Sega@'Dreamcast.

Dreamcast
GNUPro” Toolkit
Debugging Tool

Debugging with GDB
GDB GUI
GDBtk

Important Information

This documentation has been provided courtesy of CYGNUS. The contents are applicable to GNUPro™ Toolkit
development, however, all references to development support offered by CYGNUS should be ignored.

Technical support for this product as it applies to the Sega Dreamcast™ development environment should be
directed to Sega Third Party Developer Technical Support at 415/701-4060. Future updates and/ or additional
information may also be found at Sega’s DTS Website at, http//:www.dts.sega.com/NextGen

Frontispiece

Copyright © 1991-1998 Cygnus.

All rights reserved.

GNUPrg", the GNUPrd' logo and the Cygnus logo are all trademarks of Cygnus.
All other brand and product names are trademarks of their respective owners.

Permission is granted to make and distribute verbatim copies of this documentation,
provided the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this documentation
under the conditions for verbatim copying, provided also that the entire resulting
derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this documentation into
another language, under the above conditions for modified versions.

This documentation has been prepared by Cygnus Technical Publications; contact the
Cygnus Technical Publications stadbc@cygnus.com .

Part #: 300-400-1010043

ii @ GNUPro Debugging Tools GNUPro Toolkit

Frontispiece

GNUPro warrant y

The GNUPro Toolkit is free software, covered by the GNU General Public License,
and you are welcome to change it and/or distribute copies of it under certain
conditions. This version of GNUPro Toolkit is supported for customers of Cygnus.

For non-customers, GNUPro Toolkit software has NO WARRANTY.

Because this software is licensed free of charge, there are no warranties for it, to the
extent permitted by applicable law. Except when otherwise stated in writing, the
copyright holders and/or other parties provide the software “as is” without warranty of
any kind, either expressed or implied, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. The entire risk as to
the quality and performance of the software is with you. Should the software prove
defective, you assume the cost of all necessary servicing, repair or correction.

In no event, unless required by applicable law or agreed to in writing, will any
copyright holder, or any other party who may modify and/or redistribute the program
as permitted above, be liable to you for damages, including any general, special,
incidental or consequential damages arising out of the use or inability to use the
program (including but not limited to loss of data or data being rendered inaccurate or
losses sustained by you or third parties or a failure of the program to operate with any
other programs), even if such holder or other party has been advised of the possibility
of such damages.

CYGNUS

GNUPro Debugging Tools = iii

Frontispiece

How to contact C ygnus

Use the following means to contact Cygnus.

Cygnus Headquarters
1325 Chesapeake Terrace
Sunnyvale, CA 94089 USA
Telephone (toll free}+1 800 CYGNUS-1
Telephone (main line): +1 408 542 9600
Telephone (hotline}1 408 542 9601
FAX: +1-408 542 9699
(Faxes are answered 8 a.m.—5 p.m., Monday through Friday.)
email:info@cygnus.com
Website:.www.cygnus.com .

Cygnus United Kingdom
36 Cambridge Place
Cambridge CB2 1NS
United Kingdom
Telephone: +44 1223 728728
FAX: +44 1223 728728
email:info@cygnus.co.uk/

Cygnus Japan
Nihon Cygnus Solutions
Madre Matsuda Building
4-13 Kioi-cho Chiyoda-ku
Tokyo 102-0094
Telephone: +81 3 3234 3896
FAX: +81 3 3239 3300
email:info@cygnus.co.jp
Website:http://www.cygnus.co.jp/

Use the hotline (+1 408 542 9601) to get help, although the most reliable way to
resolve problems with GNUPro Toolkit is by using email:
bugs@cygnus.com .

iv. m GNUPro Debugging Tools GNUPro Toolkit

Contents

GINUPTO WAITANTY. ...ceeeeeiieeeeeeeee ettt iii
HOW 10 CONEACT CYGNUScciieieeiiiiiis e ee ettt e e e e e et e e nnnn e e e e e e e nennnes iv
Debugging with GDB
Summary of the GNU Debugger, GDB.........ccooooiiiiiiiiii e 3
GDB 8S fTEE SOMWALE ...ttt e et e e e e e e e e e e e e e e e e e aaaaaaaaaaens 5
ContribULOrs 10 GDB.......cooiiiiiie e 6
INSTAIING GDB ...t e e e e e e e 9
Compiling GDB in another dir€CtOrY.........couuvuiiiiiii e e 11
Specifying hames for hosts and targetS...........ocovvvvveiiiiiiiii e e 12
CONIGUIE OPTIONS. .. ii ittt et e et e e e e e e e e e e e e e bbb nneeeeeeeaann 13
Getting In and OUL OF GDBcoooiiiiiiiiiii e 15
[N VZ0) (] o T C 1 = 16
ChOOSING FIIES ... 17
ChOOSING MOUES.....ceiiiieiiite ettt e e e e et e e e e e e e nnb e eeeeas 19
QUILLING GDB... .. eeeeeee ettt e e e e e e e e e e e e e et e e e e e e e snnteaeeeeeeeaaaneneeeeaean 21
Shell COMMANTS.......ooiiiee et eees 22
GDB COMMEANTS ...ttt e et a e e e e e e e e e aaeeees 23

Command syntax
(0%0T1¢] =TT I oo 1.41'0] 1= 1) o S 25
Getting help

CYGNUS GNUPTr0 Debugging Tools = v

Contents

Running programs under GDB............uuuiiiiiiiiiiiiiieee e 31
Compiling for deBUGQING......iii e e e e e 32
StArting YOUT PrOGIAIMLcceiiiitiitiieee e e ettt et e e e s et e e e e e e et b e e e e e e e e s anbasee e e e e e e e annnnes 33
YOUr Program’s argUIMENIS.iiii ittt eeee et e e e e e eeee e e e e eeeennnnaas 35
YOUr Program’s €NVIFONIMENL.uuieeiiiiiieieeeeeeeeesiittee e e e e e s e e e e s s s snbe e e e e e e e e nnnees 36
Your program’s WOFKIiNG Air€CIOLY.........cuuuuuuiiiiiiieeeeeeieeiiiis s e e e e e ee e e e e eeeeaeenans 38
Your program’s inPut and OULPUL.........c.eeeeiriieiiiiiier e e e e e e 39
Debugging an already-running PrOCESS.......covivruiiiiiiiieeeeeeeeeeien e e e ee e e eearenrn s 40
Killing the Child PrOCESS.......uuiiiiiiiiiiiie e 41
Additional process iNfOrMAatIQN.cooiiiiiiiiiiiee e 42
Debugging programs with multiple threads.............cccccoviiiiiiiii i 43
Debugging programs with multiple proCeSSES........uuviieiiiiieeireeeecie e 46

Stopping and CONLINUING.......oiieiiiiiie e e et e e e e eaa e e eaenes 47
Breakpoints, watchpoints, and eXCeptiQnS...........oovuvriiiiieiiiiiiiiiieeee e 49
Setting breakPOINTSoccuiiiiiir e e e 50
Setting WatChPOINES.......cooii e e e e e e aaeaaas 54
Breakpoints and eXCePLIOMS.ii i e e e e e e e e e e e e e e e e e eeanan 55
Deleting Dre@KPOINTS.cii it 56
Disabling BreakpointS........oieiiiiee e 57
Break CONGItIONS.cccoie i e e e e e e e e et e et e e e aaaaaaaaeaaaaaaaaaaaaaes 59
Breakpoint command lISIS............uuuiiiiiiii e 61
Breakpoint MENUS ... e e e e e e e e e e as 63
(O%oT 9111 o101 o =g To IS (=T o] o] Vo HS 64
S (o] =L TP PPPPT PP 67
Stopping and starting multi-thread Programs............occcvviiieeeeiiiiiiiie e 69

EXamining the STACKuuuiiiiiii e 71
S = (o3 QR = 11 41T PSP 72
2100 T = Lo 1SS 73
SelECHING 8 rAME ...t e e e e e e e 74
Information about @ frAMIE.c..oiiiiiiii e 76

EXamining SOUICE fil@Siiiiiiii e e 79
PrNtING SOUICE lINES......iiiiiiiiiee et s 80
Searching SOUICE filES ... e 82
Specifying SOUICE dIrECIONES........vueeiiiiii i e e s 83
Source and Maching CAUE...........oooiiii it 84

EX@MINING QalaA.......uuiiiiiiiiiii e 87
D015 (0] P 88
Program Variables............uuuiiiii e 89
ATTFICIAL BITAYS. .. .eeeeee et e e e e e e e st eeeeeean 91

vi m GNUPr0 Debugging Tools GNUPro Toolkit

Contents

OULPUL FOMMIALS. ... ee ettt e e e e e e e e e e bbb e e e e e e e anees 92
EXaMINING MEBIMOIY ..ttt e e e e eas 93
F XU (o] 1 F= 11 [olo 1] o] =Y P 95
e T ==Y 1] o T 97
RV = 11U £ o] Y/ 102
Convenience VariableS..........ovuviiiiiie e 103
REGISTEIS. ..ttt e e et e e e e e 105
Floating Point NArAWATE.coooiiiiiiiiiiie e 107
Using GDB with different languages 119
Switching between SOUrce lanQUAaGOES.ceviii i 120
List of filename extensions and languUagES..........cooovviriiiiieeiiiiiiiiie e 120
Setting the Working lanQUAaGE.uvuiiii i e e e e e e e e 121
Having GDB infer the source language..........coovveeeiiiiiiiiie e ee e 121
Displaying the laNQUAGE.c.ooiiieeeeiin e e e e e e e s 122
Type and range ChECKING.........uuuiiiiiee e 123
An overview of type ChECKING........uuviiiiiiii e 123
An overview of range ChecKing.........cooccoiiiiiiiiii e 124
YU o] ool g (=To I F=TqTo [U =T = PP 126
Examining the symbol table ... 141
AILEIING EXECULION ...ttt e e e e e e e e 145
ASSIgNMENT T0 VANIADIES......eeiiieiiiii s 146
Continuing at a different address..........cvevviiiiiiii e 147
GIVINg YOUr Program @ SIGN@L..........eeveiiiiiiiiiiiii e 148
Returning from a fUNCHON.............oviiii e e 149
(OF=1][1aTo lo] foTe [ir= 1 41N {01 o1 1T0] o = 150
o (o3 a T o T o] oo = 1 01T 151
GDB IS ..o 153
Commands t0 SPECITY filES.....coveeiie e 154
Errors reading SYmMbOI fill@S.........oii oo 159
Specifying a debugging targetcooe i 163
F o 1NV = Lo = £ S 164
Commands for managing targetS......ccooeeeeiiiiiiiiiiei e e 165
ChooSiNg target DYE OFOELuviiiiiiii et 168
REMOLE AEDUGGING. .. eeeeiieieiiiiiite et e e e e e e e annaes 169
The GDB remote serial ProtoCaL............cceeiiieiiiiiiiiiiie e 170
What the stub can do fOr YQU..........oooiriiiiiiiii e 171
What you must do for the stub.........ccccooooi i, 172
PUtting it @ll tOGETNET.......eeiiiiii e 174
CommMmUNICALION PrOTOCOL......eiiiiiiiiiiiiii e 175

CYGNUS GNUPTr0 Debugging Tools = vii

Contents

USiNg thegdbserver PrOGIaIM..........ooiuuerreieeeeiiiiiiiieee e e e s e st e ee e e e s sreeeeeeeesaanees 176
Using thegdbserve.nlm — PrOGraM........ocuuuereeeeeeiiiiieeeeeeeeeseiiiieee e e e e s s sieeneeeeeeseaanes 178
GDB with a remote 1960 (NINAY)......cooeeeiiiiiiiiiie e e 179
The UDI protocol for AMD29K........oooiiiiieeiiiie e e 180
GDB with @ Tandem ST2000..........ciiueiiieeeeaaiiiee e e e e e e e e e e eeeeeeaannnnes 183
GDB @nd VXWOTKS.....cciiiiiiiiii ettt 184
GDB @Nd SPARCIEL.....coiiii ittt e e e e e e e e s e r e e e e e 186
ConNeCtiNg t0 SPARCIEL........uiiiiiii e 187
ST o Y {4 [e (0,77] [Y- T 1RSSR 187
GDB and Hitachi MIiCrOPrOCESSALS.......ccvvuiiiiiiiieieeeee e et e e e e e e e e e e e e 188
GDB and remote MIPS DOArdS.........ccoeviiiiiiiiiiiiiii e, 189
Controlling GDBi........o oo 193
0] 1 1] 194
(07077114 F= T To =T 11 1] o 15 195
COMMAN NISTOMY......eeiieiieee et e e e e e e e s bbb e e e e e e e aanns 196
Yol (==] N 198
NN U]] 0 T= USSR 199
Optional warnings and MESSAQES.iiieeeeiieeeiiiiiieree e e eeeeeeerarr e e e e e e rr et 200
Canned sequences of COMMAaNAS.........coiiiiiiiiiiiii e 215
User-defined COMMEANAS........covviiiiiiiiiiieee e 216
User-defined command NOQKSuuuiiiiiiiiiiiiiiiiiiiee e 218
CoMMANG FIlES. ...ttt e et e et e e e e e e e e e e e e e e aaaaaaaaaas 219
Commands for controlled OULPLIL.........oooe i e 220
Using GDB under GNU EMACS.......ccocoiiiiiiiiiii e 223
Reporting Bugs iN GDB.......oouiiii e 227
Have you fouNd @ DUG2......ooieieeeee e 228
[[0 1YV (o I (=T 0T o] T SRR 229
Command LiNe EditiNG........ccouuuiiiiiiiiiiis e 233
INtroduction t0 LN EdItiNG......ccuiiiiiiiiiiiiieeeee it 234
Readling INteraCtion..........ooiii i e e e e e e e e e e eees 235
Readline Bare ESSeNtials............ooo oo 235
Readline Movement COMMANAS..........cooiiiiiiiiiiee e eeees 236
Readline Killing COMMEaNAS........coooiiiiiiiiiiiiie et 236
Readling ArQUIMENIS......ooiiiiiiiii et e e e 237
REAAINE NI FlE......eiiiiiieeeeeee e 238
Readling INIt SYNTAX........iiiii e e e e e e e e 238
Letting Readline TYPe FOIr YQU........uuuciiiiiiiiiicieeieis e eee et e e 242
REAAIINEVT MOUE.......oeiiiieieieeieee e 243

viii m GNUPr0 Debugging Tools GNUPro Toolkit

Contents

Using History INteractivelyccooooeoei i 247
[15100 A L1 (=1 =] 1 o] o PRSP 248
EVENT DESIGNATOLS.eeiiieiiiiiiie ittt a e e e st e e e e e s anaees 248
WOId DESIGNALOIScceiiiiiiiiiee e e e ettt e et e e e e st e e e e e e st e e e e e e e s anbeneeees 248
YT o 11 1= 249
Formatting DOCUMENTALIONuuiiiiiiiiiiiiiiieiiee e 251
GDBtk
LICENSING TOF GDBK.......eiiiiiiiiiiiiii e e e 257
Ta]geTo 18 ox i o] 0 IN (o I €1 = 1 259
INterface fOr GDBKooeiiiiiiiiiie e e e e eeeeaeees 261
Yo 1E] (ot VLY] o [0 YRR 262
Menu bar for the Source WiNOM........cccooiiiiiiiiiiiei e e e e e e e 264
JLIC0 0] 1= Ul o1 (o] o =P 267
Special display pane fEatUIES........oocuuiiiiiie e 271
Using the mouse in the display pane..........ccccooiiiiiiiniiiee e 272
Below the horizontal scroll bar.............coooi e 274
Dialog boxes for the Source WINAOW........ccoooeiiiiiieiiiiiiiin e e e e e 276
Load New Executable dialog box for the Source Window............cccooeeeeereees 276
Page Setup dialog box for the Source Window.............cccvvvvvivvinivinieeeienneeeene. 277
Print dialog box for the Source WiNdoW.............cooviiiiiiiiieiniiiiiiee e 278
Target selection from the Source Window............cooviiiieiiiineeiniiiieee e 279
Global Preferences dialog box for the Source windaw...........cccoooeeeevviiiiiinnnnn. 282
Source Preferences dialog box for the Source windaw................ccccevvvvviinnnnn. 283
1 = Lod Q11T o 0 R 284
REQISTEIS WINTOWciiiiiiiiieiiee ettt et e e e e eeeees 285
Register menu for the Register WiNQQW...........cccuvriiiiiriiiiiiiieeeee i 286
V=70 To YA/ a o [0 PP PPPPRRTPP 287
Address menu for the Memory WiNdQW............cuceiiiniieeiireeiiiiienn e 287
Watch EXPresSions WINQOW........cuuuiieiiie e ieeeiiiiiss e s e e e e ee et s e s e e e e e e e eeaenan e e e e 290
Add Watch button for the Watch Expressions Window..........cccccceveeveieeeeneeennns 292
Watching registers with the Watch Expressions Window.................cevvveeeeee.. 292
Casting pointers in the Watch EXpressions WindOW.............uvvvveviereeerreeeeeeee.. 292
Local VariablesS WINAOW...........coooeiieiie e 293
Breakpoints WINGOW...........uuiiiiii i e e e e e e e e e e e e e e e e e eeeeaaans 295
Breakpoint menu for the Breakpoints WindOW........ccooeeeevvveeiiiiiiiiii e, 295
Global menu for the BreakpointS WindQW..............ccuuieiiriiiiiieee e 296
(0] g 1=To] 1= IRY/1 a o [0 1 RS 297
HEID WINAOW. ...ttt e e e e s eeeas 298

CYGNUS GNUPr0 Debugging Tools m ix

Contents

File menu for the Help WINAQW............uuviiiiiiiiiiieee e 299
Topics menu for the Help WINAOW............oeeiiiiiiiieiice e 299
PrOCEAUIES ...ttt et e e e e e e e e e e e e e e s s e bbb nee e 301
Initializing a target executable file...........iiii 302
Selecting @ SOUICE file......coi i 304
Setting breakpoints and viewing local variables..........cccccccoeeiiiiiiiiieeeccee e, 306
INAEX e 309

x m GNUPr0 Debugging Tools GNUPro Toolkit

GNUPRO™ TOOLKIT

Debugging with GDB

July, 1998
98r1

CYGNUS

Copyright © 1991-1998 Cygnus.

All rights reserved.

GNUPrg", the GNUPrd' logo and the Cygnus logo are all trademarks of Cygnus.
All other brand and product names are trademarks of their respective owners.

Permission is granted to make and distribute verbatim copies of this documentation,
provided the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this documentation
under the conditions for verbatim copying, provided also that the entire resulting
derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this documentation into
another language, under the above conditions for modified versions.

This documentation has been prepared by Cygnus Technical Publications; contact the
Cygnus Technical Publications stadbc@cygnus.com .

2 m Debugging with GDB GNUPro Toolkit

Summary of the GNU Debu gger,

GDB

The purpose of a debugger such as the GNU debugger, GDB, is to allow you to see
what is going orinsideanother program while it executes—or what another program
was doing at the moment it crashed. GDB can do four main kinds of things to help you
catch bugs.

Start your program, specifying anything that might affect its behavior.
Make your program stop on specified conditions.
Examine what has happened, when your program has stopped.

Change things in your program, so you can experiment with correcting the effects
of one bug and go on to learn about another problem affecting your program.

The following documentation provides more details about the GNU debugger, GDB.

“Installing GDB” on page 9

“Getting In and Out of GDB” on page 15
“GDB Commands” on page 23

“Running programs under GDB” on page 31
“Stopping and continuing” on page 47
“Examining the stack” on page 71
“Examining source files” on page 79
“Examining data” on page 87

CYGNUS

Debugging with GDB = 3

« “Using GDB with different languages” on page 119

« “Examining the symbol table” on page 141

« “Altering execution” on page 145

« “GDB files” on page 153

« “Specifying a debugging target” on page 163

« “Controlling GDB” on page 193

« “Canned sequences of commands” on page 215

« “Using GDB under GNU Emacs” on page 223

« “Reporting Bugs in GDB” on page 227

« “Command Line Editing” on page 233

« “Using History Interactively” on page 247
“Formatting Documentation” on page 251

See also the documentation for the integrated development enviroGDastk

»« ‘“Introduction to GDBtk” on page 259
“Interface for GDBtk” on page 261

4 m Debugging with GDB GNUPro Toolkit

GDB as free software

GDB as free software

GDB isfree softwargprotected by the GNU General Public License (GPL). The GPL
gives you the freedom to copy or adapt a licensed program—nbut every person getting
a copy also gets with it the freedom to modify that copy (which means that they must
get access to the source code), and the freedom to distribute further copies. Typical
software companies use copyrights to limit your freedoms; the Free Software
Foundation uses the GPL to preserve these freedoms. Fundamentally, the General
Public License is a license which says that you have these freedoms and that you
cannot take these freedoms away from anyone else. To see the GNU General Public
License, sekegal Noticesn GNUPro Advanced Topics

CYGNUS

Debugging with GDB = 5

Contributors to GDB

Contributors to GDB

Richard Stallman was the original author of GDB, and of many other GNU programs.
Many others have contributed to its development. This section attempts to credit
major contributors. One of the virtues of free software is that everyone is free to
contribute to it; with regret, we cannot actually acknowledge everyone here. The file
‘ChangelLog ' in the GDB distribution approximates a blow-by-blow account. Changes
much prior to version 2.0 are lost in the mists of time.

NOTE: Additions to this section are particularly welcome. If you or your friends (or
enemies, to be evenhanded) have been unfairly omitted from this list, we
would like to add your names!

So that they may not regard their long labor as thankless, we particularly thank those
who shepherded GDB through major releases: Stan Shebs (release 4.14), Fred Fish
(releases 4.13, 4.12, 4.11, 4.10, and 4.9), Stu Grossman and John Gilmore (releases
4.8,4.7,4.6, 4.5, and 4.4), John Gilmore (releases 4.3, 4.2, 4.1, 4.0, and 3.9); Jim
Kingdon (releases 3.5, 3.4, and 3.3); and Randy Smith (releases 3.2, 3.1, and 3.0). As
major maintainer of GDB for some period, each contributed significantly to the
structure, stability, and capabilities of the entire debugger.

Richard Stallman, assisted at various times by Peter TerMaat, Chris Hanson, and
Richard Mlynarik, handled releases through 2.8.

Michael Tiemann is the author of most of the GNU C++ support in GDB, with
significant additional contributions from Per Bothner. James Clark wrote the GNU
C++ demangler. Early work on C++ was by Peter TerMaat (who also did much
general update work leading to release 3.0).

GDB 4 uses the BFD subroutine library to examine multiple object-file formats; BFD
was a joint project of David V. Henkel-Wallace, Rich Pixley, Steve Chamberlain, and
John Gilmore.

David Johnson wrote the original COFF support; Pace Willison did the original
support for encapsulated COFF.

Adam de Boor and Bradley Davis contributed the ISI Optimum V support.

Per Bothner, Noboyuki Hikichi, and Alessandro Forin contributed MIPS support.
Jean-Daniel Fekete contributed Sun 386i support.

Chris Hanson improved the HP9000 support.

Noboyuki Hikichi and Tomoyuki Hasei contributed Sony/News OS 3 support.
David Johnson contributed Encore Umax support.

Jyrki Kuoppala contributed Altos 3068 support.

6 = Debugging with GDB GNUPro Toolkit

Contributors to GDB

Jeff Law contributed HP PA and SOM support.

Keith Packard contributed NS32K support.

Doug Rabson contributed Acorn Risc Machine support.

Bob Rusk contributed Harris Nighthawk CXUX support.

Chris Smith contributed Convex support (and Fortran debugging).
Jonathan Stone contributed Pyramid support.

Michael Tiemann contributed SPARC support.

Tim Tucker contributed support for the Gould NP1 and Gould Powernode.
Pace Willison contributed Intel 386 support.

Jay Vosburgh contributed Symmetry support.

Rich Schaefer and Peter Schauer helped with support of SunOS shared libraries.

Jay Fenlason and Roland McGrath ensured that GDB and GAS agree about several
machine instruction sets.

Patrick Duval, Ted Goldstein, Vikram Koka and Glenn Engel helped develop remote
debugging.

Intel Corporation and Wind River Systems contributed remote debugging modules for
their products.

Brian Fox is the author of the readline libraries providing command-line editing and
command history.

Andrew Beers of SUNY Buffalo wrote the language-switching code, the Modula-2
support, and contributed the Languages chapter of Debugging with GDB.

Fred Fish wrote most of the support for Unix System Vr4. He also enhanced the
command-completion support to cover C++ overloaded symbols.

Hitachi America, Ltd. sponsored the support for Hitachi microprocessors.
Kung Hsu, Jeff Law, and Rick Sladkey added support for hardware watchpoints.
Stu Grossman wroiglbserver .

Jim Kingdon, Peter Schauer, lan Taylor, and Stu Grossman made nearly innumerable
bug fixes and cleanups throughout GDB.

CYGNUS

Debugging with GDB = 7

Contributors to GDB

8 = Debugging with GDB GNUPro Toolkit

Installin g GDB

GDB comes with aonfigure script that automates the process of preparing GDB for
installation; you can then usske to build thegdb program.

The GDB distribution includes all the source code you need for GDB in a single
directory, whose name is usually composed by appending the version number to
‘gdb’.
For example, the GDB version 4.17-98r1 distribution is in ghe-4.17-98r1 '
directory.
That directory contains the following files.
gdb-4.17-98r1/configure (and supporting files)

Script for configuring GDB and all its supporting libraries

gdb-4.17-98r1/gdb

The source specific to GDB itself
gdb-4.17-98r1/bfd

Source for the Binary File Descriptor library
gdb-4.17-98rl/include

GNU include files
gdb-4.17-98r1/libiberty

Source for the-fiverty ' free software library

gdb-4.17-98r1/opcodes
Source for the library of opcode tables and disassemblers

CYGNUS

Debugging with GDB = 9

gdb-4.17-98r1/readline

Source for the GNU command-line interface
gdb-4.17-98r1/glob

Source for the GNU filename pattern-matching subroutine

gdb-4.17-98r1/mmalloc
Source for the GNU memory-mappedioc package

The simplest way to configure and build GDB is to ¢ufigure ~ from the
‘gdb- version-number ’ source directory, which in this example is the
‘gdb-4.17-98r1 ’ directory.

First switch to theddb- version-number ' source directory if you are not already in it;
then runconfigure

Pass the identifier for the platform on which GDB will run as an argument.

Consider the following, for example.

cd gdb-4.17-98r1

.l configure host

make

host is an identifier such asun4’ or ‘decstation ', that identifies the platform where
GDB will run. (You can often leave off hostinfigure tries to guess the correct
value by examining your system.)

Running tonfigure host ' and then runningnake builds the bfd ’, ‘readline ',
‘mmalloc ’, and flibiberty '’ libraries, therydb itself. The configured source files, and
the binaries, are left in the corresponding source directories.

configure IS a Bourne-shellifin/sh) script; if your system does not recognize this
automatically when you run a different shell, you may need tetrum it explicitly:

sh configure host

If you runconfigure from a directory that contains source directories for multiple
libraries or programs, such as tlgeb-4.17-98r1 ’ source directory for version 4.17-
98rl,configure creates configuration files for every directory level underneath
(unless you tell it not to, with thenorecursion option). You can run thenfigure

script from any of the subordinate directories in the GDB distribution if you only want
to configure that subdirectory, but be sure to specify a path to it. For example, with
version 4.17-98r1, type the following to configure only tite subdirectory:

cd gdb-4.17-98r1/bfd

../configure host

You can instalhdb anywhere; it has no hardwired paths. However, you should make
sure that the shell on your path (hamed by #ME(l environment variable) is

publicly readable. Remember that GDB uses the shell to start your program—some
systems refuse to let GDB debug child processes whose programs are not readable.

10 = Debugging with GDB GNUPro Toolkit

Compiling GDB in another directory

Compiling GDB in another directory

If you want to run GDB versions for several host or target machines, you need a
differentgdo compiled for each combination of host and targefigure is

designed to make this easy by allowing you to generate each configuration in a
separate subdirectory, rather than in the source directory. If your make program
handles thevPATH feature (GNUmake does; for more on therATHoption, se€&sNU
Makein GNUPro Advanced Topidsrunning make in each of these directories builds
thegdb program specified there.

To buildgdb in a separate directory, run configure with thecdir * option to

specify where to find the source. (You also need to specify a path to find configure
itself from your working directory. If the path tonfigure ~ would be the same as the
argument to-tsrcdir ’, you can leave out the-ércdir ’ option; it is assumed.) For
example, with the current version, you can build GDB in a separate directory for your
machine, using the following declaration (Wheession is the version which you

have installed by default amds: is the host machine with which you installed the
tools).

cd gdb- version

mkdir ../gdb- host

cd ../gdb- host

.Igdb- version /[configure host

make
Whenconfigure builds a configuration using a remote source directory, it creates a
tree for the binaries with the same structure (and using the same names) as the tree
under the source directory. In the example, you'd findhte library, libiberty.a :

in the directory gdb- host /libiberty ', and GDB itself in §db- host /gdb .

One popular reason to build several GDB configurations in separate directories is to
configure GDB for cross-compiling (where GDB runs on one machinehéabie—
while debugging programs that run on another machinetatbe.

You specify a cross-debugging target by giving therget= target ' option to
configure
When you runmake to build a program or library, you must run it in a configured

directory—whatever directory you were in when you call@digure (or one of its
subdirectories).

TheMakefile thatconfigure generates in each source directory also runs
recursively.

If you typemake in a source directory such agib- version ' (Or in a separate
directory configured with-‘srcdir=" dimame /gdb- version '), you will build all the
required libraries, and then build GDB.

CYGNUS

Debugging with GDB = 11

Specifying names for hosts and targets

When you have multiple hosts or targets configured in separate directories, you can
run make on them in parallel (for example, if they are NFS-mounted on each of the
hosts); they will not interfere with each other.

Specifying names for hosts and targets

The specifications used for hosts and targets indifgure script are based on a
three-part naming scheme, but some short predefined aliases are also supported. The
full naming scheme encodes three pieces of information in the following triplet
pattern:architecture-vendor-os

For example, use the aliasn4, as anost argument, or as the value for target in a
—-target= target option.

‘sparc-sun-sunos4 ' is the equivalent full name.

Theconfigure script accompanying GDB does not provide any query facility to list
all supported host and target names or aliasetigure calls the Bourne shell script,
config.sub , to map abbreviations to full names; you can read the script, if you wish,
or you can use it to test your guesses on abbreviations, as in the following example.

% sh config.sub sun4
sparc-sun-sunos4.1.1

% sh config.sub sun3
m68k-sun-sunos4.1.1

% sh config.sub decstation
mips-dec-ultrix4.2

% sh config.sub hp300bsd
m68k-hp-bsd

% sh config.sub i386v
i386-unknown-sysv

% sh config.sub i786v
Invalid configuration ‘i786v’: machine ‘i786v’ not recognized

config.sub is also distributed in the GDB source directory.

12 = Debugging with GDB GNUPro Toolkit

configure options

configure options

The following example summarizes ttwfigure options and arguments that are
most often useful for building GDBonfigure also has several other options not
listed here. Seeobnfigure.info 'file , node ‘What Configure Does ', for a full
explanation otonfigure
configure [--help]
[--prefix= dir]
[--srcdir= dirname]
[--norecursion][--rm]
[--target= target] host
You may introduce options with a single father than-- ' if you prefer; but you may
abbreviate option names if you use’:
--help
Display a quick summary of how to invokenfigure
-prefix=" dir
Configure the source to install programs and files under direatory; *
--srcdir= dirname
Use this option to make configurations in directories separate from the GDB
source directories. Among other things, you can use this to build (or maintain)
several configurations simultaneously, in separate directories.

configure writes configuration specific files in the current directory, but arranges
for them to use the source in the directaryame .

configure creates directories under the working directory in parallel to the source
directories belowdirname .

WARNING: Using this option requires GNidake, or anothemake that implements the
VPATHfeature; for more on theeATHOption, seésNU Makein GNUPro
Advanced Topics

--norecursion
Configure only the directory level whetenfigure is executed; do not propagate
configuration to subdirectories.

--rm
Remove files otherwise built during configuration.

--target= tfarget
Configure GDB for cross-debugging programs running on the specified .
Without this option, GDB is configured to debug programs that run on the same
machine fost) as GDB itself. There is no convenient way to generate a list of all
available targets.

host ...
Configure GDB to run on the specifi@dst . There is no convenient way to

CYGNUS Debugging with GDB = 13

configure options

generate a list of all available hosts.

configure accepts other options, for compatibility with configuring other GNU tools
recursively; but these are the only options that affect GDB or its supporting libraries.

14 = Debugging with GDB GNUPro Toolkit

Gettin g In and Out of GDB

The following documentation discusses invoking the debugger, choosing files,
choosing modes, stopping the debugger and some essential shell commands.

The essentials are startiggh and quittinggdb .

» Typegdb to start the debugger in a graphical interface mode or use the command,
gdb -nw , to start the debugger in a non-window interface mode.

* Typequit or use the keystroke sequencentrol-d, to exit.

The following documentation discusses the main essentials of working with GDB.
* ‘“Invoking GDB” on page 16

* “Choosing files” on page 17

* “Choosing modes” on page 19

e “Quitting GDB” on page 21

» “Shell commands” on page 22

CYGNUS Debugging with GDB = 15

Invoking GDB

Invoking GDB

Invoke GDB by running the progragb. Once started, GDB reads commands from
the terminal until you tell it to quit.

You can also rupdb with a variety of arguments and options, to specify more of your
debugging environment at the outset.
The command-line options described in the following discussions are designed to
cover a variety of situations; in some environments, effectively, some of these options
may be unavailable.
The most usual way to start GDB is with one argument, specifying an executable
program,program , that you want to debug.

gdb program

You can also start with both an executable program and a core file specified as the
following example’s input and variables show, where the core file is signifiegteas

gdb program core

You can, instead, specify a process ID as a second argument, if you want to debug a
running process, for instance, as the following example’s input and variables show.
gdb program 1234

Your machine hereby attaches GDB to proaess (unless you also have a file

named 1234’; GDB does check for a core file first).

Taking advantage of the second command-line argument requires a fairly complete
operating system; when you use GDB as a remote debugger attached to a bare board,
there may not be any notion pfocessand there is often no way to get a core dump.

You can rurgdb without printing the front material, which describes GDB’s non-
warranty, by specifyingsilent

gdb -silent

You can further control how GDB starts up by using command-line options. GDB
itself can remind you of the options available.

To display all available options and briefly describe their usegdis@elp as input
(‘gdb -h ' is a shorter equivalent).

All options and command line arguments you give are processed in sequential order.
The order makes a difference when using thédption.

16 = Debugging with GDB GNUPro Toolkit

Choosing files

Choosing files

When GDB starts, it reads any arguments other than options as specifying an
executable file and core file (or process ID). This is the same as if the arguments were
specified by the-se " and ‘-c * options respectively. (GDB reads the first argument

that does not have an associated option flag as equivalent teetheption followed

by that argument; and the second argument that does not have an associated option
flag, if any, as equivalent to the * option followed by that argument.)

Many options have both long and short forms; both are shown in the following list.
GDB also recognizes the long forms if you truncate them, so long as enough of the
option is present to be unambiguous. (If you prefer, you can flag option arguments
with ‘-- " rather than -’, though we illustrate the more usual convention.)
-symbols file
-s file
Read symbol table from filgije
-exec file
-e file
Use file,file , as the executable file to execute when appropriate, and for
examining pure data in conjunction with a core dump.

-se file
Read symbol table from filgije , and use it as the executable file.

-core file
- ¢ file
Use file,file , as a core dump to examine.

- C number
Connect to process ID number, as withdtteeh command (unless there is a file
in coredump format name@meoer, in which case-¢ ’ specifies that file as a core
dump to read).

-command file
-x file

Execute GDB commands from filgle . See “Command files” on page 219.
-directory directory

- d directory
Add directory to the path to search for source files.

-m
-mapped

If memory-mapped files are available on your system throughttagsystem
call, you can use this option to have GDB write the symbols from your program
into a reusable file in the current directory. If the program you are debugging is

CYGNUS

Debugging with GDB = 17

Choosing files

called /tmp/ired ', the mapped symbol file isifred.syms . Future GDB

debugging sessions notice the presence of this file, and can quickly map in symbol
information from it, rather than reading the symbol table from the executable
program.

The ‘syms ' file is specific to the host machine where GDB is run. It
holds an exact image of the internal GDB symbol table. It cannot be
shared across multiple host platforms.

WARNING: This option depends on operating system facilities that are not supported on
all systems.
-r
-readnow
Read each symbol file’s entire symbol table immediately, rather than the default,
which is to read it incrementally as it is needed. This makes startup slower, but
makes future operations faster.

The-mapped and-readnow options are typically combined in order to buildsgms ’
file that contains complete symbol information. (See “Commands to specify files”
on page 154 for information.

A ‘.syms ' file for future use is what the following example shows.

gdb -batch -nx -mapped -readnow programname

18 = Debugging with GDB GNUPro Toolkit

Choosing modes

Choosing modes

Run GDB in alternative modes—for example, in batch mode or quiet mode.

-nXx
-n

Do not execute commands from any initialization files (normally called

“.gdbinit). Normally, the commands in these files are executed after all the
command options and arguments have been processed. See “Command files”
on page 219.

-quiet
-q

Quiet Do not print the introductory and copyright messages. These messages are
also suppressed in batch mode.

-batch

Run in batch mode. Exit with statosafter processing all the command files
specified with :x ’ (and all commands from initialization files, if not inhibited
with ‘-n). Exit with non-zero status if an error occurs in executing the GDB
commands in the command files.

Batch mode may be useful for running GDB as a filter, for example to download
and run a program on another computer; in order to make this more useful, the
following message does not issue when running in batch mode (ordinarily, the
message issues whenever a program running under GDB control terminates).
Program exited normally.

-cd directory
Run GDB usingiirectory ~ as its working directory, instead of the current
directory.

-fullname

-f
GNU Emacs sets this option when it runs GDB as a subprocess. It tells GDB to
output the full file name and line number in a standard, recognizable fashion each
time a stack frame is displayed (which includes each time your program stops).
This recognizable format looks like twm32 ' characters, followed by the file
name, line number and character position separated by colons, and a newline. The
Emacs/GDB interface program uses the twae' ' characters as a signal to
display the source code for the frame.

-b bps
Set the line speed (baud rate or bits per second) of any serial interface used by
GDB for remote debugging.

CYGNUS

Debugging with GDB = 19

Choosing modes

-tty device
Run usinggevice for your program'’s standard input and output.

20 = Debugging with GDB GNUPro Toolkit

Quitting GDB

Quitting GDB

quit
To exit GDB, use thguit command (abbreviatef), or use an end-of-file

character (usuallg-d). If you do not supplexpression , GDB will terminate

normally; otherwise it will terminate using the resultegfression as the error
code.

An interrupt (oftenc-c) does not exit from GDB, but rather terminates the action of
any GDB command that is in progress and returns to GDB command level. It is safe to

use the interrupt character at any time because GDB does not allow it to take effect
until a time when it is safe.

If you have been using GDB to control an attached process or device, you can release
it with thedetach command (see “Debugging an already-running process”
on page 40).

CYGNUS

Debugging with GDB = 21

Shell commands

Shell commands

If you need to execute occasional shell commands during your debugging session,
there is no need to leave or suspend GDB; you can just usethecommand.

shell command string
Invoke a the standard shell to exeatti@mand string .If it exists, the
environment variablesHELL, determines which shell to run.

Otherwise GDB usesin/sh

Themake utility is often needed in development environments. You do not have to use
theshell command for this purpose in GDB.
make make-args
Execute thenake program with the specified argumenigike-args . This is
equivalent toshell make make-args '

22 m Debugging with GDB GNUPro Toolkit

GDB Commands

You can abbreviate a GDB command to the first few letters of the command name, if
that abbreviation is unambiguous; and you can repeat certain GDB commands by
using theReturn key. You can also use th@aB key to get GDB to fill out the rest of a
word in a command (or to show you the alternatives available, if there is more than
one possibility).

The following documentation discusses more GDB commands.
e “Command syntax” on page 24

e “Command completion” on page 25

» “Getting help” on page 27

CYGNUS Debugging with GDB = 23

Command syntax

Command syntax

A GDB command is a single line of input. There is no limit on how long it can be. It
starts with a command name, which is followed by arguments whose meaning
depends on the command name. For example, the comssandaccepts an
argument which is the number of times to step, astép 5 ’. You can also use the
step command with no arguments. Some command names do not allow any
arguments.

GDB command names may always be truncated if that abbreviation is unambiguous.
Other possible command abbreviations are listed in the documentation for individual
commands. In some cases, even ambiguous abbreviations are allowed; for example,
is specially defined as equivalentstep even though there are other commands
whose names start with You can test abbreviations by using them as arguments to
thehelp command.

A blank line as input to GDB (using tiReturn key just once) means to repeat the
previous command. Certain commands (for examgme), will not repeat this way;

such commands have unintentional repetition which might cause trouble and which it
is unlikely you want to repeat.

Thelist andx commands, when you repeat them vRthurn key actions, construct
new arguments rather than repeating exactly as generated. This permits easy scanning
of source or memory.

GDB can also usReturn in another way: to partition lengthy output, in a way similar
to the common utilitymore (see “Screen size” on page 198). Since it is easy to use
Return one too many times in this situation, GDB disables command repetition after
any command that generates this sort of display.

Any text from a# to the end of the line is a comment; it does nothing. This is useful
mainly in command files (see “Command files” on page 219).

24 m Debugging with GDB GNUPro Toolkit

Command completion

Command syntax

GDB can fill in the rest of a wad in acommand for you, if thee isonly one
possibility; it can also show you, at aty time, whet the valid possibiliti es are for he
next wod in a ommand. This works for GDB ®mmands, GDB subemmandsand
the names of symbols in your program.

Usethe TAB key wteneveryou want GIB to fill out the lest ofaword. If there is only
one pasibility, GDBfills in the word,and weits foryou to inish thecommand (oruse
Return to erter it). Forexample, if you type(gdb) info br e, and use th&AB key,
GDB fills in the rest 6the wol ‘bre akpoints ', since that is the onliifo
subommand beghning with ‘bre .

You can either use Return at thispoint, to run theinf o break points command, or use
the BACKSPACE key and enter something els, if ‘ br eakpoints ' does not look like
the commangou expected. (If you were surewywanted info breakpo i nts inthe
first place, you might as well just use Return immediately after ‘infobre 7, to expldt
command abbreviatis raher than ommand ompletion). If there is more threone
possibility for the next word when you use the TAB key, GDB soundsabell. You can
either sipply more characters ard try again, or pst ue the TAB key a seond time;
GDB displys al the possible completins for that verd. For exampleyou might
want to set a breskpoint on a subroutne whosename fegins with ‘make_’, but when
you type b make_ and usethe TAB key, GDB just ®undsthe bell UsingtheTAB key
again displays all the function namesin your program thatbegin with those characters.
For example, wu type(gdb) b make_ and then use the TAB key. GDB sunds the
bell; you use theTAB key again, to see the following display.

make_a_section_from_f ile make_envi ron
make_abs_section make_func tion_type
make_blockvector make_poin t er_type
make_cleanup make_refe rence_type
make_command make_symbol_completion_li st

(gdb) b make_
After displaying the available possibiliti es, GDB @pies your partial irput (in the
example, b make_ ') so you ca finish the commandf you just wantto see he list of

dternatives in theifrst place, youcan get help by usirg the commad key sequece,
M-? rather than using TAB twice.

IMPORTANT: M-? meansusing he META key (thediamond-marled key, or else, se ESC)
and the ?’ key as a commankkey sequence.

Sometimes the string you need, while logically aword, may contain pargheses or
other characters that GDB normally excludes from itsonatf a word. D permit
word completion to work in this siation, you may endase words n single qute

CYGNUS Debugging with GDB = 25

Command completion

marks in GDB commands.

The most likely situation where you might need this is in typing the name of a C++
function. This is because C++ allows function overloading (multiple definitions of the
same function, distinguished by argument type). For example, when you want to set a
breakpoint you may need to distinguish whether you mean the versiamethat

takes annt parametemame(int) , or the version that takedi@at parameter,

name(floaty . To use the word-completion facilities in this situation, type a single
guote, , at the beginning of the function name. This alerts GDB that it may need to
consider more information than usual when you us& atiiekey orM-? to request

word completion, as in the following example.

(gdb) b "bubble(

Use theM-? command key sequence this point.

bubble(double,double) bubble(int,int)

(gdb) b *bubble(

In some cases, GDB can tell that completing a name requires using quotes. When this
happens, GDB inserts the quote for you (while completing as much as it can) if you do
not type the quote in the first place, as in the following example’s declaration.

(gdb) b bub

Use theTAB key at this point. GDB alters your input line then to the following
declaration, and rings a bell.

(gdb) b ’bubble(

In general, GDB can tell that a quote is needed (and inserts it) if you have not yet
started typing the argument list when you ask for completion on an overloaded
symbol.

26 = Debugging with GDB GNUPro Toolkit

Getting help

Getting help

You can always ask GDB itself for information on its commands, using the command,
help .
help

h
You can useelp (abbreviatedh’) with no arguments to display a short list of
named classes of commands like the following output.

(gdb) help List of classes of commands:

running -- Running the program

stack -- Examining the stack

data -- Examining data

breakpoints -- Making program stop at certain points
files -- Specifying and examining files

status -- Status inquiries

support -- Support facilities

user-defined -- User-defined commands

aliases -- Aliases of other commands

obscure -- Obscure features

Type “help” followed by a class hame for a list of commands
in that class. Type “help” followed by command name for full
documentation. Command name abbreviations are allowed if
unambiguous. (gdb)

help class
Using one of the generadlp classes as an argument, you can get a list of the
individual commands in that class. For example, the following output shows the
help display for the classtatus

(gdb) help status Status inquiries.
List of commands:

show -- Generic command for showing things set with “set”
info -- Generic command for printing status

Type “help” followed by command name for full documentation.
Command name abbreviations are allowed if unambiguous.

(gdb)
help command
With a command name &slp argument, GDB displays a short paragraph on
how to use that command.

CYGNUS Debugging with GDB = 27

Getting help

complete args
Thecomplete args command lists all the possible completions for the beginning
of a command. Witlargs , specify the beginning of the command you want
completed. For examplegmplete i results in the following output fatifo ,
inspect andignore . This command is intentionally for use by GNU Emacs.
info
inspect
ignore
In addition tonelp , you can use the GDB commanas andshow to inquire about
the state of your program, or the state of GDB itself. Each command supports many
topics of inquiry; this manual introduces each of them in the appropriate context. The
listings undeinfo and undeshow in the Index point to all the subcommands. See
“Index” on page 309 for specific commands.
info
This command (abbreviated is for describing the state of your program. For
example, you can list the arguments given to your programindthargs , list
the registers currently in use witto registers , or list the breakpoints you
have set withnfo breakpoints . You can get a complete list of the info
subcommands withelp info

set
You can assign the result of an expresson to an environment variabsetwith
For example, you can set the GDB prompt #osgn with set prompt$.

show
In contrast tanfo , show is for describing the state of GDB itself. You can change
most of the things you can show, by using the related commandor example,
you can control what number system is used for displayssetithdix ,or
simply inquire which is currently in use wighow radix

To display all the settable parameters and their current values, you canwse
with no arguments; you may also uge set . Both commands produce the
same display.

The following are three miscellaneati®w subcommands, all of which are
exceptional in lacking correspondisg commands.

show version
Show what version of GDB is running. You should include this information in
GDB bug reports. If multiple versions of GDB are in use at your site, you may
occasionally want to determine which version of GDB you are running; as GDB
evolves, new commands are introduced, and old ones may wither away. The
version number is also announced when you start GDB.

28 = Debugging with GDB GNUPro Toolkit

Getting help

show copying
Display information about permission for copying GDB.

show warranty
Display the GNU “NO WARRANTY” statement.

CYGNUS Debugging with GDB = 29

Getting help

30 = Debugging with GDB GNUPro Toolkit

Runnin g programs under GDB

When you run a program under GDB, you must first generate debugging information
when you compile it. You may start GDB with its arguments, if any, in an
environment of your choice. You may redirect your program'’s input and output,
debug an already running process, or kill a child process.

For more discussion, see the following topics.

* “Compiling for debugging” on page 32

e “Starting your program” on page 33

e “Your program’s arguments” on page 35

* “Your program’s environment” on page 36

* “Your program’s working directory” on page 38

* “Your program’s input and output” on page 39

» “Debugging an already-running process” on page 40

» “Killing the child process” on page 41

» “Additional process information” on page 42

* “Debugging programs with multiple threads” on page 43
» “Debugging programs with multiple processes” on page 46

CYGNUS

Debugging with GDB = 31

Compiling for debugging

Compiling for debugging

In order to debug a program effectively, you need to generate debugging information
when you compile it. This debugging information is stored in the object file; it
describes the data type of each variable or function and the correspondence between
source line numbers and addresses in the executable code.

To request debugging information, specify the option when you run the compiler.

Many C compilers are unable to handle tilae and -0’ options together. Using those
compilers, you cannot generate optimized executables containing debugging
information.

GCC, thecNu C compiler, supportsg * with or without *-0’, making it possible to
debug optimized code. We recommend that you alwaysase/henever you

compile a program. You may think your program is correct, but there is no sense in
pushing your luck.

When you debug a program compiled wiih-0 ’, remember that the optimizer is
rearranging your code; the debugger shows you what is really there. Do not be too
surprised when the execution path does not exactly match your source file! An
extreme example: if you define a variable, but never use it, GDB never sees that
variable—because the compiler optimizes it out of existence.

Some things do not work as well witly -0 ’ as with just g ’, particularly on
machines with instruction scheduling. If in doubt, recompile wighalone, and if
this fixes the problem, please report it to us as a bug (including a test case!).

Older versions of theNu C compiler permitted a variant optioqd * for debugging
information. GDB no longer supports this format; if yamu C compiler has this
option,do not ussit.

32 = Debugging with GDB GNUPro Toolkit

Starting your program

Starting your program

run

Use theun command to start your program under GDB. You must first specify
the program name (except on VxWorks) with an argument to GDB (see “Getting
In and Out of GDB” on page 15), or using tite orexec-file =~ command (see
“Commands to specify files” on page 154).

If you are running your program in an execution environment that supports processes;
run creates an inferior process and makes that process run your program. (In
environments without processes, run jumps to the start of your program.)

The execution of a program is affected by certain information it receives from its
superior. GDB provides ways to specify this information, which you mubttire
starting your program. (You can change it after starting your program, but such
changes only affect your program the next time you start it.) This information may be
divided into the following four categories.

0

WARNING:

Arguments

Specify the arguments to give your program as the arguments of the run
command. If a shell is available on your target, the shell is used to pass the
arguments, so that you may use normal conventions (such as wildcard
expansion or variable substitution) in describing the arguments. In Unix
systems, you can control which shell is used withsthELL environment
variable. See “Your program’s arguments” on page 35.

Environment

Your program normally inherits its environment from GDB, but you can use
the GDB commandset environment andunset environment to change
parts of the environment that affect your program. See “Your program’s
environment” on page 36.

Working directory

Your program inherits its working directory from GDB. You can set the GDB
working directory with thed command in GDB. See “Your program’s
working directory” on page 38.

Standard input and output

Your program normally uses the same device for standard input and standard
output as GDB is using. You can redirect input and output inuthe r

command line, or you can use the command to set a different device for
your program. See “Your program’s input and output” on page 39.

While input and output redirection work, you cannot use pipes to pass the

CYGNUS

Debugging with GDB = 33

Starting your program

output of the program you are debugging to another program; if you attempt
this, GDB is likely to wind up debugging the wrong program.

When you issue th@n command, your program begins to execute
immediately. See “Stopping and continuing” on page 47 for discussion of
how to arrange for your program to stop. Once your program has stopped, you
may call functions in your program, using thiat orcall commands. See
“Examining data” on page 87.

If the modification time of your symbol file has changed since the last time GDB read
its symbols, GDB discards its symbol table, and reads it again. When it does this,
GDB tries to retain your current breakpoints.

34 = Debugging with GDB GNUPro Toolkit

Your program’s arguments

Your program’s arguments

The arguments to your program can be specified by the argumentswf the
command. They are passed to a shell, which expands wildcard characters and
performs redirection of I/O, and thence to your program. ¥eMLL environment
variable (if it exists) specifies what shell GDB uses. If you do not defireL, GDB
useshbin/sh

run with no arguments uses the same arguments used by the previposthose set
by theset args command.

set args
Specify the arguments to be used the next time your program is satartfs
has no argumentsyn executes your program with no arguments. Once you have
run your program with arguments, usitgargs before the nexin is the only
way to run it again without arguments.

show args
Show the arguments to give your program when it is started.

CYGNUS

Debugging with GDB = 35

Your program’s environment

Your program’s environment

Theenvironmentonsists of a set of environment variables and their values.
Environment variables conventionally record such things as user name, home
directory, terminal type, and the search path for programs to run.

Usually you set up environment variables with the shell and they are inherited by all
the other programs you run.

When debugging, it can be useful to try running your program with a modified
environment without having to start GDB over again.

path directory
Add directory to the front of theeATHenvironment variable (the search path for

executables), for both GDB and your program. You may specify several directory
names, separated hy or a whitespace. lfiirectory is already in the path, it is
moved to the front, so it is searched sooner.

You can use the stringcwd’ to refer to whatever is the current working directory
at the time GDB searches the path. If you usastead, it refers to the directory
where you executed tlpath command. GDB replaces' ‘in the directory

argument (with the current path) before addimgrtory to the search path.

show paths
Display the list of search paths for executables Ekmienvironment variable).

show environment [varname]
Print the value of environment variabl@mame , to be given to your program
when it starts. If you do not supplgrname , print the names and values of all
environment variables to be given to your program. You can abbreviate
environment asenv.

set environment varname [=] value
Set environment variablearname , to value . The value changes for your
program only, not for GDB itselfalue may be any string; the values of
environment variables are just strings, and any interpretation is supplied by your
program itself. Thealue parameter is optional; if it is eliminated, the variable is
set to a null value. For example, the commaasitinv USER=foo , tells a Unix
program, when run, that its user is named *. (The spaces around’‘are used
for clarity here; they are not actually required.)

unset environment varname
Remove variableyarname , from the environment to be passed to your program.
This is different fromsetenv varname ='; unset environment removes the
variable from the environment, rather than assigning it an empty value.

WARNING: GDB runs your program using the shell indicated by @\ L environment

36 = Debugging with GDB GNUPro Toolkit

Your program’s environment

variable if it exists (omin/sh if not). If your SHELL variable hames a shell
that runs an initialization file—such asshrc ' for C-shell, or ‘bashrc ’ for
BASH-any variables you set in that file affect your program. You may wish to

move setting of environment variables to files that are only run when you sign
on, such aslogin ' or ‘.profile

CYGNUS

Debugging with GDB = 37

Your program’s working directory

Your program’s working directory

Each time you start your program with , it inherits its working directory from the
current working directory of GDB. The GDB working directory is initially whatever it
inherited from its parent process (typically the shell), but you can specify a new
working directory in GDB with thed command.

The GDB working directory also serves as a default for the commands that specify
files for GDB to operate on. See “Commands to specify files” on page 154.

cd directory
Set the GDB working directory t@irectory

pwd
Print the GDB working directory.

38 = Debugging with GDB GNUPro Toolkit

Your program’s input and output

Your program’s input and output

By default, the program you run under GDB does input and output to the same
terminal that GDB uses. GDB switches the terminal to its own terminal modes to
interact with you, but it records the terminal modes your program was using and
switches back to them when you continue running your program.

info terminal
Displays information recorded by GDB about the terminal modes your program is
using.
You can redirect your program’s input and/or output using shell redirection with the
run command. For exampleun > outfile starts your program, diverting its output
to the file ‘outfile . Another way to specify where your program should do input and
output is with thety command. This command accepts a file name as argument, and
causes this file to be the default for futune commands.

It also resets the controlling terminal for the child process, for fuidreommands.
For exampletty /devittyp directs that processes started with subsequent run
commands default to do input and output on the termigealttyp ' and have that as
their controlling terminal.

An explicit redirection inrun overrides thety command’s effect on the input/output
device, but not its effect on the controlling terminal.

When you use they command or redirect input in then command, only the input
for your program is affected. The input for GDB still comes from your terminal.

CYGNUS

Debugging with GDB = 39

Debugging an already-running process

Debugging an already-running process

attach process-id
This command attaches to a running process—one that was started outside GDB.
(info files shows your active targets.) The command takes as argument a
process ID. The usual way to find out the process-id of a Unix process is with the

ps utility, or with the jobs -1 ' shell command.
attach does not repeat if you use tReturn key a second time after executing the
command.

To useattach , your program must be running in an environment which supports
processes; for examplagach does not work for programs on bareboard targets
that lack an operating system. You must also have permission to send the process
a signal.

When usingattach , you should first use thitle command to specify the
program running in the process and load its symbol table. See “Commands to
specify files” on page 154.

The first thing GDB does after arranging to debug the specified process is to stop
it. You can examine and modify an attached process with all the GDB commands
that are ordinarily available when you start processesrwithYou can insert
breakpoints; you casiep andcontinue ; you can modify storage. If you would
rather the process continue running, you may useotiieue command after
attaching GDB to the process.

detach
When you have finished debugging the attached process, you can useacthe
command to release it from GDB control. Detaching the process continues its
execution. After theetach command, that process and GDB become completely
independent once more, and you are ready to attach another process or start one
with run . detach does not repeat if you use tReturn key again after executing
the command.

If you exit GDB or use thein command while you have an attached process, you Kkill
that process. By default, GDB asks for confirmation if you try to do either of these
things; you can control whether or not you need to confirm by usirgtttwfirm
command (see “Optional warnings and messages” on page 200).

40 = Debugging with GDB GNUPro Toolkit

Killing the child process

Killing the child process

kil
Kill the child process in which your program is running under GDB.

This command is useful if you wish to debug a core dump instead of a running
process. GDB ignores any core dump files while your program is running.

On some operating systems, a program cannot be executed outside GDB while you
have breakpoints set on it inside GDB. You can use&ithe command in this
situation to permit running your program outside the debugger.

Thekil command is also useful if you wish to recompile and relink your program,
since on many systems it is impossible to modify an executable file while it is running
in a process. In this case, when you nextruse GDB notices that the file has

changed, and reads the symbol table again (while trying to preserve your current
breakpoint settings).

CYGNUS

Debugging with GDB = 41

Additional process information

Additional process information

Some operating systems provide a facility callea¢ ' that can be used to examine

the image of a running process using file system subroutines. If GDB is configured for
an operating system with this facility, the commatalproc is available to report

on several kinds of information about the process running your prograioc

works only on SVR4 systems that suppostfs .

info proc
Summarize available information about the process.

info proc mappings
Report on the address ranges accessible in the program, with information on
whether your program may read, write, or execute each range.

info proc times
Starting time, user CPU time, and system CPU time for your program and its
children.

info proc id
Report on the process IDs related to your program: its own process ID, the ID of
its parent, the process group ID, and the session ID.

info proc status
General information on the state of the process. If the process is stopped, this
report includes the reason for stopping, and any signal received.

info proc all
Show all the above information about the process.

42 m Debugging with GDB GNUPro Toolkit

Debugging programs with multiple threads

Debgging programs with multiple threads

In some operating systems, a singlegram ma have morehanonethreadof
exeaution.

The precise semantics of threalif§er from one operatingystem b arother, but in
general te thieads of a singleprogram are akin to multipk proesses—exapt that
they shere oneaddress ace (that is, thg can all examineand modify the same
variables). On the other had, each threa has its own registers and execution stad,
and perhapprivate memaoy.

GDB provides the following facilities for debugging multi-thread programs.
* automatic notification of new threads

* ‘thread threadno ', @ command to switch among threads

* ‘infothreads ', acommaui to inquire about eisting threads

e ‘thread apply [threadno][all 1 args ', a command to apply a command to a
list of threads

» thread-gecific breakpoints

The GDB thread debugging facility allows you to doserveall threads while your
program runs—but whnever GDB takesantrol, one hread in particular is alwa
the focus of debuwging. This thread is called¢ current thread Delugging
commandsshow grogram information from the grspective of the currentthread.

WARNING: These fecilities are not yet aailable onevery GDB cafiguration where the
operatirg systemsupports threads. If your GDB doesnot sugport threads,
these commauds have no dfect. For irstance, a system without thread sipport
showsno output frominfo threads " and always rejects thethre ad
command, ke the following example shows.

(gdb) info threads

(gdb) thread 1

Thre ad | D 1notknown . Use th e "in fo threads"commandto seetheIDs

of ¢ urrently known th r eads.
Whenever GDB detects mew thread in gur program, it displays the tget systeris
identification for the thread with a mesage in the form ‘[New systag]’. systag IS a
thread identifier whose formvaries dependingon the @rticular system. For example,
on LynxOS, you might see the followingutput when GDB rotices anew thread.

[Ne w process 35 threa d 27]

In contrast,on an SGI system, theystag is simply something likeptocess 368
with nofurther qualifier.

CYGNUS Debugging with GDB = 43

Debugging programs with multiple threads

For debugging purposes, GDB associates its own thread number—always a single
integer—with each thread in your program.

info threads
Display a summary of all threads currently in your program. GDB displays for
each thread (in the following order):

o the thread number assigned by GDB.
o the target system’s thread identifieydtag).
o the current stack frame summary for that thread.

An asterisk *’ to the left of the GDB thread number indicates the current thread.
Use the following example for clarity.
(gdb) info threads
3 process 35 thread 27 0x34e5 in sigpause ()
2 process 35 thread 23 0x34e5 in sigpause ()
* 1 process 35 thread 13 main (argc=1, argv=0xTffffff8)
at threadtest.c:68

thread threadno
Make thread numbehreadno the current thread. The command argument,
threadno , is the internal GDB thread number, as shown in the first field of the
‘infothreads ' display. GDB responds by displaying the system identifier of the
thread you selected, and its current stack frame summary, as in the following
output.

(9db) thread 2

[Switching to process 35 thread 23]

0x34e5 in sigpause ()

As with the [New ..] ' message, the form of the text aftewitching

to * depends on your system’s conventions for identifying threads.

thread apply [threadno [all 1 args

The thread apply command allows you to apply a command to one or more
threads. Specify the numbers of the threads that you want affected with the
command argumentreadno . threadno is the internal GDB thread number, as
shown in the first field of therfo threads ' display. To apply a command to all
threads, useiread apply all args

Whenever GDB stops your program, due to a breakpoint or a signal, it automatically
selects the thread where that breakpoint or signal happened. GDB alerts you to the
context switch with a message of the fofBwitching to systag]’ to identify the
thread.

See “Stopping and starting multi-thread programs” on page 69 for more information
about how GDB behaves when you stop and start programs with multiple threads.

44 wm Debugging with GDB GNUPro Toolkit

Debugging programs with multiple threads

See “Setting watchpoints” on page 54 for information about watchpoints in programs
with multiple threads.

CYGNUS Debugging with GDB = 45

Debugging programs with multiple processes

Debugging programs with multiple processes

GDB has no special support for debugging programs which create additional
processes using thek function. When a program forks, GDB will continue to

debug the parent process and the child process will run unimpeded. If you have set a
breakpoint in any code which the child then executes, the child willgetraap

signal which (unless it catches the signal) will cause it to terminate.

However, if you want to debug the child process there is a workaround which isn’t too
painful. Put a call teleep in the code which the child process executes after the fork.
It may be useful to sleep only if a certain environment variable is set, or a certain file
exists, so that the delay need not occur when you don't want to run GDB on the child.
While the child is sleeping, use the program to get its process ID. Then tell GDB (a
new invocation of GDB if you are also debugging the parent process) to attach to the
child process (sesttach with “Debugging an already-running process” on page 40).
From that point on you can debug the child process just like any other process to
which you attached.

46 = Debugging with GDB GNUPro Toolkit

Stoppin g and continuin ¢

The principal purposes of using a debugger are so that you can stop your program
before it terminates; or so that, if your program runs into trouble, you can investigate
and determine causes.

Inside GDB, your program may stop for any of several reasons, such as a signal, a
breakpoint, or reaching a new line after a GDB command sugépasYou may then
examine and change variables, set new breakpoints or remove old ones, and then
continue execution. The following documentation discusses these topics.

“Breakpoints, watchpoints, and exceptions” on page 49
“Setting breakpoints” on page 50

“Setting watchpoints” on page 54

“Breakpoints and exceptions” on page 55

“Deleting breakpoints” on page 56

“Disabling breakpoints” on page 57

“Break conditions” on page 59

“Breakpoint command lists” on page 61

“Breakpoint menus” on page 63

“Continuing and stepping” on page 64

CYGNUS

Debugging with GDB = 47

e “Signals” on page 67

» “Stopping and starting multi-thread programs” on page 69

Usually, the messages shown by GDB provide ample explanation of the status of your
program—but you can also explicitly request this information at any tire.

program displays information about the status of your program: whether it is running
or not, what process it is, and why it stopped.

48 = Debugging with GDB GNUPro Toolkit

Breakpoints, watchpoints, and exceptions

Breakpoints, watchpoints, and exceptions

A breakpointmakes your program stop whenever a certain point in the program is
reached. For each breakpoint, you can add conditions to control in finer detail whether
your program stops. You can set breakpoints withiés command and its variants

(see “Setting breakpoints” on page 50) to specify the place where your program
should stop by line number, function name or exact address in the program.

In languages with exception handling (sucless C++), you can also set breakpoints
where an exception is raised (see “Breakpoints and exceptions” on page 55).

In SunOS 4.x, SVR4, and Alpha OSF/1 configurations, you can set breakpoints in
shared libraries before the executable is run.

A watchpointis a special breakpoint that stops your program when the value of an
expression changes. You must use a different command to set watchpoints (see
“Setting watchpoints” on page 54), but aside from that, you can manage a watchpoint
like any other breakpoint: you enable, disable, and delete both breakpoints and
watchpoints using the same commands.

You can arrange to have values from your program displayed automatically whenever
GDB stops at a breakpoint. See “Automatic display” on page 95.

GDB assigns a number to each breakpoint or watchpoint when you create it; these
numbers are successive integers starting with one. In many of the commands for
controlling various features of breakpoints, you use the breakpoint number to say
which breakpoint you want to change. Each breakpoint mayaleledor disableq if
disabled, it has no effect on your program until you enable it again.

CYGNUS Debugging with GDB = 49

Setting breakpoints

Setting breakpoints

Breakpoints are set with tiveeak command (abbreviateg). The debugger
convenience variabletpnum’ records the number of the breakpoints you've set most
recently; see “Convenience variables” on page 103 for a discussion of what you can
do with convenience variables.

You have several ways to say where the breakpoint should go.

break function
Set a breakpoint at entry to functigimction . When using source languages that
permit overloading of symbols, such as Cauhetion may refer to more than
one possible place to break. See “Breakpoint menus” on page 63 for a discussion
of that situation.

break + offset

break - offset
Set a breakpoint some number of lines forward or back from the position at which
execution stopped in the currently selected frame.

break linenum
Set a breakpoint in the current source file at linesum . That file is the last file
whose source text was printed. This breakpoint stops your program just before it
executes any of the code on that line.

break filename : linenum
Set a breakpoint at linggenum , in source file filename

break filename : function
Set a breakpoint at entry to functigimction , found in file, filename
Specifying a file name as well as a function name is superfluous except when
multiple files contain similarly named functions.

break * address
Set a breakpoint at addreaadress . You can use this to set breakpoints in parts
of your program which do not have debugging information or source files.

break
When called without any argumeniiggak sets a breakpoint at the next
instruction to be executed in the selected stack frame (see “Examining the stack”
on page 71). In any selected frame but the innermost, this makes your program
stop as soon as control returns to that frame.

50 = Debugging with GDB GNUPro Toolkit

Setting breakpoints

This is similar to the effect offmish ~ command in the frame inside the selected
frame—except thathish doesn’t leave an active breakpoint. If you bieak

without an argument in the innermost frame, GDB stops the next time it reaches
the current location; this may be useful inside loops. GDB normally ignores
breakpoints when it resumes execution, until at least one instruction has been
executed. If it did not do this, you would be unable to proceed past a breakpoint
without first disabling the breakpoint.

This rule applies whether or not the breakpoint already existed when your
program stopped.

break...if cond

Set a breakpoint with conditiobend ; evaluate the expressiasand, each time

the breakpoint is reached, and stop only if the value is nonzero—thafoig if
evaluates as true..' ' stands for one of the possible arguments described
previously (or no argument) specifying where to break. See “Break conditions”
on page 59 for more information on breakpoint conditions.

toreak args

Set a breakpoint enabled only for one stpgs are the same as for theak
command, and the breakpoint is set in the same way, but the breakpoint is
automatically deleted after the first time your program stops there. See “Deleting
breakpoints” on page 56.

hbreak args

Set a hardware-assisted breakpainjs are the same as for theak command

and the breakpoint is set in the same way, but the breakpoint requires hardware
support and some target hardware may not have this support. The main purpose of
this is EPROM/ROM code debugging, so you can set a breakpoint at an
instruction without changing the instruction. This can be used with the new trap-
generation provided by SPARCIite DSU. DSU will generate traps when a
program accesses some date or instruction address that is assigned to the debug
registers. However the hardware breakpoint registers can only take two data
breakpoints, and GDB will reject this command if more than two are used. Delete
or disable usused hardware breakpoints before setting new ones. See “Break
conditions” on page 59.

thbreak args

Set a hardware-assisted breakpoint enabled only for one stop. args are the same as
for thehbreak command and the breakpoint is set in the same way. However, like
thetbreak command, the breakpoint is automatically deleted after the first time
your program stops there. Also, like tiigeak command, the breakpoint requires
hardware support and some target hardware may not have this support. See
“Disabling breakpoints” on page 57 and “Break conditions” on page 59.

CYGNUS

Debugging with GDB = 51

Setting breakpoints

rbreak regex
Set breakpoints on all functions matching regular expresgigsx, . Sets an
unconditional breakpoint on all matches, printing a list of all breakpoints it set.
Once these breakpoints are set, they are treated just like the breakpoints set with
thebreak command. You can delete them, disable them, or make them
conditional the same way as any other breakpoint. When debugging C++
programsrbreak is useful for setting breakpoints on overloaded functions that
are not members of any special classes.

info breakpoints [nj
info break [nj
info watchpoints [nj

Print a table of all breakpoints and watchpoints set and not deleted, with the
following place-settings for each breakpoint.

Breakpoint Numbers

Type
Breakpoint or watchpoint.
Disposition
Whether the breakpoint is marked to be disabled or deleted when hit.
Enabledor Disabled
Enabled breakpoints are marked wigh ‘n’ marks breakpoints that are not
enabled.

Address
Where the breakpoint is in your program, as a memory address

What
Where the breakpoint is in the source for your program, as a file and line
number.

If a breakpoint is conditionaihfo break ~ shows the condition on the line
following the affected breakpoint; breakpoint commands, if any, follow.

info break with a breakpoint numberas argument lists only that

breakpoint. The convenience variableand the default examining-address

for the x command are set to the address of the last breakpoint listed (see
“Examining memory” on page 93).

infobreak now displays a count of the number of times the breakpoint has
been hit. This is especially useful in conjunction withihere command.

You can ignore a large number of breakpoint hits, look at the breakpoint info
to see how many times the breakpoint was hit, and then run again, ignoring
one less than that number. This will get you quickly to the last hit of that
breakpoint.

52 = Debugging with GDB GNUPro Toolkit

Setting breakpoints

GDB allows you to set any number of breakpoints at the same place in your program.
There is nothing silly or meaningless about this. When the breakpoints are
conditional, this is even useful (see “Break conditions” on page Break conditions).
GDB itself sometimes sets breakpoints in your program for special purposes, such as
proper handling obngjmp (in C programs). These internal breakpoints are assigned
negative numbers, starting with; ‘info breakpoints " does not display them. You

can see these breakpoints with the GDB maintenance commaindnfo

breakpoints

maint info breakpoints

Using the same format aisf6 breakpoints ', display both the breakpoints
you've set explicitly, and those GDB is using for internal purposes. Internal
breakpoints are shown with negative breakpoint numbers. The type column
identifies what kind of breakpoint is shown:
breakpoint

Normal, explicitly set breakpoint.
watchpoint

Normal, explicitly set watchpoint.
longjmp

Internal breakpoint, used to handle correctly stepping througjmp calls.
longjmp resume

Internal breakpoint at the target obagjmp .

until

Temporary internal breakpoint used by the GbB command.
finish

Temporary internal breakpoint used by the GinBh command.

CYGNUS Debugging with GDB = 53

Setting watchpoints

Setting watchpoints

You can use a watchpoint to stop execution whenever the value of an expression
changes, without having to predict a particular place where this may happen.

Watchpoints currently execute two orders of magnitude more slowly than other
breakpoints, but this can be well worth it to catch errors where you have no clue what
part of your program is the culprit.

watch expr
Set a watchpoint for an expression. GDB will break wien is written into by
the program and its value changes. This can be used with the new trap-generation
provided by SPARCIlite DSU. DSU will generate traps when a program accesses
some date or instruction address that is assigned to the debug registers. For the
data addresses, DSU facilitates #laech command. However the hardware
breakpoint registers can only take two data watchpoints, and both watchpoints
must be the same kind. For example, you can set two watchpointsaiith
commands, two withwatch commands, or two withwatch commands, but you
cannot set one watchpoint with one command and the other with a different

command{No value for “GBDN"} will reject the command if you try to mix
watchpoints. Delete or disable unused watchpoint commands before setting new
ones.

rwatch expr
Set a watchpoint that will break when watghs is read by the program. If you
use both watchpoints, both must be set withnthheh command.

awatch expr
Set a watchpoint that will break wharys is read and written into by the
program. If you use both watchpoints, both must be set withwiiten
command.

info watchpoints
This command prints a list of watchpoints and breakpoints; it is the sane as
break .

WARNING: In multi-thread programs, watchpoints have only limited usefulness.
With the current watchpoint implementation, GDB can only watch
the value of an expression irsiagle threadIf you are confident that
the expression can only change due to the current thread’s activity
(and if you are also confident that no other thread can become
current), then you can use watchpoints as usual. However, GDB may
not notice when a non-current thread’s activity changes the
expression.

54 = Debugging with GDB GNUPro Toolkit

Breakpoints and exceptions

Breakpoints and exceptions

Some languages, such@su C++, implement exception handling. You can use GDB
to examine what caused your program to raise an exception, and to list the exceptions
your program is prepared to handle at a given point.

catch exceptions
You can set breakpoints at active exception handlers by usiegtthe
commandexceptions is a list of names of exceptions to catch.

You can usénfo catch to list active exception handlers. See “Information about a
frame” on page 76. There are currently some limitations to exception handling in
GDB.

» If you call a function interactively, GDB normally returns control to you when the
function has finished executing. If the call raises an exception, however, the call
may bypass the mechanism that returns control to you and cause your program to
simply continue running until it hits a breakpoint, catches a signal that GDB s lis-
tening for, or exits.

* You cannot raise an exception interactively.
* You cannot install an exception handler interactively.

Sometimesatch is not the best way to debug exception handling: if you need to
know exactly where an exception is raised, it is better totstégrethe exception
handler is called, since that way you can see the stack before any unwinding takes
place. If you set a breakpoint in an exception handler instead, it may not be easy to
find out where the exception was raised.

To stop just before an exception handler is called, you need some knowledge of the
implementation. In the case of GNU C++, exceptions are raised by calling a library
function named_raise_exception which has the following ANSI C interface:
I* addr is where the exception identifier is stored.

id is the exception identifier. */
void __raise_exception (void ** addr , void * id);
To make the debugger catch all exceptions before any stack unwinding takes place, set
a breakpoint on_raise_exception (see “Breakpoints, watchpoints, and exceptions”
on page 49).
With a conditional breakpoint (see “Break conditions” on page 59) that depends on
the value ofid , you can stop your program when a specific exception is raised. You
can use multiple conditional breakpoints to stop your program when any of a number
of exceptions are raised.

CYGNUS

Debugging with GDB = 55

Deleting breakpoints

Deleting breakpoints

It is often necessary to eliminate a breakpoint or watchpoint once it has done its job
and you no longer want your program to stop there. This is aidlietingthe
breakpoint. A breakpoint that has been deleted no longer exists; it is forgotten.

With theclear command you can delete breakpoints according to where they are in
your program. With theelete command you can delete individual breakpoints or
watchpoints by specifying their breakpoint numbers.

It is not necessary to delete a breakpoint to proceed past it. GDB automatically ignores
breakpoints on the first instruction to be executed when you continue execution
without changing the execution address.

clear
Delete any breakpoints at the next instruction to be executed in the selected stack
frame (see “Selecting a frame” on page 74). When the innermost frame is
selected, this is a good way to delete a breakpoint where your program just
stopped.

clear function
clear filename ' function
Delete any breakpoints set at entry to the functietation

clear linenum

clear filename : linenum
Delete any breakpoints set at or within the code of the specified line.

delete [breakpoints 1 bnums...]
Delete the breakpoints or watchpoints of the numbers specified as arguments. If
no argument is specified, delete all breakpoints (GDB asks confirmation, unless
you haveset confirm off). You can abbreviate this commandias

56 = Debugging with GDB GNUPro Toolkit

Disabling breakpoints

Disabling breakpoints

Rather than deleting a breakpoint or watchpoint, you might pretisableit. This
makes the breakpoint inoperative as if it had been deleted, but remembers the
information on the breakpoint so that you esmableit again.

You disable and enable breakpoints and watchpoints witéntise anddisable

commands, optionally specifying one or more breakpoint numbers as arguments. Use
info break Orinfowatch to print a list of breakpoints or watchpoints if you do not
know which numbers to use.

A breakpoint or watchpoint can have four different states of enablement.

* Enabled
The breakpoint stops your program. A breakpoint set witlrfa& command
starts out in this state.

» Disabled
The breakpoint has no effect on your program.

* Enabled once
The breakpoint stops your program, but then becomes disabled. A breakpoint set
with the tbreak command starts out in this state.

» Enabled for deletion
The breakpoint stops your program, but immediately after it does so it is deleted
permanently.

You can use the following commands to enable or disable breakpoints and

watchpoints.

disable [breakpoints][bnums ...]
Disable the specified breakpoints—or all breakpoints, if none are listed. A
disabled breakpoint has no effect but is not forgotten. All options such as ignore-
counts, conditions and commands are remembered in case the breakpoint is
enabled again later. You may abbrevigisable asdis .

enable [breakpoints][bnums ...]
Enable the specified breakpoints (or all defined breakpoints). They become
effective once again in stopping your program.

enable [breakpoints] once bnums...
Enable the specified breakpoints temporarily. GDB disables any of these
breakpoints immediately after stopping your program.

enable [breakpoints] delete bnums...
Enable the specified breakpoints to work once, then die. GDB deletes any of these
breakpoints as soon as your program stops there.

CYGNUS

Debugging with GDB = 57

Disabling breakpoints

Except for a breakpoint set withreak (see “Setting breakpoints” on page Setting
breakpoints), breakpoints that you set are initially enabled; subsequently, they become
disabled or enabled only when you use one of the previously listed commands. (The
commanduntil , can set and delete a breakpoint of its own, but it doesn’t change the
state of other breakpoints; see “Continuing and stepping” on page “Continuing and

stepping” on page 64.)

58 = Debugging with GDB GNUPro Toolkit

Break conditions

Break conditions

The simplest sort of breakpoint breaks every time your program reaches a specified
place. You can also specifycanditionfor a breakpoint. A condition is just a Boolean
expression in your programming language (see “Expressions” on page 88). A
breakpoint with a condition evaluates the expression each time your program reaches
it, and your program stops only if the conditionrise.

This is the converse of using assertions for program validation; in that situation, you
want to stop when the assertion is violated—that is, when the condition is false. In C,
if you want to test an assertion expressed by a condif#esr; , you should set the
condition ! assert ' on the appropriate breakpoint (whefgert signifies the

condition to assert).

Conditions are also accepted for watchpoints; you may not need them, since a
watchpoint is inspecting the value of an expression anyhow—nbut it might be simpler,
say, to just set a watchpoint on a variable name, and specify a condition that tests
whether the new value is an interesting one.

Break conditions can have side effects, and may even call functions in your program.
This can be useful, for example, to activate functions that log program progress, or to
use your own print functions to format special data structures. The effects are
completely predictable unless there is another enabled breakpoint at the same address.
(In that case, GDB might see the other breakpoint first and stop your program without
checking the condition of this one.) Note that breakpoint commands are usually more
convenient and flexible for the purpose of performing side effects when a breakpoint

is reached (see “Breakpoint command lists” on page 61).

Break conditions can be specified when a breakpoint is set, by dsirig the
arguments to thereak command. See “Setting breakpoints” on page 50 for more
discussion. They can also be changed at any time widbitbion command. The
watch command does not recognize thekeyword;condition is the only way to
impose a further condition on a watchpoint.

condition bnum expression
Specifyexpression as the break condition for breakpoint or watchpoint number,
bnum. After you set a condition, breakpoinum stops your program only if the
value ofexpression is true (nonzero, in C). When you usedition , GDB
checksexpression immediately for syntactic correctness, and to determine
whether symbols in it have referents in the context of your breakpoint. GDB does
not actually evaluatexpression ~ at the time the condition command is given,
however. See “Expressions” on page 88.

CYGNUS

Debugging with GDB = 59

Break conditions

condition bnum
Remove the condition from breakpoint numbesm. It becomes an ordinary
unconditional breakpoint.

A special case of a breakpoint condition is to stop only when the breakpoint has been
reached a certain number of times. This is so useful that there is a special way to do it,
using thegnore counbf the breakpoint. Every breakpoint has an ignore count, which

is an integer. Most of the time, the ignore count is zero, and therefore has no effect.
But if your program reaches a breakpoint whose ignore count is positive, then instead
of stopping, it just decrements the ignore count by one and continues. As a result, if
the ignore count value ig the breakpoint does not stop the nextmes your

program reaches it.

ignore bnum count
Set the ignore count of breakpoint numbimto count . The nextount times
the breakpoint is reached, your program’s execution does not stop; other than to
decrement the ignore count, GDB takes no action.

To make the breakpoint stop the next time it is reached, specify a count of zero.

When you useontinue to resume execution of your program from a breakpoint,
you can specify an ignore count directly as an argumenhteue , rather than
usingignore . See “Continuing and stepping” on page 64.

If a breakpoint has a positive ignore count and a condition, the condition is not
checked. Once the ignore count reaches zero, GDB resumes checking the
condition.

Achieve the effect of the ignore count with a condition sucléfas-- <- 0
that uses a debugger convenience variable that is decremented each time. See
“Convenience variables” on page 103.

60 = Debugging with GDB GNUPro Toolkit

Breakpoint command lists

Breakpoint command lists

You can give any breakpoint (or watchpoint) a series of commands to execute when
your program stops due to that breakpoint. For example, you might want to print the
values of certain expressions, or enable other breakpoints.

commands [bnum
command-list
end

Specify a list of commands for breakpoint numbeom. The commands
themselves appear on the following lines. Type a line containingrjtigb
terminate the commands. To remove all commands from a breakpoint, type
commands and follow it immediately witlend ; that is, give no commands. With no
bnum argumentcommands refers to the last breakpoint or watchpoint set (not to
the breakpoint most recently encountered).

Using theReturn key as a means of repeating the last GDB command is disabled
within a command-list

You can use breakpoint commands to start your program up again. Simply use the
continue command, oOstep , or any other command that resumes execution. Any
other commands in the command list are ignored, after a command that resumes
execution. This is because any time you resume execution (even with arsixnpbe

step), you may encounter another breakpoint—which could have its own command
list, leading to ambiguities about which list to execute.

If the first command you specify in a command lisiligit , the usual message about
stopping at a breakpoint is not printed. This may be desirable for breakpoints that are
to print a specific message and then continue. If none of the remaining commands
print anything, you see no sign that the breakpoint was reagieed. is meaningful

only at the beginning of a breakpoint command list.

The commandscho, output , andprintf allow you to print precisely controlled
output, and are often useful in silent breakpoints.

See “Commands for controlled output” on page 220.

For example, the following example shows how to use breakpoint commands to print
the value ok at entry tdfoo whenevex is positive.

break foo if x>0
commands

silent

printf "X is %d\n",x
cont

end

One application for breakpoint commands is to compensate for one bug so you can

CYGNUS

Debugging with GDB = 61

Breakpoint command lists

test for another. Put a breakpoint just after the erroneous line of code, give it a
condition to detect the case in which something erroneous has been done, and give it
commands to assign correct values to any variables that need them. End with the
continue command so that your program does not stop, and start withetie

command so that no output is produced.

The following is an example.

break 403
commands
silent
setx=y +4
cont

end

62 = Debugging with GDB GNUPro Toolkit

Breakpoint menus

Breakpoint menus

Some programming languages (notably C++) permit a single function name to be
defined several times, for application in different contexts. This is calledoading

When a function name is overloadeteék function ' is not enough to tell GDB

where you want a breakpoint. If you realize this is a problem, you can use something
like ‘break function(types) ' to specify which particular version of the function

you want. Otherwise, GDB offers you a menu of numbered choices for different
possible breakpoints, and waits for your selection with the prorhpihe first two

options are alwaygd] cancel 'and [1]all . Typing 1 sets a breakpoint at each
definition of function , and typing aborts thesreak command without setting any

new breakpoints.

For example, the following session excerpt shows an attempt to set a breakpoint at the
overloaded symbditring::after . The following shows three particular definitions
of that function name:

(gdb) b String::after

[0] cancel

[1] all

[2] file:String.cc; line number:867

[3] file:String.cc; line number:860

[4] file:String.cc; line number:875

[5] file:String.cc; line number:853

[6] file:String.cc; line number:846

[7] file:String.cc; line number:735

>246

Breakpoint 1 at Oxb26c: file String.cc, line 867.
Breakpoint 2 at 0xb344: file String.cc, line 875.
Breakpoint 3 at Oxafcc: file String.cc, line 846.
Multiple breakpoints were set.

Use the “delete” command to delete unwanted breakpoints.

(gdb)

CYGNUS

Debugging with GDB = 63

Continuing and stepping

Continuing and stepping

Continuingmeans resuming program execution until your program completes
normally. In contrasteppingmeans executing just one more “step” of your program,
where “step” may mean either one line of source code, or one machine instruction
(depending on what particular command you use). Either when continuing or when
stepping, your program may stop even sooner, due to a breakpoint or a signal. (If due
to a signal, you may want to us&ndle , Or use signal0 ' to resume execution. See
“Signals” on page 67.)
continue [ignore-count]
c[ignore-count]
fg[ignore-count]
Resume program execution, at the address where your program last stopped; any
breakpoints set at that address are bypassed. The optional argyspent,
count , allows you to specify a further number of times to ignore a breakpoint at
this location; its effect is like that afnore (see “Break conditions” on page 59).

The argumentignore-count , is meaningful only when your program stopped
due to a breakpoint. At other times, the argumendritnue is ignored.

The synonyms; andfg , are provided purely for convenience, and have exactly
the same behavior asntinue

To resume execution at a different place, you canetise (see “Returning from a
function” on page 149) to go back to the calling functiorju@p (see “Continuing at
a different address” on page 147) to go to an arbitrary location in your program.

A typical technique for using stepping is to set a breakpoint (see “Breakpoints,
watchpoints, and exceptions” on page 49 for more discussion) at the beginning of the
function or the section of your program where a problem is believed to lie, run your
program until it stops at that breakpoint, and then step through the suspect area,
examining the variables that are interesting, until you see the problem happen.

step
Continue running your program until control reaches a different source line, then
stop it and return control to GDB. This command is abbreviated

WARNING: If you use thatep command while control is within a function that
was compiled without debugging information, execution proceeds
until control reaches a function that does have debugging
information. Likewise, it will not step into a function which is
compiled without debugging information. To step through functions
without debugging information, use thlepi command, described
in the following discussion.

64 = Debugging with GDB GNUPro Toolkit

Continuing and stepping

Thestep command now only stops at the first instruction of a source line. This
prevents the multiple stops that used to occur in switch statements, for loops, etc.
step continues to stop if a function that has debugging information is called
within the line.

Also, thestep command now only enters a subroutine if there is line number
information for the subroutine. Otherwise it acts likedd@ command. This
avoids problems when usirg -gi on MIPS machines. Previousbep entered
subroutines if there was any debugging information about the routine.

step count

Continue running as in step, but docgsont times. If a breakpoint is reached, or a
signal not related to stepping occurs befatigr Steps, stepping stops right
away.

next[count]

Continue to the next source line in the current (innermost) stack frame. This is
similar tostep , but function calls that appear within the line of code are executed
without stopping. Execution stops when control reaches a different line of code at
the original stack level that was executing when you gaveetiecommand.

This command is abbreviated

An argumentcount , is a repeat count, as feep .

Thenext command now only stops at the first instruction of a source line. This
prevents the multiple stops that used to occur in swtch statements, for loops, etc.

finish

Continue running until just after function in the selected stack frame returns. Print
the returned value (if any). Contrast this with #ftern command (see
“Returning from a function” on page 149).

Continue running until a source line past the current line, in the current stack
frame, is reached. This command is used to avoid single stepping through a loop
more than once. Itis like thext command, except that wheiti encounters a
jump, it automatically continues execution until the program counter is greater
than the address of the jump.

This means that when you reach the end of a loop after single stepping though it,
unti makes your program continue execution until it exits the loop. In contrast, a
next command at the end of a loop simply steps back to the beginning of the loop,
which forces you to step through the next iteration.

unti always stops your program if it attempts to exit the current stack frame.

CYGNUS

Debugging with GDB = 65

Continuing and stepping

until

unti may produce somewhat counter-intuitive results if the order of machine
code does not match the order of the source lines. For instance, in the following
example from a debugging session,ftfieme) command shows that

execution is stopped at lirzes ; yet when we usentii , we get to linetos:

(gdb) f

#0 main (argc=4, argv=0xf7fffae8) at m4.c:206

206 expand_input();

(gdb) until

195 for (; argc > 0; NEXTARG) {

This happened because, for execution efficiency, the compiler had generated code
for the loop closure test at the end, rather than the start, of the loop—even though
the test in a Gor -loop is written before the body of the loop.

Theunti command appeared to step back to the beginning of the loop when it
advanced to this expression; however, it has not really gone to an earlier
statement—not in terms of the actual machine code.

unti with no argument works by means of single instruction stepping, and hence
is slower thanntii with an argument.
location

u location

Continue running your program until either the specified location is reached, or
the current stack frame returmsation is any of the forms of argument
acceptable to break (see “Setting breakpoints” on page 50).

This form of the command uses breakpoints, and hence is quicker than until
without an argument.

stepi

SI

Execute one machine instruction, then stop and return to the debugger.

It is often useful to usailisplay/i $pc " when stepping by machine instructions.
This makes GDB automatically display the next instruction to be executed, each
time your program stops. See “Automatic display” on page 95.

An argument is a repeat count, astép .

nexti

ni

Execute one machine instruction, but if it is a function call, proceed until the
function returns.

An argument is a repeat count, asidrt .

66 = Debugging with GDB GNUPro Toolkit

Signals

Signals

A signalis an asynchronous event that can happen in a program. The operating system
defines the possible kinds of signals, and gives each kind a name and a number. For
example, in UnbSIGINT is the signal a program gets when you use an interrupt (often
C-c); SIGSEGVis the signal a program gets from referencing a place in memory far
away from all the areas in usBGALRMoccurs when the alarm clock timer goes off
(which happens only if your program has requested an alarm).

Some signals, includingIGALRM are a normal part of the functioning of your

program. Others, such 885SEGV, indicate errors; these signals &atal (kill your

program immediately) if the program has not specified in advance some other way to
handle the signaIGINT does not indicate an error in your program, but it is normally
fatal so it can carry out the purpose of the interrupt: to kill the program.

GDB has the ability to detect any occurrence of a signal in your program. You can tell
GDB in advance what to do for each kind of signal.

Normally, GDB is set up to ignore non-erroneous signalssiGaLrRM(so as not to
interfere with their role in the functioning of your program) but to stop your program
immediately whenever an error signal happens. You can change these settings with
thehandle command.

info signals
Print a table of all the kinds of signals and how GDB has been told to handle each
one. You can use this to see the signal numbers of all the defined types of signals.

info handle is the new alias for info signals.

handle signal keywords
Change the way GDB handles signsjnal . signal can be the number of a
signal or its name (with or without theiG’ at the beginning). Theeywords say
what change to make.

The keywords allowed by thendle command can be abbreviated. Their full names
use the following functionality.

nostop
GDB should not stop your program when this signal happens. It may still print a
message telling you that the signal has come in.

stop
GDB should stop your program when this signal happens. This impliesrthe
keyword as well.

print
GDB should print a message when this signal happens.

CYGNUS

Debugging with GDB = 67

Signals

noprint
GDB should not mention the occurrence of the signal at all. This implies the
nostop keyword as well.

pass
GDB should allow your program to see this signal; your program can handle the
signal, or else it may terminate if the signal is fatal and not handled.

nopass
GDB should not allow your program to see this signal.

When a signal stops your program, the signal is not visible until you continue. Your
program sees the signal thergd$s is in effect for the signal in questianthat time

In other words, after GDB reports a signal, you can useati®e command with

pass Of nopass to control whether your program sees that signal when you continue.

You can also use thiynal command to prevent your program from seeing a signal,

or cause it to see a signal it normally would not see, or to give it any signal at any time.
For example, if your program stopped due to some sort of memory reference error,
you might store correct values into the erroneous variables and continue, hoping to see
more execution; but your program would probably terminate immediately as a result
of the fatal signal once it saw the signal. To prevent this, you can continue with

‘signal 0 '. See “Giving your program a signal’ on page 148.

68 = Debugging with GDB GNUPro Toolkit

Stopping and starting multi-thread programs

Stopping and starting multi-thread programs

When your program has multiple threads (see “Debugging programs with multiple
threads” on page 43), you can choose whether to set breakpoints on all threads, oron-a
particular thread.

break linespec thread threadno
break linespec thread threadno if...

linespec specifies source lines; there are several ways of writing them, but the
effect is always to specify some source line.

Use the qualifierthread threadno ’ with a breakpoint command to specify that
you only want GDB to stop the program when a particular thread reaches this
breakpointthreadno is one of the numeric thread identifiers assigned by GDB,
shown in the first column of thénfo threads * display.

If you do not specifythread threadno ' when you set a breakpoint, the
breakpoint applies to all threads of your program.

You can use théwread qualifier on conditional breakpoints as well; in this case,
place thread threadno ' before the breakpoint condition, like the following
example shows.

(9db) break frik.c:13 thread 28 if bartab > lim

Whenever your program stops under GDB for any reason, all threads of execution
stop, not just the current thread. This allows you to examine the overall state of the
program, including switching between threads, without worrying that things may
change underfoot.

Conversely, whenever you restart the progralirthreads start executing. This is true
even when single-steppimgth commands liketep or next .

In particular, GDB cannot single-step all threads in lockstep. Since thread scheduling
is up to your debugging target’s operating system (not controlled by GDB), other
threads may execute more than one statement while the current thread completes a
single step. Moreover, in general other threads stop in the middle of a statement, rather
than at a clean statement boundary, when the program stops.

You might even find your program stopped in another thread after continuing or even
single-stepping. This happens whenever some other thread runs into a breakpoint, a
signal, or an exception before the first thread completes whatever you requested.

CYGNUS

Debugging with GDB = 69

Stopping and starting multi-thread programs

70 = Debugging with GDB GNUPro Toolkit

Examinin g the stack

When your program has stopped, the first thing you need to know is where it stopped
and how it got there. The following topics have more discussion on this subject.

» “Stack frames” on page 72
Each time your program performs a function call, information about the call is
generated. That information includes the location of the call in your program, the
arguments of the call, and the local variables of the function being called. The
information is saved in a block of data callestack frameThe stack frames are
allocated in a region of memory called ttedl stack When your program stops,
the GDB commands for examining the stack allow you to see all of this
information. See also “Backtraces” on page 73.

» “Selecting a frame” on page 74
One of the stack framesselectedoy GDB and many GDB commands refer
implicitly to the selected frame. In particular, whenever you ask GDB for the
value of a variable in your program, the value is found in the selected frame.
There are special GDB commands to select a particular frame.

* ‘“Information about a frame” on page 76
When your program stops, GDB automatically selects the currently executing
frame and describes it briefly, similar to the frame command

CYGNUS Debugging with GDB = 71

Stack frames

Stack frames

The call stack is divided up into contiguous pieces calladk framesor framesfor
short; each frame is the data associated with one call to one function. The frame
contains the arguments given to the function, the function’s local variables, and the
address at which the function is executing.

When your program is started, the stack has only one frame, that of the function main.
This is called thénitial frame or theoutermost frameEach time a function is called, a
new frame is made. Each time a function returns, the frame for that function
invocation is eliminated. If a function is recursive, there can be many frames for the
same function. The frame for the function in which execution is actually occurring is
called thennermostframe. This is the most recently created of all the stack frames
that still exist.

Inside your program, stack frames are identified by their addresses. A stack frame
consists of many bytes, each of which has its own address; each kind of computer has
a convention for choosing one byte whose address serves as the address of the frame.
Usually this address is kept in a register calledrdm@e pointer registewhile

execution is going on in that frame.

GDB assigns humbers to all existing stack frames, starting with zero for the innermost
frame, one for the frame that called it, and so on upward.

These numbers do not really exist in your program; they are assigned by GDB to give
you a way of designating stack frames in GDB commands.

Some compilers provide a way to compile functions so that they operate without stack
frames. (For example, thyec option,-fomit-frame-pointer , generates functions
without a frame.) This is occasionally done with heavily used library functions to save
the frame setup time. GDB has limited facilities for dealing with these function
invocations. If the innermost function invocation has no stack frame, GDB
nevertheless regards it as though it had a separate frame, which is numbered zero as
usual, allowing correct tracing of the function call chain. However, GDB has no
provision for frameless functions elsewhere in the stack.

frame args
Theframe command allows you to move from one stack frame to another, and to
print the stack frame you seleatgs may be either the address of the frame of
the stack frame number. Without an argumeate prints the current stack
frame.

select-frame
Theselect-frame ~ command allows you to move from one stack frame to another
without printing the frame. This is the silent versiorirahe .

72 m Debugging with GDB GNUPro Toolkit

Backtraces

Backtraces

A backtraceis a summary of how your program got where it is. It shows one line per

frame, for many frames, starting with the currently executing frame (frame zero),

followed by its caller (frame one), and on up the stack.

backtrace

bt
Print a backtrace of the entire stack: one line per frame for all frames in the stack:
You can stop the backtrace at any time by using the system interrupt character
sequencegtrl-c.

backtrace n

bt n

Similar, but print only the innermostframes.
backtrace - n
bt- n

Similar, but print only the outermostframes.

The nameshere andinfostack (abbreviatedhfos) are additional aliases for
backtrace

Each line in the backtrace shows the frame number and the function name. The
program counter value is also shown—unless yolsetg@int address off . The
backtrace also shows the source file name and line number, as well as the arguments
to the function. The program counter value is omitted if it is at the beginning of the
code for that line number. The following is an example of a backtrace.

It was made with the commaniat 3 ’, showing the innermost three frames.

#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
at builtin.c:993
#1 0x6e38 in expand_macro (sym=0x2b600) at macro.c:242
#2 0x6840 in expand_token (obs=0x0, t=177664, td=0x{7fffb08)
at macro.c:71
(More stack frames follow...)

The display for frame zero does not begin with a program counter value, indicating
that your program has stopped at the beginning of the code fepfira builtin.c

CYGNUS Debugging with GDB = 73

Selecting a frame

Selecting a frame

Most commands for examining the stack and other data in your program work on

whichever stack frame is selected at the moment. The following commands arefor

selecting a stack frame; all of them finish by printing a brief description of the stack

frame just selected.

frame n

fn
Select frame number n. Recall that frame zero is the innermost (currently
executing) frame, frame one is the frame that called the innermost one, and so on.
The highest-numbered frame is the onenfain .

frame addr

f addr
Select the frame at addreasqr . This is useful mainly if the chaining of stack
frames has been damaged by a bug, making it impossible for GDB to assign
numbers properly to all frames. In addition, this can be useful when your program
has multiple stacks and switches between them.

On the SPARC architecturiegme needs two addresses to select an arbitrary
frame: a frame pointer and a stack pointer.

On the MIPS and Alpha architecture, it needs two addresses: a stack pointer and a
program counter.

On the 29k architecturéame needs three addresses: a register stack pointer, a
program counter, and a memory stack pointer.

up n
Move n frames up the stack. For positive numbershis advances toward the
outermost frame, to higher frame numbers, to frames that have existed longer.
defaults to one.

down n
Move n frames down the stack. For positive numbeyshis advances toward the
innermost frame, to lower frame numbers, to frames that were created more
recently.n defaults to one. You may abbreviatevn as do.

All of these commands end by printing two lines of output describing the frame. The
first line shows the frame number, the function name, the arguments, and the source
file and line number of execution in that frame. The second line shows the text of that
source line. For instance, use the following as an example.

(gdb) up

#1 0x22f0 in main (argc=1, argv=0xf7fffbf4, env=0xf7fffbfc)
at env.c:10

10 read_input_file (argv[i]);

74 m Debugging with GDB GNUPro Toolkit

Selecting a frame

After such a printout, thist command with no arguments prints ten lines centered
on the point of execution in the frame. See “Printing source lines” on page 80.
up-silently n
down-silently n
These two commands are variantspfnddown, respectively; they differ in that
they do their work silently, without causing display of the new frame. They are
intended primarily for use in GDB command scripts, where the output might be
unnecessary and distracting.

CYGNUS

Debugging with GDB = 75

Information about a frame

Information about a frame

There are several other commands to print information about the selected stack frame.

frame

f
When used without any argument, this command does not change which frame is
selected, but prints a brief description of the currently selected stack frame. It can
be abbreviated. With an argument, this command is used to select a stack frame.
See “Selecting a frame” on page 74.

info frame
info f

This command prints a verbose description of the selected stack frame, including
the following information.

o the address of the frame

o the address of the next frame down (called by this frame)

o the address of the next frame up (caller of this frame)

o the language in which the source code corresponding to this frame is written
o the address of the frame’s arguments

o the program counter saved in it (the address of execution in the caller frame)
o which registers were saved in the frame

The verbose description is useful when something has gone wrong that has made
the stack format fail to fit the usual conventions.

info frame addr

info f addr
Print a verbose description of the frame at addéegs, without selecting that
frame. The selected frame remains unchanged by this command. This requires the
same kind of address (more than one for some architectures) that you specify in
theframe command. See “Selecting a frame” on page 74.

info args
Print the arguments of the selected frame, each on a separate line.

info locals
Print the local variables of the selected frame, each on a separate line. These are
all variables (declared either static or automatic) accessible at the point of
execution of the selected frame.

info catch
Print a list of all the exception handlers that are active in the current stack frame at
the current point of execution. To see other exception handlers, visit the

76 = Debugging with GDB GNUPro Toolkit

Information about a frame

associated frame (using the, down, orframe commands); then type:
info catch

See “Breakpoints and exceptions” on page 55.

MIPS machines and the function stack

MIPS based computers use an unusual stack frame, which sometimes requires GDB to
search backward in the object code to find the beginning of a function.

To improve response time (especially for embedded applications, where GDB may be
restricted to a slow serial line for this search) you may want to limit the size of this
search, using one of these commands:

These commands are availabldy when GDB is configured for debugging programs
on MIPS processors.

set heuristic-fence-post limit
Restrict GDB to examining at moghit bytes in its search for the beginning of
a function.
A value ofo (the default) means there is no limit. However, except ftie
larger the limit the more bytesuristic-fence-post must search and therefore

the longer it takes to run.

show heuristic-fence-post
Display the current limit.

CYGNUS

Debugging with GDB m 77

Information about a frame

78 = Debugging with GDB GNUPro Toolkit

Examinin g source files

GDB can print parts of your program’s source, since the debugging information
recorded in the program tells GDB what source files were used to build it. See the
following documentation for more discussion on these subjects.

* “Printing source lines” on page 80

» “Searching source files” on page 82

» “Specifying source directories” on page 83
» “Source and machine code” on page 84

When your program stops, GDB spontaneously prints the line where it stopped.
Likewise, when you select a stack frame (see “Selecting a frame” on page 74), GDB
prints the line where execution in that frame has stopped. You can print other portions
of source files by explicit command.

If you use GDB through its GNU Emacs interface, you may prefer to use Emacs
facilities to view source; see “Using GDB under GNU Emacs” on page 223 for details
of using Emacs with GDB.

CYGNUS

Debugging with GDB = 79

Printing source lines

Printing source lines

To print lines from a source file, use tike command (abbreviated. By default,

ten lines are printed. There are several ways to specify what part of the file you want

to print. The following are the forms of th& command most commonly used:

list linenum
Print lines centered around line numbeenum , in the current source file.

list function
Print lines centered around the beginning of functiation

list
Print more lines. If the last lines printed were printed wikta command, this
prints lines following the last lines printed; however, if the last line printed was a
solitary line printed as part of displaying a stack frame (see “Examining the stack”
on page 71), this prints lines centered around that line.

list -
Print lines just before the lines last printed.

By default, GDB prints ten source lines with any of these forms dggthecommand.

You can change this functionality by usis listsize as the following

discussions describe.

set listsize count
Make thelist command displayount source lines (unless thie argument
explicitly specifies some other number).

show listsize
Display the number of lines that list prints.

Repeating &ist command using thReturn key discards the argument, so it is
equivalent to typingist . This is more useful than listing the same lines again. An
exception is made for an argument -of that argument is preserved in repetition so
that each repetition moves up in the source file.

In general, thést command expects you to supply zero, one orlinespecs
Linespecs specify source lines; there are several ways of writing them but the effect is
always to specify some source line. The following is a complete description of the
possible arguments fost
list linespec
Print lines centered around the line specified by linespec.
list first , last
Print lines fromfirst to jast . Both arguments specify source lines.
list, last
Print lines ending withast .

80 = Debugging with GDB GNUPro Toolkit

Printing source lines

list first
Print lines starting withirst

list +
Print lines just after the lines last printed.

list -
Print lines just before the lines last printed.

list
As described folist on page list Print more lines. If the last lines printed were
printed with a list command, this prints lines following the last lines printed;
however, if the last line printed was a solitary line printed as part of displaying a
stack frame (see “Examining the stack” on page 71), this prints lines centered
around that line..

The following are the ways of specifying a single source line—all the kinds of
linespec
number
Specifies linenumber of the current source file. When a list command has two
linespecs, this refers to the same source file as the first linespec.
+offset
Specifies the lineffset lines after the last line printed. When used as the second
linespec in a list command that has two, this specifies thefisze lines down
from the first linespec.
- offset
Specifies the lineffset lines before the last line printed.
filename : number
Specifies linewmber in the source filetilename
function
Specifies the line that begins the body of the functiefetion . For instance, in
C, this is the line with the open brace.
filename : function
Specifies the line of the open-brace that begins the body of the funeisn
in the file, flename . You only need the file name with a function name to avoid
ambiguity when there are identically named functions in different source files.
* address
Specifies the line containing the program addre&sess . address may be any
expression.

CYGNUS Debugging with GDB = 81

Searching source files

Searching source files

There are two commands for searching through the current source file for a regular
expression.

forward-search regexp

search regexp
The command férward-search regexp ', checks each line, starting with the one
following the last line listed, for a match fagexp . It lists the line that is found.
You can use the synonyngsearch regexp ’, or abbreviate the command name as
fo .

reverse-search regexp
The command réverse-search regexp ', checks each line, starting with the one
before the last line listed and going backward, for a matckdegp . It lists the
line that is found. You can abbreviate this commane@was

82 = Debugging with GDB GNUPro Toolkit

Specifying source directories

Specifying source directories

Executable programs sometimes do not record the directories of the source files from
which they were compiled, just the names. Even when they do, the directories could
be moved between the compilation and your debugging session. GDB has a list of
directories to search for source files; this is calledsthece pathEach time GDB

wants a source file, it tries all the directories in the list, in the order they are present in
the list, until it finds a file with the desired name.

NOTE: The executable search patmat used for this purpose. Neither is the
current working directory, unless it happens to be in the source path.

If GDB cannot find a source file in the source path, and the object program records a
directory, GDB tries that directory too. If the source path is empty, and there is no
record of the compilation directory, GDB looks in the current directory as a last resort.

Whenever you reset or rearrange the source path, GDB clears out any information it
has cached about where source files are found and where each line is in the file.

When you start GDB, its source path is empty. To add other directories, use the

directory command.

directory dirname ...

dir dirname ...
Add directory,dimame , to the front of the source path. Several directory names
may be given to this command, separated bgr'whitespace. You may specify a
directory that is already in the source path; this moves it forward, so GDB
searches it sooner. You can use the striswgir’ ', to refer to the compilation
directory (if one is recorded), anstivd’ to refer to the current working directory.
‘$cwd’ is not the same as’—the former tracks the current working directory as it
changes during your GDB session, while the latter is immediately expanded to the
current directory at the time you add an entry to the source path.

directory

Reset the source path to empty again. This requires confirmation.
show directories

Print the source path; show which directories it contains.

If your source path is cluttered with directories that are no longer of interest, GDB
may sometimes cause confusion by finding the wrong versions of source. You can
correct the situation with the following method.

1. Usedirectory with no argument to reset the source path to empty.

2. Usedirectory with suitable arguments to reinstall the directories you want in the
source path. You can add all the directories in one command.

CYGNUS

Debugging with GDB = 83

Source and machine code

Source and machine code

You can use the commanaefpline , to map source lines to program addresses (and
vice versa), and the commaniassemble , to display a range of addresses as
machine instructions. When run unaaiu Emacs mode, théfo line command
now causes the arrow to point to the line specified. Adgoljne prints addresses
in symbolic form as well as hex.
info line linespec
Print the starting and ending addresses of the compiled code for source line
linespec. Specify source lines in any of the ways understood Iyt the
command (see “Printing source lines” on page 80).
For instance, we can usp line to discover the location of the object code for the
first line of function,m4_changequote , as in the following example.
(gdb) info line m4_changecom
Line 895 of “builtin.c” starts at pc 0x634c and ends at 0x6350.
We can also inquire (usintgddras , the form foriinespec) what source line covers a
particular address, as in the following example.
(gdb) info line *Ox63ff
Line 926 of “builtin.c” starts at pc 0x63e4 and ends at 0x6404.
Afterinfoline , the default address for the x command is changed to the starting
address of the line, so thati‘ ' is sufficient to begin examining the machine code
(see “Examining memory” on page 93). Also, this address is saved as the value of the
convenience variable, (see “Convenience variables” on page 103).
disassemble
This specialized command dumps a range of memory as machine instructions.
The default memory range is the function surrounding the program counter of the
selected frame. A single argument to this command is a program counter value;
GDB dumps the function surrounding this value. Two arguments specify a range
of addresses (first inclusive, second exclusive) to dump.

We can useisassemble to inspect the object code range shown in the last info line
example (the example shows SPARC machine instructions):

(gdb) disas 0x63e4 0x6404

Dump of assembler code from 0x63e4 to 0x6404:

0x63e4 <builtin_init+5340>: ble 0x63f8 <builtin_init+5360>
0x63e8 <builtin_init+5344>: sethi %hi(0x4c00), %00
0x63ec <builtin_init+5348>: Id [%il+4], %00

0x63f0 <builtin_init+5352>: 0x63fc <builtin_init+5364>
0x63f4 <builtin_init+5356>: Id [%00+4], %00

0x63f8 <builtin_init+5360>: or %00, Ox1a4, %00

0x63fc <builtin_init+5364>: call 0x9288 <path_search>

84 m Debugging with GDB GNUPro Toolkit

Source and machine code

0x6400 <builtin_init+5368>: nop

End of assembler dump.

set assembly-language instruction-set
This command selects the instruction set to use when disassembling
the program via theisassemble orxi com-mands. It is useful for architectures
that have more than one native instruction set. Currently, it is only defined for the
Intel x86 family. You can seahstruction-set to either i386 or i8086. The
default isi386 .

CYGNUS Debugging with GDB = 85

Source and machine code

86 = Debugging with GDB GNUPro Toolkit

Examinin g data

The usual way to examine data in your program is witlpdhe command
(abbreviateg), or its synonyminspect . It evaluates and prints the value of an
expression of the language your program is written in (see “Using GDB with different
languages” on page 119).
print exp
print/ fexp
exp IS an expression (in the source language). By default the vatue of
printed in a format appropriate to its data type; you can choose a different format
by specifying / ', wherer is a letter specifying the format; see “Output formats”
on page 92.
print
print/ f
If you omitexp, GDB displays the last value again (from #adue history see
“Value history” on page 102). This allows you to conveniently inspect the same
value in an alternative format.

A more low-level way of examining data is with theommand. It examines data in
memory at a specified address and prints it in a specified format. See “Examining
memory” on page 93.

If you are interested in information about types, or about how the fields of a struct or
class are declared, use tie exp command rather thanint . See “Examining
the symbol table” on page 141.

CYGNUS

Debugging with GDB = 87

Expressions

Expressions

print and many other GDB commands accept an expression and compute its value.
Any kind of constant, variable or operator defined by the programming language you
are using is valid in an expression in GDB. This includes conditional expressions,
function calls, casts and string constants. It unfortunately does not include symbols
defined by preprocessedefine commands. GDB now supports array constants in
expressions input by the uselement , element ... is the syntax to use. For
example, you can now use the commaund {1 2 3} to build up an array in

memory that is memory allocated in the target program.

NOTE: Because C is so widespread, most of the expressions shown in
examples in this documentation are in C. See “Using GDB with
different languages” on page 119 for information on how to use
expressions in other languages.

In the following documentation, we discuss operators that you can use in GDB
expressions regardless of your programming language. See also the introduction to
“Examining data” on page 87.

Casts are supported in all languages, not just in C, because it is so useful to cast a
number into a pointer in order to examine a structure at that address in memory.

GDB supports the following operators, in addition to those common to programming
languages.

@
‘@ is a binary operator for treating parts of memory as arrays. See “Atrtificial
arrays” on page 91 for more information.
‘" allows you to specify a variable in terms of the file or function where it is
defined. See “Program variables” on page 89 for more information.

{ type } addr
Refers to an object of typgpe , stored at addressgdr , in memory.addr may
be any expression whose value is an integer or pointer (but parentheses are
required around binary operators, just as in a cast). This construct is allowed
regardless of what kind of data is normally supposed to residerat

88 = Debugging with GDB GNUPro Toolkit

Program variables

Program variables

The most common kind of expression to use is the name of a variable in your program.
Variables in expressions are understood in the selected stack frame (see “Selecting a
frame” on page “Selecting a frame” on page 74); they must be egittieal
(sometimes referred to atatic) or they must beisible (according to the scope rules
of the programming language from the point of execution in that frame). Consider the
following function example.
foo (a)
int a;

{

bar (a);

int b =test ();
bar (b);
}

}
This means that you can examine and use the varighldnenever your program is
executing within the functiorgo ; however, you can only use or examine the
variable,b, while your program is executing inside the block wheisdeclared.
There is an exception: you can refer to a variable or function whose scope is a single
source file even if the current execution point is not in this file. But it is possible to
have more than one such variable or function with the same name (in different source
files). If that happens, referring to that name has unpredictable effects. If you wish,
you can specify a static variable in a particular function or file, using the colon-colon
notation (.) as in the following example.

file::variable

function::variable

In the previous examplé@le or function refer to the name of the context for the

static inputariable . In the case of file names, you can use quotes to make sure
GDB parses the file name as a single word—for example, to print a global value of
defined in f2.c ’, use(gdb) p 'f2.c:x

This use of "is very rarely in conflict with the very similar use of the same notation

in C++. GDB also supports use of the C++ scope resolution operator in GDB
expressions.

WARNING: Occasionally, a local variable may appear to have the wrong value at
certain points in a function—just after entry to a new scope, and just
before exit.

You may see this problem when you are stepping by machine

CYGNUS

Debugging with GDB = 89

Program variables

instructions. This is because, on most machines, it takes more than
one instruction to set up a stack frame (including local variable
definitions); if you are stepping by machine instructions, variables
may appear to have the wrong values until the stack frame is
completely built. On exit, it usually also takes more than one machine
instruction to destroy a stack frame; after you begin stepping through
that group of instructions, local variable definitions may be gone.

90 m Debugging with GDB

GNUPro Toolkit

Artificial arrays

Artificial arrays

It is often useful to print out several successive objects of the same type in memory; a
section of an array, or an array of dynamically determined size for which only a
pointer exists in the program.

You can do this by referring to a contiguous span of memory adificial array,

using the binary operator@: The left operand of@ should be the first element of the
desired array and be an individual object. The right operand should be the desired
length of the array. The result is an array value whose elements are all of the type of
the left argument. The first element is actually the left argument; the second element
comes from bytes of memory immediately following those holding the first element,
and so on.

If a program say#it *array = (int *) malloc (len * sizeof (int)); , You can
print the contents afrray with p *array@len

The left operand of@ must reside in memory. Array values made wighin this way

behave just like other arrays in terms of subscripting, and are coerced to pointers when
used in expressions. Artificial arrays most often appear in expressions via the value
history (see “Value history” on page Value history), after printing one out.

Another way to create an artificial array is to use a cast. This re-interprets a value as if
it were an array. The value need not be in memory:

(gdb) p/x (short[2])0x12345678

$1 = {0x1234, 0x5678}
As a convenience, if you leave the array length out, gaipe’)[) value ', GDB
calculates the size to fill the value, ageof(value)/sizeof(type)’ as the

following example shows.

(gdb) p/x (short[])0x12345678

$2 = {0x1234, 0x5678}

Sometimes the artificial array mechanism is not quite enough; in moderately complex
data structures, the elements of interest may not actually be adjacent—for example, if
you are interested in the values of pointers in an array. One useful work-around in this
situation is to use a convenience variable (see “Convenience variables” on page 103)
as a counter in an expression that prints the first interesting value, and then repeat that
expression usingeturn. For instance, suppose you have an attay,, of pointers to
structures, and you are interested in the values of affiglih each structure. The
following is an example of what you might type, after which us&thern key twice.
set$i=0

p dtab[$i++]->fv

CYGNUS

Debugging with GDB = 91

Output formats

Output formats

By default, GDB prints a value according todtta type Sometimes this is not what

you want. For example, you might want to print a number in hex, or a pointer in
decimal. Or you might want to view data in memory at a certain address as a character
string or as an instruction. To do these things, specibugut formatvhen you print

a value.

The simplest use of output formats is to say how to print a value already computed.
This is done by starting the arguments of the print command with a slash and a format
letter. The format letters supported are:
X

Regard the bits of the value as an integer, and print the integer in hexadecimal.

Print as integer in signed decimal.
Print as integer in unsigned decimal.

Print as integer in octal.

Print as integer in binary. The lettet stands for “two"!

Print as an address, both absolute in hexadecimal and as an offset from the nearest
preceding symbol. You can use this format used to discover where (in what
function) an unknown address is located:

(gdb) p/a 0x54320
$3 = 0x54320 <_initialize_vx+396>

Regard as an integer and print it as a character constant.

Regard the bits of the value as a floating point number and print using typical
floating point syntax.

For example, to print the program counter in hex (see “Registers” on page 105), type
p/x$pc. No space is required before the slash because command names in GDB
cannot contain a slash. To reprint the last value in the value history with a different
format, you can use theint command with just a format and no expression. For
example, p/ix ' reprints the last value in hex.

1 ‘p’ cannot be used because these format letters are also used wittotnenand, whereb® stands for byte’; see

“Examining memory” on page 93.

92 = Debugging with GDB GNUPro Toolkit

Examining memory

Examining memory

You can use the command (for &xaminé) to examine memory in any of several
formats, independently of your program’s data types.

X! nfu adadr
X addr
X
Use thex command to examine memory.

n, f, andu are all optional parameters that specify how much memory to display and
how to format it;addr is an expression giving the address where you want to start
displaying memory. If you use defaults fgu , you need not type the slash’,.*

Several commands set convenient defaultader .

n, therepeat count
The repeat count is a decimal integer; the default is 1. It specifies how much
memory (counting by unitg) to display.

f, thedisplay format
The display format is one of the formats usegdy ‘s’ (null-terminated
string), or i * (machine instruction). The default i (hexadecimal) initially. The
default changes each time you use either print

u, theunit size
The unit size uses any of the following variables.

b
Bytes.
h
Halfwords (two bytes).
w
Words (four bytes). This is the initial default.
g

Giant words (eight bytes).

Each time you specify a unit size withthat size becomes the default unit the next
time you use. (For the §” and ‘i ' formats, the unit size is ignored and is normally
not written.)

addr , starting display address
addr is the address where you want GDB to begin displaying memory. The
expression need not have a pointer value (though it may); it is always interpreted
as an integer address of a byte of memory. See “Expressions” on page 88 for more
information on expressions. The default fatr is usually just after the last
address examined—but several other commands also set the default address:
breakpoints (to the address of the last breakpoint listedh Jine (to the

CYGNUS

Debugging with GDB = 93

Examining memory

starting address of a line), amtht (if you use it to display a value from
memory).

For example,X/3uh 0x54320 ' is a request to display three halfword¥ ¢f memory,
formatted as unsigned decimal integeis $tarting at addre$54320 .'x/4xw $sp’
prints the four wordsa) of memory above the stack pointer (hesep '; see
“Registers” on page 105) in hexadecimdl. (

Since the letters indicating unit sizes are all distinct from the letters specifying output
formats, you do not have to remember whether unit size or format comes first; either
order works. The output specificatiodsw’ and ‘4wx’ mean exactly the same thing.
(However, the couni must come first;wx4’ does not work.)

Even though the unit sizeis ignored for the formats™and ‘i ’, you might still want

to use a coum; for example, 3i ' specifies that you want to see three machine
instructions, including any operands. The commiigidsemble gives an alternative

way of inspecting machine instructions; see “Source and machine code” on page 84.

All the defaults for the argumentsstare designed to make it easy to continue
scanning memory with minimal specifications each time yoxuBer example, after
you have inspected three machine instructions wish ‘ addr ’, you can inspect the
next seven with jusi/7 ’. If you useReturn to repeat the command, the repeat
countn is used again; the other arguments default as for successive uses of

The addresses and contents printed by tbemmand are not saved in the value
history because there is often too much of them and they would get in the way.
Instead, GDB makes these values available for subsequent use in expressions as
values of the convenience variabdesands__ . After anx command, the last address
examined is available for use in expressions in the convenience variablee
contents of that address, as examined, are available in the convenience variable,

If the x command has a repeat count, the address and contents saved are from the last
memory unit printed; this is not the same as the last address printed if several units
were printed on the last line of output.

94 = Debugging with GDB GNUPro Toolkit

Automatic display

Automatic display

If you find that you want to print the value of an expression frequently (to see how it
changes), you might want to add it to theomatic displayist so that GDB prints its
value each time your program stops. Each expression added to the list is given a
number to identify it; to remove an expression from the list, you specify that number.
The automatic display looks like the following.
2: foo = 38
3: bar[5] = (struct hack *) 0x3804
This display shows item numbers, expressions and their current values. As with
displays you request manually, usigrprint , you can specify the output format
you prefer; in factdisplay decides whether to ugent orx depending on how
elaborate your format specification is—it ugei§ you specify a unit size, or one of
the two formats ("' and ‘s’) that are only supported by otherwise it usegrint
display exp
Add the expressiorexp, to the list of expressions to display each time your
program stops. See “Expressions” on page 88.

display does not repeat if you preRsturn again after using it.

display/ fmt exp
For fmt specifying only a display format and not a size or count, add the
expressiorexp to the auto-display list but arrange to display it each time in the
specified formatfmt . See “Output formats” on page 92.

display/ fmt addr
Forfmt ‘i’ or's’, orincluding a unit-size or a number of units, add the
expressionaddr , as a memory address to be examined each time your program
stops. Examining means in effect doingfmtaddr . See “Examining memory”
on page 93.

For example,display/i $pc ' can be helpful, to see the machine instruction about to
be executed each time execution stopsc(‘isa common name for the program
counter; see “Registers” on page 105).
undisplay dnums ...
delete display dnums ...

Remove item numbers dnums from the list of expressiodisptay

undisplay ~does not repeat if you uReturn after using it. (Otherwise you would
just get the errorNo display number... ")
disable display dnums ...

Disable the display of item numbetsums. A disabled display item is not printed
automatically, but is not forgotten. It may be enabled again later.

CYGNUS

Debugging with GDB = 95

Automatic display

enable display dnums ...
Enable display of item numbeuguums. It becomes effective once again in auto
display of its expression, until you specify otherwise.

display
Display the current values of the expressions on the list, just as is done when your
program stops.

info display
Print the list of expressions previously set up to display automatically, each one
with its item number, but without showing the values. This includes disabled
expressions, which are marked as such. It also includes expressions which would
not be displayed right now because they refer to automatic variables not currently
available.

If a display expression refers to local variables, then it does not make sense outside the
lexical context for which it was set up. Such an expression is disabled when execution
enters a context where one of its variables is not defined. For example, if you give the
commanddisplay last_char , While inside a function with an argument,

last_char , GDB displays this argument while your program continues to stop inside
that function. When it stops elsewhere—where there is no variableshar |, the

display is disabled automatically. The next time your program stops \aktecear

is meaningful, you can enable the display expression once again.

96 = Debugging with GDB GNUPro Toolkit

Print settings

Print settings

GDB provides the following ways to control hafrays, structures andsymbolsare

printed. These settings are useful for debugging programs in any language:

set print address

set print address on
GDB prints memory addresses showing the location of stack traces, structure
values, pointer values, breakpoints, and so forth, even when it also displays the
contents of those addresses. The defadh.is

For example, the following is what a stack frame display looks likeaaith
print address on

(gdb) f

#0 set_quotes (Ig=0x34c78 "<<", rq=0x34c88 ">>")

at input.c:530
530 if (Iquote != def_lquote)
set print address off

Do not print addresses when displaying their contents. For example, the following
is the same stack frame displayed veithprint address off :

(gdb) set print addr off

(gdb) f

#0 set_quotes (Ig="<<", rqg=">>") at input.c:530

530 if (Iquote != def_Iquote)
You can useset print address off ' to eliminate all machine dependent displays
from the GDB interface. For example, wiiint address off , you should get the

same text for backtraces on all machines—whether or not they involve pointer
arguments.
show print address

Show whether or not addresses are to be printed.

When GDB prints a symbolic address, it normally prints the closest earlier symbol
plus an offset.

If that symbol does not uniquely identify the address (for example, it is a hame whose
scope is a single source file), you may need to clarify.

One way to do this is witiafo line , for exampleihfo line *0x4537 .
Alternately, you can set GDB to print the source file and line number when it prints a
symbolic address:

set print symbol-filename on
Tell GDB to print the source file name and line number of a symbol in the
symbolic form of an address.

CYGNUS

Debugging with GDB = 97

Print settings

set print symbol-filename off
Do not print source file name and line number of a symbol. This is the default.

show print symbol-filename
Show whether or not GDB will print the source file name and line number of a
symbol in the symbolic form of an address.

Another situation where it is helpful to show symbol filenames and line numbers is
when disassembling code; GDB shows you the line number and source file that
corresponds to each instruction.

Also, you may wish to see the symbolic form only if the address being printed is
reasonably close to the closest earlier symbol:

set print max-symbolic-offset max-offset
Display the symbolic form of an address if the offset between the closest earlier
symbol and the address is less thai-offset . The default i®, which tells
GDB to always print the symbolic form of an address if any symbol precedes it.

show print max-symbolic-offset
Ask how large the maximum offset is that GDB prints in a symbolic address.

If you have a pointer and you are not sure where it pointssetryrint symbol-
flename on '. Then you can determine the name and source file location of the
variable where it points, using/a pointer . This interprets the address in symbolic
form. For instance, the following shows that a variafate, points at another
variable,t , defined in hi2.c

(gdb) set print symbol-filename on

(gdb) p/a ptt
$4 = 0xe008 <t in hi2.c>

WARNING: For pointers that point to a local variablga'’ does not show the
symbol name and filename of the referent, even with the appropriate
setprint options turned on.

Other settings control how different kinds of objects are printed:

set print array

set print array on
Pretty print arrays. This format is more convenient to read, but uses more space.
The default is off.

set print array off
Return to compressed format for arrays.
show print array
Show whether compressed or pretty format is selected for displaying arrays.

set print elements number-of-elements
Set a limit on how many elements of an array GDB will print. If GDB is printing a

98 = Debugging with GDB GNUPro Toolkit

Print settings

large array, it stops printing after it has printed the number of elements set by the
set print elements command. This limit also applies to the display of strings.
Settingnumber-of-elements ~ t0 zero means that the printing is unlimited.
show print elements
Display the number of elements of a large array that GDB will print. If the number
is 0, then the printing is unlimited.
set print null-stop
Cause GDB to stop printing the characters of an array when thedinsts
encountered. This is useful when large arrays actually contain only short strings.
set print pretty on
Cause GDB to print structures in an indented format with one member per line,
like the following example.

$1={
next = 0x0,
flags = {
sweet =1,
sour=1
3
meat = 0x54 "Pork"
}

set print pretty off
Cause GDB to print structures in a compact format, like the following example.
$1 = {next = 0x0, flags = {sweet = 1, sour = 1}, \
meat = 0x54 "Pork"}
This is the default format.

show print pretty
Show which format GDB is using to print structures.

set print sevenbit-strings on
Print using only seven-bit characters; if this option is set, GDB displays any
eight-bit characters (in strings or character values) using the notatien,This
setting is best if you are working in English (ASCII) and you use the high-order
bit of characters as a marker or “meta” bit.

set print sevenbit-strings off
Print full eight-bit characters. This allows the use of more international character
sets, and is the default.

show print sevenbit-strings
Show whether or not GDB is printing only seven-bit characters.

set print union on
Tell GDB to print unions which are contained in structures. This is the default
setting.

CYGNUS Debugging with GDB = 99

Print settings

set print union off
Tell GDB not to print unions which are contained in structures.

show print union
Ask GDB whether or not it will print unions which are contained in structures. For
instance, consider the following example’s declarations.
typedef enum {Tree, Bug} Species;

typedef enum {Big_tree, Acorn, Seedling} Tree_forms;
typedef enum {Caterpillar, Cocoon, Butterfly} Bug_forms;

struct thing {
Species it;
union {
Tree_forms tree;
Bug_forms bug;
} form;

h

struct thing foo = {Tree, {Acorn}};
The example haset print union on having, in effect,p foo ' printing the
following result.
$1 = {it = Tree, form = {tree = Acorn, bug = Cocoon}}
With set print union off in effect, it would print the following result.
$1 = {it = Tree, form = {...}}

The following settings are of interest when debugging C++ programs.

set print demangle

set print demangle on
Print C++ names in their source form rather than in the encoded (“mangled”) form
passed to the assembler and linker for type-safe linkage. The defaullt is *

show print demangle
Show whether C++ names are printed in mangled or demangled form.

set print asm-demangle

set print asm-demangle on
Print C++ names in their source form rather than their mangled form, even in
assembler code printouts such as instruction disassemblies. The default is off.

show print asm-demangle
Show whether C++ names in assembly listings are printed in mangled or
demangled form.

set demangle-style style
Choose among several encoding schemes used by different compilers to represent
C++ names. The choices fayle are currently:

100 = Debugging with GDB GNUPro Toolkit

Print settings

auto
Allow GDB to choose a decoding style by inspecting your program.
gnu
Decode based on the GNU C++ compiter+) encoding algorithm. This is
the default.
lucid
Decode based on the Lucid C++ compilet (encoding algorithm.
arm
Decode using the algorithm in tB@notated C++ Reference Manual
(Margaret A. Ellis & Bjarne Stroustrup, Addison Wesley, 1990).

WARNING: This setting alone is not sufficient to allow debugginent -
generated executables. GDB would require further enhancement to
permit that functionality.

foo
Show the list of formats.

show demangle-style
Display the encoding style currently in use for decoding C++ symbols.
set print object
set print object on
When displaying a pointer to an object, identify dwtual (derived) type of the
object rather than thaeclaredtype, using the virtual function table.
set print object off
Display only the declared type of objects, without reference to the virtual function
table. This is the default setting.
show print object
Show whether actual, or declared, object types are displayed.
set print static-members
set print static-members on
Print static members when displaying a C++ object. The default is on.
set print static-members off
Do not print static members when displaying a C++ object.
show print static-members
Show whether C++ static members are printed, or not.
set print vtbl
set print vtbl on
Pretty print C++ virtual function tables. The default is off.
set print vtbl off
Do not pretty print C++ virtual function tables.
show print vtbl
Show whether C++ virtual function tables are pretty printed, or not.

CYGNUS Debugging with GDB = 101

Value history

Value history

Values printed by thegrint command are saved in the GD8lue historyallowing

you to refer to them in other expressions. Values are kept until the symbol table is re-
read or discarded (for example with the orsymbol-file =~ commands). When the
symbol table changes, the value history is discarded, since the values may contain
pointers back to the types defined in the symbol table.

The values printed are givéstory numberdy which you can refer to them. These
are successive integers starting with qmiet shows you the history number
assigned to a value by printinghunrs' before the valuejaum is the history number.

To refer to any previous value, ugefollowed by the value’s history number. The
wayprint labels its output is designed to remind you of this. fusters to the most
recent value in the history, as#l refers to the value before thas. n refers to thexth
value from the endss$2 is the value just prior t&$, $$1 is equivalent t¢$, and$s$o

is equivalent tc.

For example, suppose you have just printed a pointer to a structure and want to see the
contents of the structure. It suffices to type .

If you have a chain of structures where the component next points to the next one, you
can print the contents of the next one vpiti$.next

You can print successive links in the chain by repeating this command, using the
Return key.

NOTE: The history records values, not expressions. Consider, for instance, if
the value ok is 4 and you type the following example’s commands.
print x
set x=5
Then the value recorded in the value history byptihe command
remains 4 even though the valuexdfas changed.
show values
Print the last ten values in the value history, with their item numbers. This is like
‘p $$9’ repeated ten times, except thadw values does not change the history.
show values n
Print ten history values centered on history item number,
show values +
Print ten history values just after the values last printed. If no more values are
available show values + produces no display.

Using theReturn key to repeathow values n has exactly the same effect as
‘show values + '

102 = Debugging with GDB GNUPro Toolkit

Convenience variables

Convenience variables

GDB providesconvenience variablekat you can use within GDB to hold on to a
value and refer to it later. These variables exist entirely within GDB; they are not part
of your program, and setting a convenience variable has no direct effect on further
execution of your program. That is why you can use them freely.

Convenience variables are prefixed wih Any name preceded bg”can be used

for a convenience variable, unless it is one of the predefined machine-specific register
names (see “Registers” on page 105). Value history references, in contrast, are
numberspreceded bys’. See “Value history” on page 102.

You can save a value in a convenience variable with an assignment expression, just as
you would set a variable in your program. For examplesfe@t *object_ptr
would save irsfoo the value contained in the object pointed taijyct_ptr

Using a convenience variable for the first time creates it, but its valoie isintil you

assign a new value. You can alter the value with another assignment at any time.
Convenience variables have no fixed types. You can assign a convenience variable
any type of value, including structures and arrays, even if that variable already has a
value of a different type. The convenience variable, when used as an expression, has
the type of its current value.

show convenience
Print a list of convenience variables used so far, and their values. Abbreviated
show con .

One of the ways to use a convenience variable is as a counter to be incremented or a
pointer to be advanced. For instance, to print a field from successive elements of an
array of structures, use the following as an example.

set$i=0

print bar[$i++]->contents

Repeat that command by using tReturn key.

The following convenience variables are created automatically by GDB and given
values likely to be useful.

$
The variablesg_, is automatically set by thecommand to the last address
examined (see “Examining memory” on page 93). Other commands which
provide a default address foto examine also st to that address; these
commands includfo line andinfo breakpoint . The type of_ isvoid *,
except when set by thecommand, in which case it is a pointer to the type of
$

~ The variableg__, is automatically set by thecommand to the value found in the

CYGNUS

Debugging with GDB = 103

Convenience variables

last address examined. Its type is chosen to match the format in which the data
was printed.

$_exitcode
The variable$_exitcode , is automatically set to the exit code when the program
being debugged terminates.

104 = Debugging with GDB GNUPro Toolkit

Registers

Registers

You can refer to machine register contents, in expressions, as variables with names
starting with §’. The names of registers are different for each machinaafase
registers to see the names used on your machine.

info registers
Print the names and values of all registers except floating-point registers (in the
selected stack frame).

info all-registers
Print the names and values of all registers, including floating-point registers.

info registers regname ...
Print therelativizedvalue of each specified registesgname . As discussed in the
following, register values are normally relative to the selected stack frame.
regname May be any register name valid on the machine you are using, with or
without the initial $'.

GDB has four “standard” register names that are available (in expressions) on most
machines—whenever they do not conflict with an architecture’s canonical mnemonics
for registers. The register namess andssp, are used for the program counter

register and the stack pointefp is used for a register that contains a pointer to the
current stack frame, args is used for a register that contains the processor status.
For example, you could print the program counter in hex ptitipc , or print the

instruction to be executed next withspc , or add four to the stack poinfewith
set $sp +=4

Whenever possible, these four standard register names are available on your machine
even though the machine has different canonical mnemonics, so long as there is no
conflict. Theinfo registers command shows the canonical names. For example, on
the SPARCinfo registers displays the processor status registespas but you

can also refer to it asps.

GDB always considers the contents of an ordinary register as an integer when the
register is examined in this way. Some machines have special registers which can hold
nothing but floating point; these registers are considered to have floating point values.
There is no way to refer to the contents of an ordinary register as floating point value
(although you caprint it as a floating point value withfintf$ regname”).

Some registers have distinct “raw” and “virtual” data formats. This means that the

2 Thisis a way of removing one word from the stack, on machines where stacks grow downward in memory (most
machines, nowadays). This assumes that the innermost stack frame is selecte@speitimgt allowed when other
stack frames are selected. To pop entire frames off the stack, regardless of machine architectuRetuse kegy;
see “Returning from a function” on page 149.

CYGNUS Debugging with GDB = 105

Registers

data format in which the register contents are saved by the operating system is not the
same one that your program normally sees. For example, the registers of the 68881
floating point coprocessor are always saved in “extended” (raw) format, but all C
programs expect to work with “double” (virtual) format. In such cases, GDB normally
works with the virtual format only (the format that makes sense for your program), but
theinfo registers command prints the data in both formats.

Normally, register values are relative to the selected stack frame (see “Selecting a
frame” on page 74). This means that you get the value that the register would contain
if all stack frames farther in were exited and their saved registers restored. In order to
see the true contents of hardware registers, you must select the innermost frame (with
‘frame 0).

However, GDB must deduce where registers are saved, from the machine code
generated by your compiler. If some registers are not saved, or if GDB is unable to
locate the saved registers, the selected stack frame makes no difference.

set rstack_high_address address
On AMD 29K family processors, registers are saved in a sepagitter stack
There is no way for GDB to determine the extent of this stack. Normally, GDB
just assumes that the stack is large enough to result in GDB referencing memory
locations that do not exist. If necessary, you can get around this problem by
specifying the ending address of the register stack with the
set rstack_high_address command. The argument should be an address,
which you probably want to precede witlx* to specify in hexadecimal.

show rstack_high_address
Display the current limit of the register stack, on AMD 29000 family processors.

106 = Debugging with GDB GNUPro Toolkit

Floating point hardware

Floating point hardware

Depending on the configuration, GDB may be able to give you more information
about the status of the floating point hardware.

info float
Display hardware-dependent information about the floating point unit. The exact
contents and layout vary depending on the floating point chip. Curreniy, *
float ' is supported on the ARM anB6 machines.

CYGNUS Debugging with GDB = 107

Floating point hardware

108 = Debugging with GDB GNUPro Toolkit

Floating point hardware

8
()
©
(@]
=
=
£
@
X
LLl
&

CYGNUS Debugging with GDB = 109

Floating point hardware

110 = Debugging with GDB GNUPro Toolkit

Floating point hardware

8
()
©
(@]
=
=
£
@
X
LLl
&

CYGNUS Debugging with GDB = 111

Floating point hardware

112 = Debugging with GDB GNUPro Toolkit

Floating point hardware

o
©
©
(@]
=
=
£
@
X
LLl
>

CYGNUS Debugging with GDB = 113

Floating point hardware

114 = Debugging with GDB GNUPro Toolkit

Floating point hardware

o
©
©
(@]
=
=
£
@
X
LLl
>

CYGNUS Debugging with GDB = 115

Floating point hardware

116 = Debugging with GDB GNUPro Toolkit

Floating point hardware

8
()
©
(@]
=
=
£
@
X
LLl
&

CYGNUS Debugging with GDB = 117

Floating point hardware

118 = Debugging with GDB GNUPro Toolkit

10

Using GDB
with different lan guages

Although programming languages generally have common aspects, they are rarely
expressed in the same manner. For instance, in ANSI C, dereferencing apiginter
accomplished byp , but in Modula-2, it is accomplished by. Values can also be
represented (and displayed) differently. Hex numbers in C appeatas’; while in
Modula-2 they appear asAEH.

Language-specific information is built into GDB for some languages, allowing you to
express operations like the previous in your program’s native language, and allowing
GDB to output values in a manner consistent with the syntax of your program’s native
language. The language you use to build expressions is callegtkiag language

The following documentation provides more discussion on language-specific issues.

“Switching between source languages” on page 120

“Displaying the language” on page 122

“Type and range checking” on page 123

“Supported languages” on page 126

CYGNUS

Debugging with GDB = 119

Switching between source languages

Switching between source languages

There are two ways to control the working language—either have GDB set it
automatically, or select it manually yourself. You can usedhenguage

command for either purpose. On startup, GDB defaults to setting the language
automatically. The working language is used to determine how expressions you type
are interpreted, how values are printed, and so forth. The following discussions
address the source language usage.

» ‘“List of flename extensions and languages” on page 120
» “Setting the working language” on page 121
» “Having GDB infer the source language” on page 121

In addition to the working language, every source file that GDB knows about has its
own working language. For some object file formats, the compiler might indicate
which language a particular source file is in. However, most of the time GDB infers
the language from the name of the file. The language of a source file controls whether
C++ names are demangled—this wayktrace can show each frame appropriately

for its own language. There is no way to set the language of a source file from within
GDB. This is most commonly a problem when you use a program, sudftbnas or

f2c , that generates C but is written in another language. In that case, make the
program useline directives in its C output; that way GDB will know the correct
language of the source code of the original program, and will display that source code,
not the generated C code.

List of flename extensions and languages

If a source file name ends in one of the following extensions, then GDB infers that its
language is the one indicated.
.mod
Modula-2 source file
.C
C source file
.C

.CC
.CXX
.cpp
.cp
.C++

C++ source file

120 = Debugging with GDB GNUPro Toolkit

Setting the working language

.ch
.c186
.Cc286

CHILL source file.
.S
S
Assembler source file. This actually behaves almost like C, but GDB does not

skip over function prologues when stepping.

Setting the working language

If you allow GDB to set the language automatically, expressions are interpreted the
same way in your debugging session and your program. If you wish, you may set the
language manually. To do this, issue the commsnthhguage Jang ', wherelang

is the name of a language, suclt @ modula-2 . For a list of the supported

languages, typesét language

Setting the language manually prevents GDB from updating the working language
automatically. This can lead to confusion if you try to debug a program when the
working language is not the same as the source language, when an expression is
acceptable to both languages—but means different things. For instance, if the current
source file were written in C, and GDB was parsing Modula-2, a command such as
printa=b +c might not have the effect you intended. In C, this means to add

¢ and place the result in The result printed would be the valueaofn Modula-2,

this means to compakeeto the result ob+c, yielding aBOOLEANalue.

Having GDB infer the source language

To have GDB set the working language automatically, s&s@hguage local ' or

‘set language auto '. GDB then infers the working language. That is, when your
program stops in a frame (usually by encountering a breakpoint), GDB sets the
working language to the language recorded for the function in that frame. If the
language for a frame is unknown (that is, if the function or block corresponding to the
frame was defined in a source file that does not have a recognized extension), the
current working language is not changed, and GDB issues a warning.

This may not seem necessary for most programs, which are written entirely in one
source language. However, program modules and libraries written in one source
language can be used by a main program written in a different source language. Using
‘setlanguage auto ' in this case frees you from having to set the working language
manually.

CYGNUS

Debugging with GDB = 121

Displaying the language

Displaying the language

The following commands help you find out which language is the working language,
and also what language in which source files were written.
show language
Display the current working language. This is the language you can use with
commands such as print to build and compute expressions that may involve
variables in your program.
info frame
Display the source language for this frame. This language becomes the working
language if you use an identifier from this frame. See “Information about a frame”
on page 76 to identify the other information about the language in the source files.
info source
Display the source language of this source file. See “Examining the symbol table”
on page 141 to identify the other information about the language in the source
files.

122 = Debugging with GDB GNUPro Toolkit

Type and range checking

Type and range checking

Some languages are designed to guard against you making seemingly common errors
through a series of compile- and run-time checks. These include checking the type of
arguments to functions and operators, and making sure mathematical overflows are
caught at run time. Checks such as these help to ensure a program’s correctness once it
has been compiled by eliminating type mismatches, and providing active checks for
range errors when your program is running. For more details, see “An overview of

type checking” on page 123 and “An overview of range checking” on page 124.L

GDB can check for conditions. Although GDB does not check the statements in your
program, it can check expressions entered directly into GDB for evaluation, using the
print command, for example. As Lwith the working language, GDB can also decide
whether or not to check automatically based on your program’s source language. See
“Supported languages” on page 126 for the default settings of supported languages.

WARNING: In some cases, the GDB commands for type and range checking are
included and do not yet have any effect. The following discussion
documents the intent of such commands.

An overview of type checking

Some languages, such as Modula-2, are strongly typed, meaning that the arguments to
operators and functions have to be of the correct type, otherwise an error occurs.
These checks prevent type mismatch errors from ever causing any run-time problems.
Consider the following examples.

1+2=>3

Compare with the following example.
ERROR1+23

The second example fails becausedhrDINAL1 is not type-compatible with the
REAL2.3.

For the expressions you use in GDB commands, you can tell the GDB type checker to
skip checking; to treat any mismatches as errors and abandon the expression; or to
only issue warnings when type mismatches occur, but evaluate the expression
anyway. When you choose the last of these, GDB evaluates expressions like the
second example, but also issues a warning.

Even if you turn type checking off, there may be other reasons related to type that
prevent GDB from evaluating an expression. For instance, GDB does not know how
to add annt and astructfoo . These particular type errors have nothing to do with

CYGNUS

Debugging with GDB = 123

An overview of range checking

the language in use, and usually arise from expressions, such as the one described
which make little sense to evaluate anyway.

Each language defines to what degree it is strict about type. For instance, both
Modula-2 and C require the arguments to arithmetical operators to be numbers. In C,
enumerated types and pointers can be represented as numbers, so that they are valid
arguments to mathematical operators. See “Supported languages” on page Supported
languages for further details on specific languages.

GDB provides the following additional commands for controlling the type checker.

set check type auto
Set type checking on or off based on the current working language. See
“Supported languages” on pageSupported languages, for the default settings for
each language.

set check type on

set check type off
Set type checking on or off, overriding the default setting for the current working
language. Issue a warning if the setting does not match the language default. If
any type mismatches occur in evaluating an expression while typechecking is on,
GDB prints a message and aborts evaluation of the expression.

set check type warn
Cause the type checker to issue warnings, but to always attempt to evaluate the
expression. Evaluating the expression may still be impossible for other reasons.
For example, GDB cannot add numbers and structures.

show type
Show the current setting of the type checker, and whether or not GDB is setting it
automatically.

An overview of range checking

In some languages (such as Modula-2), it is an error to exceed the bounds of a type;
this is enforced with run-time checks. Such range checking is meant to ensure
program correctness by making sure computations do not overflow, or indices on an
array element access do not exceed the bounds of the array. For expressions you use in
GDB commands, you can tell GDB to treat range errors in one of three ways: ignore
them, always treat them as errors and abandon the expression, or issue warnings but
evaluate the expression anyway. A range error can result from numerical overflow,
from exceeding an array index bound, or when you type a constant that is not a
member of any type. Some languages, however, do not treat overflows as an error. In
many implementations of C, mathematical overflow causes the result to “wrap
around” to lower values—for example nifis the largest integer value, afnds the

smallest, then the following input is congruent.

124 = Debugging with GDB GNUPro Toolkit

An overview of range checking

m+l1=> s

This, too, is specific to individual languages, and in some cases specific to individual
compilers or machines. See “Supported languages” on page Supported languages, for
further details on specific languages. GDB provides the following additional
commands for controlling the range checker.

set check range auto
Set range checking on or off based on the current working language. See
“Supported languages” on page Supported languages for the default settings for
each language.

set check range on

set check range off
Set range checking on or off, overriding the default setting for the current working
language. A warning is issued if the setting does not match the language default. If
a range error occurs, then a message is printed and evaluation of the expression is
aborted.

set check range warn
Output messages when the GDB range checker detects a range error, but attempt
to evaluate the expression anyway. Evaluating the expression may still be
impossible for other reasons, such as accessing memory that the process does not
own (a typical example from many Unix systems).

show range
Show the current setting of the range checker, and whether or not it is being set
automatically by GDB.

CYGNUS

Debugging with GDB = 125

Supported languages

Supported languages

GDB 4 supports C, C++, and Modula-2. Some GDB features may be used in
expressions regardless of the language you use: the@DB:: operators, and the

‘{type} addr’ construct (see “Expressions” on page 88) can be used with the

constructs of any supported language. The following documentation details to what
degree each source language is supported by GDB. These sections are not meant to be
language tutorials or references, but serve only as a reference guide to what the GDB
expression parser accepts, and what input and output formats should look like for
different languages. There are many good books written on each of these languages;
feel free to use them as a language reference or tutorial in addition to these
discussions.

C and C++

Since C and C++ are so closely related, many features of GDB apply to both
languages. Whenever this is the case, we discuss those languages together.

The C++ debugging facilities are jointly implemented by the GNU C++ compiler and
GDB. Therefore, to debug your C++ code effectively, you must compile your C++
programs with the GNU C++ compiley+.

For best results when debugging C++ programs, usgstize debugging format. You
can select that format explicitly with the G++ command-line optiapsbs ' or
‘-gstabs+ '. See “Options for Debugging Your Program or GNU CCUising GNU
CCin GNUPro Compiler Tooldor more information.

C and C++ operators

Operators must be defined on values of specific types. For instaisodefined on
numbers and not on structures. Operators are often defined on groups of types. For the
purposes of C and C++, the following definitions hold.

* Integral typesncludeint with any of its storage-class specifiefisir ; andenum.
» Floating-point typesncludefloat anddouble .

» Pointer typesnclude all types defined asype *) .

» Scalar typesnclude all of the previous types.

The following operators are supported. They are listed in order of increasing
precedence.

The comma or sequencing operator. Expressions in a comma-separated list are

126 = Debugging with GDB GNUPro Toolkit

Supported languages

evaluated from left to right, with the result of the entire expression being the last
expression evaluated.

Assignment. The value of an assignment expression is the value assigned. Defined
on scalar types.

op=
Used in an expression of the foeap=b , and translated ta=a opb. op= and=
have the same precendenggis any one of the operatars’, &, <<, >>, +,-,*,/,
%

The ternary operatos.? b: ¢ can be thought of as: if thenp, elsec. a should
be of an integral type.

Logical or. Defined on integral types.

&&
Logical AND. Defined on integral types.

Bitwise OR. Defined on integral types.

Bitwise exclusivear. Defined on integral types.

Bitwise AND. Defined on integral types.

Equality and inequality. Defined on scalar types. The value of these expressions is
0 for false and non-zero for true.

Less than, greater than, less than or equal, greater than or equal. Defined on scalar
types. The value of these expressions is 0 for false and non-zero for true.

Left shift, and right shift. Defined on integral types.

The GDB “artificial array” operator (see “Expressions” on page 88).

Addition and subtraction. Defined on integral types, floating-point types and
pointer types.

CYGNUS

Debugging with GDB = 127

Supported languages

%

++

0

Multiplication, division, and modulus. Multiplication and division are defined on
integral and floating-point types. Modulus is defined on integral types.

Increment and decrement. When appearing before a variable, the operation is
performed before the variable is used in an expression; when appearing after it,
the variable’s value is used before the operation takes place.

Pointer dereferencing. Defined on pointer types. Same precedence as

Address operator. Defined on variables. Same precedenee as

For debugging C++, GDB implements a usegdbeyond what is allowed in the
C++ language itself: you can usg& ref)’ (or, if you prefer, &&ref ') to examine
the address where a C++ reference variable (declaredamsth’) is stored.

Negative. Defined on integral and floating-point types. Same precederee as
Logical negation. Defined on integral types. Same precedenece as

Bitwise complement operator. Defined on integral types. Same precedence as ++.

Structure member, and pointer-to-structure member. For convenience, GDB
regards the two as equivalent, choosing whether to dereference a pointer based on
the stored type information. Defined struct andunion data.

Array indexing.a[i] is defined as(a+i) . Same precedence as
Function parameter list. Same precedence as

C++ scope resolution operator. Defined on struct, union, and class types.
Doubled colons also represent the GDB scope operator (see “Expressions”
on page 88) with the same precedence as the C++ scope resolution operator
functionality.

128 m Debugging with GDB GNUPro Toolkit

Supported languages

C and C++ constants

GDB allows you to express the constants of C and C++ in the following ways.

Integer constants are a sequence of digits. Octal constants are specified by a
leading b’ (i.e., zero), and hexadecimal constants by a lea@igpr ‘0X'.
Constants may also end with a lettet, specifying that the constant should be
treated as mng value.

Floating point constants are a sequence of digits, followed by a decimal point,
followed by a sequence of digits, and optionally followed by an exponent. An
exponent is of the forme([+]-] nnn’, wherennn is another sequence of digits.
The + is optional for positive exponents.

Enumerated constants consist of enumerated identifiers, or their integral
equivalents.

Character constants are a single character surrounded by single guaiea (
number—the ordinal value of the corresponding character (usually its ASCII
value). Within quotes, the single character may be represented by a letter or by
escape sequences, which are of the farnn’, wherennn is the octal
representation of the character’s ordinal value; or of the foximwhere " is a
predefined special character—for example, for newline.

String constants are a sequence of character constants surrounded by double
quotes'().

Pointer constants are an integral value. You can also write pointers to constants
using the C operatorg”.

Array constants are comma-separated lists surrounded by braaed ‘} ’; for
example, {1,2,3} ’is a three-element array of integef$1,2} , {3.4} ,

(5,6} 'is athree-by-two array, ang‘hi’, &there”, &“fred”} "is a three-
element array of pointers.

C++ expressions

GDB expression handling has a number of extensions to interpret a significant subset
of C++ expressions.

WARNING: GDB can only debug C++ code if you compile with the GNU C++

compiler. Moreover, C++ debugging depends on the use of additional
debugging information in the symbol table, and thus requires special
support. GDB has this support only with the stabs debug format.

In particular, if your compiler generates a.out, MIPS ECOFF,

CYGNUS

Debugging with GDB = 129

Supported languages

RS/6000XCOFF, or ELF with stabs extensions to the symbol table,
these facilities are all available. (With GNU CC, you can use the
‘-gstabs '’ option to requesitabs debugging extensions explicitly.)
Where the object code format is standao#F or DWARF in ELF , on
the other hand, most of the C++ support in GDB does not work.

» Member function calls are allowed; you can use expressions like
count = aml->GetOriginal(x, y)
» While a member function is active (in the selected stack frame), your expressions
have the same namespace available as the member function; that is, GDB allows

implicit references to the class instance poiniter, , following the same rules as
C++.

* You can call overloaded functions; GDB resolves the function call to the right
definition, with one restriction—you must use arguments of the type required by
the function that you want to call. GDB does not perform conversions requiring
constructors or user-defined type operators.

» GDB understands variables declared as C++ references; you can use them in
expressions just as you do in C++ source—they are automatically dereferenced.

In the parameter list shown when GDB displays a frame, the values of reference
variables are not displayed (unlike other variables); this avoids clutter, since
references are often used for large structures. The address of a reference variable
is always shown, unless you have specified ‘print address off .

» GDB supports the C++ name resolution operatoyour expressions can use it
just as expressions in your program do. Since one scope may be defined in
another, you can use repeatedly if necessary, for example in an expression like
‘scopel :: scope2 :: name. GDB also allows resolving name scope by reference to
source files, in both C and C++ debugging (see “Program variables” on page 89).

C and C++ defaults

If you allow GDB to set type and range checking automatically, they both default to
off whenever the working language changes to C or C++. This happens regardless of
whether you or GDB selects the working language.

If you allow GDB to set the language automatically, it recognizes source files whose
names end with¢ ', *.Cc’, or ‘.cc ', and when GDB enters code compiled from one of
these files, it sets the working language to C or C++. See “Having GDB infer the
source language” on page Having GDB infer the source language for further details.

130 = Debugging with GDB GNUPro Toolkit

Supported languages

C and C++ type and range checks

By default, when GDB parses C or C++ expressions, type checking is not used.

However, if you turn type checking on, GDB considers two variables type equivalent

if:

 The two variables are structured and have the same structure, union, or
enumerated tag.

» The two variables have the same type name, or types that have been declared
equivalent througkypedef .

Range checking, if turned on, is done on mathematical operations. Array indices are
not checked, since they are often used to index a pointer that is not itself an array.

GDB and C

Theset print union andshow print union commands apply to theion type.
When set toon’, anyunion that is inside atruct Orclass is also printed.
Otherwise, it appears ag.} '

The @operator aids in the debugging of dynamic arrays, formed with pointers and a
memory allocation function. See “Expressions” on page 88.

GDB features for C++

Some GDB commands are particularly useful with C++, and some are designed

specifically for use with C++. The following is a summary of the commands.

breakpoint menus
When you want a breakpoint in a function whose name is overloaded, GDB
breakpoint menus help you specify which function definition you want. See
“Breakpoint menus” on page 63.

rbreak regex
Setting breakpoints using regular expressions is helpful for setting breakpoints on
overloaded functions that are not members of any special classes. See “Setting
breakpoints” on page 50.

catch exceptions

info catch
Debug C++ exception handling using these commands. See “Breakpoints and
exceptions” on page 55.

ptype typename
Print inheritance relationships as well as other information for type typename. See
“Examining the symbol table” on page 141.

CYGNUS

Debugging with GDB = 131

Supported languages

set print demangle

show print demangle

set print asm-demangle

show print asm-demangle
Control whether C++ symbols display in their source form, both when displaying
code as C++ source and when displaying disassemblies. See “Print settings”
on page 97.

set print object

show print object
Choose whether to print derived (actual) or declared types of objects. See “Print
settings” on page 97.

set print vtbl

show print vtbl
Control the format for printing virtual function tables. See “Print settings”
on page 97.

Overloaded symbol names
You can specify a particular definition of an overloaded symbol, using the same
notation that is used to declare such symbols in C++: kyp®d! (types)’ rather
than justsymbol . You can also use the GDB command-line word completion
facilities to list the available choices, or to finish the type list for you. See
“Command completion” on page 25 for details.

Modula-2

The extensions made to GDB to support Modula-2 only support output from the GNU
Modula-2 compiler (which is currently in development). Other Modula-2 compilers
are not currently supported, and attempting to debug executables produced by them is
most likely to give an error as GDB reads in the executable’s symbol table.

Modula 2 Operators

Operators must be defined on values of specific types. For instaisodefined on
numbers and not on structures. Operators are often defined on groups of types. For the
purposes of Modula-2, the following definitions hold.

* Integraltypes consist dNTEGER CARDINAL and their subranges.
» Charactertypes consist ofHARand its subranges.

* Floating-pointtypes consist GREAL

» Pointertypes consist of anything declaredP@sNTERTO type .

e Scalartypes consist of all of the previous types.

» Settypes consist afET andBITSET types.

132 = Debugging with GDB GNUPro Toolkit

Supported languages

Booleantypes consist cBOOLEAN

The following operators are supported, and appear in order of increasing precedence.

<>

Function argument or array index separator.

Assignment. The value o&r := value IS value .

Less than, greater than on integral, floating-point, or enumerated types.

Less than, greater than, less than or equal to, greater than or equal to on integral,
floating-point and enumerated types, or set inclusion on set types. Same
precedence as

#
Equality and two ways of expressing inequality, valid on scalar types. Same
precedence as In GDB scripts, only> is available for inequality, sinee
conflicts with the script comment character.
IN
Set membership. Defined on set types and the types of their members. Same
precedence as <.
OR
Boolean disjunction. Defined on boolean types.
AND
&
Boolean conjuction. Defined on boolean types.
@
The GDB “artificial array” operator (see “Expressions” on page 88).
+
Addition and subtraction on integral and floating-point types, or union and
difference on set types.
Multiplication on integral and floating-point types, or set intersection on set types.
/
Division on floating-point types, or symmetric set difference on set types. Same
precedence as
DIV

CYGNUS

Debugging with GDB = 133

Supported languages

MOD
Integer division and remainder. Defined on integral types. Same precedence as *.

Negative. Defined oINTEGERandREAL data.

Pointer dereferencing. Defined on pointer types.

NOT
Boolean negation. Defined on boolean types. Same precedence as ".

RECORIMield selector. Defined oRECORMmata. Same precedence as .

I
Array indexing. Defined omRRAYdata. Same precedence as .

0
Procedure argument list. Defined PROCEDURBDbjects. Same precedence as

GDB and Modula-2 scope operators.

WARNING: Sets and their operations are not yet supported, so GDB treats the use
of the operatonN, or the use of operators,-, *, /, =,<>, #, <=, and
>= 0N sets as an error.

Modula-2 built-in functions and procedures

Modula-2 also makes available several built-in procedures and functions. In
describing these, the following meta-variables are used:
a

Represents amRRAYvariable.

Represents aHARconstant or variable.

Represents a variable or constant of integral type.

Represents an identifier that belongs to a set. Generally used in the same function
with the metavariable,. The type ok should besET OF mtype (Wheremtype is

the type ofy.

Represents a variable or constant of integral or floating-point type.

Represents a variable or constant of floating-point type.

134 = Debugging with GDB GNUPro Toolkit

Supported languages

“Represents a type.
Represents a variable.

Represents a variable or constant of one of many types. See the explanation of the
function for details.

All Modula-2 built-in procedures also return a result, discussed by the following
descriptions.
ABS(n)
Returns the absolute value of
CAP(c)
If ¢ is a lower case letter, it returns its upper case equivalent, otherwise it returns
its argument

CHR(j)

Returns the character whose ordinal value is
DEC(v)

Decrements the value in the variablédReturns the new value.
DEC(v, i)

Decrements the value in the variablby j . Returns the new value.
EXCL(m s)

Removes the elementfrom the sek. Returns the new set.
FLOAT(i)

Returns the floating point equivalent of the integer
HIGH(a)

Returns the index of the last memberof
INC(v)

Increments the value in the variableReturns the new value.
INC(v, i)

Increments the value in the varialbldoy i . Returns the new value.
INCL(m s)

Adds the elementto the sek if it is not already there. Returns the new set.
MAX(t)

Returns the maximum value of the type
MIN(t)

Returns the minimum value of the type
oDD()

Returns booleamRUEif i is an odd number.
ORD(x)

Returns the ordinal value of its argument. For example, the ordinal value of a

CYGNUS Debugging with GDB = 135

Supported languages

character is its ASCII value (on machines supporting the ASCII character set).
must be of an ordered type, which include integral, character and enumerated

types.

SIZE(x)

Returns the size of its argumestcan be a variable or a type.

TRUNC()

Returns the integral part of

VAL(t, 1)

Returns the member of the typevhose ordinal value is.

WARNING: Sets and their operations are not yet supported, so GDB treats the use

of proceduresNcL andexXcLas an error.

Modula-2 Constants

GDB allows you to express the constants of Modula-2 in the following ways.

Integer constants are simply a sequence of digits. When used in an expression, a
constant is interpreted to be type-compatible with the rest of the expression.
Hexadecimal integers are specified by a trailiigand octal integers by a

trailing ‘B'.

Floating point constants appear as a sequence of digits, followed by a decimal
point and another sequence of digits. An optional exponent can then be specified,
in the form E[+|-] nnn’, where {+-] nnn’is the desired exponent. All of the

digits of the floating point constant must be valid decimal (base 10) digits.

Character constants consist of a single character enclosed by a pair of like quotes,
either single’() or double (). They may also be expressed by their ordinal value
(their ASCII value, usually) followed by &’

String constants consist of a sequence of characters enclosed by a pair of like
guotes, either single Y or double (). Escape sequences in the style of C are also
allowed. See “C and C++ constants” on page C and C++ constantsfor a brief
explanation of escape sequences.

Enumerated constants consist of an enumerated identifier.
Boolean constants consist of the identififeR&EandrFALSE
Pointer constants consist of integral values only.

Set constants are not yet supported.

Modula-2 defaults
If type and range checking are set automatically by GDB, they both default to on

136 = Debugging with GDB GNUPro Toolkit

Supported languages

whenever the working language changes to Modula-2. This happens regardless of
whether you, or GDB, selected the working language.

If you allow GDB to set the language automatically, then entering code compiled from
a file whose name ends witlnod’ sets the working language to Modula-2. See
“Setting the working language” on page 121 for further details.

Deviations from standard Modula-2

A few changes have been made to make Modula-2 programs easier to debug. This is
done primarily by loosening its type strictness.

* Unlike in standard Modula-2, pointer constants can be formed by integers. This
allows you to modify pointer variables during debugging. (In standard Modula-2,
the actual address contained in a pointer variable is hidden from you; it can only
be modified through direct assignment to another pointer variable or expression
that returned a pointer.)

» C escape sequences can be used in strings and characters to represent non-
printable characters. GDB prints out strings with these escape sequences
embedded. Single non-printable characters are printed usingHR@rin)’
format.

» The assignment operatos | returns the value of its right-hand argument.
» All built-in procedures both modifand return their argument.

Modula-2 type and range checks

WARNING: In this release, GDB does not yet perform type or range checking.

GDB considers two Modula-2 variables type equivalent if the following conditions

apply.

» They are of types that have been declared equivalent, usivrRgas - t2
statement.

» They have been declared on the same line.

NOTE: Thisis true of the GNU Modula-2 compiler, but it may not be true of
other compilers.)

As long as type checking is enabled, any attempt to combine variables whose types are
not equivalent is an error. Range checking is done on all mathematical operations,
assignment, array index bounds, and all built-in functions and procedures.

CYGNUS

Debugging with GDB = 137

Supported languages

Modula-2 scope operator (.), the GDB scope operator (:)

There are a few subtle differences between the Modula-2 scope operatod (he
GDB scope operator: (). The two have similar syntax, as in the following example.

module . id

scope 1 id

scope is the name of a module or a proceduigdule is the name of a modulgl. is
any declared identifier within your program, except another module. Using the ::
operator makes GDB search the scope specifiegdpy , for the identifier,qd .. If it
is not found in the specifiestope , then GDB searches allope occurrences,
enclosing the one specified byope .

Using the Modula-2 operatar, makes GDB search the current scope for the
identifier specified byd that was imported from the definition module specified by
module . With this operator, it is an error if the identifier,, was not imported from
definition module module , or if id is not an identifier immodule .

GDB and Modula-2

Some GDB commands have little use when debugging Modula-2 programs. Five
subcommands aktprint andshow print apply specifically to C and C++thl ’,
‘demangle ', ‘asm-demangle ’, ‘object ', and ‘union . The first four apply to C++, and
the last to the Gnion type, which has no direct analogue in Modula-2.

The @ operator (see “Expressions” on page 88), while available while using any
language, is not useful with Modula-2. Its intent is to aid the debuggitgnaimic
arrays, which cannot be created in Modula-2 as they can in C or C++. However,
because an address can be specified by an integral constant, the construct

‘{ type } adrexp ' is still useful. (see “Expressions” on page 88)

In GDB scripts, the Modula-2 inequality operatgris interpreted as the beginning of
a comment. Use<s’ instead.

138 = Debugging with GDB GNUPro Toolkit

Supported languages

o
c
o
o

=

=

= 0
e

m 3

a2

O
(@)]

=
[2)

-]

o

—

CYGNUS Debugging with GDB = 139

Supported languages

140 = Debugging with GDB GNUPro Toolkit

Examinin g the symbol table

The commands described in this section allow you to inquire about the symbols
(names of variables, functions and types) defined in your program. This information is
inherent in the text of your program and does not change as your program executes.
GDB finds it in your program’s symbol table, in the file indicated when you started
GDB (see “Choosing files” on page 17), or by one of the file-management commands
(see “Commands to specify files” on page 13GDBfiles).

Occasionally, you may need to refer to symbols that contain unusual characters, which
GDB ordinarily treats as word delimiters. The most frequent case is in referring to
static variables in other source files (see “Program variables” on page 89). File names
are recorded in object files as debugging symbols, but GDB would ordinarily parse a
typical file name, likefoo.c ’, as the three word$do ‘.’ ‘¢’. To allow GDB to
recognizefoo.c ' as a single symbol, enclose it in single quotes; for example,

p ‘foo.c:x looks up the value of in the scope of the fildépo.c

info address symbol
Describe where the data fefmbol is stored. For a register variable, this says
which register it is kept in. For a non-register local variable, this prints the stack-
frame offset at which the variable is always stored.

NOTE: The contrast withprint& symbol * does not work at all for a register
variable, and for a stack local variable prints the exact address of the
current instantiation of the variable.

CYGNUS

Debugging with GDB = 141

whatis exp
Print the data type of expressiesp. exp is not actually evaluated, and any side-
effecting operations (such as assignments or function calls) inside it do not take
place. See “Expressions” on page 88.

whatis
Print the data type df, the last value in the value history.

ptype typename
Print a description of data typeename . typename may be the name of a type, or
for C code it may have the forrddss class-name ’, ‘struct struct-tag
‘union union-tag ’ Or ‘enum enum-tag .
ptype exp
ptype
Print a description of the type of expressiexn. ptype differs fromwhatis by
printing a detailed description, instead of just the name of the type. For instance,
consider the following variable declaration example.
struct complex {double real; double imag;} v;
The declaration’s two commands give the following output.
(gdb) whatis v
type = struct complex

(9db) ptype v

type = struct complex {
double real;
double imag;

}
As with whatis , usingptype without an argument refers to the typespthe last
value in the value history.
info types regexp
info types
Print a brief description of all types whose name matedqyesp (or all types in
your program, if you supply no argument). Each complete typename is matched as
though it were a complete line; thusype value ’ gives information on all
types in your program whose name includes the sttilng , but i type
“value$ ' gives information only on types whose complete name is value.

This command differs fromtype in two ways: first, likevhatis , it does not print
a detailed description; second, it lists all source files where a type is defined.

info source
Show the name of the current source file—that is, the source file for the function
containing the current point of execution—and the language it was written in.

info sources
Print the names of all source files in your program for which there is debugging

142 = Debugging with GDB GNUPro Toolkit

information, organized into two lists: files whose symbols have already been read,
and files whose symbols will be read when needed.

info functions
Print the names and data types of all defined functions.

info functions regexp
Print the names and data types of all defined functions whose names contain a
match for regular expressiofgexp . Thus, info fun step ' finds all functions
whose names includgep ; ‘info fun “step ' finds those whose nhames start with
step .

info variables
Print the names and data types of all variables that are declared outside of
functions (i.e., excluding local variables).

info variables regexp
Print the names and data types of all variables (except for local variables) whose
names contain a match for regular expressigexp .

Some systems allow individual object files that make up your program to be
replaced without stopping and restarting your program. For example, in VXWorks
you can simply recompile a defective object file and keep on running. If you are
running on one of these systems, you can allow GDB to reload the symbols for the
following automatically relinked modules:

set symbol-reloading on
Replace symbol definitions for the corresponding source file when an object file
with a particular name is seen again.

set symbol-reloading off
Do not replace symbol definitions when re-encountering object files of the same
name. This is the default state; if you are not running on a system that permits
automatically relinking modules, you should leay@bol-reloading off, since
otherwise GDB may discard symbols when linking large programs, that may
contain several modules (from different directories or libraries) with the same
name.

show symbol-reloading
Show the curremnin oroff setting.

maint print symbols filename
maint print psymbols filename
maint print msymbols filename

Write a dump of debugging symbol data into the filenhame . These commands
are used to debug the GDB symbol-reading code. Only symbols with debugging
data are included.

CYGNUS

Debugging with GDB = 143

If you use maint print symbols ', GDB includes all the symbols for which it has
already collected full details: that i8ename reflects symbols for only those
files whose symbols GDB has read.

You can use the commanafp sources |, to find out which files these are. If you
use maint print psymbols ' instead, the dump shows information about symbols
that GDB only knows partially—that is, symbols defined in files that GDB has
skimmed, but not yet read completely.

Finally, ‘maint print msymbols " dumps just the minimal symbol information
required for each object file from which GDB has read some symbols. See
“Commands to specify files” on page 154 for a discussion of how GDB reads
symbols (in the description of symbol-file).

144 = Debugging with GDB GNUPro Toolkit

Alterin g execution

Once you think you have found an error in your program, you might want to find out
for certain whether correcting the apparent error would lead to correct results in the
rest of the run. You can find the answer by experiment, using the GDB features for
altering execution of the program. For example, you can store new values into
variables or memory locations, give your program a signal, restart it at a different
address, or even return prematurely from a function.

For more information, see the following documentation.
» “Assignment to variables” on page 146

e “Continuing at a different address” on page 147

e “Giving your program a signal” on page 148

» “Returning from a function” on page 149

e “Calling program functions” on page 150

e “Patching programs” on page 151

CYGNUS Debugging with GDB = 145

Assignment to variables

Assignment to variables

To alter the value of a variable, evaluate an assignment expression. See
“Expressions” on page 88. For examplént x=4 stores the value 4 into the
variable,x, and then prints the value of the assignment expression (which is 4). See
“Using GDB with different languages” on page 119 for more information on
operators in supported languages.

If you are not interested in seeing the value of the assignment, use the set command
instead of therint commandset is really the same asint except that the
expression’s value is not printed and is not put in the value history (see “Value
history” on page 102). The expression is evaluated only for its effects.

If the beginning of the argument string of tee command appears identical teea
subcommand, use tRket variable command instead of onggt . This command is
identical toset except for its lack of subcommands. For example, if your program has
a variablewidth , you get an error if you try to set a new value with jest *
width=13 ', because GDB has the commaséwidth

(gdb) whatis width

type = double

(gdb) p width

$4=13

(gdb) set width=47

Invalid syntax in expression.

The invalid expression, of course, #@7’. In order to actually set the program’s
variable,width , use(gdb) set var width=47

GDB allows more implicit conversions in assignments than C; you can freely store an
integer value into a pointer variable or vice versa, and you can convert any structure to
any other structure that is the same length or shorter.

To store values into arbitrary places in memory, use{thie ‘' construct to generate

a value of specified type at a specified address (see “Expressions” on page 88). For
example {int}0x83040 refers to memory locatiook83040 as an integer (which
implies a certain size and representation in memory)s&nidt}0x83040 = 4

stores the value 4 into that memory location.

146 = Debugging with GDB GNUPro Toolkit

Continuing at a different address

Continuing at a different address

Ordinarily, when you continue your program, you do so at the place where it stopped,
with thecontinue command. You can instead continue at an address of your own
choosing, with the following commands.
jump linespec
Resume execution at a specified lim&spec . Execution stops again
immediately if there is a breakpoint there. See “Printing source lines” on page 80
for a description of the different forms fespec

Thejump command does not change the current stack frame, or the stack pointer;
or the contents of any memory location or any register other than the program
counter. If lineinespec , is in a different function from the one currently
executing, the results may be bizarre if the two functions expect different patterns
of arguments or of local variables. For this reasonjuthe command requests
confirmation if the specified line is not in the function currently executing.
However, even bizarre results are predictable if you are well acquainted with the
machine-language code of your program.

jump * address
Resume execution at the instruction at addiessess .

You can get much the same effect asjdghe command by storing a new value into
the registergpc. The difference is that this does not start your program running; it
only changes the address of where it will run when you continue. For example,
$pc = 0x485 makes the nexbontinue command or stepping command execute at
addresspx48s , rather than at the address where your program stopped. See
“Continuing and stepping” on page 64.

The most common occasion to usejtihge command is to back up, perhaps with
more breakpoints set, over a portion of a program that has already executed, in order
to examine its execution in more detail.

CYGNUS Debugging with GDB = 147

Giving your program a signal

Giving your program a signal

signal signal
Resume execution where your program stopped, but immediately give it the
signalsignal . signal can be the name or the number of a signal. For example, on
many systemsignal2 andsignal SIGINT are both ways of sending an interrupt
signal.

Alternatively, if signal is zero, continue execution without giving a signal. This
is useful when your program stopped on account of a signal and would ordinary
see the signal when resumed with ¢btinue command;signal0 ' causes it

to resume without a signal.

signal does not repeat when you Wsturn a second time after executing the
command.

Invoking thesignal command is not the same as invokingkie utility from the
shell. Sending a signal wittll causes GDB to decide what to do with the signal
depending on the signal handling tables (see “Signals” on page 6&igidie
command passes the signal directly to your program.

148 m Debugging with GDB GNUPro Toolkit

Returning from a function

Returning from a function

return

return expression
You can cancel execution of a function call with #ftern command. If you
give anexpression argument, its value is used as the function’s return value.

When you useesturn , GDB discards the selected stack frame (and all frames within
it). You can think of this as making the discarded frame return prematurely. If you
wish to specify a value to be returned, give that value as the argumeninto.

This pops the selected stack frame (see “Selecting a frame” on page 74), and any other
frames inside of it, leaving its caller as the innermost remaining frame. That frame
becomes selected. The specified value is stored in the registers used for returning
values of functions.

Thereturn command does not resume execution; it leaves the program stopped in the
state that would exist if the function had just returned.

In contrast, théinish command (see “Continuing and stepping” on page 64)
resumes execution until the selected stack frame returns naturally.

CYGNUS

Debugging with GDB = 149

Calling program functions

Calling program functions

You can use this variant of thent command if you want to execute a function from
your program, but without cluttering the output withu returned values. If the result
is notvoid , it is printed and saved in the value history.
call expr

Evaluate the expressiogxpr , without displayingoid returned values.

The user-controlled variableal|_scratch_address , specifies the location of a
scratch area to be used when GDB calls a function in the target. This is necessary
because the usual method of putting the scratch area on the stack does not work in
systems that have separate instruction and data spaces.

150 = Debugging with GDB GNUPro Toolkit

Patching programs

Patching programs

By default, GDB opens the file containing your program’s executable code (or the
corefile) read-only. This prevents accidental alterations to machine code; but it also
prevents you from intentionally patching your program’s binary.

If you'd like to be able to patch the binary, you can specify that explicitly witkethe

write command. For example, you might want to turn on internal debugging flags, or
even to make emergency repairs.

set write on

set write off
If you specify setwriteon ’, GDB opens executable and core files for both
reading and writing; if you specifgét write off ' (the default), GDB opens

them read-only. If you have already loaded a file, you must load it again (using the
exec-file Of core-file commands) after changingtwrite , for your new
setting to take effect.

show write
Display whether executable files and core files are opened for writing as well as
reading.

CYGNUS

Debugging with GDB = 151

Patching programs

152 = Debugging with GDB GNUPro Toolkit

GDB files

GDB needs to know the file name of the program to be debugged, both in order to read
its symbol table and in order to start your program. To debug a core dump of a
previous run, you must also tell GDB the name of the core dump file.

The following documentation discusses more of GDB files.
» “Commands to specify files” on page 154
» “Errors reading symbol files” on page 159

CYGNUS

Debugging with GDB = 153

Commands to specify files

Commands to specify files

You may want to specify executable and core dump file names. The usual way to do
this is at start-up time, using the arguments to GDB’s start-up commands (see
“Getting In and Out of GDB” on page 15).

Occasionally it is necessary to change to a different file during a GDB session. Or you
may run GDB and forget to specify a file you want to use. In these situations the GDB
commands to specify new files are useful.

file

file

filename
Usefilename as the program to be debugged. It is read for its symbols and for the
contents of pure memory. It is also the program executed when you use the
command. If you do not specify a directory and the file is not found in the GDB
working directory, GDB uses the environment variabksH as a list of
directories to search, just as the shell does when looking for a program to run. You
can change the value of this variable, for both GDB and your program, using the
path command.

On systems with memory-mapped files, an auxiliary fikhame .syms , may

hold symbol table information fatename . If so, GDB maps in the symbol table
from ‘filename .syms ’, starting up more quickly. See the descriptions of the file
options,-mapped and-readnow (available on the command line, and with the
commandsiile , symbol-file , Or add-symbol-file , described in the

following), for more information.

file with no argument makes GDB discard any information it has on both
executable file and the symbol table.

exec-file [filename]

Specify that the program to be run (but not the symbol table) is found in
filename . GDB searches the environment variablerH if necessary to locate
your program. Omittinglename means to discard information on the executable
file.

symbol-file [filename]

Read symbol table information from fil®ename . PATHis searched when
necessary. Use thie@ command to get both symbol table and program to run
from the same file.

symbol-file with no argument clears out GDB information on your program’s
symbol table. Theymbol-file command causes GDB to forget the contents of

its convenience variables, the value history, and all breakpoints and auto-display
expressions. This is because they may contain pointers to the internal data
recording symbols and data types, which are part of the old symbol table data

154 = Debugging with GDB GNUPro Toolkit

Commands to specify files

being discarded inside GDB.
symbol-file ~ does not repeat if you uReturn again after executing it once.

When GDB is configured for a particular environment, it understands debugging
information in whatever format is the standard generated for that environment;
you may use either@u compiler, or other compilers that adhere to the local
conventions. Best results are usually obtained from GNU compilers; for example,
usinggec you can generate debugging information for optimized code.

On some kinds of object files, thgnbol-file ~ command does not normally read

the symbol table in full right away. Instead, it scans the symbol table quickly to
find which source files and which symbols are present. The details are read later,
one source file at a time, as they are needed.

The purpose of this two-stage reading strategy is to make GDB start up faster. For
the most part, it is invisible except for occasional pauses while the symbol table
details for a particular source file are being read. €Eherbose command can

turn these pauses into messages if desired. See “Optional warnings and messages
on page 200.)

We have not implemented the two-stage strategy for COFF yet. When the symbol
table is stored in COFF formatmbol-file reads the symbol table data in full
right away.

symbol-file filename [-readnow][-mapped]

file

filename [-readnow][-mapped]
You can override the GDB two-stage strategy for reading symbol tables by using
the “readnow ' option with any of the commands that load symbol table
information, if you want to be sure GDB has the entire symbol table available.

If memory-mapped files are available on your system through the mmap system
call, you can use another optionnapped ’, to cause GDB to write the symbols

for your program into a reusable file. Future GDB debugging sessions map in
symbol information from this auxiliary symbol file (if the program has not
changed), rather than spending time reading the symbol table from the executable
program.

Using the ‘mapped ' option has the same effect as starting GDB with the
‘-mapped ' command-line option.

You can use both options together, to make sure the auxiliary symbol file has all
the symbol information for your program. The auxiliary symbol file for a program
calledmyprog is called myprog .syms ’. Once this file exists (so long as it is newer
than the corresponding executable), GDB always attempts to use it when you
debugmyprog ; No special options or commands are needed.

The “syms ' file is specific to the host machine where you run GDB. It holds an

CYGNUS

Debugging with GDB = 155

Commands to specify files

exact image of the internal GDB symbol table. It cannot be shared across multiple
host platforms.

core-file [filename]
Specify the whereabouts of a core dump file to be used as the “contents of
memory”. Traditionally, core files contain only some parts of the address space of
the process that generated them; GDB can access the executable file itself for
other parts.

corefile with no argument specifies that no core file is to be used.

NOTE: The core file is ignored when your program is actually running under
GDB. So, if you have been running your program and you wish to
debug a core file instead, you must kill the subprocess in which the
program is running. To do this, use the kill command (see “Killing the
child process” on page 41).

load filename

Depending on what remote debugging facilities are configured into GDB, the

load command may be available. Where it exists, it is meant to meal¢ene

(an executable) available for debugging on the remote system—by downloading,

or dynamic linking, for examplésad also records th@ename symbol table in
GDB, like theadd-symbol-file command.

If your GDB does not havelead command, attempting to execute it gets the
error messager,ou can’t do that when your target is .

The file is loaded at whatever address is specified in the executable. For some
object file formats, you can specify the load address when you link the program;
for other formats, like a.out, the object file format specifies a fixed address.

On VxWorks,load links filename dynamically on the current target system as
well as adding its symbols in GDB.

With the Nindy interface to an Intel 960 boadd downloadsfilename to the
960 as well as adding its symbols in GDB.

When you select remote debugging to a Hitachi SH, H8/300, or H8/500 board (see
“GDB and Hitachi microprocessors” on page 188),lthe command downloads

your program to the Hitachi board and also opens it as the current executable
target for GDB on your host (like thie command).

load does not repeat if you ugeturn again after using it.

add-symbol-file filename address

add-symbol-file filename address [-readnow][-mapped]
The add-symbol-file command reads additional symbol table information from
the file, filename . You would use this command wheaname has been

156 = Debugging with GDB GNUPro Toolkit

Commands to specify files

dynamically loaded (by some other means) into the program that is running.
address should be the memory address at which the file has been loaded; GDB
cannot figure this out for itself. You can specifyiress as an expression.

The symbol table of the filgilename , is added to the symbol table originally
read with thesymbol-file command. You can use the commadud;symbol-

file , any number of times; the new symbol data thus read keeps adding to the
old. To discard all old symbol data instead, usesghiol-file command.

add-symbol-file does not repeat if, after using it, you &ssurn.

You can use therhapped ' and “readnow ' options, just as with theymbol-file
command, to change how GDB manages the symbol table information for
filename

add-shared-symbol-file
Theadd-shared-symbol-file command can be used only under Harris’ CXUX
operating system for the Motorola 88k. GDB automatically looks for shared
libraries, however if GDB does not find yours, you canadifishared-symbol-
file . It takes no arguments.

section
Thesection command changes the base address of sestHammoN of the exec
file to ADDR This can be used if the exec file does not contain section addresses
(such as in the.out format), or when the addresses specified in the file itself are
wrong. Each section must be changed separatelyinfbhies command lists
all the sections and their addresses.

info files

info target
info files andinfo target are synonymous; both print the current target (see
“Specifying a debugging target” on page 163), including the names of the
executable and core dump files currently in use by GDB, and the files from which
symbols were loaded. Tielp target command lists all possible targets rather
than current ones.

All file-specifying commands allow both absolute and relative file names as
arguments. GDB always converts the file name to an absolute file name and
remembers it that way.

GDB supports SunOS, SVr4, Irix 5, and IBM RS/6000 shared libraries. GDB
automatically loads symbol definitions from shared libraries when you usthe
command, or when you examine a core file. (Before you issuertheommand,
remember that GDB does not understand references to a function in a shared library,
unlessyou are debugging a core file).

info share

CYGNUS Debugging with GDB = 157

Commands to specify files

info sharedlibrary
Print the names of the shared libraries which are currently loaded.

sharedlibrary regex

share regex
Load shared object library symbols for files matching a Unix regular expression.
As with files loaded automatically, it only loads shared libraries required by your
program for a core file or after using . If regex is omitted, all shared libraries
required by your program are loaded.

158 m Debugging with GDB GNUPro Toolkit

Errors reading symbol files

Errors reading symbol files

While reading a symbol file, GDB occasionally encounters problems, such as symbol
types it does not recognize, or known bugs in compiler output. By default, GDB does
not notify you of such problems, since they are relatively common and primarily of
interest to people debugging compilers.

If you are interested in seeing information about ill-constructed symbol tables, you
can either ask GDB to print only one message about each such type of problem, no
matter how many times the problem occurs; or you can ask GDB to print more
messages, to see how many times the problems occur, wit taeplaints

command (see “Optional warnings and messages” on page 200).

The messages currently printed, and their meanings, include the folowing.

inner block not inside outer block in symbol
The symbol information shows where symbol scopes begin and end (such as at the
start of a function or a block of statements). This error indicates that an inner
scope block is not fully contained in its outer scope blocks.

GDB circumvents the problem by treating the inner block as if it had the same
scope as the outer block. In the error messggto/ may be shown agdon't
know) " if the outer block is not a function.

block at address out of order
The symbol information for symbol scope blocks should occur in order of
increasing addresses. This error indicates that it does not do so.

GDB does not circumvent this problem, and has trouble locating symbols in the
source file whose symbols it is reading. You can often determine what source file
is affected by specifyingetverbose on. See “Optional warnings and messages”
on page 200.

bad block start address patched
The symbol information for a symbol scope block has a start address smaller than
the address of the preceding source line. This is known to occur in the SUnOS
4.1.1 (and earlier) C compiler.

GDB circumvents the problem by treating the symbol scope block as starting on
the previous source line.

bad string table offset in symbol n
Symbol numben contains a pointer into the string table which is larger than the
size of the string table. GDB circumvents the problem by considering the symbol
to have the nameyo , which may cause other problems if many symbols end up
with this name.

unknown symbol type 0x nn
The symbol information contains new data types that GDB does not yet know

CYGNUS

Debugging with GDB = 159

Errors reading symbol files

how to readox nn is the symbol type of the misunderstood information, in
hexadecimal.

GDB circumvents the error by ignoring this symbol information. This usually
allows you to debug your program, though certain symbols are not accessible. If
you encounter such a problem and feel like debugging it, you can dédugth
itself, breakpoint omomplain , then go up to the functiorgad_dbx_symtab , and
examinebufp to see the symbol.

stub type has NULL name
GDB could not find the full definition for a struct or class.

const/volatile indicator missing (ok if using g++ v1.x), got ...
The symbol information for a C++ member function is missing some information
that recent versions of the compiler should have output for it.

info mismatch between compiler and debugger
GDB could not parse a type specification output by the compiler.

160 = Debugging with GDB GNUPro Toolkit

Errors reading symbol files

0
Q
=
[an]
o
o
™
—

CYGNUS Debugging with GDB = 161

Errors reading symbol files

162 = Debugging with GDB GNUPro Toolkit

Specifying a debugging target

A targetis the execution environment occupied by your program. Often, GDB runs in
the same host environment as your program; in that case, the debugging target is
specified as a side effect when you usefithie orcore commands. When you need
more flexibility—for example, running GDB on a physically separate host, or
controlling a standalone system over a serial port or a realtime system over a TCP/IP
connection—you can use theget command to specify one of the target types
configured for GDB

See the following documentation for more discussion of debugging targets.
» “Active targets” on page 164

e “Commands for managing targets” on page 165

» “Choosing target byte order” on page 168

» “Remote debugging” on page 169

* “The GDB remote serial protocol” on page 170

CYGNUS Debugging with GDB = 163

Active targets

Active targets

There are three classes of targptecessescore files andexecutable files

GDB can work concurrently on up to three active targets, one in each class. This
allows you to (for example) start a process and inspect its activity without abandoning
your work on a core file.

For example, if you executgdb a.out ', then the executable file,out , is the only

active target. If you designate a core file as well—presumably from a prior run that
crashed and coredumped—then GDB has two active targets and uses them in tandem,
looking first in the corefile target, then in the executable file, to satisfy requests for
memory addresses. (Typically, these two classes of target are complementary, since
core files contain only a program'’s read-write memory—variables and so on—plus
machine status, while executable files contain only the program text and initialized
data.)

When you typeun , your executable file becomes an active process target as well.
When a process target is active, all GDB commands requesting memory addresses
refer to that target; addresses in an active core file or executable file target are
obscured while the process target is active.

Use thecore-file andexec-file ~ commands to select a new core file or executable
target (see “Commands to specify files” on page 154). To specify as a target a process
that is already running, use tlteach command (see “Debugging an already-running
process” on page 40).

164 = Debugging with GDB GNUPro Toolkit

Commands for managing targets

Commands for managing targets

The following are some commands for targets.

target type parameters
Connects the GDB host environment to a target machine or process. A target is
typically a protocol for talking to debugging facilities. You use the argument,
type , t0 specify the type or protocol of the target machine.

Furtherparameters are interpreted by the target protocol, but typically include
things like device names or host names to connect with, process numbers, and
baud rates.

Thetarget command does not repeat if you Regurn again after executing the
command.

help target
Displays the names of all targets available. To display targets currently selected,
use eithelnfo target or info files (see “Commands to specify files”
on page 154).

help target name
Describe a particular target, including any parameters (usifgfor the specific
target) necessary to select it.

set gnutarget args
GDB uses its own library, BFD, to read your files. GDB knows whether it is
reading arexecutableacore, or a.o file; however you can specify the file format
with theset gnutarget command.

Unlike mosttarget commands, witlynutarget , thetarget refers to a program,
not a machine.

WARNING: To specify a file format witlet gnutarget ~ , you must know the
actual BFD name.

See “Commands to specify files” on page 154.

show gnutarget

Use theshow gnutarget command to display what file formgdutarget is set

to read. If you have not sgtutarget , GDB will determine the file format for

each file automatically arghow gnutarget ~ displays the following output.

The current BDF target is “auto”.

The following are some common targets (available, or not, depending on the GDB
configuration). Different targets are available on different configurations of GDB;
your configuration may have more or fewer targets.

CYGNUS Debugging with GDB = 165

Commands for managing targets

target exec program
An executable file.target exec program ' is like ‘exec-file program .

target core filename
A core dump file. target core filename ' is like ‘core-file filename
target remote dev

Remote serial target in GDB-specific protocol. The argumentspecifies what
serial device to use for the connection (e/geylttya). See “Remote

debugging” on page 16&rget remote now supports thead command. This

is only useful if you have some other way of getting the stub to the target system,
and you can put it somewhere in memory where it won't get clobbered by the
download.

target sim
CPU simulator. See “Simulated CPU target” on page 191.

target udi keyword
Remote AMD29K target, using the AMD UDI protocol. Theword argument
specifies which 29K board or simulator to use. See “The UDI protocol for
AMD29K” on page 180.

target amd-eb dev speed PROG
Remote PC-resident AMD EB29K board, attached over serial lisess the
serial device, as fasrgetremote ; speed allows you to specify the linespeed;
andrrods the name of the program to be debugged, as it appears to DOS on the
PC. See “The EBMON protocol for AMD29K” on page 180.

targethms dev
A Hitachi SH,H8/300, orH8/500 board, attached using a serial line to a host. Use
special commandsevice andspeed , to control the serial line and the
communications speed used. See “GDB and Hitachi microprocessors”
on page 188.

target nindy devicename
An Intel 960 board controlled by a Nindy Monit@gvice-name is the name of the
serial device to use for the connection, edgvittya '. See “GDB with a remote
1960 (Nindy)” on page 179.

target st2000 dev speed
A Tandem ST2000 phone switch, running Tandem’s STD-BUG protagois
the name of the device attached to the ST2000 seriakfiag; is the
communication line speed. The arguments are not used if GDB is configured to
connect to the ST2000, using TCP or Telnet. See “GDB with a Tandem ST2000"
on page 183.

target vxworks machinename
A VxWorks system, attached using TCP/IP. The arguneiatinename , is the

166 = Debugging with GDB GNUPro Toolkit

Commands for managing targets

target system’s machine name or IP address. See “GDB and VxWorks”
on page 184.

target cpu32bug dev
CPU32BUG monitor, running on a CPU32 (M68K) board.

target op50n dev
OP50N monitor, running on an OKI HPPA board.

target w89k dev
W89K monitor, running on a Winbond HPPA board.

target est dev
EST-300 ICE monitor, running on a CPU32 (M68K) board.

target rom68k dev
ROM 68K monitor, running on an IDP board.

target array dev
Array Tech LSI33K RAID controller board.

target sparclite dev
Fujitsu SPARCIite boards, used only for the purpose of loading. You must use an
additional command to debug the program like, for exarsgpietremote dev,
using GDB standard remote protocol.

CYGNUS Debugging with GDB = 167

Choosing target byte order

Choosing target byte order

You can now choose which byte order to use with a target system. Use the

endian big andset endian little commands. Use thet endian auto

command to instruct GDB to use the byte order associated with the executable. You
can see the current setting for byte order withsto@ endian command

WARNING: Currently, only embedded MIPS configurations support dynamic
selection of target byte order.

168 m Debugging with GDB GNUPro Toolkit

Remote debugging

Remote debugging

If you are trying to debug a program running on a machine that cannot run GDB in the
usual way, it is often useful to use remote debugging. For example, you might use
remote debugging on an operating system kernel, or on a small system which does not
have a general purpose operating system powerful enough to run a full-featured
debugger.

Some configurations of GDB have special serial or TCP/IP interfaces to make this
work with particular debugging targets. In addition, GDB comes with a generic serial
protocol (specific to GDB, but not specific to any particular target system) which you
can use if you write the remote stubs—the code that runs on the remote system to
communicate with GDB.

Other remote targets may be available in your configuration of GDBieyse
target to list them.

CYGNUS

Debugging with GDB = 169

The GDB remote serial protocol

The GDB remote serial protocol

The following documentation discusses the GDB remote serial protocol.You must
link with your program using a few special-purpose subroutines cslidthat
implement the GDB remote serial protocol.

“What the stub can do for you” on page 171
“What you must do for the stub” on page 172
“Putting it all together” on page 174
“Communication protocol” on page 175

“Using the gdbserver program” on page 176
“Using the gdbserve.nim program” on page 178
“GDB with a remote 1960 (Nindy)” on page 179
“The UDI protocol for AMD29K” on page 180
“GDB with a Tandem ST2000" on page 183
“GDB and VxWorks” on page 184

“GDB and SPARCIlet” on page 186

“Connecting to SPARClet” on page 187
“SPARClIet download” on page 187

“GDB and Hitachi microprocessors” on page 188
“GDB and remote MIPS boards” on page 189

To debug a program running on another machine (the debugggeimachine), you
must use the following directions.

1. Arrange for all the usual prerequisites for the program to run by itself.

For example, for a C program, you need the following three prerequisites.

o A startup routine to set up the C runtime environment; these usually have a
name like ¢rt0 ', The startup routine may be supplied by a hardware supplier,
SO you may have to write your own.

o You probably need a C subroutine library to support your program’s
subroutine calls, notably managing input and output.

o A way of getting your program to the other machine—for example, a
download program. These are often supplied by manufacturers, so you may
have to write your own from hardware documentation.

2. Arrange for your program to use a serial port to communicate with the machine

170 = Debugging with GDB GNUPro Toolkit

What the stub can do for you

where GDB is running (theostmachine). In general terms, the scheme follows a
standard protocol.

o On thehost
GDB already understands how to use this protocol; when everything else is
set up, you can simply use thaget remote ' command (see “Commands
for managing targets” on page 165).

o On thetarget
You must link with your program using a few special-purpose subroutines
that implement the GDB remote serial protocol. The file containing these
subroutines is called a debugging stub.

On certain remote targets, you can use an auxiliary progtiosayver ,

instead of linking a stub into your program. See “Using the gdbserver
program” on page 176 for details.

The debugging stub is specific to the architecture of the remote machine; for
example, usesparc-stub.c ' to debug programs on SPARC boards. The
following working remote stubs are distributed with GDB.

sparc-stub.c
For SPARC architectures.

m68k-stub.c
For Motorola 680x0 architectures.

i386-stub.c
For Intel 386 and compatible architectures.

The ‘READMEKEfile in the GDB distribution may list other recently added stubs.

What the stub can do for you

The debuggingtubfor your architecture is what supplies the following three
subroutines.
set_debug_traps
This routine arranges folndle_exception to run when your program stops.
You must call this subroutine explicitly near the beginning of your program.
handle_exception
This is the central workhorse, but your program never calls it explicitly—the
setup code arranges fiendle_exception to run when a trap is triggered.

CYGNUS Debugging with GDB = 171

What you must do for the stub

handle_exception takes control when your program stops during execution (for
example, on a breakpoint), and mediates communications with GDB on the host
machine. This is where the communications protocol is implemettedi

exception acts as the GDB representative on the target machine; it begins by
sending summary information on the state of your program, then continues to
execute, retrieving and transmitting any information GDB needs, until you
execute a GDB command that makes your program resume; at that point,
handle_exception returns control to your own code on the target machine.

breakpoint
Use this auxiliary subroutine to make your program contain a breakpoint.
Depending on the particular situation, this may be the only way for GDB to get
control. For instance, if your target machine has some sort of interrupt button, you
won't need to call this; pressing the interrupt button transfers control to
handle_exception— in effect, to GDB. On some machines, simply receiving
characters on the serial port may also trigger a trap; again, in that situation, you
don’t need to calbreakpoint from your own program—simply runningfget
remote ' from the host GDB session gets control.

Call breakpoint if none of these is true, or if you simply want to make certain
your program stops at a predetermined point for the start of your debugging
session.

What you must do for the stub

The debugging stubs that come with GDB are set up for a particular chip architecture,
having no information about the rest of the target machine being debugged.

First of all, you need to tell the stub how to communicate with the serial port with the

following subroutines.

int getDebugChar()
Write this subroutine to read a single character from the serial port. It may be
identical togetchar for your target system; a different name is used to allow you
to distinguish the two if you wish.

void putDebugChar(int)
Write this subroutine to write a single character to the serial port. It may be
identical toputchar for your target system; a different name is used to allow you
to distinguish the two if you wish.

If you want GDB to be able to stop your program while it is running, you need to use
an interrupt-driven serial driver, and arrange for it to stop when it receizes a

("\003 ’, the Control-C character). That is the character which GDB uses to tell the
remote system to stop.

172 = Debugging with GDB GNUPro Toolkit

What you must do for the stub

Getting the debugging target to return the proper status to GDB probably requires
changes to the standard stub; one quick and dirty way is to just execute a breakpoint
instruction (the “dirty” part is that GDB reportsaTRAPinstead of a&IGINT).

Other routines you need to supply are the following.

void exceptionHandler (int exception_number , void * exception_address)
Write this function to instakkxception_address in the exception handling tables.

You need to do this because the stub does not have any way of knowing what the
exception handling tables on your target system are like (for example, the
processor’s table might be ®om, containing entries which point to a table in

RAM). exception_number IS the exception number which should be changed; its
meaning is architecture-dependent (for example, different numbers might
represent divide by zero, misaligned access, etc). When this exception occurs,
control should be transferred directlyei@eption_address , and the processor

state (stack, registers, and so on) should be just as it is when a processor exception
occurs. So if you want to use a jump instruction to reaefption_address , it

should be a simple jump, not a jump to subroutine.

For the 386exception_address ~ should be installed as an interrupt gate so that
interrupts are masked while the handler runs. The gate should be at privilege level
0 (the most privileged level). TrARCand 68k stubs are able to mask interrup
themselves without help froaxceptionHandler

void flush_i_cache()
(sparc and sparclite only) Write this subroutine to flush the instruction cache, if
any, on your target machine. If there is no instruction cache, this subroutine may
be a no-op.

On target machines that have instruction caches, GDB requires this function to
make certain that the state of your program is stable.

You must also make sure the following library routine is available.

void *memset(void *, int, int)
This is the standard library functianemset, which sets an area of memory to a
known value. If you have one of the free versionsaet , memset can be found
there; otherwise, you must either obtain it from your hardware manufacturer, or
write your own.

If you do not use the GNU C compiler, you may need other standard library
subroutines as well; this varies from one stub to another, but in general the stubs are
likely to use any of the common library subroutines whighgenerates as inline

code.

CYGNUS

Debugging with GDB = 173

Putting it all together

Putting it all together

In summary, when your program is ready to debug, you must use the following steps.

1. Make sure you have the supporting low-level routines (see Section “What you
must do for the stub” on page What you must do for the sjeiDebugChar
putDebugChar , flush_i_cache , memset, exceptionHandler

2. Insert these lines near the top of your program:

set_debug_traps();

breakpoint();
3. For the 680x0 stub only, you need to provide a variable cattegtionHook
Normally you just useoid (*exceptionHook)() = 0; , but if before calling

set_debug_traps , you set it to point to a function in your program, that function
is called when GDB continues after stopping on a trap (for example, bus error).
The function indicated byxceptionHook is called with one parameter: an

which is the exception number.

4. Compile and link together: your program, the GDB debugging stub for your target
architecture, and the supporting subroutines.

5. Make sure you have a serial connection between your target machine and the
GDB host, and identify the serial port on the host.

6. Download your program to your target machine (or get it there by whatever means
the manufacturer provides), and start it.

7. To start remote debugging, run GDB on the host machine, and specify as an
executable file the program that is running in the remote machine. This tells GDB
how to find your program’s symbols and the contents of its pure text.

Then establish communication using theet remote command. Its argument
specifies how to communicate with the target machine—either via a devicename
attached to a direct serial line, or a TCP port (usually to a terminal server which in
turn has a serial line to the target). For example, to use a serial line connected to
the device nameddevittyb ', usetarget remote /devittyb

To use a TCP connection, use an argument of the Agstnport . For example,
to connect to port 2828 on a terminal server namegfarms , use the following
command.

target remote manyfarms:2828.
Now you can use all the usual commands to examine and change data and to step and
continue the remote program.
To resume the remote program and stop debugging it, ugetdbie command.

Whenever GDB is waiting for the remote program, if you use the interrupt character
sequence (ofterGtrl-C), GDB attempts to stop the program. This may or may not

174 = Debugging with GDB GNUPro Toolkit

Communication protocol

succeed, depending in part on the hardware and the serial drivers the remote system
uses. If you type the interrupt character once again, GDB displays the following
prompt:

Interrupted while waiting for the program.

Give up (and stop debugging it)? (y or n)

If you press thg key, GDB abandons the remote debugging session. (If you decide
you want to try again later, you can usget remote again to connect once more.)
If you press the key, GDB goes back to waiting.

Communication protocol

The stub files provided with GDB implement the target side of the communication
protocol, and the GDB side is implemented in the GDB sourceditete.c .

Normally, you can simply allow these subroutines to communicate, and ignore the
details. (If you're implementing your own stub file, you can still ignore the details:
start with one of the existing stub filesparc-stub.c ' is the best organized, and
therefore the easiest to read.)

However, there may be occasions when you need to know something about the
protocol—for example, if there is only one serial port to your target machine, you
might want your program to do something special if it recognizes a packet meant for
GDB.

All GDB commands and responses (other than acknowledgements, which are single
characters) are sent as a packet which includes a check-sum. A packet is introduced
with the characterg’, and ends with the characte#,, followed by a two-digit
checksums$packet info #checksum .

checksum iS computed as the modulo 256 sum ofghwget info characters.

When either the host or the target machine receives a packet, the first response
expected is an acknowledgement: a single character, eitlfter indicate the package
was received correctly) or” (to request retransmission). The host (GDB) sends
commands, and the target (the debugging stub incorporated in your program) sends
data in response. The target also sends data when your program stops.

Command packets are distinguished by their first character, which identifies the kind
of command. The following are some of the commands currently supported (for a
complete list of commands, look igdb/remote.c. °):
g

Requests the values of CPU registers.
G

Sets the values of CPU registers.

CYGNUS

Debugging with GDB = 175

Using the gdbserver program

meddr , count
Read countbytes at location addr.
Maddr , count ...
Write count bytes at locationgdar .
C cadadr
Resume execution at the current address (afat if supplied).
S saddr
Step the target program for one instruction, from either the current program
counter or fromdar , if supplied.

k
Kill the target program.

?
Report the most recent signal. To allow you to take advantage of the GDB signal
handling commands, one of the functions of the debugging stub is to report CPU
traps as the corresponding POSIX signal values.

-

Allows the remote stub to send only the registers that GDB needs to make a quick
decision about single-stepping or conditional breakpoints. This eliminates the
need to fetch the entire register set for each instruction being stepped through.

The GDB remote serial protocol now implements a write-through cache for
registers. GDB only re-reads the registers if the target has run.

If you have trouble with the serial connection, you can use the comsaand,

remotedebug . This makes GDB report on all packets sent back and forth across the
serial line to the remote machine. The packet-debugging information is printed on the
GDB standard output streaset remotedebug ~ off turns it off, andshow

remotedebug Shows you its current state.

Using the gdbserver program

gdbserver is a control program for Unix-like systems, allowing you to connect your
program with a remote GDB usimgget remote , without linking in the usual
debugging stub.

gdbserver is not a complete replacement for the debugging stubs, because it requires
essentially the same operating-system facilities that GDB itself does. In fact, a system
that can rurydobserver to connect to a remote GDB could also run GDB locally!
gdbserver is sometimes useful nevertheless, because it is a much smaller program
than GDB itself. It is also easier to port than all of GDB, so you may be able to get
started more quickly on a new system by usitgerver . Finally, if you develop

code for real-time systems, you may find that the tradeoffs involved in real-time

176 = Debugging with GDB GNUPro Toolkit

Using the gdbserver program

operation make it more convenient to do as much development work as possible on
another system, for example by cross-compiling. You cagdiserver to make a
similar choice for debugging.

GDB andgdbserver communicate using either a serial line or a TCP connection,
using the standard GDB remote serial protocol.The following discussions detail the
connections of the target machine and the host machine.
On the target machine
You need to have a copy of the program you want to dejdogerver does not
need your program’s symbol table, so you can strip the program if necessary to
save space. GDB on the host system does all the symbol handling. To use the
server, you must tell it how to communicate with GDB; the name of your
program; and the arguments for your program. The syntaxget>
gdbserver comm program [args ...]

comm is either a device name (to use a serial line) or a TCP hostname and
portnumber. For example, to debug Emacs with the argument, , and
communicate with GDB over the serial pattv/com1 , use the following.

target> gdbserver /dev/icom1 emacs foo.txt.

gdbserver waits passively for the host GDB to communicate with it. To use a
TCP connection instead of a serial line, use the following.

target> gdbserver host:2345 emacs foo.txt.

The only difference from the previous example is the first argument, specifying
that you are communicating with the host GDB via TCP. hh&:2345

argument means thgdbserver is to expect a TCP connection from machine
‘host ' to local TCP port 2345. (Currently, thieost * part is ignored.) You can
choose any number you want for the port number as long as it does not conflict
with any TCP ports already in use on the target system (for exazapte,

reserved forelnet).
You must use the same port number with the host GEB remote
command.

On the GDB host machine
You need an unstripped copy of your program, since GDB needs symbols and
debugging information.

Start up GDB as usual, using the name of the local copy of your program as the
first argument. (You may also need theaud ' option if the serial line is running
at anything other than 9600 bps.)

After that, usearget remote to establish communications wighbserver

1t you choose a port number that conflicts with another sergilleserver prints an error message and exits.

CYGNUS Debugging with GDB = 177

Using the gdbserve.nlm program

Its argument is either a device name (usually a serial deviceldikeyb) or a
TCP port descriptor in the formgst : PORT For example(gdb) target remote
/devittyp communicates with the server via serial lildey/ttyb

(gdb) target remote the-target:2345 communicates via a TCP connection
to port 2345 on hosthe-target . For TCP connections, you must start up
gdbserver prior to using thearget remote command. Otherwise you may get
an error whose text depends on the host system, but which usually looks
something like Connection refused ' in the declaration.

Using the gdbserve.nlm program

gdbserve.nim is a control program for NetWare systems, allowing you to connect
your program with a remote GDB ui&get remote

GDB andgdbserve.nim communicate using a serial line, with the standard GDB
remote serial protocol. The following discussions detail the connections of the target
machine and the host machine.

On the target machine

You need to have a copy of the program you want to dejdbgerve.nim does
not need your program’s symbol table, so you can strip the program if necessary
to save space. GDB on the host system does all the symbol handling. To use the
server, you must tell it: how to communicate with GDB, the name of your
program, and the arguments for your program. The syntax is the following.

load gdbserve [BOARD= board][PORT=port]

[BAUD=baud] program [args ... |

board andport specify the serial linejaud specifies the baud rate used by the
connectionport andnode default to 0paud defaults to 9600 bps. For example, to
debug Emacs with the argumefat,.tixt , in orfer to communicate with GDB
over serial port number 2 or board 1 using a 19200 bps connection, use the
following declaration.

load gdbserve BOARD=1 PORT=2 BAUD=19200 emacs foo.txt

On the GDB host machine, you need an unstripped copy of your program, since
GDB needs symbols and debugging information. Start up GDB as usual, using the
name of the local copy of your program as the first argument. (You may also need
the “-baud ’ option if the serial line is running at anything other than 9600 bps.

After that, usearget remote to establish communications wighbserve.nim

Its argument is a device name (usually a serial device/dilueyb). For
example(gdb) target remote /devi/ttyb communicates with the server via
serial line/devittyb

178 m Debugging with GDB GNUPro Toolkit

GDB with a remote i960 (Nindy)

GDB with a remote 1960 (Nindy)

Nindyis aroM Monitor program for Intel 960 target systems. When GDB is
configured to control a remote Intel 960 using Nindy, you can tell GDB how to
connect to the 960 in the following ways.

» Through command line options specifying serial port, version of the Nindy
protocol, and communications speed;

» By responding to a prompt on startup;

* By using thearget command at any point during your GDB session. See
“Commands for managing targets” on page Commands for managing targets.

Startup with Nindy

If you simply stargdb without using any command-line options, you are prompted for
what serial port to uséeforeyou reach the ordinary GDB prompt:

attach /dev/ttyNN -- specify NN, or "quit" to quit:

Respond to the prompt with whatever suffix (aftev/tty) to identify the serial port
that you want to use. You can, if you choose, simply start up with no Nindy
connection by responding to the prompt with an empty line. If you do this and later
wish to attach to Nindy, userget (see “Commands for managing targets”

on page 165).

Nindy reset command

reset
For a Nindy target, this command sends a “break” to the remote target system; this
is only useful if the target has been equipped with a circuit to perform a hard reset
(or some other interesting action) when a break is detected.

Options for Nindy

The following are the startup options for beginning your GDB session with a Nindy-
960 board attached.
-r port
Specify the serial port name of a serial interface to be used to connect to the target
system. This option is only available when GDB is configured for the Intel 960
target architecture. You may specikyt as any of: a full pathname (e.g.,
I/devittya), a device name indev ’ (e.g.,-r ttya), or simply the unique suffix
for a specific tty (e.g-y a).

(An uppercase letter “O”, not a zero.) Specify that GDB should use the “old”

CYGNUS Debugging with GDB = 179

The UDI protocol for AMD29K

Nindy manitor protocol to conrect to the target system. This option is only
available when GDB is configured for the Intel 960 target architecture.

WARNING: If you gecify -0’, but are actuall trying to onnect to atarget
system that epects thenewer probcol, the connectiofails,
appearing to be a sped msmatch. GDBrepeatedy attemptsto
reconnect at severa different line speeds. You can abort thisprocess
with an interrupt.

-brk

Specify that GDB should first sendeREA signal to the targetystem, h an
attempt b reset it, before conrecting to a Nindy target.

WARNING: Many target systemdo not have the hardware thhistrequires; it
only works with a few boards.

The stadard “b ' option controls the line speed used , the serial port.

The UDI protocol for AMD29K

GDB syportsAMD’s UDI (“Uni versal Debuger Interface”) probcol for déugging
the A29K processor family. @ use this confjuration wih AMD targets running the
MiniMON monitor, you need the program MONTP, available from AMD aho charge.
You can alsouse GDB wih the UDI-conformant A29K simulat program|SSTI P,
also available fom AMD.
targ etudi keyword
Select the UDI interbce b aremote29K board or simulator, wherekeywora is an
entry inthe AMD configuration file ‘udi_soc . Thisfile contairs keyword entries
which speify parameters used to comect to A29K targets. If #1'udi_soc ' file is
not in your working directory, you mussetthe environment variable UDICOW’ to
its pathrame.

The EBMON protocol for AMD29K

AMD distributes a 29K developmeboard meat to fit in a PC together with a
DOS-hostd monitor program calle@&BMONAS a shorthand term, we use “EB2Z as
aname for his development sgtem.

To ue GDB from aUnix system toun programs onhie EB2XK board, you nastfirst
conrect aserial cable between the PC (whiclhosts tle EB29K board) and asera port
on the Unix g/stem.

In the following, we assumygou’ve tooked the cable between the PCisOM1 port
and Ydevitty a’ onthe Unix system.

180 = Debugging with GDB GNUPro Toolkit

The UDI protocol for AMD29K

Communications setup

The next step is to set up the PC’s port, using something like the following in DOS on
the PC:

C:\> MODE com1:9600,n,8,1,none

This example—run on an MS DOS 4.0 system—sets the PC port to 9600 bps, no
parity, eight data bits, one stop bit, and no “retry” action; you must match the
communications parameters when establishing the Unix end of the connection as welk

To give control of the PC to the Unix side of the serial line, attheprompt, type:
CTTY coml.

(Later, if you wish to return control to the DOS console, you can use the command
CTTY con—but you must send it over the device that had control, in the example, over
the ‘comlserial line). From the Unix host, use a communications program such as
tip Or cu to communicate with the PC; for example;s 9600 -l /devittya

Thecu options shown specify, respectively, the linespeed and the serial port to use. If
you useip instead, your command line may look something like9600
/devi/ttya

Your system may require a different name where we stemtya as the argument
totip . The communications parameters, including which port to use, are associated
with thetip argument in the “remote” descriptions file—normally the system table,
/etc/remote

Using thetip orcu connection, change the DOS working directory to the directory
containing a copy of your 29K program, then start the PC progsinmgNan EB29K
control program supplied with your board by AMD).

You should see an initial display froeeMonsimilar to the one that follows, ending
with theEBMONprompt,#.

Example 1: PC program,EBMONan EB29K control program

C\>G:

G:\> CD \usr\joe\work29k

G:\USRJOE\WORK?29K> EBMON Am29000 PC Coprocessor Board Monitor,
version 3.0-18 Copyright 1990 Advanced Micro Devices, Inc. Written
by Gibbons and Associates, Inc.

Enter '?’ or 'H’ for help

PC Coprocessor Type = EB29K
I/O Base = 0x208

CYGNUS

Debugging with GDB = 181

The UDI protocol for AMD29K

Memory Base = 0xd0000
Data Memory Size = 2048KB
Available I-RAM Range = 0x8000 to Ox1fffff
Available D-RAM Range = 0x80002000 to 0x801fffff
PageSize = 0x400
Register Stack Size = 0x800

Memory Stack Size = 0x1800

CPU PRL =0x3
Am29027 Available = No

Byte Write Available = Yes

#°.

Then exit theu ortip program (the previous example shows the use at the
EBMONprompt,#). EBMONKeeps running, ready for GDB to take over.

For this example, we've assumed what is probably the most convenient way to make
sure the same 29K program is on both the PC and the Unix system: a PC/NFS
connection that establishes “drig€on the PC as a file system on the Unix host. If

you do not have PC/NFS or something similar connecting the two systems, you must
arrange some other way—perhaps floppy-disk transfer—of getting the 29K program
from the Unix system to the PC; GDB does not download it over the serial line.

EB29K cross-debugging

Finally, cd to the directory containing an image of your 29K program on the Unix
system, and start GDB—specifying as argument the name of your 29K program, as in
the following example.

cd /usr/joe/work29k
gdb myfoo

Now, use thearget command, as in the following declaration.
target amd-eb /dev/ttya 9600 MYFOO

In this example, we've assumed your program is in a file caligido '.

NOTE: The filename given as the last argumentiget amd-eb should be
the name of the program as it appears to DOS. In our example this is
simply MYFOQbut in general it can include a DOS path, and,
depending on your transfer mechanism, may not resemble the name
on the Unix side. At this point, you can set any breakpoints you wish;

182 m Debugging with GDB GNUPro Toolkit

GDB with a Tandem ST2000

when you are ready to see your program run on the 29K board, use
the GDB commandun .

To stop debugging the remote program, use the @8h command.

To return control of the PC to its console, tise or cu once again, after your GDB
session has concluded, to attacEsmoONYou can then type the commadndb shut
downEBMONreturning control to the DOS command-line interpreter. TyPer con
to return command input to the main DOS console, andtypeleaveip orcu. See
Example 1:“PC program, EBMON (an EB29K control program” on page 181.

Remote log

Thetargetamd-eb command creates a fileb'log ’, in the current working
directory, to help debug problems with the connectiginiog ’ records all the output
from EBMONINcluding echoes of the commands sent to it. Runnéig* ' on this
file in another window often helps to understand trouble sgtioNor unexpected
events on the PC side of the connection.

GDB with a Tandem ST2000

To connect your ST2000 to the host system, see the manufacturer’s manual. Once
ST2000 is physically attached, you can tatget st2000 devspeed tO establish it
as your debugging environment.

dev is normally the name of a serial device, suchi@gttya , connected to the
ST2000 via a serial line. You can instead spegifyas a TCP connection (for
example, to a serial line attached via a terminal concentrator) using the syntax,
hostname . portnumber .

Theload andattach commands are not defined for this target; you must load your
program into the ST2000 as you normally would for standalone operation. GDB reads
debugging information (such as symbols) from a separate, debugging version of the
program available on your host computer.

The following auxiliary GDB commands are available to help you with the ST2000
environment:

st2000 command
Send aommandto thesTDBU@MoOnitor. See the manufacturer's manual for
available commands.

connect
Connect the controlling terminal to tsgbBUuccommand monitor. When you are
done interacting witlsTDBUG typing either of two keystroke sequences gets you
back to the GDB command prompt: using Regurn key, then the tilde key

CYGNUS Debugging with GDB = 183

GDB and VxWorks

("),and then the period) (key; or theReturn key, the tilde key, and then,
simultaneously, th€ontrol and uppercase keys).

GDB and VxWorks

GDB enables developers to spawn and debug tasks running on networked VxWorks
targets from a Unix host. Already-running tasks spawned from the VxWorks shell can
also be debugged. GDB uses code that runs on both the Unix host and on the
VxWorks target. Thegdb program is installed and executed on the Unix host. (It may
be installed with the namexgdb , to distinguish it fronydb for debugging programs
on the host itself.)
VxWorks-timeout args

All VxWorks-based targets now support the optigmorks-timeout . This

option is set by the user, aags represents the number of seconds GDB waits

for responses to rpc’s. You might use this if your VxWorks target is a slow

software simulator or is on the far side of a thin network line.

The following information on connecting to VxWorks was current when this manual
was produced; newer releases of VxWorks may use revised procedures. To use GDB
with VxWorks, you must rebuild your VxWorks kernel to include the remote
debugging interface routines in the VxWorks libragpa '. To do this, define
INCLUDE_RDBIn the VxWorks configuration fileconfigAllh ~ * and rebuild your
VxWorks kernel. The resulting kernel containgb’a ’, and spawns the source
debugging taskRrdbTask , when VxWorks is booted. For more information on
configuring and remaking VxWorks, see the manufacturer’'s manual. Once you have
included fdb.a ' in your VxWorks system image and set your Unix execution search
path to find GDB, you are ready to run GDB. From your Unix hostgdbr{or vxgdb ,
depending on your installation). GDB comes up showing the promypt) .

Connecting to VxWorks

The GDB command target lets you connect to a VxWorks target on the network. To
connect to a target whose host namatis,“use something like the following
example’s declaration.

(vxgdb) target vxworks tt

GDB then displays messages like the following declarations.

Attaching remote machine across net...

Connected to tt.

GDB then attempts to read the symbol tables of any object modules loaded into the
VXxWorks target since it was last booted. GDB locates these files by searching the

184 m Debugging with GDB GNUPro Toolkit

GDB and VxWorks

directories listed in the command search path (see “Your program’s environment”
on page 36); if it fails to find an object file, it displays a message such as:

prog.o: No such file or directory.

When this happens, add the appropriate directory to the search path with the GDB
command path, and execute the target command again.

VxWorks download

If you have connected to the VxWorks target and you want to debug an object that has
not yet been loaded, you can use the GdaB command to download a file from
Unix to VxWorks incrementally.

The object file given as an argument toitleed command is actually opened twice:

first by the VxWorks target in order to download the code, then by GDB in order to
read the symbol table. This can lead to problems if the current working directories on
the two systems differ.

If both systems have had NFS mount the same filesystems, you can avoid these
problems by using absolute paths. Otherwise, it is simplest to set the working
directory on both systems to the directory in which the object file resides, and then to
reference the file by its name, without any path.

For instance, a programrog.o ' may reside invxpath /vw/demo/rdb ' in VXWorks
and in ‘hostpath fvw/demo/rdb ' on the host.

To load this program on VxWorks, type:cd“ vxpath /vw/demo/rdb”
Then, in GDB, type:

(vxgdb) cd hostpath Ivw/demo/rdb

(vxgdb) load prog.o
GDB displays a response similar to this:

Reading symbol data from wherever/vw/demo/rdb/prog.o... done.

You can also use thead command to reload an object module after editing and
recompiling the corresponding source file.

NOTE: This makes GDB delete all currently-defined breakpoints, auto-
displays, and convenience variables, and clears the value history.
(This is necessary in order to preserve the integrity of debugger data
structures that reference the target system’s symbol table.)

Running tasks

You can also attach to an existing task using the attach command as follows:

CYGNUS Debugging with GDB = 185

GDB and SPARClet

(vxgdb) attach task

task is the VXWorks hexadecimal task ID. The task can be running or suspended
when you attach to it. Running tasks are suspended at the time of attachment.

GDB and SPARClet

GDB enables developers to debug tasks running on SPARClIet targets from a Unix
host. GDB uses code that runs on both the Unix host and on the SPARClet target. The
program,gdb, is installed and executed on the Unix host.
timeout args

GDB now supports the optiorgmotetimeout . This option is set by the user;

args represents the number of seconds GDB waits for responses.

When compiling for debugging, include the optian, to get debug information and
the option;Ttext , to relocate the program to where you wish to load it on the target.
You may also want to add the optiem, or the option;N, in order to reduce the size

of the sections. Use the following command input as an example.

sparclet-aout-gcc prog.c -Ttext 0x12010000 -g -o prog -N

You can usebjdump to verify that the addresses are what you intended.

sparclet-aout-objdump --headers --syms prog

Once you have set your Unix execution search path to find GDB, you are ready to run
GDB. From your Unix host, rugdb (or sparclet-aout- gdb , depending on your
installation). GDB shows its prompjdfslet)

Setting file to debug

The GDB commandile , lets you choose which program to debug as the following
example shows. GDB then attempts to read the symbol taplegof

(gdbslet) file prog

GDB locates the file by searching the directories listed in the command search path. If
the file was compiled with debug information (using the optigh, source files will

be searched as well. GDB locates the source files by searching the directories listed in
the directory search path (see “Your program’s environment” on page 36). If it fails to
find a file, it displays a message suchpas: No such file or directory

When this happens, add the appropriate directories to the search paths with the GDB
commandspath anddir , and execute tharget command again.

186 = Debugging with GDB GNUPro Toolkit

Connecting to SPARClet

Connecting to SPARClet

The GDB commandarget , lets you connect to a SPARClet target. To connect to a
target on serial port callaga , use the following command at the SPARClet GDB
prompt,gdbslet .

target sparclet /dev/ttya

GDB displays messages like the following output.

Remote target sparclet connected to /dev/ttya
main () at ../prog.c:3

Connected to ttya.

SPARCIlet download

Once connected to the SPARClet target, you can use thedaDBommand to
download the file from the host to the target. The file name and load offset should be
given as arguments to thed command. Since the file formatdsut , the program

must be loaded to the starting address. You can use the binary atjdiiyhp , to find

out what this value is. The load offset is an offset which is added te#h(girtual
memory address) of each of the file's sections. For instance, if the progsanwas
linked to text addressx1201000 , with data abx12010160 andbss atox12010170 , in

GDB, use the commantad prog 0x12010000 , at the prompftgdbslet)

You'll then see the following output.
Loading section .text, size Oxdb0 vma 0x12010000

If the code is loaded at a different address than that to which the program was linked,
you may need to use tkection andadd-symbol-file commands to tell GDB
where to map the symbol table.

Running and debugging

Now begin debugging the task using any of GDB’s commandssp , run , and so
on (for help with GDB commands, use the commaag,). The following example
shows what you’d do and see for execution control.

(gdbslet) b main

Breakpoint 1 at 0x12010000: file prog.c, line 3.

The previous insturction sets a breakpoint at line 3 for the file. Then you use the
commandyun . The following is an example of what you'd then see.

(gdbslet) run

CYGNUS Debugging with GDB = 187

GDB and Hitachi microprocessors

The following is an example of the output from GDB you'd then see.

Starting program: prog
Breakpoint 1, main (argc=1, argv=0xeffff21c) at prog.c:3

3 char *symarg = 0O;

Then, at your prompt, use the commasieh , and set the next breakpoint at 4. The
following is an example of what you'd then see.

(gdbslet) step
4 char *execarg = "hello!";
(gdbslet)

GDB and Hitachi microprocessors

GDB needs to know the following things to talk to your Hitachi 881300, or
H8/500.

* That you want to usearget hms ’, the remote debugging interface for Hitachi
microprocessors, orarget e7000 ’, the in-circuit emulator for the Hitachi SH
and the Hitachi 304. (‘target hms ’ is the default when GDB is configured
specifically for the Hitachi SH38/300, orH8/500.)

* What serial device connects your host to your Hitachi board (the first serial device
available on your host is the default).

* What speed to use over the serial device.

Connecting to Hitachi boards

Use the speciajJdo commanddevice port " if you need to explicitly set the serial
device. The defaulport , is the first available port on your host. This is only necessary
on Unix hosts, where it is typically something likevittya

gdb has another special command to set the communications sgpeed: bps’'. This
command also is only used from Unix hosts; on DOS hosts, set the line speed as usual
from outside GDB with the DO&ode command (for instancemnode

com2:9600,n,8,1,p ' for a 9600 bps connection).

The ‘device ' and ‘speed ' commands are available only when you use a Unix host to
debug your Hitachi microprocessor programs. If you use a DOS host, GDB depends
on an auxiliary terminate-and-stay-resident program ca#gdtsr to communicate

with the development board through a PC serial port. You must also use the DOS
mode command to set up the serial port on the DOS side.

188 m Debugging with GDB GNUPro Toolkit

GDB and remote MIPS boards

Using the e7000 in-circuit emulator

You can use the e7000 in-circuit emulator to develop code for either the Hitachi SH or
the H8/300H. Use one of these forms of theyét e7000 ' command to connect
GDB to your H7000:

target e7000 port speed

Use this form if your e7000 is connected to a serial portpdheargument identifies
what serial port to use (for examplegm2). The third argument is the line speed in
bits per second (for examplesbo’).

target e7000 hostname
If your e7000 is installed as a host on a TCP/IP network, you can just specify its
hostname; GDB usesnet to connect.

Special GDB commands for Hitachi micros

Some GDB commands are available only onH8&00 or the48/500 configurations:

set machine h8300

set machine h8300h
Condition GDB for one of the two variants of th&/300 architecture withsét
machine . YOu can useshow machine ' to check which variant is currently in
effect.

set memory mod

show memory
Specify whichH8/500 memory modeh{od you are using withset memory ’;
check which memory model is in effect wighéw memory ’. The accepted values
for modaresmall , big , medium, andcompact .

GDB and remote MIPS boards

GDB can use the MIPS remote debugging protocol to talk to a MIPS board attached to
a serial line.

This is available when you configure GDB wittarget=mips-idt-ecoff

Use the following GDB commands to specify the connection to your target board.
target mips port
To run a program on the board, starigdp with the name of your program as the
argument. To connect to the board, use the commamek mips ~ port ’, where
port is the name of the serial port connected to the board. If the program has not
already been downloaded to the board, you may useathecommand to
download it. You can then use all the usual GDB commands.

For example, the following sequence connects to the target board through a serial
port, and loads and runs a program cagleg through the debugger.

CYGNUS

Debugging with GDB = 189

GDB and remote MIPS boards

host$ gdb prog

GDB is free software and ...

(gdb) target mips /dev/ttyb

(gdb) load prog

(gdb) run

target mips hostname:portnumber

On some GDB host configurations, you can specify a TCP connection (for
instance, to a serial line managed by a terminal concentrator) instead of a serial
port, using the syntavoéstname : portnumber

GDB also supports the following special commands for MIPS targets.

set processor args

show processor
Use theset processor ~ command to set the type of MIPS processor when you
want to access processor-type-specific registers. For exasepecessor
r3041 tells GDB to use the CPO registers appropriate for the 3041 chip. Use the
show processor command to see what MIPS processor GDB is using. Use the
inforeg command to see what registers GDB is using.

set mipsfpu double

set mipsfpu single

set mipsfpu none

show mipsfpu
If your target board does not support the MIPS floating point coprocessor, you
should use the commangkt mipsfpu none ’ (if you need this, you may wish to
put the command in yougdbinit file). This tells GDB how to find the return
value of functions which return floating point values. It also allows GDB to avoid
saving the floating point registers when calling functions on the board. If you are
using a floating point coprocessor with only single precision floating point
support, as on the4650 processor, use the commaswd ripsfpu single
The default double precision floating point coprocessor may be selected using
‘set mipsfpu double ’

In previous versions the only choices were double precision or no floating point,
so ‘set mipsfpuon " will select double precision andet mipsfpu off " will
select no floating point. As usual, you can inquire abountbsgpu variable with
‘show mipsfpu

set remotedebug n

show remotedebug
You can see some debugging information about communications with the board
by setting theemotedebug Vvariable. If you set it te@ using setremotedebug ~ 1’,
every packet is displayed. If you set ittoevery character is displayed. You can
check the current value at any time with the commestitg remotedebug

190 = Debugging with GDB GNUPro Toolkit

GDB and remote MIPS boards

set timeout seconds

set retransmit-timeout seconds

show timeout

show retransmit-timeout
You can control the timeout used while waiting for a packet, in the MIPS remote
protocol, with theset timeout seconds command. The default is 5 seconds.
Similarly, you can control the timeout used while waiting for an
acknowledgement of a packet with e retransmit-timeout seconds
command. The default is 3 seconds. You can inspect both valueswwith
timeout andshow retransmit-timeout

NOTE. These commands are availabldy when GDB is configured foe-
target=mips-idt-ecoff ’
The timeout set byet timeout ~ does not apply when GDB is waiting for your
program to stop. In that case, GDB waits forever because it has no way of knowing
how long the program is going to run before stopping.

Simulated CPU target

For some configurations, GDB includes a CPU simulator that you can use instead of a
hardware CPU to debug your programs. Currently, a simulator is available when GDB
is configured to debug Zilog Z8000 or Hitachi microprocessor targets. For the Z8000
family, ‘target sim ’ simulates either the Z8002 (the unsegmented variant of the
Z8000 architecture) or the Z8001 (the segmented variant). The simulator recognizes
which architecture is appropriate by inspecting the object code.
target sim

Debug programs on a simulated CPU (which CPU depends on the GDB

configuration)

After specifying this target, you can debug programs for the simulated CPU in the

same style as programs for your host computer; usgethecommand to load a
new program image, then command to run your program, and so on.

As well as making available all the usual machine registersn{sesy), this
debugging target provides three additional items of information as specially
named registers:

cycles
Counts clock-ticks in the simulator.

insts

Counts instructions run in the simulator.
time

Execution time in 60ths of a second.

CYGNUS

Debugging with GDB = 191

GDB and remote MIPS boards

You can refer to these values in GDB expressions with the usual conventions; for
example, b fputc if $cycles>5000 ' sets a conditional breakpoint that
suspends only after at least 5000 simulated clock ticks.

192 m Debugging with GDB GNUPro Toolkit

Controllin g GDB

You can alter the way GDB interacts with you by usingstiecommand. For
commands controlling how GDB displays data, see “Print settings” on page 97; other
settings are described in the following documentation.

* “Prompt” on page 194

» “Command editing” on page 195

» “Command history” on page 196

e “Screen size” on page 198

* “Numbers” on page 199

» “Optional warnings and messages” on page 200

CYGNUS Debugging with GDB = 193

Prompt

Prompt

GDB indicates its readiness to read a command by printing a string callehinet

This string is normally(gdb) '. You can change the prompt string with te

prompt command. For instance, when debugging GDB with GDB, it is useful to
change the prompt in one of the GDB sessions so that you can always tell which one
you are talking to.

NOTE. setprompt no longer adds a space for you after the prompt you set.
This allows you to set a prompt which ends in a space or a prompt
that does not.

set prompt newprompt
Directs GDB to us@ewprompt as its prompt string henceforth.
show prompt
Prints a line of the formGdb’s prompt is: your-prompt

’

194 m Debugging with GDB GNUPro Toolkit

Command editing

Command editing

GDB reads its input commands via tleadlineinterface. This GNU library provides
consistent behavior for programs which provide a command line interface to the user.
Advantages are GNU Emacs-stylevostyle inline editing of commandssh -like
history substitution, and a storage and recall of command history across debugging
sessions. You may control the behavior of command line editing in GDB with the
commandset .
set editing
set editing on

Enable command line editing (enabled by default).

set editing off
Disable command line editing.
show editing
Show whether command line editing is enabled.

CYGNUS

Debugging with GDB = 195

Command history

Command history

GDB can keep track of the commands you type during your debugging sessions, so
that you can be certain of precisely what happened. Use the following commands to
manage the GDB command history facility.

set history filename fname
Set the name of the GDB command history filentmme . This is the file where
GDB reads an initial command history list, and where it writes the command
history from this session when it exits. You can access this list through history
expansion or through the history command editing characters listed in the
following. This file defaults to the value of the environment variable
GDBHISTFILE, or to ‘/.gdb_history " if this variable is not set.

set history save

set history save on
Record command history in a file, whose name may be specified withtthe
history filename command. By default, this option is disabled.

set history save off
Stop recording command history in a file.

set history size size
Set the number of commands which GDB keeps in its history list. This defaults to
the value of the environment varialssTSIZE , or to 256 if this variable is not
set.

History expansion assigns special meaning to the charecter,

Since! is also the logical not operator in C, history expansion is off by default. If you
decide to enable history expansion with ¢bnistory expansion on command,

you may sometimes need to followjwhen it is used as logical not, in an expression)
with a space or a tab to prevent it from being expanded. The readline history facilities
do not attempt substitution on the strimgsand!(, even when history expansion is
enabled.

The commands to control history expansion are the following.
set history expansion on
set history expansion

Enable history expansion. History expansion is off by default.

set history expansion off
Disable history expansion.
The readline code comes with more complete documentation of editing and
history expansion features. Users unfamiliar wittu Emacs owvi may wish to
read it.

196 = Debugging with GDB GNUPro Toolkit

Command history

show history

show history filename

show history save

show history size

show history expansion
These commands display the state of the GDB history paransatersistory
by itself displays all four states.

show commands

Display the last ten commands in the command history.
show commands n

Print ten commands centered on command number,
show commands +

Print ten commands just after the commands last printed.

CYGNUS

Debugging with GDB = 197

Screen size

Screen size

Certain commands to GDB may produce large amounts of information output to the
screen. To help you read all of it, GDB pauses and asks you for input at the end of
each page of output. Use tReturn key when you want to continue the output, or type

q to discard the remaining output. Also, the screen width setting determines when to
wrap lines of output. Depending on what is being printed, GDB tries to break the line
at a readable place, rather than simply letting it overflow onto the following line.

Normally, GDB knows the size of the screen from the termcap data base together with
the value of th@ERMenvironment variable and they rows andstty cols
settings. If this is not correct, you can override it withsteeight andset width
commands:
set height Ipp
show height
set width cpl
show width
Theseset commands specify a screen heighippf lines and a screen width of
cpl characters. The associatddw commands display the current settings. If you
specify a height of zero lines, GDB does not pause during output no matter how
long the output is. This is useful if output is to a file or to an editor buffer.

Likewise, you can specifgét width 0’ to prevent GDB from wrapping its
output.

198 m Debugging with GDB GNUPro Toolkit

Numbers

Numbers

You can always enter numbers in octal, decimal, or hexadecimal in GDB by the usual
conventions: octal numbers begin with, ‘decimal numbers end with*, and
hexadecimal numbers begin witsx'. Numbers that begin with none of these are, by
default, entered in base 10; likewise, the default display for numbers—when no
particular format is specified—is base 10. You can change the default base for both
input and output with theet radix ~ command.
set input-radix base

Set the default base for numeric input. Supported choiceaderare decimal 8,

10, or 16.pase must itself be specified either unambiguously or using the current

default radix; for example, any edtradix012 , setradix 10. , Or set radix
oxa set the base to decimal. On the other hardddix 10 ' leaves the radix
unchanged no matter what it was.

set output-radix base

Set the default base for numeric display. Supported choiceasorare decimal
8, 10, or 16base must itself be specified either unambiguously or using the
current default radix.

show input-radix
Display the current default base for numeric input.

show output-radix
Display the current default base for numeric display.

CYGNUS

Debugging with GDB = 199

Optional warnings and messages

Optional warnings and messages

By default, GDB is silent about its inner workings. If you are running on a slow
machine, you may want to use #eeverbose = command. This makes GDB tell you
when it does a lengthy internal operation, so you will not think it has crashed.

Currently, the messages controlledsbyverbose are those announcing that the
symbol table for a source file is being read; seol-file in “Commands to
specify files” on page 154.
set verbose on

Enables GDB output of certain informational messages.

set verbose off
Disables GDB output of certain informational messages.

show verbose
Displays whethesget verbose is on or off.

By default, if GDB encounters bugs in the symbol table of an object file, it is silent;
but if you are debugging a compiler, you may find this information useful (see “Errors
reading symbol files” on page 159).
set complaints limit
Permits GDB to outpuimit complaints about each type of unusual symbols
before becoming silent about the problem./Bet to zero to suppress all
complaints; set it to a large number to prevent complaints from being suppressed.

show complaints
Displays how many symbol complaints GDB is permitted to produce.

By default, GDB is cautious, and asks what sometimes seems to be a lot of stupid
guestions to confirm certain commands. For example, if you try to run a program
which is already running:
(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n)
If you are willing to unflinchingly face the consequences of your own commands, you
can disable this “feature” with the following commands.
set confirm off
Disables confirmation requests.
set confirm on
Enables confirmation requests (the default).
show confirm
Displays state of confirmation requests.

200 = Debugging with GDB GNUPro Toolkit

Optional warnings and messages

[a0]
o
(O]
o
£
©
=}
=
O
O
o
=

CYGNUS Debugging with GDB = 201

Optional warnings and messages

202 = Debugging with GDB GNUPro Toolkit

Optional warnings and messages

[a0]
o
(O]
o
£
©
=}
=
O
O
o
=

CYGNUS Debugging with GDB = 203

Optional warnings and messages

204 » Debugging with GDB GNUPro Toolkit

Optional warnings and messages

[a0]
o
(O]
o
£
©
=}
=
O
O
o
=

CYGNUS Debugging with GDB = 205

Optional warnings and messages

206 = Debugging with GDB GNUPro Toolkit

Optional warnings and messages

[a0]
o
(O]
o
£
©
=}
=
O
O
o
=

CYGNUS Debugging with GDB = 207

Optional warnings and messages

208 m Debugging with GDB GNUPro Toolkit

Optional warnings and messages

[a0]
o
(O]
o
£
©
=}
=
O
O
o
=

CYGNUS Debugging with GDB = 209

Optional warnings and messages

210 = Debugging with GDB GNUPro Toolkit

Optional warnings and messages

[a0]
o
(O]
o
£
©
=}
=
O
O
o
=

CYGNUS Debugging with GDB = 211

Optional warnings and messages

212 = Debugging with GDB GNUPro Toolkit

Optional warnings and messages

[a0]
o
(O]
o
£
©
=}
=
O
O
o
=

CYGNUS Debugging with GDB = 213

Optional warnings and messages

214 = Debugging with GDB GNUPro Toolkit

16

Canned sequences
of commands

Aside from breakpoint commands (see “Breakpoint command lists” on page 61),
GDB provides two ways to store sequences of commands for execution as a unit:
user-defined commands and command files. The following documentation provides
these discussions for this subject.

“User-defined commands” on page 216
“User-defined command hooks” on page 218
“Command files” on page 219

“Commands for controlled output” on page 220

CYGNUS

Debugging with GDB = 215

User-defined commands

User-defined commands

A user-defined commarigl a sequence of GDB commands to which you assign a new
name as a command. This is done withddime command. User commands may
accept up to 10 arguments separated by whitespace. Arguments are accessed within
the user command witbarg 0 ...8arg 9. A trivial example is the following.

define adder
print$ arg0+$ argl+$ arg2

To execute the command use the following declaration.
adder123
This defines the commanaljder , printing the sum of its three arguments.

NOTE: The arguments are text substitutions, so they may reference variables,
use complex expressions, or even perform inferior functions calls.

define commandname
Define a command namedmmandname If there is already a command by that
name, you are asked to confirm that you want to redefine it.

The definition of the command is made up of other GDB command lines, which
are given following theefine command. The end of these commands is marked
by a line containingnd.

Takes a single argument, which is an expression to evaluate. It is followed by a
series of commands that are executed only if the expression is true (nonzero).
There can then optionally be a ligiee , followed by a series of commands that
are only executed if the expression was false. The end of the list is marked by a
line containingend.

while
The syntax is similar td : the command takes a single argument, which is an
expression to evaluate, and must be followed by the commands to execute, one
per line, terminated by asmd. The commands are executed repeatedly as long as
the expression evaluates to true.

document commandname

Document the user-defined commasdimmandname SO that it can be accessed by
help . The command;ommandname must already be defined. This command
reads lines of documentation justdesne reads the lines of the command
definition, ending withend. After thedocument command is finishedelp on
commandcommandname displays the documentation you have written. You may
use thedocument command again to change the documentation of a command.
Redefining the command witlefine does not change the documentation.

216 = Debugging with GDB GNUPro Toolkit

User-defined commands

help user-defined
List all user-defined commands, with the first line of the documentation (if any)
for each.

show user

show user commandname
Display the GDB commands used to defitagmandname (but not its
documentation). If n@ommandnameis given, display the definitions for all user-
defined commands.

When user-defined commands are executed, the commands of the definition are not
printed. An error in any command stops execution of the user-defined command. If
used interactively, commands that would ask for confirmation proceed without asking
when used inside a user-defined command. Many GDB commands that normally print
messages to say what they are doing omit the messages when used in a user-defined
command.

CYGNUS

Debugging with GDB = 217

User-defined command hooks

User-defined command hooks

You may defindhooks which are a special kind of user-defined command. Whenever
you run the commandob ', if the user-defined commandodok-foo ' exists, it is

executed (with no arguments) before that command. In addition, a pseudo-command,
‘stop ’ exists. Defining hook-stop ' makes the associated commands execute every
time execution stops in your program: before breakpoint commands are run, displays
are printed, or the stack frame is printed. For example, to ignGreRMSignals

while single-stepping, but treat them normally during normal execution, you could
define the following debugging input.

define hook-stop

handle SIGALRM nopass
end

define hook-run
handle SIGALRM pass
end

define hook-continue

handle SIGLARM pass

end

You can define a hook for any single-word command in GDB, but not for command
aliases; you should define a hook for the basic command nameaekgace rather
thanbt . If an error occurs during the execution of your hook, execution of GDB
commands stops and GDB issues a prompt (before the command that you actually
used had a chance to run).

If you try to define a hook which does not match any known command, you get a
warning from the define command.

218 m Debugging with GDB GNUPro Toolkit

Command files

Command files

A command file for GDB is a file of lines that are GDB commands.

Comments (lines starting wi#) may also be included. An empty line in a command
file does nothing; it does not mean to repeat the last command, as it would from the
terminal. When you start GDB, it automatically executes commands framit fites.
These are files nameddbinit '. GDB reads the init file (if any) in your home
directory, then processes command line options and operands, and then reads the init
file (if any) in the current working directory. This is so the init file in your home
directory can set options (suchsascomplaints) which affect the processing of the
command line options and operands. The init files are not executed if you use the
‘-nx " option; see “Choosing modes” on page 19. On some configurations of GDB, the
init file is known by a different name (these are typically environments where a
specialized form of GDB may need to coexist with other forms, hence a different
name for the specialized version’s init file). These are the environments with special
init file names:

* VxWorks (Wind River Systems real-time OSyxgdbinit

* 0S68K (Enea Data Systems real-time OS}58gdbinit '

* ES-1800 (Ericsson Telecom AB M68000 emulatagkgdbinit °

You can also request the execution of a command file witkothee command.

source filename
Execute the command fikename

The lines in a command file are executed sequentially. They are not printed as they are
executed. An error in any command terminates execution of the command file.

Commands that would ask for confirmation if used interactively proceed without
asking when used in a command file. Many GDB commands that normally print
messages to say what they are doing omit the messages when called from command
files.

CYGNUS Debugging with GDB = 219

Commands for controlled output

Commands for controlled output

During the execution of a command file or a user-defined command, normal GDB
output is suppressed; the only output that appears is what is explicitly printed by the
commands in the definition.

The following documentation describes three commands that are useful for generating
exactly the output that you want.
echo text
Printtext . Nonprinting characters can be includedei? using C escape
sequences, such as *to print a newline.

NOTE: No newline is printed unless you specify one.

In addition to the standard C escape sequences, a backslash followed by a space
stands for a space. This is useful for displaying a string with spaces at the
beginning or the end, since leading and trailing spaces are otherwise trimmed
from all arguments.

To print a and foo - ' fragment statement, usecho \ and foo -\ 'as a
command with a backslash at the end of the declaration. As in C, this command
continues the declaration onto subsequent lines.

gdb -batch -nx -mapped -readnow programname
Consider the following example.

echo This is some text\n\
which is continued\n\
onto several lines.\n
The previous example shows output that produces the same output as the
following declaration.
echo This is some text\n
echo which is continued\n
echo onto several lines.\n
output expression
Print the value oéxpression and nothing but that value: no newlines, 0 *
nn-". The value is not entered in the value history either. See “Expressions”
on page 88 for more information @Rpressions
output/fmt expression
Print the value oéxpression in format,fmt . You can use the same formats as
for print . See “Output formats” on page 92 for more information.
printf string , expressions
Print the values of thexpressions under the control aftring . The expressions
are separated by commas and may be either numbers or pointers. Their values are

220 = Debugging with GDB GNUPro Toolkit

Commands for controlled output

printed as specified batring , exactly as if your program were to execute the C
subroutine, as in the following example.

printf (string, expressions...);
For example, you can print two values in hex like the following declaration.
printf "foo, bar-foo = 0x%x, 0x%x\n", foo, bar-foo

The only backslash-escape sequences that you can use in the format string are the
simple ones that consist of backslash followed by a letter.

CYGNUS

Debugging with GDB = 221

Commands for controlled output

222 m Debugging with GDB GNUPro Toolkit

Using GDB under GNU Emacs

A special interface, GNU Emacs, allows you to use, to view and to edit the source files
for the program you are debugging with GDB.

Using GDB under Emacs is just like using GDB normally except for the following
considerations.

All “terminal” input and output goes through the Emacs buffer.This applies both

to GDB commands and their output, and to the input and output done by the
program you are debugging. This is useful because it means that you can copy the
text of previous commands and input them again; you can even use parts of the
output in this way.

Some of the following material uses the convention laid o@GNiv Emacs
Manual, the documentation from the Free Software Foundatiera- signifies
using the Meta key (or the diamondt™key) on a Unix keyboard and tiadt key

on a Windows keyboard in sequence followed by the specified letter.
signifies using th&trl key in sequence followed by a specified letter. Any other
input will be signified by code (as in something typed onscreen lilgebd “
command.

To use the Emacs interface, use the comnvnd-x gdb. Give the executable file
you want to debug as an argument. This command starts GDB as a subprocess of
Emacs, with input and output through a newly created Emacs buffer.

CYGNUS

Debugging with GDB m 223

All the facilities of Emacs’ Shell mode are available for interacting with your
program. In particular, you can send signals the usual way—for exabpie,
Ctrl-c for an interruptCtrl-c, Ctrl-z for a stop.

» GDB displays source code through Emacs.

Each time GDB displays a stack frame, Emacs automatically finds the source file
for that frame and puts an arrow ¥")yat the left margin of the current line.

Emacs uses a separate buffer for source display, and splits the screen to show both
your GDB session and the source.

Explicit GDBlist orsearch commands still produce output as usual, but you
probably have no reason to use them from Emacs.

WARNING: If the directory where your program resides is not your current
directory, it can be easy to confuse Emacs about the location of the
source files, in which case the auxiliary display buffer does not
appear to show your source.

GDB can find programs by searching your environmeintisi

variable, so the GDB input and output session proceeds normally; but
Emacs does not get enough information back from GDB to locate the
source files in this situation.

To avoid this problem, either start GDB mode from the directory
where your program resides, or specify an absolute file name when
prompted for thavieta-x gdb argument.

Asimilar confusion can result if you use the GDB file command to
switch to debugging a program in some other location, from an
existing GDB buffer in Emacs.

By default, using the keystroke sequendeta-x gdb calls the progranydb. If you
need to call GDB by a different name (for example, if you keep several configurations
with different names) you can set the Emacs varigbtepmmand-name .

For example, make Emacs instead call thgdb’program,
setq gdb-command-name *mygdb” (preceded by the keystroke sequence of usingdbe
key twice cosecutively, or by typing in tkeratch* buffer, or in your 'emacs ’ file) .

In the GDB 1/O buffer, you can use the following keystroke sequences of Emacs
commands in addition to the standard Shell mode commands.
Ctrl-h, m
Describe the features of Emacs’ GDB Mode.
Meta-s
Execute to another source line, like the Gi8 command; also update the
display window to show the current file and location.

224 m Debugging with GDB GNUPro Toolkit

Meta-n
Execute to next source line in this function, skipping all function calls, like the
GDBnext command. Then update the display window to show the current file and
location.
Meta-i
Execute one instruction, like the GBBpi command; update display window
accordingly.
Meta-X, gdb-nexti
Execute to next instruction, using the Ge&i command; update display
window accordingly.
Ctrl-c, Ctrl-f
Execute until exit from the selected stack frame, like the GB3B command.
Meta-c
Continue execution of your program, like the GBRinue command.

WARNING: In Emacs version 19, this command uses the keystroke sequence,
Ctrl-c, Ctrl-p.
Meta-u
Go up the number of frames indicated by the numeric argument (see “Numeric
Arguments” inGNU Emacs Manua), like the GDBup command.

WARNING: In Emacs version 19, this command uses the keystroke sequence,
Ctrl-c, Ctrl-u.
Meta-d
Go down the number of frames indicated by the numeric argument, like the GDB
down command.

WARNING: In Emacs version 19, this command uses the keystroke sequence,
Ctrl-c, Ctrl-d.

Ctrl-x, &
Read the number where the cursor is positioned, and insert it at the end of the
GDB 1/0 buffer. For example, if you wish to disassemble code around an address
that was displayed earlier, typieassemble ; then move the cursor to the address
display, and pick up the argument f@assemble by using the keystroke
sequencectrl-x, &.

You can customize this further by defining elements of the list gdb-print-
command; once it is defined, you can format or otherwise process numbers picked
up by using the keystroke sequencel-x, & before they are inserted. A numeric
argument taCtrl-x, & indicates that you wish special formatting, and also acts as

an index to pick an element of the list. If the list element is a string, the number to

CYGNUS

Debugging with GDB = 225

be inserted is formatted using the Emacs function format; otherwise the number is
passed as an argument to the corresponding list element.

In any source file, the Emacs command using the keystroke seqgehge,
SPACEBAR, and typinggdb-break) , which tells GDB to set a breakpoint on the
source line point.

If you accidentally delete the source-display buffer, an easy way to get it back is to
type the command, in the GDB buffer, to request a frame display; when you run
under Emacs, this recreates the source buffer if necessary to show you the context of
the current frame.

The source files displayed in Emacs are in ordinary Emacs buffers which are visiting
the source files in the usual way. You can edit the files with these buffers if you wish;
but keep in mind that GDB communicates with Emacs in terms of line numbers.

If you add or delete lines from the text, the line numbers that GDB knows cease to
correspond properly with the code.

226 m Debugging with GDB GNUPro Toolkit

Reportin g Bugs in GDB

Your bug reports play an essential role in making GDB reliable.

Reporting a bug may help you by bringing a solution to your problem, or it may not.
In any case, the principal function of a bug report is to help the entire community by
making the next version of GDB work better. Bug reports are your contribution to the
maintenance of GDB.

In order for a bug report to serve its purpose, you must include the information that
enables us to fix the bug.

CYGNUS Debugging with GDB m 227

Have you found a bug?

Have you found a bug?

If you are not sure whether you have found a bug, here are some guidelines:

» If the debugger gets a fatal signal, for any input whatever, that is a GDB bug.
Reliable debuggers never crash.

» If GDB produces an error message for valid input, that is a bug.

» If GDB does not produce an error message for invalid input, that is a bug.
However, you should note that your idea of “invalid input” might be our idea of
“an extension” or “support for traditional practice”.

» If you are an experienced user of debugging tools, your suggestions for
improvement of GDB are welcome in any case.

228 m Debugging with GDB GNUPro Toolkit

How to report bugs

How to report bugs

A number of companies and individuals offer support for GNU products. If you
obtained GDB from a support organization, we recommend you contact that
organization first.

You can find contact information for many support companies and individuals in the
file *etc/service " in the GNU Emacs distribution.

In any event, we also recommend that you send bug reports for GDB to one of these
addresses:

bug-gdb@prep.ai.mit.edu

{ucbvax|mit-eddie|uunet}!prep.ai.mit.edu'bug-gdb

Do not send bug reports tafo-gdo ' Or to ‘help-gdo ' Or to any newsgroupsMost

users of GDB do not want to receive bug reports. Those who do have arranged to
receive bug-gdb .

The mailing list bug-gdb ' has a hewsgroupru.gdb.bug ' Which serves as a repeater.

The mailing list and the newsgroup carry exactly the same messages. Often people
think of posting bug reports to the newsgroup instead of mailing them. This appears to
work, but it has one problem which can be crucial: a newsgroup posting often lacks a
mail path back to the sender. Thus, if we need to ask for more information, we may be
unable to reach you. For this reason, it is better to send bug reports to the mailing list.
As a last resort, send bug reports on paper to:

GNU Debugger Bugs

Free Software Foundation Inc.
59 Temple Place Suite 330
Boston, MA 02111-1307 USA

The fundamental principle of reporting bugs usefully is td@port all the facts If
you are not sure whether to state a fact or leave it out, state it!

Often people omit facts because they think they know what causes the problem and
assume that some details do not matter. Thus, you might assume that the name of the
variable you use in an example does not matter. Well, probably it does not, but one
cannot be sure. Perhaps the bug is a stray memory reference which happens to fetch
from the location where that name is stored in memory; perhaps, if the name were
different, the contents of that location would fool the debugger into doing the right
thing despite the bug. Play it safe and give a specific, complete example. That is the
easiest thing for you to do, and the most helpful.

Keep in mind that the purpose of a bug report is to enable us to fix the bug if it is new
to us. Therefore, always write your bug reports on the assumption that the bug has not

CYGNUS

Debugging with GDB = 229

How to report bugs

been reported previously.

Sometimes people give a few sketchy facts and ask, “Does this ring a bell?” Those
bug reports are useless, and we urge everymrefuse to respond to theamcept to
chide the sender t@port bugs properly

To enable us to fix the bug, you should include all the following things.

» The version of GDB. GDB announces it if you start with no arguments; you can
also print it at any time usingow version

Without this, we will not know whether there is any point in looking for the bug in
the current version of GDB.

» The type of machine you are using, and the operating system name and version
number.

* What compiler (and its version) was used to compile GDB—such as “gcc-2.8".

* What compiler (and its version) was used to compile the program you are
debugging—such as “gcc-2.8".

» The command arguments you gave the compiler to compile your example and
observe the bug. For example, did you us&‘To guarantee you will not omit
something important, list them all. A copy of the Makefile (or the output from
make) is sufficient.

If we were to try to guess the arguments, we would probably guess wrong and
then we might not encounter the bug.

* A complete input script, and all necessary source files, that will reproduce the
bug.

» A description of what behavior you observe that you believe is incorrect. For
example, “It gets a fatal signal.” Of course, if the bug is that GDB gets a fatal
signal, then we will certainly notice it. But if the bug is incorrect output, we might
not notice unless it is glaringly wrong. You might as well not give us a chance to
make a mistake.

Even if the problem you experience is a fatal signal, you should still say so
explicitly. Suppose something strange is going on, such as, your copy of GDB is
out of synch, or you have encountered a bug in the C library on your system. (This
has happened!) Your copy might crash and ours would not. If you told us to
expect a crash, then when ours fails to crash, we would know that the bug was not
happening for us. If you had not told us to expect a crash, then we would not be
able to draw any conclusion from our observations.

« If you wish to suggest changes to the GDB source, send us context diffs. If you

230 = Debugging with GDB GNUPro Toolkit

How to report bugs

even discuss something in the GDB source, refer to it by context, not by line
number.

The line numbers in our development sources will not match those in your
sources. Your line numbers would convey no useful information to us.

The following are some things that are not necessary.

A description of the envelope of the bug.

Often people who encounter a bug spend a lot of time investigating which changes
to the input file will make the bug go away and which changes will not affect it.

This is often time consuming and not very useful, because the way we will find
the bug is by running a single example under the debugger with breakpoints, not
by pure deduction from a series of examples. We recommend that you save your
time for something else. Of course, if you can find a simpler example to report
insteadof the original one, that is a convenience for us. Errors in the output will
be easier to spot, running under the debugger will take less time, and so on.

However, simplification is not vital; if you do not want to do this, report the bug
anyway and send us the entire test case you used.

A patch for the bug.

A patch for the bug does help us if it is a good one. But do not omit the necessary
information, such as the test case, on the assumption that a patch is all we need.
We might see problems with your patch and decide to fix the problem another
way, or we might not understand it at all.

Sometimes with a program as complicated as GDB it is very hard to construct an
example that will make the program follow a certain path through the code.

If you do not send us the example, we will not be able to construct one, so we will
not be able to verify that the bug is fixed.

And if we cannot understand what bug you are trying to fix, or why your patch
should be an improvement, we will not install it. A test case will help us to
understand.

A guess about what the bug is or what it depends on.
Such guesses are usually wrong.

Even we cannot guess right about such things without first using the debugger to
find the facts.

CYGNUS

Debugging with GDB = 231

How to report bugs

232 m Debugging with GDB GNUPro Toolkit

Command Line Editin g

The following text describes GNU’s command line editing interface.
» ‘“Introduction to Line Editing” on page 234

» “Readline Interaction” on page 235

» “Readline Init File” on page 238

CYGNUS Debugging with GDB = 233

Introduction to Line Editing

Introduction to Line Editing

The following paragraphs describe the notation we use to represent keystrokes.

The text,C-K, is read as “Control K” and describes the command to produce when
using theControl and thek keys together. The texl-K, is read as “Meta K" and
describes the command to produce when usingiéhe key (the key with a diamond),
and theK key. If you do not havemaeta key, the identical keystroke can be generated
by using theEsc key, and therk. Either process is known as “meta-fying the K key.”
The text,M-C-K, is read as ‘Meta Control K’ and describes the command to produce
when asked to “meta-fy C K.”

IMPORTANT: The hyphen characters and the comma characters are not a part of the
keystroke sequence to type.

All uppercase letters require using the shift key, of course, since all
commands are specific.

In addition, several keys have their own names. Specifidadlgte, Esc, LFD
(linefeed),SPACEBAR, Return, andTAB all stand for themselves when seen in this
text, or in an init file (see “Readline Init File” on page Readline Init File for more
information).

234 m Debugging with GDB GNUPro Toolkit

Readline Interaction

Readline Interaction

Often during an interactive session you type in a long line of text, only to notice that
the first word on the line is misspelled. The Readline library gives you a set of
commands for manipulating the text as you type it in, allowing you to just fix your

typo, and not forcing you to retype the majority of the line. Using these editing
commands, you move the cursor to the place that needs correction, and delete or insert
the text of the corrections. Then, when you are satisfied with the line, you simply use
Return. You do not have to be at the end of the line toResern; the entire line is

accepted regardless of the location of the cursor within the line.

See the following documentation for more details.
» “Readline Bare Essentials” on this page

* “Readline Movement Commands” on page 236
» “Readline Killing Commands” on page 236

» “Readline Arguments” on page 237

» “Readline Init Syntax” on page 238

» “Letting Readline Type For You” on page 242

» “Readline vi Mode” on page 243

Readline Bare Essentials

In order to enter characters into the line, simply type them. The typed character
appears where the cursor was, and then the cursor moves one space to the right. If you
mistype a character, you can Wxete to back up, and delete the mistyped character.

Sometimes you may miss typing a character that you wanted to type, and not notice
your error until you have typed several other characters. In that case, you CaB use
to move the cursor to the left, and then correct your mistake. Aftwerwards, you can
move the cursor to the right witF.

When you add text in the middle of a line, you will notice that characters to the right
of the cursor get ‘pushed over’ to make room for the text that you have inserted.
Likewise, when you delete text behind the cursor, characters to the right of the cursor
get ‘pulled back’ to fill in the blank space created by the removal of the text. A list of
the basic bare essentials for editing the text of an input line follows.
C-B

Move back one character.
C-F

Move forward one character.

CYGNUS

Debugging with GDB = 235

Readline Movement Commands

Delete

Delete the character to the left of the cursor.
C-D

Delete the character underneath the cursor.
Printing characters

Insert itself into the line at the cursor.
C-

~ Undo the last thing that you did. You can undo all the way back to an empty line.

Readline Movement Commands

The previous commands are the most basic possible keystrokes that you need in order
to do editing of the input line. For your convenience, many other commands have
been added in addition @B, C-F, C-D, andDelete.

Here are some commands for moving more rapidly about the line.
C-A
Move to the start of the line.
C-E
Move to the end of the line.
M-F
Move forward a word.
M-B
Move backward a word.
C-L
Clear the screen, reprinting the current line at the top.
Notice howC-F moves forward a character, whNeF moves forward a word. It is a
loose convention that control keystrokes operate on characters while meta keystrokes
operate on words.

Readline Killing Commands

Killing text means to delete the text from the line, but to save it away for later use,
usually byyankingit back into the line. If the description for a command says that it
‘kills” text, then you can be sure that you can get the text back in a different (or the
same) place later. Thefollowing is the list of commands for killing text.
C-K
Kill the text from the current cursor position to the end of the line.
M-D
Kill from the cursor to the end of the current word, or if between words, to the end
of the next word.

236 = Debugging with GDB GNUPro Toolkit

Readline Arguments

M-Delete
Kill from the cursor to the start of the previous word, or if between words, to the
start of the previous word.

C-W
Kill from the cursor to the previous whitespace.

This is different thami-Delete because the word boundaries differ.

And, here is how to yank the text back into the line.

C-Y
Yank the most recently killed text back into the buffer at the cursor.

M-Y
Rotate the kill-ring, and yank the new top. You can only do this if the prior
command i-Y or M-Y.

When you use a kill command, the text is savedkill-aing. Any number of

consecutive kills save all of the killed text together, so that when you yank it back, you
get it in one clean sweep. The kill ring is not line specific; the text that you killed on a
previously typed line is available to be yanked back later, when you are typing another
line.

Readline Arguments

You can pass humeric arguments to Readline commands. Sometimes the argument
acts as a repeat count, other times it isstgeof the argument that is significant. If

you pass a hegative argument to a command which normally acts in a forward
direction, that command will act in a backward direction. For example, to kill text
back to the start of the line, you might uge C-K.

The general way to pass humeric arguments to a command is to type meta digits
before the command. If the first ‘digit’ you type is a minus sign (-), then the sign of the
argument will be negative. Once you have typed one meta digit to get the argument
started, you can type the remainder of the digits, and then the command. For example,
to give theC-D command an argument of 10, you could use the keystroke sequence,
M-1, 0, C-D.

CYGNUS Debugging with GDB = 237

Readline Init File

Readline Init File

Although the Readline library comes with a se6ntl Emacs-like keybindings, it is
possible that you would like to use a different set of keybindings. You can customize
programs that use Readline by putting commands inigafile in your home

directory. The name of this file i9.inputrc

When a program which uses the Readline library starts upy.theifrc ' file is
read, and the keybindings are set.

In addition, theC-X, C-R command re-reads this init file, thus incorporating any
changes that you might have made to it.

Readline Init Syntax
There are only four constructs allowed in thignputre ' file.

Variable Settings

You can change the state of a few variables in Readline. You do this by usiag the
command within the init file. Here is how you would specify that you wish taiuse
line editing commands:

set editing-mode vi

Right now, there are only a few variables which can be set; so few, in fact, that we just
iterate them here:
editing-mode
Theediting-mode variable controls which editing mode you are using. By
default,GNU Readline starts up in Emacs editing mode, where the keystrokes are
most similar to Emacs. This variable can either be sehdos orvi .
horizontal-scroll-mode
This variable can either be setdeor off . Setting it toon means that the text of
the lines that you edit will scroll horizontally on a single screen line when they are
larger than the width of the screen, instead of wrapping onto a new screen line. By
default, this variable is set it .
mark-modified-lines
This variable when set ton, says to display an asterisk), ‘at the starts of history
lines which have been modified. This variable is off by default.
prefer-visible-bell
If this variable is set ton it means to use a visible bell if one is available, rather
than simply ringing the terminal bell. By default, the valuefis.

238 m Debugging with GDB GNUPro Toolkit

Readline Init Syntax

Key Bindings

The syntax for controlling keybindings in theinputrc ~ ’ file is simple. First you

have to know the name of the command that you want to change. The following pages
contain tables of the command name, the default keybinding, and a short description
of what the command does.

Once you know the name of the command, simply place the name of the key you wish
to bind the command to, a colon, and then the name of the command on a line in the
“Linputrc '’ file. The name of the key can be expressed in different ways, depending
on which is most comfortable for you.
keyname: function-name Or macro
keyname is the name of a key spelled out in English. For example:
Control-u: universal-argument
Meta-Rubout: backward-kill-word
Control-o: ">&output"
In the exampleC-U is bound to the functiomiversal-argument , andC-0O is
bound to run the macro expressed on the right hand side (that is, to insert the text
‘>&output " into the line).
“keyseq”: function-name Or macro
keyseq differs fromkeyname in that strings denoting an entire key sequence can
be specified. Simply place the key sequence in double quotes.

GNU Emacs style key escapes can be used, as in the following example:
“\C-u": universal-argument
“\C-x\C-r": re-read-init-file
“\e[11™: “Function Key 1”
In the exampleC-U is bound to the functiomiversal-argument (just as it was
in the first example)c-X, C-R is bound to the functiorread-init-file , and
Esc-[, 1, 1, " is bound to insert the textunction Key 1 .

Commands For Moving
beginning-of-line (C-A)
Move to the start of the current line.
end-of-line (C-E)
Move to the end of the line.
forward-char ~ (C-F)
Move forward a character.

backward-char (C-B)
Move back a character.

CYGNUS Debugging with GDB = 239

Readline Init Syntax

forward-word ~ (M-F)
Move forward to the end of the next word.
backward-word ~ (M-B)
Move back to the start of this, or the previous, word.
clear-screen (C-L)
Clear the screen leaving the current line at the top of the screen.

Commands For Manipulating The History

accept-line (Newline, Return)
Accept the line regardless of where the cursor is. If this line is non-empty, add it to
the history list. If this line was a history line, then restore the history line to its
original state.
previous-history (C-P)
Move ‘up’ through the history list.
next-history (C-N)
Move ‘down’ through the history list.
beginning-of-history (M-<)
Move to the first line in the history.
end-of-history (M->)
Move to the end of the input history, i.e., the line you are entering.
reverse-search-history (C-R)
Search backward starting at the current line and moving ‘up’ through the history
as necessary. This is an incremental search.
forward-search-history (C-9)
Search forward starting at the current line and moving ‘down’ through the the
history as necessary.

Commands For Changing Text

delete-char (C-D)
Delete the character under the cursor. If the cursor is at the beginning of the line,
and there are no characters in the line, and the last character typed @a3, not
then return EOF.

backward-delete-char (Rubout)
Delete the character behind the cursor. A numeric argument says to kill the
characters instead of deleting them.

quoted-insert (C-Q c-v)
Add the next character that you type to the line verbatim. This is how to insert
things likeC-Q for example.

240 = Debugging with GDB GNUPro Toolkit

Readline Init Syntax

tab-insert (M-TAB)
Insert a tab character.

self-insert (a, b, A1 ..)
Insert yourself.

transpose-chars (c-m
Drag the character before point forward over the character at point. Point moves
forward as well. If point is at the end of the line, then transpose the two characters
before point. Negative arguments don’t work.

transpose-words (M-T)
Drag the word behind the cursor past the word in front of the cursor moving the
cursor over that word as well.

upcase-word (M-U)
Uppercase all letters in the current (or following) word. With a negative argument,
do the previous word, but do not move point.

downcase-word (M-L)
Lowercase all letters in the current (or following) word. With a negative
argument, do the previous word, but do not move point.

capitalize-word (M-C)
Uppercase the first letter in the current (or following) word. With a negative
argument, do the previous word, but do not move point.

Killing And Yanking

kill-line (C-K)
Kill the text from the current cursor position to the end of the line.
backward-kill-line 0
Kill backward to the beginning of the line. This is normally unbound.
killword (M-D)
Kill from the cursor to the end of the current word, or if between words, to the end
of the next word.
backward-kill-word (M-Delete)
Kill the word behind the cursor.
unix-line-discard (c-v)
Kill the whole line the way-U used to in Unix line input. The killed text is saved
on the kill-ring.
unix-word-rubout (c-w)
Kill the word the wayC-W used to in Unix line input. The killed text is saved on
the kill-ring. This is different than backward-kill-word because the word
boundaries differ.

CYGNUS

Debugging with GDB = 241

Letting Readline Type For You

yank (C-Y)
Yank the top of the kill ring into the buffer at point.

yank-pop (M-Y)
Rotate the kill-ring, and yank the new top. You can only do this if the prior
command is yank or yank-pop.

Specifying Numeric Arguments

digit-argument (M-0, M-1, ...M--)
Add this digit to the argument already accumulating, or start a new argument.
starts a negative argument.

universal-argument ()
Do whatC-U does in GNU Emacs. By default, this is not bound.

Letting Readline Type For You

complete (TAB)
Attempt to do completion on the text before point. This is implementation
defined. Generally, if you are typing a flename argument, you can do filename
completion; if you are typing a command, you can do command completion, if
you are typing in a symbol to GDB, you can do symbol hame completion, if you
are typing in a variable to Bash, you can do variable name completion.

possible-completions (M-?)
List the possible completions of the text before point.

Some Miscellaneous Commands

reread-init-file (C-X, C-R)
Read in the contents of yourihputrc ' file, and incorporate any bindings
found there.

abort (C-G)
Stop running the current editing command.

prefix-meta (Esc)
Make the next character that you type be metafied. This is for people without a
meta key. Typing ESC F is equivalent to typing M-F.

undo (C-))
Incremental undo, separately remembered for each line.

revert-line (M-R)
Undo all changes made to this line. This is like typing the ‘undo’ command
enough times to get back to the beginning.

242 m Debugging with GDB GNUPro Toolkit

Readline vi Mode

Readline vi Mode

While the Readline library does not have a full set of vi editing functions, it does
contain enough to allow simple editing of the line.

In order to switch interactively between GNU Emacsandditing modes, use the
commanaMv-C-J (toggle-editing-mode). When you enter a line in mode, you are
already placed inrisertion * mode, as if you had typed ain.' Using Esc switches

you into ‘edit ' mode, where you can edit the text of the line with the standard vi

movement keys, move to previous history lines withand following lines withj’,
and so forth.

CYGNUS

Debugging with GDB = 243

Readline vi Mode

244 m Debugging with GDB GNUPro Toolkit

Readline vi Mode

()
=
=
S
LLl

)
£
|
e

<

@©

S

(S

o
O
)
—

CYGNUS Debugging with GDB = 245

Readline vi Mode

246 m Debugging with GDB GNUPro Toolkit

Using Histor y Interactivel y

The following documentation describes how to use the GNU History Library
interactively, from a user’s standpoint.

» “History Interaction” on page 248
» “Event Designators” on page 248
* “Word Designators” on page 248
* “Modifiers” on page 249

CYGNUS Debugging with GDB = 247

History Interaction

History Interaction

The History library provides a history expansion feature similar to the history
expansion irtsh . The following text describes the syntax you use to manipulate
history information.

History expansion takes two parts. In the first part, determine which line from the
previous history will be used for substitution. This line is callecetrent In the

second part, select portions of that line for inclusion into the current line. These
portions are calledords GDB breaks the line into words in the same way that the
Bash shell does, so that several English (or Unix) words surrounded by quotes are
considered one word.

Event Designators

An event designatois a reference to a command line entry in the history list.
!

Start a history subsititution, except when followed by a space, tab, or the end of
the line..=or¢.

Refer to the previous command. This is a synonym for
Refer to command ling.

Refer to the command line lines back.
Istring

Refer to the most recent command starting atithy
1?string[?]

Refer to the most recent command contairifgy

Word Designators

A : separates the event designator fromvtbed designatorlt can be omitted if the
word designator begins withras, * ors Words are numbered from the beginning of
the line, with the first word being denoted by a 0 (zero).
0 (zero)

The zero’th word. For many applications, this is the command word.

The n'th word.

The first argument. that is, word 1.

248 m Debugging with GDB GNUPro Toolkit

Modifiers

The last argument.
%
The word matched by the most recesiting? search.
Xy
A range of words;y abbreviates-y .
All of the words, excepting the zero’th. This is a synonymifer. It is not an
error to use if there is just one word in the event. The empty string is returned in
that case.

Modifiers
After the optional word designator, you can add a sequence of one or more of the
following modifiers, each preceded by .a
#
The entire command line typed so far. This means the current command, not the
previous command.
Remove a trailing pathname component, leaving only the head.
Remove a trailing suffix of the form™* suffix , leaving the basename.
Remove all but the suffix.

Remove all leading pathname components, leaving the tail.

Print the new command but do not execute it.

CYGNUS Debugging with GDB = 249

Modifiers

250 = Debugging with GDB GNUPro Toolkit

Formattin g Documentation

The GDB 4 release includes an already-formatted reference card, ready for printing
with PostScript or Ghostscript, in thgib’ subdirectory of the main source directory.

If you can use PostScript or Ghostscript with your printer, you can print the reference
card immediately withréfcard.ps

The release also includes the source for the reference card. You can format it, using
TEX, by typingmake refcard.dvi

The GDB reference card is designed to print in landscape mode on US “letter” size
paper; that is, on a sheet 11 inches wide by 8.5 inches high. You will need to specify
this form of printing as an option to yonvi output program. All the documentation

for GDB comes as part of the machine-readable distribution. The documentation is
written in Texinfo format, which is a documentation system that uses a single source
file to produce both online information and a printed manual. You can use one of the
Info formatting commands to create the online version of the documentation and TEX
(ortexizroff) to typeset the printed version. GDB includes an already formatted
copy of the online Info version of this manual in théb” subdirectory. The main Info

file is *gdb-version-number/gdb/gdb.info ', and it refers to subordinate files

matching gdb.info* ' in the same directory. If necessary, you can print out these
files, or read them with any editor; but they are easier to read usimgpthe

subsystem iltkNU Emacs or the standalomé program, available as part of theu
Texinfo distribution. If you want to format these Info files yourself, you need one of
the Info formatting programs, suchtasnfo-format-buffer or makeinfo .

CYGNUS

Debugging with GDB = 251

If you havemakeinfo installed, and are in the top level GDB source directory, you can
make the Info file by typing:

cd gdb

make gdb.info

If you want to typeset and print copies of this manual, you nheed TEX, a program to
print itsDvI output files, andtéxinfo.tex ', the Texinfo definitions file. TEX is a
typesetting program; it does not print files directly, but produces output files called dvi
files. To print a typeset document, you need a program to print dvi files. If your
system has TEX installed, chances are it has such a program. The precise command to
use depends on your systapa:d is common; another (for PostScript devices) is
dvips . Thebvi print command may require a file name without any extension or a
‘.dvi ' extension. TEX also requires a macro definitions file calledhfo.tex

This file tells TEX how to typeset a document written in Texinfo format. On its own,
TEX cannot either read or typeset a Texinfo filexinfo.tex ' is distributed with

GDB and is located in thgdb- version-number/texinfo " directory. If you have

TEX and a dvi printer program installed, you can typeset and print this manual. First
switch to the thegdb’ subdirectory of the main source directory and then typge

gdb.dvi

252 m Debugging with GDB GNUPro Toolkit

c
i)
IS
=
c
]
S
=}
3]
o
(@]
o
=
=
5]
S
S
(<]
s
—
N

CYGNUS Debugging with GDB = 253

254 m Debugging with GDB GNUPro Toolkit

GNUPRO™ TOOLKIT

GDBtk

98r1
July, 1998

CYGNUS

Frontispiece

Copyright © 1991-1998 Cygnus.

All rights reserved.

GNUPrg", the GNUPrd' logo and the Cygnus logo are all trademarks of Cygnus.
All other brand and product names are trademarks of their respective owners.

Permission is granted to make and distribute verbatim copies of this documentation,
provided the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this documentation
under the conditions for verbatim copying, provided also that the entire resulting
derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this documentation into
another language, under the above conditions for modified versions.

This documentation has been prepared by Cygnus Technical Publications; contact the
Cygnus Technical Publications stadbc@cygnus.com .

256 = GDBtk GNUPro Toolkit

Frontispiece

Licensin g for GDBtk

The Tcl/Tk software, used in building the graphical user interface for the debugging
tools, is copyrighted by the Regents of the University of California, Sun
Microsystems, Inc., and other parties. The following terms apply to all files associated
with the software unless explicitly disclaimed in individual files.

The authors hereby grant permission to use, copy, modify, distribute, and license this
software and its documentation for any purpose, provided that existing copyright
notices are retained in all copies and that this notice is included verbatim in any
distributions. No written agreement, license, or royalty fee is required for any of the
authorized uses. Modifications to this software may be copyrighted by their authors
and need not follow the licensing terms described here, provided that the new terms
are clearly indicated on the first page of each file where they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO
ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF THIS
SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF,
EVEN IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE IS PROVIDED ON
AN "AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO
OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
ENHANCEMENTS, OR MODIFICATIONS.

RESTRICTED RIGHTS: Use, duplication or disclosure by the government is subject
to the restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in Technical
Data and Computer Software Clause as DFARS 252.227-7013 and FAR 52.227-19.

CYGNUS GDBtk = 257

Frontispiece

258 m GDBtk GNUPro Toolkit

Introduction to GDBtk

GDBTKk is a graphical user interface for GDB, the GNUPro Debugger. GDBTk has
the same look and feel on both Windows and Unix operating systems. GDBTk offers
the ease of a GUI and access to all the power of the GDB’s command-line interface.

See the descriptions for the basic user interface with the documentation with
“Interface for GDBtk” on page 261. See “Procedures” on page 301 for step by step
procedures to specify an executable, to indicate a source file, to set break points within
a function and to view the changing values of local variables.

CYGNUS GDBtk m 259

260 m GDBtk GNUPro Toolkit

Interface for GDBtk

This documentation outlines the functions of the GDBTk user interface.

« “Source Window” on page 262

« “Dialog boxes for the Source Window” on page 276

« “Stack window” on page 284

« “Registers window” on page 285

« “Memory window” on page 287

« “Watch Expressions window” on page 290

« “Local Variables window” on page 293

« “Breakpoints window” on page 295

« “Console window” on page 297

« “Help window” on page 298

When GDBTEk first opens, it displays tBeurce Window. The other windows that are
invoked from theSource Window, throughView menu selections or tool bar buttons

have documentation in the order that they appear i8dhee Window's View menu.
TheHelp window, for instance, is invoked from tBeurce Window’s Help menu.

The documentation discusses what occurs during an actual debugging session, after
running the executable up to a single breakpoint seidin.c ' of our example
executable program.

CYGNUS

GDBtk m 261

Source Window

Source Window

When GDBTK first opens, it displays tlseurce Window, as shown in
Figure 1: “Source Window” on page 263

The following documentation describes 8mirce Window attributes and its
correlating functionality.

« “Menu bar for the Source Window” on page 264

« “Toolbar buttons” on page 267

« “Special display pane features” on page 271

« “Using the mouse in the display pane” on page 272

« “Below the horizontal scroll bar” on page 274

« “Load New Executable dialog box for the Source Window” on page 276
« “Page Setup dialog box for the Source Window” on page 277

« “Print dialog box for the Source Window” on page 278

« “Target selection from the Source Window” on page 279

« “Global Preferences dialog box for the Source window” on page 282
« “Source Preferences dialog box for the Source window” on page 283

262 m GDBtk GNUPro Toolkit

Source Window

Figure 1: Source Window

@‘ Source Window _ (O]
File Bun “iew Contol Preferences Help
FHOPHY LY AL ELMIE & & a
«| | »
IThe pragrar iz hot being run.
| ﬂ | ﬂ |SOURCE ﬂ y
CYGNUS GDBtk m 263

Menu bar for the Source Window

Menu bar for the Source Window

There are six menu item selectioRse, Run, View, Control, Preferences andHelp.
The following documentation discusses Swtirce Window menus.

« “File” on page 264

= “Run” on page 265

« “View” on page 265

« “Control” on page 266

« “Preferences” on page 266

« “Help” on page 267

File
Figure 2: File menu
Open... Chl+0

Page Setup...
Frint Source.. Chl+P

Target Settings...

Exit

Open
Brings up the.oad New Executable dialog box. See “Load New Executable
dialog box for the Source Window” on page 276.

Page Setup
Brings up thePage Setup dialog box. See “Page Setup dialog box for the Source
Window” on page 277. This option is not currently available on the Unix version.
Print Source
Brings up thePrint dialog box. See “Print dialog box for the Source Window”
on page 278. This option is not currently available on the Unix version.
Target Settings
Brings up theTarget Settings dialog box. See “Target selection from the Source
Window” on page 279.
Exit
Closes the GDBTk program.

264 m GDBtk GNUPro Toolkit

Menu bar for the Source Window

Run

Figure 3: Run menu
Download Crrl+Dr

Bun R
Download
Downloads a program to a board (if connected).
Run

Runs the executable program.

View

Figure 4: View menu
Stack Chrl+5
Renisters Ctil+R
Temary Chrl+h

Watch Expressions Chi+a
Local ariables Ctrl+L

EBreakpaints Ctrl+B
Lorisale Cirl+C
Stack
DisplaysStack window. See “Stack window” on page 284.
Registers
DisplaysRegisters window. See “Registers window” on page 285.
Memory

DisplaysMemory window. See “Memory window” on page 287.
Watch Expressions

Displayswatch Expressions window. See “Watch Expressions window”

on page 290.
Local Variables

DisplaysLocal Variables window. See “Local Variables window” on page 293.
Breakpoints

DisplaysBreakpoints window. See “Breakpoints window” on page 295.
Console

DisplaysConsole window. See “Console window” on page 297.

CYGNUS

GDBtk m 265

Menu bar for the Source Window

Control
Figure 5: Control menu
Step 5
Mewxt M
Finizh F
LContinue C
Step Azm Inst 5
Mext Azm [nst M
Step
Steps to next executable line of source code. Steps into called functions.
Next
Steps to next executable line of source code in current file. Steps over called
functions.
Finish

Finishes execution of the current frame. If clicked while in a function, it finishes
the function and returns to the line that called the function.

Continue
Continues execution until a breakpoint, watchpoint or other exception is
encountered; or execution is complete.

Step Asm Inst
Steps to next assembler instruction. Steps into subroutines.

Next Asm Inst
Steps to next assembler instruction. Executes subroutines and steps to the
subsequent instruction.

Preferences

Figure 6: Preferences menu

Global
Source
Reqister

Global
DisplaysGlobal Preferences dialog box. See “Global Preferences dialog box for
the Source window” on page 282.

Source

DisplaysSource Preferences dialog box. See “Source Preferences dialog box for
the Source window” on page 283.

266 m GDBtk GNUPro Toolkit

Toolbar buttons

Help

Figure 7: Help menu

Help Topics
Cygrug on the Web

About GDE...

Help Topics
DisplaysHelp Window. See “Help window” on page 298.

Cygnus on the Web
Links to the “GNUPro Tools” web page.

About GDB
DisplaysAbout GDBTk window, containing product version number, copyright
and Cygnus contact information.

Toolbar buttons

Run / Stop
Figure 8: Run button

2|

TheRun button runs the executable. During execution the button turns inSdpe
button. If you click on th&®un button with no executable loaded, you invoke the
Target Selection dialog box. See “Target selection from the Source Window”
on page 279.

Figure 9: Stop button

=]

TheStop button will interrupt the program, provided that the underlying hardware and
protocol support such interruptions. Many monitors that are connected to boards
cannot interrupt programs on those boards, s&tbgbutton has no functionality.

Step
Figure 10: Step button

)

Steps to next executable line of source code. Steps into called functions.

CYGNUS GDBtk m 267

Toolbar buttons

Next
Figure 11: Next button

0
Steps to next executable line of source code in the current file. Steps over called
functions.
Finish
Figure 12: Finish button
(¥

Finishes execution of the current frame.

If clicked while in a function, it finishes the function and returns to the line that called
the function.

Continue
Figure 13: Continue button

0
Continues execution until a breakpoint, watchpoint or other exception is encountered,;
or execution is complete.

Step Assembler instruction

Figure 14: Step assembler instruction button
it

InvokesStep assembler instruction. Steps into subroutines.

Next Assembler instruction

Figure 15: Next assembler instruction button
W

Steps taNext assembler instruction. Executes subroutines and steps to the following
instruction.

268 m GDBtk GNUPro Toolkit

Toolbar buttons

Registers
Figure 16: Registers button

#|

TheRegisters button brings up thRegisters window. See “Registers window”
on page 285.

Memory
Figure 17: Memory button

A

TheMemory button brings up th®lemory window. See “Memory window”
on page 287.

Stack
Figure 18: Stack button

=

The Stack button brings up thstack window. See “Stack window” on page 284.

Watch Expressions
Figure 19: Watch Expressions button

&

TheWatch Expressions button brings up the/atch Expressions Window. See “Watch
Expressions window” on page 290.

Local Variables

Figure 20: Local Variables button

L1

TheLocal Variables button brings up theocal Variables Window. See “Local
Variables window” on page 293.

CYGNUS GDBtk m 269

Toolbar buttons

Breakpoints
Figure 21: Breakpoints button

==

TheBreakpoints button brings up thBreakpoints window. See “Breakpoints
window” on page 295.

Console
Figure 22: Console button

The Console button brings up th€onsole window. TheConsole window features a
command line interface to GDB, the GNUPro debugger. See “Console window”

on page 297.
Line address / Line number display
Figure 23: Program counter display frame and line number display frame

Bz401122 16

The left-hand read-only frame displays the program coupt®iof the current frame,
while the program is running.
The right-hand read-only frame displays the line number, which contaips, tivbile

the program is running.

Down stack frame
Figure 24: Down stack frame button

=|

Moves down the stack frame one level.

270 m GDBtk GNUPro Toolkit

Special display pane features

Up stack frame
Figure 25: Up stack frame button

&

Moves up the stack frame one level.

Go to bottom of stack

Figure 26: Go to bottom of stack frame button

B

Moves to the bottom of the stack frame.

Special display pane features

The following discussion details some special features to the display panes.

=« When the executable is running, the location of the current program counter is
displayed as a line with a green background

« When the executable has finished running, the background color changes to violet
(browsing mode).

« When looking at a stack backtrace, the background color changes to golden
yellow

CYGNUS GDBtk m 271

Using the mouse in the display pane

Using the mouse in the display pane

There are various uses of the mouse within the main display paneSafuttee

Window. The display pane is divided into two columns, as shovirigare 27. The

left column extends from the left edge of the display pane to the last character of the
line number. The right column extends from the last character of the line number to
the right edge of the display pane. Within each column, the mouse has a different set
of effects.

Figure 27: Using the mouse in the window

Left column Right column

@ main.c - Source Window - 0] x|

File | Bun “iew Control Preferences Help

SIRURTUR At ’é'é?’éﬁ‘ﬁﬂﬁd&ﬂ%‘ == s

-

/* The mailn program. 7

3
2
3| #include “structs.h"
n

Right display column
« By holding the cursor over a global or local variable, the current value of that
variable is displayed.

« By holding the cursor over a pointer to a structure or class, the type of structure or
class is displayed and the address of the structure or class is displayed.

« By double clicking an expression, it is selected.

« By right clicking while an expression is selected, a pop-up menu appears. The
selected expression appears in both menu selectioRigyure 28, the selected
variable was theis ' expression.

Figure 28: Pop-up window for expressions

Add li= to Watch
Cump Memaory at liz

Add lis to Watch
Brings up thewatch Expressions window and adds a variable expression (the
‘lis ' variable, in this instance) to the list of expressions in the window.
Dump Memory at lis
Brings up theMemory window, which displays a memory dump at an expression,
in this instance, thais ’expression.

272 m GDBtk GNUPro Toolkit

Using the mouse in the display pane

Left display column

When the cursor is in the left column and it is over an executable line (marked on the
far left by a minus sign), it changes into a circle. When the cursor is in this state:

A left click sets a breakpoint at the current line. The breakpoint appears as a red
square in place of the minus sign.

A left click on any existing breakpoint or temporary breakpoint removes that
breakpoint.

A right click brings up another pop-up menu, as showfigure 29.

Figure 29: Pop-up menu for setting breakpoints

Continue ko Here
Set Breakpoint
Set Temporary Breakpoint

Continue to here

This causes the program to run up to this location, ignoring any breakpoints. Like
the temporary breakpoint, this menu selection is displayed as an orange square.
This selection disables all other breakpoints. When a breakpoint has been
disabled, it turns from red or orange to black.

WARNING: The debugger might be expected to execute to a given location, stopping at all

encountered breakpoints. This menu item currently forces execution to this
location without stopping at any encountered breakpoints.

Set breakpoint here

This sets a breakpoint on the current executable line. This has the same action as
left clicking on the minus sign.

Set temporary breakpoint here

This sets a temporary breakpoint on the current executable line. A temporary
breakpoint is displayed as an orange square. The temporary breakpoint is
automatically removed when it is hit.

Figure 30: Pop-up menu for deleting breakpoints

Delete Breakpoint

Caontinue to Here

Delete Breakpoint

This deletes the breakpoint on the current executable line. This has the same
action as left clicking on the red square.

Continue to Here

See the description fa@ontinue to Here for Figure 29.

CYGNUS

GDBtk m 273

Below the horizontal scroll bar

Below the horizontal scroll bar

There are four display and selection fields below the horizontal scroll bar: the status
text box, the file drop-down combo box, the function drop-down combo box and the
code display drop-down list box.

Figure 31: Status text box

(DB running on process -458363

Imain.c ﬂ |main ﬂ W ﬂ

In Figure 31, in the area immediately below the scroll bar, a text box displays the
current status of the debugger.

Figure 32: Drop-down list box

|main.c| ﬂ
libcert oo j
libgocs.c
limnits.b
ligtz.c
machmode. def
machmode. b J
pararn.h
path.h
reent h
resource. b =

The drop-down list box, as shownhigure 32, displays all the source and header
files associated with the executable. Files may be selected by clicking in the list box,
or by typing into the text field above the list.

274 m GDBtk GNUPro Toolkit

Below the horizontal scroll bar

Figure 33: Function drop-down combo box

frriain.c g frriaid g

The drop-down list box displays all the functions in the currently selected source or
header file. A function may be selected by clicking in the list box, or by typing into the
text field above. IrFigure 33, the main.c ' file only contains the onerain’ function.

Figure 34: Code display drop-down list box

[SOURCE 3|

Select how the code in ti8®urce Window is displayed, as shown with the selectable
formats inFigure 34.
SOURCE
The source code is displayed in $murce Window.
ASSEMBLY
The assembly code is displayed in Suirce Window.
MIXED
The source code and the assembly code are both displayed, interspersed in the
Source Window.
SRC+ASM
The source code and the assembly code are both displayed in a double paned
window. The source code is displayed in $v@rce Window and, in a pane below
the source code pane, the assembly code is displayed.

CYGNUS GDBtk m 275

Dialog boxes for the Source Window

Dialo g boxes for the Source Window

The following documentation describes the dialog boxes that are invoked from the
Source Window, through theFile andPreferences menu selections.

Load New Executable dialog box for the Source
Window

TheLoad New Executable dialog box, as shown irigure 35, is invoked by clicking
the Open menu item in th&ile drop-down menu of th8ource Window. This dialog
box allows you to navigate through directories and select an executable file to be
opened in th&ource Window.

Figure 35: Load New Executable dialog box window

Load Hew Executable

Laok i I 4 example j £F

a.cpgwing? nple.exe Imair.

cogein, dil @ example.zip FEVE.C

dhiry.h fact.z structs.h

dhrp_1.c floats.c

dhry_2.c foo.c
E exl.exe listz.c

File name: Ie:-:ample.e:-:e Open I
Filez of type: I.-i‘-.II Filez [.7] j Cancel |

276 m GDBtk GNUPro Toolkit

Page Setup dialog box for the Source Window

Page Setup dialog box for the Source Window

ThePage Setup dialog box, as shown iRigure 36, is invoked by clicking th€age
Setup menu item in th&ile drop-down menu of th®ource Window. This standard
dialog box allows you to make page layout selections before printing a source file.

Figure 36: Page Setup dialog box window

Page Setup |

— Paper
Size: IS Letter j
Sounce;

— Orientation b arging [inches)

' Puotrait Left: |1 " Right: |1 "
|1" Boattom: I'I"

| k. I Cancel | Frinter... |

" Landzcape Top:

CYGNUS GDBtk m 277

Print dialog box for the Source Window

Print dialog box for the Source Window

ThePrint dialog box, as shown iRigure 37, is invoked by clicking therint Source
menu item in th&ile drop-down menu of th8ource Window. This dialog box allows

you to select a printer and make other print specific selections, before printing a
source file.

Figure 37: Print dialog box window

Print H

— Printer

Marme: E hgineering Properties |

Status: Ready
Type: HF Lazerlet 4/ PoztScript
“Where: “hclencheng

Comment: Engineering printer on 2nd floor [Print to file
— Print range — Copies
o Al Mumber of copies: 1 -

" Pages from: |1 !DZ|1
£ Belaction Ijl [T Callate

] I Cancel

278 m GDBtk GNUPro Toolkit

Target selection from the Source Window

Target selection from the Source Window

TheTarget Selection dialog box is invoked by clicking thearget Settings menu item
in theFile drop-down menu of thBource Window. This dialog box allows you to
select the target you wish to run the executable on, and make other run-specific
selections.

Figure 38: Target selection dialog box window
(" Target Selection

= EDI"II"IECHDI"I e e e e s ey

. ¥ Run until 'main’
T arget: EFIemnte.u’S efial

Baud Flate; [38400 W Set breakpaint at 'exit

Elt [!1-»‘ E.Ij:“.....

Part: Eu:u:um1 [Display Download Dialog
[* More Options
] Cancel Help i
Connection

The Connection group contains the Target drop-down list box for target selection
and two other fields for setting target-specific parameters.

Target
The contents of this list box depend upon the specific GDB debugger
configuration you have received. For a native configuration, the list comesns
(for native execution)Remote/Serial (serial connection to a remote target) and
Remote/TCP (TCP connection to a remote target).

If GDB has been configured to include a specific hardware simulator, the target
Exec will be replaced by targatm. The names of specific hardware targets may
also be included in the list, with serial, TCP or both methods of connection,
depending upon the hardware.

Baud Rate/Hostname
When a serial connection to a remote target is selected the baud rate may be set:
When a TCP connection to a remote target is selected, this list box turns into a text
edit field, renamedHostname,” allowing for specifying of a host name.

Port
For both serial and TCP connections to remote targets, the port must be
designated. For serial connection, port specifies the serial port on the host

CYGNUS

GDBtk m 279

Target selection from the Source Window

machine. For TCP connections, port specifies the port number on the remote
target.
Run until ‘main’
Set a breakpoint &hain' and run until that breakpoint is reached. This is checked
by default.
Set breakpoint at 'exit’
Set a breakpoint at the call to the 'exit' routine. This is checked by default.
Display Download Dialog
In addition to using the status-bar, display more extensive download status
information in a dialog box. This is particularly useful when doing a serial
download to a remote target. This is unchecked by default.
More Options/Fewer Options
Toggles to display or hide thRun Options at the bottom of the dialog box, as
contrasted and shown kigure 39.

Figure 39: Target Selection window’s Run Options features

@ Target Selection

= CORRBCHIOR oo oo
V¥ Bun until 'main’

T arget: EH emoteSenal

Baud Fate: 33400 ¥ Set breakpoaint at 'exit

[T Display Download Dislog

ol Kot

Puort: Eu:u:um1

=~ Fewer Ophionz

i~ Run Options
IV Attach to Target [Bun Program
' [T Download Program [V Continue from Last Stop
Ok Cancel Help 1
Run Options
The four check boxes in this group set-up the actions taken, whiarthritton
is clicked.

Attach to Target
Connects to a remote target.

280 m GDBtk GNUPro Toolkit

Target selection from the Source Window

Download Program
Downloads an executable to a remote target.

Continue from Last Stop
Continues execution from wherever the executable, on a remote target, left
off.

Run Program
Begins execution of an executable.

CYGNUS GDBtk m 281

Global Preferences dialog box for the Source window

Global Preferences dialog box for the Source window

TheGlobal Preferences dialog box, as shown figure 40, is invoked by clicking the
Global menu item in th@references drop-down menu of th8ource Window. This
dialog box allows you to select the font and the type size, for displaying text.

Figure 40: Global Preferences dialog box window

@Eluhal Preferences =] E3
|conz EWindDWS-St}'|E|CDn Set }J
i FDntS
| FiedFort [Firedys 3| si=[> 2] aBCDEFabcdero123u56789
| DefautFont M5 Sans Sert 3| si=fe 2] apCDEFabedeintzadsETes
| Statusbar Font, [M5 Sans Serl 3| sisfs 2] aBCDEFabedeint 2345709
......... g K:1 &ppl}l 1 Eance'

Icons

This drop-down list box allows for choosing between the deféuitows-style
icon setas shown inFigure 41 and thebasic icon seas shown irFigure 42,

Figure 41: Windows-style icon set

$006u|bE | saEe 82| | rr
Figure 42: Basic icon set
Wrvdn|> [4aSoaza| | Lty
Fonts
The fields in this group allow for custom selection of font family and size.
Fixed Font

This drop-down list box allows you to select the font for the source code
display panes
Default Font

This drop-down list box allows you to select the font for use in list boxes,
buttons and other controls.

282 m GDBtk GNUPro Toolkit

Source Preferences dialog box for the Source window

Status bar Font
This drop-down list box allows you to select the font for the statusbar.

Source Preferences dialog box for the Source window

TheSource Preferences dialog box, as shown irigure 43, is invoked by clicking the
Source menu item in th@references drop-down menu of th8ource Window.

Figure 43: Source Preferences dialog box

(€’ Source Preferences []
— Colors

PC Mormal Brealkpoirt -
Stack Temparary Breakpoint _I
Browze Dizabled Breakpoint -
Mixed Source - Tracepoint -

Debug Mode ———————— “Wanable Balloons
= Tracepoints i* On
£ Breakpointz 0 O
ok | Apply | Cancel |
Colors

Single left-clicking any of the colored squares open<timse color dialog
box. TheChoose color dialog box allows the display colors to be modified by,
the user.

Debug Mode
Unless GDB has been configured to enable the setting of tracepoints, this
radio button has no effect.

Variable Balloons
If Variable Balloons is on, a balloon appears displaying the value of a

variable, when the mouse is placed over the variable iBdtiee Window.
The default is on.

CYGNUS GDBtk m 283

Stack window

Stack window

TheStack window displays the current state of the call Stack, as showighye 44,
whereeach line represents a stack frame

Figure 44: Stack window
@Stack

#8 main () at main.c:30

#1 0x1008c3df in d11_crt@ 1 (uptr=0x4082884) at ../../../devofuinsup/dcrtB.cc:592
#2 0x1008c3f3 in d11_crt® (uptr=0x482004) at ../../../devo/winsup/dcrt@.cc:604
#3 0xu01431 in cyguin_crt® () at ../../../devofuinsup/libcertf.cc:97

A= |

Clicking a frame selects that frame, which is indicated by the background of the frame
turning yellow, as shown iRigure 45. TheSource Window automatically updates to
display the line, corresponding to the selected frame. If the frame points to an
assembly instruction, th&urce Window changes to display assembly code. The
background of the corresponding line in Bmirce Window also changes to yellow.

Figure 45: Clicking a stack frame

@ Stack
#8 main () at main.c:12

#1 8x1800c3df in d11_crtd_1 (uptr=0:x40820084) at ../../../devo/uinsup/dcrt@.cc:592
#2 8x1808c3f3 in d11_crtd (uptr=8x4682884) at ../../../devo/winsup/dcrt@.cc: 684
#3 8x481431 in cygwin crt@ () at ../../../devo/winsup/libcertB.cc:97

[_[0]]

284 m GDBtk GNUPro Toolkit

Registers window

Registers window

TheRegisters window, as shown ifigure 46, dynamically displays the registers and
their content. The documentation for “Register menu for the Register window”
on page 286 discusses changing the properties of registers.

Figure 46: Registers window

@ Registers =]

Benqizter

eax Bx45h2864[st B8x ol
T Bx1358[st (1) 8x 0|
ed:x Bx4Ch287LISE(2) ﬂxﬂ
ebx Bx257F514|sE(3) ﬂxﬂ
esp Bx257Fhec|SE(A) B=a
ebp 257 F508|sE(S) Bx8
esi xS |sE(6) B=a
edi Bx1808ba%3|stE(7) B=a
eip 8x408108bb

ps Bx212

CS Bx14f

55 B=157

ds Bx157

es Bx157

= =43 87

gs 8x8

« Asingle left click on a register will select it.
« A double click on a register allows the content of the register to be edited.
Hitting the Escape KeyEéc) will abort the editing.

CYGNUS GDBtk m 285

Register menu for the Register window

Register menu for the Register window

Figure 47: Register menu

Edit
Format 4
Remave from Dizplay

Dizplay &Il Registers

Edit
This menu item has the same effect as double clicking a register. The content of
the selected register may be changed. This menu item is only active when a
register has been selected.

Format
This menu item calls another pop-up menu, as showigure 48, allowing the
content of the selected register to be displayeteiadecimal, Decimal, Natural,
Binary, Octal, andRaw formats.

Figure 48: Register format menu

v Hex
Decimal
Matural
Einary
Octal
Baw

Hexadecimal is the default display format.

Remove from Display
This menu item removes the selected register from the window. All registers are
displayed if the window is closed and reopened. This menu item is only active
when a register has been selected.

Display All Registers
This menu item displays all the registers. This menu item is only active when one
or more registers have been removed from display.

286 m GDBtk GNUPro Toolkit

Memory window

Memory window

TheMemory window, as shown ifigure 49, dynamically displays the state of

memory.

Figure 49: Memory window

@ Memory
Addiezzes

8 [l E3

Hddres5ﬁpc

y

8

[

4,81 8bb

0x8%9echSBb

@245 FfF 045

0xe8d%ebfB

@x0000881cd| .

L4a18ch

Bz 0000f 0eB

8z00c3c00

fze5395500

B8z8bBcecd3

481 8db

Bx45890845

BxF8ULCTFC

gz 000000802

Bx03F4u5c?

4818eb

fz8b00DOBO

B2c 083 0c 45

B fc558b0Y

B=89dBafof

La18fb

Bx1aeBfcho

9890800000

B FB4501cH

@x8bfcu58b

481168b

Bz148dF84d

B2 F455 08301

Bz81ebda8?

B289c3c990

ilocaos Wocoooooos

48111b

Bxe58955F6

Bxc708ecB3

Bz 006 4fcab

Bx45c70008 .U......E.d....E

48112b

Bz 000000F8

B2 fFchdf 00

BzFFfcid83

8x09eb 0375 M..}..u...

A memory location can be selected by double clicking the left mouse button with the
cursor in the window. The contents of a selected memory location can be edited.

Figure 50 shows therddress menu.
Address menu for the Memory window
Figure 50: Address menu for theMemory window

v Auto pdate
Update Mow Crl+l

Freferences...

Auto Update
The contents of thelemory window are automatically updated whenever the
target’s state changes. This is the default setting.

Update Now
Forces the immediate update of Memory window’s view of the target’s
memory.

Preferences
This menu item brings up tiMemory Preferences dialog box.

CYGNUS GDBtk m 287

Address menu for the Memory window

Memory Preferences dialog box for the Memory window

TheMemory Preferences dialog box, as shown iRigure 51, makes it possible to set
memory options.

Figure 51: Memory Preferences dialog box for the Memory window

@ Memory Preferences Hi=] B3
— Size
" Byle = WwWord " Float

i Half'word 0 Doubleord © Double Float

— Format
= Binary = Oetal ' Hex

" SignedDecimal Unsigned Decimal

— MNumber of Bytes

" Depend: on window size

" Fiued Iﬁb}ltes

— Mizcellaneous

Eutes Per Raw I'IE ﬂ v Dizplay ASCH
I._ Contral Char
k. | Cancel Apply |
Size
Selection of the size of the individual cells displayed.
Format

Selection of the format of the memory display.
Number of Bytes

Sets the number of bytes displayed inNwenory window.
Bytes Per Row

Sets the number of bytes displayed per row.
Display ASCII

Choose to display a string representation of the memory.

288 m GDBtk GNUPro Toolkit

Address menu for the Memory window

Control Char
Choose the character used to display non-ASCII characters. The default character
is the period.

i~
=
o0
(@)
o
P
o
2
[}
o
©
=
[}
g
=
i

CYGNUS GDBtk m 289

Watch Expressions window

Watch Expressions window

TheWatch Expressions window, as shown ifrigure 52, displays the name and
current value of user-specified expressions.

Figure 52: Watch Expressions window

@‘w"atch Expressions =]

i atch

Hame Ualue |
avar 1

| Add W atch |

« Single clicking on an expression selects that expression.

« Right clicking in the display pane, while an expression is selected, calls an
expression-specifigvatch menu, as shown and described with
Figure 53: “Watch menu in the Watch Expressions window” on page 291

290 m GDBtk GNUPro Toolkit

Watch Expressions window

Figure 53: Watch menu in theWatch Expressions window

@Watch Expressions =]

Wwhatch
Hame Ualue "

awar

Format 4
Remowve
E dit

| Add ‘watch |

Figure 54: Watch menu for the Watch Expressions window

Edit
Format
Remove

Edit
Allows the value in the expression to be edited.
Hitting the Escape keyEgc) will abort the editing.

Format
This menu item brings up another pop-up menu, as shotigume 55, allowing
the value of the selected expression to be displayddxadecimal, Decimal,
Binary, andOctal formats.

Figure 55: Value formats for theWwatch Expressions window

Hex

v [Decimal
Binany
Dctal

By default, pointers are displayed in hexadecimal and all other expressions are
displayed as decimal.

Remove
Removes the selected expression from the watch list.

CYGNUS GDBtk m 291

Add Watch button for the Watch Expressions window

Add Watch button for the Watch Expressions window

An expression can be typed into the text edit field at the bottom of the dialog box, as
shown in the screen on the lefthigure 56. By pressing thédd Watch button or

hitting theEnter key, the expression is added to the list, as shown in the resulting
addition to the window on the right Figure 56. Invalid expressions are ignored.

Figure 56: Using theAdd Watch button for the Watch Expressions window

@Watch Expressions M=l B3 || € Watch Expressions M=l E3
Watch Wi atch
Hame Ualue | Hame Ualue |
avar 1 auvar 1
bglob 1234
|bglob] Addwatch | | Add Watch |

Watching registers with the Watch Expressions

window

GDB allows registers to be added to ¥hetch Expressions window, by typing

register “convenience variables” into the text edit field. Every register has a
corresponding convenience variable. The register convenience variables consist of a
dollar sign followed by the register name. The convenience variable for the program
counter is $pc’, for example. The convenience variable for the frame pointéfpis.*

Casting pointers in the Watch Expressions window

Pointer values may be cast to other types and watched, represented as the type to

which the pointer was cast. For example, by typ{sguct _foo *) bar
text edit field, thebar * pointer is cast as attruct _foo

"in the

' pointer.

292 m GDBtk

GNUPro Toolkit

Local Variables window

Local Variables window

TheLocal Variables window displays the current value of all local variables.
Figure 57: Local Variables window

@ Local ¥Yarniables =1
Wariable
Hame Ualue |
avar 1
i a
Hlis (struct listelt =) Bx45b2864
FHlisend (struct listelt =) Bx45b2864
Hanelt (struct listelt =) Bx45b2874

« Single clicking the mouse with the cursor over a variable selects the variable.

« Double clicking the mouse with the cursor in tlveal Variables window puts the
variable into edit mode.

« Single clicking the mouse with the cursor on the plus sign to the left of a structure
variable displays the elements of that structure. Compare the variable structure in
the window inFigure 57 with the results irFigure 58.

« Single clicking the mouse with the cursor on the minus sign to the left of an open
structure closes the display of the structure elements.

Figure 58: Displaying the elements of a variable structure

@ Local ¥ariables M=l E3
YYariable
Hame Value |
avar 1
i 39319728
[H1is (struct listelt =) Bx83782dG68
[H1isend (struct listelt =) 8x18819787
[Hanelt (struct listelt =) Bx257f504
adat 268485599
bdat = - i
dnext J_ 11T (struct Tistelt x) 8x257fgan
adat 39318804
hdat a
Fnext (struct listelt =) Bx675c3a63

CYGNUS GDBtk m 293

Local Variables window

Variable menu for the Local Variables window

Figure 59: Variable menu for theLocal Variables window

Edit
Format *
Edit
Allows the value of a selected variable to be edited.

Hitting the Escape keyEéc) will abort the editing.

Format
This menu item brings up another pop-up menu, as shofigume 60, allowing
the value of the selected variable to be displayed ikl#itadecimal, Decimal,
Binary andOctal formats

Figure 60: Variable format menu

Hes

v Decimal
Binary
Octal

By default, pointers are displayed in hexadecimal and all other expressions are
displayed as decimal.

294 m GDBtk GNUPro Toolkit

Breakpoints window

Breakpoints window

TheBreakpoints window, as shown ifrigure 61, displays all breakpoints that are
currently set.

Figure 61: Breakpoints window

(&> Breakpoints [_ (O]

Breakpoint Global

Address | File |Line| Functiun'
7 Bx4816bb main.c 30 main
v @x4@18c6 main.c 35 main

« Single clicking with the mouse with the cursor over a check-box for the
information displayed for a breakpoint selects that breakpoint.

« Single clicking with the mouse with the cursor over a checked check box of a
breakpoint disables the breakpoint. The check disappears and the red square in the
Source Window turns black.

« Single clicking with the mouse with the cursor over an empty check box of a
disabled breakpoint re-enables the breakpoint. The check reappears and the black
square in th&ource Window turns red.

Breakpoint menu for the Breakpoints window

Figure 62: Breakpoint menu for the Breakpoints window

v MNomal
Temparary

v Enabled
[hizabled

Remove

Normal

Temporary
This pair of menu items toggles between the normal and temporary setting of the
selected breakpoint. A normal breakpoint remains valid no matter how many
times it is hit. A temporary breakpoint is removed automatically the first time it is

CYGNUS GDBtk m 295

Global menu for the Breakpoints window

hit. A single check mark for either setting shows the state of the selected
breakpoint.

When a breakpoint is set to temporary the red check mark in the check box and the
red square in thBource Window turn orange, as shown by comparing
Figure 61: “Breakpoints window” on page 295with Figure 63.

Figure 63: Results of setting breakpoints

(€ Breakpoints =]

Brealkpoint Global

Address | File |LinE|Fun[:tiun|
r Bx4816bb main.c 38 main
[@x4@18c6 main.c 35 main

Enabled

Disabled
This pair of menu items toggles the enabled or disabled state of the selected
breakpoint. The single check mark between them shows the state of the selected
breakpoint.

Remove
This menu item removes the selected breakpoint.

Global menu for the Breakpoints window

Figure 64: Global menu for theBreakpoints window

Dizable Al
Enable All

Remowve All

Disable All

Disables all breakpoints.
Enable All

Enables all breakpoints.
Remove All

Removes all breakpoints.

296 m GDBtk GNUPro Toolkit

Console window

Console window

TheConsole window contains the command prompt for GDB, the GNUPro debugger.
This window, as shown iRigure 65, allows access to the debugger through the
command-line interfacegdb) is the prompt for the debugger.

Figure 65: Console window

@‘ Console Window _ (O]
{gdb) -

CYGNUS GDBtk m 297

Help window

Help window

TheHelp window, as shown ifrigure 66, is invoked by clicking theielp Topics
menu selection in thidelp drop-down menu of th®ource Window. TheHelp
windowoffers HTML based navigable help by topic.

Figure 66: Help window
(€ Help I[=] E3

Fillz Topics

&=

Help - Table of Contents

Source Window - The Source Window
Reaizter wWindow - The Register Window

b ermany Window - The bMemon window
Locals Window - The Locals Window

Watch Window - The Watch Window
Breakpoint *Window - The Breakpoint Window
Console Window - The Console "Window
Stack Window - The Stack Window

GFL - The GMU Public License

o o o o o o o o 43O

See also the discussions figure 67: “File menu for the Help window”
on page 29%ndFigure 68: “Topics menu for the Help window” on page 299

298 m GDBtk GNUPro Toolkit

File menu for the Help window

File menu for the Help window
Figure 67: File menu for the Help window

Back
Formard
Home

Close

Back
Moves back one HTML help page, relative to previous forward page movements.

Forward
Moves forward one HTML help page, relative to previous back page movement.

Home
Returns to the HTML help “Table of Contents” home page.

Close
Closes the Help Window.

Topics menu for the Help window

Selecting a menu item invokes tHelp topic’s contents, as shown kigure 68.
Figure 68: Topics menu for theHelp window

Source Window
Reqister ‘Window

b ermom Y indow
Locals "Window

W atch Window
Breakpoint WAfindow
Consale "Window
Stack Window
GFL

Each menu item represents a help topic. When a menu item is selected, the content of
theHelp window changes to reflect the listed topic.

CYGNUS GDBtk m 299

Topics menu for the Help window

300 m GDBtk GNUPro Toolkit

Procedures

The following documentation contains an example debugging session with step by
step procedures for using GDBTK.

« ‘“Initializing a target executable file” on page 302
“Selecting a source file” on page 304
“Setting breakpoints and viewing local variables” on page 306

CYGNUS

GDBtk = 301

Initializing a target executable file

Initializin g a target executable file

Initializing a target executable file with GDBTk means opening a specific executable
file.

There are two ways to open an executable file in GDBTk.

The first means using tt@pen menu item in th€&ile drop-down menu from the
Source Window.

The second means using the following initialization procedure, entering commands at
the ‘(gdb) * prompt in theConsole window.

1. Open theConsole window; either from th&iew menu, or with th&€onsole button
(seeFigure 22: “Console button” on page 270.

2. With theConsole window active, determine if the target file is in the same
directory as GDBTK. If not, change to the target directory, using:the *
command.

In our example procedures, the syntax uses the forward slash as the path delimiter

on all platforms. Windows, though, requires using two forward slashes after the
drive designation.

NOTE: If the source files are not in the same directory as the executable file, use the
GDB ‘dir ' command to add a path to them, using the same syntax as in Step
2 of initializing a target file. This was not needed in our example.

3. Use the commandile example ', to specify the target executable file.

SeeFigure 69: “Console window with initial commands ” on page 303or the
results of these procedures.

302 m GDBtk GNUPro Toolkit

Initializing a target executable file

Figure 69: Console window with initial commands

@ Conzole Window [[O] %]
{gdb) cd //c/gdbtk/example -

Working directory //c/gdbtk/example ~
{canonically /qdbtk/example}.

{gdb) file example
{gdb)

CYGNUS GDBtk = 303

Selecting a source file

Selectin g a source file

To select a source file and specify a function within that file, use the following

procedure.

1. Select thefoo.c’ source file in the file drop-down combo box, at the bottom of the
Source Window.
Figure 70represents the lower left corner of $murce Window, showing the
Source windowfile menu drop-down combo bor the left and th&unction
drop-down combo boan the right of the window. See also “Below the horizontal
scroll bar” on page 274.

Figure 70: Source file and function selection

IThE program is hot being rue.

|f|:u:-. = EI |f|:u:| él

bar

2. Select the functionféo’ in the function drop-down combo box, at the bottom of
the Source Window.

Now the foo.c’ source file is displayed in th&ource Window with a colored bar,
indicating the current position, as showrFigure 71, on the first executable line
(line 6) in the foo ' function. Once again, the colored bar is violet, indicating
graphically that the program is not running.

304 m GDBtk GNUPro Toolkit

Selecting a source file

Figure 71: Source Window with *foo.c’ source file

@ foo.c - Source Window M=l &=
FEle Bun “iew Contol Preferences Help
FH0 00| v | sase a8 | 2 <=
1 /=% Subroutines. =/ =
2
3 int
4 foo (int argil, int arg2)
— 5 ¢
- [i] int a = argl, b = 2, c = 3;
¥
- 8 a =*= 4 + arg2;
- 9 h += bar ();
- 1@ return a + b + c;
- 11
12
13 int
14 bar ()
- 15
- 16 int i = 188, rslt = @;
17
- 18 vhile (i--)
- 19 rslt += 1i;
- 28 return rslt;
- 211
22
| |»
IThe program iz not being mn.
[fonc 2| e 2| [soURCE 3 P

CYGNUS GDBtk m 305

Setting breakpoints and viewing local variables

Settin g breakpoints and viewin ¢
local variables

A breakpoint can be set at any executable line. Executable lines are marked by a
minus sign in the left margin of tt&»urce Window. When the cursor is in the left

column and it is over an executable line, it changes into a circle. When the cursor is in
this state, a breakpoint can be set.

The following exercise steps you through setting four breakpoints in a function, as
well as running the program and viewing the changing values in the local variables.

1.

With the Source Window active, having opened thimé.c’ source file, place the
cursor over the minus sign on line 6.

When the minus sign changes into a circle, click the left mouse button; this sets
the breakpoint, signified as a red square.

NOTE: A second single click on a breakpont will remove the breakpoint.

3.

4.

Repeat the process to set breakpoints at lines 8, 9 and Hig8Bee72: “Results
of setting breakpoints at lines 6, 7, 8, and 9” on page 307

Open theBreakpoints window, by clicking theBreakpoints button on the tool bar
(seeFigure 21: “Breakpoints button” on page 270and
Figure 73: “Breakpoints window” on page 307).

Click the check box for line 6. The red checkmark disappears and the red square
in the Source Window changes to black. This color change indicates that the
breakpoint has been disabled. Re-enable the breakpoint at line 6 by clicking the
check box.

Click theRun button on the tool bar to start the executable (see “Run button”
on page 267). The program runs until it hits the first breakpoint on line 6. The
color bar on line 6 is green, indicating that the program is running (see
Figure 72: “Results of setting breakpoints at lines 6, 7, 8, and 9” on page 307
andFigure 73: “Breakpoints window” on page 307.

306 = GDBtk

GNUPro Toolkit

Setting breakpoints and viewing local variables

Figure 72: Results of setting breakpoints at lines 6, 7, 8, and 9

@loo_c - Source Window

File Bun “iew Control Preferences Help

I]

S IRUN T VA P

m
=

o E R M

B:x4010da| 6

F* Subroutines. =/
int
foo (int arg1, int arg2)
{
int a =

argl, b =2, ¢
a *= 4 + arg2;

b += bar (});

return a + b + C;

|
L=IN--R) -, BTy T L R

1 3

int
bar ()}
- 15 ¢
int i = 188, rslt = 8;
while (i--)
rslt += i;
return rslt;

[I T |
-
L =]

21 3}

33

[~ B

4]

I GDEB running on process -284745

ﬂ Ifod

Ifoo.c

*| [soUACE 3 P

Figure 73: Breakpoints window

@ Breakpoints
Breakpoint Global

(=] E3

Address | File |LinE|Functiun|

=l

8x4818da foo.c

=l

fx4818ee foo.c

8x4818fd foo.c

=l

gx401187 foo.c

=

]

o

18

foo

foo

foo

foo

CYGNUS

GDBtk = 307

Setting breakpoints and viewing local variables

7. Open theLocal Variables window, by clicking theLocal Variables button in the
tool bar (sed-igure 20: “Local Variables button” on page 269and
Figure 57: “Local Variables window” on page 293. The window displays the
initial values of the variables.

8. Click theContinue button in the tool bar (sdéggure 13: “Continue
button” on page 268, to move to the next breakpoint. The variables that have
changed value turn blue in thecal Variables window (sed~igure 74).

Figure 74: Local Variables window after setting breakpoints

(€ Local Variables O] & Local Variables _[O]x]
Wariable W ariable
Hame Ualue | Hame Ualue |
argi 1 argl 1
arg2 1234 arg2 1234
a 30318804 a 1
b 4199132 b 2
C 4199238 C 3

9. Click theContinue button two more times, to step through the next two
breakpoints and notice the changing values of the local variables.

308 m GDBtk GNUPro Toolkit

Index

Symbols

I, as not operatol 96

I, as operator for integral typek28

#, in GDB command file219

#, in Modula-2133

#define command88

$ 102103

$, as variable for registers05

$_, variable103

$, variable1l03

$_exitcode, variablél04

$cdir 83

$cwd 36

&&, as logical AND operatorl27

&, address operatot 28

&, bitwise AND operatorl27

(), as operatord 28

(), Modula-2 operator for PROCEDURE
objects 134

(gdb) prompt stringl 94

(gdb-break)226

* [, %, as operatord 28

* as dereferencing operatdr28

* current threadd4

* Modula-2 operatorl 33

scratch buffer in Emac224

++, --, as increment and decrement operafb?8

+, -, as operatord 27

+, -, Modula-2 operatord 33

., Modula-2 operatod 33

., sequencing operatd26

, =, as operatord 27

, as array indexing operatofs28

-, as operator, for integral and floating-point
types 128

-, in options 17

--, in options 17

, Modula-2 array indexing operatdr34

-, Modula-2 operatoil 34

, Modula-2 operatord 33

, print a newline220

., Modula-2 scope operatdr38

CYGNUS

GNUPro Debugging Tools = 309

Index

., ->, as operatord 28

.C 120

.c 120

c++ 120

c186121

286121

.cc 120

ch 121

.cp 120

.cpp 120

.cxx 120

.esgdbinit219

.gdb_history196

.gdbinit 219

.mod 120 137

.o file 165

.0s68gdbinit219

S121

s121

.syms 18

.vxgdbinit 219

/, Modula-2 operatofl 33

Iproc 42

., word designato248

2, ., GDB and Modula-2 scope operatdi84
:, as C++ scope resolution operafb?28
:;, GDB scope operatol 38

1, operator88

:=, Modula-2 assignment operatd37
:=, Modula-2 operatoi 33

=, , #, Modula-2 operatord 33

=, as operatoll 27

=, Modula-2 operatord. 33

==, I=, as equality and inequality operatb2 7
>, as operatord. 27

?: , ternary operatol27

@, a binary operato88

@, artificial array operatoil27

@, Modula-2 artificial array operatdt33
__raise_exceptiob5

{type}, operator 88

|, bitwise OR operatod27

||, as logical OR operatd27

", bitwise exclusive-OR operat&27

", Modula-2 dereferencing operatdi34
~, as bitwise complement operatd28
“[.inputrc 238

A

a, Modula-2 variablel 34
a.out, with stabs extensiord29
ABS, Modula-2135

active targets, classek64

addr 93

address ranged 2

address, locatin®2
add-shared-symbol-fild 57
add-symbol-file 156

AMD EB29K boards166
AMD UDI protocol 166

AND, &, Modula-2 operatorsl 33
argument, ignore-cours4
arithmetical operatord 24
array constantd 29

Array Tech LSI33K RAID controller board 67
array, arificial 91

arrays 97

artificial array 91

assembler instructio266
Assembler source fild 21
attach40

attach command.64
automatic display lis©5
awatch54

B

-b 19

backslash-escape sequen@sl
BACKSPACE key25
backtrace73 271

310 = GNUPro Debugging Tools

GNUPro Toolkit

Index

-batch 19
batch model9
--baud optionl77
BFD 165
57
Boolean typesl 33
bottom of stack frame buttoB71
break 69
break command0
break...if 51

breakpoint49, 53 172 266 273 296

deleting 56

menus63
breakpoint conditiorb9
breakpoint menud 31
breakpoint with condition, coné1
breakpoint, enabled or disabl&kd
breakpoints43 295

printing a table52
enable57
Breakpoints buttor270
bt 73
bug reports227

C

-c 17

c 64

C and C++126

C source file120

C++ expressiond 29

C++ source file120

¢, Modula-2 variablel 34
call stack 71
call_scratch_addres$50
called functions266
calling overloaded functiond 30
CAP, Modula-2135

catch 55,131

cc -gl on MIPS machine65
c-d 15

-cd 19

cd 38

Character typed .32
checksuml175

child process31, 46

child process, killing41
CHILL source file 121
CHR, Modula-2135
clear commandb6
-commandl17

command history file196
command syntax24
commandsb6l

comments (lines starting with 19
compilation directory83
compile- and run-time checks23
complete28

condition 59

confirmation request200
connect183

Console buttor270
continue 64

Continue button268
continuing 64
convenience variabled03
-core 17

core dump files166
core-file 156

core-file commands<L64
cpl 198

CPU simulator166

CPU time42

CPU32 (M68K) boardsl67
CPU32BUG monitorl67
current threadd3

D

-d 17
d, for deleting breakpoints, watchpoirfd
data type92

CYGNUS

GNUPro Debugging Tools = 311

Index

data types93
debugger
GUI (GDBTk) 261
debugging
a29k family 180
in a running proces40
remote 169
remote serial protocal 70
specifying a targefl63
stub 171
symbol file errors159
VxWorks targets184
with C++ 126
with GNU C++ compiler, g++126
debugging stubl 76
debugging, when compilin@2
DEC, Modula-2135
declared typel01
define 216
delete 56
delete bnums..57
delete display95
derived typel01
detach40
detach command.83
dialog boxes276-22,276
dir 83
directories, specifyind83
-directory 17
directory 83
disable command&7
disable display, with expressiorg3b
disassembleB4
disassembliedl 32
display 95
display pane271
display/ 95
DIV, MOD, Modula-2 operatorl 34
document216
double quotesl 29
Down stack frame butto270

down, frame74
down-silently, frame75
drop-down list box275
drop-down lists274
dynamic arrays1 38

E

-e17
echo61 220
Emacs

buffer 223

shell mode224
Emacs interfac223
enable and disable commangdd
enable command57
enable display96
end 61
end-of-file character, C-21
Enea Data Systems real-time @419
environment36
EPROM/ROM code debuggingl
Ericsson Telecom AB M68000 emulat@l9
ESC, and the ‘?’ key25
EST-300 ICE monitorl67
event designato248
examining memony©93
examining the stack'4
exception handlingp5
exception handling table$73
exceptionHandlell 74
EXCL, Modula-2 135
-exec 17
exec-file 154
exec-file command4d 64
executable165
executable files166
expression272
expression, regeob2
expressions88

312 = GNUPro Debugging Tools

GNUPro Toolkit

Index

F

£ 19
f 74,76
fatal signals67
fg 64
file 154 186
file-specifying commandd.57
finish 53 65
Finish button268
finish command149
FLOAT, Modula-2 135
floating-point registersL05
Floating-point typesl 32
flush_i_cachel74
-fomit-frame-pointer72
fork 46
forward-search82
frame 74,76,270
Alpha architecture/4
MIPS architecture/4
SPARC architecture’4
frame commands’ 7
frame pointer register 2
frames 72, 266
Fujitsu SPARCIite boardd67
-fullname 19
functions 266

G

-g option 32

GDB
altering executionl45
AMD’s 180
assignmentl46
automatic display95
Bash shell248
batch model9
C, C++ constantd 29
changing to a different filéL54
checksuml175

command completion with TAE25
command file219

command history facility1 96
command line editing interfac234
command names, truncatel
commandsl75

commands for a selected franfd.
controlled output220
convenience variabled03
converting file names to absolute file naniks7
core dumpl6

core dump files41

CPU simulator191

debugging Modula-2138

decimal numbersl99

delimiters 141

EBMON protocol 180

environment33

executable files, core filed7

exiting 21

expression handlind.29

formatting documentatio251
gdbserverl77

GNU Emacs223

GUI 297

hexadecimal numberd99

Hitachi SH, H8/300, or H8/504.88

Hitachi SH, H8/300, or H8/500 boarti56
input and output39

Intel 960 156

Intel 960 using Nindyl79

keystroke sequences of Emacs commazad4
language-specific informatiod 19

limit complaints 200

list or search command224

MIPS remote debugging protocdi89
Motorola 88k 157

octal numbersl 99

operator warningl 34

operators88

CYGNUS

GNUPro Debugging Tools = 313

Index

output formats92

parenthese25

patch the binaryl51

path searcheS6

print source file and line numb&7
quotes26

readline interfacel 95

read-only 151

remote serial protocal 70
reporting bugs227

scope operator, differences with Modulal38

searches36
sequences for command fil&l5
setting language automatically21
shared librariesL57

IBM RS/6000157

Irix 5 157

Sun0S157

Svra 157
specify a file 154
ST2000 environmeni 83
standard input and outpd3
starting 17
starting with run33
start-up commandd.54
stop and continue a proceds
stopping a running prograrh72
symbol file errors159
terminal modes39
type and range checking23
user-defined command215
value history102
variables 130
variables, assignment expressidh46
VxWorks 219
VxWorks targets184
warnings and message)0
with C 126
with C++ 126
with Modula-2 126
with TCPconnectionl 77

working directory 33, 38
your program’s symbol tabld41
Z8000 family 191

GDB as a subprocesk9

GDB commands, command-line optiod&

gdb -help16
GDB remote serial protocal 77
GDB, as a filter19
GDB, invoking 16
gdb, startingl5
gdb/remote.c175
gdbserve.niml78
gdbserverl76
GDBTk
assembler instructio266
assembly code, displaying 75
Bottom of stack frame butto2 71
breakpoint266 273
Breakpoints buttor270
Breakpoints window295
called functions266
Console buttor270
Console window297
Continue button268
Control menu266
dialog boxes276
display pane271
Down stack frame butto270
expression272
file drop-down combo bo274
File drop-down meni276 277
File menu264 276
File menu for the Help windovi299
Finish button268
frame 266,270
frame button271
function drop-down combo bo®74
Help menu267
Help topics 299
Help window 298
line address270

314 = GNUPro Debugging Tools

GNUPro Toolkit

Index

line number display270

line number display fram&70
lists 274

Local Variables buttor269
Memory button269
menus264

mouse, using272

navigating 276

Next assembler instruction butta268
Next button268

Open menu276

Page Setup mend77
Preferences mend66 276
Print dialog box278

printing 278

program counte270
Registers buttor269

Run button267

Run menu265

scroll bar 274

source code, displaying75
Source window262

stack backtrac®71

Stack button269

stack frame271

status text box274

Step assembler instructic268
Step assembler instruction butt@©8
Step button267

stepping 266

Stop button267
subroutines266

toolbar buttons267

Up stack frame butto271
Variable format meni294
variables272

View menu 265

Watch Expressions butto269

-gg, for debugging32
global or local variable272
-gstabs130

GUI 261

H

h 27

handle command7
handle_exceptiorl 71
hbreak51

help 27

help target165

help user-define®17
HIGH, Modula-2 135
history expansion in cs248
history numbers102
history referenced 03
Hitachi SH, h8/300, or h8/500 board66
hooks, user-define@18

i, Modula-2 variable134
i386-stub.c171

id 138

identifier 138

IDP board167

if 216

IN, Modula-2 operatorl 33
INC, Modula-2 135
INCL, Modula-2 135
info 28

info address141

info all-registers105
info args 76

info break 52

info breakpoints25, 52
info catch55, 76,131

watchpoint 266 info display 96
getDebugCharl74 infof 76
info files 157
CYGNUS GNUPro Debugging Tools = 315

Index

info float, on ARM and x86 machines07
info frame 76,122

info functions 143

info line 84

info locals 76

info proc 42

info proc all 42

info proc id 42

info proc mapping42
info proc status42

info proc times42

info program48

info registers105

info sharel57

info sharedlibraryl 58
info signals67

info sourcel122 142
info sources142

info terminal 39

info threads43

info variables143

info watchpointsb52 54
init files 219

initial frame 72
initialization files, *.gdbinit’ 19
int getDebugChar(JL72
Integral types132

Intel 960 boardsl66
internal breakpointS3
interrupt, C-c21

J

jobs -I shell command!O
jump commandl47

K
keybindings238
kill 41,148
killing 236

L

language, displaying sourck22
line address270

line number270

line number display fram&70
linespecs80

list 80

list - 81

list + 81

list box 274

list commands24

list function 80

load 156

Load New Executable dialog ba76
load using Returrl56

load, Nindy to Intel 960156
load, VxWorks 156

local variable272

local variables89

Local Variables buttor?269
longjmp 53

longjmp resumeb3

lpp 198

M

-m 17

m, Modula-2 variablel 34
m68k-stub.c171
machine instruction84
machine registerd 05
main function275
main.c file 275

maint info breakpointH3
maint print msymbolsl43
maint print psymbolsl43
maint print symbolsl143
make 22

make refcard.dvi251
-mappedl17

MAX, Modula-2 135

316 = GNUPro Debugging Tools

GNUPro Toolkit

Index

member function calld 30
Memory button269
memory, examining®3
memory, examining with x commar@a3
memory-mapped filed 7
memsetl73 174
META key 25
MIN, Modula-2 135
MIPS
function stack?7
mmap 17
mode commandL88
Modula-2 119 132
built-in procedures and functionk34
C escape sequencds37
changesl37
constants136
range and type checkin§37
variables137
Modula-2 operators, definitions of typds32
Modula-2, pointer constant$37
module 138
multiple processe43
multi-thread program#3

N

-n 19

n, Modula-2 variablel 34

newline 220

next 65

Next assembler instructiod68

Next assembler instruction butti268
Next button268

nopass68

noprint 68

nostop67

NOT, Modula-2 boolean type operatdl34
numbers199

O

-O option 32
object_ptr103

ODD, Modula-2135

OKI HPPA board167
once bnums..57

op=, as operatoil27
OP50N monitor167
operators88

operators for C and C+126
OR, Modula-2 operatod 33
ORD, Modula-2135
outermost frame/ 2

output 61

output format92

output, controlled220
overloaded symboll 32
overloading63

P

Page Setup dialog bo277
parent proces46

pass68

path 36

pointer constantd.29
Pointer typesl132

print 67

print commands87

print settings97

print structures99

printf 61, 220

printing with Ghostscrip251
printing with PostScrip251
procedurel38
PROCEDURE objectd 34
process31

process group D42
process informatior#}2

x 19 process, stopped 2
process-id40
CYGNUS GNUPro Debugging Tools = 317

Index

Program counte270
program counter/4
prompt 194

ps utility 40

ptype 131, 142
putDebugCharl74
pwd 38

Q

-q 19
-quiet 19
quit 21

R

-r18
r 33
r, Modula-2 variablel34
range checkingl24
rbreak 52 131
readline 235
readline init file 238
-readnow18
register

relativized value1l05
register named 05
register stackLO6
Registers buttor269
remote debuggind 69
remotedebug variabld 90
reporting a bug227
return commandL49
Return key23
reverse-searci®?2
ROM 68K monitor 167
RS/6000 xcoff, or elf with stabs extensioh80
run 33
Run button267
run gdb 16
running proces40
rwatch 54

S

-s 17

Scalar typesl 32
scopel30 138

screen sizel 98

scroll bar274

-se 17

search82

searching through a source fi@2
section 157

session ID42

set 28

set args35

set check range auth25
set check range ofl25
set check range oit25
set check range warh25
set check type autd 24
set check type offLl24
set check type ol24
set check type ward 24
set complaints200

set confirm200

set demangle-styld 00
set editing195

set gnutargefl65

set height198

set heuristic-fence-post, on MIPS processfrs
set history196

set history filenamel96
set input-radix199

set languagel 21

set language autd21
set language commant20
set language local21
set listsize80

set machine h8304.89
set machine h83004.89
set memory189

set mipsfpul90

318 m GNUPro Debugging Tools

GNUPro Toolkit

Index

set print addres87

set print address of®7

set print address 087

set print array98

set print array off98

set print array orD8

set print asm-demangl200 132
set print asm-demangle ab00
set print demangld.0Q 132
set print demangle oA00

set print elements, printing arra@8
set print null-stop99

set print objectl01, 132

set print object off 01

set print object onll01

set print pretty off99

set print pretty or99

set print sevenbit-strings o9
set print sevenbit-strings 089
set print symbol-filename of®8
set print symbol-filename 087
set print union131

set print union off100

set print union or@9

set print vtbl 101, 132

set print vtbl off 101

set print vtbl on101

set processoi 90

set prompt command 94

set remotedebud 90

set retransmit-timeoui 91

set symbol-reloading ofl43
set symbol-reloading 0d43
set timeout191

Set types132

set variable command46

set verbose200

set width 198

set write off 151

set write on151

set_debug_trapd71
share158

shared librariesL57
sharedlibrary158

shell 22

shell command22

SHELL environment variabl&7
show 28

show args35

show complaints200

show conveniencd 03

show copying29

show directoriesB3

show editing195

show gnutargefL65

show height198

show history197

show languagel 22

show listsize80

show memory189

show mipsfpul90

show print addres87

show print array98

show print asm-demangl#00Q 132
show print demangld.0Q 132
show print max-symbolic-offse®8
show print object101, 132
show print pretty99

show print sevenbit-string®9
show print symbol-filenam&®8
show print union10Q 131
show print vtbl 101, 132
show processoil 90

show prompt194

show rangel25

show remotedebud 90

show retransmit-timeoul 91
show symbol-reloadind 43
show timeout191

show type124

CYGNUS

GNUPro Debugging Tools = 319

Index

show user217
show values102
show verbose200
show version28
show warranty29
show width 198
show write 151
SIGALRM 67
SIGINT 67
signal 068
signal commandl48
signal, an asynchronous evet
signals
fatal 67
SIGSEGV 67
SIGTRAP signal46
-silent 16
silent 61
single-steppingd9
SIZE, Modula-2136
source filename219
source files79
source line81
source pati83
SPARCIlet
connecting t0187
loading from a host to debuy87
running and debuggind.87
running on186
SPARCIite DSU51
sparc-stub.cl71
st2000183
Stack button269
stack frame71, 271
stack frame, selecting4
stack pointer74
step 24,64
Step assembler instruction butt@©8
Step button267
stepi 66
stepping 64

stop 67
Stop button267
string constantsl29
structures97
stubs

SPARC, M68K, Intel171
style 100
subroutines266
symbol definitions157
symbol file errors159
symbol filename<98
symbol table18 141
symbol-file 154 155
-symbols 17
symbols 97
systag, thread identifiefi3

T

t, Modula-2 variable1 35
TAB key 23

Tandem ST2000 phone switdt66
Tandem’s STD-BUG protocol 66
target 163 166

target amd-etbl66

target arrayl67

target core166

target 7000189

target estl67

target execl66

target hms166

target mips189 190
target nindy 166

target protocoll65

target remotel 66

target remote commandi 74
target rom68k167

target sim191

target sparclitel 67

target st20001L66

target udil66 180

320 = GNUPro Debugging Tools

GNUPro Toolkit

Index

target vxworks166
target w89k167
target, byte order (MIPS168
targets, active classekb64
tbreak 51, 58
TCP port descriptoll 78
Texinfo 251
thbreak 51
thread 43 69
thread apply43
thread command, rejectedi3
thread identifier, systagt4
threads43
timeout 186
toolbar buttons for GDBTK267
TRUNC, Modula-2136
-tty 20
type
actual (derived)101
declared101
type checking, as for Modula-223

types
Modula-2 132

U

u 65

UDI (Universal Debugger Interface) protochB80
undisplay 95

union type131

unset environmenB86

until 53 65

Up stack frame butto271
up, frame74

up-silently, frame75
user-defined comman216
user-defined hook218
using the Return key’3

V
v, Modula-2 variablel 35

VAL, Modula-2 136

value history92 102
values, history numberd02
variable, $bpnunb0
variable, varname36
variables130 272
variables in expression89
virtual function table101
virtual function tablesl1 32
void *memset(void *, int, int)173
void exceptionHandled 73
void flush_i_cache(J173
void putDebugChar(intfL 72
VxWorks system166
VxWorks-timeout 184

w

W89K monitor 167
warnings and messagd<9
Watch Expressions butto269
watchpoint49,53 266
deleting 56
setting 54
watchpoints
printing a table52
whatis 142
while 216
Winbond HPPA boardl67
Wind River Systems real-time 0319

X

-x 17

x command, examin®3
x commands24

X, Modula-2 variablel35

Y
yanking 236

CYGNUS

GNUPro Debugging Tools = 321

Index

322 m GNUPro Debugging Tools GNUPro Toolkit

	Dreamcast GNUPro Toolkit Debugging Tools
	Contents
	Summary of the GNU Debugger, GDB
	GDB as free software
	Contributors to GDB

	Installing GDB
	Compiling GDB in another directory
	Specifying names for hosts and targets

	configure options

	Getting In and Out of GDB
	Invoking GDB
	Choosing files
	Choosing modes
	Quitting GDB
	Shell commands

	GDB Commands
	Command syntax
	Command syntax
	Getting help

	Running programs under GDB
	Compiling for debugging
	Starting your program
	Your program’s arguments
	Your program’s environment
	Your program’s working directory
	Your program’s input and output
	Debugging an already-running process
	Killing the child process
	Additional process information
	Debugging programs with multiple threads
	Debugging programs with multiple processes

	Stopping and continuing
	Breakpoints, watchpoints, and exceptions
	Setting breakpoints
	Setting watchpoints
	Breakpoints and exceptions
	Deleting breakpoints
	Disabling breakpoints
	Break conditions
	Breakpoint command lists
	Breakpoint menus
	Continuing and stepping
	Signals
	Stopping and starting multi-thread programs

	Examining the stack
	Stack frames
	Backtraces
	Selecting a frame
	Information about a frame
	MIPS machines and the function stack

	Examining source files
	Printing source lines
	Searching source files
	Specifying source directories
	Source and machine code

	Examining data
	Expressions
	Program variables
	Artificial arrays
	Output formats
	Examining memory
	Automatic display
	Print settings
	Value history
	Convenience variables
	Registers
	Floating point hardware

	Using GDB with different languages
	Switching between source languages
	List of filename extensions and languages
	Setting the working language
	Having GDB infer the source language

	Displaying the language
	Type and range checking
	An overview of type checking
	An overview of range checking

	Supported languages

	Examining the symbol table
	Altering execution
	Assignment to variables
	Continuing at a different address
	Giving your program a signal
	Returning from a function
	Calling program functions
	Patching programs

	GDB files
	Commands to specify files
	Errors reading symbol files

	Specifying a debugging target
	Active targets
	Commands for managing targets
	Choosing target byte order
	Remote debugging
	The GDB remote serial protocol
	What the stub can do for you
	What you must do for the stub
	Putting it all together
	Communication protocol
	Using the gdbserver program
	Using the gdbserve.nlm program
	GDB with a remote i960 (Nindy)
	The UDI protocol for AMD29K
	GDB with a Tandem ST2000
	GDB and VxWorks
	GDB and SPARClet
	Connecting to SPARClet
	SPARClet download
	GDB and Hitachi microprocessors
	GDB and remote MIPS boards

	Controlling GDB
	Prompt
	Command editing
	Command history
	Screen size
	Numbers
	Optional warnings and messages

	Canned sequencesof commands
	User-defined commands
	User-defined command hooks
	Command files
	Commands for controlled output

	Using GDB under GNU Emacs
	Reporting Bugs in GDB
	Have you found a bug?
	How to report bugs

	Command Line Editing
	Introduction to Line Editing
	Readline Interaction
	Readline Bare Essentials
	Readline Movement Commands
	Readline Killing Commands
	Readline Arguments

	Readline Init File
	Readline Init Syntax
	Letting Readline Type For You
	Readline vi Mode

	Using History Interactively
	History Interaction
	Event Designators
	Word Designators
	Modifiers

	Formatting Documentation
	Interface for GDBtk
	Source Window
	Menu bar for the Source Window
	Toolbar buttons
	Special display pane features
	Using the mouse in the display pane
	Below the horizontal scroll bar

	Dialog boxes for the Source Window
	Load New Executable dialog box for the Source Window
	Page Setup dialog box for the Source Window
	Print dialog box for the Source Window
	Target selection from the Source Window
	Global Preferences dialog box for the Source window
	Source Preferences dialog box for the Source window

	Stack window
	Registers window
	Register menu for the Register window

	Memory window
	Address menu for the Memory window

	Watch Expressions window
	Add Watch button for the Watch Expressions window
	Watching registers with the Watch Expressions window
	Casting pointers in the Watch Expressions window

	Local Variables window
	Breakpoints window
	Breakpoint menu for the Breakpoints window
	Global menu for the Breakpoints window

	Console window
	Help window
	File menu for the Help window
	Topics menu for the Help window

	Procedures
	Initializing a target executable file
	Selecting a source file
	Setting breakpoints and viewing local variables

	Index

