names backup files). You can also specify where to put the
output with the ‘-o output-file ’ or ‘ --output= output-file ’ option.

CYGNUS Comparing & Merging Differences ■ 185

Applying Patches in Other Directories

15
: I

nv
ok

in
g

p
a

tc
h

Appl ying Patches in Other Directories
The ‘-d directory ’ or ‘ --directory= directory ’ option to patch makes directory
directory the current directory for interpreting both file names in the patch file, and
file names given as arguments to other options (such as ‘-B ’ and ‘-o ’). For example,
while in a news reading program, you can patch a file in the ‘/usr/src/emacs ’
directory directly from the article containing the patch like the following example:

| patch -d /usr/src/emacs

Sometimes the file names given in a patch contain leading directories, but you keep
your files in a directory different from the one given in the patch. In those cases, you
can use the ‘-p[number] ’ or ‘ --strip[= number] ’ option to set the file name strip
count to number . The strip count tells patch how many slashes, along with the
directory names between them, to strip from the front of file names. ‘-p ’ with no
numbergiven is equivalent to ‘-p0 ’. By default, patch strips off all leading directories,
leaving just the base file names, except that when a file name given in the patch is a
relative file name and all of its leading directories already exist, patch does not strip
off the leading directory. (A relative file name is one that does not start with a slash.)

patch looks for each file (after any slashes have been stripped) in the current
directory, or if you used the ‘-d directory’ option, in that directory. For example,
suppose the file name in the patch file is ‘/gnu/src/emacs/etc/new ’. Using ‘-p ’ or
‘ -p0 ’ gives the entire file name unmodified, ‘-p1 ’ gives ‘gnu/src/emacs/etc/new ’
(no leading slash), ‘-p4 ’ gives ‘etc/news ’, and not specifying ‘-p ’ at all gives ‘news’.

Backup File Names

186 ■ Comparing & Merging Differences GNUPro Toolkit

Backup File Names
Normally, patch renames an original input file into a backup file by appending to its
name the extension ‘.orig ’, or ‘ ˜ ’ on systems that do not support long file names. The
‘ -b backup-suffix ’ or ‘ --suffix= backup-suffix ’ option uses backup-suffix as
the backup extension instead. Alternately, you can specify the extension for backup
files with the SIMPLE_BACKUP_SUFFIX environment variable, which the options
over-ride.

patch can also create numbered backup files the way GNU Emacs does. With this
method, instead of having a single backup of each file, patch makes a new backup file
name each time it patches a file. For example, the backups of a file named ‘sink ’
would be called, successively, ‘sink.˜1˜ ’, ‘ sink.˜2˜ ’, ‘ sink.˜3˜ ’, etc. The ‘-V
backup-style ’ or ‘ --version-control= backup-style ’ option takes as an
argument a method for creating backup file names. You can alternately control the
type of backups that patch makes with the VERSION_CONTROL environment variable,
which the ‘-V ’ option overrides. The value of the VERSION_CONTROL environment
variable and the argu-ment to the ‘-V ’ option are like the GNU Emacs version-control
variable (see “Transposing Text” in The GNU Emacs Manual, for more informa-tion
on backup versions in Emacs). They also recognize synonyms that are more
descriptive. The valid values are listed in the following; unique abbreviations are
acceptable.

‘ t ’
‘numbered ’

Always make numbered backups.

 ‘nil ’
‘existing ’

Make numbered backups of files that already have them, simple backups of the
others. This is the default.

‘never ’
‘simple ’

Always make simple backups.

Alternately, you can tell patch to prepend a prefix, such as a directory name, to
produce backup file names.

The ‘-B backup-prefix ’ or ‘ --prefix= backup-prefix ’ option makes backup files
by prepending backup-prefix to them. If you use this option, patch ignores any ‘-b ’
option that you give.

If the backup file already exists, patch creates a new backup file name by changing the
first lowercase letter in the last component of the file name into uppercase. If there are

CYGNUS Comparing & Merging Differences ■ 187

Backup File Names

15
: I

nv
ok

in
g

p
a

tc
h

no more lowercase letters in the name, it removes the first character from the name. It
repeats this process until it comes up with a backup file name that does not already
exist.

If you specify the output file with the ‘-o ’ option, that file is the one that is backed up,
not the input file.

Reject File Names

188 ■ Comparing & Merging Differences GNUPro Toolkit

Reject File Names
The names for reject files (files containing patches that patch could not find a place to
apply) are normally the name of the output file with ‘.rej ’ appended (or ‘#’ on
systems that do not support long file names).

Alternatively, you can tell patch to place all of the rejected patches in a single file. The
‘ -r reject-file ’ or‘ --reject-file= reject-file ’ option uses reject-file as
the reject file name.

CYGNUS Comparing & Merging Differences ■ 189

Options to patch

15
: I

nv
ok

in
g

p
a

tc
h

Options to patch
The following summarizes the options that patch accepts. Older versions of patch do
not accept long-named options or the ‘-t ’, ‘ -E ’, or ‘-V ’ options.

Multiple single-letter options that do not take an argument can be combined into a
single command line argument (with only one dash). Brackets ([and]) indicate that
an option takes an optional argument.

‘ -b backup-suffix ’
Use backup-suffix as the backup extension instead of ‘.orig ’ or ‘ ˜ ’. See
“Backup File Names” on page 186.

 ‘-B backup-prefix ’
Use backup-prefix as a prefix to the backup file name. If this option is specified,
any ‘-b’ option is ignored. See “Backup File Names” on page 186.

‘ --batch ’
Do not ask any questions. See “Messages and questions from patch” on page 165.

‘ -c ’
‘ --context ’

Interpret the patch file as a context diff . See “Selecting the patch input format”
on page 159.

‘ -d directory ’
‘ --directory= directory ’

Makes directory directory the current directory for interpreting both file names
in the patch file, and file names given as arguments to other options. See
“Applying Patches in Other Directories” on page 185.

‘ -D name’
Make merged if-then-else output using format. See “Merging files with
if-then-else” on page 124.

‘ --debug= number ’
Set internal debugging flags. Of interest only to patch patchers.

‘ -e ’
‘ --ed ’

Interpret the patch file as an ed script. See “Selecting the patch input format”
on page 159.

‘ -E ’
Remove output files that are empty after the patches have been applied. See
“Removing empty files” on page 163.

Options to patch

190 ■ Comparing & Merging Differences GNUPro Toolkit

‘ -f ’
Assume that the user knows exactly what he or she is doing, and ask no questions.
See “Messages and questions from patch” on page 165.

‘ -F lines ’
Set the maximum fuzz factor to lines . See “Helping patch find inexact matches”
on page 161.

‘ --force ’
Assume that the user knows exactly what he or she is doing, and ask no questions.
See “Messages and questions from patch” on page 165.

‘ --forward ’
Ignore patches that patch thinks are reversed or already applied. See also ‘-R ’.
See “Applying reversed patches” on page 160.

‘ --fuzz= lines ’
Set the maximum fuzz factor to lines . See “Helping patch find inexact matches”
on page 161.

‘ --help ’
Print a summary of the options that patch recognizes, then exit.

‘ --ifdef= name’
Make merged if-then-else output using format. See “Merging files with
if-then-else” on page 124.

‘ --ignore-white-space ’
‘ -l ’

Let any sequence of white space in the patch file match any sequence of white
space in the input file. See “Applying patches with changed white space”
on page 160.

‘ - n’
‘ --normal ’

Interpret the patch file as a normal diff. See “Selecting the patch input format”
on page 159.

‘ -N ’
Ignore patches that patch thinks are reversed or already applied. See also ‘-R ’.
See “Applying reversed patches” on page 160.

‘ -o output-file ’
‘ --output= output-file ’

Use output-file as the output file name.

‘ -p[number] ’
Set the file name strip count to number . See “Applying Patches in Other
Directories” on page 185.

CYGNUS Comparing & Merging Differences ■ 191

Options to patch

15
: I

nv
ok

in
g

p
a

tc
h

‘ --prefix= backup-prefix ’
Use backup-prefix as a prefix to the backup file name. If this option is specified,
any ‘- b’ option is ignored. See “Backup File Names” on page 186.

‘ --quiet ’
Work silently unless an error occurs. See “Messages and questions from patch”
on page 165.

‘ -r reject-file ’
Use reject-file as the reject file name. See “Reject File Names” on page 188.

‘ -R ’
Assume that this patch was created with the old and new files swapped. See
“Applying reversed patches” on page 160.

‘ --reject-file= reject-file’
Use reject-file as the reject file name. See “Reject File Names” on page 188.

 ‘--remove-empty-files ’
Remove output files that are empty after the patches have been applied. See
“Removing empty files” on page 163.

‘ --reverse ’
Assume that this patch was created with the old and new files swapped. See
“Applying reversed patches” on page 160.

‘ -s ’
Work silently unless an error occurs. See “Messages and questions from patch”
on page 165.

‘ -S ’
Ignore this patch from the patch file, but continue looking for the next patch in the
file. See “Multiple patches in a file” on page 164.

‘ --silent ’
Work silently unless an error occurs. See “Messages and questions from patch”
on page 165.

‘ --skip ’
Ignore this patch from the patch file, but continue looking for the next patch in
the file. See “Multiple patches in a file” on page 164.

‘ --strip[= number] ’
Set the file name strip count to number . See “Applying Patches in Other
Directories” on page 185.

‘ --suffix= backup- suffix’
Use backup-suffix as the backup extension instead of ‘.orig ’ or ‘˜’. “Backup
File Names” on page 186.

Options to patch

192 ■ Comparing & Merging Differences GNUPro Toolkit

‘ -t ’
Do not ask any questions. See “Messages and questions from patch” on page 165.

‘ -u ’
‘ --unified ’

Interpret the patch file as a unified diff. See “Selecting the patch input format”
on page 159.

‘ -v ’
Output the revision header and patch level of patch.

‘ -V backup-style ’
Select the kind of backups to make. See “Backup File Names” on page 186.

‘ --version ’
Output the revision header and patch level of patch , then exit.

‘ --version=control= backup-style ’
Select the kind of backups to make. See “Backup File Names” on page 186.

‘ -x number ’
Set internal debugging flags. Of interest only to patch patchers.

CYGNUS Comparing & Merging Differences ■ 193

16
: I

nv
ok

in
g

sd
iff

Invokin g sdiff

The sdiff command merges two files and interactively outputs the results.

Its arguments are: sdiff -o outfile options ... from-file to-file .

This merges from-file with to-file , with output to outfile .If from-file is a
directory and to-file is not, sdiff compares the file in from-filewhose file name is
that of to-file , and vice versa. from-file and to-file may not both be directories.

sdiff options begin with ‘- ’, so normally from-file and to-file may not begin
with ‘ - ’. However, ‘-- ’ as an argument by itself treats the remaining arguments as file
names even if they begin with ‘- ’. You may not use ‘- ’ as an input file. An exit status
of 0 means no differences were found, 1 means some differences were found, and 2
means trouble.

sdiff without ‘-o ’ (or ‘ --output ’) produces a side-by-side difference. This usage is
obsolete; use ‘diff --side-by-side ’ instead.

16

Options to sdiff

194 ■ Comparing & Merging Differences GNUPro Toolkit

Options to sdiff
The following is a summary of all of the options that GNU sdiff accepts. Each option
has two equivalent names, one of which is a single letter preceded by ‘-’, and the other
of which is a long name preceded by ‘--’. Multiple single letter options (unless they
take an argument) can be combined into a single command line argument. Long
named options can be abbreviated to any unique prefix of their name.

‘ -a ’
Treat all files as text and compare them line-by-line, even if they do not appear to
be text. See “Binary files and forcing text comparisons” on page 107.

‘ -b ’
Ignore changes in amount of whitespace. See “Suppressing differences in blank
and tab spacing” on page 102.

‘ -B ’
Ignore changes that just insert or delete blank lines. See “Suppressing differences
in blank lines” on page 103.

‘ -d ’
Change the algorithm to perhaps find a smaller set of changes. This makes sdiff
slower (sometimes much slower). See “diff performance tradeoffs” on page 137.

‘ -H ’
Use heuristics to speed handling of large files that have numerous scattered small
changes. See “diff performance tradeoffs” on page 137.

‘ --expand-tabs ’
Expand tabs to spaces in the output, to preserve the alignment of tabs in the input
files. See “Preserving tabstop alignment” on page 134.

‘ -i ’
Ignore changes in case; consider uppercase and lowercase to be the same. See
“Suppressing case differences” on page 104.

‘ -I regexp ’
Ignore changes that just insert or delete lines that match regexp . See “Suppressing
lines matching a regular expression” on page 105.‘--ignore-all-space ’
Ignore white space when comparing lines. See “Suppressing differences in blank
and tab spacing” on page 102.

‘ --ignore-blank-lines ’
Ignore changes that just insert or delete blank lines. See“Suppressing differences
in blank lines” on page 103.

CYGNUS Comparing & Merging Differences ■ 195

Options to sdiff

16
: I

nv
ok

in
g

sd
iff

‘ --ignore-case ’
Ignore changes in case; consider uppercase and lowercase to be the same. See
“Suppressing case differences” on page 104.

‘ --ignore-matching-lines= regexp ’
Ignore changes that just insert or delete lines that match regexp . See “Suppressing
lines matching a regular expression” on page 105.

‘ --ignore-space-change ’
Ignore changes in amount of whitespace. See “Suppressing differences in blank
and tab spacing” on page 102.

‘ -l ’
‘ --left-column ’

Print only the left column of two common lines. See “Controlling side by side
format” on page 120.

‘ --minimal ’
Change the algorithm to perhaps find a smaller set of changes. This makes sdiff
slower (sometimes much slower). See “diff performance tradeoffs” on page 137.

‘ -o file ’
‘ --output= file ’

Put merged output into file . This option is required for merging.

‘ -s ’
‘ --suppress-common-lines ’

Do not print common lines. See “Controlling side by side format” on page 120.

‘ --speed-large-files ’
Use heuristics to speed handling of large files that have numerous scattered small
changes. See “diff performance tradeoffs” on page 137.

‘ -t ’
Expand tabs to spaces in the output, to preserve the alignment of tabs in the input
files. See “Preserving tabstop alignment” on page 134.

‘ --text ’
Treat all files as text and compare them line-by-line, even if they do not appear to
be text. See “Binary files and forcing text comparisons” on page 107.

‘ -v ’
‘ --versio n’

Output the version number of sdiff .

‘ -w columns ’
‘ --width= columns ’

Use an output width of columns . See “Controlling side by side format”
on page 120. For historical reasons, this option is ‘-W’ indiff ,‘ -w ’ in sdiff .

Options to sdiff

196 ■ Comparing & Merging Differences GNUPro Toolkit

‘ -W’
Ignore horizontal white space when comparing lines. See “Suppressing
differences in blank and tab spacing” on page 102. For historical reasons, this
option is ‘-w’ in diff ,‘-W’ in sdiff .

CYGNUS Comparing & Merging Differences ■ 197

17
: I

nc
om

pl
et

e
lin

es

Incomplete lines

When an input file ends in a non-newline character, its last line is called an incomplete
line because its last character is not a newline. All other lines are called full lines and
end in a newline character. Incomplete lines do not match full lines unless differences
in white space are ignored (see “Suppressing differences in blank and tab spacing” on
page 102).

An incomplete line is normally distinguished on output from a full line by a following
line that starts with ‘\ ’. However, the RCS format (see “RCS scripts” on page 122)
outputs the incomplete line as-is, without any trailing newline or following line. The
side by side format normally represents incomplete lines as-is, but in some cases uses
a ‘\’ or ‘/’ gutter marker; See “Controlling side by side format” on page 120. The
if-then-else line format preserves a line’s incompleteness with ‘%L’, and discards the
new-line with ‘%l ’; see “Line formats” on page 127. Finally, with the ed and forward
ed output formats (see “diff output formats” on page 109) diff cannot represent an
incomplete line, so it pretends there was a newline and reports an error. For example,
suppose ‘f ’ and ‘g’ are one-byte files that contain just ‘f ’ and ‘g’, respectively. Then
‘diff f g ’ outputs
1c1
< f
\ No newline at end of file

17

198 ■ Comparing & Merging Differences GNUPro Toolkit

> g
\ No newline at end of file

(The exact message may differ in non-English locales.) ‘diff -n f g ’ outputs the
following without a trailing newline:
d1 1
a1 1
g

‘diff -e f g’ reports two errors and outputs the following:
1c
g
.

CYGNUS Comparing & Merging Differences ■ 199

18
: F

ut
ur

e
pr

oj
ec

ts

Future pro jects

The following discussions have some ideas for improving GNU diff and patch . The
GNU project has identified some improvements as potential programming projects for
volunteers. You can also help by reporting any bugs that you find. If you are a
programmer and would like to contribute something to the GNU project, please
consider volunteering for one of these projects. If you are seriously contemplating
work, please write to ‘gnu@prep.ai.mit.edu ’ to coordinate with other volunteers.

18

Suggested projects for improving GNU diff and patch

200 ■ Comparing & Merging Differences GNUPro Toolkit

Suggested pro jects for improvin g GNU
diff and patch

One should be able to use GNU diff to generate a patch from any pair of directory
trees, and given the patch and a copy of one such tree, use patch to generate a faithful
copy of the other. Unfortunately, some changes to directory trees cannot be expressed
using current patch formats; also, patch does not handle some of the existing formats.
These shortcomings motivate the following suggested projects.

Handling changes to the directory structure
diff and patch do not handle some changes to directory structure. For example,
suppose one directory tree contains a directory named ‘D’ with some subsidiary files,
and another contains a file with the same name ‘D’. ‘ diff -r ’ does not output enough
information for patch to transform the the directory subtree into the file. There should
be a way to specify that a file has been deleted without having to include its entire
contents in the patch file. There should also be a way to tell patch that a file was
renamed, even if there is no way for diff to generate such information. These
problems can be fixed by extending the diff output format to represent changes in
directory structure, and extending patch to understand these extensions.

Files that are neither directories nor regular files
Some files are neither directories nor regular files: they are unusual files like symbolic
links, device special files, named pipes, and sockets. Currently, diff treats symbolic
links like regular files; it treats other special files like regular files if they are specified
at the top level, but simply reports their presence when comparing directories. This
means that patch cannot represent changes to such files. For example, if you change
which file a symbolic link points to, diff outputs the difference between the two files,
instead of the change to the symbolic link.

diff should optionally report changes to special files specially, and patch should be
extended to understand these extensions.

File names that contain unusual characters
When a file name contains an unusual character like a newline or white space, ‘diff

-r ’ generates a patch that patch cannot parse. The problem is with format of diff
output, not just with patch , because with odd enough file names one can cause diff
to generate a patch that is syntactically correct but patches the wrong files. The format
of diff output should be extended to handle all possible file names.

CYGNUS Comparing & Merging Differences ■ 201

Arbitrary limits

18
: F

ut
ur

e
pr

oj
ec

ts

Arbitrary limits
GNU diff can analyze files with arbitrarily long lines and files that end in incomplete
lines. However, patch cannot patch such files. The patch internal limits on line
lengths should be removed, and patch should be extended to parse diff reports of
incomplete lines.

Handling files that do not fit in memory
diff operates by reading both files into memory. This method fails if the files are too
large, and diff should have a fallback.

One way to do this is to scan the files sequentially to compute hash codes of the lines
and put the lines in equivalence classes based only on hash code. Then compare the
files normally. This does produce some false matches.

Then scan the two files sequentially again, checking each match to see whether it is
real. When a match is not real, mark both the “matching” lines as changed. Then build
an edit script as usual.

The output routines would have to be changed to scan the files se-quentially looking
for the text to print.

Ignoring certain changes
It would be nice to have a feature for specifying two strings, one in from-file and one
in to-file, which should be considered to match. Thus, if the two strings are ‘foo ’ and
‘bar ’, then if two lines differ only in that ‘foo ’ in file 1 corresponds to ‘bar ’ in file 2,
the lines are treated as identical. It is not clear how general this feature can or should
be, or what syntax should be used for it.

Reporting bugs
If you think you have found a bug in GNU cmp, diff , diff3 , sdiff ,or patch , report it
by electronic mail to ‘bug-gnu-utils@prep.ai.mit.edu ’. Send as precise a
description of the problem as you can, including sample input files that produce the
bug, if applicable. Because Larry Wall has not released a new version of patch since
mid-1988 and the GNU version of patch has been changed since then, please send
bug reports for patch by electronic mail to both ‘bug-gnu-utils@prep.ai.mit.edu ’
and ‘lwall@netlabs.com ’.

Reporting bugs

202 ■ Comparing & Merging Differences GNUPro Toolkit

CYGNUS GNUPro Advanced Topics ■ 203

In
de

x

Index

-
--file, command line option24
--help, command line option25
--node, command line option24
--output, command line option24
--subnodes, command line option24
--version, command line option25

--
--directory, command line option24

Symbols
29, 119, 146

!, indicator character114
#else directive124
#endif directive124
#ifdef directive124
#ifndef directive124
% 126
%%, for line group formatting126, 128
%, for conversion specifications126
%=, for line group formatting126

%>, for line group formatting126
%c’ C’, for line group formatting126, 128
%c’, for line group formatting128
%c’:’ 128
%c’’ 128
%c’O’, for line group formatting126
%d, for line group formatting127
%L, for line group formatting128
%l, for line group formatting128
%o, for line group formatting127
%X, for line group formatting127
%x, for line group formatting127
(markers119
(info)Help 39
) markers119
+, adding a textline116
+, indicator character114
, 31
-, deleting a text line116
-, for specifying left-justification127
-, indicator character114

Index

204 ■ GNUPro Advanced Topics GNUPro Toolkit

-, special token, standard output48
., indicator of end of output in ed121
/ markers119
> 29

>, last-node29
> markers119
>>>>>>>, marker146
>Confidential 75
? 37
@@, line in unified format117
@menu, for referencing nodes48
@next, for referencing nodes48
@node50
@note, for referencing nodes48
@prev, for referencing nodes48
| markers119

Numerics
0, in Info windows33
1...9, in Info windows33

A
-a 108
abort-key40
add text lines111
add-digit-to-numeric-arg39
alias 90
aliases59
alternate file names117
arguments24
automatic-footnotes41
automatic-tiling41

B
-b 102
b, as a command in Info26
b, as a meta-command in Info27
backup file names186
backward-char26

backward-word26
beginning-of-line26
beginning-of-node26
bfd 67
binary and text file comparison107
binary utilities 67
bindings (keystroke combinations)88
binutils 67
bison 67
blank and tab difference suppression102
blank lines103
brief difference reports106
—-brief option 106
byacc 67

C
C function headings, showing117
C if-then-else output format124
C Library 68
C Math Library 68
C, C++, Prolog regular expressions117
case difference suppression104
change commands111, 121
change compared files120
--changed-group-format=125
cmp 107
cmp command options169
columnar output120
command

next-line 26
command line options24
command line override117
commands

key sequence26
comparing text files with null characters107
Concurrent Version System67
confidentiality 78

conflicts 78
config 67
conflict 145

CYGNUS GNUPro Advanced Topics ■ 205

Index

In
de

x

context 111
context format and unified format113
context output format117
Continuous42
c-r 31
cross references32

followed by a colon32
label 32
menu 32
menu, followed by *32
note 32
periods within a cross-reference32
pointers32

Next 32
Prev 32
Up 32

specifying with adjacent colons32
target 32

cross-references
(DIR) 49
errors in Texinfo files48
Next 49
pointers

Next 50
Prev 50
Up 50

Prev 49
Up 49

c-s 31
Ctrl-a 36
Ctrl-a, in Info windows26
Ctrl-b 36
Ctrl-b, in Info windows26
Ctrl-d 36
Ctrl-e 36
Ctrl-e, in Info windows26
Ctrl-f 36
Ctrl-f, in Info windows 26
Ctrl-g 36, 40
Ctrl-h 39

Ctrl-k 37
Ctrl-l 28
Ctrl-n 26
Ctrl-p 26
Ctrl-q 36
Ctrl-t 36
Ctrl-u 39
Ctrl-v 28
Ctrl-w 28
Ctrl-x, ˆ 35
Ctrl-x, 0 35
Ctrl-x, 1 35
Ctrl-x, 2 35
Ctrl-x, Delete37
Ctrl-x, t 35
Ctrl-y 37
cursor, moving in an Info file26
cvs 67

D
d 29
-D var 47
defaulting to Makeinfo50
Delete 36
delete text lines111
Delete, in Info windows28
delete-window35
diff 67
diff and patch, overview97
diff output, example110
diff sample files110
diff, older versions111
diff3 107
diff3 comparison139
directories137
directory-path24
dir-node 29
doc 67

Index

206 ■ GNUPro Advanced Topics GNUPro Toolkit

E
echo area35

completion37
echo-area-abort36
echo-area-backward36
echo-area-backward-kill-line37
echo-area-backward-kill-word37
echo-area-backward-word36
echo-area-beg-of-line36
echo-area-complete37
echo-area-delete36
echo-area-end-of-line36
echo-area-forward36
echo-area-forward-word36
echo-area-insert36
echo-area-kill-line37
echo-area-kill-word37
echo-area-newline36
echo-area-possible-completions37
echo-area-quoted-insert36
echo-area-rubout36
echo-area-scroll-completions-window37
echo-area-tab-insert36
echo-area-transpose-chars36
echo-area-yank37
echo-area-yank-pop37
ed output format121
ed script example122
ed script output format120
Elisp file 56
Emacs56, 67, 87, 89

default directory60
lisp repository59

emacs67
empty files163
end-of-line 26
end-of-node27
Enumerated format75
--error-limit num 47
errors-ring-bell42

Esc Ctrl-f 40
Esc Ctrl-v 35, 37
--expand-tabs option128

F
f 33
-F option 117
-F regexp option117
fatal messages165
file differences, summarizing106
file names, showing alternate117
--fill-column num 47
find-menu 33
first-node 29
flex 67
FN, for line group formatting128
--footnote-style style47
format 75
forward ed script output format122
forward-char26
forward-word 26
free parser generator67
from-file 114
full lines 197

G
g 30
g++ 67
gas 67
gcc 67
gc-compressed-files42
gdb 67
generating merged output directly150
get-help-window39
get-info-help-node39
getting started22
glob 67
global-next-node29
global-prev-node30
globbing functions67

CYGNUS GNUPro Advanced Topics ■ 207

Index

In
de

x

gnu
assembler67
binary file descriptor library67
bug patch68
C compiler67
C++ class library68
C++ compiler67
diff 67
grep program67
hypertext reader67
info 67
lexical analyzer67
libiberty library 68
linker 68
make 68
Motorola syntax assembler68
parser generator67
profiler 67
readline library68
source code debugger67
spelling checker68
texinfo 68
utilities 67

GNU Emacs186
goto-node30
gprof 67
grep 67
grow-window 35

H
h 39
headings117
history-node29
how to use Info22
hunks 101, 121

I
i 31
-I dir 47
--ifdef=HAVE_WAITPID option 124

if-then-else example129
if-then-else format126, 129
if-then-else output format124
--ignore option119
--ignore-case option104
--ignore-space-change102
imperfect patch160
incomplete lines197
incomplete lines, merging with diff3151
incremental searching31
index-search31
indicator characters114
info 21, 67
Info commands22
Info files, building Texinfo files from45
info files, description of23
Info, learning to use22
info.texi 39
INFO_PRINT_COMMAND, environment

variable 38
insertions114
install-sid 59
Internet standard RFC-82277
introduction to send-pr55
isearch-backward31
isearch-forward31
ISO-Latin 43
ispell 68

K
keep-one-window35
Kerberos authentication system68
killing and yanking text36
kill-node 30

L
l 29
-L option 113, 118
-l option 118
la, add text command121

Index

208 ■ GNUPro Advanced Topics GNUPro Toolkit

--label option113
last-menu-item33
last-node29
ld 68
learning Info22
--left-column option120
libc 68
libg++ 68
libiberty 68
libm 68
line formats122, 127
line group formats124, 125
linebreaks in Makeinfo46
Lisp regular expressions117
list-visited-nodes30

M
mail header84
make 68
Makefile 59
makeinfo 68
Makeinfo command line options47
Makeinfo output, controlling46
manipulating variables41
mark conflicts148
markers119
mas 68
Math Library 68
menu items as options25
menu-digit 33
menu-item33
merge commands155
merged output format124
merged output with diff3151
merging two files124
messages165
Meta- 26
Meta-> 27
Meta-1 39
Meta-2... Meta-939

Meta-b 36
Meta-d 37
Meta-Delete37
Meta-f 36
Meta-f, in Info windows26
Meta-Tab36
Meta-Tab, in Info windows33
Meta-v 28
Meta-x 35
Meta-x describe-command39
Meta-x describe-key39
Meta-x describe-variable39, 41
Meta-x set-screen-height40
Meta-x set-variable41
Meta-x where-is39
Meta-y 37
--minimal 101
--minimal option137
mode line34
move-to-next-xref33
move-to-prev-xref33
multiple patches164
multiple PRs92
MultiText format 75

N
n 29
-n option 122
names of files, alternates117
--new-group-format=125
newlib 68
Next Only 42
next-index-match31
next-line 26
next-node29
node

Top 49
Up 49

node, selection of28
nodes, description of22

CYGNUS GNUPro Advanced Topics ■ 209

Index

In
de

x

--no-headers47
non-fatal messages165
non-text files107
--no-number-footnotes48
--no-pointer-validate47
normal diff output format111
--no-split 47
--no-validate47
--no-warn 48

O
-o file 48
--old-group-format=125
other 69
--output file 48
output to a file24
overlap 145
overlapping contents comparison114
overview 97
overview of send-pr55

P
p 29
Page Only42
page-numbered and time-stamped output135
—paginate option118
paginating diff output135
--paragraph-indent num48
paragraphs, controlling formats with Makeinfo46
patch 68
patch, merging with157
patches in another directory185
patches with whitespace160
performance of diff137
Posix-compliant systems, comparing107

PR
analyzed74
closed74
feedback74
fields 75
open 74
suspended74

PR example75, 84
PR fields84

>Arrival Date 80
>Audit-Trail 81

Unformatted81
>Category61, 79
>Class79

change-request79
doc-bug79
duplicate (pr-number)79
support79
sw-bug 79

>Confidential 78
>Description79
>Environment79
>Fix 80
>How-To-Repeat79
>Number80
>Organization77
>Originator 77
>Priority 78

high 78
low 78
medium 78

>Release79
>Responsible80
>Severity 78

critical 78
non-critical 78
serious78

>State80
analyzed80
closed80
feedback80
open 80

Index

210 ■ GNUPro Advanced Topics GNUPro Toolkit

suspended80
>Submitter-Id77
>Synopsis75, 78
Enumerated75
From 77
Mail Header75
MultiText 75
Reply-To 77
Responsible-Changed-- 81
Responsible-Changed-By81
Responsible-Changed-When81
Responsible-Changed-Why81
State-Changed-- 81
State-Changed-By81
State-Changed-When81
State-Changed-Why81
Subject75
Text 75
To 77

PR_FORM90
prefix 59
prev-line 26
prev-node29
prev-window 35
printf conversion specification127
printing 38
printing character36
prms 68
PRMS, defined55
Problem Report Management System55

PRs
after resolved79
comments84
default 57
default template90
editing and sending83
example62, 64, 66
fundamental principle92
hints 92
inputs 79
invoking 90
multiple problems92
outputs79
preconditions79
reproducing79
symptoms79
using 92

PRs, defined55

Q
q 40
-q option 106
questions165
quit 40

R
r 33
rc, replace text command121
rcs 68
--rcs option122
RCS output format122
rd, delete text command121
readline68
redraw-display28
redundant context115
--reference-limit num48
regression test suites78
regular expression suppression105
regular expressions, matching comparisons117
Release Notes92

CYGNUS GNUPro Advanced Topics ■ 211

Index

In
de

x

replace text lines111
Revision Control System68, 122
root access59

S
s 31
saving a changed file152
scroll-backward28
scroll-behavior28, 30
scroll-behaviour42
scroll-forward 28
scrolling through node structure28
scroll-other-window35
scroll-step42
sdiff options194
search31
search through indices of info files31
searching31

incremental31
section headings116
sections differences116
see also Emacs88
selecting unmerged changes147
select-reference-this-line33
select-visited-node30
send-pr68

default directory59
default site58
installing 58, 59
invoking 84

send-pr, defined55
shell metacharacters125
shell script56
--show-c-function option117
show-footnotes40
--show-function-line option117
--show-function-line=regexp option117
show-index-match42
side by side comparison of files119
side by side format120

--side-by-side option120
SIMPLE_BACKUP_SUFFIX environment

variable 186
site 58, 90
space character116
space or tab characters103
SPACEBAR 37
SPACEBAR, in Info windows28
--speed-large-files option137
split-window 35
state changes of problems74
summary output format106
Support Site55
support-site85
--suppress-common-lines option120
sw 79

T
t 29
-t option 128
Tab 37
tab and blank difference suppression102
Tab, in Info windows33
tabstop alignment134
test 68
texindex 68
texinfo 68
Texinfo regular expressions117
text and binary file comparison107
text files, comparing107
Text format75
--text option 108
then- part of if-then-else format126
tiling, automatic35
time-stamped output135
to-file 114
toggle-wrap28
top-node29
two column output comparison120

Index

212 ■ GNUPro Advanced Topics GNUPro Toolkit

U
u 29
-U var 47
--unchanged-group-format=126
unified format113
unified output format115
universal-argument39
unmerged changes, selecting147
updates113
updating software167
up-node29
using send-pr59

V
valid category entries67
valid Info file 49
variables, manipulating41
--verbose48
--version 48
version information25
VERSION_CONTROL environment variable186

view-file 30
visible-bell 41

W
-W columns option120
white space characters102
white space markers119
--width=columns option120
windows

automatic-tiling35
in Info, manipulating34
manipulating35
multiple 34

X
xrefs 32

Y
-y option 120
yanking text36

	Dreamcast GNUPro Toolkit Advanced Topics
	Contents
	Configuration
	Configuring the install location
	Configuring the target
	Running configure

	Building and installing binaries
	Single host-target builds
	Multiple host builds

	Troubleshooting
	Error messages and warnings
	Sending Cygnus your problem reports
	configure problem reporting
	build problem reporting

	Patching
	GNU online documentation overview
	Using info

	Reading info files
	Command line options
	Moving the cursor
	Moving text within a window
	Selecting a new node
	Searching an info file
	Selecting cross references
	Parts of an xref
	Selecting xrefs

	Manipulating multiple windows
	The mode line
	Window commands
	The Echo Area

	Printing out nodes
	Miscellaneous commands
	Manipulating variables

	Making info files from Texinfo files
	Controlling paragraph formats
	Command line options for makeinfo
	What makes a valid info file?
	Defaulting the Prev, Next, and Up

	Introduction to send-pr
	Installing send-pr on your system
	Setting a default site
	Installing send-pr by itself

	Processing send-pr problem reports
	Valid Categories

	Details about send-pr amd PRMS
	States of Problem Reports
	Problem report format
	Mail header fields
	Problem report fields

	Editing and sending PRs
	Creating new Problem Reports
	Using send-pr from within Emacs
	Invoking send-pr from the shell
	Helpful hints

	Overview of diff and patch
	What comparison means
	Hunks
	Suppressing differences in blank and tab spacing
	Suppressing differences in blank lines
	Suppressing case differences
	Suppressing lines matching a regular expression
	Summarizing which files differ
	Binary files and forcing text comparisons

	diff output formats
	Two sample input files
	Showing differences without context
	Detailed description of normal format
	An example of normal format

	Showing differences in their context
	Context format
	Unified format
	Showing which sections differences are in
	Showing alternate file names

	Showing differences side by side
	Controlling side by side format
	An example of side by side format
	Making edit scripts
	ed scripts
	Forward ed scripts
	RCS scripts

	Merging files with if-then-else
	Line group formats
	Line formats
	Detailed description of if-then-else format
	An example of if-then-else format

	Comparing directories
	Making diff output prettier
	Preserving tabstop alignment
	Paginating diff output

	diff performance tradeoffs
	Comparing three files
	A third sample input file
	Detailed description of diff3 normal format
	diff3 hunks
	An example of diff3 normal format

	Merging from a common ancestor
	Selecting which changes to incorporate
	Marking conflicts
	Generating the merged output directly
	How diff3 merges incomplete lines
	Saving the changed file

	Interactive merging with sdiff
	Specifying diff options to sdiff
	Merge commands

	Merging with patch
	Selecting the patch input format
	Applying imperfect patches
	Applying patches with changed white space
	Applying reversed patches
	Helping patch find inexact matches

	Removing empty files
	Multiple patches in a file
	Messages and questions from patch

	Tips for making patch distributions
	Invoking cmp
	Options to cmp

	Invoking diff
	Options to diff

	Invoking diff3
	Options to diff3

	Invoking patch
	Applying Patches in Other Directories
	Backup File Names
	Reject File Names
	Options to patch

	Invoking sdiff
	Options to sdiff

	Incomplete lines
	Future projects
	Suggested projects for improving GNU diff and patch
	Handling changes to the directory structure
	Files that are neither directories nor regular files
	File names that contain unusual characters
	Arbitrary limits
	Handling files that do not fit in memory
	Ignoring certain changes
	Reporting bugs

	Index

