SEGA

Ninja Guide

SEGA

Table of Contents

1 VIBW FUNCLION oot bbbt NGD-1
USE NJINTEVIEWW(). o.eeeieiieeie ettt ettt st st e st e te s te et e s te et e ese et e ene e beeneesaeeneesaeeseesteeeesraeseenreens NGD-1
Directly set VIEW SErUCtUIe MEMIDEIS.c.oiiiiiiiiiiitiit ettt NGD-2

View MOVEMENT AN FOTALIONoiiiiiciieire ettt b et eb e et ettt e et sb et e se et e nberesbereanas NGD-3

Notes for USiNg Old VIEW FUNCLIONScoiiiiiiiii bbbttt sn e sn e NGD-3
The detail 0f the CAUTION 1) ..o e et e e en e ereenesneerenrees NGD-4
The detail Of the CAUTION 2) ...cviiiie et te st e s teara e re e st e steeneesreenes NGD-4
The correct/Zincorrect examples using old View fUNCLIONS.cocoiiiiriincineicseseee e NGD-4

2 Reminders Of NINJA MOTION ..o NGD-7

Concept OF MOTIONS TN INTNJA ...oiviiieiiiiie bbbk b bbbt bbbttt et NGD-7

Procedure to produce MOtioNS IN NINJA ...c.ocvcieiiiice e resae e e e e e eeeeneens NGD-9

3 How to Realize an EffECIVE SEIPcoviiicecce e NGD-11

The way of connecting VErtices OF @ STIIP ..o srens NGD-14

MALEFTAL AN TEXIUIE ..oeeiiecce ettt e e bt e e st et et et es e es e e be e Rt eb e e b e e beebesbesbeseesbeneeseenteneas NGD-15

Comparison Of eXPresSiONS OF @ STIIP .ovciiiiiiiiiii e e e te s te e b e b sre e e nae e s NGD-15

INAEX TYPE SIFUCTUIE ..ottt bbb bbbt E bbb bbbt bbbt bbbt et n et NGD-15
Direct eXpression StrUCTUIE Of VEITICEScivivciiiie e s ne e NGD-16

Data redUCtiON FALE DY SEIIPoiviiiiiii ittt b ettt b e b e b sb et e b e e s eneas NGD-17

NGD-iii

Ninja Guide

4 BasiC Model SPECITICALION ..o NGD-19
1Y oTo [T IRS] 1 U [0 [OSSOSO NGD-20
DESCHIPLION OF SEFUCTUIES ...viiiiiiieiiitecet bbbtk ekttt b bt sb et b e bbb NGD-21
IMOOET STIUCTUTES ...ttt bbb bbb Rt bbbt bbb NGD-26
Y L= TS (SO P NGD-27
TEXEUIE STFUCTUIES ..ottt et r ettt NGD-31
NINJA ATIFIDULES ... b bbbt b e bbb bt e st e b et b e b et et ebe e NGD-34
=X O (=3 o] ¢ T | USRS PRUROR NGD-38
5 MOLION SPECITICATIONvuiiiiiiiciie bbb NGD-41
ODBJECT STFUCTUIE ...ttt b bttt b e bt bbb bt e b s b s e e b e e eh e e eb e e ekt nb ekt s e e bt e b et e eb e bt abeseabeneas NGD-41
o Y (o o] o1] £ W o1 (U NGD-41
CRUNK ODJECE STFUCTUIE ... bbb b e ettt b et be bt b et b NGD-42
EXPlanation Of @VAITIAGS ..o NGD-42
CAMEBIA STIUCTUIE ... bbb bbb e b b e et b e b e bbb e b NGD-43
LEGNT STFUCTUIE ..ottt bbb bR bbb bbbt bbbt e bt bbbt NGD-43
IMIOTION STFUCKUIES ...ttt bbb bbbt bR bbbkt e et NGD-46
EXPIANATION OF STFUCTUIE ...ttt sttt et et e e e ne et e s besnesae e e NGD-47
(@7 o T=To1 S Y/ o 1 o] o SRS NGD-51
EXPIANATION OF STFUCTUIE ...t b bbbttt ettt be b b e NGD-52
(0= 10 4 1=T - W1V, (0] 4 T o PSS NGD-53
(I To |) o V7o) 1 [o] o IRPO OO TP U SO PTURO PR NGD-54
(@1 LT gl oY o] 0 0= 1 o] o SRS NGD-55
B NINJA LIGHT oottt e e e s ettt s bbb b nenenens NGD-57
void njCreateLight(NIS_LI GHT*, INt) ..o NGD-57
void njDeleteLight(NIS_LI GHT*) ..o NGD-57
VOId NJLIGATOTI(NIS_LI GHT™) ettt bbb NGD-57
vOid NJLIGhtON(NIS_LI GHT™) oo NGD-58
void nj Mul ti Li ght Mat ri Xx(NIS_LI GHT*, NJS_MATRI X*) .ot NGD-58
vOid Nj Set Li ght (NIS_LI GHT™) .ot NGD-58
void nj Set Li ght Al pha(NJS_LI GHT*, FI0at)cccccovviiiiiiiccc s NGD-58
void nj Set Li ght Angl e(NJS_LI GHT*, NJS_Angl e, NJS_Angl €) ..o, NGD-58
void nj Set Li ght Col or (NJS_LI GHT*, Float, Float, FIoat)ccccoeiiiiiiiiieee e NGD-58
void nj Set Li ght Di recti on(NJS_LI GHT*, Float, Float, Float)cccccoevvveieieiecsncr s NGD-59
void nj Set Li ght I ntensi t y(NJS_LI GHT*, Float, Float, Float)cccccocevvviiiiiiiicicr e, NGD-59
void nj Set Li ght Locat i on(NJS_LI GHT*, Float, Float, Float) ..., NGD-59
void nj Set Li ght Range(NJS_LI GHT*, Float, FIOAt) ... NGD-59
void nj Set User Li ght (NJS_LI GHT*, NJF_LI GHT_FUNCY) ...cooiiiiriiireiineee e NGD-60
void nj Uni t Li ght MAt ri X(NJS_LI GHT™) oot NGD-60
void nj Transl at eLi ght V(NJS_LI GHT*, NJS_VECTORY)ccooiiirnineieniee et NGD-60
void nj Tr ansl at eLi ght (NJS_LI GHT*, Float, Float, Float)ccccevveveiiiieieiccese e NGD-60
void nj Rot at eLi ght X(NJS_LI GHT*, NJS_ANGI €) .ooiiiiiiiie e NGD-60

NGD-iv

Table of Contents

void nj Rot at eLi ght XYZ(NJS_LI GHT*, NJS_Angl e, NJS_Angl e, NJS_Angl €) ..ccoeevevvevvvrnnnne NGD-61
void nj Rot at eLi ght Y(NIS_LI GHT*, NJS_ANGI €) .ueiiiiiiiiiiere e NGD-61
void nj Rot at eLi ght Z(NJS_LI GHT*, NJS_ANGI €) 1ot NGD-61
Y F=Tod o ST TSP TR UT PO POURURUPPPPRURTOPN NGD-61
HOWV £0 USE ettt ettt bbbt s e b e bt bt e bt e Rt e b e e he e e Rt e R e e nb e e R e e nb e e s b e nbeenbenbeenrenreenns NGD-62
LIGHTSEruCtUre SPECITICALIONouviiiiiiiiicii bbb NGD-65
The members 0f NJS LI GHT SEFUCTUIEcoviiiiiiece e sne e NGD-65
The members 0f NJS LI GHT _ATTRSITUCLUIEccouiiieiicic ettt NGD-66
The members Of NJS_LIGHT_CAL SIFUCLUIEoouoiiiieirieiirieiinieestesi ettt NGD-68
T SCIOH GUIAR ..ottt NGD-69
R T 00 RSSO NGD-69
VBE.0.05 etttk h e E et b e e R R R e R R £ R R R R AR R R e R R b b et Rt bt e e Rt bt b nreare s NGD-69
Image Units as Related t0 SCrOIING ..ot e e ene s NGD-70
L@ =T T USSP NGD-70
IMAGE UNILS ..ottt st et e e e e s e s e e seehe e £ e e Reebe et e beste st e bese et e st e s ensensesaaneaneerenrees NGD-70
Scroll Rotation, Resizing, aNd IMOVEIMENT ..ottt st s e neeneereene e NGD-71
OVEIVIBW ..ttt et btk etk e e bt s bbb e Rt eb a1t e b e e b e e e b et ekt e e e b e e e e bt e e e b e e b et e ebe s e abe e ebe e ebe e ebe e NGD-71
Scroll Rotation, Resizing, and MOVEMENT ..ot e NGD-71
SCIOII PrOGIAMIMIING ...oiviiitiiitiiietiiee ettt bbbttt bbb bbbt bbbkttt ettt b bt b NGD-72
OVEIVIBW ..ttt etttk stttk sttt 2 e bt e b e bt e b e st e b et e b e e b et ek et et e e e e b e e e e b e e b e b e e b et e ebe e abe s e et e e ebe e ebe e NGD-72
Example of Programming @ SCrOIlooo it NGD-72
1070] [0] OSSOSO NGD-75
OVEBIVIBW ...ttt sttt ettt h bbbt bt b sS4 e b a4 o Eeab e R e R £ e H £ eh £ e b £ 4Rt e H £ e b e A bt e b e be b et et e st et e aeeb e e b e e beebenes NGD-75
L©0] [g 1Y, Lo o 1= USRS NGD-75
Scroll function, Structures, and DEefINITIONS ..o e NGD-76
OVEBIVIBWW ..ttt ettt ettt b bt bt bt e H e e4 e e b a4 e o2 e m e e R £ e R e e Rt eh £ e b e e R e eE e eEeeE e eb e ke nbeeeenbeneeneeneebeereaneeneneas NGD-76
ol o] | =] FoT T I U [T 4 o] o SRS NGD-76
SCrOH=TEIALEA SIIUCTUIEeoviiiiieieete ettt ettt sttt st b e ebe et e e ebe e be st ete e NGD-77
Scroll-related DEefiNITIONS ..ottt sa et se et e e ne b e sne e NGD-77
Texture Structures for Use in Cell Programming ... s NGD-78

NGD-v

Ninja Guide

8 TEXIUIE GUITE ..oveiiiiicccte ettt bbb bbb bbb e bbb bbbt b s NGD-79
OVEIVIBW ettt ettt sttt sttt et ettt e et e et e e te et e eas e be e st e e beeaeesbeeaeesbeessesbe e besbe e beabeesbesteesbeatseteeneenreanns NGD-79
(o1 LT o T It (=R NGD-81
L@ 1 =T 7 1= SR NGD-81
V4 o 0] ¢ - 1 SRR NGD-81
(0= 11=To o] Y/ 1o T [TSR NGD-82
(070] o1 gl =e] o ¢ o= | SRS NGD-83
AV 1T 0 0T] YU TRRPTRTR NGD-84
OVEIVIBW .ottt ettt s e st e et et e st e st e se e R e e R e e AeeRe e b e e b e s beebebesee st e st esbe e enseseeseeneateateabeseesteneenrens NGD-84
TEXEUIE IMIBIMOIY ..ottt ettt h et b e e st e b e skt eb £ e s bt eb e e bt eh e e bt e ae e ebe e he e sbeemeesbeenbesbeanbesbnans NGD-84
(01 1ol o 1= OO OSSOSO PSSRSO TR NGD-84
(IoF: To 1T o To B 1= LU =TSO USRS U U PP PR PR NGD-85
OVEBIVIBW .ttt sttt sttt st et s b et e st e et e e bt et e eas e beeas e e beeateebeeseesbeesbesbeestesba e besteesbeebsesbeatsebeensenbeenns NGD-85
Flowchart Of TeXTUIe LOAGINGcvoivieiiiice ittt sttt sttt e e naenaeseanenneneens NGD-85
Setting @ TEXTUIE BUFTEE ..ottt b bbb sbe st b NGD-86
SettiNg CaChE BUFTET ... bbbttt NGD-88
Creating @ TEXEUIE LISTcviiiicise ettt st st e et e et e s e e seeneereereaneenesrenrenrens NGD-89
TEXEUIE NNUIMDEIS ...ttt e e e e e te et et e e st e s be e st e sbeesbease e beeaeeabeeaeesteeseesbeeseesreeseenreens NGD-91
(€] (o] o T I [gTe [y QAN AU [] o1 ST NGD-91
Automatic allocation of Global Index NUMDBErc.covoiiiiiie e NGD-92
LIEX O =T o= To N =l g (o] USSR NGD-92
IMIBIMOIY TEXEUIE ..ttt b bt E R Rt b e e bt e bt e et ab b e b anenn s NGD-94
L] o [T g = 11 S NGD-95
Texture functions, Structures, and DefiNItiONS ... e NGD-97
OVEBIVIBW vttt ettt et st et et et e et e et e e be e beeas e beeabeebeeaeeebeeaeesbeesbesbeesbesbeebesbeesbesbeebeebsebeensenbeenns NGD-97
LI U =T L T o] g SRS P NGD-97
TEXEUNE STIUCTUIES ...iiiiiiiiiiie sttt ettt e et e s aa e e e e s ha e e st e e s b b e e abe e be e e s teenbeeesbeeabeeenbeeabeeanbeenres NGD-117
TEXTUIE DETINITIONS ...veiiiiiicic et b e e s be et s b e e te s ae e s besbaesbeereesbeesbesbeenbesreenns NGD-118
SE:agl o] [l ad foTo | 21 o H OO SO TR UROURTUROURURURURURN NGD-120
OVEBIVIBW ettt ettt ettt e e a e e b e e st e s he e abeehe e beeaeeebeeaeesbeeseesbeesbesbeenbesbsenbeebeenteeaeebesneesreannas NGD-120
S T= 0 0] 0] L S NGD-120
NOLES TOr TEXTUIE TUNCLIONSc.iiiiiice ettt e st e et e e beeasesbeeabesbeeeesteeseesteestesreens NGD-124
OVEBIVIBW ittt ettt ettt ettt e e h e s b e e st e e be e besheebesaeesbeeReesbeesbesbeesbesbeenbesbsenbeebeenbesasebesanesresnnes NGD-124
Notes for Switchover from SET2 t0 SETA/ZSETS ..ottt ene s NGD-124
Notes for using texture fFUNCLIONS IN SETSooiiiiiiiiie e e NGD-124

NGD-vi

Table of Contents

9 Chunk Model SPECITICALIONSciiiiiiiiiice e NGD-125
ChUNK MOAEI FEATUIES ...ttt ettt a et et e b e sbe st see b e aess e e aneeneaneaneas NGD-126
IMOAEI STFUCTUIES ...t bRt n Rt e Rttt nen et NGD-127
STPUCTUINE DIAOIANM ...ttt et h e bbbt b e e b e s b e e bt e b e b e eb e b e nbese et e s e e e et ene et e be e NGD-127
CRUNK SPECITICALIONS ...ttt bbb bbb bbbt bbb bbb bbbttt nes NGD-129
(O a1 U] | S 1Y/ 01O NGD-129
(O 01001 @] £ U [ox (U] = U TSRTOUSRUSURRN NGD-129
(@4 010 11 N1 TSRS NGD-130
CRUNK ENG .o bbbt e b bt b et b et NGD-130
CRUNK BITS ..ottt bbbk £ bbb £ e b bt e b ket bbbt e bt NGD-131
CRUNK TINY et b bbbt bt b ekt ek bbbt b et s bt s bbb NGD-136
CRUNK MALEITAL ..ottt b bbb NGD-137
(O 01U 01 QY =] = USSR USRRURRN NGD-143
(O o101 1Y 0] [T - SRR NGD-158
CRUNK STIID ottt bbb e R b e e bt bbbttt b b NGD-162
ASCIH OULPUL PrECAULIONS ...ttt et b et bbbt bbbtk b bbbt bbbt bt bt b NGD-173
10 NINAOWS TULOTTAI ... NGD-175
Special Features Of NINAOWSc.ociiiiii bbb NGD-175
Creating a Simple NiNdowWs APPHICALIONcociiiiiiiie et e e reens NGD-176
INTEGrating NINTAOWSc.eiiiiieee ettt a et e bt b e bt sbesee et e be e e s e e e e e e eneenenns NGD-176
Description of Functions used in Integrating NiNAOWScccccoiiiiiiiinineee s NGD-177
Using NINdows and NINAOWS UTTHTITIEScc.oouiiiiiiiii e e NGD-179
USING INTNAOWS ...t b et bbbtk b bbbt b et nbns NGD-179
NINAOWS UTHITIES ...ttt NGD-180
CRANGING FONTS ...ttt bt e b et h b e bt e bt e bt bt e b e s b e st sb et e b e e e e eneeseeneene s NGD-184
KA o [0 1TSS NGD-185
10 [0] 00 F= T PO P PP TPPPURPRTRN NGD-185
CreatiNg @ WINUOWooiiiiiie ettt ettt et e bt st e s be s b e sbesbese e b e beseeneaneeneaneaneas NGD-185
Creating @ Child WINAOWocciiiiii bbb NGD-186
WiINAOW Related PAr&mELers ..ottt NGD-186
Description of Window SUPPOIt FUNCLIONSoiiiiiiiieieee e NGD-186
Samples and a Description of Window SUpport FUNCLIONS ... NGD-189
SCIOIIWINTOWS ...ttt et s R b b e bt e bt et ne bt n et NGD-196
SUIMIMIIY .ottt h ekt h bR E e h e et s et he bt bt bt e bt e Rt e R e Rt e R e b ne s e e e et ebeeseeneene s NGD-196
Creating @ SCroll WINAOWccoiviiiieicicse ettt e te st et et e e e e eneeneeneas NGD-196
Description of Functions Used to Create a SCroll WindoWw ... NGD-196
o) A o o (011 SRR NGD-199
10 [0] 0 0= T PP UPPTPURPRTRN NGD-199
Creating and Using an Eit WINAOW ...t NGD-199
Description of Functions Used in Creating Edit WINAOWScccooiiiiiniinieineeseesees NGD-200
Description of Functions Used in Nindows' Debug Window Utilityc..ccccooinieiicccicieen, NGD-201
S e o] 1 oF- Tl @] o) { o] 0TRSO NGD-201
RS 10 1010 = VOSSP NGD-201

NGD-vii

Ninja Guide

Creating SCrollbar CONIOIS ..o it e e e e eseereeneeneerenre e NGD-201
Description of Functions Used in Creating Scrollbar CONtrols ... NGD-202
Creating Scrollbar Controls that Use Low-level Scrollbar FUNCLIONSccccoovviieienieecee, NGD-203
Description of Low-level Scrollbar FUNCLIONSccccoovieiicieicceee s ene NGD-204
10 (o] g I OXo] g | {0 [T PSRRI NGD-207
SUIMIMIBEY etttk b e r bt s b et s s Rt e b e E e b e b AR AR SR e ARt ARt e R e Rt e et e s e e et eb e bt bt bt an e b NGD-207
Creating @ BULLON CONIOLcoiiiii ettt st n e te e e neare e e NGD-207
Button Validity and INVAIIAILY ..o NGD-207
Description of Functions for BUtton CONEIOIS ... NGD-208
1V 1= 10 U TPV P UUTURUPR PSPPI NGD-209
SUIMIMIBEY ettt bt r bt s b e e s st h b e bt R e b AR e AR 4R e AR e bt e R e R et e e et e bt et et e b e nr et e NGD-209
Creating and Entering Menu TabIES ... NGD-209
Menu CallbDack FUNCLIONSouiiiii bbb bbb ettt be bbb NGD-210
L0 g TCTod (g T Ut RSOSSN NGD-210
Description of Functions for ENtering USEr IMENUSccceveierieieieiese e se e sie e eaeseseenens NGD-211
Creating POPUP IMIBINUS ..ottt ettt b ettt b e bt b s b e b bbb e et et ese et e e b e ebenbe b e NGD-213
Description of Functions Used in Creating POPUP MENUScccoiriiiiiinninse e NGD-213
IMIOUSE .ttt a bt a Rt et h e et 4R e AR Rt AR e Ao AR e R e AR R e R £ e R e R e e Rt e Rt e Rt R e Re e Re e nenEeenenreen NGD-214
SUIMIMIBIY ettt ettt bttt h e bkt e bt e 2 bt eh £ £ bt £h £ £ b e 4R e e 1E e 4R e e AE e e R b e A E e e Rt e e E e eh b e eb £ em bt ebe et e eaeebesaeenbeannas NGD-214
Getting MoUSE INFOIMALIONoiiiiiii bbb NGD-214
Description of Functions Used for Getting Mouse INnformationcccccoevviiiiiiinesc e NGD-214
0] TSR UPT TR NGD-216
OVEIVIBW .ttt ettt b s b s bbbt e E e Rt b b h bRtk s ke sttt b et ettt b et n e ntenen NGD-216
Description Of FONT FUNCLIONSciiiiiiiiiie ettt ettt sne s NGD-216
Problems with Changing FONTS ..o NGD-216

NGD-viii

SEGA

1. View Function

1 Initialization method

View initialization must be completed before the nj Set Vi ew() function is executed.
There are two methods of initialization.

1.1 Use njInitView().

Set the view as follows:

Current position of viewpoint: (px, py, pz) = (0,0,0)

Current orientation of viewpoint: (vx, vy, vz) = (0,0,-1)

Current tilt of viewpoint: (roll, tilt versus Z axis of viewline) 0 degrees
Base position of viewpoint: (apx, apy, apz) = (0,0,0)

Base orientation of viewpoint: (avx, avy, avz) = (0,0,-1)

Base tilt of viewpoint: (aroll, tilt versus Z axis of viewline) 0 degrees

View matrix = Unit matrix

NGD-1

Ninja Guide

1.2 Directly set VIEW structure members.

The following settings must be made:

1) When performing relative operations:

*pX, py, pz
* VX, VY, vz
* roll

2) hen performing absolute operations:
* O pX, pYy, pz
* VX, VY, Vz
* roll

After setting direct values for the above, execute void njSetBaseView(NJS_VI EW*v). Or, set the same respective
values in the following:

* apx, apy, apz

* o avx, avy, avz

* aroll

The view matrix settings are not needed.

Caution: The viewline vector must be converted to unit vectors.

NGD-2

1. View Function

2 View movement and rotation

All nj*Relative() and nj*Absolute() functions must be executed before the nj Set Vi ew() function.

Exanpl e
Initialize view

.V\hi le(1){
nj SetView);

S Execute nj*Rel ative() and nj*Absolute(), and then proceed to the next viewpoint.

Important. In the flow of the program, be certain to execute any nj*Relative() or nj*Absolute() function before the
nj Set Vi ew() function.

3 Notes for using old View functions

nj Mul ti Vi ewMatri x
nj Rot at eVi ewX

nj Rot at eVi ewY

nj Rot at eVi ewZ

nj Rot at eVi ewXYZ
nj Tr ansl at eVi ew
nj Tr ansl at eVi ewW
nj Uni t Vi emat ri x

The above eight functions are left to keep compatibility with old Ninja Libraries.

As there is a possibility that these functions will be deleted from the library in future, please do not use these
functions for new programs. If you use these functions unavoidably, please keep the following cautions.

1) Executes the above functions only after the nj Set Vi ew() function.
2) After executing the above functions, please be sure to execute nj Cl ear Mat ri x().

If you do not follow these two cautions, the library might not work correctly.

NGD-3

Ninja Guide

3.1 The detail of the caution 1)

The old View functions operate members of the structure and NJS_MATRI X m directly.

But in the current View functions,

Fl oat pX, py, pz; /1 Qurrent position of viewpoint

Fl oat VX, VY, VZ; /1 Qurrent orientation of viewpoint (vector)
Angle roll; [/l Qurrent tilt versus Z axis of viewine

Fl oat apx, apy, apz; /1 Base position of viewpoint

Fl oat avx, avy, avz; /1 Base orientation of viewpoint (vector)
Angl e arol | ; /] Base tilt versus Z axis of viewine

each member of the above list are operated. Then members and NJS_MATRI X m are renewed by the nj Set Vi ew
functionCo nsequently, if a View is operated by using old View functions before executing nj Set Vi ew() function,
the matrix is overwritten by the nj Set Vi ew() function

3.2 The detail of the caution 2)

A View must be reflected in a matrix stack.

Though this function is incorporated in the njSetView() function, because of the above reason, a View can not be
reflected in a matrix stack by using the njSetView() funtions.

Therefore, in case of using old View functions, please do not forget to execute old Matrix functions and
nj Cl ear Matri x().

3.3 The correct/incorrect examples using old View functions.

? The correct exanple using old View functions
NIS M EW _vi ew ;

njlnitView & view);

nj SetVi ew(& view);

nj Transl ateView(& view, 0.f, 0.f, 1000.f); // etc
nj A earMatrix();

? The incorrect exanple using old View functions
NJS M EW _vi ew ;
njlnitview&view);
nj Transl atevView(& view, 0.f, 0.f, 1000.f); // etc

nj Set Vi ew(& view);
nj A earMatrix();

NGD-4

1. View Function

As the matrix of the View is overwritten by the nj Set Vi ew() function, a View is left as it was initialized.

? The incorrect exanple using old View functions2
NIS M EW _vi ew ;
njlnitView & view);

nj SetVi ew(& view);
nj Transl ateView(& view, 0.f, 0.f, 1000.f); // etc

As the result of the execution of the njTranslateView() function is not reflected in the matrix stack, a View is left as
it was initialized.

Structures

typedef struct {

Fl oat pX, py, pz; /1 Qurrent position of viewoint
Fl oat VX, VY, VZ; [/l Qurrent orientation of viewpoint (vector)
Angle roll; // Qurrent tilt versus Z axis of viewine
Fl oat apx, apy, apz; // Base position of viewoint
Fl oat avx, avy, avz; // Base orientation of viewpoint (vector)
Angl e arol | ; // Base tilt versus Z axis of viewine
NJS MATRI X m /1l View nmatrix
} NIS M EW

NGD-5

Ninja Guide

NGD-6

SEGA

2. Reminders of Ninja Motion

1 Concept of motions in Ninja

Usually multiple motions are provided to one model. A model is actuated by assigning translation, rotation and
scaling necessary for a motion to hierarchical tree model. In Ninja, motion is expressed by the difference from the
base pose. In other words, motion consists of only information necessary for parts which should be actuated. A base
pose should be determined carefully, since it can reduce the differential information when it contains parameters

for stationary joints in each motion.

% %
-/ -/
Base Pose

—/

Differentia linformation
from base pose

Ninja Motion File (name file)

\—/

Motion Pose

Figure 0.1 Ninja Motion Concept

NGD-7

Ninja Guide

There are three forms of motions in Ninja. To reduce the amount of data, they are selected according to the

conditions.
Type A (TRRR) Root node has translation and rotation, the other nodes have rotation only.
Type B (TRTR) Each node has translation and rotation.
Type C (TRS) Each node has translation, rotation and scaling.

Shape motion, interpolation methods (linear, spline, etc) are not described here. Please refer to other documentation

for the format in detail.

In place of parameters skipped in type A and type B, translation, rotation, and scaling of each nodes of model tree
data of base pose are used. Consequently, skipped date should be constant and coincide with the model tree of base
pose. In some cases, rotation is skipped in type A. If the rotation of a node does not change during a motion and it
remains as that in the base motion, the rotation is omitted.

By the method described thus far, Ninja retains motion data to small amount.

NGD-8

2. Reminders of Ninja Motion

2 Procedure to produce motions in Ninja

<step 1> Determine base pose.

<step 2> Produce nja file and mrs file by converting a model. Here, mrs file implies motion
resources, which is an information file containing two-level hierarchy and values for
translation, rotation and scaling for each node.

<step 3> Convert to nam file using mrs file containing base pose information. These motion data
become differential information from single base pose.

Basically, a model and its motions are stored in one scene on a modeler, and can be converted simultaneously. When
they are converted simultaneously, please note that multiple motions cannot be conducted using one base pose,
since differences are produced based on the pose in the scene as a base pose, and the base pose changes at every
motion. For a model requiring motions, make sure to produce a base pose model and mrs file which is a base for
display first and to produce motions based on this model.

NGD-9

Ninja Guide

NGD-10

SEGA

3. How to Realize an
Effective Strip

Warning: = This document is under preparation.
= The current specifications and format for the strip is preliminary.

NGD-11

Ninja Guide

1 What is a strip?

A strip means a continuous polygon. Conventionally, a polygon means a surface consisting of three or
more vertices.

@ (b) (c) (d)

Reentering polygon (d) is not used due to the specifications of the hardware.

Figure 1.1 Examples of Polygons

A Strip reduces the amount of data and calculation and increases the performance by treating neighboring multiple
polygons as one data by connecting them (when applied to triangle polygons, it is called triangle strip). In addition,
improving bus transfer neck by reducing the amount of transferred data to drawing hardware effectively enhances
the peak performance (This assumes that the hardware has a function to process strip data. This hardware supports
triangle strip).

Convert to Strip

OTrangle Polygons O(Trangle) Strip
Figure 1.2 Example of Triangle Strip

The following section describes why the data is reduced compared with independent triangle polygons.

It can be considered that a quadrangle polygon consists of two triangle polygons. It can also be considered that a
quadrangle is a strip produced by connecting two triangle polygons. Since three vertices are necessary for
describing a triangle polygon, six vertices are required for two triangle polygons. At the same time, quadrangle
polygon needs four vertices which are two vertices less.

NGD-12

3. How to Realize an Effective Strip

Shared Vertexes

/

Q 3 Vertexes x 216 4 \ertexes

Figure 1.3 Comparison of Number of Vertexes in Quadrangle Expression

This is because two vertices on a each side of contacting lines of two triangles can be shared. A polygon model in a
game consists of triangle polygons covering it in three dimension, and contains of a lot of shared vertices. The idea
of strip is to increase the expression efficiency by sharing vertices. The reduction rate of data is as follows.

1 3 5 7 9 11 13

Figure 1.4 Shared Vertexes in Strip

Except for vertex 0 and 15, other vertices are shared. In addition vertices 2 — 13 are shared by consecutive three
triangle polygons. In other words, in a strip, the same result of color calculation can be used two or three times
except for the first and the last vertices. As a result, the amount calculation can be reduced. From the second triangle
onward, a triangle can be expressed by assigning one vertex in addition to two vertices from the previous triangle.
The number of necessary vertices for a strip connecting N triangle polygons.

Number of vertices of a strip ? 3 (Number of vertices of the first triangle) + (N-1)
In figure above, 14 triangle polygons are connected.
3+(14 - 1) = 16(16 from 0 to 15)

The following is observed.

Except for the first triangle, one triangle can be expressed by one vertex in a strip. Consequently if a strip is long
enough, the data necessary for a triangle polygon can be one vertex. When triangle polygons consisting a model
are connected in a row and the row is long enough, three vertices for an independent triangle polygon can be
reduced to one vertex and the amount of data is reduces to one third (33.333...%) of the original data amount. This
gives the theoretical limit of data reduction of a triangle strip.

NGD-13

Ninja Guide

2 The way of connecting vertices of a strip

The way of expressing a polygon is determined by the way of listing vertices of a polygon. There are two
expressions, clockwise and counterclockwise.

Q Counterclockwise Q Clockwise

2

Figure 1.5 Polygons Expressed by Vertexes

Choosing counterclockwise or clockwise is a matter of culture and either can do as a convention. In this
documentation, itis assumed that usually an independent polygon is expressed by listing vertices counterclockwise.
Also this direction of listing has a important role to determine the outer side of a polygon in 3D space. If the
following vertices in ascending order give a counterclockwise rotation, the surface is defined to be the outer side.
Otherwise, the surface is defined to be the inner side. Usually the inner side of a polygon cannot be observed. If it is
concluded that the inner side of a polygon is observed from the viewpoint, the polygon becomes a subject of culling
(deleting from drawing list).

In a strip, since it is necessary to use two vertices of the previous polygon, clockwise and counterclockwise appears
alternately. In a strip, the processing is conducted assuming that clockwise and counterclockwise is the outer
side alternately.

W W W W W W W
1 cC 3 CC 5 cC 7 cC 9 CC 1 CC 13 cC 15

NUANIARNRNIANRANIAN
NN AN AN AN

0 Cw 2 Cw 4 CW 6 Cw 8 Cw 10 Cw 12 CW 14

0123456789101112131415

<« Triangle 1 (clockwise)
<— Triangle 2 (counterclockwise)

< Triangle 3 (clockwise)
< Triangle 4 (counterclockwise)

Figure 1.6 Clockwise and Counterclockwise Listing of Vertexes in Strip

In Ninja, in order to make a strip as long as possible, both clockwise and counterclockwise are allowed for the
direction of listing vertices of the first polygon. Clockwise is expressed by setting the flag at the MSB of the
parameter for the length of a strip.

NGD-14

3. How to Realize an Effective Strip

0x800116 0123456789 10111213 1415
| | |

FlagINo. of Vertexes Vertex list

Figure 1.7 Example of Strip Structure in Ninja

3 Material and Texture

As described in Figure .4, a vertex of a strip is used three times by neighboring triangles. For that purpose, the
information used by each triangle must be the same. A vertex has the information of the normal, the material, the
texture and the UV value used for Gouraud calculation. Only neighboring triangles with vertices which have the
same information and thus can be shared can be connected as a strip data.

4 Comparison of expressions of a strip

The following two forms of strip list (also applicable to polygon list) are possible.

= Index type structure of vertex list
= Direct expression structure of vertices

5 Index type structure

An index type consists of a vertex list and a strip list made up with the entry numbers of vertices.

Index Vertex List Strip List
Numbers

Xyznxnynzuv .. 0,12 3,..

XyzZnxnynzuv..

Strip expressed by listing index numbers
XYyznxnynzuv...

XyzZnxnynzuv..

Figure 1.8 Index Type Strip

NGD-15

Ninja Guide

Merit

= Since vertices used in a model are arranged as a list without redundancy;, a strip is expressed by referring
results calculated before in stead of calculating again.

= Since data used more than once are expressed by indexes, the amount of data is reduced compared with
the case where vertices are assigned directly.

Demerits

= Since an index and a vertex list are stored in different addresses, it tends to introduce CPU cache errors
(this problem can be solved by a design suppressing cache errors).

In Ninja, index type strip is utilized.

5.1 Direct expression structure of vertices

A strip is composed by listing vertex data directly.
Strip 1 List

XYyZNXnynzuv .. Strip 1

Xyznxnynzuv..

Xyznxnynzuv.. ,

. /a
XYZNXnynzuv ... /

Strip 2
Strip 2 List
XYyzZnxXnynzuv..
Xyznxnynzuv..
Xyznxnynzuv.. Shared vertices are used both in Strip 1 and Strip 2.
Since in direct expression structure of vertices, vertex
Xyznxnynzuv... information is directly written into each strip list, vertex
information data is doubledOregarding to vertex aldin size

Figure 1.9 Vertex direct expression strip

Astrip list is composed by listing vertex data directly. If a vertex is used in multiple strips, the vertex is registered
in a list each time when it is used. Compared with assigning a vertex by an index, the amount of data increases. It is
supposed that the frequency of using one vertex is 1 - 10 (4 in average (estimation)) for an independent vertex, and
is1-3(2-2.5in average (estimation)) for a data model connected well by a strip. Therefore, the amount of data (in a
simple direct expression) is larger than that in an index type strip. To compensate this large amount of data, such an
approach as restraining the increase of the amount of data to some extent by reducing the number of bits expressing
vertices and normals becomes necessary. Each time when a vertex is used, the 3D calculation should be conducted
again. In case of a vertex used four times, four times of calculation will occur compared with the index type.

NGD-16

3. How to Realize an Effective Strip

Merits

= Cache errors can be avoided since the data address is sequential.
= A buffer storing a calculated vertex list is not necessary.
= Since unit of processing can be each polygon, a small program can be executed at high speed.

Demerits

= Data can be large (a few times in simple estimation). However it can be suppressed to a certain degree by
enhancing strip performance and reducing precision.
= It is difficult to express vertex animation.

= 3D calculations for the same vertex should be repeated as frequently as the vertex is used.

6 Data reduction rate by strip

The following section summarizes the expected amount of data reduction by the strip. The items listed below are
reminders for that estimation.

= The strip (the strip means a triangle strip here) is a group of an independent triangle polygons which
consist of originally sharable vertices.

NGD-17

Ninja Guide

NGD-18

SEGA

4. Basic Model Specification

1 Overview

Besides the Basic Model format described in this document, Ninja also supports the Chunk Model format. While a
drawing function is executed in the Chunk Model, the data are placed in a continuous memory space so as to
maintain integrity of the SH4 cache. Expandability, flexibility, and data expression efficiency are excellent. In future,
further tuning will be carried out, centering on the Chunk Model. The Basic Model is supported, but does not
include the new features.

In the Chunk Model, the model structure contents have been significantly changed. The object structure is not
changed, except for the fact that the model structure pointers have been altered to the Chunk Model.

Motions and textures besides the model use the same format as before. However, for compatibility with camera and
light, the format of structure members has been changed.

For information on the Chunk Model, refer to the Chunk Model Specifications.

NGD-19

Ninja Guide

2 Model Structures

ObJeCt Tree NJS_OBJECT structure Gives parent-child hierarchy of model.
typedef struct obj {
] Uint32 evalflags; /* Evaluation method optimization */
NJS_MODEL *model; /* Model structure */

Float pos[3]; /* Parallel motion */
Angle ang[3]; /* Rotation */
Float scl[3]; /* Scale */
structobj *child; /* Child pointer */
struct obj *sibling; /* Sibling pointer */
}NJS_OBJECT;

[

NJS_MODEL structure

Gives vertices, (contiguous) polygons, and material data.

typedef struct { typedef struct {
NJS_POINT3 *points; /* Vertex list */ ' Floatx,y,z
NJS_VECTOR *normals; /* Normal line vector list */ INJS_POINT3, NJS_VECTOR;
Uint32 nbPoint; /* Number of points */

| NJS_MESHSET *meshsets; /* Polygon list */
NJS_MATERIAL *mats; /* Material lists */ typedef struct {
Uint16 nbMeshset; /* Number of mesh lists */ NJS_COLOR diffuse;
Uint16 nbMat; * Number of mats */ NJS_COLOR specular;
NJS_POINT3 center; /* Model center */ | Float exponent;
Float r /* Radius of circumscribed sphere */ Uint32 attr_texld;
} NJS_MODEL,; uint32 attrflags;
}NJS_MATERIAL;

NJS_OBJECT structure

TRIMESH and polygon list by material and type

typedef union {

Uint32 color;

typedef struct {
Uintl6 type_matld; /* Type and material ID */
Uintl6 nbMesh; [* Total number of polygons */
Sintl6 *meshes; /* Polygon list */
Uint32 *attrs; [* Polygon attributes */

——NJS_VECTOR *normals; /* Polygon normal line list */
NJS_COLOR *vertcolor; /* Vector color list */
NJS_COLOR *vertuv; /* Vector UV list */
}NJS_MESHSET;

Ly struct {Sint16 u, v; } tex;
struct { Sint8 b,g,r,a;} argb;

}NJS_COLOR;

— « The two upper bits give the data type.
(There are four types.)

« List of triangular polygons only
« List of quadrilateral polygons only
« List of N-sided polygons

» |f "attrs", "normals", "vertcolor", and "vertuv" for the
polygon vertices are not needed, these variables are N

« Contiguous polygons (TRIMESH)
ULL.

Figure 1.1 Diagram of Structures

NGD-20

4. Basic Model Specification

2.1 Description of Structures

Float, Angle
typedef float Float/* Floating-point operation type */
typedef Sint32 Angle /* Angle of rotation */

= For angles, 0x000 to OXFFFF correspond to 0 to 360 degrees.

Color structure

typedef union {

U nt 32 col or; /* Long access */
struct {
Sint16 u; /* Texture u val ue */
Sint16 v; /* Texture v val ue */
} tex; /* Texture access */
struct {
unt8 b; /* b val ue */
unt8 g; /* g val ue */
unt8 r; /* r val ue */
unt8 a; /* Al pha blend val ue */
} argb; /* argb access */
1} NS OO.CR

= This structure stores colors and texture UVs. This structure uses a union.
= This tool sets the data from "color" and accesses the library from "tex" and "argb".

Object structure

typedef struct obj {

U nt 32 eval fl ags;/* Eval uation nethod opti mzation flag */
NJS MODEL *nodel ;/* Mobdel structure pointer */
Fl oat pos[3];/* Parallel motion */
Angl e ang[3];/* Rotation */
Fl oat scl[3];/* Scal e */
struct obj *child;/* Child object pointer */
struct obj *sibling;/* Sibling object pointer */
} NJS_CGBIECT;

= Gives the parent/child structure of the model.
= Polygons and TRIMESHes (contiguous polygons) are set in "model".

NGD-21

Ninja

Guide

Explanation of evalflags

#define NJD EVAL_UNT_PCSBIT_O/* Mtion can be ignored */
#define NJD EVAL UNT_ANG BIT_1 /* Rotation can be ignored */
#define NUD EVAL UNT_SCL BIT_2 /* Scale can be ignored */
#define NJD EVAL_H DE BIT 3 /* Do not draw nodel */
#defi ne NJD_EVAL BREAK BIT 4 /* Break child trace */
#define NJD EVAL ZXY ANG BIT 5 /* Specification for eval uation */
/* of rotation expected by */
/* Li ght Wave3D */
#define NJD EVAL_SKI P BIT 6 /* Skip notion */
#define NUD EVAL_SHAPE SKIPBIT_7 /* Skip shape notion */
#defi ne NJD_EVAL _NMASK Oxff /* Mask for extracting above bits */

These flags are set by the converter.

< NJD _EVAL_UNI T_PGCS is set when the parallel motion amount is "0". Parallel motion matrix processing
is omitted when this flag is set.

< NJD_EVAL_UNI T_ANGis set when the rotation angle is "0". Rotation matrix processing is omitted when
this flag is set.

< NJD_EVAL_UNI T_SCL is set when the scale is "1" for x, y, and z. Scale matrix processing is omitted when
this flag is set.

< IfNJD EVAL_UNI T_POS, NJD _EVAL_UNI T_ANG and NJD_EVAL_UNI T_SCL are all set, all matrix
processing steps are omitted, and the matrix "push pop" operation is also omitted.

< The NJD_EVAL_HI DE is set by the user. If this flag is set, the model is not drawn. This flag is used when
switching the gun or blade with which a model is equipped.

= The NJD_EVAL_BREAK is set by the user. If this flag is set, the child search is halted at this point. For
example, setting this flag in the root node causes the entire model to disappear. When NJD_EVAL_BREAK
is used in combination with motion, data coordination is lost. Therefore this flag should only be used in
the root node. It can be used in intermediate nodes, but the user is responsible for such usage.

= The rotation evaluation sequence for LightWave3D is "ZXY". Because this sequence is normally "XYZ" in
Ninja, the NJD_EVAL_ZXY_ANGis provided for execution via a library with the LightWave3D evaluation
sequence. When this flag is set to ON, the rotation processing sequence is changed to "ZXY".

= The NJD_EVAL_SKI P indicates that this node does not include motion data. During motion execution,
matrix processing is carried out using the object structure value without incrementing the motion node,
and then proceeds to the next node. This allows motion also with polygon models having a different
configuration, provided that the bone structure is the same.

= The NJD_EVAL_SHAPE_SKI P indicates that this node does not include shape motion data.

Point structure

typedef struct {

Fl oat X; /* X val ue */
Fl oat Y; /* Y val ue */
Fl oat Z; /* Z val ue */

} NJS_POINT3, NJS VECTCR

« Gives the X, Y, and Z values of a vertex.

NGD-22

4. Basic Model Specification

Texture name structure

typedef struct {

voi d
U nt
\Voi d

32

filenane;/ Texture file nane

attr;/* Textur

e attributes

texaddr;/ Texture nmenory address

} NIS TEXNAME;

= Textures are specified by file name.

*/
*/
*/

= "globallndex" is a unique texture number specified by a Uint32-type variable. However, OxfffffffO through
Oxffffffff cannot be used since the library uses them as internal flags.

= "globallndex" is stored in the texture file. The "globalindex" chunk is always placed at the start of a Ninja
texture file.

= "globallndex” is assighed and managed by this tool. In Ninja, this number is used to detect identical
textures, thus avoiding duplicate registrations in texture memory.

= "attr" is used in the texture type and cache specifications.

#def i
#def i
#def i
#def i

#def i

ne
ne
ne
ne

ne

NJD_TEXATTR TYPE FI LE o/* Fi
NJD TEXATTR CASHE BI T 31
NJD_TEXATTR TYPE MEMORYBI T_30

NJD TEXATTR BOTH BIT_29

NJD_TEXATTR MASK 0xE0000000

le texture

/* Registers texture in cache
/* Menory texture

/* Registers texture in cache
/* and texture nenory

*/
*/
*/
*/
*/

= In a memory-type texture, it is necessary to set the texture color type and category code in "attr". This is
the same bit string that is set in the ".pvr" file texture type.

/* Color type */

#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne

NID_TEXFMI_ARGB_1555(0x00)
NID_TEXFMI_RGB 565 (0x01)
NID_TEXFMI_ARGB_4444(0x02)
NID_TEXFMI_YWV_422 (0x03)

NJD TEXFMI_BUWP (0x04)
NJD_TEXFMI_RGB 555 (0x05)
NIJD_TEXFMI_COLOR MASK(OxFF)

/* Category code */

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

NJD_TEXFMI_TW DDLED(0x0100)
NJD_TEXFMI_TW DDLED_ MV 0x0200)
NID_TEXFMI_\VQ (0x0300)
NID_TEXFMI_VQ MM (0x0400)
NID_TEXFMI_PALETTI ZE4(0x0500)
NID_TEXFMI_PALETTI ZE4_ MMV 0x0600)
NJD_TEXFMI_PALETTI ZES(0x0700)
NJD_TEXFMI_PALETTI ZES_ MV 0x0800)
NJD_TEXFMI_RECTANGLE(0x0900)
NJD_TEXFMI_STRI DE (0x0BOO)
NID_TEXFMI_SMALLVQ(0x1000)
NID_TEXFMI_SMALLVQ MV 0x1100)
NJD_TEXFMI_TYPE_MASK(OxFFO0)

NGD-23

Ninja Guide

= "texaddr" stores the texture memory address that is assigned when "texlist" is set in the current "texlist"
in the target. This address is used in the current texture specification within the library.

Texture list structure

typedef struct {

NIS TEXNAME *t ext ures; /* Texture nane |ist */
U nt 16 nbText ur e; /* Nunber of textures */
} NJS TEXLI ST;

= This list is used to batch write multiple textures to texture memory. The library texture specification is
made for each "texlist".

Material structure

typedef struct {

NIS COLCR di ffuse; /* Diffuse reflection */

/* (model color)0 to 255 */

NS COLCR specul ar; /* Specul ar reflection */

/* (highlights) 0 to 255 */

FLQOAT exponent ; /* Hghlight spread 0 to 300 */

U nt 32 attr_texld; /* Attribute and texture ID */
U nt32 attrfl ags;

/* Attribute flag */

} NJS_MATER AL;

attr texID
I I I

attr_texID

31 29 28 0

= "attr_texld" specifies a texture number in the current texture list "texlist". "attr" area is not currently used.

= The only texture information in the model tree that corresponds to a "texlist" entry number is "texld". The
user sets the "texlist" corresponding to the current model as the current texture list.
For details on the attributes that are set in "attrflags"”, refer to section 3.3, "Ninja Attributes.”

NGD-24

4. Basic Model Specification

Meshset structure

typedef struct {

U nt 16 type_natld;/* Type and material 1D (0 to 4095) */
U nt 16 nbMesh; /* Nunber of pol ygons/conti guous */

/* pol ygons */
Sint16 *meshes; /* Pol ygon |i st */
U nt 32 *attrs;/* Polygon attributes */
NJS VECTOR *normal s;/* Polygon normal |ine vector |ist */
NJS COLCR *vertcol or;/* Polygon vertex color |ist */
NJS COLCR *vertuv;/* Polygon vertex W |ist */
} NJS_MESHSET;

= The attributes of individual polygons are set in "attrs". The attributes that are set in "attrs" are the same
as those that are set in "attrflags"” for "NJS_MATERI AL".
For details on meshsets, refer to, "Meshsets" section in, "Construction of a Model" section.
For details on the attributes that are set in "attrs", refer to, "Ninja Attributes" section.

Model structures

typedef struct {

NJS _PA NT3 *points;/* Vertex list*/

NJS VECTOR *normal s;/* Vertex normal |ine vector |ist*/

U nt 32 nbPoi nt; /* Nunber of vertices*/

NJS MESHSET *meshset s; /* Pol ygon and TRIMESH | i st*/

NJS NMATERI AL *mats;/* Material |ist*/

U ntl16 nbMeshset ; /* Nunber of neshsets; naxi num 65, 535*%/
untl6 nbMat ; /* Nunber of nats; naxi num 65, 535*%/

NJS_PQA NT3 center;/* The center of the nodel */

Fl oat r; /* Radius of circunscribed sphere */

/* fromthe center of the nodel */
} NS _MCDEL;
= The vertex list includes all of the vertices used in multiple meshsets that are set in the MODEL structure.
= If vertex normal lines are not needed, set NULL in "normals".

= "meshset" is a combined list of a single type of polygon (triangular polygons, quadrilateral polygons,
N-sided polygons, TRIMESHes) that uses a single material.

= Each meshset has a material ID, and its position in the "mats" array can be specified.
= "center" and "r" are used when calculating model collisions, etc.

NGD-25

Ninja Guide

3 Model Structures

NJS_MATERIAL

attr_texld;

NJS_MATERIAL

attr_texld,;

NJS_MESHSET

Object Tree

NJS_OBJECT Gives parent-child hierarchy of model.
— *model; {
L, NJS_MODEL Gives vertices, (contiguous) polygons,

*meshsets — and material data.
| *mats;
Material List Meshset List

L,

type_matld;
*attrs:
*vertcolor;

*vertuyv;

Type: triangular polygon

Polygon vertex list

[[

Polygon attribute list

Polygon normal line list

NJS_MESHSET

Polygon vertex color list

type_matld;

NJS_MESHSET

Polygon vertex UV coordinate list

Type: quadrilateral polygon

type_matld;

Type: N-sided polygon

NJS_MESHSET
type_matld;

Type: TRIMESH

Figure 1.2 Diagram of Structure

NGD-26

4. Basic Model Specification

3.1 Meshsets

typedef struct
U nt 16
U nt 16

Sint 16
U nt 32
NJS VECTOR
NJS COLCR
NJS COLCR
} NIS MESHSET;

{
type_natld;/* Type and material 1D (0 to 16384)*/

nbMesh; /* Nunber of pol ygons/conti guous */
/* pol ygons */

type material Id

type_matld

15 14 13 0

meshes; / Pol ygon |ist*/

attrs;/ Polygon attributes*/

normal s;/ Pol ygon norrmal |ine vector list*/
vertcol or;/ Polygon vertex color |ist*/
vertuv;/ Polygon vertex W list*/

= This structure stores data strings for triangular polygons only, quadrilateral polygons only, N-sided
polygons only, or TRIMESHes (contiguous polygons) only.

= The vertex sequence is the drawing (zig-zag) sequence for all of the contiguous polygons.

= Multiple types of meshset arrays are set for "*meshsets".

= When the data includes triangular polygons, quadrilateral polygons, and N-sided polygons, the Ninja
converter divides the data into separate meshsets according to the number of vertices.

= If multiple materials are used for triangular polygons (for example), the data is divided into separate
meshsets for each material.

* In"type_matld"

, the two most significant bits (bits 14 and 15) indicate the meshset type, while the 14 least

significant bits (bits 0 to 13) indicate which material in the model structure material list is being used.

0
Triangle lh > 0,12
1 — 2
0 3
Quadralateral /Z/ ::> 01,32
1
N
N-sided WA N = ETEX
1 2
0 24 5 8
Contiguous polygons %%‘M ::> 0,1,2,3,4,5/6,7,8,9,10

1353510

NGD-27

Ninja Guide

#def i ne NJD_MESHSET_30x0000
#defi ne NJD MESHSET 4 0x4000
#def i ne NUD_MESHSET N 0x8000
#def i ne NUD_MESHSET TR MESHOxc000

An explanation of the data structure for each type follows.

For a Triangular Polygon List (NJD_MESHSET _3)

Example:
Pol ygonl Pol ygon2
neshes| | ={3, 4, 5 9, 8, 6 2, 10, 7, 13, 14, 11,}
attrs[] = NULL;
nor mal s[] = {{1.0,0.0,0.0}, {0.0, 1.0, 0.0}, ...}
vertcol or[] = { OXFFFF, OXEEEE, OXOCCC, . . .}
vertuv(] = {OXEFAB, OxFF98, Ox44FF, . ..}
nbMesh = nunber of vertices in "meshes"/3

= Attribute setting with "attrs" are not possible for individual polygons.

= One normal line is allocated to each polygon. The normal line for the nth polygon is "normals[n]". (n =0,
1,2, ..)

= The color and UV for the meshesJi] vertex are "vertcolor[i]" and "vertuv]i]", respectively. (i=0, 1, 2,...)

= The NULL pointer is set for "attrs", "normals", "vertcolor" , and "vertuv" if they are not needed.

NGD-28

4. Basic Model Specification

For a Quadrilateral Polygon List (NJD_MESHSET 4)
Example:

Pol ygonl Pol ygon2

meshes]] {3, 4, 5 9, 8 6 2 10, 7, 13, 14, 11,}

attrs[] = NULL;

vertcol or[] { OXFFFF, OXEEEE, OxCCCC, . . . }

vertuv[] { OXEFAB, OxFF98, Ox44FF, ...}

nbMesh nunber of vertices in "nmeshes"/4

= Attribute setting with "attrs" are not possible for individual polygons.

= One normal line is allocated to each polygon. The normal line for the nth polygon is "normals[n]". (n =0,
1,2, ..)

= The color and UV for the meshesJi] vertex are "vertcolor[i]" and "vertuv]i]", respectively. (i=0, 1, 2,...)

= The NULL pointer is set for "attrs", "normals”, "vertcolor" , and "vertuv" if they are not needed.

For a Contiguous Polygon List (NJD_MESHSET TRI MESH)

A continuous polygon is expressed by writing the number of vertices composing it at the beginning.

Example:
trimeshl tri mesh2
neshes|] ={6, 3, 4 5 9, 8 6, 4 2, 10, 7, 13,11,}
attrsf] =NULL;
nor mal s[] ={{1.0,0.0,0.0}, {0.0, 1.0, 0.0}, ...}
vertuv|] = {OXEFAB, OxFF98, Ox44FF, . . .}

vertcol or[] { OXFFFF, OXEEEE, OxCCCC, . . . }

nbMesh Nunber of trineshes

= Attribute setting with "attrs" are not possible for individual polygons.

= Although the normal line of a trimesh is usually derived from the external product, the normal line can
be stored as data in "normals".

NGD-29

Ninja

Guide

= One normal line is allocated to each polygon after conversion to triangular polygons. The normal line for
the nth triangular polygon is "normals[n]". (n =0, 1, 2, ...)

= The color and UV of the vertex of meshes]i] are respectively vertcolor[i-(k+1)] and vertuv[i-k+1)] (i=0, 1.,
2, ...). Here, k is the current trimesh number (the k’th trimesh).

= The NULL pointer is set for "attrs”, "normals", "vertcolor" , and "vertuv" if they are not needed.

Note: For high efficiency in joining trimesh shapes (triangle strips), Ninja supports start from trimesh
right rotation and left rotation. When right rotation is used, the most significant bit of the start value
indicating the length is set as a 1-bit flag.

Start from left rotation: length, vertex 1, vertex 2, ...

Start from right rotation: 0x800] length, vertex 1, vertex 2, ...

For an N-sided Polygon List (NJD_MESHSET _N)

= Here, "N" represents a value of "5" or more. In other words, this declaration is used to generate a polygon
with five or more sides. In the future, it will be possible to generate lists of polygons with three or more
sides through a converter option.

= Itis important to note that in the case of an N-sided polygon, the "meshes" vertex number will deviate
from the "vertcolor" and "vertuv" numbers

Example:

Pol ygonl Pol ygon2
neshes|] ={5, 3, 4,5 9 8 7, 6, 2, 10, 7, 13, 14, 11,}

= The underlined value indicates the number of vertices (N), and is followed by N vertices.
attrs[]=NULL;

= Attribute setting with "attrs" are not possible for individual polygons.?
normal s[]={{1.0,0.0,0.0}, {0.0, 1.0, 0.0}, ...}

= Anormal line vector is assigned to each polygon. The normal line for the kth polygon is "normals[k]". (k
=0,1,2,..)

= Each vertex of an N-sided polygon is assumed to lie on the same plane, so the normal line that is derived
from the first three points is regarded to be the normal line for the entire polygon.

vertcol or[] ={OxFFFF, OXEEEE, OxCOCC, . ..}
vertuv[] ={OxEFAB, OxFF98, Ox44FF, ...}

= The color and UV for the meshes[i] vertex are "vertcolor[i-(k+1)]" and "vertuv[i-(k+1)]", respectively. (k =
0,1,2,.;i=0,1,2,..) Here, "k" is the number of the current ("kth") polygon. This is because "meshes" has
the value "N" that indicates the number of sides for each polygon, while "vertcolor" and "vertuv" do not.

NoMesh= Nunber of N-sided pol ygons

= The NULL pointer is set for "attrs", "normals”, "vertcolor" , and "vertuv" if they are not needed.

NGD-30

4. Basic Model Specification

3.2 Texture Structures

Object Tree

NJS_OBJECT structure NJS_OBJECT structure
*model; s *mats;

NJS_OBJECT structure
attr texld:;

l

This indicates the number of the texture to be used from "texlist".
This structure has no "texlist" data; it uses the "texlist" that is set as
the current "texlist".

Texlist

NJS_TEXTLIST structure

Table of multiple textures

typedef struct {
NJS_TEXNAME *textures; /* Texture name list */
Uintl6 nbTex; /* Number of textures */
}NJS_TEXLIST,

v

NJS_TEXTNAME structure Manages the textures.

typedef struct {
void *filename; /* Texture file name */
Uint32 attr; /* Texture attributes */
void *texaddr; /* Texture attributes */
} NJS_TEXNAME;

texlist globallndex texaddr

« Textures are managed through
real files and texlists.

« Texture memory is overwritten in
units of whole texlists.

» Memory data can be specified
instead of a file.

« "globalindex" is a unique number
that is assigned to all textures.

« Texture duplication is checked
by comparing the "globallndex"
numbers.

¢ "globalindex" is stored in a
texture file.

* The current texture is set in terms
of individual texlists by the library
function. The registered address
is then stored in texture memory.

Figure 1.3 Diagram of Structure

NGD-31

Ninja Guide

[Mod_el] Converter Graphics Tool
[Motion]
[Texture] —ﬂ
[Model]
[Motion]
[Texture] Texture database
« Unified management of 3 3 + 3
textures and assignment Texture Motion Model
of “globallndex” numbers mats:
« texlist generation 5 '
Within the program: « Establish Material0
correspondence texld =0
<step 1> Specify the texlist corresponding through texId
N to the model as the current texture : Materiall
. texld =2
<step 2> Draw the model Texlist
tex0; «— texld=0]
tex1; +— texld=1 Material2
tex2; «— texld=2 texid =1
globallndex Unique index number that is assigned to all textures; stored in texture files.

N _J; Textures are specified by file name, and registered in memory in units of texture lists
“texfile”, 101 — ‘
exiile” 102} mtexfilel”, 101 Katana Texture Memory

Texlist1 "texfile2”, 102 |¢—
mexfile3” 103 ,| “texfile3”, 103
“texfile2”, 102 “texTHes 102
|
Texlist2
Whether a texture has already been registered in texture memory is checked by comparing the “globalindex”
numbers. The “globalindex” numbers of the textures in current memory are managed by the library. :

Figure 1.4 Overview of Texture Processing

NGD-32

4. Basic Model Specification

Memory-type Textures and the Texture Cache

For details, refer to the library specifications. The following is an overview only.

Texlist File Type
Texnamel » filename+« File name text string pointer
Texname2 attr «——
Texname3
. Set NJD_TEXATTR_TYPE_FILE
Memory Type
Texname structure
»| filename ¢)
attr Used to create textures through calculations, etc.

Pointer to memory

Set NJD_TEXATTR_TYPE_MEMORY

Texname structure

When the NJD_TEXATTR_CASHE flag is set in "attr", only the texture cache is set. If NJD_TEXATTR_BOTH
is set, then when textures are registered in texlist units in texture memory, any textures in the cache are
automatically registered in texture memory from the cache.

Explanation of the Structure of Textures

= Normally, multiple textures are applied to a model; the texlist structure is defined in order to handle these
models as a batch.

= The texlist structure consists of an array of multiple texture file names.
= The "globallndex" numbers are stored in texture files, and are retrieved when the file is loaded.

= The "globallndex" chunk is located at the top of the texture file. The "globallndex" numbers are required,
because they are essential for improved library performance.

= The "globallndex" numbers are managed by the Ninja graphics tool, and are assigned in such a manner
that there are no duplicates within an entire project.

= When multiple texlists that contain the same texture are loaded into memory, duplicates are detected
through their "globallndex" numbers.

= During model conversion, all of the texture files in the texture group used in the object tree are output as
a single texlist.

= When model conversion is repeated, if the textures that appear had "globallndex" numbers assigned to
them previously, those same "globalindex” numbers are assigned to them again.

= If the user assigns his own "globallndex" numbers, he creates a table of all of the textures that are used
and then writes those entry numbers in the "globalindex" chunks of all of the texture files.

= The model texture information bears no direct relationship with the "globalindex" numbers since the
information is expressed by texlds only, which are just the texlist entry numbers.

NGD-33

Ninja Guide

= The correspondence between textures and models is established before the model is drawn by setting as
the current texture the texlist that is to be used. Textures can then be easily substituted by changing
the texlist.

= During current texture registration, the address in texture memory is stored in texaddr. This address is

used by the library.

= Because the texture file is assumed to reside in a specific folder, the path name for a texture file is not

included in the texture file name description in texlist.

= The texture extension ".pvr" is omitted in order to reduce the amount of data.

= The user is responsible for maintaining agreement between texlists and models (object trees). In order to
improve performance, the library does not detect disagreements between the number of textures in a

texlist and the number of textures used in an object tree.

3.3 Ninja Attributes

The attribute defined here is used for "attrflags" of NJS_MATERI AL. The polygon-unit attribute "attrs" is always

NULL. The polygon-unit attribute is used in the Chunk Model.

31-29 | 28-26 25 24 23 22 21 20 19 18-17 | 16-15 | 14-13 12 11-8 7 6-0

31-29: SRC Alpha Instruction ?Alpha blending parameter; explained later?
28-26: DST Alpha Instruction ?Alpha blending parameter; explained later?
25: Ignore Lights ?Light source enabled/disabled; disabled when "1"?
24: Flat Shading ?Flat shading ON/OFF?
23: Double Side ?Double side polygon ON/OFF?
22: Environment Mapping ?Environment mapping ON/OFF?
21: Use Texture ?Texture enabled/disabled; enabled when "1"??
20: Use Alpha ?Alpha enabled/disabled; enabled when "1"?
19: Ignore Specular ?lgnores specular; disabled when "1"?
18-17: Flip UV ?Flip control?
16-15: Clamp UV ?Clamp control?
14-13: Filter-Mode 0 ... Point Sampled(hard spec)

1 ... Bilinear Filter(hard spec)

2 ... Tri-liner Filter(hard spec)
12: Super-Sample Texture ?Anisotropic Fliter ON/OFF?
11-8: Mip-Map ‘D’ adjust ?16-step mip-map adjustment; explained later?
7. Pick Status ?Stroes the status that has been picked?
6-0: User Flags ?Not used?

= The bit string 25-21, 19, 14-13, 7-0 has a separate meaning for the hardware. This part is masked by the

library, and the control value expected by the hardware is set and used by the library.

= Alpha blending parameter

In the blending function, two RBGA values and SRC and DST, are combined as described below, and the

result is returned to DST.

DST @ =

SRC * Bl endFuncti on(SRC Al pha Instruction) +

DST * Bl endFuncti on(DST Al pha I nstruction)

NGD-34

4. Basic Model Specification

Here, a 3-bit instruction is input along with the SRC and DST colors in BlendFunction (Instruction). This function
then returns coefficients that have been weighted by the four alpha values for each RGBA.

Instruction Field Value Values Returned

Zero 0 (0,0,0,0)

One 1 (1,1,1,1)

‘Other’ Colour 2 (OR, OG,0B,0A)

Inverse ‘Other’ Colour 3 (1-0R,1-0G,1-0B,1- 0A)
SRC Alpha 4 (SA, SA, SA, SA)

Inverse SRC Alpha 5 (1-SA, 1-SA,1-SA, 1-SA)
DST Alpha 6 (DA, DA, DA, DA)

Inverse DST Alpha 7 (1-DA, 1-DA, 1-DA, 1-DA)

"Other Color" and "Inverse Other Color" indicate that the DST color is to be used if specified in the SRC
instruction, or that the SRC color is to be used if specified in the DST instruction.

The addition operation is performed after the coefficients have been determined and the SRC/DST
multiplication operations have been performed. In this case, overflow checking and clamping of the result
that was obtained are performed when appropriate.

« Filter Mode

Field Values Filter Mode

0 Point Sampled
1 Bilinear Filter
2 Tri-linear

3 Reserved

« Mip-Map ‘D’ adjust

Although the mip-map "D" value is calculated by the drawing engine internally, there are instances where
fine adjustments are made forcibly in order to find meeting points between aliasing and blurring. These
adjustments are made by multiplying the computed "D" value by the specified adjustment value (a 4-bit
unsigned fixed-decimal value with a 2-bit decimal field).

Example ‘D’ Adjust bit pattern | Equivalent value

00.00 lllegalo
00.01 0.25
01.00 1.0
1111 3.75

0 Specification not permitted

NGD-35

Ninja

Guide

The Ninja flags are defined below. They are labelled as flags, except for those fields that consist of two or
more bits. Other portions are defined separately. Although the UV Flip and Clamp fields are two-bit fields,
they are regarded as flags for U and V, separately. Numerous masks used for extracting these flags are also

defined.

/* SRC Al pha Instr(31-29) */

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne

NJD_SA ZERO
NJD_SA ONE
NJD_SA OTHER
NJD_SA | N\V_OTHER
NJD_SA SRC
NJD_SA | N\V_SRC
NJD_SA DST
NJD_SA | NV_DST
NJD_SA MASK

(Bl T_0)

(Bl T_29)

(Bl T_30)

(BI T_30| BI T_29)

(Bl T_31)

(Bl T_31| BI T_29)

(Bl T_31| Bl T_30)

(BI T_31| Bl T_30| BI T_29)
(Bl T_31| Bl T_30| BI T_29)

/* DST A pha Instr(31-29) */

#define NJD DA ZERO (0)

#defi ne NOD DA ON\E (BIT_26)

#defi ne NOD DA OTHER (BIT_27)

#define NOD DA INV_OTHER (BI T_27| Bl T_26)
#define NOD DA SRC (BIT_28)

#define NOD DA I NV_SRC (BI T_28| BI T_26)
#define NOD DA DST (BIT_28|BI T_27)
#define NOD DA | NV_DST (BIT_28|BI T 27| BI T_26)
#defi ne NOD_DA MASK (BI'T_28| BI T_27| Bl T_26)
/* filter node */

#define NOD FILTER PONT (0)

#defi ne NOD FI LTER Bl LI NEAR(BI T_13)

#define NUD FI LTER TR LI NEAR(BI T_14)

#define NOD FILTER BLEND (BIT_14| BI T_13)
#define NOD _FI LTER MASK (BIT_14|BI T_13)

/* Mp-Map ‘D adjust */
#define NJD_D 025
#define NJD_D 050
#define NJD_D 075
#define NJD D 100
#define NJD D 125
#define NODD D 150
#define NODID D 175
#define NJD_D 200
#define NJD D 225
#define NJD_D 250
#define NJD D 275
#define NJD D 300
#define NJD D 325
#define NUD_D 350
#define NJID D 375
#defi ne NJD D MASK

(Bl T_8)

(BIT9)

(BIT_9|BIT_8)

(Bl T_10)

(Bl T_10| BI T_8)

(Bl T_10| BI T_9)

(BIT 10/ BI T 9| BI T_8)
(BI T _11)

(BIT 11| BI T_8)
(BIT_11|BIT_9)
(BIT_11|BI T_9| B T_8)
(Bl T_11| BI T_10)

(Bl T_11| BI T_10| BI T_8)
(Bl T_11| BI T_10| BI T_9)

/* 0 zero*/

/* 1 one*/

/* 2 Gher Col or*/

/* 3 Inverse G her Col or*/
/* 4 SRC Al pha*/

/* 5 Inverse SRC Al pha*/
/* 6 DST Al pha*/

/* 7 Inverse DST Al pha*/
/* MASK*/

/* 0 zero*/

/* 1 one*/

/* 2 Gher Col or*/

/* 3 Inverse Gher Col or*/
/* 4 SRC Al pha*/

/* 5 Inverse SRC Al pha*/
/* 6 DST Al pha*/

/* 7 Inverse DST Al pha*/
[* MASK*/

/* 0.25%/

/* 0.50%/

/* 0.75%/

/* 1.00%/

/* 1.25*%/

/* 1.50%/

/* 1.75%/

/* 2.00%/

[* 2.25%/

/* 2.50%/

[* 2.75%/

/* 3.00%/

/* 3.25*%/

/* 3.50%/

(BIT_11|BIT_10|BI T 9| BI T_8)/* 3.75*/
(BIT_11|BIT_10| BI T 9| BI T_8)/* NASK*/

NGD-36

4. Basic Model Specification

/* flags */

#define NOD_FLAG | GNORE LI GHT(BI T_25)
#define NOD FLAG USE FLAT (BIT_24)
#defi ne NOD FLAG DOBLE _SI DE(BI T_23)
#define NJID FLAG USE ENV (BIT_22)

#def i ne NJD_FLAG USE_TEXTURE(BI T_21)
#def i ne NJD_FLAG USE_ALPHA (BI T_20)
#defi ne NJD FLAG | GNORE_SPECULAR(Bl T_19)
#define NOD FLAG FLIP_U (BIT_18)
#defi ne NOD FLAG FLIP_ V (BIT_17)
#define NOD FLAG OQLAMP U (BIT_16)
#define NOID FLAG QLAMP V' (BIT_15)
#def i ne NJD_FLAG USE_AN SOTRCPI (Bl T_12)
#defi ne NJD_FLAG Pl OK (BIT_7)

/* Flip and clanp masks */
#defi ne NJD FLAG FLI P_MASK (NJD_FLAG FLIP_U NID FLAG FLIP_V)
#def i ne NJD_FLAG CLAMP_NASK\
(NOD_FLAG O.AVWP_U NID FLAG OAMP_V)
/* Mask for flags that are sent directly to the hardware */
#defi ne NOD_FLAG HARD MASK (NJD FLAG USE ALPHA
| NID _FLAG FLIP_NASK | NID FLAG CLAVP_NASK \
| NID FLAG USE AN SOTRCPI ©
/* Mask for flags that are evaluated by the library */
/* (i.e., masks that are not sent directly to the hardware) */
#defi ne NOD_FLAG SCFT_MASK (NID FLAG | GNCRE_LI GHI\
| NID FLAG USE FLAT| NID FLAG DOUBLE S| DE\
| NID FLAG USE ENV] NID FLAG USE TEXTURR\
| NID_FLAG | GNORE_SPECULAR NJD FLAG Pl CK)
/* Mask for all flags */
#defi ne NOD_FLAG MASK (NJD_FLAG HARD MASK \
| NID FLAG SOFT_NASK)
/* Default user mask */
#defi ne NOD DEFAULT_USER MASK \
(BIT 6/BIT 5B T4 BT3BT2BT1BTDO0)
/* Default system mask */
#def i ne NJD_DEFAULT_SYS_NMASK~NID DEFAULT_USER MASK
/* Mask for fields that are sent as is to the hardware */
#def i ne NJD_SYS HARD MASK (NJD_SA MASK| NDD_SD MASK \
| NOD_FLAG HARD MASK| NDID D MASK)

NGD-37

Ninja

Guide

3.4 Texture Format

The ".pvr" format is used. The converter is "pvrconv". Textures that are embedded in the model converter and are
automatically used in models are wholly converted.

The converter checks the alpha value of the original image, switches the format automatically to one of the
following three formats, and then outputs the image.

If there is no alpha value: Outputs the image in RGB565 format.
If there is an alpha value:Outputs the image in ARGB4444 format.
If the alpha value is 0 or 255:0Outputs the image in ARGB1555 format.

In addition, if the texture is square, the converter automatically selects twiddled format; if the texture is rectangular,
the converter automatically selects rectangle format.

twiddled format

With this texture, the pixels are arranged in the order in which they were read out of memory at high speed.
Mip-map can be used. Display is fast.

rectangle format

With this texture, the pixel order is that of the image. Display is slow, compared to twiddled format. Note
that mip-map cannot be used.

Bump mapping

The bump mapping texture is provided for gray scale images. This texture cannot handle RGB color images.
The converter converts the data to a format that is expected by the hardware.

VQ
Performs texture compression using vector quantization. For details, refer to the VQ Specifications.
Specifications for YUV422 and palette texture are pending.

Texture format

An overview of the texture format follows. The format is an IFF-based chunk format (header + size + data).
The data portion consists of the internal data structure as is, as expected by the hardware. Details of this
format are not covered here.

NGD-38

4. Basic Model Specification

The chunk format is as follows:

‘PVRT’ (chunk name) Uint32 IFF-format header. If the chunk name is

Byte size (data size) Uint32

> unknown, the byte size is used to skim
over the data up to the next chunk.

Texture type Uint32

_ . _) IFF-format header. If the chunk name is
Width Uint16 Height Uint16 unknown, the byte size is used to skim
over the data up to the next chunk.

Texture data

The size and contents are
determined by the texture
type. This is a block of the
internal data that is set in
the hardware.

The bit string that is produced by ORing the color type with the category code is set for the texture type.

/* Color type */

#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne

NJD_TEXFMI_ARGB_1555(0x00)
NJD_TEXFMI_RGB 565 (0x01)
NJD_TEXFMI_ARGB_4444(0x02)
NID_TEXFMI_YWV_422 (0x03)
NID TEXFMI_BUMP (0x04)
NJD_TEXFMI_RGB 555 (0x05)
NJD_TEXFMI_COLCR MASK(OxFF)

/* Category code */

#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne

NJD_TEXFMI_TW DDLED(0x0100)
NJD_TEXFMI_TW DDLED MV 0x0200)
NID_TEXFMI_\VQ (0x0300)
NID_TEXFMI_VQ MM (0x0400)
NJD_TEXFMI_PALETTI ZE4(0x0500)
NJD_TEXFMI_PALETTI ZE4_MV 0x0600)
NJD_TEXFMI_PALETTI ZES(0x0700)
NJD_TEXFMI_PALETTI ZES_MV 0x0800)
NID_TEXFMI_RECTANGLE(0x0900)
NJD_TEXFMI_STR DE (0x0BOO)
NJD_TEXFMI_SMALLVQ (0x1000)
NJD_TEXFMI_SMALLVQ MM 0x1100)
NJD_TEXFMI_TYPE_MASK(OxFFO0)

NGD-39

Ninja Guide

Aside from the PVRT chunk, the GBIX and PVRI chunks are defined in Ninja.

'GBIX’ (chunk nameUint32)

4 (byte) Uint32

globalindex Uint32

Specifies the "globallndex" for the texture. When using a pvr file in Ninja, this chunk is placed at the top
of the file.

'PVRI’ (chunk name) Uint32

Byte size Uint32

Data

texture control data

This filed stores the texture control data. The details are currently under study.

NGD-40

EGA

5. Motion Specification

1 Overview

Ninja defines model, camera, and light motion in a single structure.

Data arrays are used as keyframe setting units, with pointer tables defining the entire motion. This method uses
motion only in the required sections, and keyframe interpolation can be performed for each parameter. Also, it is
possible to reuse common motion parts for camera and light.

2 Object Structure

The object structure can be linked to other objects with child and sibling pointers, creating a parent/child hierarchic
model. Motion in the hierarchic model is implemented by tracing the layers in the order child/sibling and
combining the sorted motion data for the nodes in this sequence with the "pos”, "ang", and "scl" values of the object
structure. The "evalflags" serve for suppressing matrix processing and controlling other motion options. For
information on the model data structure, refer to the Basic Model Specifications and the Chunk Model
Specifications.

2.1 Basic object structure

typedef struct obj {

U nt32 eval f| ags; /* Eval uation nethod optim zati on*/
NJS MCDEL *odel ; /* Model structure pointer*/

Fl oat pos[3] ; /* Parallel notion*/

Angl e ang[3] ; /* Rotation*/

Fl oat scl [3]; /* Scal e*/

struct obj *chil d; /* Child object pointer*/

struct obj *si bl i ng; /* Sibling object pointer*/

} NIS _CBIECT;

NGD-41

Ninja

Guide

2.2 Chunk object structure

typedef struct cnkobj {

U nt 32 eval f| ags; /* Eval uation method optim zation*/
NJS ONK_MODEL *odel ; /* Model structure pointer*/

Fl oat pos[3]; /* Parallel notion*/

Angl e ang[3] ; /* Rotation*/

Fl oat scl[3]; /* Scal e*/

struct obj *chil d; /* Child object pointer*/

struct obj *si bl i ng; /* Sibling object pointer*/

} NJS_ONK_CBJECT;

= Gives the parent/child structure of the model.
= Polygons and TRIMESHes (continuous polygons) are set in "model".

2.3 Explanation of evalflags

#define NUD EVAL UN T _PCSBIT_O/* Mtion can be ignored */

#define NJD EVAL UNT_ANG BIT_1/* Rotation can be ignored */
#define NJD EVAL UNT_SCL BIT_2/* Scale can be ignored */
#define NJD_EVAL_H DE BI T_3/* Do not draw nodel */
#defi ne NJD_EVAL_BREAK BI T_4/* Break child trace */
#define NOD EVAL_ZXY_ ANG BIT 5

/* Specification for evaluation of rotation expected by Li ght Wave3D */
#define NOD EVAL_SKIPBIT_6

/* Skip motion */
#defi ne NOD EVAL_SHAPE SKIPBIT_7

/* Skip shape notion */
#defi ne NJD_EVAL_NASKOXf f

/* Mask for extracting above bits */

These flags are set by the converter.

< NJD_EVAL_UNIT_POS is set when the parallel motion amount is "0". Parallel motion matrix processing
is omitted when this flag is set.

< NJD_EVAL_UNIT_ANG is set when the rotation angle is "0". Rotation matrix processing is omitted when
this flag is set.

< NJD_EVAL_UNIT_SCL is set when the scale is "1" for X, y, and z. Scale matrix processing is omitted when
this flag is set.

< If NJD_EVAL_UNIT_POS, NJD_EVAL_UNIT_ANG, and NJD_EVAL_UNIT_SCL are all set, all matrix
processing steps are omitted, and the matrix "push pop" operation is also omitted.

= The NJD_EVAL_HIDE is set by the user. If this flag is set, the model is not drawn. This flag is used when
switching the gun or blade with which a model is equipped.

= The NJD_EVAL_BREAK is set by the user. If this flag is set, the child search is halted at this point. For
example, setting this flag in the root node causes the entire model to disappear. When
NJD_EVAL_BREAK is used in combination with motion, data coordination is lost. Therefore this flag
should only be used in the root node. It can be used in intermediate nodes, but the user is responsible for
such usage.

NGD-42

5. Motion Specification

= The rotation evaluation sequence for LightWave3D is "ZXY". Because this sequence is normally "XYZ" in
Ninja, the NJD_EVAL_ZXY_ANG is provided for execution via a library with the LightWave3D
evaluation sequence. When this flag is set to ON, the rotation processing sequence is changed to "ZXY".

= The NJD_EVAL_SKIP indicates that this node does not include motion data. During motion execution,
matrix processing is carried out using the object structure value without incrementing the motion node,
and then proceeds to the next node. This allows motion also with polygon models having a different
configuration, provided that the bone structure is the same.

= The NJD_EVAL_SHAPE_SKIP indicates that this node does not include shape motion data.

3 Camera Structure

The camera structure is as described below.

The motion parameters are position, vector, roll, and angle.

NJS CAMERA structure
typedef struct{

Fl oat px, py, pz; (Canera position)
Fl oat vx, vy, vz; (Canera vector in unit direction [Local Z axis])
Angle rol |; (Canera rol |)
Angl e ang; (Canera angl e)
Float n_clip; (Near clip)
Float f_clip; (Far clip)
NJS VECTCR ?????7? (Canera local X, Y axis)
} NIS CAMERA

4 Light Structure

The light structure is as described below.

The motion parameters are position, vector, and color. For the spotlight, additional motion parameters are near
limit value, far limit value, inner limit angle, and outer limit angle. For a detailed explanation of the light structure,
refer to the section "Light Settings".

NJS_LIGHT structure

struct {
NJS MATRI X mrx; ?Li ght source matrix?
NJS _PQA NT3 pnt; ?Li ght source position?
NJS VECTCR vetr; ?Li ght source vector in unit direction?
BOOL stat; ?Status: |light source used/ not used?
I nt reserve; ?Reser ved)
NJS LI GHT_CAL Itcal; ?Light cal cul ation structure?
NJS LI GHT_ATTR attr; ?Attribute structure?
} NIS_ LIGHT;
<stat>
#define NJD LI GHT_ON Refl ects |ight
#define NID LI GHT_CFF Does not reflect |ight

NGD-43

Ninja Guide

NJS_LIGHT_ATTR structure

struct {

I nt | src; ?Li ght source type?

Fl oat i spc; ?Specul ar light intensity: 0 to 1?

Fl oat idif; ?Diffuse intensity: 0 to 1?

Fl oat i anb; ?Anbient intensity: 0 to 1?

Fl oat nr ang; ?D stance for maxi mumlight intensity:
near limt value?

Fl oat frang; ?Di stance for light intensity cutoff:
far limt value?

voi d* func; ?Cal | back function pointer?

Angl e i ang; ?Angl e for maximumlight intensity:
inner linmt angle?

Angl e oang; ?Angle for light intensity cutoff:
outer limt angle?

NJS _ARGB ar gb; ?Li ght col or?

} NIS_ LIGHT_ATTIR

<l src>

Li ght source type

#define NJD _SPOT_LI GHT Spot | i ght

#define NJD DR LI GHT Paral l el |ight source
#define NJD PO NT_LIGHT Point 1ight

#define NJD_AMBI ENT Arbi ent |ight

#define NJD_SPEC DR Paral | el beam hi ghl i ght

#defi ne NJD_SPEC PQ NT Poi nt beam hi ghl i ght
#define NUOD LAMBERT_ DR Paral |l el beam Lanbert
#define NJD_LAMBERT_PA NT Poi nt beam Lanbert
#define NDJD PHONG DR Paral | el beam Phong
#define NJD PHONG PO NT Poi nt beam Phong
#define NJD_USER LI GHT User - defi ned |i ght
#define NJD BLOOK LIGHT Bl ock Iight

<ispc, idif, iamb>

Light balance (as per equation below)

SPECULAR(R,G,B) x ispc + DIFFUSE(R,G,B) x idif + AMBIENT(R,G,B) x iamb
Upper limit (lower lamp) is clamped.

<near, far>

Effective light range (distance) as specified by NJD_PQ NT_LI GHT (point light source), NJD_SPOT_LI GHT
(spot light source), etc.

nrang Distance limit value where light is at upper limit value. Default: 1.f
frang Distance limit value where light processing is performed. Default: 65535.f

NGD-44

5. Motion Specification

Light Source

@

<iang, oang>

Effective light range (distance) as specified by NJD_SPOT LI GHT (spot light source), etc.

iang Angle limit value where light is at upper limit value. Default: (DEG)10.f
oang Angle limit value where light processing is performed. Default: (DEG)30.f
Example: spotlight Example: point light source

oang iang

Light Sougce

near

far

Figure 1.1 Diagram of Structure

NGD-45

Ninja Guide

5 Motion Structures

NJS_ACTION structure

Gives pairings of objects and motions.

typedef struct {
| NJS_OBJECT *object;

[* Pointer to the top of the object tree */

NJS_MOTION *motion; /* Motions */

}NJS_ACTION,;

» NJS_MOTION structure

Motion for element No. 1

typedef struct {
| void *mdata;

Uintl6 type;
}NJS_MOTION;

/* Array for object tree */
Uintl6 nbFrame; /* Number of motion frames */
/* Motion element bit string */

NJD_MTYPE POS 0 (1<<0)
NJD_MTYPE_ANG_1 (1<<1)
NJD_MTYPE SCL 2 (1<<2)
NJD_MTYPE_SHAPE_3 (1<<3)
NJD_MTYPE VEC 4 (1<<4)
NJD_MTYPE_ANG_X_5 (1<<5)

»/ NJS_MDATAL structure

Motion for element No. 1

typedef struct {

}NJS_MDATAL;

void *p[l]; /* Motion pointer */
Uint32 nb[1]; /* Number of keyframes */

NJS_SHAPE structure Under review

NJS_MKEY_F structure

NJS_MDATA2 structure

Motion for element No. 2

typedef struct {

}NJS_MDATA2;

void *p[2]; /* Motion pointer */
Uint32 nb[2]; /* Number of keyframes */

typedef struct {
Uint32 keyframe;
Float key[3];

}NJS_MKEY_F;

NJS_MKEY_A structure

NJS_MDATAS structure

Motion for element No. 3

Substitute “3” for “2” in NJS_|

MDATA2

typedef struct {
Uint32 keyframe;
Float key[3];

}NJS_MKEY_F;

NJS_MDATAS structure

Motion for element No. 3

The specifications for SCENE and SHAPE are being reviewed

Substitute “4” for “3” in NJS_

MDATA2

NGD-46

Float-type keyframe (pos, scl, vec)

Angle-type keyframe (ang)

5. Motion Specification

5.1 Explanation of Structure

Action structure for model

typedef struct {
NJS_CBIJECT
NJS_MOTI ON

} NIS_ACTI QN

object;/ Pointer to the top of the object tree*/
notion;/ Motion |ist*/

= "object" has a tree structure with a parent-child hierarchy.

= "motion" sets the motion that is to be applied to "object".

Action structure for camera

typedef struct {
NJS_CAVERA
NJS_MOTI ON

}NIS CACTI ON

canmera;/ Pointer to camera structure*/
notion;/ Mdtion list*/

Action structure for light

typedef struct {
NJS_LI GHT
NJS_MOTI ON
}NIS LACTION

Motion structure

typedef struct {
voi d
U nt 32
U nt16
U nt 16
?NJS_MOTI O\

light;/ Pointer to |ight structure*/
motion;/ Mtion |ist*/

mdata;/ Array for object tree*/

nbFrane; /* Nunber of notion franes*/

type; /* Mtion elenment bit string*/

inp_fn;/* Interpolation method and nunber of el ements*/

= "mdata" contains, in the form of an array, a number of NJS_MDATA sufficient for all of the NJS_OBJECTs
included in the object tree.

= For NJS_MDATA, the NJS_IMDATAL to 5 structures are used according to the number of motion
configuration elements.
#define NJD MIYPE PGS 0 (1<<0) /* Uses NJS MKEY_F*/
#define NJD MIYPE ANG 1 (1<<1) /* Uses NJS MKEY A*/
#define NOJD MIYPE SCL_2 (1<<2) /* Uses NJS MKEY_F*/
#define NJD MIYPE VEC 3 (1<<3) /* Uses NJS MKEY F*/
#define NOID MTYPE VERT 4 (1<<4) /* ses NIS MKEY _P*/
#define NJD MI'YPE NORM 5 (1<<5) /* Uses NJS MKEY_P*/
#def i ne NJD_MI'YPE_TARGET 3(1<<6) /* Uses NJS MKEY F*/
#define NJD MIYPE ROLL_6 (1<<7) /* Uses NJS MKEY Al*/
#define NJD MI'YPE ANGLE 7 (1<<8) /* Uses NJS MKEY Al*/
#define NJD MI'YPE RGBB 8 (1<<9) /* Uses NJS MKEY_U 32*/
#defi ne NOJD_MTIYPE_| NTENSI TY_9(1<<10)/* Uses NJS MKEY F1*/
#defi ne NOD MI'YPE_SPOT_10 (1<<11)/* Uses NIS MKEY_SPOT*/
#define NOD MI'YPE_ PO NT_10(1<<12)/* Uses NIS MKEY_F2*/

NGD-47

Ninja

Guide

= When normal motion includes the three elements of parallel motion ("pos"), rotation ("ang") and scale
("scl"), NJS_MDATAS3 is used. The number at the end of the label gives the order of the motion elements.

= The vector component "vec" is used in conjunction with "pos" in light source and camera motion.

= The interpolation calculation method is specified by the two most significant bits of "inp_fn".

#define NJD_MIYPE_LI NER
#def i ne NJD_MI'YPE_SPLI NE
#def i ne NUD_MI'YPE_USER
#def i ne NID_MI'YPE_MASK

0x0000/ * Li near interpolation*/
0x0040/* Spline interpol ation*/
0x0080/* User function interpolation*/
0x00c0O/ * Sanpl i ng nmask*/

= The element number that indicates which structure is being used is stored in the least significant four bits

of "inp_fn".
7 6 0
inp_fn
L | I |
Interpolation Element number
NJS_MDATAL to 5 structure
typedef struct {
voi d *p[1]; /* Motion pointer*/
U nt32 nb[1] ; /* Nunber of keyframes*/
} NJS_MDATAL;
typedef struct {
voi d *p[2]; /* Motion pointer*/
U nt 32 nb[2] ; /* Nunber of keyframes*/
} NIS_MDATA2;
typedef struct {
void *p[3]; /* Motion pointer */
U nt32 nb[3]; /* Nunmber of keyframes */
} NIS_MDATAS;

= All data are expressed as keyframes.

= Number of motion keyframes of p[i] element is inserted in nb[i].

NGD-48

5. Motion Specification

MDATA4 and MDATAGS are defined for the light source. MDATAS is used only for spotlight

light sources.

typedef struct {
voi d

U nt 32

} NJS_MDATA4;

typedef struct {
voi d

U nt 32

} NIS_MDATAS;
Key structure
typedef struct {
U nt 32

Fl oat

} NIS MKEY_F;

*p[4];
nb[4] ;

*p[5];
nb[5] ;

keyf r are;
key[3];

/*
/*

/*
/*

/*
/*

Mot i on poi nter*/
Nunber of keyfranmes*/

Motion pointer*/
Nunber of keyfranes*/

Keyf rame nunber */
Fl oat type key value (array 3)*/

= Used for parallel motion (POS), scale (SCL), and vector (VEC).

typedef struct {
U nt 32

Angl e

} NIS MKEY_A;

= Used for rotation (ANG).

typedef struct {
U nt 32
Voi d

} NJS_MWKEY_P;

= Used for shape (SHAPE).

typedef struct {
U nt 32
U nt 32

} NIS MKEY_U 32;

= Used for light color.

typedef struct {
unt 32

Si nt 32

} NJS_MWKEY_A1;

= Used for camera roll (ROLL) and angle (ANGLE).

typedef struct {
U nt 32
Fl oat

} NJS_MWKEY_F1;

keyf r ane;
key[3] ;

keyf r ane;
*key;

keyf r arre;
key;

keyf r are;
key;

keyf r arre;
key;

/*
/*

/*
/*

/*
/*

/*
/*

/*
/*

Keyf rame nurber */
Angl e type key val ue (array 3)*/

Keyframe nunber */

Poi nter*/

Keyframe nunber */
Unsi gned int32 type key val ue */
Keyf rame nunber */
Signed int32 type key val ue */
Keyf rame nunber */
Fl oat type key val ue */

NGD-49

Ninja

Guide

= Used for light intensity (INTENSITY) and angle (ANGLE).

typedef struct {
U nt 32

Fl oat

} NIS MKEY_F2;

keyf r ane; /* Keyframe nurber
key[2] ; /* Float type key value (array 3)

= Used for point light source (POINT).

typedef struct {
U nt 32
Fl oat
Fl oat
Angl e
Angl e
} NIS_MKEY_SPOT;

= Used for spotlight (SPOT).

keyframe; /* Keyframe nunber

near;/* Float type / near limt val ue key val ue
far;/* Float type / far linmt value key val ue
iang;/* Angle type / inner limt angle key val ue
oang;/* Angle type / inner limt angle key val ue

*/
*/
*/
*/
*/

*/
*/

NGD-50

5. Motion Specification

6 Object Motion

Object Tree
| : :
/ NJS_OBJECT | : Gives parent-child hierarchy of model.
//\ 1:1 correspondence
/A N
NJS_MDATA arra
A _ y
Trace of tree
NJS_ACTION NJS_MOTION NJS_MDATAL1 4
» *object; *mdata; *p[n];
*motions; type; nb[n];

Example: For "pos" only, NJS_MDATAL is used because there is only one element.
NJS_MOTION structure type = NJD_MKEY_POS _0;

NJS_MKEY_Fpos[]={,,, ..};

NJS_MDATA1 mdata[] = {{pos, poskey_n}, ...}

Example: For "pos" ,"ang", and "scl’, NJS_MDATA3 is used because there are three elements.
type = NJD_MTYPE_POS_0|NJD_MTYPE_ANG_1|NJD_MTYPE_SCL 2;

MKEY_F pos[] ={,,, ..}

MKEY_Aang[] ={,,, ..}

MKEY_Fscl[]={,, ..}

MDATA3 mdata[] = {{pos, ang, scl, poskey_n, angkey_n, sclkey_n}, ..};

Example: For "pos" and "vec" for a light source, NJS_MDATA? is used because there are two elements.
type = NJD_MTYPE_POS_0 | NJD_MTYPE_VEC_4;

NJS_MKEY_F pos[] ={,,, ..},

NJS_MKEY_Fvec[]={,,, ..}

NJS_MDATA2 mdata[] = {{pos, vec, poskey_n, veckey n}, ...};

Figure 1.2 Diagram of Structure

NGD-51

Ninja Guide

6.1 Explanation of Structure

= All motion is given by keyframe data.
= The user executes motion using linear interpolation of keyframe data and spline.

= The interpolation method can be defined by the user in the Ninja library through the callback function
(Currently unsupported).

= The keyframe numbers start from zero. The negative value cannot be used.

Position Parallel motion

Angle Rotation

Scale Enlargement/reduction

Vertex Animation by polygon vertex motion (shape)
Normal Normal line for animation by polygon verte

= Object motion has the above five elements.

= Because of problems that can occur when implementing the library, the shape data "Vertex" and "Normal"
are output as separate data (.nas) from the "Position"”, "Angle", and "Scale data (.nam). The maximum
number of elements therefore is three. The structures NJS_MDATAL through NJS_MDATAS3 are provided
for object motion. NJS_MDATA4 and NJS_MDATAS are defined for light source and camera.

= The pointers for the storage of each NJS_MDATA element are void, and in all cases it is necessary to
stipulate the data storage order.

#def i ne NOD_MI'YPE _PCS 0(1<<0) /* Use NIS_MKEY_F*/
#define NOD MIYPE ANG 1 (1<<1) /* Use NIS MKEY A/
#define NJD MIYPE SCL_ 2 (1<<2) /* Use NJS_MKEY F*/
#define NOD MI'YPE VEC 3 (1<<3) /* Use NIS_MKEY_F*/
#defi ne NOD MIYPE VERT 4 (1<<4) /* Use NIS MKEY P*/
#define NJD MITYPE NORM 5 (1<<5) /* Use NJS MKEY_P*/

= The numbers indicated at the end of the "define" character string indicate the order of the data, with the
newest data coming first. The above flags are set to the motion structure member type.
Exanpl e: For "pos" and "ang"
type = NJD MIYPE PCS 0 | NID_MIYPE _ANG 1;
ndata[] = {pos, ang, ...}

= The motion interpolation method is specified by the upper 2 bits of "type".

#defi ne NOD_MI'YPE LI NER 0x0000
#defi ne NOD MI'YPE_SPLI NE 0x0040
#defi ne NJD_MI'YPE_USER 0x0080
#defi ne NOD_MI'YPE_MASK 0x00c0

NGD-52

5. Motion Specification

< NJD _MIYPE_LI NER indicates linear interpolation.
= NJD_MI'YPE_SPLI NE indicates spline interpolation.
< NJD_MIYPE_USER indicates interpolation through a user-defined routine.

= The root is "pos" and "ang"; in other cases, such as an "ang"-only motion model, the NJS_NDATA2
structure is used. A non-root "pos" is handled by using the NULL pointer.

type =

{*pos1

{NULL,

{NULL,
-}

NJD MI'YPE PGS 0 | NID MIYPE_ANG 1;
NJS MDATA2 ndata[] = {

, *angl},
*ang2},
*ang3},

= Note that in the above example, "ang2" and "ang3" must not be directly adjacent to "NULL".

7 Came

ra Motion

Because camera does not use a parent/child hierarchic configuration, it is basically the same as a motion structure
for a single object.

The action structure uses NJS_CACTI ON.

Camerah

as the following four elements:

= Position (POS)

= \ector (VEC) or target (TARGET)
* Roll (ROLL)

= Angle (ANGLE)

These use NJS_MTYPE_1 through NJS_MIYPE_4, as required.

#def i ne
#def i ne
#def i ne
#def i ne
#def i ne

NJD MIYPE PCB 0(1<<0) /*
NJD MIYPE VEC 3 (1<<3) /*
NJD_MIYPE_TARGET 3 (1<<6) /*
NJD MI'YPE ROLL 6 (1<<7) /*
NJD MI'YPE_ANGLE 7 (1<<8) /*

Uses NIS MKEY F*/
Uses NOS MKEY_F*/
Uses NIS MKEY_F*/
Uses NIS_MKEY_Al*/
Uses NUS_MKEY_Al*/

"Vec" stands for vector, and "Target" for the target position.

The common "3"in NJD_MI'YPE_VEC 3 and NJD_MI'YPE_TARGET_3 means that these cannot be used
simultaneously.

= Free camera (with direction as vector)
type=NJD_MI'YPE PGS O|NJD MIYPE VEC 3|NJD MIYPE ROLL 6 |NJD MIYPE ANGLE 7;

= Target camera (with direction as target position and image angle animation)
type=NJD_MI'YPE_POS_O|NJD _MIYPE_TERGET_3|NJD_MIYPE_ROLL_6|NJD_MI'YPE_ANGLE_7;

= Interpolation method is specified with the upper 2 bits of "inp_fn". This is the same as for object motion.

NGD-53

Ninja

Guide

8 Light Motion

Because light does not use a parent/child hierarchic configuration, it is basically the same as a motion structure for

asingle

object.

The action structure uses NJS_LACTI ON.

Light motion objects are either point light source, parallel light source, or spotlight.

Point light source has the following four elements:

= Position (POS)

= Range (POINT)

= Color (RGB)

= Intensity (INTENSITY)

The range element is comprised in the near limit value (NearRange) and far limit value (FarRange).

Parallel light source has the following four elements:

= Position (POS)

= Vector (VEC) or target (TARGET)
= Color (RGB)

= Intensity (INTENSITY)

For the spotlight, the four elements of the parallel light source are comprised in the near limit value (near),
far limit value (far), inside limit angle (iang), and outside limit angle (oang). With the addition of the

= Spot (SPOT))

element, the total number of elements is five.

Therefore the parallel light source uses NJS_MDATA 1 through NJS_MDATA 4, and the spot light uses
NJS_MDATA 1 through NJS_MDATA 5.

#defi ne NOD_MI'YPE_PCS 0(1<<0) /* Uses NIS MKEY_F*/
#define NOD MIYPE VEC 3 (1<<3) /* Wses NIS_MKEY_F*/
#defi ne NOD_MIYPE_TARCET_3(1<<6) /* Uses NIS_MKEY_F*/
#define NOD MIYPE R&B 8 (1<<9) /* UWses NIS MKEY_U 32*/
#defi ne NOD_MIYPE | NTENSI TY _9(1<<10)/* Uses NIS MKEY F1*/
#defi ne NOD MI'YPE_SPOT_10 (1<<11)/* Uses NIS MKEY_SPOT*/
#define NOD_ MI'YPE PA NT_10(1<<12)/* Uses NIS MKEY_F2*/

"Vec" stands for vector, and "Target" for the target position.

The common "3"in NDD_MIYPE_VEC 3 and NJD_MTYPE_TARGET_3, and the common "10" in
NJD MIYPE_SPOT 10 and NJD_MI'YPE_ PO NT_10 means that these cannot be used simultaneously.

NGD-54

5. Motion Specification

Type setting examples
= Point light source

type=NJD_MTYPE_POS_0|NJD_MTIYPE_RGB_8|NJD_MTYPE_I NTENSI TY_9| NJD_MI'YPE_POI NT_11;

= Parallel light source (with direction as vector)
type=NJD_MI'YPE _PCS O|NJD MIYPE VEC 3 |[NJD MIYPE RGB 8] NJD MTYPE_ | NTENSI TY_9;

= Spot light source (with direction as target)

t ype=NJD_MI'YPE_PCS_0| NJD_MI'YPE_TERGET 3 | NJD_MI'YPE_RGB 8
| \JD_MIYPE_| NTENSI TY_9| NUD_MI'YPE_SPOT_10 ;

Interpolation method is specified with the upper 2 bits of "inp_fn". This is the same as for object motion.

9 Other Information

The start of the light file contains the following data, which contain alignment settings intended for SH:

?if USE LI GHT_ALI GN
?pragma USE_ALI GNDATA(Li ght Nane)
?endi f

NGD-55

Ninja Guide

NGD-56

SEGA

6. NINJA LIGHT

1 How to set LIGHT
1.1 void njCreateLight(NJS_LI GHT*, Int)

Par anet er :

Descri pti on:

Ret urn Val ue:
Renmar ks:

NIS LI GHT*ptr
I nt | src

This function defines the kind of |ight source |src and
registers Light ptr newy.

None
None

1.2 void njDeleteLight(NJS LI GHT*)

Par anet er :
Descri pti on:
Ret urn Val ue:
Renmar ks:

NIS LI GHT*ptr

This function del etes created Light ptr.
None

None

1.3 void njLightOff(NJS_LI GHT*)

Par anet er :
Descripti on:
Ret urn Val ue:
Renar ks:

NJS LI GHT*ptr

This function does not reflect set Light ptr.
None

You can use nacro.

NGD-57

Ninja Guide

1.4 void njLighton(NJS_LI GHT*)

Par anet er:
Descri pti on:
Ret urn Val ue:
Renar ks:

NJS LI GHT*ptr

This function reflects set Light ptr in the nodel .
None

You can use nacro.

1.5 void nj Mul ti Li ght Mat ri x(NJS_LI GHT*, NJS_MATRI X*)

Par anet er:

Descri pti on:

Return Val ue:
Renar ks:

NJS LI GHT*pt r
NJS_MATR X*m

This function multiples Light matrix registered by
nj eatelLight and matrix m

None
The scal e factor should not be included in Matrix m

1.6 void nj Set Li ght (NJS_LI GHT*)

Par anet er :
Descri pti on:

Return Val ue:
Renar ks:

NJS LI GHT*ptr

This function registers Light ptr newWly which is al ready
defined by tools.

None
None

1.7 void nj Set Li ght Al pha(NJS_LI GHT*, Float)

Par anet er :

Descri pti on:

Return Val ue:
Renar ks:

NJS LI GHT*ptr
Fl oat al pha

This function sets al pha value for the light registered
by nj O eatelight.

None
TBS

1.8 void nj Set Li ght Angl e(NJS_LI GHT*, NJS_Angl e, NJS _Angl e)

Par anet er :

Descri pti on:

Ret urn Val ue:
Renar ks:

NJS LI GHT*ptr
NJS_Angl ei ang
NJS Angl eoang

This function sets |limt angle value for the light registered
by nj CreateLi ght.

None
Oly spot light is used (for now

1.9 void nj Set Li ght Col or (NJS_LI GHT*, Float, Float, Float)

Par anet er :

Descri pti on:

Return Val ue:
Renar ks:

NJS LI GHT*ptr

Fl oat red

Fl oat green
Fl oat bl ue

This function sets R®B value for the light registered
by nj CreateLi ght.

None
None

NGD-58

6. NINJA LIGHT

1.10 void nj Set Li ght D recti on(NJS_LI GHT*, Float, Float, Float)

Par anet er :

Descri pti on:

Ret urn Val ue:
Remar ks:

NIS LI GHT*ptr

Fl oat dx
Fl oat dy
Fl oat dz

This function sets the light source direction for the
light registered by

nj O eat eLi ght .
None
Oly parallel light source and spotlight are used. (for now

1.11 void nj Set Li ght I ntensi t y(NJS_LI GHT*, Float, Float, Float)

Par anet er :

Descri pti on:

Ret urn Val ue:
Remar ks:

NJS LI GHT*ptr

Fl oat spc
Fl oat di f
Fl oat anb

This function sets the intensity of |ight registered
by nj O eat eLi ght.

None
None

1.12 void nj Set Li ght Locati on(NJS_LI GHT*, Float, Float, Float)

Par arnet er :

Descri pti on:

Ret urn Val ue:
Remar ks:

NJS LI GHT*ptr

Fl oat pX
Fl oat py
Fl oat pz

This function sets the location of |ight registered
by nj Createlight.

None
Oly point light source and spotlight is used. (for now

1.13 void nj Set Li ght Range(NJS_LI GHT*, Float, Float)

Par anet er :

Descri pti on:

Ret urn Val ue:
Renar ks:

NJS LI GHT*ptr
Fl oat nr ang
Fl oat frang

This function sets limt range value for the Iight
regi stered by nj Oreat elLi ght.

None
Only point |ight source and spotlight is used. (for now

NGD-59

Ninja

Guide

1.14 void nj Set User Li ght (NJS_LI GHT*, NJF_LI GHT_FUNC*)

Par anet er : NIS LI GHT*ptr
NIF_LI GHT_FUNC func
Descri pti on: This function sets user setting light function func for Light
ptr.
Ret urn Val ue: None
Renar ks: None

1.15 void nj Uni t Li ght Mat ri x(NJS_LI GHT*)

Par anet er : NJS LI GHT*pt r

Descri ption: This function sets light nmatrix registered by njGeatelight as
unit matrix

Return Val ue: None

Renar ks: None

1.16 void nj Transl at eLi ght V(NJS_LI GHT*, NJS_VECTOR*)

Par anet er : NJS LI GHT*pt r
NJS VECOTR *vctr
Descri pti on: This function translates light matrix registered by
njeatelLight in the direction of vector vctr.
Return Val ue: None
Renar ks: None

1.17 void nj Transl at eLi ght (NJS_LI GHT*, Float, Float, Float)

Par anet er : NJS LI GHT *ptr
Float tx
Float ty
Float tz
Descri pti on: This function translates light matri x registered by

nj eatelLight in the direction

of (tx, ty, tz).
Return Val ue: None
Renar ks: None

1.18 void nj Rot at eLi ght X(NJS_LI GHT*, NJS_Angl e)

Par anet er : NIS LI GHT*ptr
NJS_Angl eang
Descri ption: This function rotates light matrix registered by nj O eat eLi ght
around X axis at ang angl e.
Ret urn Val ue: None
Renar ks: None

NGD-60

6. NINJA LIGHT

1.19 void nj Rot at eLi ght XYZ(NJS_LI GHT*, NJS_Angl e,
NJS Angl e, NJS Angl e)

Par anet er : NJS LI GHT*ptr
NJS_Angl exang
NJS Angl eyang
NJS Angl ezang
Descri pti on: This function rotates light matrix resgistered by
nj O eat eLi ght around XYZ axi s.
Ret urn Val ue: None
Remar ks: None

1.20 void nj Rot at eLi ght Y(NJS_LI GHT*, NJS_Angl e)

Par anet er : NIS LI GHT*ptr
NJS_Angl eang

Descri pti on: This function rotates light matrix regi stered by
nj O eateLight around Y axis
at ang angl e.

Return Val ue: None

Renar ks: None

1.21 void nj Rot at eLi ght Z(NJS_LI GHT*, NJS_Angl e)

light)

Par anet er : NIS LI GHT*ptr
NJS_Angl eang
Descri pti on: This function rotates light natrix registered by
nj OeatelLight around Z axis
at ang angl e.
Return Val ue: None
Renar ks: None
1.22 Macro
NJS LIGHT * |
#define NOM LI GHT_IN T_VECTCR(|)| ->vctr (The vector of initial |ight)
#define NJM LIGHT_INT_PQA NT(Il)| ->pnt (The point of initial
#define NJM LI GHT_MATRI X(1)I->ntrx (The matlrix of light)
#define NJM LI GHT_VECTOR(I) (I ->ltcal).lvctr(The present vector of |ight)

#def i ne
#def i ne
#def i ne
#def i ne
#def i ne

#def i ne

NIM LIGHT_PQ NT(Il) (I->ltcal).lpnt(The present point of light)

NIM LI GHT_AVB(1)
NIM LI GHT DI F(1)
NIM LI GHT_SPQ(1)
NIM LI GHT_EXP(1)

(I->ltcal).anb(The intensity of
(I->ltcal).dif(The intensity of
(I->I'tcal).spc(The intensity of

(I->ltcal).exp(The I ndex nunber:
for specul ar)

anbi ent |ight)
diffused light)
specul ar 1ight)
exponent

NIM LI GHT_COLCR(1) (I ->attr).argb(The col or of light)

NGD-61

Ninja Guide

1.23 How to use

The calculation of light source is based on the light structure which describes necessary light information such as
location, direction, color and kind of light. Light structure is set by 2 kinds of light function.

Light function nj Cr eat eLi ght is generally used and creates new light structure based on the kinds of light source
which are defined by arguments. You can add more detail light source information by using functions
nj SetLi ght. ..

The other way for setting light structure is the way to use nj Set Li ght . Thisway is used for the structure for which
light source information has already been set.

Please note that it registers light source (=light structure) only.

The registered light source is reflected on the model by default.Then if you want to stop calculation of light source
for a certain model, you must set nj Li ght Of f before drawing model.

Please note that nj Li ght O f and nj Li ght On keep current status.

Please refer to Reference for more detail information about functions, arguments, structures etc.

Exanpl el) Sets Light It1l as spotlight and Lightlt2 as anbient |ight + point |ight source
(Lanbert nodel).

#i ncl ude <ninj a. h>

/'l Declare Light.

NS LIGHT It1, 1t2;

// This is initial routine

/* Initialize and register Light.*/
njeatelLight(&t1l, NID SPOT_LIGHT);

nj Set Li ght Angl e(& t1, DegToAngl e(30.f), DegToAngl e(60.f));
nj Set Li ght Range(& t1, 1000.f, 1500.f);

nj Set Li ght Location(&t1, 0.f, 10.f, 15.f);
njSetLightDrection(&tl, 0.f, 1.f, 0.f);
njSetLightColor(&t1, 1.f, 0.f, 0.f);

nj CreateLi ght (& t2, NJD LAMBERTI AN PQ NT);

/*Set various Light property.*/

nj SetLightColor(&t2, 0.5f, 0.5f, 0.5f);

nj SetLightintensity(&t2, 0.f, 1.f, 1.f); // Default intensity is (1.f, 1.f, 1.f).
nj Set Li ght Range(& t2, 100.f, 1500.f);

NGD-62

6. NINJA LIGHT

// Drawing routine is as foll ows.

whi | e(- 1)

{
/* Reflect Light Itl, 1t2 on the nodel. */
nj DrawMbdel (...);
/* Renmove Light 1t2. */
nj Light&f(l1t2);
/* Reflect Light Itl on the nodel. */
nj DrawMbdel (...);
/* Reflect Light 1t2 on the nodel. */
nj Li ght On(1t2);

}

Exanpl e2) Changes spot |ight color of Light It1 by branch processing and add
parallel light source [t3 newy.

/* Change color of Light It1. */

njSetLightColor(&t1, O0.f, 1.f, 1.f);

/* Initialize and register Light. */
nj eateLight(&t3, NOD _ D RECTI ONAL_LI GHT) ;

/* Set various kinds of Light property. */

njSetLightDrection(&t3, 1.f, 0.f, 0.f);
nj SetLightintensity(&t3, 0.f, 1.f, 1.f);

// Drawing routine is as foll ows.

whi l e(-1)

{
/* Reflect Light I1tl, 1t2, It3on the nmodel. */
nj Drawhodel (. ..);

}

NGD-63

Ninja Guide

Exanpl e 3) Sets user functions for Light It.

//Set up user functions .(The argunments of functions is as follows.)

voi d

userfunc(NJS_ARGB* argb, NJS PA NT3* pnt, NIS VECTCR* nmi, NJS LIGHT_PTR |ight)
{

/1 Internal product of polygon normal vector and direction of |ight
deg = - nm->x * NOMLIGHT_VECTCR(light). X

- nmi->y * NODM LI GHT_VECTCR(light).y

- nm->z * NOMLIGHT_VECTCR(| i ght). z;

argb->a = deg * NOMLIGHT_D F(light).
ar gb- >r deg * NOMLICGHT D F(light).
argb->g = deg * NOM LIGHT_D F(light).
argb->b = deg * NOM LIGHT_D F(light).

i

o
g« -

}

//Main routine (omt some part)
njeatelLight(&t, NDUSERLIGH;

/*Set UWser function userfunc for Light It*/
nj Set WserLight (& t, userfunc);

/*Color setting for Light It*/
njSetLightColor(&t, 0.f, 1.f, 1.f);

/] Drawing routine is as foll ows.

whil e(-1)

{
/* Reflect Light It on the nodel. */
DrawModel (.. .);

}

NGD-64

6. NINJA LIGHT

1.24 LIGHTstructure Specification

Though users do not have to use Light structure directly, we will show you the specification below.

Ninja Softimage [NJS_MATERIALstructure] [NJS_LIGHT _ATTRstructure]

[specular] argb or rgh intensity_spec

[diffuse] argh or rgh intensity_diff

[ambient] (argb or rgb :pending) intensity_amb

[exponent] exp None
specular: highlight Softimage sets 0 to 1 for nomal RGB value.
diffuse: Normal light Softimage sets 0 to 1 for nomal RGB value.
ambient; Ambient light Softimage sets 0 to 1 for nomal RGB value.
exponent: Exponent for highlight Softimage set 0 to 300 for nomal RGB value.

(We will not support HSV at Ninja Library.)

1.25 The memb

struct {

} NIS_ LI GHT;

<stat>
#def i ne
#def i ne

ers of NJS LI GHT structure

BOOL stat; (Status: Use/ Not use of Lightsource)
NJS PO NT3 pnt; (Point of |ight source)

NJS VECTCR vctr; (Light source unit vector)

NJS MATRI X mrx; (Li ght source natrix)

NJS LI GHT _ATTRattr; (Attribute structure)

NJS LIGHT_CAL Itcal; (Light calculation structure)

NJD LIGHT_ON Reflects |ight
NJD LI GHT_CFF Do not reflect |ight

NGD-65

Ninja Guide

1.26 The members of NJS LI GHT_ATTR structure

struct {
I nt Isrc; (Kind of |ight source)
Fl oat ispc; (Intensity of specular light:0 to 1)
Fl oat idif; (Intensity of diffusion:0 to 1)
Fl oat ianb; (Intensity of anbience:0 to 1)
Fl oat nrang; (Range of maxinmumlight intensity:Limt value in front)
Fl oat frang; (Range for cutting off light intensity:Limt value of back)
voi d* func; (Pointer of callback function)
Angl e iang; (Angle of maxinumlight intensity:Inside linit angle)
Angl e oang; (Range for cutting off light intensity:Qutside limt angle)
NJS AREB argb; (Color of |ight)

} NIS_ LI GHT_ATTR

<l src>

The kinds of |ight source

#def i ne NID_SPOT_LI GHTSpot | ght

#def i ne NID DR LI GHTParal I el |ight source

#def i ne NJD PO NT_LI GHTpoi nt |ight source

#defi ne NJD_AMBI ENTAnbIi ence

#def i ne NID SPEC DI RParal |l el light source highlight
#def i ne NJD_SPEC PA NTPoi nt 1ight source highlight
#def i ne NJD _LAMBERTI AN DI RParal | el 1ight source | anbert
#def i ne NJD_LAMBERTI AN _PA NTPoi nt |ight source | anbert
#def i ne NID _PHONG Dl RParal I el |ight source phong

#defi ne NJD_PHONG PA NTPoi nt |i ght source phong

#defi ne NJD USER LI GHTUser set |ight

#def i ne NJD BLOCK LI GHTBI ock i ght

<ispc, idif, ianb>

The bal ance of light (is calculated as fol |l ows).

SPECULAR(R GB) x ispc + DFFUSE(R GB) x idif + AMBIENT(R GB) x ianb
But, top (botton) of the limt is clanped.

<near, far>
The effective range of light which is defined by NJD PO NT_LIGHT (point |ight source),
NID_SPOT_LI GHT (spot light).

nr ang The limt value of range which light is upper lint val ue.
Defaul t val ue: 1.f
frang The linmt value of range for calculation of the |ight. Default

val ue: 65535. f

<i ang, oang>
The effective range of light which is defined by NJD SPOT_LI GHT(spotlight)etc.

i ang The limt value of angle which light is upper lint val ue.
Defaul t val ue: (DEG 10. f
oang The linmt value of angle for calculation of the |ight. Default

val ue: (DEG 30. f

NGD-66

6. NINJA LIGHT

Light Source

©;

oang

iang

near

Figure 1.1 Spot light source.

Light Source

Figure 1.2 Point light source.

far

NGD-67

Ninja

Guide

1.27 The members of NJS_LIGHT CAL structure

struct

{
Fl oat
Fl oat
Fl oat
Fl oat
Fl oat
Fl oat
Fl oat
Fl oat
Fl oat
Fl oat
I nt
I nt
NJS PO NT3
NIS VECTCR
NJS VECTCR
NS AREB
NJS AREB
NJS AREB
NJS AREB

} NIS LI GHT_CAL;

<exp>

ratten;
i pd;
nrr;
frr;
cosi ;
cose;

i dev;
odev;
rate;

i ntns;
exp;
reserve;
| pnt;

| vetr;
| nvetr;
atten;
anb;
dif;
sSpc;

(Attenuation rate: It is used by block light)

(I'nner Product:It is used by block Iight)

(Limt judgerent val ue of the light source, near:nrang * nrang)
(Limt judgenent value of the light source, far:frang * fag)
(Limt judgenent val ue of the |ight source, internal:cos * cos)
(Limt judgenent value of the |ight source, external:cos * 0s)
(D vision judgenent value of the light source, inter)

(D vision judgenent value of the |ight source, outer)
(Attenuaion ratio of light source - for spot |ight)
(Intensity of light source, 0 to 1)

(D ffusion exponent of |ight source)

(reserve)

(Point of |ight source)

(Drectional vector of |ight source)

(Directional vector of light source: It is used by bl ock |ight)
(intns * argb(Col or of light source))

(i anb*at t en)

(idifratten)

(i spc*atten)

This parameter gives glossiness. It is used in material structure. (This parameter is related to the “specular
exponent” used in many lighting models.)

NGD-68

SEGA

/. Scroll Guide

1 Revision Information

1.1 Ver.0.04

The member clip of the scroll structure can not be used.
1.2 Ver.0.05

* *3.2.5” and the description of the member clip in ”’5.3 Scroll-related Structure” were changed.

* 5.4 Color Definition” was modified.

NGD-69

Ninja Guide

2 Image Units as Related to Scrolling

2.1 Overview

This chapter explains the image units which Ninja uses in scrolling.

2.2 Image Units

Pixel

The smallest component unit of an image

Cell

The smallest unit of an image which makes up a scrolling screen Cells in Ninja are composed of between 8
and 1024 pixels.
The maximum number of Cells which a program can hold is defined by NJD_CELL_NUM NMAX.

Map

Maps are composed of collections of Cells The maximum number of maps which a program can hold is
defined by NJD_MAP_MAX.

Cell

Display Area

Map

NGD-70

7. Scroll Guide

3 Scroll Rotation, Resizing, and Movement
3.1 Overview

This chapter shows the meanings of the various values used in setting scroll displays and scroll structures, and how
those values are calculated.

3.2 Scroll Rotation, Resizing, and Movement

Scroll Rotation, Resizing, and Movement are described as follows.
(1) Both the scroll area and clip area use the upper left corner of the screen as the origin.

The x and y coordinates which mark the starting point of a scroll cell are designated bx, by (see Figure).

Scroll Cell

Origin
0.0

Starting Point
\

V

(bx,

by)

Clip area

(2) Points on the Scroll Display move in bx, by from the origin by -bx, -by (see Figure).

(-bx, -hy)
Qrigin (0,0

X' X - bx - cx igi
= Cei
y) ly-by-cy '\X

(4) Make the center of rotation into the origin, and rotate via the matrix m (see Figure)
X' X - bx - cx

=m
Y y-by-cy

(5) After rotation, restore to original by degree that Scroll Display was moved (see Figure).

" Origin (0,0) -
“. ;Center of fotation

NGD-71

Ninja Guide

(6) Resize by sx, sy, centering on the center of risizing (spX, spy) (see Figure).

X X - bx - cx cx Oriq_?_n"(O,O)
=m +
) _by- x 4
y y-by-cy <y '-~.._§enter of rotatjon

(7) Finally, move by px, py (see Figure).

y X g
nter of resizing

4 Scroll Programming

4.1 Overview

In this chapter, we cover everything from drawing of Cells to depicting Scroll area.

4.2 Example of Programming a Scroll

Draw a Cell Image

Draw a Cell image by following the texture creation rules. Note that Cell size must be from 8 to 1024.
Ex.: Draw four 128x128 textures in one 256x256 texture.

256
—N—

128

256

128

Convert Cell Image to pvr format

Use tools to convert textures to PVR format.

Create Texture List

Create the texture name structure and texture list structure. Refer to “Texture Guide” for the detail on the
way to create them.

NGD-72

7. Scroll Guide

Creating a Map

Create the following map as an example.

0| 1]4]|5]16

2 136|717

8 | 9 12|13 18

10|11 | 14|15 19

The map data comes from the previously created files in the following order.

0,1, 2, 3 from test0.pvr

4,5, 6, 7 from testl. pvr

8,9, 10, 11 from test2. pvr

12, 13, 14, 15 from test3. pvr

16, 17, 18, 19 from test4. pvr
Texture numbers are taken in the order they were stored in the list's creation, starting with test0.pvr.
test0.pvr is 0, and test4.pvr is 4. We use this and the mapmaking macro NJM_MAP to create maps. NJM_MAP

is NJM_MAP(texture number, texture U, texture V). Thus, the 0 area of the map is NJM_MAP(O, 0, 0), 1 is
NJM_MAP(O, 128, 0), etc. The map array that results from this is

Unt32 nmap[4][5] ={
{NIJM_MAP(0, 0, 0), NJM MAP(0, 128, 0), NJM MAP(1, 0, 0), NDM MAP(1, 128, 0),
NJM MAP(4, 0, 0) },

{NIM MAP(0, 0, 128) , NJM MAP(0, 128, 128) , NJM MAP(1, 0, 128) , NJM MAP(1, 128, 128)
NIM VAP(4, 128, 0) },

{NIM MAP(2, 0, 0), NIM MAP(2, 128, 0) NIM MAP(3, 0, 0) , NJM MAP(3, 128, 0),
NJM MAP(4, 0, 128) },

{NIM MAP(2, 0, 128) , NJM MAP(2, 128, 128) , NJM MAP(3, 0, 128) , NJM MAP(3, 128, 128) ,
NIJM MAP(4, 128, 128) }

1

NGD-73

Ninja

Guide

Define the Scroll Structure

Define all the elements of the Scroll Structure

celps assigns cell pixel size between 8 and 1024.
mapw assigns map width in number of Cells
maph assigns map height in number of Cells
sw assigns horizontal scroll display image size.
sh assigns vertical scroll display image size
list assigns pointer to texture list structure
map assigns pointer to top address of map array.
Make sure that map is at least of dimensions
map[maph][mapw].
Anything smaller will leave this variable undefined
pX,py assigns coordinates for movement of scroll display
bx,by assigns coordinates for beginning of map draw
pr assigns scroll priority
sflag sets resize flag (ON, OFF).
SX,SY sets the ratio for x- and y-axis resizing
SpX,spy assigns coordinates for center of resizing area
mflag sets rotation matrix flag (ON, OFF).
cx,cy assigns coordinates for center of rotation area
m assigns rotation matrix.
colmode assigns color mode
colmix assigns color computations (unimplemented at present)
clip[2] Not used in this version
attr attribute (unimplemented at present)
sclc applies color to entire scroll. Varies according to color mode

Use Scroll Functions

Finally, we will try out the scroll functions (using the map and texture list previously created).

First, load the textures.
nj I nit Texture(& exmenm i st, 5);
nj LoadText ure(& exlist);

Assign scroll structure (see section 5)
scl.celps = 128;

:(omitted)
Using the scroll functions, you can draw the scrolls
nj Drawscrol | (&scl);

NGD-74

7. Scroll Guide

5 Color
5.1 Overview

This chapter explains about color modes which can be used in colmode of scroll structures

5.2 Color Mode

NJD COLOR MCDE_FLAT_TEXTURE
This mode is used when “No translucent” (RGB565) is set for the textures of all cells.

NJD OOLOR MCDE_FLAT TEXTURE TRANS

This mode is used when some (even if only one) of textures of the cell is “translucent” (ARGB1555 or
ARGB 4444).

NGD-75

Ninja Guide

6 Scroll function, Structures, and Definitions
6.1 Overview

This chapter explains Ninja scroll functions, scroll structures, and scroll definitions.

6.2 Scroll-related Functions

nj Drawscr ol |
Draws 2D scroll

Format
#include <Ninja.h>
void njDrawsScroll(*scl)
NJS_SCROLL *scl
Parameters
*scl scroll structure pointer
Return value
none
Function
Draws 2D scroll in clip display
Notes
For details on creating textures, refer to the Texture document.

NGD-76

7. Scroll Guide

6.3 Scroll-related Structure

NJS SCROLLStructure
typedef struct {

U nt 16 cel ps; [* Cell Pixel size */

U nt16 mapw, maph; /* Nunber of Cells*/

U nt16 sw, sh; /* Scroll display inage size */
h?S_TEXLIST list; /* Pointer totexturelist structure
*

L&nth * map; /* Poi nter totopaddress of map array
*

FI/ oat pX, py; /* Coordinates for draw ng scroll

*

FI/ oat bx, by / *Coor di nat esf ordr awi ngscrol lori gin
*

Fl oat pr; /* Priority */

Sint 16 sfl ag; /* Resize flag (ON. CFF)*/

Fl oat SX, SY; /* x- and y-axis resizing ratio*/
Fl oat spx, spy;/* center of resizing area*/
Sint 16 nf | ag; /* Rotation flag (QN, CFF)*/

Fl oat cx,cy; /* Center of rotation area*/
NIS SCLMIRX m /* Rotation Matrix */

U nt 16 col node; /* Color Mode */

U nt 16 col ni x; /* Col or Conputations

(uninpl enented at present)*/

NJS PQA NT2 clip[?2] /* Aip point */

NIS SCLATTR attr; /* Attribute */

NJS COLCR scl c; /* | TE Col or*/

}NJS_SCROLL;

6.4 Scroll-related Definitions

Maximum Values

#def i ne
#def i ne
#def i ne
#def i ne

NJD_CELL_NUM MAX
NIJD_MAP_W MAX
NJD_MAP_H MAX

NID_MAP_MAX

OXFFFF /* the maxi mumof cell's nunber */
OxFF /* the maxi mumof map's width */
OxFF /* the nmuxi mum of map's height */
(NJD_NVAP_W MAX*NID_MAP_H NAX)

Col or definitions (colornode)

#def i ne
#def i ne

NJD_COLCR_MCDE_PACKED TEXTURE 33
NJD_COLOR_MODE_PACKED TEXTURE TRANSA1

NGD-77

Ninja

Guide

6.5 Texture Structures for Use in Cell Programming

NJS TEXI NFCStruct ure
typedef struct{

NJS_TEXSURFACE

} NIS_TEXI NFQ
NIS_TEXNAMESt r uct ur e
typedef struct{

voi d

*/

U nt 32

U nt 32

}NIS_TEXNAME;
NJS_TEXLI STStruct ure
typedef struct {

} NIS TEXLI ST;

voi d*t exaddr ;
t exsurf ace;

*fil enane;

attr;
t exaddr;

NJS_TEXNAME
U nt 32

/* texture menory address cache */

/* Pointer to filename or NJS TEXI NFO structure

/* Texture Attributes */
/* Texture Address */

textures; / texture array*/
nbTexture;/* texture count*/

NGD-78

SEGA

8. Texture Guide

1 Terminology

1.1 Overview

This chapter explains the meanings of terms applying to making textures with Ninja.

Textures

In Ninja, the term "texture" refers to all images applied to 2D graphics, 3D graphics, sprites, scrolls, models,
etc. Ninja can use textures of the following lengths and widths: 1024, 512, 256, 128, 64, 32, 16, 8.

Texture List

A list of all the textures used at a given time is called a texture list. The basic concept in Ninja is to
manipulate textures at the texture list level. Texture list creation is covered in Chapter 4

Texture Number

Number assigned in ascending order to textures in a texture list, 0, 1, 2...etc. Details will be covered at a later
date.

Global Index Number

Number applied consistently to a given texture throughout source code. Textures with the same global
index number are considered to be the same texture.

Current Texture List

Designation for the texture list being operated on by a texture function.

Current Texture

Designation for the texture in the current texture list being operated by a texture function.
Many of the texture functions perform texture manipulations on the current texture.

NGD-79

Ninja

Guide

PVR Format

Format for texture files that can be loaded with Ninja.

U, V Coordinates

Coordinates within a texture are designated U (horizontal) and V (vertical). Both U and V range from 0 to
1, even if the aspect ratio between U and V varies.

Aspect Ratio

The ratio of horizontal to vertical in a texture is called the aspect ratio.

Mipmap

Designation for a set of textures which are represented by the same texture map order.

LOD (level of detail)

The mipmap level.

Texture Memory

Memory used for texture storage.

Cache

As many textures (more than the portion for which the texture memory can load) are used, textures are
preloaded into a portion of main memory. This is referred to as the cache, and can be used most effectively
when holding textures that are used and replaced frequently.

Texture Information Area

The area within Ninja where information about textures loaded into texture memory is stored.

Cache Information Area

The area within Ninja where information about textures loaded into the cache is stored.

Category Code

The texture format which can be used in Ninja. The following texture formats can be used in

Ninja: Twiddled, Twiddled Mipmap, VQ, VQ Mipmap, Pallettize4, Palettize4 Mipmap, Pallettize8,
Pallettize8 Mipmap, Rectangle, Stride. Refer to the chapter2 for the detail.

Stride Value

Specify when the STRIDE format texture is used by NINJA. Acceptable values are multiples of 32 between
32 and 992.

NGD-80

8. Texture Guide

2 Creating Textures

2.1 Overview

This chapter describes the category code and color format which can be used in Ninja.

2.2 PVR Format

Global Index Tag ID Area “GBIX” 4byte
Byte Number to the Next Tag 4byte
Global Index 4byte
PVR Format Tag ID Area “PVRT” 4byte
Byte Number to the Next Tag 4byte
Texture Attribute 4byte
Width 2byte
Length 2byte
Each Data

There are two PVR formats : both with and without global index header.

The category code and color format are specified as the texture attribute.

NGD-81

Ninja Guide

2.3 Category Code

The texture formats which can be used in Ninja are called “category code”. The details for each category code is as
follows.

Twiddled, Twiddled Mipmap format

Twiddled format is the basic format of Ninja. In this format, the inside of the texture is optimized and
reallocated in order to load each filter and texture. For this reason, the inside of the texture is not lined in
the raster order. Also, textures must be square for Twiddled format.

0|2 |8 |10 3|2 AN | | 128 130
11319 |11 N ! 129 (131
4 |6 |12 14 |
51711315 I 32
16 | 18
17 1 19
20
31 63
64 192

VQ,VQ Mipmap format (Vector Quantization)

VQ texture is the compression texture format of high compression rate. VQ textures create the image using
the color table which is called Codebook and Index which shows the location of the codebook.

Palettize4, Palettize4 Mipmap format, Palettize8, Palettize8 Mipmap format

There are two types of Palettized textures: 4bpp mode and 8bpp mode. These two can be used
simultaneously. This format is the same as Twiddled format on the memory. Not supported yet by Ninja.

Rectangle format

Different sizes can be specified for the width and length of Rectangle texture. Mipmap can not be used for
Rectangle textures. Also, the performance of Rectangle format is lower than the one of the Twiddled texture.

NGD-82

8. Texture Guide

Stride format

As a special form of RECTANGLE rendering is possible in this area, and it can be used as a texture. When
using a STRIDE format texture, a STRIDE value must be specified. NINJA uses the njSetRenderWidth
function. The STRIDE format texture determines the texel using the following addressing method.

Addr = U + V*Stride

For example, when a 640 x 480 area is to be used as a Stride texture in a 1024 x 1024 texture area, specify 640
as the Stride value. In this case, the UV value is (U,V) = (0,0) — (0.625f,0.46875f) to apply to the full size
screen.

2.4 Color Format

The color formats which can be used in Ninja are described as follows.

Normal Texture Color Format

The color formats which can be used in Ninja normally are ARGB1555, ARGB4444, RGB565.

YUV422 format

1 pixel can be displayed by 8bit in this format. Not supported yet by Ninja.

Bump format

Texture format for bump mapping. Not supported yet by Ninja.

ARGB8888 format

The format for Palettizing. Not supported yet by Ninja.

ARGB1555 RGB565 ARGB444 YUV422 Bump ARGB8888
Twiddled A A A F F X
Twiddled MM A A A F F X
VQ A A A F F X
VQ MM A A A F F X
Palettized 4,8 F F F X X F
Palettized MM F F F X X F
Rectangle A A A F F X
Stride A A A F F X
Table 1.1 Texture formats supported by NINJA

A: Available F: Available in future version X: Not available

NGD-83

Ninja Guide

3 Memory

3.1 Overview

Ninja uses both texture memory and cache memory for loading textures. This chapter explains the two types
of memory.

3.2 Texture Memory

The texture memory is the area reserved for textures. The texture memory area can be read.

3.3 Cache

In order to make effective use of the texture memory area, users can set the area where textures can be loaded on
the main memory. This area is called “cache area”. Ninja gives priority to loading textures stored in the cache. To
load textures into the cache, set the texture's attribute to cache at time of loading. Note that textures already loaded
into main memory are not loaded into the cache; only textures in file storage are loaded into the cache.

Load into Texture Memory Load into Cache
No setting NJD_TEXATTR_Cache

NJD_TEXATTR_BOTH NJD_TEXATTR_BOTH

Load Texture

Texture Memory Cache Memory
(User-configurable)

When file is both in storage and in cache,
priority is given to loading from cache.

* Cache textures can not be used in SETA4.

NGD-84

8. Texture Guide

4 Loading Textures

4.1 Overview

Now we will try using texture functions to load a texture. We will begin with a general flowchart of the texture
loading process, followed by explanations of how to create texture lists, texture numbers, and global index numbers.

4.2 Flowchart of Texture Loading

Load into Texture Memory Load into Cache

Set Texture Information
njSetTexturelnfo
njSetTextureName

|

Set Texture Information Area
njlnitTexture

l

Set Texture Path
njSetTexturePath l
l Set Cache
(when loading texture)
N Load Texture |
njLoadTexture ¢

l

Set Current Texture List

! njSetTexture 1
Load Texture l Load Cache Texture
njLoadTextureNum njLoadCacheTextureNum
| Set Current Texture njLoadCacheTextureNumG
njSetTextureNum |
l njSetTextureNumG ¢
Reload Texture l 3

njReloadTextureNum

. Draw Texture Release Cache Texture
njReloadTextureNumG njReleaseCacheTextureAll
l njReleaseCacheTextureNum
njReleaseCacheTextureNumG
Frame Buffer Release Texture
njFrameBufferBmp njReleaseTextureAll

njReleaseTexture
njReleaseTextureNum
njReleaseTextureNumG

l

Exit Texture
njExitTexture

NGD-85

Ninja Guide

Note: When executing nj LoadText ur eNum run nj Set Text ur e, and set the current texture list.

Note: nj Set Text ur ePat h and nj Fr anBuf f er Bnp can not be used by target.

4.3 Setting a Texture Buffer

In Ninja for Set2, work buffer which is required when loading a texture can be obtained inside texture functions.
After this, this work area is set by the following function.

void njInitTextureBuffer (Sint8 *addr,Uint32 size)
“addr” is the head pointer of texture work buffer and “size” is the size of work buffer.

About “size”, it becomes the biggest one in PVR files when loading from a file. When loading from memory, work
buffer is not required for files which are conformed to PVR files. About targets of SET4 and over, in order to load

files from CD, a unit of loading becomes 1 sector (2048Byte) and also about the buffer size, the numbers below 1
sector is raised to the next sector.

Work buffer is used only during executing nj LoadText ur e and nj LoadText ur eNumand is not used except this
time. So it is OK to open it as soon as finished loading of textures.

Texture size of PVR files are as follows.

Table 1.2 TWIDDLED(GLOBALINDEX 12Byte, including the header 16Byte)

SET2 SET4
Size MIPMAP NO MIPMAP MIPMAP NO MIPMAP
8x8 0xC8 0x9C 0x800 0x800
16x16 0x2C8 0x21C 0x800 0x800
32x32 0xAC8 0x81C 0x1000 0x1000
64x64 0x2AC8 0x201C 0x3000 0x2800
128x128 OxAAC8 0x801C 0xB00O 0x8800
256x256 0x2AAC8 0x2001C 0x2B000 0x20800
512x512 0xAAACS 0x8001C 0xABO000 0x80800
1024x1024 0x2AAAC8 0x20001C 0x2AB000 0x200800

NGD-86

8. Texture Guide

Table 1.3 VQ(GLOBALINDEX 12Byte, including the header 16Byte)

SET2 SET4
Size MIPMAP NO MIPMAP MIPMAP NO MIPMAP
8x8 0x832 0x82C 0x1000 0x1000
16x16 0x872 0x86C 0x1000 0x1000
32x32 0x972 0x91C 0x1000 0x1000
64x64 0xD72 0xC1C 0x1000 0x1000
128x128 0x1D72 0x181C 0x2000 0x2000
256x256 0x5D72 0x481C 0x6000 0x5000
512x512 0x15D72 0x1081C 0x16000 0x11000
1024x1024 0x55D72 0x4081C 0x56000 0x41000
Table 1.4 RECTANGLE,STRIDE(GLOBALINDEX 12Byte, including the header 16Byte)
SET2 SET4
Size MIPMAP NO MIPMAP MIPMAP NO MIPMAP

8x8 X 0x5C X 0x800
8x16,16x8 X 0x11C X 0x800
8x32,32x8 X 0x21C X 0x800
8x64,64x8 X 0x41C X 0x800
8x128,128x8 X 0x81C X 0x1000
8x256,256x8 X 0x101C X 0x1800
8x512,512x8 X 0x201C X 0x2800
8x1024,1024x8 X 0x401C X 0x4800
16x16, X 0x21C X 0x800
16x32,32x16 X 0x41C X 0x800
16x64,64x16 X 0x81C X 0x1000
16x128,128x16 X 0x101C X 0x1800
16x256,256x16 X 0x201C X 0x2800
16x512,512x16 X 0x401C X 0x4800
16x1024,1024x16 X 0x801C X 0x8800

NGD-87

Ninja Guide

SET2 SET4
32x32 X 0x81C X 0x1000
32x64,64x32 X 0x101C X 0x1800
32x128,128x32 X 0x201C X 0x2800
32x256,256x32 X 0x401C X 0x4800
32x512,512x32 X 0x801C X 0x8800
32x1024,1024x32 X 0x1001C X 0x10800
64x64 X 0x201C X 0x2800
64x128,128x64 X 0x401C X 0x4800
64x256,256x64 X 0x801C X 0x8800
64x512,512x64 X 0x1001C X 0x10800
64x1024,1024x64 X 0x2001C X 0x20800
128x128 X 0x801C X 0x8800
128x256,256x128 X 0x1001C X 0x10800
128x512,512x128 X 0x2001C X 0x20800
128x1024,1024x128 X 0x4001C X 0x40800
256x256 X 0x2001C X 0x20800
256x512,512x256 X 0x4001C X 0x40800
256x1024,1024x256 X 0x8001C X 0x80800
512x512 X 0x8001C X 0x80800
512x1024,1024x512 X 0x10001C X 0x100800
1024x1024 X 0x20001C X 0x200800

4.4 Setting Cache Buffer

The cache area which has been obtained inside cache functions so far is now set by users as same as texture buffer.
Being different from texture buffer, cache buffer requires total size all through the time for save. The cache size
required for cache buffer equals to the total size after subtracting header size from each texture size.

void nj | ni t CacheText ur eBuf f er (Sint8 *addr,Uint32 size)

NGD-88

8. Texture Guide

4.5 Creating a Texture List

In Ninja, the texture list is the fundamental part of the texture manipulation. This section describes texture
list settings

1. Define a texture name structure with as many elements as there are textures.

NJS_TEXNAME structure
void *filename
Uint32 attr
Uint32 texaddr
*filename
NJS_TEXI NFOpointer, used when loading textures from designated
memory; sets file name for PVR format texture files to string
attr
It sets source and destination of texture load. It takes the OR of the various tags

> Load Source
NJD TEXATTR TYPE_FI LE

Load PVR format file. Designate file name with *filename.

NJD_TEXATTR_TYPE_MEMORY

Load from memory. Designate NJS_TEXI NFOpointer with *filename
* Load Destination (will load into texture memory if not specified)

NJD_TEXATTR_TYPE_FRAMEBUFFER (Mbdi fi ed)

Can not be used in SET4 and over.

> Load Destination (will load into texture memory if not specified)

NJD_TEXATTR_CACHE

Load only into cache memory
NJD_TEXATTR_BOTH
Load into both texture memory and cache memory

texaddr
It sets the global index for the memory texture. It becomes the pointer for
the internal table after texture loading.
NJS_TEXI NFO
void* texaddr;
NJS_ TEXSURFACEtexsurface;
texaddr
It is used to reserve the texture in the texture memory.
texsurface
It is the format to pass the data to the inside.

NGD-89

Ninja Guide

NJS_TEXSURFACE structure

Uint32 Type;

Uint32 BitDepth;

Uint32 PixelFormat;
Uint32 nWidth;

Uint32 nHeight;

Uint32 TextureSize,;
Uint32 fSurfaceFlags;
Uint32 *pSurface;

Uint32 *pVirtual; <- New
Uint32 *pPhysical; <- New
Type

The color format and category code are set for the memory texture.

nWidth

The width of the texture is set for the memory texture.

nHeight
The length of the texture is set for the memory texture.

As for other members, these are set in the load function.
When the load source is memory, the NJS_TEXI NFOstructure needs to be set:

2. Use the texture name structures created in part 1 to set up a texture list structure

NJS_TEXLI ST

NJS_TEXNAME *textures;
Uint32 nbTexture;

textures
Sets pointer to NJS_TEXNAME structure, which holds texture information

nbTexture: number of textures

nbTexture

Number of textures

Ex.: file01.pvr and the memory texture image are specified as the texture is as follows.
extern Uint16 Image[];

NJS_TEXI NFOInfo;

NJS_ TEXNAME texname|[2];
NJS_TEXLI ST texlist={texname,2},

NGD-90

8. Texture Guide

/* Memory texturelmage

Category codeTWIDDLED

Color formatARGB1555

Size 256x256

*/

nj Set Text ur el nf o(&Info,Image,NJD_TEXFMI_TW DDLED|NJD_TEXFMI_ARGB_1555,256,256);
/* Set the file “file0.pvr” for texname[0] by Globallndex “0*/
njSetTextureName(&texname[0],"file0.pvr",0,NJD_TEXATTR TYPE_FI LE);

/* Set the memory texture image for texname[1] by Globallndex1”*/
njSetTextureName(&texname[1],&Info,1,NJD_TEXATTR_TYPE_MEMORY);

/* Setting texture buffer

(It is enough with 0x2001C but better to set a rather large number)*/
njInitTextureBuffer(buffer, 0x30000);

/* The initial of the texture */

njInitTexture(texmemlist,2);

/* Load texture*/

njLoadTexture(&texlist);

4.6 Texture Numbers

For the current texture list, assign texture numbers 0, 1, 2...etc. to the structure NJS_TEXNAME created in 6.3, in
setting order:

NJS TEXNAME texname[]={ {“file0.pvr”,,,}, /* texture number 0 */
{“filel.pvr”,,.}, /*texture number1*/
{“file2.pvr”,,,}, /* texture number 2 */
{“file3.pvr”,,,}, /*texture number 3*/

{“filen.pvr”,,,,}}; /* *texture number n */

The texture numbers used in Ninja texture functions are taken from the texture numbers in the current texture list

4.7 Global Index Number

Ninja assigns numbers which apply globally throughout an application to ensure that a given texture only gets
loaded once into texture memory, even when working with multiple texture lists. These numbers are called global
index numbers. Textures with the same global index number are treated as the same texture. Global index numbers
apply to all textures, including those for 2D and 3D graphics, sprites, scrolls, and models, so be careful that one
number gets assigned to only one texture. Conversely, if you apply different global index numbers to the same
texture, the textures which match up will be loaded into texture memory.

In the file of PVR format, there is a chunk inside to hold the global index. The global index of the PVR format
textures are managed by the tools.

Assign global index numbers from 0 to OXFFFFFFEF. As the numbers from OxFFFFFFFO to OXFFFFFFFF is used by
the system, do not use it as a global index number assignment.

NGD-91

Ninja Guide

4.8 Automatic allocation of Global Index Number

In NINJA Ver00040032 or over, textures without global index can be loaded. In this case, Global index allocates
global index numbers in descending order (from OxFFFFFFEF to OXFFFFFFEE, OXFFFFFFED...).

The initial value of global index used for automatic allocation can be set by the following function.
void njInitTextureGloballndex(Uint32 globallndex);

Starting from the global index set by this function, global index numbers are allocated in the order of globallndex,
globallndex-1, globalindex-2...

As automatic allocation of Global Index heads for only in the descending order, even if a texture is deleted, the next
number is allocated by global index. To set back the global index, please reset by njlnitTextureGloballndex function.

Also, please note that if global index collides with the one set by the normal way, the one loaded earlier has priority
over the other one.

4.9 Texture Load Error

The data after load request is stored in the texture memory list (NJS_TEXMEMLI ST) which is set in njInitTexture by
the user. The following data is stored in the texture memory list.

Uint32 globallndex; Global Index

Uint32 tspparambuffer; Data set by H/W<- New

Uint32 texparambuffer; Data set by H/W <- New

Uint32 texaddr; BIT_0: Load into texture memoryBIT_1: Load into cache
NJS TEXI NFO texinfo; Texture info structure

Uintl16 count; Use number of times

Uintl6 dummy; Error code (New addition)

In case that an error is found when textures are loaded, the following error codes are set to the dummy.

#define NJD_TEXERR_OTHER (1) //Other errors

#define NJD_TEXERR_FI LECPEN (2) //File open error

#define NJD_TEXERR_EXTND (3) //Extention error

#define NJD_TEXERR_HEADER (4) //Header error

#define NJD_TEXERR_FI LELOAD (5) //File load error

#define NJD_TEXERR_SURFACE (6) //Surface creation error
#define NJD_TEXERR _MAI NVEMORY (7) //Main memory malloc error
#define NJD_TEXERR_TEXMEM_OAD (8) //Texture memory load error
#define NJD_TEXERR_GLOBALI NDEX (9) //Globalindex error

NGD-92

8. Texture Guide

NJD_TEXERR_FI LEOPEN

This error appears when files cannot be opened as they are not in the specified location.

NJD_TEXERR _EXTND

This error appears when the extention of the file is not “.pvr ”.

NJD_TEXERR HEADER

The header of the texture file is not correct. This error appears when the way to use GBIX tag and PVRT tag
is not correct.

NJD_TEXERR_FI LELOAD

This error appears when files cannot be loaded or the data is smaller than the size expected.

NJD_TEXERR SURFACE

This error appears when the area to load textures can not be resereved in the texture memory. Also, this
error appears when the texture size is too big or the texture which can not be loaded is specified.

NJD_TEXE. RR_MAI NMEMORY

This error appears when the area for the work buffer can not be reserved in the texture load function.

NJD_TEXERR TEXMEMLOAD

This error appears when textures can not be loaded into the texture memory.
This error does not appear usually (as NJ_ TEXERRR_SURFACE is supposed to appear before this error).

Global Index Error

This error is output when an invalid global index is specified, or when a global index could not be obtained.

NGD-93

Ninja Guide

4.10 Memory Texture

Texture data expanded in main memory or texture data created in main memory can be loaded and used as texture
data. The format which can be used as texture data is header information (global index tags, header tags) + data.
Only the part of data can also be used as texture data. The following are setting method for each case.

In case that memory texture includes header information

Table 1.5 Uint16 T009[] = {

0x4247, 0x5849, 0x0004, 0x0000, Ox1d4c, 0x0000, 0x5650, 0x5452,
0x8008, 0x0000, 0x0101, 0x0000, 0x0080, 0x0080, 0Oxad20, Oxeeel,
Oxac40, 0Oxe5e0, Oxff41, 0xff21, 0xf5e0, 0xe580, 0xd580, 0xf700,
0xde00, 0xff80, 0xff40, OxfeeO, 0xffe0, 0xffe0, 0xff21, 0xf720,

TWIDDLED Texture

RGB565

includes data of 128x128

2

h

Global index header part

PVR header part

Texture data part
NIS_TEXI NFQ nf o;

NS TEXNAME t exnarre[1] ;
NJS TEXLI ST texlist = {texnare, 1};

Don't have to save info after | oading textures.

nj Set Text ur el nf o(& nf o[0], TOO9, O, 0, 0) ;
nj Set Text ur eNane(& exnane[0] , & nf o[0], 0, NOD_TEXATTR _TYPE_MEMCRY) ;

In case that header information includes global index information, don't have to specify global index information
as the 3rd and 4th argument of njSetTextureName function. Also, as there is PVR header information, don't have to
set information to the 3rd, 4th and 5th argument of njSetTextrelnfo function.

In case that memory texture does not include header information

Table 1.6 Uint16 TO09[] ={

Oxac40,

0xe5¢c0,

0Oxff41,

Oxff21,

0xf5e0,

0xe580,

0xd580,

0xf700,

0xde00,

0xff80,

0xff40,

Oxfee0,

0xffe0,

Oxffe0,

0xff21,

0xf720,

NGD-94

8. Texture Guide

TWIDDLED Texture
RGB565

Includes data of 128x128
?

h

Texture data part

NJS_TEXI NFQ nf o; Don't have to save info after | oading textures
NIS TEXNAME t exnane[1] ;
NJS TEXLI ST texlist = {texnane, 1};

nj Set Text ur el nf o(& nf o, TO09, NJD_TEXFMI_RGB_565| NJD_TEXFMI_TW DDLED, 128, 128) ;
nj Set Text ur eNane(& exnane[0] , & nf o, 0, NJD_TEXATTR TYPE_MEMORY| NJD_TEXATTR GLCBALI NDEX) ;

In case that there is only data part of PVR format without both global index information and PVR header
information, set global index information to the 3rd or 4th argument of njSetTextureName function, and set texture
type and color format to the 3rd argument and set texture length and width to the 4th and 5th argument of
njSetTextrelnfo function.

4.11 Render Texture

When the category of the texture is STRIDE or RECTANGLE, instead of rendering to the usual frame buffer,
rendering to a texture can be done. By using this texture, a user can do suspected environment mapping. As render
texture is done by doing ren-dering to a texture and drawing again using it, if doing multiple render textures in one
frame, the number of doing rendering increases as much as the number of doing render texture, and then the
performance falls. If the texture which are specified by the render texture is smaller than the frame buffer, rendering
is done as much as the number of the size of the texture started from the upper-left in the display. Also, the color
mode of the texture which is used when doing render texture must be same as the color mode of the frame buffer.
Render texture reserves just specified size in the texture area This is a difference of a render texture and a frame
buffer texture.

NGD-95

Ninja Guide

Example

voi d nj Userlnit(void)

{

/*In case of using render texture, let color nmodes of njlnitSystemand a frame buffer
sane. */

nj I nitSysten(NJD RESQLUTI ON VG, NID FRAMEBUFFER MODE REB565, 1);

/* btain the dummy nenory area for textures. */

buf f = nj Mal | oc(0x8001C);

/* Let the color same as a frame buffer. Set the size 512x512 */

nj Set Text ur el nf o(& nf o, buf f, NJID TEXFMI_STRI DE| NDD_TEXFMI_RGB 565, 512, 512) ;

nj Set Text ur eName(& exnane[0] , & nf 0, 0, NJID_TEXATTR_TYPE_MEMCRY)|

NJD TEXATTR _G.CBALI NDEX) ;
/* buff is required only during njLoadTexture */
nj I ni t Text ur eBuf f er (buf f, 0x80010) ;

njInitTexture(tex, 100);

nj LoadText ure(& exlist);

/* After njLoadTexture, CKto open the area obtained as a dumy. */

nj Free(buff);

/* Set the stride value to 512*/

nj Set Render W dt h(512) ;

}
Sint 32 nj User Mai n(voi d)
{
?
/* Draw nodel s etc. */
nj DrawChj ect (CBJECT);
2

nj Set Texture(& exlist);
/* Rendering to the texture nunber O.
As the size of this texture is 512x512, rendering is started fromthe upper-left for

512x512. */
nj Render Text ur eNun{ 0) ;
/* Draw using texture to which rendering is done*/
nj DrawTexture(poly, 4, 0, TRUE);
?
}

NGD-96

8. Texture Guide

5 Texture functions, Structures, and Definitions

5.1 Overview

This chapter covers Ninja texture functions, texture structures, and texture definitions

5.2 Texture Functions

njlnitTexture

Set texture information area

Format

#include <Ninja.h>

void nj | ni t Text ur e(*addr,n);
NJS_TEXMEML| ST *addr
uint32 n

Parameter

*addr NJS_TEXMEMLI ST structure pointer to area of n elements
n number of textures

Return Value

none

Function

By setting an NJS_TEXMEMLI ST structure area of a size n, where n is the num-ber of textures to be used, to
a pointer to addr, this function makes it into an area for holding texture information. Be sure to execute this
function before loading textures

Note

The memory area defined in this function is used internally by texture-related functions.

nj I ni t Text ur eBuf f er (New function)

Set work buffer of a texture

NGD-97

Ninja Guide

Format

#include <Ninja.h>

void njlnitTextureBuffer(addr,size);
Sint8* addr

Uint32 size

Parameter

*addr Head pointer of a workbuffer size
Work buffer size

Return Value

none

Function

Set required memory for work buffer of a texture. It is OK to open the memory set here after executing
nj LoadText ur e or nj LoadText ur eNum

Note

This function must be called before executing nj LoadText ur e or nj LoadText ur eNum

nj I ni t CacheText ur eBuf f er (New Function)

Set cache texture buffer

Format

#include <Ninja.h>
void nj | ni t CacheText ur eBuf f er (addr,size);

Sint8* addr

Uint32 size
Parameter
*addr The head pointer of cache texture buffer
size Cache texture buffer size

NGD-98

8. Texture Guide

Return Value

None

Function

Set required memory for the cache texture. Memory set here is required all through the time using the
cache texture.

Note
njLoadTexture

Load texture

Format

#include <Ninja.h>
Sint32 njLoadTexture(texlist);
NJS_TEXLI ST *texlist

Parameter

*texlist NJS_TEXLI ST structure pointer

Return Value

Success 1
Failure -1
Function

The texture file specified in the texlist structure is loaded as texture memory, cache memory or the frame
buffer texture.

Note

Before executing this function, it is necessary to run njlnitTexture first.

In SET5 or over, DMA is used when the address of texture buffer for transfer to texture memory becomes
32 byte align. Therefore, in case of using njLoadTexture with forbidding interrupt, be careful not to let the
address be 32 byte align.

NGD-99

Ninja Guide

nj LoadText ur eNum

Load textures by texture number.

Format

#include <Ninja.h>
Sint32 nj LoadText ur eNum(n);
Uint32 n

Parameter

n texture number of current texture list

Return Values

Success 1
Failure -1
Function

Load the texture in the current texture list with texture number n into texture memory or cache memory. If
texture number n is not in current texture list, func-tion returns an error

Note

Before running this function, it is necessary to run njlnitTexture and njSetTexture. In SET5 or over, DMA is
used when the address of texture buffer for transfer to texture memory becomes 32 byte align.

Therefore, in case of using njLoadTextureNum with forbidding interrupt, be careful not to let the address
be 32 byte align.

nj Set Text ure

Set current texture list

Format

#include <Ninja.h>
Sint32 nj Set Text ur e(texlist);
NJS_TEXLI ST *texlist

Patameter

*texlist NJS_ TEXLI ST structure pointer

NGD-100

8. Texture Guide

Return Value

Success 1
Failure -1

Function

Set current texture list to texlist

Notes

The texture list set herein will become the current texture list until the next call of nj Set Text ur e. Texture
functions, and such functions as njXXXXNum and njXXXXNumG, operate on the current texture list.

nj Set Text ur eNum

Set current texture to texture number

Format

#include <Ninja.h>
Sint32 nj Set Text ur eNurr(n);
uint32 n

Patameter

n texture number n

Return Value

Success 1
Failure -1
Function

Set texture number n in current texture list to current texture.
This will remain the current texture until the next calls of nj Set Text ur eNumor nj Set Text ur eNuna

Notes

The assigned texture must be in texture memory.

nj Set Text ur eNunG

Set current texture by global index number

NGD-101

Ninja Guide

Format

#include <Ninja.h>
Sint32 njSetTextureNumG(globallndex);
Uint32 globallndex

Patameter

globallndex global index number

Return Value

Success 1
Failure -1
Function

Set the current texture of global index number globallndex to current texture. This will remain the current
texture until the next calls of njSetTextureNum or njSetTextureNumG

Notes

The assigned texture must be in texture memory

nj LoadCacheText ure

Load texture from cache memory to texture memory

Format

#include <Ninja.h>
Sint32 nj LoadCacheText ur eNum(n);
Uint32 n

Patameter

*texlist The pointer of N0S_TEXLI ST structure

Return Value

Success 1
Failure -1
Function

Load texture in the texture list from cache memory into texture memory

NGD-102

8. Texture Guide

Notes

Selected texture must be loaded into cache memory.

nj LoadCacheText ur eNum

Load texture from cache memory to texture memory

Format

#include <Ninja.h>
Sint32 njLoadCacheTextureNum(n);
uint32 n

Patameter

n current texture list texture number

Return Value

Success 1
Failure -1
Function

Load texture of texture number n from cache memory into texture memory

Notes

Current texture list must first be set using nj Set Text ur e. Selected texture must be loaded in cache

memory.

njLoadCacheTextureNumG

Load texture by global index number from cache memory to texture memory

Format

#include <Ninja.h>
Sint32 nj LoadCacheText ur eNum3globallindex);
Uint32 globallndex

Patameter

globallndex global index number

NGD-103

Ninja Guide

Return Value

Success: 1
Failure: -1
Function

Load texture of global index number globallndex from cache memory into texture memory

Notes

Selected texture must be in cache memory. Even if cache memory is released, tex-tures in texture memory
are not released.

nj Rel easeText ur eAl |

Release all texture memory

Format

#include <Ninja.h>
void nj Rel easeText ur eAl | (void);

Patameter

none

Return Value

none

Function

Release all texture memory

Notes

To use a texture again, that texture will have to be reloaded using nj LoadText ur e or re-lated function.

nj Rel easeTexture

Release texture in texture list from texture memory

Format

#include <Ninja.h>
Sint32 nj Rel easeText ur e(*texlist);
NJS_TEXLI ST *texlist

NGD-104

8. Texture Guide

Patameter

*texlist NJS_TEXLI ST structure pointer

Return Value

Success: 1
Failure: -1
Functions

Release texture in texture list texlist from texture memory

Notes

In order to release a texture from texture memory, that texture must be released from any and all loaded
texture lists in which the texture appears. Also, textures with the same global index number are considered
the same texture.

nj Rel easeText ur eNum

Release texture by texture number from texture memory

Format

#include <Ninja.h>
Sint32 nj Rel easeText ur eNun(n);
uint32 n

Patameter

n texture number

Return Value

Success: 1
Failure: -1
Functions

Release current texture list texture of texture number n from texture memory

Notes

In order to release a texture from texture memory, that texture must be released from any and all loaded
texture lists in which the texture appears. Also, textures with the same global index number are considered
as the same texture.

NGD-105

Ninja Guide

nj Rel easeText ur eNunts

Release texture by global index number from texture memory

Format

#include <Ninja.h>
Sint32 nj Rel easeText ur eNuntxgloballndex);
Uint32 globallndex

Patameter

globallndex global index number

Return Value

Success: 1
Failure: -1

Functions

Release current texture list texture of global index number globallndex from tex-ture memory.

Notes

In order to release a texture from texture memory, that texture must be released from any and all loaded
texture lists in which the texture appears. Also, textures with the same global index number are considered
the same texture.

nj Rel easeCacheText ur eAl |

Release all cache memory

Format

#include <Ninja.h>
void nj Rel easeCacheText ur eAl | (void);

Patameter

none

Return Value

none

Function

Release all cache memory. Cache information area will not be released

NGD-106

8. Texture Guide

Notes

Even if cache memory is released, textures in texture memory are not released.

nj Rel easeCacheText ur eNum

Release texture by texture number from cache memory

Format

#include <Ninja.h>
Sint32 nj Rel easeCacheText ur eNum(n);
uint32 n

Parameter

n texture number in current texture list

Return Value

Success: 1
Failure: -1
Function

Release texture of texture number n from cache memory.

Notes

Current texture list must be set using nj Set Text ur e. Selected texture must be loaded into cache memory.

Even if cache memory is released, textures in texture memory are not.

nj Rel easeCacheText ur eNuntc

Release texture by global index number from cache memory

Format

#include <Ninja.h>
Sint32 nj Rel easeCacheText ur eNunt3globallndex);
Uint32 globallndex

Patameter

globallndex global index number

NGD-107

Ninja Guide

Return Value

Success: 1
Failure: -1
Functions

Release texture of which global index number is globalindex from cache memory.

Notes

Selected texture must be loaded into cache memory. Even if cache memory is re-leased, textures in texture
memory are not.

nj Get Text ur eNunG

Get global index number of current texture

Format

#include <Ninja.h>
Uint32 nj Get Text ur eNum3(void);

Parameter

none

Return Value

Success: global index number from 0 to OXFFFFFFFE
Failure: OXFFFFFFFF

Functions

Get global index number of current texture

Notes

If current texture is not previously defined with nj Set Text ur eNumor
nj Set Text ur eNungG, this function serves no purpose.

nj Cal cText ure

Calculate remaining texture memory

Format

#include <Ninja.h>
Uint32 nj Cal cText ur e(Flag);

NGD-108

8. Texture Guide

Patameter

Uint32 flag NJD_TEXVEM FREESI ZE or
NJD_TEXMVEM MAXBLOCK
Specify NJD_TEXVEM _MAXS| ZE

Return Value

Returning all free area in texture memory or maximum free block

Functions

Calculate remaining texture memory

NJD_TEXMEM FREESI ZE Texture memory free size
NJD_TEXMEM_MAXBLOCK Texture memory maximum free block
NJD_TEXMEM MAXSI ZE Total capacity of texture memory

Notes

njInitTexture must be called prior to this function.

njExitTexture

Quit texture usage

Format

#include <Ninja.h>
void nj Exi t Text ur e(void);

Patameter

none

Return Value

none

Functions

Quit texture usage. Also releases cache if that has not been done yet

Notes

Be sure to call this function when finished using textures.

nj Set Text ur ePat h(Can not be used in the target)

Set path of the directory which has texture

NGD-109

Ninja Guide

Format

#include <Ninja.h>
void nj Set Text ur ePat h(path);

Patameter

Uint8 *path Path to the directory

Return Value

none

Functions

Set the path to the directory which has the texture. It is available for loading tex-tures from files in
nj LoadText ur e,nj LoadText ur eNum The path set herein is available until it is changed.

Notes

This functions must be called prior to nj LoadText ur e and nj LoadText ur eNum

nj Set Text urel nfo

Set information to the texture info structure.

Format

#include <Ninja.h>
void nj Set Text ur el nf o(NJS_TEXI NFO*,Uint16 *,Sint32,Sint32,Sint32)

Parameter

NJS_ TEXI NFO *infoTexture Information (output)

Uintlé *texPointer of memory texture
Sint32 TypeTexture type

Sint32 nWidthTexture width

Sint32 nHeightTexture length

Return Value

none

NGD-110

8. Texture Guide

Functions

For memory textures, set texture information to the info of texture information structure.

Set color format and category code as Type. Set info which is set herein to addr of NjSetTexturename.

Note

See sample program for the way to use.

Color format

NJD_TEXFMI_ARGB_1555
NID_TEXFMI_RGB_565
NID_TEXFMI_ARGB_4444

NID TEXFMI_YWV 422 Not
NJD_TEXFMI_BUMP Not
Category code

NJD_TEXFMI_TW DDLED
NJD_TEXFMI_TW DDLED MV
NJD_TEXFMI_VQ
NJID_TEXFMI_VQ MV

NJD TEXFMI_PALETTI ZE4 Not
NJD TEXFMI_PALETTI ZEA MM Not
NJD_TEXFMI_PALETTI ZE8 Not

NID TEXFMI_PALETTI ZES_ MM Not
NID_TEXFMI_RECTANGLE

NJD_TEXFMI_STR DE

njSetTextureName

Set data to texture name structure.

Format

#include <Ninja.h>

void nj Set Text ur eNane(NJS_TEXNAME *,void *,Uint,Uint32)

Parameter

NJS_TEXNAME
void

Uint32

Uint32

Return value

None

*texname Texture name structure (output)
*addr File name or pointer for NJD_TEXI NFOstructure

avail abl e
avail abl e

avai | abl e
avai | abl e
avai |l abl e
avai | abl e

globallndex Global index

attr

Texture attribute

NGD-111

Ninja Guide

Functions

Set filenames to addr to load textures from files.

Set NJD_TEXATTR _TYPE_FI LE to attr. For textures in PVR format, in case that global index is not used in
files or there is no chunk of Global index in PVR format texture, set NJD_TEXATTR_TYPE_MEMORY to attr
and set globallndex to global index.

In case of memory textures, the pointer of NJS_TEXI NFOstructure which is set in njSetTexturelnfo is set to
addr.

Set NJD_TEXATTR_TYPE_MEMORY to attr and set globallndex to global index.

Notes

See sample program for the way to use.

nj ReLoadText ur eNum

Reload texture by texture number

Format

#include <Ninja.h>
Shint32 nj ReLoadText ur eNum(n,texaddr,attr,lod);

Parameters

Unit32 n Current texture list texture number
Vold *texaddrFilename or texture memory address

Unit32 attrTexture attribute

Unit32 lodMip-map level

Return Value

Success 1
Failure -1
Functions

Reloads texture number n in the current texture list. The reloaded texture is the same as that loaded before.
Set attr to NJD_TEXATTR_TYPE_FI LE to load the texture from a file, or to NJD_TEXATTR_TYPE_MEMORY
to load the texture from memory.

For a mip-map texture, reload lod with the corresponding mip-map level. For example, setting lod to 128
reloads only the 128 x 128 texture level. To reload all mip-map texture levels, set lod to 0. When loading from
memory, reload the lod level from the address specified by texaddr.

NGD-112

8. Texture Guide

Notes

For the texture memory case, specify the head of the texture that was set by lod.

njReLoadTextureNumG

Reload the global index number texture.

Format

#include <Ninja.h>
Shint32 nj ReLoadText ur eNum3globallndex, texaddr, attr, lod);

Parameters

Unit32 n Global index texture number
Vold *texaddrFilename or texture memory address

Unit32 attrTexture attribute

Unit32 lodMip map level

Return Value

Success 1
Failure -1
Functions

Reloads the texture of the global index number globalindex. The reloaded texture is the same as that loaded
before. Set attr to NJD_TEXATTR_TYPE_FI LE to load the texture from a file, or to
NID_TEXATTR _TYPE_MEMORY to load the texture from memory.

For a mip-map texture, reload lod with the corresponding mip-map level. For example, setting lod to 128
reloads only the 128 x 128 texture level. To reload all mip-map texture levels, set lod to 0. When loading
from memory, reload the lod level from the address specified by texaddr.

Notes

For the texture memory case, specify the head of the texture that was set by lod.

nj Render Text ur eNum

Do rendering to the texture area of the texture number.

Format

#include <Ninja.h>
void nj Set Render Text ur eNum(n);

NGD-113

Ninja Guide

Parameter

Uint32 n Texture number of the current texture list

Return Value
None
Functions

Do rendering to the texture of the number n in the current texture list.
The texture to which rendering can be done is NJD_TEXFMI_ RECTANGLE or

NJD_TEXFMI_STRI DE. When the texture area is smaller than the display, do rendering to the area where
is from the upper-left of the display to its coordinate.

In case of NJD_TEXFMI_STRI DE, the stride value must be set by njSetRenderWidth.
The stride value equals to the width of the rendering area usually.

Notes

Doing rendering to the texture area means that rendering is done twice adding up the usual rendering to
the frame buffer.

nj Render Text ur eNunG

Do rendering to the texture area of the Global Index number.

Format

#include <Ninja.h>
void nj Render Text ur eNum3(globallndex);

Parameter

Uint32 globallndex GloballndexNumber

Return Value
None
Functions

Do rendering to the texture of which Global Index humber is globallndex
The texture to which rendering can be done is N\JD_TEXFMI_ RECTANGLE or NJD_TEXFMT_STRI DE.

When the texture area is smaller than the display, do rendering to the area where is from the upper-left of
the display to its coordinate.

In case of NJD_TEXFMTI_STRI DE, the stride value must be set by nj Set Render W dt h.
The stride value equals to the width of the rendering area usually.

NGD-114

8. Texture Guide

Notes

By doing rendering to the texture area, it becomes that rendering is done twice adding up the usual
rendering to the frame buffer.

nj Set Render W dt h

Set Stride value.

Format

#include <Ninja.h>
void nj Set Render W dt h(nWidth);

Parameter

Uint32 nWidth Stride value

Return Value
None
Functions

Sets a Stride value when using a Stride texture format. When specifying a Stride texture with a render
texture, if the texture is smaller than the rendering area, set the width of the texture. Otherwise, if the
rendering area is smaller than the texture, set the width of the rendering area. Acceptable values are
multiples of 32 from 32 to 992.

Notes

Nj Fr aneBuf f er Brp (Can not be used in the target)
Make a frame buffer into a bitmap.

Formats

#include <Ninja.h>
void nj Fr ameBuf f er Bnp(filename);

Parameter

Unit8*filename File name

Return Value

None

NGD-115

Ninja Guide

Functions

Makes a frame buffer into a 24-bit BMP. Currently only frame 0 can be a texture, so when frame 0 uses this
function during drawing, the partially rendered image appears. (Planned to be changed later)

Notes

In the future, the displayed frame will be modified to a BMP. Use for debugging

N Fr aneBuf f er Bnp2

Make a frame buffer into a bitmap. \

Formats

#include <Ninja.h>
void nj Fr areBuf f er Bnp2(buffer);

Parameter

char *buffer Buffer for saving bitmap

Return Value
None
Functions

Makes a frame buffer into a 24-bit BMP. Buffer size can be calculated as shown below.
Buffer size (buffer) = Screen Length x Screen Width x 3 byte + 54 byte
Also, in case of using this function with the work area of njlnitTextureBuffer, the following size is necessary.

Buffer size of nj | ni t Text ur eBuf fer =

Screen length x Screen width x Byte number of screen mode

* The byte number of screen mode becomes 2 byte when NJD_FRAMEBUFFER _
MODE function is specified.

Currently only frame 0 can be a texture, so when frame 0 uses this function during drawing, the partially
rendered image appears. (Planned to be changed later)

If the buffer specified by this function is binary saved in Codescape, it becomes a bitmap.

Notes

In the future, the displayed frame will be modified to a BMP. Use for debugging

Deleted functions

NjlnitCache Texture

nj LoadText ur eNunG

NGD-116

8. Texture Guide

5.3 Texture Structures

NJS_TEXSURFACE

typedef struct{

U nt 32 Type; [**/

U nt32 Bi t Dept h; / **/

U nt 32 Pi xel Format ; / **/

U nt 32 nwWdt h; /**/

U nt 32 nHei ght ; / **/

U nt 32 Text ureSi ze; / **/

U nt 32 f SurfaceFl ags; / **/

U nt 32 *pSurface; /**/

U nt 32 pVirtual ;/**/ New nmenber
U nt32 pPhysi cal ;/**/ New nmenber

}NUS_TEXSURFACE;

NJS_TEXI NFO

typedef struct{
voi d* texaddr;/* texture buffer address */
NJS TEXSURFACEt exsurface/* texture surface address */
} NIS _TEXI NFQ

NJS_TEXNAME

typedef struct {
voi d *filename; /* texture filename strings*/
U nt 32 texaddr;/* texture nenory address cache */
} NIS_TEXNAME;

NJS_TEXLI ST

typedef struct {
NJS TEXNAME *textures;/* texture array*/
U nt 32 nbTexture/* texture count */

} NJS TEXLI ST;

NGD-117

Ninja Guide

NJS_TEXMEM.I ST

typedef struct {

5.4 Texture Definitions

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

U nt 32 gl obal I ndex; /* gl obal unique texture |D/
U nt 32 t sppar anbuf fer;/* TSPParanbuf f er*/ New Menber
U nt 32 t spparanbuf fer;/* TextureParanbuffer*/ New Menber
U nt 32 t exaddr ; /* texture Flag */
NIS TEXI NFO t exi nf o; /* texinfo */
U nt 16 count ; /* texture count */
U nt 16 dumy; /* texture error */
} NJS_TEXMEMLI ST;
Used with nWdth, nHeight
ne NJD TEXSI ZE 1 1
ne NJD TEXSI ZE 2 2
ne NJD TEXSI ZE 4 4
ne NJD TEXSI ZE 8 8
ne NJD TEXSI ZE 16 16
ne NJD TEXSI ZE 32 32
ne NJD TEXSI ZE 64 64
ne NJD TEXSI ZE 128 128
ne NJD TEXSI ZE 256 256
ne NJD TEXSI ZE 512 512
ne NJD TEXSI ZE 1024 1024

#def i

Used with attr
Texture | oad source

#def i
#def i
#def i

ne NID TEXATTR TYPE FI LE
ne NJD_TEXATTR TYPE_MEMORY
ne NID TEXATTR TYPE_FRAVEBUFFER

Texture | oad source

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne NJD TEXATTR TYPE FRAMEBUFFER
ne NJD TEXATTR CACHE

ne NJD TEXATTR BOTH

ne NJD TEXATTR MASK

ne NJD TEXATTR READAREA MASK

ne NJD TEXATTR READTYPE MASK

ne NJD TEXATTR GLOBALI NDEX

ne NJD_TEXATTR AUTCM PVAP

ne NJD TEXATTR AUTCD THER

ne NJD TEXATTR MASK

0O Load fromfile
Bl T_30Load from nenory
Bl T_28Can not be used in SET4

Bl T_28Load from frame buffer

Bl T_31Load i nto cache

Bl T_29Load into both cache and
0xF0000000

(BIT_| BIT_29)

(BI' T_30| BI T_28)

Bl T_23 Change

Bl T_22 Conplies with the next period
Bl T_21 Conplies with the next period
OxFFFFO000

NGD-118

8. Texture Guide

Used with Type, color fornmat
#def i ne NOD TEXFMI_ARGEB 1555

#def i ne
#def i ne
#def i ne
#def i ne
#def i ne

NJD TEXFMI_RGB 565
NJD TEXFMI_ARGB 4444
NID_TEXFMI_YWV_422
NJD_TEXFMI_BUWP
NJD_TEXFMI_COLOR_MASK

Cat egory code

#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne

Texture
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne
#def i ne

Acquire
#def i ne
#def i ne
#def i ne

NJD_TEXFMI_TW DDLED
NJD_TEXFMI_TW DDLED_MVI

NID_TEXFMI_\Q

NID_TEXFMI_VQ MM

NJD_TEXFMI_PALETTI ZE4
NJD_TEXFMI_PALETTI ZE4_ M
NJD_TEXFMI_PALETTI ZE8
NJD_TEXFMI_PALETTI ZES_M
NJD_TEXFMI_RECTANGLE

NJD_TEXFMI_STR DE

NIJD_TEXFMI_TW DDLED_RECTANGLE(0x0D00)
NJD TEXFMI_ABGR (OXOE0O)
NJD_TEXFMI_ABGR MV
NJD_TEXFMI_TYPE_MASK (OxFFO00)

error code (new addition)
NJD TEXERR OTHER
NJD_TEXERR Fl LECPEN
NJD_TEXERR _EXTND

NJD TEXERR HEADER

NJD TEXERR FI LELQAD
NJD_TEXERR _SURFACE
NID_TEXERR MAI NVEMORY
NJD_TEXERR TEXMEMLQAD
NJD_TEXERR Q.CBALI NDEX

(0x00)
(0x01)
(0x02)
(0x03) Not avail abl e
(0x04) Not avail abl e
(OxFF)

(0x0100)

(0x0200)

(0x0300)

(0x0400)

(0x0500) Not avai | abl e
(0x0600) Not avai | abl e
(0x0700) Not avai | abl e
(0x0800) Not avai | abl e
(0x0900)

(0x0B0O)

Not avail abl e

Not avail abl e
(OxOF00) Not avai | abl e

(1) //Cher errors

(2) //File open error

(3) //Extention error

(4) //Header error

(5) //File load error

(6) //Surface creation error
(7) //Main nmenmory nal |l oc error
(8) //Texture menory |oad error
(9) //Aobal Index Error

texture menory size (used with njCal cTexture)

NJD_TEXVEM FREES| ZE
NID_TEXMEM MAXBLOCK
NID_TEXVEM MAXS| ZE

Macro for getting texture data (New addition)

#def i ne

NIJM TEXTURE_ W DTH(t exl i st, n) \

(0x00000000)
(0x00000001)
(0x00000002)

(((NJS_TEXMEMLI ST*) texl i st->textures[(n)].texaddr)->texinfo.texsurface. nWdt h)

#def i ne

NIM TEXTURE_HEI GHT(texl i st, n) \

(((NJS_TEXMEMLI ST*) texl i st->textures[(n)].texaddr)->texinfo.texsurface. nHei ght)

#def i ne

NIM TEXTURE_GLCBALI NDEX(texlist, n) \

(((NJS_TEXMEMLI ST*) texl i st->textures[(n)].texaddr)->gl obal | ndex)

NGD-119

Ninja Guide

6 Sample Program

6.1 Overview

This chapter contains simple sample programs illustrating the following examples:

Ex. 1: Display of a PVR texture file.

Ex. 2: Load a texture from memory and display it.

Ex. 3: Load file from cache and display texture.

6.2 Sample

Ex. 1: Display of PVR texture file

=

© XN Tk wn

W W NN N DN DN DNDDNDDNDDNDNDNNPRPEP P RPRPRPRP P PP PP
PO © NSO R®®NREOOO®RNS AR WDNRO
—~

#include <N nj awi n.h>

NJS TEXNAMEt exnane[2];

NJS TEXLI ST texlist ={t exnane,2};

NJS TEXMEM.I ST texmemlist[2];/*Reserve texture information area for 2 textures*/
NJS PO NT2COL p[4];

Sint8 buffer[0x2B000];

void njUserInit(void)

nj I nit System(NJD_RESOLUTI ON_VGA, NJD_FRAMEBUFFER_MODE_RGB555, 1);

/* Set two textures */

nj Set Text ur eName(&texname[0],"file0.pvr",0,NJD_TEXATTR _TYPE_FI LE);
NID_TEXATTR_GLOBALI NDEX);

njSetTextureName(&texname[1],"filel.pvr",1,NJD_TEXATTR TYPE FI LE);
NID_TEXATTR_GLOBALI NDEX);

nj | ni t Text ur eBuf f er (buffer,0x2B00);/* file0 and filel are Twiddled Mipmap of 256x256*/

nj I ni t Text ur e(texmemlist,2);

nj LoadText ur e(&texlist); /* Load textures */

nj Set Text ur e(&texlist); /7* Assignt texlist to Current texture list */

/* Assign current texture to texture 0 of texlist*/

nj Set Text ur eNum(0);

/* Polygon data input */

p[0].x = 100; p[0].y = 100;

p[1].x = 200; p[1].y = 100;

p[2].-x = 200; p[2].y = 200;

p[3].x = 100; p[3].y = 200;
p[0].col.tex.u = 0;p[0].col.tex.v = 0;
p[1].col.tex.u = 255;p[1].col.tex.v = 0;

NGD-120

8. Texture Guide

32:
33:
34:}
35:
36{
37:
38:
39:
40}
41:
42
43:
44
43}

p[2].col.tex.u = 255;p[2].col.tex.v = 255;
p[3].col.tex.u = 0;p[3].col.tex.v = 255;

Sint32 njUserMain(void)

/* Draw polygon of texture */

nj Dr awPol ygon2D(p,4,-100.fNJD_FI LL [NJD_USE_TEXTURE);
return NJD_USER_CONTI NUE;

void njUserExit(void)

njExitTexture();
njExitSystem();

Ex. 2: Load a texture from memory and display it.

=

© N gk wd

[y
e

11:
12:
13:{
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24.
25:
26:
27:

#include <N nj awi n.h>

extern Uint16 Image[]; /7* Assume there is mipmap data over 256 in other file */

NJS_TEXI NFOInfo;
NJS_TEXNAME texname[2];

NJS_ TEXLI ST texlist ={texname,2};
NJS TEXMEML.I ST texmemlist[2];/* Reserve texture information area for 2 textures */
NJS PO NT2CCOL p[4];

void nj User | ni t (void)

nj I ni t Syst em(NJD_RESOLUTI ON_VGA, NJD_FRAMEBUFFER_MODE_RGB555, 1)

/* Set 2 textures*/

nj Set Text ur el nf o(&Info,Image,NJD_TEXFMI_TW DDLED|NJD_TEXFMI_ARGB_1555,256,256);
nj Set Text ur eNane(&texname[0],"file0.pvr",0,NJD_TEXATTR _TYPE_FI LE);

nj Set Text ur eName(&texname[1],&Info,1,NJD_TEXATTR_TYPE_MEMORY);

nj I ni t Text ur e(texmemlist,2);

nj LoadText ur e(&texlist);/* Load texture */

nj Set Text ur e(&texlist); /7* Assign texlist to current texture list */

/* Assing texture 1 of texlis to current texture */

nj Set Text ur eNum(1);

/* Input plygon data */
p[0].x = 100; p[0].y = 100;
p[1].x = 200; p[1].y = 100;

NGD-121

Ninja Guide

28: p[2].x = 200; p[2].y = 200;

29: p[3].x = 100; p[3].y = 200;

30: pJ[0].col.tex.u =0; p[0].col.tex.v =0;

31: p[1].col.tex.u = 255;p[1].col.tex.v = 0;
32: p[2].col.tex.u = 255;p[2].col.tex.v = 255;
33: pJ3].col.tex.u =0; p[3].col.tex.v = 255;
34:}

35:

36: Sint32 nj User Mai n(void)

37{

38: /* Draw polygon of texture */

39: nj DrawPol ygon2D(p,4,-100.f NJD_FI LL [NJD_USE_TEXTURE);
40: return NJD_USER _CONTI NUE;

41}

42:

43: void nj User Exi t (void)

44{

45: nj Exi t Text ur e();

46: nj Exi t Syst em();

47}

Ex. 3: Load file from cache and display texture

1. #include <N nj awi n.h>

2:

3: NJS_TEXNAME texname|[2];

4.

5. NJS TEXLI ST texlist ={texname,2};
6: NJS_TEXMEM.I ST texmemlist[2]; /* Reserve texture information area for 2 textures */
7: NJS_PA NT2COL p[4];

8: Sint8 buffer[0x2B000];

9: Sint8 chuffer[Ox2AAAC*2];

10:

11: :void nj User | ni t (void)

12:

NGD-122

8. Texture Guide

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24.
25:
26:
27:
28:
29:
30:
31
32:
33
34.
35:
36:
37:
38}
39:
40:
414
42:
43:
44;
45}
46:
47:
48{
49:
50:
51:}

nj I nit System NJD_RESOLUTI ON_VGA, NJD_FRAMEBUFFER_MODE_RGB555, 1)

nj I ni t Text ur e(texmemlist,2);

/* Set 2 textures */

nj Set Text ur eName(&texname[0],"file0.pvr",0,NJD_TEXATTR _TYPE_FI LE]
NID_TEXATTR_CACHEINJD_ TEXATTR_GLOBALI NDEX);

nj Set Text ur eName(&texname[1],”filel.pvr”’,1,NJD_TEXATTR_TYPE_MEMORY|
NID_TEXATTR_CACHEINJD_ TEXATTR_GLOBALI NDEX);

nj I ni t Text ur eBuf f er (buffer,0x2B000);

nj I ni t CacheText ur eBuf f er (cbuffer,0x2AAAC*2);

nj LoadText ur e(&texlist); /* Load textures */

nj Set Text ur e(&texlist); /* Specify texlist to current texture */

nj LoadCacheText ur eNun{0); /* Load texture of number 0 from cache */

nj LoadCacheText ur eNun(l); /* Load texture of number 1 from cache */

/* Assign texture 0 of texlist to current texture*/

nj Set Text ur eNum(0);

/* Polygon data input */

p[0].x = 100; p[0].y = 100;

p[1].x = 200; p[1].y = 100;

p[2].x = 200; p[2].y = 200;

p[3].x = 100; p[3].y = 200;

p[0].col.tex.u = 0;p[0].col.tex.v = 0;
p[1].col.tex.u = 255;p[1].col.tex.v = 0;
p[2].col.tex.u = 255;p[2].col.tex.v = 255;
p[3].col.tex.u = 0;p[3].col.tex.v = 255;

Sint32 nj User Mai n(void)

/* Draw texture polygon */

nj Dr awPol ygon2D(p,4,-100.fNJD_FI LL [NJD_USE_TEXTURE);

return NJD_USER_CONTI NUE;

void nj User Exi t (void)

nj Exi t Text ur e();
nj Exi t Syst em();

NGD-123

Ninja Guide

7 Notes for Texture functions

7.1 Overview

This chapter contains notes for using texture functions.

7.2 Notes for Switchover from SET2 to SET4/SET5

1) In SET2, the work area for texture functions were allocated inside. But in SET4 or over, please get texture
buffer using njInitTextureBuffer. Refer to "4.3 Setting Texture Buffer" for the necessary size.

2) nj Set Text ur ePat h function can not be used in SET4 or over. Modify the part where
nj Set Text ur ePat h function is used as follows.

SET2:

nj Set Text ur ePat h(“\\i nage0”) ;
nj LoadText ure(& exlist0);

nj Set Text urePat h(“\\i magel”);
nj LoadTexture(& exlistl);

SET4:

gdFsChangeDi r ("1 MAGEO") ;
nj LoadText ure(& exlist0);
gdFsChangeDir ("..");
gdFsChangeDi r ("1 MAGEL") ;
nj LoadText ure(& exlistl);

3) As DMA transfer is unsupported in SET4, textures can not be loaded during rendering. Therefore,
cache texture and reload texture can not be used during rendering.

4) njFrameBufferBmp function can not be used in SET4 or over. Please substitute njFrameBufferBmp?2 for
njFrameBufferBmp.

7.3 Notes for using texture functions in SET5

In SETS5, transfer from main memory to texture memory is DMA transfer when

the head address of the buffer is 32 byte alignment. When the head address is other than 32 byte alignment, transfer
becomes CPU transfer.

In case of executing functions which are transferred to texture memory with the situation of forbidding interrupt,
if the buffer is one of 32 byte alignment, DMA end interrupt is ignored. Be careful not to let the buffer 32
byte alignment.

NGD-124

SEGA

9. Chunk Model Specifications

1 Overview

Ninja supports two format models, called the Basic Model and the Chunk Model. While a drawing function is
executed in the Chunk Model, the data are placed in a continuous memory space so as to maintain integrity of the
SH4 cache. Expandability, flexibility, and data expression efficiency are excellent. In future, further tuning will be
carried out, centering on the Chunk Model. The Basic Model is supported, but does not include the new features.

In the Chunk Model, the model structure contents have been significantly changed. The object structure is not
changed, except for the fact that the model structure pointers have been altered to the Chunk Model.

Motions and textures besides the model use the same format as before. However, for compatibility with camera and
light, the format of structure members has been changed.

For information on the Basic Model and the texture structure, refer to the Basic Model Specifications.

The features of the Chunk Model are listed below.

NGD-125

Ninja Guide

1.1 Chunk Model Features

Based on triangular strip drawing. Currently, triangular, quadrilateral, and N-sided polygon drawing is not
supported. Performance has topmost design priority. The data consist of the vertex list "vlist" and polygon list
"plist". Data are arranged on "vlist" and "plist" in IFF chunk format for keeping the memory area uniform and for
protecting the cache during drawing execution. Both the polygon side and vertex side can contain vertex color
information. On the polygon side, the vertex can be assigned an individual color for each polygon.

The polygon side can have a vertex normal line. Because the vertex normal line is in polygon units, the "softimage"
vertex normal line can be output as is. Discontinuity data can also be output. The polygon side and the vertex side
can have a user flag area (max. 16 bit x 3 for the polygon side and 32 bit x 1 for the vertex side). Currently, this area
is used when outputting vertex color data to the user flag area. In future, tools for writing user data to this area are
planned. The material is stored in "plist”, and only the difference to previous material (differential settings) are
updated. This reduces the number of material settings compared to the Basic Model. Material can be deleted at the
time of converter output. When drawing an identical model (for example a tree), data can be optimized by deleting
all material and making external user settings.

10-bit normal lines are supported, to allow a reduction in data volume. The XYZ normal lines are stored in Uint32
with 10 bits each. 2 bits are filled with 0 as reserved area.

Collision data Chunk Volume output is supported. Triangular, quadrilateral, and triangular strip output is possible,
without material information. A user flag area is possible. Currently, the material color is output in this area.
Separate triangular Chunk Volume (volume3) can also be used as modifier volume. When "volume34" is specified
for the converter, a quadrilateral shape is created from triangles adjoining at 0.1 degree angles. 3D Studio MAX can
only output triangular data, but in this case, quadrilateral collision data can be generated.

To use the SH4 hardware efficiently and allow high- speed processing, the vertex format is supported. (NJD_CV_SH,
NJD_CV_VN_SH). High speed is achieved by using the SH4 matrix processing commands efficiently. This is used
when performance has priority over data volume.

The following two types of UV value expressions are available: 0-255 UVN, and high-resolution 0-1023 UVH. UVN
is a conventional expression which has been used in Basic a Model. However, resolution suffers at sizes exceeding
256. With UVH and high-resolution mode, 1024 x 1024 texture can be specified in 1-pixel units. But compared to
UVN, the texture repeat count of UVH decreases proportionally to the increase in resolution (32 times for UVH vs.
128 times for UVN). UVN and UVH can be switched by convert option for the whole of model tree and also material
names can be used to switch at each model unit. In case that the UV value is specified by material name, UV value
expressions are changed by setting to only one material (among some materials used for single model). The default
is UVN.

NGD-126

9. Chunk Model Specifications

2 Model Structures

2.1 Structure Diagram

Chunk Object Tree

Structure Description

Fl oat, Angle
typedef float Fl oat
typedef Sint32 Angle

/* Fl oating-point operation type */
/* Angle of rotation

*/

For angl es, 0x0000 - OxFFFF correspond to O to 360 degrees.

Point structure

typedef struct {

FI oat X; [* X val ue */
Fl oat Y; /* Y val ue */
Fl oat z; /* z val ue */

} NJS PANT3, NIS VECTCR
G ves the vertex XYZ val ues.

Chunk Model structure

typedef struct {

Sint32 *vlist;
Sint16 *plist;
NJS_PA NT3 center;
Fl oat r;

} NJS_CNK_MODEL;

/* Vertex chunk |ist */
/* Polygon chunk list */
/* Model center */
/* Model dianeter */

"vlist" contains the vertex list data as a Sint32 array in "iff" chunk format.

"plist" contains polygon index list as a Sint16 array in "iff" chunk format.

"center" specifies the exterior circumference center of the model, with the radius "r".

Chunk object structure

typedef struct cnkobj {

U nt 32 eval flags;/* Matrix processing eval uation flag*/

NJS ONK_MXDEL *nodel ;/* Chunk nodel

poi nt er*/

Fl oat pos[3];/* Mtion amount */
Angl e ang[3];/* Rotation amount*/

Fl oat scl[3];/* Scale

*/

struct cnkobj *child;/* Child pointer*/
struct cnkobj *sibling;/* Sibling pointer*/

} NJS_ONK_CBJECT;

Gives the child/parent structure of the model. The evalflags contain flags for matrix processing optimization, and
a chunk model structure pointer is hooked to the model. For nodes without polygons, this pointer is set to NULL.
"pos" specifies the amount of position motion, and "rot" specifies the rotation amount. "scl" specifies the scale and

"child" and "sibling" supply the child and sibling pointers.

NGD-127

Ninja Guide

Explanation of evalflags

#define NJD EVAL UNT_PCs BIT_0/* Mtion can be ignored */
#define NJD EVAL UNT_ANG BIT_1/* Rotation can be ignored */
#define NJD EVAL UNT_SO. BIT_2/* Scale can be ignored */
#define NJD_ EVAL_H DE BI T_3/* Do not draw nodel */
#defi ne NJD_EVAL_BREAK BI T_4/* Break child trace */

#define NID EVAL ZXY ANG BIT 5

/* Specification for evaluation of rotation expected by LightWave3D*/
#define NJD EVAL_SKI P BIT 6 /* Skip nmotion */
#defi ne NOJD EVAL_SHAPE SKI PBIT_ 7
/* Skip shape notion */
#defi ne NJD_EVAL_MASK Oxf f
/* Mask for extracting above bits */

These flags are set by the converter.

NJD_EVAL_UNI T_PGCS is set when the parallel motion amount is "0". Parallel motion matrix processing is omitted
when this flag is set.

NJD_EVAL_UNI T_ANGis set when the rotation angle is "0". Rotation matrix processing is omitted when this flag
is set.

NJD_EVAL_UNI T_SCL is set when the scale is "1" for X, y, and z. Scale matrix processing is omitted when this flag
is set.

IfNJD EVAL_UNI T_PGOS,NJD_EVAL_UNI T_ANG and NJD_EVAL_UNI T_SCL are all set, all matrix processing
steps are omitted, and the matrix “push pop” operation is also omitted.

The NJD_EVAL_HI DE flag is set by the user. If this flag is set, the model is not drawn. This flag is used when
switching the gun or blade with which a model is equipped.

The NJD_EVAL_BREAK flag is set by the user. If this flag is set, the child search is halted at this point. For example,
setting this flag in the root node causes the entire model to disappear. When NJD_EVAL_BREAK is used in
combination with motion, data coordination is lost. Therefore this flag should only be used in the root node. It can
be used in intermediate nodes, but the user is responsible for such usage.

The rotation evaluation sequence for LightWave3D is "ZXY". Because this sequence is normally "XYZ" in Ninja, the
NJD_EVAL_ZXY_ANGflag is provided for execution via a library with the LightWave3D evaluation sequence. When
this flag is set to ON, the rotation processing sequence is changed to "ZXY".

The NJD_EVAL _SKI P flag indicates that this node does not include motion data. During motion execution, matrix
processing is carried out using the object structure value without incrementing the motion node, and then proceeds
to the next node. This allows motion also with polygon models having a different configuration, provided that the
bone structure is the same.

The NJD_EVAL_SHAPE_SKI P flag indicates that this node does not include shape motion data.
NJD_EVAL_SKI Pand NJD_EVAL_SHAPE_SKI P can be specified by material names.

NGD-128

9. Chunk Model Specifications

3 Chunk Specifications
3.1 Chunk Types

Chunk name Symbol Size Description

Chunk NULL CN 16bit Long word alignment matching.

Chunk End CE 16bit Chunk data list end marker.

Chunk Bits CB 16hit Flag setting for Blend Alpha etc.

Chunk Tiny CT 32bit Flag and single value setting for
TexId etc.

Chunk Material CM Variable Diffuse, Specular, Exponent,
Ambient setting.

Chunk Vertex cv Variable Supplies vertex list.

Chunk Volume co Variable Supplies collision and modifier
volume data.

Chunk Strip CS Variable Supplies strip data.

Based on the basic structure, define a simplified chunk (Bits, Tiny, etc.) suitable for the respective purpose. The
Chunk Vertex for the vertex is stored in the "vlist” for the Chunk Model structure. Other chunks are stored in "plist".
These are defined by "Ni nj aCnk.h".

3.2 Chunk Structure

The basic chunk structure is as followvs.

Chunk Vertex
[headbits(15-8) | ChunkHead(7-0)][longsize(15-0)][data]

Other than Chunk Vertex
[headbits(15-8) | ChunkHead(7-0)][shortsize(15-0)][data]

The ChunkHead supplies the function table entry number for that chunk. The library selects a function from this
number for execution. By dividing processing functions into chunks, draw routines are simplified and can execute
faster. Because the maximum table size is 256 entries, the upper 8 bits are available. These 8 bits (called headbits)
are used for storing a part of the attribute flags according to the chunk type and purpose, for more efficient use of
the data size. Note that the upper 8 bits must be masked when obtaining the function entry number of the

chunk table.

The "shortsize" and "longsize" gives the offset until the start of the next chunk.

Usually, in iff format, the data offset until the next chunk is given by byte unit. But as plist which becomes object is
the short arrangement and vlist is long arrangement, each offset is expressed at shortsize(2bytes) unit and
longsize(4bytes) unit. It has the effect to enlarge the maximum expressible number of the offset until the next chunk.
For example, when the user wants to rewrite only the material, it is possible to use "shortsize" to skip data until the
material chunk is found, and then to overwrite the material value obtained in this way.

NGD-129

Ninja Guide

3.3 Chunk NULL

ChunkName : ‘NJD_CN
(Chunk NULL)

Outline:

This chunk consists only of the ChunkHead (16 bits). It is inserted between chunks for long word alignment
matching in the "plist".

Format:

[ChunkHead(15-0)]

ChunkHead:
NJD CN

Description:
#define NJD_ON (NJD_NULLOFF+0)

"plist" is a primary array based on Sint16. Therefore the strip end is not always a Sint32 boundary. Although the
Chunk Material is a Sint16 array, reading it as Sint32 data will improve efficiency. For this purpose, the NJD_CNis
added to the end of the Chunk Strip to create a Sint32 boundary. For performance reasons, boundary matching by
library collating is still under evaluation. If boundary matching is not performed, NJD_CNis not used.

3.4 Chunk End

ChunkName : ‘NJD_CFE’
(Chunk End)

Outline:

This chunk consists only of the ChunkHead (16 bits). It specifies the end of the "plist" and "vlist" chunk list.
For "vlist", it is treated as a ChunkHead (32 bits). The actual value is queried by checking whether the
highest bit is raised to "1".

Format:

plist: [ChunkHead(15-0)]?16 bits chunk?
vlist: [ChunkHead(31-0)]?32 bits chunk?

ChunkHead:
NID CE

Description:

#define NJD CE (NJD_ENDCFF+0)
etects the end of the list.

NGD-130

9. Chunk Model Specifications

3.5 Chunk Bits

Chunk bits are used for rewriting flags such as the attribute flag.
[headbits(15-8) | ChunkHead(7-0)](16 bits chunk)

The flags are stored in the upper 8 bits, and the lower 8 bits supply the chunk number. This chunk consists only of
the ChunkHead (16 bits). The actual Chunk Bits are explained below.

ChunkName : ‘NJD_CB BA’
(Chunk Bits Blend Alpha)

Outline:

Sets "Blend Alpha" for the attribute flag in "plist".

Format:

[headbits(13-8) | ChunkHead(7-0)]

headbi ts:
13-11 = SRC Alpha Instruction(3bit)
10- 8 = DST Alpha Instruction(3bit)

ChunkHead:
NJD_CB BA
Description:
#define NJD CB BA (NJD Bl TSCFF+0)

"Blend Alpha" is set in two ways. As headbits for Chunk Material (see below), it can be set to "diffuse”, "specular”,
and "ambient”, and it can also be set to "Blend Alpha". To set only "Blend Alpha" without changing the material, use
NJD_CB_BA

The blending function combines the two RGBA values SRC and DST as shown below, and writes the result back
to DST.

DST :=SRC * BlendFunction(SRC Alpha Instruction) +
DST * BlendFunction(DST Alpha Instruction)

To the Blend function (instruction), a 3-bit instruction is input together with SRC/DST color. For each RGBA value,
a coefficient weighted with four alpha values is returned.

NGD-131

Ninja Guide

Instruction Field Value Values Returned

Zero 0 (0,0,0,0)

One 1 (1,1,1,1)

‘Other’ Colour 2 (OR, OG, OB, OA)

Inverse ‘Other’ Colour 3 (1-0R,1-0G, 1-0B,1-0A)
SRC Alpha 4 (SA, SA, SA, SA)

Inverse SRC Alpha 5 (1-SA, 1-SA,1-SA, 1-SA)
DST Alpha 6 (DA, DA, DA, DA)

Inverse DST Alpha 7 (1-DA, 1-DA, 1-DA, 1-DA)

"Other Color" and "Inverse Other Color" indicate that the DST color is used when specified for the SRC instruction,
and the SRC color when specified for the DST instruction.

The abbreviations have the following meanings.

ZER Zero

ONE: Cne

ac "G her' Color

| CC Inverse ~Qher' Color
SA Src A pha

| SA I nverse SRC Al pha

DA DST Al pha

| DA I nverse DST Al pha

Flag Blending Src?

#define NJD FBS SH FT 11

#defi ne NOD_FBS_ZER 0<<NJD FBS SH FT)
#define NOD_FBS ON\E (1<<NJD_FBS SH FT)
#define NOD_FBS CC (2<<NJD_FBS SH FT)
#define NOD FBS | CC (3<<NJD_FBS SH FT)
#define NOD FBS_SA (4<<NJD_FBS SH FT)
#define NOJD FBS | SA (5<<NJD_FBS _SH FT)
#define NJD FBS DA (6<<NJD_FBS SH FT)
#defi ne NOD_FBS_| DA (7<<NJD_FBS_SH FT)
#defi ne NOD_FBS_MASK (0x7<<NJD _FBS SH FT)

NGD-132

9. Chunk Model Specifications

Flag Blending Dst?

#define NOD FBD SH FT 8

#define NOD_FBD ZER (0<<NJD_FBD SH FT)
#define NOD_FBD ONE (1<<NJD FBD SH FT)
#define NOD_FBD CC (2<<NJD FBD SH FT)
#define NOD FBD | CC (3<<NJD _FBD SH FT)
#defi ne NOD_FBD SA (4<<NJD _FBD SH FT)
#defi ne NJD_FBD | SA (5<<NJD_FBD_SH FT)
#defi ne NJD_FBD DA (6<<NJD_FBD_SH FT)
#define NOJD FBD | DA (7<<NJD _FBD SH FT)

#defi ne NJD_FBD MASK (0x7<<NJD_FBD SH FT)

ChunkName : ‘NJD_CB DA’
(Chunk Bits ‘D’ Adjust)
Outline:

Sets the mipmap 'D' adjust value for "plist".

Format:
[headbits(11-8) | ChunkHead(7-0)]

headbi t s:
11- 8 = Mipmap 'D' adjust(4)

ChunkHead:
NJD_CB_DA
Description:

#define NJD_CB DA (NJID_BI TSCFF+1)

Adjusts the mipmap switching depth. The default is 1.00. This chunk should not be changed frequently. It is

designed to suppress excessive mipmap switching.

NGD-133

Ninja Guide

Flag ‘D’ Adjust?

#define NOD FDA SH FT 8

#defi ne NOD_FDA 025 (1<<NJD_FDA SH FT) [* 0.25 */
#defi ne NOD_FDA 050 (2<<NJD FDA SH FT) /* 0.50 */
#defi ne NOD_FDA 075 (3<<NID FDA SH FT) /[* 0.75 */
#defi ne NOD_FDA 100 (4<<NJD_FDA SH FT) /* 1.00 */
#defi ne NOD_FDA 125 (5<<NJD_FDA SH FT) [* 1.25 */
#define NOD FDA 150 (6<<NJD_FDA SH FT) /* 1.50 */
#define NOD FDA 175 (7<<NJD_FDA SH FT) [* 1.75 */
#defi ne NOD_FDA 200 (8<<NJD _FDA SH FT) [* 2.00 */
#defi ne NOD_FDA 225 (9<<NID FDA SH FT) [* 2.25 */
#defi ne NJD_FDA 250 (10<<NJD_FDA SH FT) [* 2.25 */
#defi ne NOD_FDA 275 (11<<NJD_FDA SH FT) [* 2.25 */
#defi ne NOD_FDA 300 (12<<NJD _FDA SH FT) /* 3.00 */
#define NOD FDA 325 (13<<NJD _FDA SH FT) [* 3.25 */
#defi ne NOD_FDA 350 (14<<NJD _FDA SH FT) /* 3.50 */
#defi ne NOD_FDA 375 (15<<NJD_FDA SH FT) [* 3.75 */

#defi ne NOD_FDA MASK (Oxf <<NJD_FDA SH FT)

ChunkName : ‘NJD_CB_EXP’
(Chunk Bits Exponent)

Outline:

Sets the Exponent for the "plist" "specular". Values from 0 to 16 are valid.

Format:
[headbits(12-8) | ChunkHead(7-0)]

headbi ts:
12- 8 = Exponent(5) range:0-16

ChunkHead:
NJD _CB_EXP
Description:
#defi ne NJD_CB_EXP (NJD Bl TSOFF+2)

The exponent is set in two ways. To set "specular”" in Chunk Material (see below), the upper 8 bits of the specular
component in the Chunk Material are used to set the exponent (which becomes ERGB8888). To change only the
exponent without changing the previously set exponent, use NJD_CB_EXP.

NGD-134

9. Chunk Model Specifications

Flag EXPonent(range 0-16)?

#define NOD FEXP_SH FT 8

#def i ne NJD_FEXP_00 (0<<NJD _FEXP_SH FT) /* 0.0 */
#defi ne NJD_FEXP_01 (1<<NJD FEXP_SH FT) [* 1.0 */
#defi ne NJD_FEXP_02 (2<<NJD_FEXP_SH FT) [* 2.0 */
#defi ne NJD_FEXP_03 (3<<NJD_FEXP_SH FT) [* 3.0 */
#defi ne NOD_FEXP_04 (4<<NJD_FEXP_SH FT) [* 4.0 */
#def i ne NOD_FEXP_05 (5<<NJD_FEXP_SH FT) /* 5.0 */
#defi ne NJD_FEXP_06 (6<<NID FEXP_SH FT) /[* 6.0 */
#defi ne NJD_FEXP_07 (7<<NID _FEXP_SH FT) [* 7.0 */
#defi ne NOD_FEXP_08 (8<<NID_FEXP_SH FT) /[* 8.0 */
#defi ne NJD_FEXP_09 (9<<NJD_FEXP_SH FT) /[* 9.0 */
#define NJD_FEXP_10 (10<<NJD_FEXP_SH FT) /* 10.0 */
#define NOD FEXP_11 (11<<NJD FEXP_SH FT) /* 11.0 */
#defi ne NOD FEXP_12 (12<<NJD FEXP_SH FT) /* 12.0 */
#defi ne NOD_FEXP_13 (13<<NJD _FEXP_SH FT) /* 13.0 */
#defi ne NOD FEXP_14 (14<<NJD FEXP_SH FT) [* 14.0 */
#defi ne NOD FEXP_15 (15<<NJD_FEXP_SH FT) /* 15.0 */
#defi ne NOD FEXP_16 (16<<NJD_FEXP_SH FT) /* 16.0 */
#defi ne NOD_FEXP_NASK (Ox1f <<NJD_FEXP_SH FT)

NGD-135

Ninja Guide

3.6 Chunk Tiny

Chunk Tiny is used to set the flag and one value. "Texld" corresponds to this. The size is fixed to 32 bits, consisting
of the 16-bit Chunk Head and a 16-bit constant.

[headbits(15-8) | ChunkHead(7-0)][value(15-0)] (32 bits chunk)

Currently, only "Texld" and NJD_CT_TI Dwhich sets the texture function attribute flag are defined for Chunk Tiny.

ChunkName : ‘NJD CT_TI D
(Chunk Tiny TexId)

Outline:

Sets "Texld" (entry number in "TexList") in “plist”.

Format:

[headbits(15-8) | ChunkHead(7-0)][texbits(15-13) | Texld(12-0)]

headbi ts:

15-14 = FlipuV(2)

13-12 = ClampUV/(2)

11-8 = Mipmap 'D’ adjust(4)
ChunkHead:

NJD CT_TID
texbits:

15-14 = Filter Mode(2)

13 = Super Sample(1)
Tex| d:

078191 (Texld Max = 8191)

Description:

#define NID_CT_TI D (NJD_TI NYOFF+0)
Sets the texture function attribute flag and "Texld". By controlling the timing for texture switching, effective texture
switching can be achieved. Because the number of bits allocated to "TexId" is 13, the maximum value is 8191.

Flag FLip (headbits)?

#define NID_FFL_U (Bl T_15)
#define NID_FFL_V (Bl T_14)

Controls the UV value flip.

NGD-136

9. Chunk Model Specifications

Flag CLamp (headbits)?

#define NID_FCL_U (Bl T_13)
#define NID_FCL_V (BIT_12)

Controls the UV value clamp.

Flag Filter Mode (texbits):

PS : Point Sampled

BF . Bilinear Filter?default?

TF . Tri-liner Filter

#define NOD_FFM SH FT 14

#def i ne NID_FFM PS (0<<NJD_FFM SH FT)
#defi ne NJD_FFM BF 1<<NJD_FFM SH FT)
#define NOJD_FFM TF (2<<NJD_FFM SH FT)
#define NOID_FFM MASK (0x3<<NJD_FFM SH FT)

Controls the filter ring mode.

Flag Super Sample (texbits):
#defi ne NJD_FSS (BIT_13)

Controls super sampling.
#define NJD TI D MASK (~(NJD_FSS| NOD_FFM NMASK))

3.7 Chunk Material

Chunk Material includes the "diffuse”, "specular”, and "ambient" setting. Only a difference to the previous value is
set. If the headbits of the Chunk Strip (see below) contain the flag to disregard the "specular” value (NJD_FST | L),
the "specular” setting is omitted. If the flag to disregard the "ambient" value (NJD_FST | A) is included, the
"ambient” setting is omitted. "Blend Alpha" is set in the headbits (upper 8 bits). This part is equivalent to
NJD_CB_BA. Details on "Blend Alpha" are given in the section on NJD_CB_BA. The upper 8 bits of the "specular"
setting are used to specify the exponent. This part is functionally equivalent to NJD_CB_EXP. For NJD_CB EXP, the
flag bits 0 - 16 (NJD_FEXP_*) were used for the setting, whereas Chunk Material "specular” sets the 0 - 16

values directly.

[headbits(13-8) | ChunkHead(7-0)][shortsize(15-0)][Data]

headbits:

13-11 = SRC Alpha Instruction(3)
10- 8 = DST Alpha Instruction(3)
ChunkHead:

NJD_CM D, NJD_CM A NJD_CM DA, NJD_CM S,
NJD CM DS, NJD_CM AS, NJD_CM DAS

NGD-137

Ninja Guide

Data:

Diffulse?ARGB8888
Specular?ERGB8888?E?exponent 0?16?
Ambient?NRGB8888?N?NOOP?
ChunkName : ‘NJD_CM D

(Chunk Material Diffuse)

Outline:

Sets the "diffuse” value in "plist”. The alpha value is stored in the upper 8 bits of the "diffuse" setting.

Format:

[headbits(13-8) | ChunkHead(7-0)][2(shortsize)][ARGB]

headbits:

13-11 = SRC Alpha Instruction(3)
10- 8 = DST Alpha Instruction(3)
ChunkHead:

NJD CM D

ARGB:
ARGB8888

Description:?

#define NJD_OM D (NJD_MATOFF+1)

Sets only "diffuse" for "Blend Alpha". The "specular" and "ambient" settings are kept at the current values.
ChunkName : ‘NJD_CM A’

(Chunk Material Ambient)

Outline:

Sets the "ambient" value in "plist". The upper 8 bits of the "ambient" setting contain 255 as a dummy
value (NOOP).

NGD-138

9. Chunk Model Specifications

Format:
[headbits(13-8) | ChunkHead(7-0)][2(shortsize)][NRGB]

headbi ts:
13-11 = SRC Alpha Instruction(3)
10- 8 = DST Alpha Instruction(3)

ChunkHead:
NJD CM A
NRGB:
NRGB8888?N?NOOP 255?

Description:

#define NJD CM A (NJD_NATOFF+2)
Sets only "ambient” for "Blend Alpha". The "diffuse" and "specular"” settings are kept at the current values.

ChunkName : ‘NJD_CM DA’
(Chunk Material Diffuse and Ambient)

Outline:

Sets the "diffuse” and "ambient” values in "plist". The upper 8 bits of the "diffuse" setting contain the alpha
value. The upper 8 bits of the "ambient"” setting contain 255 as a dummy value (NOOP).

Format:
[headbits(13-8) | ChunkHead(7-0)][4(shortsize)|[ARGB][NRGB]

headbi ts:
13-11 = SRC Alpha Instruction(3)
10- 8 = DST Alpha Instruction(3)

ChunkHead:
NJD_CM DA

ARGB:
ARGB8888

NRGB:
NRGB8888?N?NOOP 255?

Description:

#defi ne NJD_CM DA (NJD_MATOFF+3)
Sets "diffuse” and "ambient” for "Blend Alpha". The "specular" setting is kept at the current value.

ChunkName : ‘NJD_CM_ &’

(Chunk Material Specular)

NGD-139

Ninja Guide

Outline:

Sets the "specular” value in "plist". The upper 8 bits of the "specular" setting contain the exponent (0 - 16).

Format:

[headbits(13-8) | ChunkHead(7-0)][2(shortsize)][ERGB]

headbi ts:
13-11 = SRC Alpha Instruction(3)
10- 8 = DST Alpha Instruction(3)

ChunkHead:

NJD_CM S
ERGB:

ERGB8883(E?Exponent 0716)
Description:

#define NDID CM S (NJD_NATCFF+4)
Sets only "specular" for "Blend Alpha”. The "diffuse” and "ambient" settings are kept at the current values.

ChunkName : ‘NJD_CM DS’
(Chunk Material Diffuse and Specular)
Outline:

Sets the "diffuse” and "specular" values in "plist". The upper 8 bits of the "diffuse" setting contain the alpha
value. The upper 8 bits of the "specular" setting contain the exponent (0 - 16).

Format:
[headbits(13-8) | ChunkHead(7-0)][4(shortsize)][ARGB][ERGB]
headbi ts:
13-11 = SRC Alpha Instruction(3)
10- 8 = DST Alpha Instruction(3)
ChunkHead:
NJD_CM DS
ARGB:
ARGB8888

ERGB:
ERGB8888(E?Exponent 0716)

Description:?

#define NJD_ QM DS (NOD_MATOFF+5)
Sets "diffuse” and "specular” for "Blend Alpha". The "ambient" setting is kept at the current value.

ChunkName : ‘NJD_CM AS’

NGD-140

9. Chunk Model Specifications

(Chunk Material Ambient and Specular)

Outline:

Sets the "ambient" and "specular” values in "plist". The upper 8 bits of the "ambient" setting contain the
alpha value. The upper 8 bits of the "specular" setting contain the exponent (0 - 16).

NGD-141

Ninja Guide

Format:

[headbits(13-8) | ChunkHead(7-0)][4(shortsize)][NRGB][ERGB]

headbi ts:
13-11 = SRC Alpha Instruction(3)
10- 8 = DST Alpha Instruction(3)

ChunkHead:
NJD CM AS

NRGB:
NRGB8883(N?NOOP 255)

ERGB:
ERGB8888(E?Exponent 0716)

Description:

#define NJD_OM AS (NJD_MATCFF+6)
Sets "ambient" and "specular" for "Blend Alpha". The "diffuse" setting is kept at the current value.

ChunkName : ‘NJD_CM DAS’
(Chunk Material Diffuse Ambient and Specular)

Outline:

Sets the "diffuse" and "specular" values in "plist". The upper 8 bits of the "diffuse" setting contain the alpha
value. The upper 8 bits of the "specular" setting contain the exponent (0 - 16).

Format:

[headbits(13-8) | ChunkHead(7-0)][6(shortsize)][ARGB][NRGB][ERGB]

headbi t s:
13-11 = SRC Alpha Instruction(3)
10- 8 = DST Alpha Instruction(3)

ChunkHead:
NJD CM DAS

ARGB:
ARGB8888

NRGB:
NRGB8888(N?NOOP 255)

ERGB:
ERGB8888(E?Exponent 0716)

Description:

NGD-142

9. Chunk Model Specifications

#define NJD_OM DAS (NJD_NATCOFF+7)
Sets "diffuse, "ambient”, and "specular” for "Blend Alpha".

3.8 Chunk Vertex

The Chunk Vertex gives the vertex list for the model. To allow the user to store desired data in the vertex list, it also
uses the chunk format. By switching chunk types, the vertex, normal line, vertex color, user flag, and other items
can be set as required in the vertex list. The upper 8 bits of the Chunk Head (headbits) are not used for the Chunk
Vertex. If several chunk types were to be used simultaneously by the model, multiple library processing would be
required. Currently, this is not supported. For one model, only one Chunk Vertex type is used. The header is based
on Sint16, but the store array is as follows:

[ChunkHead(31-16) | bytesize(15-0)]
[IndexOffset(31-16) | nblindices(15-0)][Data]

ChunkHead:

<Format allowing high-speed processing with SH4>
NJD CV_SH, NJD CV_VN SH

<Standard format without vertex normal line>

NJD _Cv, NJD Cv_D8, NID _CV_UF,

NJD CV_NF, NJD CV_S5, NJD CV_S4, NID CV_IN
<Standard format with vertex normal line>

NJD OV_WN, NJD OV VN D8, NJD OV _WN UF,

NJD CV_W N5, NJD OV WN S5, NJID CV_WN $4,
NJD OV W IN

<32-bit vertex normal line with 10 bits each for x, y, z>
NJD CV_VNX, NJD CV_VNX_D8, NJD CV_VNX_UF

The abbreviations have the following meanings.

VN > use vertex normal

VNX : 32bits vertex normal reserved(2) | x(10) | y(10)] z(10)
SH : SH4 optimize

D8 : Diffuse ARGB8888 only

S5 : Diffuse RGB565 and Specular RGB565

S4 : Diffuse RGB4444 and Specular RGB565

IN : Diffuse(16) | Specular(16)

NF : NinjaFlags32 for extention

UF : UserFlags32

The IndexOffset gives the start position for the library vertex intermediate buffer. For example, the vertex for the
parent node with offset 0 is calculated, then the child is specified with an offset corresponding to the number of
vertices in the parent node. When vertex processing data are stored starting at this position, the parent vertex
processing results in the intermediate buffer will not be overwritten. By specifying index numbers in ascending
order going towards the parent vertex, a polygon linking the parent and child vertices can be expressed.

"nbindices"” gives the number of vertices stored in the chunk.

NGD-143

Ninja Guide

ChunkName : ‘NJD_CV_SH’
(Chunk Vertex for SH4 Optimize)

Outline:

Defines the vertex list in "vlist", without normal line. The data arrangement takes the matrix processing
command characteristics of SH4 into consideration, to achieve high-speed processing.

Format:
[ChunkHead(31-16) | longsize(15-0)]
[IndexOffset(31-16) | nbindices(15-0)][Data]

ChunkHead:
NJD CV_SH

| ongsi ze:
Offset until next chunk..

| ndexCF f set :
Gives buffer start position for vertex intermediate buffer.

nbl ndi ces:
Gives number of vertices.

Dat a:
x,y,2,1.0F, ...
Description:
#defi ne NOJD CV_SH (NJD_VERTOFF+0)

For matrix processing commands, the dummy 1.0F is inserted after x, y, z, to read data in 128-bit units. Because
matrix processing is possible as is, high-speed execution can be realized. (Data to prove this effect are being
compiled.) A normal line is not used. In models which do not perform light calculation and draw only the vertex
color, no normal line is necessary. This chunk type should be used for such models.

ChunkName : ‘NJD_CV_VN_SH

(Chunk Vertex VertexNormal for SH4 Optimize)

Outline:

Defines the vertex list in "vlist", with normal line. The data arrangement takes the matrix processing
command characteristics of SH4 into consideration, to achieve high-speed processing.

NGD-144

9. Chunk Model Specifications

Format:

[ChunkHead(31-16) | longsize(15-0)]
[IndexOffset(31-16) | nbindices(15-0)][Data]

ChunkHead:
NJD CV_VN SH

| ongsi ze:
Offset until next chunk.

| ndexOf f set :

Gives buffer start position for vertex intermediate buffer.

nbl ndi ces:
Gives number of vertices.

Dat a:
X,¥,z,1.0F,nx,ny,nz,0.0F....

Description:?

#define NJD_ OV VN SH (NID_VERTCFF+1)

For matrix processing commands, to read data in 128-bit units, the dummy 1.0F is inserted after x, y, z, and the
dummy 0.0F after the normal line nx, ny, nz. Because matrix processing is possible as is, high-speed execution can

be realized. (Data to prove this effect are being compiled.)
ChunkName : ‘NJD_CV’

(Chunk Vertex)

Outline:

Defines the vertex list in "vlist", without normal line.

Format:

[ChunkHead(31-16) | longsize(15-0)]
[IndexOffset(31-16) | nbindices(15-0)][Data]

ChunkHead:
NJD _CV

| ongsi ze:
Offset until next chunk.

| ndexCOf f set :

Gives buffer start position for vertex intermediate buffer.

nbl ndi ces:
Gives number of vertices.

NGD-145

Ninja Guide

Dat a:
XV,Z, ...

Description:

#define NJD_CV (NJD_VERTCFF+2)
Gives the vertex list, without normal line.
ChunkName : ‘NJD_CV_Dg8’

(Chunk Vertex Diffuse ARGB8888)

Outline:

Defines the vertex list in "vlist", with vertex color, without normal line.

Format:
[ChunkHead(31-16) | longsize(15-0)]
[IndexOffset(31-16) | nbindices(15-0)][Data]

ChunkHead:
NJD _CV_D8

| ongsi ze:
Offset until next chunk.

| ndexCF f set :
Gives buffer start position for vertex intermediate buffer.

nbl ndi ces:
Gives number of vertices.

Dat a:
X,y,2,D8888,...

Description:

#define NOD_CV_[8 (NJD_VERTCFF+3)
Gives the vertex list, with vertex color, without normal line. The vertex color is packed in Sint32 arrays.

ChunkName : ‘NJD_CV_UF’
(Chunk Vertex UserFlag)

Outline:

Defines the vertex list in "vlist", without normal line. Provides a 32-bit user flag area.

NGD-146

9. Chunk Model Specifications

Format:

[ChunkHead(31-16) | longsize(15-0)]
[IndexOffset(31-16) | nbindices(15-0)][Data]

ChunkHead:
NJD CV_UF

| ongsi ze:
Offset until next chunk..

| ndexCF f set :
Gives buffer start position for vertex intermediate buffer.

nbl ndi ces:
Gives number of vertices.

Dat a:
X,y,z,UserFlags32, ...

Description:
#define NID OV _UF (NJD_VERTOFF+4)

Gives the vertex list, without normal line. Provides a 32- bit user flag area. Currently, the vertex color can be output
to this area. In future releases, it will be possible to write user data to this area.

ChunkName : ‘NJD_CV_NF’
(Chunk Vertex NinjaFlags32)
Outline:

Defines the vertex list in "vlist", without normal line. Provides a 32-bit Ninja expansion flag area.

Format:

[ChunkHead(31-16) | longsize(15-0)]
[IndexOffset(31-16) | nbindices(15-0)][Data]

ChunkHead:
NJD CV_NF

| ongsi ze:
Offset until next chunk..

I ndexOf f set :
Gives buffer start position for vertex intermediate buffer.

nbl ndi ces:
Gives number of vertices.

Dat a:

NGD-147

Ninja Guide

x,¥,z,NinjaFlags32, ...
Description:
#define NOID OV _NF (NJD_VERTOFF+5)

Gives the vertex list, without normal line. Provides a 32- bit Ninja expansion flag area. This area is reserved for
expanded Ninja functions.

ChunkName : ‘NJD_CV_Sb5’
(Chunk Vertex Diffuse RGB565 and Specular RGB565)

Outline:
Defines the vertex list in "vlist", without normal line. Provides "diffuse" and "specular" vertex colors.

Format:

[ChunkHead(31-16) | longsize(15-0)]
[IndexOffset(31-16) | nbindices(15-0)][Data]

ChunkHead:
NJD_CV_S5

| ongsi ze:
Offset until next chunk..

| ndexCF f set :
Gives buffer start position for vertex intermediate buffer.

nbl ndi ces:
Gives number of vertices.

Dat a:
X,y,2,D565(31-16) | S565(15-0),...

Description:
#define NOJD OV S5 (NJD_VERTOFF+6)

Gives the vertex list, without normal line. Vertex color can be set to "diffuse” and "specular”. The "specular" setting
is designed to enhance the color effect, but currently there is no setting method for the "specular" vertex color. Future
releases will incorporate a method for setting "diffuse” and "specular" to be calculated for each vertex color by the
converter, using the light source position of the scene (pre-light).

ChunkName : ‘NJD CV_S4’
(Chunk Vertex Specular RGB565 and Diffuse ARGB4444)

Outline:

Defines the vertex list in "vlist", without normal line. Provides "diffuse" and "specular" vertex colors.

NGD-148

9. Chunk Model Specifications

Format:

[ChunkHead(31-16) | longsize(15-0)]
[IndexOffset(31-16) | nbindices(15-0)][Data]

ChunkHead:
NJD CV_$4

| ongsi ze:
Offset until next chunk..

| ndexCF f set :
Gives buffer start position for vertex intermediate buffer.

nbl ndi ces:
Gives number of vertices.

Dat a:
X,y,2,D4444(31-16) | S565(15-0),...
Description:
#define NID OV 4 (NJD_VERTOFF+7)

Gives the vertex list, without normal line. Vertex color can be set to "diffuse” and "specular". The "specular" setting
is designed to enhance the color effect. "diffuse” can be set to the alpha value ARGB4444. Currently there is no
setting method for the "specular” vertex color. Future releases will incorporate a method for setting "diffuse” and
"specular" to be calculated for each vertex color by the converter, using the light source position of the scene

(pre-light).
ChunkName : ‘NJD CV_IN
(Chunk Vertex INtensity Diffuse and Specular)

Outline:

Defines the vertex list in "vlist", without normal line. The high-speed Intensity mode is used to provide the
vertex color. "diffuse" and "specular” vertex colors are available.

NGD-149

Ninja Guide

Format:
[ChunkHead(31-16) | longsize(15-0)]
[IndexOffset(31-16) | nbindices(15-0)][Data]

ChunkHead:
NJD CV_IN

| ongsi ze:
Offset until next chunk..

| ndexOf f set :
Gives buffer start position for vertex intermediate buffer.

nbl ndi ces:
Gives number of vertices.

Dat a:
X,y,z,D16]S16,...
Description:
#define NJD OV IN (NJD_VERTCFF+8)

Gives the vertex list, without normal line. The Intensity mode is used to provide the vertex color. The "specular"
setting is designed to enhance the color effect. In Intensity mode, "diffuse” and "specular" are specified only by the
intensity. Both values have a 16-bit range and are set in D16 and S16. Currently there is no setting method for the
"specular" vertex color. Future releases will incorporate a method for setting "diffuse” and "specular" to be calculated
for each vertex color by the converter, using the light source position of the scene (pre-light).

ChunkName : ‘NJD_CV_VWN

(Chunk Vertex VertexNormal)

Outline:

Defines the vertex list in "vlist", with normal line.

NGD-150

9. Chunk Model Specifications

Format:
[ChunkHead(31-16) | longsize(15-0)]
[IndexOffset(31-16) | nbindices(15-0)][Data]

ChunkHead:
NJD CV_VN

| ongsi ze:
Offset until next chunk..

| ndexOf f set :
Gives buffer start position for vertex intermediate buffer.

nbl ndi ces:
Gives number of vertices.

Dat a:
X,¥,Z,nx,ny,nz, ...

Description:

#define NJD CV._ W (NID_VERTCFF+9)
Gives the vertex list, with normal line. This is the most commonly used vertex list.

ChunkName : ‘NJD_CV_VN D8’
(Chunk Vertex VertexNormal and Diffuse ARGB8888)

Outline:?

Defines the vertex list in "vlist", with vertex color, with normal line.

Format:?

[ChunkHead(31-16) | longsize(15-0)]
[IndexOffset(31-16) | nbindices(15-0)][Data]

ChunkHead:
NJD CV_VN D8

| ongsi ze:
Offset until next chunk..

| ndexOF f set :
Gives buffer start position for vertex intermediate buffer.

nbl ndi ces:
Gives number of vertices.

Dat a:
X,y,z,nx,ny,nz,D8888,...

NGD-151

Ninja Guide

Description:

#define NUD CV_WN D (NJD_VERTCFF+10)
Gives the vertex list, with vertex color, with normal line. The vertex color is packed in Sint32 arrays.

ChunkName : ‘NJD_CV_VN _UF’
(Chunk Vertex VertexNormal and UserFlags32)

Outline:

Defines the vertex list in "vlist", with normal line. Provides a 32-bit user flag area.

Format:
[ChunkHead(31-16) | longsize(15-0)]
[IndexOffset(31-16) | nbIndices(15-0)][Data]

ChunkHead:
NJD CV_VN _UF

| ongsi ze:
Offset until next chunk..

| ndexOf f set :
Gives buffer start position for vertex intermediate buffer.

nbl ndi ces:
Gives number of vertices.

Dat a:
X,y,z,nx,ny,nz,UserFlags32,...

Description:
#define NJD_ CV_WN UF (NJD_VERTOFF+11)

Gives the vertex list, with normal line. Provides a 32-bit user flag area. Currently, the vertex color can be output to
this area. In future releases, it will be possible to write user data to this area.

ChunkName : ‘NJD_CV_VN_NF’
(Chunk Vertex VertexNormal and NinjaFlags32)

Outline:

Defines the vertex list in "vlist", with normal line. Provides a 32-bit Ninja expansion flag area.

NGD-152

9. Chunk Model Specifications

Format:

[ChunkHead(31-16) | longsize(15-0)]
[IndexOffset(31-16) | nbindices(15-0)][Data]

ChunkHead:
NJD CV_VN_NF

| ongsi ze:
Offset until next chunk..

| ndexOf f set :

Gives buffer start position for vertex intermediate buffer.

nbl ndi ces:
Gives number of vertices.

Dat a:
X,y,z,nx,ny,nz,NinjaFlags32,...

Description:

#define NJD_CV_WN N~ (NID_VERTCFF+12)

Gives the vertex list, with normal line. Provides a 32-bit Ninja expansion flag area. This area is reserved for

expanded Ninja functions.

ChunkName : ‘NJD_CV_VN_S5’

(Chunk Vertex VertexNormal, Diffuse RGB565 and Specular RGB565)

Outline:

Defines the vertex list in “vlist”, with normal line. Provides “diffuse” and “specular” vertex colors.

Format:?

[ChunkHead(31-16) | bytesize(15-0)]
[IndexOffset(31-16) | nbIndices(15-0)][Data]

ChunkHead:
NJD _CV_VN_S5
longsize:
Offset until next chunk..
IndexOffset:

Gives buffer start position for vertex intermediate buffer.

nblndices:

Gives number of vertices.

Data:

X,¥,2,nx,ny,nz,D565(31-16) | S565(15-0),...

NGD-153

Ninja Guide

Description:
#define NJD_ OV_WN S5 (NJD_VERTOFF+13)

Gives the vertex list, with normal line. Vertex color is packed in Sint32 arrays. Vertex color can be set to "diffuse” and
"specular”. The "specular” setting is designed to enhance the color effect, but currently there is no setting method
for the "specular" vertex color. Future releases will incorporate a method for setting "diffuse” and "specular” to be
calculated for each vertex color by the converter, using the light source position of the scene (pre-light).

ChunkName : ‘NJD_CV_VN_S4’
(Chunk Vertex VertexNormal, Specular RGB565 and Diffuse ARGB4444)

Outline:

Defines the vertex list in “vlist”, with normal line. Provides “diffuse” and “specular” vertex colors.

Format:

[ChunkHead(31-16) | longsize(15-0)]
[IndexOffset(31-16) | nbindices(15-0)][Data]

ChunkHead:
NJD CV_VN $4

| ongsi ze:
Offset until next chunk..

| ndexOf f set :
Gives buffer start position for vertex intermediate buffer.

nbl ndi ces:
Gives number of vertices.

Dat a:

X,Y,Z,nx,ny,nz,D4444(31-16) | S565(15-0),...
Description:
#define NJD OV.WN 4 (NOD_VERTCFF+14)

Gives the vertex list, with normal line. Vertex color is packed in Sint32 arrays. Vertex color can be set to "diffuse" and
"specular”. The "specular” setting is designed to enhance the color effect. "diffuse” can be set to the alpha value
ARGB4444. Currently there is no setting method for the "specular” vertex color. Future releases will incorporate a
method for setting "diffuse” and "specular" to be calculated for each vertex color by the converter, using the light
source position of the scene (pre-light).

ChunkName : ‘NJD_CV_VN_I N

(Chunk Vertex VertexNormal, INtensity Diffuse and Specular)

Outline:

Defines the vertex list in “vlist”, with normal line. The high-speed Intensity mode is used to provide the
vertex color. “diffuse” and “specular” vertex colors are available.

NGD-154

9. Chunk Model Specifications

Format:

[ChunkHead(31-16) | longsize(15-0)]
[IndexOffset(31-16) | nbindices(15-0)][Data]

ChunkHead:
NJD CV_ VN IN

| ongsi ze:
Offset until next chunk..

| ndexOf f set :

Gives buffer start position for vertex intermediate buffer.

nbl ndi ces:
Gives number of vertices.

Dat a:
X,y,z,nx,ny,nz,D16] S16....

Description:

#define NJD OV WN IN (NID_VERTCFF+15)

ChunkName : ‘NJD_CV_VNX
(Chunk Vertex VertexNormal 32bits(X))

Outline:

Defines the vertex list in "vlist", with 32-bit normal line.

Gives the vertex list, with normal line. Vertex color is packed in Sint32 arrays. The Intensity mode is used to provide
the vertex color. The "specular" setting is designed to enhance the color effect. In Intensity mode, "diffuse” and
"specular" are specified only by the intensity. Both values have a 16-bit range and are set in D16 and S16. Currently
there is no setting method for the "specular” vertex color. Future releases will incorporate a method for setting
"diffuse" and "specular" to be calculated for each vertex color by the converter, using the light source position of the
scene (pre-light).

NGD-155

Ninja Guide

Format:
[ChunkHead(31-16) | longsize(15-0)]
[IndexOffset(31-16) | nbindices(15-0)][Data]

ChunkHead:
NJD CV_VNX

| ongsi ze:
Offset until next chunk..

| ndexOf f set :
Gives buffer start position for vertex intermediate buffer.

nbl ndi ces:
Gives number of vertices.

Dat a:
X,¥,2,nxXyz32, ...

Description:
#define NJD_CV_VUNX (NJD_VERTCOFF+16)

Gives the vertex list, with 32-bit normal line. Vertex normal line data are reduced, in order to decrease the data
amount. x,y,z are assigned 10 bits each, and the remaining 2 bits are reserved. Resolution is 1024. Using the vertex
normal line at this resolution, glow processing is performed.

ChunkName : ‘NJD_CV_VNX_Dg8’
(Chunk Vertex VertexNormal 32bits(X) and Diffuse ARGB8888)

Outline:

Defines the vertex list in “vlist”, with 32-bit normal line, and with vertex color.

Format:
[ChunkHead(31-16) | longsize(15-0)]
[IndexOffset(31-16) | nbindices(15-0)][Data]

ChunkHead:
NJD _CV_VNX D8

| ongsi ze:
Offset until next chunk..

| ndexCOF f set :
Gives buffer start position for vertex intermediate buffer.

nbl ndi ces:
Gives number of vertices.

NGD-156

9. Chunk Model Specifications

Dat a:
X,¥,Z,nxyz32,D8888,...
Description:
#defi ne NJD_CV_VWNX D8 (NID_VERTCFF+17)

Gives the vertex list, with 32-bit normal line. Vertex normal line data are reduced, in order to decrease the data
amount. x,y,z are assigned 10 bits each, and the remaining 2 bits are reserved. Resolution is 1024. Using the vertex
normal line at this resolution, glow processing is performed. Vertex color is provided, packed in Sint32 arrays.

ChunkName : ‘NJD_CV_VNX_UF’
(Chunk Vertex VertexNormal 32bits(X) and UserFlags32)

Outline:

Defines the vertex list in “vlist”, with 32-bit normal line. Provides a 32-bit user flag area.

Format:

[ChunkHead(31-16) | longsize(15-0)]
[IndexOffset(31-16) | nbIndices(15-0)][Data]

ChunkHead:
NJD_CV_VNX_UF

| ongsi ze:
Offset until next chunk..

| ndexCOf f set :
Gives buffer start position for vertex intermediate buffer.

nbl ndi ces:
Gives number of vertices.

Dat a:
X,y,z,nxyz32,UserFlags32,...

Description:
#define NJD OV WNX_UF (NJD_VERTOFF+18)

Gives the vertex list, with 32-bit normal line. Vertex normal line data are reduced, in order to decrease the data
amount. x,y,z are assigned 10 bits each, and the remaining 2 bits are reserved. Resolution is 1024. Using the vertex
normal line at this resolution, glow processing is performed. Vertex color is provided, packed in Sint32 arrays.
Provides a 32-bit user flag area.

NGD-157

Ninja Guide

3.9 Chunk Volume

Chunk Volume is provided only as collision and modifier volume. It cannot be used directly by the library for
drawing, and it has no material data. Currently, there are three Chunk Volume types. NJD_CO_P3 consists of
separate triangular data, and NJD_CO P4 of separate quadrilateral data. In 3D Studio MAX, only triangular data
are output, but NinjaExport has an option for connecting quadrilateral shapes with a screen angle of max. 0.1
degrees and restoring separate quadrilateral shapes for output. This allows the creation of quadrilateral collisions
also in 3D Studio MAX. When the original data are for mixed triangular/quadrilateral/N-sided polygons, a
converter option can divide them into triangular polygon data and recreate separate triangular and quadrilateral
data. In this case, N-sided data will be eliminated, and the "plist" contains NJD_CO P3 and NDID GO P4.NJD CO ST
is the triangular strip Chunk Volume. Chunk Volume can contain a Chunk Strip area (see below) and user flag areas
(16, 32, 48 bits) for equivalent polygons. The material color set with the modeler can be output to the user flag area
for each polygon.

The triangular Chunk Volume NJD_CO_P3 can be used by the modifier volume as is. However, the modifier volume
must be a closed 3D space. This is a hardware specification. Note that the modifier volume can only use separate
triangular data. The upper 8 bits of the Chunk Head (headbits) are not used for the Chunk Volume.

[ChunkHead(15-0)][shortsize(15-0)]

[UserOffset(15-14) | nbPolygon(13-0)][Data]

The user flag area is handled in 16-bit units (because "plsit" is a Sint16 primary array). Its size can be 16, 32, or 48
bits. It is set with the UserOffset allocated to the top 2 bits of nbPolygon which gives the number of polygons.

UserFlags Offset:

#define NOD_UFO SH FT 14

#define NOD_UFO 0 (0<<NJD UFO SH FT)

#define NOD_UFO 1 (1<<NJD_UFO SH FT)

#define NOD_UFO 2 (2<<NJD_UFO SH FT)

#defi ne NJD_UFO 3 (3<<NJD_UFO SH FT)

#defi ne NOD_UFO MASK (0x3<<NDID UFO SHFT) /* 0 - 3 */

NID UFO 0: UserFH ags size 0

NID UFO 1: UserF ags size 16 bits
NID UFO 2: UserFl ags size 32 bits
NID UFO 3: UserFl ags size 48 bits

ChunkName : ‘NJD_CO P3’

(Chunk vOlume Polygon3)

Outline:

Defines the volume polygon list in "plist". This is not used for direct drawing, but for collision and modifier
volumes. Material information is not included, but there is a user flag area to which the polygon color can
be output.

NGD-158

9. Chunk Model Specifications

Format:

[ChunkHead(15-0)][shortsize(15-0)]
[UserOffset(15-14) | nbPolygon(13-0)][Data]

ChunkHead:
NJD CO P3

shortsi ze:
Offset until next chunk.

User O f set:
Gives user flag area size.

nbPol ygon:
Gives number of polygons.

Dat a:
index0, index1, index2, UserflagPoly0(*N),
index3, index4, index5, UserflagPoly1(*N), ...

Description:

#define NJD QO P3 (NJD_VOLCFF+0)

These are separate triangular data for collision and modifier volumes. Material information is not included, but
polygon color can be output to a user flag area. The polygon color is as set for the material. There is a user flag area
after the polygon index. The size of this area is determined by the UserOffset value (NJD_UFO _0: none;

NJD_UFO _1:16 bits; NJD_UFO _2: 32 bits; NJD_UFO_3: 48 bits). The library simply skips the user flag area without
doing anything. When original data are mixed triangular/quadrilateral/N-sided, a converter option can divide
them into triangular data and output these to NJD_CO_P3.

ChunkName : ‘NJD_CO P4’

(Chunk vOlume Polygon4)

Outline:

Defines the volume polygon list in "plist". This is not used for direct drawing, but for collision and modifier
volumes. Material information is not included, but there is a user flag area to which the polygon color can
be output.

Format:
[ChunkHead(15-0)][shortsize(15-0)]
[UserOffset(15-14) | nbPolygon(13-0)][Data]

ChunkHead:
NJD CO P4

shortsi ze:
Offset until next chunk.

NGD-159

Ninja Guide

User O f set :
Gives user flag area size.

nbPol ygon:
Gives number of polygons.

Dat a:
index0, index1, index2, index3, UserflagPoly0(*N),
index4, index5, index6, index7, UserflagPoly1(*N), ...

Description:
#define NOJD QO P4 (NJD_VOLOFF+1)

These are separate quadrilateral data for collision and modifier volumes. Material information is not included, but
polygon color can be output to a user flag area. The polygon color is as set for the material. In 3D Studio MAX, the
object color can be used. There is a user flag area after the polygon index. The size of this area is determined by the
UserOffset value (NJD_UFO_0: none; NJD_UFO 1: 16 bits; NJD_UFO _2: 32 bits; NJD_UFO_3: 48 bits). The library
simply skips the user flag area without doing anything. In 3D Studio MAX, only triangular data are output, but a
converter option allows connecting two quadrilateral shapes with a screen angle of max. 0.1 degrees and restoring
separate quadrilateral shapes for output. This allows the creation of separate quadrilateral data.

ChunkName : ‘NJD_CO ST’

(Chunk vOlume Triangle STrip)

Outline:

Defines the volume polygon list in "plist". This is not used for direct drawing, but for collision and modifier
volumes. Material information is not included, but there is a user flag area to which the polygon color can
be output.

NGD-160

9. Chunk Model Specifications

Format:

[ChunkHead(15-0)][shortsize(15-0)]
[UserOffset(15-14) | nbPolygon(13-0)][Data]

ChunkHead:
NJD CO ST

shortsi ze:
Offset until next chunk..

User O f set:
Gives user flag area size.

nbPol ygon:
Gives number of polygons.

Dat a:
[flag(15)] len(14-0), i0, i1, i2, Userflag2(*N), i3, Userflag3(*N), ...

Description:
#define NOJD_CO ST (NJD_VOLOFF+2)

Used for collision. Compared toNJD_CO _P3 and NJD_CO P4, the collision data size is reduced. However, note that
triangular strip connection proceeds in the most effective direction which is not necessarily the direction intended
by the user. The flag specifies the triangular rotation direction (right rotation/left rotation) at the strip start. The
Chunk Model can switch between left and right rotation using a negative or positive prefix. Negative prefix means
right rotation. "len" indicates the number of vertices included in the strip. "i?" is the polygon vertex index. Material
information is not included, but polygon color can be output to a user flag area. The polygon color is as set for the
material. There is a user flag area after the polygon index. The size of this area is determined by the UserOffset value
(NJD_UFO _0: none; NJD_UFO_1: 16 bits; NJD_UFO _2: 32 bits; NJD_UFO_3: 48 bits). The library simply skips the
user flag area without doing anything. When original data are mixed triangular/quadrilateral/N-sided polygon
data, the converter automatically divides all into separate triangular data and outputs these to NJD_CO_ST.

NGD-161

Ninja Guide

3.10 Chunk Strip

Chunk Strip creates the triangular strip, using the entry number in the vertex intermediate buffer created in the
library from the Chunk Vertex list. It can include a vertex color, vertex normal line, and individual user flag areas
for each polygon. Because the polygon side includes vertex color, individual vertex color setting for each polygon
is possible also at the same vertex. By using the normal line for the polygon, the edge between polygons can be
raised. Discontinuity of "softimage" is supported, and the "softimage" vertex normal line can be output as is.
Polygon color set for the material can be output to the user flag area. It is not possible to have vertex color both in
Chunk Vertex and Chunk Strip. If vertex color output has been specified on the Chunk Strip side, vertex color data
cannot be output on the Chunk Vertex side. It is also not possible to have a nhormal line both in Chunk Vertex and
Chunk Strip. If normal line output has been specified on the Chunk Strip side, normal line data cannot be output
on the Chunk Vertex side.

The upper 8 bits of the Chunk Head (headbits) are used for the attribute flags (ChunkFlags) set for the material.

The abbreviations have the following meanings.

IL: Ignore light
IS: Ignore specular
IA: Ignore ambient
UA: Use alpha
DB: Double side
FL: Flat shading
ENV : Environment mapping

Flag STrip:
#define NOD_FST_SH FT 8
#define NOD FST IL (0x01<<NJD FST SH FT)
#define NOD FST IS (0x02<<NJD _FST_SH FT)
#define NOD FST_| A (0x04<<NJD _FST_SH FT)
#define NOD FST_UA (0x08<<NJD _FST_SH FT)
#define NOD FST_DB (0x10<<NJD_FST_SH FT)
#define NJD FST_FL (0x20<<NJD FST_SH FT)
#defi ne NOD_FST_ENV (0x40<<NJD FST_SH FT)
#defi ne NOD_FST_MASK (OxFF<<NJD FST_SH FT)

The Chunk Strip format is indicated below. Note that UserFlags are inserted in polygon units after index2. This is
because the first triangular polygon is created at the third point. From the 4th point and later, a triangular polygon
is created at every point. Each point is followed by a user flag.

No polygon vertex normal line, no vertex color, no texture:
[ChunkFlags(15-8) | ChunkHead(7-0)]
[shortsize(15-0)][UserOffset(15-14) | nbStrip(13-0)]
[flag(15) | len(14-0), index0(15-0),

index1(15-0),

index2, UserFlag2(*N), ...]

NGD-162

9. Chunk Model Specifications

No polygon vertex normal line, no vertex color, with texture:
[ChunkFlags(15-8) | ChunkHead(7-0)]
[shortsize(15-0)][UserOffset(15-14) | nbStrip(13-0)]
[flag(15) | len(14-0), index0(15-0), U0(15-0), V0(15-0),
index1, U1, V1,
index2, U2, V2, UserFlag2(*N), ...]
With polygon vertex normal line, no vertex color, no texture:
[ChunkFlags(15-8) | ChunkHead(7-0)]
[shortsize(15-0)][UserOffset(15-14) | nbStrip(13-0)]
[flag(15) | len(14-0), index0(15-0), vnx0(15-0), vny0(15-0), vhz0(15-0),
index1, vnx1, vnyl, vnyl,
index2, vnx2, vny2, vnz2, UserFlag2(*N),
index3, vnx2, vny2, vnz2, UserFlag3(*N), ...]
With polygon vertex normal line, no vertex color, with texture:
[ChunkFlags(15-8) | ChunkHead(7-0)]
[shortsize(15-0)][UserOffset(15-14) | nbStrip(13-0)]
[flag(15) | len(14-0),

index0(15-0), U0(15-0), V0(15-0),vnx0(15-0), vny0(15-0), vnz0(15-0),

index1, U1, V1, vnx1, vnyl, vnyl,

index2, U2, V2, vnx2, vny2, vnz2, UserFlag2(*N),

index3, U3, V3, vnx3, vny3, vnz3, UserFlag3(*N), ...]
No polygon vertex normal line, with vertex color, no texture:
[ChunkFlags(15-8) | ChunkHead(7-0)]

[shortsize(15-0)][UserOffset(15-14) | nbStrip(13-0)]

[flag(15) | len(14-0),

index0(15-0), ARO(15-0), GBO(15-0),

index1, AR1, GB1,

index2, AR2, GB2, UserFlag2(*N),

index3, AR3, GB3, UserFlag3(*N), ...]
No polygon vertex normal line, with vertex color, with texture;
[ChunkFlags(15-8) | ChunkHead(7-0)]

[shortsize(15-0)][UserOffset(15-14) | nbStrip(13-0)]

[flag(15) | len(14-0),

index0(16), U0(16), VO(16), ARO(16), GB0O(16),

index1, U1, V1, AR1, GB1,

index2, U2, V2, AR2, GB2, UserFlag2(*N), ...]

NGD-163

Ninja Guide

The following two types of UV value expressions are available: 0-255 UVN, and high-resolution 0-1023 UVH. UVN
is a conventional expression which has been used in Basic a Model. However, resolution suffers at sizes exceeding
256. With UVH and high-resolution mode, 1024 x 1024 texture can be specified in 1-pixel units. But compared to
UVN, the texture repeat count of UVH decreases proportionally to the increase in resolution (32 times for UVH vs.
128 times for UVN). UVN and UVH can be switched by convert option for the whole of model tree and also material
names can be used to switch at each model unit. In case that the UV value is specified by material name, UV value
expressions are changed by setting to only one material (among some materials used for single model). The default
is UVN.

UVN : Normal type Uv (0-255)
UVH : Hiresolution type Uv (0-1023)

In the same way as for Chunk Volume, the user flag area in Chunk Strip is allocated by the top 2 bits of nbStrip
(UserOffset). It is handled in 16-bit units (because "plsit" is a Sint16 primary array). Its size can be 16, 32, or 48 bits.

UserFlags Offset:

#define NOD_UFO SH FT 14

#define NOD_UFO 0O (0<<NJD_UFO SH FT)

#define NOD_UFO 1 (1<<NJD_UFO SH FT)

#define NJD_UFO 2 (2<<NJID_UFO SH FT)

#defi ne NOD_UFO 3 (3<<NJD_UFO SH FT)

#defi ne NOD_UFO MASK (Ox3<<NOID UFOSH FT) /* 0 - 3 */

NID UFO 0: UserF ags size 0

NID UFO 1: UserFl ags size 16 bits
NID_UFO 2: UserFl ags size 32 bits
NID UFO 3: UWserFl ags size 48 bits

ChunkName : ‘NJD_CS’
(Chunk Strip)

Outline:

Defines the polygon list in "plist”, without polygon vertex normal line, without vertex color, without
texture.

NGD-164

9. Chunk Model Specifications

Format:

[ChunkFlags(15-8) | ChunkHead(7-0)]
[shortsize(15-0)][UserOffset(15-14) | nbStrip(13-0)][Data]

ChunkFl ags:
NJD_FST_I L(Ignore light source), NJD_FST_| S(lgnore specular),
NJD_FST_I A(lgnore ambient), NJD_FST_UA?Use Alpha?,
NJD_FST_DB(Dual-sided), NJD_FST_FL (Flat shading),
NJD_FST_ENV(Environment mapping)

ChunkHead:
NJD CS

shortsi ze:
Offset until next chunk.

User O f set :
Gives user flag area size.

nbStri p:
Gives number of strip vertices.

Dat a:
[flag(15) | len(14-0), index0(15-0),
index1(15-0),
index2, UserFlag2(*N), ...]

Description:
#define NJD_CS (NJD_STRI POFF+0)

The flag specifies the triangular rotation direction (right rotation/left rotation) at the strip start. The Chunk Model
can switch between left and right rotation using a negative or positive prefix. Negative prefix means right rotation.
"len" indicates the number of vertices included in the strip. "index?" is the polygon vertex index. There is a user flag
area after the polygon index. The size of this area is determined by the UserOffset value (NJD_UFO_0: none;
NJD_UFQO 1: 16 bits; NJD_UFO_2: 32 bits; NJD_UFO_3: 48 bits). The library skips the user flag area without doing
anything. Mixed triangular/quadrilateral/N-sided polygon data are automatically divided into separate
triangular data and converted to strips for output.

ChunkName : ‘NJD_CS_UVN
(Chunk Strip UVN)

Outline:

Defines the polygon list in "plist”, without polygon vertex normal line, without vertex color, with texture.
The UV value is given by UVN (0 - 255).

NGD-165

Ninja Guide

Format:

[ChunkFlags(15-8) | ChunkHead(7-0)]
[shortsize(15-0)][UserOffset(15-14) | nbStrip(13-0)][Data]

ChunkFl ags:
NJD_FST_I L(Ignore light source), NJD_FST_| S(Ilgnore specular),
NJD_FST I A(lgnore ambient), NJD_FST_UA?Use Alpha?,
NJD_FST_DB(Dual-sided), NJD_FST_FL (Flat shading),
NJD_FST_ENV(Environment mapping)

ChunkHead:
NJD CS UWN

shortsi ze:
Offset until next chunk.

User O f set:
Gives user flag area size.

nbStri p:
Gives number of strip vertices.

Dat a:
[flag(15) | len(14-0), index0(15-0), UO(15-0), VVO(15-0),
index1, U1, V1,
index2, U2, V2, UserFlag2(*N), ...]

Description:
#define NOJD_CS_UWN (NJD_STR POFF+1)

The UV value is given by UVN (0 - 255). The flag specifies the triangular rotation direction (right rotation/left
rotation) at the strip start. The Chunk Model can switch between left and right rotation using a negative or positive
prefix. Negative prefix means right rotation. "len" indicates the number of vertices included in the strip. "index?" is
the polygon vertex index. There is a user flag area after the polygon index. The size of this area is determined by the
UserOffset value (NJD_UFO _0: none; NJD_UFO 1: 16 bits; NJD_UFO 2: 32 bits; NJD_UFQO_3: 48 bits). The library
skips the user flag area without doing anything. Mixed triangular/quadrilateral/N-sided polygon data are
automatically divided into separate triangular data and converted to strips for output.

ChunkName : ‘NJD_CS_UVH
(Chunk Strip UVH)

Outline:

Defines the polygon list in "plist”, without polygon vertex normal line, without vertex color, with texture.
The UV value is given by UVH (0 - 1023).

NGD-166

9. Chunk Model Specifications

Format:

[ChunkFlags(15-8) | ChunkHead(7-0)]
[shortsize(15-0)][UserOffset(15-14) | nbStrip(13-0)][Data]

ChunkFl ags:
NJD_FST_I L(Ignore light source), NJD_FST_| S(lgnore specular),
NJD_FST_I A(lgnore ambient), NJD_FST_UA?Use Alpha?,
NJD_FST_DB(Dual-sided), NJD_FST_FL (Flat shading),
NJD_FST_ENV(Environment mapping)

ChunkHead:
NJD CS UWVH

shortsi ze:
Offset until next chunk.

User O f set :
Gives user flag area size.

nbStri p:
Gives number of strip vertices.

Dat a:
[flag(15) | len(14-0), index0(15-0), U0(15-0), VVO(15-0),
index1, U1, V1,
index2, U2, V2, UserFlag2(*N), ...]

Description:
#define NIJD_CS_UWH (NJD_STRI POFF+2)

The UV value is given by UVH (0 - 1023). The flag specifies the triangular rotation direction (right rotation/left
rotation) at the strip start. The Chunk Model can switch between left and right rotation using a negative or positive
prefix. Negative prefix means right rotation. "len" indicates the number of vertices included in the strip. "index?" is
the polygon vertex index. There is a user flag area after the polygon index. The size of this area is determined by
the UserOffset value (NJD_UFO _0: none; NJD_UFO 1: 16 bits; NJD_UFO 2: 32 bits; NJD_UFO_3: 48 bits). The
library skips the user flag area without doing anything. Mixed triangular/quadrilateral/N-sided polygon data are
automatically divided into separate triangular data and converted to strips for output.

ChunkName : ‘NJD_CS_VWN’
(Chunk Strip VertexNormal)

Outline:

Defines the polygon list in "plist”, with polygon vertex normal line, without vertex color, without texture.

NGD-167

Ninja Guide

Format:

[ChunkFlags(15-8) | ChunkHead(7-0)]
[shortsize(15-0)][UserOffset(15-14) |[nbSt r i p(13-0)][Data]

ChunkFl ags:
NJD_FST_I L(Ignore light source), NJD_FST_| S(lgnore specular),
NJD_FST I A(lgnore ambient), NJD_FST_UA?Use Alpha?,
NJD_FST_DB(Dual-sided), NJD_FST_FL (Flat shading),
NJD_FST_ENV(Environment mapping)

ChunkHead:
NJD CS WN

shortsi ze:
Offset until next chunk.

User O f set:
Gives user flag area size.

nbStri p:
Gives number of strip vertices.

Dat a:
[flag(15)] len(14-0), index0(15-0), vnx0(15-0), vny0(15-0), vnz0(15-0),
index1, vnx1, vnyl, vnyl,
index2, vnx2, vny2, vnz2, UserFlag2(*N),
index3, vnx2, vny2, vnz2, UserFlag3(*N), ...]

Description:
#define NJD_ CS WN (NJD_STR PCFF+3)

The flag specifies the triangular rotation direction (right rotation/left rotation) at the strip start. The Chunk Model
can switch between left and right rotation using a negative or positive prefix. Negative prefix means right rotation.
"len" indicates the number of vertices included in the strip. "index?" is the polygon vertex index. There is a user flag
area after the polygon index. The size of this area is determined by the UserOffset value (NJD_UFO _0: none;

NJD_UFO _1:16 bits; NJD_UFO_2: 32 bits; NJD_UFO_3: 48 bits). The library skips the user flag area without doing

anything. Mixed triangular/quadrilateral/N-sided polygon data are automatically divided into separate triangular
data and converted to strips for output.

ChunkName : ‘NJD_CS_WVYN_VN
(Chunk Strip UVN VertexNormal)
Outline:

Defines the polygon list in "plist", with polygon vertex normal line, without vertex color, with texture. The
UV value is given by UVN (0 - 255).

NGD-168

9. Chunk Model Specifications

Format:

[ChunkFlags(15-8) | ChunkHead(7-0)]
[shortsize(15-0)][UserOffset(15-14) | nbStrip(13-0)][Data]

ChunkFl ags:
NJD_FST_I L(Ignore light source), NJD_FST_| S(lgnore specular),
NJD_FST_I A(lgnore ambient), NJD_FST_UA?Use Alpha?,
NJD_FST_DB(Dual-sided), NJD_FST_FL (Flat shading),
NJD_FST_ENV(Environment mapping)

ChunkHead:
NJD CS WWN VN

shortsi ze:
Offset until next chunk.. Based on IFF format.

User O f set :
Gives user flag area size.

nbStri p:
Gives number of strip vertices.

Dat a:
[flag(15)] len(14-0),
index0(15-0), U0(15-0), V0(15-0),vnx0(15-0), vny0(15-0), vnz0(15-0),
index1, U1, V1, vnx1, vnyl, vnyl,
index2, U2, V2, vnx2, vny2, vnz2, UserFlag2(*N),
index3, U3, V3, vnx3, vny3, vnz3, UserFlag3(*N), ...]

Description:
#define NJD_CS_UVN_WN (NJD_STRI POFF+4)

The UV value is given by UVN (0 - 255). The flag specifies the triangular rotation direction (right rotation/left
rotation) at the strip start. The Chunk Model can switch between left and right rotation using a negative or positive
prefix. Negative prefix means right rotation. "len" indicates the number of vertices included in the strip. "index?" is
the polygon vertex index. There is a user flag area after the polygon index. The size of this area is determined by
the UserOffset value (NJD_UFO _0: none; NJD_UFO 1: 16 bits; NJD_UFO 2: 32 bits; NJD_UFO_3: 48 bits). The
library skips the user flag area without doing anything. Mixed triangular/quadrilateral/N-sided polygon data are
automatically divided into separate triangular data and converted to strips for output.

ChunkName : ‘NJD_CS_UVH VN
(Chunk Strip UVH VertexNormal)

Outline:

Defines the polygon list in "plist", with polygon vertex normal line, without vertex color, with texture. The
UV value is given by UVH (0 - 1023).

NGD-169

Ninja Guide

Format:

[ChunkFlags(15-8) | ChunkHead(7-0)]
[shortsize(15-0)][UserOffset(15-14) |[nbSt r i p(13-0)][Data]

ChunkFl ags:
NJD_FST_I L(Ignore light source),NJD_FST_I| S(Ignore specular),
NJD_FST I A(lgnore ambient), NJD_FST_UA?Use Alpha?,
NJD_FST_DB(Dual-sided), NJD_FST_FL (Flat shading),
NJD_FST_ENV(Environment mapping)

ChunkHead:
NJD CS UVH WN

shortsi ze:
Offset until next chunk.

User O f set:
Gives user flag area size.

nbStri p:
Gives number of strip vertices.

Dat a:
[flag(15)] len(14-0),
index0(15-0), U0(15-0), V0(15-0),vnx0(15-0), vny0(15-0), vnz0(15-0),
index1, U1, V1, vnx1, vnyl, vnyl,
index2, U2, V2, vnx2, vny2, vnz2, UserFlag2(*N),
index3, U3, V3, vnx3, vny3, vnz3, UserFlag3(*N), ...]

Description:
#define NJD_ CS_UVH WN (NJD_STR POFF+5)

The UV value is given by UVH (0 - 1023). Note that the maximum repeat value possible with UVH (32 repetitions)
is lower than for UVN. The flag specifies the triangular rotation direction (right rotation/left rotation) at the strip
start. The Chunk Model can switch between left and right rotation using a negative or positive prefix. Negative
prefix means right rotation. "len" indicates the number of vertices included in the strip. "index?" is the polygon
vertex index. There is a user flag area after the polygon index. The size of this area is determined by the UserOffset
value (NJD_UFO _0: none; NJD_UFO 1:16 bits; NJD_UFO 2: 32 bits; NJD_UFO_3: 48 bits). The library skips the user
flag area without doing anything. Mixed triangular/quadrilateral/N-sided polygon data are automatically divided
into separate triangular data and converted to strips for output.

ChunkName : ‘NJD_CS_D8’
(Chunk Strip Diffuse ARGB8888)

Outline:

Defines the polygon list in "plist”, without polygon vertex normal line, with vertex color, without texture.

NGD-170

9. Chunk Model Specifications

Format:

[ChunkFlags(15-8) | ChunkHead(7-0)]
[shortsize(15-0)][UserOffset(15-14) | nbStrip(13-0)][Data]

ChunkFl ags:
NJD_FST_I L(Ignore light source),NJD_FST | S(Ignore specular),
NJD_FST_I A(lgnore ambient), NJD_FST_UA?Use Alpha?,
NJD_FST_DB(Dual-sided), NJD_FST_FL (Flat shading),
NJD_FST_ENV(Environment mapping)

ChunkHead:
NJD_CS D8

shortsi ze:
Offset until next chunk.

User O f set :
Gives user flag area size.

nbStri p:
Gives number of strip vertices.

Dat a:
[flag(15)] len(14-0),
index0(15-0), ARO(15-0), GB0(15-0),
index1, AR1, GB1,
index2, AR2, GB2, UserFlag2(*N),
index3, AR3, GB3, UserFlag3(*N), ...]

Description:
#define NOJD_CS D8 (NJD_STRI POFF+7)

The flag specifies the triangular rotation direction (right rotation/left rotation) at the strip start. The Chunk Model
can switch between left and right rotation using a negative or positive prefix. Negative prefix means right rotation.
"len" indicates the number of vertices included in the strip. "index?" is the polygon vertex index. There is a user flag
area after the polygon index. The size of this area is determined by the UserOffset value (NJD_UFO _0: none;
NJD_UFQO 1: 16 bits; NJD_UFO_2: 32 bits; NJD_UFO_3: 48 bits). The library skips the user flag area without doing
anything. Mixed triangular/quadrilateral/N-sided polygon data are automatically divided into separate
triangular data and converted to strips for output.

ChunkName : ‘NJD_CS_UVH D8’
(Chunk Strip UVH Diffuse ARGB8888)

Outline:

Defines the polygon list in "plist", without polygon vertex normal line, with vertex color, with texture. The
UV value is given by UVH (0 - 1023).

NGD-171

Ninja Guide

Format:

[ChunkFlags(15-8) | ChunkHead(7-0)]
[shortsize(15-0)][UserOffset(15-14) | nbStrip(13-0)][Data]

ChunkFl ags:
NJD_FST_I L(Ignore light source),NJD_FST_I| S(Ignore specular),
NJD_FST I A(lgnore ambient), NJD_FST_UA?Use Alpha?,
NJD_FST_DB(Dual-sided), NJD_FST_FL (Flat shading),
NJD_FST_ENV(Environment mapping)

ChunkHead:
NJD CS UVH D8

shortsi ze:
Offset until next chunk.

User O f set:
Gives user flag area size.

nbStri p:
Gives number of strip vertices.

Dat a:
[ChunkFlags(15-8) | ChunkHead(7-0)]
[bytesize(15-0)][UserOffset(15-14) | nbStrip(13-0)]
[flag(15)] len(14-0),
index0(16), U0(16), VO(16), AR0(16), GB0(16),
index1, U1, V1, AR1, GB1,
index2, U2, V2, AR2, GB2, UserFlag2(*N), ...]

Description:
#define NJD CS UVH D8 (NJD_STRI PCFF+8)

The UV value is given by UVH (0 - 1023). Note that the maximum repeat value possible with UVH (32 repetitions)
is lower than for UVN. The flag specifies the triangular rotation direction (right rotation/left rotation) at the strip
start. The Chunk Model can switch between left and right rotation using a negative or positive prefix. Negative
prefix means right rotation. "len" indicates the number of vertices included in the strip. "index?" is the polygon
vertex index. There is a user flag area after the polygon index. The size of this area is determined by the UserOffset
value (NJD_UFO_0: none; NJD_UFO _1: 16 bits; NJD_UFO _2: 32 bits; NJD_UFO_3: 48 bits). The library skips the user
flag area without doing anything. Mixed triangular/quadrilateral/N-sided polygon data are automatically divided
into separate triangular data and converted to strips for output.

NGD-172

9. Chunk Model Specifications

4 ASCII Output Precautions

This section contains precautions for Chunk Model .nja file output.

Because "vlist" uses a Sint32 array format, float values for vertex or vertex normal lines cannot be input as is.
Therefore ASCII output is expressed in hexadecimal notation. When wishing to have a value recognized as a float
value, use the converter option to output the float value as a comment.

In the Chunk Model, all flags are also output as character strings. Character strings were chosen to be non-common
and as short as possible. The character string appears unchanged in the .nja file, with the "NJD_" part removed. For
details, refer to the section on Nj Def .h.

NGD-173

Ninja Guide

NGD-174

EGA

10. Nindows Tutorial

1 Summary

Nindows is an easy to use GUI system for performing tasks essential to game development such as debugging and
adjusting parameters on the actual machine and the host machine.

1.1 Special Features of Nindows

You can use the same controls as those in Windows and other common GUIs.
Windows can be freely created in an application with the Nindows API.

Handy utilities can be used in debugging the Texture Viewer and other areas without
complicated programming.

Parameters adjusted with Nindows can be confirmed in real time, allowing rapid adjustment of
game balance.

Adjusted parameters can be saved to a file on the host machine or to backup memory on the actual machine.
(Not supported in this version)

NGD-175

Ninja Guide

2 Creating a Simple Nindows Application

This chapter explains how to integrate Nindows into an existing Ninja application. Nindows functions can be easily
enabled by adding just a few line changes to the source file.

2.1 Integrating Nindows

0.Preparing the Ninja application.

Get the source file which contains the functions nj User I ni t (), nj User Mai n(), and nj User Exi t ().

1.Include the Nindows header file
Add the following line to the source file.
#include <Nindows.h>
2.Call the Nindows initialization function
After the call to nj | ni t Text ur e(), add the following line.

nw ni t Syst em(numTextures);

numTextures is the number of texture memory lists.
It assigns the value specified in nj | ni t Text ur e().

* Assign the value that is added 3 to the number used in the application, as three textures are used for the
font of Nindows.

3.Call the function to execute Nindows

Change the last instance of return NJD_USER_CONTI NUE in nj User Mai n to the following line.
return nwExecute();

4. Call the function to exit Nindows

Before the call to nj Exi t Syst em() add the following line.
nwexi t Syst em();

5.Linking the Nindows Library

Add Nindows.lib to the project.

The preceding steps enable:

1. Use of Nindows' Nindows Utility
2.Calls to Nindows API functions

NGD-176

10. Nindows Tutorial

The result of the preceding steps is the following source code.

2.2 Description of Functions used in Integrating Nindows

Function Description

Nw ni t System Initializes the Nindows system
NWEXi t Syst em Exits the Nindows system
NwExecut e Draws all windows

N ni t Resour ce Loads textures used in Nindows

Table 2.1 List of functions used in integrating Nindows

nwinitSystem

For mat
Par anet er s
Ret urn val ue

Ref er ence
Not e

Exanpl e

Initialization function

voi d nw nit Syst en{ U nt 32 nunText ur es)
NunfText ur es Nunber of texture menory lists
None Function

Initializes the N ndows systemand enabl es N ndows utilities and N ndows
APl functions.

Pl ease assign the same val ue to nunTextures as was assigned in
nj I nitTexture().

NwExecut e(), nwexi t Systen(), nwl ni t Resource(), nj I nitTexture(), njdipZ()
Automatically | oads the textures used in N ndows.

Wien using the nj Rel easeAl | Texture() N nja function, call
nwl ni t Resource() and rel oad the textures.

N ndows reserves texture global index nunbers OxfffffffO to Oxfffffffe,
so applications cannot use textures stored in this range.

#def i ne MAX_TEXTURE 1000

static NJS TEXMEM.I ST texlist[MM _TEXTURE] ;

voi d nj Userl nit(void)

{

nj I ni t Systen{ NOD_RESCLUTI ON_ V@A, NID FRAMEBUFFER MCDE R@EB555, 1);
nj I ni t Ver t exBuf f er (500000, 0, 500000, O);

njInitTexture(texlist, MAX TEXTURE);

nwl ni t Syst e MAX_TEXTURE) ;

}

NGD-177

Ninja Guide

NWEXitSystem

For mat

Par aneters
Ret urn val ue
Functi on

Ref er ence
Not e

Exanpl e

nwEXxecute

For mat
Par anet er s

Ret urn val ue
NJD USER EXIT, in

Function
Ref er ence
Not e

as

Exanpl e

nwinitResource

For mat

Par aneters
Ret urn val ue
Functi on

Ref er ence
Not e

Exanpl e

Initialization function

voi d nwExi t Syst en(voi d)

None

None

Exi ts N ndows.

nj Exi t Syst em()

voi d nj User Exi t (voi d)
{

nwExi t Syst en() ;

nj Exi t System();

}

Execution Function

Si nt 32 nwExecut e(voi d)
None
If "Exit' is selected fromthe System Menu it returns

all other cases it returns NJD USER CONTI NUE.

Perfornms all N ndows drawi ng.

nj User Mai n()

Cal | once each frane.

Wien this function is called, the N ndows systemdraws al | w ndows.
As in the exanpl e bel ow, when the function's return value i s used

the return val ue for nj User Mai n(), the application can be exited by
selecting the "Exit' menu.

Sint 32 nj User Mai n(voi d)
{

return nwexecute();

}

Initialization Function

Voi d nwl ni t Resour ce(voi d)

None

None

Loads the textures used in N ndows

nwl ni t Systemn(), nj I nit Texture(), nj Rel easeText ure()

Wsual ly there is no need to use this function, but when
nj Rel easeTextureA | () is used as i n the exanpl e, the textures used

by N ndows are al so rel eased. Therefore, you should al ways cal |
this function after calling njRel easeTextureAl ().

nj Rel easeTextureA | ();
nwl ni t Resource();

NGD-178

10. Nindows Tutorial

3 Using Nindows and Nindows Utilities

3.1 Using Nindows

In section 2, the integration of Nindows was completed. When a Nindows integrated application (hereafter
Nindows application) is executed, the mouse cursor is displayed on the screen and moves on the screen in response

to mouse manipulation.

System Menu

When the right mouse button is clicked on the desktop, a popup menu is displayed. This is called the
System Menu from which menus can be selected to use Nindows utilities. The System Menu contains the

following items.

Menu Item Description

Debug Displays the Nindows Utility menu.

User(Undefined) Displays a user-defined menu. At the time of Nindows initialization, the User Menu is not
entered in the system, so it is displayed in a light color and cannot be selected.

Font Change Font

Exit Exits the application.

Table 2.2 List of System Menu items

Minja Info
Texture Yiewer
Feripheral Info
Window Info

Debus
Ferformance Meter

Figure 1.1 In this diagram, The System Menu is displayed with the right button and the "Debug" menu is selected

NGD-179

Ninja Guide

3.2 Nindows Utilities

The menu items that are displayed when "Debug" is selected from the System Menu are the Nindows utilities.
Nindows contains the following utilities.

Name Description

Ninja Info Displays the Ninja library version number, and other information.
Texture Viewer All of the textures which are read in can be displayed.
Peripheral Info Displays information about peripherals.

Window Info Displays information about the active windows

Debug Window A handy window for displaying debug messages.

Performance Meter Describes the application's drawing performance.

Table 2.3 List of Nindows Utilities

Ninja Info Window

Minja Info

Figure 1.2 Ninja Info Window

The following information is displayed in the Ninja Info Window.

Display Contents

Ninja Ver. Ninja library version number

Nindows Ver. Nindows version number

Vertex Number of vertices

Calc polygon Number of polygons

Draw polygon Number of draw polygons

Texture Memory Amount of Texture Memory available and total memory

NGD-180

10. Nindows Tutorial

Table 2.4 Information shown in the Ninja Info Window

Texture Viewer Window

GB166E

100000k

~ TWIDDLED
FId 40
sl ETTIZED

S IS I T

Figure 1.3 Texture Viewer Window

All entered textures can be viewed.

The textures can be changed via four buttons. The following information is displayed in the Texture

Viewer Window.

Display Contents

Texture Texture numbers and the total number of textures.

Globallndex Global Index

Address Texture addresses

Slze Texture size

PixelFormat Pixel format

SurfaceFlags Surface flag:
The highlighted items are the flags for the texture.Refer to the texture related
document for the details.

Memory Flag Similarly, this flag is set by the texture. Refer to the texture documentation for
details on this flag.

Error Code This error code is for texture loading. "OK" is displayed when loading succeeds.
Refer to the texture documentation for error code details.

Table 2.5 Texture Viewer Window Information

NGD-181

Ninja Guide

Peripheral Info Window

Fzripheral Info

IFart
Devy
1]
arr

Figure 1.4 Peripheral Info Window

Window which displays information about peripherals (input devices). Peripheral ports can be selected using the
[<] and [>] buttons.

The Peripheral Info Window displays the following information

Display Contents

Port Peripheral port name

Dev Name of the peripheral attached to the port
ON Info about the button being pressed

OFF Info about the button not being pressed

PRESS Info about the button the moment it is pressed
RELEASE Info about the button the moment it is released
X X axis value

Y Y axis value

Table 2.6 Info Displayed in the Peripheral Info Window

Window Info Window

Menu | popup
x 4hb8

¢ 154 h 24

Figure 1.5 Peripheral Info Window

NGD-182

10. Nindows Tutorial

Displays information about the window under the mouse cursor (the active window).

It can also be used for debugging things like application windows created with the Nindows API.

The Peripheral Info Window displays the following information.

Display Contents

Title of the active window

X,y Upper left coordinates of the window's client area

w,h Size of the window's client area

Table 2.7 Information Displayed in the Peripheral Info Window

*The x, y coordinates are not the absolute screen coordinates, it depends on the window style.

Debugging Window

Figure 1.6 Debugging Window

At first, nothing is displayed in this window.
Display the debugging characters using the nwDebugPrintf() function.
This function can be used in the same way as the standard printf() function.

For more details, please refer to the Edit Window chapter.

NGD-183

Ninja Guide

Performance Meter Window

Figure 1.7 Performance Meter Window

Provides an intuitive understanding of an application's performance (calculation, drawing speed).

If the meter revolves once per second, the frame rate is 60fps.
3.3 Changing Fonts

Select 'Font' from the System menu to select normal or large font size. If normal size is hard to read on an NTSC
monitor, select a larger font size.

* This version does not automatically resize the window according to changes in font size. If you change the
font, do so before opening another window after executing the application.

NGD-184

10. Nindows Tutorial

4 Windows
4.1 Summary

The window is the most fundamental element of Nindows. An application draws to the window's client area by
creating a window and specifying a drawing callback function. Or it can create controls such as another window, a
button, or scrollbar and control it as a child window.

Types of Windows and Window Classes

The following are the types of windows divided into Window Classes.

Window Class Window Type

ND WC WN Standard window

ND WC SCRW N Window with scrolling enabled in the client area

ND WC EDI TWN Edit window

ND WC SCRBAR Scrollbar control

NAD WC BUTTON Button control

ND W MENUW N Menu window

Table 2.8 Types of Windows and Window Classes

The next section will mainly discuss the Standard window.
4.2 Creating a Window
For example, let's create a window on the desktop which displays a counter in the client area. To create the window,

we will use the function nwCreateWindow().

Now, a window will be displayed on the screen at the specified location, and the counter display will be
incremented. Furthermore, the window will be displayed in the next frame after calling nwExecute() and the return
from njUserMain().

The window is destroyed by calling the function nwDestroyWindow() or by clicking on the close box in the caption
bar with the mouse. (Only windows which have N\D_W5_CONTROL specified in their window style have a close box.)

NGD-185

Ninja Guide

4.3 Creating a Child Window

The last argument in nwCreateWindow() is a window handle for a parent window. In the last example, this
argument was set to NULL, so we created a window which did not have a parent (actually, the Desktop Window is
a parent). The next example shows how to create a parent window and a child window.

When a parent window is destroyed using the nwDestroyWindow() function or by mouse operation, all of its child
windows are automatically destroyed. In this example, if the parent window hwndParent is destroyed, the child
window hWnd is also destroyed.

Furthermore, scrollbars (class N\D_WC SCRBAR), buttons (class N\\D_WC BUTTON) and menus (class
ND_WC MENUW N) cannot be specified as a parent window (they cannot have a child window). However, it is
possible for a menu to have a child menu (sub menu). For more details, please refer to chapter 9.

4.4 \Window Related Parameters

The window handle NWHWND is actually a pointer to the NW5_W N structure.

By directly setting this structure's members through the handle of the window created, the window can be made to
do various actions. Here we will discuss members which are useful to know and representative ways of using them.

Client drawing callback function hwnd->clientDraw
Used in the window creation example, it is the most representative member.

Usually, some kind of callback function address is set in this member, and the drawing to the client area is processed
within that callback function.

Destructor hwnd->destructor

If a function address is set in this member, it will be called back when the window is destroyed.
User Data hwnd->param1, hWnd->param?2

A Sint32 type member which can be freely set and referenced in the application.
User Data hwnd->userBuf

When you want to save a lot of user data, this data address is specified.

Please reserve a separate data buffer in the application.

4.5 Description of Window Support Functions

Function Description

nwCreateWindow Creates a window

nwDestroyWindow Destroys a window

Table 2.9 List of Functions for Creating Windows

NGD-186

10. Nindows Tutorial

Nindows API
nwCreateWindow

For mat
styl e,

hwidPar ent)
Par anet er s

Return val ue
wi ndow

Functi on
Ref er ence

Not e
itis

Exanpl e

Window Creation Functions

NAAWAD nwCr eat eW ndow(Si nt 32 wd ass, Sint8* caption, Sint32

Sint32 x, Sint32y, Sint32 w, Sint32 h, NHWWD

wd ass W ndow cl ass

caption Wndow nanme (caption)

style W ndow styl e

X,y Upper left coordinate of the client area
w, h Wdth and height of the client area

hWhdPar ent Par ent wi ndow handl e
I f successful, it returns the handl e of the windowcreated. If the

could not be created, NULL is returned.
Creates a w ndow

nwDest r oyW ndow() , nwQr eat eMenuW ndow() , nwQr eat eEdi t W ndow() ,
nwQr eat eScrol | Bar (), nwQr eat eBut t on()

NS WN structure
For creating menu wi ndows, edit w ndows, scrollbars, and buttons

recomrended to use the nore conveni ent
nwQ eat eMenuW ndow() , nwQr eat eEdi t Wndow(),
nwQr eat eScrol | Bar Array(), nwOr eat eButton() .

/] Oreates a w ndow
NHD hwWd;
hwd = nwQr eat eW ndow(D WC W N,
"Test W ndow',
ND W5 CAPTICN | NVD W5 BORDER | NWD WS SHADOW
50, 50, 100, 100,
NULL) ;

NGD-187

Ninja Guide

The following flags are set in the Window style.

Window Style Meaning

NAD WS _CAPTI ON Has a caption

ND W5 BCRDER Has a thin border line

NAD W5 TH CKFRAME Has a thick, resizable border line

NAD WS SHADI NG Window color can be set at each vertex

NAD WS CONTRCL Has a close box

NAD W5 SHADOW Window has a shadow

NAD W5 | NV S| BLE Creates an invisible window

NAD W5 NOMOVE Cannot be moved with the mouse

NAD W5 CFFSET Creates a window in a position (x, y) relative to the parent window

If N\\D_WC SCRBAR is specified in the Window class, please also specify one of the following flags.

Window Style Meaning

ND W5 SB HORZ Create a horizontal scrollbar
NAD W5 SB VERT Create a vertical scrollbar
nwDestroyWindow Window Creation Function
For mat voi d nwDest r oyW ndow(\WHWAD hWid)
Par anet er s hwhd the handl e of the wi ndow to be destroyed
Return val ue None
Functi on Destroys the w ndow
Ref er ence NWCr eat eW ndow() , \\&_WN structure
Not e If a callback function is set in hwid->desructor, it calls back
that function.
Exanpl e
/1 Destroys a w ndow
nwDest r oyW ndow(hwid) ;

NGD-188

10. Nindows Tutorial

Callback Functions

ClientDrawCallback

Window Callback Function

For mat Voi d dient DrawCal | back(NVHWD hwwd)

Par anet er s Hwd Handl e of the wi ndow where the cal | back ori gi nat ed
Return val ue None

Functi on An application defined function which a w ndow calls back for draw ng
Ref er ence nwQr eat eW ndow(), N\ WN structure

Not e

DestroyCallback

Window Callback Function

For mat voi d DestroyCal | back(NVHWWAD hWwhd)

Par aret er s hwid Handl e of the wi ndow where the call back ori gi nated
Return val ue None

Function Application defined function called back when a w ndow i s destroyed
Ref er ence nwDest r oyW ndow(), N\\& WN structure

Not e

4.6 Samples and a Description of Window Support Functions

In addition to nwCreateWindow() and nwDestroyWindow() the Nindows API has many functions to support the
management of windows. The sample below uses a joystick to move a window.

Function Description

nwH ndW ndow

Searches the window with the specified caption

nwF ndW ndowBy Pos

Searches the window in the specified location

nwCet A i ent Rect

Gets the rectangle of the specified window's client area

nwGet W ndowCol or

Gets the color of the specified window

nwCet W ndowPos

Gets the upper left coordinates of the specified window's client area

nwGet W ndowRect

Gets the overall rectangle of the specified window

nwCet W ndowSi ze

Gets the width and height of the specified window's client area

nwCet W ndowst yl e

Gets the style of the specified window

nwCGet W ndowText

Gets the caption string of the specified window

nwSet W ndowCol or

Changes the color of the specified window

nwSet W ndowPos

Sets the upper left coordinates of the client area and moved the specified window

nwSet W ndowSi ze

Changes the width and height of the specified window's client area

nwSet W ndowst yl e

Changes the window style of the specified window

nwSet W ndowText

Changes the caption string of the specified window

Table 2.10 List of Functions for Creating Windows

NGD-189

Ninja Guide

Nindows API
nwFindWindow Window Support Function
For mat NAAVAD nwH ndW ndow(NWHWAD hwid, Si nt 8% capti on)
Par aret er s Hwd The parent w ndow which starts searching for the w ndow
Capti on The caption string of the w ndow bei ng searched for
Return val ue If the windowis found, it returns its wi ndowhandl e elseit returns NULL.
Functi on Sear ches the specified parent wi ndow s child wi ndows for the w ndow
with the specified caption string
If you want to search all w ndows, specify NULL for the parent w ndow.
Ref er ence NwFi ndW ndowBy Pos()
Not e
Exanpl e !/ Searches all of the windows for the w ndow "Material W ndow'
hwid = nwFi ndW ndow(NULL, "Material Wndow');
nwFindWindowByPos Window Support Function
For mat NVAWD nwH ndW ndowByPos(Sint 16 x, Sint16 y)
Par aret er s X, Y Screen coor di nat es
Return val ue If the windowis found, it returns its w ndow handle else it
returns NULL.
Functi on Sear chs wi ndows whi ch are displayed in the specified screen
coordinates (X, y).
Ref er ence nwH ndW ndow
Not e
Exanpl e /1 Checks to see if the windowis displayed at the coordinates of
t he nouse cursor
NJS PER PHERAL* mouse = nj Get Peri pheral (NJD_PORT_SYSMOUSE) ;
i f (nwFi ndW ndowByPos(nouse->X, nouse->y) {
/1 The wi ndow is displayed
} else {
/1 The wi ndow is not displayed
}
nwGetClientRect Window Support Function
For mat Bool nwCet d i ent Rect (NVHWAD hwWwid, NWS_RECT* rect)
Par aret er s hwhd W ndow handl e
rect Addr ess which holds the rectangl e information
Return val ue If it succeeds, it returns TRJE, else it returns FALSE
Functi on Gets the rectangle of the window s client area
Ref er ence
Not e The rectangle it gets is the absol ute coordinates on the screen
wi thout any relation to the NWD W5 OFFSET flag i n the wi ndow styl e.
Exanpl e NWS_RECT rect;

nwCet d i ent Rect (hwWid, &rect);

NGD-190

10. Nindows Tutorial

nwGetWindowcColor Window Support Function
For mat Bool nwGet W ndowCol or (NWHWAD hwid, NW5_RGBA col [4])
Par anet er s hwid W ndow handl e
col Address of the NWs_RGBA structure array which gets the col or

Return val ue
Function

Ref er ence
Not e
Exanpl e

If it succeeds, it returns TRUE, else it returns FALSE
CGets the wi ndow col or.

The col or of the upper left vertex, upper right, lower right and | ower
left are stored in order fromcol [0].

NS _RGBA col [4];
nwGet W ndowCol or (hwid, col);

nwGetWindowPos Window Support Function

For mat
Par anet er s

Ret urn val ue

Bool nwGet W ndowPos(WD hWwid, Sint 32* x, Sint32* vy)
hwid W ndow handl e

X,y Address which stores the coordinat es

If it succeeds, it returns TRUE, else it returns FALSE

Functi on Gets the upper left coordinates of the windows client area

Ref er ence

Not e If NND W5 OFFSET is specified in the window style, the coordi nates are
relative to the parent w ndow.

Exanpl e Sint32 x, vy;
nwCGet W ndowPos(hwid, &x, &y);

nwGetWindowRect Window Support Function

For mat Bool nwGet W ndowRect (NWHWAD hwid, NWS_RECT* rect)

Par aret er s hwid W ndow handl e
rect Address which stores the rectangl e i nformati on

Return val ue

If it succeeds, it returns TRUE, else it returns FALSE

Functi on Gets the window s entire rectangl e, including the caption and border |ine

Ref erence

Not e The rectangle it gets is the absol ute coordi nates on the screen without
any relation to the N\D W5 CFFSET flag in the w ndow style.

Exanpl e NWS_RECT rect;
nwCGet W ndowRect (hwid, &rect);

nwGetWindowsSize Window Support Function

For mat Bool nwGet WndowS ze(NHWAD hWad, Sint32* w, Sint32* h)

Par arret er s hwid W ndow handl e

Ret urn val ue
Functi on

Ref erence
Not e

Exanpl e

w, h Address which stores the w dth and hei ght
If it succeeds, it returns TRJE, else it returns FALSE
Gets the width and height of the window s client area

Sint32 width, height;
nwCGet WndowSi ze(hwid, &wi dth, &height);

NGD-191

Ninja Guide

nwGetWindowStyle Window Support Function
For mat Bool nwGet Wndowst yl e(NWHWAD hwid, Sint 32* styl e)
Par anet er s hwid W ndow handl e
style Address which gets the style
Return val ue If it succeeds, it returns TRUE, else it returns FALSE
Functi on Gets the wi ndow style
Ref er ence
Not e
Exanpl e
Sint32 style; nwCGet W ndowst yl e(hwid, &style);

if (style & D W5 SHADOW {
[/ if it is a window wi th a shadow

}
nwGetWindowText Window Support Function
For mat S nt 32 nwGet W ndowst yl e(NWHWAD hwid, Sint8* caption, Sint32 size)
Par anet er s hwid W ndow handl e
caption Buf fer address which stores the w ndow caption string
si ze Buf fer size
Return val ue If it succeeds, it returns TRUE, else it returns FALSE
Functi on Gets the caption string displayed in the window s caption bar and
copies it to the buffer
Ref er ence
Not e
Exanpl e // Gets the wi ndow hWwid's in buf
Sint 8 buf[256];
nwCGet W ndowText (hwid, buf, sizeof (buf));
nwSetWindowColor Window Support Function
For mat Bool nwSet W ndowCol or (NWHWAD hwid, NWE_RGBA col [4])
Par arret er s hwid W ndow handl e
col Array address which stores the col or of each wi ndow vertex
Return val ue If it succeeds, it returns TRUE, else it returns FALSE
Function Changes the wi ndow s col or.
Pl ease specify the col or of the upper |eft vertex, upper right, |ower
right and lower left in order fromcol[0].
Ref er ence
Not e If NVWD W5 SHADING i s not specified in the windowstyle, the col or of
the upper left vertex is applied to all vertices.
Exanpl e NAS_RGBA col [4] = {

{255, 0, 0,255},// Color of the upper left vertex
{ 0,255, 0,255},// Color of the upper right vertex
{ 0, 0,255,255},// Color of the |ower right vertex
{ 0, 0, 0,255},// Color of the |lower |eft vertex
b

nwSet W ndowCol or (hwid, col);

NGD-192

10. Nindows Tutorial

nwSetWindowPos Window Support Function
For mat Bool nwSet W ndowPos(MWD hWwid, Sint32 x, Sint32 vy)
Par anet er s hwid W ndow handl e

X,y Woper left coordinates of the client area
Return val ue If it succeeds, it returns TRUE, else it returns FALSE
Functi on Changes the display coordinates of the w ndow.

The wi ndow noves so that the upper |eft coordinates of the client area
are at the point (x, y).

If NND W5 OFFSET is specified in the window style, the coordinates are
relative to the parent w ndow.

Ref er ence
Not e
Exanpl e /1 Moves the windowto the point (100, 50).
nwSet W ndowPos(hwid, 100, 50);
nwSetWindowsSize Window Support Function
For mat Bool nwSet WndowSi ze(VWD hwid, Sint32 w, Sint32 h)
Par aret er s HWd W ndow handl e
w, h Wdth and height of the client area
Return val ue If it succeeds, it returns TRUE, else it returns FALSE
Functi on Changes the size of the w ndow
(w,h) are the width and height of the client area
Ref erence
Not e
Exanpl e /1 Changes the width and height of the windows client area to (128, 64)
nwSet W ndowSi ze(hwid, 128, 64);
nwSetWindowStyle Window Support Function
For mat Bool nwSet Wndowstyl e(NWHWAD hwid, Sint32 and style, Sint32 or_style)
Par anet er s hwd W ndow handl e
and_styl e and style
or_style or style
Ret urn val ue If it succeeds, it returns TRUE, else it returns FALSE
Function Changes the wi ndow style
Ref er ence
Not e V& cannot guarantee what will happen if the w ndow cl ass and

ot her paraneters have conflicting settings.
Wien using the and_styl e please do not forget to attach a "

~ " as in the exanpl e.

> W& cannot guarantee what will happen if the NVWD W5 CONTRCL
flag is set in this function for a w ndow whi ch did not have

the NVID W5 CONTRCL flag set at the time it was created.
Exanpl e /1 Renoves the shadow fromthe w ndow and attached a caption
nwSet W ndowst yl e(hwid, ~ND W5 SHADOW ND W5 CAPTI QN) ;

NGD-193

Ninja Guide

NwSetWindowText

For mat Bool nwSet Wndowst yl e(VWD hWwid, Sint 8* capti on)

Par anet er s Hwd W ndow handl e

caption Pointer to the NULL terninal caption string
If it succeeds, it returns TRUE, else it returns FALSE
Changes the caption displayed in the wi ndow s caption bar.

Window Support Function

Return val ue
Functi on

Ref er ence
Not e

Exanpl e /1 Changes the window s caption to "New Caption"

nwSet W ndowText (hwid, "New Caption");

Structure

NWS_WIN Structure

Definition typedef struct _NWS WN {

Sint32 style;

Sint32 wd ass;

Sint8 *caption;

Sint32 font;

struct _NWS WN *parent;

struct _NVW& WN *chil d;

struct _NWB WN *bef ore;

struct _NWS_ WN *next;

Sint32 x, vy;

Sint32 w, h;

NWS_RGBA col [4];

NS _MSGHANDLE *nsgHandl e;

voi d *nenuTabl e;

voi d *user Buf;

void (*clientDraw) (struct _NAS WN * NWFUNC) ;

voi d (*execFunc) (struct _NVE WN *NWUNO) ;

void (*destructor) (struct _NAS WN NWUNC) ;

Sint32 paranil, paran?;

struct _NW8 WN- hd ose;

struct _NVWE WN- hMaxi m ze;

struct _NVW6 WN hM ni m ze;
} B WN
Menber s style W ndow styl e
wd ass W ndow cl ass
caption Caption string
f ont Font type

par ent Parent wi ndow handl e

child Chil d wi ndow handl e

bef ore Pr evi ous wi ndow handl e

next Next wi ndow handl e

X, Y Woper left coordinates of the client area
w, h Wdth and height of the client area

col Color of the 4 vertices

nsgHandl e Not used (reserved)

nmenuTabl e Menu tabl e

NGD-194

10. Nindows Tutorial

Descri ption
Ref er ence

NWS_RGBA

Definition

Description
Menber s

Ref er ence

NWS_RECT
Definition

Description
Menber s

Ref er ence

user Buf
client Draw
execFunc
destructor

paranl, paran®

hd ose
hMaxi m ze
hM ni m ze

} NWE_RGBA

The fundanent al
pointer to this structure.

Buf fer for
Addr ess of
Addr ess of
Addr ess of

user
client drawing call back function

wi hdow execution function

wi ndow destruction cal | back function

User paraneters
W ndow handl e of the cl ose box

Reserved
Reser ved

structure of all

wi ndows. The wi ndow handle is a

Structure

typedef struct _NWS REBA {
unt8 r;
unt8 g;
Unt8 b;
unt8 a;

It is mainly a structure that defines the wi ndow s color.

D T Q &

Red(0- 255)
G een(0- 255)
Bl ue(0- 255)

Transparency(0-255) 0is conpletely transparent, 255 is opaque
nwCGet W ndowCol or (), nwSet W ndowCol or ()

Structure

typedef struct _NWS RECT {

Sint32 left;
Sint 32 top;
Sint32 right;
Si nt 32 bottom
} NWE_RECT;
Structure which defines the rectangl e area on the screen.

left Left side
top Top side

ri ght R ght side
bot t om Bot t om si de

nwGet W ndowRect ()

NGD-195

Ninja Guide

5 Scroll Windows

5.1 Summary

A Scroll Window is a window which has the window class N\\D_WC SCRW N.

Scroll Windows, unlike normal windows, have a function which allows scrolling of the contents displayed in the
client area.

5.2 Creating a Scroll Window
A scroll window is created by using the function nwCreateWindow(), the same function used to create normal
windows. A scroll window is created by specifying N\D_WC SCRW N in the window class.

A scroll window created in this manner looks like a normal window, but the client area can be scrolled with the
mouse. Placing the mouse cursor in the client area and pressing the left button, the area can be freely scrolled by
moving the mouse. Immediately after creating the window, the client area can be scrolled up and down and left and
right, but it can also be set to only scroll up and down or only left and right.

Setting the window to only scroll up and down
nwScrWinEnableScroll(hwnd, N\\D_ES VERTI CAL);
Setting the window to only scroll left and right
nwScrWinEnableScroll(hwnd, N\D_ES HORI ZONTAL);
Setting the window to scroll up and down as well as left and right
nwScrWinEnableScroll(hwnd, N\D_ES VERTI CAL | N\D_ES HORI ZONTAL);
Setting the window to not scroll in any direction

nwScrWinEnableScroll(hwnd, 0);

5.3 Description of Functions Used to Create a Scroll Window

Function Description

nwScr W nEnabl eScr ol | Enables or disables scrolling in the scroll window
nwScrwWnSetd i p Sets the scrolling area of the scroll window
nwScr WnScr ol | Scrolls the scroll window

Table 2.11 List of Functions for Creating scroll windows

NGD-196

10. Nindows Tutorial

Nindows API
nwScrWinEnableScroll Scroll Window Function
For mat Bool nwScr W nEnabl eScrol | (NWHMD hwad, | ong fl ag)
Par aret er s hwid Wndow handl e of the scroll w ndow
flag The direction in which you want to enabl e scrolling
NWD_ES VERTI CAL Enabl e up/ down scrolling
NAD ES HOR ZONTAL Enabl e left/right scrolling
Return val ue If it succeeds, it returns TRUE, else it returns FALSE
Functi on Sets the scrolling direction of the scroll windows client area
Set the flag to O to disable scrolling in any direction
Set the flag to 1 to enable scrolling up/down and |eft/right.
Ref er ence NwScrWnSet i p(), nwscr WnScrol | ()
Not e This function's settings are only valid for scrolling with the nouse.
Scrolling via nwScrWnScrol I () is always valid in every direction.
Exanpl e// Enables scrolling in every direction
nwScr WnEnabl eScrol | (hwd, NAD_ES VERTI CAL | NWD_ES HORI ZONTAL) ;
nwScrWinSetClip Scroll Window Function
For mat Bool nwScrWnSet d i p(NVHWAD hwid, NW5_RECT* rect)
Par anet er s hwid Wndow handl e of the scroll w ndow
rect Rectangul ar area with scrolling enabl ed
Ret urn val ue If it succeeds, it returns TRUE, else it returns FALSE _
Function Sets the range of scrolling in the client area of the scroll w ndow
Ref er ence NwScr W nEnabl eScrol | (), nwScrWnScrol | ()
Not e This function's settings are only valid for scrolling with the nouse.

The initial value of the clipping area is an area nine (3x3) times the
size of the client area, centered on the client area.
Exanpl e /1 Sets the range of scrolling to (-10,-10)-(10, 10)
NAS_RECT rect = {-10, -10, 10, 10};
NwScrWnSet d i p(hwid, &rect);

NGD-197

Ninja Guide

nwScrWinScroll Scroll Window Function
For mat Bool nwScrWnScrol | (NWHWD hwd, Sint32 x, Sint32 y)
Par anet er s Hwd W ndow handl e of the scroll w ndow
X, Y Scrol ling val ue
Return val ue If it succeeds, it returns TRUE, else it returns FALSE
guncti on Scrolls the client area of the scroll w ndow by the specified nunber of
ots
Ref er ence NaScr W nEnabl eScrol | (), nwScrWnSet d i p()
Not e
Exanpl e //Scrolls up one dot at a tine
Si nt 32 nj User Mai n(voi d)
{

NWHWAD hwid = nwFi ndW ndow(NULL, "Scrol | Wndow');

if (hwd) {
nwScrWnsScrol | (hwid, 0, 1);

return nwkExecute();

}
nwScrWinGetScroll Scroll Window Function
For mat Bool nwScrWnGet Scrol | (NWHWAD hWid, Sint32* x, Sint32* y)
Par aret er s hwhd W ndow handl e of the scroll w ndow

X, Yy Poi nter which gets the scroll coordinates
Return val ue If it succeeds, it returns TRUE else it returns FALSE
Functi on CGets the present scrolling coordinates of the scroll w ndow
Ref er ence nwScr WnScrol | ()
Not e
Exanpl e //Sets scrolling

Sint32 x, vy;

nwScr WnGet Scrol | (hWid, &x, &y);
nwScr WnSet Scrol | (hwid, -x, -y);

NGD-198

10. Nindows Tutorial

6 Edit Windows

6.1 Summary

An Edit Window is a window which has the window class N\D_WC EDI TW Nand it includes the functions of a
scroll window(window class N\D_WC_SCRW N).

An edit window has the following special features.
It has a text buffer, text can be set and automatically displayed.
Several lines of text can be displayed.
The window's client area can also be made to scroll.

The Nindows utility "Debug Window" is created as an Edit Window.

6.2 Creating and Using an Edit Window

An Edit Window is created by calling the function nwCreateEditWindow().
Next, let's add some text to this window. This is accomplished by using the function nwEditwWinAddString().
The function nwEditWinPrintf() is also available to use in the same way as the printf() function.

As a result of the preceding operations, the following window will be displayed on the screen.

Edit Window 1 E

Figure 1.8 An example of creating an Edit Window

As text strings are added to the Edit Window and they cannot be displayed in the window's client area, the window
will automatically scroll.

Furthermore, the Edit Window also has the functionality of a Scroll Window, so the display contents of the client
area can be freely scrolled by dragging the mouse.

When the added text fills up the buffer, data will be erased from the beginning of the buffer.
An Edit Window is destroyed like any other window by using the function. nwDestroyWindow().

*In the present version of Nindows, text strings set using nwEditWinAddsString() and nwEditWinPrint() must have
the linefeed character "\n' at the end. Please note that if the linefeed character is not appended, the previously
entered text will not be displayed until text which includes the linefeed character is set using these functions.

NGD-199

Ninja Guide

6.3 Description of Functions Used in Creating Edit Windows

Function Description

NwCreateEditWindow Creates an Edit Window
NwEditWinAddString Adds text to an Edit Window
NwEditWinPrintf Adds text to the Edit Window in the printf() format

Table 2.12 List of Functions for Creating Edit Windows

Nindows API
nwCreateEditWindow Window Creation Function
For mat NAWD nwCr eat eEdi t Wndow(Sint 32 |ines, Sint8* caption, Sint32 style,
Sint32 x, Snt32y, Sint32 w, Sint32 h, NWAWAD hWidPar ent)
Par aret er s l'i nes Maxi mum nunber of text |ines
caption W ndow nare string (caption)
style W ndow styl e
X,y Upper left coordinate of the client area
w, h Wdth and height of the client area
hwWidPar ent Par ent wi ndow handl e
Ret urn val ue If successful, it returns the handl e of the created edit window, or if it
couldn't create an edit window it returns NULL.
Functi on Oeates an edit window and reserves a text buffer.
Ref er ence nwDest r oyW ndow() , nwQr eat eMenuW ndow() , nwQOr eat eEdi t W ndow() ,
nwQOr eat eScrol | Bar (), nwQr eat eBut t on()
NS WN structure
Not e
Exanpl e NVAWAD hWwid;
hWwd = nwCr eat eEdi t Wndow(500, "Edit W ndow',
NAD VWS CAPTION | NWD W5 CONTRCL | NVID W5 BCRDER | NWWD_ WS SHADI NG
50, 50, 150, 100, NULL);
nwEditWinAddString Edit Window Function
For mat Bool nwEdi t WnAddStri ng(NWAWAD hWwid, Sint8* string)
Par arret er s hwid Wndow handl e of the edit window that text is being added to
string Pointer to the text being added
Ret urn val ue If the text is successfully added, it returns TRUE, else it returns FALSE
Function Adds text to an edit w ndow and displays it.
Ref erence nwQr eat eEdi t Wndow(), nwedi t WnPrintf()
Not e
Exanpl e nwedi t WnAddSt ri ng(hwad, " AddText\n");

NGD-200

10. Nindows Tutorial

nwEditWinPrintf

For mat
Par anet er s

Return val ue
Function

Ref erence
Not e
Exanpl e

Edit Window Function

Bool nwEdi t WnPrintf(NVHWD hWwd, Sint8* fni, ...)
hwhd W ndow handl e of the edit windowthat text is being added to
fm printf() format text string

If the text is successfully added, it returns TRUE, else it returns FALSE
Adds text to an edit w ndow and displays it.

The printf() format can be used.

NWOr eat eEdi t Wndow() , nwedi t WnAddSt ri ng()

NwEdi t WnPrintf (hWwad, "i = %l\n", i);

6.4 Description of Functions Used in Nindows' Debug Window Utility

nwDebugPrintf

For mat

Par aret er s
Return val ue
Functi on

Ref er ence
Not e
Exanpl e

Edit Window Function

voi d nwDebugPrintf(Sint8* fm, ...)
fm printf() format text string
None

Adds text to the Debug wi ndow and displays it
The printf() format can be used.
NwEdi t WnPrintf ()

NwDebugPrintf("i = %l\n", i);

7 Scrollbar Controls

7.1 Summary

Scrollbars are controls which are very well suited to adjusting various numerical parameters. For example, they can
be used to change things such as backgrounds, the color of models, adjusting the movement speed of objects, and

various other uses.

7.2 Creating Scrollbar Controls

This example shows how to change a model's material (NJS_ARGB structure) using a scrollbar.

In this example, we first create a parent window called "Material Window" and then four scrollbars as its child
windows. This is the standard way to do it. When this is done, the following window is displayed.

H :'1‘|' P i A | ||||| i n |'| W

Figure 1.9 An example of creating a scrollbar control

The values of the NJS_ARGB structure members a,r,g,b change in response to manipulation of the scrollbar's knob.

When the "Material Window" is destroyed, its four child windows, the scrollbars, are automatically destroyed.

NGD-201

Ninja Guide

7.3 Description of Functions Used in Creating Scrollbar Controls

Function Description

NwCreateScrollBarArray Creates several scrollbar control together

Table 2.13 List of Functions Used in Creating Scroll Bar Controls

Nindows API
nwCreateScrollBarArray Scrollbar Function
For mat Bool nwOreat eScrol | Bar Array(NWs_SCRCLLBARLI ST* i st, NAWWD hWidPar ent)
Par anet er s list Pointer to the scrollbar |ist
hwidPar ent Par ent wi ndow handl e
Ret urn val ue If all the scrollbar controls were created, it returns TRUE, else it
returns FALSE.
Functi on O eates several scrollbar controls together and sets the paraneters.
Ref er ence Low | evel Scrollbar Function:

nwCr eat eScrol | Bar (), nwSet Scrol | Bar Pos(), nwSet Scr ol | Bar Range() , nwSet
Scrol | Bar Dat a() , nwSet Scr ol | Bar Li neMove(), nwSet Scr ol | Bar PageMove()

Not e This function is easier to use than creating scrollbars one by one and
setting their paraneters, but you cannot get the handl es of the scrollbars
that were created. Wsually there is no need to get the scroll bar handl es,
but if necessary pl ease use a |l ow | evel scrollbar function or search for
t he wi ndow usi ng nwFi ndW ndow() .

Exanpl e
Structure
NWS_SCROLLBARLIST Structure
Definition
typedef struct {
Sint32 n;
Sint32 style;
Sintl6 x, vy;
Sintl6 w h;

NS _SCRCLLBARI NFO* i nf o;
} NWE_SCROLLBARLI ST;

Description Wien creating scrollbars with the functi on nwO eat eScrol | Bar Array(),
it is needed with the NW6_SCROLLBARI NFO struct ure.
Menber s n Nurber of elenents in the NW5_SCRCLLBAR NFO array
style ND Wb SB HORZ for a horizontal scroll bar,
ND W5 SB VERT for a vertical scrollbar.
X, Y Di spl ay coordi nates of the first scrollbar (relative
to parent w ndow).
w, h Wdth and hei ght of one scroll bar.
info Array address of the NW5_SCROLLBARI NFO structure
Ref er ence NWS_SCRCLLBAR NFO NWS_DATA, nwQr eat eScrol | Bar Array()

NGD-202

10. Nindows Tutorial

NWS_SCROLLBARINFO Structure

Definition

Descri ption

Menber s

Ref er ence

NWS_DATA
Definition

Description
Menber s

Ref er ence

typedef struct {

Sint 8 capti on;
NWS_DATA dat a;

Fl oat mn, nax;
Fl oat |ine, page;
Fl oat pos;

} NWS_SCROLLBAR NFQ

Wien creating scrollbars with the function nwCGreateScrol | BarArray(), it
is needed with the N6 SCROLLBARLI ST structure. One of these structures
corresponds to one scrollbar. Usually used as an array to create several
scrol | bars toget her.

caption Scrol | bar caption strings.

dat a Pointer to the data structure associated with the scroll bar

mn The m ni mumval ue in the associ ated data.

nmax The maxi mum val ue in the associ ated data.

l'ine The amount of data changed when the scrollbar's arrowis clicked.
page The anount of data changed when the scroll area is clicked.

pos Initial value of the associated data.

NWS_SCRCLLBARLI ST, N\6_DATA, nwCr eat eScrol | Bar Array()

Structure

typedef struct _NWS DATA {

voi d *dt;

int type;

} NV _DATA

Data structure associated with a scroll bar

dt Pointer to the data.

type Data type. Specify fromthe table bel ow

Low | evel Scrollbar Function

Data Type Meaning

ND DI CHAR char(Sint8) data type
NAD_DT_SHORT short(Sint16) data type
ND_DT_LONG long(Sint32) data type
ND_DT_FLOAT float(Float) data type

ND DT UCHAR unsigned char(Uint8) data type
NAD_DT_USHCORT unsigned short(Uint16) data type
ND_DT_ULONG unsigned long(Uint32) data type

7.4 Creating Scrollbar Controls that Use Low-level Scrollbar Functions

Here we will discuss how to create the same material window using a more low-level function than the previously
described nwCreateScrollBarArray(). Those readers who are not interested in this example may skip to the next

chapter.

The code above will create a "Material Window" that looks and functions the same as the one in Diagram 7-1.

NGD-203

Ninja Guide

7.5 Description of Low-level Scrollbar Functions

Function Description

NwOr eat eScr ol | Bar Creates a scrollbar control

NwSet Scr ol | Bar Dat a Associates data with a scrollbar
NwSet Scr ol | Bar Range Sets the extent of the scrollbar
NwSet Scr ol | Bar Pos Sets the position of the scrollbar knob

NwSet Scr ol | Bar Li neMove Sets the distance to move when the scrollbar's arrow is clicked

NwSet Scr ol | Bar PageMove Sets the distance to move when the scrollbar's area is clicked.

Nindows API

nwCreateScrollBar

For mat

Par anet er s

Return val ue

Functi on
Ref er ence

Not e

Exanpl e

Table 2.14 List of Low-level Scrollbar Functions

Low-level Scrollbar Function

NWAWAD nwQr eat eScrol | Bar (Sint 32 type, Sint8 *caption,
Sint32 x, Snt32y, Sint32 w, Sint32 h, NWHAWD hWdParent) ;

type Hori zontal scrollbars are N\ID W5 SB HORZ, verti cal
scrol | bars are ND W5 SB VERT

caption Scrol | bar caption string

X, Y Coordi nates of scrollbar creation (relative to parent)

w, h Scrol | bar wi dth and hei ght

hwhdPar ent W ndow handl e of the parent w ndow

If successful in creating the scrollbar controls, it returns the w ndow
handl e of the created scrollbar controls, else it returns NJULL.

Creates scrollbar controls.
nwQr eat eScrol | Bar Array(),
Low 1 evel Scrollbar Function:

nwSet Scr ol | Bar Pos(), nwSet Scr ol | Bar Range() , nwSet Scr ol | Bar Dat a() , nwSet
Scrol | Bar Li neMove(), nwSet Scr ol | Bar PageMove()

Please initialize the settings of the scrollbars created using

nwSet Scr ol | Bar Pos() , nwSet Scr ol | Bar Range() , nwSet Scrol | Bar Dat a() .

NAWAD hScl = nwCreat eScrol | Bar (NMD W5 SB HORZ, "Al pha Srol |,
80, 3, 200, 11, hWdParent);

NGD-204

10. Nindows Tutorial

nwSetScrollBarData Low-level Scrollbar Function

For mat
Par anet er s

Return val ue

voi d nwSet Scrol | Bar Dat a(NWAWAD hScl, NWS_DATA* dat a)

hscl W ndow handl e of the scrollbar control
data Associ ated data structure
None

Functi on Associ ates data with the scrollbar control
Ref erence nwSet Scr ol | Bar Pos() , nwSet Scr ol | Bar Range()
nwSet Scr ol | Bar Li neMove(), nwSet Scr ol | Bar PageMove()
Not e
Exanpl e /'l Associates the long variable a with the scroll bar
l ong a;
NS _DATA data = {&, ND DI_LONG;
nwSet Scr ol | Bar Dat a(hW\d, &dat a) ;
nwSetScrollBarRange Low-level Scrollbar Function
For mat voi d nwSet Scrol | Bar Range(WD hScl, Float mn, Float nax)
Par anet er s hscl Wndow handl e of the scrollbar control
mn M ni nrum val ue of the data associated with the scroll bar
max Maxi mum val ue of the data associated with the scroll bar
Ret urn val ue None

Functi on Sets the range of the scroll bar
Ref er ence nwSet Scr ol | Bar Pos(), nwSet Scrol | Bar Dat a() , nwSet Scr ol | Bar Li neMove(),
nwSet Scr ol | Bar PageMove()
Not e
Exanpl e /l Sets the range to (-30 ~ 30)
nwSet Scr ol | Bar Range(hwd, -30.f, 30.f);
nwSetScrollBarPos Low-level Scrollbar Function
For mat voi d nwSet Scrol | Bar Pos(NWHW\D hScl, Fl oat pos)
Par aret er s hScl Wndow handl e of the scrollbar control
pos Val ue of the data associated with the scroll bar
Return val ue None

Functi on
Ref erence

Not e
Exanpl e

Sets the value of the data associated with the scroll bar

nwSet Scr ol | Bar Range() , nwSet Scr ol | Bar Dat a() , nwSet Scr ol | Bar Li neMove(),
nwSet Scr ol | Bar PageMove()

Used when setting the initial data val ue when the scrollbar is created.
/1l Sets the initial data value to O
nwSet Scr ol | Bar Pos(hwd, 0.f);

NGD-205

Ninja Guide

nwSetScrollBarLineMove Low-level Scrollbar Function
For mat voi d nwSet Scrol | Bar Li neMove(NWHWAD hScl, Fl oat step)
Par anet er s hscl Wndow handl e of the scrollbar control
step Step val ue
Return val ue None
Functi on Sets the anount of data changed when the scrollbar arrows are pressed
Ref er ence nwSet Scr ol | Bar Range() , nwSet Scr ol | Bar Dat a() , nwSet Scr ol | Bar Pos(),
nwSet Scr ol | Bar PageMove()
Not e The default is 1.0
Exanpl e /1 Sets the anount of data changed when the scroll bar arrowis pressed to 2

nwSet Scr ol | Bar Li neMove(2.) ;

nwSetScrollBarPageMove Low-level Scrollbar Function
For mat voi d nwSet Scr ol | Bar PageMove(NWHWAD hScl, Fl oat st ep)
Par arret er s hScl Wndow handl e of the scrollbar control
step Step val ue
Return val ue None
Function Sets the anount of data changed when the scrollbar's area is clicked
Ref er ence nwSet Scr ol | Bar Range() , nwSet Scr ol | Bar Dat a() , nwSet Scr ol | Bar Pos(),
nwSet Scr ol | Bar Li neMove()
Not e The default is 10.0
Exanpl e I/ Sets the anmount of data changed when the scrollbar areais clickedto 5

nwSet Scr ol | Bar Li neMove(5. f);

NGD-206

10. Nindows Tutorial

8 Button Controls
8.1 Summary
A button is a control which produces a callback when clicked and can be used for many purposes. Buttons are

convenient for many uses such as a toggle switch for application flag variables, an interface for choosing one object
out of a group, etc.

8.2 Creating a Button Control

As an example, we will create a sample which selects the textures used in environment mapping by using "Back"
and "Next" buttons.

As a result of the previous code, the following texture selection window is displayed.

Figure 1.10 Example Creation of a Texture Selection Window

When the "Back" and "Next" buttons are clicked, the specified callback functions are called, and the value of the
variable texno is changed. In response, the texture used in the environment mapping also changes.

When the texture selection window is destroyed, its child windows, the two buttons, are also automatically
destroyed.

8.3 Button Validity and Invalidity

In the preceding example, the "Back" and "Next" buttons are always valid, a callback will always work when they
are clicked. However, depending on the situation, there is a need to do things like disable a button. Let's modify the
previous sample to add that kind of operation.

The operation to be added will make the "Back" button invalid when the buttons are created and check the texture
number in the button's parent window callback function to set the two buttons to valid or invalid. In order to do
this, we should make the buttons' window handles into global variables.

To set the buttons to valid or invalid, we will use the function nwEnableButton().
Operation to make the button valid

nwEnableButton(button, TRUE);
Operation to make the button invalid

nwEnableButton(button, FALSE);

The text on an invalid button is displayed with a light color and even if the button is clicked, the animation and
callback will not work.

NGD-207

Ninja Guide

8.4 Description of Functions for Button Controls

Function Description

nwCreateButton Creates a button control
nwEnableButton Switches a button's validity and invalidity
Table 2.15 List of Functions for Creating Button Controls
Nindows API
nwCreateButton Button Function
For mat NWHAD nwQOr eat eBut t on(NWF_BUTTONFUNC func, Sint8 *capti on,

Par anet er s

Return val ue

Functi on
Ref er ence
Not e
Exanpl e

nwEnableButton

For mat
Par anet ers

Return val ue
Function

Ref erence
Not e
Exanpl e

Sint32 x, Snt32y, Sint32 w Sint32 h, NWHAWWD hWdParent) ;

func Button cal | back function

caption Text displayed on the button surface

X, Y Coordi nates where the button is created (relative to parent)
w, h Wdth and hei ght of button

hwidParent W ndow handl e of parent w ndow

If the button creation is successful, it returns the w ndow handl e, el se
it returns NULL.

Oeates button control s.

nwEnabl eBut t on() , nwbest r oyW ndow() ,

A button which has just been created is valid.

I/l COreates an "OK' button

NWAWAD button = nwQOr eat eBut t on(but t on_cal | back_back,
"K', 3, 20, 48, 13, hwidParent);

Button Function

voi d nwEnabl eBut t on(NVWHWAD hwid, Bool fl ag)

hwhd Button's wi ndow handl e
flag If the button is valid it is TRU, else FALSE
None

Sets a button to valid or invalid. Aninvalid button has text displ ayed
inalight color and will not work even if clicked.

nwQr eat eBut t on()

A button which has just been created is valid.
/1 Make a button invalid

nwEnabl eBut t on(button, FALSE);

NGD-208

10. Nindows Tutorial

Callback Function

ButtonCallback Button Callback Function
For mat voi d ButtonCal | back(NVHWAD hWwhd)
Par aret er s hwid Button handl e where the call back ori gi nat ed
Return val ue None
Function Application defined function which is called back when the button
is clicked.
Ref er ence nwCr eat eBut t on() , nwEnabl eBut t on()
Not e
9 Menus

9.1 Summary

Nindows has an API for creating popup menus like common GUI systems.

The most representative menu in Nindows is the System Menu, but inside this menu is an item labeled "User
(undefined)" in light colored text.

Ninia Iafo
Texture Yiewer

Feripheral Info

Yindow Info
Debug Window
Performance Heter

Figure 1.11 The "User (undefined)" item in the System Menu

This menu item is for setting user defined menus. By creating a menu table and entering it into this item, user
defined menus can be easily used. This chapter discusses how to create and enter menu tables. It will also cover
how to create windows that popup directly without entering them in the System Menu.

9.2 Creating and Entering Menu Tables
Menu tables are created as an array of NW6_VENUTABLE. The following is an example of the simplest menu table

with one item.

To enter this menu table into the System Menu's "User(undefined)" item, we will use the function
nwSetUserMenu().

By calling this function the light colored "User(undefined)" item has changed to "User >" and the "Test Menu 1"
which was entered pops up as a sub-menu.

Debus

Mernu 1

Figure 1.12 Condition where the user menu has been entered (1)

NGD-209

Ninja Guide

When this menu is selected, the callback function menu_callback() set in the menu table is called back.
menu_callback() isn't doing any processing, so nothing happens. This callback function will be explained in the
next section.

Let's look at a more complex example of a menu table.
If this table is entered in the same way using nwSetUserMenu(), you get the following menu.

Furthermore, when a new menu is entered using nwSetUserMenu(), the previously entered menu table is
overwritten and the new menu is enabled.

Debu

Figure 1.13 Condition where the user menu has been entered (2)
The entry of a user menu is deleted in the following way.

Once again, the display changes to a lightly colored "User(undefined)" and the user menu cannot be selected.

9.3 Menu Callback Functions

Menu callback functions are user defined functions, entered in the menu table, which are called back when the
menu is selected. In the previous example the function menu_callback() was a callback function.

static void menu_callback(NWHWND hWndMenu, Sint32 idx, Sint32 param)

The window handle of the menu window where the callback originated is passed to hwndMenu. There is usually
no need to do this.

The parameter idx is the numerical position of the selected menu item in the menu, starting from 0. This can be used
to tell which menu item has been selected in such cases where you want to process several menu items with the
same callback function.

param is a parameter defined by the user in the menu table. In the same way, this is used when you want to process
several menu items with one callback function.

9.4 Checkmarks

Checkmarks can be displayed on the left side of the menu item text strings. Checkmarks are useful for telling the
user if an item is valid or if it is being selected. The diagram shows the Nindows utility "Ninja Info" when it is
selected. The checkmark to the left of the "Ninja Info" item name shows that the "Ninja Info" window is being
displayed. If the "Ninja Info" window is closed, the checkmark will disappear.

Huilinia Info
Texture Yiewer

Peripheral Info |

Window Info
Debug Window
Ferformance Meter

Figure 1.14 Checkmark Example

NGD-210

10. Nindows Tutorial

The display of the checkmarks is turned on and off by directly setting the type member in the menu table. In the
example, the checkmark for the top item in the menu table called menu_table is switched.

Display checkmark
menu_table[0].type |= NW\D_M-_CHECKED;
Hide checkmark
menu_table[0].type &= ~NWD_M-_CHECKED;
Let's look at a more concrete example.

This menu table is entered with nwSetUserMenu() and when "Test Window" is selected, it performs the window
creation and destruction and then switches the checkmarks.

The reason why the window destructor (hWnd->destrctor)is set and inside that the checkmarks are erased is
because there are cases where windows are destroyed by methods other than menu selection. The following code
looks correct, but in cases such as when the close box is clicked and the window is destroyed, the checkmark is not
erased.

9.5 Description of Functions for Entering User Menus

Function Description

nwSet User Menu Enters a user menu in the System Menu

Table 2.16 List of Functions for Entering User Menus

Nindows API

nwSetUserMenu Menu Function

For mat voi d nwSet User Menu(N\6_VENUTABLE* nenuTbl)

Par aret er s nenuTbl Array address of the nenu table structure

Return val ue None

Functi on Enters user nenus as popup rmenus in the "User"” itemof the System Menu.
If the argunment is specified as NULL, the previously entered nenu
i s destroyed.

Ref er ence Not e

Exanpl e nwSet User Menu(user _nenu) ;

NGD-211

Ninja Guide

Callback Function

MenucCallback Menu Function
For mat voi d MenuCal | back(NVHWMAD hwid, Sint32 idx, Sint32 paran)
Par aret er s hwid W ndow handl e of the nenu w ndow where the cal | back ori gi nat ed
i dx I ndex of the selected nenu itemin the menu table
par am Paranmeter set in the nenu table
Return val ue None
Functi on Wser defined function called back by the menu w ndow when the menu is
sel ect ed.
Ref er ence
Not e
Exanpl e
Structure
NWS_MENUTABLE Structure
Definition
typedef struct _NWS MENUTABLE {
Sint 32 type;
Sint8 *title;

NWF_MENUHANDLE f unc;
Si nt 32 param
} NW&_MENUTABLE;

Description Defines the contents of the nenu when a user menu is entered with the
nwSet User Menu() function or when a menu windowis created with the
nwCr eat eMenu() function.

Menber s type Menu itemtype
title Menu itemtext
func Cal | back function for when the nenu is sel ected
par am Par aret er passed to the call back function
Ref er ence
Menu Type Flag Meaning
NWD_M-_NCRIVAL Normal menu item. Cannot be specified at the same time with ND_M-_PCPUP, N\D_M-_SEPARATCR
ND M- PCPUP Has a popup sub-menu. Cannot be specified at the same time with NAD_MF_NCRVAL, NWD_MF_SEPARATCR

NWD_M-_SEPARATCR Separator. Cannot be specified at the same time with N\D_M-_NCRVAL, N\D_M-_PCPUP.

ND_ M- CHECKED Has a checkmark.

NWD_M-_GRAYED Item displayed with a light color, cannot be selected.

NGD-212

10. Nindows Tutorial

9.6 Creating Popup Menus

Creating a Simple Popup Menu

Up until now, we have discussed how to set a user menu in the System Menu, but there is also a method
for creating popup menus which appear on the screen without being entered in the System Menu. This is
done with the function nwCreateMenuWindow().

Here, the following popup menu is displayed on the screen.

Tezt Menu 1

Figure 1.15 Popup Menu
The menu window we created will automatically be destroyed when a menu item is selected or the mouse is clicked
outside the menu window area.

Creating a Popup Menu that Stays on the Screen

Because the menu window will automatically be destroyed when a menu item is selected or when the
mouse is clicked outside the menu window area, the menu can only be selected once at most. It will be
necessary to use nwCreateMenuWindow() and make the same menu.

The following code shows how to make a menu which stays on the screen

Every frame it checks to see if the menu window already exists and if it doesn't it recreates it. In this way, the popup
menu appears to stay on the screen.

9.7 Description of Functions Used in Creating Popup Menus

nwCreateMenuWindow Menu Function
For mat NHWD nwCr eat eMenuW ndow(NWS_MENUTABLE *nenuTbl , Sint8 *capti on,
Sint32 x, Sint32y, NHWD hWwdParent);

Par anet er s nenu Array address of the nenu table structure

Return val ue If successful, it returns the window handl e of the newy created nmenu
wi ndow, else it returns NULL.

Function Oreates a popup nenu w ndow.

Ref er ence nwDest r oyW ndow() , \\&_MENUTABLE st ruct ure

Not e

Exanpl e NHWD hWwid = nwCr eat eMenu(menu_t bl , " MENU',

100, 100, NULL);

NGD-213

Ninja Guide

10 Mouse
10.1 Summary

Nindows does not have any special functions for the mouse. Getting the coordinates of the mouse cursor, button
information is done with the Ninja functions.

10.2 Getting Mouse Information

Mouse information is acquired by using the Ninja function njGetPeripheral(). Please refer to the following example.

If you want to know what window is at the mouse cursor coordinates, do the following.

10.3 Description of Functions Used for Getting Mouse Information

Here we will focus on Ninja peripheral functions and structures for the mouse.

Function

Description

njGetPeripheral

Gets information about peripherals

Nindows API
njGetPeripheral

For mat
Par anet er s

Ret urn val ue
Functi on

Ref er ence
Not e

Exanpl e

Table 2.17 List of Functions for Entering User Menus

Ninja Function

NJS _PER PHERAL* nj Get Peri pheral (1 ong port)
port Peri pheral port nunber

Pl ease specify NIJD PORT_SYSMOUSE to get information
about the nouse

Address of the structure which stores the nouse infornation
Gets information about the nouse.
NJS PERI PHEAL structure

This can be called many tines per frane, but the information is changed
as the frane i s updated.

Si nt 32 nj User Mai n(voi d)

{
NJS PER PHERAL* nouse = nj Get Peri pheral (NJD_PCRT_SYSMOUSE) ;

NGD-214

10. Nindows Tutorial

Structure
NJS_PERIPHERAL Ninja Structure
Definition typedef struct {
Unt32 id;
U nt 32 on;
U nt 32 of f;
uni on {
U nt 32 push;
U nt 32 press;
H
uni on {
U nt32 pul |;
U nt 32 rel ease;
H
Sint16 x;
Sint16 vy;
Sint1l6 z;
Sintl6 r;
Sint16 u;
Sint16 v;
Si nt 8* nane;
voi d* extend;
U nt32 ol d;
} NIS_PER PHERAL;
Description This structure is not defined by N ndows, it is a Nnja structure. It
stores information about joysticks, the keyboard, rmouse and ot her
i nput devi ces.
Menber s id Peri pheral | D{NJD_DEV_SYSMOUSE)
on The bit corresponding to the pressed button is 1.
of f The bit corresponding to the pressed button is 0.
push, press The bit corresponding to the button the nonment it is
pressed is 1.
pul |, rel ease The bit corresponding to the button the noment it is
pressed is O.
X, Y The nouse coordi nates are stored.
zZ, r, u, Vv Unused (reserved)
nane Peri pheral nane
ext end Unused (reserved)
old Reser ved
Ref er ence nj Get Peri pheral ()

NGD-215

Ninja Guide

11 Fonts
11.1 Overview

Fonts can be changed only by selecting 'Font' from the Nindows System menu. This version supports only functions
to acquire the typeface, width and height of a selected font.

11.2 Description of Font Functions

Function Purpose

nwGetFontSize Get the width and height of a font

Table 2.18 User Menu Input-Related Function List.

Nindows API

nwGetFontSize Font Function

Synt ax Sint 32 nwCet Font Sl ze(Si nt 32* wi dth, Sint32* hei ght

Par anet er s wi dt h, hei ght Pointers to get font wdth and hei ght

Return Val ue Sel ected font typeface

Pur pose Get the typeface, width and height of the font selected on the
Syst em nenu.

Ref er ence

Renar ks

Exanpl e Sint32 width, height;

nwCet Font Si ze(&wi dt h, &hei ght);
11.3 Problems with Changing Fonts

Nindows does not automatically resize the window according to changes in font size. Also, parts of special
windows and Properties controls may not display correctly with large font sizes.

NGD-216

	Ninja Guide
	Table of Contents
	1. View Function
	1 Initialization method
	1.1 Use njInitView().
	1.2 Directly set VIEW structure members.

	2 View movement and rotation
	3 Notes for using old View functions
	3.1 The detail of the caution 1)
	3.2 The detail of the caution 2)
	3.3 The correct/incorrect examples using old View functions.

	2. Reminders of Ninja Motion
	1 Concept of motions in Ninja
	2 Procedure to produce motions in Ninja

	3. How to Realize an Effective�Strip
	1 What is a strip?
	2 The way of connecting vertices of a strip
	3 Material and Texture
	4 Comparison of expressions of a strip
	5 Index type structure
	5.1 Direct expression structure of vertices

	6 Data reduction rate by strip

	4. Basic Model Specification
	1 Overview
	2 Model Structures
	2.1 Description of Structures

	3 Model Structures
	3.1 Meshsets
	3.2 Texture Structures
	3.3 Ninja Attributes
	3.4 Texture Format

	5. Motion Specification
	1 Overview
	2 Object Structure
	2.1 Basic object structure
	2.2 Chunk object structure
	2.3 Explanation of evalflags

	3 Camera Structure
	4 Light Structure
	5 Motion Structures
	5.1 Explanation of Structure

	6 Object Motion
	6.1 Explanation of Structure

	7 Camera Motion
	8 Light Motion
	9 Other Information

	6. NINJA LIGHT
	1 How to set LIGHT
	1.1 void njCreateLight(NJS_LIGHT*, Int)
	1.2 void njDeleteLight(NJS_LIGHT*)
	1.3 void njLightOff(NJS_LIGHT*)
	1.4 void njLightOn(NJS_LIGHT*)
	1.5 void njMultiLightMatrix(NJS_LIGHT*, NJS_MATRIX*)
	1.6 void njSetLight(NJS_LIGHT*)
	1.7 void njSetLightAlpha(NJS_LIGHT*, Float)
	1.8 void njSetLightAngle(NJS_LIGHT*, NJS_Angle, NJS_Angle)
	1.9 void njSetLightColor(NJS_LIGHT*, Float, Float, Float)
	1.10 void njSetLightDirection(NJS_LIGHT*, Float, Float, Float)
	1.11 void njSetLightIntensity(NJS_LIGHT*, Float, Float, Float)
	1.12 void njSetLightLocation(NJS_LIGHT*, Float, Float, Float)
	1.13 void njSetLightRange(NJS_LIGHT*, Float, Float)
	1.14 void njSetUserLight(NJS_LIGHT*, NJF_LIGHT_FUNC*)
	1.15 void njUnitLightMatrix(NJS_LIGHT*)
	1.16 void njTranslateLightV(NJS_LIGHT*, NJS_VECTOR*)
	1.17 void njTranslateLight(NJS_LIGHT*, Float, Float, Float)
	1.18 void njRotateLightX(NJS_LIGHT*, NJS_Angle)
	1.19 void njRotateLightXYZ(NJS_LIGHT*, NJS_Angle, NJS_Angle,�NJS_Angle)
	1.20 void njRotateLightY(NJS_LIGHT*, NJS_Angle)
	1.21 void njRotateLightZ(NJS_LIGHT*, NJS_Angle)
	1.22 Macro
	1.23 How to use
	1.24 LIGHTstructure Specification
	1.25 The members of NJS_LIGHT structure
	1.26 The members of NJS_LIGHT_ATTR structure
	1.27 The members of NJS_LIGHT_CAL structure

	7. Scroll Guide
	1 Revision Information
	1.1 Ver.0.04
	1.2 Ver.0.05

	2 Image Units as Related to Scrolling
	2.1 Overview
	2.2 Image Units

	3 Scroll Rotation, Resizing, and Movement
	3.1 Overview
	3.2 Scroll Rotation, Resizing, and Movement

	4 Scroll Programming
	4.1 Overview
	4.2 Example of Programming a Scroll

	5 Color
	5.1 Overview
	5.2 Color Mode

	6 Scroll function, Structures, and Definitions
	6.1 Overview
	6.2 Scroll–related Functions
	6.3 Scroll–related Structure
	6.4 Scroll-related Definitions
	6.5 Texture Structures for Use in Cell Programming

	8. Texture Guide
	1 Terminology
	1.1 Overview

	2 Creating Textures
	2.1 Overview
	2.2 PVR Format
	2.3 Category Code
	2.4 Color Format

	3 Memory
	3.1 Overview
	3.2 Texture Memory
	3.3 Cache

	4 Loading Textures
	4.1 Overview
	4.2 Flowchart of Texture Loading
	4.3 Setting a Texture Buffer
	4.4 Setting Cache Buffer
	4.5 Creating a Texture List
	4.6 Texture Numbers
	4.7 Global Index Number
	4.8 Automatic allocation of Global Index Number
	4.9 Texture Load Error
	4.10 Memory Texture
	4.11 Render Texture

	5 Texture functions, Structures, and Definitions
	5.1 Overview
	5.2 Texture Functions
	5.3 Texture Structures
	5.4 Texture Definitions

	6 Sample Program
	6.1 Overview
	6.2 Sample

	7 Notes for Texture functions
	7.1 Overview
	7.2 Notes for Switchover from SET2 to SET4/SET5
	7.3 Notes for using texture functions in SET5

	9. Chunk Model Specifications
	1 Overview
	1.1 Chunk Model Features

	2 Model Structures
	2.1 Structure Diagram

	3 Chunk Specifications
	3.1 Chunk Types
	3.2 Chunk Structure
	3.3 Chunk NULL
	3.4 Chunk End
	3.5 Chunk Bits
	3.6 Chunk Tiny
	3.7 Chunk Material
	3.8 Chunk Vertex
	3.9 Chunk Volume
	3.10 Chunk Strip

	4 ASCII Output Precautions

	10. Nindows Tutorial
	1 Summary
	1.1 Special Features of Nindows

	2 Creating a Simple Nindows Application
	2.1 Integrating Nindows
	2.2 Description of Functions used in Integrating Nindows

	3 Using Nindows and Nindows Utilities
	3.1 Using Nindows
	3.2 Nindows Utilities
	3.3 Changing Fonts

	4 Windows
	4.1 Summary
	4.2 Creating a Window
	4.3 Creating a Child Window
	4.4 Window Related Parameters
	4.5 Description of Window Support Functions
	4.6 Samples and a Description of Window Support Functions

	5 Scroll Windows
	5.1 Summary
	5.2 Creating a Scroll Window
	5.3 Description of Functions Used to Create a Scroll Window

	6 Edit Windows
	6.1 Summary
	6.2 Creating and Using an Edit Window
	6.3 Description of Functions Used in Creating Edit Windows
	6.4 Description of Functions Used in Nindows' Debug Window Utility

	7 Scrollbar Controls
	7.1 Summary
	7.2 Creating Scrollbar Controls
	7.3 Description of Functions Used in Creating Scrollbar Controls
	7.4 Creating Scrollbar Controls that Use Low-level Scrollbar Functions
	7.5 Description of Low-level Scrollbar Functions

	8 Button Controls
	8.1 Summary
	8.2 Creating a Button Control
	8.3 Button Validity and Invalidity
	8.4 Description of Functions for Button Controls

	9 Menus
	9.1 Summary
	9.2 Creating and Entering Menu Tables
	9.3 Menu Callback Functions
	9.4 Checkmarks
	9.5 Description of Functions for Entering User Menus
	9.6 Creating Popup Menus
	9.7 Description of Functions Used in Creating Popup Menus

	10 Mouse
	10.1 Summary
	10.2 Getting Mouse Information
	10.3 Description of Functions Used for Getting Mouse Information

	11 Fonts
	11.1 Overview
	11.2 Description of Font Functions
	11.3 Problems with Changing Fonts

