

Dreamcast
GNUPro

™

 Toolkit
Embedded Systems

Important Information

This documentation has been provided courtesy of CYGNUS. The contents are applicable to GNUProª Toolkit
development, however, all references to development support offered by CYGNUS should be ignored.

Technical support for this product as it applies to the Sega Dreamcastª development environment should be
directed to Sega Third Party Developer Technical Support at 415/701-4060. Future updates and/or additional
information may also be found at SegaÕs DTS Website at,

http//:www.dts.sega.com/NextGen

Frontispiece

ii ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

Copyright © 1991-1998 Cygnus.

All rights reserved.

GNUPro™, the GNUPro™ logo and the Cygnus logo are all trademarks of Cygnus.

All other brand and product names are trademarks of their respective owners.

Permission is granted to make and distribute verbatim copies of this documentation,
provided the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this documentation
under the conditions for verbatim copying, provided also that the entire resulting
derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this documentation into
another language, under the above conditions for modified versions.

This documentation has been prepared by Cygnus Technical Publications; contact the
Cygnus Technical Publications staff: doc@cygnus.com .

Part #: 300-400-101000047

CYGNUS GNUPro Tools for Embedded Systems ■ iii

Frontispiece

GNUPro Warrant y
The GNUPro Toolkit is free software, covered by the GNU General Public License,
and you are welcome to change it and/or distribute copies of it under certain
conditions. This version of GNUPro Toolkit is supported for customers of Cygnus.

For non-customers, GNUPro Toolkit software has NO WARRANTY.

Because this software is licensed free of charge, there are no warranties for it, to the
extent permitted by applicable law. Except when otherwise stated in writing, the
copyright holders and/or other parties provide the software “as is” without warranty of
any kind, either expressed or implied, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. The entire risk as to
the quality and performance of the software is with you. Should the software prove
defective, you assume the cost of all necessary servicing, repair or correction.

In no event, unless required by applicable law or agreed to in writing, will any
copyright holder, or any other party who may modify and/or redistribute the program
as permitted above, be liable to you for damages, including any general, special,
incidental or consequential damages arising out of the use or inability to use the
program (including but not limited to loss of data or data being rendered inaccurate or
losses sustained by you or third parties or a failure of the program to operate with any
other programs), even if such holder or other party has been advised of the possibility
of such damages.

Frontispiece

iv ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

How to Contact C ygnus
Use the following means to contact Cygnus.

Cygnus Headquarters
1325 Chesapeake Terrace
Sunnyvale, CA 94089 USA
Telephone (toll free): +1 800 CYGNUS-1
Telephone (main line): +1 408 542 9600
Telephone (hotline): +1 408 542 9601
FAX: +1-408 542 9699
(Faxes are answered 8 a.m.–5 p.m., Monday through Friday.)
email: info@cygnus.com
Website: www.cygnus.com .

Cygnus United Kingdom
36 Cambridge Place
Cambridge CB2 1NS
United Kingdom
Telephone: +44 1223 728728
FAX: +44 1223 728728
email: info@cygnus.co.uk/

Cygnus Japan
Nihon Cygnus Solutions
Madre Matsuda Building
4-13 Kioi-cho Chiyoda-ku
Tokyo 102-0094
Telephone: +81 3 3234 3896
FAX: +81 3 3239 3300
email: info@cygnus.co.jp
Website: http://www.cygnus.co.jp/

Use the hotline (+1 408 542 9601) to get help, although the most reliable way to
resolve problems with GNUPro Toolkit is by using email:

bugs@cygnus.com .

CYGNUS GNUPr0 Tools for Embedded Systems ■ v

Contents

GNUPro Warranty...iii
How to Contact Cygnus... iv

Using GNU tools on embedded systems ..1
Invoking the GNU tools..2

gcc , the GNU compiler..2
cpp , the GNU preprocessor...2
gas , the GNU assembler..3
ld , the GNU linker...3
.coff for object file formats..3
binutils , the GNU binary utilities...3
gdb , the debugging tool..5
libgloss , newlib and libstd++ , the GNU libraries...5

crt0 , the main startup file...7
The linker script..11
I/O support code..14
Memory support..15
Miscellaneous support routines...16

Overview of supported targets for cross-development17
Hitachi H8/300, H8S, H8/300H development ..19

Compiling for H8/300, H8S and H8/300H...20

Contents

vi ■ GNUPr0 Tools for Embedded Systems GNUPro Toolkit

Using C++...20
Predefined preprocessor macros...21

Assembler options for H8/300, H8S and H8/300H..22
Calling conventions for H8/300, H8S and H8/300H..24
Debugging for H8/300, H8S and H8/300H...25
Loading on specific targets...28

Hitachi SH development ..31
Compiling on SH targets...32

Compiler options for SH..32
Preprocessor macros for SH targets..34
Assembler options for SH targets...35
Calling conventions for SH targets...37
Debugging on SH targets..38

MIPS development ...41
Compiling on MIPS targets...42

Compiler options for MIPS..42
Options for architecture and code generation for MIPS...42
Compiler options for floating point for MIPS...44
Floating point subroutines...44

Preprocessor macros for MIPS targets..46
Assembler options for MIPS targets...47

Assembler options for listing output for MIPS..47
Assembler listing-control directives for MIPS...48
Special assembler options for MIPS..48
Assembler directives for debugging information...49
MIPS ECOFF object code...49
Options for MIPS ECOFF object code..50
Directives for MIPS ECOFF object code..50
Registers used for integer arguments for MIPS...50
Registers used for floating-point arguments for MIPS..51
Calling conventions for integer arguments for MIPS..51
Calling conventions for floating-point arguments for MIPS...................................51

Debugging on MIPS targets..52
Linking MIPS with the GOFAST library..54

Full compatibility with the GOFAST library for MIPS...55

Motorola m68k development ..57
Compiling for m68k targets...58

Options for floating point..58
Floating point subroutines...59

CYGNUS GNUPr0 Tools for Embedded Systems ■ vii

Contents

Preprocessor macros for m68k targets..59
Assembler options for m68k targets...60

Assembler options for listing output..60
Assembler listing-control directives..61
Calling conventions for m68k targets...61

Debugging on m68k targets...62
PowerPC development ...65

Compiling for PowerPC targets..66
Floating point subroutines for PowerPC...73
Preprocessor macros for PowerPC targets...73

Assembler options for PowerPC targets...74
Debugging PowerPC targets...76

The stack frame..77
Argument passing..79
Function return values...79

SPARC, SPARClite development ...81
Compiling for SPARC targets...83

Compiler options for SPARC...83
Options for floating point for SPARC and SPARClite...84
Floating point subroutines for SPARC and SPARClite...84

Preprocessor macros for SPARC targets...85
Assembler options for SPARC targets..86

Assembler options for listing output for SPARC, SPARClite..................................86
Assembler listing-control directives for SPARC, SPARClite...................................87
Assembler options for the SPARClite..87
Calling conventions for SPARC and SPARClite..88

Debugging SPARC and SPARClite targets..89
Loading on specific targets for SPARC, SPARClite..91

Index ... 93

Contents

viii ■ GNUPr0 Tools for Embedded Systems GNUPro Toolkit

CYGNUS GNUPro Tools for Embedded Systems ■ 1

Usin g GNU tools
on embedded s ystems

The following GNUPro tools can be run on embedded targets.

■ gcc , the GNUPro Toolkit compiler (see “gcc, the GNU compiler” on page 2)

■ ccp , the GNU C preprocessor (see “cpp, the GNU preprocessor” on page 2)

■ gas , the GNUPro Toolkit assembler (see “gas, the GNU assembler” on page 3)

■ ld , the GNUPro Toolkit linker (see “ld, the GNU linker” on page 3)

■ binutils , the GNUPro Toolkit directory of utilities (see “binutils, the GNU
binary utilities” on page 3)

■ gdb , the GNUPro Toolkit debugger (see “gdb, the debugging tool” on page 5)

■ libgloss , the support library for embedded targets and newlib , the C library
developed by Cygnus (see “libgloss, newlib and libstd++, the GNU libraries” on
page 5)

See the following documentation for more discussion on using the GNU tools.

■ “Invoking the GNU tools” on page 2

■ “crt0, the main startup file” on page 7

■ “The linker script” on page 11

■ “I/O support code” on page 14

■ “Memory support” on page 15

■ “Miscellaneous support routines” on page 16

1

Invoking the GNU tools

2 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

Invokin g the GNU tools
gcc invokes all the required GNU passes for you with the following utilities.
■ cpp

The preprocessor which processes all the header files and macros that your target
requires.

■ gcc

The compiler which produces assembly language code from the processed C files.
For more information, see Using GNU CC in GNUPro Compiler Tools.

■ gas

The assembler which produces binary code from the assembly language code and
puts it in an object file.

■ ld

The linker which binds the code to addresses, links the startup file and libraries to
the object file, and produces the executable binary image.

There are several machine-independent compiler switches, among which are, notably,
-fno-exceptions (for C++), -fritti (for C++) and -T (for linking).

You have four implicit file extensions: .c , .C , .s , and .S . For more information, see
Using GNU CC in GNUPro Compiler Tools.

gcc , the GNU compiler
When you compile C or C++ programs with gnu C, the compiler quietly inserts a call
at the beginning of main to a gcc support subroutine called __main . Normally this is
invisible—you may run into it if you want to avoid linking to the standard libraries, by
specifying the compiler option, -nostdlib . Include -lgcc at the end of your compiler
command line to resolve this reference. This links with the compiler support library
libgcc.a . Putting it at the end of your command line ensures that you have a chance
to link first with any of your own special libraries.

__main is the initialization routine for C++ constructors. Because GNU C is designed
to interoperate with GNU C++, even C programs must have this call: otherwise C++
object files linked with a C main might fail. For more information on gcc , see Using
GNU CC in GNUPro Compiler Tools.

cpp , the GNU preprocessor
cpp merges in the #include files, expands all macros definitions, and processes the
#ifdef sections. To see the output of cpp , invoke gcc with the -E option, and the
preprocessed file will be printed on stdout .

CYGNUS GNUPro Tools for Embedded Systems ■ 3

gas , the GNU assembler

There are two convenient options to assemble handwritten files that require C-style
preprocessing. Both options depend on using the compiler driver program, gcc ,
instead of calling the assembler directly.

■ Name the source file using the extension .S (capitalized) rather than .s . gcc
recognizes files with this extension as assembly language requiring C-style
preprocessing.

■ Specify the “source language” explicitly for this situation, using the gcc option,
-xassembler-with-cpp .

For more information on cpp , see The C Preprocessor in GNUPro Compiler Tools.

gas , the GNU assembler
gas can be used as either a compiler pass or a source-level assembler.

When used as a source-level assembler, it has a companion assembly language
preprocessor called gasp . gasp has a syntax similar to most other assembly language
macro packages.

gas emits a relocatable object file from the assembly language source code. The
object file contains the binary code and the debug symbols.

For more information on gas , see Using AS in GNUPro Utilities.

ld , the GNU linker
ld resolves the code addresses and debug symbols, links the startup code and
additional libraries to the binary code, and produces an executable binary image.

For more information on ld , see Using LD in GNUPro Utilities.

.coff for object file formats
.coff is the main object file format when using the tools on embedded target systems.
For more information on object files and object file formats, see The GNU Binary
Utilities in GNUPro Utilities.

binutils , the GNU binary utilities
The following are the binary utilities, although they are not included on all hosts: ar ,
nm, objcopy , objdump , ranlib , size , strings , and strip .

For more information on binutils , see The GNU Binary Utilities in GNUPro
Utilities.

The most important of these utilities are objcopy and objdump .

binutils , the GNU binary utilities

4 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

objcopy

A few ROM monitors, such as a.out , load executable binary images, and,
consequently, most load an S-record. An S-record is a printable ASCII
representation of an executable binary image.

S-records are suitable both for building ROM images for standalone boards and
for downloading images to embedded systems. Use the following example’s input
for this process.

objcopy -O srec infile outfile

infile in the previous example’s input is the executable binary filename, and
outfile is the filename for the S-record.

Most PROM burners also read S-records or some similar format. Use the
following example’s input to get a list of supported object file types for your
architecture.

objdump -i

For more information on S-records, see the discussions for
FORMAToutput-format in the documentation for “MRI comptible files” and the
discussion for “BFD” in Using LD in GNUPro Utilities. For more discussion of
making an executable binary image, see “objcopy ” in The GNU Binary Utilities
in GNUPro Utilities.

objdump

objdump displays information about one or more object files. The options control
what particular information to display. This information is mostly useful to
programmers who are working on the compilation tools, as opposed to
programmers who just want their program to compile and work.

When specifying archives, objdump shows information on each of the member
object files. objfile... designates the object files to be examined.

A few of the more useful options for commands are: -d , -disassemble and
--prefix-addresses .
-d
--disassemble

Displays the assembler mnemonics for the machine instructions from objfile .
This option only disassembles those sections that are expected to contain
instructions.

--prefix-addresses

For disassembling, prints the complete address on each line, starting each output
line with the address it’s disassembling. This is the older disassembly format.
Otherwise, you only get raw opcodes.

CYGNUS GNUPro Tools for Embedded Systems ■ 5

gdb , the debugging tool

gdb , the debugging tool
To run gdb on an embedded execution target, use a gdb backend with the gdb standard
remote protocol or a similar protocol. The most common are the following two types
of gdb backend.

■ A gdb stub
This is an exception handler for breakpoints, and it must be linked to your
application. gdb stubs use the gdb standard remote protocol.

■ An existing ROM monitor used as a gdb backend
The most common approach means using the following processes.
� With a similar protocol to the gdb standard remote protocol.
� With an interface that uses the ROM monitor directly. With such an interface,

gdb only formats and parses commands.

For more information on debugging tools, see Debugging with GDB in GNUPro
Debugging Tools.

Useful debugging routines
The following routines are always useful for debugging a project in progress.
■ print()

Runs standalone in libgloss with no newlib support. Many times print()
works when there are problems that make printf() cause an exception.

■ outbyte()

Used for low-level debugging.
■ putnum()

Prints out values in hex so they are easier to read.

libgloss , newlib and libstd++ , the GNU
libraries

GNUPro Toolkit has three libraries: libgloss , newlib and libstd++ .
libgloss

libgloss , the library for GNU Low-level OS Support, contains the startup code,
the I/O support for gcc and newlib (the C library), and the target board support
packages that you need to port the GNU tools to an embedded execution target.

The C library used throughout this manual is newlib , however libgloss could
easily be made to support other C libraries. Because libgloss resides in its own
tree, it’s able to run standalone, allowing it to support GDB’s remote debugging
and to be included in other GNU tools.

libgloss , newlib and libstd++ , the GNU libraries

6 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

Several functions that are essential to gcc reside in libgloss . These include the
following functions.

� crt0 , the main startup script (see “crt0, the main startup file” on page 7)
� ld, the linker script (see “The linker script” on page 11)
� I/O support code (see “I/O support code” on page 14)

newlib

The Cygnus libraries, including the C library, libc , and the C math library, libm .
libstd++

The C++ library in development by Cygnus.

CYGNUS GNUPro Tools for Embedded Systems ■ 7

crt0 , the main startup file

crt0 , the main startup file
The crt0 (C RunTime 0) file contains the initial startup code.

Cygnus provides a crt0 file, although you may want to write your own crt0 file for
each target. The crt0 file is usually written in assembler as ‘crt0.S ’, and its object
gets linked in first and bootstraps the rest of your application. The crt0 file defines a
special symbol like _start , which is both the default base address for the application
and the first symbol in the executable binary image.

If you plan to use any routines from the standard C library, you’ll also need to
implement the functions on which libgloss depends. The crt0 file accomplishes the
following results. See “I/O support code” on page 14.

■ crt0 initializes everything in your program that needs it.
This initialization section varies. If you are developing an application that gets
downloaded to a ROM monitor, there is usually no need for special initialization
because the ROM monitor handles it for you. If you plan to burn your code in a
ROM, the crt0 file typically does all of the hardware initialization required to run
an application. This can include things like initializing serial ports and running a
memory check; however, results vary depending on your hardware.

The following is a typical basic initialization of crt0.S .

1. Set up concatenation macros.
#define CONCAT1(a, b) CONCAT2(a, b)
#define CONCAT2(a, b) a ## b

Later, you’ll use these macros.

2. Set up label macros, using the following example’s input.
#ifndef __USER_LABEL_PREFIX__
#define __USER_LABEL_PREFIX__ _
#endif

#define SYM(x) CONCAT1 (__USER_LABEL_PREFIX__, x)

These macros make the code portable between coff and a.out . coff
always has an __ (underline) prepended to the front of its global
symbol names. a.out has none.

3. Set up register names (with the right prefix), using the following
example’s input.

#ifndef __REGISTER_PREFIX__
#define __REGISTER_PREFIX__
#endif

/* Use the right prefix for registers. */
#define REG(x) CONCAT1 (__REGISTER_PREFIX__, x)

crt0 , the main startup file

8 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

#define d0 REG (d0)
#define d1 REG (d1)
#define d2 REG (d2)
#define d3 REG (d3)
#define d4 REG (d4)
#define d5 REG (d5)
#define d6 REG (d6)
#define d7 REG (d7)
#define a0 REG (a0)
#define a1 REG (a1)
#define a2 REG (a2)
#define a3 REG (a3)
#define a4 REG (a4)
#define a5 REG (a5)
#define a6 REG (a6)
#define fp REG (fp)
#define sp REG (sp)

Register names are for portability between assemblers. Some register
names have a % or $ prepended to them.

4. Set up space for the stack and grab a chunk of memory.
.set stack_size, 0x2000 .
comm SYM (stack), stack_size

This can also be done in the linker script, although it typically gets done
at this point.

5. Define an empty space for the environment, using the following
example’s input.

.data

.align 2
SYM (environ):

.long 0

This is bogus on almost any ROM monitor, although it’s best generally
set up as a valid address, then passing the address to main() . This way,
if an application checks for an empty environment, it finds one.

6. Set up a few global symbols that get used elsewhere.
.align 2
.text
.global SYM (stack)

.global SYM (main)

.global SYM (exit)

.global __bss_start

This really should be __bss_start , not SYM (__bss_start .

__bss_start needs to be declared this way because its value is set in
the linker script.

CYGNUS GNUPro Tools for Embedded Systems ■ 9

crt0 , the main startup file

7. Set up the global symbol, start , for the linker to use as the default
address for the .text section. This helps your program run.

SYM (start):
link a6, #-8
moveal #SYM (stack) + stack_size, sp

■ crt0 zeroes the .bss section
Make sure the .bss section is cleared for uninitialized data, using the following
example’s input. All of the addresses in the .bss section need to be initialized to
zero so programs that forget to check new variables’ default values will get
predictable results.

moveal #__bss_start, a0
moveal #SYM (end), a1
1:
movel #0, (a0)
leal 4(a0), a0
cmpal a0, a1
bne 1b

Applications can get wild side effects from the .bss section being left uncleared,
and it can cause particular problems with some implementations of malloc() .

■ crt0 calls main()

If your ROM monitor supports it, set up argc and argv for command line
arguments and an environment pointer before the call to main() , using the
following example’s input.

For g++, the code generator inserts a branch to __main at the top of your main()
routine. g++ uses __main to initialize its internal tables and then returns control to
your main() routine.

For crt0 to call your main() routine, use the following example’s input. First, set
up the environment pointer and jump to main() . Call the main routine from the
application to get it going, using the following example’s input with
main (argc, argv, environ) , using argv as a pointer to NULL.

pea 0
pea SYM (environ)
pea sp@(4)
pea 0

jsr SYM (main)
movel d0, sp@-4

■ crt0 calls (exit)

After main() has run, the crt0 file cleans things up and returns control of the
hardware from the application. On some hardware there is nothing to return
to—especially if your program is in ROM— and if that’s the case, you need to do
a hardware reset or branch back to the original start address.

crt0 , the main startup file

10 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

If you’re using a ROM monitor, you can usually call a user trap to make the ROM
take over. Pick a safe vector with no sides effects. Some ROM’s have a built-in
trap handler just for this case.

Implementing (exit) here is easy.. First, with _exit , exit from the application.
Normally, this causes a user trap to return to the ROM monitor for another run.
Then, using the following example’s input, you proceed with the call.

SYM (exit):
trap #0

Both rom68k and bug can handle a user-caused exception of 0 with no side effects.
Although the bug monitor has a user-caused trap that returns control to the ROM
monitor, the bug monitor is more portable.

CYGNUS GNUPro Tools for Embedded Systems ■ 11

The linker script

The linker script
The linker script accomplishes the following processes to result.

■ Sets up the memory map for the application.

When your application is loaded into memory, it allocates some RAM, some disk
space for I/O, and some registers. The linker script makes a memory map of this
memory allocation which is important to embedded systems because, having no
OS, you have the ability then to manage the behavior of the chip.

■ For g++, sets up the constructor and destructor tables.

The actual section names vary depending on your object file format. For a.out
and coff , the three main sections are .text , .data and .bss .

■ Sets the default values for variables used elsewhere.

These default variables are used by sbrk() and the crt0 file, typically called by
_bss_start and _end .

There are two ways to ensure the memory map is correct.

■ By having the linker create the memory map by using the option, -Map .

■ By, after linking, using the nm utility to check critical addresses like start ,
bss_end and _etext .

The following is an example of a linker script for an m68k-based target board.

1. Use the STARTUP command, which loads the file so that it executes first.
STARTUP(crt0.o)

The m68k-coff configuration default does not link in crt0.o because it assumes
that a developer has crt0 . This behavior is controlled in the config file for each
architecture in a macro called STARTFILE_SPEC. If STARTFILE_SPEC is set to
NULL, gcc formats its command line and doesn’t add crt0.o . Any filename can
be specified with STARTUP, although the default is always crt0.o .

If you use only ld to link, you control whether or not to link in crt0.o on the
command line.

If you have multiple crt0 files, you can leave STARTUP out, and link in crt0.o in
the makefile or use different linker scripts. Sometimes this option is used to
initialize floating point values or to add device support.

2. Using GROUP, load the specified file.
GROUP(-lgcc-liop-lc)

In this case, the file is a relocated library that contains the definitions for the
low-level functions needed by libc.a . The file to load could have also been
specified on the command line, but as it’s always needed, it might as well be here

The linker script

12 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

as a default.

3. SEARCH_DIR specifies the path in which to look for files.
SEARCH_DIR(.)

4. Using _DYNAMIC, specify whether or not there are shared dynamic libraries. In the
following example’s case, there are no shared libraries.

__DYNAMIC = 0;

5. Set _stack , the variable for specifying RAM for the ROM monitor.

6. Specify a name for a section that can be referred to later in the script. In the
following example’s case, it’s only a pointer to the beginning of free RAM space
with an upper limit at 2M. If the output file exceeds the upper limit, MEMORY
produces an error message. First, in this case, we’ll set up the memory map of the
board’s stack for high memory for both the rom68k and mon68k monitors.

MEMORY
{

ram : ORIGIN = 0x10000, LENGTH = 2M
}

Setting up constructor and destructor tables for g++

1. Set up the .text section, using the following example’s input.
SECTIONS
{

.text :
{

CREATE_OBJECT_SYMBOLS
*(.text)
etext = .;
__CTOR_LIST__ = .;
LONG((__CTOR_END__ - __CTOR_LIST__) / 4 - 2)
*(.ctors)
LONG(0)
__CTOR_END__ = .;
__DTOR_LIST__ = .;

LONG((__DTOR_END__ - __DTOR_LIST__) / 4 - 2)
*(.dtors)
LONG(0)
__DTOR_END__ = .;
*(.lit)
*(.shdata) }

> ram
.shbss SIZEOF(.text) + ADDR(.text) : {

*(.shbss)
}

In a coff file, all the actual instructions reside in .text for also setting up the

CYGNUS GNUPro Tools for Embedded Systems ■ 13

The linker script

constructor and destructor tables for g++. Notice that the section description
redirects itself to the RAM variable that was set up in Step 5 of the earlier process
for the crt0 file, “Set _stack, the variable for specifying RAM for the ROM
monitor.” on page 12.

2. Set up the .data section.
.talias : { } > ram
.data : {
*(.data)
CONSTRUCTORS
_edata = .;

} > ram

In a coff file, this is where all of the initialized data goes. CONSTRUCTORS is a
special command used by ld .

Setting default values for variables, _bss_start and _end

Set up the .bss section:
.bss SIZEOF(.data) + ADDR(.data) :
{
__bss_start = ALIGN(0x8);
*(.bss)
*(COMMON)

end = ALIGN(0x8);
_end = ALIGN(0x8);
__end = ALIGN(0x8);

}
.mstack : { } > ram
.rstack : { } > ram
.stab . (NOLOAD) :
{

[.stab]
}
.stabstr . (NOLOAD) :
{

[.stabstr]
}

}

In a coff file, this is where uninitialized data goes. The default values for _bss_start
and _end are set here for use by the crt0 file when it zeros the .bss section.

I/O support code

14 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

I/O support code
Most applications use calls to the standard C library. However, when you initially link
libc.a , several I/O functions are undefined. If you don’t plan on doing any I/O,
you’re OK; otherwise, you need to create two I/O functions: open() and close() .
These don’t need to be fully supported unless you have a file system, so they are
normally stubbed out, using kill() .

sbrk() is also a stub, since you can’t do process control on an embedded system, only
needed by applications that do dynamic memory allocation. It uses the variable, _end ,
which is set in the linker script.

The following routines are also used for optimization.
-inbyte

Returns a single byte from the console.
-outbyte

Used for low-level debugging, takes an argument for print() and prints a byte
out to the console (typically used for ASCII text).

CYGNUS GNUPro Tools for Embedded Systems ■ 15

Memory support

Memor y support
The following routines are for dynamic memory allocation.
sbrk()

The functions, malloc() , calloc() , and realloc() all call sbrk() at their
lowest levels. sbrk() returns a pointer to the last memory address your
application used before more memory was allocated.

caddr_t

Defined elsewhere as char * .
RAMSIZE

A compile-time option that moves a pointer to heap memory and checks for the
upper limit.

Miscellaneous support routines

16 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

Miscellaneous support routines
The following support routines are called by newlib , although they don’t apply to the
embedded environment.
isatty()

Checks for a terminal device.
kill()

Simply exits.
getpd()

Can safely return any value greater than 1, although the value doesn’t effect
anything in newlib .

CYGNUS GNUPro Tools for Embedded Systems ■ 17

Overview of supported tar gets
for cross-development

The following documentation describes programming practices and options for
several of the embedded targets that GNUPro Toolkit supports. Since, by their very
nature, the tools are evolving to meet the needs of Cygnus customers, new targets are
frequently added (see the current matrix of supported embedded targets in
Introduction in Getting Started with GNUPro Toolkit).

The supported targets that are discussed can be found in the following documentation.

■ “Hitachi H8/300, H8S, H8/300H development” on page 19

■ “Hitachi SH development” on page 31

■ “MIPS development” on page 41

■ “Motorola m68k development” on page 57

■ “PowerPC development” on page 65

■ “SPARC, SPARClite development” on page 81

2

18 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

CYGNUS GNUPro Tools for Embedded Systems ■ 19

Hitachi H8/300, H8S, H8/300H
development

The following documentation discusses cross-development with the Hitachi H8/300
H8S and H8/300 processors. All the H8 tools (300, 300H and S) are part of the same
toolchain; older versions will not support the other two tools.

■ “Compiling for H8/300, H8S and H8/300H” on page 20

■ “Assembler options for H8/300, H8S and H8/300H” on page 22

■ “Calling conventions for H8/300, H8S and H8/300H” on page 24

■ “Debugging for H8/300, H8S and H8/300H” on page 25

For more extensive documentation on the Hitachi H8/300, Hitachi Microsystems
makes available the H8/300 Microcomputer User’s Manual (Semiconductor Design
& Development Center, 1992); contact your Field Application Engineer for details.

Cross-development tools in the GNUPro Toolkit are normally installed with names
that reflect the target machine, so that you can install more than one set of tools in the
same binary directory. The target name, constructed with the --target option to
configure , is used as a prefix to the program name. For example, the compiler for the
Hitachi H8/300 (called simply gcc in native configurations) is called with the
following input.

h8300-hms-gcc

3

Compiling for H8/300, H8S and H8/300H

20 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

Compilin g for H8/300, H8S and H8/300H
The Hitachi target family toolchain controls variances in code generation directly
from the command line. When you run gcc , you can use command-line options to
choose whether to take advantage of the extra Hitachi machine instructions, and
whether to generate code for hardware or software floating point.

Using C++
There is support for the C++ language. This support may in certain circumstances add
up to 5K to the size of your executables.

The new C++ support involves new startup code that runs C++ initializers before
main() is invoked. If you have a replacement for the file, crt0.o (or if you call
main()), you must call __main() before calling main() .

You may need to run these C++ initializers even if you do not write in C++ yourself.
This could happen, for instance, if you are linking against a third-party library which
itself was written in C++. You may not be able to tell that it was written in C++
because you are calling it with C entry points prototyped in a C header file. Without
these initializers, functions written in C++ may malfunction.

If you are not using any third-party libraries, or are otherwise certain that you will not
require any C++ constructors, you may suppress them by adding the following
definition to your program:

int __main() {}

When you run gcc , you can use command-line options to choose machine-specific
details. For information on all the gcc command-line options, see “GNU CC
Command Options” in Using GNU CC in GNUPro Compiler Tools.

Compiler options for H8/300
The following documentation discusses the compiler options.
-ms

Generate code for the H8S processor.
-mh

Generate code for the H8/300H chip.
-mint32

Use 32-bit integers when compiling for the H8/300H.
-g

The compiler debugging option ‘-g ’ is essential to see interspersed high-level
source statements, since without debugging information the assembler cannot tie
most of the generated code to lines of the original source file.

CYGNUS GNUPro Tools for Embedded Systems ■ 21

Predefined preprocessor macros

Floating point subroutines
The Hitachi H8/300 has no floating point support. Two kinds of floating point
subroutines are useful with gcc :

■ Software implementations of the basic functions (floating-point multiply, divide,
add, subtract), for use when there is no hardware floating-point support.

■ An implementation of the standard C mathematical subroutine library. See
“Mathematical Functions (math.h)” in GNUPro Math Library in GNUPro
Libraries.

Predefined preprocessor macros
gcc defines the following preprocessor macros for the Hitachi configurations:

Any Hitachi H8/300 architecture:
__H8300__

The Hitachi H8/300H architecture:
__H8300H__

Assembler options for H8/300, H8S and H8/300H

22 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

Assembler options
for H8/300, H8S and H8/300H

To use the GNU assembler to assemble gcc output, configure gcc with the switch,
--with-gnu-as (in GNUPro Toolkit distributions) or with the -mgas option.
-mgas

Compile using as to assemble gcc output.
-Wa

If you invoke as through the GNU C compiler (version 2), you can use the ‘-Wa’
option to pass arguments through to the assembler. One common use of this option
is to exploit the assembler’s listing features. Assembler arguments that you
specify with gcc -Wa must be separated from each other by commas like the
options, -alh and -L , in the following example input separate from -Wa.

$ h8300-hms-gcc -c -g -O -Wa,-alh, -L file.c

-L

The additional assembler option ‘-L ’ preserves local labels, which may make the
listing output more intelligible to humans.

For example, in the following commandline, the assembler option, -ahl , requests
a listing interspersed with high-level language and assembly language.

$ h8300-hms-gcc -c -g -O -Wa,-alh, -L file.c

‘ -L ’ preserves local labels, while the compiler debugging option , -g , gives the
assembler the necessary debugging information.

Assembler options for listing output
Use the following options to enable listing output from the assembler (the letters after
‘ -a ’ may be combined into one option, such as -aln).
-a

By itself, ‘-a ’ requests listings of high-level language source, assembly language,
and symbols.

-ah

Request a high-level language listing.
-al

Request an output-program assembly listing.
-as

Request a symbol table listing.
-ad

Omit debugging directives from the listing.

CYGNUS GNUPro Tools for Embedded Systems ■ 23

Assembler options for H8/300, H8S and H8/300H

High-level listings require that a compiler debugging option, like ‘-g ’, be used, and
that assembly listings (-al) also be requested.

Assembler listing-control directives
Use the following listing-control assembler directives to control the appearance of the
listing output (if you do not request listing output with one of the ‘-a ’ options, the
following listing-control directives have no effect).
.list

Turn on listings for further input.
.nolist

Turn off listings for further input.
.psize linecount , columnwidth

Describe the page size for your output (the default is 60, 200). as generates form
feeds after printing each group of linecount lines. To avoid these automatic form
feeds, specify 0 as linecount . The variable input for columnwidth uses the same
descriptive option.

.eject

Skip to a new page (issue a form feed).
.title

Use as the title (this is the second line of the listing output, directly after the
source file name and page number) when generating assembly listings.

.sbttl

Use as the subtitle (this is the third line of the listing output, directly after the title
line) when generating assembly listings.

-an

Turn off all forms processing.

Calling conventions for H8/300, H8S and H8/300H

24 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

Callin g conventions
for H8/300, H8S and H8/300H

The Hitachi family passes the first three words of arguments in registers, R0 through
R2. All remaining arguments are pushed onto the stack, last to first, so that the lowest
numbered argument not passed in a register is at the lowest address in the stack. The
registers are always filled, so a double word argument, starting in R2, would have the
most significant word in R2 and the least significant word on the stack. Function return
values are stored in R0 and R1. Registers, R0 through R2, can be used for temporary
values. When a function is compiled with the default options, it must return with
registers, R3 through R6, unchanged.

NOTE: Functions compiled with different calling conventions cannot be run together
without some care.

CYGNUS GNUPro Tools for Embedded Systems ■ 25

Debugging for H8/300, H8S and H8/300H

Debugging for H8/300, H8S and H8/300H
The Hitachi-configured gdb is called with the following input.

h8300-hms-gdb

gdb needs to know the following specifications.

■ Specifications for one of the following interfaces:
target remote

GDB’s generic debugging protocol, for using with the Hitachi low-cost
evaluation board (LCEVB) running CMON.

target hms

Interface to H8/300 eval boards running the HMS monitor.
target e7000

E7000 in-circuit emulator for the Hitachi H8/300.
target sim

 Simulator, which allows you to run gdb remotely without an external device.

■ Specifications for what serial device connects your host to your Hitachi board (the
first serial device available on your host is the default).

■ Specifications for what speed to use over the serial device (if you are using a Unix
host).

Use one of the following gdb commands to specify the connection to your target
board.

target interface port

To run a program on the board, start up gdb with the name of your program as the
argument. To connect to the board, use the command, target interface port ,
where interface is an interface from the previous list and port is the name of the
serial port connected to the board. If the program has not already been
downloaded to the board, you may use the load command to download it.

You can then use all the usual gdb commands.

For example, the following example’s sequence connects to the target board
through a serial port, and loads and runs a program (designated as prog for
variable-dependent input in the following example) through the debugger.

host$ h8300-hms-gdb prog

 (gdb) target remote /dev/ttyb

 ...

 (gdb) load

 ...

 (gdb) run

Debugging for H8/300, H8S and H8/300H

26 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

target interface hostname : portnumber

You can specify a TCP/IP connection instead of a serial port, using the syntax,
hostname : portnumber (assuming your board, designated here as hostname , is
connected so that this makes sense; for instance, the connection may use a serial
line, designated by your variable portnumber input, managed by a terminal
concentrator).

gdb also supports set remotedebug n. You can see some debugging information
about communications with the board by setting the variable, n, with the
command, remotedebug .

In comparison to the H8/300, the H8S has the following improvements.

■ Eight 16-bit expanded registers, and one 8-bit control register.

■ Normal mode supports the 64K-byte address space.

■ Advanced mode supports a maximum 16M-byte address space.

■ Addressing modes of bit-manipulation instructions improved.

■ Signed multiply and divide instructions.

■ Two-bit shift instructions.

■ Instructions for saving and restoring multiple registers.

■ A test and set instruction.

■ Basic instructions executing doublespeed.

■ The H8S uses a two-channel on-chip PC break controller (PBC) for debugging
programs with high-performance self-monitoring, without using an in-circuit
emulator.

■ The ROM is connected to the CPU by a 16-bit data bus, enabling both byte data
and word data to be accessed in one state. This makes possible rapid instruction
high-speed processing.

■ The H8S has eight 32-bit general registers, all functionally alike for both address
registers and data registers. When a general register is used as a data register, it
can be accessed as a 32-bit, 16-bit, or 8-bit register.

When the general registers are used as 32-bit registers or address registers, they
use the letters, ER (ER0 to ER7).

The ER registers divide into 16-bit general registers designated by the letters, E (E0
to E7) and R (R0 to R7). These registers are functionally equivalent, providing a
maximum 16 6-bit registers.

The E registers (E0 to E7) are also referred to as extended registers.

The R registers divide into 8-bit general registers, using the letters, RH (R0H to R7H)
and RL (R0L to R7L). These registers are functionally equivalent, providing a

CYGNUS GNUPro Tools for Embedded Systems ■ 27

Debugging for H8/300, H8S and H8/300H

maximum 16 8-bit registers.

■ The control registers are the 24-bit program counter (PC), 8-bit extended control
register (EXR), and 8-bit condition-code register (CCR).

■ The H8S supports eight addressing modes. See Table 1.

The upper 8 bits of the effective address are ignored, giving a 16-bit address.

■ H8S initiates exception handling by a reset, a trap instruction, or an interrupt.
Simultaneously generated exceptions are handled in order of priority. Exceptions
originate from various sources. Trap instruction exception handling is always
accepted in the program execution state. Trap instructions and interrupts are
handled as in the following sequence.

1. The program counter (PC), condition code register (CCR), and extend
register (EXR) are pushed onto the stack.

2. The interrupt mask bits are updated. The T bit is cleared to 0.

3. A vector address corresponding to the exception source is generated,
and program execution starts from that address.

For a reset exception, use Step 2 and Step 3.

Table 1: Addressing Modes

Addressing Mode Symbol
1 Register direct Rn

2 Register indirect @ERn

3 Register indirect with displacement @(d:16,ERn)
@(d:32,ERn)

4 Register indirect with post-increment @ERn+

Register indirect with pre-decrement @¯ERn

5 Absolute address @aa:8
@aa:16
@aa:24
@aa:32

6 Immediate #xx:8
#xx:16
#xx:32

7 Program-counter relative @(d:8,PC)
@(d:16,PC)

8 Memory indirect @@aa:8

Loading on specific targets

28 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

Loadin g on specific tar gets
With GNUPro Toolkit, downloading is possible to H8/300 boards and E7000
in-circuit emulators.

To communicate with a Hitachi H8/300 board, you can use the gdb remote serial
protocol. See “The gdb remote serial protocol” in Debugging with GDB in GNUPro
Debugging Tools for more details.

NOTE: The Hitachi LCEVB running CMON has the stub already built-in.

Use the following gdb command if you need to explicitly set the serial device.
device port

The default, port , is the first available port on your host. This is only necessary on
Unix hosts, where it is typically something like /dev/ttya .

The following sample tutorial illustrates the steps needed to start a program under gdb
control on an H8/300. The example uses a sample H8 program called ‘t.x ’. The
procedure is the same for other Hitachi chips in the series. First, hook up your
development board. In the example that follows, we use a board attached to serial port,
designated as COM1.

1. Call gdb with the name of your program as the argument, filename .
gdb filename

2. gdb prompts you, as usual, with the following prompt.
(gdb)

3. Use the following two special commands to begin your debugging session.

target hms port

Specify cross-debugging to the Hitachi board, and then use with the next input
to download your program to the board.

load filename

load displays the names of the program’s sections. (If you want to refresh gdb
data on symbols or on the executable file without downloading, use the gdb
commands, file , or symbol-file).

The previous commands, specifically, load , are described in “Commands to
specify files” in Debugging with GDB in GNUPro Debugging Tools.

4. The following message for this t.x file then appears.
C:\H8\TEST> gdb t.x

GDB is free software and you are welcome to distribute copies

for details. GDB 4.15-96q1, Copyright 1994 Free Software
Foundation, Inc...

CYGNUS GNUPro Tools for Embedded Systems ■ 29

Loading on specific targets

At this point, you’re ready to run or debug your program. Now you can use all of
the following gdb commands.
break

Set breakpoints.
run

Start your program.
print

Display data.
continue

Resume execution after stopping at a breakpoint.
help

Display full information about gdb commands.

NOTE: Remember that operating system facilities aren’t available on your
development board. For example, if your program hangs, you can’t send an
interrupt—but you can press the RESET switch to interrupt your program.
Return to your program’s process with the (gdb) command prompt after your
program finishes its hanging. The communications protocol provides no other
way for gdb to detect program completion. In either case, gdb sees the effect
of a reset on the development board as a normal “exit ” command to the
program

To use the E7000 in-circuit emulator to develop code for either the Hitachi H8/300 or
the H8/300H, use one of the following forms of the target e7000 command to
connect gdb to your E7000.

target e7000 port speed

Use this command if your E7000 is connected to a serial port. The port argument
identifies what serial port to use (for example, COM2). The third argument, speed ,
is the line speed in bits per second (for example, input might be 9600).

target e7000 hostname

If your E7000 is installed as a host on a TCP/IP network, substitute the network
name for hostname during the connection. gdb uses telnet to connect. The
monitor command set makes it difficult to load large amounts of data over the
network without using ftp . We recommend you try not to issue load commands
when communicating over Ethernet; instead, use the ftpload command.

(gdb) target hms com1

Connected to remote H8/300 HMS system.

(gdb) load t.x

.text: 0x8000 .. 0xabde ***********

.data: 0xabde .. 0xad30 *

.stack: 0xf000 .. 0xf014 *

Loading on specific targets

30 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

CYGNUS GNUPro Tools for Embedded Systems ■ 31

Hitachi SH development

The following documentation discusses cross-development with the Hitachi SH
processor.

■ “Compiling on SH targets” on page 32

■ “Preprocessor macros for SH targets” on page 34

■ “Assembler options for SH targets” on page 35

■ “Calling conventions for SH targets” on page 37

■ “Debugging on SH targets” on page 38

Cross-development targets using the GNUPro Toolkit normally install with names
that reflect the target machine, so that you can install more than one set of tools in the
same binary directory. The target name, constructed with the --target option to
configure , is used as a prefix to the program name. For example, the compiler for the
Hitachi SH (calling gcc in native configurations) is named sh-hms-gcc .

For more documentation on the Hitachi SH, see SH Microcomputer User’s Manual
(Semiconductor Design & Development Center, 1992) and Hitachi SH2
Programming Manual (Semiconductor and Integrated Circuit Division, 1994), from
Hitachi SH Microsystems; contact your Field Application Engineer for details.

4

Compiling on SH targets

32 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

Compilin g on SH tar gets
The Hitachi SH target family toolchain controls variances in code generation directly
from the command line.

When you run gcc , you can use command-line options to choose whether to take
advantage of the extra Hitachi SH machine instructions, and whether to generate code
for hardware or software floating point.

Compiler options for SH
When you run gcc , you can use command-line options to choose machine-specific
details. For information on all the gcc command-line options, see “GNU CC
Command Options” in Using GNU CC in GNUPro Compiler Tools.

Compiler options for architecture/code generation for SH
-g

 The compiler debugging option -g is essential to see interspersed high-level
source statements, since without debugging information the assembler cannot tie
most of the generated code to lines of the original source file.

-mshl

Generate little-endian Hitachi SH COFF output.
-m1

Generate code for the Hitachi SH-1 chip. This is the default behavior for the
Hitachi SH configuration.

-m2

Generate code for the Hitachi SH-2 chip.
-m3

Generate code for the Hitachi SH-3 chip.
-m3e

Generate code for the Hitachi SH-3E chip.
-mhitachi

Use Hitachi’s calling convention rather than that for gcc . The registers, MACH and
MACL, are saved with this setting (see “Calling conventions for SH targets” on
page 37).

-mspace

Generate small code rather than fast code. By default, gcc generates fast code
rather than small code.

-mb

Generate big endian code. This is the default.

CYGNUS GNUPro Tools for Embedded Systems ■ 33

Compiler options for SH

-ml

Generate little endian code.
-mrelax

Do linker relaxation. For the Hitachi SH, this means the jsr instruction can be
converted to the bsr instruction. -mrelax replaces the obsolete option, -mbsr .

-mbigtable

Generate jump tables for switch statements using four-byte offsets rather than the
standard two-byte offset. This option is necessary when the code within a switch
statement is larger than 32K. If the option is needed and not supplied, the
assembler will generate errors.

Floating point subroutines for SH
Two kinds of floating point subroutines are useful with gcc .

■ Software implementations of the basic functions (floating-point multiply, divide,
add, subtract), for use when there is no hardware floating-point support.

■ General-purpose mathematical subroutines.
The GNUPro Toolkit from Cygnus includes an implementation of the standard C
mathematical subroutine library. See “Mathematical Functions (math.h)” in
GNUPro Math Library in GNUPro Libraries.

Preprocessor macros for SH targets

34 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

Preprocessor macros for SH tar gets
gcc defines the following preprocessor macros for the Hitachi SH configurations:

Any Hitachi SH architecture:
__sh__

Any Hitachi SH1 architecture:
__sh1__

Any Hitachi SH2 architecture:
__sh2__

Any Hitachi SH3 architecture:
__sh3__

Any Hitachi SH3E architecture:
__sh3e__

Hitachi SH architecture with little-endian numeric representation:
__little_endian__

Big-endian numeric representation is the default in Hitachi SH architecture.

CYGNUS GNUPro Tools for Embedded Systems ■ 35

Assembler options for SH targets

Assembler options for SH tar gets
The following documentation discusses the assembler options for the Hitachi SH
processor.

General assembler options for SH
To use the GNU assembler to assemble gcc output, configure gcc with the switch,
--with-gnu-as (in GNUPro Toolkit distributions) or with the -mgas option.
-mgas

Compile using as to assemble gcc output.
-Wa

If you invoke as through the GNU C compiler (version 2), you can use the ‘-Wa’
option to pass arguments through to the assembler. One common use of this option
is to exploit the assembler’s listing features. Assembler arguments that you
specify with gcc -Wa must be separated from each other by commas like the
options, -alh and -L , in the following example input separate from -Wa.

$ h8300-hms-gcc -c -g -O -Wa,-alh, -L file.c

-L

The additional assembler option ‘-L ’ preserves local labels, which may make the
listing output more intelligible to humans.

For example, in the following commandline, the assembler option, -ahl , requests
a listing interspersed with high-level language and assembly language.

$ h8300-hms-gcc -c -g -O -Wa,-alh, -L file.c

‘ -L ’ preserves local labels, while the compiler debugging option , -g , gives the
assembler the necessary debugging information.

Assembler options for listing output for SH
Use the following options to enable listing output from the assembler (the letters after
‘ -a ’ may be combined into one option, such as -aln).
-a

By itself, ‘-a ’ requests listings of high-level language source, assembly language,
and symbols.

-ah

Request a high-level language listing.
-al

Request an output-program assembly listing.
-as

Request a symbol table listing.

Assembler options for SH targets

36 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

-ad

Omit debugging directives from the listing.

High-level listings require that a compiler debugging option, like ‘-g ’, be used, and
that assembly listings (-al) also be requested.

Assembler listing-control directives for SH
Use the following listing-control Hitachi SH assembler directives to control the
appearance of the listing output (if you do not request listing output with one of the
‘ -a ’ options, the following listing-control directives have no effect).
.list

Turn on listings for further input.
.nolist

Turn off listings for further input.

.psize linecount , columnwidth

Describe the page size for your output (the default is 60, 200). as generates form
feeds after printing each group of linecount lines. To avoid these automatic form
feeds, specify 0 as linecount . The variable input for columnwidth uses the same
descriptive option.

.eject

Skip to a new page (issue a form feed).
.title

Use as the title (this is the second line of the listing output, directly after the
source file name and page number) when generating assembly listings.

.sbttl

Use as the subtitle (this is the third line of the listing output, directly after the title
line) when generating assembly listings.

-an

Turn off all forms processing.

CYGNUS GNUPro Tools for Embedded Systems ■ 37

Calling conventions for SH targets

Callin g conventions for SH tar gets
The Hitachi SH passes the first four words of arguments in registers, R4 through R7.
All remaining arguments are pushed onto the stack, last to first, so that the lowest
numbered argument not passed in a register is at the lowest address in the stack. The
registers are always filled, so a double word argument, starting in R7, would have the
most significant word in R7 and the least significant word on the stack. Function return
values are stored in R0 and R7. Registers, R0 through R7, as well as MACH and MACL can
be used for temporary values. When a function is compiled with the default options, it
must return with registers, R8 through R1, unchanged.

The switch, -mhitachi SH , makes the MACH and MACL registers caller-saved, for
compatibility with the Hitachi SH tool chain at the expense of performance.

NOTE: Functions compiled with different calling conventions cannot be run together
without some care.

Debugging on SH targets

38 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

Debugging on SH tar gets
The Hitachi SH-configured debugger, gdb , is called sh-hms-gdb .

gdb needs to know the following specifications to talk to your Hitachi SH.

■ Specifications for one of the following interfaces:
target remote

gdb’s generic debugging protocol, for using with the Hitachi low-cost
evaluation board (LCEVB) running CMON.

target hms

Interface to SH eval boards running the HMS monitor.
target e7000

E7000 in-circuit emulator for the Hitachi SH.
target sim

 Simulator, which allows you to run gdb remotely without an external device.

■ Specifications for what serial device connects your host to your Hitachi board (the
first serial device available on your host is the default).

■ Specifications for what speed to use over the serial device (if you are using a Unix
host).

Use one of the following gdb commands to specify the connection to your target
board.

target interface port

To run a program on the board, start up gdb with the name of your program as the
argument. To connect to the board, use the command, target interface port ,
where interface is an interface from the previous list and port is the name of the
serial port connected to the board. If the program has not already been
downloaded to the board, you may use the load command to download it. You
can then use all the usual gdb commands.

For example, the following example’s sequence connects to the target board
through a serial port, and loads and runs a program (designated as prog for
variable-dependent input in the following example) through the debugger.

host$ sh-hms-gdb prog

 (gdb) target remote /dev/ttyb

 ...

 (gdb) load

 ...

 (gdb) run

CYGNUS GNUPro Tools for Embedded Systems ■ 39

Debugging on SH targets

target interface hostname : portnumber

You can specify a TCP/IP connection instead of a serial port, using the syntax,
hostname : portnumber (assuming your board, designated here as hostname , is
connected so that this makes sense; for instance, the connection may use a serial
line, designated by your variable portnumber input, managed by a terminal
concentrator).

gdb also supports set remotedebug n. You can see some debugging information
about communications with the board by setting the variable, n, with the
command, remotedebug .

Debugging on SH targets

40 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

CYGNUS GNUPro Tools for Embedded Systems ■ 41

MIPS development

The following documentation discusses cross-development with the MIPS family of
processors.

■ “Compiling on MIPS targets” on page 42

■ “Preprocessor macros for MIPS targets” on page 46

■ “Assembler options for MIPS targets” on page 47

■ “Debugging on MIPS targets” on page 52

■ “Linking MIPS with the GOFAST library” on page 54

For documentation about the MIPS instruction set, see MIPS RISC Architecture, by
Kane and Heindrich (Prentice-Hall).

Cross-development tools in the GNUPro Toolkit are normally installed with names
that reflect the target machine, so that you can install more than one set of tools in the
same binary directory. The target name, constructed with the --target option to
configure , is used as a prefix to the program name. For example, the compiler for
MIPS (using gcc in native configurations) is called by one of the following names,
depending on which configuration you installed: mips-ecoff-gcc , if configured for
big-endian byte ordering, and mipsel-ecoff-gcc , if configured for little-endian byte
ordering.

5

Compiling on MIPS targets

42 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

Compilin g on MIPS tar gets
The MIPS target family toolchain controls variances in code generation directly from
the command line. When you run gcc , you can use command-line options to choose
whether to take advantage of the extra MIPS machine instructions, and whether to
generate code for hardware or software floating point.

Compiler options for MIPS
When you run gcc , you can use command-line options to choose machine-specific
details. For information on all the gcc command-line options, see “GNU CC
Command Options” in Using GNU CC in GNUPro Compiler Tools. There are a great
many compiler options for specific MIPS targets. Options for architecture and code
generation are for all MIPS targets (see “Options for architecture and code generation
for MIPS”).

NOTE: The compiler options, -mips2 , -mips3 and -mips4 , cannot be used on the
MIPS R3000.

Options for architecture and code generation for MIPS
The following options for architecture and code generation can be used on all MIPS
targets.
-g

The compiler debugging option, -g , is essential to locate interspersed high-level
source statements, since without debugging information the assembler cannot tie
most of the generated code to lines of the original source file.

-mcpu=r3000
-mcpu= cputype

Since most MIPS boards are based on the MIPS R3000.

The default for this particular configuration is -mcpu=r3000 .

In the general case, use -mcpu=r3000 on any MIPS platform to assume the
defaults for the machine type, cputype , when scheduling instructions.

The default, cputype , on other MIPS configurations is r3000 , which picks the
longest cycle times for any of the machines, in order that the code run at
reasonable rates on any MIPS processor.

Other choices for cputype are r2000 , r3000 , r4000 , r6000 , r4400 , r4600 , r4650 ,
r8000 , and orion .

While picking a specific cputype will schedule things appropriately for that
particular chip, the compiler will not generate any code that does not meet level 1

CYGNUS GNUPro Tools for Embedded Systems ■ 43

Options for architecture and code generation for MIPS

of the MIPS ISA (Instruction Set Architecture) unless you use the -mips2 ,
-mips3 , or -mips4 switch.

-mips1

Generate code that meets level 1 of the MIPS ISA.
-mips2

Generate code that meets level 2 of the MIPS ISA.
-mips3

Generate code that meets level 3 of the MIPS ISA.
-mips4

Generate code that meets level 4 of the MIPS ISA.
-meb

Generate big endian code.
-mel

Generate little endian code.
-mad

Generate multiply-add instructions, which are part of the MIPS 4650.
-m4650

Generate multiply-add instructions along with single-float code.
-mfp64

Select the 64-bit floating point register size.
-mfp32

Select the 32-bit floating point register size.
-mgp64

Select the 64-bit general purpose register size.
-mfp32

Select the 32-bit general purpose register size.
-mlong64

Make long integers 64 bits long, not the default of 32 bits long. This works only if
you’re generating 64-bit code.

-G num

Put global and static items less than or equal to num bytes into the small ‘.data ’ or
‘ .bss ’ sections instead of into the normal ‘.data ’ and ‘.bss ’ sections.

This allows the assembler to emit one-word memory reference instructions based
on the global pointer (gp or $28),instead of on the normal two words used. By
default, num is 8.

When you specify another value, gcc also passes the ‘-G num’ switch to the
assembler and linker.

Compiler options for floating point for MIPS

44 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

Compiler options for floating point for MIPS
The following options select software or hardware floating point.
-msoft-float

Generate output containing library calls for floating point. The mips-ecoff
configuration of libgcc (an auxiliary library distributed with the compiler)
includes a collection of subroutines to implement these library calls.

In particular, this gcc configuration generates subroutine calls compatible with the
US Software GOFAST R3000 floating point library, giving you the opportunity to
use either the libgcc implementation or the US Software version.

To use the ‘libgcc ’ version, you need nothing special; gcc links with libgcc
automatically after all other object files and libraries.

Because the calling convention for MIPS architectures depends on whether or not
hardware floating-point is installed, ‘-msoft-float ’ has one further effect: gcc
looks for sub-routine libraries in a subdirectory, ‘soft-float ’, for any library
directory in your search path. (NOTE: This does not apply to directories specified
using the ‘-l ’ option.) With GNUPro Toolkit, you can select the standard libraries
as usual with the options, ‘-lc ’ or ‘ -lm ’, because the soft-float versions are
installed in the default library search paths.

WARNING: Treat ‘-msoft-float ’ as an all or nothing proposition. If you compile any
program’s module with -msoft-float , it’s safest to compile all modules of
the program that way—and it’s essential to use this option when you link.

-mhard-float

Generate output containing floating point instructions, and use the corresponding
MIPS calling convention. This is the default.

-msingle-float

Generate code for a target that only has support for single floating point values,
such as the MIPS 4650.

Floating point subroutines
Two kinds of floating point subroutines are useful with gcc :

■ Software implementations of the basic functions
Floating-point functionality for multiply, divide, add, subtract usage, used when
there is no hardware floating-point support.

When you indicate that no hardware floating point is available (with the gcc
option -msoft-float , gcc generates calls compatible with the US Software
GOFAST library. If you do not have this library, you can still use software
floating point; ‘libgcc ’, the auxiliary library distributed with gcc , includes

CYGNUS GNUPro Tools for Embedded Systems ■ 45

Floating point subroutines

compatible—though slower—subroutines.

■ General-purpose mathematical subroutines
GNUPro Toolkit includes an implementation of the standard C mathematical
subroutine library. See “Mathematical Functions” in GNUPro Math Library in
GNUPro Libraries.

Preprocessor macros for MIPS targets

46 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

Preprocessor macros for MIPS tar gets
gcc defines the following preprocessor macros for the MIPS configurations.

Any MIPS architecture:
__mips__

MIPS architecture with big-endian numeric representation:
__MIPSEB__

MIPS architecture with little-endian numeric representation:
__MIPSEL__

CYGNUS GNUPro Tools for Embedded Systems ■ 47

Assembler options for MIPS targets

Assembler options for MIPS tar gets
To use the GNU assembler to assemble gcc output, configure gcc with the
--with-gnu-as or the -mgas option.
-mgas

Compile using gas to assemble gcc output.
-Wa

If you invoke gas through the GNU C compiler (version 2), you can use the ‘-Wa’
option to pass arguments through to the assembler. One common use of this option
is to exploit the assembler’s listing features. Assembler arguments that you
specify with gcc -Wa must be separated from each other by commas like the
options, -alh and -L , in the following example input separate from -Wa.

$ mips-ecoff-gcc -c -g -O -Wa,-alh, -L file.c

-L

The additional assembler option ‘-L ’ preserves local labels, which may make the
listing output more intelligible to humans.

For example, in the following commandline, the assembler option, -ahl , requests
a listing interspersed with high-level language and assembly language.

$ mips-ecoff-gcc -c -g -O -Wa,-alh, -L file.c

‘ -L ’ preserves local labels, while the compiler debugging option , -g , gives the
assembler the necessary debugging information.

Assembler options for listing output for MIPS
Use the following options to enable listing output from the assembler (the letters after
‘ -a ’ may be combined into one option, such as -aln).
-a

By itself, ‘-a ’ requests listings of high-level language source, assembly language,
and symbols.

-ah

Request a high-level language listing.
-al

Request an output-program assembly listing.
-as

Request a symbol table listing.
-ad

Omit debugging directives from the listing.

High-level listings require that a compiler debugging option, like ‘-g ’, be used, and
that assembly listings (-al) also be requested.

Assembler listing-control directives for MIPS

48 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

Assembler listing-control directives for MIPS
Use the following listing-control assembler directives to control the appearance of the
listing output (if you do not request listing output with one of the ‘-a ’ options, the
following listing-control directives have no effect).
.list

Turn on listings for further input.
.nolist

Turn off listings for further input.
.psize linecount , columnwidth

Describe the page size for your output (the default is 60, 200). as generates form
feeds after printing each group of linecount lines. To avoid these automatic form
feeds, specify 0 as linecount . The variable input for columnwidth uses the same
descriptive option.

.eject

Skip to a new page (issue a form feed).
.title

Use as the title (this is the second line of the listing output, directly after the
source file name and page number) when generating assembly listings.

.sbttl

Use as the subtitle (this is the third line of the listing output, directly after the title
line) when generating assembly listings.

-an

Turn off all forms processing.

Special assembler options for MIPS
The MIPS configurations of gas support three special options, accepting one other for
command-line compatibility. See “Command-Line Options” in Using AS in GNUPro
Utilities for information on the command-line options available with all
configurations of the GNU assembler.
-G num

This option sets the largest size of an object that will be referenced implicitly with
the gp register. It is only accepted for targets that use ECOFF format. The default
value for num is 8.

-EB
-EL

Any MIPS configuration of gas can select big-endian or little-endian output at run
time (unlike the other GNU development tools, which must be configured for one
or the other). Use -EB to select big-endian output, and -EL for little-endian.

CYGNUS GNUPro Tools for Embedded Systems ■ 49

Assembler directives for debugging information

-nocpp

This option is ignored. It is accepted for command-line compatibility with other
assemblers, which use it to turn off C-style preprocessing. With the GNU
assembler, there is no need for -nocpp , because the GNU assembler itself never
runs the C preprocessor.

Assembler directives for debugging information
MIPS ECOFF using gas supports several directives for generating debugging
information that are not supported by traditional MIPS assemblers:

The debugging information generated by the three .stab directives can only be read
by gdb , not by traditional MIPS debuggers (this enhancement is required to fully
support C++ debugging). These directives are primarily used by compilers, not
assembly language programmers. See “Assembler Directives” in Using AS in
GNUPro Utilities for full information on all GNU assembler directives.

MIPS ECOFF object code
The assembler supports some additional sections for a MIPS ECOFF target besides
the usual .text , .data and .bss . The additional sections have the following
definitions.
.rdata

For readonly data
.sdata

For small data
.sbss

For small common objects

When assembling for ECOFF, the assembler uses the $gp ($28) register to form the
address of a small object. Any object in the .sdata or .sbss section is considered
small in this sense. Using small ECOFF objects requires linker support, and assumes
that the $gp register has been correctly initialized (normally done automatically by the
startup code).

NOTE: MIPS ECOFF assembly code must not modify the $gp register.

def endef dim

file scl size

tag type val

stabd stabn stabs

Options for MIPS ECOFF object code

50 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

Options for MIPS ECOFF object code
gcc -G

For external objects, or for objects in the .bss section, you can use the gcc -G
option to control the size of objects addressed using $gp ; the default value is 8,
meaning that a reference to any object eight bytes or smaller will use $gp .

-G 0

Passing -G 0 to gas prevents gas from using the $gp register on the basis of object
size (the assembler uses $gp for objects in .sdata or .sbss in any case).

Directives for MIPS ECOFF object code
.comm
.lcomm

The size of an object in the .bss section is set by the .comm or .lcomm directive
that defines it.

.extern

The size of an external object may be set with the .extern directive. Use the
following input, for example.

.extern sym, 4

This directive declares that the object at sym is 4 bytes in length, while leaving sym
otherwise undefined.

Registers used for integer arguments for MIPS
Arguments on MIPS architectures are not split, so that, if a double word argument
starts in R7, the entire word gets pushed onto the stack instead of being split between
R7 and the stack. If the first argument is an integer, MIPS uses the following registers
for all arguments. The following calling convention for MIPS architectures depends
on whether or not hardware floating-point is installed. Even if it is, MIPS uses the
registers for integer arguments whenever the first argument is an integer. MIPS uses
the registers for floating-point arguments only for floating-point arguments and only if
the first argument is a floating point. The following calling convention for MIPS also
depends on whether standard 32-bit mode or Cygnus 64-bit mode is in use; 32-bit
mode only allows MIPS to use even numbered registers, while 64-bit mode allows
MIPS to use both odd and even numbered registers.

NOTE: Functions compiled with different calling conventions cannot be run together
without some care.

■ MIPS passes the first four words of arguments in registers R4 through R7, which
are also called registers A0 through A3.

■ If the function return values are integers, they are stored in R2 and R3.

CYGNUS GNUPro Tools for Embedded Systems ■ 51

Registers used for floating-point arguments for MIPS

Registers used for floating-point arguments for MIPS
If the first argument is a floating-point, MIPS uses the following registers for
floating-point arguments.

■ In 32-bit mode, MIPS passes the first four words of arguments in registers F12 and
F14.

■ In 64-bit mode, MIPS passes the first four words of arguments in registers F12
through F15.

If the function return value is a floating-point, it’s stored in F0’ .

Calling conventions for integer arguments for MIPS
The following conventions apply to integer arguments.

R0 is hardwired to the value 0. R1, which is also called AT, is reserved as the
assembler’s temporary register. R26 through R29 and R31 have reserved uses.
Registers R2 through R15, R24, and R25 can be used for temporary values.

When a function is compiled with the default options, it must return with R16 through
R23 and R30 unchanged.

Calling conventions for floating-point arguments for
MIPS

The following conventions apply to floating-point arguments.

None of the registers has a reserved use.

■ In 32-bit mode, F0 through F18 can be used for temporary values. When a
function is compiled with the default options, it must return with F20 through F30
unchanged.

■ In 64-bit mode, F0 through F19 can be used for temporary values. When a
function is compiled with the default options, it must return with F20 through F31
unchanged.

Debugging on MIPS targets

52 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

Debugging on MIPS tar gets
The MIPS-configured gdb uses the calling convention, mips-ecoff-gdb .

gdb needs to know the following things to talk to your MIPS target.

■ Specifications for what serial device connects your host to your MIPS board (the
first serial device available on your host is the default).

■ Specifications for what speed to use over the serial device.

mips-ecoff-gdb uses the MIPS remote serial protocol to connect your development
host machine to the target board.

Use one of the following gdb commands to specify the connection to your target
board.
target mips port

To run a program on the board, start up gdb with the name of your program as the
argument.

To connect to the board, use the command, target mips port , where port is the
name of the serial port connected to the board. If the program has not already been
downloaded to the board, you may use the load command to download it.

You can then use all the usual gdb commands.

For example, the following example’s sequence connects to the target board
through a serial port, and loads and runs a program (designated as prog for
variable-dependent input in the following example) through the debugger.

host$ mips-ecoff-gdb prog

target mips hostname : portnumber

You can specify a TCP/IP connection instead of a serial port, using the syntax,
hostname : portnumber (assuming your board, designated here as hostname , is
connected so that this makes sense; for instance, the connection may use a serial
line, designated by your variable portnumber input, managed by a terminal
concentrator).

gdb also supports the special command, set mipsfpu off , for MIPS targets.

 (gdb) target remote /dev/ttyb

 ...

 (gdb) load

 ...

 (gdb) run

CYGNUS GNUPro Tools for Embedded Systems ■ 53

Debugging on MIPS targets

If your target board does not support the MIPS floating point coprocessor, you should
use the command, set mipsfpu off (found in your .gdbinit file). This tells gdb
how to find the return value of functions returning floating point values. It also allows
gdb to avoid saving the floating point registers when calling functions on the board.

If you neglect to use the command, set mipsfpu off , some calls will fail, such as
print strlen ("abc") .

set remotedebug n
You can locate some debugging information about communications with the
board by setting the remotedebug variable. If you set it to 1 using
set remotedebug 1 , every packet will be displayed. If you set it to 2, every
character will be displayed. You can check the current value at any time with the
command, show remotedebug .

Linking MIPS with the GOFAST library

54 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

Linkin g MIPS with the GOFAST librar y
The GOFAST library is available with two interfaces.

gcc ‘-msoft-float’ output places all arguments in registers, which (for subroutines
using double arguments) is compatible with the interface identified as
“ Interface 1: all arguments in registers ” in the GOFAST documentation.

For information about US Software’s floating point library, read US Software
GOFAST R3000 Floating Point Library (United States Software Corporation).

For full compatibility with all GOFAST subroutines, you need to make a slight
modification to some of the subroutines in the GOFAST library.

If you purchase and install the GOFAST library, you can link your code to that library
in a number of different ways, depending on where and how you install the library. To
focus on the issue of linking, the following examples assume you’ve already built
object modules with appropriate options (including -msoft-float).

This is the simplest case; it assumes that you’ve installed the GOFAST library as the
file, fp.a , in the same directory where you do development, as shown in the GOFAST
documentation.

$ mips-ecoff-gcc -o prog prog.o...-lc fp.a

In a shared development environment, the following example may be more realistic.

IMPORTANT! The following documentation assumes you’ve installed the GOFAST library
as user-dir /libgofast.a , where ‘userdir ’ is an apporpriate directory on
your development system.
$ mips-ecoff-gcc -o program program.o... -lc -Lussdir -lgofast

You can eliminate the need for a -L option with a little more setup, using an
environment variable like the following example (the example assumes you use a
command shell compatible with the Bourne shell):

$ LIBRARY_PATH= ussdir; export LIBRARY_PATH
$ mips-ecoff-gcc -o program program.o...-lc -lgofast

The GOFAST library is installed in the directory, userdir /libgofast.a , and the
environment variable, LIBRARY_PATH, instructs gcc to look for the library in userdir .
(The syntax shown here for setting the environment variable is the Unix Bourne Shell,
/bin/sh , syntax; adjust as needed for your system.)

NOTE: All the variations on linking with the GOFAST library explicitly include
‘ -lc ’ before the GOFAST library. ‘-lc ’ is the standard C subroutine library;
normally, you don’t have to specify this subroutine, since linking with the
GOFAST library is automatic.

CYGNUS GNUPro Tools for Embedded Systems ■ 55

Full compatibility with the GOFAST library for MIPS

When you link with an alternate software floating-point library, however, the order of
linking is important. In this situation, specify ‘-lc ’ to the left of the GOFAST library,
to ensure that standard library subroutines also use the GOFAST floating-point code.

Full compatibility with the GOFAST library for MIPS
The gcc calling convention for functions whose first and second arguments have type,
float , is not completely compatible with the definitions of those functions in the
GOFAST library, as shipped. The following functions are affected:

Since the GOFAST library is normally shipped with source, you can make these
functions compatible with the gcc convention by adding the following instruction to
the beginning of each affected function, then rebuilding the library.

move $5,$6

fpcmp fpadd fpsub

fpmul fpdiv fpfmod

fpacos fpasin fpatan

fpatan2 fppow

Full compatibility with the GOFAST library for MIPS

56 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

CYGNUS GNUPro Tools for Embedded Systems ■ 57

Motorola m68k development

The following documentation discusses cross-development with the Motorola m68k
targets.

■ “Compiling for m68k targets” on page 58

■ “Preprocessor macros for m68k targets” on page 59

■ “Assembler options for m68k targets” on page 60

■ “Debugging on m68k targets” on page 62

Cross-development tools in the GNUPro Toolkit are normally installed with names
that reflect the target machine, so that you can install more than one set of tools in the
same binary directory. The target name, constructed with the ‘--target ’ option to
configure , is used as a prefix to the program name. For example, the compiler for the
Motorola m68k (gcc in native configurations) is called, depending on which
configuration you have installed, by m68k-coff-gcc or m68k-aout-gcc .

6

Compiling for m68k targets

58 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

Compilin g for m68k targets
The Motorola m68k target family toolchain controls variances in code generation
directly from the command line.

When you run gcc , you can use command-line options to choose whether to take
advantage of the extra Motorola m68k machine instructions, and whether to generate
code for hardware or software floating point.For information on all the gcc
command-line options, see “GNU CC Command Options” in Using GNU CC in
GNUPro Compiler Tools.
-g

The compiler debugging option, -g , is essential to see interspersed high-level
source statements, since without debugging information the assembler cannot tie
most of the generated code to lines of the original source file.

-m68000

Generate code for the Motorola m68000.
-m68020

Generate code for the Motorola m68020.
-m68030

Generate code for the Motorola m68030.
-m68040

Generate code for the Motorola m68040. Also enables code generation for the
68881 FPU by default.

-m68060

Generate code for the Motorola m68060. Also enables code generation for the
68881 FPU by default.

-m68332

Generate code for the Motorola cpu32 family, of which the Motorola m68332 is a
member.

Options for floating point
-msoft-float

Generate output containing library calls for floating point. The Motorola
configurations of libgcc include a collection of subroutines to implement these
library calls.

-m68881

Generate code for the Motorola m68881 FPU.

CYGNUS GNUPro Tools for Embedded Systems ■ 59

Floating point subroutines

Floating point subroutines
The following two kinds of floating point subroutines are useful with GCC.

■ Software implementations of the basic functions (floating-point multiply, divide,
add, subtract), for use when there is no hardware floating-point support.

■ General-purpose mathematical subroutines, included with implementation of the
standard C mathematical subroutine library. See “Mathematical Functions” in
GNUPro Math Library in GNUPro Libraries.

Preprocessor macros for m68k targets
gcc defines the following preprocessor macros for the Motorola m68k configurations.

■ Any Motorola m68k architecture:
__mc68000__

■ Any Motorola m68010 architecture:
__mc68010__

■ Any Motorola m68020 architecture:
__mc68020__

■ Any Motorola m68030 architecture:
__mc68030__

■ Any Motorola m68040 architecture:
__mc68040__

■ Any Motorola m68060 architecture:
__mc68060__

■ Any Motorola m68332 architecture:
__mc68332__

■ Any Motorola m68881 architecture:
__HAVE_68881__

Assembler options for m68k targets

60 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

Assembler options for m68k targets
To use the GNU assembler, gas , to assemble gcc output, configure gcc with the
--with-gnu-as switch or with the -mgas option.
-mgas

Compile using as to assemble GCC output.
-Wa

If you invoke gas through the GNU C compiler (version 2), you can use the -Wa
option to pass arguments through to the assembler. One common use of this option
is to exploit the assembler’s listing features.

Assembler arguments that you specify with gcc -Wa must be separated from each
other (and the -Wa) by commas, like the options, -alh and -L , in the following
example input, separate from -Wa.

$ m68k-coff-gcc -c -g -O -Wa,-alh, -L file.c

-L

The additional assembler option, -L , preserves local labels, which may make the
listing output more intelligible to humans.

For example, in the following commandline, the assembler option ,-ahl , requests
a listing with interspersed high-level language and assembly language.

$ m68k-coff-gcc -c -g -O -Wa,-alh,-L file.c

-L preserves local labels, while the compiler debugging option, -g , gives the
assembler the necessary debugging information.

Assembler options for listing output
Use the following options to enable listing output from the assembler. The letters after
‘ -a ’ may be combined into one option, such as ‘-al ’.
-a

By itself, ‘-a’ requests listings of high-level language source, assembly language,
and symbols.

-ah

Requests a high-level language listing.
-al

Request an output-program assembly listing.
-as

Requests a symbol table listing.
-ad

Omits debugging directives from listing. High-level listings require a compiler
debugging option like -g , and assembly listings (such as -al) requested.

CYGNUS GNUPro Tools for Embedded Systems ■ 61

Assembler listing-control directives

Assembler listing-control directives
Use the following listing-control assembler directives to control the appearance of the
listing output (if you do not request listing output with one of the ‘-a ’ options, the
following listing-control directives have no effect).
.list

Turn on listings for further input.
.nolist

Turn off listings for further input.
.psize linecount , columnwidth

Describe the page size for your output (the default is 60, 200). as generates form
feeds after printing each group of linecount lines. To avoid these automatic form
feeds, specify 0 as linecount . The variable input for columnwidth uses the same
descriptive option.

.eject

Skip to a new page (issue a form feed).
.title

Use as the title (this is the second line of the listing output, directly after the
source file name and page number) when generating assembly listings.

.sbttl

Use as the subtitle (this is the third line of the listing output, directly after the title
line) when generating assembly listings.

-an

Turn off all forms processing.

Calling conventions for m68k targets
The Motorola m68k pushes all arguments onto the stack, last to first, so that the lowest
numbered argument not passed in a register is at the lowest address in the stack.

Function return values for integers are stored in D0 and D1. A7 has a reserved use.
Registers A0, A1, D0, D1, F0, and F1 can be used for temporary values.

When a function is compiled with the default options, it must return with registers D2
through D7 and registers A2 through A6 unchanged.

If you have floating-point registers, then registers F2 through F7 must also be
unchanged.

NOTE: Functions compiled with different calling conventions cannot be run together
without some care.

Debugging on m68k targets

62 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

Debugging on m68k targets
The m68k-configured gdb is called by m68k-coff-gdb or m68k-aout-gdb .

gdb needs to know the following specifications to talk to your Motorola m68k.

■ Specifications for wanting to use one of the following interfaces:
target rom68k

ROM monitor for the IDP board.
target cpu32bug

ROM monitor for other Motorola boards, such as the Motorola Business Card
Computer, BCC.

target est

EST Net/300 emulator.
target remote

gdb ’s generic debugging protocol.

■ Specifications for what serial device connects your host to your m68k board (the
first serial device available on your host is the default).

■ Specifications for what speed to use over the serial device.

Use the following gdb commands to specify the connection to your target board.
target interface serial-device

To run a program on the board, start up gdb with the name of your program as the
argument. To connect to the board, use the command, target interface

serial-device , where interface is an interface from the previous list of
specifications and serial-device is the name of the serial port connected to the
board. If the program has not already been downloaded to the board, you may use
the load command to download it. You can then use all the usual gdb commands.
For example, the following sequence connects to the target board through a serial
port, and loads and runs programs, designated here as prog , through the debugger.

host$ m68k-coff-gdb prog

GDB is free software and...

(gdb) target cpu32bug /dev/ttyb

...

(gdb) load

...

(gdb) run

CYGNUS GNUPro Tools for Embedded Systems ■ 63

Debugging on m68k targets

target m68k hostname : portnumber

You can specify a TCP/IP connection instead of a serial port, using the syntax,
hostname : portnumber (assuming your board, designated here as hostname , is
connected, for instance, to use a serial line, designated by portnumber , managed
by a terminal concentrator).

gdb also supports set remotedebug n. You can see some debugging information
about communications with the board by setting the variable, remotedebug .

Debugging on m68k targets

64 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

CYGNUS GNUPro Tools for Embedded Systems ■ 65

PowerPC development

The following documentation discusses cross-development with the PowerPC targets.

■ “Compiling for PowerPC targets” on page 66

■ “Assembler options for PowerPC targets” on page 74

■ “Debugging PowerPC targets” on page 76

Cross-development tools in the GNUPro Toolkit are normally installed with names
that reflect the target machine, so that you can install more than one set of tools in the
same binary directory. The target name, constructed with the ‘--target ’ option to
configure , is used as a prefix to the program name. For example, the compiler for the
PowerPC (gcc in native configurations) is called, depending on which configuration
you have installed, by powerpc-eabi-gcc .

The following processors are supported for the PowerPC targets.

7

403Gx 603(e)

505 604

601 604(e)

602 821

603 860

Compiling for PowerPC targets

66 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

Compilin g for PowerPC tar gets
The PowerPC target family toolchain controls variances in code generation directly
from the command line.

When you run gcc , you can use command-line options to choose whether to take
advantage of the extra PowerPC machine instructions, and whether to generate code
for hardware or software floating point.

When you run gcc , you can use command-line options to choose machine-specific
details.

These -m options are defined for the and PowerPC.
-mpower
-mno-power
-mpower2
-mno-power2
-mpowerpc
-mno-powerpc
-mpowerpc-gpopt
-mno-powerpc-gpopt
-mpowerpc-gfxopt
-mno-powerpc-gfxopt

GNU CC supports two related instruction set architectures for the IBM RS/6000
and PowerPC. The POWER instruction set are those instructions supported by the
rios chip set used in the original RS/6000 systems and the PowerPC instruction
set is the architecture of the Motorola MPC5xx, MPC6xx, MCP8xx and the IBM
4xx microprocessors. The PowerPC architecture defines 64-bit instructions, but
they are not supported by any current processors.

Neither architecture is a subset of the other. However there is a large common
subset of instructions supported by both. An MQ register is included in processors
supporting the POWER architecture.

You use these options to specify which instructions are available on the processor
you are using. The default value of these options is determined when configuring
GNU CC. Specifying the ‘-mcpu= cpu_type ’ overrides the specification of these
options.

We recommend you use the ‘-mcpu= cpu_type ’ option rather than any of these
options.

The ‘-mpower ’ option allows GNU CC to generate instructions that are found only
in the POWER architecture and to use the MQ register. Specifying ‘-mpower2 ’
implies ‘-power ’ and also allows GNU CC to generate instructions that are
present in the POWER2 architecture but not the original POWER architecture.

The ‘-mpowerpc ’ option allows GNU CC to generate instructions that are found

CYGNUS GNUPro Tools for Embedded Systems ■ 67

Compiling for PowerPC targets

only in the 32-bit subset of the PowerPC architecture. Specifying
‘ -mpowerpc-gpopt ’ implies ‘-mpowerpc ’ and also allows GNU CC to use the
optional PowerPC architecture instructions in the General Purpose group,
including floating-point square root. Specifying ‘-mpowerpc-gfxopt ’ implies
‘ -mpowerpc ’ and also allows GNU CC to use the optional PowerPC architecture
instructions in the Graphics group, including floating-point select.

If you specify both ‘-mno-power ’ and ‘-mno-powerpc ’, GNU CC will use only
the instructions in the common subset of both architectures plus some special AIX
common-mode calls, and will not use the MQ register. Specifying both ‘-mpower ’
and ‘-mpowerpc ’ permits GNU CC to use any instruction from either architecture
and to allow use of the MQ register; specify this for the Motorola MPC601.

-mnew-mnemonics
-mold-mnemonics

Select which mnemonics to use in the generated assembler code.

‘ -mnew-mnemonics ’ requests output that uses the assembler mnemonics defined
for the PowerPC architecture, while ‘-mold-mnemonics ’ requests the assembler
mnemonics defined for the POWER architecture. Instructions defined in only one
architecture have only one mnemonic; GNU CC uses that mnemonic irrespective
of which of these options is specified.

PowerPC assemblers support both the old and new mnemonics, as will later
POWER assemblers. Current POWER assemblers only support the old
mnemonics. Specify ‘-mnew-mnemonics if you have an assembler that supports
them, otherwise specify ‘-mold-mnemonics ’.

The default value of these options depends on how GNU CC was configured.
Specifying ‘-mcpu= cpu_type ’ sometimes overrides the value of these option.
Unless you are building a cross-compiler, you should normally not specify either
‘ -mnew-mnemonics ’ or ‘ -mold-mnemonics ’, but should instead accept the default.

-mcpu= cpu_type
Set architecture type, register usage, choice of mnemonics, and instruction
scheduling parameters for machine type cpu_type . Supported values for
cpu_type are ‘rs6000 ’, ‘ rios1 ’, ‘ rios2 ’, ‘ rsc ’, ‘ 601 ’, ‘ 602 ’, ‘ 603 ’, ‘ 603e ’,
‘604 ’, ‘ 604e ’, ‘ 620 ’, ‘ power ’, ‘ power2 ’, ‘ powerpc ’, ‘ 403 ’, ‘ 505 ’, ‘ 801 ’, ‘ 821 ’,
‘823 ’, ‘ 860 ’ and ‘common’.

The ‘-mcpu=power ’, ‘ -mcpu=power2 ’, and ‘-mcpu=powerpc ’ specify generic
POWER, POWER2 and pure PowerPC (i.e., not MPC601) architecture machine
types, with an appropriate, generic processor model assumed for scheduling
purposes.

Specifying ‘-mcpu=rios1 ’, ‘ -mcpu=rios2 ’, ‘ -mcpu=rsc ’, ‘ -mcpu=power ’, or
‘ -mcpu=power2 ’ enables the ‘-mpower ’ option and disables the ‘-mpowerpc ’
option; ‘-mcpu=601 ’ enables both the ‘-mpower ’ and ‘-mpowerpc ’ options;
‘ -mcpu=602 ’, ‘ -mcpu=603 ’, ‘ -mcpu=603e ’, ‘ -mcpu=604 ’, ‘ -mcpu=620 ’;
‘ -mcpu=403 ’, ‘ -mcpu=505 ’, ‘ -mcpu=821 ’, ‘ -mcpu=860 ’ and ‘-mcpu=powerpc ’

Compiling for PowerPC targets

68 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

enable the ‘-mpowerpc ’ option and disable the ‘-mpower ’ option; ‘-mcpu=common’
disables both the ‘-mpower ’ and ‘-mpowerpc ’ options.

IBM AIX versions 4 or greater selects ‘-mcpu=common’ by default, so that code
will operate on all members of the IBM RS/6000 and PowerPC families. In that
case, GNU CC will use only the instructions in the common subset of both
architectures plus some special AIX common-mode calls, and will not use the MQ
register. GNU CC assumes a generic processor model for scheduling purposes.

Specifying ‘-mcpu=rios1 ’, ‘ -mcpu=rios2 ’, ‘ -mcpu=rsc ’, ‘ -mcpu=power ’, or
‘ -mcpu=power2 ’ also disables the ‘new-mnemonics ’ option.

Specifying ‘-mcpu=601 ’, ‘ -mcpu=602 ’, ‘ -mcpu=603 ’, ‘ -mcpu=603e ’,
‘ -mcpu=604 ’, ‘ -mcpu=620 ’, ‘ -mcpu=403 ’, or ‘-mcpu=powerpc ’ also enables the
‘new-mnemonics ’ option.

Specifying ‘-mcpu=403 ’, ‘ -mcpu=821 ’, or ‘ -mcpu=860 ’ also enables the
‘ -msoft-float ’ option.

-mtune= cpu_type
Set the instruction scheduling parameters for machine type, cpu_type , but do not
set the architecture type, register usage, choice of mnemonics like
‘ -mcpu= cpu_type ’ would. The same values for cpu_type are used for
‘ -mtune= cpu_type ’ as for ‘-mcpu= cpu_type ’. The ‘-mtune= cpu_type ’option
overrides the ‘-mcpu= cpu_type ’ option in terms of instruction scheduling
parameters.

-mfull-toc
-mno-fp-in-toc
-mno-sum-in-toc
-mminimal-toc

Modify generation of the TOC (Table Of Contents), which is created for every
executable file. The ‘-mfull-toc ’ option is selected by default. In that case, GNU
CC will allocate at least one TOC entry for each unique non-automatic variable
reference in your program. GNU CC will also place floating-point constants in the
TOC. However, only 16,384 entries are available in the TOC.

If you receive a linker error message that saying you have overflowed the
available TOC space, you can reduce the amount of TOC space used with the
‘ -mno-fp-in-toc ’ and ‘-mno-sum-in-toc ’ options.

‘ -mno-fp-in-toc ’ prevents GNU CC from putting floating-point constants in the
TOC and ‘-mno-sum-in-toc ’ forces GNU CC to generate code to calculate the
sum of an address and a constant at run-time instead of putting that sum into the
TOC. You may specify one or both of these options. Each causes GNU CC to
produce very slightly slower and larger code at the expense of conserving TOC
space.

If you still run out of space in the TOC even when you specify both of these
options, specify ‘-mminimal-toc ’ instead. This option causes GNU CC to make
only one TOC entry for every file. When you specify this option, GNU CC will

CYGNUS GNUPro Tools for Embedded Systems ■ 69

Compiling for PowerPC targets

produce code that is slower and larger but which uses extremely little TOC space.
You may wish to use this option only on files that contain less frequently executed
code.

-msoft-float
-mhard-float

Generate code that does not use or does use the floating-point register set.
Software floating point emulation is provided if you use the ‘-msoft-float ’
option, and pass the option to GNU CC when linking.

-mmultiple
-mno-multiple

Generate code that uses (does not use) the load multiple word instructions and the
store multiple word instructions. These instructions are generated by default on
POWER systems, and not generated on PowerPC systems. Do not use
‘ -mmultiple ’ on little endian PowerPC systems, since those instructions do not
work when the processor is in little endian mode.

-mstring
-mno-string

Generate code that uses (does not use) the load string instructions and the store
string word instructions to save multiple registers and do small block moves.
These instructions are generated by default on POWER systems, and not
generated on PowerPC systems.

WARNING: Do not use -mstring on little endian PowerPC systems, since those
instructions do not work when the processor is in little endian mode.

-mupdate
-mno-update

Generate code that uses (or does not use) the load or store instructions that update
the base register to the address of the calculated memory location. These
instructions are generated by default.

If you use ‘-mno-update ’, there is a small window between the time that the stack
pointer is updated and the address of the previous frame is stored, which means
code that walks the stack frame across interrupts or signals may get corrupted
data.

-mfused-madd
-mno-fused-madd

Generate code that uses (does not use) the floating point multiply and accumulate
instructions. These instructions are generated by default if hardware floating is
used.

-mno-bit-align
-mbit-align

On System V.4 and embedded PowerPC systems do not and do force structures
and unions containing bit fields aligned to the base type of the bit field. For
example, by default a structure containing nothing but 8 unsigned bitfields of

Compiling for PowerPC targets

70 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

length 1 would be aligned to a 4 byte boundary and have a size of 4 bytes. By
using -mno-bit-align , the structure would be aligned to a 1 byte boundary and
be one byte in size.

-mno-strict-align
-mstrict-align

On System V.4 and embedded PowerPC systems do not (do) assume that
unaligned memory references will be handled by the system.

-mrelocatable
-mno-relocatable

On embedded PowerPC systems generate code that allows (does not allow) the
program to be relocated to a different address at runtime. If you use
-mrelocatable on any module, all objects linked together must be compiled with
-mrelocatable or -mrelocatable-lib .

-mrelocatable-lib
-mno-relocatable-lib

On embedded PowerPC systems generate code that allows (does not allow) the
program to be relocated to a different address at runtime. Modules compiled with
‘ -mreloctable-lib ’ can be linked with either modules compiled without
‘ -mrelocatable ’ and ‘-mrelocatable-lib ’ or with modules compiled with the
‘ -mrelocatable ’ options.

-mno-toc
-mtoc

On System V.4 and embedded PowerPC systems do not (do) assume that register
2 contains a pointer to a global area pointing to the addresses used in the program.

-mno-traceback
-mtraceback

On embedded PowerPC systems do not (do) generate a trace-back tag before the
start of the function. This tag can be used by the debugger to identify where the
start of a function is.

-mlittle
-mlittle-endian

On System V.4 and embedded PowerPC systems compile code for the processor
in little endian mode. The ‘-mlittle-endian ’ option is the same as ‘-mlittle ’.

-mbig
-mbig-endian

On System V.4 and embedded PowerPC systems compile code for the processor
in big endian mode. The ‘-mbig-endian ’ option is the same as
‘ -mbig ’.

-mcall-sysv
On System V.4 and embedded PowerPC systems compile code using calling
conventions that adheres to the March 1995 draft of the System V Application
Binary Interface, PowerPC processor supplement. This is the default unless you
configured GCC using ‘powerpc-*-eabiaix ’.

CYGNUS GNUPro Tools for Embedded Systems ■ 71

Compiling for PowerPC targets

-mcall-sysv-eabi
Specify both ‘-mcall-sysv ’ and ‘-meabi ’ options.

-mcall-sysv-noeabi
Specify both ‘-mcall-sysv ’ and ‘-mnoeabi ’ options.

-mcall-aix
On System V.4 and embedded PowerPC systems compile code using calling
conventions that are similar to those used on AIX. This is the default if you
configured GCC using ‘powerpc-*-eabiaix ’.

-mcall-solaris
On System V.4 and embedded PowerPC systems, compile code for the Solaris
operating system.

-mcall-linux
On System V.4 and embedded PowerPC systems, compile code for the Linux
operating system.

-mprototype
-mno-prototype

On System V.4 and embedded PowerPC systems assume that all calls to variable
argument functions are properly prototyped. Otherwise, the compiler must insert
an instruction before every non prototyped call to set or clear bit 6 of the condition
code register (CR) to indicate whether floating point values were passed in the
floating point registers in case the function takes a variable arguments.

With ‘ -mprototype ’, only calls to prototyped variable argument functions will set
or clear the bit.

-msim
On embedded PowerPC systems, assume that the startup module is called
sim-crt0.o and the standard C libraries are libsim.a and libc.a . This is
default for ‘powerpc-*-eabisim ’ configurations.

-mmvme
On embedded PowerPC systems, assume that the startup module is called
mvme-crt0.o and the standard C libraries are ‘libmvme.a ’ and ‘libc.a ’.

-memb
On embedded PowerPC systems, set the PPC_EMB bit in the ELF flags header to
indicate that eabi extended relocations are used.

-mads
On embedded PowerPC systems, assume that the startup module is called
‘crt0.o ’ and the standard C libraries are ‘libads.a ’ and ‘libc.a ’.

-myellowknife
On embedded PowerPC systems, assume that the startup module is called
‘crt0.o ’ and ‘libyk.a ’ and ‘libc.a ’ are the standard C libraries.

-meabi
-mno-eabi

On System V.4 and embedded PowerPC systems do (do not) adhere to the
Embedded Applications Binary Interface (EABI) which is a set of modifications

Compiling for PowerPC targets

72 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

to the System V.4 specifications. Selecting -meabi means that the stack is aligned
to an 8 byte boundary, a function __eabi is called to from main to set up the EABI
environment, and the ‘-msdata ’ option can use both r2 and r13 to point to two
separate small data areas.

Selecting -mno-eabi means that the stack is aligned to a 16 byte boundary, do not
call an initialization function from main, and the
‘ -msdata ’ option will only use r13 to point to a single small data area. The
‘ -meabi ’ option is on by default if you configured GCC using one of the
‘powerpc*-*-eabi* ’ options.

-msdata=eabi
On System V.4 and embedded PowerPC systems, put small initialized const
global and static data in the ‘.sdata2 ’ section, which is pointed to by register r2 .
Put small initialized non-const global and static data in the ‘.sdata ’ section,
which is pointed to by register r13 . Put small uninitialized global and static data in
the ‘.sbss ’ section, which is adjacent to the ‘.sdata ’ section. The
‘ -msdata=eabi ’ option is incompatible with the ‘-mrelocatable ’ option. The
‘ -msdata=eabi ’ option also sets the ‘-memb’ option.

-msdata=sysv
On System V.4 and embedded PowerPC systems, put small global and static data
in the ‘.sdata ’ section, which is pointed to by register r13 . Put small uninitialized
global and static data in the ‘.sbss ’ section, which is adjacent to the ‘.sdata ’
section. The ‘-msdata=sysv ’ option is incompatible with the ‘-mrelocatable ’
option.

-msdata=default
-msdata

On System V.4 and embedded PowerPC systems, if ‘-meabi ’ is used, compile
code the same as ‘-msdata=eabi ’, otherwise compile code the same as
‘ -msdata=sysv ’.

-msdata-data
On System V.4 and embedded PowerPC systems, put small global and static data
in the ‘.sdata ’ section. Put small uninitialized global and static data in the
‘ .sbss ’ section. Do not use register r13 to address small data however.

This is the default behavior unless other ‘-msdata ’ options are used.
-msdata=none
-mno-sdata

On embedded PowerPC systems, put all initialized global and static data in the
‘ .data ’ section, and all uninitialized data in the ‘.bss ’ section.

-G num
On embedded PowerPC systems, put global and static items less than or equal to
num bytes into the small data or bss sections instead of the normal data or bss
section. By default, num is 8. The ‘-G num’ switch is also passed to the linker. All

CYGNUS GNUPro Tools for Embedded Systems ■ 73

Floating point subroutines for PowerPC

modules should be compiled with the same
‘ -G num’ value.

-mregnames
-mno-regnames

On System V.4 and embedded PowerPC systems, do (do not) emit register names
in the assembly language output using symbolic forms.

Floating point subroutines for PowerPC
The following two kinds of floating point subroutines are useful with gcc .

■ Software implementations of the basic functions (floating-point multiply, divide,
add, subtract), for use when there is no hardware floating-point support.

■ General-purpose mathematical subroutines, included with implementation of the
standard C mathematical subroutine library. See “Mathematical Functions” in
GNUPro Math Library in GNUPro Libraries.

Preprocessor macros for PowerPC targets
gcc defines the following preprocessor macros for the PowerPC configurations.

■ Any PowerPC architecture:
__powerpc-eabi__

Assembler options for PowerPC targets

74 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

Assembler options for PowerPC tar gets
To use the GNU assembler, gas , to assemble gcc output, configure gcc with the
--with-gnu-as switch or with the -mgas option.
-mgas

Compile using gas to assemble gcc output.
-Wa

If you invoke gas through the GNU C compiler (version 2), you can use the -Wa
option to pass arguments through to the assembler. One common use of this option
is to exploit the assembler’s listing features.

Assembler arguments that you specify with gcc -Wa must be separated from each
other (and the -Wa) by commas, like the options, -alh and -L , in the following
example input, separate from -Wa.

$ powerpc-eabi-gcc -c -g -O -Wa,-alh, -L file.c

-L

The additional assembler option, -L , preserves local labels, which may make the
listing output more intelligible to humans.

For example, in the following commandline, the assembler option ,-ahl , requests
a listing with interspersed high-level language and assembly language.

$ powerpc-eabi-gcc -c -g -O -Wa,-alh,-L file.c

-L preserves local labels, while the compiler debugging option, -g , gives the
assembler the necessary debugging information.

Use the following options to enable listing output from the assembler. The letters after
‘ -a ’ may be combined into one option, such as ‘-al ’.
-a

By itself, ‘-a’ requests listings of high-level language source, assembly language,
and symbols.

-ah

Requests a high-level language listing.
-al

Request an output-program assembly listing.
-as

Requests a symbol table listing.
-ad

Omits debugging directives from listing. High-level listings require a compiler
debugging option like -g , and assembly listings (such as -al) requested.

CYGNUS GNUPro Tools for Embedded Systems ■ 75

Assembler options for PowerPC targets

Use the following listing-control assembler directives to control the appearance of the
listing output (if you do not request listing output with one of the ‘-a ’ options, the
following listing-control directives have no effect).
.list

Turn on listings for further input.
.nolist

Turn off listings for further input.
.psize linecount , columnwidth

Describe the page size for your output (the default is 60, 200). gas generates
form feeds after printing each group of linecount lines. To avoid these automatic
form feeds, specify 0 as linecount . The variable input for columnwidth uses the
same descriptive option.

.eject

Skip to a new page (issue a form feed).
.title

Use as the title (this is the second line of the listing output, directly after the
source file name and page number) when generating assembly listings.

.sbttl

Use as the subtitle (this is the third line of the listing output, directly after the title
line) when generating assembly listings.

-an

Turn off all forms processing.

Debugging PowerPC targets

76 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

Debugging PowerPC tar gets
The powerpc -configured gdb is called by powerpc-eabi-gdb .

gdb needs to know the following specifications to talk to PowerPC targets.

■ Specifications for what you want to use one, such as target remote , gdb ’s
generic debugging protocol.

■ Specifications for what serial device connects your PowerPC board (the first serial
device available on your host is the default).

■ Specifications for what speed to use over the serial device.

Use the following gdb commands to specify the connection to your target board.
target powerpc serial-device

To run a program on the board, start up gdb with the name of your program as the
argument. To connect to the board, use the command, target interface

serial-device , where interface is an interface from the previous list of
specifications and serial-device is the name of the serial port connected to the
board. If the program has not already been downloaded to the board, you may use
the load command to download it. You can then use all the usual gdb commands.
For example, the following sequence connects to the target board through a serial
port, and loads and runs programs, designated here as prog , through the debugger.

target powerpc hostname : portnumber

You can specify a TCP/IP connection instead of a serial port, using the syntax,
hostname : portnumber (assuming your board, designated here as hostname , is
connected, for instance, to use a serial line, designated by portnumber , managed
by a terminal concentrator).

gdb also supports set remotedebug n. You can see some debugging information
about communications with the board by setting the variable, remotedebug .

(gdb) target powerpc com1

...

breakinst () ../sparc-stub.c:975

975 }

(gdb) s

main () hello.c:50

50 writer(1, “Got to here\n”);

(gdb)

CYGNUS GNUPro Tools for Embedded Systems ■ 77

The stack frame

The stack frame
The following information applies to the stack frame for the PowerPC.

■ The stack grows downwards from high addresses to low addresses.

■ A leaf function need not allocate a stack frame if it does not need one.

■ A frame pointer need not be allocated.

■ The stack pointer shall always be aligned to 4 byte boundaries.

■ The register save area shall be aligned to a 4 byte boundary.

Stack frames for functions taking a fixed number of arguments use the definitions in
the following chart. FP points to the same location as SP.

High
memory

Before call: After call:

local variables,
register save area,
etc.

arguments on stack

local variables,
register save area,
etc.

arguments on stack

register save area

local variables

alloca
allocations

arguments on stack

SP, FP

SP, FP
Low
memory

The stack frame

78 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

Stack frames for functions that take a variable number of arguments use the following
definitions.

High
memory

Before call: After call:

local variables,
register save area,
etc.

arguments on stack

local variables,
register save area,
etc.

arguments on stack

save area for
anonymous parms
passed in registers
(the size of this area
may be zero)

local variables

alloca
allocations

arguments on stack

SP, FP

SP, FP
Low
memory

CYGNUS GNUPro Tools for Embedded Systems ■ 79

Argument passing

Argument passing
The following table shows the general purpose registers, floating point registers, and
the stack frame offset.

Figure 1: Parameter Passing Example Register

Function return values
Integers, floating point values, and aggregates of 8 bytes or less are returned in
register ‘r0 ’ (and ‘r1 ’ if necessary).

Aggregates larger than 8 bytes are returned by having the caller pass the address of a
buffer to hold the value in ‘r0 ’ as an “invisible” first argument. All arguments are then
shifted down by one. The address of this buffer is returned in ‘r0 ’.

General Purpose RegistersFloating-Point RegistersStack Frame Offset
r3: c f1: ff 08: ptr to t
r4: d f2: gg 0c: (padding)
r5: e f3: hh 10: nn(lo)
r6: f f4: ii 14: nn(hi)
r7: g f5: jj
r8: h f6: kk
r9: ptr to ld f7: ll
r10: ptr to s f8: mm

Function return values

80 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

CYGNUS GNUPro Tools for Embedded Systems ■ 81

SPARC, SPARClite development

The following documentation discusses cross-development with the SPARC and
SPARClite targets. For the gcc compiler in particular, special configuration options
allow use of special software floating-point code for the SPARC MB86930 processor,
as well as defaulting commnd-line options using special Fujitsu SPARClite features.
For the FUjitsu SPARClite, there is support for the ex930, ex932, ex933, ex934, and
the ex936 boards.

See the following documentation for more specific discussion concerning the SPARC
and SPARClite targets.

■ “Compiling for SPARC targets” on page 83

■ “Preprocessor macros for SPARC targets” on page 85

■ “Assembler options for SPARC targets” on page 86

■ “Debugging SPARC and SPARClite targets” on page 89

■ “Loading on specific targets for SPARC, SPARClite” on page 91

Cross-development tools in the GNUPro Toolkit are normally installed with names
that reflect the target machine, so that you can install more than one set of tools in the
same binary directory. The target name, constructed with the ‘--target ’ option to
configure , is used as a prefix to the program name. For example, the compiler for the
SPARC (gcc in native configurations) is called, depending on which configuration
you have installed, by sparc-coff-gcc or sparc-aout-gcc . The compiler for the
SPARClite (gcc in native configurations) is called, depending on which configuration

8

82 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

you have installed, by sparclite-coff-gcc or sparclite-aout-gcc .

See SPARClite User’s Manual (Fujitsu Microelctronics, Inc., Semiconductor
Division, 1993) for full documentation of the Fujitsu SPARClite family, architecture,
and instruction set.

CYGNUS GNUPro Tools for Embedded Systems ■ 83

Compiling for SPARC targets

Compilin g for SPARC tar gets
The SPARC target family toolchain controls variances in code generation directly
from the command line.

When you run gcc , you can use command-line options to choose whether to take
advantage of the extra SPARC machine instructions, and whether to generate code for
hardware or software floating point.

Compiler options for SPARC
When you run gcc , you can use command-line options to choose machine-specific
details. For information on all the gcc command-line options, see “GNU CC
Command Options” in Using GNU CC in GNUPro Compiler Tools.

-g

The compiler debugging option, -g , is essential to see interspersed high-level
source statements, since without debugging information the assembler cannot tie
most of the generated code to lines of the original source file.

-mvh

Generate code for the SPARC version 8. The only difference from version 7 code
is the compiler emits the integer multiply (smul and umul) and integer divide
(sdiv and udiv) instructions that exist in SPARC version 8 and not version 7.

-mf930

Generate code for the Fujitsu SPARClite chip, MB86930. This chip is equivalent
to the combination, -msparclite -mno-fpu . -mf930 is the default when the
compiler configures specifically to the Fujitsu SPARClite processor.

-mf934

Generate code specifically intended for the SPARC MB86934, a Fujitsu
SPARClite chip with a floating point .

This option is equivalent to -msparclite .
-mflat

Does not register windows in function calls.
-msparclite

The SPARC configurations of GCC generate code for the common subset of the
instruction set: the version 7 variant of the SPARC architecture.

-msparclite , on automatically for any of the Fujitsu SPARClite configurations,
gives you SPARClite code. This adds the integer multiply (smul and umul , just as
in SPARC version 8), the integer divide-step (divscc), and scan (scan)
instructions that exist in SPARClite but not in SPARC version 7.

Using -msparclite when you run the compiler does not, however, give you

Options for floating point for SPARC and SPARClite

84 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

floating point code that uses the entry points for US Software’s GOFAST library.

Options for floating point for SPARC and SPARClite
The following command line options are available for both the SPARC and the Fujitsu
SPARClite configurations of the compiler. See “SPARC Options” in Using GNU CC
in GNUPro Compiler Tools.
-mfpu
-mhard-float

Generate output containing floating point instructions as the default.
-msoft-float
-mno-sfpu

Generate output containing library calls for floating point. The SPARC
configurations of libgcc include a collection of subroutines to implement these
library calls.

In particular, the Fujitsu SPARClite configurations generate subroutine calls
compatible with the US Software goFast.a floating point library, giving you the
opportunity to use either the libgcc implementation or the US Software version.

To use the US Software library, include the appropriate call on the gcc command
line.

To use the libgcc version, you need nothing special; gcc links with libgcc
automatically, after all other object files and libraries.

Floating point subroutines for SPARC and SPARClite
The following two kinds of floating point subroutines are useful with gcc .

■ Software implementations of the basic functions (floating-point multiply, divide,
add, subtract), for use when there is no hardware floating-point support.

When you indicate that no hardware floating point is available (with either of the
gcc options, -msoft-float or -mno-fpu), the Fujitsu SPARClite configurations
of gcc calls compatible with the US Software GOFAST library. If you do not have
this library, you can still use software floating point; libgcc , the auxiliary library
distributed with gcc , includes compatible, although slower, subroutines.

■ General-purpose mathematical subroutines, included with implementation of the
standard C mathematical subroutine library. See “Mathematical Functions” in
GNUPro Math Library in GNUPro Libraries.

CYGNUS GNUPro Tools for Embedded Systems ■ 85

Preprocessor macros for SPARC targets

Preprocessor macros for SPARC tar gets
gcc defines the following preprocessor macros for the SPARC configurations.

■ Any SPARC architecture:
__sparc__

■ Any Fujitsu SPARClite architecture:
__sparclite__

Assembler options for SPARC targets

86 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

Assembler options for SPARC tar gets
To use the GNU assembler, gas , to assemble gcc output, configure gcc with the
--with-gnu-as switch or with the -mgas option.
-mgas

Compile using gas to assemble gcc output.
-Wa

If you invoke gas through the GNU C compiler (version 2), you can use the -Wa
option to pass arguments through to the assembler. One common use of this option
is to exploit the assembler’s listing features.

Assembler arguments that you specify with gcc -Wa must be separated from each
other (and the -Wa) by commas, like the options, -alh and -L , in the following
example input, separate from -Wa.

$ sparc-coff-gcc -c -g -O -Wa,-alh, -L file.c

-L

The additional assembler option, -L , preserves local labels, which may make the
listing output more intelligible to humans.

For example, in the following commandline, the assembler option ,-ahl , requests
a listing with interspersed high-level language and assembly language.

$ sparc-coff-gcc -c -g -O -Wa,-alh,-L file.c

-L preserves local labels, while the compiler debugging option, -g , gives the
assembler the necessary debugging information.

Assembler options for listing output for SPARC,
SPARClite

Use the following options to enable listing output from the assembler. The letters after
‘ -a ’ may be combined into one option, such as ‘-al ’.
-a

By itself, ‘-a’ requests listings of high-level language source, assembly language,
and symbols.

-ah

Requests a high-level language listing.
-al

Request an output-program assembly listing.
-as

Requests a symbol table listing.

CYGNUS GNUPro Tools for Embedded Systems ■ 87

Assembler listing-control directives for SPARC, SPARClite

-ad

Omits debugging directives from listing. High-level listings require a compiler
debugging option like -g , and assembly listings (such as -al) requested.

Assembler listing-control directives for SPARC,
SPARClite

Use the following listing-control assembler directives to control the appearance of the
listing output (if you do not request listing output with one of the ‘-a ’ options, the
following listing-control directives have no effect).
.list

Turn on listings for further input.
.nolist

Turn off listings for further input.
.psize linecount , columnwidth

Describe the page size for your output (the default is 60, 200). gas generates
form feeds after printing each group of linecount lines. To avoid these automatic
form feeds, specify 0 as linecount . The variable input for columnwidth uses the
same descriptive option.

.eject

Skip to a new page (issue a form feed).
.title

Use as the title (this is the second line of the listing output, directly after the
source file name and page number) when generating assembly listings.

.sbttl

Use as the subtitle (this is the third line of the listing output, directly after the title
line) when generating assembly listings.

-an

Turn off all forms processing.

Assembler options for the SPARClite
When configured for SPARC, the assembler recognizes the additional Fujitsu
SPARClite machine instructions that gcc generates: -Asparclite .

A flag to the GNU assembler (configured for SPARC) explicitly selects this particular
SPARC architecture. The SPARC assembler automatically selects the Fujitsu
SPARClite architecture whenever it encounters one of the SPARClite-only
instructions, divscc or scan .

Calling conventions for SPARC and SPARClite

88 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

Calling conventions for SPARC and SPARClite
The SPARC passes the first six words of arguments in registers R8 through R13. All
remaining arguments are stored in a reserved block on the stack, last to first, so that
the lowest numbered argument not passed in a register is at the lowest address in the
stack. The registers are always filled, so a double word argument starting in R13 would
have the most significant word in R13 and the least significant word on the stack.

Function return values are stored in R8. Register R0 is hardwired so that it always has
the value 0. R14 and R15 have reserved uses. Registers R1 through R7 can be used for
temporary values.

When a function is compiled with the default options, it must return with registers R16
through R29 unchanged.

NOTE: Functions compiled with different calling conventions cannot be run together
without some care.

CYGNUS GNUPro Tools for Embedded Systems ■ 89

Debugging SPARC and SPARClite targets

Debugging SPARC and SPARClite
targets

The sparc -configured gdb is called by sparc-coff-gdb or sparc-aout-gdb .

The sparclite -configured gdb is called by sparclite-coff-gdb or
sparclite-aout-gdb .

gdb needs to know the following specifications to talk to your SPARC or Fujitsu
SPARClite.

■ Specifications for what you want to use one, such as target remote , gdb ’s
generic debugging protocol.

■ Specifications for what serial device connects your SPARC board (the first serial
device available on your host is the default).

■ Specifications for what speed to use over the serial device.

Use the following gdb commands to specify the connection to your target board.
target sparclite serial-device

To run a program on the board, start up gdb with the name of your program as the
argument. To connect to the board, use the command, target interface

serial-device , where interface is an interface from the previous list of
specifications and serial-device is the name of the serial port connected to the
board. If the program has not already been downloaded to the board, you may use
the load command to download it. You can then use all the usual gdb commands.
For example, the following sequence connects to the target board through a serial
port, and loads and runs programs, designated here as prog , through the debugger.

target sparclite hostname : portnumber

You can specify a TCP/IP connection instead of a serial port, using the syntax,
hostname : portnumber (assuming your board, designated here as hostname , is
connected, for instance, to use a serial line, designated by portnumber , managed
by a terminal concentrator).

(gdb) target sparclite com1

[SPARClite appears to be alive]
breakinst () ../sparc-stub.c:975

975 }

(gdb) s

main () hello.c:50

50 writer(1, “Got to here\n”);

(gdb)

Debugging SPARC and SPARClite targets

90 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

gdb also supports set remotedebug n. You can see some debugging information
about communications with the board by setting the variable, remotedebug .

CYGNUS GNUPro Tools for Embedded Systems ■ 91

Loading on specific targets for SPARC, SPARClite

Loadin g on specific tar gets for SPARC,
SPARClite

The SPARC eval boards use a host-based terminal program to load and execute
programs on the target. This program, pciuh , replaced the earlier ROM monitor,
which had the shell in the ROM.

To use the gdb remote serial protocol to communicate with a Fujitsu SPARClite
board, link your programs with the “stub” module, sparc-stub.c ; this module
manages the communication with GDB. See “The GDB remote serial protocol” in
Debugging with GDB in GNUPro Debugging Tools for more details.

Loading on specific targets for SPARC, SPARClite

92 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

CYGNUS GNUPro Tools for Embedded Systems ■ 93

Index

Symbols
#include files, with preprocessor2
.bss11
.bss section9, 13
.coff, the main object file format3
.data11, 13
.text 11
.text section12
_bss_start11
_bss_start and _end13
_DYNAMIC, for shared dynamic libraries12
_end 11, 13, 14

A
a.out 4
argv 9
as 1, 2
ASCII text 14
assembler1, 3

B
binaries3
binary utilities 1, 3

binutils 1
breakpoints5
bug 10
bug monitor10
built-in trap handler10

C
C library 1, 6
C++ constructors2
coff file 13
compiler 1, 2
concatenation macros7
constructor and destructor tables11
constructor and destructor tables for G++12
CONSTRUCTORS13
cpp 2
CREATE_OBJECT_SYMBOLS12
crt0 (C RunTime 0) file7
crt0 file 11
crt0 files, multiple11
crt0, the main startup script6

Index

94 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

D
-d, for assembler4
data 13
debugger1
debugging5
debugging, low-level5
destructor tables11
-disassemble4
dynamic libraries12
dynamic memory allocation15

E
-E option 2
EABI, PowerPC71
embedded

tools 1
Embedded Applications Binary Interface71
exception handler for breakpoints5
executable binary image, making4
exit 9

F
FORMAT output-format4

G
gcc 1, 2
GDB 5
gdb 1
GDB stub5
getpd(), for returning value16
global symbol names7
global symbols8
gofast library54

gofast R3000 Floating Point Library54
GROUP, for loading11

H
hex values, printing out in5
Hitachi

h8/300
introduction 19

h8/300h20
Hitachi h8/300

as 22, 35, 47
C++ initializers 20
debugging on targets25, 38
e7000 in-circuit emulator25, 28, 29, 38
floating point subroutines21
gcc 19, 22, 35, 47
gdb 25
gdb commands25, 38
GDB remote serial protocol28
serial devices25, 38

Hitachi Microsystems19
Hitachi sh

compiling 32
gcc 31
gdb 38
options 32
preprocessor macros34
subroutines33
targets31

Hitachi sh Microsystems31

I
I/O support code6, 14
IBM RS/6000 and PowerPC66

CYGNUS GNUPro Tools for Embedded Systems ■ 95

Index

IBM RS/6000 options
-G 72
-mads71
-mbig 70
-mbig-endian70
-mbit-align 69
-mcall-aix 71
-mcall-linux 71
-mcall-solaris71
-mcall-sysv70
-mcall-sysv-eabi71
-mcall-sysv-noeabi71
-meabi 71
-memb 71
-mfull-toc 68
-mhard-float69
-mlittle 70
-mlittle-endian70
-mminimal-toc 68
-mmultiple 69
-mmvme 71
-mnew-mnemonics67
-mno-bit-align 69
-mno-eabi71
-mno-multiple 69
-mno-power66
-mno-power266
-mno-powerpc66
-mno-powerpc-gfxopt66
-mno-powerpc-gpopt66
-mno-prototype71
-mno-regnames73
-mno-relocatable70
-mno-relocatable-lib70
-mno-sdata72
-mno-strict-align70
-mno-string69
-mno-sum-in-toc68
-mno-toc 70
-mno-traceback70
-mold-mnemonics67

-mpower 66
-mpower266
-mpowerpc66
-mpowerpc-gfxopt66
-mpowerpc-gpopt66
-mprototype71
-mregnames73
-mrelocatable70
-mrelocatable-lib70
-msdata72
-msdata=default72
-msdata=eabi72
-msdata=none72
-msdata=sysv72
-msdata-data72
-msim 71
-msoft-float 69
-mstrict-align 70
-mstring 69
-mtoc 70
-mtraceback70
-mtune=68
-myellowknife 71

idt/mips, configuring41
-inbyte 14
isatty(), for checking for a terminal device16

K
kill() 14
kill(), for exiting 16

L
ld 1, 2
ld, the GNU linker3
ld, the linker script6
libc 6
libgcc.a 2
libgloss 1, 5
libm 6
libraries 2, 5

Index

96 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

libstd++ 5
linker 1
linker script 11
low-level debugging14

M
m68k-coff configuration11
macros7
main 2, 8
main() 9
malloc() 9
math library6
-mcpu 67
MEMORY 12
memory 8
memory map11
mips

configuring 46
debugging52
GCC options42
gofast library54
preproccesor macros46

mips ecoff target49
Motorola m68k57

calling conventions61
compiling 57
configurations59
debugging62
floating point subroutines58, 59
gas 60, 74, 86
preprocessor macros59

N
newlib 1, 5, 16
nm utility 11
-nostdlib 2

O
objcopy 3
objdump 3
object file format3
object file, with assembler3
object files and object file formats3
object files, linking to C library2
OS Support5
-outbyte 14
outbyte() 5

P
POWER 66
PowerPC67
prefix 7
-prefix-addresses4
preprocessing3
print() 5
PROM burners4
putnum() 5

R
RAM space12
RAM variable 13
register names7
ROM monitor 5, 8, 10
ROM monitors4
rom68k 10
rom68k and mon68k monitors12

S
sbrk() 11, 14
SEARCH_DIR, for specifying paths12
section13
section names11
sections, main11
serial device

Hitachi h8/30025, 38

CYGNUS GNUPro Tools for Embedded Systems ■ 97

Index

SPARC
assembler listing output74, 86
assembler listing-control75, 87
assembler options74, 86
calling compiler81
calling conventions88
compiler debugging option83
compiler options83
compiling 83
configuring for a debugger89
debugging89
documentation82
eval boards91
floating point options84
MB86934 83
pciuh 91
preprocessor macros73, 85
registers88
ROM monitor 91
subroutines73, 84
US Software’s GOFAST library84
version 7 code83
version 883

SPARClite
assembler options87
MB86930 83

S-records4
stack space8
start 7, 9
STARTFILE_SPEC11
STARTUP command11
stdout 2
stub 14
support library1
support routines16
switches2
SYM 8

T
Table Of Contents, executable files68
--target option19
trap handler10

U
uninitialized data13

V
variables, default values for11

Index

98 ■ GNUPro Tools for Embedded Systems GNUPro Toolkit

	Dreamcast GNUPro Toolkit Embedded Systems
	Contents
	Using GNU tools on embedded systems
	Invoking the GNU tools
	gcc, the GNU compiler
	cpp, the GNU preprocessor
	gas, the GNU assembler
	ld, the GNU linker
	.coff for object file formats
	binutils, the GNU binary utilities
	gdb, the debugging tool
	libgloss, newlib and libstd++, the GNU libraries

	crt0, the main startup file
	The linker script
	I/O support code
	Memory support
	Miscellaneous support routines

	Overview of supported targets for cross-development
	Hitachi H8/300, H8S, H8/300H development
	Compiling for H8/300, H8S and H8/300H
	Using C++
	Predefined preprocessor macros

	Assembler options for H8/300, H8S and H8/300H
	Assembler options for listing output
	Assembler listing-control directives

	Calling conventions for H8/300, H8S and H8/300H
	Debugging for H8/300, H8S and H8/300H
	Loading on specific targets

	Hitachi SH development
	Compiling on SH targets
	Compiler options for SH

	Preprocessor macros for SH targets
	Assembler options for SH targets
	General assembler options for SH
	Assembler options for listing output for SH
	Assembler listing-control directives for SH

	Calling conventions for SH targets
	Debugging on SH targets

	MIPS development
	Compiling on MIPS targets
	Compiler options for MIPS
	Options for architecture and code generation for MIPS
	Compiler options for floating point for MIPS
	Floating point subroutines

	Preprocessor macros for MIPS targets
	Assembler options for MIPS targets
	Assembler options for listing output for MIPS
	Assembler listing-control directives for MIPS
	Special assembler options for MIPS
	Assembler directives for debugging information
	MIPS ECOFF object code
	Options for MIPS ECOFF object code
	Directives for MIPS ECOFF object code
	Registers used for integer arguments for MIPS
	Calling conventions for integer arguments for MIPS
	Calling conventions for floating-point arguments for MIPS

	Debugging on MIPS targets
	Linking MIPS with the GOFAST library
	Full compatibility with the GOFAST library for MIPS

	Motorola m68k development
	Compiling for m68k targets
	Options for floating point
	Floating point subroutines
	Preprocessor macros for m68k targets

	Assembler options for m68k targets
	Assembler options for listing output
	Assembler listing-control directives
	Calling conventions for m68k targets

	Debugging on m68k targets

	PowerPC development
	Compiling for PowerPC targets
	Floating point subroutines for PowerPC
	Preprocessor macros for PowerPC targets

	Assembler options for PowerPC targets
	Debugging PowerPC targets
	The stack frame
	Argument passing
	Function return values

	SPARC, SPARClite development
	Compiling for SPARC targets
	Compiler options for SPARC
	Options for floating point for SPARC and SPARClite
	Floating point subroutines for SPARC and SPARClite

	Preprocessor macros for SPARC targets
	Assembler options for SPARC targets
	Assembler options for listing output for SPARC, SPARClite
	Assembler listing-control directives for SPARC, SPARClite
	Assembler options for the SPARClite
	Calling conventions for SPARC and SPARClite

	Debugging SPARC and SPARClite targets
	Loading on specific targets for SPARC, SPARClite

	Index

