

Dreamcast
GNUPro

™

 Toolkit
Getting Started

Introduction
Installation

Important Information

This documentation has been provided courtesy of CYGNUS. The contents are applicable to GNUProª Toolkit
development, however, all references to development support offered by CYGNUS should be ignored.

Technical support for this product as it applies to the Sega Dreamcastª development environment should be
directed to Sega Third Party Developer Technical Support at 415/701-4060. Future updates and/or additional
information may also be found at SegaÕs DTS Website at,

http//:www.dts.sega.com/NextGen

Frontispiece

ii ■ Getting Started with GNUPro Toolkit GNUPro Toolkit

Copyright © 1991-1998 Cygnus.

All rights reserved.

GNUPro™, the GNUPro™ logo and the Cygnus logo are all trademarks of Cygnus. All
other brand and product names are trademarks of their respective owners.

Permission is granted to make and distribute verbatim copies of this documentation,
provided the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this documentation
under the conditions for verbatim copying, provided also that the entire resulting
derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this documentation into
another language, under the above conditions for modified versions.

This documentation has been prepared by Cygnus Technical Publications; contact the
Cygnus Technical Publications staff: doc@cygnus.com .

Part #: 300-400-101000041

CYGNUS Getting Started with GNUPro Toolkit ■ iii

Frontispiece

GNUPro Warrant y
The GNUPro Toolkit is free software, covered by the GNU General Public License,
and you are welcome to change it and/or distribute copies of it under certain
conditions. This version of GNUPro Toolkit is supported for customers of Cygnus.

For non-customers, GNUPro Toolkit software has NO WARRANTY.

Because this software is licensed free of charge, there are no warranties for it, to the
extent permitted by applicable law. Except when otherwise stated in writing, the
copyright holders and/or other parties provide the software “as is” without warranty of
any kind, either expressed or implied, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. The entire risk as to
the quality and performance of the software is with you. Should the software prove
defective, you assume the cost of all necessary servicing, repair or correction.

In no event, unless required by applicable law or agreed to in writing, will any
copyright holder, or any other party who may modify and/or redistribute the program
as permitted above, be liable to you for damages, including any general, special,
incidental or consequential damages arising out of the use or inability to use the
program (including but not limited to loss of data or data being rendered inaccurate or
losses sustained by you or third parties or a failure of the program to operate with any
other programs), even if such holder or other party has been advised of the possibility
of such damages.

Frontispiece

iv ■ Getting Started with GNUPro Toolkit GNUPro Toolkit

Year 2000 compliance
This and all subsequent releases of the GNUPro Toolkit products are Year 2000
Compliant.

Cygnus Solutions defines a product to be Year 2000 Compliant (Y2K) if it does not
produce errors in recording, storing, processing and presenting calendar dates as a
result of the transition from December 31, 1999 to January 1, 2000.

A Y2K product will recognize the Year 2000 as a leap year. This compliance is
contingent upon third party products that exchange date data with the Cygnus product
doing so properly and accurately, in a form and format compatible with the Cygnus
product.

GNUPro Toolkit processes dates only to the extent of using the date data provided by
the host or target operating system for date representation used in internal processes,
such as file modifications. Any Y2K issues resulting from the operation of the Cygnus
products, therefore, are necessarily dependent upon the Y2K compliance of relevant
host and/or target operating systems. Cygnus has not tested all operating systems and,
as such, cannot assure that every system and/or environment will manage and
manipulate data involving dates before and after December 31, 1999, without any
time or date related system defects or abnormalities, and without any decreases in
functionality or performance. Cygnus cannot assure that applications which you
modify using Cygnus products will be Year 2000 compliant.

CYGNUS Getting Started with GNUPro Toolkit ■ v

Frontispiece

How to contact C ygnus
Use the following means to contact Cygnus.

Cygnus Headquarters
1325 Chesapeake Terrace
Sunnyvale, CA 94089 USA
Telephone (toll free): +1 800 CYGNUS-1
Telephone (main line): +1 408 542 9600
Telephone (hotline): +1 408 542 9601
FAX: +1-408 542 9699
(Faxes are answered 8 a.m.–5 p.m., Monday through Friday.)
email: info@cygnus.com
Website: www.cygnus.com .

Cygnus United Kingdom
36 Cambridge Place
Cambridge CB2 1NS
United Kingdom
Telephone: +44 1223 728728
FAX: +44 1223 728728
email: info@cygnus.co.uk/

Cygnus Japan
Nihon Cygnus Solutions
Madre Matsuda Building
4-13 Kioi-cho Chiyoda-ku
Tokyo 102-0094
Telephone: +81 3 3234 3896
FAX: +81 3 3239 3300
email: info@cygnus.co.jp
Website: http://www.cygnus.co.jp/

Use the hotline (+1 408 542 9601) to get help, although the most reliable way to
resolve problems with GNUPro Toolkit is by using email:

bugs@cygnus.com .

Frontispiece

vi ■ Getting Started with GNUPro Toolkit GNUPro Toolkit

CYGNUS Getting Started with GNUPro Toolkit ■ vii

G
et

tin
g

S
ta

rt
ed

 w
ith

 G
N

U
P

ro
 T

oo
lk

it

Contents

GNUPro Warranty..iii
Year 2000 compliance .. iv

How to contact Cygnus ...v

 Introduction

Overview of GNUPro Toolkit...3
About Cygnus..4
About the tools ..6
What’s in this package ..7

Compilers and development tools..7
Libraries...7
Binary utilities..8
General utilities ...8

GNUPro Toolkit documentation ...9
Documentation conventions...9

What’s in the documentation...10
Using online documentation ..11
Reading online documentation ..11
Using website documentation ..12

Native configurations support ...13
Embedded cross-configuration support...14

Contents

viii ■ Getting Started with GNUPro Toolkit GNUPro Toolkit

Version numbers for programs..16
Naming hosts and targets ..17

Host names...17
Target names..18
Using config.guess ...19

Red flag alerts & enhancements..21
General issues..22
Compiler issues ...23
Debugger issues ..25
Utilities issues ...26

Issues from previous releases ..27
General issues with the tools...28
C and C++ compiler issues ...32
Debugger issues ..37
Assembler issues ...40
Linker issues..41
Rebuilding issues ..42

Using GNU tools on embedded systems ..45
Invoking the GNU Tools...46

gcc , the GNU compiler ..46
cpp , the GNU preprocessor ...47
gas , the GNU assembler ..47
ld , the GNU linker...47
.coff for object file formats..48
binutils , the GNU binary utilities ...48
gdb , the debugging tool..49
Useful debugging routines ...50
libgloss , newlib and libstd++ , the GNU libraries ...50

crt0 , the main startup file...51
The linker script ..55
I/O support code..58
Memory support ..59
Miscellaneous support routines...60

Cross-development environment ...61
The C run-time environment (crt0) ...62

Cygnus glossary ...65

CYGNUS Getting Started with GNUPro Toolkit ■ ix

Contents

G
et

tin
g

S
ta

rt
ed

 w
ith

 G
N

U
P

ro
 T

oo
lk

it

 Installation

Installing GNUPro Toolkit ..83
Installing on Unix Systems from CD..84
Installation information for Unix ..86

Platform names ..86
Host names...86
Target names..86

Links for easy access and updating...89
Running the programs...90
Setting PATH...91
gcc paths ...92
Installing on Win 95/NT systems from CD ..93
Rebuilding GNUPro Toolkit ...94

How to report problems ...95
Some things that might go wrong ...96
Some error messages from Install ...97
Reporting problems for Unix systems...98

Filling out a problem report for Unix users ..98
Confidential information in reports for Unix users ...99

Reporting problems for Win95/NT systems ...101
Valid categories for problems..106
Fixed problems..108

binutils ..108
build ..108
config ..108
g++..108
gas ..112
gcc ..113
gdb ..114
help-request ..117
info-request ..117
info ..117
install ..117
ld ..118
libc ..118
libm ..118
make..119
newlib ..119
other ..119

Index ... 121

Contents

x ■ Getting Started with GNUPro Toolkit GNUPro Toolkit

GNUPRO™ TOOLKIT

Introduction

Cygnus

2 ■ Getting Started with GNUPro Toolkit CYGNUS

Copyright © 1991-1998 Cygnus.

All rights reserved.

GNUPro™, the GNUPro™ logo and the Cygnus logo are all trademarks of Cygnus.

All other brand and product names are trademarks of their respective owners.

Permission is granted to make and distribute verbatim copies of this documentation,
provided the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this documentation
under the conditions for verbatim copying, provided also that the entire resulting
derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this documentation into
another language, under the above conditions for modified versions.

This documentation has been prepared by Cygnus Technical Publications; contact the
Cygnus Technical Publications staff: doc@cygnus.com .

CYGNUS Introduction ■ 3

1:
 O

ve
rv

ie
w

 o
f G

N
U

P
ro

 T
oo

lk
it

Overview of GNUPro Toolkit

Cygnus is the leading provider of single-source, UNIX, and NT desktop and
cross-platform development tools for 32- and 64-bit microcontrollers. Cygnus
provides GNUPro Toolkit™ as a set of powerful, multi-platform software
development tools for advanced desktop and embedded systems. For more details, see
“What’s in this package” on page 7.

■ To install for the UNIX platforms, see “Installing on Unix Systems from CD” on
page 84.

■ To install for the Windows platforms, see “Installing on Win 95/NT systems from
CD” on page 93.

For information on what’s supported, see the following documentation.

■ “Native configurations support” on page 13

■ “Embedded cross-configuration support” on page 14

■ “Version numbers for programs” on page 16

■ “Naming hosts and targets” on page 17

Cygnus sells the GNUPro toolkit together with mission-critical support services for
rapid response and resolution of technical questions or problems, as well as regular
software upgrades with enhancements. See also “Red flag alerts & enhancements” on
page 21 and, to report problems or to find out about problems, see “How to report
problems” on page 95.

1

About Cygnus

4 ■ Introduction GNUPro Toolkit

About C ygnus
The company was founded in 1989 to provide commercial support for open Internet
technologies. Cygnus established a support model for the GNU standard, leveraging
the contributions of the net community and the requirements of the semiconductor
industry to produce a powerful multi-platform software development toolkit. The
changes and improvements to the GNU tools are returned to the net community via
the Free Software Foundation, while the Cygnus implementation of the these tools is
sold and supported by Cygnus directly. Driven by our unique business model, the
company's sales have grown at a compound annual rate of over 65% since 1992. Our
consistent profitability and solid financial position have enabled the company to
rapidly expand operations to support the growing needs of our customer base.

Cygnus is a privately held company with venture capital investment from August
Capital and Greylock Management. We are global in both our operations and our
customer set. Our headquarters are in Sunnyvale, California, with additional offices in
Cambridge, Massachusetts, Atlanta, Georgia; and international offices in Canada,
Japan, the United Kingdom, and Germany. Our historical roots and current strong ties
with the Internet community also allow us to leverage the global power of the Internet
to drive our toolchain innovation and recruit new engineers for our growing company.

Cygnus also benefits from advances in all of the related technologies that make
end-user solutions more cost-effective and drive end-user demand. These technologies
include storage (disk, flash, DRAM), display (LCD), Internet and communication
protocols, and wireless connectivity. Collectively, advances in these technologies
allow ever-greater embedding of intelligence in traditional embedded systems
(telecommunications equipment, automobiles, office equipment), and enable
completely new classes of computing devices such as Personal Digital Assistants
(PDAs).

One thing is certain: software tools and software content for them must keep pace in
order to realize the promise of powerful, distributed, and densely interconnected
computing power. The Cygnus mission is to enable this vision of “pervasive
computing” through software solutions.

Cygnus doesn’t deliver technology for technology’s sake. Our clients turn to us to
create flexibility (with single-source solutions providing true multi-platform
capabilities and easy retargeting), to shorten time-to-market (starting software
development before hardware is ready), and to reduce costs (providing cost-effective
support services and redistributable solutions). These are the reasons that the best
names in the business choose Cygnus.

The company strategy is to continue to extend the functionality and performance of

CYGNUS Introduction ■ 5

About Cygnus

1:
 O

ve
rv

ie
w

 o
f G

N
U

P
ro

 T
oo

lk
it

the development tools, as well as to deliver innovative software component
technologies for use in embedded systems. Customers include the world’s top
microcontroller companies as well as leading telecommunications software, game
console, consumer electronics, and office equipment companies.

The world’s leading product manufacturers choose the GNUPro toolkit for these
benefits:

■ Multi-platform capabilities from a single source base to quickly port code

■ Knowledgeable support for keeping design teams productive and on-schedule

■ Superior software engineering, incorporating leading-edge features and code
optimizations

■ Early availability of tools for a wide range of processors

■ Stringent testing to insure solid, stable tools for fast development

■ Custom enhancements to decrease time to market

About the tools

6 ■ Introduction GNUPro Toolkit

About the tools
GNUPro Toolkit includes a C/C++ compiler, a powerful source-level debugger with a
graphical user interface, an assembler, a linker/loader, binary file utilities, and
libraries. Complete source code, tested binaries, and product documentation
accompany the tools. Not all tools are available for all platforms and operating
systems. See “Embedded cross-configuration support” on page 14 for specific
information on your system. See “What’s in this package” on page 7 for information
about the tools.

To locate specific documentation, see “GNUPro Toolkit documentation” on page 9
and, also, see the following topics.

■ “Documentation conventions” on page 9

■ “What’s in the documentation” on page 10

■ “Using online documentation” on page 11

■ “Reading online documentation” on page 11

■ “Using website documentation” on page 12

■ “Native configurations support” on page 13

■ “Embedded cross-configuration support” on page 14

■ “Version numbers for programs” on page 16

■ “Naming hosts and targets” on page 17

CYGNUS Introduction ■ 7

What’s in this package

1:
 O

ve
rv

ie
w

 o
f G

N
U

P
ro

 T
oo

lk
it

What’s in this packa ge
GNUPro software delivers productivity, flexibility, performance and portability with
its ISO-conforming C and ISO-tracking C++ compiler, macro-assembler, GUI
debugger, binary utilities and libraries.

See “GNUPro Toolkit documentation” on page 9 for the discussion to which the
following documentation refers for GNUPro Toolkit components.

See the following documentation for more about what GNUPro Toolkit contains.

■ “Compilers and development tools” on page 7

■ “Libraries” on page 7

■ “General utilities” on page 8

■ “Binary utilities” on page 8

Compilers and development tools
See GNUPro Compiler Tools, GNUPro Debugging Tools and GNUPro Utilities for
documentation regarding these tools.

Libraries
See GNUPro Libraries for documentation regarding these libraries.

gcc C compiler

g++ C++ compiler

gdb Debugger

gas Assembler

cpp C Preprocessor

ld Linker

gdbtk Debugger graphical user interface
(evoked by using the GNU debugger)

libstdc++ C++ class library

libio C++ iostreams library

libc ANSI C runtime library (only available for cross-development)

libm C math subroutine library (only available for cross-development)

Binary utilities

8 ■ Introduction GNUPro Toolkit

Binary utilities
See GNUPro Utilities for documentation.

General utilities
See GNUPro Utilities, GNUPro Advanced Topics and GNUPro Compiler Tools and
the online documentation for clarification regarding these utilities.

c++filt C++ symbol name deciphering utility

nm Lists object file symbol tables

objdump Displays object file information

size Lists section and total sizes

ar Manages object code archives

ranlib Generates archive index

strip Discards symbols

objcopy Copies and translates object files

flex Fast lexical analyzer generator

make Compilation control program

diff , diff3 , sdiff Compare text files

patch Installs source fixes

cmp Compares files byte-by-byte

send-pr Sends structured problem reports to Cygnus

install-sid Customizes send-pr for your site

gcov Coverage analyzer

CYGNUS Introduction ■ 9

GNUPro Toolkit documentation

1:
 O

ve
rv

ie
w

 o
f G

N
U

P
ro

 T
oo

lk
it

GNUPro Toolkit documentation
GNUPro Toolkit includes documentation in three forms.

■ Printed
Available by request.

■ HTML
To locate the documentation on the web, see:
http://www.cygnus.com/pubs/gnupro

■ Online
See “Using online documentation” on page 11, “Reading online documentation”
on page 11 and GNU Online Documentation in GNUPro Advanced Topics.

Documentation conventions
The documentation uses the following conventions for commands, filenames, and
other program-specific subjects.
■ Typewriter-text for input

Indicates onscreen text as an example of input for a program, such as
PATH=/usr/cygnus . It will also indicate other literal bits of text from a program,
such as filenames or source code.

■ Typewriter-text in bold for output

Indicates text that is an example of a program’s onscreen output such as ‘%’ or
‘ (gdb) ’ as command prompt.

IMPORTANT! ‘%’ indicates a command prompt in most documentation; a command prompt
in some rare examples, depending on the system in use and the program’s
tool, may actually be ‘#’ or ‘$’ and, as with gdbtk , ‘(gdb) ’.

■ Typewriter-text in italics for variables

Indicates text that stands for variable input such as filename where the actual
input might be a file with the name, foobar.c . For instance, the documentation
may read “To delete the file named filename , type rm filename .” filename
stands for the file you want to substitute, according to its name.

■ Keys or keystroke combinations to use
This font indicates keys on your keyboard, such as Ctrl, Del, or even Spacebar.

The Ctrl key and the Meta key are often indicated in the text by C- and M-,
respectively. In addition, Meta (or M-) may indicate, for example, the Alt key on a
Windows keyboard, or a ‘�’ key on Unix keyboards.

The Enter (carriage return) key on your keyboard may appear as ENTER or RET
(for return) in text.

What’s in the documentation

10 ■ Introduction GNUPro Toolkit

What’s in the documentation
GNUPro Toolkit documentation includes the following documentation. To locate the
documentation, see http://www.cygnus.com/pubs/gnupro/ .

■ Getting Started with GNUPro Toolkit
� Introduction
� Installation

■ GNUPro Compiler Tools
� Using GNU CC
� The C Preprocessor

■ GNUPro Debugging Tools
� Debugging with GDB
� GDBTk

■ GNUPro Libraries
� GNUPro C Library
� GNUPro Math Library
� The GNU C++ Iostream Library

■ GNUPro Utilities
� Using AS (the GNU Assembler)
� Using LD (the GNU Linker)
� The GNU Binary Utilities
� GNU Make

■ GNUPro Advanced Topics
� Rebuilding from Source
� GNU Online Documentation
� Reporting Problems
� Legal Notices

■ GNUPro Tools for Embedded Systems

See also “Using website documentation” on page 12.

CYGNUS Introduction ■ 11

Using online documentation

1:
 O

ve
rv

ie
w

 o
f G

N
U

P
ro

 T
oo

lk
it

Using online documentation
For online use, the accompanying software includes online versions of the following
documentation. This is not to be confused with the HTML versions.

man pages
For all the tools and programs in this release.

FLEX: A Fast Lexical Analyzer Generator
Generates lexical analyzers suitable for GNU gcc and other compilers.

Using an Porting GNU CC
Detailed information about what’s needed to put gcc on different platforms, or to
modify gcc . Also includes the information from the printed manual, Using GNU
CC.

BYacc
Discussion of the Berkeley Yacc parser generator.

Texinfo: The GNU Documentation Format
How you can use TEX to print these manuals, and how to write your own manuals
in this style.

Cygnus configuration program
Details on the configuration program used in GNUPro Toolkit.

GNU Coding Standards
A complete discussion of the coding standards used by the GNU project.

GNU gprof
Details on the GNU performance analyzer, only for the Sun-3 and Sun-4 (SunOS
4.1 or Solaris 2) platforms.

You have the freedom to copy the documentation using its accompanying copyright
statements, which include the necessary permissions.

See GNU Online Documentation in GNUPro Advanced Topics for documentation
regarding these tools.

See also “Reading online documentation” on page 11.

Reading online documentation
You can browse through the online documentation using either Emacs or the info
documentation browser program, included in the GNUPro Toolkit. Online, the

Texinfo†, texindex , texi2dvi

† Requires TEX, the technical documentation formatting tool

Documentation formatting tools

makeinfo , info Online documentation tools

Using website documentation

12 ■ Introduction GNUPro Toolkit

information is organized into nodes, corresponding to the sections of a printed book.

You can follow them in sequence, as in the printed books, or, using the hyperlinks,
find the node that has the information you need. info has hot references; if one section
refers to another section, you can have info take you immediately to that other
section—and you can get back again easily to take up your reading where you had
been. Naturally, you can also search for particular words or phrases.

The best way to get started with the online documentation system is to run the
browser, info . After installing GNUPro Toolkit, you can get into info by just typing
its name at your shell prompt (shown as ‘%’ by the following example)—no options or
arguments are necessary.

% info

You may need to check that info is in your shell path after you install GNUPro
Toolkit. If you have problems running info , contact your system administrator.

To learn how to use info , type h for a programmed instruction sequence, or Ctrl-h for a
short summary of commands.

If at any time you are ready to stop using info , type q.

See “Reading GNU Online Documentation” in GNU Online Documentation in
GNUPro Advanced Topics for detailed discussion of the info program.

Using website documentation
As with all GNU software, the HTML source for documentation is available (or you
can convert it yourself using publicly available utilities) if you wish to put them into
an internal Web server.

Documentation is also available in HTML format(see “GNUPro Toolkit
documentation” on page 9) at the following location.

http://www.cygnus.com/pubs/gnupro/

Contact Cygnus to report any problems to the documentation department:

doc@cygnus.com .

CYGNUS Introduction ■ 13

Native configurations support

1:
 O

ve
rv

ie
w

 o
f G

N
U

P
ro

 T
oo

lk
it

Native confi gurations support
GNUPro Toolkit software supports the following native configurations.

Sun SPARC Solaris 2.5.1/2.6

Sun SPARC SunOS 4.1.4

HP 9000/700 HP-UX 10.01/10.10/10.20

IBM RS/6000 AIX 3.2.5/4.1.4

IBM PowerPC AIX 4.1.4/4.2

DEC Alpha Digital UNIX 3.2C/4.0

SGI Irix 5.3/6.2

386+ for Unixware

386+ for Windows

Windows NT4.0-sp3/95-osr2

Linux RedHat 5.0

Embedded cross-configuration support

14 ■ Introduction GNUPro Toolkit

Embedded cross-confi guration
support

GNUPro Toolkit software supports the embedded cross-configurations as detailed in
Table 1 and Table 2.

NOTE: In the following tables, x denotes a version number range; for instance, with
the HP-UX 10.x , the x denotes support for all the 10.01, 10.10 or 10.20
versions.

Table 1: Embedded cross-configurations supported

Host Target Output Format
HP-UX 10.x PowerPC EABI

SGI Irix 5.3/6.2 MIPS R3xx 0 ELF, ECOFF

MIPS R4xx 0 ELF

PowerPC EABI

SH COFF

SPARC Solaris 2.5.1-2.6H8/300 COFF

i960 COFF

M68K a.out, COFF, ELF

MIPS R4xx 0 ELF

MIPS R3xx 0 ELF, ECOFF

PowerPC EABI

SH COFF

x86 ELF

SPARC SunOS 4.1.4 H8/300 COFF

i960 COFF

M68K a.out, COFF

MIPS R3xx 0 ELF

MIPS R4xx 0 ELF

PowerPC EABI

SH COFF

SPARClet a.out

SPARClite a.out, COFF

x86 a.out, ELF

CYGNUS Introduction ■ 15

Embedded cross-configuration support

1:
 O

ve
rv

ie
w

 o
f G

N
U

P
ro

 T
oo

lk
it

Table 2: Embedded cross-configurations supported (cont’d)

Host Target Output Format
PowerPC AIX 4.2.1 PowerPC EABI

x86 ELF

Windows NT4.0/95 H8/300 COFF

i960 COFF

M68K COFF

MIPS VR4100 ELF

MIPS VR4300 ELF

PowerPC EABI

SH COFF

SPARC a.out

SunOS 2.x COFF

SunOS 4.1.4 COFF

x86 a.out, ELF

Version numbers for programs

16 ■ Introduction GNUPro Toolkit

Version numbers for pro grams
Table 3 shows the current version numbers for individual programs in GNUPro
Toolkit.
Table 3: Versions of the tools.

Program Version Numbers
bfd 2.8-gnupro-98r1

binutils 2.9-gnupro-98r1

diff 2.7-gnupro-98r1

expect 5.21-gnupro-98r1

flex 2.5-gnupro-98r1

gas 2.9-gnupro-98r1

gcc 2.9-gnupro-98r1

gcov 1.5-gnupro-98r1

gdb 4.17-gnupro-98r1

ld 2.8-gnupro-98r1

libstdc++ 2.8-gnupro-98r1

libio 2.8-gnupro-98r1

make 3.75-gnupro-98r1

makeinfo 1.67-gnupro-98r1

newlib/libc 1.8-gnupro-98r1

newlib/libm 1.8-gnupro-98r1

patch 2.5-gnupro-98r1

send-pr 3.104-gnupro-98r1

CYGNUS Introduction ■ 17

Naming hosts and targets

1:
 O

ve
rv

ie
w

 o
f G

N
U

P
ro

 T
oo

lk
it

Namin g hosts and tar gets
Your CD is labeled to indicate the host (and target, if applicable) for which the
binaries in GNUPro Toolkit are configured. The specifications used for hosts and
targets in the configure script are based on a three-part naming scheme, though the
scheme is slightly different between hosts and targets.

The full naming scheme for hosts encodes three pieces of information in the following
standard pattern.

architecture-vendor-os

For instance, the full name for a Sun SPARCstation running SunOS 4.1.4 is
sparc-sun-sunos4.1.4 .

WARNING! configure can represent a very large number of combinations of architecture,
vendor, and operating systems. Support is not possible for all combinations.

Host names
Table 4 shows the usage of canonical names for referring to the corresponding host
platforms that Cygnus supports. For any questions about compatibility, contact
Cygnus (see “How to contact Cygnus” on page v).
Table 4: Naming hosts

Canonical name Platform
alpha-dec-osf3.2C DEC Alpha Digital UNIX v3.2C
alpha-dec-osf4.0 DEC Alpha Digital UNIX v4.0
hppa1.1-hp-hpux10 HP 9000/700, HP-UX B.10.01
hppa1.1-hp-hpux10.20 HP 9000/700, HP-UX B.10.20
i386-cygwin32 Windows NT-sp3/95-osr2
i386-pc-linux-gnu Intel PC, Linux RedHat 5.0
mips-sgi-irix5 SGI Irix 5.3
mips-sgi-irix6 SGI Irix 6.2
powerpc-ibm-aix4.1 IBM PowerPC, AIX 4.1.4
powerpc-ibm-aix4.2 IBM PowerPC, AIX 4.2.1
rs6000-ibm-aix4.1 IBM PowerPC, AIX4.1.4
sparc-sun-solaris2.5 SPARCstation, Solaris 2.5.1
sparc-sun-solaris2.6 SPARCstation, Solaris 2.6
sparc-sun-sunos4.1 SPARCstation, SunOS 4.1.4

Target names

18 ■ Introduction GNUPro Toolkit

Target names
The following tables (Table 5-Table 12) list some of the more common targets
supported by Cygnus. Not all targets have support on every host. See also “Native
configurations support” on page 13 and “Embedded cross-configuration support” on
page 14 for the matrices of the host/target combinations supported by Cygnus. Also,
for more informaton on using particular tools and their targets, see GNUPro Tools for
Embedded Systems.

WARNING! configure can represent a very large number of target name combinations of
architecture, vendor, and object formats. Support is not possible for all
combinations.

Table 5: H8/300 processor name and output format

Table 6: i960 processor names and output format

Table 7: M68K processor names and output formats

Table 8: MIPS processor names and output formats

Table 9: PowerPC processor names and output formats

Table 10: SH processor name and output format

Table 11: SPARC processor names and output formats

Table 12: x86 processor names and output formats

h8300-hms-coff COFF object code format

i960-coff MON960 monitor (COFF format)

m68k-aout a.out object code format
m68k-coff COFF object code format
m68k-elf ELF object code format

mips-elf ELF object code format
mips-sgi-irix6 ELF object code format

powerpc-eabi ELF object code format (EABI)

sh-hms-coff COFF object code format

sparc-aout a.out object code format
sparc-coff COFF object code format
sparc-elf ELF object code format

i386-aout a.out object code format
i386-elf ELF object code format

CYGNUS Introduction ■ 19

Using config.guess

1:
 O

ve
rv

ie
w

 o
f G

N
U

P
ro

 T
oo

lk
it

Using config.guess
config.guess is a shell script that attempts to deduce the host type from which it is
called, using system commands like uname if they are available.

config.guess is remarkably adept at deciphering the proper configuration for your
host; if you are building a tree to run on the same host on which you’re building, we
recommend not specifying the hosttype argument.

config.guess is called by configure ; you need never run it by hand, unless you’re
curious about the output.

Using config.guess

20 ■ Introduction GNUPro Toolkit

CYGNUS Introduction ■ 21

2:
 R

ed
 fl

ag
 a

le
rt

s
&

 e
nh

an
ce

m
en

ts

Red fla g alerts & enhancements

The following documentation discusses issues that are new with this release. These
issues may provide clues that may help if you run into problems with the GNUPro
tools. They may also be suggested or requested enhancements.

■ “General issues” on page 22

■ “Compiler issues” on page 23

■ “Debugger issues” on page 25

■ “Utilities issues” on page 26

See also “Issues from previous releases” on page 27 for issues that may be pertinent
from versions of GNUPro Toolkit prior to this release.

2

General issues

22 ■ Introduction GNUPro Toolkit

General issues
The following documentation discusses new features and alerts for this release of
GNUPro Toolkit.

■ The malloc routines in the embedded C library have been updated. The library
includes a new header file, <malloc.h> , and some useful new functions, including
memalign and mallinfo . The malloc routines now always call __malloc_lock
and __malloc_unlock to lock and unlock access to the memory pool. The library
provides default versions of these functions which do nothing; if you invoke
malloc from multiple threads, or reentrantly, you should provide your own
versions of these functions. See GNUPro C Library in GNUPro Libraries for
more details.

■ This release contains GNUPro for the Windows environment, specifically, the
Windows NT 4.0 (WinNT4.0-sp3) and the Windows 95 environments
(Win95-osr2), using the GNUPro cygwin32 tools.

Unix by default does not have spaces in any of the system paths where as the NT
and Win95 products love to use them in (such as, “My Documents”). Make sure
when using the tools that this alerts you to the file naming conventions.

■ As for the engineering of cygwin32 , some general parameters need further
discussion.

@file is a general command option that will work with all programs that are
dependent on the cywin32.dll . Simply, the file named after the @ symbol is
inserted into the command line.

The command, gcc @ foo , will use the contents of the file, foo , as a command
line option for GCC. If for some reason you wish to use text such as @foo as
command line display, you can use the command, gcc \@ foo . The \ acts as an
escape character.

This option is mainly to get around the 127 character limit on the DOS prompt in
Win95. In a UNIX shell, you use cat foo . However, one advantage of the
@file command is with using a file that, having another @file command in its
contents, that file will also be inserted into the command line.

cat foo and cat @ foo should not produce identical output. Expect the latter to
compress unquoted strings of spaces, tabs, and newlines into a single space. In
particular, barring quoting, expect it to always print only a single newline.
Command line parsing/dequoting is done after the file is read. So you can put a
long quoted string into a file by putting the quotes in the file.

■ For all the new supported hosts, see “Native configurations support” on page 13
and “Embedded cross-configuration support” on page 14.

CYGNUS Introduction ■ 23

Compiler issues

2:
 R

ed
 fl

ag
 a

le
rt

s
&

 e
nh

an
ce

m
en

tsCompiler issues
The following documentation concerns enhancement issues that may affect the API or
ABI when working with the GNUPro compiler tools (gcc and g++).

■ GNUPro Toolkit includes the compiler, egcs 1.0 , which is similar to gcc 2.8.x .

■ There have been further enhancements to the Global Common Sub-Elimination
(gcse) routines in the libraries.

■ There have been improvements to the general induction variable identification
and elimination, along with improvements to the loop invariant code motion.

■ There are now accurate warnings, especially when using exception handling (such
as when using uninitialized variables, for example)

■ There is improved global constant and copy propogation.

■ There are several new switches: -Os (for optimizing space),
-fmove-all-movables (for forcing all invariant computations in loops to be
moved outside the loop), -freduce-all-givs (for forcing all general induction
variables in loops to be strength reduced), and -frerun-loop-opt (for rerunning
loop optimizations twice).

■ There is now partial redundancy elimination with lazy code motion and critical
edge splitting.

■ There is now global code hoisting and unification.

■ GNUPro Toolkit fully supports the following functionality for the GNU C++
programming.
❖ Thread-safe exception handling, including nested exceptions and placement

delete. operator new now throws bad_alloc .
❖ Member class templates.
❖ Local classes in templates.
❖ Template parameters.
❖ Template friends.
❖ Protected virtual inheritance.
❖ Loop optimization improvements (with the test at the end in more cases); for

class D derived from B, which has a member, int i , &D::i is now of type
int B::* instead of int D::* .

❖ Compact name mangling with -fsquangle . Future versions of the compiler
may use the new mangling to indicate a different, incompatible ABI. To use
this, rebuild the libraries (including libgcc) with this option.

❖ Member function and template support.

Compiler issues

24 ■ Introduction GNUPro Toolkit

■ Cygnus fully supports the m68k-elf toolchain. An earlier version of m68k-elf
that was previously available is obsolete. Migrating to the new m68k-elf
toolchain will require rebuilding existing object files and modifying any existing
source code written in assembly language. Source code that was written in C will
not need to be changed.

Any object files that were created with the old toolchain will not be
link-compatible with object files created with the new toolchain. Even if old
object files are successfully linked with new object files, they will not be
compatible at run-time, because the calling convention has changed. To
circumvent this problem, recompile all object files from their source code with the
new m68k-elf toolchain.

The assembly language format expected by the new assembler has changed
slightly to make it more similar to the format of m68k-coff and m68k-aout
assembly language. Programs that are written in C do not need modification.
Programs written in assembly language will need to be modified in the following
ways:
❖ The fp register must be referred to instead as the a6 register. link %fp,&0

must be replaced with link %a6,#0 as a modification.
❖ Incidences of the & symbol must be replaced with #. link %fp,&0 must be

replaced with link %a6,#0 as a modification.

There have been some ABI changes:
❖ Pointers are now returned in register d0, not a0.
❖ Long doubles are now returned in fp0 when an FPU is present, not d0.

■ Two functions resembling __attribute__ functionality, -ffunction-sections
and -fdata-sections , move elements that don’t have section attributes set.
-ffunction-sections moves function elements and -fdata-sections moves
data elements.

GCC uses.text. objectname if transforming a function, and uses
.data. objectname or .rodata. objectname if transforming constant data
elements (which are read-only elements). .data. objectname is the default.

CYGNUS Introduction ■ 25

Debugger issues

2:
 R

ed
 fl

ag
 a

le
rt

s
&

 e
nh

an
ce

m
en

tsDebugger issues
The following documentation concerns the enhancement issues for the GNUPro
debugger tools.

■ With this release of GNUPro Toolkit, there is a graphical user interface for the
GNU debugger, gdb. Cygnus refers to it as GDBtk, since it uses the Tcl/Tk
programming system, and it is the same source for both Unix and Windows
environments.

Tcl/Tk is a programming system developed by John Ousterhout. Easy to use with
very useful graphical interface facilities, Tcl is the basic programming language
while Tk is a “ToolKit” of widgets (graphical objects similar to those of other
GUI toolkits, such as Xlib, Xview and Motif). Unlike many of the other toolkits, it
is not necessary to use C or C++ in order to manipulate the widgets, and useful
applications can be built very rapidly with Tcl/Tk.

■ When using a non-ANSI compiler, its code for --disable-gdbtk avoids building
the gdb libraries for the GUI, libgui , and automatically turns on
--disable-gdbtk . This allows use of such non-ANSI compliant compilers.

■ There is now support for DWARF2 object file format.

■ Some improvements were made for Solaris thread debugging.

Utilities issues

26 ■ Introduction GNUPro Toolkit

Utilities issues
The following documentation concerns enhancement issues for GNUPro utilities.

■ There are two new binary utilities.
❖ addr2line

Converts addresses into file names and line numbers; see addr2line in The
GNU Binary Utilities in GNUPro Utilities.

❖ windres
Manipulates Windows resources; see windres in The GNU Binary Utilities in
GNUPro Utilities.

■ Of the hosts we currently support, we do not support the assembler (gas) for the
alpha-dec-osf or mips-sgi-irix6 configurations. These are not normally
configured, but the sources are included with every release.

■ Of the hosts we currently support, we do not support the linker (ld) for the
alpha-dec-osf , hppa-hp-hpux or mips-sgi-irix configurations. These
are not normally configured, but the sources are included with every release.

■ DejaGnu is a framework for testing other programs. Its purpose is to provide a
single front end for all tests and several of the following advantages for testing:
❖ The flexibility and consistency of writing tests for any program.
❖ Providing a layer of abstraction in order to write tests that port to any host or

target where a program must test. For instance, a test for gdb can run (from
any Unix based host) on any target that DejaGnu supports. DejaGnu runs
tests on several single board computers, whose operating software ranges
from a boot monitor to a full Unix-like realtime operating system.

❖ All tests have the same output format, making it easy to integrate testing into
other development, to parse by other filtering scripts, and to be readable.

DejaGnu is written in expect , which in turn uses the Tcl command language.

Running tests requires two things: the testing framework, and the testsuites
themselves. Tests are usually written in expect , using Tcl, but you can also use a
Tcl script to run a test suite not based on expect . expect script filenames
conventionally use .exp as a suffix; for example, the main implementation of the
DejaGnu test driver is in the file, runtest.exp .

CYGNUS Introduction ■ 27

3:
 Is

su
es

 fr
om

 p
re

vi
ou

s
re

le
as

es

Issues from previous releases

The following documentation discusses issues from previous releases. These issues
can provide clues that may help if you run into problems with the current release.

■ “General issues with the tools” on page 28

■ “C and C++ compiler issues” on page 32

■ “Debugger issues” on page 37

■ “Assembler issues” on page 40

■ “Linker issues” on page 41

■ “Rebuilding issues” on page 42

3

General issues with the tools

28 ■ Introduction GNUPro Toolkit

General issues with the tools
The following discussions address some general issues that apply to the GNUPro tools
for previous releases, affecting many different environments and usage requirements.

■ No tapes or floppy disks shipped by default. The installation media is now CD
format.

■ None of the libraries were thread-safe.

■ Some tools were not available for the following platform environments.

� GNUPro Toolkit did not include a linker (ld) for the DEC Alpha running
Digital Unix (formerly OSF/1). The native linker was the default.

� GNUPro Toolkit required the SGI Irix operating system’s C library and
include files in a native configuration. The SGI Irix operating system does not
contain these files by default, but they are included in a separate developer’s
package. You cannot use the GNUPro Toolkit without this package.

� GNU ld was not included for the HP9000/700 native in the native
configuration.

■ If you ran dejagnu in an Emacs shell buffer, expect generated incorrect results for
pass-fail .

■ Finding a shared library at run-time was a problem with the (default) C++ library,
libstdc++ , as well as with libg++ .

Fixes used the following attributes.

� Added ‘/usr/progressive/lib ’ to LD_LIBRARY_PATH environment variable.

� Used the following appropriate option when linking:

For Solaris:
...-R/usr/progressive/lib...

For DEC Unix/OSF1 and Irix 5:
...-Wl, -rpath,/usr/progressive/lib...

� Removed or renamed completely the shared libraries under the installation
directory (‘/usr/progressive/lib/libg++.s* ’ and
‘ /usr/progressive/lib/libstdc++.s* ’).

� Linked with -static to avoid using any shared libraries.

� The library directory, ‘/usr/progressive/lib ’, was different if GNUPro
Toolkit was installed in a non-standard location. This directory was thought of
as ‘$GCC_EXEC_PREFIX/../ ’ if using ‘GCC_EXEC_PREFIX’.

■ After rebuilding from source, in order to report problems, a user reran
install-sid in order to reset customer-id in send-pr . Previously, the default

CYGNUS Introduction ■ 29

General issues with the tools

3:
 Is

su
es

 fr
om

 p
re

vi
ou

s
re

le
as

es

value was the value in the send-pr program in a path at the time of configuration.

■ The following issues were pertinent to the PowerPC environment.

� -mno-fused-madd was a new option, preventing the compiler from
combining a floating point multiply with an addition or subtraction.
Generally, the compiler would do this optimization, if it was important to get
the exact rounding as specified by the IEEE 754 floating point standard (on
the Power and PowerPC machines, the combined multiply and add/subtract
instruction does not do a round operation between the multiply and the
addition/subtraction).

The -mcpu=403 switch did a -mstrict-align operation, since the 403 had no
support for unaligned memory operations.

With the previous release, better code was generated when adding or doing
logical operations with large constants.

Two new switches , -mads and –myellowknife , were added to the
powerpc-eabi toolchain.

■ The -mads switch links in the appropriate libraries for the Motorola
ADS target boards (860/821/823).

■ -myellowknife , the other switch, links in the appropriate libraries for
the Motorola Yellowknife target boards (603e/604e).

Jump tables, for switch statements, were in the .rodata section, and not the
.text section, so it wasn’t necessary to include the text section in the data
address mapping.

wchar_t became 4 bytes instead of 2 (and “ a” L-strings consisted of 4 byte
characters instead of 2).

The -mregnames switch was only passed to the assembler for assembling .s
and .S files (i.e., it was not passed to the assembler when assembling the
output of the compiler). This is so that global symbols like “r0 ” in C code
wouldn’t get confused with register names.

� PowerPC configuration included a simulator contributed by Andrew Cagney.

� The following support enhancements were made to both the powerpc-aix and
powerpc-eabi configurations.

■ Support was added for -mcpu=505 , -mcpu=602 , -mcpu=860 ,
-mcpu=821 , and -mcpu=power2 .

■ The default PowerPC model is now 604 , not 601 .

■ -mtune= xxx was added to select scheduling parameters such as
-mcpu=xxx , but not to select use of cpu specific instructions.

General issues with the tools

30 ■ Introduction GNUPro Toolkit

■ If configuring and building the compiler, the switch, --with-cpu= xxx ,
will allow for selecting the default processor.

■ Instruction timings had been improved.

■ __attribute__((longcall)) was added to function attributes so that
the function is now always called through a pointer. This allows the
function to be located anywhere in program memory.

■ The compiler was set to generate correct code for a nor instruction
combined with a compare instruction.

� The following enhancements were made only to the powerpc-eabi support.

■ A new switch, -msdata was added to put small static and global items
in small data regions. This allows them to be referenced with 1
instruction instead of 2.

■ long long was set to pass according to the System V/EABI
specifications, (in other words, they always pass in odd/even register
pairs, never even/odd).

■ Code was changed for the functions prolog and epilog so that
references beyond the end of the current stack pointer never generate.

■ The assembler added support for generating negative address, GOT,
PLT, and small data, relative to section start relocations.

■ The linker added support for negative address, GOT, and small data,
relative to section start relocations. PLT relocations were not handled.

� An enhancement was made to the powerpc-aix support. The default for AIX
4.1 was changed to -mcpu=common. This replaced the default of the machine
on which the compiler was configured (either Power or PowerPC)

� The PowerPC simulator must be built with the gcc compiler. It uses several
gcc extensions, as well as requiring an ISO standard compiler. If you
configure your powerpc-eabi build without using gcc , it will not build the
simulator.

■ The following issues are pertinent to the m68k environments.

� The m68k-aout and m68k-coff toolchains now include support for converting
executables files into IEEE-695 format. The IEEE-695 format is used by
some emulators.

To convert a file, first link your program into a fully linked executable. Then
run the following script.
m68k-coff-objcopy -O ieee --debugging file file.x

This converts a m68k-coff file ‘ file ’ into the IEEE-695 file, ‘file.x ’.

To use the m68k-aout toolchain, m68k-aout-objcopy is the corresponding

CYGNUS Introduction ■ 31

General issues with the tools

3:
 Is

su
es

 fr
om

 p
re

vi
ou

s
re

le
as

es

tool.

� The --debugging option directs objcopy to translate debugging information
into the IEEE-695 format. This option only works if you use the stabs
debugging format. The stabs debugging format is the default for the
m68k-aout toolchain.

For the m68k-coff toolchain, you must compile your files using the option,
-gstabs+ , rather than a simple -g , in order to get stabs debugging
information.

A conversion facility is available for other toolchains, but the binaries built by
Cygnus do not provide it. To use it, you must rebuild the programs from
source, as described in Rebuilding From Source in GNUPro Advanced
Topics.

Running the configure script, add ‘--enable-targets=CPU-ieee ’, where CPU
is the processor type (such as i960). Cygnus had not tested the convertor for
processors other than the m68k.

� The Motorola CPU32 and CPU32+ targets are part of the family of 68000 chips,
which Cygnus supports. There are a few options to help you compile code for
these targets.

■ gcc has an option, ‘-m68332 ’, to be used specifically when compiling
for the Motorola 68332 board. (gcc also has an updated option,
-m68302. The 68302 technically isn’t a CPU32 chip.)

■ It is also possible to configure gcc for a target of ‘m68332-aout ’ or
‘m68332-coff ’ when rebuilding from source, in which case ‘-m68332 ’
is the default.

■ GNU as accepts the following board-specific options: -mcpu32 ,
-m68331 , -m68332 , -m68333 , -m68340 , and -m68302 .

Contact Cygnus for more information on our support for CPU32 and CPU32+
targets.

C and C++ compiler issues

32 ■ Introduction GNUPro Toolkit

C and C++ compiler issues
There were several new warnings for the GNU compiler tools, gcc (C compiler) and
g++ (C++ compiler).

■ Member function templates have support.
This uses scripts, for instance, like the following example.

struct S {
template <class T> operator T();
/* ... */

};

template <class T>
S::operator T()
{

/* ... */
}

main ()
{

S s;
int i = s;
void *p = s;

}

■ Explicit qualification of function templates has support.
This uses statments, for instance, like the following example.

template <class T, class U> T implicit_cast (U u) { return u;
}
int i = implicit_cast<int>(1.5);

As a result, guiding declarations no longer have support. Function declarations,
including friend declarations, do not refer to template instantiations. To restore
the old behavior, use -fguiding-decls until you fix your code. Broken code
looks like the following example’s script.

template <class T> struct A {
friend ostream& operator<< (ostream &, const A &);
/* ... */

};

template <class T> ostream&
operator<< (ostream &o, const A<T>& a)
{

/* ... */
}

main ()

CYGNUS Introduction ■ 33

C and C++ compiler issues

3:
 Is

su
es

 fr
om

 p
re

vi
ou

s
re

le
as

es

{
A<int> a;
cout << a;

}

■ Two exception handling mechanisms are used.

One, which is supported on all platforms, uses setjmp and longjmp to unwind
stack frames and slow down your code.

The second mechanism uses DWARF2-format data to unwind stack frames, and has
no time impact on code that doesn't throw exceptions, but does require that the
unwind info be written out. The DWARF2 unwinder is the default on systems
where it is supported; setjmp/longjmp is the default everywhere else.

To select between the two, use -fsjlj-exceptions , except, where the DWARF2
unwinder is not supported, the old mechanism, EH, will be used. Turn EH off with
the flag, -fno-exceptions .

■ Standard usage syntax for the std namespace is supported; std is treated as an
alias for global scope. General namespaces are still not supported.

■ The flag, -Wno-pmf-conversion , tells the compiler not to warn about converting
from a bound member function pointer to function pointer.

■ A flag, -Weffc++ , is used for violations of some of the style guidelines in the
“Effective C++” books by Scott Meyers.

■ __FUNCTION__ and __PRETTY_FUNCTION__ are treated as variables by the parser;
previously they were treated as string constants.

Code like printf (__FUNCTION__ ": foo") must be rewritten to be:
printf ("%s: foo", __FUNCTION__)

This is necessary for templates.

■ Local static variables in extern inline functions will be shared between translation
units.

■ -fvtable-thunks is supported for all targets, and is the default for Linux with
glibc 2.x (also called libc 6.x).

■ A new flag, -Wold-style-cast , can be used to warn if an old-style (C-style) cast
is used within a C++ program.

■ hppa*-*-proelf (or a HP PRO target) no longer includes floating point support by
default. Therefore, it is no longer necessary to include -msoft-float on either the
compilation or link line for these targets.

■ A public review copy of the December 1996 Draft of the ANSI C++ Standard is
available. For PostScript and PDF (using Adobe Acrobat) versions, see the
archives: ftp://research.att.com/dist/c++std/WP . For HTML and ASCII
versions, use ftp://ftp.cygnus.com/pub/g++ or

C and C++ compiler issues

34 ■ Introduction GNUPro Toolkit

http://www.cygnus.com/misc//wp .

■ The overload resolution code was on by default. The old code could still be
selected with -fno-ansi-overloading , although this was not supported.

WARNING: By not invoking this option, installation will fail.

The following issues may also be useful to those users who are rebuilding from
previous releases of the GNU tools, mostly for the progressive-96q4 and the
progressive-97r1 releases.

■ The overload resolution code has been rewritten to conform to the latest C++
Working Paper.

Built-in operators are now considered as candidates in operator overload
resolution. Function template overloading chooses the more specialized template,
and properly handles base classes in type deduction and guiding declarations. For
those customers having the progressive-96q4 release, this code was not on by
default and, so, they can use the -fansi-overloading flag to turn on the overload
resolution code. It is, starting with the 98r1 release, now on by default.

■ The GNU C++ driver (g++) no longer links with libg++ by default; it is now
functionally identical to the C++ driver.

■ RTTI support has been rewritten to work properly and is now on by default.

This means code that uses virtual functions will have a modest space overhead,
and will also depend on the RTTI support library code in libstdc++ . This
dependency is removed. Use the -fno-rtti flag to disable RTTI support.

■ On ELF systems, duplicate copies of symbols with initialized common linkage
like template instantiations, vtables, and extern inlines will now be discarded by
the GNU linker, so –frepo isn’t necessary

■ Partial specialization of class templates is now supported.

■ Synthesized destructors are no longer made virtual just because the class already
has virtual functions; it is only if they override a virtual destructor in a base class.
The compiler will warn if this affects your code.

■ ‘ (void *)0 ’ is no longer considered a null pointer constant; NULL in <stddef.h>
is now defined as __null . This is a magic constant of type, (void *) , normally,
or (size_t) with -ansi .

■ The new ‘template <> ’ specialization syntax is now accepted and ignored.

■ The name of a class is now implicitly declared in its own scope; for example, A::A
refers to A.

■ The STL code is based on the free SGI version, which is more efficient and
conformant than the older HP distribution.

CYGNUS Introduction ■ 35

C and C++ compiler issues

3:
 Is

su
es

 fr
om

 p
re

vi
ou

s
re

le
as

es

■ Default function arguments in templates will not be evaluated (or checked for
semantic validity) unless they are needed.

■ The -ftemplate-depth-NN flag can be used to increase the maximum recursive
template instantiation depth, defaulting to 17. If you need to use this flag, the
compiler will tell you.

■ The internal interface between RTTI-using code and the RTTI support library has
changed, so code that uses dynamic_cast should be recompiled. The RTTI
support library has moved from libstdc++ to libgcc , so you no longer need to link
against libstdc++ for a program that doesn’t use the “hosted” library.

■ bool is now always the same size as another built-in type. Previously, a 64-bit
RISC target using a 32-bit ABI would have 32-bit pointers and a 64-bit bool . This
should not affect any supported platforms.

■ new (nothrow) is supported.

■ Some warnings were added for violation of style guidelines.

■ g++ uses an implementation of templates that are minimally parsed when seen and
then later expanded. This allows conformant early name binding and instantiation
controls, since instantiations no longer go through the parser.

What you get:

� Inlining of template functions works without any modifications.

� Instantiations of class templates and methods defined in the class body are
deferred until required (unless -fexternal-templates is specified).

� Nested types in class templates work.

� Static data member templates work.

Possible problems:

� Types and class templates used in templates must be declared first, or the
compiler will assume they are not types, and fail.

� Similarly, tag nested types of template type parameters with typename .

� Syntax errors in templates that are never instantiated will now be diagnosed.

■ Synthesized methods are emitted in any translation units that need an out-of-line
copy. They are no longer affected by #pragma interface or
#pragma implementation .

■ Local classes are supported.

■ The warning flag, -Wsign-compare , included in -Wall , warns about dangerous
comparisons of signed and unsigned values; it was previously part of -W.

■ The flag, -fno-weak , disables the use of weak symbols.

■ The type directive, __attribute__ , is supported.

C and C++ compiler issues

36 ■ Introduction GNUPro Toolkit

■ -Woverloaded-virtual now warns if a virtual function in a base class is hidden
in a derived class, rather than warning about virtual functions being overloaded
(even if all of the inherited signatures are overridden).

■ The compiler no longer emits a warning if an ellipsis is used as a function’s
argument list.

■ Exception handling support has been significantly improved, though optimization
is still not supported.

■ Definition of nested types outside of their containing class is supported. Use the
following source code, as an example.

struct A {
struct B;
B* bp;

};

struct A::B {
int member;

};

■ Explicit instantiation of template constructors and destructors is now supported.
For example: template A<int>::A(const A&);

■ All HPPA targets support the -mspace option, which is experimental code aimed
at reducing the size of a program at the expense of increasing execution time.

■ On the HPPA, some classes that do not define a copy constructor will be passed
and returned in memory again so that functions returning those types can be
inlined.

CYGNUS Introduction ■ 37

Debugger issues

3:
 Is

su
es

 fr
om

 p
re

vi
ou

s
re

le
as

es

Debugger issues
The following issues pertain to the GNU gdb debugger.

■ The d10v-elf configuration includes commands to collect and display trace data.
Use ‘trace ’ to enable tracing, ‘untrace ’ to disable, ‘info trace ’ to describe the
information collected in the trace buffer, and ‘tdisassemble ’ to display the list of
instructions that were executed.

■ gdb now supports the debugging of overlays. Do ‘help overlay ’ for more
information. Example code may be found in examples/overlay .

■ Embedded MIPS configurations (such as mips-elf and mips-ecoff) may use
hardware breakpoints and watchpoints when communicating with boards using
PMON (using the ‘target pmon ’ command).

■ You may now use gdb with the Macraigor Systems “wiggler” and “OCD serial
box” devices. The target commands are ‘target ocd wiggler lpt1 ’ (for PC
hosts, for the wiggler device, only) and ‘target ocd port ’ (normal serial
transport; /dev/ttya … being the pathname for addressing the variable argument
for port).

■ The powerpc-elf configuration includes two new target protocols; ‘target sds ’
is an SDS-compatible protocol that is useful with Motorola's ADS821/860 boards,
and ‘target dink32 ’ works with Motorola systems running the DINK32 ROM
monitor (such as the embedded Yellowknife).

■ The ‘set architecture ’ command allows for an explicit choice of the processor
type being debugged, while ‘info architecture ’ displays the current target
architecture. Most configurations presently support only a single architecture.

■ The debugger was modified to properly debug executables that were compiled
with the Cfront C++ version 2 compiler.

■ The debugger includes support for the Apple Macintosh, as a host only. GDB can
be run as either an MPW tool or as a standalone application, and it can debug
through the serial port. All of the usual debugger commands are available, but you
must supply ‘serial ’ as the device type to the target command, instead of
‘ /dev/ttyXX ’. Use target serial for input.

See ‘mpw-README’ in the main directory for more information on how to build.
The MPW configuration scripts ‘*/mpw-config.in ’ support only a few targets,
and only the mips-idt-ecoff target has been completely tested. Both m68k and
PowerPC Macs are supported.

■ Use target ppcbug for support for the PowerPC PPCBUG monitor.

■ Use target sh3 for support for the Hitachi SH3 monitor ROM.

Debugger issues

38 ■ Introduction GNUPro Toolkit

■ Use the auto-solib-add variable to read in symbols from all shared libraries. If
the value of auto-solib-add is 1, then symbols from all shared libraries will be
read in when the program starts up. This is convenient if you want to reference a
symbol in a shared library without having to stop in that library first, such as in
setting a breakpoint. The default value is 0, which improves startup time.

NOTE: The command shared library is always available to load shared library
symbols manually.

■ Use the command, dont-repeat , in user-defined commands to defeat the
auto-repeat of GDB when an empty command is entered.

■ The symbol reader for AIX gdb now uses partial symbol tables. This can greatly
improve startup time, especially for large executables.

■ When printing the type of a variable declared with a typedef, gdb uses the
typedef name if possible instead of the typedef definition.

■ Performance is improved in MIPS IDT debugging (MIPS targets), both for
stepping and for downloads.

■ The remotedelay option is set by default to 1. Loading executables can be
considerably slower with remotedelay set to 1, but it gets around a loading bug
on certain H8/300 boards.

To see a noticeable speed-up in loading when you’re not using an H8/300 board,
set remotedelay to 0. Use set remotedelay 0 as input.

A common hurdle in cross development is to get the communications set up
properly between the target board and the development platform.

The debugger’s ‘set remotedebug ’ command can help. It was designed to help
develop new remote targets; it displays the packets transmitted back and forth
between the debugger and the target environment. This command can be helpful
in diagnosing communications problems, for example, allowing you to observe
packets not getting through or picking up noise on the line.

The set remotedebug command is now consistent among the MIPS remote
target; remote targets using the gdb -specific protocol; UDI (the AMD debug
protocol for the 29k); the 88k bug monitor; and Hitachi ROM monitors. You can
set it to an integer specifying a protocol-debug level (normally 0 or 1, but 2 means
more protocol information for the MIPS target). See “GDB and remote MIPS
boards” in Debugging with GDB in GNUPro Debugging Tools for details.

■ If you use the gcc option, ‘-gstabs+ ’, gcc embeds extended debugging
information in COFF object files. The extended debug information is based on the
stabs debugging format, which was originally used only with the a.out object file
format; see The stabs debug format, in your sources as
‘src/gdb/doc/stabs.texinfo ’, or contact Cygnus for more information. With

CYGNUS Introduction ■ 39

Debugger issues

3:
 Is

su
es

 fr
om

 p
re

vi
ou

s
re

le
as

es

this additional debugging information, you can debug C++ programs with GDB,
even on systems that use COFF. You can get better C++ debugging by compiling
with ‘ -gstabs+ ’ for the following targets: a29k-amd-udi , h8300-hms ,
m68k-coff , m88k-coff , sh-hms , and z8k-coff .

Assembler issues

40 ■ Introduction GNUPro Toolkit

Assembler issues
The following issues pertain to the GNU assembler, gas .

■ The assembler now has a -alm option, which can be used to list macro
expansions. The -al c option can be used to skip false conditionals in listings.

■ The default objdump disassembly format has changed. You can get the old format
by using --prefix-addresses .

■ The assembler now supports macros without requiring the assembler’s
preprocessor, gasp .

■ gas now supports the -M or --mri option, permitting the assembly of MRI-format
assembler files.

■ The SunOS assembler is now able to assemble PIC.

CYGNUS Introduction ■ 41

Linker issues

3:
 Is

su
es

 fr
om

 p
re

vi
ou

s
re

le
as

es

Linker issues
The following issues pertain to the GNU linker, ld .

■ The linker now accepts the --no-whole-archive flag, to force it to not include
the entire contents of an archive file.

■ The -rpath-link option has been added for SunOS and ELF systems.

■ The COFF linker now automatically combines struct , union , and enum
debugging information, so that the information only appears once in the output
file. This only applies when using COFF debugging information, as opposed to
stabs .

■ The SunOS linker is now able to create shared libraries.

Rebuilding issues

42 ■ Introduction GNUPro Toolkit

Rebuildin g issues
Details on issues with past releases about rebuilding specific platforms and features
are shown in the following discussions. See Rebuilding From Source in GNUPro
Advanced Topics for more detailed instructions.

■ When rebuilding from source on an AIX platform, on some versions, the tr utility
in ‘ /usr/ucb ’ has a bug. Make sure the PATH for the build will make ‘/bin/tr ’ or
‘ /usr/bin/tr ’ available ahead of ‘/usr/ucb/tr ’. This bug is fixed in AIX 4.1.4.

■ There is a reported problem in rebuilding GNUPro Toolkit using AIX 3.2.x native
tools. (This problem does not crop up if you use gcc to rebuild the tools.) On the
RS/6000, XLC version 1.3.0.0 miscompiles ‘jump.c ’. XLC version 1.3.0.1 or
later fixes this problem. You can obtain XLC version 1.3.0.2 by requesting
PTF 421749 from IBM. This is not relevant for AIX 4.1.4.

■ Use --with-gnu-as when configuring MIPS, if you rebuild the entire GNUPro
Toolkit from source.

Top-level configuration files handle the configuration for you automatically. But
if you rebuild the compiler alone for a MIPS target, we highly recommend that
you specify ‘--with-gnu-as ’ on the command line for configure . This avoids an
incompatibility between the assembler, as , and the MIPS assembler. The MIPS
assembler does not support debugging directives, and gcc uses a special program,
mips-tfile , to generate them. as parses the debugging directives directly without
mips-tfile .

You should also specify ‘--with-stabs ’ on the command line to configure .
This provides better debugging symbols, in particular for C++. If you plan to use
the linker, be sure to specify ‘--with-gnu-ld ’ when you rebuild on any platform
for which the linker is available.

■ To rebuild the tools from source on a SPARC system running Solaris 2, use either
the original Solaris 2 native-development binaries from GNUPro Toolkit or the
unbundled compiler sold separately by Sun.

WARNING! There is a program called ‘/usr/ucb/cc ’ that you should not use since it is
incompatible with the real compiler which is in ‘/opt/SUNWspro/bin/cc ’.

■ As in previous releases, you can reconfigure GNUPro Toolkit to support more
than one object format. For detailed instructions, see Rebuilding From Source in
GNUPro Advanced Topics.

To add support for more object file formats (besides the format appropriate for the
configured target), list the additional targets as arguments to the configure
option, --enable-targets , separated by commas.

CYGNUS Introduction ■ 43

Rebuilding issues

3:
 Is

su
es

 fr
om

 p
re

vi
ou

s
re

le
as

es

Use the following input as an example.
./configure --enable-targets=m68k-coff,i386-elf,decstation

To find out what targets are available, look in the file ‘bfd/config.bfd ’ in the
source distribution. To configure the tools to support all available object formats,
use ‘--enable-targets=all ’ rather than listing individual targets.

■ Starting with the 97r1 release, make had been altered to support the Win32 host
environment better. It now has two major modes of operation:

� The default mode is to support native Win32 makefiles. In this mode,
Makefile rules may use either backslashes or forward slashes as filename
directory separators. Makefile rules may invoke “del”, “ copy”, or other
Win32 shell builtins since make will now invoke a native Win32 subshell
when necessary. Note that some programs like del do not support filenames
containing forward slash directory separators so you probably want to use
backslashes if you intend to use those types of programs. make does not
automatically convert forward slashes to backslashes because doing so would
break the use of the forward slash as the option specifier for some Win32
programs.

For this mode to work correctly, the correct Win32 subshell must be in your
path (cmd.exe under Windows NT or command.com under Windows 95).
When writing your makefiles, avoid the use of backslashes as end of line
continuation characters because Win32 shell commands like “del” will
interpret that backslash as a reference to the root partition of the current drive!
Finally, command line lengths are limited to what’s supported by the Win32
subshell: 255 characters under cmd.exe, 127 characters under command.com.

� An optional Unix compatibility mode to support Unix-style Makefiles.

There are two ways to tell make to operate in this mode: you can either set the
environment variable, MAKE_MODE, to “unix ” before running make or you can
invoke make as “make --unix ” (in this mode, backslashes retain the usual
Unix semantics and cannot be used in filenames as directory separators;
however, Win32 paths without backslashes are still supported). Use of
Bourne shell built-ins is permitted but Win32 shell built-ins like del and copy
are unavailable. You must provide a working Bourne shell for this mode to
work correctly. It should be named “sh.exe” and needs to be in your path so
make can find it.

■ After rebuilding from source, it is now necessary to rerun install-sid in order to
reset your customer-id in send-pr . Previously, the default value was the value in
the send-pr program in your path at the time of configuration.

Rebuilding issues

44 ■ Introduction GNUPro Toolkit

CYGNUS Introduction ■ 45

4:
 U

si
ng

 G
N

U
 to

ol
s

on
 e

m
be

dd
ed

sy

st
em

s

Usin g GNU tools
on embedded s ystems

The following seven GNUPro Toolkit tools can be run on embedded targets.

■ gcc , the GNUPro Toolkit compiler (see “gcc, the GNU compiler” on page 46)

■ cpp , the GNU C preprocessor (see “cpp, the GNU preprocessor” on page 47)

■ gas , the GNUPro Toolkit assembler (see “gas, the GNU assembler” on page 47)

■ ld , the GNUPro Toolkit linker (see “ld, the GNU linker” on page 47)

■ binutils , the GNUPro Toolkit directory of utilities (see “binutils, the GNU
binary utilities” on page 48)

■ gdb , the GNUPro Toolkit debugger (see “gdb, the debugging tool” on page 49)

■ libgloss , the support library for embedded targets and newlib , the C library
developed by Cygnus (see “libgloss, newlib and libstd++, the GNU libraries”
on page 50)

See the following documentation for more discussion on using the GNU tools.

■ “Invoking the GNU Tools” on page 46

■ “crt0, the main startup file” on page 51

■ “The linker script” on page 55

■ “I/O support code” on page 58

■ “Memory support” on page 59

■ “Miscellaneous support routines” on page 60

4

Invoking the GNU Tools

46 ■ Introduction GNUPro Toolkit

Invokin g the GNU Tools
gcc invokes all the required GNU passes for you with the following utilities.
■ cpp

The preprocessor which processes all the header files and macros that your target
requires.

■ gcc

The compiler which produces assembly language code from the processed C files.
For more information, see Using GNU CC in GNUPro Compiler Tools (use the
following Web site location for links to documentation).
http://www.cygnus.com/pubs/gnupro/

■ gas

The assembler which produces binary code from the assembly language code and
puts it in an object file.

■ ld

The linker which binds the code to addresses, links the startup file and libraries to
the object file, and produces the executable binary image.

There are several machine-independent compiler switches, among which are, notably,
-fno-exceptions (for C++), -fritti (for C++) and -T (for linking).

You have four implicit file extensions: .c , .C , .s , and .S . For more information, see
Using GNU CC in GNUPro Compiler Tools (use the following Web site location for
links to documentation).

http://www.cygnus.com/pubs/gnupro/

gcc , the GNU compiler
When you compile C or C++ programs with gnu C, the compiler quietly inserts a call
at the beginning of main to a gcc support subroutine called __main . Normally this is
invisible—you may run into it if you want to avoid linking to the standard libraries, by
specifying the compiler option, -nostdlib . Include -lgcc at the end of your compiler
command line to resolve this reference. This links with the compiler support library
libgcc.a . Putting it at the end of your command line ensures that you have a chance
to link first with any of your own special libraries.

__main is the initialization routine for C++ constructors. Because GNU C is designed
to interoperate with GNU C++, even C programs must have this call: otherwise C++
object files linked with a C main might fail. For more information on gcc , see Using
GNU CC in GNUPro Compiler Tools(use the following Web site location for links to
documentation).

http://www.cygnus.com/pubs/gnupro/

CYGNUS Introduction ■ 47

cpp , the GNU preprocessor

4:
 U

si
ng

 G
N

U
 to

ol
s

on
 e

m
be

dd
ed

sy

st
em

s

cpp , the GNU preprocessor
cpp merges in the #include files, expands all macros definitions, and processes the
#ifdef sections. To see the output of cpp , invoke gcc with the -E option, and the
preprocessed file will be printed on stdout .

There are two convenient options to assemble handwritten files that require C-style
preprocessing. Both options depend on using the compiler driver program, gcc ,
instead of calling the assembler directly.

■ Name the source file using the extension .S (capitalized) rather than .s . gcc
recognizes files with this extension as assembly language requiring C-style
preprocessing.

■ Specify the “source language” explicitly for this situation, using the gcc option,
-xassembler-with-cpp .

For more information on cpp , see The C Preprocessor in GNUPro Compiler
Tools(use the following Web site location for links to documentation).

http://www.cygnus.com/pubs/gnupro/

gas , the GNU assembler
gas can be used as either a compiler pass or a source-level assembler.

When used as a source-level assembler, it has a companion assembly language
preprocessor called gasp . gasp has a syntax similar to most other assembly language
macro packages.

gas emits a relocatable object file from the assembly language source code. The
object file contains the binary code and the debug symbols.

For more information on gas , see Using AS in GNUPro Utilities (use the following
Web site location for links to documentation).

http://www.cygnus.com/pubs/gnupro/

ld , the GNU linker
ld resolves the code addresses and debug symbols, links the startup code and
additional libraries to the binary code, and produces an executable binary image.

For more information on ld , see Using LD in GNUPro Utilities (use the following
Web site location for links to documentation).

http://www.cygnus.com/pubs/gnupro/

.coff for object file formats

48 ■ Introduction GNUPro Toolkit

.coff for object file formats
.coff is the main object file format when using the tools on embedded target systems.
For more information on object files and object file formats, see The GNU Binary
Utilities in GNUPro Utilities(use the following Web site location for links to
documentation).

http://www.cygnus.com/pubs/gnupro/

binutils , the GNU binary utilities
The following are the binary utilities, although they are not included on all hosts: ar ,
nm, objcopy , objdump , ranlib , size , strings , and strip .

For more information on binutils , see The GNU Binary Utilities in GNUPro
Utilities (use the following Web site location for links to documentation).

http://www.cygnus.com/pubs/gnupro/

The most important of these utilities are objcopy and objdump .
objcopy

A few ROM monitors, such as a.out , load executable binary images, and,
consequently, most load an S-record. An S-record is a printable ASCII
representation of an executable binary image.

S-records are suitable both for building ROM images for standalone boards and
for downloading images to embedded systems. Use the following example’s input
for this process.

objcopy -O srec infile outfile

infile in the previous example’s input is the executable binary filename, and
outfile is the filename for the S-record.

Most PROM burners also read S-records or some similar format. Use the
following example’s input to get a list of supported object file types for your
architecture.

objdump -i

For more information on S-records, see the discussions for
FORMAToutput-format in the documentation for “MRI Comaptible Files” and
the discussion for “BFD” in Using LD in GNUPro Utilities. For more discussion
of making an executable binary image, see “objcopy ” in The GNU Binary
Utilities in GNUPro Utilities (use the following Web site location for links to
documentation).
http://www.cygnus.com/pubs/gnupro/

CYGNUS Introduction ■ 49

gdb , the debugging tool

4:
 U

si
ng

 G
N

U
 to

ol
s

on
 e

m
be

dd
ed

sy

st
em

s

objdump

objdump displays information about one or more object files. The options control
what particular information to display. This information is mostly useful to
programmers who are working on the compilation tools, as opposed to
programmers who just want their program to compile and work.

When specifying archives, objdump shows information on each of the member
object files. objfile... designates the object files to be examined.

A few of the more useful options for commands are: -d , --disassemble and
--prefix-addresses .
-d
--disassemble

Displays the assembler mnemonics for the machine instructions from objfile .
This option only disassembles those sections that are expected to contain
instructions.

--prefix-addresses

For disassembling, prints the complete address on each line, starting each output
line with the address it’s disassembling. This is the older disassembly format.
Otherwise, you only get raw opcodes.

gdb , the debugging tool
To run gdb on an embedded execution target, use a gdb backend with the gdb standard
remote protocol or a similar protocol. The most common are the following two types
of gdb backend.

■ A gdb stub
This is an exception handler for breakpoints, and it must be linked to your
application. gdb stubs use the gdb standard remote protocol.

■ An existing ROM monitor used as a gdb backend
The most common approach means using the following processes.
❖ With a similar protocol to the gdb standard remote protocol.
❖ With an interface that uses the ROM monitor directly. With such an interface,

gdb only formats and parses commands.

For more information on debugging tools, see Debugging with GDB in GNUPro
Debugging Tools(use the following Web site location for links to documentation).

http://www.cygnus.com/pubs/gnupro/

Useful debugging routines

50 ■ Introduction GNUPro Toolkit

Useful debugging routines
The following routines are always useful for debugging a project in progress.
■ print()

Runs standalone in libgloss with no newlib support. Many times print()
works when there are problems that make printf() cause an exception.

■ outbyte()

Used for low-level debugging.
■ putnum()

Prints out values in hex so they are easier to read.

libgloss , newlib and libstd++ , the GNU
libraries

GNUPro Toolkit has three libraries: libgloss , newlib and libstd++ (use the
following Web site location for links to documentation).

http://www.cygnus.com/pubs/gnupro/

libgloss

libgloss , the library for GNU Low-level OS Support, contains the startup code,
the I/O support for gcc and newlib (the C library), and the target board support
packages that you need to port the GNU tools to an embedded execution target.

The C library used throughout this manual is newlib , however libgloss could
easily be made to support other C libraries. Because libgloss resides in its own
tree, it’s able to run standalone, allowing it to support GDB’s remote debugging
and to be included in other GNU tools.

Several functions that are essential to gcc reside in libgloss . These include the
following functions.

❖ crt0 , the main startup script (see “crt0, the main startup file” on page 51)
❖ ld, the linker script (see “The linker script” on page 55)
❖ I/O support code (see “I/O support code” on page 58)

newlib

The Cygnus libraries, including the C library, libc , and the C math library, libm .
libstd++

The C++ library in development by Cygnus.

CYGNUS Introduction ■ 51

crt0 , the main startup file

4:
 U

si
ng

 G
N

U
 to

ol
s

on
 e

m
be

dd
ed

sy

st
em

s

crt0 , the main startup file
The crt0 (C RunTime 0) file contains the initial startup code.

Cygnus provides a crt0 file, although you may want to write your own crt0 file for
each target. The crt0 file is usually written in assembler as ‘crt0.S ’, and its object gets
linked in first and bootstraps the rest of your application. The crt0 file defines a
special symbol like _start , which is both the default base address for the application
and the first symbol in the executable binary image.

If you plan to use any routines from the standard C library, you’ll also need to
implement the functions on which libgloss depends. The crt0 file accomplishes the
following results. See “I/O support code” on page 58.

■ crt0 initializes everything in your program that needs it.
This initialization section varies. If you are developing an application that gets
downloaded to a ROM monitor, there is usually no need for special initialization
because the ROM monitor handles it for you. If you plan to burn your code in a
ROM, the crt0 file typically does all of the hardware initialization required to run
an application. This can include things like initializing serial ports and running a
memory check; however, results vary depending on your hardware.

The following is a typical basic initialization of crt0.S .

1. Set up concatenation macros.
#define CONCAT1(a, b) CONCAT2(a, b)
#define CONCAT2(a, b) a ## b

Later, you’ll use these macros.

2. Set up label macros, using the following example’s input.
#ifndef __USER_LABEL_PREFIX__
#define __USER_LABEL_PREFIX__ _
#endif

#define SYM(x) CONCAT1 (__USER_LABEL_PREFIX__, x)

These macros make the code portable between coff and a.out . coff
always has an __ (underline) prepended to the front of its global
symbol names. a.out has none.

3. Set up register names (with the right prefix), using the following
example’s input.

#ifndef __REGISTER_PREFIX__
#define __REGISTER_PREFIX__
#endif

/* Use the right prefix for registers. */
#define REG(x) CONCAT1 (__REGISTER_PREFIX__, x)

crt0 , the main startup file

52 ■ Introduction GNUPro Toolkit

#define d0 REG (d0)
#define d1 REG (d1)
#define d2 REG (d2)
#define d3 REG (d3)
#define d4 REG (d4)
#define d5 REG (d5)
#define d6 REG (d6)
#define d7 REG (d7)
#define a0 REG (a0)
#define a1 REG (a1)
#define a2 REG (a2)
#define a3 REG (a3)
#define a4 REG (a4)
#define a5 REG (a5)
#define a6 REG (a6)
#define fp REG (fp)
#define sp REG (sp)

Register names are for portability between assemblers. Some register
names have a % or $ prepended to them.

4. Set up space for the stack and grab a chunk of memory.
.set stack_size, 0x2000 .
comm SYM (stack), stack_size

This can also be done in the linker script, although it typically gets done
at this point.

5. Define an empty space for the environment, using the following
example’s input.

.data

.align 2
SYM (environ):

.long 0

This is bogus on almost any ROM monitor, although it’s best generally
set up as a valid address, then passing the address to main() . This way,
if an application checks for an empty environment, it finds one.

6. Set up a few global symbols that get used elsewhere.
.align 2
.text
.global SYM (stack)

.global SYM (main)

.global SYM (exit)

.global __bss_start

This really should be __bss_start , not SYM (__bss_start .

__bss_start needs to be declared this way because its value is set in
the linker script.

CYGNUS Introduction ■ 53

crt0 , the main startup file

4:
 U

si
ng

 G
N

U
 to

ol
s

on
 e

m
be

dd
ed

sy

st
em

s

7. Set up the global symbol, start , for the linker to use as the default
address for the .text section. This helps your program run.

SYM (start):
link a6, #-8
moveal #SYM (stack) + stack_size, sp

■ crt0 zeroes the .bss section
Make sure the .bss section is cleared for uninitialized data, using the following
example’s input. All of the addresses in the .bss section need to be initialized to
zero so programs that forget to check new variables’ default values will get
predictable results.

moveal #__bss_start, a0
moveal #SYM (end), a1
1:
movel #0, (a0)
leal 4(a0), a0
cmpal a0, a1
bne 1b

Applications can get wild side effects from the .bss section being left uncleared,
and it can cause particular problems with some implementations of malloc() .

■ crt0 calls main()

If your ROM monitor supports it, set up argc and argv for command line
arguments and an environment pointer before the call to main() , using the
following example’s input.

For g++, the code generator inserts a branch to __main at the top of your main()
routine. g++ uses __main to initialize its internal tables and then returns control to
your main() routine.

For crt0 to call your main() routine, use the following example’s input. First, set
up the environment pointer and jump to main() . Call the main routine from the
application to get it going, using the following example’s input with
main (argc, argv, environ) , using argv as a pointer to NULL.

pea 0
pea SYM (environ)
pea sp@(4)
pea 0

jsr SYM (main)
movel d0, sp@-4

■ crt0 calls (exit)

After main() has run, the crt0 file cleans things up and returns control of the
hardware from the application. On some hardware there is nothing to return
to—especially if your program is in ROM— and if that’s the case, you need to do
a hardware reset or branch back to the original start address.

crt0 , the main startup file

54 ■ Introduction GNUPro Toolkit

If you’re using a ROM monitor, you can usually call a user trap to make the ROM
take over. Pick a safe vector with no sides effects. Some ROM’s have a built-in
trap handler just for this case.

Implementing (exit) here is easy.. First, with _exit , exit from the application.
Normally, this causes a user trap to return to the ROM monitor for another run.
Then, using the following example’s input, you proceed with the call.

SYM (exit):
trap #0

Both rom68k and bug can handle a user-caused exception of 0 with no side effects.
Although the bug monitor has a user-caused trap that returns control to the ROM
monitor, the bug monitor is more portable.

CYGNUS Introduction ■ 55

The linker script

4:
 U

si
ng

 G
N

U
 to

ol
s

on
 e

m
be

dd
ed

sy

st
em

s

The linker script
The linker script accomplishes the following processes to result.

■ Sets up the memory map for the application.

When your application is loaded into memory, it allocates some RAM, some disk
space for I/O, and some registers. The linker script makes a memory map of this
memory allocation which is important to embedded systems because, having no
OS, you have the ability then to manage the behavior of the chip.

■ For g++, sets up the constructor and destructor tables.

The actual section names vary depending on your object file format. For a.out and
coff , the three main sections are .text , .data and .bss .

■ Sets the default values for variables used elsewhere.

These default variables are used by sbrk() and the crt0 file, typically called by
_bss_start and _end .

There are two ways to ensure the memory map is correct.

■ By having the linker create the memory map by using the option, -Map .

■ By, after linking, using the nm utility to check critical addresses like start , bss_end
and _etext .

The following is an example of a linker script for an m68k-based target board.

1. Use the STARTUP command, which loads the file so that it executes first.
STARTUP(crt0.o)

The m68k-coff configuration default does not link in crt0.o because it assumes
that a developer has crt0 . This behavior is controlled in the config file for each
architecture in a macro called STARTFILE_SPEC. If STARTFILE_SPEC is set to NULL,
gcc formats its command line and doesn’t add crt0.o . Any filename can be
specified with STARTUP, although the default is always crt0.o .

If you use only ld to link, you control whether or not to link in crt0.o on the
command line.

If you have multiple crt0 files, you can leave STARTUP out, and link in crt0.o in the
makefile or use different linker scripts. Sometimes this option is used to initialize
floating point values or to add device support.

2. Using GROUP, load the specified file.
GROUP(-lgcc-liop-lc)

In this case, the file is a relocated library that contains the definitions for the
low-level functions needed by libc.a . The file to load could have also been
specified on the command line, but as it’s always needed, it might as well be here

The linker script

56 ■ Introduction GNUPro Toolkit

as a default.

3. SEARCH_DIR specifies the path in which to look for files.
SEARCH_DIR(.)

4. Using _DYNAMIC, specify whether or not there are shared dynamic libraries. In the
following example’s case, there are no shared libraries.

__DYNAMIC = 0;

5. Set _stack , the variable for specifying RAM for the ROM monitor.

6. Specify a name for a section that can be referred to later in the script. In the
following example’s case, it’s only a pointer to the beginning of free RAM space
with an upper limit at 2M. If the output file exceeds the upper limit, MEMORY
produces an error message. First, in this case, we’ll set up the memory map of the
board’s stack for high memory for both the rom68k and mon68k monitors.

MEMORY
{

ram : ORIGIN = 0x10000, LENGTH = 2M
}

Setting up constructor and destructor tables for g++

1. Set up the .text section, using the following example’s input.
SECTIONS
{

.text :
{

CREATE_OBJECT_SYMBOLS
*(.text)
etext = .;
__CTOR_LIST__ = .;
LONG((__CTOR_END__ - __CTOR_LIST__) / 4 - 2)
*(.ctors)
LONG(0)
__CTOR_END__ = .;
__DTOR_LIST__ = .;

LONG((__DTOR_END__ - __DTOR_LIST__) / 4 - 2)
*(.dtors)
LONG(0)
__DTOR_END__ = .;
*(.lit)
*(.shdata) }

> ram
.shbss SIZEOF(.text) + ADDR(.text) : {

*(.shbss)
}

In a coff file, all the actual instructions reside in .text for also setting up the

CYGNUS Introduction ■ 57

The linker script

4:
 U

si
ng

 G
N

U
 to

ol
s

on
 e

m
be

dd
ed

sy

st
em

s

constructor and destructor tables for g++. Notice that the section description
redirects itself to the RAM variable that was set up in Step 5 of the earlier process
for the crt0 file, “Set _stack, the variable for specifying RAM for the ROM
monitor.” on page 56.

2. Set up the .data section.
.talias : { } > ram
.data : {
*(.data)
CONSTRUCTORS
_edata = .;

} > ram

In a coff file, this is where all of the initialized data goes. CONSTRUCTORS is a special
command used by ld .

Setting default values for variables, _bss_start and _end

Set up the .bss section:
.bss SIZEOF(.data) + ADDR(.data) :
{
__bss_start = ALIGN(0x8);
*(.bss)
*(COMMON)

end = ALIGN(0x8);
_end = ALIGN(0x8);
__end = ALIGN(0x8);

}
.mstack : { } > ram
.rstack : { } > ram
.stab . (NOLOAD) :
{

[.stab]
}
.stabstr . (NOLOAD) :
{

[.stabstr]
}

}

In a coff file, this is where uninitialized data goes. The default values for _bss_start
and _end are set here for use by the crt0 file when it zeros the .bss section.

I/O support code

58 ■ Introduction GNUPro Toolkit

I/O support code
Most applications use calls to the standard C library. However, when you initially link
libc.a , several I/O functions are undefined. If you don’t plan on doing any I/O, you’re
OK; otherwise, you need to create two I/O functions: open() and close() . These don’t
need to be fully supported unless you have a file system, so they are normally stubbed
out, using kill() .

sbrk() is also a stub, since you can’t do process control on an embedded system, only
needed by applications that do dynamic memory allocation. It uses the variable, _end ,
which is set in the linker script.

The following routines are also used for optimization.
-inbyte

Returns a single byte from the console.
-outbyte

Used for low-level debugging, takes an argument for print() and prints a byte out
to the console (typically used for ASCII text).

CYGNUS Introduction ■ 59

Memory support

4:
 U

si
ng

 G
N

U
 to

ol
s

on
 e

m
be

dd
ed

sy

st
em

s

Memor y support
The following routines are for dynamic memory allocation.
sbrk()

The functions, malloc() , calloc() , and realloc() all call sbrk() at their lowest
levels. sbrk() returns a pointer to the last memory address your application used
before more memory was allocated.

caddr_t

Defined elsewhere as char * .
RAMSIZE

A compile-time option that moves a pointer to heap memory and checks for the
upper limit.

Miscellaneous support routines

60 ■ Introduction GNUPro Toolkit

Miscellaneous support routines
The following support routines are called by newlib , although they don’t apply to the
embedded environment.
isatty()

Checks for a terminal device.
kill()

Simply exits.
getpd()

Can safely return any value greater than 1, although the value doesn’t effect
anything in newlib .

CYGNUS Introduction ■ 61

5:
 C

ro
ss

-d
ev

el
op

m
en

t e
nv

iro
nm

en
t

Cross-development
environment

Using GNUPro Toolkit in one of the cross-development configurations usually
requires some attention to setting up the target environment.

A cross-development configuration can develop software for a different target
machine than the development tools themselves (which run on the host)—for
example, a SPARCstation can generate and debug code for a Motorola Power
PC-based board.

For our tools to work with a target environment (except for real-time operating
systems, which provide full operating system support), set up the tools by using the
following documentation.

■ To set up the C run-time environment, see “The C run-time environment (crt0)”
on page 62.

■ To create stubs, or minimal versions of operating system subroutines for the C
subroutine library, see “System Calls” in GNUPro C Library in GNUPro
Libraries (use the following Web site location for links to documentation).
http://www.cygnus.com/pubs/gnupro/

■ To understand the connection to the debugger, see “Remote debugging” in
Debugging with GDB in GNUPro Debugging Tools (use the following Web site
location for links to documentation).
http://www.cygnus.com/pubs/gnupro/

5

The C run-time environment (crt0)

62 ■ Introduction GNUPro Toolkit

The C run-time environment (crt0)
To link and run C or C++ programs, you need to define a small module (usually
written in assembler as ‘crt0.s ’) that makes sure the hardware is initialized for C
conventions before calling main .

There are some examples of ‘crt0.s ’ code (along with examples of system call stub
code) available in the source code for GNUPro Toolkit.

Look in the following path.
installdir /gnupro-98r1/src/newlib/libc/sys

installdir refers to your installation directory, by default ‘/usr/cygnus ’.

For example, look in ‘.../sys/h8300hms ’ for Hitachi H8/300 bare boards, or in
‘ .../sys/sparclite ’ for the Fujitsu SPARClite board.

More examples are in the following directory.
installdir /gnupro-98r1/src/newlib/stub

To write your own crt0.s module, you need the following information about your
target.

■ A memory map. What memory is available, and where?

■ Which way does the stack grow?

■ What output format do you use?

At a minimum, your crt0.s modulemust do the following processes.

■ Define the symbol, start (_start in assembler code). Execution begins at this
symbol.

■ Set up the stack pointer, sp . It is largely up to you to choose where to store your
stack within the constraints of your target’s memory map. Perhaps the simplest
choice is to choose a fixed-size area somewhere in the uninitialized data section
(often called ‘bss ’). Remember that whether you choose the low address or the
high address in this area depends on the direction your stack grows.

■ Initialize all memory in the uninitialized-data (‘bss ’) section to zero.

The easiest way to do this is with the help of a linker script (see “Command
Language” in Using LD in GNUPro Utilities). Use a linker script to define
symbols such as ‘bss_start ’ and ‘bss_end ’ to record the boundaries of this
section; then you can use a ‘for ’ loop to initialize all memory between them in the
‘crt0.s ’ module.

■ Call main . Nothing else will!

A more complete ‘crt0.s ’ module might also do the following processes.

CYGNUS Introduction ■ 63

The C run-time environment (crt0)

5:
 C

ro
ss

-d
ev

el
op

m
en

t e
nv

iro
nm

en
t■ Define an ‘_exit ’ subroutine. This is the C name; in your assembler code. Use

the label, __exit , with two leading underbars. Its precise behavior depends on the
details of your system, and on your choice. Possibilities include trapping back to
the boot monitor, if there is one; or to the loader, if there is no monitor; or even
back to the symbol, start .

■ If your target has no monitor to mediate communications with the debugger, you
must set up the hardware exception handler in the ‘crt0.s ’ module. See “The gdb
remote serial protocol” in Debugging with GDB in GNUPro Debugging Tools for
details on how to use the gdb generic remote-target facilities for this purpose.

■ Perform other hardware-dependent initialization; for example, initializing an mmu
or an auxiliary floating-point chip.

■ Define low-level input and output subroutines. For example, the ‘crt0.s ’ module
is a convenient place to define the minimal assembly-level routines described in
“System Calls” in GNUPro C Library in GNUPro Libraries.

The C run-time environment (crt0)

64 ■ Introduction GNUPro Toolkit

CYGNUS Introduction ■ 65

6:
 C

yg
nu

s
gl

os
sa

ry

Cygnus glossar y

The following glossary documentation lists some terms that either often or sometimes
require definition. Many may have common usage in the technical community, while
some have a lineage with Cygnus engineers who have needed to create names for
designating common tools, platforms or processes.

A
a29k

AMD 29000 family of RISC processors.

ABI
Application Binary Interface. The ABI defines how programs should interface with
the operating system, and may include specifications of executable format, calling
conventions, and so forth.

ADP
Angel Debug Protocol, a protocol used with ARM’s newer Angel monitor and their
Embedded ICE.

AIX
IBM’s version of Unix for RS/6000 and PowerPC. Pronounced aches.

6

Alpha-Bison

66 ■ Introduction GNUPro Toolkit

Alpha
Name for Digital’s family of 64-bit RISC processors.

API
Application Programming Interface, defining how programmers write source code
that makes use of a library’s or operating system’s facilities.

ARC
Argonaut RISC Chip, a simple RISC processor designed into custom chips.

Architecture
A term for a family of processors, generally used in reference to features common to
all members.

ARM
Acorn RISC Machine’s family of RISC processors. Also, Annotated Reference
Manual for C++. Often used to describe a name-mangling style.

Assembler
The tool that produces object files from assembly code.

B
BDM

Background Debugging Mode, referring to the ability of the CPU32 sub-family
(68302, 68360, etc.) of m68k and Motorola PowerPC chips to be directly controlled
through a special set of pins.

BFD
Binary File Descriptor, the library used by GNU tools to read and write object files.

Bi-endian
Refers to a processor or toolchain that supports both big-endian and little-endian code.

Big-endian
A byte-ordering scheme in which the most significant bytes are at lower addresses.
The Motorola 68000 is a big-endian microprocessor.

Bison
The GNU parser generator, a workalike for yacc.

CYGNUS Introduction ■ 67

boot, bootstrap-CISC

6:
 C

yg
nu

s
gl

os
sa

ry

boot, bootstrap
The action for a machine to run through its opening processes. Known by having to
put on boots by pulling on the sidestraps before going out in the world.

BSD
Berkeley System Distribution, U.C. Berkeley’s version of Unix, originally licensed
from AT&T, and later upgraded to all-free code. Formed the basis for SunOS.

BSP
Board Support Package. Exact meaning varies. Typically refers to the low-level code
or scripts that build programs running on a particular chip on a particular circuit board.
Also refers to the ROM that boots an RTOS onto a specific board.

bug
A problem with software that needs a patch.

build
The process of configuring, compiling, and linking a set of tools. Also used as a noun,
to denote the results of the process.

Byacc
Berkeley yacc, version in BSD Unix. See also yacc and Bison.

C
Canadian cross

A cross-compilation in which a program being compiled is a cross compiler for some
other host/target pair. Example: building a 486 PC with a Motorola 68k cross compiler
on a Sun SPARC station.

CHILL
A high-level language popular in Europe for telecommunications programming.

CISC
Complex Instruction Set Computer. This class of machines typically has
variable-length instructions with a variety of addressing modes. Examples include
x86, m68k, and vax.

COFF-cygwin32

68 ■ Introduction GNUPro Toolkit

COFF
Common Object File Format. This format appeared with Unix SVR3, formerly
common for Unix, and still used by some embedded systems. The Microsoft PE
format for Windows is based on COFF.

COFF debugging
The debug format that is defined as part of the COFF specification.

Compiler
A tool that translates high-level source code in a language such as C or Pascal into
machine-executable programs. The term may also refer specifically to the tool that
translates from source to assembly language.

CVS
Concurrent Version System, a free source version control system currently used for all
sources at Cygnus.

CX/UX
A version of Unix produced by Harris Computer Systems.

CygMon
Cygnus’ standard ROM monitor.

Cygnus
The leading provider of single-source, Unix, and NT desktop and cross-platform
development tools for 32- and 64-bit microcontrollers. The company strategy is to
continue to extend the functionality and performance of its development tools, as well
as to deliver innovative software component technologies for embedded systems.

With Roman etymology (for swan), named for the constellation, Cygnus is within the
plane of our Milky Way galaxy and is 2,500-10,000 light-years away, forming a cross.

The brightest star in Cygnus is Deneb.

cygwin32
Cygnus’ Unix emulation library for Windows 95 and NT.

CYGNUS Introduction ■ 69

D10V-E7000

6:
 C

yg
nu

s
gl

os
sa

ry

D
D10V

A small VLIW processor developed by Mitsubishi, featuring 32-bit instructions each,
with two 15-bit subinstructions.

D30V
A VLIW processor developed by Mitsubishi, and intended for use in video processing
applications (camcorders and DVD players). It has 64-bit instructions each, with two
30-bit subinstructions.

dbx
The standard debugger on many Unix systems.

Debug format
The layout of debugging information within an object file format. Debug formats
include stabs, COFF, DWARF, and DWARF 2.

Debug protocol
The mechanism by which a debugger examines and controls the program being
debugged.

Debugger
A tool that allows programmers to examine and control a program, typically for the
purpose of finding errors in the program.

DejaGNU
The regression testing framework used at Cygnus, based on tcl and expect .

DJGPP
DJ Delorie’s DOS port of GNU, using the GO32 DOS extender. It includes all the
tools, and runs under DOS, Win95, etc.

DWARF
A debugging format. Versions include DWARF 1, 1.1, 2, and extensions to 2.

E
E7000

An ICE produced by Hitachi for its SH and H8/300 processors.

EABI-gcc

70 ■ Introduction GNUPro Toolkit

EABI
Generic term for an ABI adapted for embedded use.

ECOFF
Extended COFF, a format used with MIPS and Alpha processors, both for
workstations and embedded uses.

ELF
Extended Linker Format. Appeared with Unix SVR4 and used on many systems,
including Solaris/SunOS, Irix, and Linux. Many embedded systems also use ELF.

Executable file
A binary-format file containing machine instructions in a ready-to-run form.

expect
A program that allows scripted control over another program.

F
flex

The GNU lexical analyzer generator.

Foundry
Cygnus IDE, with a Project Manager, Source Code Editor and a Debugger. These are
a GUI recompiling/reconfiguring tool (known as vmake), a simple editor (known as
jedit), and GDBtk (from which you can perform extensive analysis while
debugging), with a message-passing backplane currently based on ILU.

FreeBSD
A free Unix operating system for PCs.

G
gas

Acronym for the GNU assembler.

gcc
Acronym for the GNU C compiler.

CYGNUS Introduction ■ 71

gdb-i370

6:
 C

yg
nu

s
gl

os
sa

ry

gdb
Acronym for the GNU debugger.

GNU
Recursive acronym for GNU’s Not Unix. A project to build a free operating system,
started by Richard Stallman in 1985, with many useful spinoffs, such as the Emacs
text editor, a C compiler, a debugger, and many other programming tools.

GO32
Freeware 32-bit DOS extender. Also the Cygnus name for GNU tools ported to DOS
using GO32. See DJGPP.

GUI
Graphical User Interface.

H
h8300

Cygnus name for Hitachi’s H8/300 family of microprocessors, including H8/300,
H8/300H.

h8500
Cygnus name for Hitachi’s H8/500 family of microprocessors.

Host
The computer on which the compiler runs.

hppa
Cygnus name for HP’s PA architecture.

HP/UX
HP’s version of Unix for m68k and PA architectures. Versions include 7, 8, 9, 10, and
11.

I
i370

Cygnus name for the IBM 370 mainframe computer.

i386-JTAG

72 ■ Introduction GNUPro Toolkit

i386
Cygnus name for the 32-bit members of the Intel x86 family. Members include 386,
486, Pentium (“i586”), and Pentium Pro (“i686”).

i860
Cygnus name for an obsolete family of Intel RISC processors.

i960
Cygnus name for Intel’s 80960 family of RISC processors.

ICE
In-Circuit Emulator, a hardware device that gives an engineer control over the
execution of a processor while it’s connected to the rest of a system’s circuitry.
Emulators are powerful hardware debugging tools that can connect to debuggers.

IDE
Integrated Development Environment, a GUI program.

ILU
Inter-Language Unification, a partial CORBA implementation from Xerox PARC,
allowing programs to associate.

ISA
Instruction Set Architecture.

Irix
SGI’s version of Unix for MIPS architectures. Versions include 4, 5, and 6.

J
jedit

Foundry’s text editor.

JTAG
Joint Test Advisory Group, referring to a type of hardware interface that allows the
testing of chips and boards within a complete system; programs running on processors
with JTAG support may be controlled through the processor’s JTAG port.

CYGNUS Introduction ■ 73

Linker-mangling, name mangling

6:
 C

yg
nu

s
gl

os
sa

ry

L
Linker

The tool that merges object files and library archives into a single executable file.

Linker script
A set of programmer-supplied instructions that tell the linker how to handle object file
sections, how to lay out memory, and so forth. For native linking, the contents of the
linker script are normally determined by the needs of the operating system; for
embedded targets, the programmer supplies the linker script explicitly.

Linux
A free Unix operating system for PCs and other kinds of computers. Currently runs on
i386, m68k, Alpha, PowerPC, MIPS, and SPARC architectures.

Little-endian
A byte-ordering scheme in which the most significant bytes are at higher addresses.
The Intel x86 family is all little-endian.

LynxOS
A Unix-like realtime operating system developed by Lynx Real-Time Systems.

M
m68k

Cygnus name for Motorola’s 68000 family of microprocessors. Depending on
context, the abbreviation may include the CPU32 and ColdFire families as well.
Members include 68000, 68020, 68030, 68040, 68060, 68302, 68332, 5200.

m88k
Cygnus name for Motorola’s 88000 family of RISC microprocessors, now
discontinued.

Mach
An operating system developed at Carnegie-Mellon.

mangling, name mangling
The process by which C++ types and classes are turned into symbols in object files
that are compatible with other languages.

mingw32-ns32k

74 ■ Introduction GNUPro Toolkit

mingw32
Minimal gnu-win32, a configuration of the gnu-win32 tools that avoids the Unix
emulation of cygwin32.

Minix
A tutorial version of Unix, written by Andy Tanenbaum and described in his textbook.
Minix is said to have been the inspiration for Linux.

mips
Cygnus name for the MIPS family of RISC processors. Members include R2000,
R3000, R4000, R5000, R8000, R10000, and TinyRISC. There are many vendors of
MIPS parts, each using a distinct naming scheme, such as VR4xxx for NEC, and
TX39xx for Toshiba parts.

MON960
Intel’s ROM monitor for their i960 processor.

multilib
A collection of libraries built with different GNU compiler options. This ensures that a
program using -msoft-float (using software floating point), will link with libraries
built using the same option.

N
NetBSD

A free Unix operating system for PCs and other kinds of computers. Currently runs on
i386, m68k, Alpha, PowerPC, MIPS, and SPARC processors.

NINDY
An obsolete ROM monitor for the i960.

NRE
Non-Recurring Engineering, typically used to refer to one-time-only development,
such as retargeting to a new architecture or adding a feature.

ns32k
Cygnus name for the National Semiconductor 32000 family of processors.

CYGNUS Introduction ■ 75

Object file-pSOS

6:
 C

yg
nu

s
gl

os
sa

ry

O
Object file

A binary-format file containing machine instructions and possibly symbolic relocation
information. Typically produced by an assembler.

Object file format
The layout of object files and executable files. Common formats include a.out, COFF,
and ELF.

OS/9, OS/9000
A realtime operating system from Microware.

OSF/1
The Open Software Foundation’s version of Unix, used in Digital’s Alpha machines.

P
PA

Name for Hewlett-Packard’s family of Precision Architecture processors.

patch
A change in source code to correct or enhance processes.

PE
Portable Executable. This is Microsoft’s object file format for Windows 95 and NT. It
is basically COFF with additional header information.

PPC
PowerPC family of RISC processors, designed jointly by IBM and Motorola.
Members include 601, 604, 401, 403, 801, 860.

PPC Bug
ROM monitor from Motorola.

pSOS
A realtime operating system from ISI.

ptrace-SDS

76 ■ Introduction GNUPro Toolkit

ptrace
The Unix system call, traditionally used by debuggers to control other Unix processes.
ptrace arguments may include commands to read/write registers, single-step, etc.

R
RDI

Remote debugging library, used by ARM.

RDP
Remote Debugging Protocol, a protocol used with ARM’s Demon monitor.

remote target
See target.

RISC
Reduced Instruction Set Computer. Machines typically have fixed-length instructions,
limited addressing modes, many registers, and visible pipelines.

Examples include MIPS, ARM, SH, PowerPC.

RS6000
IBM’s RS/6000 family of RISC processors. Depending on context, this term may also
include PowerPC systems.

RTEMS
A real-time operating system.

RTOS
Real-Time Operating System.

S
SCO

The Santa Cruz Operation, a vendor of SVR3 Unix and more recently Unixware for
PCs.

SDS
A company that makes embedded tools, primarily debuggers for Motorola chips.

CYGNUS Introduction ■ 77

sh-sun4

6:
 C

yg
nu

s
gl

os
sa

ry

sh
Cygnus name for the Hitachi Super-H family of RISC microprocessors. ISAs include
SH-1, SH-2, SH-3, SH-3e, SH-DSP, and SH-4; within each ISA, parts have numbers
like SH7032 or SH7780.

Solaris
Sun’s current version of Unix, superseding SunOS. Based on SVR4 Unix. Sun
officially calls it SunOS 5.x, with versions including 2.0-2.6 (or, as Sun refers to them,
5.0-5.6).

sparc
Cygnus name for the family of RISC processors based on Sun’s SPARC architecture.
Members include SPARClite, SPARClet, UltraSPARC, v7, v8, v9.

SPARClet
An embedded SPARC processor from TSqware (formerly Matra).

SPARClite
An embedded SPARC processor family from Fujitsu. Members include 86930, 931,
932, 933, 934, and 936.

S-record
A binary download format, consisting of a series of records, each beginning with S,
with symbolic data encoded as hexadecimal digits. Before downloading to a board, for
instance, a program must be converted using S-records.

stabs
A debug format originally introduced with the Berkeley Unix system, which records
debugging information in certain symbols in the object file’s symbol table. stabs
information may also be encapsulated in COFF or ELF files.

stub
A small piece of code that executes on the target and communicates with the
debugger, acting as its agent, collecting registers, setting memory values, etc. Also, in
a native shared library system, the part of the shared library that actually gets linked
with a program.

sun4
Informal name for a SPARC workstation running SunOS 4.x.

SunOS-Triple cross

78 ■ Introduction GNUPro Toolkit

SunOS
Sun’s former version of Unix, derived from BSD 4.3. Versions include 2, 3, 4.0, 4.1,
4.1.3, 4.1.4. Sun currently refers to Solaris 2.x versions as SunOS 5.x.

SVID
System V Interface Definition, for defining interfaces and partitioning components
within System V environments.

SVR3
System V Release 3, the third version of Unix for the AT&T 3B2.

SVR4
Acronym for System V Release 4, the fourth version of Unix for the AT&T 3B2.
Currently owned by SCO, after being owned by Novell.

System V
A Unix system for porting source code to build binary operating system products.

T
Target

The computer for which the compiler generates code. Used both to refer to an actual
physical device, and to the class of devices.

Toolchain
Informal term for the collection of programs that make up a complete set of
cross-compilation tools. Typically consists of the following example’s sequence:

compiler->assembler->archive r->linker->debugger.

Three-way cross
See Canadian cross.

thumb
Cygnus name for the 16-bit instruction frontend available with some ARM processors.

Triple cross
See Canadian cross.

CYGNUS Introduction ■ 79

UDI-xor-endian

6:
 C

yg
nu

s
gl

os
sa

ry

U
UDI

Universal Debug Interface, a debugging protocol used only by AMD, and only for the
a29k architecture.

Unix
Unix operating system.

Unixware
Name for the version of Unix based on SVR4, produced by Novell.

V
vax

Digital’s popular CISC minicomputer of the 1980s.

VFS
Virtual File System architecture.

VxWorks
A real-time operating system from Wind River Systems.

X
x86

Cygnus name for the Intel 8086 architecture family.

XCOFF
eXtended COFF, IBM’s object file format for RS/6000 and PowerPC systems.

XENIX
Microsoft version of SVR4.

xor-endian
A horrible way of implementing a big-endian ISA. See MIPS and PowerPC for
example members.

yacc-z8k

80 ■ Introduction GNUPro Toolkit

Y
yacc

GNU parser generator.

Z
z8k

Cygnus name for the Z8000, a long-obsolete 16-bit descendent of the Z80 8-bit
microprocessor.

GNUPRO™ TOOLKIT

Installation

CYGNUS

82 ■ Installation GNUPro Toolkit

Copyright © 1991-1998 Cygnus.

All rights reserved.

GNUPro™, the GNUPro™ logo and the Cygnus logo are all trademarks of Cygnus.

All other brand and product names are trademarks of their respective owners.

Permission is granted to make and distribute verbatim copies of this documentation,
provided the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this documentation
under the conditions for verbatim copying, provided also that the entire resulting
derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this documentation into
another language, under the above conditions for modified versions.

This documentation has been prepared by Cygnus Technical Publications; contact the
Cygnus Technical Publications staff: doc@cygnus.com .

CYGNUS Installation ■ 83

1:
 In

st
al

lin
g

G
N

U
P

ro
 T

oo
lk

it

Installin g GNUPro Toolkit

The following documentation describes how to install your GNUPro Toolkit software
on Unix and Win32 systems.

■ To install for Unix platforms, see “Installing on Unix Systems from CD” on page
84.

■ To install for Windows platforms, see “Installing on Win 95/NT systems from
CD” on page 93.

For information about rebuilding the tools for other target environments, see
“Rebuilding GNUPro Toolkit” on page 94.

1

Installing on Unix Systems from CD

84 ■ Installation GNUPro Toolkit

Installin g on Unix S ystems from CD
Use the following procedures for full installation from CD for Unix systems. In the
following procedure examples, the system prompt appears as ‘ %’.

1. Mount the CD.

The procedures for mounting a CD depend on your system type. The following
discussion details some examples of mount commands for each host.

The device used will depend on your system configuration (defaults where
appropriate are used in the examples).

Consult your system administrator if you need assistance.

NOTE: In the following installation examples, substitute /cdrom/gnupro_98r1 for
the directory in which you’ll mount the tools, /mnt .

❒ SPARC Solaris 2.x

If you are running the volume manager, the CD should automatically be
mounted as /cdrom/gnupro_98r1 and will not require root access.

If you are not running the volume manager, you will need to mount the CD
manually with the following command.
% mount -F hsfs -o ro /dev/dsk/c0t6d0s0 / mnt

❒ SPARC SunOS 4.1.x
% mount -t hsfs -o ro /dev/sr0 / mnt

❒ HP-UX 9.x/10.x
% mount -t cdfs -o ro /dev/dsk/c201d2s0 / mnt

❒ SGI IRIX 5.x/6.x
% mount -t iso9660 -o ro /dev/scsi/sc0d7l0 / mnt

❒ AIX 3.2.5/4.1.x
% mount -t cdrfs -o ro /dev/cd0 / mnt

❒ Digital Unix 3.2X/4.0
% mount -t cdfs -o ro /dev/rz4c / mnt

2. Install the tools in a directory that has writable access permissions.

Make sure you can write in ‘/usr/cygnus ’ using the following input.
% su root

(enter root password)
% mkdir /usr/cygnus

(ignore “File exists ” error if any)
% chmod 777 /usr/cygnus
% exit

(root access not needed beyond this)

CYGNUS Installation ■ 85

Installing on Unix Systems from CD

1:
 In

st
al

lin
g

G
N

U
P

ro
 T

oo
lk

it

3. Run the Install script to set up a target machine.

Using the following command, substitute the target’s name for target and
substitute /cdrom/gnupro_98r1 for /mnt .

% / mnt / target /Install --tape=/ mnt / target / target .tar.Z binaries

Install displays messages about its activity, ending with the following output.
Done.

4. Install the source code.
% cd /usr/cygnus/gnupro-98r1
% uncompress < / mnt /src.tar.Z | tar xpf -

5. Install the HTML documentation.
% cd /usr/cygnus/gnupro-98r1
% uncompress < /mnt/doc.tar.Z | tar xpf -

6. Build symbolic links to make executable paths easy to negotiate.
You may need root access to put the link in ‘/usr ’ folder. ‘host ’ in the fourth
line’s instruction stands for the host machine you’re using.

% cd /usr/cygnus
% ln -s gnupro-98r1 gnupro
% su root
% ln -s /usr/cygnus/gnupro-98r1/H- host /usr/gnupro

7. Enable the problem reporting utility.
Using your Cygnus customer ID (see cover letter), enable the electronic mail tool
for reporting problems. With the following commands, enable the send-pr tool..

% /usr/gnupro-98r1/bin/install-sid customer-ID

8. Remove public write access from ‘ /usr/cygnus ’.
See your system administrator for the correct permissions at your site.
You’re done! Now, anyone with ‘/usr/gnupro-98r1/bin ’ in their PATH can use
this GNUPro Toolkit package.

Installation information for Unix

86 ■ Installation GNUPro Toolkit

Installation information for Unix
The following documentation describes host-specific information and installation
standards for Unix systems.

Platform names
Your package contains a label that indicates the host (and target, if applicable) with
which to configure the binaries. The specifications used for hosts and targets in the
configure script are based on a three-part naming scheme, though the scheme is
slightly different between hosts and targets.

architecture-vendor-operating system

Host names
Table 13 shows the usage of canonical names for referring to the corresponding host
platforms that Cygnus supports. For any questions about compatibility, contact
Cygnus (see “How to contact Cygnus” on page v).

Table 13: Naming hosts

Target names
The following tables list some of the more common targets supported by Cygnus. Not
all targets have support on every host. See also “Native configurations support” on
page 13 and “Embedded cross-configuration support” on page 14 for the matrices of

Canonical name Platform
alpha-dec-osf3.2C DEC Alpha Digital UNIX v3.2C
alpha-dec-osf4.0 DEC Alpha Digital UNIX v4.0
hppa1.1-hp-hpux10 HP 9000/700, HP-UX B.10.01
hppa1.1-hp-hpux10.20 HP 9000/700, HP-UX B.10.20
i386-cygwin32 Windows NT-sp3/95-osr2
i386-pc-linux-gnu Intel PC, Linux RedHat 5.0
mips-sgi-irix5 SGI Irix 5.3
mips-sgi-irix6 SGI Irix 6.2
powerpc-ibm-aix4.1 IBM PowerPC, AIX 4.1.4
powerpc-ibm-aix4.2 IBM PowerPC, AIX 4.2.1
rs6000-ibm-aix4.1 IBM PowerPC, AIX4.1.4
sparc-sun-solaris2.5 SPARCstation, Solaris 2.5.1
sparc-sun-solaris2.6 SPARCstation, Solaris 2.6
sparc-sun-sunos4.1 SPARCstation, SunOS 4.1.4

CYGNUS Installation ■ 87

Target names

1:
 In

st
al

lin
g

G
N

U
P

ro
 T

oo
lk

it

the host/target combinations supported by Cygnus. Also, for more informaton on
using particular tools and their targets, see “Using GNU tools on embedded systems”
on page 45, “Cross-development environment” on page 61, and GNUPro Tools for
Embedded Systems.

WARNING! configure can represent a very large number of target name combinations of
architecture, vendor, and object formats. Support is not possible for all
combinations.

Table 14: H8/300 processor name and output format

Table 15: i960 processor names and output format

Table 16: M68K processor names and output formats

Table 17: MIPS processor names and output formats

Table 18: PowerPC processor names and output formats

Table 19: SH processor name and output format

Table 20: SPARC processor names and output formats

Table 21: x86 processor names and output formats

config.guess is a shell script that attempts to deduce the host type from which it is
called, using system commands like uname if they are available.

config.guess is remarkably adept at deciphering the proper configuration for your
host; if you are building a tree to run on the same host on which you’re building, we
recommend not specifying the hosttype argument.

h8300-hms-coff COFF object code format

i960-coff MON960 monitor (COFF format)

m68k-aout a.out object code format
m68k-coff COFF object code format
m68k-elf ELF object code format

mips-elf ELF object code format
mips-sgi-irix6 ELF object code format

powerpc-eabi ELF object code format (EABI)

sh-hms-coff COFF object code format

sparc-aout a.out object code format
sparc-coff COFF object code format
sparc-elf ELF object code format

i386-aout a.out object code format
i386-elf ELF object code format

Target names

88 ■ Installation GNUPro Toolkit

config.guess is called by configure ; you need never run it by hand, unless you’re
curious about the output.

CYGNUS Installation ■ 89

Links for easy access and updating

1:
 In

st
al

lin
g

G
N

U
P

ro
 T

oo
lk

it

Links for eas y access and updatin g
Once you extract the tools from the CD, they are installed into a directory named
‘ installdir /gnupro-98r1 ’ where ‘installdir ’ refers to the full directory
pathname within which you’re locating the ‘gnupro-98r1 ’ files.

For example, if you’ve installed in the default location under /usr/cygnus , use the
following input.

ln -s /usr/cygnus/gnupro-98r1 /usr/cygnus/gnupro

The release number is in the directory name so that you can keep several releases
installed at the same time, if you wish. In order to simplify administrative procedures
(such as upgrades to future Cygnus releases), we recommend that you establish a
symbolic link of ‘/usr/cygnus/gnupro ’ to this directory with the following input.

ln -s installdir /gnupro-98r1 installdir /gnupro

NOTE: The input for the last two examples of input match; installdir means the
same location as the default that you assign for usr/cygnus .

Directories of machine-independent files (source code and documentation) are
installed directly under ‘gnupro-98r1 ’. However, to accommodate binaries for
multiple hosts in a single directory structure, the binary files for your particular host
type are in a subdirectory ‘H-hosttype ’. (hosttype indicates a particular architecture,
vendor and operating system; see “Host names” on page 86 for more specific details
on names for input.)

This means that one more level of symbolic links is helpful, to allow your users to
keep the same execution path defined even if they sometimes use binaries for one
machine and sometimes for another. Even if this doesn’t apply now, you might want it
in the future; establishing these links now can save your users the trouble of changing
all their paths later.

The idea is to build ‘/usr/gnupro/bin ’ on each machine so that it points to the
appropriate binary subdirectory for each machine—for instance,
‘ /usr/cygnus/gnupro-98r1/H- hosttype ’ where ‘hosttype ’ corresponds to the host
machine.

You may need super-user access again briefly to establish the following link.
ln -s /usr/cygnus/gnupro-98r1/H- hosttype /usr/gnupro

We recommend building these links as the last step in the installation process.

Running the programs

90 ■ Installation GNUPro Toolkit

Runnin g the pro grams
In order to run the tools in GNUPro Toolkit after you install them, you must first set a
few environment variables so your shell can find them.

■ At the very least, set your PATH variable. See “Setting PATH” on page 91.

■ If you install the tools in a non-default location and don’t set the standard
symbolic links (see “Links for easy access and updating” on page 89), you must
also set the GCC_EXEC_PREFIX environment variable. Otherwise, the compiler
can’t find its resources. This should not be necessary. See “gcc paths” on page 92.

CYGNUS Installation ■ 91

Setting PATH

1:
 In

st
al

lin
g

G
N

U
P

ro
 T

oo
lk

it

Settin g PATH
To run the tools in this distribution, make sure the PATH environment variable can find
the tools. Whether you install in the default location, as in the following example for
the input, or in an alternate location, you need to alter your PATH environment variable
to point toward the newly installed tools.

If you create the symbolic links we recommend (see “Links for easy access and
updating” on page 89), users who want to run the GNUPro Toolkit—regardless of
whether they need binaries for your particular host, or for some other platform—can
use initialization files settings. The following shows examples with the final linked
installation directory as /usr/gnupro/bin . If you installed into a different directory,
substitute ‘/usr/gnupro/bin ’ for the actual directory.

■ For Bourne-compatible shells (/bin/sh , bash, or Korn shell):
% PATH=/usr/gnupro/bin:$PATH
% export PATH

■ For C shell:
% set path=(/usr/gnupro/bin $path)

gcc paths

92 ■ Installation GNUPro Toolkit

gcc paths
You can run the compiler gcc without recompiling, even if you install the distribution
in an alternate location, by first setting the environment variable, GCC_EXEC_PREFIX.
This variable specifies where to find the executables, libraries, and data files used by
the compiler. Its value will be different depending on which set of binaries you need to
run. For example, if you install the CD distribution under ‘/local ’ (instead of the
default ‘/usr/cygnus ’), and you wish to run gcc as a native compiler, you could set
GCC_EXEC_PREFIX as follows.

■ For shells compatible with Bourne shell (/bin/sh , bash , or Korn shell):
% GCC_EXEC_PREFIX=/local/gnupro-98r1\

/H- hosttype /lib/gcc-lib/
% export GCC_EXEC_PREFIX

■ For C shell:
% setenv GCC_EXEC_PREFIX /local/gnupro-98r1\

/H- hosttype /lib/gcc-lib/

NOTE: The trailing slash ‘/ ’ is important. The gcc program uses GCC_EXEC_PREFIX as
a prefix. If you omit the slash (or make any other mistakes in specifying the
prefix), gcc fails with a message: installation problem, cannot execute

... .

CYGNUS Installation ■ 93

Installing on Win 95/NT systems from CD

1:
 In

st
al

lin
g

G
N

U
P

ro
 T

oo
lk

it

Installin g on Win 95/NT s ystems from CD
All releases of GNUPro Toolkit for Win95/NT systems use the following CD
installation procedure.

1. Mount the CD.

Insert CD into CD-ROM drive. The Cygnus installation will start; if it doesn’t,
open the CD in the Windows Explorer and open setup.exe.

2. Determine where to install the tools.

Setup prompts for an installation directory; the default is ‘C:\CYGNUS’. The tools
may be installed in any directory or drive. Make sure the installation directory is
where you want to install the files. Check the box for installing souce code files, if
that is an option you require. Click Next.

3. Ensure adequate disk space for the installation.

Setup first checks the installation location to make sure it has enough space before
unpacking the tools. Installed GNUPro Toolkit disk usage varies from about 10 to
about 50 megabytes, depending on the target (generally, the requirement is 19
megabytes).

4. Proceed with the automatic installation process.

Setup reads the CD, builds the directories and expands the files.

5. Run the programs to use the tools.

Click on the Start button on the lower left hand corner of your screen, and choose
Programs, where Cygnus programs are found as a shortcut. Choose Cygnus. A
bash shell opens.

6. Test the installation by building the tools with the ‘make’ command.

To test the installation, change your working directory to the demo subdirectory of
the CYGNUS directory (as in the following example), and type make.

C:\CYGNUS\> cd C:\CYGNUS\gnupr0-98r1\demo
C:\CYGNUS\gnupro-98r1\demo> make
...

7. Set up the environment for which you’ll use the tools.

For the Win95 environment, set your working environment to the Autoexec.bat
initialization file.

For the NT environment, as long as you use the Start button in the lower left hand
corner of your screen, you can always start the programs as in Step 5. If not,
choose Settings, and click Control Panel. Choose System. Make the appropriate
changes according to your requirements.

Rebuilding GNUPro Toolkit

94 ■ Installation GNUPro Toolkit

Rebuildin g GNUPro Toolkit
To rebuild, see Rebuilding from Source in the GNUPro Advanced Topics
documentation. The following Web site location provides links to the appropriate
topics and procedures.

http://www.cygnus.com/pubs/gnupro/

CYGNUS Installation ■ 95

2:
 H

ow
 to

 r
ep

or
t p

ro
bl

em
s

How to report problems

If you find a problem in this release (also known, more familiarly, as a bug), please
report it to Cygnus. Use the Cygnus bug-report form to ensure that we can respond to
your problem as quickly as possible.

■ For UNIX environments, see the following documentation as well as the Web site
location for links to discussion of the send-pr program described in Reporting
Problems in GNUPro Advanced Topics.
http://www.cygnus.com/pubs/gnupro/

■ Win95/NT users can use a blank copy of the SENDPR.TXT file in the installation
directory. See “Reporting problems for Win95/NT systems” on page 101. To save
time, customize the form beforehand with your Cygnus customer ID (see “Some
things that might go wrong” on page 96). The easiest and the most reliable means
to report a bug is to copy this form to your email program and email to
bugs@cygnus.com .

If email is not possible, print the ‘SENDPR.TXT’ file; see “Reporting problems for
Win95/NT systems” on page 101. Then, fill in the problem report, and FAX it (+1
408 542 9699) to Cygnus, after alerting the technical support hotline
(+1 408 542 9601) to apprise the Technical Support staff of the transmission.

Email is the most reliable way to submit problem reports and to get speedy
resolution to any problems with GNUPro Toolkit.

For issues pertaining to this release, see “Red flag alerts & enhancements” on page 21.

2

Some things that might go wrong

96 ■ Installation GNUPro Toolkit

Some thin gs that mi ght go wron g
The following discussion shows some warning messages for some installation
problems and solutions to manage the problems.

No access to /usr/cygnus
If you can’t sign on to an account with access to write in ‘/usr ’ or ‘ /usr/cygnus ’,
use the ‘-installdir= directory ’ option to Install to specify a different
installation directory to which you can write. For example, if all the other
installation defaults are right, you can execute something like ‘./Install

--tape=/dev/ tape --installdir= mydir ’. You’ll need either to override default
paths for the pre-compiled tools or else to recompile the software. See “Running
the programs” on page 90 and “Links for easy access and updating” on page 89
for details.

WARNING! If you can’t install in ‘/usr/cygnus ’ (or link your installation directory to that
name), some of the defaults configured into this release of GNUPro Toolkit
won’t work. See “Running the programs” on page 90 for information on
overriding or reconfiguring these defaults.

No customer ID for send-pr
Make sure the send-pr program for the Problem Reporting Managment System
(PRMS) knows your customer ID. Contact Cygnus at +1 408 542-9601 if you do
not know your customer ID. Install your customer ID with install-sid , as in the
following command (customer-ID is your assigned customer number).

install-sid customer-ID

If you install the GNUPro Toolkit into a location other than the default, and don’t
set up symbolic links pointing to the real installation location, use the
‘ --install-dir ’ option to install-sid as in the following directive.

install-sid --install-dir= install-dir-prefix customer-ID

install-dir-prefix points to the top level of the directory into which you install.

After rebuilding from source, rerun install-sid in order to reset your customer-id
in send-pr . Previously, the default value was the value in the send-pr program in
your path at the time of configuration. For information on rebuilding from source,
see Rebuilding from Source in the GNUPro Advanced Topics documentation. Go
to the following Website location for links to the appropriate information.

http://www.cygnus.com/pubs/gnupro/

CYGNUS Installation ■ 97

Some error messages from Install

2:
 H

ow
 to

 r
ep

or
t p

ro
bl

em
s

Some error messa ges from Install
The Install script checks for errors and inconsistencies in the way its arguments are
used. If you get one of these messages and can’t use the recommended solution, call
the Cygnus support hotline, +1 408 542 9601, or send email to: bugs@cygnus.com .
gcc: cannot exec cpp

If you’ve installed the binary distribution of GNUPro Toolkit software in a
non-standard location, set the environment variable, GCC_EXEC_PREFIX,
accordingly. See“Running the programs” on page 90.

...This is a problem.
Cannot cd to installdir
I do not know why I cannot create installdir
hello.c fails to run
test-ioctl.c fails to run

These errors (the first covers anything that ends in ‘This is a problem ’) are from
paranoia checks; they are issued for situations that other checks should cover, or
for unlikely situations that require further diagnosis. If you get one of these
messages, contact Cygnus.

Reporting problems for Unix systems

98 ■ Installation GNUPro Toolkit

Reportin g problems for Unix s ystems
Unix users use a script, send-pr , to send Cygnus problem reports (PRs). send-pr is
configured by the Cygnus Problem Report Management System (PRMS) to update
reports of problems to Cygnus technical support staff.

send-pr invokes an editor on a problem report form (after filling in some fields with
reasonable default values). When you exit the editor, send-pr sends the filled out
form to the PRMS at Cygnus. You can use the environment variable, EDITOR, to
specify which editor to use (the default is vi). Emacs users will find PRMS especially
easy to use. For more information on send-pr , see “Introduction to send-pr ” in
Reporting Problems in GNUPro Advanced Topics. Use bugs@cygnus.com or
support@cygnus.com if you have any problems. See “How to contact Cygnus” on
page v for other means to reach Cygnus.

Filling out a problem report for Unix users
Use send-pr for both questions and bug reports. send-pr ensures that questions and
bug reports are tracked and routed directly to the appropriate person. (Cc: the
assigned Cygnus engineer, if you know who that is. Do not email the engineer
directly; the most reliable means to get a response is to send the report to
bugs@cygnus.com .) Include the category and PR number in the Subject line of
your email, such as gcc/13844 .

Problem reports have a structure so that a database program can manage them. When
you fill out the form, remember the following guidelines:

■ Each PR needs a valid customer-id and category .

■ Describe only one problem per problem.

■ For follow-up mail, use the same subject line as the one in the automatic
acknowledgment. It shows the category, the PR number and the original synopsis
line. This causes your mail to automatically be filed with the original bug report.
Your follow-up comments will be sent to all the people working on the bug.

■ Try to make the subject or synopsis line as informative as possible. For instance,
you might use a sentence of the form ‘Encrypted rlogin hangs if you
send interrupt ’ or ‘g++: calling wrong overloaded function. ’

■ You don’t need to delete the comment lines while editing the PR form; this is done
by send-pr . Put your information before or after the comments. See “An
Example” in Reporting Problems in GNUPro Advanced Topics for more
discussion on this topic.

CYGNUS Installation ■ 99

Confidential information in reports for Unix users

2:
 H

ow
 to

 r
ep

or
t p

ro
bl

em
s

■ See “Valid categories for problems” on page 106 for a list by category of bugs
and their descriptions.

■ See “Confidential information in reports for Unix users” on page 99 for a
discussion regarding how to deal with confidential topics in the reports.

To see a synopsis of the possible commands for PRMS, send a query message like the
following on the To: line: query-pr@cygnus.com . Then, on the Subject: line,
use the command, --help . A list of possible commands will display.

You can interrogate non-confidential bug reports in the Cygnus Problem Report
Management System (PRMS) by electronic mail. Send mail to
‘query-pr@cygnus.com ’ with query parameters in the ‘Subject: ’ line of your
mail header. (The message body is ignored.) For example, to inquire about problem
reports numbered 4020 and 5004 , send mail including the following input lines in the
To: header.

query-pr@cygnus.com Subject: 4020 5004

You can also include many command line options to request information on bugs in a
particular state, or a particular category; for instance, the following header’s example
input requests a list of all open g++ bugs that are not confidential.

To: query-pr@cygnus.com
Subject: --state=open --category=g++

If you do not include a ‘--state= ’ specification in your subject line, the mail server
uses the following statement (showing all the various input for State:).

--state= ”open|analyzed|feedback|suspended ”

WARNING! Since the default state specification for electronic mail queries does not
include closed , a closed bug yields a response with no message body.

Confidential bug reports are not available using the mail query server. You can
request the status of your confidential PRs by contacting Cygnus technical support by
phone (408-542-9601).

Confidential information in reports for Unix users
There has been some confusion about where to put confidential information in
problem reports sent with send-pr . If you submit a problem report to Cygnus, and
you want its detailed contents to remain confidential, set the ‘>Confidential: ’
field to ‘yes ’.

Confidential information in reports for Unix users

100 ■ Installation GNUPro Toolkit

However, the ‘Subject: ’ line in the mail header and the ‘>Synopsis: ’ field in the
body of the PR are not treated as confidential information. They are used when
Cygnus compiles reports of fixed problems (see “Valid categories for problems” on
page 106 for a list by category of the bugs and their descriptions). Do not put
confidential information in these fields.

Any code samples, machine descriptions, problem details, and so on, remain, of
course, strictly confidential in any problem report marked as such in the report.

The mail query server for problem reports never reports any information from
confidential bug reports.

CYGNUS Installation ■ 101

Reporting problems for Win95/NT systems

2:
 H

ow
 to

 r
ep

or
t p

ro
bl

em
s

Reportin g problems for Win95/NT
systems

The following file is available for reporting problems for WIN95/NT users.
USING SEND-PR TO REPORT PROBLEMS FOR WINDOWS 95/NT

The following fields appear in the send-pr interface.

Use this example and these descriptions to to inform us

of any problems you encounter.

In a Windows NT/95 system, clip the text from Problem Report Fields

in the following example and paste it into your email window.

Where a line begins with ">" (greater-than mark), there should

be no more than than one in your email transmission. If there is

more than one ">", we can't process your report efficiently,

which may delay our response to you.

Then consult the following pages for instructions.

THE FULL PROBLEM REPORT SCREEN

E-Mail Header Fields

To: bugs@cygnus.com

Subject: <problem description>

From: <yourname@youraddress.com>

Problem Report Fields

---------------------------------Cut Here----------------------------

>Submitter-Id: <identifier assigned by Cygnus salesperson>

>Originator: <Your full name>

>Organization: <Your company name>

>Confidential: <[yes | no] (one line)>]

>Synopsis: <synopsis of the problem (one line)>

>Severity: <[non-critical | serious | critical] (choose one)>

>Priority: <[low | medium | high] (choose one)>

>Category: <name of the product

Reporting problems for Win95/NT systems

102 ■ Installation GNUPro Toolkit

(chose one from “>Category:” field page 104)>

>Class: <[sw-bug | doc-bug | change-
request | support] (one line)>

>Release: <the release you are reporting on, such as 98r1>

>Environment: <machine, os, target, libraries (multiple lines)>

Architecture: <machine-architecture>

System <operating system>

>Description: <precise description of the problem (multiple lines)>

>How-To-Repeat: <code/input/activities to reproduce the problem

(multiple lines)>

>Fix: <how to correct or work around the problem, if known

(multiple lines)>

---------------------------------Cut Here----------------------------

The following text describes each field and the information you need

to include in each one.

Prompts in the Problem Report are surrounded by quotes. For example,

where a prompt item appears in the following description, it is

surrounded by quotes, as in the first prompt, ">Submitter ID:"

Please Note: Seven critical fields are underlined in the following

text. They begin with ">" and end with ":". They are:

"> Submitter-ID: "

"> Category: "

"> Release: "

"> Description: "

>Environment: <machine, os, target, libraries (multiple lines
)>

Architecture: <machine-architecture>

System: <operating system>

The last two fields in the “>Environment:” field do not use the “>”
character.

If you no not fill out these fields, your problem report may be
delayed.

THE E-MAIL HEADER FIELDS

"To:" bugs@cygnus.com

Send your problem report to this e-mail address.

" Subject: "

CYGNUS Installation ■ 103

Reporting problems for Win95/NT systems

2:
 H

ow
 to

 r
ep

or
t p

ro
bl

em
s

Describe your problem here briefly, in one line.

" From: "

Your email address.

THE PROBLEM REPORT FIELDS

"> Submitter-Id: "

Critical information.

If you know your Submitter ID enter it here. If you do not

have a contract with Cygnus, contact Cygnus Sales at

sales@cygnus.com for information on support contracts.

"> Originator: "

Full name of the submitter.

"> Organization: "

The name of the originator's company or parent organization.

"> Confidential: "

Cygnus changes this to "no" only when information is no

longer sensitive for the customer, or if the sender does

not have a support contract.

yes is the default

"> Synopsis: "

This should reflect the Subject: field and be a single line.

"> Severity: "

Use one of the following values:

"non-critical" The product, component or concept is working

in general, but lacks features, has irritating

behavior, does something wrong, or doesn't

match its documentation.

"serious" The product, component or concept is not

working properly. Problems that would otherwise

be considered "critical" are rated "serious"

when a workaround is known.

"critical" The product, component or concept is completely

non-operational or some essential functionality

is missing. No workaround is known.

The default is "serious."

Reporting problems for Win95/NT systems

104 ■ Installation GNUPro Toolkit

"> Priority: "

How soon the originator requires a solution. Use one of the

following values:

"low" The problem to be solved in a future release.

"medium" The problem to be solved in the next release,

if possible.

"high" A solution is needed as soon as possible.

The default is "medium."

"> Category: "

Critical information.

Choose from the table of valid categories.

bfd binutils build

byacc config diff

doc dos expect

flex g++ gas

gcc gcov gdb

glob gprof help-request

id-request info info-request

install ld libc

libg++ libiberty libm

make makeinfo mgmt

netware other patch

query-pr readline send-pr

sim shipping tcl

test testsuites texindex

texinfo

"> Class: "

The class of a problem uses one of the following subjects

as input:

"sw-bug" A general product problem.

("sw" stands for software.)

CYGNUS Installation ■ 105

Reporting problems for Win95/NT systems

2:
 H

ow
 to

 r
ep

or
t p

ro
bl

em
s

"doc-bug" A problem with the documentation.

"change-request" A request for a change in behavior, etc.

"support" A support problem or question.

The default is "sw-bug".

"> Release: "

Critical information.

Provide release or version number of the product, component

or concept-for example, "gnupro-98r1" or, for custom

contracts, "chipname-yymmdd".

"> Environment: "

Description of the environment where the problem occurred:

machine architecture, operating system, host and target

types, libraries, pathnames, etc.

"Architecture"

For example, "solaris 2.5.1"

"System"

For example, "sun4".

"> Description: "

Critical information.

Provide a precise description of the problem.

"> How-To-Repeat: "

Example code, input, or activities to reproduce the

problem. The support organization uses example code both to

reproduce the problem and to test whether the problem is

fixed. Include all preconditions, inputs, outputs,

conditions after the problem, and symptoms. Include any

additional important information, such as all the details,

however obvious, that would be necessary for someone else

to recreate the reported problem. Sometimes seemingly

arbitrary or obvious information can point the way toward a

solution.

"> Fix: "

How to work around the problem, if known.

Valid categories for problems

106 ■ Installation GNUPro Toolkit

Valid cate gories for problems
The following list describes valid entries for the >Category: field for reporting
problems.
bfd

GNU binary file descriptor library.

binutils
GNU utilities for binary files (ar , nm, objcopy , objdump , size ...).

bison
GNU parser generator.

build
Cygnus software re-building.

byacc
Free parser generator.

config
Cygnus software configuration and installation.

diff
GNU diff program.

doc
Documentation and manuals.

flex
GNU lexical analyzer.

g++
GNU C++ compiler.

gas
GNU assembler.

gcc
GNU C compiler.

gdb
GNU source code debugger.

gprof
GNU profiler.

info
GNU info hypertext reader (non-critical PRs only).

ld
GNU linker.

CYGNUS Installation ■ 107

Valid categories for problems

2:
 H

ow
 to

 r
ep

or
t p

ro
bl

em
s

libc
Cygnus C Library (use newlib for more expedient and accurate fixes).

libiberty
GNU ‘libiberty ’ library.

libm
Cygnus Math Library (use newlib for more expedient and accurate fixes).

make
GNU make program.

makeinfo
GNU utility to build info (online help files) from Texinfo documents
(non-critical PRs only).

newlib
Cygnus C and Math Libraries.

other
Anything which is not covered by the previous categories.

patch
GNU bug patch program.

send-pr
GNU Problem Report submitting program.

test
Category to use when testing send-pr .

texindex
GNU documentation indexing utility (non-critical PRs only).

texinfo
GNU documentation macros (non-critical PRs only).

Fixed problems

108 ■ Installation GNUPro Toolkit

Fixed problems
The following documentation shows the bugs that have been fixed by Cygnus since
the last release.

They are listed alphabetically by category, such as config or gcc , and by their
assigned number to that category. The first line of the problem’s description (from the
submitter of the bug) accompanies each listing.

binutils
9082

ar does not archive non .o files

12993
ARM/Thumb disassembly not consistent

14422
objcopy generates an exception with option --strip-all

14559
objcopy incorrectly converts ppc-elf format to aixcoff

14804
objcopy doesn't compute the tekhex record checksum

14892
objcopy doesn't relocate sections when converting

15356
objdump displays wrong address for PC-relative Thumb loads

build
14420

Can't build 97r2 from source

14805
Can't build 97r2 on powerpc-ibm-aix4.1.5.0

config
14861

96q1 native won't configure target libs

14951
97r2 configure doesn't work

g++
6910

Template instatiation too strict - not deferred until

CYGNUS Installation ■ 109

g++

2:
 H

ow
 to

 r
ep

or
t p

ro
bl

em
s

8529
sparc-sun-sunos X mips-idt-ecoff g++ fails to link

9647
void * parameter accepts const T *

9652
passing a const ref may produce bogus error messages

10239
Template friends do not work

10439
Trouble recognizing the implicitly instantiated templates

11873
program which works using HP10.10 cyngus g++ cores on DEC

11925
Internal compiler error with -O2 (hpux 10.01)

12029
Overloading virtual functions with default parameters

12043
Unable to compile bison output on DEC

12194
-fansi-overloading works differenly on HP than DEC

12211
Weird thing happening with exception I think?

12379
Internal compiler error with -O3.

12525
g++ exceptions defect

12721
Warnings in gnu header files using -W option (Solaris 2.5)

13437
assembler fails on bison/g++ generated code

13439
param.h header automatically included by g++ overides

13532
won't compile with -O

13723
Declaring an array of objects within another class fails.

13804
Compiler defined operator= not copying correctly.

13857
Compilation of specific class results in "virtual memory

13939
integer sqrt inefficient

14025
Can not throw exception through libio.

g++

110 ■ Installation GNUPro Toolkit

14126
istream Segmentation fault

14127
gcc/g++ moves big global objects into local scope

14275
internal compiler error

14294
A test in the Rogue Wave test suite failed

14328
Internal compiler error

14384
__sjthrow calls __terminate for some reason.

14431
Internal compiler error - static initialisers.

14503
Internal compiler error when using STL reserve() method

14534
Internal compiler error when compiling bison code.

14543
g++ methods with squirrely ($sp) action

14584
SEGV from executable produced by g++

14596
g++ bails out on ...

14609
Internal Compiler Error in STL with -O

14629
g++ produces internal compiler error

14687
g++ using directive doesn't work as specified in CD2

14699
Optimization produces incorrect results

14746
Optimizing code, don't understand why

14748
cc1plus croaks on no copy constructor

14788
non-virtual destructor warnings

14823
-fignore-overflow causes incorrect optimization

14836
poor handling of

14837
poor handling of

CYGNUS Installation ■ 111

g++

2:
 H

ow
 to

 r
ep

or
t p

ro
bl

em
s

14856
EH - which platforms use

14858
internal compiler error on template instantiation

14866
can't resolve method when in templates

14915
-O and -Wall cause internal compiler error

15015
shared libraries hard code directory name

15030
purify reports freeing mismatched memory

15045
internal compiler with -O and static member

15058
g++ Problem

15121
undefined reference to __default_alloc_template<0, 0>

15139
String ctor incorrectly computes string length

15165
Problems linking more than one library

15174
basic_string copy (...) method should be declared const

15183
Internal compiler error.

15312
Static structure with members initialized by "new" is left

15360
Stabs debugging information incorrect

15377
contains() broken in g++/String.h

15393
Incorrect macro definition in va-i960.h

15430
cyg134 -- How to turn off Runtime Type Information

15446
breakpoint before global ctors

15453
internal compiler error on

15502
Incorrect code generated coverting compound statement

15526
internal compiler error

gas

112 ■ Installation GNUPro Toolkit

15528
internal compiler error

15551
g++ and templates

gas
11103

address in gas warning changes when using -a option

11784
v850-ELF-as generate 16MB object after detected small

13915
The PC relative branch "bra ." returns an error in H8

13916
The H8/300 as does not support local labels

13940
validate_immediate buggy

14354
GAS produces illegal operation code for moveq command

14515
GAS macro prerocessor fails with no reason

14536
GAS can't parse some movem commands in absolute addressing

14689
GAS option requested to suppress generation of absolute

14720
register value vs .set defined constant conflict

14721
non-intuitive error|warning messages

14722
No error|warning message for an illegal statement

14723
Some out of range values are not detected

14724
assembler displays only the first encountered message

14934
problem with .align

14940
.fill as pseudo op won't accept absolute expression

14986
-as reports .set symbols as undefined

15057
why not count 'ones'?

15358
Thumb out-of-range branches missed

CYGNUS Installation ■ 113

gcc

2:
 H

ow
 to

 r
ep

or
t p

ro
bl

em
s

gcc
5977

Misses redundant store optimization

6216
mips64-elf-gcc warning nit

8012
compiling a file with -frtti which uses math.h causes a

8704
gcc missed optimization - loop unrolling

10242
profiling problem with AIX version of gcc

11911
Verbose code generated for halfword access

11922
Adjacent stores not merged into store-multiple

11927
Stackframe created even for leaf functions

11968
Redundant instructions generated

11970
No tail-call optimisation

11983
Shift that can be done in following instruction

11984
no use of known address relationships

12022
class methods named 'main' produce incorrect code

12227
Argument stacking best done in the prologue

12231
R10 never used when stack checking not in use

12266
info files not updated

13092
undefined library symbol __call_via_sl

13528
Compilation generates "internal compiler error"

13732
GCC doesn't support TX39 instructions (sync,cache)

13816
"-gdwarf-2" option of as doesn't work well

14106
G++ won't generate DWARF, powerpc-EABI, or IEEE-695

gdb

114 ■ Installation GNUPro Toolkit

14302
tools don't handle filenames with spaces

14310
__declspec(naked) and "control reaches end of non-void

14475
cyg118 -- 'fopen()' returns an error after repeating

14593
amd29k compiler (95q4) generates incorrect code

14644
Internal compiler error - insn does not satisfy its

14671
-fomit-frame-pointer can fail to restore sp

14700
long long arg slobbers all over the stack

14707
sp-relative access inconsistent with fp-relative access

14749
gcc Mips64 dies in assignment to 'long long' variable.

14790
-fignore-overflow causes incorrect optimization

14801
missing library functions

14840
gcc does not use fabs

14874
can't match function prototype anymore

15161
Difference between 97r1 and 97r2a powerpc-eabi-gcc

15185
Big-endian Thumb floats do not work

15192
How does power-pc compiler utilize registers?

15296
no mips machine description template to match rtl -> crash

15396
powerpc-eabi-gcc finds wrong multilib library under

15445
gcc.97r1.arm-coff internal error--unrecognizable insn

gdb
6919

gdb abort()s on loading executable

7691
Would like clarification on support for CPU32BUG monitor

CYGNUS Installation ■ 115

gdb

2:
 H

ow
 to

 r
ep

or
t p

ro
bl

em
s

7965
Wingdb problem

8088
gdb hbreak

8359
Command Path is awkward if drive name is specified

8527
native gdb

8875
bug in c-valprint.c

8926
gdb target loss

8928
gdb representation of breakpoints

8929
gdb display values of variables

8932
80-bit-floating-point feature

8951
gdb debuger hangs

9245
Query about PowerPC target stub support

9496
How to debug Sun's light weight processes (lwp) with gdb

9747
Using Sparc Exec. gdb

10100
gdb symbol-file command doesn't work with Solaris 2.5

10358
linker load data in the wrong location

10745
Help needed understanding SIGCONT in remote stubs

11427
gdb isn't demangling C++ names

12074
GDB does not print FP values correctly

12076
CALL_DUMMY mechanism flawed

12077
push_dummy_frame/pop_frame not APCS-32

12557
Problem init'ing target using gdb.

12719
gdb doesn't reread symbol file in various cases

gdb

116 ■ Installation GNUPro Toolkit

12948
gdb and threads follow up problem

13206
Simulator doesn't work well

13246
GDB will not set hbreak for mips16

13374
gdb unable to see dynamically loaded modules

13500
corrupted symbol/debug crashing our debugger

13618
gdb incorrectly reports thread information

13620
Control-C to interrupt GDB command only works once.

13681
gdb loads sections to the vma address instead of the lma

13803
gdb incorrectly reports number of threads and thread info.

13903
gdb get segmentation fault loading program

14043
problem in 'sizemem

14062
Cannot create suitable debug output file

14079
Exception during call foo() aborts gdb

14088
call foo() needs target-specific breakpoint

14129
Cygnus toolchain doesn't support OMF object file format

14342
simulator request (Coprocessor 0 support)

14376
GDB working with MacRaigor OCD (On Chip Debug box) makes

14545
gdb.96q4.ppc seg faults on large .sun files

14546
gdb.96q4.ppc seg faults on large .sun files

14548
gdb-96q4-68k gets errors "line # out of range for source

14549
gdb.96q4.ppc seg faults on large .sun files

14571
can't call my functions in gdb

CYGNUS Installation ■ 117

help-request

2:
 H

ow
 to

 r
ep

or
t p

ro
bl

em
s

14645
can't set breakpoint in template

14787
Program name only 14 chars in gdb (fwd)

14821
shared library cores gdb when loading symbols

14871
Symbol load time very slow

14923
instructions for building little-endian mips64 gdb

15038
need gdb97r1's C source files for callback.h/c, monitor.c

15049
gdb does not start

15126
Problem building TK for GDB 4.16-97r1

15169
gdb shell output does not go to the GUI

15182
Disassembly ignores the endianity

15251
gdb confuses emacs with executable in subdir

help-request
10252

How do i tell configure to ignore xmkmf?

14927
gcc cannot find CYGWIN.DLL

info-request
15436

GNU make errors

15440
Cygnus progressive releases and egcs

info
14809

how to extract the offset in C structur to use it in

install
14513

uncompressing the src.tar.Z results in a directory

ld

118 ■ Installation GNUPro Toolkit

ld
10555

loader dies with "bfd assertion fail stabs.c 515"

10685
ld -oformat srec creates bad code for address@ha

11346
fails srec check tests

12714
Mips64-ELF linker has bug when mixing mip2 and mips3

13845
Some question about the sections and where they (should)

13955
wrong .debug information in ELF

14160
Linker leaves holes in object file

14437
The linker doesn't free space taken by unused functions

14444
linker does not preserve alignment info

14703
ld lexer doesn't recognize comments in script file.

14752
Cannot longjmp from Thumb code

14810
ld can't resolve a reference to "virtual table"

14904
Cygnus dose not work on Solaris 2.6

15074
97r1 i960-nindy-coff-ld VERY SLOW

15357
Interworking warnings only show half the problem

15373
Out-of-range branch checks faulty

libc
15063

sbrk is not called by malloc (prob. with _impure_ptr?)

libm
15017

Is there a way to speedup the "pow" math function?

CYGNUS Installation ■ 119

make

2:
 H

ow
 to

 r
ep

or
t p

ro
bl

em
s

make
15354

GNU make errors

15416
make trivially broken on i386-cygwin32 host

15597
make.exe core dump

newlib
12918

bit 0 of PC not Thumb state in APCS-26

13786
RDI targets not handled

15103
Need source code to certain object files (e.g. crt0.o)

other
14282

essai d'erreur sur frog

14289
Problem with gdb/libraries?

14484
ld's unable to locate libpmon.a

14830
Cygnus C/C++ compilers are not supported by purify

14869
can not Purify Dynamic executable created by Cygnus 97r1

other

120 ■ Installation GNUPro Toolkit

CYGNUS Getting Started with GNUPro Toolkit ■ 121

In
de

x

Index

Symbols
#include files, with preprocessor47
.bss55
.bss section53, 57
.coff, the main object file format48
.data55, 57
.text 55
.text section56
__attribute__35
__FUNCTION__33
__PRETTY_FUNCTION__33
_bss_start55
_bss_start and _end57
_DYNAMIC, for shared dynamic libraries56
_end 55, 57, 58

Numerics
32- and 64-bit development3
68000 chips, compiling31

A
a.out 48, 75
ABI 65
Acorn RISC 66
ADP 65
AIX 65
AIX installation 84
Alpha 66
AMD 29000 family 65
ANSI C runtime library7
ANSI C++ Standard 1996 draft33
API 66
ar 8
ARC 66
archive index8
argv 53
ARM 66, 76
as 7, 45, 46
ASCII text 58

Index

122 ■ Getting Started with GNUPro Toolkit GNUPro Toolkit

assembler7, 40, 45, 47, 66, 70, 75
false conditionals40
macro expansions40
SunOS40

assembler macros40
assembly code66

B
backslashes43
BDM 66
benefits5
Berkeley 77
Berkeley System Distribution67
BFD 66
Bi-endian 66
big-endian66
big-endian code66
bin 91
binaries47
binary utilities 8, 45, 48
binutils 45
Bison 66
bootstrap67
bound member function pointer33
Bourne shell43
Bourne shell, gcc92
Bourne-compatible shells91

setting PATH91
breakpoints49
BSD 67
BSP 67
bug 54, 67, 95
bug monitor54
build 67
built-in trap handler54
Byacc 67

C
C compiler7
C library 45, 50

C math subroutine library7
C preprocessor7
C run-time environment61
C shell

setting PATH91
C shell, gcc92
C subroutine library61
C++ class library7
C++ compiler7
C++ constructors46
C++ driver 34
C++ iostreams library7
C++ symbol name deciphering utility8
c++filt 8
Canadian cross67
Cfront C++ version 2 compiler37
CHILL 67
CISC 67
class templates35
classes, declaring34
classes, local35
cmd.exe43
cmp 8
COFF 68, 75
coff file 57
COFF linker41
command.com43
compiler 45, 46, 68, 70, 92
Compiler issues23
compiler tools32
concatenation macros51
config.bfd 43
configure 88
constructor and destructor tables55
constructor and destructor tables for G++56
CONSTRUCTORS57
CORBA 72
cpp 7, 46
CREATE_OBJECT_SYMBOLS56
cross-compilation67
cross-development configurations61

CYGNUS Getting Started with GNUPro Toolkit ■ 123

Index

In
de

x

crt0 (C RunTime 0) file51
crt0 file 55
crt0 files, multiple55
crt0, the main startup script50
crt0.s 62
CVS 68
CX/UX 68
CygMon 68
cygwin32 68

D
-d, for assembler49
D10V 69
D30V 69
data 57
dbx 69
debug formats

COFF 69
DWARF 69
DWARF 2 69

debuggeR
graphical user interface7

debugger7, 37, 45, 69

debugging50
AIX 38
AMD29K 38
choosing processor37
d10v-elf 37
definition 69
H8/300 38
Hitachi ROM monitors38
Macintosh37
MIPS 38
MIPS IDT 38
MPW configuration scripts37
overlays37
PMON 37
PowerPC ppcbug monitor37
powerpc-elf37
set remotedebug38
with remotedelay38
with stabs38

debugging, low-level50
DEC 28
DEC Unix/OSF1, linking28
DejaGNU 69
destructor tables55
diff, diff3, sdiff 8
Digital Unix installation84
-disassemble49
disk space requirements

Windows 93
DJGPP69
documentation10
documentation conventions9
documentation forms9
DWARF 69
DWARF2 unwinder33
DWARF2, stack frames33
dynamic libraries56
dynamic memory allocation59

Index

124 ■ Getting Started with GNUPro Toolkit GNUPro Toolkit

E
-E option 47
E7000 69
EABI 70
ECOFF 70
effc++ 33
ELF 70, 75
ELF systems, linking34
embedded

tools 45
embedded systems, traditional uses4
emulators72
environment variables90
error messages97
errors 97
exception handler63
exception handler for breakpoints49
exception handling33, 36
executable binary image, making48
exit 53
expect69, 70
extern inline functions33

F
filenames43
flex 8, 70
FORMAT output-format48
Foundry 70
Free Software Foundation4
FreeBSD70
Fujitsu 77
function declarations32
function templates32

G
g++ 7
gas 7, 70
gasp40
gcc 7, 45, 46, 70

GCC_EXEC_PREFIX90, 92
gcov 8
GDB 49
gdb 7, 45, 71
GDB stub49
gdbtk 7
getpd(), for returning value60
global symbol names51
global symbols52
glossary65
GNU 71
GO32 69, 71
GROUP, for loading55
-gstabs+38
GUI 71
guiding declarations32

H
H8/300 69
h8300 71
h8500 71
Hewlett-Packard75
hex values, printing out in50
Hitachi 69, 71
Hitachi ROM monitors38
Hitachi Super-H77
hosts86
HP PRO target33
HP/UX 71
HP9000/700, linker28
HPPA

inlined functions36
reducing code size36

hppa 71
HP-UX installation84
HTML 9

I
I/O support code50, 58
i370 71

CYGNUS Getting Started with GNUPro Toolkit ■ 125

Index

In
de

x

i386 72
i860 72
i960 72
IBM 71, 75, 79
ICE 69, 72
IDE 70, 72
ILU 72
-inbyte 58
info 11
initialization files settings91
inlined functions36
installation 83

floppy disks28
tape 28
Windows 93

installation problems96
installation solutions96
install-sid 8, 28
Intel 72
Internet and communication protocols4
Irix 72
Irix 5, linking 28
ISA 72
isatty(), for checking for a terminal device60
ISI 75

J
jedit 72
Joint Test Advisory Group72
JTAG 72
jump tables for switches, PowerPC29

K
kill() 58
kill(), for exiting 60
Korn shell 91, 92

L
ld 7, 45, 46, 73

ld, the GNU linker47
ld, the linker script50
libc 7, 50
libg++ 7
libgcc.a 46
libgloss 45, 50
libio 7
libm 7, 50
libraries 7, 46, 50
library archives73
library symbols, loading38
libstd++ 50
link 89
linker 7, 41, 45

definition 73
Linker script 73
linker script 55
linking

archive file 41
COFF debugging information41
enum debugging information41
shared libraries28
stabs41
struct 41
SunOS41
union 41

Linux 33, 73
little-endian 73
little-endian code66
loader 63
local static variables33
low-level debugging58
LynxOS 73

M
m68k 73
m68k-coff configuration55
m88k 73
Mach 73
Macraigor Systems37

Index

126 ■ Getting Started with GNUPro Toolkit GNUPro Toolkit

macros51
main 46, 52, 62
main() 53
make 8, 43
MAKE_MODE 43
malloc() 53
mangling 73
math library50
Matra 77
member function templates32
MEMORY 56
memory 52
memory map55
Microsoft’s object file format75
Microware 75
mingw32 74
Minix 74
MIPS 72
mips 74
MON960 74
Motorola 66, 73, 75
Motorola cpu32 and cpu32+ targets31
Motorola Yellowknife 29
--mri 40
MRI-format 40
-mspace36
multilib 74

N
name mangling73
name-mangling66
National Semiconductor74
NEC 74
NetBSD 74
newlib 45, 50, 60
NINDY 74
nm 8
nm utility 55
-nostdlib 46
NRE 74

ns32k 74
null pointer constant34

O
objcopy 8, 48
objdump 8, 48
object code archives8
object file 75
Object file format75
object file format48

Windows 75
object file information8
object file symbol tables8
object file, with assembler47
object files8, 73, 75
object files and object file formats48
object files, linking to C library46
OCD serial box37
Open Software Foundation75
OS Support50
OS/9 75
OS/900075
OSF/1 28, 75
-outbyte 58
outbyte() 50
overload resolution code34

P
PA 75
parser generator80
patch 8, 75
PATH environment variable91
PATH variable90
PATH, setting91
PE 75
Portable Executable75
PowerPC79
PowerPC environment29
PowerPC simulator30
PowerPC, simulator29

CYGNUS Getting Started with GNUPro Toolkit ■ 127

Index

In
de

x

PPC 75
PPC bug75
Precision Architecture75
prefix 51
-prefix-addresses49
preprocessing47
print() 50
problems28
problems, reporting95
PROM burners48
pSOS75
ptrace76
putnum() 50

R
R2000, R3000, R4000, R5000, R8000, R1000074
RAM space56
RAM variable 57
ranlib 8
RDI 76
RDP 76
read/write registers76
rebuilding 28, 31, 34, 42, 96

AIX 42
configuration files42
debugging symbols42
for C++ 42
install-sid 43
make 43
Makefiles 43
send-pr43
SPARC 42
Windows NT 43

Reduced Instruction Set Computer76
register names51
remote76
remotedelay38
reporting problems

Unix 85
RISC 72, 75, 76

RISC processors65
RISC target35
ROM monitor 49, 52, 54, 74
ROM monitors48
rom68k 54
rom68k and mon68k monitors56
RS/600079
RS600076
RTEMS 76
RTOS 76
RTTI support34
RTTI support library35

S
sbrk() 55, 58
SCO 76
SDS 76
SEARCH_DIR, for specifying paths56
section57
section names55
section sizes8
sections, main55
send-pr8, 28, 95
set architecture37
set remotedebug38
setup.exe93
SGI 28, 72
SGI IRIX installation84
SH 69
sh 77
sh.exe43
shared library38
shell

setting PATH91
shells

using gcc92
single-step76
size 8
Solaris 77
Solaris 242

Index

128 ■ Getting Started with GNUPro Toolkit GNUPro Toolkit

Solaris, linking28
sparc77
SPARC installation84
SPARClet77
SPARClite 77
S-record77
S-records48
stabs41, 77
stabs debug format38
stack space52
start 51, 53
STARTFILE_SPEC55
STARTUP command55
static data member templates35
stdout 47
STL code34
storage

disk, flash, DRAM4
strip 8
stub 58, 77
Stubs61
subroutines61
sun4 77
SunOS77, 78
super-user access89
support library45
support routines60
SVID 78
SVR3 78
SVR4 78, 79
SVR4 Unix 77
switches46
SYM 52
symbolic data77
symbolic link 89
symbolic links85, 90

setting PATH91
symbols8, 35
System V78

long long 30

T
tcl 69
template constructors and destructors36
template instantiation35
template instantiations32
templates33, 35
Texinfo 11
thread-safe libraries28
three-way cross78
thumb 78
TinyRISC 74
Toshiba74
total sizes8
trap handler54
triple cross78
TSqware77
type directive35

U
UDI 38, 79
uninitialized data57
Unix 77, 79
UNIX installation 84
Unixware 79
utilities 8

V
variables, default values for55
vax 79
VFS 79
virtual functions36
VR4xxx 74
VxWorks 79

W
warning flags35
wiggler 37
Win32 host environment43
Win95/NT installation93

CYGNUS Getting Started with GNUPro Toolkit ■ 129

Index

In
de

x

wireless connectivity4

X
x86 79
XCOFF 79
XENIX 79
xor-endian79

Y
yacc 80
Yellowknife 37

Z
Z8000 80
z8k 80

Index

130 ■ Getting Started with GNUPro Toolkit GNUPro Toolkit

	Dreamcast GNUPro Toolkit Getting Started
	Contents
	Overview of GNUPro Toolkit
	About Cygnus
	About the tools
	What’s in this package
	Compilers and development tools
	Libraries
	Binary utilities
	General utilities

	GNUPro Toolkit documentation
	Documentation conventions

	What’s in the documentation
	Using online documentation
	Reading online documentation
	Using website documentation

	Native configurations support
	Embedded cross-configuration support
	Version numbers for programs
	Naming hosts and targets
	Host names
	Target names
	Using config.guess

	Red flag alerts & enhancements
	General issues
	Compiler issues
	Debugger issues
	Utilities issues

	Issues from previous releases
	General issues with the tools
	C and C++ compiler issues
	Debugger issues
	Assembler issues
	Linker issues
	Rebuilding issues

	Using GNU tools on embedded systems
	Invoking the GNU Tools
	gcc, the GNU compiler
	cpp, the GNU preprocessor
	gas, the GNU assembler
	ld, the GNU linker
	.coff for object file formats
	binutils, the GNU binary utilities
	gdb, the debugging tool
	Useful debugging routines
	libgloss, newlib and libstd++, the GNU libraries

	crt0, the main startup file
	The linker script
	I/O support code
	Memory support
	Miscellaneous support routines

	Cross-development environment
	The C run-time environment (crt0)

	Cygnus glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	X
	Y
	Z

	Installing GNUPro Toolkit
	Installing on Unix Systems from CD
	Installation information for Unix
	Platform names
	Host names
	Target names

	Links for easy access and updating
	Running the programs
	Setting PATH
	gcc paths
	Installing on Win 95/NT systems from CD
	Rebuilding GNUPro Toolkit

	How to report problems
	Some things that might go wrong
	Some error messages from Install
	Reporting problems for Unix systems
	Filling out a problem report for Unix users
	Confidential information in reports for Unix users

	Reporting problems for Win95/NT systems
	Valid categories for problems
	Fixed problems
	binutils
	build
	config
	g++
	gas
	gcc
	gdb
	help-request
	info-request
	info
	install
	ld
	libc
	libm
	make
	newlib
	other

	Index

