Sega@'Dreamcast

Dreamcast

Ginsu Sampler
Disk API

Sega@ Dreamcast.

Table of Contents

IO 01T T GSA-1
(o =1 SRRSO GSA-1
FOALUTES ...t e e e e e e e et e e e ae e e eeae e e eeaaeeeeaseeeeseeeeeaaee e aaeeeesaeeeaaeeeaaraeeeteeeeteeeeatneeeenreeeenes GSA-1
2. Ginsu Component Definitions ... na s GSA-3
APP = Compliant EXeCutable ... s GSA-3
BOOT = BOOt EXCCULADILE ...coeevieieiiiieeeeeeeee ettt ettt e et e s e e s e vt e e s st e esaseesssseeesasaeesaseesanseeessseesssseesasseeesseessnns GSA-3
XFER = TTanSer EXECULADLEcoviiiuiiiiiieii ettt ettt eaa et e e st e e teesae s sateesasesateesaseesasesssesnasesssesaseesasesnes GSA-3
INI = Configuration File ... GSA-3
3. Ginsu Technical OPeration ... s e s e aes GSA-5
FIOW Of CONEIOL = STATTUP ...vvviieieieieieieieieieteieieteieieieieie et sesee GSA-5
FIOW OFf CONEIOL = TTANISIOT c.vevieieeeeeeeee ettt ettt ettt ettt e et e s et e s steeesastee s aseessnseeessseesaseesanseeessseessnseesasseessseessnns GSA-5
Memory Use DUTIING TTANSIETc.ccciuiiiiiiiiiiiiiiiiicceeceeeeeeee e e e e e e e GSA-5
4. Using Ginsu in APPlICAtIONS ... s GSA-7
OVEIVIEW oottt ettt eeee e et e et e e e e et e eeaaeeeeeaeeeeeaaeeeeaseeeeaseeeessseeaaseeeeasseeenseseesseesassseeesseseersseeensseeeenseseesseesnsneeennreeeannes GSA-7
GInsu-enabling SteP-DY-SteP ... s GSA-7
Ensure Proper Shutdown of APplicationccocuiuiuiiiiiiriii s GSA-7
Add In the GINSU LIDIATYooiieiieiiieiiciriciriceici ettt GSA-7
Add gsinit() ,gsExec() ,gSEXit()cccerreiriiiiiiiiiiiieeee e, GSA-8
Test Startup via GINSU ..o GSA-8
B o bt Lo T= T 1 T3 RS GSA-8
Handle GDFS Path TranSIationeceeeeeeeeeeeereeeeeeeeeeeeeeteeeeetereeeeesteressessessessessessessessessessessossessessessssessessesens GSA-9
Test With GDFS Path TTANSIAtiON «.cc.eeeveeeieeeeeieeeeeee ettt eeteeeeeeeeeeeeeseeseestessessessesesessesesessessseseesseseessesnens GSA-9
TSt WILH IMIATUEST ...eveevieieiieeieeeeeeeeeee ettt ettt ettt e et et e st et et saeesessesaessessessessensensestensensentensensenesaseseerens GSA-10
Handle GDDA Track TranSIationcocveioieeiiiieeeeeiieceeeeeeeeeeeeeeeeeteeeeteesesteeesssaesessseesssrasssssnessssneessnsesesnes GSA-10

GSA-iii

Ginsu Sampler Disk API

5. APl Reference — Basic FUNCHIONS ... ssnsssanes GSA-11
GSITUEE() e GSA-11
GSEXEC() ereeeeiereecietere ettt GSA-12
GSEXIE() oot GSA-13
GSEXIETO() weevrereeciererriicieteer ettt ettt GSA-14
gSGDDALOGICAITOPRYSICAL() ...oovuvirviiiiiiiciiit s GSA-15
GSGEBASEPAN() ...uvevieiiciici e GSA-16
ESGEEATZC() wvrrviieiiiictcic R GSA-17
GSGEEATEV() oottt e et n e GSA-18
GSSEUSEIDALA() ..ueviieiiiiici s GSA-19
GSGELUSEIDIALA() ..ecvvrerieireeriieeiereieeiete et a sttt ettt GSA-20
GSISACHVE() ettt GSA-21
GS_FSOPENEX() eeecveiirieieirrccierrcccte et et GSA-22
6. APl Reference — Extended FUNCHIONS ... nass GSA-23
g55etDefaUltEXECULADIE()cuuvuieieiiiiiiiiciicici e GSA-23
GSSEEXFEIEXECULADIE() ...cvvvrinieieriiecictetrce ettt et GSA-24
GSSELBASEPAI()eviieiiiii e GSA-25
GSSEFIISEGDIDIA() ..vovirieiieeirceeieteiceciete ettt e GSA-26
ESINIOPEN() .ot GSA-27
GSINIOPEINFIOIMN() -.ecvovririeiereeniecietiicete ettt ettt a e senene GSA-28
GSIMECTIOSE() .ttt GSA-29
GSFINAAPP() covereeeieretree ettt GSA-30
ESGELAPPIN() et GSA-31
GSGELKEYVALUE() ..cvvrerieireinieeieticcicte ettt et e e en e GSA-32
A8 11 I8 51 GSA-33
APPLCAtiON BIOCKS ..o GSA-33
Key-Valte PaiIsc.ccuiiimiiiiiiiiiciceeec ettt GSA-33
COIMIMENES ...veeuvietieiietiete et et eteste e testeetesteesbesseessesseeteessasseessasseessasseessasseessasseessassaessesssassaassassesssansesssansesssessesssesesnsesens GSA-33
SaMPIE INTFILE ...ttt ettt GSA-34
ST 1 (-5 GSA-35
Not performance oriented ..o GSA-35
Ginsu Library can be present with 10 ill €ffeCtSccceiueiieinieiniciniccccce e GSA-35
THATA LAINIES OF 64/ 256 ettt eeee et eeeeeteeteetesee e st eseesesaeeseesessesseaseasesseneensenteneeneeseenesssenessessessensennens GSA-35
IMACKINE SEALE ...ttt ettt ettt ettt et et ae et et et es st ebeseas s et esses et et eseas et et et esess s et essas s et eseanaseserens GSA-35
MEMOTY SCANIUNG ..ottt a bbb bbb a bbb a et a s a et GSA-36
Possible memory overwrite during transfer ... e GSA-36
COMMANA LINE PATSET ...uvintieiiiiieiecteeieeteteett ettt et e st et este e e e steeaesbeesaesbeessessaessesssesseessassesssassesssasesssesseessesseensensens GSA-36

GSA-iv

Sega@ Dreamcast.

1. Overview

The Ginsu library provides an application-transfer system for the Dreamcast. It is intended for use on multi-title
GD-ROMs (samplers) built for Shinobi or other similarly lightweight operating systems.

1.1 Goals

e To provide a standard switching mechanism for applications on the same GD-ROM,;
® Require minimal resources to limit impact on compliant applications;
¢ Not impose undue constraints on compliant applications; and;

* Low maintenance requirements.

1.2 Features

* Straight-forward, easy-to-use API

¢ Small memory footprint (less than 16k)
e Functions to aid in GD-ROM sharing

¢ “Command-line” parameter passing

¢ .INI-file based configuration

GSA-1

Ginsu Sampler Disk API

GSA-2

Sega@ 'Dreamcast.

2. Ginsu Component
Definitions

2.1 APP = Compliant Executable

These are the applications that are capable of transfer to and from other applications.

2.2 BOOT = Boot Executable

A1ST_READ.BIN that initializes the Ginsu environment. It is a compliant APP.

2.3 XFER = Transfer Executable

Asmall executable program (GINXFER.BIN by default) that aids in the transfer between programs by manipulating
memory space and machine state. Note that it is not a compliant APP.

2.4 INI = Configuration File

A text file used to describe the components on a GD-ROM. It is easily readable by Ginsu compliant applications, but
usually not necessary.

GSA-3

Ginsu Sampler Disk API

GSA-4

Sega@ Dreamcast.

3. Ginsu Technical Operation

3.1

3.2

3.3

Flow of Control - Startup

® Dreamcast launches the BOOT executable
* BOOT executable reads the INI file and sets up the Ginsu environment

e BOOT transfers control to Ginsu

Flow of Control - Transfer

e Ginsu loads the next APP and the XFER executable into high memory

* Ginsu passes parameters to XFER data space

* Ginsu transfers control to XFER

® XFER relocates APP to proper run location in low memory (0x8C008000)
¢ XFER passes parameters to APP data space

¢ XFER transfers control to the APP

o When APP is done, APP transfer control to Ginsu

* (Repeat)

Memory Use During Transfer

Ginsu handles the transfer using high memory as a temporary storage area. Two buffers are used: one for the XFER
program (at 0x8cfd0000) and one for the APP (based on file size). The buffer locations are calculated upon demand
and are 64k aligned.

GSA-5

Ginsu Sampler Disk API

GSA-6

Sega@ 'Dreamcast.

4. Using Ginsu
in Applications

4.1 Overview

Adding Ginsu support to an application is relatively simple. It involves the addition of a few function calls, and
paying attention to some basic details.

4.2 Ginsu-enabling Step-by-Step
4.2.1 Ensure Proper Shutdown of Application

The application must have an appropriate exit condition that allows it to exit gracefully — This involves calling the
appropriate shutdown, close, exit, etc. calls to disengage the operating system and return the machine to the entry
state. For example:

* shExitSystem()

¢ njExitTexture()

e gdFsFinish()

¢ syMallocFinish()
e et. al.

One method of testing this is to place a loop in main() that re-runs the program after shutdown. Please note that
this is not foolproof since static data will be initialized differently!

Note: This is the most likely location for errors to occur, so it pays to spend some time and verify this.

4.2.2 Add in the Ginsu Library

¢ Add #include "ginsu.h" as appropriate to the project
e Add ginsu.lib to the linker context

GSA-7

Ginsu Sampler Disk API

4.2.3 Add gsinit() ,gsExec() ,gsExit()

These are the three principal functions that Ginsu—enable an application. gsInit() ~ should be placed prior to other
initialization; gsExec() goes in the main loop, gsExit() is the very last function call of the program.

Note that gsExec() is of very little overhead and will not impact overall application performance in any
meaningful manner.

Important: The return values of gsExec() should be tested for GS_FORCE_APP_EXIT the application should
terminate safely and as soon as possible.

4.2.4 Test Startup via Ginsu

Create a GD-ROM image of the application, with the following changes:

e The supplied 1ST_READ.BIN (or GINBOOT.BIN) should be the BOOT program on the GD-ROM.
e Rename the existing 1ST_READ.BIN to another name, such as MYPROG.BIN

* Add the supplied GINXFER.BIN to the image

* Make and add to the GD-ROM image a GINSU.INI file of the following form:

[GINSU]

Ginsu.FirstApp = MYPROGRAM
Ginsu.DefaultApp = MYPROGRAM
Ginsu.XferExecutable = \GINXFER.BIN

[MYPROGRAM]
Ginsu.Path =\
Ginsu.Command =\MYPROG.BIN

* Boot the GD-ROM image. It should launch the application successfully.
4.2.5 Test Exit via Ginsu

With the same configuration, triggering the exit condition should exit the program via Ginsu. The result should be
the reloading and restarting of the application from the beginning.

GSA-8

4. Using Ginsu in Applications

4.2.6 Handle GDFS Path Translation

To prevent collisions between filenames, titles may be moved into a subdirectory. As a result, applications that load
files must be aware of this and handle the situation accordingly.

Note:

Applications using GDFS versions above 1.05 will have the GDFS path translation handled automatically.

Applications using older versions of the libraries will have to handle path translation manually as
described below.

* gsGetBasePath() returns a fully-qualified path describing the working directory where the
application and data files reside.

¢ Applications that don’t load files can ignore this section

¢ Application that load all files from the root will need to add a gdFsChangeDir (gsGetBasePath())
after the file system is initialized and before loading files.

* Applications that use relative navigation via gdFsChangeDir() ~ will need to perform an initial
gdFsChangeDir (gsGetBasePath())after the file system is initialized and before loading files.

 Applications that use absolute navigation via gdFsChangeDir() ~ will need to perform a

gdFsChangeDir (gsGetBasePath()) before each of its calls, which must be converted to be relative
to the base path.

gdFsChangeDir \MYDATA)

// becomes...

gdFsChangeDir (gsGetBasePath());
gdFsChangeDir ("MYDATA";

Applications that use other methods of file navigation will need to construct proper pathnames based on
gsGetBasePath() . The return value will be of the form \MYDIR\MYSUBDIR, it will always contain at least on
backslash; it will only end in a backslash if it is the root directory.

4.2.7 Test with GDFS Path Translation

* Make the necessary changes in the software to support the path requirements
* Move all the materials into a subdirectory on the GD-ROM image.
e Update the GINSU.INI file used previously to identify the directory.

[GINSU]

Ginsu.FirstApp = MYPROGRAM
Ginsu.DefaultApp = MYPROGRAM
Ginsu.XferExecutable = \GINXFER.BIN

[MYPROGRAM]
Ginsu.Path =MYPATH
Ginsu.Command =\MYPATH\WMYPROG.BIN

* Boot the GD-ROM image. It should launch the application successfully and the application should be
able to find it’s files.

GSA-9

Ginsu Sampler Disk API

4.2.8

Test with Manifest

Supplied with the developer materials is a program called MANIFEST.BIN - it reads GINSU.INI and builds a
simple menu to test the Ginsu environment.

4.2.9

* Build a GD-ROM image with the supplied GD_ROOT files

* Boot the GD-ROM. You should have a simple menu that allows you to select from modified versions of
the Teapot, Tileclip, and F40 demos. ("A" exits the tileclip demo; "B", highlight "Exit", "A" exits the others)

* Add a block of the following form to the supplied GINSU.INI and boot the GD-ROM. Your application
should be available and functional via the menu.

[MYPROG]

Ginsu.Path =\MYDIR

Ginsu.Command =\MYDIRWYEXEC.BIN
Ginsu.FirstGDDA =4

Manifest.Name ="My Program"

Handle GDDA Track Translation

CD-ROM and GD-ROM applications refer to data tracks by absolute numbers. A sampler GD-ROM would have
multiple applications vying for the same physical tracks, thus they must be translated.

Note: Applications using GDFS versions above 1.05 will have the GDDA track translation handled automatically.
Applications using older versions of the will have to handle track translation manually via

gsGDDALogicalToPhysical()

GSA-10

Sega@ Dreamcast.

5. API Reference -
Basic Functions

The basic functions are use to support the application transfer and some basic access at parameters.

5.1 gsinit()

Function

GS_STATUS gsilnit (void)

Input

N/A

Return Value

GS _OK no errors

Operation

This function initializes the internal Ginsu operation. At this time, it has no effect.
Usage Example

void main (void)

{
gslInit();
njUserlnit();
.
njUserExit();
gsExit();

}

GSA-11

Ginsu Sampler Disk API

5.2 gsExec()

Function

GS_STATUS gsExec (void)
Input

N/A

Return Value

GS_OK no errors
GS_FORCE_APP_EXIT application should exit gracefully, ASAP
Operation

Currently this function is not used. It is intended for future use to supply heartbeat-related functions, such
as a timeout for a POP kiosk with sequential games.

Usage Example

void main (void)

{
oA
while (1)
{
f* ... main loop operations ... */
if (gsExec()==GS_FORCE_APP_EXIT)
break;
}
}

GSA-12

5. API Reference - Basic Functions

5.3 gsExit()

Function

GS_STATUS gsExit (void)
Input

N/A

Return Value

See gSExitTo() for details

Operation

This function calls gsExitTo() with the default executable name as specified in the GINSU.INI file.

Usage Example

See gsExitTo() for details

GSA-13

Ginsu Sampler Disk API

5.4 gsEXitTo()

Function

GS_STATUS gsExitTo (const char* cmdline, const char* path, int firstgdda)

Input

cmdline “Command line” for the next application
path Path for the next application

firstgdda First gdda track for the next application

Return Value

This function should never return. In the event of failure, it attempts to reboot the system. If that fails, it will
produce an error value:

GS_NO_LOAD XFER

GS_NO_LEAD_NEXT

GS_BAD_XFER_HEADER

Operation

Transfer of control to the next application:

e The command line is parsed to identify the next program and parameters — the parsing separates
whitespace delimited strings and quoted strings. The parsing is not bullet proof, but is reasonable. The
processed command-line is limited to 256 characters; additional arguments are ignored. The next
application can retrieve these with gsGetArgC() and gsGetArgV()

e The file system is initialized

* The XFER program is loaded into high memory. If the program specified by gsSetXFerExecutable()
is unavailable, it then tries to explicitly load GINXFER.BIN . If that too is unavailable, the function fails
and exits.

e The next program is loaded into high memory. If the program specified in the cmdline is unavailable, it
will then try the default program, then MANIFEST.BIN, then 1ST_READ.BIN - if all loads fail, the
function fails.

e and the XFER program are loaded into high memory

 The XFER program is verified to be valid

e The GDDAOffset , default app, transfer program are carried forward to the next program

e The command line data is passed to the XFER program

¢ Control is passed to XFER

GSA-14

5. API Reference - Basic Functions

Usage Example

void main (void)

{
gslnit();
njUserlnit();
L
njUserExit();
gsExitTo("VIEWFILE.BIN MYFILE.EXT", "DATAPATH", 16);
}
5.5 gsGDDALogicalToPhysical()
Function

int gsGDDALogicalToPhysical (int logical)
Input

Logical A GDDA track number that would be referenced if this were the only application
on the GD-ROM.

Return Value

A potentially adjusted track number that indicates the correct physical track number to reference instead
of the logical.

Operation

The given track number is converted to a simple index: Adjusted by the Ginsu environment and
reconverted to an audio track index.

Usage Example

int physical_track = gsGDDALogicalToPhysical(4);
gdFsDaPlay (physical_track, physical_track, 0);

GSA-15

Ginsu Sampler Disk API

5.6 gsGetBasePath()

Function
const char* gsGetBasePath (void)
Input

N/A

Return Value

A pointer to the base path that the application is located in.
The return value will be of the form \MYDIR\MYSUBDIR.
Operation

The function returns the appropriate path.

Usage Example

gdFsChangeDir (gsGetBasePath());
gdFsOpen (...);

GSA-16

5. API Reference - Basic Functions

5.7 gsGetArgC()

Function
int gsGetArgC (void)
Input

N/A

Return Value

The number of arguments in the command-line buffer. This is always at least 1 since the current application
executable name is the first parameter.

Operation

This function scans the command-line buffer counting the number of arguments.

Usage Example

for (i=0; i<gsGetArgC(); i++)
{
ProcessArg (gsGetArgV(i));

}

GSA-17

Ginsu Sampler Disk API

5.8 gsGetArgV()

Function
const char* gsGetArgV (int index)
Input

Index of the argument desired.

Return Value

Pointer to the string that is the specified argument. Null is returned is the argument does not exist.

Operation

This function scans the command-line buffer looking for the specified argument.

Usage Example

for (i=0; i<gsGetArgC(); i++)
{
ProcessArg (gsGetArgV(i));

}

GSA-18

5. API Reference - Basic Functions

5.9 gsSetUserData()

Function
GS_STATUS gsSetUserData (const void* src, int size)
Input

Pointer and size of the data block.

Return Value

GS_OK

GS_USER_PARTIAL_COPY data was too large and was truncated
Operation

This function copies the first 256 bytes from the source buffer into the Ginsu command block. It will be
available to the next application via gsGetUserData()

Usage Example

gsSetUserData (myPersistentData, sizeof(myPersistentData));

GSA-19

Ginsu Sampler Disk API

5.10 gsGetUserData()

Function
GS_STATUS gsGetUserData (void* dest, int size)
Input

Pointer and size of the data block.

Return Value

GS_OK

GS_USER_PARTIAL_COPY data was too large and was truncated
Operation

This function copies the first 256 bytes from the Ginsu command block into the destination buffer. The data
contained within it will be from the last application that called gsSetUserData()

Usage Example

gsGetUserData (myPersistentData, sizeof(myPersistentData));

GSA-20

5. API Reference - Basic Functions

5.11 gslsActive()

Function
int gslsActive (void)
Input

N/A.

Return Value

Non-zero if Ginsu environment is present and initialized.

Operation

This function allows an application to determine if it is sharing the GD-ROM and should exit or not.

Usage Example

while (‘gslIsActive())

{
play_game();
}

f* shutdown and gracefully exit to next app */

GSA-21

Ginsu Sampler Disk API

512 gs_FsOpenEx()

Function
GDFS gs_FsOpenEx (const char* fullname)
Input

Full pathname of desired file to open.

Return Value

File handle of opened file. NULL if unable to open.

Operation

This function scans the filename specified and loads the file. It does have side effects — it can and will change
the current directory!

e If backslashes are present in the filename, gdFsChangeDir() ~ will be called and the directory state
left there.

Usage Example

gs_FsOpenEx (\MYPATH\MYFILE.EXT)

GSA-22

Sega@ Dreamcast.

6. API Reference -
Extended Functions

6.1 gsSetDefaultExecutable()

Function
GS_STATUS gsSetDefaultExecutable (const char* exename, const char* pathname)
Input

Name of the executable file that is the default application. This application will be loaded and executed
when the gsExit() call is made. This function is intended for use by the Ginsu boot program.

Pathname of the working directory for the default application. This will be passed onto the application
when it is called by the default mechanism.

Return Value

GS_OK

GS_FILENAME_TOO_LOMte limit is 64 characters including terminating null
GS_PATHNAME_TOO_LOKGlimit is 64 characters including terminating null

Operation

The string is copied to the internal parameter block.

Usage Example

GsSetDefaultExecutable ("WSUBDIRWMAINMENU.BIN");

GSA-23

Ginsu Sampler Disk API

6.2 gsSetXFerExecutable()

Function
GS_STATUS gsSetXFerExecutable (const char* exename)
Input

Name of the executable file that is the transfer program. This program will be loaded and executed when
the gsExit() or gsExitTo() call is made. This function is intended for use by the Ginsu boot program.

Return Value

GS_OK

GS_FILENAME_TOOQO_LONEe limit is 64 characters including terminating null
Operation

The string is copied to the internal parameter block.

Usage Example

GsSetXFerExecutable ("\GINXFER.BIN");

GSA-24

6. API Reference - Extended Functions

6.3 gsSetBasePath()

Function

GS_STATUS gsSetBasePath (const char* dirname)

Input

Pathname where the next application will be based in. This value will be available immediately by

gsGetBasePath() and to subsequent applications. This function is intended for use by the Ginsu
menu programs.

Return Value

GS_OK

GS_PATHNAME_TOO_LONGlimit is 64 characters including terminating null
Operation

The string is copied to the internal parameter block.

Usage Example

GsSetBasePath ("\EXECDIR");

GSA-25

Ginsu Sampler Disk API

6.4 gsSetFirstGDDA()

Function

GS_STATUS gsSetFirstGDDA (int index)

Input

Track index where the next application’s GDDA tracks will start. This value will be available immediately
by gsGetBasePath() and to subsequent applications. This function is intended for use by the Ginsu menu
programs.

Return Value

GS_OK

Operation

The value is copied to the internal parameter block.

Usage Example

GsSetFirstGDDA (2);

GSA-26

6. API Reference - Extended Functions

6.5 gsIniOpen()
Function

GS_STATUS gsIniOpen (void* mem?256k)
Input
mem256k Abuffer of size GS_INI_BUFFER_SIZE, that is used to manage the INI file.

This memory bulffer is needed for all gsIni functions and must be maintained until the gsIniClose()
call is made.

Return Value

See gsIniOpenFrom() for details.

Operation

This function calls gsIniOpenFrom with the default INI file name, GINSU.INI .

Usage Example

void* inibuf = malloc (GS_INI_BUFFER_SIZE);
gslIniOpen (inibuf);

f*...ini processing ... */
gsIniClose();
free (inibuf);

GSA-27

Ginsu Sampler Disk API

6.6 gsiniOpenFrom()

Function

GS_STATUS gslniOpenFrom (void* mem256k, const char* filename)

Input

mem256k Abuffer of size GS_INI_BUFFER_SIZE, that is used to manage the INI file.
This memory buffer is needed for all gsini functions and must be maintained
until the gsIniClose() call is made.

filename The filename that is the INI file to use.

Return Value

GS_OK
GS_INI_ALREADY_OPEN
GS_NO_LOAD_INI
GS_INI_TOO_BIG
GS_INI_NOT_OPEN
GS_INI_SYNTAX_ERROR

GS_INI_SEMANTIC_ERROR

Operation

The function loads the specified INI file (it also tries GINSU.INI on failure) and parses it. The parsing
accomodates whitespace delimited strings, square bracketted strings, quoted strings, and semi-colon
line comments.

Usage Example

void* inibuf = malloc (GS_INI_BUFFER_SIZE),
gslIniOpenFrom (inibuf, "TEST.INI");

f* ... ini processing ... */
gslniClose();
free (inibuf);

GSA-28

6. API Reference - Extended Functions

6.7 gsiIniClose()

Function
GS_STATUS gslniClose (void)
Input

N/A

Return Value

GS_OK

GS_INI_NOT_OPEN

Operation

This file closes processing of the INI filed opened in gsIniOpen() or gsIniOpenFrom()

Usage Example

void* inibuf = malloc (GS_INI_ BUFFER_SIZE);
gsIniOpen (inibuf);

f*...ini processing ... */
gslniClose();
free (inibuf);

GSA-29

Ginsu Sampler Disk API

6.8 gsFindApp()

Function
GS_APP_ID gsFindApp (const char* appname)
Input

appname The application name to whose INI data wants to be accessed.

The application names appear in bracketed text in the INI files. Note that these
names are not the same as executable filenames. See INl documentation below for
more details.

Return Value

NULL if the application was not found, or no INI file is open.

An application unique non-NULL value if it was found.

Operation

This call must be made between gsIniOpen() and gsIniClose() calls.

Usage Example

void* inibuf = malloc (GS_INI_BUFFER_SIZE);

gslIniOpen (inibuf);

GS_APP_ID myID = gsFindApp('TEAPOT");

if (myID)

{

f*...ini processing ... */

}
gslniClose();
free (inibuf);

GSA-30

6. API Reference - Extended Functions

6.9 gsGetAppN()

Function
GS_APP_ID gsGetAppN (int index)
Input

Index of application to be found.

Return Value

NULL if the application doesn’t exist or if no INI file is open.

Operation

This function allows the enumeration of INI file applications.

This call must be made between gsIniOpen() and gslniClose() calls.

Usage Example

inti=0;
GS_APP_ID mylID;
while (myID = gsGetAppN(i))
{
f*... handle thisapp ... */

}

GSA-31

Ginsu Sampler Disk API

6.10 gsGetKeyValue()

Function

const char* gsGetKeyValue (GS_APP_ID applID, const char* key)

Input
appID the application ID as returned by gsFindApp() or gsGetAppN()
key the name of the key whose value is desired.

Return Value

A pointer to the string if found, NULL if not found.

Operation

In the INI file, each application has a number of key-value pairs. This function retrieves the desired data
if available.

This call must be made between gsIniOpen() and gsIniClose() calls.

Usage Example

void* inibuf = malloc (GS_INI_BUFFER_SIZE);

gslIniOpen (inibuf);
GS_APP_ID myID = gsFindApp('TEAPOT");
if (myID)
{
const char* str = gsGetKeyValue (myID, "Manifest.Name");
f* ... more ini processing ... */
}
gslniClose();
free (inibuf);

GSA-32

Sega@ Dreamcast.

7. INI Files

The grammar for INI files is very simple. There are a number of application blocks, each of which may contain
key-value pairs.

7.1 Application Blocks

An application block is defined by an application name in square brackets. An application name is not the same as
an executable filename, since multiple applications may use the same name for files (eg: START.BIN).

7.2 Key-Value Pairs

All data is retrieved from the INI file as key-value pairs where both the key and value are strings. The general
format is:

Key = value

Both keys and values may be in quoted text is whitespace is desired. Quoted text may not span newline.

The convention is to use a two part key name separated by a dot, with the first part indicating the program
interested in the value, and the second part being the variable name. See the example below.

7.3 Comments

A semi-colon that is not inside of quoted text denotes a line comment to the end of that line.

GSA-33

Ginsu Sampler Disk API

7.4 Sample INI File

; This is the test INI used to build the Ginsu Library
[GINSU]

Ginsu.FirstApp = MANIFEST
Ginsu.DefaultApp = MANIFEST
Ginsu.XferExecutable = \GINXFER.BIN

[MANIFEST]
Ginsu.Path =MANIFEST
Ginsu.Command =\MANIFEST\MANIFEST.BIN

[F40]

Ginsu.Path =F40
Ginsu.Command =\F40\F40.BIN
Ginsu.FirstGDDA =4

Manifest.Name ="F40 Sample Program"
[TEAPOT]
Ginsu.Path =TEAPOT

Ginsu.Command =\TEAPOT\TEAPOT.BIN
Ginsu.FirstGDDA =5

Manifest.Name ="Teapot Sample Program"
[TILECLIP]
Ginsu.Path =TILECLIP

Ginsu.Command =\TILECLIP\TILECLIP.BIN
Ginsu.FirstGDDA =6
Manifest.Name ="Tileclip Sample Program"

GSA-34

Sega@ Dreamcast.

8. Notes:

8.1 Not performance oriented

The GinsuINI and command-line functions are feature-oriented and not performance-oriented library. That said,
the function calls could probably sit in the middle of the main loop with little or no detriment.

8.2 Ginsu Library can be present with no ill effects

Ginsu is self-contained and should not affect the operation of single-title GD-ROMs if present.

8.3 Hard Limits of 64/256

Due to the nature of the task, some small fixed blocks of memory are needed to maintain parameters. As a result,
fixed limits do exist for some parameters:

¢ 64 bytes for executable program names and working directories

e 256 bytes for parsed command line parameters

8.4 Machine State

The SH4 machine state upon entry to a new program is as follows:

* MACH/MACL=0

e VBR = 0x8c00£400

¢ GBR = 0x8c000000

e PC/SPC = 0xac010000
® SR/SSR = 0x700000f0
s PR=0

All other elements are as left by the exiting program

GSA-35

Ginsu Sampler Disk API

8.5 Memory Scanning

The XFER program scans the application it’s about to run looking for parameter blocks. It is unlikely that a conflict
would exist, though it is remotely possible. The scan logic looks for 4 contiguous longwords with the following
properties:

* ‘GINS’ header, which appears as ‘SNIG’ due to endianness
* >] —a version number
* 0x3ac59e76, a magic number chosen from thin air

* >0x200 — the size of the parameter block

8.6 Possible memory overwrite during transfer

The transfer process needs to have the Ginsu library, the next application, and the transfer program in memory at
once. Most of the process is fairly safe from problems, however one potential point of failure does exist. If the Ginsu
library is high in memory, then the target program or transfer program could be loaded on top of it.

This is extremely unlikely to occur in most cases, but if the programs involved are extremely large (combined size
> 15MB), or run in high memory, this can be an issue.

8.7 Command Line Parser

The command line parser is a simple parser of arguments. It is reasonably thorough. Normally:

* Whitespace delimits arguments

* Quotes (") delimit arguments containing whitespace; A pair (") resolves to one (")

* Whitespace is trimmed from non-quoted arguments

* When quoted arguments are read via gsGetArgV() , they contain only the text within the quotes, not
the quotes themselves.

If the data fed to the parser is aggressive, some slight anomalies will occur:

* "TOKENNEXT- with no spaces will yield two arguments of TOKENand NEXT

nn

e "' — with no spaces will cause early termination of the argument list

GSA-36

	Dreamcast Ginsu Sampler Disk API
	1. Overview
	1.1 Goals
	1.2 Features

	2. Ginsu�Component Definitions
	2.1 APP = Compliant Executable
	2.2 BOOT = Boot Executable
	2.3 XFER = Transfer Executable
	2.4 INI = Configuration File

	3. Ginsu Technical Operation
	3.1 Flow of Control - Startup
	3.2 Flow of Control - Transfer
	3.3 Memory Use During Transfer

	4. Using Ginsu in Applications
	4.1 Overview
	4.2 Ginsu-enabling Step-by-Step
	4.2.1 Ensure Proper Shutdown of Application
	4.2.2 Add in the Ginsu Library
	4.2.3 Add gsInit(),gsExec(),gsExit()
	4.2.4 Test Startup via Ginsu
	4.2.5 Test Exit via Ginsu
	4.2.6 Handle GDFS Path Translation
	4.2.7 Test with GDFS Path Translation
	4.2.8 Test with Manifest
	4.2.9 Handle GDDA Track Translation

	5. API Reference – Basic Functions
	5.1 gsInit()
	5.2 gsExec()
	5.3 gsExit()
	5.4 gsExitTo()
	5.5 gsGDDALogicalToPhysical()
	5.6 gsGetBasePath()
	5.7 gsGetArgC()
	5.8 gsGetArgV()
	5.9 gsSetUserData()
	5.10 gsGetUserData()
	5.11 gsIsActive()
	5.12 gs_FsOpenEx()

	6. API Reference – Extended�Functions
	6.1 gsSetDefaultExecutable()
	6.2 gsSetXFerExecutable()
	6.3 gsSetBasePath()
	6.4 gsSetFirstGDDA()
	6.5 gsIniOpen()
	6.6 gsIniOpenFrom()
	6.7 gsIniClose()
	6.8 gsFindApp()
	6.9 gsGetAppN()
	6.10 gsGetKeyValue()

	7. INI Files
	7.1 Application Blocks
	7.2 Key-Value Pairs
	7.3 Comments
	7.4 Sample INI File

	8. Notes:
	8.1 Not performance oriented
	8.2 Ginsu Library can be present with no ill effects
	8.3 Hard Limits of 64/256
	8.4 Machine State
	8.5 Memory Scanning
	8.6 Possible memory overwrite during transfer
	8.7 Command Line Parser

