

®

T t

accurate.

CodeWarrior
argeting Dreamcas

Because of last-minute changes to CodeWarrior, some of the information in this manual may be in
Please read the Release Notes for the latest up-to-date information.

Revised: 990129 rw

Metrowerks CodeWarrior copyright ©1993–1999 by Metrowerks Inc. and its licensors.
All rights reserved.
Documentation stored on the compact disk(s) may be printed by licensee for personal
use. Except for the foregoing, no part of this documentation may be reproduced or trans-
mitted in any form by any means, electronic or mechanical, including photocopying,
recording, or any information storage and retrieval system, without permission in
writing from Metrowerks Inc.
Metrowerks, the Metrowerks logo, CodeWarrior, and Software at Work are registered
trademarks of Metrowerks Inc. PowerPlant and PowerPlant Constructor are trademarks
of Metrowerks Inc.
All other trademarks and registered trademarks are the property of their respective
owners.
ALL SOFTWARE AND DOCUMENTATION ON THE COMPACT DISK(S) ARE SUB-
JECT TO THE LICENSE AGREEMENT IN THE CD BOOKLET.

How to Contact Metrowerks:

U.S.A. and international Metrowerks Corporation
9801 Metric, Suite 100
Austin, TX 78758
U.S.A.

Canada Metrowerks Inc.
1500 du College, Suite 300
Ville St-Laurent, QC
Canada H4L 5G6

Ordering Voice: (800) 377–5416
Fax: (512) 873–4901

International Ordering Voice: +1 512 873-4724
Fax: +1 512 873 4901

World Wide Web http://www.metrowerks.com

Registration information mailto:register@metrowerks.com

Technical support mailto:support@metrowerks.com

Sales, marketing, & licensing mailto:sales@metrowerks.com

International sales, marketing, &
licensing

intlsls@metrowerks.com

CompuServe goto Metrowerks

Table of Contents
1 Introduction 7

Read the Release Notes! 7
CodeWarrior and Its Documentation 8
What’s in This Manual 9
Where To Go from Here 10

2 Getting Started 13
System Requirements 13
Installing CodeWarrior for Dreamcast 14

Installing the CodeWarrior for Dreamcast Software 14
Installing the Dreamcast Runtime Library 15
Making Sure Your Dreamcast Development System Works. . 15

3 The Dreamcast Tools 19
Introduction to the Dreamcast Tools 19

CodeWarrior IDE. 20
CodeWarrior Compiler for Dreamcast 20
CodeWarrior Assembler for Dreamcast 21
CodeWarrior Linker for Dreamcast 21
CodeWarrior Debugger for Dreamcast 21
Codescape Debugger for Dreamcast 21

The Development Process with CodeWarrior 22

4 Creating Applications 25
Creating an Application 25

5 Creating Static Libraries 35
About Static Libraries 35
Creating a Static Library 35

6 Converting SH Projects 37
Steps for Converting SH Projects 37

7 Debugging For Dreamcast 43
Debugging with CodeWarrior 43
Targeting Dreamcast SGA–3

Table of Contents

Using printf() 44

Debugging Static Libraries 44

8 Debugging With Codescape 45
Debugging with the Codescape debugger 45
Using printf() 47

9 Target Settings for Dreamcast 49
Target Settings Overview 49
Settings Panels for Dreamcast 51

Target Settings . 51
SH Target . 54
SH Processor . 57
Global Optimizations 58
Section Mappings 60
SH Linker . 61
Debugger Settings 63

10 C and C++ for Dreamcast 65
Number Formats for Dreamcast 66

Dreamcast Integer Formats 67
Dreamcast Floating-Point Formats 67

Calling Conventions for Dreamcast 68
Variable Allocation for Dreamcast. 68
Optimizing Code for Dreamcast 68
Pragmas for Dreamcast 72
Linker Issues for Dreamcast 72

Linker Command File. 73
Deadstripping Unused Code and Data 80
Link Order . 80

C++ issues for Dreamcast 81

11 Inline Assembler and Intrinsics for Dreamcast 83
Working with Inline Assembly 83

Inline Assembler Syntax. 84
Using Labels. 87
SGA–4 Targeting Dreamcast

Table of Contents

Using Comments. 87
Using Registers . 87

Assembler Directives 89
Intrinsic Functions . 90

List of Intrinsic Functions 91
Mnemonics for Inline Assembly 93

Special Instructions for Inline Assembly 94
Complete List of Inline Assembly Mnemonics 95

12 Libraries and Runtime Code for Dreamcast 107
Runtime Libraries for Dreamcast 107
Allocating Memory and Heaps for Dreamcast 108

13 Troubleshooting for Dreamcast 109
Hardware Communications 109
Compiler Problems . 110
Debugger Problems 110

Index 111
Targeting Dreamcast SGA–5

Table of Contents

SGA–6 Targeting Dreamcast

1
Introduction
This manual describes how to use CodeWarrior to develop code tar-
geted at the Dreamcast platform. This includes stand-alone applica-
tion programs and static libraries.

The manual also shows how to set Dreamcast project options, and
describes CodeWarrior’s Dreamcast specific run-time libraries.

The introduction includes the following sections:

• Read the Release Notes!—where to go for critical, last-second
details

• CodeWarrior and Its Documentation—a general description
of the CodeWarrior architecture and documentation

• What’s in This Manual—a description of the contents of this
manual

• Where To Go from Here—recommendations for further read-
ing

Read the Release Notes!
Before you use the CodeWarrior IDE or a particular tool, you
should read the release notes. They contain important last-minute
information about new features, bug fixes, and incompatibilities
that may not be included in the documentation.

The release notes folder is always included as part of a standard
CodeWarrior installation. The release notes folder is also located at
the top level of the CodeWarrior CD.
Targeting Dreamcast SGA–7

Introduct ion

CodeWarrior and Its Documentation

CodeWarrior and Its Documentation
CodeWarrior is a multi-host, multi-language, multi-target develop-
ment environment. What does that mean?

Multiple hosts CodeWarrior runs on several different operating
systems including Windows, Solaris, and Mac OS. The features,
human interface, and operation of CodeWarrior is very similar on
all hosts.

Multiple languages You can use CodeWarrior to program in
several languages, including C/C++, Pascal, and Java. Third-party
compilers provide support for other languages such as Fortran.
Which languages are available to you depend upon the target for
which you are developing software.

Multiple targets You can use CodeWarrior to write software for
several different chips or operating systems. CodeWarrior products
support programming for game consoles, embedded processors,
real-time operating systems, the Java Virtual Machine, and desktop
operating systems such as Windows and Mac OS.

Most features of CodeWarrior apply regardless of your preferred
host, language, or target. General features of CodeWarrior are de-
scribed in other manuals, such as the IDE User Guide and Debugger
User Guide.

However, each target has its own unique features. This manual de-
scribes those unique features.

For a complete understanding of CodeWarrior, you must refer to
both the general documentation and the documentation that is spe-
cific to your particular target, such as this manual.

The documentation is organized so that various chapters in this
manual are extensions of particular generic manuals, as shown in
Table 1.1. For a complete discussion of a particular subject, you may
need to look in both the generic manual and the corresponding
chapter in this Targeting manual.
SGA–8 Targeting Dreamcast

Introduct ion

What’s in This Manual

Table 1.1 CodeWarrior documentation organization

For example, to completely understand the C/C++ compiler, you
need to know information in the C Compilers Reference (which covers
the C/C++ front-end compiler) and the information in the C and
C++ for Dreamcast chapter in this manual, which covers the back-
end compiler that generates your Dreamcast specific code.

What’s in This Manual
Table 1.2 lists every chapter in this manual, and describes the infor-
mation contained in each. However, this manual only contains in-
formation specific to Dreamcast software development. See
“CodeWarrior and Its Documentation” on page 8 for a discussion of
how these chapters relate to other CodeWarrior documentation.

Table 1.2 Contents of chapters

This chapter... Extends...

Creating Applications
Creating Static Libraries

Core Tutorials

The Dreamcast Tools
Target Settings for Dreamcast

IDE User Guide

“Debugging For Dreamcast” Debugger User Guide

C and C++ for Dreamcast C Compilers Reference

Chapter Description

Introduction this chapter

Installing CodeWarrior for
Dreamcast

how to install CodeWarrior for
Dreamcast

The Dreamcast Tools describes the tools for Dreamcast

Creating Applications how to build applications for
Dreamcast
Targeting Dreamcast SGA–9

Introduct ion

Where To Go from Here

Where To Go from Here
The manuals mentioned in this section are all on the CodeWarrior
CD.

For everyone:

• For complete information about the CodeWarrior integrated
development environment, see the IDE User Guide

• For information specific to the C/C++ front-end compiler,
see the C Compilers Reference.

Creating Static Libraries how to build libraries for Dreamcast

Converting SH Projects how to convert existing projects into
CodeWarrior projects

Debugging For Dreamcast how to debug your Dreamcast ap-
plications with CodeWarrior

Debugging With Codes-
cape

how to interface CodeWarrior with
the external Codescape debugger

Target Settings for Dream-
cast

how to control the compiler and
linker for Dreamcast

C and C++ for Dreamcast details of the back-end C/C++ com-
piler for Dreamcast development.

Inline Assembler and In-
trinsics for Dreamcast

details support for inline assembly
and instrinsic functions

Libraries and Runtime
Code for Dreamcast

libraries provided with CodeWar-
rior for Dreamcast

Troubleshooting for
Dreamcast

troubleshooting information specific
to Dreamcast development

Chapter Description
SGA–10 Targeting Dreamcast

Introduct ion

Where To Go from Here

For reference information on Dreamcast programming:

Please contact the provider of your Dreamcast development hard-
ware for programming manuals specific to Dreamcast and its SH
processor.
Targeting Dreamcast SGA–11

Introduct ion

Where To Go from Here

SGA–12 Targeting Dreamcast

2
Getting Started
This chapter gives you the information you need to install
CodeWarrior and begin programming the Dreamcast game console.

This chapter includes the following topics:

• System Requirements — hardware and software require-
ments

• Installing CodeWarrior for Dreamcast — how to install the
various tools

System Requirements
• A Pentium-class or higher computer. For best performance,

we recommend a Pentium II-class processor.

• Windows 95/98, or Windows NT 4.0 operating system

• 500MB of hard disk space.

• A minimum of 32MB RAM. 64MB RAM is preferred.

• A CD-ROM drive to install CodeWarrior software, documen-
tation, and examples.

In addition to the requirements above, you also need:

• HKT-01 development hardware, revision 5-24. The serial
number on the bottom of your HKT-01 contains the revision
code. If the serial number does not begin "S524... ", contact
Sega for new hardware.

• Version 1.30j of the SDK Shinobi libraries.
Targeting Dreamcast SGA–13

Gett ing Started

Installing CodeWarrior for Dreamcast

Installing CodeWarrior for Dreamcast
Programming for the Dreamcast game console requires installing
and configuring both the CodeWarrior development tools and the
Dreamcast development hardware.

Installing and configuring the software is not immediately obvious,
so this chapter is essential reading. At this point, you should have
the Dreamcast development hardware connected to your PC.

Before you can begin using the CodeWarrior tools, you must

1. Install CodeWarrior

For complete details, see “Installing the CodeWarrior for
Dreamcast Software” on page 14.

2. Install the Dreamcast libraries

For complete details, see “Installing the Dreamcast Runtime
Library” on page 15.

3. Test your system.

Before you begin programming, see “Making Sure Your
Dreamcast Development System Works” on page 15.

Installing the CodeWarrior for Dreamcast
Software

Your first step towards developing software for your target is to in-
stall the CodeWarrior tools.

Double-click the setup.exe file from the CD, and follow the instruc-
tions that the installation wizard provides. If you have any ques-
tions regarding the installer, read the instructions built into the
CodeWarrior Installer for further information.
SGA–14 Targeting Dreamcast

Gett ing Started

Installing CodeWarrior for Dreamcast

NOTE: If you are using a dual-boot system with Windows 95/98
and Windows NT installed, install the tools on Windows 95/98 first.
After the installation has finished, shutdown, reboot into Windows
NT, and install the CodeWarrior tools in the same directory se-
lected in the Windows 95/98 installation.

This completes the CodeWarrior for Dreamcast tools installation.

Installing the Dreamcast Runtime Library

The Shinobi libraries are used in almost every Dreamcast project
you develop.

In this beta release, we have included CodeWarrior-compatible Shi-
nobi libraries in the folder named "Dreamcast Support ". They are
copied over as part of the installation procedure.

Making Sure Your Dreamcast Development
System Works

After installing the software, you should make sure it works. To do
this, compile and execute the teapot demo that is included in the
CodeWarrior example files.

1. Launch the CodeWarrior IDE

Locate the icon for the CodeWarrior IDE, and launch the applica-
tion.

2. Open the project.

From the File menu, choose the Open item. The dialog box in Fig-
ure 2.1 appears.

Locate the project CodeWarrior Examples/Dreamcast/Sdk/
Teapot/cw/teapot.mcp .
Targeting Dreamcast SGA–15

Gett ing Started
Installing CodeWarrior for Dreamcast
Figure 2.1 The 'open' dialog box

Select the project file and open it. The CodeWarrior project window
will appear, as shown in Figure 2.2.

The project window is the central location from which you control
development. This is where you can add or remove source files, add
libraries of code, compile your code, generate debugging informa-
tion, and much more. For full information on the CodeWarrior IDE
and project manager, you should see the CodeWarrior IDE User
Guide.
SGA–16 Targeting Dreamcast

Gett ing Started
Installing CodeWarrior for Dreamcast
Figure 2.2 The 'project' window

3. Build the project.

Choose the Make command from the Project menu to build the
project. CodeWarrior will compile and link your project into a pro-
gram file called teapot_debug.elf .

4. Debug the project.

Click the Debug command from the Project menu. After CodeWar-
rior uploads the compiled teapot program to your HKT-01 hard-
ware, the program window will appear as shown in Figure 2.3.
Targeting Dreamcast SGA–17

Gett ing Started
Installing CodeWarrior for Dreamcast
Figure 2.3 The 'program' window

5. Run the project.

Click the Run command from the Project menu. If your software
and hardware are set up correctly, the teapot demo will run, as
shown in Figure 2.4.

Figure 2.4 The teapot demo
SGA–18 Targeting Dreamcast

3
The Dreamcast
Tools
This chapter briefly explains the CodeWarrior for Dreamcast devel-
opment environment.

For new CodeWarrior users, this chapter provides a brief overview
of the CodeWarrior development environment, as well as a descrip-
tion of the development process in CodeWarrior as compared to a
command-line environment.

The topics in the chapter are:

• Introduction to the Dreamcast Tools

• The Development Process with CodeWarrior

Introduction to the Dreamcast Tools
Programming with CodeWarrior for Dreamcast is much like pro-
gramming for any other CodeWarrior target. If you have never used
CodeWarrior before, the tools you will need to become familiar with
are:

• CodeWarrior IDE

• CodeWarrior Compiler for Dreamcast

• CodeWarrior Assembler for Dreamcast

• CodeWarrior Linker for Dreamcast

• Codescape Debugger for Dreamcast

If you are an experienced CodeWarrior user, this is the same IDE
and debugger you’ve been using all along.
Targeting Dreamcast SGA–19

The Dreamcast Tools
Introduction to the Dreamcast Tools
CodeWarrior IDE

The CodeWarrior IDE is the application that allows you to write
your executable. It controls the project manager, the source code,
editor, the class browser, and the compilers and linkers.

The CodeWarrior project manager may be new to those more famil-
iar with command-line development tools. All files related to your
project are organized in the project manager. This allows you to see
your project at a glance, and eases the organization of and naviga-
tion between your source code files.

For more information about how the CodeWarrior IDE compares to
a command-line environment, see “The Development Process with
CodeWarrior” on page 22. That short section discusses how various
parts of the IDE implement the classic features of a makefile-based
command-line development system.

The CodeWarrior IDE has an extensible architecture that uses plug-
in compilers and linkers to target various operating systems and mi-
croprocessors. The CodeWarrior for Dreamcast package includes a
C/C++ compiler for the Hitachi SH4 processor. Other CodeWarrior
packages include C and C++ compilers for x86 and 68000 proces-
sors, among other platforms.

For more information about the CodeWarrior IDE, you should read
the CodeWarrior IDE User Guide.

CodeWarrior Compiler for Dreamcast

The CodeWarrior compiler for Dreamcast is an ANSI compliant C/
C++ compiler. This compiler is based on the same compiler architec-
ture that is used in all of the CodeWarrior C/C++ compilers. When
used with the CodeWarrior linker for Dreamcast, you can generated
Dreamcast applications and libraries.

For more information on the Compiler Settings, see “Target Settings
for Dreamcast” on page 49. For more information about the
CodeWarrior C/C++ language implementation, you should read
the C Compiler Guide.
SGA–20 Targeting Dreamcast

The Dreamcast Tools
Introduction to the Dreamcast Tools
CodeWarrior Assembler for Dreamcast

The CodeWarrior assembler for Dreamcast allows you to include
assembly source code as part of your project.

For more information about Dreamcast assembly programming,
you should read Hitachi’s SH4 Assembler Guide.

CodeWarrior Linker for Dreamcast

The CodeWarrior linker for Dreamcast links object code into an ELF
format executable. It also generates DWARF format debugging in-
formation. This linker creates code using absolute addressing.

For more information about the linker settings, see “Target Settings
for Dreamcast” on page 49.

CodeWarrior Debugger for Dreamcast

CodeWarrior’s debugger allows you to see what is happening in-
side your application as it runs.

You use the debugger to find problems in your program’s execu-
tion. The debugger can execute your program one statement at a
time and suspend execution when you reach a specified point.
When the debugger stops a program, you can view the chain of
function calls, examine and change the values of variables, and in-
spect the content of the processor’s registers.

For general information about debugging, including all of its fea-
tures and its visual interface, you should read the Debugger User
Guide. Specific information pertaining to debugging the Dreamcast
can be found in “Debugging For Dreamcast” on page 43.

Codescape Debugger for Dreamcast

The Codescape debugger from Cross Products is a stand-alone ap-
plication seperate from the CodeWarrior IDE.
Targeting Dreamcast SGA–21

The Dreamcast Tools
The Development Process with CodeWarrior
Specific information about interfacing the Codescape. For general
information about the Codescape debugger, including all of its fea-
tures and its visual interface, you should read the Codescape for Set 5
User Guide.

The Development Process with CodeWarrior
While working with CodeWarrior, you will still proceed through
the development stages familiar to all programmers: write code,
compile, link, and debug. For complete information on performing
software development tasks like editing, compiling, and linking,
refer to the CodeWarrior IDE User Guide. For debugging using Co-
descape, see the Codescape for Set 5 User Guide.

The difference between CodeWarrior and traditional command line
environments is in how the software (in this case the IDE) helps you
manage your work more effectively. If you are unfamiliar with an
integrated environment in general, or with CodeWarrior in particu-
lar, you may find the topics in this section helpful. Each topic dis-
cusses how one component of the CodeWarrior tools relates to a tra-
ditional command line environment.

Read these topics to find out how using the CodeWarrior IDE dif-
fers from command line programming.

• Makefiles—the IDE uses a project to control source file de-
pendencies and settings for compilers and linkers

• Editing —an overview of source code editing from the IDE

• Compiling—how the IDE performs compile operations

• Linking—how the linker performs linking operations

• Debugging—how to debug a program

Makefiles

The CodeWarrior IDE project is analogous to a makefile. Because
you can have multiple builds in the same project, in fact the project
is analogous to a collection of makefiles. For example, you can have
one project that has both a debug version and a release version of
your code. You can build one or the other, or both as you wish. In
SGA–22 Targeting Dreamcast

The Dreamcast Tools
The Development Process with CodeWarrior
CodeWarrior, these different builds within a single project are
called “targets”.

The IDE uses the project manager window to list all the files in the
project. Among the kinds of files in a project are source code files
and libraries.

You can add or remove files easily. You can assign files to one or
more different targets within the project, so files common to multi-
ple targets can be managed simply.

The IDE manages all the interdependencies between files automati-
cally, and tracks which files have been changed since the last build.
When you rebuild, only those files that have changed are recom-
piled.

The IDE also stores the settings for compiler and linker options in
the project. You can modify these settings using the IDE, or use
#pragma statements in your code.

Editing

The CodeWarrior IDE has an integral text editor to edit source code.
It handles text files in MS-DOS/Windows, UNIX, and Mac OS for-
mats.

To edit a source code file, or any other editable file that is in a
project, just double-click the file’s name in the project window to
open the file.

The editor window has excellent navigational features that allow
you to switch between related files, locate any particular function,
mark any location within a file, or go to a specific line of code.

Compiling

To compile a source code file, it must be among the files that are
part of the current target. If it is, you simply select it in the project
window and choose Compile from the Project menu.
Targeting Dreamcast SGA–23

The Dreamcast Tools
The Development Process with CodeWarrior
To compile all the files in the current target that have been modified
since they were last compiled, choose Bring Up To Date in the
Project menu.

In UNIX and other command-line environments, object code com-
piled from a source code file is stored in a binary file (a “.o” or “.obj”
file). The CodeWarrior IDE stores and manages object files transpar-
ently.

Linking

Linking object code into a final binary is easy: use the Make com-
mand in the Project menu. The Make command brings the active
project up to date, then links the resulting object code into a final
output file.

You control the linker through the IDE. There is no need to specify a
list of object files. The project manager tracks all the object files auto-
matically.

You can use the project manager to specify link order as well.

Debugging

To debug a project, select Debug from the Project menu.
SGA–24 Targeting Dreamcast

4
Creating
Applications
A Dreamcast application is a stand-alone, executable program. You
compiled and ran one such Dreamcast application when you veri-
fied your CodeWarrior installation.

In this chapter, we will take this one step further, and show you
how to create your own application.

This chapter includes the following topic:

• Creating an Application

Creating an Application
To create a Dreamcast application, perform the following steps:

1. Display the New Project dialog box.

Choose the New Project command from the File menu. CodeWar-
rior will display the New Project dialog box as seen in Figure 4.1,
with instructions to select your project stationery.
Targeting Dreamcast SGA–25

Creat ing Appl icat ions
Creating an Application
Figure 4.1 New Project window

2. Display the available Dreamcast project stationery.

Click the hierarchical control to the left of the Dreamcast listing to
see the project stationery available to you. Figure 4.2 shows the ex-
panded stationery list.
SGA–26 Targeting Dreamcast

Creat ing Appl icat ions
Creating an Application
Figure 4.2 Selecting project stationery

3. Select your project stationery.

Click on the line containing the Dreamcast stationery you want,
then click OK. You will see the Name new project dialog box as
shown in Figure 4.3.

NOTE: To create a new project without using project stationery,
select Empty Project in the New Project window. This lets
you create a project from scratch, but it is not recommended be-
cause of the complexities of including the correct libraries and
specifying the correct settings.
Targeting Dreamcast SGA–27

Creat ing Appl icat ions
Creating an Application
Figure 4.3 Name new project dialog window

TIP: If your name your project without the .mcp extension,
CodeWarrior adds .mcp to the project name for you. Don’t add the
.mcp extension to your project name if the Create Folder option in
the New Project dialog box is checked. If you do, .mcp is added to
the end of the folder name.

4. Complete the Name new project dialog.

Navigate to the directory in which you want to place your new
project and type the project’s name in the box labeled File name.
When you click the Save button, CodeWarrior will create a new
project file in the designated directory, with the conventional exten-
sion .mcp.

The project window you see on your screen contains the Shinobi li-
braries and an empty place for your program’s source files. It
should resemble the window shown in Figure 4.4
SGA–28 Targeting Dreamcast

Creat ing Appl icat ions
Creating an Application
Figure 4.4 Project window

5. Modify the contents of the new project.

You will want to add your own source files to your new project. Fig-
ure 4.5 shows the project window with some source files added.
Targeting Dreamcast SGA–29

Creat ing Appl icat ions
Creating an Application
Figure 4.5 Project window with modifications

6. Open the Target Settings window.

Make sure your project window is active (front-most) on the screen,
then choose the Settings command from the Edit menu. (The com-
mand actually appears on the menu as Target Settings, where Tar-
get is the name of the project’s currently selected target. In the
project shown in Figure 4.5, for example, the name of the command
would be debug Settings).
SGA–30 Targeting Dreamcast

Creat ing Appl icat ions
Creating an Application
Figure 4.6 Target settings dialog box

CodeWarrior displays the Target Settings dialog box in which you
can specify various optional settings for your project. This dialog
box is shown in Figure 4.6.

For Dreamcast projects, you must specify settings for the target plat-
form, the project type, the compiler, and the linker. There are other,
optional settings that you can specify as well.
Targeting Dreamcast SGA–31

Creat ing Appl icat ions
Creating an Application
Figure 4.7 Target Settings panel

7. Specify target settings.

A list of settings panels are displayed to the left of the Target Set-
tings dialog box. Select Target Settings; the window will display the
Target Settings panel for the project’s currently selected target, as
shown in Figure 4.7. The Linker setting is preset to SH Linker by
the project stationery you selected, but you can edit the target’s
name or change other settings if you wish.

8. Set the project type.

Click SH Target in the panel list to display the settings panel shown
in Figure 4.8. Again, the project type and other default settings are
preset for you by the project stationery. For an application project,
you should leave the project type set to Application, but you can
modify the output file name and other settings if you wish.
SGA–32 Targeting Dreamcast

Creat ing Appl icat ions
Creating an Application
Figure 4.8 SH Target settings for application projects

4. Specify additional settings.

You can continue to display other project settings panels and
specify any settings you wish. For more information on the
various panels and settings available, see “Target Settings for
Dreamcast” on page 49 as well as the relevant sections of the
IDE User Guide, and the C Compilers Reference.

When you’re finished specifying project settings, close the
project settings window

5. Build your project.

After your project is created and its contents and all neces-
sary settings are specified, you’re ready to compile and
debug your code. The Make command on the Project menu
compiles and links your project. If successful the resulting
output file is stored in your project folder under the name
you specified in the SH Target settings panel.

For more information on compiling and linking, see the IDE
User Guide.

6. Debug your application.

Once you have successfully built your project, you can
launch the debugger to debug and run your code.
Targeting Dreamcast SGA–33

SGA-3

Creating Applications- Creating an Application

Building a .bin file from Metrowerks.

1) From the CodeWarrior environment, generate a .elf Þle (example:

debug.elf

).

2) Launch the standard Dreamcast development DOS shell.

3) Cd (change directory) into the directory that contains the

debug.elf

É

4) and type:

elf2bin –s 8C010000 debug.elf

5) Resulting Þle will be a debug.bin
4 Targeting Dreamcast

5
Creating Static
Libraries
This chapter describes the role of static libraries in Dreamcast
projects and how to create them.

Topics in this chapter are:

• About Static Libraries

• Creating a Static Library

See also “Creating Applications” on page 25 for information on cre-
ating executable applications. For more information on projects in
general, see the IDE User Guide.

About Static Libraries
A static library is a collection of functions and data that can be incor-
porated into an application program (or another library). You can
use predefined libraries supplied with CodeWarrior, and you can
create your own custom-designed libraries for use in your own
projects.

Creating a Static Library
The steps for creating a static library are essentially the same as
those for creating a stand-alone application, but with the following
exceptions:

The Project Type in the SH Target settings panel shown in Figure
5.1 must be set to Library instead of Application.
Targeting Dreamcast SGA–35

Creat ing Stat ic Librar ies
Creating a Static Library
Figure 5.1 SH Target panel

• You may invent your own naming convention, or you may
use ours. Our naming convention is to use the file name ex-
tension.elf.lib for libraries and .elf for executables.

• After successfully building your static library, you incorpo-
rate it into another application by adding it to the project
window before building the application.

• You cannot debug a static library by itself, but you can debug
it as part of the application in which it is included.

See “Creating an Application” on page 25 for step-by-step instruc-
tions on creating an application project. For details on the various
project settings and panels available, see “Target Settings for
Dreamcast” on page 49 as well as the relevant sections of the IDE
User Guide and the C Compilers Reference.
SGA–36 Targeting Dreamcast

6
Converting SH
Projects
This chapter shows you how to make CodeWarrior projects out of
existing, makefile-based SH projects.

The topic covered in this chapter is:

• Steps for Converting SH Projects

Steps for Converting SH Projects
In the steps that follow, we will convert the SDK Teapot demo into a
CodeWarrior project we can compile, link, and debug.

1. Copy the teapot sample to its own folder.

Copy all the teapot files to a new folder. In our example shown in
Figure 6.1, our new teapot folder is on G:\ .

Figure 6.1 Copying teapot files to a new folder
Targeting Dreamcast SGA–37

Convert ing SH Projects
Steps for Converting SH Projects
2. Create a new project.

In CodeWarrior, choose New Project from the File menu. From the
New Project window, select the Dreamcast C app (no source) statio-
nery as shown in Figure 6.2, and click OK.

Figure 6.2 Select the Dreamcast C app (no source) stationery

Please note that we do not check the Create Folder checkbox. We al-
ready have a folder for our new CodeWarrior project—the copied
teapot folder. As in Figure 6.3, save your new project in the teapot
folder, with the file name teapot .

Figure 6.3 Start the new project in the teapot folder
SGA–38 Targeting Dreamcast

Convert ing SH Projects
Steps for Converting SH Projects
3. Add the source files from the makefile.

The Makeuser file contains the names of the source files we want to
add to our project. Open the Makeuser file that is in the teapot
folder.

Figure 6.4 Finding source files in Makeuser

The files listed in Figure 6.4 need to be added to our project. Placing
them into our sources group will help keep our project organized.

Highlight the Sources group folder in the project window. From the
Project menu, select Add Files... This takes you to the file selection
dialog shown in Figure 6.5. From here, you can select the source
files from the teapot folder and add them to the project.The files you
add are automatically placed at the bottom of the link order.
Targeting Dreamcast SGA–39

Convert ing SH Projects
Steps for Converting SH Projects
Figure 6.5 Adding source files to the project window

Please note that you do not have to add nindows.lib . The
CodeWarrior version, nindows.elf.lib , was included as part of
the stationery. It is located inside the Libraries\ USER_LIBS group.

After adding the sources, your project window will resemble Figure
6.6.

Figure 6.6 All files have been added
SGA–40 Targeting Dreamcast

Convert ing SH Projects
Steps for Converting SH Projects
4. Convert assembler files.

Before teapot will compile on CodeWarrior, we must make a few
changes to the assembler source file, global32.src , shown in Fig-
ure 6.7. We must replace the Hitachi assembler directives with
CodeWarrior equivalents.

Figure 6.7 Convert Hitachi assembler to CodeWarrior assembler

Hitachi’s .SECTION directive specifies the B32 section as a bss sec-
tion aligned on 32 bytes. The CodeWarrior equivalent of this is:

SECTION B32, 32, 1, 3
.ALIGN 32

Replace the Hitachi .SECTION directive with the CodeWarrior di-
rective.

NOTE: For a complete list of ELF section flags, see the “Using
Directives” chapter of the SH Assembler Reference.

In CodeWarrior, we use .SPACE instead of .RES.B . Replace all in-
stances of .RES.B with .SPACE.
Targeting Dreamcast SGA–41

Convert ing SH Projects
Steps for Converting SH Projects
5. The project has been converted.

You have successfully converted the teapot sample into a CodeWar-
rior project. You may compile and debug this project as if it were
any other CodeWarrior project.
SGA–42 Targeting Dreamcast

7
Debugging For
Dreamcast
This chapter discusses how to use CodeWarrior to debug Dreamcast
code. It covers those aspects of debugging that are specific to the
Dreamcast platform or are different from the processes described in
the IDE User Guide and the Debugger User Guide.

This chapter contains the following topics:

• Debugging with CodeWarrior

• Using printf()

• Debugging Static Libraries

Debugging with CodeWarrior
Choose Projects > Debug to bring up the debugger program win-
dow as shown in Figure 7.1.
Targeting Dreamcast SGA–43

Debugging For Dreamcast
Using printf()
Figure 7.1 The Program window

In the program window contains the stack crawl pane, the variables
window, and the code window. The debugger control bar is at the
top of the window. From here, you can run, stop, and single-step
through your program.

For detailed explanations and guidance, please see our Debugger
User Guide.

Using printf()

The printf() function will only work if you include the
'mw output.lib' library in your project. The output from your
printf() functions will appear in the debugger log window.

Debugging Static Libraries
You can debug static libraries as part of a larger application, but you
cannot debug them on their own.
SGA–44 Targeting Dreamcast

8
Debugging With
Codescape
This chapter discusses how to use CodeWarrior in conjunction with
Codescape to debug Dreamcast code.

This chapter includes the following topics:

• Debugging with the Codescape debugger

• Using printf()

NOTE: Please see the Debugger release notes for the latest
news about our Codescape interoperability.

Debugging with the Codescape debugger
To have CodeWarrior launch the Codescape debugger when you
select Debug from the Project menu, you must specify Codescape
as your third-party debugger.

Set Codescape to be your third-party debugger in the Build Extras
target settings panel shown in Figure 8.1. Click the Use third party
debugger box, and enter the path to your Codescape executable.
Targeting Dreamcast SGA–45

Debugging With Codescape
Debugging with the Codescape debugger
Figure 8.1 Set CodeScape to be your third-party debugger

Now when you select Debug from your project, CodeWarrior will
automatically launch the Codescape debugger.

Once you are in Codescape, you will need to click File > Load Pro-
gram File to load your CodeWarrior-built executable into the de-
bugger. In Figure 8.2, we illustrate how you would do this for the
SDK teapot executable, teapot_debug.elf
SGA–46 Targeting Dreamcast

Debugging With Codescape
Using printf()
Figure 8.2 Codescape’s 'load program file’ menu

Please see the Codescape User Guide for detailed instructions on how
to use the Codescape debugger.

Using printf()

The printf() function will only work if you include the
'mw output.lib' library in your project. The output from your
printf() functions will appear in the debugger log window.
Targeting Dreamcast SGA–47

Debugging With Codescape
Using printf()
SGA–48 Targeting Dreamcast

9
Target Settings for
Dreamcast
This chapter discusses each of the settings panels that affect code
generation for Dreamcast development. By modifying the settings
for the individual items within a panel you control the compiler,
linker, and other aspects of code generation.

Specific details about how the compiler and linker work for Dream-
cast development, such as compiler pragmas, linker symbols and so
forth, is found in C and C++ for Dreamcast.

The sections in this chapter are:

• Target Settings Overview

• Settings Panels for Dreamcast

Target Settings Overview
Each target in a CodeWarrior project has its own individual set-
tings. These settings control a variety of features such as compiler
options, linker output, error and warning messages, and so forth.
You modify these settings through the Target Settings dialog box.
This interface is fully explained in the IDE User Guide.

In brief, you control compiler and linker behavior for a particular
target by modifying settings in the appropriate settings panels in
the Target Settings dialog box. To open any settings panel, choose
Target Settings from the Edit menu, where Target is the current
target in the CodeWarrior project. Or, go to the Target view of the
Project window and double-click the target of interest.

When you do, the Target Settings dialog box appears, as shown in
Figure 9.1.
Targeting Dreamcast SGA–49

Target Sett ings for Dreamcast
Target Settings Overview
Figure 9.1 Target Settings dialog box

Select the panel you wish to see from the hierarchical list of panels
on the left side of the dialog box. When you do, that panel appears.
You can then modify the settings to suit your needs.

When you modify the settings on a panel, you can restore the previ-
ous values by using the Revert Panel button at the bottom of the
dialog box. To restore the settings to the factory defaults, use the
Factory Settings button at the bottom of the panel.

TIP: Use project stationery when you create a new project. The
stationery has all settings in all panels set to reasonable or default
values. You can create your own stationery file with your preferred
settings. Modify a new project to suit your needs, then save it in
the stationery folder. See the IDE User Guide for details.
SGA–50 Targeting Dreamcast

Target Sett ings for Dreamcast
Settings Panels for Dreamcast
Settings Panels for Dreamcast
This section discusses those panels that are specific to Dreamcast
development, and the purpose and effect of each setting. The panels
are:

• Target Settings

• SH Target

• SH Assembler

• SH Processor

• Global Optimizations

• Section Mappings

• SH Linker

• Debugger Settings

Settings panels of more general interest are discussed in other
CodeWarrior manuals. Table 9.1 lists several panels and where you
can find information about them.

Table 9.1 Where to find information on other settings panels

Target Settings

The Target Settings dialog box contains a Target Settings panel. The
dialog box and the panel are not the same. The dialog box displays

Panel Manual

Access Paths IDE User Guide

Build Extras IDE User Guide

File Mappings IDE User Guide

Custom Keywords IDE User Guide

C/C++ Language C Compilers Reference

C/C++ Warnings C Compilers Reference
Targeting Dreamcast SGA–51

Target Sett ings for Dreamcast
Settings Panels for Dreamcast
all panels, one at a time. The Target Settings panel is one of those
panels.

The Target Settings panel, shown in Figure 9.2, is perhaps the most
important panel in CodeWarrior. This is the panel where you pick
your target. When you select a linker in the Target Settings panel,
you specify the target operating system and/or chip. The other pan-
els listed in the Settings dialog box will change to reflect your
choice.

Because the linker choice affects the visibility of other related pan-
els, you must set your target first before you can specify other tar-
get-specific options like compiler and linker settings.

Figure 9.2 The Target Settings panel

NOTE: The Target Settings panel is not the same as the SH Tar-
get panel. You specify the target in the Target Settings panel. You
set other project options in the SH Target panel.

The items in this panel are:

Target Name Post-Linker

Linker Output Directory

Pre-Linker Save Project Entries Using Relative Paths
SGA–52 Targeting Dreamcast

Target Sett ings for Dreamcast
Settings Panels for Dreamcast
Target Name

Use the Target Name text field to set or change the name of a target.
When you use the Targets view in the Project window, you will see
the name that you have set.

The name you set here is not the name of your final output file. It is
the name you assign to the target for your personal use. The name
of the final output file is set in the SH Target panel.

Linker

Choose a linker from the items listed in the Linker pop-up menu.
For Dreamcast, use SH Bare Linker

Pre-Linker

Some targets have pre-linkers that perform work on object code be-
fore it is linked. There is no pre-linker for Dreamcast development.

Post-Linker

Some targets have post-linkers that perform additional work (such
as object code format conversion) on the final executable. There is
no post linker for Dreamcast development.

Output Directory

This is the directory where your final linked output file will be
placed. The default location is the directory that contains your
project file. Click the Choose button to specify another directory.

Save Project Entries Using Relative Paths

To add two or more files with the same name to a project, select this
option. When this option is off, each project entry must have a
unique name.

When this option is selected, the IDE includes information about the
path used to access the file as well as the file name when it stores in-
formation about the file. When searching for a file, the IDE com-
Targeting Dreamcast SGA–53

Target Sett ings for Dreamcast
Settings Panels for Dreamcast
bines Access Path settings with the path settings it includes for
each project entry.

When this option is off, the IDE only records information about each
project entry’s file name. When searching for a file, the IDE only
uses Access Paths.

SH Target

The SH Target panel, shown in Figure 9.3, is where you set the name
of your final output file.

The settings you can specify in this panel depend on the type of
project you are creating.

Figure 9.3 The SH Target panel.

The items in this panel are:

Project Type

The Project Type pull-down menu determines the kind of project
you are creating. The available project types are shown in Figure 9.4

Project Type File Name

Code Model Byte Ordering
SGA–54 Targeting Dreamcast

Target Sett ings for Dreamcast
Settings Panels for Dreamcast
Figure 9.4 SH Target type options

Set this menu so that the selected menu item reflects the kind of
project you are building. You typically want to build an Applica-
tion.

File Name

The File Name edit field specifies the name of the executable or li-
brary you create. Our convention is to end this name with the exten-
sion .elf for executables and .elf.lib for libraries.

Byte Ordering

The Byte Ordering radio button controls whether the code gener-
ated is stored in little endian or big endian format. In big endian for-
mat, the most significant byte comes first (B3 B2 B1 B0). In little en-
dian format, the bytes are organized with the least significant byte
first (B0 B1 B2 B3).

For Dreamcast applications, this option must be set to Little Endian.

Code Model

The Code Model pull-down menu determines the addressing
mode for the generated executable.

For Dreamcast applications, this option must be set to Absolute Ad-
dressing.

SH Assembler

The SH Assembler panel, shown in Figure 9.5, controls how the SH
assembler processes assembly language instructions.
Targeting Dreamcast SGA–55

Target Sett ings for Dreamcast
Settings Panels for Dreamcast
Figure 9.5 The SH Assembler panel

The items in this panel are:

Labels Must End With ‘:’

Specifies that labels must end with a colon character (:).

Directives Begin With ‘.’

Specifies that assembler directives begin with a period character (.).

Case Sensitive Identifiers

Displays identifiers using the same letter case used in source code.
When deselected, identifiers appear in uppercase only.

Allow Space In Operand Field

Allows you to use space characters to separate operands

Generate Listing File

Determines whether or not a listing file will be generated when the
source files in the project are assembled.

Labels Must End With ‘:’ Directives Begin With ‘.’

Case Sensitive Identifiers Allow Space In Operand Field

Generate Listing File Prefix File
SGA–56 Targeting Dreamcast

Target Sett ings for Dreamcast
Settings Panels for Dreamcast
Prefix File

Defines a file that is automatically included in all assembly files in
the project. This field allows you to include common definitions
without including the file in every source file.

SH Processor

The SH Processor panel, shown in Figure 9.6, is where you control
settings related to code generation for the Dreamcast platform.

Figure 9.6 The SH Processor panel.

The items in this panel are:

Target CPU

Defines the CPU for which the compiler generates code. For Dream-
cast, this should be set to SH4.

Use Floating Point Instructions

If this option is active, the compiler makes use of the processor’s
floating point instructions.

If this option is not active, the compiler calls runtime routines for
floating-point operations. The processor’s floating point registers
will not be used.

Target CPU Use Floating Point Instructions
Targeting Dreamcast SGA–57

Target Sett ings for Dreamcast
Settings Panels for Dreamcast
NOTE: In this release, this option is ignored, and the floating
point registers are always used.

Global Optimizations

The Global Optimization panel, shown in Figure 9.7, controls the
method and depth by which the compiler optimizes your code.

Figure 9.7 Global Optimization panel

The items in this panel are:

Optimize For

Use these options to configure how the CodeWarrior IDE optimizes
your code.

• Faster Execution Speed

Optimize For Optimization Level Slider
SGA–58 Targeting Dreamcast

Target Sett ings for Dreamcast
Settings Panels for Dreamcast
This option improves the execution speed of object code. Ob-
ject code is faster, but may be larger.

• Smaller Code Size

This option reduces the size of object code that the compiler
produces. Object code is smaller, but may be slower.

Optimization Level Slider

Use the slider to determine the level of optimization applied to your
code. You can choose to turn off code optimizations, or you can
choose to apply one of four levels of optimization. The higher the
level that you select, the more optimizations are applied to your
code.

The Details text field, below the slider, lists the optimizations that
are applied. Table 9.2 repeats the information found in the Details
text field. For more information about these optimizations, see “Op-
timizing Code for Dreamcast” on page 68.

Table 9.2 SH optimizer levels

Level Effect Debugging

0 Global Register Allocation for tempo-
rary values

safe

1 Global Register Allocation
Dead Code Elimination
Loop Invariant Code Motion
Branch Optimization
Arithmetic Optimizations
Expression Simplification

not safe

2 Common Sub-Expression Elimination
Instruction Scheduling
Delay-slot Filling
Copy and Expression Propogation
Peephole Optimization

not safe
Targeting Dreamcast SGA–59

Target Sett ings for Dreamcast
Settings Panels for Dreamcast
NOTE: If you use Smart inlining, do not use Level 0 optimization.

Section Mappings

The Section Mappings panel, shown in Figure 9.8, maps your sec-
tions layout for the linker. In the absence of a linker command file,
the linker uses the information in the Section Mappings panel to
link your code.

You cannot use Section Mappings with the Dreamcast SDK libraries
because of the complexity of defining the mapping and special link
considerations. You must use a linker command file instead. How-
ever, the Section Mapping is useful when building programs that do
not use the SDK libraries.

Figure 9.8 The Section Mappings panel.

The items in this panel are:

3 Dead Store Elimination
Strength Reduction
Lifetime Based Register Allocation
Loop Unrolling
Loop Transformations
Life Range Splitting
Vectorization

not safe

4 Optimizations are repeated n/a

Level Effect Debugging
SGA–60 Targeting Dreamcast

Target Sett ings for Dreamcast
Settings Panels for Dreamcast
Segment

The user defined name for a segment that contains one or more sec-
tions.

Address

The starting address for the segment

Max Size

The maximum size of the segment. The linker will report an error if
this size is exceeded.

Contains Sections

The names of the sections that are contained in the segment.

SH Linker

The SH Linker panel, shown in Figure 9.9, is where you control set-
tings related to linking your object code into final form, be it execut-
able, library, or other type of code.

Segment Address

Max Size Contains Sections
Targeting Dreamcast SGA–61

Target Sett ings for Dreamcast
Settings Panels for Dreamcast
Figure 9.9 The SH Linker panel.

These items in this panel are:

Generate Dwarf Info

The linker includes debug information generated by the compiler.
You can not debug your program unless this information is present.

Generate Link Map

When this setting is on, the linker generates a link map. When this
setting is off, the linker does not generate a link map.

The link map shows which file provided the definition for every ob-
ject and function in the output file. It also displays the address given
to each object and function, a memory map of where each section
will reside in memory, and the value of each linker generated sym-
bol.

Disable Deadstripping

Generate Dwarf Info Heap Size

Generate Link Map Stack Size

Disable Deadstripping Suppress Warning Messages

Entry Point
SGA–62 Targeting Dreamcast

Target Sett ings for Dreamcast
Settings Panels for Dreamcast
Enabling the Disable Deadstripping option will prevent the linker
from removing dead code.

Suppress Warning Messages

The Suppress Warning Messages checkbox controls whether the
linker displays warnings. This checkbox is not supported in this re-
lease.

Heap Size

This is not used. The heap size is specified by the Dreamcast SDK li-
braries.

Stack Size

This is not used. The stack size is specified by the Dreamcast SDK li-
braries.

Entry Point

This is the name of the first function that will be called. Its value is
the starting address of your program.

Debugger Settings

The Debugger Settings panel shown in Figure 9.9 is not used in this
release.

Figure 9.10 The Debugger Settings panel.
Targeting Dreamcast SGA–63

Target Sett ings for Dreamcast
Settings Panels for Dreamcast
SGA–64 Targeting Dreamcast

10
C and C++ for
Dreamcast
This chapter describes both the Metrowerks back-end compiler and
linker for Dreamcast.

The sections in this chapter are:

• Number Formats for Dreamcast

• Calling Conventions for Dreamcast

• Variable Allocation for Dreamcast

• Optimizing Code for Dreamcast

• Linker Issues for Dreamcast

• C++ issues for Dreamcast

However, this chapter does not discuss front-end compiler issues,
support for inline assembly, compiler and linker errors, controlling
the size of C++ code, and so forth. These topics are covered in other
CodeWarrior documentation as outlined in Table 10.1.

Table 10.1 Other compiler/linker documentation

For this topic... See...

how CodeWarrior implements
the C/C++ language

C Compilers Reference generally

using C/C++ Language and C/
C++ Warnings settings panels

C Compilers Reference, “Setting
C/C++ Compiler Options”
chapter

controlling the size of C++ code C Compilers Reference, “C++ and
Embedded Systems” chapter
Targeting Dreamcast SGA–65

C and C++ for Dreamcast
Number Formats for Dreamcast
NOTE: Some of the items discussed in this chapter may actually
be implemented in the front-end compiler. However, it really
doesn’t matter whether the actual implementation of a feature oc-
curs in the front-end or back-end compiler. From the program-
mer’s point of view, it is all one compiler.

Number Formats for Dreamcast
This section describes how the CodeWarrior C/C++ compiler im-
plement integer and floating-point types for the Dreamcast proces-
sor. You can also read limits.h for more information on integer
types, and float.h for more information on floating-point types.

The topics in this section are:

• Dreamcast Integer Formats

• Dreamcast Floating-Point Formats

using compiler pragmas C Compilers Reference, “Pragmas
and Symbols” chapter

initiating a build, controlling
which files are compiled, han-
dling error reports

IDE User Guide, “Compiling
and Linking” chapter

information about a particular
error

Error Reference

inline assembly Inline Assembler and Intrinsics
for Dreamcast

Dreamcast assembler SH processor manual

For this topic... See...
SGA–66 Targeting Dreamcast

C and C++ for Dreamcast
Number Formats for Dreamcast
Dreamcast Integer Formats

The Dreamcast back-end compiler does not allow you to change the
sizes of integers. Thus, the size of a short int is always 2 bytes,
and the size of int or long int is always 4 bytes.

Table 10.2 shows the size and range of the integer types for the
Dreamcast compiler.

Table 10.2 Dreamcast integer Types

Dreamcast Floating-Point Formats

Table 10.3 shows the sizes and ranges of the floating point types for
the Dreamcast compiler.

NOTE: double is currently implemented as float

Type Size Range

bool 8 bits true or false

char 8 bits -128 to 127

unsigned char 8 bits 0 to 255

short 16 bits -32,768 to 32,767

unsigned short 16 bits 0 to 65,535

int 32 bits -2,147,483,648 to
2,147,483,647

unsigned int 32 bits 0 to 4,294,967,295

long 32 bits -2,147,483,648 to
2,147,483,647

unsigned long 16 bits 0 to 4,294,967,295

long long not supported not supported
Targeting Dreamcast SGA–67

C and C++ for Dreamcast
Calling Conventions for Dreamcast
Table 10.3 Dreamcast floating point types

Calling Conventions for Dreamcast
This section describes the C/C++ calling conventions for Dreamcast
development.

CodeWarrior is fully compliant with Hitachi’s ABi specifications.
Hitachi’s compiler conventions are documented in the SH Series C
Compiler User’s Manual, available from Hitachi.

Variable Allocation for Dreamcast
(K&R, §A4.3, §A8.3, §A8.6.2) This section describes how the C/C++
compiler allocates space for variables.

The compiler places no limits on how large your variables may be,
or how you allocate them.

Optimizing Code for Dreamcast
This section discusses optimizations that are specific to Dreamcast
development with CodeWarrior. They are activated and deacti-
vated through the Global Optimization panel described in “Global
Optimizations” on page 58.

The optimizations are:

• Global Register Allocation

• Loop Invariant Code Motion

• Dead Code Elimination

• Dead Store Elimination

• Common Sub-Expression Elimination

Type Size Range

float 32 bits 1.17549e-38 to 3.40282e+38
SGA–68 Targeting Dreamcast

C and C++ for Dreamcast
Optimizing Code for Dreamcast
• Instruction Scheduling

• Delay-slot Filling

• Copy and Expression Propogation

• Peephole Optimization

• Strength Reduction

• Lifetime Based Register Allocation

• Loop Unrolling

Global Register Allocation

In this optimization, the compiler assigns two or more variables to
the same register. It does this if the code does not use the variables
at the same time. In this example, the compiler could place i and j
in the same register:

short i;
int j;

for (i=0; i<100; i++) { MyFunc(i); }
for (j=0; j<100; j++) { MyFunc(j); }

However, if a line of code like the one below appears anywhere in
the function, the compiler would realize that you are using i and j
at the same time, and place them in different registers.

MyFunc (i + j);

Register allocation reduces code size and has no effect on execution
time.

If register allocation is on while you debug your code, it may appear
as though there’s something wrong with the variables that share a
single register. In the example above, i and j would always have
the same value. When i changes, j changes in the same way, and
vice versa.

Register allocation is activated from the SH Processor panel by se-
lecting optimization level 1. Because it can affect debugging, we rec-
Targeting Dreamcast SGA–69

C and C++ for Dreamcast
Optimizing Code for Dreamcast
ommend you use optimization level 0 when compiling your debug
targets.

Loop Invariant Code Motion

This optimization moves computations that don’t change on the in-
side of the loop. They are moved to the outside of the loop to im-
prove the loop’s speed. With this option, your object code is faster.

Dead Code Elimination

The compiler removes statements that logically can never be exe-
cuted, or statements that are never referred to by other statements.
The result is that your object code is smaller.

Dead Store Elimination

Removes assignments to a variable if the variable is not used before
being reassigned again. With this option on, object code is smaller
and faster.

Common Sub-Expression Elimination

The compiler replaces similar redundant expressions with a single
expression. For example, if two consecutive statements both use the
expression a * b * c + 10 , the compiler generates object code
that computers the expression only once, and applies the resulting
value to both statements.

With this optimization, your object code is smaller and faster.

Instruction Scheduling

The compiler uses the instruction scheduling optimization to increase
the speed of execution. When possible, this optimization rearranges
processor instructions so that the execution of one instruction
doesn’t delay the execution of others.
SGA–70 Targeting Dreamcast

C and C++ for Dreamcast
Optimizing Code for Dreamcast
Delay-slot Filling

Delay-slot filling is an optimization used by the compiler to fill in the
delay-slot of delay-slot instructions. As an example, take the follow-
ing sequence:

JSR
NOP

JSR is a delay-slot instruction, but in this case its delay-slot is inac-
tive. You could take advantage of its delay-slot feature by adding an
instruction after JSR.

JSR
instruction

When delay-slot filling is active, instruction will be placed in the
delay-slot of the JSR instruction. The instruction in the delay-slot
will be executed before the JSR.

Copy and Expression Propogation

Replaces multiple occurences of one variable with a single occur-
rence. With this option on, object code is smaller and faster.

Peephole Optimization

Applies local optimizations to small sections of your code. With this
option, the optimized sections of code are faster.

Strength Reduction

Replaces multiplication instructions that are inside loops with addi-
tion instructions to speed up the loop. With this option, object code
is larger, but executes faster.

Lifetime Based Register Allocation

Uses the same processor register for different variables in the same
routine if the variables aren’t used in the same statement. With this
option on, object code executes faster.
Targeting Dreamcast SGA–71

C and C++ for Dreamcast
Pragmas for Dreamcast
Loop Unrolling

The compiler performs loop unrolling when the optimization level
is set to Level 3 or Level 4. The unrolling factor is set to 2. As long as
the loop does not have more than 20 instructions, the loop will be
unrolled.

To disable loop unrolling , add the following pragma to your
source code:

#pragma opt_unroll_loops off

Pragmas for Dreamcast
The pragmas supported by the CodeWarrior for Dreamcast com-
piler are defined in the C Compilers Reference. A PDF version of this
manual is located in your CodeWarrior Documentation folder.

Table 10.4 lists some of the pragmas that are not supported for
Dreamcast development.

Table 10.4 Pragmas not supported for Dreamcast

Linker Issues for Dreamcast
This section discusses the background information on the Dream-
cast linker and how it works. The topics in this section are:

• Linker Command File

• Deadstripping Unused Code and Data

code_seg define_section disable_registers

interrrupt longlong longlong_enums

no_register_coloring peephole register_coloring

scheduling section stack_cleanup

use_fp_instructions
SGA–72 Targeting Dreamcast

C and C++ for Dreamcast
Linker Issues for Dreamcast
• Link Order

Linker Command File

When the Section Mappings panel does not give you enough con-
trol over the link process, you can use a linker command file (LCF).
This file must be included as part of your project. The linker com-
mand file defines the arrangment of your program and data sec-
tions.

The CodeWarrior linker supports the features listed here. Optional
parameters are indicated by square brackets, '[' and ']'. If there are
variables to be defined, these are indicated by italic text.

• Comments

• Assignments

• Location Counter

• Symbols

• Arithmetic operations

• Alignment

• $segment directive

• $include directive

• $output_name directive

You can use these features in your linker command file. For an ex-
ample linker command file that uses all these constructs, please see
Listing 10.3 on page 77

Comments

You may add comments by using the pound sign, '#'. Characters ap-
pearing to the right of the pound sign will be ignored by the parser.
The following are valid comments:

This is a one-line comments
.data # This is a partial-line comment
Targeting Dreamcast SGA–73

C and C++ for Dreamcast
Linker Issues for Dreamcast
Assignments

You can create global symbols and assign addresses to them using
the standard assignment operator as shown:

_symbolicname = expression ;

A semicolon is required at the end of an assignment statement. An
assignment may only be used at the start of an expression. The fol-
lowing assignment is illegal:

_sym1 + _sym2 = _sym3; #illegal

Location Counter

The period character, '.', always maintains the current position of
the output location. Since the period always refers to a location in a
section, it must always appear within a $section statement.

The period character may appear anywhere that a symbol is al-
lowed. Listing 10.1 is an example of using the location counter.

Listing 10.1 Usage of location counter

$segment DATA 0x30000000 LENGTH 0 R
{
 _start_data =.;
#_start_data now contains the starting address of .data

 .data
 _end_data = .;
#_end_data now contains the address just past the end of .data
}

Symbols

All symbols defined in the linker command file must begin with an
underscore and be defined inside a segment.

_start_data = .;
_address = 0x2544000;
SGA–74 Targeting Dreamcast

C and C++ for Dreamcast
Linker Issues for Dreamcast
Arithmetic operations

You may use standard C arithmetic operators. All operators are left-
associative. For more information on C arithmetic operators, refer to
the C Compilers Reference.

_sizeof_data = _end_data - (_start_data);

Alignment

You can force alignment in the linker command file with the ALIGN
command. The section group directly after the ALIGN command is
affected.

ALIGN (0X8)
*(.data)

$segment directive

Description Defines segment boundaries and contents.

Prototype $segment name [baseaddress] [LENGTH length] [R]
{
symbols and sections go here
}

Remarks An unspecified base address implies that you want the segment to
be placed immediately following the last segment. It will be prop-
erly aligned. For unlimited segment length, use a length of 0. The R
option will process the section for ROM.

Examples of usage is given in Listing 10.2.
Targeting Dreamcast SGA–75

C and C++ for Dreamcast
Linker Issues for Dreamcast
Listing 10.2 Examples of $segment usage

The following segment has a base address of 0x2F001050 and a
maximum length of 0xC000. The linker will give an error if it
is larger.
$segment CODE 0x2F001050 LENGTH 0xC000
{
.text from all files will be mapped to this segment
 *(.text)
}
###
The following segment has no maximum length, and will be
processed for ROM.

$segment DATA 0x30000000 LENGTH 0 R
{
.data from all files will be mapped to this segment
 *(.data)
}
##
The following segment will have the address immediately
following the last
segment (properly aligned). It will also have unlimited length
size, since the length is not indicated.

$segment BSS
{
.data from the foo.c will be remapped to this segment
 foo.c(.data)
}

SGA–76 Targeting Dreamcast

C and C++ for Dreamcast
Linker Issues for Dreamcast
$include directive

Description Force a symbol or section into closure.

Prototype $include
{
 _my_unreferenced_function_name
 .myunreferencedsection
}

Remarks Using $include prevents the linker from deadstripping a symbol
or section that is not directly referenced.

$output_name directive

Description Change the name of the output file without changing the file name
extension.

Prototype $output_name
{
 my_output_name
}

Listing 10.3 A model linker command file

This is a comment. 18/2/99

The following segment will have a base address
of 0x2f001050 and a maximum length of 0xC000.
The linker will emit an error if it is larger.

$segment CODE 0x2f001050 LENGTH 0xC000
{

.text from all files will be mapped to this segment.

*(.text)

The following symbol, _my_stack_symbol, is being assigned
to the value of a symbol, __stack_begin, generated internally by
Targeting Dreamcast SGA–77

C and C++ for Dreamcast
Linker Issues for Dreamcast
the linker. This can be useful for porting code when they
use a symbol that is different from the one generated by our
linkers.
Note: not all of the linkers use "__SP_INIT" for the stack
pointer.

_my_stack_symbol = __stack_begin;
}

The following segment will have a base address of
0x30000000 and an unlimited length. A length of
zero or no length indicates this. It will also be
processed for ROM.

$segment DATA 0x30000000 LENGTH 0 R
{

All symbols defined in the command file must begin with
an underscore and must be defined inside a segment.

The following symbol will be assigned to the value of the
base address of the .data section group if it exists, assignment
to '.' means position in the output:

_begin_data = .;

This will force the next section group encountered to an 8 byte
alignment.

ALIGN(0x8)

*(.data)

The following symbol will be assigned to the address immediately
following the last byte of the .data section group since there
are no section groups following it:

_end_data = .;

Arithmetic operations are allowed:
SGA–78 Targeting Dreamcast

C and C++ for Dreamcast
Linker Issues for Dreamcast
_sizeof_data = _end_data - (_begin_data);
}

The following segment will have the address immediately
following the last segment (properly aligned). It will
also have unlimited size since the length is not indicated.

$segment BSS
{

*(.bss)
}

$segment FOO_DATA
{

.data from foo.c will be mapped to this segment. This overrides
the previous mapping *(.data) in segment DATA for .data from
foo.c
only.

foo.c(.data)
}

The following symbols will be forced into closure. If
it is a section group name, all sections of that name will
forced into closure. Useful for symbols and sections that
are not directly referenced.

$include
{

_my_unreferenced_function_name
.myunreferencedsection

The following must be done if the sections were mapped from
specific file
to a segment (e.g. .data in foo.c).

.data_foo.c
}

Targeting Dreamcast SGA–79

C and C++ for Dreamcast
Linker Issues for Dreamcast
The output file names will be changed to the following
entry, extensions will remain the same.
$ouput_name
{

my_output_name
}

Deadstripping Unused Code and Data

The Shinobi libraries and libraries built with the CodeWarrior C/
C++ compiler only contribute the used objects to the linked pro-
gram. If a library has assembly or other C/C++ compiler built files,
only those files that have at least one referenced object contribute to
the linked program. Completely unreferenced object files are al-
ways ignored.

The Dreamcast linker deadstrips unused code and data from files
compiled by the CodeWarrior C/C++ compiler. Other assembler re-
locatable files and C/C++ object files built by other compilers are
not deadstripped.

If you have unreferenced sections of code or data that must be kept
in the final application, you may use the $include directive di-
rective of the linker command file to prevent the linker from dead-
stripping those unreferenced sections. For more information about
the $include directive and others, see “Linker Command File” on
page 73. You can also set the Do No Deadstrip option in the SH
Linker preferences panel. For a description of this panel, see “SH
Linker” on page 61.

Link Order

Link order is generally specified in the Link Order view of the
Project window. For general information on setting link order, see
the IDE User Guide.

The link order of the libraries is very important. The default statio-
nery is set up with the correct link order for the libraries. If you are
SGA–80 Targeting Dreamcast

C and C++ for Dreamcast
C++ issues for Dreamcast
not using the stationery, please make sure that the libraries are
linked in this exact order:

strt1.obj.elf
strt2.obj.elf
systemid.obj.elf
toc.obj.elf
sg_sec.obj.elf
sg_arejp.obj.elf
sg_areus.obj.elf
sg_areec.obj.elf
sg_are00.obj.elf
sg_are01.obj.elf
sg_are02.obj.elf
sg_are03.obj.elf
sg_are04.obj.elf
sg_ini.obj.elf
aip.obj.elf
zero.obj.elf

Place other libraries and your source files after the listed libraries.

The Dreamcast linker ignores executable files that are in the project.
You may find it convenient to keep the executable there so that you
can disassemble it. If a build is successful, the file will show up in
the project as out of date (there will be a check mark in the touch
column on the left side of the project window) because it is a new
file. If a build is unsuccessful, the IDE won’ t be able to find the exe-
cutable file and will stop the build with an appropriate message.

C++ issues for Dreamcast
To access the standard C++ libraries, you can add the
MSLCppDC.lib library to your project. This is our standard C++ li-
brary.

We support C++ fully in this release, with the following exceptions:

• defining member templates / nested class template members
outside of the template definition
Targeting Dreamcast SGA–81

C and C++ for Dreamcast
C++ issues for Dreamcast
• member template conversion functions

• member template friends

• template template arguments

• 'exported' templates

• there is no support for exceptions in this release

• there is no support for stream classes.

• there is no support for IO.
SGA–82 Targeting Dreamcast

11
Inline Assembler
and Intrinsics for
Dreamcast
This chapter describes support for inline assembly language pro-
gramming built into the CodeWarrior compiler. For more informa-
tion on Dreamcast assembly instructions, refer to the hardware
manual of the SH processor.

The sections in this chapter are:

• Working with Inline Assembly

• Assembler Directives

• Intrinsic Functions

• Mnemonics for Inline Assembly

Working with Inline Assembly
This section describes how to use the compiler’s built-in support for
assembly language programming.

The topics in this section include:

• Inline Assembler Syntax

• Using Labels

• Using Comments

• Using Registers
Targeting Dreamcast SGA–83

In l ine Assembler and Intr insics for Dreamcast
Working with Inline Assembly
Inline Assembler Syntax

There are two ways to add assembly language statements to a C or
C++ source code file.

The first method is shown in Listing 11.1. This method uses the asm
qualifier to specify that all statements in a function are in assembly
language. You may define local variables in functions defined with
the asm qualifier.

Listing 11.1 Defining a function with asm

asm int MyAsmFunction (void)
{
 /* Local variable definitions */
 /* Assembly language instructions */
}

The second method is shown in Listing 11.2. This method uses the
asm qualifier as a statement to provide “inline” assembly language
instructions.

In other words, assembly language statements and regular C/C++
statements can be combined within the same function definition.
However, the inline asm statements are not allowed to reference
that function’s local variables.

Listing 11.2 Inline assembly with asm

int MyInlineAsmFunction(void)
{
 /* Local variable definitions and C/C++ statements */
 asm { /* Assembly language instructions */ }
 /* Local variable definitions and C/C++ and asm {} statements
*/
}

To ensure that the C/C++ compiler recognizes the asm keyword,
you must turn off the ANSI Keywords Only option in the C/C++
SGA–84 Targeting Dreamcast

In l ine Assembler and Intr insics for Dreamcast
Working with Inline Assembly
language settings panel. This panel and its options are fully de-
scribed in the C Compilers Reference.

The built-in assembler supports all the standard SH assembler in-
structions.
Targeting Dreamcast SGA–85

In l ine Assembler and Intr insics for Dreamcast
Working with Inline Assembly
TIP: To enter a few lines of assembly language code within a
single function, you can use the compiler’s support for intrinsic
functions instead of inline assembler. See “Intrinsic Functions” on
page 90.

Keep these points in mind as you write assembly functions:

• Some optimizations may be performed on assembly lan-
guage functions and functions that contain asm blocks. This
depends on your compiler optimization setting. For informa-
tion on setting the optimization level, see “Global Optimiza-
tions” on page 58.

You may suppress assembly optimizations by using the ..set
noreorder directive. For information on the .set directive, see
“.set” on page 89.

• All statements must either be a label, like this:

[LocalLabel:]

or be an instruction, like this:

((instruction \ directive) [operands])

• Each statement must end with a newline.

• The compiler will not recognize variables that are initialized
inside blocks of inline assembly.

• Assembler directives, instructions, and registers are case-sen-
sitive and must be in uppercase. For example, these two
statements are different:

 ADD R2, R4 // OK
 add r2, r4 // ERROR

• Hex constants must be in C-Style.

 0x123ABC // OK
 $123ABC // ERROR
 H'123ABC // ERROR
SGA–86 Targeting Dreamcast

In l ine Assembler and Intr insics for Dreamcast
Working with Inline Assembly
Using Labels

A label can be any identifier that you have not already declared as a
local variable. A label must end with a colon. An instruction cannot
follow a label on the same line. Take the following as an illustration:

x1: ADD R2,R3 // ERROR
x2: // OK
 ADD R2,R3 // OK

Listing 11.3 Example of Using Labels

extern void foo(void);

int foo() {
 asm
 {
 MOVA foo_addr, R0;
foo_addr:
 .data.w 0;
 .data.l foo;
 }
}

Using Comments

You can use C and C++ comments, but you cannot use a semicolon
';' to denote a comment. For example:

 ADD R2,R4 // OK
 ADD R2,R4 /* OK */
 ADD R2,R4 ; ERROR

Using Registers

In Listing 11.4, we see three assembly statements embedded within
a function. To reference 'i' directly from the inline assembly state-
ment, we type the variable as a register .
Targeting Dreamcast SGA–87

In l ine Assembler and Intr insics for Dreamcast
Working with Inline Assembly
Listing 11.4 Example of using registers

int foo3(int register i){
 asm{
 MOV i,R1;
 ADD 1, R1;
 MOV R1, R4;
 }
 return i;
}

Status Register

The status register can be read and set through inline assembly. See
Listing 11.5 for an example.

Listing 11.5 Example of using the status register

/* Get status register */
static inline unsigned int get_sr(void)
{
 register unsigned int sr = 0;

 asm
 {
 STC SR, sr
 };
 return sr;
}
/* Set status register */
static inline void set_sr(unsigned int sr)
{
 register int value = sr;

 asm
 {
 LDC value, SR
 };
}

SGA–88 Targeting Dreamcast

In l ine Assembler and Intr insics for Dreamcast
Assembler Directives
Assembler Directives
At the time of this writing, there are two directives specific to
Dreamcast assembler.

.set

Prototype .set [reorder | noreorder]

If you use the reorder option, the assembler uses instruction sched-
uling to improve performance. This optimization reorders processor
instructions so that the execution of one instruction doesn’t delay
the execution of others.

The optimization level determines the default setting of .set . At
optimization levels of 0 and 1, the default is .set noreorder . At
other optimization levels, the default is .set reorder . For more
information on setting your optimization level, see “Global Optimi-
zations” on page 58.

The example shown in Listing 11.6 computes x + y in the delay-
slot for the call to foo() . Because we are purposefully putting the
ADD instruction after the JSR instruction, we use .set noreorder
to tell the compiler not to change our instruction sequence.

Listing 11.6 .set example

 asm int ADD (int x, int y)
 {
 .set noreorder
 // y = x + y
 // call foo
 MOV.L foo, R0;
 JSR @R0;
 // return x + y;
 ADD R4, R5;
 MOV R5, R0;
 }
Targeting Dreamcast SGA–89

In l ine Assembler and Intr insics for Dreamcast
Intrinsic Functions
.frame

Prototype .frame

The .frame directive generates the epilogue and prologue for the
creation of a stack frame. You could create the stack frame yourself
using inline assembly instructions, but using .frame is easier. You
must create a stack frame if the function:

• calls other functions

• declares local variables

Listing shows the syntax of .frame. Note that we have commented
out the RTS instruction. If you use .frame, the compiler generates
the RTS automatically.

Listing 11.7 .frame example

 asm int foo()
 {
 .frame
 MOV 12, R0;
 // RTS;
 ADD 1, R0;
 }

Intrinsic Functions
The compiler provides intrinsic functions that can generate inline
assembly instructions. These intrinsic functions execute faster than
other functions, because the compiler translates them into inline as-
sembly instructions. Rather than using inline assembly syntax and
specifying opcodes in an asm block, you may find it more conve-
nient to call an intrinsic functions that matches what you want to
do.
SGA–90 Targeting Dreamcast

In l ine Assembler and Intr insics for Dreamcast
Intrinsic Functions
NOTE: Support for instrinsic functions is not part of the ANSI C
or C++ standards. They are an extension provided by the
CodeWarrior compiler.

When the compiler encounters the intrinsic function in your source
code, it immediately substitutes the assembly instruction or instruc-
tions that match your function call. As a result, no actual function
call occurs in the final object code. The final code contains the as-
sembly language instructions that correspond to the intrinsic func-
tions.

The topics in this section are:

• List of Intrinsic Functions

List of Intrinsic Functions

The compiler has support for the following intrinsic functions:

• __abs

• __labs

• __fabs

• __fsqrt

• __alloca

• __memcpy

Function __abs

Description Intrinsic for absolute value

Example int Intrinsic_abs (int i)
{
 int j;
 j = __abs(i);
 return j;
}

Targeting Dreamcast SGA–91

In l ine Assembler and Intr insics for Dreamcast
Intrinsic Functions
Function __labs

Description Intrinsic for long absolute value

Example long Intrinsic_labs (long i)
{
 long j;
 j = __labs(i);
 return j;
}

Function __fabs

Description Intrinsic for floating point absolute value

Example double Intrinsic_fabs (double i)
{
 double j;
 j = __fabs(i);
 return j;
}

Function __fsqrt

Description Intrinsic for square root

Example float Intrinsic_fsqrt (float i)
{
 float j;
 j = __fsqrt(i);
 return j;
}

SGA–92 Targeting Dreamcast

In l ine Assembler and Intr insics for Dreamcast
Mnemonics for Inline Assembly
Function __alloca

Description Intrinsic for dynamic stack allocation

Example void Intrinsic_alloca(void)
{
 int i;
 short *x = (short
*)__alloca(1024*sizeof(short));
 for (i = 0; i < 1024; i++) x[i] = i;
}

Function __memcpy

Description Intrinsic for memory copy

Example typedef struct s
{
 int i1;
 int i2;
 int i3;
}
 s;

s s1;
s s2;

void Intrinsic_memcpy(s si)
{
 s2 = si;
 __memcpy(&s1, &si, sizeof(s));
}

Mnemonics for Inline Assembly
The instructions for inline assembly are a little bit different than
those for regular assembly.

• Special Instructions for Inline Assembly
Targeting Dreamcast SGA–93

In l ine Assembler and Intr insics for Dreamcast
Mnemonics for Inline Assembly
• Complete List of Inline Assembly Mnemonics

Special Instructions for Inline Assembly

These are special instructions for inline assembly. The following in-
structions are expanded by the compiler into a sequence of machine
instructions. They are presented in the form:

"mnemonic", "format"

Move a constant into Rn.
"MOV.L", "w,Rn"

Load effective address of label
"MOVA", "l,=R0"

Load from constant pool
"MOV.L", "l,Rn"

Inline assembly directive
"_set", ""
"_unset", ""

Embedding Data Within Code Streams

Use the following inline instructions to embed data within code
streams.

".data.b" "u"
".data.w" "v"
".data.l" "w"

Special Instructions Example

If you are unsure of how these instructions might be used, look at
Listing 11.8 for an example. Here, we use the special MOV.L instruc-
tion to load the constant 12345678 into R1.

Listing 11.8 Example of using special instructions

asm int foo1() {
 MOV.L 12345678,R1;
 RTS;
SGA–94 Targeting Dreamcast

In l ine Assembler and Intr insics for Dreamcast
Mnemonics for Inline Assembly
 NOP;
}

The compiler actually expands the special instruction into the ma-
chine instructions shown in Listing 11.9.

Listing 11.9 Compiler expansion of the special instruction

 _foo4:
0xD101 mov.l @(4,pc),r1
0x000B rts
0x0009 nop
0x0000 .data.w 0x0000
0x614E .data.w 0x614E
0x00BC .data.w 0x00BC

If you do not use this special instruction, you become responsible
for computing the displacement and alignment to access the con-
stant that is embedded in the code. Without the special instruction,
you would have to write code that resembles Listing 11.10. Note
that in the MOV.L instruction below, the displacement is multiplied
by the compiler by a factor that is the same as the size of the data
being accessed (in our case, this is 4 for a long).

Listing 11.10 Alternative to using the special instruction

asm int foo2() {
 MOV.L @(1,PC), R0;
 RTS;
 NOP;
 .data.w 0;
 .data.l 12345678;
}

Complete List of Inline Assembly Mnemonics

Table 11.1 lists the inline assembly instructions supported by our
compiler. They are similar to the regular assembler instructions, but
Targeting Dreamcast SGA–95

In l ine Assembler and Intr insics for Dreamcast
Mnemonics for Inline Assembly
'/' characters have changed to '_'. The instructions that we do not
support in inline assembly are greyed out and marked as unsup-
ported.

Table 11.1 List of Inline Assembler Mnemonics

Mnemonic Format Support

"ADD" "i,Rn"

"ADD" "Rm,Rn"

"ADDC" "Rm,Rn"

"ADDV" "Rm,Rn"

"AND" "i,R0"

"AND" "Rm,Rn"

"AND.B" "i,@(R0,GBR)" unsupported

"BF" "l"

"BF_S" "l"

"BRA" "m"

"BRAF" "Rn"

"BSR" "m" unsupported

"BSRF" "Rn"

"BT" "l"

"BT_S" "l"

"CLRMAC" ""

"CLRS" ""

"CLRT" ""

"CMP_EQ" "i,R0"

"CMP_EQ" "Rm,Rn"

"CMP_GE" "Rm,Rn"
SGA–96 Targeting Dreamcast

In l ine Assembler and Intr insics for Dreamcast
Mnemonics for Inline Assembly
"CMP_GT" "Rm,Rn"

"CMP_HI" "Rm,Rn"

"CMP_HS" "Rm,Rn"

"CMP_PL" "Rn"

"CMP_PZ" "Rn"

"CMP_STR" "Rm,Rn"

"DIV0S" "Rm,Rn"

"DIV0U" ""

"DIV1" "Rm,Rn"

"DMULS.L" "Rm,Rn"

"DMULU.L" "Rm,Rn"

"DT" "Rn"

"EXTS.B" "Rm,Rn"

"EXTS.W" "Rm,Rn"

"EXTU.B" "Rm,Rn"

"EXTU.W" "Rm,Rn"

"FABS" "Fn"

"FADD" "Fm,Fn"

"FCMP_EQ" "Fm,Fn"

"FCMP_GT" "Fm,Fn"

"FCNVDS" "Fn"

"FCNVSD" "Fn"

"FDIV" "Fm,Fn"

"FIPR" "FVm,FVn" unsupported

Mnemonic Format Support
Targeting Dreamcast SGA–97

In l ine Assembler and Intr insics for Dreamcast
Mnemonics for Inline Assembly
"FLDI0" "Fn"

"FLDI1" "Fn"

"FLDS" "Fn"

"FLOAT" "Fn"

"FMAC" "F0,Fm,Fn"

"FMOV" "Fm,Fn"

"FMOV.S" "Fm,@Rn"

"FMOV.S" "@Rm,Fn"

"FMOV.S" "@Rm+,Fn"

"FMOV.S" "Fm,@-Rn"

"FMOV.S" "@(R0,Rm),Fn"

"FMOV.S" "Fm,@(R0,Rn)"

"FMOV" "Xm,@Rn" unsupported

"FMOV" "@Rm,Xn" unsupported

"FMOV" "@Rm+,Xn" unsupported

"FMOV" "Xm,@-Rn" unsupported

"FMOV" "@(R0,Rm),Xn" unsupported

"FMOV" "Xm,@(R0,Rn)" unsupported

"FMOV" "Xm,Xn" unsupported

"FMOV" "Xm,Dn" unsupported

"FMOV" "Dm,Xn" unsupported

"FMUL" "Fm,Fn"

"FNEG" "Fn"

"FRCHG" ""

Mnemonic Format Support
SGA–98 Targeting Dreamcast

In l ine Assembler and Intr insics for Dreamcast
Mnemonics for Inline Assembly
"FSCHG" ""

"FSQRT" "Fn"

"FSTS" "Fn"

"FSUB" "Fm,Fn"

"FTRC" "Fn"

"FTRV" "XM,FVn" unsupported

"JMP" "@Rn"

"JSR" "@Rn" unsupported

"LDC" "Rn,GBR" unsupported

"LDC" "Rn,SR"

"LDC" "Rn,VBR"

"LDC" "Rn,SSR"

"LDC" "Rn,SPC"

"LDC" "Rn,DBR"

"LDC" "Rn,Rb" unsupported

"LDC.L" "@Rn+,GBR" unsupported

"LDC.L" "@Rn+,SR"

"LDC.L" "@Rn+,VBR"

"LDC.L" "@Rn+,SSR"

"LDC.L" "@Rn+,SPC"

"LDC.L" "@Rn+,DBR"

"LDC.L" "@Rn+,Rb" unsupported

"LDS" "Rn,FPSCR"

"LDS" "Rn,MACH"

Mnemonic Format Support
Targeting Dreamcast SGA–99

In l ine Assembler and Intr insics for Dreamcast
Mnemonics for Inline Assembly
"LDS" "Rn,MACL"

"LDS" "Rn,PR"

"LDS" "Rn,FPUL"

"LDS.L" "@Rn+,FPSCR"

"LDS.L" "@Rn+,MACH"

"LDS.L" "@Rn+,MACL"

"LDS.L" "@Rn+,PR"

"LDS.L" "@Rn+,FPUL"

"LDTLB" ""

"MAC.L" "@Rm+,@Rn+"

"MAC.W" "@Rm+,@Rn+"

"MOV" "i,Rn"

"MOV" "Rm,Rn"

"MOV.B" "@(d8,GBR),R0" unsupported

"MOV.B" "@(d4,Rm),R0"

"MOV.B" "@(R0,Rm),Rn"

"MOV.B" "@Rm+,Rn"

"MOV.B" "@Rm,Rn"

"MOV.B" "R0,@(d8,GBR)" unsupported

"MOV.B" "R0,@(d4,Rm)"

"MOV.B" "Rm,@(R0,Rn)"

"MOV.B" "Rm,@-Rn"

"MOV.B" "Rm,@Rn"

"MOV.W" "@(d8,GBR),R0" unsupported

Mnemonic Format Support
SGA–100 Targeting Dreamcast

In l ine Assembler and Intr insics for Dreamcast
Mnemonics for Inline Assembly
"MOV.W" "@(d8,PC),Rn" unsupported

"MOV.W" "@(d4,Rm),R0"

"MOV.W" "@(R0,Rm),Rn"

"MOV.W" "@Rm+,Rn"

"MOV.W" "@Rm,Rn"

"MOV.W" "R0,@(d8,GBR)" unsupported

"MOV.W" "R0,@(d4,Rm)"

"MOV.W" "Rm,@(R0,Rn)"

"MOV.W" "Rm,@-Rn"

"MOV.W" "Rm,@Rn"

"MOV.L" "@(d8,GBR),R0" unsupported

"MOV.L" "@(d8,PC),Rn"

"MOV.L" "@(d4,Rm),Rn"

"MOV.L" "@(R0,Rm),Rn"

"MOV.L" "@Rm+,Rn"

"MOV.L" "@Rm,Rn"

"MOV.L" "R0,@(d8,GBR)" unsupported

"MOV.L" "Rm,@(d4,Rn)"

"MOV.L" "Rm,@(R0,Rn)"

"MOV.L" "Rm,@-Rn"

"MOV.L" "Rm,@Rn"

"MOVA" "@(d8,PC),R0"

"MOVA" <label>,R0

"MOVCA.L" "@R0,@Rn"

Mnemonic Format Support
Targeting Dreamcast SGA–101

In l ine Assembler and Intr insics for Dreamcast
Mnemonics for Inline Assembly
"MOVT" "Rn"

"MUL.L" "Rm,Rn"

"MULS.W" "Rm,Rn"

"MULU.W" "Rm,Rn"

"NEG" "Rm,Rn"

"NEGC" "Rm,Rn"

"NOP" ""

"NOT" "Rm,Rn"

"OCBI" "@Rn"

"OCBP" "@Rn"

"OCBWB" "@Rn"

"OR" "i,R0"

"OR" "Rm,Rn"

"OR.B" "i,@(R0,GBR)" unsupported

"PREF" "@Rn"

"ROTCL" "Rn"

"ROTCR" "Rn"

"ROTL" "Rn"

"ROTR" "Rn"

"RTE" ""

"RTS" ""

"SETS" ""

"SETT" ""

"SHAD" "Rm,Rn"

Mnemonic Format Support
SGA–102 Targeting Dreamcast

In l ine Assembler and Intr insics for Dreamcast
Mnemonics for Inline Assembly
"SHAL" "Rn"

"SHAR" "Rn"

"SHLD" "Rm,Rn"

"SHLL" "Rn"

"SHLL2" "Rn"

"SHLL8" "Rn"

"SHLL16" "Rn"

"SHLR" "Rn"

"SHLR2" "Rn"

"SHLR8" "Rn"

"SHLR16" "Rn"

"SLEEP" ""

"STC" "GBR,=Rn" unsupported

"STC" "SR,=Rn"

"STC" "VBR,=Rn"

"STC" "SSR,=Rn"

"STC" "SPC,=Rn"

"STC" "DBR,=Rn"

"STC" "Rb,=Rn" unsupported

"STC.L" "G,@Rn+" unsupported

"STC.L" "SR,@Rn+"

"STC.L" "VBR,@Rn+"

"STC.L" "SSR,@Rn+"

"STC.L" "SPC,@Rn+"

Mnemonic Format Support
Targeting Dreamcast SGA–103

In l ine Assembler and Intr insics for Dreamcast
Mnemonics for Inline Assembly
"STC.L" "DBR,@Rn+"

"STC.L" "Rb,@Rn+" unsupported

"STS" "FPSCR,Rn"

"STS" "MACH,Rn"

"STS" "MACL,Rn"

"STS" "PR,Rn"

"STS" "FPUL,Rn"

"STS.L" "FPSCR,@-Rn"

"STS.L" "MACH,@-Rn"

"STS.L" "MACL,@-Rn"

"STS.L" "PR,@-Rn"

"STS.L" "FPUL,@-Rn"

"SUB" "Rm,Rn"

"SUBC" "Rm,Rn"

"SUBV" "Rm,Rn"

"SWAP.B" "Rm,Rn"

"SWAP.W" "Rm,Rn"

"TAS.B" "@Rn"

"TRAPA" "i"

"TST" "i,R0"

"TST" "Rm,Rn"

"TST.B" "i,@(R0,GBR)" unsupported

"XOR" "i,R0"

"XOR" "Rm,Rn"

Mnemonic Format Support
SGA–104 Targeting Dreamcast

In l ine Assembler and Intr insics for Dreamcast
Mnemonics for Inline Assembly
"XOR.B" "i,@(R0,GBR)" unsupported

"XTRCT" "Rm,Rn"

Mnemonic Format Support
Targeting Dreamcast SGA–105

In l ine Assembler and Intr insics for Dreamcast
Mnemonics for Inline Assembly
SGA–106 Targeting Dreamcast

12
Libraries and
Runtime Code for
Dreamcast
Metrowerks provides a variety of libraries for use with the
CodeWarrior development environment. They include ANSI-
standard libraries for C and C++, as well as runtime libraries and
other code. This chapter discusses how to use these libraries for
Dreamcast development.

The sections in this chapter are:

• Runtime Libraries for Dreamcast

• Allocating Memory and Heaps for Dreamcast

Runtime Libraries for Dreamcast
You may need to include the following runtime libraries in your
project.

The following are the same runtime libraries that ship with the
Dreamcast SDK, but they have been converted for use with
CodeWarrior:

'nindows.elf.lib'
'ninja.elf.lib'
'shinobi.elf.lib'
'sh4nlfzz.elf.lib'

The following runtime library is required by CodeWarrior:
'MSLRuntimeDC.lib'

The following library is required to use C++ standard libraries:
'MSLCppDC.lib'
Targeting Dreamcast SGA–107

Librar ies and Runt ime Code for Dreamcast
Allocating Memory and Heaps for Dreamcast
The following library is required for using printf() functions:
'mw output.lib'

Allocating Memory and Heaps for Dreamcast
Please note that the heap and stack size are specified by the Dream-
cast SDK libraries. You cannot specify heap or stack from the SH
Linker settings panel.
SGA–108 Targeting Dreamcast

13
Troubleshooting for
Dreamcast
This chapter gives you a quick reference point for common prob-
lems (and their solutions) when using CodeWarrior for Dreamcast
development. This should be the first place you look before contact-
ing CodeWarrior support.

• Hardware Communications

• Compiler Problems

• Debugger Problems

Hardware Communications
This section describes possible solutions to communications prob-
lems between your host computer and your HKT-01.

CodeWarrior fails to recognize the HKT-01 hardware.

Problem: CodeWarrior can’t communicate with the HKT-01.

Background: The HKT-01 is a SCSI device. If the HKT-01 is not turned on when
the operating system starts, it will not be recognized.

Solution: Turn on the HKT-01 and reboot your computer.

Codescape asks you to update your SCSI driver.

Problem: Your SCSI driver is too old for Codescape to use.

Background: Codescape needs the latest version of the Adaptec SCSI driver.
Targeting Dreamcast SGA–109

Troubleshoot ing for Dreamcast
Compiler Problems
Solution: Download the latest version of the SCSI driver from the Adaptec
website: http://www.adaptec.com

Compiler Problems
This section provides possible solutions to problems you may en
counter in using the compiler.

Error ‘@5’ could not be assigned to a register

Problem: The compiler is rejecting your inline assembly statements when
your global optimization setting is set to 0.

Background: The compiler does not use the virtual register allocator at optimiza-
tion level 0. Therefore, it is possible that when the inline assembly
routines are compiled, there are no more real registers available. .

Solution: You can set inlining to Don’t Inline in the C/C++ language settings,
or you can set the optimization level to Level 1 or higher.

Debugger Problems
This section provides possible solutions to problems you may en-
counter during debugging.

Programs with GDROM data files do not run

Problem: The debugger cannot find your data files.

Background: Data files that are meant to be spooled from the GDROM are loaded
via GD Workshop, not the CodeWarrior debugger.

Solution: Use GD Workshop to emulate the GDROM device.
SGA–110 Targeting Dreamcast

	CodeWarrior Targeting Dreamcast
	Introduction
	Read the Release Notes!
	CodeWarrior and Its Documentation
	What’s in This Manual
	Where To Go from Here

	Getting Started
	System Requirements
	Installing CodeWarrior for Dreamcast
	Installing the CodeWarrior for Dreamcast Software
	Installing the Dreamcast Runtime Library
	Making Sure Your Dreamcast Development System Works

	The Dreamcast Tools
	Introduction to the Dreamcast Tools
	CodeWarrior IDE
	CodeWarrior Compiler for Dreamcast
	CodeWarrior Assembler for Dreamcast
	CodeWarrior Linker for Dreamcast
	CodeWarrior Debugger for Dreamcast
	Codescape Debugger for Dreamcast

	The Development Process with CodeWarrior

	Creating Applications
	Creating an Application
	Building a .bin ﬁle from Metrowerks.

	Creating Static Libraries
	About Static Libraries
	Creating a Static Library

	Converting SH Projects
	Steps for Converting SH Projects

	Debugging For Dreamcast
	Debugging with CodeWarrior
	Using printf()
	Debugging Static Libraries

	Debugging With Codescape
	Debugging with the Codescape debugger
	Using printf()

	Target Settings for Dreamcast
	Target Settings Overview
	Settings Panels for Dreamcast
	Target Settings
	SH Target
	SH Processor
	Global Optimizations
	Section Mappings
	SH Linker
	Debugger Settings

	C and C++ for Dreamcast
	Number Formats for Dreamcast
	Dreamcast Integer Formats
	Dreamcast Floating-Point Formats

	Calling Conventions for Dreamcast
	Variable Allocation for Dreamcast
	Optimizing Code for Dreamcast
	Pragmas for Dreamcast
	Linker Issues for Dreamcast
	Linker Command File
	Deadstripping Unused Code and Data
	Link Order

	C++ issues for Dreamcast

	Inline Assembler and Intrinsics for Dreamcast
	Working with Inline Assembly
	Inline Assembler Syntax
	Using Labels
	Using Comments
	Using Registers

	Assembler Directives
	Intrinsic Functions
	List of Intrinsic Functions

	Mnemonics for Inline Assembly
	Special Instructions for Inline Assembly
	Complete List of Inline Assembly Mnemonics

	Libraries and Runtime Code for Dreamcast
	Runtime Libraries for Dreamcast
	Allocating Memory and Heaps for Dreamcast

	Troubleshooting for Dreamcast
	Hardware Communications
	Compiler Problems
	Debugger Problems

