

The Dreamcast
Audio 64 API

Table of Contents
Preface .. AUD–ix

1. Dreamcast Audio64 Overview ..AUD–1

Introduction ..AUDÐ1

AM Layer ..AUDÐ2
amInit ..AUDÐ2
amBank ...AUDÐ3
amFile ...AUDÐ3
amHeap ..AUDÐ3
amSound ..AUDÐ4
amStream ...AUDÐ4
amMidi ...AUDÐ5

The AC Layer ..AUDÐ5

Tools Overview ..AUDÐ6
MkScript ...AUDÐ6
MkBank ..AUDÐ7
MkStream ...AUDÐ7

File Formats ..AUDÐ8
AUD-iii

The Dreamcast Audio 64 API

2. The AICA Control Layer API ..AUD–9

acSystemRequestArmInterrupt...........................Causes the driver to raise an ARM external interrupt. AUDÐ9
acDigiPlay ..Starts a buffer playing. ... AUDÐ10
acDigiPlayWithLoopParameters.........................Starts a buffer playing Set loop points. .. AUDÐ11
acDigiPlayWithParameters..................................Starts a buffer playing with all common parameters. AUDÐ12
acDigiMultiSetMask ...Sets the bit masks for acDigiMultiPlay() ... AUDÐ14
acDigiMultiPlay...Sets the bit masks for acDigiMultiPlay() ... AUDÐ15
acDigiMultiStop ..Sets the bit masks for acDigiMultiPlay() ... AUDÐ16
acDigiOpen ..Open a DA Streaming Port for playback. ... AUDÐ17
acDigiSetSampleRate ..Set the playback rate (sample rate) of audio stream. AUDÐ18
acDigiClose ..Closes port previously opened. .. AUDÐ19
acDigiSetCurrentPitch ..Changes the playback rate of a running channel. AUDÐ20
acDigiSetVolume...Adjusts volume of a voice channel. ... AUDÐ21
acDigiSetPan ..Adjusts the pan placement of a voice channel. .. AUDÐ22
acDigiRequestEvent..Used to generate an interrupt when a certain buffer

position is reached. ... AUDÐ23
acDigiStop ..Stops a voice channel playing. .. AUDÐ24
acMidiOpen..Open a MIDI Port buffer for SMF format 0 playback. AUDÐ25
acMidiSetTonebank ..Assign a MIDI Program Bank (tonebank) to an active bank slot. AUDÐ26
acMidiClose..Close a MIDI port. .. AUDÐ27
acMidiPlay..Starts playback on opened MIDI port. .. AUDÐ28
acMidiStop ...Stops standard MIDI file playback on port. .. AUDÐ29
acMidiRequestEvent ...Generates interrupt to host upon MIDI port reaching specified address. AUDÐ30
acMidiPause...Pauses an active MIDI port. .. AUDÐ31
acMidiResume ...Resumes playback on active MIDI port. ... AUDÐ32
acMidiSetVolume..Sets scaled volume setting for MIDI port. ... AUDÐ33
acMidiReset..Resets MIDI controllers on port to default values. AUDÐ34
acMidiSetTempo..Set playback tempo of MIDI port. .. AUDÐ35
acMidiSendMessage ...Sends raw MIDI messages to ports. ... AUDÐ36
acCdSetVolume ...Sets Left & Right Channels for Redbook Volume Control

(dependent on channel pan). .. AUDÐ37
acCdSetPan...Sets Left & Right Channel pan position. ... AUDÐ38
acCdInit ..Resets CDDA channels to hard pan positions and maximum volume. . AUDÐ39
acDspSetQSoundAngle ..Sets Q-Sound position. ... AUDÐ40
acDspInstallProgram ..Registers a dsp program bank with the driver. .. AUDÐ41
acDspInstallOutputMixerRegisters an output mixer patch with the driver. AUDÐ42
acDspSetMixerChannel ..Sets DSP mixer level and channel for that port. ... AUDÐ43
acErrorGetLast...Gets a pointer to the error structure. ... AUDÐ44
acErrorExists ..Checks to see if an error condition exists. ... AUDÐ45
acErrorClear ...Clears the AC error structure. ... AUDÐ46
acIntInstallOsChainDeleteManager Installs pointer to interrupt chain delete routine. AUDÐ47
acIntInstallOsChainAddManager....................... Installs proc pointer to interrupt chain add routine. AUDÐ48
acIntInstallCallbackHandler................................ Installs a callback handler into the ARM interrupt handler. AUDÐ49
acIntInstallArmInterruptHandler....................... Installs an ARM interrupt handler. .. AUDÐ50
acIntSetAicaChainId ...Sets the AICA interrupt chain ID. .. AUDÐ51
acIntShutdown ..Shuts down the ac interrupt system. ... AUDÐ52
acIntInit... Initializes the ac interrupt system. ... AUDÐ53
acSystemShutdown...Shuts down the AC layer. .. AUDÐ54
acSystemGetIntArrayStartOffsetGets the interrupt array write cursor offset. ... AUDÐ55
acSystemGetIntArrayStartPtr..............................Gets a pointer to the start of the drivers interrupt message array. AUDÐ56
acSystemGetBaseOfSoundMemory....................Gets the starting address for sound memory. .. AUDÐ57
acSystemGetIntArray ...Gets the address of the SH4 side interrupt message array. AUDÐ58
acSystemGetIntArrayLength...............................Gets the length of the drivers interrupt message array. AUDÐ59
acSystemCheckDriverRevisionTests the driver version against the supplied version. AUDÐ60
acSystemGetDriverRevision................................Tests the driver version against the supplied version. AUDÐ61
acSystemWaitUntilG2FifoIsEmpty.....................Waits until the G2 FIFO is clear. ... AUDÐ62
acSystemDelay...Use to delay for short periods of time. .. AUDÐ63
acSystemEnableArmInterruptsUse to enable the ARM interrupt. .. AUDÐ64
AUD-iv

 Table of Contents

acSystemDisableArmInterruptsUse to disable the ARM interrupt. ...AUDÐ65
acSystemInit ...Makes the ac system ready to use. ...AUDÐ66
acGetSystemFlag ...True if the system has been initialized. ...AUDÐ67
acSystemGetFirstFreeSoundMemory.................Gets the address of first free sound memory. ...AUDÐ68
acSystemGetCommandFlag.................................Gets address of driver command flag register. ..AUDÐ69
acSystemResetArmInterruptResets the ARM interrupt flag. ...AUDÐ70
acSystemInstallDriver...Installs the sound driver. ...AUDÐ71

3. The AICA Manager API .. AUD–73

amBankFetchMidiUspqnFetches uspqn from a MIDI type asset. ...AUDÐ73
amBankFetchMidiLoop ..Fetches the loop flag from a MIDI type asset. ..AUDÐ74
amBankFetchMidiPpqn..Fetches ppqn from a MIDI type katbank asset. ..AUDÐ75
amBankFetchMidiVolumeFetches master volume from a MIDI type katbank asset.AUDÐ76
amBankFetchMidiGmModeFlag.........................Fetches GM mode flag from a MIDI type katbank asset.AUDÐ77
amBankLoad ..Loads a katbank asset from disk into sound memory.AUDÐ78
amBankFetchAssetParametersFetches parameters from any katbank asset. ..AUDÐ79
amBankFetchWaveLoopFlag...............................Fetches the loop flag from a katbank asset. ..AUDÐ80
amBankFetchWaveRandomPitchFetches random pitch amount from a katbank asset.AUDÐ81
amBankFetchWaveSampleRate...........................Fetches the sample rate from a katbank WAVE asset.AUDÐ82
amBankFetchWaveBitDepth................................Fetches the bit depth of a WAVE type asset in a katbank.AUDÐ83
amBankFetchUnknownParametersFetches one of the 7 user parameters from a katbank

"unknown" type asset. ..AUDÐ84
amBankFetchAsset ..Fetches an asset from a katbank. ..AUDÐ85
amBankGetAssetSize ..Gets the size of an asset from a katbank. ...AUDÐ86
amBankGetNumberOfAssetsGets the number of assets in a katbank. ..AUDÐ87
amBankGetHeaderSize...Gets the size of the header portion of a katbank.AUDÐ88
amDmaMemCpy ...Performs DMA copys to sound memory. ...AUDÐ89
amDspFetchProgramBankFetches and installs a DSP program bank from a KatBank asset.AUDÐ90
amDspFetchOutputBank......................................Fetches and installs a DSP output bank from a KatBank asset.AUDÐ91
amErrorGetLast ...Gets a pointer to the error structure. ..AUDÐ92
amErrorExists...Checks to see if an error condition exists. ...AUDÐ93
amErrorClear ...Clears the AM error structure. ..AUDÐ94
amHeapShutdown ..Shuts down the AM heap management system. ..AUDÐ95
amHeapGetInfo ...Gets info necessary to start an audio heap. ...AUDÐ96
amHeapGetFree...Gets the amount of free memory. ...AUDÐ97
amHeapAlloc ...Allocates aligned memory from the audio heap.AUDÐ98
amHeapGetMaxPurgable.....................................Gets amount of memory available from a full purge.AUDÐ99
amHeapPurge ..Purges memory marked as purgable. ..AUDÐ100
amHeapFree ...Frees purgable memory allocated using amHeapAlloc()AUDÐ101
amHeapInit...Initializes the audio heap. ..AUDÐ102
amHeapCheck..Checks the MCB fingerprints for overwrites. ...AUDÐ103
amInitSelectDriver ..Selects driver to be installed by amInit() ...AUDÐ104
amShutdown..Shuts down the AM audio subsystem. ..AUDÐ105
amInit ..Starts up the AM audio subsystem. ...AUDÐ106
amFileRewind ..Seeks to the start of a file. ..AUDÐ107
amFileLoad...Loads specified file into the buffer. ..AUDÐ108
amFileRead...Reads from a file that is already open. ..AUDÐ109
amFileOpen ..Opens a file for reading. ..AUDÐ110
amFileClose ..Closes a file. ...AUDÐ111
amFileGetSize ..Gets the size of a file. ..AUDÐ112
amFileInstallAlternateIoManager.......................Installs a custom Io proc. ...AUDÐ113
amStreamIsr0 - 4 ..Interrupt Service Routine for the amStream subsystem.AUDÐ114
amMemSh4Alloc ...Sh4 memory allocation shell. ..AUDÐ115
amMemSh4Free ...Sh4 memory free shell. ...AUDÐ116
amMemInit ...Initializes the Sh4 memory shell system. ..AUDÐ117
amMemInstallAlternateMemoryManagerAllows redirection of sh4 memory requests. ..AUDÐ118
amMidiSetTempo..Sets the tempo of a MIDI sequence. ...AUDÐ119
AUD-v

The Dreamcast Audio 64 API

amMidiSetLoopFlag ...Sets the loop flag on a MIDI sequence. .. AUDÐ120
amMidiFetchToneBank .. Installs an MTB asset from a bank file aggregate. AUDÐ121
amMidiLoadToneBank...Loads a Sega tone bank asset .. AUDÐ122
amMidiInstallCallback ...Sets the callback proc for a sequence. .. AUDÐ123
amMidiAllocateSequencePortAllocates a MIDI port for the sequence. .. AUDÐ124
amMidiFetchSequence ...Fetches a sequence asset from a katBank. ... AUDÐ125
amMidiPlay..Plays a MIDI sequence. .. AUDÐ126
amMidiPlayRaw..Plays a MIDI sequence given the basic parameters. AUDÐ127
amMidiStop..Stops a currently playing MIDI sequence. .. AUDÐ128
amMidiSetVolume ..Sets the master volume of a MIDI sequence. .. AUDÐ129
amMidiPause ...Pauses a currently playing MIDI sequence. ... AUDÐ130
amMidiResume ...Resumes playback of a paused MIDI sequence. AUDÐ131
amMidiTransferToneBank...................................Transfers a Sega tone bank to sound memory and sets it as

the current bank. ... AUDÐ132
amMidiSetChannelProgram................................Sets the current bank slot. .. AUDÐ133
amMidiNoteOn ...Plays a MIDI triggered sound effect. ... AUDÐ134
amMidiNoteOff ...Stops a MIDI triggered sound effect. ... AUDÐ135
amMidiSetChannelVolumeSets volume of a midi sound. .. AUDÐ136
amMidiSetChannelPan...Sets the pan of a MIDI sound. ... AUDÐ137
amSoundSetQSoundChannelsUsed to identify which channels in an output bank are ...

Q-Sound channels. ... AUDÐ138
amSoundSetEffectsBussSets the effects buss send and source mix for a sound object. AUDÐ139
amSoundFetchSample ..Fetches a sound and its parameters from a Katana format bank. AUDÐ140
amSoundIsLooping...Tells if the given sound has a loop. .. AUDÐ141
amSoundAllocateVoiceChannelAllocates a hardware voice channel. ... AUDÐ142
amSoundGetSampleRateGets the real world sample rate. ... AUDÐ143
amSoundGetVolume ..Gets the current volume setting. .. AUDÐ144
amSoundGetPan..Gets the current pan position. ... AUDÐ145
amSoundGetVoiceChannel..................................Gets the current voice channel assignment. ... AUDÐ146
amSoundGetCallback ...Gets the address of the user callback. .. AUDÐ147
amSoundSetCurrentPlaybackRate......................Sets the playback rate. .. AUDÐ148
amSoundSetVolume ...Sets a sounds volume. .. AUDÐ149
amSoundSetPan...Sets a sounds pan. ... AUDÐ150
amSoundSetCallback ..Sets the user callback. ... AUDÐ151
amSoundIsPlaying ..Tells if a sound is currently playing. .. AUDÐ152
amSoundStop...Stops a currently playing sound. .. AUDÐ153
amSoundPlay...Plays a sound. .. AUDÐ154
amSoundPlayRaw...Plays a sound given all of the required parameters. AUDÐ155
amStreamSetMix ...Sets volume and pan for all tracks in a stream. .. AUDÐ157
amStreamInitFile ... Initializes a stream object to play a file. ... AUDÐ158
amStreamInitBuffer... Initializes a stream object to play a mono stream from a buffer. AUDÐ159
amStreamInstallUserCallback Installs a user callback for a stream. .. AUDÐ160
amStreamRewind..Rewinds an open stream to its start. .. AUDÐ161
amStreamGetMemoryRequirementGets memory sizes necessary to play the stream. AUDÐ162
amStreamSetBufferSizes.......................................Sets the sizes for the play and transfer buffers. .. AUDÐ163
amStreamSetBuffers..Sets buffer memory pointers in a stream. ... AUDÐ164
amStreamSetIsr..Sets the streams data transfer ISR. ... AUDÐ165
amStreamAllocateVoiceChannels.......................Allocates voice channels. ... AUDÐ166
amStreamPrimeBuffers ..Primes the play buffer. ... AUDÐ167
amStreamGetTrackLengthInFramesGets the length of a stream in frames. ... AUDÐ168
amStreamGetNibblesPerFrame...........................Gets the number of nibbles in a frame. .. AUDÐ169
amStreamGetSampleRateGets the real world sample rate of a stream. .. AUDÐ170
amStreamGetMsPerIrq...Gets the number of milliseconds per callback. ... AUDÐ171
amStreamSetVolume ..Sets the volume on a stream. ... AUDÐ172
amStreamSetPan..Sets the pan on a mono stream. .. AUDÐ173
amStreamStop..Stops a currently playing stream. ... AUDÐ174
amStreamPlaying ..Monitors if a stream is currently playing. ... AUDÐ175
amStreamGetVolume ...Gets the streams current volume .. AUDÐ176
amStreamGetPan...Gets the streams current pan .. AUDÐ177
AUD-vi

 Table of Contents

amStreamGetIsrCount ..Gets the Interrupt Service Routine count. ...AUDÐ178
amStreamClose ..Closes a stream object. ...AUDÐ179
amStreamStart..Starts a stream object playing. ..AUDÐ180
amStreamIsStereo..Tells if a stream is stereo. ...AUDÐ181
amStreamIsMono ..Tells if a stream is mono. ...AUDÐ182
amStreamServer...Serves data to a currently playing stream. ..AUDÐ183
amStreamOpen ..Opens a stream object. ...AUDÐ184
amStreamSetTransferMethod..............................Selects DMA or memcpy as the data transfer method.AUDÐ185
amStreamIoInstallAlternateIoManagerInstalls a custom Io proc. ...AUDÐ186
amUtilGetAicaVolume ...Converts midi volume units to AICA units ..AUDÐ187
amUtilAlignNumber...Performs numerical boundry alignment. ..AUDÐ188
amUtilGetLengthInFramesGets the length of a stream in frames. ...AUDÐ189
amUtilGetNibblesPerFrameGets the number of nibbles in a frame. ..AUDÐ190
amUtilGetSampleRate ..Gets the real world sample rate of a stream. ..AUDÐ191
amUtilGetLengthInMs..Gets the length of a stream in milliseconds. ...AUDÐ192
amUtilGetMsPerIrq...Gets the number of milliseconds per callback. ...AUDÐ193
amUtilGetAicaSampleTypeExtrapolates sample bit depth to AICA sample type.AUDÐ194
amUtilGetAicaSampleRateMakes a real world sample rate into an AICA sample rate.AUDÐ195
amUtilGetMiddleOfBufferInFramesCalculates the middle of the buffer in frames. ...AUDÐ196
amUtilGetEndOfBufferInFramesCalculates the end of the buffer in frames. ...AUDÐ197
amVoiceInit ..Initializes the voice pool. ...AUDÐ198
amVoiceAllocate..Allocates a voice channel. ..AUDÐ199
AUD-vii

The Dreamcast Audio 64 API
AUD-viii

Preface
The Sega of America audio solutions (Audio64 and MidiDa) offer a different approach to using the audio hardware
resources of the Dreamcast console. The main differences fall into the following areas:

¥ Sound memory usage

¥ Interrupt notiÞcation

¥ Control of AICA hardware

¥ Sound asset creation

¥ Layered API approach

The basic approach to memory usage is to allow a completely dynamic usage of the sound memory resource. This
means that you can write any sound assets you require to any available area of the sound RAM and play them. You
can also dynamically allocate this memory and dynamically replace it. There are no static Òmemory mapsÓ to restrict
your usage of this memory. Along with the freedom to use this memory as you see Þt comes the possibility of
unpredictable results if you misuse this resource.

Interrupt notiÞcation is implemented for sound (PCM or ADPCM) playback and MIDI playback, and sound driver
command processing. This means that you can know immediately when sound resources become available and
reuse the resource, thereby increasing the bandwidth of the audio system.

Control of the AICA hardware is intended to be as exposed as possible, implementation time permitting. This means
that you can directly allocate all 64 audio channels (in the case of the Audio64 sound driver) and control each
channels pan, volume control and sample rate playback directly. You can also gang multiple channels for
phase-locked audio playback (up to 64 channels), and can dynamically control DSP effects on each.

All audio assets can be bundled together into banks of multiple or individual type data. The collection into banks
is as easy as copying standard assets (.wav or .fpb or .fob or .mid or .mpb Þles, etc.) into a directory and running a
DOS-level utility. Streams can be built in a like manner, and multiple track streams are accommodated by the tools.

Providing a layered API means developers can work at the level they are most comfortable with, and that multiple
approaches are accommodated. We believe that full access to the hardware will yield the best results, that
developers can adapt their current game development environments more easily and be immediately more
productive. The AC (AICA Control) layer allows direct control of the AICA sound driver and hardware, while the
AM (AICA Manager) layer provides higher level control with an architecture that provides dynamic resource
allocation and stream playback control, among other things.
AUD-ix

The Dreamcast Audio 64 API

The AICA hardware is an audio subsystem that supports 2 MB of sound RAM, has 64 audio playback channels
which can play 16, 8 or 4 bit data at sample rates from > 11 megaHertz (theoretically) down to 172 hz
(approximately). It also contains a built-in DSP unit which can provide high quality reverb and Qsound and a
multitude of DSP effects which can be ßexibly conÞgured. It has a built-in digital 16 channel mixer, and can route
Redbook audio through the DSP. Each voice channel also has a hardware 5 stage resonant Low Pass Filter, wave
selectable amplitude and pitch LFOs, and an amplitude ADSR envelope. The sound subsystem has an embedded
RISC ARM7 CPU running at 25 MHZ, and the AICA sound registers are controlled by one of the sound drivers
(Audio64 or MidiDa) written in ARM7 assembler. SH4 CPU usage is minimized by utilizing ARM7 control.
AUD-x

1. Dreamcast
Audio64 Overview
1.1 Introduction
The Audio64/MidiDa API is designed to be a logically named, easy to use, fault tolerant, componentized
audio system.

It is broken down into layers. Use of the AC layer will not involve any AM layer components.

The examples all include some boilerplate code that will allow the inclusion of sound into a game in under an hour.

There are two drivers available, Audio64 , and MidiDa . One is 64 channels of digital audio while the other is 16
channels of digital audio 16 MIDI ports with 48 note MIDI poliphony.

Note: The MidiDa driver is not an ofÞcial part of R8 but can be obtained from Sega DTS.

The naming convention is [layer][subsystem][function] such as amSoundPlay or acDigiOpen . There are
NO abbreviations used anywhere in the library and the Capping scheme is strictly adhered to, this should put to
rest the problem of strange and absurd API naming conventions.

Fault tolerance is provided through extensive error trapping and reporting through an error messaging system that
gives both an error number as well as a text message that gives the name of the failing procedure and the likely cause
of the failure. Each layer has its own error reporting system.

The overall system obtains its necessary OS services through procedural vectors that allow it to be totally OS
independent. This allows developers the ability to customize and control the Þle IO and interrupt handling
capabilities to Þt their individual needs. Application programmers will appreciate the componentized nature of the
system allowing them to replace sub-systems with their own custom code.

Neither the AM nor the AC layer allocates or frees SH4 side memory; there is a SH4 memory allocation shell in place
but that is not used.

The mid-level layer, AM, is implemented using only AC layer calls, at no point does it Ògo to the metalÓ and use a
functionality that is not exposed in the AC layer. That insures that it is possible for an audio oriented developer to
match or exceed the AM layers capabilities using the AC layer calls.
AUD-1

The Dreamcast Audio 64 API

The AM system is designed to use industry standard assets such as.wav Þles and Type 0 MIDI (.mid) Þles. This will
allow audio artists to work in the tools that they are familiar with rather then having to use a proprietary tool to
make what should be standard assets. It also allows the full range of commercial DSP plugins to be used with a
minimum or difÞculty in the audio art production process. Certain assets that are Sega speciÞc i.e. DSP Program
banks, DSP output banks and MIDI tone banks, can be manufactured using the Sega Macintosh tools set.

An asset aggregation system is supplied that knows about the types of assets that will be used for sound and allows
the audio programmer access to some frequently tweaked parameters in pre-built script Þles. The script Þle is
completely written by a script Þle builder so the learning curve for building assets is very minimal. Basically throw
the assets in a directory, run the script builder then the bank builder. This system also allows for the inclusion of
parameterized developer speciÞc assets.

The AM layer streamer will stream Þles that have multiple tracks to allow for a degree of interactivity to be
implemented in a streaming audio presentation via track muting and scene mixing. If you look in the samples you
will Þnd a sample that streams, in phase coherent sync, 8 tracks of full bandwidth (44.1/16 bit) audio.

1.2 AM Layer
The AM layer controls system resources to a degree that the AC layer does not, it doesnÕt own these resources. They
still must be given to it by the application.

All volume/pan parameter ranges for the AM layer are the same as MIDI ranges 0-127.

If sound memory is needed it can be partitioned using the amHeap system or by the developers proprietary
memory/heap management system. As with memory management for any audio system this memory must not be
relocatable. If the memory were to be moved while the driver is playing it ugly artifacts or failures will be produced.

AM has a number of discreet sub-systems that you may use as desired.

Central to the operation of the AM system is its main shared code resource the voice pool manager. All of the AM
systems that play sound use the amVoice system. This manager controls allocation of voices and MIDI ports, tracks
their activity and closes their voice channels when the play is completed.

Because of this interrupt driven action it is of the utmost importance that sound objects, AM_SOUND, AM_STREAM
and AM_SEQUENCE, persist until the sound is Þnished playing.

The voice pool retains a pointer to the sound object and will issue AC commands and adjust the internal state of the
object on completion of the play cycle. If this object is created on the local stack and control goes out of the scope of
that function, then, when the end of the sound is reached the voice manager will write and read that addressÉ
which is part of the stack of another function now. Upon further processing, the system will fail.

Needless to say this is unfortunate when it happens so we advise that sound objects be global in scope as their
addresses are retained and written to at the end of the sound, stream or sequence.

In the registration of callbacks for the different sound entities the callback proc must be registered after the voices
are allocated, the function can not be registered if the voice pool does not know what voice owns the pointer.

The callback handler in MyInt.c is the default AM callback handler, if you want to post ARM interrupt messages
with the driver and Þeld the response, or add functionality to voice channel/port messages, while still using the
AM system, this allows you to hack into the default callback handler and add your code to it.

1.2.1 amInit

Initialization of the AM layer is simple, install the OS service procs, select the driver and call amInit .

See the examples and the boilerplate modules for examples of the OS service proc wrappers and the initialization
sequence.
AUD-2

1. Dreamcast Audio64 Overview

1.2.2 amBank

This API is an asset picker for the DOS command line asset aggregation tools that are supplied with the
development kit.

It allows you to ÒfetchÓ an asset and it parameters from a kat bank in an orderly fashion. amSound, amMidi and
amDsp all have ÒfetchÓ functions. In the future we will supply a way to use your own aggregation tool with
these APIÕs.

The kat bank consists of a DWORD that contains the number of header records/assets in the bank, then n header
records, then the assets in the same order as the header records. See ambnkhdr.h for more detail on the structure
of the header records.

1.2.3 amFile

This is a redirectable Þle system that uses a monolithic IO proc to perform all disk based functions. This is used by
all AM subsystems that perform Þle IO operations. The amStream sub-system uses a similar IO proc to read in
stream Þles. This allows you to customize the IO procÕs or change the Þle system being used.

Because the Þle system is OS dependent it is excluded from the library code and this indirect interface is supplied.

For this reason the system is initialized prior to calling amInit by passing proc pointers to
amFileInstallAlternateIoManager and amStreamIoInstallAlternateIoManager . If the Þle system is
not initialized amInit will fail.

This Þle system is also used in the examples to obtain assets from disk.

Boilerplate of the monolithic IO procs may be found in MyFile.c .

1.2.4 amHeap

This is a standalone memory manager system that can be used to partition sound memory. It has some knowledge
of the special requirements of Dreamcast sound memory i.e. DWORD aligned writes only. Despite the fact that the
memory manager will not allocate odd sized blocks of memory it is still possible to trash memory by writing an
odd ((size % 4)==true) sized asset into the block.

Each block is aligned to the starting address alignment given with the amHeapAlloc call, each block ends with the
mark RCTT on a DWORD boundary.

Because of this alignment there is a little bit of wastage with each block, but, to obtain both head and tail alignment
it is unavoidable.

Two types of memory can be allocated; Þxed, from the top of the heap and purgable, from the bottom of the heap.
This will allow you to allocate persistent buffers while allocating transient buffers without fragmenting the heap.

Each memory block has a callback routine that is called when the block is either purged or freed. amHeapPurge
will perform a top down purge of the bottom of the heap to gain sizeNeeded blocks of memory.

The amHeapFree call allows a less drastic approach to this by allowing a top down releasing of the memory blocks.
It will not release a block that is not the top block as that would fragment the bottom of the heap zone.

You can either use this system or your own as none of the AM sub-systems call to this API.
AUD-3

The Dreamcast Audio 64 API

1.2.5 amSound

This subsystem plays one shot sound effects that are contained in aggregated bank Þles. Because the memory that
holds the bank Þle has already been allocated it this sub-system does not ask for nor allocate sound memory.

The sound effects have some simple parameters that are accessed via the bank build script that is produced by the
MkScript tool. This allows you to inßict random pitch on sound effects to prevent player burn out and monotony,
volume control and loop control.

Provisions for real time control of the soundsÕ placement in the sound Þeld via volume, pan, and Q-Sound are
provided.

In the case of the set volume and pan functions if they are called when the sound is not playing the value will be set
in the sound object and when the play call is made that value will be sent to the driver. This avoids sending the
driver unnecessary messages.

For a comprehensive example of using the amSound system see the Þle MySfx.c in the examples.

The amSoundPlay call uses the amSoundPlayRaw call which will play a raw asset.

1.2.6 amStream

The streamer uses block interleaved Þles made by the MkStream tool. These Þles have a 2048 byte header area that
starts with a data structure, then some plain text information about the Þle and possibly the contents of an abstract
Þle that can provide further plain text information. The structure of the header can be seen in amstrhdr.h .

Open the samples stream Þle in a hex editor (MSVC or whatever) and you will see this information. This is provided
so that the programmer who didnÕt make the Þle can see what the specÕs are for that Þle without too much pain.

Stream Þles have n tracks and each track has 1 or 2 channels. Currently streams can only contain mono tracks or
stereo tracks. If a mixture is needed deinterleave the stereo Þle(s) and make them into mono tracks panned hard left
and hard right.

The Þle needs to be interleaved so that each block of sound data in the Þle is the same size as half of the play buffer
size that is requested for the stream. Further this must be a number divisible by 2048 as this reduces the loading of
the low level Þle system.

This block sizing allows the streamers data pump to Þll half of each play buffer in one cycle. The transfer buffer
should be at least the play buffer size * the number of channel in the Þle.

The streamer works by interrupt, for a mono stream two points are calculated in the play buffer, the middle in
frames and the end in frames. The play buffer is primed from the transfer buffer and a callback is set for the middle
of the buffer, play is initiated and control returns to the caller.

When the interrupt comes in the streams ISR is invoked by the voice pool. This ISR sets a callback for the end of the
buffer and a ßag that says its time to Þll the front of the buffer. The amStreamManager sees this ßag and Þlls the
front of the buffer. At this point the ÒpumpÓ is running and it will continue to run until either stopped or the number
of interruptsTillEnd is reached. When the end is reached if a user callback was installed it will be invoked
during the Þnal interrupt.

For a comprehensive example of using the amStream system see the Þle MyStream.c in the examples.
AUD-4

1. Dreamcast Audio64 Overview

1.2.7 amMidi

This API allows the playing of Type 0 Standard MIDI Þles. There are a number of high level functions that allow
control of the MidiDa drivers sequencer and then a number of lower level functions that allow the sending of MIDI
messages to the drivers MIDI parser directly.

Supplied with the examples are a General Midi instrument bank and a GM drum bank. These may be used in your
products on a royalty free basis.

User callbacks are supported, note that since all callbacks are registered with the amVoice manager the MIDI port
must be allocated prior to the installation of the callback.

In the case of the set volume and pan functions if they are called when the sequence is not playing the value will be
set in the sequence object and when the play call is made that value will be sent to the driver. This avoids sending
the driver unnecessary messages.

The amMidiPlay call uses the amMIdiPlayRaw call which will play a raw MIDI asset.

1.3 The AC Layer
This layer consists of functions that Þll out driver control blocks, AC_COMMANDÕs, and send them to the driver. The
driver has a 32 entry command queue that the commands are placed in by the acWriteCommand() function. As
the SH4 is so much faster then the ARM7 processor it is possible to ßood the command queue if more then 32
commands are sent at a time. Certain ÒMetaÓ commands have been created to ease the bandwidth in the AC->driver
command pipe.

All of the AC layer commands take the control values that are native to the system. These are called AICA values,
0-15 for volume and 0-31 for pan.

AC functions are error trapped, if NULL parameters or out of range values that can not be corrected are used the
functions will not pass these bad values to the driver. In that case the function will return false and issue an error
message. If the value is correctable like an out of range volume it will be corrected to the nearest in range value and
a warning message will be issued via the error messaging system. All procedures that Þx-up argumentary values
are noted in that speciÞc functions documentation.

The hardware platform has 64 digital voice channels, with the audio64 driver all of these are available for digital
audio playback. Under the MidiDa driver 48 of these digital voices are dynamically allocated to the MIDI playback
engine. These are controlled by 16 fully polyphonic midi ports. The remaining 16 voice channels, 0-15, are available
for digital audio playback. The MIDI ports are numbered 0-15 as well but are reported back by the drivers interrupt
messaging service as channels 16-31.

All assets that are used by the AC layer must reside in sound memory and be an even multiple of 4 in size. This is
because sound memory can only be written as DWORDÕs, byte writes to sound memory will cause the memory
system to malfunction.

The AC layer uses raw (headerless) PCM or ADPCM audio data and Standard MIDI Þle type 0 assets. The DSP and
MIDI tonebank assets are a Sega proprietary format that is created using the Sega Macintosh tool set. A DLS Level
1 Instrument Collection to tonebank converter is also available.

When writes are made to sound memory they pass through a 32 byte deep FIFO. For critical writes to sound
memory the state of this G2 buss FIFO must be observed. Failure to observe this FIFO and creating sustained writes
(> 16 msec) can lead to loss of data on the Maple bus.

The acSystem sub-system is a group of slightly higher level functions that provide driver installation and system
interrogotory functions. This allows the programmer access to the inner workings of the AC layer and the driver.

The acInt sub-system provides calls to install OS services for interrupt chaining and removal of interrupts as well
as a default ARM interrupt handler. The default handler may be found also in the boilerplate code in MyInt.c in
the examples.
AUD-5

The Dreamcast Audio 64 API
By using only the AC layer and installing a custom callback handler callbacks can be Þelded with out the pain of
writing an interrupt handler.

The acMidi group of functions will only have an effect if the MidiDa driver is installed. Otherwise they will have
no effect, in R8 they will return true but no action will be taken, in R9 they will return false.

This group of functions allow manipulation of the MIDI sequencer that is part of the driver.

The acDigi group of functions allow for the playing and real-time control of digital sound effects. They work with
either driver but are subject to the channel restrictions stated at the start of this section.

With all Midi and Digi library sub-systems the order of calls is:

Open

Play

Stop

Close

It is necessary to call the close function prior to reopening the port. The close returns ports to a known default state,
and is especially necessary if ports are dynamically allocated and re-used, where sample or bit rates may change.

The acCd subsystem allows the initialization of the audio output path of the CDÕs Redbook playback system. The
actual calls to make the drive read (play) a Redbook track are part of the Þle system for your speciÞc operating
system. That is why the play, stop and pause calls are not found in the AC layer. If the AC CD subsystem is not set
up prior to playing Redbook tracks the result is undeÞned.

acDsp allows the installation of the two part DSP program objects created by the Sega DSP editor tool. The
programs consist of two parts, the actual DSP program code and, the output assignments. The DSP output system
has 16 channels that can either be assigned to the program, dry, or Q-Sound.

If a channel has the Q-Sound algorithm assigned to it gains an additional 0 based index starting with the Þrst
Q-Channel found in the output bank. This is because the Q-Sound algorithm has some internally settable
parameters that are not part of the standard output channels controls.

In the example banks the Þrst 12 channels are assigned to a medium reverb patch on channel 0, the next 4 channels
are Q-Sound channels; these are output on channels 12-15. They are Q-Sound channels 0-3.

1.4 Tools Overview
For speciÞc operation instructions for each tool see that tools readme.txt Þle. Each example that uses a tool on its
assets contains an assets directory. In this directory is a makeit.bat Þle that contains the command lines used to build
the assets. Running this batch Þle will rebuild the assets for the example.

1.4.1 MkScript

This tool writes build scripts for the bank builder tool MkBank. These scripts can be edited by hand to change the
audio asset parameters for each asset type. The parameters are documented in the head of each script Þle.

This is set up so that each bankÕs assets can be placed in a directory then have the script and bank builders run on
them.

Because some hand work may be done on the scripts when MkScript is re-run it renames the last script Þle rather
then overwriting it.

To control the order of assets in a bank either edit the Þle names so that the standard directory sort order is correct or
change their order in the script. The assets will be placed into the bank in the same order that they appear in
the script.
AUD-6

1. Dreamcast Audio64 Overview
1.4.2 MkBank

This tool reads bank scripts made by MkScript and then based on the information contained within builds a
concatenated bank Þle from the assets.

Bank Þles may contain up to 3 bytes of 0x00 at the end to make them be writable to sound memory (evenly divisible
by 4).

Banks will recognize certain Þle extensions. The extensions are .mid, .wav, .mpb, .fpb and .fob a Þle with any other
extension will be added to the bank as an ÒunknownÓ type asset.

It is important that these standard assets have the correct extensions so that the fetch routines will work. If the
extension is incorrect the asset will be built into the bank as the wrong type and itÕs respective fetch routine will
reject it.

The ÒunknownÓ type is there so that you may add your own proprietary types of assets to banks. This type allows
8 user parameters, it is up to you to determine what you want these parameters to represent for your unknown
assets. All of these parameters will be defaulted to 0 in the raw script Þle, these parameters will be represented
internally as signed longs.

When a bank is built a header (.h) Þle is generated, this contains constants that may be used to fetch the assets in
the bank. The constants are a synthesis of an identiÞer and the assets Þle name and type. The header also contains
a constant containing the Þle name of the bank using this system producing the right asset at the right time should
be greatly simpliÞed.

1.4.3 MkStream

This tool builds stream (.str) Þles. This Þle format allows a number of tracks and each track has one or two
channels. The interleave rate of the Þle must match the interleave rate being requested by the programmer or the
streamer code will reject the Þle. Further the interleave rate is forced to be a multiple of 2048 by having it stated on
the command line in terms of 2048 byte blocks.

An abstract can be added to the header of the Þle as plain text allowing the inclusion of build, copyright or
other information.

The stream Þle details its specs in the header in plain text just prior to the abstract Þle. Open one in a text or hex
editor and you will see the human readable header information. The Þrst part of the header is a binary
representation of the Þles specs that is used by the API to set up the play for that Þle.
AUD-7

The Dreamcast Audio 64 API
1.5 File Formats

Bank File (.kat)

[numberOfAssets] 4 bytes

[headerRecord] sizeof(AM_BANK_FILE_UNION)

[...] sizeof(AM_BANK_FILE_UNION)

[asset 0] variable

[...] variable

Stream File (.str), 1 track 2 channels, play buffer size 16384 bytes

Header contains...

[binaryHeader] sizeof(AM_STREAM_FILE_HEADER)

[textInfo] 2048 - sizeof(AM_STREAM_FILE_HEADER)

File contains...

[header] 2048 bytes

[t1c1] 8192 bytes

[t1c2] 8192 bytes

[t1c1] 8192 bytes

[t1c2] 8192 bytes

[...]
AUD-8

2. The AICA Control Layer API
acSystemRequestArmInterrupt Causes the driver to raise an ARM external interrupt.

FORMAT

#include <ac.h>

KTBOOL acSystemRequestArmInterrupt(KTU32 interruptId)

PARAMETERS

KTU32 interruptId, This value will be reported into the callback handler as its arg (0-255).

RETURN VALUE

KTTRUE if successful

KTFALSE if unable to send command or interruptId is out of range (0-255).

FUNCTION

Will raise an ARM external interrupt that will be Þelded by the ARM interrupt handler on the SH4 side.

Note: Under the audio64 DA driver the Þrst 64 ID's (0-63) are taken for use by the 64 voice channels; the MidiDa
driver will use the Þrst 32 (0-31) IDÕs to report the voiceÕsports.

The remaining IDÕs are available for USER application purposes.
AUD-9

The Dreamcast Audio 64 API
acDigiPlay Starts a buffer playing.

FORMAT

#include <ac.h>

KTBOOL acDigiPlay(KTU32 port,KTU32 startOffset, KTS16 aicaLoopFlag)

PARAMETERS

port Voice channel number, 0-63 for audio64 driver, 0-15 for MidiDa driver.

startOffset Play from start of buffer assigned to port (only 0 supported for this release).

aicaLoopFlag Play looping buffer, 0 (loop off) or 0xff (loop on). If this is out of range it will be
set to AC_LOOP_OFF

RETURN VALUE

KTTRUE if successful

KTFALSE if port is out of range or startOffset != 0 or unable to send command.

FUNCTION

Plays buffer assigned to the voice channel by acDigiOpen() . The total length of buffer must be < 64k
sample frames.
AUD-10

2. The AICA Control Layer API
acDigiPlayWithLoopParameters Starts a buffer playing Set loop points.

FORMAT

#include <ac.h>

KTBOOL acDigiPlay(KTU32 port,

KTU32 startOffset,

KTS16 aicaLoopFlag,

KTU16 loopStartOffsetInFrames,

KTU16 loopEndOffsetInFrames)

PARAMETERS

port Voice channel number, 0-63 for audio64 driver, 0-15 for MidiDa driver.

startOffset Play from start of buffer assigned to port. (only 0 supported for this release)

aicaLoopFlag Play looping buffer, AC_LOOP_ON or AC_LOOP_OFF.

Note: If this is out of range it will be set to AC_LOOP_OFF

loopStartOffsetInFrames The 0 based loop start offset in sample frames.

loopEndOffsetInFrames The 0 based loop ending offset in sample frames.

RETURN VALUE

KTTRUE if successful.

KTFALSE if port is > 63, or startOffset != 0, or unable to send command

FUNCTION

Plays buffer assigned to the voice channel by acDigiOpen() . The total length of buffer must be < 64k
sample frames. The sample loop offsets are 0 based numbers that are expressed in sample frames e.g. 16 bit
data is 2 bytes, 8 bit is 1 byte and 4 bit (ADPCM) is 1 nibble per frame.
AUD-11

The Dreamcast Audio 64 API
acDigiPlayWithParameters Starts a buffer playing with all common parameters.

FORMAT

#include <ac.h>

KTBOOL acDigiPlayWithParameters(KTU32 port,

KTU32 volume,

KTU32 pan,

KTU32 dspMixerChannel,

KTU32 dspSendLevel,

KTS32 frequencyOrCentsOffset,

AC_PITCH_SET_TYPE frequencyOrCentsFlag,

KTU32 callbackOffsetInFrames,

KTU16 loopStartOffsetInFrames,

KTU16 loopEndOffsetInFrames)

PARAMETERS

port Voice channel number, 0-63 for audio64 driver, 0-15 for
MidiDa driver.

volume 0-15, soft to loud.

pan 0-31, left to right.

dspMixerChannel 0-15, needs to match DSP algorithm mapping.

dspSendLevel 0-15, min to max.

frequencyOrCentsOffset either the real world sample rate i.e. 44100, 32000, 22050 etc. or the
pitch offset in cents.

frequencyOrCentsFlag One of the following values from ac.h

AC_PITCH_NO_CHANGE values in frequencyOrCentsOffset are ignored.

AC_PITCH_AS_SAMPLE_RATE value in frequencyOrCentsOffset will be interpreted as a real
world sample rate.

AC_PITCH_AS_CENT_VALUE value in frequencyOrCentsOffset will be interpreted as a cents
offset from the root pitch at which the port was opened.

callbackOffsetInFrames The 0 based callback offset in sample frames

loopStartOffsetInFrames The 0 based loop start offset in sample frames, ignore == 0.

loopEndOffsetInFrames The 0 based loop ending offset in sample frames, ignore == 0.

RETURN VALUE

KTTRUE if successful.

KTFALSE if port or dspMixerChannel is out of range or command write failed,
AUD-12

2. The AICA Control Layer API
FUNCTION

Plays buffer assigned to the voice channel by acDigiOpen() . The total length of buffer must be < 64k
sample frames. The sample loop offsets are 0 based numbers that are expressed in sample frames e.g. 16 bit
data is 2 bytes, 8 bit is 1 byte and 4 bit (ADPCM) is 1 nibble per frame.

Note: If volume, pan or dspSendLevel are out of range they will be set to equal the max value for the range.

Note: If the loop offsets are set to 0 they will be ignored by the driver.
AUD-13

The Dreamcast Audio 64 API
acDigiMultiSetMask Sets the bit masks for acDigiMultiPlay()

FORMAT

#include <ac.h>

KTBOOL acDigiMultiSetMask(KTU32 port,KTU32 * uppermask , KTU32 * lowermask)

PARAMETERS

port Voice channel number, 0-63 for audio64 driver, 0-15 for MidiDa driver.

KTU32 *uppermask, A pointer to the upper 32 channel mask, voices 32-63

KTU32 *lowermask, A pointer to the lower 32 channel mask, voices 0-31

RETURN VALUE

KTTRUE if successful

KTFALSE if upperMask or lowerMask is NULL or port is out of range.

FUNCTION

Creates channel masks for use with the acDigiMultiPlay() function. This may be called in a loop to set
multiple channels in the mask.
AUD-14

2. The AICA Control Layer API
acDigiMultiPlay Sets the bit masks for acDigiMultiPlay()

FORMAT

#include <ac.h>

KTBOOL acDigiMultiPlay(KTS32 aicaLoopFlag, KTU32 upperMask, KTU32 lowerMask)

PARAMETERS

KTS32 aicaLoopFlag, Start channels as looping or not, AC_LOOP_ON or AC_LOOP_OFF

KTU32 *upperMask, A pointer to the upper 32 channel mask, voices 32-63

KTU32 *lowerMask, A pointer to the lower 32 channel mask, voices 0-31

RETURN VALUE

KTTRUE if successful

KTFALSE if upperMask is 0 or the top 4 bits of lowerMask are set and MidiDa driver is
in use.

if upper and lower masks are 0.

FUNCTION

Starts a group of channels as a phase locked gang.
AUD-15

The Dreamcast Audio 64 API
acDigiMultiStop Sets the bit masks for acDigiMultiPlay()

FORMAT

#include <ac.h>

KTBOOL acDigiMultiStop(KTU32 upperMask, KTU32 lowerMask)

PARAMETERS

KTU32 *upperMask, The upper 32 channel mask, voices 32-63

KTU32 *lowerMask, The lower 32 channel mask, voices 0-31

RETURN VALUE

KTTRUE if successful

KTFALSE if upperMask is 0 or the top 4 bits of lowerMask are set and MidiDa driver is
in use.

if upper and lower masks are 0.

FUNCTION

Stops a group of channels as a phase locked gang.
AUD-16

2. The AICA Control Layer API
acDigiOpen Open a DA Streaming Port for playback.

FORMAT

#include <ac.h>

KTBOOL acDigiOpen(KTU32 port,KTU32 address,KTU32 sizeInBytes,AC_AUDIO_TYPE
aicaAudioType,KTS32 aicaSampleRate)

PARAMETERS

port Voice channel number, 0-63 for audio64 driver, 0-15 for MidiDa driver.

address the address in sound memory

sizeInBytes buffer length in bytes, maximum 128k for 16bit data,64k for 8bit data, 32k for
4bit (ADPCM) data.

aicaAudioType format type 4, 8, or 16 bit. See AC_AUDIO_TYPE data type enumeration in ac.h

typedef enum

{

AC_16BIT,

AC_8BIT,

AC_ADPCM

AC_ADPCM_LOOP

} AC_AUDIO_TYPE;

sampleRate Base real world sample rate. Further play commands on this open port will start
at this rate unless changed by a call to acSetSampleRate() .

RETURN VALUE

KTTRUE if successful

KTFALSE if port is out of range, address is 0, sizeInBytes is 0, audioType is out of range,
sampleRate exceeds 1128900 or command write fails.

FUNCTION

Opens a digital voice channel and assigns a buffer, root pitch and loop status to the voice.
AUD-17

The Dreamcast Audio 64 API
acDigiSetSampleRate Set the playback rate (sample rate) of audio stream.

FORMAT

#include <ac.h>

KTBOOL acDigiSetSampleRate(KTU32 port,KTS32 sampleRate)

PARAMETERS

port Voice channel number, 0-63 for audio64 driver, 0-15 for MidiDa driver.

sampleRate The real world sample rate to set for the indicated the voice channel.

RETURN VALUE

KTTRUE if successful

KTFALSE if port is out of range, sampleRate exceeds 1128900, or command write fails.

FUNCTION

This changes sample rate (playback rate) of a currently running voice channel.

The voice will be set to the closest approximation of that sample rate the hardware is capable of
reproducing.
AUD-18

2. The AICA Control Layer API
acDigiClose Closes port previously opened.

FORMAT

#include <ac.h>

KTBOOL acDigiClose(KTU32 port)

PARAMETERS

port Voice channel number, 0-63 for audio64 driver, 0-15 for MidiDa driver.

RETURN VALUE

KTTRUE if successful

KTFALSE if port is out of range or command write fails.

FUNCTION

Closes voice channels opened with acDigiOpen() . It is important to close a channel and to not iterativly
open the results of that type of methodology are undeÞned.
AUD-19

The Dreamcast Audio 64 API
acDigiSetCurrentPitch Changes the playback rate of a running channel.

FORMAT

#include <ac.h>

KTBOOL acDigiSetCurrentPitch(KTU32 port,KTS32 pitchOffsetInCents)

PARAMETERS

port Voice channel number, 0-63 for audio64 driver, 0-15 for MidiDa driver.

pitchOffsetInCents Pitch in cents. (-8400 to 8400)

RETURN VALUE

KTTRUE if successful

KTFALSE if port is out of range or command write fails.

FUNCTION

Changes the pitch of a currently running voice channel in increments of cents.

Cents is a musical measurement of pitch, one octave (frequency double or half) is 1200 cents.

Making this call will not change the default setting of the voice channel but it will change the pitch of a
sound that is currently playing on that channel.

If the currently playing sound stops and is retriggered with a call to acDigiPlay() it will play at the
sample rate that the vice channel was set up for in the acDigiOpen() call.

Calling this with an arg of 1200 will make the sound play up one octave, a second call to this with an arg of
0 will make the sound play at the setting to which the voice was initialized in the acDigiOpen() call.
AUD-20

2. The AICA Control Layer API
acDigiSetVolume Adjusts volume of a voice channel.

FORMAT

#include <ac.h>

KTBOOL acDigiSetVolume(KTU32 port,KTU32 aicaVolume) aicaVolume is 0-15

PARAMETERS

port Voice channel number, 0-63 for audio64 driver, 0-15 for MidiDa driver.

aicaVolume 0-15, soft to loud.

RETURN VALUE

KTTRUE if successful

KTFALSE if the port is out of range or command write fails.

FUNCTION

Changes the direct output volume of an open voice channel, if a sound is currently playing on the channel
the volume of that sound will be changed, if the channel is not playing this will set the volume used when
that channel is started with a call to acDigiPlay() .

Note: If aicaVolume is out of range it will be set to AC_MAX_VOLUME.
AUD-21

The Dreamcast Audio 64 API
acDigiSetPan Adjusts the pan placement of a voice channel.

FORMAT

#include <ac.h>

KTBOOL acDigiSetPan(KTU32 port,KTU32 aicaPan)

PARAMETERS

port Voice channel number, 0-63 for audio64 driver, 0-15 for MidiDa driver.

aicaPan 0-31, left to right.

RETURN VALUE

KTTRUE if successful

KTFALSE if the port is out of range or command write fails.

FUNCTION

Changes the direct output pan of an open voice channel, if a sound is currently playing on the channel the
pan of that sound will be changed, if the channel is not playing this will set the pan used when that channel
is started with a call to acDigiPlay() .

Note: If aicaPan is out of range it will be set to AC_MAX_PAN.
AUD-22

2. The AICA Control Layer API
acDigiRequestEvent Used to generate an interrupt when a certain buffer position is reached.

FORMAT

#include <ac.h>

KTBOOL acDigiRequestEvent(KTU32 port,KTU32 offsetFromBeginningInFrames)

PARAMETERS

port Voice channel number, 0-63 for audio64 driver, 0-15 for
MidiDa driver.

offsetFromBeginningInFrames 0 based offset from start of buffer in sample frames. (0-65535)

RETURN VALUE

KTTRUE if successful

KTFALSE if the port is out of range or command write fails.

FUNCTION

When channel playback position reaches the indicated offset the driver will raise an ARM external
interrupt causing the ARM interrupt handler to be invoked. The channel number of the calling channel will
be placed into the drivers interrupt array. If multiple channels are reporting event requests at the same time
there will be multiple entries in the drivers interrupt array. The number of channels reporting may be
observed by measuring the incrementation of the interrupt array start offset which is available via the
acSystem call acSystemGetIntArrayStartOffset()

Note: The parameter offsetFromBeginningInFrames is not error trapped.
AUD-23

The Dreamcast Audio 64 API
acDigiStop Stops a voice channel playing.

FORMAT

#include <ac.h>

KTBOOL acDigiStop(KTU32 port)

PARAMETERS

port Voice channel number, 0-63 for audio64 driver, 0-15 for MidiDa driver.

RETURN VALUE

KTTRUE if successful

KTFALSE if the port is out of range or command write fails.

FUNCTION

Stops playback of a previously started voice channel.
AUD-24

2. The AICA Control Layer API
acMidiOpen Open a MIDI Port buffer for SMF format 0 playback.

FORMAT

#include <ac.h>

KTBOOL acMidiOpen(KTU32 port,

KTU8 gmMode,

KTU32 address,

KTU32 sizeInBytes,

KTU32 pulsesPerQuarterNote)

PARAMETERS

port MIDI port number, 0-15.

gmMode AC_GM_ON or AC_GM_OFF, selects General MIDI mode on or off.
Allows use of a Bank 0 General MIDI instrument and drumset.

address address in sound ram of the start of buffer.

MidiBufferSize buffer length in bytes.

TicksPerQNote time base in ticks per quarter note (ppqn).

RETURN VALUE

KTTRUE if successful

KTFALSE if the port is out of range, address is 0, sizeInBytes is 0 or command write fails.

FUNCTION

Opens a MIDI port. Midi ports are fully polyphonic 16 channel ports for MIDI streams. This call sets the
default set of parameters for a MIDI port, i.e. GM mode, the address of the Standard MIDI Type 0 asset in
sound memory and the PPQN (pulses per quarter note) for that asset.

Note: If gmMode is out of range it will be set to AC_GM_OFF
AUD-25

The Dreamcast Audio 64 API
acMidiSetTonebank Assign a MIDI Program Bank (tonebank) to an active bank slot.

FORMAT

#include <ac.h>

KTBOOL acMidiSetTonebank(KTU8 toneBank,

AC_BANK_TYPE bankType,

KTU32 address,

KTU32 sizeInBytes,

KTU32 mttPtr)

PARAMETERS

toneBank tone bank slot number (0-15)

bankType AC_MELODIC_BANK for melodic banks or AC_DRUM_BANK for drum banks.

address offset in sound memory of start of tone bank.

offset= (addressInSoundMemory & 0x003fffff)

sizeInBytes size of tone bank in bytes

mttPtr MIDI translate table pointer (not implemented yet)

RETURN VALUE

KTTRUE if successful

KTFALSE if the toneBank or bankType is out of range, address is 0, sizeInBytes is 0 or
command write fails.

FUNCTION

Sets a tonebank for active playback. Assigns a bank number to a tonebank slot that will be accessable via
MIDI Bank Select messages in the sequence data.
AUD-26

2. The AICA Control Layer API
acMidiClose Close a MIDI port.

FORMAT

#include <ac.h>

KTBOOL acMidiClose(KTU32 port)

PARAMETERS

port MIDI port number, 0-15.

RETURN VALUE

KTTRUE if successful

KTFALSE if the port is out of range, or command write fails.

FUNCTION

Closes the indicated MIDI port and sends an All Notes Off message to the drivers midi parser.
AUD-27

The Dreamcast Audio 64 API
acMidiPlay Starts playback on opened MIDI port.

FORMAT

#include <ac.h>

KTBOOL acMidiPlay(KTU32 port,KTU32 startOffset, KTS16 aicaLoopFlag)

PARAMETERS

port MIDI port number, 0-15.

startOffset Start playback layback from buffer start position + offset.

loopFlag Loop MIDI playback buffer, AC_LOOP_ON or AC_LOOP_OFF.

RETURN VALUE

KTTRUE if successful

KTFALSE if the port is out of range, or command write fails.

FUNCTION

Starts Standard MIDI File Type 0 playback on the given port from the start of the portÕs buffer plus
startOffset. The default tempo is 120 BPM, until a MIDI tempo message is parsed.

Note: If aicaLoopFlag is out of range it will be set to AC_LOOP_OFF
AUD-28

2. The AICA Control Layer API
acMidiStop Stops standard MIDI file playback on port.

FORMAT

#include <ac.h>

KTBOOL acMidiStop(KTU32 port)

PARAMETERS

port MIDI port number, 0-15.

RETURN VALUE

KTTRUE if successful

KTFALSE if the port is out of range, or command write fails.

FUNCTION

Stops MIDI playback on the indicated port and sends an "All Notes Off" message to the drivers midi parser.
AUD-29

The Dreamcast Audio 64 API
acMidiRequestEvent Generates interrupt to host upon MIDI port reaching specified address.

FORMAT

#include <ac.h>

KTBOOL acMidiRequestEvent(KTU32 port,KTU32 offsetFromBeginningInBytes)

PARAMETERS

port MIDI port number, 0-15.

portEventAddress Sound memory event address.

RETURN VALUE

KTTRUE if successful

KTFALSE if the port is out of range, or command write fails.

FUNCTION

When MIDI playback position reaches the indicated offset the driver will raise an ARM external interrupt
causing the ARM interrupt handler to be invoked. The channel (port + 16) number of the caller will be
placed into the drivers interrupt array. If multiple channelsports are reporting event requests at the same
time there will be multiple entries in the drivers interrupt array. The number of channelsports reporting
may be observed by measuring the incrementation of the interrupt array start offset which is available via
the acSystem call acSystemGetIntArrayStartOffset().

Note: The parameter offsetFromBeginningInBytes is not error trapped.
AUD-30

2. The AICA Control Layer API
acMidiPause Pauses an active MIDI port.

FORMAT

#include <ac.h>

KTBOOL acMidiPause(KTU32 port)

PARAMETERS

port MIDI port number, 0-15.

RETURN VALUE

KTTRUE if successful

KTFALSE if the port is out of range, or command write fails.

FUNCTION

Pauses playback on an activly playing MIDI port. Sends an All Notes Off message to the drivers
midi parser.
AUD-31

The Dreamcast Audio 64 API
acMidiResume Resumes playback on active MIDI port.

FORMAT

#include <ac.h>

KTBOOL acMidiResume(KTU32 port)

PARAMETERS

port MIDI port number, 0-15.

RETURN VALUE

KTTRUE if successful

KTFALSE if the port is out of range, or command write fails.

FUNCTION

Resumes playback on the given MIDI port. When playback is resumed running status mode is retained
from the point at which the sequence was paused.
AUD-32

2. The AICA Control Layer API
acMidiSetVolume Sets scaled volume setting for MIDI port.

FORMAT

#include <ac.h>

KTBOOL acMidiSetVolume(KTU32 port,KTU32 portMasterVolume)

PARAMETERS

port MIDI port number, 0-15.

portMasterVolume Global volume setting for port, (0-127).

RETURN VALUE

KTTRUE if successful

KTFALSE if the port is out of range, or command write fails.

FUNCTION

Sets global volume setting for the given MIDI port. This will cause the driver to scale all MIDI CC7
(volume) messages accordingly. This will affect ALL channels in the sequence running on the port.

Note: If portMasterVolume is out of range it will be set to AC_MAX_MIDI_VOLUME.
AUD-33

The Dreamcast Audio 64 API
acMidiReset Resets MIDI controllers on port to default values.

FORMAT

#include <ac.h>

KTBOOL acMidiReset(KTU32 port)

PARAMETERS

port MIDI port number, 0-15.

RETURN VALUE

KTTRUE if successful

KTFALSE if the port is out of range, or command write fails.

FUNCTION

Resets controller values to standard defaults. The bank select per channel is set to 0.

The MIDI continuous controller settings affected are as follows:

CC7 = 100

CC11 = 127

CC10, CC71, CC74 = 64

CC20-CC28, CC88 = 32

CC0, CC52-CC56, CC70 = 0

Pitch Bend = 0 (center).
AUD-34

2. The AICA Control Layer API
acMidiSetTempo Set playback tempo of MIDI port.

FORMAT

#include <ac.h>

KTBOOL acMidiSetTempo(KTU32 port,KTU32 microSecondsPerQuarterNote)

PARAMETERS

port MIDI port number, 0-15.

microSecondsPerQuarterNote Sets the Microseconds per Quarter Note for MIDI port.

RETURN VALUE

KTTRUE if successful

KTFALSE if the port is out of range, or command write fails.

FUNCTION

Allows real-time control of tempo for port.

Note: The parameter microSecondsPerQuarterNote is not error trapped.
AUD-35

The Dreamcast Audio 64 API
acMidiSendMessage Sends raw MIDI messages to ports.

FORMAT

#include <ac.h>

KTBOOL acMidiSendMessage(KTU32 port,

KTU32 channel,

KTU32 midiMessage,

KTU32 value1,

KTU32 value2)

PARAMETERS

port MIDI port number, 0-15.

channel MIDI channel number, 0-15.

midiMessage MIDI command number (channel nibble ignored),
Channel voice messages 0x80-0xe0.

midiValue1 First MIDI voice message data byte.

midiValue2 Second MIDI voice message data byte.

RETURN VALUE

KTTRUE if successful

KTFALSE if the port, channel, value1 or value2 is out of range, or command write fails.

FUNCTION

Immediately sends raw MIDI message to port by channel number. Allows real-time dynamic control of
note-on and controller messages, etc.

Note: The parameter midiMessage is not error trapped.
AUD-36

2. The AICA Control Layer API
acCdSetVolume Sets Left & Right Channels for Redbook Volume Control (dependent on channel pan).

FORMAT

#include <ac.h>

KTBOOL acCdSetVolume(KTU32 leftVolume,KTU32 rightVolume)

PARAMETERS

leftVolume Volume level for left audio channel, 0-127.

rightVolume Volume level for right audio channel, 0-127.

RETURN VALUE

KTTRUE if successful

KTFALSE if the leftVolumerightVolume is out of range, or command write fails.

FUNCTION

Sets volume level for CD-DA (Redbook) playback channels.

Note: Left and right depend on CD-DA Pan position.

See: gdfsgdda documentation for calls to play and stop tracks.
AUD-37

The Dreamcast Audio 64 API
acCdSetPan Sets Left & Right Channel pan position.

FORMAT

#include <ac.h>

KTBOOL acCdSetPan (KTU32 leftPan,KTU32 rightPan)

PARAMETERS

leftPan Pan Position for left audio channel, 0-127, left to right.

rightPan Volume level for right audio channel, 0-127, left to right.

RETURN VALUE

KTTRUE if successful

KTFALSE if the leftPanrightPan is out of range, or command write fails.

FUNCTION

Sets pan position for CD-DA playback channels.

Note: This may affect the behavior of volume command since left channel can be set to the right pan position
and vice versa.
AUD-38

2. The AICA Control Layer API
acCdInit Resets CDDA channels to hard pan positions and maximum volume.

FORMAT

#include <ac.h>

KTBOOL acCdInit(void)

PARAMETERS

void

RETURN VALUE

KTTRUE if successful

KTFALSE if command write fails.

FUNCTION

Sets default pan position and volume for CDDA playback channels.

Note: This must be called prior to playing back redbook audio from the CD.
AUD-39

The Dreamcast Audio 64 API
acDspSetQSoundAngle Sets Q-Sound position.

FORMAT

#include <ac.h>

KTBOOL acDspSetQSoundAngle(KTU32 qSoundChannel,KTU32 angle)

PARAMETERS

qSoundChannel The 0 based Q-Sound channel number, if the effect patch has 4 channels of
qsound and they are mixer channels 12-16 then for the sound on mixer channel
12 the Q-Sound channel is 0, 13 = 1 etc... range: 0-7

angle 0-127, left to right.

RETURN VALUE

KTTRUE if successful

KTFALSE if command write fails.

FUNCTION

Allows the setting of the Q-Sound angle parameter in real time.

Note: The parameter angle is trapped so that if it is out of range it will be set to 127 and the function will continue
to execute.
AUD-40

2. The AICA Control Layer API
acDspInstallProgram Registers a dsp program bank with the driver.

FORMAT

#include <ac.h>

KTBOOL acDspInstallProgram(KTU32 address,KTU32 sizeInBytes)

PARAMETERS

KTU32 address, The address of the program bank in sound memory.

KTU32 sizeInBytes , The size in bytes of the program bank.

RETURN VALUE

KTTRUE if successful

KTFALSE if address is NULL, size in bytes is 0 or command write failed.

FUNCTION

Sets a DSP program bank as the current DSP program. This program bank is currently produced using the
Mac DSP editor tool.
AUD-41

The Dreamcast Audio 64 API
acDspInstallOutputMixer Registers an output mixer patch with the driver.

FORMAT

#include <ac.h>

KTBOOL acDspInstallOutputMixer(KTU32 address,KTU32 sizeInBytes)

PARAMETERS

KTU32 address, The address of the output mixer bank in sound memory.

KTU32 sizeInBytes, The size in bytes of the output mixer bank.

RETURN VALUE

KTTRUE if successful

KTFALSE if address is NULL, size in bytes is 0 or command write failed...

FUNCTION

Sets an output mixer bank as the current output routing. This output mixer bank is currently produced
using the Mac DSP editor tool.
AUD-42

2. The AICA Control Layer API
acDspSetMixerChannel Sets DSP mixer level and channel for that port.

FORMAT

#include <ac.h>

KTBOOL acDspSetMixerChannel(KTU32 port,KTU32 mixer,KTU32 level)

PARAMETERS

port Voice channel number, 0-63 for audio64 driver, 0-15 for MidiDa driver.

toMixerChannel DSP mixer channel number, 0-15.

sendLevel Audio signal level, 0-15.

RETURN VALUE

KTTRUE if successful

KTFALSE if port is out of range or command write failed...

FUNCTION

Set port's audio signal to DSP mixer channel to enable DSP effects for stream. This allows stream to be
altered by reverb, etc.

Note: The parameters mixer and level are not error trapped.
AUD-43

The Dreamcast Audio 64 API
acErrorGetLast Gets a pointer to the error structure.

FORMAT

#include <ac.h>

AC_ERROR_PTR acErrorGetLast(void)

PARAMETERS

void

RETURN VALUE

AC_ERROR_STRUCT a pointer to the AC error structure.

FUNCTION

Gets a pointer to the AC error structure. This contains an error number enumerated as an AC_ERROR_TYPE
in ac.h and a more informative error message that tells the name of the function that failed as well as some
descriptive text regarding the cause of the failure.
AUD-44

2. The AICA Control Layer API
acErrorExists Checks to see if an error condition exists.

FORMAT

#include <ac.h>

KTBOOL acErrorExists(void)

PARAMETERS

void

RETURN VALUE

KTTRUE if a error exists

KTFALSE if no error exists.

FUNCTION

Allows checking of the error state for the AC layer in a single call returning a bool.
AUD-45

The Dreamcast Audio 64 API
acErrorClear Clears the AC error structure.

FORMAT

#include <ac.h>

void acErrorClear(void)

PARAMETERS

RETURN VALUE

KTTRUE if successful

KTFALSE if unable to send command or interruptId is out of range (0-255).

FUNCTION

Clears the AC Error structure.
AUD-46

2. The AICA Control Layer API
acIntInstallOsChainDeleteManager Installs pointer to interrupt chain delete routine.

FORMAT

#include <am.h>

KTBOOL acIntInstallOsChainDeleteManager(AC_INT_CHAIN_DELETE_MANAGER
theChainDeleteManager)

PARAMETERS

AC_INT_CHAIN_DELETE_MANAGER theChainDeleteManager , a pointer to the wrapped routine.

The wrapper prototype is deÞned as follows:

void feiux(KTU32);

RETURN VALUE

KTTRUE if the proc was installed.

KTFALSE if the proc was not installed due to a prior initialization of the vector.

FUNCTION

Allows installation of OS speciÞc interrupt chain removal procPointer . The procedureÕs wrapper must
have the following prototype: void foo(KTU32); the argument being the chain ID to be removed.

Note: This MUST be done prior to calling acInit() or amInit() or init failure will result.

See Also: MyInt.c (a part of the samples)
AUD-47

The Dreamcast Audio 64 API
acIntInstallOsChainAddManager Installs proc pointer to interrupt chain add routine.

FORMAT

#include <am.h>

KTBOOL acIntInstallOsChainAddManager(AC_INT_CHAIN_ADD_MANAGER theChainAddManager)

PARAMETERS

AC_INT_CHAIN_ADD_MANAGER theChainAddManager , a pointer to the wrapped routine.

The wrapper prototype is deÞned as follows:

KTU32 foo(KTS16,AC_ARM_INTERRUPT_HANDLER,KTU32,void *);

RETURN VALUE

KTTRUE if the proc was installed.

KTFALSE if the proc was not installed due to a prior initialization of the vector.

FUNCTION

This allows the app programmer to wrap a given OSÕs interrupt chain add routine and send it to the audio
system. This provides for OS neutrality.

See Also: MyInt.c (a part of the samples)
AUD-48

2. The AICA Control Layer API
acIntInstallCallbackHandler Installs a callback handler into the ARM interrupt handler.

FORMAT

#include <am.h>

KTBOOL acIntInstallCallbackHandler(AC_CALLBACK_HANDLER theCallbackHandler)

PARAMETERS

AC_CALLBACK_HANDLER theCallbackHandler , a pointer to a callback handler function.

The prototype of the callback handler function is as follows:

void fuu(volatile KTU32);

RETURN VALUE

KTTRUE if the proc was installed.

KTFALSE if the proc was not installed due to a prior initialization of the vector.

FUNCTION

Installs a callback handler into the ARM interrupt handler. This allows developers wanting to work at the
AC level to get callbacks from both the voice channelsmidi ports and from the interruptId arg to
acSystemRequestArmInterrupt() .

Please note that the audio64 driver claims the Þrst 64 IDÕs (0-63) while the MidiDa driver claims the Þrst
32 (0-31) ID's. MIDI ports report the (port + 16) so in using the MidiDa driver 0-15 are the 16 available
digital voice channels and 16-31 are the 16 available MIDI ports.

The ARM interrupt handler is installed into the OSÕs ARM external interrupt chain. It is invoked when ever
an ARM interrupt is raised. The interrupt handler parses the drivers interrupt array to determine which
channels are reporting on this interrupt cycle, it then calls the callback handler once for each message it
Þnds in the drivers interrupt array.

See Also: KTBOOL acSystemRequestArmInterrupt(KTU32 interruptId)

See Also: MyInt.c (a part of the samples)
AUD-49

The Dreamcast Audio 64 API
acIntInstallArmInterruptHandler Installs an ARM interrupt handler.

FORMAT

#include <am.h>

KTBOOL acIntInstallArmInterruptHandler(AC_ARM_INTERRUPT_HANDLER theInterruptHandler)

PARAMETERS

AC_ARM_INTERRUPT_HANDLER theInterruptHandler, a pointer to an interrupt handler function.

The prototype of the callback handler function is as follows:

void feeb(void *);

The value AC_ARM_INTERRUPT_HANDLER_ID will be incoming as the argument to this function if it is a
legitimate interrupt message.

RETURN VALUE

KTTRUE if the proc was installed.

KTFALSE if the proc was not installed due to a prior initialization of the vector.

FUNCTION

Initializes the ARM interrupt handler vector with your function. A default function will be installed if this
vector has not been initialized at startup time. This default handler is illustrated in MyInt.c and is described
below.

The default ARM interrupt handler is installed into the OSÕs ARM external interrupt chain.

This is done at start up if a user handler has not been supplied via this routine.

It is invoked when ever an ARM interrupt is raised. The interrupt handler parses the drivers interrupt array
to determine which channels are reporting on this interrupt cycle, it then calls the callback handler once for
each message it Þnds in the drivers interrupt array.

See Also: KTBOOL acSystemRequestArmInterrupt(KTU32 interruptId)

See Also: MyInt.c (a part of the samples)
AUD-50

2. The AICA Control Layer API
acIntSetAicaChainId Sets the AICA interrupt chain ID.

FORMAT

#include <am.h>

void acIntSetAicaChainId(KTU32 chainId)

PARAMETERS

KTU32 chainId, The OS speciÞc ID for the AICA EXTERNAL interrupt in the case of Shinobi it
is 0xb20

RETURN VALUE

void

FUNCTION

Sets the interrupt ID for the AICA external interrupt, this is used when installing interrupt handlers.

Note: This defaults to 0xb20

See Also: MyInt.c (a part of the samples)
AUD-51

The Dreamcast Audio 64 API
acIntShutdown Shuts down the ac interrupt system.

FORMAT

#include <am.h>

void acIntShutdown(void)

PARAMETERS

void

RETURN VALUE

void

FUNCTION

Shuts down the am interrupt system by removing the ARM interrupt callback from the OS using the chain
delete function and clearing the OS service vectors.

See Also: MyInt.c (a part of the samples)
AUD-52

2. The AICA Control Layer API
acIntInit Initializes the ac interrupt system.

FORMAT

#include <am.h>

void acIntInit(void)

PARAMETERS

void

RETURN VALUE

KTTRUE if the interrupt system was successfully initialized

KTFALSE if OS based chain add or delete managers not installed, see the following
functions to install these OS based services.

KTBOOL acIntInstallOsChainAddManager(AC_INT_CHAIN_ADD_MANAGER
theChainAddManager);

KTBOOL
acIntInstallOsChainDeleteManager(AC_INT_CHAIN_DELETE_MANAG
ER theChainDeleteManager);

FUNCTION

Initializes the am interrupt system by installing the ARM interrupt handler to the OSÕs ARM
interrupt chain.

If user interrupt handler and or callback handlers have been installed these will not be overwritten by
this function.

See Also: MyInt.c (a part of the samples)
AUD-53

The Dreamcast Audio 64 API
acSystemShutdown Shuts down the AC layer.

FORMAT

#include <ac.h>

void acSystemShutdown(void)

PARAMETERS

void

RETURN VALUE

void

FUNCTION

Shuts down the AC layer by removing the interrupt handler using the delete chain vector and clearing all
of the OS service vectors.
AUD-54

2. The AICA Control Layer API
acSystemGetIntArrayStartOffset Gets the interrupt array write cursor offset.

FORMAT

#include <ac.h>

KTBOOL acSystemGetIntArrayStartOffset(KTU32 *interruptArrayStartOffset)

PARAMETERS

KTU32 *interruptArrayStartOffset, a byte pointer expressed as a KTU32 indicating the
current write position within the drivers interrupt
message array.

RETURN VALUE

KTTRUE if successful

KTFALSE if interruptArrayStartOffset is NULL or driver is not installed.

FUNCTION

Gets the interrupt array start offset from the driver. By comparing the movement of this number from
interrupt to interrupt it can be determined how many messages are being returned and where they are
located in the drivers interrupt message array.

The audio64 driver claims the Þrst 64 IDÕs (0-63) while the MidiDa driver claims the Þrst 32 (0-31) ID's.
MIDI ports report the (port + 16) so in using the MidiDa driver 0-15 are the 16 available digital voice
channels and 16-31 are the 16 available MIDI ports.

See Also: MyInt.c (a part of the samples)
AUD-55

The Dreamcast Audio 64 API
acSystemGetIntArrayStartPtr Gets a pointer to the start of the drivers interrupt message array.

FORMAT

#include <ac.h>

KTBOOL acSystemGetIntArrayStartPtr(char **intArrayStartPointer)

PARAMETERS

char **intArrayStartPointer, a pointer to the start of the interrupt message array.

RETURN VALUE

KTTRUE on success

KTFALSE if drive is not installed or *intArrayStartPointer is NULL

FUNCTION

Gets a pointer to the start of the 64 byte interrupt message array in the driver.

This address is in SOUND memory so NO BYTE READS move it into SH4 memory before you start to dissect
it in a byte wise fashion or sound memory will be turned into putty.

The audio64 driver claims the Þrst 64 IDÕs (0-63) while the MidiDa driver claims the Þrst 32 (0-31) ID's.
MIDI ports report the (port + 16) so in using the MidiDa driver messages 0-15 are the 16 available digital
voice channels and 16-31 are the 16 available MIDI ports.
AUD-56

2. The AICA Control Layer API
acSystemGetBaseOfSoundMemory Gets the starting address for sound memory.

FORMAT

#include <ac.h>

KTBOOL acSystemGetBaseOfSoundMemory(KTU32 *baseOfSoundMemory)

PARAMETERS

KTU32 *baseOfSoundMemory, the address of the base of sound memory represented as a KTU32

RETURN VALUE

KTTRUE on success.

KTFALSE if the baseOfSoundMemory is NULL or driver is not installed.

FUNCTION

Gets the address of the base of sound memory represented as a KTU32.
AUD-57

The Dreamcast Audio 64 API
acSystemGetIntArray Gets the address of the SH4 side interrupt message array.

FORMAT

#include <ac.h>

KTBOOL acSystemGetIntArray(char **interruptArray)

PARAMETERS

RETURN VALUE

KTTRUE if

KTFALSE *interruptArray is NULL or driver is not installed.

FUNCTION

Gets the address of the SH4 side interrupt message array buffer that is contained in the acSystem structure.

Note: This is broken in R8 as it gets the SH4 side array but does not Þll it from the driver.
AUD-58

2. The AICA Control Layer API
acSystemGetIntArrayLength Gets the length of the drivers interrupt message array.

FORMAT

#include <ac.h>

KTBOOL acSystemGetIntArrayLength(KTU32 *interruptArrayLength)

PARAMETERS

KTU32 *interruptArrayLength, the length of the interrupt message array is returned via
this pointer.

RETURN VALUE

KTTRUE on success

KTFALSE if interruptArrayLength is NULL or the driver is not installed.

FUNCTION

Gets the length of the drivers interrupt message array.

Note: This is a vestigal function from when the Midi driver had a shorter message array then the DA driver. Now
they both use 64 byte arrays.
AUD-59

The Dreamcast Audio 64 API
acSystemCheckDriverRevision Tests the driver version against the supplied version.

FORMAT

#include <ac.h>

KTBOOL acSystemCheckDriverRevision(KTU8 *driver,KTU8 major,KTU8 minor,KTCHAR local)

PARAMETERS

KTU8 *driver, An image in memory of the driver

KTU8 major, The major revision desired

KTU8 minor, The minor revision desired

KTCHAR local The local version desired

RETURN VALUE

KTTRUE if it is the same version

KTFALSE if it is not the same version

FUNCTION

Used in acSystemInstallDriver() to test the driver revision.

See: The top of ac.h for the constants that it uses to test the driver.
AUD-60

2. The AICA Control Layer API
acSystemGetDriverRevision Tests the driver version against the supplied version.

FORMAT

#include <ac.h>

KTBOOL acSystemGetDriverRevision(KTU8 *driver,KTU8 *major,KTU8 *minor,KTCHAR *local)

PARAMETERS

KTU8 *driver, An image in memory of the driver

KTU8 *major, The major revision is returned via this pointer

KTU8 *minor, The minor revision is returned via this pointer

KTCHAR *local The local version is returned via this pointer

RETURN VALUE

KTTRUE the version was returned intact

KTFALSE if driver was NULL

FUNCTION

Called by acSystemCheckDriverRevision to obtain the driver revision.
AUD-61

The Dreamcast Audio 64 API
acSystemWaitUntilG2FifoIsEmpty Waits until the G2 FIFO is clear.

FORMAT

#include <ac.h>

void acSystemWaitUntilG2FifoIsEmpty(void)

PARAMETERS

void

RETURN VALUE

void

FUNCTION

The G2 FIFO is 32 bytes deep, when writing critical messages to sound RAM the FIFO status must be
checked to determine when the write is complete. For each check that it makes of the FFST bits it increments
a counter to allow real time observation of the amount of waiting required.
AUD-62

2. The AICA Control Layer API
acSystemDelay Use to delay for short periods of time.

FORMAT

#include <ac.h>

void acSystemDelay(KTU32 delay)

PARAMETERS

KTU32 delay, the number of NOPÕs of delay.

RETURN VALUE

void

FUNCTION

Uses a loop with a no-op in it to delay for short periods of time, used to allow memory to ÒsettleÓ or for
ARM writes to take place fully when critical values are read from sound memory.
AUD-63

The Dreamcast Audio 64 API
acSystemEnableArmInterrupts Use to enable the ARM interrupt.

FORMAT

#include <ac.h>

void acSystemEnableArmInterrupts(void)

PARAMETERS

void

RETURN VALUE

void

FUNCTION

Enables the ARM external interrupt. The driver does not enable or disable the interrupt this allows the
interrupt to be enabled\disabled in critical sections.
AUD-64

2. The AICA Control Layer API
acSystemDisableArmInterrupts Use to disable the ARM interrupt.

FORMAT

#include <ac.h>

void acSystemDisableArmInterrupts(void)

PARAMETERS

void

RETURN VALUE

void

FUNCTION

Disables the ARM external interrupt. The driver does not enable or disable the interrupt this allows the
interrupt to be enabled\disabled in critical sections.
AUD-65

The Dreamcast Audio 64 API
acSystemInit Makes the ac system ready to use.

FORMAT

#include <ac.h>

KTBOOL acSystemInit(void)

PARAMETERS

void

RETURN VALUE

KTBOOL

FUNCTION

Makes the ac system ready to use, must be called prior to any AC lib calls.
AUD-66

2. The AICA Control Layer API
acGetSystemFlag True if the system has been initialized.

FORMAT

#include <ac.h>

KTBOOL acGetSystemFlag(void)

PARAMETERS

void

RETURN VALUE

KTTRUE, If the driver has been installed and the system initialized.

Or...

KTFALSE If not.

FUNCTION

Returns KTTRUE if the function acInstallDriver has been run successfully.
AUD-67

The Dreamcast Audio 64 API
acSystemGetFirstFreeSoundMemory Gets the address of first free sound memory.

FORMAT

#include <ac.h>

volatile KTU32 * acSystemGetFirstFreeSoundMemory(void)

PARAMETERS

void

RETURN VALUE

a pointer to the Þrst free memory in the sound heap as obtained from the driver

FUNCTION

Gets the address of the Þrst free memory in the sound memory area as speciÞed by the driver
AUD-68

2. The AICA Control Layer API
acSystemGetCommandFlag Gets address of driver command flag register.

FORMAT

#include <ac.h>

volatile KTU32 * acSystemGetCommandFlag(void)

PARAMETERS

void

RETURN VALUE

a pointer to the command ßag register

FUNCTION

Gets the command ßag register address for system usage. The command ßag is written after commands are
placed into the drivers command queue to indicate to the driver that there are commands to be processed.

When setting the ßag the value should be 0xffffffff, the driver will then start processing the command
queue from its last queue position. When writing commands it is necessary to observe the state of the G2
buss FIFO to ensure that the command write has completed prior to setting the command ßag.
AUD-69

The Dreamcast Audio 64 API
acSystemResetArmInterrupt Resets the ARM interrupt flag.

FORMAT

#include <ac.h>

void acSystemResetArmInterrupt(void)

PARAMETERS

void

RETURN VALUE

void

FUNCTION

Resets the ARM interrupt status ßag
AUD-70

2. The AICA Control Layer API
acSystemInstallDriver Installs the sound driver.

FORMAT

#include <ac.h>

KTBOOL acSystemInstallDriver(void)

PARAMETERS

void

RETURN VALUE

KTBOOL, KTTRUE if the driver was successfully installed and started

FUNCTION

Installs the AICA driver image and sets the system data structure.
AUD-71

The Dreamcast Audio 64 API
AUD-72

3. The AICA Manager API
amBankFetchMidiUspqn Fetches uspqn from a MIDI type asset.

FORMAT

#include <am.h>

KTBOOL amBankFetchMidiUspqn(AM_BANK_PTR theBank ,KTU32 assetNumber ,KTU32 *uspqn)

PARAMETERS

AM_BANK_PTR theBank, A pointer to a .kat bank.

KTU32 assetNumber , The number of the asset.

KTU32 *uspqn, The the microseconds pqn is returned via this pointer.

RETURN VALUE

KTTRUE, on success

KTFALSE, theBank is NULL,
uspqn is NULL,
assetNumber is not in this bank
assetNumber is not a MIDI asset

FUNCTION

Fetches the microseconds per quarter note (uspqn) of a midi asset in a bank Þle.
AUD-73

The Dreamcast Audio 64 API
amBankFetchMidiLoop Fetches the loop flag from a MIDI type asset.

FORMAT

#include <am.h>

KTBOOL amBankFetchMidiLoop(AM_BANK_PTR theBank ,KTU32 assetNumber ,KTU32 *loop)

PARAMETERS

AM_BANK_PTR theBank, A pointer to a .kat bank.

KTU32 assetNumber, The number of the asset.

KTU32 *loop, The loop ßag is returned via this pointer.

RETURN VALUE

KTTRUE, on success

KTFALSE, theBank is NULL,
loop is NULL,
assetNumber is not in this bank
assetNumber is not a MIDI asset

FUNCTION

Fetches the loop ßag of a midi asset in a bank Þle.
AUD-74

3. The AICA Manager API
amBankFetchMidiPpqn Fetches ppqn from a MIDI type katbank asset.

FORMAT

#include <am.h>

KTBOOL amBankFetchMidiPpqn(AM_BANK_PTR theBank ,KTU32 assetNumber ,KTU32 *ppqn)

PARAMETERS

AM_BANK_PTR theBank, A pointer to a .kat bank.

KTU32 assetNumber, The number of the asset.

KTU32 *ppqn, The ppqn is returned via this pointer.

RETURN VALUE

KTTRUE, on success

KTFALSE, theBank is NULL,
ppqn is NULL,
assetNumber is not in this bank
assetNumber is not a MIDI asset

FUNCTION

Gets the ppqn(pulses per quarter note) from a SMF Type 0 MIDI Þle asset in a bank.
AUD-75

The Dreamcast Audio 64 API
amBankFetchMidiVolume Fetches master volume from a MIDI type katbank asset.

FORMAT

#include <am.h>

KTBOOL amBankFetchMidiVolume(AM_BANK_PTR theBank ,KTU32 assetNumber ,KTU32
*masterVolume)

PARAMETERS

AM_BANK_PTR theBank, A pointer to a .kat bank.

KTU32 assetNumber, The number of the asset.

KTU32 *masterVolume, The master volume of the asset is returned via this pointer.

RETURN VALUE

KTTRUE, on success

KTFALSE, theBank is NULL,
masterVolume is NULL,
assetNumber is not in this bank
assetNumber is not a MIDI asset

FUNCTION

Fetches the master volume setting from a MIDI type katbank asset. This setting is set in the katbank build
script Þle (.oss) via theÒVolumeÓ tag and is used to set the overall starting volume of a MIDI sequence.
This allows the volumes of the sequences used in a game to be balanced against each other.
AUD-76

3. The AICA Manager API
amBankFetchMidiGmModeFlag Fetches GM mode flag from a MIDI type katbank asset.

FORMAT

#include <am.h>

KTBOOL amBankFetchMidiGmModeFlag(AM_BANK_PTR theBank ,KTU32 assetNumber ,KTU32
*gmModeFlag)

PARAMETERS

AM_BANK_PTR theBank, A pointer to a .kat bank.

KTU32 assetNumber, The number of the asset.

KTU32 *gmModeFlag, The GM mode of the asset is returned via this pointer.

RETURN VALUE

KTTRUE, on success

KTFALSE, theBank is NULL,
gmModeFlag is NULL,
assetNumber is not in this bank
assetNumber is not a MIDI asset

FUNCTION

This fetches the value set via the GmMode tag in the katbank build script Þle. This should be set to 1 if it is
a GM sequence or 0 if it is not.
AUD-77

The Dreamcast Audio 64 API
amBankLoad Loads a katbank asset from disk into sound memory.

FORMAT

#include <am.h>

KTBOOL amBankLoad(KTSTRING fileName,AM_BANK_PTR buffer)

PARAMETERS

KTSTRING fileName, The Þlename and path of the bank to load.

AM_BANK_PTR buffer, A 32 byte aligned buffer in sound memory big enough to
hold the asset.

RETURN VALUE

KTTRUE, on success

KTFALSE, ÞleName is NULL,
File not found
buffer is NULL,
buffer is not 32 byte aligned.

FUNCTION

Loads a katbank asset from disk into sound memory. This calls the redirectable Þle system (amFile ...) to
do the loading operation.
AUD-78

3. The AICA Manager API
amBankFetchAssetParameters Fetches parameters from any katbank asset.

FORMAT

#include <am.h>

KTBOOL amBankFetchAssetParameters (AM_BANK_PTR theBank ,

KTU32 assetNumber ,

AM_BANK_FILE_UNION_PTR parameters

)

PARAMETERS

AM_BANK_PTR theBank, A pointer to a .kat bank.

KTU32 assetNumber, The number of the asset.

AM_BANK_FILE_UNION_PTR parameters The parameter block is returned via this pointer.

RETURN VALUE

KTTRUE, on success

KTFALSE, theBank is NULL,
parameters is NULL,
assetNumber is not in this bank

FUNCTION

This will fetch the parameter block from any type of katbank asset.
AUD-79

The Dreamcast Audio 64 API
amBankFetchWaveLoopFlag Fetches the loop flag from a katbank asset.

FORMAT

#include <am.h>

KTBOOL amBankFetchWaveLoopFlag(AM_BANK_PTR theBank ,KTU32 assetNumber ,KTBOOL
*loopFlag)

PARAMETERS

AM_BANK_PTR theBank, A pointer to a .kat bank.

KTU32 assetNumber, The number of the asset.

KTBOOL *loopFlag, The loop ßag value is returned via this pointer.

RETURN VALUE

KTTRUE, on success

KTFALSE, theBank is NULL,
loopFlag is NULL,
assetNumber is not in this bank
assetNumber is not a MIDI asset

FUNCTION

Fetches the loop ßag from a WAVE type katbank asset. The loop ßag is set in the katbank build script via
the ÒLoopÓ tag. If the wave is to loop the value is set to 1 if not it is set to 0.
AUD-80

3. The AICA Manager API
amBankFetchWaveRandomPitch Fetches random pitch amount from a katbank asset.

FORMAT

#include <am.h>

KTBOOL amBankFetchWaveRandomPitch(AM_BANK_PTR theBank ,KTU32 assetNumber ,KTU32
*randomPitchAmount)

PARAMETERS

AM_BANK_PTR theBank, A pointer to a .kat bank.

KTU32 assetNumber, The number of the asset.

KTBOOL *randomPitchAmount, The random pitch amount is returned via this pointer.

RETURN VALUE

KTTRUE, on success

KTFALSE, theBank is NULL,
randomPitchAmount is NULL,
assetNumber is not in this bank
assetNumber is not a MIDI asset

FUNCTION

Fetches the random pitch amount from a WAVE type katbank asset. This amount will be applied as a
random percentage of change from the root pitch of the sound when it is played using the
amSound... interface.
AUD-81

The Dreamcast Audio 64 API
amBankFetchWaveSampleRate Fetches the sample rate from a katbank WAVE asset.

FORMAT

#include <am.h>

KTBOOL amBankFetchWaveSampleRate(AM_BANK_PTR theBank ,KTU32 assetNumber ,KTU32
*sampleRate)

PARAMETERS

AM_BANK_PTR theBank, A pointer to a .kat bank.

KTU32 assetNumber, The number of the asset.

KTBOOL *sampleRate, The real world sample rate is returned via this pointer.

RETURN VALUE

KTTRUE, on success

KTFALSE, theBank is NULL,
sampleRate is NULL,
assetNumber is not in this bank
assetNumber is not a MIDI asset

FUNCTION

Fetches the sample rate from a katbank WAVE asset. This is the real world sample rate number that is set
in the katbank build script (.oss) using the ÒSampleRateÓ tag.
AUD-82

3. The AICA Manager API
amBankFetchWaveBitDepth Fetches the bit depth of a WAVE type asset in a katbank .

FORMAT

#include <am.h>

KTBOOL amBankFetchWaveBitDepth(AM_BANK_PTR theBank ,KTU32 assetNumber ,KTU32 *bitDepth)

PARAMETERS

AM_BANK_PTR theBank, A pointer to a .kat bank.

KTU32 assetNumber, The number of the asset.

KTBOOL *bitDepth, The bit depth is returned via this pointer.

RETURN VALUE

KTTRUE, on success

KTFALSE, theBank is NULL,
bitDepth is NULL,
assetNumber is not in this bank
assetNumber is not a MIDI asset

FUNCTION

Fetches the bit depth of a WAVE type asset in a katbank .
AUD-83

The Dreamcast Audio 64 API
amBankFetchUnknownParameters Fetches one of the 7 user parameters from a katbank
"unknown" type asset.

FORMAT

#include <am.h>

KTBOOL amBankFetchUnknownParameters(AM_BANK_PTR theBank ,

KTU32 assetNumber ,

KTU32 parameterNumber,

KTS32 *parameterValue

)

PARAMETERS

AM_BANK_PTR theBank, A pointer to a .kat bank.

KTU32 assetNumber, The number of the asset.

KTU32 parameterNumber, The parameter to fetch (0-7)

KTBOOL *parameterValue, The parameter value is returned via this pointer.

RETURN VALUE

KTTRUE, on success

KTFALSE, theBank is NULL,
parameterValue is NULL,
assetNumber is not in this bank,
parameterNumber is out of range,
assetNumber is not a UNKNOWN asset

FUNCTION

Fetches one of the seven user parameters from a katbank asset. These parameters are deÞned in the
katbank build script using the Parameter0 to Parameter7 tags.
AUD-84

3. The AICA Manager API
amBankFetchAsset Fetches an asset from a katbank .

FORMAT

#include <am.h>

KTBOOL amBankFetchAsset(AM_BANK_PTR theBank ,

AM_BANK_FILE_UNION_PTR parameters,

KTU32 assetNumber ,

KTU32 **theAsset,

KTU32 *assetSize

)

PARAMETERS

AM_BANK_PTR theBank , A pointer to a .kat bank.

AM_BANK_FILE_UNION_PTR parameters, The parameter block is returned via this pointer.

KTU32 assetNumber, The number of the asset.

KTU32 **theAsset, A pointer to the asset is returned via this handle.

KTU32 *assetSize The assets size is returned via this pointer.

RETURN VALUE

KTTRUE, on success

KTFALSE, theBank is NULL,
parameters is NULL,
assetSize is NULL,
theAsset is NULL,
assetNumber is not in this bank,

FUNCTION

Fetches an asset from a katbank aggregation. Returns the size, parameters and a pointer to data via
the arguments.
AUD-85

The Dreamcast Audio 64 API
amBankGetAssetSize Gets the size of an asset from a katbank .

FORMAT

#include <am.h>

KTBOOL amBankGetAssetSize(AM_BANK_PTR theBank ,KTU32 assetNumber ,KTU32 *assetSize)

PARAMETERS

AM_BANK_PTR theBank, A pointer to a .kat bank.

KTU32 assetNumber, The number of the asset.

KTU32 *assetSize, The size of the asset is returned via this pointer.

RETURN VALUE

KTTRUE, on success

KTFALSE, theBank is NULL,
assetSize is NULL,
assetNumber is not in this bank,

FUNCTION

Fetches the size of an asset from a katbank .
AUD-86

3. The AICA Manager API
amBankGetNumberOfAssets Gets the number of assets in a katbank .

FORMAT

#include <am.h>

KTBOOL amBankGetNumberOfAssets(AM_BANK_PTR theBank ,KTU32 *numberOfAssets)

PARAMETERS

KTU8 *theBank, A pointer to either the header from a bank Þle or an entire
bank Þle.

KTU32 *numberOfAssets, The number of assets in the katbank is returned via this pointer.

RETURN VALUE

KTTRUE, on success

KTFALSE, theBank is NULL,
assetSize is NULL,
assetNumber is not in this bank,

FUNCTION

Gets the number of assets in a katbank Þle.
AUD-87

The Dreamcast Audio 64 API
amBankGetHeaderSize Gets the size of the header portion of a katbank .

FORMAT

#include <am.h>

KTBOOL amBankGetHeaderSize (AM_BANK_PTR theBank ,KTU32 * headerSize)

PARAMETERS

KTU8 *theBank, A pointer to either the header from a bank Þle or an entire
bank Þle.

KTU32 *headerSize, The size of the katbank header is returned via this
pointer.

RETURN VALUE

KTTRUE, on success

KTFALSE, theBank is NULL,
headerSize is NULL,
assetNumber is not in this bank,

FUNCTION

Gets the size of the header portion of a katbank .
AUD-88

3. The AICA Manager API
amDmaMemCpy Performs DMA copys to sound memory.

FORMAT

#include <am.h>

KTBOOL amDmaMemCpy(KTU32 *target, KTU32 *source, KTU32 size,KTU32 bytesPerTransfer,KTU32
dmaChannel)

PARAMETERS

KTU32 *target, The target buffer, must be large enough to hold size bytes.

KTU32 *source, The source buffer

KTU32 size, The number of bytes to transfer

KTU32 bytesPerTransfer, The number of bytes to transfer in one DMA frame

KTU32 dmaChannel AM_DMA_CHANNEL only for now.

RETURN VALUE

KTTRUE, On success

KTFALSE, target or source is NULL,
size is 0
bytesPerTransfer is not 1,2,4,8 or 32
dmaChannel is not AM_DMA_CHANNEL

FUNCTION

Note: This is not implemented in R8, the function will simply return false with an AC error condition.

Copies memory from one place to the other starting at the bottom of the block. The source target and size
must be multiples of bytesPerTransfer or failure will result. The transfer is made in burst mode rather
then cycle steal mode as timelyness is important to streaming audio processes.
AUD-89

The Dreamcast Audio 64 API
amDspFetchProgramBankFetches and installs a DSP program bank from a KatBank asset.

FORMAT

#include <am.h>

KTBOOL amDspFetchProgramBank(AM_BANK_PTR theBank ,KTU32 assetNumber)

PARAMETERS

AM_BANK_PTR theBank, A pointer to a .kat bank.

KTU32 assetNumber, The number of the asset.

RETURN VALUE

KTTRUE, On success

KTFALSE, theBank is NULL,
assetNumber is not in this bank,
unable to send driver command.

FUNCTION

Fetches and installs a DSP program bank from a KatBank asset.
AUD-90

3. The AICA Manager API
amDspFetchOutputBank Fetches and installs a DSP output bank from a KatBank asset.

FORMAT

#include <am.h>

KTBOOL amDspFetchOutputBank(AM_BANK_PTR theBank ,KTU32 assetNumber)

PARAMETERS

AM_BANK_PTR theBank, A pointer to a .kat bank.

KTU32 assetNumber , The number of the asset.

RETURN VALUE

KTTRUE, On success

KTFALSE, theBank is NULL,
assetNumber is not in this bank,
unable to send driver command

FUNCTION

Fetches and installs a DSP output bank from a KatBank asset.
AUD-91

The Dreamcast Audio 64 API
amErrorGetLast Gets a pointer to the error structure.

FORMAT

#include < ac.h >

AC_ERROR_PTR amErrorGetLast(void)

PARAMETERS

void

RETURN VALUE

AC_ERROR_STRUCT a pointer to the AM error structure.

FUNCTION

Gets a pointer to the AM error structure. This contains an error number enumerated as an AC_ERROR_TYPE
in ac.h and a more informative error message that tells the name of the function that failed as well as some
descriptive text regarding the cause of the failure.
AUD-92

3. The AICA Manager API
amErrorExists Checks to see if an error condition exists.

FORMAT

#include < ac.h >

KTBOOL amErrorExists(void)

PARAMETERS

void

RETURN VALUE

KTTRUE if a error exists

KTFALSE if no error exists.

FUNCTION

Allows checking of the error state for the AM layer in a single call returning a bool.
AUD-93

The Dreamcast Audio 64 API
amErrorClear Clears the AM error structure.

FORMAT

#include < ac.h >

void amErrorClear(void)

PARAMETERS

RETURN VALUE

KTTRUE if successful

KTFALSE if unable to send command or interruptId is out of range
(0-255).

FUNCTION

Clears the AM Error structure.
AUD-94

3. The AICA Manager API
amHeapShutdown Shuts down the AM heap management system.

FORMAT

#include <am.h>

void amHeapShutdown(void)

PARAMETERS

void

RETURN VALUE

void

FUNCTION

Shuts down the AM heap management system.
AUD-95

The Dreamcast Audio 64 API
amHeapGetInfo Gets info necessary to start an audio heap.

FORMAT

#include <am.h>

KTBOOL amHeapGetInfo(volatile KTU32 **freeSoundMemory,KTU32 *size)

PARAMETERS

volatile KTU32 **freeSoundMemory, The pointer to the Þrst free sound memory is returned via
this handle.

KTU32 *size The size of the free portion of sound memory.

RETURN VALUE

KTTRUE, on success

KTFALSE, freeSoundMemory is NULL
size is NULL
the sound driver has not been successfully installed

FUNCTION

Gets the necessary information for the amHeapInit() call from the sound driver.

Note: The driver must have been successfully installed prior to this call.
AUD-96

3. The AICA Manager API
amHeapGetFree Gets the amount of free memory.

FORMAT

#include <am.h>

KTBOOL amHeapGetFree(KTU32 *freeMemory)

PARAMETERS

KTU32 *freeMemory, The amount of free memory is returned via this pointer.

RETURN VALUE

KTTRUE, On success.

KTFALSE, If the heap has not been initialized,
freeMemory is NULL.

FUNCTION

Gets the amount of free memory remaining in the heap.
AUD-97

The Dreamcast Audio 64 API
amHeapAlloc Allocates aligned memory from the audio heap.

FORMAT

#include <am.h>

KTBOOL amHeapAlloc(

volatile KTU32 **buffer,

KTU32 size,KTU32 alignment,

AM_HEAP_MEMORY_TYPE memoryType,

AM_MEMORY_CALLBACK callback

)

PARAMETERS

volatile KTU32 **buffer, A pointer to the block of memory is returned via this
handle.

KTU32 size,KTU32 alignment, The desired alignment for the block (4 or 32)

AM_HEAP_MEMORY_TYPE memoryType, The type of memory desired AM_FIXED_MEMORY or
AM_PURGABLE_MEMORY.

AM_MEMORY_CALLBACK callback, A pointer to a callback function for the memory

RETURN VALUE

KTTRUE if the operation was successful

KTFALSE, buffer is NULL,
size is 0
size exceeds available free memory
alignment is not 4 or 32
memoryType is not AM_FIXED_MEMORY or
AM_PURGABLE_MEMORY

FUNCTION

Allocates aligned memory from the audio heap zone. The memory can be allocated in alignments of either
4 or 32 bytes. Non DWORD aligned writes to the audio memory area are illegal and will corrupt the audio
memory area severly. If the type is AM_FIXED_MEMORY the blocks will be allocated from the top of the heap
progressing downwards, if the type is AM_PURGABLE_MEMORY the blocks are allocated from the bottom of
the heap progressing upwards.

There is a variable amount of block overhead, this is applied as a Þxed amount of ((alignment-1) * 2) + 4
when the parameters are tested so it is not possible to call for the amount of free memory remaining and
allocate all of it. Depending on the alignment value the maximum allocation would be: alignment=4,
maxMem - 10; or alignment=32, maxMem-66; The callback function will be invoked when the block is either
purged or freed. The argument of the function is the address of the block that owned the callback.

Prototype for callback: void MyCallback(KTU32 blockAddress)

Note: All GD Þle system calls currently require that the buffer be aligned on a 32 byte boundry.

This may only be called post a successful call to amHeapInit()
AUD-98

3. The AICA Manager API
amHeapGetMaxPurgable Gets amount of memory available from a full purge.

FORMAT

#include <am.h>

KTBOOL amHeapGetMaxPurgable(KTU32 *maxPurgable)

PARAMETERS

KTU32 *maxPurgable, The free memory size is returned via this pointer.

RETURN VALUE

KTTRUE, on success

KTFALSE, heap is not initialized
maxPurgable is NULL

FUNCTION

Gets the amount of memory available from the free memory pool + all AM_PURGABLE_MEMORY type
blocks. This amount of memory is only available if a call is made to the function
amHeapClear (AM_PURGABLE_MEMORY) or a call to amHeapPurge (sizeNeeded).
AUD-99

The Dreamcast Audio 64 API
amHeapPurge Purges memory marked as purgable.

FORMAT

#include <am.h>

KTBOOL amHeapPurge(KTU32 sizeNeeded)

PARAMETERS

KTU32 sizeNeeded, The size of the block of memory needed.

RETURN VALUE

KTTRUE, If the memory is now available.

KTFALSE If the heap has not been initialized,
sizeNeeded is 0,
sizeNeeded exceeds free + purgable,

FUNCTION

Will purge (if necessary) blocks of purgable memory in a top down fashion until sufÞcient memory is
available to Þll the requested size. If there is sufÞcient free memory to Þll the request the function returns
KTTRUE and does nothing. When a block is purged its callback (if installed) is invoked. This returns the
address of the block to the application.

This function will not alter blocks of memory allocated as AM_FIXED_MEMORY.
AUD-100

3. The AICA Manager API
amHeapFree Frees purgable memory allocated using amHeapAlloc()

FORMAT

#include <am.h>

KTBOOL amHeapFree(volatile KTU32 *buffer)

PARAMETERS

volatile KTU32 *buffer, A pointer to the buffer to be freed.

RETURN VALUE

KTTRUE, On success

KTFALSE, If buffer is NULL,
buffer does not point to an allocated block
buffer is not the higest address allocated in purgable
memory.

FUNCTION

This will free purgable memory from the top down by block address. If there is a block allocated with a
higher address the call will fail, this prevents fragmentation. On freeing a block, if the block has a callback,
it will be executed.
AUD-101

The Dreamcast Audio 64 API
amHeapInit Initializes the audio heap.

FORMAT

#include <am.h>

KTBOOL amHeapInit(volatile KTU32 *memoryPool,KTU32 size)

PARAMETERS

volatile KTU32 *memoryPool, The start of the audio heap zone

KTU32 size, The size of the heap

RETURN VALUE

KTTRUE If the operation was successful

KTFALSE, If memoryPool is NULL,
size is 0,
heap is already open,

FUNCTION

Initializes the heaps data structures

Note: A warning will be issued if size is not a multiple of 4, in this case size will be rounded down to the next
multiple of 4.
AUD-102

3. The AICA Manager API
amHeapCheck Checks the MCB fingerprints for overwrites.

FORMAT

#include <am.h>

KTBOOL amHeapCheck(void)

PARAMETERS

void

RETURN VALUE

KTTRUE, If the heap Þngerprints are intact

KTFALSE, If the Þngerprints are corrupted or the heap is not open.

FUNCTION

Checks the MCB Þngerprints in the heap to detect overwrites in that memory zone. Use this liberally to
detect corruption or its possibility it will disappear in non-DEBUG versions.

Note: This is a MACRO that is expanded to the heap check function if DEBUG is deÞned.

If DEBUG is not deÞned it will become ((void)0); a null statement .
AUD-103

The Dreamcast Audio 64 API
amInitSelectDriver Selects driver to be installed by amInit()

FORMAT

#include <am.h>

KTBOOL amInitSelectDriver(AM_DRIVER_TYPE driverType)

PARAMETERS

AM_DRIVER_TYPE driverType, Either AM_DA_DRIVER or AM_MIDI_DRIVER.

RETURN VALUE

KTTRUE on success

KTFALSE on fail, Driver is already installed or bad arg for driverType .

FUNCTION

Allows selection of the type of driver to be loaded by the amInit() call. The default driver is the audio64
driver so if this call is not made the system will be set up as audio64 .

Note: This must be called PRIOR to the call to amInit() .
AUD-104

3. The AICA Manager API
amShutdown Shuts down the AM audio subsystem.

FORMAT

#include <am.h>

void amShutdown(void)

PARAMETERS

void

RETURN VALUE

void

FUNCTION

Shuts down the AM audio subsystem by stopping all sounds and closing their voice channels, releasing all
OS service vectors and closing the amHeap subsystem.
AUD-105

The Dreamcast Audio 64 API
amInit Starts up the AM audio subsystem.

FORMAT

#include <am.h>

KTBOOL amInit(void)

PARAMETERS

void

RETURN VALUE

KTTRUE on success

KTFALSE on fail, Driver Þle not found
Driver startup fail

FUNCTION

Starts up the AM audio subsystem. This will load the driver into the middle of the audio heap then install
that image using acInstallDriver . It then starts up the am interrupt and heap management systems.
This also calls acCdInit() to initialize the redbook playback mechanism.
AUD-106

3. The AICA Manager API
amFileRewind Seeks to the start of a file.

FORMAT

#include <am.h>

KTBOOL amFileRewind(ACFILE fd)

PARAMETERS

ACFILE fd, A GD system Þle descriptor

RETURN VALUE

KTBOOL, KTTRUE on success, KTFALSE on fail

FUNCTION

Seeks to the head (byte 0) of the Þle. This operates through the am lib IO shell and is redirectable to the
applications Þle system.

See: amFileInstallAlternateIoManager()

An example of this redirection is available in MyFile.c as well as a boilerplate copy of the IO proc
for modiÞcation.
AUD-107

The Dreamcast Audio 64 API
amFileLoad Loads specified file into the buffer.

FORMAT

#include <am.h>

KTBOOL amFileLoad(KTSTRING fileName,KTU8 * buffer)

PARAMETERS

KTSTRING fileName, The name of the Þle to load

KTU8 * buffer, A buffer large enough to hold the Þle

RETURN VALUE

KTBOOL, KTTRUE on success,
KTFALSE on fail

FUNCTION

Loads a Þle given the Þle name and a buffer to load it into. This operates through the am lib IO shell and is
redirectable to the applications Þle system.

See: amFileInstallAlternateIoManager()

An example of this redirection is available in MyFile.c as well as a boilerplate copy of the IO proc
for modiÞcation.
AUD-108

3. The AICA Manager API
amFileRead Reads from a file that is already open.

FORMAT

#include <am.h>

KTBOOL amFileRead(ACFILE fd,KTU8 * buffer,KTU32 size)

PARAMETERS

ACFILE fd, A GD system Þle descriptor

KTU8 * buffer, A pointer to a buffer into which to read

KTU32 size, The size of the data to be read

RETURN VALUE

KTBOOL, KTTRUE on success,
KTFALSE on fail

FUNCTION

Reads from an open Þle. This operates through the am lib IO shell and is redirectable to the applications
Þle system.

See: amFileInstallAlternateIoManager()

An example of this redirection is available in MyFile.c as well as a boilerplate copy of the IO proc
for modiÞcation.
AUD-109

The Dreamcast Audio 64 API
amFileOpen Opens a file for reading.

FORMAT

#include <am.h>

KTBOOL amFileOpen(KTSTRING fileName,ACFILE *fd)

PARAMETERS

KTSTRING fileName, The name of the Þle to load

ACFILE fd, A GD system Þle descriptor

RETURN VALUE

KTBOOL, KTTRUE on success,
KTFALSE on fail

FUNCTION

Loads a Þle given the Þle name and a buffer to load it into. This operates through the am lib IO shell and is
redirectable to the applications Þle system.

See: amFileInstallAlternateIoManager()

An example of this redirection is available in MyFile.c as well as a boilerplate copy of the IO proc
for modiÞcation.
AUD-110

3. The AICA Manager API
amFileClose Closes a file.

FORMAT

#include <am.h>

KTBOOL amFileClose(ACFILE fd)

PARAMETERS

ACFILE fd, A GD system Þle descriptor

RETURN VALUE

KTBOOL, KTTRUE on success,
KTFALSE on fail

FUNCTION

Closes a Þle. This operates through the am lib IO shell and is redirectable to the applications Þle system.

See: amFileInstallAlternateIoManager()

An example of this redirection is available in MyFile.c as well as a boilerplate copy of the IO proc
for modiÞcation.
AUD-111

The Dreamcast Audio 64 API
amFileGetSize Gets the size of a file.

FORMAT

#include <am.h>

KTBOOL amFileGetSize(KTSTRING fileName, KTU32 * size)

PARAMETERS

KTSTRING fileName, The name of the Þle to load

KTU32 * size, The size of the asset is returned via this pointer.

RETURN VALUE

KTBOOL, KTTRUE on success,
KTFALSE on fail

FUNCTION

Gets the size of a Þle. This operates through the am lib IO shell and is redirectable to the applications
Þle system.

See: amFileInstallAlternateIoManager()

An example of this redirection is available in MyFile.c as well as a boilerplate copy of the IO proc
for modiÞcation.
AUD-112

3. The AICA Manager API
amFileInstallAlternateIoManager Installs a custom Io proc.

FORMAT

#include <am.h>

void amFileInstallAlternateIoManager(AM_IO_PROC ioProc)

PARAMETERS

AM_IO_PROC ioProc, A pointer to a custom Io proc, see the example in
MyFile.c

RETURN VALUE

void

FUNCTION

Installs a custom Io proc into the Io shell, this allows all Þle system calls to be intercepted by the
applications Þle system.

The prototype for the IO proc is as follows:

KTBOOL MyCustomIoProc(KTSTRING fileName,

ACFILE * fd,

KTU8 * buffer,

KTU32 * size,

AM_FILE_OPERATION_MODE mode

)

An example of this redirection is available in MyFile.c as well as a boilerplate copy of the IO proc
for modiÞcation.
AUD-113

The Dreamcast Audio 64 API
amStreamIsr0 - 4 Interrupt Service Routine for the amStream subsystem.

FORMAT

#include <am.h>

void _amStreamIsr0(KTU32 streamPtr)

void _amStreamIsr1(KTU32 streamPtr)

void _amStreamIsr2(KTU32 streamPtr)

void _amStreamIsr3(KTU32 streamPtr)

void _amStreamIsr4(KTU32 streamPtr)

PARAMETERS

RETURN VALUE

KTTRUE, On success

KTFALSE,

FUNCTION

ISR routine for the amStream subsystem. These routines are used as the theIsr argument to the
amStreamSetIsr() call.

See Also: KTBOOL amStreamSetIsr(AM_STREAM_PTR theStream,AM_STREAM_ISR theIsr)
AUD-114

3. The AICA Manager API
amMemSh4Alloc Sh4 memory allocation shell.

FORMAT

#include <am.h>

KTBOOL amMemSh4Alloc(volatile KTU32 ** base,

volatile KTU32 ** aligned,

KTU32 size,

KTU32 alignment)

PARAMETERS

volatile KTU32 ** base, an unaligned pointer to the block allocated

volatile KTU32 ** aligned, a pointer to the Þrst aligned address after the base
address

KTU32 size,KTU32 alignment, the alignment desired

RETURN VALUE

KTTRUE if a block was successfully allocated

KTFALSE if insufÞcient memory available.

FUNCTION

This is a shell that veriÞes a proc pointer then calls it to invoke whatever malloc proc is currently installed.

Note: Neither the AM nor AC layers allocate or free SH4 memory.
AUD-115

The Dreamcast Audio 64 API
amMemSh4Free Sh4 memory free shell.

FORMAT

#include <am.h>

void amMemSh4Free(volatile KTU32 * block)

PARAMETERS

volatile KTU32 * block, a pointer to the unaligned base address of the block to
be freed

RETURN VALUE

void

FUNCTION

This is a shell that verifys a proc pointer then calls it to invoke whatever free proc is currently installed.

Note: Neither the AM nor AC layers allocate or free SH4 memory.
AUD-116

3. The AICA Manager API
amMemInit Initializes the Sh4 memory shell system.

FORMAT

#include <am.h>

void amMemInit(void)

PARAMETERS

void

RETURN VALUE

void

FUNCTION

Initializes the memory manager shell proc pointers with the default routines if they have not been
previously initialized. Called by amInit()

Note: Neither the AM nor AC layers allocate or free SH4 memory.
AUD-117

The Dreamcast Audio 64 API
amMemInstallAlternateMemoryManager Allows redirection of sh4 memory requests.

FORMAT

#include <am.h>

void amMemInstallAlternateMemoryManager(AM_SH4_ALLOC_PROC allocProc,AM_SH4_FREE_PROC
freeProc)

PARAMETERS

AM_SH4_ALLOC_PROC allocProc, a pointer to an correctly prototyped malloc proc

AM_SH4_FREE_PROC freeProc, a pointer to an correctly prototyped free proc

RETURN VALUE

void

FUNCTION

Initializes the malloc and free proc pointers in the audio engines memory allocation shell.

Note: This MUST be called prior to the call to amInit()

Note: Neither the AM nor AC layers allocate or free SH4 memory.
AUD-118

3. The AICA Manager API
amMidiSetTempo Sets the tempo of a MIDI sequence.

FORMAT

#include <am.h>

KTBOOL amMidiSetTempo(AM_SEQUENCE_PTR theSequence,KTS32 percentOfChange)

PARAMETERS

AM_SEQUENCE_PTR theSequence, A pointer to an AM_SEQUENCE object.

KTS32 percentOfChange, The percent of change over or under the root tempo.

RETURN VALUE

KTTRUE, on success

or...

KTFALSE on fail, theSequence is NULL.

FUNCTION

Changes the tempo of a currently playing midi sequence to the new tempo. This is expressed as a
percentage of change from the root (original) tempo. i.e. the tempo of the Þle is 120, a +10% change is
applied, the sequence is now playing at tempo 132. If a change of 0 is speciÞed the sequence will play at its
root tempo.

Note: This group of functions will only work with the MidiDa driver, they will not work with the Audio64 driver.
AUD-119

The Dreamcast Audio 64 API
amMidiSetLoopFlag Sets the loop flag on a MIDI sequence.

FORMAT

#include <am.h>

KTBOOL amMidiSetLoopFlag(AM_SEQUENCE_PTR theSequence,KTBOOL onOrOff)

PARAMETERS

AM_SEQUENCE_PTR theSequence, a pointer to an AM_SEQUENCE object.

KTBOOL onOrOff, KTTRUE to loop, KTFALSE to not.

RETURN VALUE

KTTRUE, on success

or...

KTFALSE on fail, bad arguments, theSequence is NULL.

FUNCTION

Sets the loop ßag in an AM_SEQUENCE object.

Note: if onOrOff is out of range it will be set to KTTRUE.

Note: This group of functions will only work with the MidiDa driver, they will not work with the Audio64 driver.
AUD-120

3. The AICA Manager API
amMidiFetchToneBank Installs an MTB asset from a bank file aggregate.

FORMAT

#include <am.h>

KTBOOL amMidiFetchToneBank(AM_BANK_PTR theBank ,KTU32 assetNumber ,KTU8 toneBankSlot)

PARAMETERS

AM_BANK_PTR theBank, A pointer to a .kat bank type asset aggregation.

KTU32 assetNumber, The number of the tone bank asset in the bank.

KTU8 toneBankSlot, The slot number of the bank 0-15

RETURN VALUE

KTTRUE, on success

or...

KTFALSE on fail, asset is wrong type, asset number not in bank, unable to post command to driver.

FUNCTION

Installs an MTB asset that is contained in a .kat bank aggregate Þle.

Note: This group of functions will only work with the MidiDa driver, they will not work with the Audio64 driver.
AUD-121

The Dreamcast Audio 64 API
amMidiLoadToneBank Loads a Sega tone bank asset

FORMAT

#include <am.h>

KTBOOL amMidiLoadToneBank(KTSTRING fileName,KTU8 gmMode,volatile KTU32 * buffer,KTU32
bankSize,KTU8 toneBankSlot)

PARAMETERS

KTSTRING fileName, The name of the bank Þle to be loaded from the
GD system.

KTU8 gmMode, AC_GM_ON or AC_GM_OFF, enables or disables general
midi mode

volatile KTU32 * buffer, A 32 byte aligned buffer in sound memory

KTU32 bankSize, The size of the bank to be loaded

KTU8 toneBankSlot, The slot number of the bank 0-15

RETURN VALUE

KTTRUE, on success

or...

KTFALSE on fail, buffer not 32 byte aligned,Þle not found or unable to send driver command.

FUNCTION

This loads a midi tonebank made by the SOJ mac tool from the GD-ROM using the redirectable Þle system.

Note: If gmMode is out of range it will be set to AC_GM_ON

Note: This group of functions will only work with the MidiDa driver, they will not work with the Audio64 driver.
AUD-122

3. The AICA Manager API
amMidiInstallCallback Sets the callback proc for a sequence.

FORMAT

#include <am.h>

KTBOOL amMidiInstallCallback(AM_SEQUENCE_PTR theSequence,AC_MIDI_CALLBACK theCallback)

PARAMETERS

AM_SEQUENCE_PTR theSequence, A properly initialized sequence object.

AC_MIDI_CALLBACK theCallback, The callback proc.

RETURN VALUE

KTTRUE, on success

or...

KTFALSE on fail, unable to send command to driver
theSequence is NULL

FUNCTION

Sets the callback proc for a sequence.

The voice channel number is returned to the callback, however, please note that this is not the same as the
midiPort number. The midiPort number is 16 less then the voice channel number.

The format of the callback is:

void MyCallbackProc(KTU32 voiceChannelNumber)

Note: This must be called prior to the amMidiAllocateSequencePort() and amMidiPlay() calls.

Note: This group of functions will only work with the MidiDa driver, they will not work with the Audio64 driver.
AUD-123

The Dreamcast Audio 64 API
amMidiAllocateSequencePort Allocates a MIDI port for the sequence.

FORMAT

#include <am.h>

KTBOOL amMidiAllocateSequencePort(AM_SEQUENCE_PTR theSequence)

PARAMETERS

AM_SEQUENCE_PTR theSequence, A properly initialized sequence object.

RETURN VALUE

KTTRUE, on success

or...

KTFALSE on fail, unable to send command to driver
theSequence is NULL
port allocation failed (all voices busy)

FUNCTION

Allocates a MIDI port for the sequence. This calls amVoiceAllocate() and allocates a AM_MIDI_VOICE
type channel. This voice channel number is the midiPort number + 16.

Note: This sets the user callback in the voice management system so the callback proc must be installed prior to
making this call.

Note: This group of functions will only work with the MidiDa driver, they will not work with the Audio64 driver.
AUD-124

3. The AICA Manager API
amMidiFetchSequence Fetches a sequence asset from a katBank .

FORMAT

#include <am.h>

KTBOOL amMidiFetchSequence(AM_SEQUENCE_PTR theSequence,KTU8 * theBank ,KTU32
sequenceNumber)

PARAMETERS

AM_SEQUENCE_PTR theSequence, A properly initialized sequence object.

AM_BANK_PTR theBank, A pointer to a katBank in sound memory.

KTU32 sequenceNumber, The bank asset number to fetch, see the banks .h Þle for
bank and asset info.

RETURN VALUE

KTTRUE, on success

or...

KTFALSE on fail, unable to send command to driver
theSequence is NULL
theBank is NULL
the asset fetch failed (asset not present in bank)
the requested asset was not a MIDI asset
the bank header is corrupt

FUNCTION

Fetches a standard MIDI type 0 sequence asset from a kat type bank using the amBank...() API. This type
of bank is manufactured with the mkscript and mkbank utilities.

Note: This group of functions will only work with the MidiDa driver, they will not work with the Audio64 driver.
AUD-125

The Dreamcast Audio 64 API
amMidiPlay Plays a MIDI sequence.

FORMAT

#include <am.h>

KTBOOL amMidiPlay(AM_SEQUENCE_PTR theSequence)

PARAMETERS

AM_SEQUENCE_PTR theSequence, A properly initialized sequence object.

RETURN VALUE

KTTRUE, on success

or...

KTFALSE on fail, unable to send command to driver
theSequence is NULL

FUNCTION

Plays a standard MIDI type 0 asset obtained from a kat bank using amMidiPlayRaw() . This type of bank
is manufactured with the mkscript and mkbank utilities.

Note: This group of functions will only work with the MidiDa driver, they will not work with the Audio64 driver.
AUD-126

3. The AICA Manager API
amMidiPlayRaw Plays a MIDI sequence given the basic parameters.

FORMAT

#include <am.h>

KTBOOL amMidiPlayRaw(KTU32 midiPort ,KTU8 gmMode,KTU32 ticksPQN,KTU32 sequenceSize,

KTU32 *sequenceAddress,KTU32 midiVolume,AC_MIDI_CALLBACK callback)

PARAMETERS

KTU32 midiPort, The MIDI port number (0-15)

KTU8 gmMode, AC_GM_ON or AC_GM_OFF, enables or disables general
midi mode

KTU32 ticksPQN, The number of ticks per quarter note. (often 480)

KTU32 sequenceSize, The size in bytes of the MIDI sequence data

KTU32 *sequenceAddress, The address of a MIDI type 0 asset in sound memory

KTU32 midiVolume, The MIDI volume at which to start the sequence (0-127)

AC_MIDI_CALLBACK callback, The address of a callback proc or KTNULL for no callback

RETURN VALUE

KTTRUE, on success

or...

KTFALSE on fail, unable to send command to driver
sequenceAddress is NULL
sequenceSize is 0

FUNCTION

Plays a MIDI type 0 asset in sound memory at the given volume with an optional callback that will be raised
at the end of the sequences play. The voice channel number is returned to the callback however please note
that this is not the same as the midiPort number. The midiPort number is 16 less then the voice
channel number.

Note: If midiVolume is out of range it will be set to 127

If gmMode is out of range it will be set to AC_GM_ON

The format of the callback is:

void MyCallbackProc(KTU32 voiceChannelNumber)

Note: This group of functions will only work with the MidiDa driver, they will not work with the Audio64 driver.
AUD-127

The Dreamcast Audio 64 API
amMidiStop Stops a currently playing MIDI sequence.

FORMAT

#include <am.h>

KTBOOL amMidiStop(AM_SEQUENCE_PTR theSequence)

PARAMETERS

AM_SEQUENCE_PTR theSequence, A properly initialized sequence object.

RETURN VALUE

KTTRUE, on success

or...

KTFALSE on fail, unable to send command to driver
theSequence is NULL

FUNCTION

This call stops a currently playing standard MIDI type 0 sequence. This releases the midi port back to the
voice pool post this call another call must be made to amMidiAllocateSequencePort() to aquire a new
midi port for playback. The callback, if one has been set using amMidiInstallCallback() , is still
in place.

Note: This group of functions will only work with the MidiDa driver, they will not work with the Audio64 driver.
AUD-128

3. The AICA Manager API
amMidiSetVolume Sets the master volume of a MIDI sequence.

FORMAT

#include <am.h>

KTBOOL amMidiSetVolume(AM_SEQUENCE_PTR theSequence,KTU32 newAicaVolume)

PARAMETERS

AM_SEQUENCE_PTR theSequence, A properly initialized sequence object.

KTU32 newMidiVolume, the MIDI volume for the port master (0-127).

RETURN VALUE

KTTRUE, on success

or...

KTFALSE on fail, unable to send command to driver
theSequence is NULL

FUNCTION

This call sets the MASTER volume of a MIDI sequence. The MASTER volume is the overall volume of the
sequence as opposed to the CHANNEL volume which would affect only one of the 16 possible MIDI channels
in the sequence.

If the newMidiVolume value is out of range it will be set to 127

Note: This group of functions will only work with the MidiDa driver, they will not work with the Audio64 driver.
AUD-129

The Dreamcast Audio 64 API
amMidiPause Pauses a currently playing MIDI sequence.

FORMAT

#include <am.h>

KTBOOL amMidiPause(AM_SEQUENCE_PTR theSequence)

PARAMETERS

AM_SEQUENCE_PTR theSequence, A properly initialized sequence object.

RETURN VALUE

KTTRUE, on success

or...

KTFALSE on fail, unable to send command to driver

theSequence is NULL

FUNCTION

Pauses a currently playing MIDI sequence. This will silence all currently sounding notes.

Note: This group of functions will only work with the MidiDa driver, they will not work with the Audio64 driver.
AUD-130

3. The AICA Manager API
amMidiResume Resumes playback of a paused MIDI sequence.

FORMAT

#include <am.h>

KTBOOL amMidiResume(AM_SEQUENCE_PTR theSequence)

PARAMETERS

AM_SEQUENCE_PTR theSequence, A properly initialized sequence object.

RETURN VALUE

KTTRUE, on success

or...

KTFALSE on fail, unable to send command to driver

theSequence is NULL

FUNCTION

Resumes playback of a previously paused MIDI sequence.

Note: This group of functions will only work with the MidiDa driver, they will not work with the Audio64 driver.
AUD-131

The Dreamcast Audio 64 API
amMidiTransferToneBank Transfers a Sega tone bank to sound memory and sets it as
the current bank.

FORMAT

#include <am.h>

KTBOOL amMidiTransferToneBank(volatile KTU32 *destination,KTU32 *source,KTU8 gmMode,KTU32
bankSize,KTU8 toneBankSlot)

PARAMETERS

volatile KTU32 * destination, A dword aligned buffer in sound memory.

KTU32 *source, A buffer that contains the bank to be transferred.

KTU8 gmMode, AC_GM_ON or AC_GM_OFF, enables or disables general
midi mode

KTU32 bankSize, The size of the bank.

KTU8 toneBankSlot, The slot number of the bank 0-15

RETURN VALUE

KTTRUE, on success

Or...

KTFALSE on fail, destination is not 32 byte aligned, unable to send
driver command

FUNCTION

This transfers a midi tonebank made by the SOJ mac tool from any memory to sound memory

and sets it as the current bank.

Note: If gmMode is out of range it will be set to AC_GM_ON

Note: This group of functions will only work with the MidiDa driver, they will not work with the Audio64 driver.
AUD-132

3. The AICA Manager API
amMidiSetChannelProgram Sets the current bank slot.

FORMAT

#include <am.h>

KTBOOL amMidiSetChannelProgram(KTU32 midiPort ,KTU32 midiChannel ,KTU32
midiProgramNumber)

PARAMETERS

KTU32 midiPort , The MIDI port number 0-15

KTU32 midiChannel, The MIDI channel number 1-16

KTU8 midiProgramNumber, The slot number of the program to be played for the
midi channel

RETURN VALUE

KTTRUE, on success

or...

KTFALSE on fail, unable to send command to driver

FUNCTION

Prior to playing a sound effect from a midi bank the bank slot must be made the current bank slot this
allows the setting of a current bank for a given portchannel conÞguration.

Note: This group of functions will only work with the MidiDa driver, they will not work with the Audio64 driver.
AUD-133

The Dreamcast Audio 64 API
amMidiNoteOn Plays a MIDI triggered sound effect.

FORMAT

KTBOOL amMidiNoteOn(KTU32 midiPort ,KTU32 midiChannel ,KTU8 midiNoteNumber,KTU32
midiNoteOnVelocity)

#include <am.h>

PARAMETERS

KTU32 midiPort, The MIDI port number 0-15

KTU32 midiChannel, The MIDI channel number 1-16

KTU8 midiNoteNumber, The MIDI note number of the sound to be played. 0-127

KTU32 midiNoteOnVelocity, The MIDI note on velocity 0-127

RETURN VALUE

KTTRUE, on success

or...

KTFALSE on fail, unable to send command to driver

midiPort out of range (0-15)

midiChannel out of range (1-16)

midiNoteNumber out of range (0-127)

FUNCTION

Plays a MIDI triggered sound effect from a Sega Tonebank type asset loaded with the
amMidiLoadBank() call.

Note: If midiNoteOnVelocity is out of range it will be set to AC_MAX_MIDI_VELOCITY (127).

Note: This group of functions will only work with the MidiDa driver, they will not work with the Audio64 driver.
AUD-134

3. The AICA Manager API
amMidiNoteOff Stops a MIDI triggered sound effect.

FORMAT

#include <am.h>

KTBOOL amMidiNoteOff(KTU32 midiPort ,KTU32 midiChannel ,KTU8 midiNoteNumber)

PARAMETERS

KTU32 midiPort, The MIDI port number 0-15

KTU32 midiChannel, The MIDI channel number 1-16

KTU8 midiNoteNumber, The MIDI note number of the sound to be played.

RETURN VALUE

KTTRUE, on success

or...

KTFALSE on fail, unable to send command to driver

midiPort out of range (0-15)

midiChannel out of range (1-16)

midiNoteNumber out of range (0-127)

FUNCTION

This will stop a MIDI triggered sound effect if it is currently playing.

Note: This group of functions will only work with the MidiDa driver, they will not work with the Audio64 driver.
AUD-135

The Dreamcast Audio 64 API
amMidiSetChannelVolume Sets volume of a midi sound.

FORMAT

#include <am.h>

KTBOOL amMidiSetChannelVolume(KTU32 midiPort ,KTU32 midiChannel ,KTU32 midiVolume)

PARAMETERS

KTU32 midiPort , The MIDI port number 0-15

KTU32 midiChannel , The MIDI channel number 1-16

KTU32 midiVolume, The MIDI volume to set 0-127

RETURN VALUE

KTTRUE, on success

or...

KTFALSE on fail, unable to send command to driver

midiPort out of range (0-15)

midiChannel out of range (1-16)

FUNCTION

Sets CHANNEL volume of a currently playing MIDI triggered sound. This sends a MIDI Control Change 7
value ? to the driver.

Note: If midi volume is out of range it will be set to AC_MAX_MIDI_VOLUME (127)

Note: This group of functions will only work with the MidiDa driver, they will not work with the Audio64 driver.
AUD-136

3. The AICA Manager API
amMidiSetChannelPan Sets the pan of a MIDI sound.

FORMAT

#include <am.h>

KTBOOL amMidiSetChannelPan(KTU32 midiPort ,KTU32 midiChannel ,KTU32 midiPan)

PARAMETERS

KTU32 midiPort, The MIDI port number 0-15

KTU32 midiChannel, The MIDI channel number 1-16

KTU32 midiPan, The MIDI pan to set 0-127

RETURN VALUE

KTTRUE, on success

or...

KTFALSE on fail, unable to send command to driver

midiPort out of range (0-15)

midiChannel out of range (1-16)

FUNCTION

Sets pan (position) of a currently iterating MIDI triggered sound. This sends a MIDI Control Change 10
value ? to the driver.

Note: If midi pan is out of range it will be set to AC_MAX_MIDI_PAN (127)

Note: This group of functions will only work with the MidiDa driver, they will not work with the Audio64 driver.
AUD-137

The Dreamcast Audio 64 API
amSoundSetQSoundChannels Used to identify which channels in an output bank are
Q-Sound channels.

FORMAT

#include <am.h>

KTBOOL amSoundSetQSoundChannels(KTU32 firstQChannel,KTU32 numberOfQChannels)

PARAMETERS

KTU32 firstQChannel, The Þrst Q-Sound channel in the output bank
(.fob) asset.

KTU32 numberOfQChannels The number of Q-Sound channels in the output bank
(.fob) asset.

RETURN VALUE

KTTRUE, On success

KTFALSE, ÞrstQChannel is out of range

numberOfQChannels > AM_MAX_Q_CHANNELS

FUNCTION

Used to identify which channels in an output bank are Q-Sound channels. If this is called with
numberOfQChannels==0 then the Q channel identiÞcation system is cleared.
AUD-138

3. The AICA Manager API
amSoundSetEffectsBuss Sets the effects buss send and source mix for a sound object.

FORMAT

#include <am.h>

KTBOOL amSoundSetEffectsBuss(AM_SOUND_PTR theSound,KTU32 dspMixerChannel,KTU32 sourceMix)

PARAMETERS

AM_SOUND_PTR theSound, A pointer to a properly initialized sound object

KTU32 dspMixerChannel, The DSP mixer channel to route the dry send into.

KTU32 sourceMix, The percentage of the dry volume to route to wet volume
(1-100)

RETURN VALUE

KTTRUE, On success

KTFALSE, if theSound is NULL

if dspMixerChannel >
AM_MAX_DSP_MIXER_CHANNELS

if sourceMix > AM_MAX_DSP_SOURCE_MIX

FUNCTION

This will set the effects send and source mixof the given sound. The argument sourceMix is how much of
a DSP program is added to the dry send. If a source mix of 100% is selected and the sound has a volume of
90 then the wet level will be 90 and the dry level will be 90, if a sourceMix of 50% is selected the the wet
level will be 45 and the dry level 90.
AUD-139

The Dreamcast Audio 64 API
amSoundFetchSample Fetches a sound and its parameters from a Katana format bank.

FORMAT

#include <am.h>

KTBOOL amSoundFetchSample(AM_BANK_PTR theBank ,KTU32 soundNumber,AM_SOUND_PTR theSound)

PARAMETERS

AM_BANK_PTR theBank, A pointer to a katbank containing the sound to be
fetched.

KTU32 soundNumber, The sound number to be fetched.

AM_SOUND_PTR sound, A pointer to an AM_SOUND structure, this will contain all
needed information on the sound on successful return
from this function.

On fail this structure will be Þlled with 0x00.

RETURN VALUE

KTTRUE, on success

KTFALSE, theSound is NULL

theBank is NULL

soundNumber is out of range

the bank asset is not of the right type

FUNCTION

Fetches a digital sound from a given Katbank .

Calls: amBankFetchAsset()
AUD-140

3. The AICA Manager API
amSoundIsLooping Tells if the given sound has a loop.

FORMAT

#include <am.h>

KTBOOL amSoundIsLooping(AM_SOUND_PTR theSound,KTBOOL *loopFlag)

PARAMETERS

AM_SOUND_PTR theSound, A pointer to a properly initialized sound object

KTBOOL *loopFlag, The loop ßag is returned via this pointer

RETURN VALUE

KTTRUE on success

KTFALSE theSound is NULL

loopFlag is NULL

FUNCTION

Queries weather a given sound has a loop or not.

Note: The sound structure must have been initialized with the amBankFetchSound function for it to contain
valid data.
AUD-141

The Dreamcast Audio 64 API
amSoundAllocateVoiceChannel Allocates a hardware voice channel.

FORMAT

#include <am.h>

KTBOOL amSoundAllocateVoiceChannel(AM_SOUND_PTR theSound)

PARAMETERS

AM_SOUND_PTR theSound, A pointer to a properly initialized sound object

RETURN VALUE

KTBOOL, KTTRUE on success

KTFALSE canÕt allocate voice (all channels busy)

theSound is NULL

FUNCTION

This allocates a hardware voice channel (an ac lib "port") for playback by the amSound subsystem. The
channel is freed via the system callback mechanism when the sound has been stopped prior to the end or
has Þnished playing.

Note: The sound structure must have been initialized with the amBankFetchSound function for it to contain
valid data.
AUD-142

3. The AICA Manager API
amSoundGetSampleRate Gets the real world sample rate.

FORMAT

#include <am.h>

KTBOOL amSoundGetSampleRate(AM_SOUND_PTR theSound,KTU32 *realWorldSampleRate)

PARAMETERS

AM_SOUND_PTR theSound, A pointer to a properly initialized sound object

KTU32 *realWorldSampleRate, The real world sample rate is returned via this pointer.

RETURN VALUE

KTBOOL, KTTRUE on success

KTFALSE canÕt allocate voice (all channels busy)

theSound is NULL

realWorldSampleRate is NULL

FUNCTION

This will return the real world sample rate of the given sound. Real world rates are 44100, 22050 etc.

Note: The sound structure must have been initialized with the amBankFetchSound function for it to contain
valid data.
AUD-143

The Dreamcast Audio 64 API
amSoundGetVolume Gets the current volume setting.

FORMAT

#include <am.h>

KTBOOL amSoundGetVolume(AM_SOUND_PTR theSound,KTU32 *volume)

PARAMETERS

AM_SOUND_PTR theSound, A pointer to a properly initialized sound object

KTU32 *volume, The volume (0-127) is returned via this pointer.

RETURN VALUE

KTBOOL, KTTRUE on success

KTFALSE theSound is NULL

volume is NULL

FUNCTION

This returns the current volume of the sound in normal volume units (0-127).

Note: The sound structure must have been initialized with the amBankFetchSound function for it to contain
valid data.
AUD-144

3. The AICA Manager API
amSoundGetPan Gets the current pan position.

FORMAT

#include <am.h>

KTBOOL amSoundGetPan(AM_SOUND_PTR theSound,KTU32 *aicaPan)

PARAMETERS

AM_SOUND_PTR theSound, A pointer to a properly initialized sound object

KTU32 *pan, The pan (0-127) is returned via this pointer.

RETURN VALUE

KTBOOL, KTTRUE on success

KTFALSE theSound is NULL

pan is NULL

FUNCTION

This returns the current pan of the sound in normal pan units (0-127).

Note: The sound structure must have been initialized with the amBankFetchSound function for it to contain
valid data.
AUD-145

The Dreamcast Audio 64 API
amSoundGetVoiceChannel Gets the current voice channel assignment.

FORMAT

#include <am.h>

KTBOOL amSoundGetVoiceChannel(AM_SOUND_PTR theSound,KTU32 *voiceChannel)

PARAMETERS

AM_SOUND_PTR theSound, A pointer to a properly initialized sound object

KTU32 *voiceChannel, The voice channel is returned via this pointer.

RETURN VALUE

KTTRUE on success

KTFALSE theSound is NULL

voiceChannel is NULL

FUNCTION

This gets the current voice channel assignment of a sound. If the sound has not yet been initialized with a
voice channel assignment the value AM_UNINITIALIZED_VOICE_CHANNEL will be returned.

Note: The sound structure must have been initialized with the amBankFetchSound function for it to contain
valid data.
AUD-146

3. The AICA Manager API
amSoundGetCallback Gets the address of the user callback.

FORMAT

#include <am.h>

KTBOOL amSoundGetCallback(AM_SOUND_PTR theSound,AM_USER_CALLBACK *theCallback)

PARAMETERS

AM_SOUND_PTR theSound, A pointer to a properly initialized sound object

AM_USER_CALLBACK *theCallback, A pointer to the callback is returned via this handle.

RETURN VALUE

KTTRUE on success

KTFALSE theSound is NULL

theCallback is NULL

FUNCTION

This gets the address of the user callback proc assigned to a sound, if no callback has been assigned KTNULL
will be returned.

Note: The sound structure must have been initialized with the amBankFetchSound function for it to contain
valid data.
AUD-147

The Dreamcast Audio 64 API
amSoundSetCurrentPlaybackRate Sets the playback rate.

FORMAT

#include <am.h>

KTBOOL amSoundSetCurrentPlaybackRate(AM_SOUND_PTR theSound,KTU32 sampleRate)

PARAMETERS

AM_SOUND_PTR theSound, A pointer to a properly initialized sound object

RETURN VALUE

KTTRUE on success

KTFALSE theSound is NULL

sampleRate is > 1128900

canÕt send a command to the driver

FUNCTION

If called prior to playing a sound this will set the sounds initial playback rate. If called while the sound is
playing the current playback rate will be set.

Note: The sound structure must have been initialized with the amBankFetchSound function for it to contain
valid data.
AUD-148

3. The AICA Manager API
amSoundSetVolume Sets a sounds volume.

FORMAT

#include <am.h>

KTBOOL amSoundSetVolume(AM_SOUND_PTR theSound,KTU32 newVolume)

PARAMETERS

AM_SOUND_PTR theSound, A pointer to a properly initialized sound object

KTU32 newVolume, The volume to set (0-127)

RETURN VALUE

KTTRUE on success

KTFALSE can't send a command to the driver

theSound is NULL

FUNCTION

If called prior to playing a sound this will set the sounds initial playback volume. If called while a sound is
playing it will set the current playback volume.

Note: The sound structure must have been initialized with the amBankFetchSound function for it to contain
valid data.

If newVolume > AM_MAX_VOLUME (127) newVolume will be set to AM_MAX_VOLUME

Further the aica volume range is 0-15 so the 0-127 range is quantitized into 15 steps.
AUD-149

The Dreamcast Audio 64 API
amSoundSetPan Sets a sounds pan.

FORMAT

#include <am.h>

KTBOOL amSoundSetPan(AM_SOUND_PTR theSound,KTU32 newPan)

PARAMETERS

AM_SOUND_PTR theSound, A pointer to a properly initialized sound object

KTU32 newPan, The pan to set (0-127)

RETURN VALUE

KTTRUE on success

KTFALSE canÕt send a command to the driver

theSound is NULL

FUNCTION

If called prior to playing a sound this will set the sounds initial playback pan position.

If called while a sound is playing it will set the current playback pan position.

Note: The sound structure must have been initialized with the amBankFetchSound function for it to contain
valid data.

If pan > AM_MAX_PAN (127) pan will be set to AM_MAX_PAN.

Because the AICA pan scale is 0-31 the normal pan numbers of 0-127 are quantitized to 31 steps.
AUD-150

3. The AICA Manager API
amSoundSetCallback Sets the user callback.

FORMAT

#include <am.h>

KTBOOL amSoundSetCallback(AM_SOUND_PTR theSound,AM_USER_CALLBACK callback)

PARAMETERS

AM_SOUND_PTR theSound, A pointer to a properly initialized sound object

KTU32 callback, The address of a user callback function.

RETURN VALUE

KTTRUE on success

KTFALSE theSound is NULL

theSound is playing

FUNCTION

Sets the user callback for a sound. This function will be called when a sound has Þnished playing. The
callback function will need to be protyped as void foo(KTU32 voiceChannel).

Note: The sound structure must have been initialized with the amBankFetchSound function for it to contain
valid data.
AUD-151

The Dreamcast Audio 64 API
amSoundIsPlaying Tells if a sound is currently playing.

FORMAT

#include <am.h>

KTBOOL amSoundIsPlaying(AM_SOUND_PTR theSound)

PARAMETERS

AM_SOUND_PTR theSound, A pointer to a properly initialized sound object

RETURN VALUE

KTTRUE if the sound is playing.

KTFALSE if theSound is NULL

the sound is not playing.

FUNCTION

Note: The sound structure must have been initialized with the amBankFetchSound function for it to contain
valid data.
AUD-152

3. The AICA Manager API
amSoundStop Stops a currently playing sound.

FORMAT

#include <am.h>

KTBOOL amSoundStop(AM_SOUND_PTR theSound)

PARAMETERS

AM_SOUND_PTR theSound, A pointer to a properly initialized sound object

RETURN VALUE

KTTRUE if the sound was stopped

KTFALSE if the sound was not playing.

canÕt send a command to the driver

theSound is NULL

FUNCTION

This stops a currently playing sound and releases its voice channel.

Note: The sound structure must have been initialized with the amBankFetchSound function for it to contain
valid data.
AUD-153

The Dreamcast Audio 64 API
amSoundPlay Plays a sound.

FORMAT

#include <am.h>

KTBOOL amSoundPlay(AM_SOUND_PTR theSound)

PARAMETERS

AM_SOUND_PTR theSound, A pointer to a properly initialized sound object

RETURN VALUE

KTTRUE if the sound was played

KTFALSE canÕt send a command to the driver

theSound is NULL

a voice channel had not been allocated

FUNCTION

This will start a properly initialized sound object playing.

Note: The sound structure must have been initialized with the amBankFetchSound function for it to contain
valid data.

On Failure, due to failing amSoundPlayRaw() or internal error, this will release the voice channel that was
allocated for the sound to prevent a failed call from leaking a voice channel.

The member theSound->voiceChannel will be set to AM_UNINITIALIZED_VOICE_CHANNEL if it has
been released.
AUD-154

3. The AICA Manager API
amSoundPlayRaw Plays a sound given all of the required parameters.

FORMAT

#include <am.h>

KTBOOL amSoundPlayRaw(KTS32 voiceChannel,

KTU32 sizeInBytes,

KTU32 address,

KTU32 sampleRate,

AC_AUDIO_TYPE aicaAudioType,

KTU32 pitchOffsetInCents,

KTS32 aicaLoopFlag,

AM_USER_CALLBACK userCallbackProc,

KTU32 dryVolume,

KTU32 wetVolume,

KTU32 pan,

KTU32 mixerChannel,

KTBOOL effectsOnOrOff

)

PARAMETERS

KTS32 voiceChannel, The DA port number to use for the sound playback.

KTU32 sizeInBytes, The size of the sound in bytes

KTU32 address, The address of the sound in sound memory

KTU32 sampleRate, The real world sample rate, i.e. 44100, 22050, 16000 etc

AC_AUDIO_TYPE aicaAudioType, The audio type, i.e. AC_16BIT, AC_8BIT,
AC_ADPCM_LOOP, see ac.h

KTU32 pitchOffsetInCents, The amount to offset the pitch (positive offset only)

KTS32 aicaLoopFlag, The aica loop ßag, eithe AC_LOOP_ON or AC_LOOP_OFF,
see ac.h

AM_USER_CALLBACK userCallbackProc, A pointer to a user callback proc or KTNULL

KTU32 dryVolume, The normal volume (0-127)

KTU32 wetVolume, The effects volume (0-127)

KTU32 pan, The normal pan (0-127)

KTU32 mixerChannel The effects bank mixer channel to use

KTBOOL effectsOnOrOff True if mixer channel supplied is valid, turns effects on
and off

RETURN VALUE

void
AUD-155

The Dreamcast Audio 64 API
FUNCTION

Plays a raw PCM intel byte order sound from sound memory. If a user callback proc is supplied the callback
will be invoked when the sound is Þnished with its play.

The proc will need to have the following prototype:

void MyCallbackProc(KTU32 voiceChannel);

The voice channel (DA port #) that raised the interrupt will be passed up in the arg voiceChannel .
AUD-156

3. The AICA Manager API
amStreamSetMix Sets volume and pan for all tracks in a stream.

FORMAT

#include <am.h>

KTBOOL amStreamSetMix(AM_STREAM_PTR theStream,AM_STREAM_MIX_PTR theMix)

PARAMETERS

AM_STREAM_PTR theStream, The stream object to be set

AM_STREAM_MIX_PTR theMix, The new scene mix to be set.

RETURN VALUE

KTBOOL, KTTRUE if the mix was successfully set.

FUNCTION

Sets the volume and pan of all tracks in a stream to new values. If a value in the new scene is the same as
the current value the command is not sent.
AUD-157

The Dreamcast Audio 64 API
amStreamInitFile Initializes a stream object to play a file.

FORMAT

#include <am.h>

KTBOOL amStreamInitFile(AM_STREAM_PTR theStream,KTSTRING fileName)

PARAMETERS

AM_STREAM_PTR theStream, the stream object to be initialized

KTSTRING fileName, the Þle name of the .str Þle to stream

RETURN VALUE

KTBOOL, KTTRUE if the stream object was successfully initialized

FUNCTION

Sets the members of the stream object necessary to the preparation for a call to amStreamOpen()

Note: if the length of the Þlename is in excess of AM_STREAM_FILENAME_LEN the call will fail.
AUD-158

3. The AICA Manager API
amStreamInitBuffer Initializes a stream object to play a mono stream from a buffer.

FORMAT

#include <am.h>

KTBOOL amStreamInitBuffer(AM_STREAM_PTR theStream,

volatile KTU32 *buffer,

KTU32 size,

KTU32 sampleRate,

KTU32 bitDepth)

PARAMETERS

AM_STREAM_PTR theStream, The stream object to be initialized

volatile KTU32 *buffer, A buffer in either sh4 memory or sound memory

KTU32 size, The size of the buffer,

NOTE: the buffer MUST be a multiple of the play buffer
size

KTU32 sampleRate, The real world integral sample rate of the Þle, 44100,
22050, or 11025

KTU32 bitDepth, 4,8 or 16

RETURN VALUE

KTBOOL, KTTRUE if the stream object was successfully initialized

FUNCTION

Sets the members of the stream object necessary to the preparation for a call to amStreamOpen() , this
allows the playback of a chunk of headerless raw sound data. This is the way to play a stream that is to be
constructed at play time. When preparing the buffer it should be sized to be an even multiple of the
playbuffer size, allocate the buffer wherever you want it, sound or sh4 memory, then Þll it with silence.

For ADPCM data silence is 0x80, for 8 and 16 bit data silence is 0x00.

For a 16 bit44.1k memory stream a 4096 byte play buffer is sufÞcient.

Note: This does not use the streamIO subsystem, it is also possible to play multitrack buffers using
that subsystem.
AUD-159

The Dreamcast Audio 64 API
amStreamInstallUserCallback Installs a user callback for a stream.

FORMAT

#include <am.h>

KTBOOL amStreamInstallUserCallback(AM_STREAM_PTR theStream,AM_USER_CALLBACK userCallback)

PARAMETERS

AM_STREAM_PTR theStream, The stream object.

AM_USER_CALLBACK userCallback, The address of the callback function, see am.h

RETURN VALUE

KTBOOL, KTTRUE If the callback was installed

KTFALSE If the stream object has not been opened or is corrupt.

FUNCTION

This function will call _amVoiceInstallUserCallback to install a user callback into the interrupt
handling system.

The callback will be issued when the stream is stopped via amStreamStop or the stream reaches the end.

Note: This must be called post the call to amStreamAllocateVoiceChannels() and the call to
amStreamOpen() .
AUD-160

3. The AICA Manager API
amStreamRewind Rewinds an open stream to its start.

FORMAT

#include <am.h>

KTBOOL amStreamRewind(AM_STREAM_PTR theStream)

PARAMETERS

AM_STREAM_PTR theStream, The stream object to rewind.

RETURN VALUE

KTBOOL, KTTRUE, If the stream was successfully rewound.

KTFALSE, If the seekrewind call failed or the stream is not open.

FUNCTION

Allows an open stream to be rewound to its start with out closing and reopening the Þle to get to
its beginning.
AUD-161

The Dreamcast Audio 64 API
amStreamGetMemoryRequirement Gets memory sizes necessary to play the
stream.

FORMAT

#include <am.h>

KTBOOL amStreamGetMemoryRequirement(AM_STREAM_PTR theStream,

KTU32 *transferBufferSize,

KTU32 *playBufferSize

)

PARAMETERS

AM_STREAM_PTR theStream, The stream object to get the requirement from.

KTU32 *transferBufferSize, The size of the transfer buffer is returned via this pointer.

KTU32 *playBufferSize, The size of the play buffer(s) are returned via this pointer.

RETURN VALUE

KTBOOL, KTTRUE, If the memory requirements were returned.

KTFALSE, If the stream was not open or is corrupt.

FUNCTION

Gets the minimum amount of memory that will need to be passed into the amStreamSetBuffers() call.

Note: This must be called post the calls to amStreamOpen() and amSetBufferSizes()
AUD-162

3. The AICA Manager API
amStreamSetBufferSizes Sets the sizes for the play and transfer buffers.

FORMAT

#include <am.h>

void amStreamSetBufferSizes(AM_STREAM_PTR theStream,

KTU32 transferBufferSize,

KTU32 playBufferSize)

PARAMETERS

AM_STREAM_PTR theStream, The stream object to be set.

KTU32 transferBufferSize, The size of the transfer buffer.

KTU32 playBufferSize, The size of a play buffer.

RETURN VALUE

KTBOOL, KTTRUE, If the sizes were set.

KTFALSE, If the stream is already open.

FUNCTION

Sets the buffer sizes in a stream that is not currently open.

Currently the basic recommendations for buffer sizes are as follows:

1) Play buffer size must be a multiple of 2048

2) Mono streams play well with a 2048 byte play buffer, stereo with a 4096 byte play buffer.

3) Transfer buffer size should be as follows: transferBufferSize = (playBufferSize * 2)

Note: This must be called PRIOR to the call to amStreamOpen()
AUD-163

The Dreamcast Audio 64 API
amStreamSetBuffers Sets buffer memory pointers in a stream.

FORMAT

#include <am.h>

KTBOOL amStreamSetBuffers(AM_STREAM_PTR theStream,

volatile KTU32 *transferBuffer,

volatile KTU32 *playBuffer)

PARAMETERS

AM_STREAM_PTR theStream, The stream object to be set.

volatile KTU32 *transferBuffer, The transfer buffer memory

volatile KTU32 *playBuffer, The play buffer memory

RETURN VALUE

KTBOOL, KTTRUE, If the buffer pointers were set.

KTFALSE, If amStreamSetBufferSizes() has not been called
successfully

If amStreamOpen() was not called successfully

If the stream is corrupt.

FUNCTION

Sets the buffers necessary to run a stream, stereo and multi track streams require a play buffer per channel.
This routine will subdivide the buffer passed in for the play buffer as necessary for the given stream.

Note: This must be called post the call to amStreamSetBufferSizes() and the call to amStreamOpen()
AUD-164

3. The AICA Manager API
amStreamSetIsr Sets the streams data transfer ISR.

FORMAT

#include <am.h>

KTBOOL amStreamSetIsr(AM_STREAM_PTR theStream,AM_STREAM_ISR theIsr)

PARAMETERS

AM_STREAM_PTR theStream, The stream object to be set.

AM_STREAM_ISR theIsr, A pointer to a data transfer ISR

Library ISR identiÞers:
void _amStreamIsr0 (KTU32 streamPtr)

void _amStreamIsr1 (KTU32 streamPtr)

void _amStreamIsr2 (KTU32 streamPtr)

void _amStreamIsr3 (KTU32 streamPtr)

void _amStreamIsr4 (KTU32 streamPtr)

RETURN VALUE

KTBOOL, KTTRUE, If the ISR was installed successfully.

KTFALSE, If the stream was not open

FUNCTION

Sets the streams ISR that pumps data from the transfer buffer to the play buffer(s) . To determine if a
stream is mono or stereo, post amStreamOpen() , use the calls:

amStreamIsMono() or amStreamIsStereo().

Note: This must be called post the calls to amStreamOpen() and amStreamAllocateVoiceChannels()
AUD-165

The Dreamcast Audio 64 API
amStreamAllocateVoiceChannels Allocates voice channels.

FORMAT

#include <am.h>

KTBOOL amStreamAllocateVoiceChannels(AM_STREAM_PTR theStream)

PARAMETERS

AM_STREAM_PTR theStream, The stream object to get voices.

RETURN VALUE

KTBOOL, KTTRUE, If the voice(s) were successfully allocated.

KTFALSE, If the allocation failed.

If the stream was not open.

FUNCTION

This calls amVoiceAllocate() to allocate voices for the given stream, playback requires one voice per
channel of program. A mono stream is one channel, a single track of stereo is two channels.

Note: This must be called post to call to amStreamOpen() .
AUD-166

3. The AICA Manager API
amStreamPrimeBuffers Primes the play buffer.

FORMAT

#include <am.h>

KTBOOL amStreamPrimeBuffers(AM_STREAM_PTR theStream)

PARAMETERS

AM_STREAM_PTR theStream, the stream object to be primed.

RETURN VALUE

KTBOOL, KTTRUE, If the stream was successfully primed.

KTFALSE, If the stream was not open.

If the read failed.

If the stream is corrupt.

FUNCTION

Moves the Þrst load of data into the transfer and play buffer(s) for the given stream.

Note: This must be called post the call to amStreamOpen() .
AUD-167

The Dreamcast Audio 64 API
amStreamGetTrackLengthInFrames Gets the length of a stream in frames.

FORMAT

#include <am.h>

KTBOOL amStreamGetTrackLengthInFrames(AM_STREAM_PTR theStream,KTU32 trackNumber,KTU32
*trackLengthInFrames)

PARAMETERS

AM_STREAM_PTR theStream, the stream object to get the length from.

KTU32 trackNumber, the number of the track.

KTU32 *trackLengthInFrames, the length of a stream in frames is returned via this
pointer.

RETURN VALUE

KTBOOL

FUNCTION

Gets the length of a stream in frames.

Note: This must be called post the call to amStreamOpen() or it will return 0 amUtilGetNibblesPerFrame ()
AUD-168

3. The AICA Manager API
amStreamGetNibblesPerFrame Gets the number of nibbles in a frame.

FORMAT

#include <am.h>

KTBOOL amStreamGetNibblesPerFrame(AM_STREAM_PTR theStream,KTU32 *nibblesPerFrame)

PARAMETERS

AM_STREAM_PTR theStream, The stream object

KTU32 *nibblesPerFrame, The number of nibbles in a frame of data.

RETURN VALUE

KTBOOL

FUNCTION

Gets the number of nibbles in a frame for the sample format of the given stream.

Note: This must be called post the call to amStreamOpen() or it will return 0
AUD-169

The Dreamcast Audio 64 API
amStreamGetSampleRate Gets the real world sample rate of a stream.

FORMAT

#include <am.h>

KTBOOL amStreamGetSampleRate(AM_STREAM_PTR theStream,KTU32 *sampleRate)

PARAMETERS

AM_STREAM_PTR theStream, The stream object

KTU32 *sampleRate, The real world sample rate of a stream.

RETURN VALUE

KTBOOL

FUNCTION

Returns the real world (44100, 22050, 11025, ...) sample rate of a stream. In the stream object the sample rate
is AICA encoded and bears no resemblance to the real world rate. This allows access to a meaningful value
for sample rate.

Note: This must be called post the call to amStreamOpen() or it will return 0
AUD-170

3. The AICA Manager API
amStreamGetMsPerIrq Gets the number of milliseconds per callback.

FORMAT

#include <am.h>

KTBOOL amStreamGetMsPerIrq(AM_STREAM_PTR theStream,KTU32 *millisecondsPerIrq)

PARAMETERS

AM_STREAM_PTR theStream, The stream object

KTU32 *millisecondsPerIrq, The number of milliseconds per callback.

RETURN VALUE

vKTBOOL

FUNCTION

Gets the number of milliseconds per callback. There are two callbacks per iteration of the play buffer which
is playing at sample rate in frames, this resolves all of the variables to produce the number of milliseconds
per callback.

Note: This must be called post the call to amStreamOpen() or it will return 0
AUD-171

The Dreamcast Audio 64 API
amStreamSetVolume Sets the volume on a stream.

FORMAT

#include <am.h>

KTBOOL amStreamSetVolume(AM_STREAM_PTR theStream,KTU8 newVolume)

PARAMETERS

AM_STREAM_PTR theStream, The stream object of the stream to have its volume set

KTU8 newVolume, The new volume to set (0-127)

RETURN VALUE

KTBOOL, KTTRUE if the pan was successfully set

KTFALSE if the stream is not playing.

FUNCTION

Sets the volume of the currently playing mono or stereo stream.
AUD-172

3. The AICA Manager API
amStreamSetPan Sets the pan on a mono stream.

FORMAT

#include <am.h>

KTBOOL amStreamSetPan(AM_STREAM_PTR theStream,KTU8 newPan)

PARAMETERS

AM_STREAM_PTR theStream, The stream object of the stream to be panned

KTU8 newPan, The new setting for the pan (0-127)

RETURN VALUE

KTBOOL, KTTRUE if the pan was successfully set

KTFALSE if the stream is not playing or the stream is stereo

FUNCTION

Sets the pan of a currently playing MONO stream, if a stereo sream is submitted the call will return
KTFALSE as stereo streams can not be panned.
AUD-173

The Dreamcast Audio 64 API
amStreamStop Stops a currently playing stream.

FORMAT

#include <am.h>

KTBOOL amStreamStop(AM_STREAM_PTR theStream)

PARAMETERS

AM_STREAM_PTR theStream, the stream object of the stream to be stopped

RETURN VALUE

KTBOOL, KTTRUE if the stream was successfully stopped

FUNCTION

Used to stop a currently playing stream, this routine is called by amStreamServer() at the end of a
stream. This closes and frees the port, removes and releases the callback and releases the port and the
buffers from the stream.
AUD-174

3. The AICA Manager API
amStreamPlaying Monitors if a stream is currently playing.

FORMAT

#include <am.h>

KTBOOL _amStreamPlaying(AM_STREAM_PTR theStream)

PARAMETERS

AM_STREAM_PTR theStream, the stream object to be monitored for play activity

RETURN VALUE

KTBOOL, KTTRUE if the stream is currently playing

FUNCTION

Used to monitor the play status of a stream.
AUD-175

The Dreamcast Audio 64 API
amStreamGetVolume Gets the streams current volume

FORMAT

#include <am.h>

KTU32 amStreamGetVolume(AM_STREAM_PTR theStream)

PARAMETERS

AM_STREAM_PTR theStream, The stream object to get the volume from

KTU32 *volume, The volume is returned via this pointer.

RETURN VALUE

KTBOOL, KTTRUE on success

KTFALSE on NULL parameter or track number out of range.

FUNCTION

Gets the current volume of a stream.
AUD-176

3. The AICA Manager API
amStreamGetPan Gets the streams current pan

FORMAT

#include <am.h>

KTU32 amStreamGetVolume(AM_STREAM_PTR theStream)

PARAMETERS

AM_STREAM_PTR theStream, The stream object to get the volume from

KTU32 *pan, The pan is returned via this pointer.

RETURN VALUE

KTBOOL, KTTRUE on success

KTFALSE on NULL parameter or track number out of range.

FUNCTION

Gets the current pan of a stream.
AUD-177

The Dreamcast Audio 64 API
amStreamGetIsrCount Gets the Interrupt Service Routine count.

FORMAT

#include <am.h>

KTU32 amStreamGetIsrCount(AM_STREAM_PTR theStream)

PARAMETERS

AM_STREAM_PTR theStream, the stream object to get the ISR count from

RETURN VALUE

KTU32, The number of times the ISR has been invoked for this stream.

FUNCTION

Gets the number of times that the ISR has been invoked in this play cycle.
AUD-178

3. The AICA Manager API
amStreamClose Closes a stream object.

FORMAT

#include <am.h>

KTBOOL amStreamClose(AM_STREAM_PTR theStream)

PARAMETERS

AM_STREAM_PTR theStream, the stream object to be closed

RETURN VALUE

KTBOOL, KTTRUE if the stream object was (or is) closed

FUNCTION

Used to close a stream Þle. This closes the Þle but does not release the resources.
AUD-179

The Dreamcast Audio 64 API
amStreamStart Starts a stream object playing.

FORMAT

#include <am.h>

KTBOOL amStreamStart(AM_STREAM_PTR theStream)

PARAMETERS

AM_STREAM_PTR theStream, the stream object to be started

RETURN VALUE

KTBOOL, KTTRUE if the stream was successfully started

FUNCTION

Starts the given stream object playing, aquires callback procs and aquires and conÞgures the ports based on
the type of stream contained in the .str Þle.
AUD-180

3. The AICA Manager API
amStreamIsStereo Tells if a stream is stereo.

FORMAT

#include <am.h>

KTBOOL amStreamIsStereo(AM_STREAM_PTR theStream)

PARAMETERS

AM_STREAM_PTR theStream, the stream object to be queried.

RETURN VALUE

KTBOOL, KTTRUE if the stream is stereo.

FUNCTION

If the given stream is stereo this will return KTTRUE.
AUD-181

The Dreamcast Audio 64 API
amStreamIsMono Tells if a stream is mono.

FORMAT

#include <am.h>

KTBOOL amStreamIsMono(AM_STREAM_PTR theStream)

PARAMETERS

AM_STREAM_PTR theStream, the stream object to be queried.

RETURN VALUE

KTBOOL, KTTRUE if the stream is mono

FUNCTION

If the given stream is mono this will return KTTRUE.
AUD-182

3. The AICA Manager API
amStreamServer Serves data to a currently playing stream.

FORMAT

#include <am.h>

KTBOOL amStreamServer(AM_STREAM_PTR theStream)

PARAMETERS

AM_STREAM_PTR theStream, the stream object to be served

RETURN VALUE

KTBOOL, KTTRUE if the stream is currently playing, KTFALSE if it is Þnished

FUNCTION

Fills the transfer buffer of a given stream when its contents have been completely transferred by the ISR.
AUD-183

The Dreamcast Audio 64 API
amStreamOpen Opens a stream object.

FORMAT

#include <am.h>

KTBOOL amStreamOpen(AM_STREAM_PTR theStream)

PARAMETERS

AM_STREAM_PTR theStream, the stream object to be opened

RETURN VALUE

KTBOOL, KTTRUE if the stream was successfully started

FUNCTION

Opens the stream Þle named in the InitStream() call, aquires buffers and ÒprimesÓ the play buffer(s)
with data from the transfer buffer.
AUD-184

3. The AICA Manager API
amStreamSetTransferMethod Selects DMA or memcpy as the data transfer method.

FORMAT

#include <am.h>

KTBOOL amStreamSetTransferMethod(AM_STREAM_PTR theStream,

AM_STREAM_TRANSFER_METHOD transferMethod,

KTU32 dmaChannel,

KTU32 dmaFrameSize)

PARAMETERS

AM_STREAM_PTR theStream, the stream object.

AM_STREAM_TRANSFER_METHOD transferMethod, either AM_STREAM_DMA or
AM_STREAM_NON_DMA

KTU32 dmaChannel, AM_DMA_CHANNEL

KTU32 dmaFrameSize, 4,8 or 32 bytes per frame

RETURN VALUE

KTTRUE on success

KTFALSE if theStream is open

if theStream is NULL

if transferMethod is not AM_STREAM_DMA or
AM_STREAM_NON_DMA

if dmaChannel is not AM_DMA_CHANNEL

if dmaFrameSize is not 4,8 or 32

FUNCTION

Causes the stream to be transfered via DMA rather then using the foreground memcpy process.
dmaFrameSize controls how many bytes are transferred in a single dma transfer.

Note: This must be called prior to StreamOpen()
AUD-185

The Dreamcast Audio 64 API
amStreamIoInstallAlternateIoManager Installs a custom Io proc.

FORMAT

#include <am.h>

void amStreamIoInstallAlternateIoManager(AM_STREAM_IO_PROC ioProc)

PARAMETERS

AM_STREAM_IO_PROC ioProc, A pointer to a custom Io proc, see the example in
MyFile.c

RETURN VALUE

void

FUNCTION

Installs a custom Io proc into the Io shell, this allows all Þle system calls to be intercepted by the applications
Þle system.

The prototype for the IO proc is as follows:

KTBOOL MyCustomIoProc(KTSTRING fileName,

KTU32 * sd,

KTU8 * buffer,

KTU32 * size,

AM_FILE_OPERATION_MODE mode

)

An example of this redirection is available in MyFile.c as well as a boilerplate copy of the IO proc
for modiÞcation.
AUD-186

3. The AICA Manager API
amUtilGetAicaVolume Converts midi volume units to AICA units

FORMAT

#include <am.h>

KTBOOL amUtilGetAicaVolume(KTU32 midiVolume,KTU32 *aicaVolume)

PARAMETERS

KTU32 midiVolume, the midi volume to be converted (0-127)

KTU32 *aicaVolume, the AICA volume (0-15) is returned via this pointer

RETURN VALUE

KTTRUE on success

KTFALSE if aicaVolume is NULL

FUNCTION

Converts from midi volume units (0-127) to AICA (0-15) volume units.

Note: If midiVolume is > 127 it will be set to 127 and a debug warning issued.
AUD-187

The Dreamcast Audio 64 API
amUtilAlignNumber Performs numerical boundry alignment.

FORMAT

#include <am.h>

KTBOOL amUtilAlignNumber(KTU32 theNumber,KTU32 theAlignment,KTU32 *theResult)

PARAMETERS

KTU32 theNumber , the number to be aligned

KTU32 theAlignment, the desired boundry

KTU32 *theResult, the aligned number is returned via this pointer

RETURN VALUE

KTTRUE on success

KTFALSE if alignment is 0

if theResult is NULL

FUNCTION

Rounds a number up to the next multiple of alignment. If the number is evenly divisible by alignment it
will be returned untouched.
AUD-188

3. The AICA Manager API
amUtilGetLengthInFrames Gets the length of a stream in frames.

FORMAT

#include <am.h>

KTU32 amUtilGetLengthInFrames(AC_AUDIO_TYPE type,KTU32 channels,KTU32 size,KTU32
*lengthInFrames)

PARAMETERS

AC_AUDIO_TYPE type, the AICA type of the sound, see ac.h

KTU32 channels, the number of channels in the sound, 1=mono 2=stereo

KTU32 size, the size of the sound in bytes

KTU32 *lengthInFrames, the length is reurned via this pointer.

RETURN VALUE

KTU32, The length of a stream in frames.

FUNCTION

Gets the length of a stream in frames.

Note: This must be called post the call to amUtilOpen() or it will return 0
AUD-189

The Dreamcast Audio 64 API
amUtilGetNibblesPerFrame Gets the number of nibbles in a frame.

FORMAT

#include <am.h>

KTBOOL amUtilGetNibblesPerFrame(AC_AUDIO_TYPE type,KTU32 *nibblesPerFrame)

PARAMETERS

AC_AUDIO_TYPE type, the AICA type of the sound, see ac.h

KTU32 *nibblesPerFrame, the number of nibbles in a frame is returned via this
pointer

RETURN VALUE

KTBOOL

FUNCTION

Gets the number of nibbles in a frame for the sample format of the given stream.
AUD-190

3. The AICA Manager API
amUtilGetSampleRate Gets the real world sample rate of a stream.

FORMAT

#include <am.h>

KTBOOL amUtilGetSampleRate(KTU32 aicaSampleRate,KTU32 *sampleRate)

PARAMETERS

KTU32 aicaSampleRate, the AICA sample rate as deÞned in ac.h

KTU32 *sampleRate, The real world sample rate of a stream is returned via
this pointer.

RETURN VALUE

KTBOOL, fails if sampleRate is NULL or aicaSampleRate is not
a correct value.

FUNCTION

Returns the real world (44100, 22050, 11025, ...) sample rate of a stream. In the stream object the sample rate
is AICA encoded and bears no resembalance to the real world rate. This allows access to a meaningful value
for sample rate.

Note: This must be called post the call to amUtilOpen() or it will return 0
AUD-191

The Dreamcast Audio 64 API
amUtilGetLengthInMs Gets the length of a stream in milliseconds.

FORMAT

#include <am.h>

KTBOOL amUtilGetLengthInMs(AC_AUDIO_TYPE type,KTU32 channels,KTU32 size,KTU32
aicaSampleRate,KTU32 *lengthInMs)

PARAMETERS

AC_AUDIO_TYPE type, the AICA type of the sound, see ac.h

KTU32 channels, the number of channels in the sound, 1=mono 2=stereo

KTU32 size, the size of the sound in bytes

KTU32 aicaSampleRate, the AICA sample rate of the sound, see ac.h

KTU32 *lengthInMs, the length of a stream in milliseconds.

RETURN VALUE

KTBOOL

FUNCTION

Gets the length of a stream in milliseconds.

Note: This must be called post the call to amUtilOpen() or it will return 0
AUD-192

3. The AICA Manager API
amUtilGetMsPerIrq Gets the number of milliseconds per callback.

FORMAT

#include <am.h>

KTBOOL amUtilGetMsPerIrq(AC_AUDIO_TYPE type,KTU32 aicaSampleRate,KTU32
playBufferSizeInBytes,KTU32 *msPerIrq)

PARAMETERS

AC_AUDIO_TYPE type, the AICA type of the sound, see ac.h

KTU32 aicaSampleRate, the AICA sample rate of the sound, see ac.h

KTU32 playBufferSizeInBytes, the size of the playback buffer in bytes

KTU32 *msPerIrq, the number of milliseconds per callback.

RETURN VALUE

FUNCTION

Gets the number of milliseconds per callback. There are two callbacks per iteration of the play buffer which
is playing at sample rate in frames, this resolves all of the variables to produce the number of milliseconds
per callback.

Note: This must be called post the call to amUtilOpen() or it will return 0
AUD-193

The Dreamcast Audio 64 API
amUtilGetAicaSampleType Extrapolates sample bit depth to AICA sample type.

FORMAT

#include <am.h>

KTBOOL amUtilGetAicaSampleType(KTU32 bitDepth,AC_AUDIO_TYPE_PTR aicaSampleType)

PARAMETERS

KTU32 bitDepth, The bit depth of the sample.

AC_AUDIO_TYPE_PTR aicaSampleType, The returned AICA sample type.

RETURN VALUE

KTTRUE on success

Or...

KTFALSE on fail

FUNCTION

Extrapolates sample bit depth to AICA sample type. See the AC_AUDIO_TYPE enum in ac.h for the types
returned by this function.

Note: This will always identify 4 bit data as the type AC_ADPCM_LOOP
AUD-194

3. The AICA Manager API
amUtilGetAicaSampleRate Makes a real world sample rate into an AICA sample rate.

FORMAT

#include <am.h>

KTBOOL amUtilGetAicaSampleRate(KTU32 realWorldSampleRate,KTS32 *aicaSampleRate)

PARAMETERS

KTU32 realWorldSampleRate, The real world sample rate, i.e. 44100, 22050, 11025, 5012

KTS32 *aicaSampleRate, The returned AICA sample rate.

RETURN VALUE

KTTRUE on success

Or...

KTFALSE on fail

FUNCTION

Extrapolates from real world sample rates to AICA sample rates, the only allowed AICA rates are 44100,
22050, 11025 and 5012. Using any other rate will cause this function to fail.
AUD-195

The Dreamcast Audio 64 API
amUtilGetMiddleOfBufferInFrames Calculates the middle of the buffer in frames.

FORMAT

#include <am.h>

KTBOOL amUtilGetMiddleOfBufferInFrames(KTU32 bitDepthOfSample,KTU32
sizeOfBufferInBytes,KTU32 * middleInFrames)

PARAMETERS

KTU32 bitDepthOfSample, the bit depth of the sample data

KTU32 sizeOfBufferInBytes, the size of the buffer in bytes

KTU32 * middleInFrames, the offset of the middle in frames is returned via this value

RETURN VALUE

KTBOOL, KTTRUE if the calculation was successful, KTFALSE if the bit depth is unsupported

FUNCTION

Calculates the middle of the buffer in frames.
AUD-196

3. The AICA Manager API
amUtilGetEndOfBufferInFrames Calculates the end of the buffer in frames.

FORMAT

#include <am.h>

KTBOOL amUtilGetEndOfBufferInFrames(KTU32 bitDepthOfSample,KTU32
sizeOfBufferInBytes,KTU32 * middleInFrames)

PARAMETERS

KTU32 bitDepthOfSample, the bit depth of the sample data

KTU32 sizeOfBufferInBytes, the size of the buffer in bytes

KTU32 * endInFrames, the offset of the end in frames is returned via this value

RETURN VALUE

KTBOOL, KTTRUE if the calculation was successful, KTFALSE if the bit depth is unsupported

FUNCTION

Calculates the end of the buffer in frames.
AUD-197

The Dreamcast Audio 64 API
amVoiceInit Initializes the voice pool.

FORMAT

#include <am.h>

void amVoiceInit(void)

PARAMETERS

void

RETURN VALUE

void

FUNCTION

Initializes the voice pool and voice (port) allocation functionality.
AUD-198

3. The AICA Manager API
amVoiceAllocate Allocates a voice channel.

FORMAT

#include <am.h>

KTBOOL amVoiceAllocate(KTU32 * voiceChannel,AM_VOICE_TYPE voiceType,void * owner)

PARAMETERS

KTU32 * voiceChannel, The voice channel allocated is returned via this pointer.

AM_VOICE_TYPE voiceType, The type, AM_ONESHOT_VOICE or AM_STREAM_VOICE,
see am.h

void * owner, The address of the AM_SOUND or AM_STREAM object that
holds the channel,

RETURN VALUE

KTTRUE If a channel was available.

or...

KTFALSE, If no channels are available.

FUNCTION

Allocates voice channels (DA port #'s) needed for playing sounds with the ac layer. If the type is
AM_ONESHOT_VOICE the owner arg is the address of the AM_SOUND structure that holds the sound to be
played on that channel.

If the type is AM_STREAM_VOICE the owner arg is the address of the AM_STREAM structure. If the type is
AM_MIDI_VOICE the midi port number that must be used is the following:

(voiceChannel - AM_FIRST_MIDI_VOICE)

The midi ports are 0-15 but the driver reports them as event numbers 16-31 in the interrupt message array.
AUD-199

The Dreamcast Audio 64 API
AUD-200

	The Dreamcast Audio 64 API
	Preface
	1. Dreamcast Audio64�Overview
	1.1 Introduction
	1.2 AM Layer
	1.2.1 amInit
	1.2.2 amBank
	1.2.3 amFile
	1.2.4 amHeap
	1.2.5 amSound
	1.2.6 amStream
	1.2.7 amMidi

	1.3 The AC Layer
	1.4 Tools Overview
	1.4.1 MkScript
	1.4.2 MkBank
	1.4.3 MkStream

	1.5 File Formats

	2. The AICA Control Layer API
	acSystemRequestArmInterrupt Causes the driver to raise an ARM external interrupt.
	acDigiPlay Starts a buffer playing.
	acDigiPlayWithLoopParameters Starts a buffer playing Set loop points.
	acDigiPlayWithParameters Starts a buffer playing with all common parameters.
	acDigiMultiSetMask Sets the bit masks for acDigiMultiPlay()
	acDigiMultiPlay Sets the bit masks for acDigiMultiPlay()
	acDigiMultiStop Sets the bit masks for acDigiMultiPlay()
	acDigiOpen Open a DA Streaming Port for playback.
	acDigiSetSampleRate Set the playback rate (sample rate) of audio stream.
	acDigiClose Closes port previously opened.
	acDigiSetCurrentPitch Changes the playback rate of a running channel.
	acDigiSetVolume Adjusts volume of a voice channel.
	acDigiSetPan Adjusts the pan placement of a voice channel.
	acDigiRequestEvent Used to generate an interrupt when a certain buffer position is reached.
	acDigiStop Stops a voice channel playing.
	acMidiOpen Open a MIDI Port buffer for SMF format 0 playback.
	acMidiSetTonebank Assign a MIDI Program Bank (tonebank) to an active bank slot.
	acMidiClose Close a MIDI port.
	acMidiPlay Starts playback on opened MIDI port.
	acMidiStop Stops standard MIDI file playback on port.
	acMidiRequestEvent Generates interrupt to host upon MIDI port reaching specified address.
	acMidiPause Pauses an active MIDI port.
	acMidiResume Resumes playback on active MIDI port.
	acMidiSetVolume Sets scaled volume setting for MIDI port.
	acMidiReset Resets MIDI controllers on port to default values.
	acMidiSetTempo Set playback tempo of MIDI port.
	acMidiSendMessage Sends raw MIDI messages to ports.
	acCdSetVolume Sets Left & Right Channels for Redbook Volume Control (dependent on channel pan).
	acCdSetPan Sets Left & Right Channel pan position.
	acCdInit Resets CDDA channels to hard pan positions and maximum volume.
	acDspSetQSoundAngle Sets Q-Sound position.
	acDspInstallProgram Registers a dsp program bank with the driver.
	acDspInstallOutputMixer Registers an output mixer patch with the driver.
	acDspSetMixerChannel Sets DSP mixer level and channel for that port.
	acErrorGetLast Gets a pointer to the error structure.
	acErrorExists Checks to see if an error condition exists.
	acErrorClear Clears the AC error structure.
	acIntInstallOsChainDeleteManager Installs pointer to interrupt chain delete routine.
	acIntInstallOsChainAddManager Installs proc pointer to interrupt chain add routine.
	acIntInstallCallbackHandler Installs a callback handler into the ARM interrupt handler.
	acIntInstallArmInterruptHandler Installs an ARM interrupt handler.
	acIntSetAicaChainId Sets the AICA interrupt chain ID.
	acIntShutdown Shuts down the ac interrupt system.
	acIntInit Initializes the ac interrupt system.
	acSystemShutdown Shuts down the AC layer.
	acSystemGetIntArrayStartOffset Gets the interrupt array write cursor offset.
	acSystemGetIntArrayStartPtr Gets a pointer to the start of the drivers interrupt message array.
	acSystemGetBaseOfSoundMemory Gets the starting address for sound memory.
	acSystemGetIntArray Gets the address of the SH4 side interrupt message array.
	acSystemGetIntArrayLength Gets the length of the drivers interrupt message array.
	acSystemCheckDriverRevision Tests the driver version against the supplied version.
	acSystemGetDriverRevision Tests the driver version against the supplied version.
	acSystemWaitUntilG2FifoIsEmpty Waits until the G2 FIFO is clear.
	acSystemDelay Use to delay for short periods of time.
	acSystemEnableArmInterrupts Use to enable the ARM interrupt.
	acSystemDisableArmInterrupts Use to disable the ARM interrupt.
	acSystemInit Makes the ac system ready to use.
	acGetSystemFlag True if the system has been initialized.
	acSystemGetFirstFreeSoundMemory Gets the address of first free sound memory.
	acSystemGetCommandFlag Gets address of driver command flag register.
	acSystemResetArmInterrupt Resets the ARM interrupt flag.
	acSystemInstallDriver Installs the sound driver.

	3. The AICA Manager API
	amBankFetchMidiUspqn Fetches uspqn from a MIDI type asset.
	amBankFetchMidiLoop Fetches the loop flag from a MIDI type asset.
	amBankFetchMidiPpqn Fetches ppqn from a MIDI type katbank asset.
	amBankFetchMidiVolume Fetches master volume from a MIDI type katbank asset.
	amBankFetchMidiGmModeFlag Fetches GM mode flag from a MIDI type katbank asset.
	amBankLoad Loads a katbank asset from disk into sound memory.
	amBankFetchAssetParameters Fetches parameters from any katbank asset.
	amBankFetchWaveLoopFlag Fetches the loop flag from a katbank asset.
	amBankFetchWaveRandomPitch Fetches random pitch amount from a katbank asset.
	amBankFetchWaveSampleRate Fetches the sample rate from a katbank WAVE asset.
	amBankFetchWaveBitDepth Fetches the bit depth of a WAVE type asset in a katbank.
	amBankFetchUnknownParameters Fetches one of the 7 user parameters from a katbank "unknown" type a...
	amBankFetchAsset Fetches an asset from a katbank.
	amBankGetAssetSize Gets the size of an asset from a katbank.
	amBankGetNumberOfAssets Gets the number of assets in a katbank.
	amBankGetHeaderSize Gets the size of the header portion of a katbank.
	amDmaMemCpy Performs DMA copys to sound memory.
	amDspFetchProgramBank Fetches and installs a DSP program bank from a KatBank asset.
	amDspFetchOutputBank Fetches and installs a DSP output bank from a KatBank asset.
	amErrorGetLast Gets a pointer to the error structure.
	amErrorExists Checks to see if an error condition exists.
	amErrorClear Clears the AM error structure.
	amHeapShutdown Shuts down the AM heap management system.
	amHeapGetInfo Gets info necessary to start an audio heap.
	amHeapGetFree Gets the amount of free memory.
	amHeapAlloc Allocates aligned memory from the audio heap.
	amHeapGetMaxPurgable Gets amount of memory available from a full purge.
	amHeapPurge Purges memory marked as purgable.
	amHeapFree Frees purgable memory allocated using amHeapAlloc()
	amHeapInit Initializes the audio heap.
	amHeapCheck Checks the MCB fingerprints for overwrites.
	amInitSelectDriver Selects driver to be installed by amInit()
	amShutdown Shuts down the AM audio subsystem.
	amInit Starts up the AM audio subsystem.
	amFileRewind Seeks to the start of a file.
	amFileLoad Loads specified file into the buffer.
	amFileRead Reads from a file that is already open.
	amFileOpen Opens a file for reading.
	amFileClose Closes a file.
	amFileGetSize Gets the size of a file.
	amFileInstallAlternateIoManager Installs a custom Io proc.
	amStreamIsr0 - 4 Interrupt Service Routine for the amStream subsystem.
	amMemSh4Alloc Sh4 memory allocation shell.
	amMemSh4Free Sh4 memory free shell.
	amMemInit Initializes the Sh4 memory shell system.
	amMemInstallAlternateMemoryManager Allows redirection of sh4 memory requests.
	amMidiSetTempo Sets the tempo of a MIDI sequence.
	amMidiSetLoopFlag Sets the loop flag on a MIDI sequence.
	amMidiFetchToneBank Installs an MTB asset from a bank file aggregate.
	amMidiLoadToneBank Loads a Sega tone bank asset
	amMidiInstallCallback Sets the callback proc for a sequence.
	amMidiAllocateSequencePort Allocates a MIDI port for the sequence.
	amMidiFetchSequence Fetches a sequence asset from a katBank.
	amMidiPlay Plays a MIDI sequence.
	amMidiPlayRaw Plays a MIDI sequence given the basic parameters.
	amMidiStop Stops a currently playing MIDI sequence.
	amMidiSetVolume Sets the master volume of a MIDI sequence.
	amMidiPause Pauses a currently playing MIDI sequence.
	amMidiResume Resumes playback of a paused MIDI sequence.
	amMidiTransferToneBank Transfers a Sega tone bank to sound memory and sets it as the current bank.
	amMidiSetChannelProgram Sets the current bank slot.
	amMidiNoteOn Plays a MIDI triggered sound effect.
	amMidiNoteOff Stops a MIDI triggered sound effect.
	amMidiSetChannelVolume Sets volume of a midi sound.
	amMidiSetChannelPan Sets the pan of a MIDI sound.
	amSoundSetQSoundChannels Used to identify which channels in an output bank are Q-Sound channels.
	amSoundSetEffectsBuss Sets the effects buss send and source mix for a sound object.
	amSoundFetchSample Fetches a sound and its parameters from a Katana format bank.
	amSoundIsLooping Tells if the given sound has a loop.
	amSoundAllocateVoiceChannel Allocates a hardware voice channel.
	amSoundGetSampleRate Gets the real world sample rate.
	amSoundGetVolume Gets the current volume setting.
	amSoundGetPan Gets the current pan position.
	amSoundGetVoiceChannel Gets the current voice channel assignment.
	amSoundGetCallback Gets the address of the user callback.
	amSoundSetCurrentPlaybackRate Sets the playback rate.
	amSoundSetVolume Sets a sounds volume.
	amSoundSetPan Sets a sounds pan.
	amSoundSetCallback Sets the user callback.
	amSoundIsPlaying Tells if a sound is currently playing.
	amSoundStop Stops a currently playing sound.
	amSoundPlay Plays a sound.
	amSoundPlayRaw Plays a sound given all of the required parameters.
	amStreamSetMix Sets volume and pan for all tracks in a stream.
	amStreamInitFile Initializes a stream object to play a file.
	amStreamInitBuffer Initializes a stream object to play a mono stream from a buffer.
	amStreamInstallUserCallback Installs a user callback for a stream.
	amStreamRewind Rewinds an open stream to its start.
	amStreamGetMemoryRequirement Gets memory sizes necessary to play the stream.
	amStreamSetBufferSizes Sets the sizes for the play and transfer buffers.
	amStreamSetBuffers Sets buffer memory pointers in a stream.
	amStreamSetIsr Sets the streams data transfer ISR.
	amStreamAllocateVoiceChannels Allocates voice channels.
	amStreamPrimeBuffers Primes the play buffer.
	amStreamGetTrackLengthInFrames Gets the length of a stream in frames.
	amStreamGetNibblesPerFrame Gets the number of nibbles in a frame.
	amStreamGetSampleRate Gets the real world sample rate of a stream.
	amStreamGetMsPerIrq Gets the number of milliseconds per callback.
	amStreamSetVolume Sets the volume on a stream.
	amStreamSetPan Sets the pan on a mono stream.
	amStreamStop Stops a currently playing stream.
	amStreamPlaying Monitors if a stream is currently playing.
	amStreamGetVolume Gets the streams current volume
	amStreamGetPan Gets the streams current pan
	amStreamGetIsrCount Gets the Interrupt Service Routine count.
	amStreamClose Closes a stream object.
	amStreamStart Starts a stream object playing.
	amStreamIsStereo Tells if a stream is stereo.
	amStreamIsMono Tells if a stream is mono.
	amStreamServer Serves data to a currently playing stream.
	amStreamOpen Opens a stream object.
	amStreamSetTransferMethod Selects DMA or memcpy as the data transfer method.
	amStreamIoInstallAlternateIoManager Installs a custom Io proc.
	amUtilGetAicaVolume Converts midi volume units to AICA units
	amUtilAlignNumber Performs numerical boundry alignment.
	amUtilGetLengthInFrames Gets the length of a stream in frames.
	amUtilGetNibblesPerFrame Gets the number of nibbles in a frame.
	amUtilGetSampleRate Gets the real world sample rate of a stream.
	amUtilGetLengthInMs Gets the length of a stream in milliseconds.
	amUtilGetMsPerIrq Gets the number of milliseconds per callback.
	amUtilGetAicaSampleType Extrapolates sample bit depth to AICA sample type.
	amUtilGetAicaSampleRate Makes a real world sample rate into an AICA sample rate.
	amUtilGetMiddleOfBufferInFrames Calculates the middle of the buffer in frames.
	amUtilGetEndOfBufferInFrames Calculates the end of the buffer in frames.
	amVoiceInit Initializes the voice pool.
	amVoiceAllocate Allocates a voice channel.

