

t
e
5
e

Dreamcas
CodeScap

for Set
User Guid

tion
ited
n no
ntial
ether

his
mitted

0.0,
. beta

re
d
er

ther
Legal Notice
IMPORTANT

The information contained in this publication is subject to change without notice. This publica
is supplied "as is" without warranty of any kind, either express or implied, including but not lim
to the implied warranties or conditions of merchantability or fitness for a particular purpose. I
event shall Cross Products be liable for errors contained herein or for incidental or conseque
damages, including lost profits, in connection with the performance or use of this material wh
based on warranty, contract, or other legal theory.

This publication contains proprietary information which is protected by copyright. No part of t
publication may be reproduced in any form, or stored in a database or retrieval system, or trans
or distributed in any form by any means, electronic, mechanical photocopying, recording, or
otherwise, without the prior permission of Cross Products Limited.

CodeScape User Guide

Revision History

Version 2.2.0 build 121, March 1999

Release Candidate 1, 7 October 1996, beta 2, 26 August 1996, beta 1, 26 July 1996 - 97, 2.
March1998, Version 2.0.5a, May 1998, Version 2.1.0. alpha build 86, July 1998, Version 2.1.2
build 94 , October 1998

© 1999 Cross Products Limited. All rights reserved.

Microsoft, MS-DOS, and Windows are registered trademarks, and Windows NT and JScript a
trademarks of Microsoft Corporation in the United States and other countries. CodeScape an
SNASM are registered trademarks of Cross Products Limited in the United Kingdom and oth
countries. Brief is a registered trademark of Borland International. CodeWright is a registered
trademark of Premia Corporation. Multi-Edit is a trademark of American Cybernetics, Inc. All o
trademarks or registered trademarks are the property of their respective owners.

CodeScape User Guide
Contents
Before you begin 5

Document conventions 6

This guide .. 7

The CodeScape software 8

Using and configuring the interface 9
The commands on the menu bar 10

Customizing shortcut keys 12

The commands on the toolbars 14

Commands on each toolbar 17

How windows and regions work 27
Using windows .. 28

Using regions .. 30

Configuring regions 34

Target window 36

Target Processor display 37

Input/Output window 38

The Source and Disassembly regions 41

The Call Stack region 51

The Watch and Local Watch regions 52

The Watch region 54

The Local Watch region 58

The Memory region 61

The Register region 69

Hitachi target processor register region display . 74

The Edit region 77

Opening and saving files 79

Search and replace 80

Cutting and pasting text 82

Using bookmarks 83

Interacting with target processors 85
Connecting to a target processor 86

Add files to a project 88

Restarting a program 91

Working with sessions 93

Contents
Working with projects 97
Setting up a project build environment 98

Setting up an editor 100

Setting up the project commands 102

Debugging 105
Debugging modes 106

Running and stopping programs 107

Stepping into (tracing) code 110

Breakpoints ... 116

Configuring breakpoints 121

Breakpoint expression format 129

Simulating a target processor 135
Information generated by the Simulator 139

Reading the results of simulation 144

Profiling program files 145
Using the profiler: an overview 146

The Profiler�s commands 148

Viewing GD-M log information 155

Writing scripts to automate tasks 157
Scripting commands 160

Evaluating expressions 179
C/C++ expressions 182

Assembler expressions 185

Using the command-line 187

Appendix A: Frequent operations 191

Before you begin
ding
This release

The CodeScape version 2.2.0 build 121 release includes:
• A CD-ROM that contains the CodeScape debugger, and online documentation inclu

context-sensitive help.
• A hardware setup guide, and a software reference manual.

NOTE: Contact Technical Support if any of these items are missing.
 5

Before you begin

s.
Document conventions

NOTE: Notes call attention to important features or instructions.

Typographic conventions in this guide

Audience

This manual is for programmers that write for targets under Windows® 95, Windows® 98, or
Windows NT™ 3.51/4.0. It will also be of use to technical support and software test engineer

Convention Description

SPACEBAR Capital letters denote the names of keys on the
keyboard, filenames, and extensions.

ALT+F4 If two or more keys must be pressed simultaneously,
they are linked with a plus sign (+).

ALT, F, X If two or more keys must be pressed in succession,
the keys are linked with a comma (,).

select this box Italics denote text boxes and check boxes that are
on CodeScape�s interface.

emphasis Bold text denotes emphasis.

input and output This font denotes user input and program output,
including error messages.

command-line This font denotes command-line options.
6

CodeScape User Guide

 to
 how to

ram.

des
ose a

ng

ou

ate

e C/
This guide

Using and configuring the interface introduces CodeScape’s debugging environment and how
use it. It describes the commands on the menu bar, toolbars, and shortcut menus. It explains
set up and use windows and regions for your project.

Interacting with target processors explains how to connect to, initialize and reset a target
processor. This includes: restarting a program, and saving and loading binary parts of a prog

Working with sessions explains how to use the commands for working with sessions. This inclu
how to: open new and existing sessions, save a session, save a session with a new name, cl
session, view and use the recently used files list, and exit CodeScape.

Working with projects describes how to set up and use your project build environment includi
how to set up an MS-DOS or Windows editor. It also tells you how to build your project within
CodeScape and what to do if CodeScape returns errors after a compile.

Debugging project files explains the various ways you can debug your project files, including:
stepping source code, setting watch and data breakpoints, and simulating assembly code.

Simulating a target processor describes how to use the Simulator to obtain data that will help y
to optimize timing critical sections of Assembly code.

Profiling program files explains how to use the Profiler to examine the run-time behavior of
program files written for Hitachi SH series processors.

Viewing GD-M log information describes the GD-Workshop log events you can control within
CodeScape.

Writing scripts to automate tasks explains how to use CodeScape’s script commands to autom
routine tasks.

Evaluating expressions explains how to use the Expression Evaluators and describes all of th
C++ and Assembler expressions that are supported.

Using the command-line describes all of the command-line commands.
7

Before you begin

ugging
The CodeScape software

CodeScape is a fast, intuitive, Windows-based development environment. CodeScape’s deb
features let you find, isolate, and fix bugs in your original source, or disassembled code.

Run CodeScape to:

1) Edit your project files.

2) Compile and link your project files.

3) Debug your project and test it for errors.

4) Then do one of the following:

• If debugging returns errors, repeat steps 1 to 3 above.

-OR-

• If debugging does not return errors, Build your project.

To run, CodeScape requires:
• An IBM™ PC or compatible with Pentium™ 90 processor or above.
• Windows 95, Windows 98, or Windows NT™ 3.51/4.0.
• 32 MB of RAM minimum, 128 MB of RAM recommended for program files with a

debug section that is 24 MB or above.
8

Using and configuring
the interface
rs that
t used
You can control CodeScape using a mouse or keyboard. CodeScape has many useful toolba
can be docked, floating, or hidden. Region specific shortcut menus are available for the mos
functions.

The user interface consists of:

• The Menu bar.
• Toolbars.
• Windows.
• Regions.
 9

Using and configuring the interface

ogram
inary
lays a
layed.

ming
ad a

s.

 using
 origin
C, a

mputer

u and
om
The commands on the menu bar

File menu ALT+F

The commands in the File menu are for working with sessions, resetting the target, loading pr
files, restarting program file execution, and saving and loading binary information. Use Save b
and Load binary to move large blocks of data in and out of memory. The File menu also disp
list of recently used session files. You cannot hide this list or change the number of files disp

NOTE: When you load a new session, or exit CodeScape, a message

appears prompting you to save any changes to the current session.

Edit menu ALT+E

The commands in the Edit menu are for cutting and pasting in the Edit region, and for perfor
searches. The Edit menu becomes available when you open a window, create a region, or lo
session.

View menu ALT+V

The commands in the View menu are for showing and hiding toolbars, and configuring region

Project menu ALT+P

The commands in the Project menu are for configuring the current project and building it from
within CodeScape.

Debug menu ALT+D

The commands in the Debug menu are for controlling program execution, stepping code, and
breakpoints. You can set the cursor to the PC (program counter) and vice-versa. The default
is set to the value of the PC. You can also lock the view to an Expression that contains the P
register, or memory.

Tools menu ALT+T

The commands in the Tools menu let you simulate a target’s processor operations on your co
and run the Profiler to examine the run-time behavior of your program file.

Other commands are for running script files and adding script files to run from the Tools men
the shortcut menu on the Scripts tab on the Input / Output window. You can also specify cust
shortcut keys, and add programs to run from the Tools menu.
10

CodeScape User Guide

s type,
egion,

egion
 are for
ionally
cape.

n.
pears

 menu:

 for
Region menu ALT+R

The commands in the Region menu are for splitting (creating new) regions, changing a region’
and updating all regions. The Region menu is available when you open or create a window, r
or session.

Window menu ALT+W

Use the Window menu to open a new window. When you open a new window, the Edit and R
menus appear on the menu bar, and additional commands appear on the Window menu which
arranging multiple windows in CodeScape. You can select and deselect commands for proport
resizing a window and its regions, and loading the current session when you next run CodeS

The Window menu also displays a list of region types and highlights the currently active regio
When you have more than one region in a window frame, the active region within that frame ap
in the list. You cannot hide this list or change the number of regions displayed.

NOTE: If you use a Windows® 95 or a Windows® 98 machine, creating

too many new windows or too many new regions causes CodeScape to

run out of system resources.

Help menu F1

Use the Help menu to get on-line Help and view CodeScape version information.

Region specific shortcut menus

Each region has two shortcut menus:

1) The Region Type menu has commands for changing the region’s type. To see the

• Press CTRL+SHIFT+F10.

 -OR-

• CTRL+Right-click anywhere in the region.

2) The Region Actions menu has region specific commands, and global commands
controlling program execution or manipulating breakpoints. To see the menu:

• Press SHIFT+F10.

 -OR-

• Right-click anywhere in the region.
11

Using and configuring the interface

enus.

le,

s the

, then
Customizing shortcut keys

You can specify shortcut keys for any of the commands on the menu bar or on the shortcut m

When you assign a shortcut key to a command CodeScape saves the setting in Keyboard Fi
CODESCAPE.MAC. Each time you change a keyboard shortcut CodeScape updates the
information in the Keyboard File. When you run CodeScape it automatically detects and load
Keyboard File, CODESCAPE.MAC.

You can save your settings to a Keyboard File with a specific name. This is useful if you use
CodeScape on more than one computer, or if you share a computer with another person.

To save your settings to a Keyboard File with a specific name:

1) On the Shortcut Keys dialog box create and remove any shortcut keys you require
click Save...

2) Enter a name for the Keyboard File using the extension *.mac, then click OK.

NOTE: To load a Keyboard File, click Load... and enter the

filename and location of the Keyboard File that you want to use.

When you load a Keyboard File the settings it specifies are

automatically copied to CODESCAPE.MAC.

You can:

• Assign shortcut keys to a command.
• Remove shortcut keys from a command.
• Restore the shortcut keys to their original settings.
• Assign the Microsoft Developer Studio shortcut keys to the commands.
12

CodeScape User Guide

 keys

and,

 keys
Assigning shortcut keys to commands

1) Click Tools, select Customize then click Keyboard...
The Shortcut Keys dialog box appears.

2) In the Select a command tree highlight a menu command to assign a shortcut.
A description of the command appears in the Descriptions box, and any shortcut
appear in the Assigned shortcuts box.

3) Click Create Shortcut...
The Select shortcut dialog box appears.

4) Press the key combination you require.
If you press a key or key combination that is currently assigned to another comm
that command appears under Replaces.

5) Click OK.
The new shortcut appears in the Assigned shortcuts text box.

6) Click OK.

Removing shortcut keys from commands

1) Click Tools, select Customize then click Keyboard...
The Shortcut Keys dialog box appears.

2) In the Select a command tree highlight a menu command.
A description of the command appears in the Descriptions box, and any shortcut
appear in the Assigned shortcuts box.

3) Click Remove.

Restoring shortcut key assignments to their original settings

1) Click Tools, select Customize then click Keyboard...

2) Click CodeScape Defaults.

Assigning Microsoft Developer Studio shortcut keys to commands

1) Click Tools, select Customize then click Keyboard...

2) Click DevStudio compatible.

NOTE: For menu items that do not have a Microsoft Developer Studio

default value, for example Simulate Processor, the CodeScape

default shortcut key is used.
13

Using and configuring the interface

e list.
The commands on the toolbars

The toolbars provide access to the main debugging functions. To use the Toolbar Configuration
check box to show or hide toolbars click View, Toolbar, then select or deselect toolbars from th

Toolbars and their uses

NOTE: The Target and Input/Output windows can be docked at the top

and bottom of the main window, or left free floating.

Use the: To:

Breakpoint toolbar Access the most common breakpoint actions.

Debug toolbar Access the debugging actions.

Processor Combo toolbar Select a target processor, configure a target
processor, and load program files.

Input/Output window View: the build utility�s output when you build a
project; all messages generated by the target; and
all messages generated by an executing script.

Region toolbar Set and change a region�s type.

Region Combo toolbar Set the rate at which a region�s display is updated,
and change a region�s type.

Splitter toolbar Split regions using the mouse.

Standard toolbar Open new windows, and create, open, and save
sessions.

Target window View the active processor for the selected target,
load program files and configure the target.

Target Combo toolbar View and configure the active target.

Editor toolbar Use the editing actions.

Workshop toolbar Use the GDWorkshop log options.

Status Bar View contextual information about commands on the
interface and any other information about the
current state of the interface.
14

CodeScape User Guide
View, hide, dock, and move toolbars

NOTE: For more information see Toolbars and their uses.

View toolbars

Do one of the following:

• Right-click the status bar.
 -OR-

• Right-click on a blank area of any toolbar. Select the toolbar.
 -OR-

• Click View, Toolbar… Select the toolbar check box. Click OK.

Hide toolbars

1) Right-click on a blank area of any toolbar.

2) Clear the toolbar from the list.

If the toolbar is undocked:

• Right-click on the toolbar title bar and click Hide.
 -OR-

• On the toolbar title bar, click .

If the toolbar is docked:

1) Click View, then point to Toolbar…

2) Clear the toolbar check box. Click OK.

Dock toolbars

Do one of the following:

• Drag the toolbar to an edge of the main window.
 -OR-

• Double-click the title bar. The toolbar will be docked at its last docked position.
15

Using and configuring the interface
Move toolbars

1) Do one of the following:

• On the toolbar title bar, right-click and click Move.

 -OR-

• Click the toolbar title bar.

2) Drag the toolbar to the required position.

NOTE: You cannot dock the Target window or the Build window if you

are still pressing CTRL.
16

CodeScape User Guide

 use the
see
Commands on each toolbar

The commands on the toolbars provide access to the main debugging functions. You can also
Keyboard shortcuts for most debugging operations, and Access keys support all operations;
Appendix A.

Breakpoint toolbar

Commands on the Breakpoint toolbar

To issue this command: Click: Press:

Toggle Breakpoint F5

Enable Breakpoint none available

Disable Breakpoint none available

Configure Breakpoint(s) CTRL+F5

Reset All Breakpoints ALT+F5

Enable All Breakpoints CTRL+SHIFT+F5

Disable All Breakpoints CTRL+ALT+F5

Remove All Breakpoints SHIFT+F5
17

Using and configuring the interface
Debug toolbar

Commands on the Debug toolbar

To issue this command: Click: Press:

Run all Processor(s) CTRL+F9

Stop all Processor(s) none available

Run F9

Run to Address SHIFT+F9

Run to Cursor ALT+F9

Stop F9

Single Step (into) F7

Forced Step (into) none available

Step Over F8

Step Out CTRL+F8

Unstep CTRL+F7

Step Run In SHIFT+F7

Step Run Out SHIFT+F8

Step Run ALT+F7

Step Run Until ALT+F8
18

CodeScape User Guide

r also
r.

g
Processor Combo toolbar

The Processor Combo toolbar shows the current processor for the current target. The toolba
provides point and click access for loading program files and configuring the current processo

Commands on the Processor Combo toolbar

Input/Output window

The Input / Output window appears automatically and displays the:

• Build tab with the specified build utility’s output when you build your project.
• Log tab with all messages generated by the current target.
• Scripts tab with all messages generated by the current script.
• Workshop tab if you are running GDWorkshop. The Workshop tab displays GD-M lo

information, and lets you control the log events.

NOTE: For more information on the Input/Output window see page 34.

Set Cursor to PC CTRL+SHIFT+P

Set PC to Cursor CTRL+ALT+P

Restart CTRL+SHIFT+R

To issue this command: Click: Press:

Load Program File CTRL+SHIFT+C

Configure Processor none available

To issue this command: Click: Press:
19

Using and configuring the interface
Region toolbar

The Region toolbar lets you set or change a region’s type.

Commands on the Region toolbar

NOTE: To stop the display from updating in all regions press

CTRL+SHIFT+U.

To create this region: Click: Or press:

Disassembly ALT+1

Local Watch ALT+3

Memory ALT+4

Register ALT+5

Source ALT+6

Watch ALT+7

Edit ALT+8

Call Stack ALT+9
20

CodeScape User Guide

ge a
Region Combo toolbar

The Region combo toolbar lets you set the rate at which a region’s display updates, and chan
region’s type.

Commands on the Region Combo toolbar

To set this command: Click:

Region configuration

Window update rate

Stop all window updates

Update all regions
21

Using and configuring the interface
Splitter toolbar

The Splitter toolbar lets you split existing regions to create new regions.

Commands on the Splitter toolbar

To issue this command: Click: Press:

Split Left CTRL+SHIFT+LEFT ARROW

Split Right CTRL+SHIFT+RIGHT ARROW

Split Up CTRL+SHIFT+UP ARROW

Split Down CTRL+SHIFT+DOWN ARROW

Delete Region CTRL+D
22

CodeScape User Guide

,
Standard toolbar

The Standard toolbar provides point and click access for opening a new window, and creating
opening, and saving sessions.

Commands on the Standard toolbar

To issue this command: Click: Press:

New window CTRL+N

New Session CTRL+SHIFT+N

Open Session CTRL+O

Save Session CTRL+S

Cut CTRL+X

Copy CTRL+C

Paste CTRL+V

Print CTRL+P

About Box none available

Help F1
23

Using and configuring the interface

vailable
.

ocessor
ssor.
Target window

The Target window shows all the targets that CodeScape is connected to and the processors a
in each target. The processor status for each target is shown in the Target processor display

When you create a new window, CodeScape uses the target information from the selected pr
on the target. The Target window provides point and click access for selecting a target proce

NOTE: The Target window can be docked at the top and bottom of the

main window, or left free floating.

Target Combo toolbar

The Target Combo toolbar shows the current target and lets you to configure it.

Commands on the Target Combo toolbar

NOTE: The Serial Setup button only appears if you are connected

to a target with a serial port.

To issue this command: Click:

Target Configure
24

CodeScape User Guide
Editor toolbar

The Edit toolbar provides point and click access to the editing actions.

To issue this command: Click: Press:

Create a new Editor file. none available

Open an existing Editor file. none available

Save the current Editor file. none available

Undo the last action. CTRL+Z

Redo the last action. none available

Search for a string. CTRL+F

Replace the current selection. none available

Toggle a Book Mark on or off. none available

Move to the next Book Mark in
the file.

none available

Move to the previous Book Mark
in the file.

none available

Delete all Book Marks. none available
25

Using and configuring the interface

urrent
Workshop toolbar

The Workshop toolbar provides point and click access to the GD Workshop log options.

Status Bar

The status bar is the horizontal area at the bottom of CodeScape’s main window. It provides
contextual information about commands on the interface and any other information about the c
state of what you are viewing.

To display the status bar:

• Click View then select Status Bar.

To issue this command: Click:

Open Door

Close Door

Nudge

Switch to GD-ROM

Switch to Emulator

Hard Errors
26

How windows and regions
work
.

ach
w
A Window is a frame that you can configure as a Region and split to create multiple Regions

A Region lets you view information about your project.

To view a project’s regions simultaneously you can:

• Open and close, minimize and maximize, cascade, and tile multiple windows.
• Split windows into multiple regions to display different types of information such as

memory contents and source code.
• Resize windows.
• Resize regions by moving the Splitter bars.
• Proportionally resize a window’s regions.

Use the Region configuration dialog box to configure fonts and colors for each region type, e
individual region, and each processor. This lets you to differentiate between processors, sho
associated regions, and represent changes in memory.

NOTE: If you use a Windows® 95 or a Windows® 98 machine, creating

too many new windows or too many new regions causes CodeScape to

run out of system resources.
 27

How windows and regions work
Using windows

Open a new window

• Click Window, then click New window.
 -OR-

• Click on the Standard toolbar.
 -OR-

• Press CTRL+N.

Minimize a window

• On the window title bar click .
 -OR-

• On the System menu, click Minimize.

Maximize a window

• On the window title bar click .
 -OR-

• On the System menu, click Maximize.

Close a window

• On the window title bar click .
 -OR-

• On the System menu, click Close.
 -OR-

• Press CTRL+F4.

NOTE: If you delete the only region in a window, the window is

deleted as well.

Close all windows

• Click Window, then click Close all Windows.
28

CodeScape User Guide
Move a window

1) Click the window’s title bar.

2) Drag the window to the required position.

Move between windows

• Press CTRL+TAB.

Resize a window

1) Point to the window boarder.

2) Click and drag the window outline to the required size.

To proportionally resize a region in a window:

1) Click Window, then select Proportional resizing.

2) Point to the window’s border.

3) Click and drag the window to the required size.

Load the current session when CodeScape restarts

• Click Window, then click to select Load last session on startup.

Cascade all windows

• Click Window, then click Cascade.

Tile all windows

• Click Window, then click Tile.

Arrange Icons

To arrange all minimized region windows at the bottom of the session window:

• Click Window, then click Arrange Icons.
29

How windows and regions work

cter

 line

e of
Using regions

Change a region�s type

To change a region’s type:

• Click Region, then point to Type, then click a region type.
 -OR-

• On the Region Combo box, select a region type from the drop down list.
 -OR-

• Click a Region Type icon on the Region toolbar.
 -OR-

• CTRL+Right-click, then click a region type.

Navigate a region

To scroll through a region:

• Use the LEFT ARROW and RIGHT ARROW keys to move the cursor a single chara
at a time.

• Use the UP ARROW and DOWN ARROW keys to move the cursor up and down a
at a time.

• Use PAGE UP and PAGE DOWN to move up and down a page at a time.
• Use the HOME and END keys to move to the first visible line and the last visible lin

a file.

To move through a region’s fields:

• To move the cursor to the next field, press TAB.
• To move the cursor to the previous field, press SHIFT+TAB.

NOTE: At the end of a field the cursor moves to the next field;

at the end of the last field the cursor moves to the next line.
30

CodeScape User Guide
Move between regions

To move to the region to the left:

• Click anywhere in the region to the left.
-OR-

• Press CTRL+LEFT ARROW.

To move to the region to the right:

• Click anywhere in the region to the right.
-OR-

• Press CTRL+RIGHT ARROW.

To move to the region above:

• Click anywhere in the region above.
-OR-

• Press CTRL+UP ARROW.

To move to the region below:

• Click anywhere in the region below.
-OR-

• Press CTRL+DOWN ARROW.

Create new regions

To create a new region:

• Open a new window (CTRL+N).
 -OR-

• Split an existing region.
31

How windows and regions work
Split regions

To split a region to the left:

• Click Region, point to Split, then click Left.
 -OR-

• Click on the Splitter toolbar.
 -OR-

• Press CTRL+SHIFT+LEFT ARROW.

To split a region to the right:

• Click Region, point to Split, then click Right.
 -OR-

• Click on the Splitter toolbar.
 -OR-

• Press CTRL+SHIFT+RIGHT ARROW.

To split a region above:

• Click Region, point to Split, then click Up.
 -OR-

• Click on the Splitter toolbar.
 -OR-

• Press CTRL+SHIFT+UP ARROW.

To split a region below:

• Click Region, point to Split, then click Down.
 -OR-

• Click on the Splitter toolbar.
 -OR-

• Press CTRL+SHIFT+DOWN ARROW.
32

CodeScape User Guide
Delete a region

Make the region active, then do one of the following:

• Click Region, click Delete.
 -OR-

• Click on the Splitter toolbar.
 -OR-

• In the region, press CTRL+Right-click and click Delete Region.
 -OR-

• Press CTRL+D.

NOTE: If there is only one region in a window, deleting it deletes

the window as well.

Update the display in all open regions

• Click Region, then click Update all regions now.
-OR-

• Press CTRL+U.
33

How windows and regions work

nd

g
Configuring regions

Region Configuration dialog box

In the Region Configuration dialog box are tab commands for configuring fonts and colors, a
setting the update rate for a single region, a region type, and each processor.

To Configure an active region:

• Right-click, click Properties…
 -OR-

• On an active region’s title bar, double-click .

The Region Configuration dialog box appears. Do the following:

1) Set the Mode and specify any commands in the Target processor text box.

2) Specify any options in the Target, Processor, or Region type lists.

3) Then do one of the following:

• Click Apply to view your configuration changes without leaving the dialo
box.

 -OR-

• Click OK to set the configuration changes for your project.

Using the Region Configuration dialog box

To configure: Select:

The currently active region
in a project.

Apply to active region only.

All regions of a selected
type on all processors.

Apply to all regions of selected type.

Then select a Region type.

A specific Target
Processor, and Region type.

Apply to all regions of the selected target.

Then select a Target Processor, and a Region
type.
34

CodeScape User Guide

regions,

t the

et the
r to

ave
n to
Set the color and font

Use the Color and Font tab commands to differentiate between processors, show associated
and represent changes in memory.

To set the color attributes for the specified Mode:

1) Select the Color tab.

2) Select the attribute whose color you want to change.

3) Set the region Foreground color.

4) Set the region Background color.

5) Click OK.

To set the font type and size for the specified Mode:

1) Select the Font tab.

2) Click Change font.

3) Specify the region Font, Font style, and Size.

4) Set the Effects you require.

5) Click OK.

Set the region update rates

Use the Update Rate tab to specify when CodeScape will update information in each region.

If the update rate for a region’s display interrupts the target causing jitter in your program, se
Foreground and Background sliders to Min.

To specify when CodeScape will update information in a region:

1) Select the Update tab.

2) Drag the Foreground slider to set the update rate for when the region has focus. S
slider to Max to continually update the display (approximately 14Hz). Set the slide
Min to update the display at approximately 1/10th of the Max setting.

3) Drag the Background slider to set the update rate for when the region does not h
focus. Set the slider to Max to continually update the display. Set the slider to Mi
prevent updates to the display.
35

How windows and regions work

ting.

The
ilable in

ocessor
Target window

The Target window can be docked at the top and bottom of the main window, or left free floa

When you run CodeScape it scans for valid targets and displays them in the Target window.
Target window shows all the targets that CodeScape is connected to and the processors ava
each target. The processor status for each target is shown in the Target processor display.

When you create a new window, CodeScape uses the target information from the selected pr
on the target.

Using the shortcut menu on the Target window

Controlling target processor execution

Right-click, then click: To:

Configure Processor� Set the update rate for the current processor.

Simulate Processor Run the Simulator.

Execution Run, stop, and restart your program. Run your
program until it executes a specified address.
Run all of your program files simultaneously.
Stop all of your programs running
simultaneously.Use the single stepping commands,
or run the step commands.

Breakpoints Add, enable, disable, configure, reset, or remove
data breakpoints.

Reset Target Perform a soft reset or a hard reset. If you
reset the target you are prompted to reload the
Program File.

Load Program File Download a program file to the selected processor
on the target.

Allow Docking Toggle docking of the window on or off.

Hide Hide the window.
36

CodeScape User Guide
Target Processor display

To show the processor(s) for a target:

• Double-click on the target status line.
 -OR-

• Click .

To hide the processor(s) for a target:

• Double-click on the target display line.
 -OR-

• Click .
37

How windows and regions work

ll
rrors

e

cape

tor
e
ng

ion

g
Input/Output window

The Input / Output window appears automatically and displays the:

• Build tab with the specified build utility’s output when you build your project.
Any standard format errors and warnings are shown in the Build tab. You can scro
through the information as it is generated, or press F4 to move through any listed e
one at a time. If you use:

• CodeScape’s Edit region it automatically opens your project file at the lin
containing the first error or warning. You can then use the Build tab to
navigate to all subsequent errors. If there is no active Edit region CodeS
creates one for you.

• An external editor, double-click an entry in the Build tab to invoke the edi
and open the source file at the line containing the error or warning. Som
external editors do not support this option and will open without displayi
the line at which the error occurred.

• Log tab with all messages generated by the current target.
For example, you can use printf () in your code to output a message to the Log reg
when a breakpoint triggers.

• Scripts tab with all messages generated by the current script.

• Workshop tab if you are running GDWorkshop. The Workshop tab displays GD-M lo
information, and lets you control the log events.

NOTE: You can dock the Input / Output window at the top and bottom

of the main window, or leave it free floating.

NOTE: If you enable high level optimization when you build your

project the compiler output can make source-level tracing

confusing.

NOTE: Text strings longer than 132 characters are truncated when

displayed in the Log tab.
38

CodeScape User Guide
Using the shortcut menu on the Build tab

Configure, make, then build a project

Using the shortcut menu on the Log tab

Right-click, then click: To:

Setup Project� Specify file locations for making a project
current and building it.

Setup Editor� Specify the editor that you want to use for
your project.

Make Make your project current by building it.

Next Error Move to the next error in the list.

Clear Clear the contents of the Project Build window.

Allow Docking Toggle docking for the window on or off.

Hide Hide the window.

Right-click, then click: To:

Configure Log... Configure the Log tab.

Print... Print the contents of the Log tab.

Save To File... Save the contents of the Log tab to a file.

Execution Run, stop, and restart your program. Run your
program to the cursor position, or until it
executes a specified address. Run all of your
program files simultaneously. Stop all of your
programs running simultaneously.

Use the single stepping commands, or run the
step commands.

Breakpoints Toggle a breakpoint on or off. Enable, disable,
configure, reset, and remove breakpoints.

Reset Log Clear the contents of the Log tab.
39

How windows and regions work
Using the shortcut menu on the Scripts tab

Using the shortcut menu on the Workshop tab

Right-click, then click: To:

Run Script Select and run a script.

Clear Clear the contents of the Script tab.

User Scripts This option appears in gray until you add a
script to the menu. When you add a script its
name appears on the menu.

Allow Docking Toggle docking for the window on or off.

Hide Hide the window.

Right-click, then click: To:

Disable Updates Disable Workshop message logging.

Close Door Close the door.

Switch To Emulator / Switch
To GD-ROM

Toggle between the emulated GD-ROM image and
the actual GD-ROM.

Nudge Create a soft error on the next operation.

Hard Errors On Enable hard errors as defined in Workshop. If
you use this command, enable it before
emulating.

Clear Clear the contents of the Workshop tab.

Allow Docking Toggle docking for the window on or off.

Hide Hide the window.
40

CodeScape User Guide

level

n when
nd do

ternal

:

The Source and Disassembly regions

The Source and Disassembly regions let you debug your program code from different views.

• In a Disassembly region are commands for debugging your program at instruction
(assembly code).

• In a Source region are commands for debugging your original source code.

When you edit your source code the changes are displayed in the corresponding Source regio
the display is updated. A * appears in a Source region's title bar if you edit your source code a
not re-build the program file. Always save any changes that you make to a file edited in an ex
editor before using the Make option to compile and build your project in CodeScape.

NOTE: Place the mouse pointer over a variable or expression to

quickly view its' value.

NOTE: Before you edit a program file from a UNIX target, convert

it to a DOS readable format using a utility such as to_dos (use

to_unix to return the file to a UNIX format).

NOTE: If no debug information appears in a Source region, compile

all source files for your project with debugging turned on.

If no source is available you can tell CodeScape to show the disassembly instead. To do this

1) Click Tools, then click Options...
The Options dialog box appears.

2) Select the Automatic Source/Disassembly Switching check box.

3) Click OK.
41

How windows and regions work

urce
Using the shortcut menu in a Source region

The commands on the shortcut menu are for debugging in the region and configuring the so
view. Right-click anywhere in the region to access the shortcut menu.

Copy in the Source region

1) In the Source region, select the text you want to copy by highlighting it.

2) Right-click, then click Copy.

The selection is copied, then pasted to the clipboard.

Lock the display origin to an expression

1) On the Source region title bar click .
The Goto Address… dialog box appears.

2) Enter an expression for the region origin.

3) Click OK.

Configuring the Source view

Accessing the debugging commands in a Source region

Right-click, then click: To show the:

Show Address Corresponding address for the first line of
code generated by the source code line.

-OR-

Show Line Nos. Line numbers for each line of source in the
left-hand column.

Right-click, then select: To click commands to:

Execution Run, stop, and restart your program. Run your
program to the cursor position, or until it
executes a specified address. Run all of your
program files simultaneously. Stop all of your
programs running simultaneously.Use the single
stepping commands, or run the step commands.

Breakpoints Toggle a breakpoint on or off. Enable, disable,
configure, reset, and remove breakpoints.
42

CodeScape User Guide

 the
g line
Setting the cursor and the display in a Source region

Synchronize the cursors in a Source and Disassembly region

1) In the Source region:

• Right-click and click Synchronize Cursor.

 -OR-

• On the Source region title bar click .

2) In the Disassembly region:

• Right-click and click Synchronize Cursor.

 -OR-

• On the Disassembly region title bar click .

The cursors for the Disassembly and Source regions are now synchronized. When you move
cursor in the region with focus, the cursor in the synchronized region shows the correspondin
of code.

NOTE: You can only synchronize regions that are in the same window

and are connected to the same target processor.

Right-click, then click: To:

Set Cursor to PC Show the source code from the value of the PC.

Set PC to Cursor Change the PC at the current cursor position.

Goto Address� Enter an expression for the region origin to go
to.

Goto Source File� Select the required source file.

View As The program file in the active region as source
code, or assembler code, or both source and
assembler code.

Tools Search in the Source region. Find the next item
in the search.

Tab Width� Enter a value to set the tab size in spaces.

Properties Configure fonts and colors. Set the update rate
for a single region, a region type, and each
processor. Change the tab settings.
43

How windows and regions work

s the

k Edit
Goto an address

1) Do one of the following:

• Click Edit, then click Go To (CTRL+G).

 -OR-

• Right-click, click Goto Address.
The Goto Address dialog box appears. (This dialog box works in the same way a
Expression Evaluator.)

2) Enter an expression for the address to go to.

3) Click OK.

Go to a source file referenced in the program file

1) Right-click and click Goto Source File.
The List Files in Program File dialog box appears.

2) Select the required source file.

3) Click OK.

If the path is incorrect an error message appears in the Source region. Click Project, then clic
Source Path and enter the correct path for the source files.

NOTE: Code is not generated for data-only files, or if the -g

command is not set when compiling. If code is not generated an

error message appears.

Evaluate a specific expression

1) Select an expression in the region.

2) Right-click, click Evaluate...

Change the tab settings

1) Right-click, point to Properties then click Tab Width...
The Change Tab Size dialog box appears.

2) Enter a value for the number of spaces used to represent a tab.

3) Click OK.
44

CodeScape User Guide

 file.
Search in the Source region

1) Right-click in the Source region, click Tools, then click Find.

2) Type the Search string in the Find what text box.

3) To search for whole words and not parts of a larger word, select the Match whole word
only check box.

4) If the search is case sensitive, select the Match case check box.

5) Click OK.

The search will start from the current cursor position and continue until the end of the

NOTE: Right-click, then click Find next to continue searching for

the same item.
45

How windows and regions work

ears.

ck
Using the shortcut menu in a Disassembly region

The commands on the shortcut menu are for debugging in the region and configuring the
disassembly view. Right-click anywhere in the region to access the shortcut menu.

Copy in the Disassembly region

1) In the Disassembly region, select the text you want to copy by highlighting it.

2) Right-click, then click Copy.

The selection is copied, then pasted to the clipboard.

Lock the Disassembly region

You can lock the view origin to the PC, a register, or a memory location.

1) On the Disassembly region title bar click . The Goto Address dialog box app

2) In the Expression text box, enter a valid expression:

• Value of the PC to lock the view to the PC. Click OK.

 -OR-

• Name of the register to lock the view to a register. Click OK.

 -OR-

• In the Expression text box, enter the address of the memory location to lo
the view to a memory location. Click OK.

NOTE: To unlock the view origin, click again.
46

CodeScape User Guide
Configuring the disassembly view

Accessing the debugging commands in a Disassembly region

Right-click, then click: To show the:

Show Address Location address of the disassembled code.

Show Labels Symbolic label replacement of the disassembled
code.

Show Opcode Words Op-code in words for the disassembled region.

Show Hexadecimal Operand values in hexadecimal.

Show Uppercase Instructions in upper case.

Show Symbols Operand values as symbols.

Show EAs & Lits Effective address and literals.

Right-click, then select: To:

Execution Run, stop, and restart your program. Run your
program to the cursor position, or until it
executes a specified address. Run all of your
program files simultaneously. Stop all of your
programs running simultaneously.Use the single
stepping commands, or run the step commands.

Breakpoints Toggle a breakpoint on or off. Enable, disable,
configure, reset, and remove breakpoints.
47

How windows and regions work

ou
how
Setting the cursor and the display in a Disassembly region

Synchronize the cursors in a Disassembly and Source region

1) In the Disassembly region:

• Right-click and click Synchronize Cursor.

 -OR-

• On the Disassembly region title bar click .

2) In the Source region:

• Right-click and click Synchronize Cursor.

 -OR-

• On the Source region title bar click .

The cursors for the Disassembly and Source regions are now synchronized. When y
move the cursor in the region with focus, the cursor in the synchronized region will s
the corresponding line of code.

NOTE: You can only synchronize regions that are in the same window

and are connected to the same target processor.

Right-click, then click: To:

Set Cursor to PC Show the source code from the value of the PC.

Set PC to Cursor Change the PC at the current cursor position.

Goto Address� Enter an expression for the region origin to go
to.

Tools Search in the Disassembly region. Repeat the
last search run. Specify an address to
disassemble to a file.

Properties Configure fonts and colors. Set the update rate
for a single region, a region type, and each
processor. Change the tab settings.
48

CodeScape User Guide

rc,
Goto an address

1) Do one of the following:

• Click Edit, then click Go To (CTRL+G).

 -OR-

• Right-click, click Goto Address.
The Goto Address dialog box appears.

2) Enter an expression for the address to go to.

3) Click OK.

Evaluate a specific expression

1) Select an expression in the region.

2) Right-click, click Evaluate...

Search in the Disassembly region

1) Right-click in the Disassembly region, point to Tools, then click Find.

2) Type the Search string in the What am I searching for: text box.

3) Type the Start address in the Search from: text box.

4) If the search is case sensitive, select the Case sensitive check box.

5) Select one of the following radio buttons:

• Length (the amount of data).

 -OR-

• End Address.

6) Type the search item in the text box below.

7) Select one of the following radio buttons: All fields (default), Words, Opcode, OpS
OpDest, or Label (address).

8) Click OK.

NOTE: Right-click then click Find next to continue searching for

the same item.
49

How windows and regions work

al to
Specify an address to disassemble to a file

This general purpose dialog box is for writing a block of memory or disassembly in hexadecim
a file.

1) Right-click in the Source region, point to Tools, then click Disassemble to File.

2) In the Destination Filename text box, enter the name of the file to write to.

3) In the Start Address text box, enter the start address in hexadecimal.

4) Do one of the following:

• Select Length and enter the length in hexadecimal.

 -OR-

• Select End Address and enter the end address in hexadecimal.

5) Click OK.
50

CodeScape User Guide

 you
urs,
he Call
t the

n as it
The Call Stack region

Use the Call Stack region to view a list of active function calls. Viewing the Call Stack can help
trace the course of function execution. When the target stops, for example if a breakpoint occ
CodeScape displays the name, label, or address of the current function at the top of the list in t
Stack region. Execution trace history is shown below the current function with its start point a
bottom of the list.

To navigate to a specific function call in active Source, Disassembly, Watch, and Local Watch
regions, in the Call Stack region, double click on a function. CodeScape highlights the functio
occurs in the active regions.

Using the shortcut menu in a Call Stack region

NOTE: Use Run to Cursor to return to a specific function outside

of the active one.

Right-click, then select: To click commands to:

Show Parameter Names Toggle the function parameter names on or off.

Show Parameter Types Toggle function parameter types on or off.

Show Parameter Values Toggle function parameter values on or off.

Show Parameter Registers Toggle function parameter registers on or off.

Show Octal Display function values in octal.

Show Decimal Display function values in decimal.

Show Hexadecimal Display function values in hexadecimal.

Execution Run, stop, and restart your program. Run your
program until it executes a specified address.
Run all of your program files simultaneously.
Stop all of your programs running
simultaneously.Use the single stepping
commands, or run the step commands.

Breakpoints Toggle a breakpoint on or off. Enable, disable,
configure, reset, and remove breakpoints.

Properties Configure fonts and colors and set the region
and processor update rates.
51

How windows and regions work

cable)

he
The Watch and Local Watch regions

The Watch and Local Watch regions display variables and expressions, one per row.

Each row has four columns, the expression appears in the third column and its value (if appli
appears in the fourth column. If the:

• First column contains a ‘.’ you can place a watch point on the expression.
• Second column contains a ‘+’ you can expand the expression.
• Second column contains a ‘-’ you can collapse the expression.

In a Watch or Local Watch region, you can:

• Highlight changes in data values between execution steps.
• Edit the value of an expression in the Watch region and the Local Watch region.

NOTE: You can only edit the actual expression in a Watch region.

C++ name demangling in a Watch or Local Watch region

C++ name de-mangling is performed on all variable names. This means that you can enter t
symbol for a name as it appears in your original source.

You can browse data to:

• Expand and collapse branches of the hierarchical view of the structure.
• See exactly where the structures are in memory.
• Edit the values of any variables.

All C types are supported including:

• structs
• unions
• arrays
• enumeration (enum)
• floats / double

NOTE: If you place a watch (data) breakpoint on a member of a union

it will trigger for all members of that size, regardless of type.

This also applies to anonymous unions, except that two members of

the same size appear as two variables sharing the same address in

memory.
52

CodeScape User Guide

 the
Expanding expressions

When you expand an expression, each child expression is indented and shown directly below
parent.

For example:
parent
child
child

Expressions are added to expanded:

• Pointers, to show the dereferenced item.
• Arrays. An expression is added for each element of the array.
• Structures. An expression is added for each member.
53

How windows and regions work

tch
pears.

alue is
The Watch region

In the Watch region you can enter variables and expressions. The scope of variables in a Wa
region is global. If an expression goes out of scope during program execution, a message ap

• If an expression’s value can be determined, as is the case for a static variable, its v
shown in the region.

• If an expression’s value cannot be determined, no value is shown.
• If an expression comes back into scope, its value is shown.

Using the shortcut menu in a Watch region

Right-click, then select: To click commands to:

Cut Cut the current selection in the Editor file
and paste it to the clipboard.

Copy Copy the current selection in the Editor file
and paste it to the clipboard.

Paste Insert the contents of the clipboard at the
current cursor position.

Delete Delete part of a structure.

Open Expand a structure or array.

Close Collapse a structure or array.

Insert Insert a new watch expression.

Append Add a variable to the end of the active list.

Show Headers Toggle the header bar on or off.

Keep in View Keep the cursor in view if it is possible.

Show Octal Display watch expressions in octal.

Show Decimal Display watch expressions in decimal.

Show Hexadecimal Display watch expressions in hexadecimal.

Edit Watch Value� Modify the value of a variable or watch
expression.
54

CodeScape User Guide
Execution Run, stop, and restart your program. Run your
program until it executes a specified address.
Run all of your program files simultaneously.
Stop all of your programs running
simultaneously.Use the single stepping
commands, or run the step commands.

Breakpoints Toggle a breakpoint on or off. Enable, disable,
configure, reset, and remove breakpoints.

Highlight Changes See where in memory an expression changed.

Cache Expanded Symbols Save the state of an expanded function to the
session file. The next time that the function
is accessed it will automatically expand to its
saved state.

Properties Configure fonts and colors. Set the update rate
for a single region, a region type, and each
processor.

Right-click, then select: To click commands to:
55

How windows and regions work

f
Browsing data in a Watch region

Add a symbol or variable

• Right-click, click Insert to add a symbol or variable at the current cursor position.
-OR-

• Right-click, click Append to add symbol or a variable at the end of the current list o
variables.
-OR-

• Press return to enter a new symbol or variable at the current cursor position.

Expand a structure or array

Select the structure or array you want to expand, then:

• Click on ‘+’.
-OR-

• Press SPACEBAR.
-OR-

• Right-click and click Open/Close.

Collapse a structure or array

Select the structure or array you want to collapse, then:

• Click on ‘-’.
-OR-

• Press SPACEBAR.
-OR-

• Right-click and click Open/Close.
56

CodeScape User Guide
Editing variables in a Watch region

Modify the value of a variable or watch expression

• Select the value to be changed. Press ENTER.
-OR-

• Press CTRL+ALT+E.

The Expression Evaluator dialog box appears. Enter a valid expression. Click OK.

Edit a variable�s data value (structure, array or union)

1) Double-click the value to be edited.

2) Edit the value.

3) Do one of the following:

• Press ENTER.

-OR-

• Press CTRL+ALT+E to display the Expression Evaluator dialog box.

Delete a parent expression and all child expressions

1) Expand the structure or array.

2) Select the component you want to delete, then:

• Right click and click Delete.

-OR-

• Press DELETE.

NOTE: If you delete a parent expression, any children are also

removed from the region.

Delete a parent expression and move all children up one level

1) Expand the structure or array.

2) Select the component you want to delete.

3) Press SHIFT+DELETE.
57

How windows and regions work

ition
nto the
The Local Watch region

The Local Watch region automatically displays all local variables in view from the current pos
of the PC (program counter). Variables are automatically added to the display as they come i
scope of a function.

NOTE: If there is more than one variable of the same name in the

current scope, all but the inner most variable of that name are

unavailable and are shown in gray.

NOTE: If there is more than one variable of the same name in the

same scope they are shown in italics.

Using the shortcut menu in a Local Watch region

Right-click, then select: To click commands to:

Copy Copy the current selection in the Editor file
and paste it to the clipboard.

Delete Delete the current selection.

Open Expand a structure or array.

Close Collapse a structure or array.

Show Headers Toggle the header bar on or off.

Keep in View Keep the cursor in view if possible.

Show Octal Display local watch expressions in octal.

Show Decimal Display local watch expressions in decimal.

Show Hexadecimal Display local watch expressions in hexadecimal.

Edit Local Value Modify the value of a variable or watch
expression.

Execution Run, stop, and restart your program. Run your
program until it executes a specified address.
Run all of your program files simultaneously.
Stop all of your programs running
simultaneously.Use the single stepping
commands, or run the step commands.
58

CodeScape User Guide
Browsing data in Local Watch region

Expand a structure or array

Select the structure or array you want to expand, then:

• Click on ‘+’.
-OR-

• Press SPACEBAR.
-OR-

• Right-click and click Open/Close.

Collapse a structure or array

Select the structure or array you want to collapse, then:

• Click on ‘-’.
-OR-

• Press SPACEBAR.
-OR-

• Right-click and click Open/Close.

Breakpoints Toggle a breakpoint on or off. Enable, disable,
configure, reset, and remove breakpoints.

Highlight Changes See where in memory an expression changed.

Cache Expanded Symbols Save the state of an expanded function to the
session file. The next time that the function
is accessed it will automatically expand to its
saved state.

Properties Configure fonts and colors. Set the update rate
for a single region, a region type, and each
processor.

Right-click, then select: To click commands to:
59

How windows and regions work
Editing variables in a Local Watch region

Modify the value of a variable or watch expression

1) Do one of the following:

• Select the value to be changed. Press ENTER.

-OR-

• Press CTRL+ALT+E.
The Expression Evaluator dialog box appears.

2) Enter a valid expression.

3) Click OK.

Delete a parent expression and all children

1) Expand the structure or array.

2) Select the component you want to delete, then:

• Right click and click Delete.

-OR-

• Press DELETE.

NOTE: If you delete a parent expression, any child expressions are

also removed from the region.

Delete a parent expression and move all children up one level

1) Expand the structure or array.

2) Select the component you want to delete.

3) Press SHIFT+DELETE.
60

CodeScape User Guide

mory
rea of

d
The Memory region

Use the Memory region to view the targets memory contents from a specific address. In a Me
region you can view memory as ACSII characters, Bytes, Words, or Longs. Write protect an a
memory to prevent memory contents changing in the current memory region.

As you scroll through a Memory window the cursor moves a line at a time and the slider spee
increases. The slider automatically returns to the center position when you stop scrolling.
Double-click a variable or expression to quickly view and edit its value.

Using the shortcut menu in a Memory region

Right-click, then select: To click commands to:

Display Bytes Display memory as bytes.

Display Words Display memory as words.

Display Longs Display memory as longs.

Display Quadwords Display memory as quadwords.

Display ASCII Display the ASCII value for each byte memory.

Highlight Changes See where the target�s memory changed.

Set Bytes Per Line� Display a specific number of bytes per line.

Edit ASCII Change an ASCII value in the Memory region.

Edit Memory Value Change a value in the Memory region.

Follow Pointer Follow a pointer in memory.

Goto Address� Set the origin.

Write Protect Toggle write protect.

Execution Run, stop, and restart your program. Run your
program to the cursor position, or until it
executes a specified address. Run all of your
program files simultaneously. Stop all of your
programs running simultaneously.Use the single
stepping commands, or run the step commands.

Breakpoints Toggle a breakpoint on or off. Enable, disable,
configure, reset, and remove breakpoints.
61

How windows and regions work

Viewing Memory

View Memory regions

Do one of the following:

• Click Region, point to Type and click Memory.
 -OR-

• On the Region toolbar, click .
 -OR-

• In any region, CTRL+Right-click and click Memory.

Set the origin

1) Right-click and click Goto Address…
The Goto Address… dialog box appears.

2) Enter an address or symbol for the new origin.

3) If you enter an invalid symbol a warning appears with an command to invoke the
Origin dialog box.

4) Click OK.

NOTE: The origin is initially set to the value of the PC. You can

also set the origin to an expression.

Tools Search for a pattern in memory. Repeat the last
search. Fill a range of memory with data. Write
a block of memory in hexadecimal to a file.

Properties Configure fonts and colors. Set the update rate
for a single region, a region type, and each
processor.

Right-click, then select: To click commands to:
62

CodeScape User Guide

the

he
Always display memory from a specified address

1) Do one of the following:

• Click Edit, then click Go To… (CTRL+G).

 -OR-

• Right-click and click Goto Address…
The Goto Address… dialog box appears.

2) Type or select a memory location or expression from the Expression list.

3) Select Lock, click OK.

Follow a pointer in memory

1) Select the memory location holding the value of the pointer.

2) Right-click and click Follow Pointer (CTRL+T).

The Memory region origin changes to display memory from the location specified by
value of the pointer.

Write a block of memory in hexadecimal to file

1) In the Memory region, right click, point to Tools and then click Hex Dump to File. T
Hex Dump to File dialog box appears.

2) In the Destination Filename text box, enter the name of the file to write to. In the Start
Address text box, enter the start address in hexadecimal.

3) Then do one of the following:

• Select Length and enter the length of the memory block in hexadecimal.

-OR-

• Select End Address and enter the end address in hexadecimal.

4) Click OK.

The specified block of memory is written to a file.
63

How windows and regions work

ng
Editing memory

Change values in the Memory region

1) In a Memory region, do one of the following:

• Use the + and - keys to increment or decrement the current value.

 -OR-

• Double-click or press ENTER, then type over the existing byte, word, or lo
value.

 -OR-

• Right-click, click Edit memory value…

 -OR-

• Press CTRL+ALT+E.
The Expression Evaluator dialog box appears.

2) Enter a valid expression.

3) Click OK.

NOTE: Make sure you enter valid values for the current radix.

CodeScape displays all Memory values in hexadecimal.

Filling memory with specific data

To fill a range of memory with a specific data:

1) In a Memory region, right-click and select Tools…, click Fill...

2) Enter a value in the Fill Expression text box.

3) Enter a value in the Start Address text box.

4) Select End address, or Length.

5) Enter a value in the text box below.

6) Select the Mode as Text (ASCII), Byte, Word, Long, or Quad.

7) Do one of the following:

• Select Convert Native Endian, to show the real memory value.

 -OR-

• Deselect Convert Native Endian, to store memory as byte sequences.

8) Click OK.
64

CodeScape User Guide

er

 the

gion.
Searching memory

To define and search an area of memory for a specified pattern of data:

1) In a Memory region, right-click and select Tools…

2) Click Find. The Find In Memory dialog box appears.

3) Enter a search string in the Find Pattern text box.
In Binary, Octal, Decimal, and Hex modes the search pattern is delimited by eith
commas or semi-colons (optional).

4) Enter a value in the Start Address text box.
The default value is the start address of the region. If you have not run a search,
address at the start of the current memory block is used.

5) Select End Address, or Length.
 The default value for the end address is the last displayed byte in the Memory re

6) Enter a value in the text box below.

7) Select the Width as either Byte, Word, or Long.

8) Select Forward or Reverse to specify the direction of the search.

9) Click OK.

NOTE: If a specified search is not valid, �Invalid Address�

appears in the field(s) that require editing.

NOTE: If a match is found its address appears. A search skips over

any sensitive areas such as invalid memory areas, write-only

memory, and memory reserved for the monitors.
65

How windows and regions work

earch
 mode
Width

Width aligns the search pattern with the data in the target’s memory. This specifies how the s
pattern and the memory contents are compared. The allowable width depends on the search
selected.

Valid mode and width combinations

These patterns are equivalent with Hex and Byte widths set:

FF,FF,FF,FF,34,DC
FF;FF;FF;FF;34;DC
FFFFFFFF34DC

The \ specifier

Use the \ specifier to include special characters in text searches.

NOTE: Always enclose a text search string in quotes.

Example

The pattern "How are you\?" searches for "How are you?"

For this mode: Valid widths are:

Binary Binary, Word, Long

Decimal Byte

Hex Binary, Word, Long

Text N/A
66

CodeScape User Guide

 Hex

racter.

The ? wildcard

The wild card character ‘?’ can be used in Binary and Hex modes. Use ‘?’ to specify a nibble in
mode and a bit in Binary mode that always results in a successful match.

Example

In Hex mode:

FF?F matches FF0F,FF1F,FF2F,...,FFFF

In Binary mode:

????1111 matches 00001111,00011111,...,11111111

The @ wildcard

The wild card character, ‘@’, can be used in Text modes. Use ‘@’ to specify a double-byte cha

Automatic padding

The search pattern is automatically left-padded for the Binary, Decimal, and Hex modes. The
padding type is either ‘0’ or ‘?’ depending on the delimiter used.
67

How windows and regions work

ex

 Word

ode

he

ample,
Delimit with commas

Delimit a search pattern with commas (the default) to left-pad it with zeros. For example, in H
mode with Byte width:

FFFFFFFF34DC and FF,FF,FF,FF,34,DC do the same search.

The comma separator in is implied in the first search pattern. More examples, in Hex mode and
width, are:

f,87d,a automatically pads to000F,087D, 000A

f87da automatically pads to000F,87DA

, automatically pads to0000

NOTE: A single comma used on its own produces the pattern 0000.

Use this feature carefully. For example: ,7 automatically pads to

0000,0007

Delimit with semi-colons

Delimit a search pattern with semi-colons to pad it with the ‘?’ wild card. Examples, in Hex m
and Word width, are:

f;8d;a automatically pads to???F,?87D,???A

f;87da automatically pads to???F,87DA

; automatically pads to????

Equivalent search patterns

Use the comma and semi-colon delimiters to do the same search pattern in different ways. T
following patterns are the same when the Hex and Byte widths are set:

FF,FF,FF,FF,34,DC
FF;FF;FF;FF;34;DC
FFFFFFFF34DC

You can mix the comma and semi-colon delimiters to produce precise search patterns. For ex
in Hex mode and Long width: f;f0f0f0f0,fffffff?,7; pads to:
???????F,F0F0F0F0,FFFFFFF?,???????7
68

CodeScape User Guide

k a
The Register region

The Register region shows the contents of a processor’s register block and flags. Double-clic
variable or expression to quickly view and edit its value.

Using the shortcut menu in a Register region

Right-click, then select: To click commands to:

Increment Register Apply the current Increment Value (1 is the
default) to the contents of the register.

Decrement Register Apply the current Decrement Value (1 is the
default) to the contents of the register.

Change Inc/Dec Value� Change the Increment/Decrement Value.

Highlight Changes See where changes occurred during the last
operation.

Write Protect To prevent data from being written to the
currently active Register region.

Edit Register Change the selected register value.

Column Format Display registers in two, or four columns.
Select Auto to tell CodeScape to choose.

Show Banked Registers Toggle the banked register display on or off.

Show Float Registers Toggle the floating point register display on
or off.

Execution Run, stop, and restart your program. Run your
program to the cursor position, or until it
executes a specified address. Run all of your
program files simultaneously. Stop all of your
programs running simultaneously.Use the single
stepping commands, or run the step commands.

Breakpoints Toggle a breakpoint on or off. Enable, disable,
configure, reset, and remove breakpoints.

Tools Save the current Register Block. Restore the
last saved Register Block.

Properties Configure fonts and colors. Set the update rate
for a single region, a region type, and each
processor.
69

How windows and regions work

 four
View the Registers region

Click Region, point to Type and click Register.

Change the display format

The registers are displayed in the available area by default. You can set the display to two or
columns.

Display registers in two columns

Do one of the following:

• Right-click, point to Column Format, then click 2 Columns.
-OR-

• Press CTRL+2.

Display registers in four columns

Do one of the following:

• Right-click, point to Column Format, then click 4 Columns.
-OR-

• Press CTRL+4.

Display registers in the available area

Do one of the following:

• Right-click, point to Column Format, then click Auto Format.
-OR-

• Press CTRL+0.
70

CodeScape User Guide

 OK.
Edit register values

Change the value of a register

1) Move the insertion point to the register value you want to change.

2) Do one of the following:

• Use + or - to increment or decrement the current value.

-OR-

• Type the new value at the insertion point.

 -OR-

• Double click a register, type a value or expression, press ENTER. The
Expression Evaluator dialog box appears.

 -OR-

• Press CTRL+ALT-E to invoke the Expression Evaluator dialog box.

NOTE: Any alphanumeric characters are shown in upper case.

Change the Increment/Decrement Value

1) Right-click and click Change Inc/Dec Value…
The Register Increment/Decrement dialog box appears.

2) Type a value for the amount by which to increment or decrement a register. Click

Write protect a register

1) Right-click in the region.

2) Then do one of the following:

• If Write protect is not selected, click Write Protect.

 -OR-

• If Write protect is selected, exit the shortcut menu.

NOTE: Write protect only stops register values being changed in

the region that is write protected. If you create and edit new

Register regions, the changes appear in the write protected

region.
71

How windows and regions work
Enter an expression for the instruction at the current PC

1) Double-click the register value, then:

• Enter the expression. Press ENTER.

 -OR-

• Right-click and click Edit Register… (CTRL+ALT+E).
The Register Evaluation dialog box appears.

2) Enter the expression.

3) Click OK.

NOTE: If you enter an invalid expression, the Register Evaluation

dialog box appears showing the Invalid Register Expression.

Save the state of the registers

Right-click, point to Tools, then click Save Register.

NOTE: The register states for each target processor are saved one

at a time and cannot be stacked. The state of the registers is

stored internally to CodeScape, not in a file.

Retrieve the state of the registers

Right-click, point to Tools then click Restore Register.
72

CodeScape User Guide

its are

 point

ug
s).
and

tion that
SH4 floating-point exceptions

The SH4’s floating point exception handler needs software assistance when the V, O, U, or I b
enabled in the FPSCR.enable field. An FPU exception is raised for many of the floating point
op-codes including fadd, fsub, and fmul, regardless of whether an exception occurs.

When any of these bits are set, the target processor can stop with an exception on a floating
instruction, even if you set safe values. For example, fmul r4, r5 where r4=1.5, and r5=1.5.

The Debug Stub (v2.8.0a onwards) analyzes FPU exceptions to find out if they are valid.

• If an Invalid Floating-Point Exception (Invalid FPU) occurs, it is handled by the Deb
Stub and a large loss of processor performance is incurred (several hundred clock

• If a Valid Floating-Point Exception (Valid FPU) occurs, it is handled by CodeScape
an even greater loss of processor performance is incurred.

When a Valid FPU occurs, CodeScape displays a status message describing the type of excep
caused it in the Target window. The status messages are:

• FPU error (E)
• Invalid operation (V)
• Divide by Zero (Z)
• Overflow (O)
• Underflow (U)
• Inexact (I)

NOTE: The Debug Stub passes FPU instructions executed in slots to

CodeScape. If an unwanted slotted exception occurs, CodeScape

traces around it, then resumes running the program.

NOTE: It is recommended that the floating-point enable bits are

not used when program performance is required.

NOTE: For more information about SH4 floating-point exceptions,

refer to the SH7091 Programmer�s Manual. The manual is on the

Dreamcast SDK CD in the SHC\DOC\SH7091 directory.
73

How windows and regions work

5.

ex

r), and

sters
 a
Hitachi target processor register region display

General registers

The Register region shows the values of Hitachi’s 16 general registers (Rn) numbered R0-R1

R0 works as a fixed source register or destination register in some instructions, and as an ind
register in:

• Indirect indexed register addressing mode.
• Indirect indexed GBR addressing mode.

R14 works as the frame pointer during debugging.

R15 works as a hardware stack pointer (SP) during exception processing.

Control registers

The Register region shows the values of the SR (Status Register), GBR (Global Base Registe
VBR (Vector Base Register).

System registers

The Register region displays the MACH and MACL (high and low multiply and accumulate
registers), PR (Procedure Register), and PC (Program Counter). The MACH and MACL regi
store the results of multiply and accumulate operations. The PR stores a return address from
subroutine procedure.

Changing the value of a status register

1) Move the insertion point to the register value you want to change.

2) Do one of the following:

• Use + or - to increment or decrement the current value.

-OR-

• Type the new value at the insertion point.

-OR-

• Press CTRL+ALT+E to invoke the Expression Evaluator dialog box.

NOTE: Any alphanumeric characters are shown in upper case.
74

CodeScape User Guide
Setting the status register (SR, SSR, or FPSR) flags

1) Move the insertion point to the flag you want to set.

2) Then:

• Press 1 set the current flag.

The bit’s flag appears in upper-case.

-OR-

• Press 0 to clear the current flag.

The bit’s flag appears in lower-case.

NOTE: Press SPACEBAR to toggle the status registers.

Flags shown in the Registers region after a Target Processor reset

This flag: Represents this value:

T bit The MOVT, CMP/cond, TAS, TST, BT (BT/S), BF (BF/S), SETT
and CLRT instructions use the T bit to show true (1) or
false (0).

The ADDV/C, SUBV/C, DIV0U/S, DIV1, NEGC, SHAR/L, SHLR/L,
ROTR/L and ROTCR/L instructions also use the T bit to show
carry/borrow or overflow/underflow.

S bit Used by the multiply/accumulate instruction.

Bits 2,3 and 10-31
(Reserved bits.)

Always reads as 0 and must be written as 0.

Bits I3-I10 Interrupt mask bits.

M and Q bits Used by the DIV0U/S and DIV1 instructions.
75

How windows and regions work

ation
SEA and DEA

The Register region shows the value of the SEA (Source Effective Address) and DEA (Destin
Effective Address). The SEA and DEA show the source effective address (read from) on the
left-hand side and the contents of that address (write to) on the right-hand side.

Highlight recently changed attributes

Recently changed attributes are shown briefly in red (default).

To use another color to highlight a changed attribute, do the following:

1) Click View, then click Properties.

2) Specify the Mode.

3) Select the Color tab.

4) In the Attribute region, select Highlight data changed.

5) In the Effects region, select a new Foreground color.

6) Click OK.

NOTE: You cannot highlight changed attributes by setting a

different Background color.
76

CodeScape User Guide

files.

n when
nd do
ternal

oll
 a time.

 the

.
itor
ditors
or
The Edit region

The default editor is CodeScape’s Edit region where you can manage, edit, and print source

When you edit your source code the changes are displayed in the corresponding Source regio
the display is updated. A * appears in a Source region’s title bar if you edit your source code a
not re-build the program file. Always save any changes that you make to a file edited in an ex
editor before using the Make option to compile and build your project in CodeScape.

Any standard format errors and warnings are shown in the Project Build window. You can scr
through the information as it is generated, or press F4 to move through any listed errors one at
If you use:

• CodeScape’s Edit region it automatically opens your project file at the line containing
first error or warning. You can then use the Project Build window to navigate to all
subsequent errors. If there is no active Edit region CodeScape creates one for you

• An external editor, double-click an entry in the Project Build window to invoke the ed
and open the source file at the line containing the error or warning. Some external e
do not support this option and will open without displaying the line at which the err
occurred.

NOTE: Before you edit a program file from a UNIX target, convert

it to a DOS readable format using a utility such as to_dos (use

to_unix to return the file to a UNIX format).
77

How windows and regions work
Using the shortcut menu in an Edit region

Right-click, then select: To click commands to:

New Create a new Editor file.

Open� Open an existing Editor file.

Recent View a list of up to ten recently used files.

Save Save the current Editor file.

Save As� Save the current Editor file with a specific
name.

Cut Cut the current selection in the Editor file
and paste it to the clipboard.

Copy Copy the current selection in the Editor file
and paste it to the clipboard.

Paste Insert the contents of the clipboard at the
current cursor position.

Tabs� Enter a new tab value.

Undo... Undo the last action.

Redo... Redo the last action.

Find� Search for a string.

Replace� Replace the current selection.

Go To� Change the line number of the origin address.

Bookmarks Toggle a Book Mark on or off; move to the next,
or previous Book Mark; or delete all Book
Marks.

Properties Configure fonts and colors in the region.

Syntax Highlighting Turn syntax coloring on or off. Turn case
sensitivity on or off. Specify a color for any
or all of the following items in your code:
keywords, quotes, comments, default text, and
the background.
78

CodeScape User Guide
Opening and saving files

Open an existing file

1) Right-click and click Open.
The File Open dialog box appears.

2) Select the required file. Click Open.

Open a new file

• Right-click and click New.

Save a file

• Right-click and click Save.

NOTE: If you use the save command for an un-named file, the File

Save As dialog box appears.

Save a file with a new name

1) Right-click and click Save As.
The File Save As dialog box appears.

2) Enter a new name for the file. Click Save.
79

How windows and regions work

your

 text

t has

g.
Search and replace

Perform searches

1) Move the insertion point to where you want to start searching from.

2) Do one of the following:

• Click Edit, then click Find...

-OR-

• Right-click, click Find...

The Find dialog box appears.

3) In the Find What text box, enter the search string.

4) In the Direction field, select Up, or Down.

5) Select any of the following options:

• Match Case to find only strings that match the case of the characters in
search string exactly.

• Regular expression if you entered a regular expression in the Find What
box.

• Wrap around search to continue searching after the end of the documen
been reached.

6) Do one of the following:

• Click Find Next to continue searching without replacing a found item.

-OR-

• Click Mark All to add a bookmark to all lines containing your search strin
80

CodeScape User Guide

string

 text

t has
Search for and replace a string

1) Move the insertion point to where you want to start replacing from.

2) Do one of the following:

• Click Edit, then click Replace...

-OR-

• Right-click, click Replace...

The Replace dialog box appears.

3) In the Find What text box, enter the search string.

4) In the Replace With text box, enter the new string.

5) In the Direction field, select Up, or Down.

6) Select any of the following options:

Match Case to find only strings that match the case of the characters in your search
exactly.

• Regular expression if you entered a regular expression in the Find What
box.

• Wrap around search to continue searching after the end of the documen
been reached.

7) Do one of the following:

• Click Find Next to continue searching without replacing a found item.

-OR-

• Click Replace to replace the first instance of your search string.

-OR-

• Click Replace All to replace all instances of your search string.
81

How windows and regions work
Cutting and pasting text

Move text

1) Select the text that you want to move by highlighting it.

2) Click Edit, then click Cut (CTRL+X).

3) Put insertion point where you want to paste the information.

4) Click Edit, then click Paste (CTRL+V).

The text is removed from the original location and appears in its new location.

Copy text

1) Select the text you want to copy by highlighting it.

2) Click Edit, then click Copy (CTRL+C).

3) Put insertion point where you want to paste the information.

4) Click Edit, then click Paste (CTRL+V).

The information is copied from its original location and appears in its new location.
82

CodeScape User Guide

t line,
ark is

.

.

Using bookmarks

You can set bookmarks to mark frequently accessed lines in your source file. Bookmarks are
removed when the file containing them is closed or reloaded. Bookmarks store only the curren
not the column offset of the cursor. When a line containing a bookmark is deleted, the bookm
also removed.

To set a bookmark:

1) Move the insertion point to the line where you want to set a bookmark.

2) Right-click, then click Toggle Bookmark.
An indicator appears in the margin next to the text.

To set a bookmark at all lines that contain a specific string:

1) Right-click, then click Find.

2) In the Find What text box, enter the search string.

3) Click Mark All.
An indicator appears in the margin of each line that contains the specified string

To remove a bookmark:

1) Move the insertion point to the line containing the bookmark you want to remove

2) Right-click, then click Toggle Bookmark.
The indicator disappears from the margin next to the text.
83

How windows and regions work
84

Interacting with target
processors
ms, and
The File menu commands let you: reset target processors, add files to a project, restart progra
save projects.

NOTE: If you load a session file on a target that is different

from the type it was created on, CodeScape loads the session

without loading the program file.

NOTE: You cannot add or remove targets during a session.
 85

Interacting with target processors

to load

e of the

load
Connecting to a target processor

Initialize a target

When you run CodeScape it automatically connects to all detected targets (and prompts you
the monitor if necessary).

Reset a target

You may be prompted to reset the target. If this occurs, do a soft reset. This restores the stat
target and re-initializes the monitors.

NOTE: You may be prompted to reload the Program File after

resetting the target.

To do a Soft Reset:

• Click File, point to Reset, then click Soft Reset.
 -OR-

• In the Target window, right-click and point to Reset Target then click Soft Reset.

If a Soft Reset fails, you will be prompted to do a Hard Reset. This will reset the target and re
the monitors. You will be prompted to reload your project after a Hard Reset.

To do a hard reset:

• Click File, point to Reset, then click Hard Reset.
 -OR-

• In the Target window, point to Reset Target, then click Hard Reset.

NOTE: You will be prompted to reload the monitor after a Hard

Reset.
86

CodeScape User Guide

Set the processor update rate

Set the processor update rate to tell CodeScape when to update information to the target.

If the update rate interrupts the target causing jitter in your program:

1) On the Processor Combo toolbar click .
The Processor Update Rate dialog box appears.

2) Select the Target that you want to set the update rate for.

3) Select the Processor on which your program is loaded.

4) Do one of the following:

• Set the slider to Min.

 -OR-

• Select Disable updates to this processor, to stop all region displays from
updating.

5) Click OK.

NOTE: When you set this option it automatically overrides the

region update rate set in the Region Configuration dialog box.
87

Interacting with target processors

ary

t the

s

d is
ile
 the
ild
ape.

le

y as

 the

ress
Add files to a project

Load a program file

1) Do one of the following:

• Click File, then click Load Program File (CTRL+SHIFT+C).

-OR-

• In the Target window, right click, then click Load Program File...

2) Select the Target from the Target list box.

3) Select the Processor from the Processor list box.

4) In the Program File text box, enter your program file’s path and file name.

5) In the Load Options text box, select one of the following radio buttons: Load Bin
Only, Load Symbols/Debug only, or Load Both Binary and Symbols/Debug.

6) Select any of the following options you require:

• Optimize loading of Adjacent Sections to load adjacent binary sections a
same time. Enabled by default.

• Unlock the Program File (uses a copy) to copy the program file when it i
loaded. Disabled by default.

The copied file is named cpy followed by a number, for example cpy2, an
placed in your default temporary directory. If your system configuration f
does not specify a default temporary directory, the copied file is placed in
current working directory. If you build your program using an external bu
utility, you must reload the program file to view your changes in CodeSc

• Use the symbol information from the Hitachi link file to get the symbol tab
from the Hitachi map file.

The map file must have the extension *.map and be in the same director
your program *.exe.

• Enable Reset Options to specify the options you want to use for re-loading
program file on the target. The default is Reset Enabled, Soft Reset.

• Select Enable Run Options (disabled by default). Select: Run, to run the
specified program file when it is loaded, or select Run to and enter an add
or expression to run to, when the program file is loaded.

7) Click OK.

NOTE: If you select Enable Run Options and no debug information

appears in a Source region, compile all source files for your

project with debugging turned on.
88

CodeScape User Guide

useful

ss.
Saving and loading binary

Move large blocks of data in and out of memory

Use Save binary and Load binary to move large blocks of data in and out of memory. This is
for loading and saving bitmaps, or processor specific code to a selected area of memory.

1) Do one of the following:

• Click File, then click Load binary.

 -OR-

• Click File, then click Save binary.
The Write Binary to Memory dialog box appears.

2) Enter the Source file name.

3) Specify the start address.

4) Do one of the following:

• Select End, then in the text box below, specify the end address.

-OR-

• Select Length, then in the text box below, specify the length of the addre

5) Click OK.

NOTE: You cannot write Binary to sensitive areas of memory such

as invalid memory areas, read-only memory, and memory reserved for

the monitors. If a sensitive area of memory is within a specified

range, a message appears prompting you that the area of memory was

skipped.
89

Interacting with target processors

th of
Load the binary part of a program file

1) Do one of the following:

• Click File, then click Load Program File… (CTRL+SHIFT+C).

 -OR-

• In the Target window, right click and point to Load Program File…
The Load Program File dialog box appears.

2) Select the Target from the Target list box.

3) Select the Processor from the Processor text box.

4) Enter the location of the program file in the Program File text box.

5) Click Load Binary Only.

6) Click OK.

Load the symbolic debugging information part of a program file

1) Do one of the following:

• Click File, then click Load Program File (CTRL+SHIFT+C).

-OR-

• In the Target window, right click and point to Load Program File…
The Load Program File dialog box appears.

2) Select the Target from the Target list box.

3) Do one of the following:

• Select the Processor from the Processor list box. Type the name and pa
the program file in the Program File text box.

-OR-

• Click Browse and find the required file.

4) Click Load Symbolic Debugging information Only.

5) Click OK.
90

CodeScape User Guide

if
d.
Restarting a program

Restart loads the binary part of the current program file and resets the PC to the entry point (
known). If the program file’s last modification time has changed, symbolic information is loade

Load the binary part of the current program file

• Click Debug, point to Execution then click Restart (CTRL+SHIFT+R).
-OR-

• In the Target window, right-click and point to Execution, then click Restart.
-OR-

• On the Debug toolbar, click .
 -OR-

• Right-click in any region, click Execution, then click Restart.
91

Interacting with target processors
92

Working with sessions
The commands for working with sessions are on the File menu.

CodeScape automatically saves the following debug information when you save a session:

• The configuration of Windows and Regions.
• The Project build information.
• The path for locating source files.
• The directory that contains CodeScape’s source files.
• Which program files to load on each target processor.
• Any breakpoints that have been set.
• Any expanded functions in Watch and Local Watch regions.

NOTE: When you next open the session CodeScape will automatically

load this information.

NOTE: If you load a session file on a target that is different to

the type it was created on, it loads without the program file.

NOTE: You cannot add or remove targets during a session.
 93

Working with sessions
File menu commands

To open a new session:

1) Click File, Session New.
The New dialog box appears.

2) Enter a file name using the extension. SSN.

3) Click OK.

To open an existing session:

1) Click File, Session Open...
The Open dialog box appears.

2) Select a location in the Look in text box.

3) Select a file in the File name text box.

4) Click OK.

NOTE: If you open a new session you must load a program file.

To save a session:

• Click File, Session Save.

To save a session with a new name:

1) Click File, Session Save As…
 The Save As dialog box appears.

2) Enter a location the in the Save In text box.

3) Enter a new Session file name in the File name text box.

4) Click OK.

To close a session:

• Click File, Session Close.

NOTE: You may be prompted to save the current session before

CodeScape opens a new session.
94

CodeScape User Guide
Recently used files list

The File menu displays a list of recently used session files.

To open a recent session file:

1) Click File.

2) Click the Session that you want to open from the list.

NOTE: You cannot hide this list or change the number of files

displayed.

To exit CodeScape:

• Click File, Exit.

When you exit CodeScape, it prompts you to save the following debug information:

• The configuration of Windows and Regions.
• The Project build information.
• The path for locating source files.
• The directory that contains CodeScape’s source files.
• Which program files to load on each target processor.
• Any breakpoints that have been set.

NOTE: The next time that you open the session CodeScape can load

this information for you.
95

Working with sessions
96

Working with projects
Use the Project menu to set up, make, and build your project.

The commands on the Project menu let you set up the following:

• A project build environment.
• An editor.
• The path for locating source files.
• A directory for CodeScape’s source files.

NOTE: CodeScape uses a project file (for GNU.C this is a makefile)

to link compiled source files when you build your project.
 97

Working with projects

h a

or

)

ox.

 in the

ile

lity’s
tput

e line
rnal
Setting up a project build environment
To configure a project, specify the project build utility that you want to use, then provide it wit
command line, a filename, and an environment file.

To configure, make, and build a project:

1) Click Project, then click Setup Project.

2) Do one of the following:

• Type the project’s name and path location in the Project File text box. (F
example, makefile.)

-OR-

• Select a recent project from the Project File list. (For example, makefile.

-OR-

• Click Browse, then search for a project file. (For example, makefile.)

3) Enter the project build utility’s name and path location in the Program Build text b
(For example, make, or SNASMSH2.)

4) Type any command line parameters that should be passed to the make command
Command Line Modifiers text box. (For example, -f for GNU make.)

5) Enter the project environment file’s name and path location in the Environment F
text box. This may be the same directory as the program build file.

6) Click OK to accept the project build environment.

7) Make the project current and build it in one of the following ways:

• Click Project, then click Make.

-OR-

• On the Project Build window, right-click, click Make.

-OR-

• Press CTRL+M.

The Input / Output window Build tab appears and automatically displays the specified build uti
output about the build. Any standard format errors and warnings are shown in the Input / Ou
window Build tab.

If a build error occurs, double-click an entry to invoke the editor and open the source file at th
containing the error or warning. To advance to the next error or warning press F4. Some exte
editors do not support this option and will open without displaying the line at which the error
occurred.
98

CodeScape User Guide

le.
n the

ut
ow. If
 line
The environment file

To create an environment file:

1) Start an MS-DOS window and create the environment that you require to run the
project build file that may use, for example, Hitachi C, GNU C, or SNASMSH2.

2) Create a file that contains the environment strings required by the project build fi
For example, to create a file that contains the environment strings required to ru
Hitachi tools, type: set>hitachi.env

Making and building a projects

Make the project current and build it in one of the following ways:

• Click Project, then click Make.
-OR-

• On the Project Build window, right-click, click Make.
-OR-

• Press CTRL+M.

The Project Build window appears and automatically displays the specified build utility’s outp
about the build. Any standard format errors and warnings are shown in the Project Build wind
a build error occurs, double-click an entry to invoke the editor and open the source file at the
containing the error or warning.

NOTE: The Target and Project Build windows can be docked at the

top and bottom of the main window, or left free floating.
99

Working with projects

 ones,

 Edit

e first
e first

e line
 You
errors
Setting up an editor

The default editor is CodeScape’s Edit region where you can edit existing files and create new
but you can configure CodeScape to use an external editor.

CodeScape supports the following external editors: Notepad, MS-DOS Editor, Multi-Edit for
Windows, Multi-Edit for DOS, Codewright, Brief, and Vi for MS-DOS/UNIX. You can add and
remove editors in this list.

When you select a default external editor, CodeScape displays the following:

• The manufacturer’s default installation path location, followed by the command to
invoke the editor in the Editor Path text box.

• The editor’s command line parameter to go to a line. For example, if you select Multi
for Windows, %f /L%l appears in the Editor Arguments text box.

When you open a file in the editor, CodeScape replaces %f with the file’s name, and %l with th
line to go to in the file. (Older versions of CodeScape use xxxxx instead of %l to represent th
line of a file.)

If a build error occurs when you make and build your project, CodeScape replaces %l with th
number containing the error or warning and displays it in the Input / Output window Build tab.
can scroll through the information as it is generated, or press F4 to move through any listed
one at a time.

If the editor you select does not support this option, leave this field blank.

NOTE: To remove an editor: in Editor Name list select the editor

that you want to remove, click Remove. To edit the string, without

removing the editor from the list, press Delete.
100

CodeScape User Guide

r in

e

and

s %l

ve

sed

eck

n you
Setting up an external editor

1) Click Project, then click Setup Editor.

2) Enter the name of the editor in the Editor Name list.

3) Enter the editor’s path location, followed by command followed to invoke the edito
the Editor Path text box.

4) Enter %f, then the editor’s command line parameter to go to a line, then %l in th
Editor Arguments text box.
When you open a file in the editor, CodeScape replaces %f with the file’s name,
%l with the first line to go to in the file. (Older versions of CodeScape use xxxxx
instead of %l to represent the first line of a file.)
If a build error occurs when you make and build your project, CodeScape replace
with the line number containing the error or warning and displays it in the Input /
Output window Build tab. If the editor you select does not support this option, lea
this field blank.

5) Do one of the following:

• If you selected a Windows based editor, select the Editor Is Windows Ba
check box.

-OR-

• If you selected an MS-DOS editor, clear the Editor Is Windows Based ch
box.

6) Click OK.

If you have set up a new editor, CodeScape automatically adds it to the Editor Name list whe
click OK.

NOTE: To remove an editor: in Editor Name list select the editor

that you want to remove, click Remove. To edit the string, without

removing the editor from the list, press Delete.

NOTE: Always save files edited in an external editor before using

CodeScape�s Make option to compile and build your project in

CodeScape.
101

Working with projects

 for
Setting up the project commands

Set the path for locating source files

In the Source File Search Path dialog you can: set, change, or remove a directory path name
CodeScape to look for your program’s project files.

1) Click Project, then click Edit Source Path…
The Source File Search Path dialog box appears.

2) Do one of the following:

• Type in the Path of the Source files.

-OR-

• Click Browse and select the required directory.

3) Click Add.

Remove a path from the Source File Search Path

1) Click Project, then click Edit Source Path…
The Source File Search Path dialog box appears.

2) Do one of the following:

• Type in the path of the Source files.

-OR-

• Click Browse and select the required directory.

3) Click Remove.
102

CodeScape User Guide

 in the
ile

ns.
Set a directory for CodeScape�s source files

Set or change relative path name of the default directory for your fileserver based operations
Set fileserver directory dialog box. (This can be the same as the directory you set in Source F
Search Paths.)

Do the following:

1) Click Project, then click Set FileServer Root Directory.

2) Enter the Path of the default directory that you wish to use for fileserver operatio

3) Click OK.

NOTE: If the display update rate interrupts the target when it is

loading information to the fileserver directory on you computer,

click Project then select Enable Fileserver Optimization.

NOTE: Any configuration commands you set are saved in a session

file when you exit including software breakpoints and watches, and

program update rates.
103

Working with projects
104

Debugging
r

ies
Debugging operations are:

• Tracing through your program code.
• Checking variables and structures.
• Adding and configuring breakpoints to control program execution.
• Simulating a target’s processor operations to optimize tight assembler loops in you

program.
• Profiling to examine the run-time behavior of program files written for Hitachi SH ser

target processors.

NOTE: If you enable high level optimization when you build your

project the compiler output can make source-level tracing

confusing.

NOTE: Before you edit a program file from a UNIX target, convert

it to a DOS readable format using a utility such as to_dos (use

to_unix to return the file to a UNIX format).

NOTE: The toolbars provide access to the main debugging functions.

Use the Toolbar Configuration check box to show or hide toolbars.
 105

Debugging

e
f
BR

set up
t pass

ler.

ler.

The
 for

 want

CK.
Debugging modes

You can debug your program in one of two modes:

• Operating system (OS mode). In OS mode program execution resumes back to th
console BIOS after the Debug Stub is loaded. This is achieved with the minimum o
disruption to the processor context prior to loading the Debug Stub. However, the D
register is loaded with the default exception handler after resuming.

• Processor (CPU mode). In CPU mode the full debug stub loads, then the context is
with default settings allowing a debugging session to start. CPU debugging does no
program control back to the Console BIOS, control remains within the Debug Stub
monitor.

• The DBR register is loaded with the default Debug Stub exception hand

• The VBR register is loaded with the default Debug Stub exception hand

• The stack pointer is loaded at 0x0d000000.

• The status register block bit is cleared to 0.

Selecting OS mode or CPU mode

A software mode selection flag in the Debug Adapter (DA) determines the debugging mode.
flag is stored in EEPROM on the DA and provides power cycling of the DA. The default mode
either a new DA, or a re-flashed DA is OS mode.

You can change the debugging mode in one of two ways:

• When you run CodeScape, it detects new and re-flashed DAs and asks you if you
to change the debugging mode.

• If you want to change the debugging mode at any other time you must run DACHE
For information using DACHECK refer to the Help supplied with the software.
106

CodeScape User Guide
Running and stopping programs

The run options are:

• Run all processors simultaneously
• Stop all processors simultaneously
• Run a program
• Run a program until it executes a specified address
• Run a program to the cursor position
• Stop a program

Run all processors simultaneously

Do one of the following:

• Click Debug, point to Execution then click Run All (CTRL+F9).
-OR-

• Right-click, point to Execution then click Run All.
-OR-

• On the Debug toolbar, click .

NOTE: Program execution will stop at a breakpoint, or if an error

occurs.

Stop all processors simultaneously

To stop all programs running simultaneously, do one of the following:

• Right-click in the Target window, point to Execution then, click Stop All.
-OR-

• On the Debug toolbar, click .
-OR-

• Click Debug, point to Execution then click Stop All.

NOTE: All processors will stop immediately.
107

Debugging

g

m
ied
Run a program

1) In the Target region, select the processor where your program is loaded.

2) Do one of the following:

• Click Debug, then click Run (F9).

-OR-

• Right-click, point to Execution then click Run.

 -OR-

• On the Debug toolbar, click .

NOTE: Program execution will run until you stop it, or if an error

occurs.

NOTE: When your program is running you can stop it by pressing F9.

Run a program until it executes a specified address

1) Do one of the following:

• Click Debug, point to Execution then click Run to Address (SHIFT+F9).

-OR-

• Right-click, point to Execution then click Run to Address.

-OR-

• On the Debug toolbar, click .

2) Type an address in the Expression text box of the Run to Address/Instructions dialo
box.

3) Click OK.

The address is the name of a function or, an expression that resolves to an address.

You can add breakpoints using Run to Address at any time during program execution, progra
execution stops when a breakpoint is encountered. Program execution will stop at the specif
address, or at a breakpoint or if an error occurs.
108

CodeScape User Guide

osition,

 is
Run a program to the cursor position

In an active Source or Disassembly region, do one of the following:

• Click Debug, point to Execution then click Run to Cursor (ALT+F9).
-OR-

• Right-click, point to Execution then click Run to Cursor.
-OR-

• On the Debug toolbar, click .

You can add breakpoints using Run to Cursor at any time during program execution, program
execution stops when a breakpoint is encountered. Program execution will stop at the cursor p
or at a breakpoint, or if an error occurs.

NOTE: In the Call Stack region, use Run to Cursor to return to a

specific function outside of the current one.

Stop a program

To stop a program running, in the Target region, select the processor on which your program
loaded, then do one of the following:

• Right-click in the Target window, point to Execution then right-click then click Stop.
-OR-

• On the Debug toolbar, click .
-OR-

• Click Debug, point to Execution then click Stop.
-OR-

• Press F9.

NOTE: The processor will stop immediately.
109

Debugging

 active
s if a
Stepping into (tracing) code

Trace functions are available either on the debug toolbar or on shortcut keys.

You can choose either source level tracing in an active Source region, or instruction level in an
Disassembly region. If you trace without a Source or Disassembly region open, tracing acts a
Disassembly region is open.

NOTE: You can trace a program at any time while debugging. All

trace operations immediately stop program execution.

NOTE: All trace operations can be interrupted by breakpoints.

The trace options are:

• Single step a line of source code
• Force step a line of source code at the disassembly level
• Step over a line of source code
• Step out of a line of source or disassembled code (return from function)
• Undo a step
• Enable Animated Step Run (animate trace)
• Step run into a line of source or disassembled code
• Step run out of a line of source or disassembled code
• Step Run Until
• Restart processor execution
• Stop a program
110

CodeScape User Guide

 at the

-level
cludes:

ile, as
Single step a line of source code

Do one of the following:

• Click Debug, then click Step (F7).
-OR-

• On the Debug toolbar click .

In an active Disassembly region (or any non-source region), the target executes the instruction
PC.

In an active Source region, the target executes the instruction at the PC. It stops when all low
assembly instructions generated by the single source instruction have been executed. This in

• All instructions for a source macro instruction.
• Any C instructions that generate several assembler instructions.

Subsequent source lines (called by the current source line) may be in a different function or f
determined by the execution flow.

NOTE: Execution trace history is generated when single stepping.

NOTE: A trap instruction is treated as a subroutine (a BSR or JSR).

Trap 32 is reserved by CodeScape and treated as a single

instruction. Use Forced Step Into to step into the trap 32

routine. Stepping into trap 32 may cause the monitor to fail.
111

Debugging

ed one

es then
tion is

cution
ns you
e next

 a step
t.

 or BSR
ory

ference
 halted
Force step a line of source code at the disassembly level

Do one of the following:

• Click Debug, then click Forced Step Into (SHIFT+F7).
-OR-

• On the Debug toolbar click .

In a Disassembly region, Forced Step Into causes individual assembly instructions to be trac
at a time where this is normally not allowed, for example stepping into a trap 32.

In a Source region, the target executes the instruction at the PC with the current register valu
stops at each individually generated assembler instruction. Each individual assembler instruc
traced using the disassembly-level Single Step instead of the source-level Single Step.

Step into mechanism, that is a Trap, Line-A, Line-F, or subroutine is entered and program exe
halted inside. In the case of a single source instruction generating many assembly instructio
will need to press SHIFT+F7 several times on the source instruction before progressing to th
source instruction.

Stepping over code

Execution trace history is generated when stepping over. This is useful when you need to undo
operation. Step Over performs a single step if Step Over is not relevant in the current contex

To step over a line of source code:

• Click Debug, then click Step Over (F8).
-OR-

• On the Debug toolbar click .

In disassembled code, the target executes the instruction at the PC then stops. A Trap, JSR
is treated as a single instruction and program execution halted on the next instruction in mem
when the routine is complete.

In source code, the target executes the instruction at the PC then stops when the source file re
has changed. When stepping over a function call, the entire function is executed. Execution is
on the next source line.

NOTE: You cannot step over conditional branches.

NOTE: Execution trace history is generated when stepping over.
112

CodeScape User Guide

cally.

You can

s.

a
Step out of a line of source or disassembled code

Use Step Out to run to and stop at the end of the current function call.

• Click Debug, then click Step Out.
-OR-

• Right-click in a region, click Execution, then click Step Out.
-OR-

• On the Debug toolbar, click .
-OR-

• Press CTRL+F8.

Undo a step

• Click Debug, then click Unstep (CTRL+F7).
-OR-

• On the Debug toolbar click, .

CodeScape keeps a history of trace actions. Trace history is built-up and discarded automati

When you Unstep, only the current state of the processor and memory contents are untraced.
Unstep:

• Instructions that are executed as a series of individual disassembly instructions.
• Traces in Source and Disassembly regions as long as there is a trace history left.

NOTE: You cannot Unstep blocks of instructions.

NOTE: Where code is stepped over, all trace history to this point

is lost.

Enable Animated Step Run (animate trace)

Select Enable Animated Step Run (default) to update all regions as each instruction execute

• Click Debug, then click Enable Animated Step Run.

CodeScape will trace instructions and display updated information in the active window until
breakpoint occurs, or until another command is issued, for example start/stop.
113

Debugging

ted.

ow
.

Step Run In

Use Step Run In to run to then stop at the start of each successively nested function calls.

• Click Debug, then click Step Run In (SHIFT+F7).
-OR-

• Right-click in a region, click Execution, then click Step Run In.
-OR-

• On the Debug toolbar click .

CodeScape will run to the start of the next function and then stop.

Step Run Out

Use Step Run Out to run to and stop after each successively nested function call has comple

• Click Debug, then click Step Run Out (SHIFT+F8).
-OR-

• Right-click in a region, click Execution, then click Step Run Out.
-OR-

• On the Debug toolbar click .

CodeScape will run to the end of the current function and then stop.

Step Run Until...

1) Do one of the following:

• Click Debug, then click Step Run Until…

-OR-

• On the Debug toolbar click, .

2) Enter an expression to run to in the Expression Evaluator.

CodeScape will trace instructions and display updated information in the active wind
until a breakpoint occurs, or until another command is issued, for example start/stop

NOTE: If the expression evaluates to a zero result, tracing

continues.
114

CodeScape User Guide

if

rt.

 is
Restart processor execution

Restart loads the binary part of the current program file and resets the PC to the entry point (
known). If the program file’s last modification time has changed, symbolic information is also
loaded.

• Right-click in the Target window, point to Execution then right-click then click Resta
-OR-

• On the Debug toolbar, click .
-OR-

• Right-click in any region, click Execution, then click Restart.
-OR-

• Press CTRL+SHIFT+R.

Stop a program running

To stop a program running, in the Target region, select the processor on which your program
loaded, then do one of the following:

• Right-click in the Target window, point to Execution then right-click then click Stop.
-OR-

• On the Debug toolbar, click .
-OR-

• Click, point to Execution then click Stop.
-OR-

• Press F9.
115

Debugging

 data
 can be

y area
ption if
oint is

cfg.
d
Breakpoints

CodeScape has extensive software and hardware debugging features including breaking on
accesses within memory ranges and on external peripheral access. All breakpoint operations
performed at any time through the Configure breakpoint(s) dialog box.

Software breakpoints cause exceptions during program execution if encountered in a memor
other than the one they were defined in. For example, CodeScape reports an unknown exce
0x0C000000, 0x0D000000 is an image of 0x8C000000, 0x8D000000 and a software breakp
inserted at address 0x0C00B000, then occurs at 0x8C00B000.

To avoid this, mark mirrored memory images as shared memory in the configuration file dali.
The example below defines three areas of shared memory as the same (Tag:B). The mirrore
ASE-breaks are hidden and a breakpoint symbol is shown at their addresses.

[SEGA KATANA MasterSH4EVA_SharedMemory]

SharedMemory = 0x0C000000, 0x0CFFFFFF, Tag:B

SharedMemory = 0x8C000000, 0x8CFFFFFF, Tag:B

SharedMemory = 0xAC000000, 0xACFFFFFF, Tag:B

NOTE: If you add a breakpoint that uses a register or variable

name as its address, the expression is only evaluated the first

time it occurs during program execution.

Breakpoint options are:

• Adding breakpoints
• Adding a breakpoint at the current cursor position
• Removing breakpoints
• Removing all breakpoints
• Enabling and disabling breakpoints
• Resetting breakpoints
• Configuring breakpoints
• The breakpoint expression format
116

CodeScape User Guide

int

on, ,

ppears
 icon

, such

ssage
 by

. If a
Adding breakpoints

You can add a breakpoint in Source, Disassembly, Memory, and Watch regions. You can add
breakpoints at any time during program execution. Program execution stops when a breakpo
occurs. Add breakpoints using the menus, shortcut menus, or toolbars.

When a breakpoint is set and enabled in a Source or Disassembly region, the breakpoint set ic

appears in the first column. When a breakpoint is disabled, the breakpoint disabled icon, , a
in the first column. When a watched variable is visible in the Watch region, the watched variable
appears. In a Memory region the background color of the specified address changes.

A breakpoint is set with the following default behavior:

• Code breakpoint execution is halted once it has been triggered and no other action
as logging, is performed. Code breakpoints are implemented in hardware if a ROM
address is encountered or software otherwise.

• Watch breakpoints are triggered by any read or write data access to hardware. A me
appears when the breakpoint has been triggered and all conditions have been met
default.

All breakpoint locations are tested to make sure that they are placed and configured correctly
problem is found a message appears prompting you to re-configure the breakpoint.

NOTE: To change the default behavior of a breakpoint see To

Configure a Breakpoint.

NOTE: You can add a breakpoint only to a line that generates code.

(Shown by a �.� in column one of a Source region or Watch region,

or at any point in the Disassembly region.)

To add and run to a code breakpoint:

1) Right-click, click Goto Address.

2) On the Breakpoint toolbar, click to set a breakpoint.

3) Right-click, click Execution, click Run. Your program will run until the breakpoint
occurs.

NOTE: You can set a maximum of two Hardware breakpoints for each

SH2 processor on a Sega Saturn target.
117

Debugging

on you

u
Add a breakpoint at the current cursor position

In a Source or Disassembly region you can add code breakpoints. In a Watch or Memory regi
can add data breakpoints.

In any region, place the cursor in the required position then:

• Click Debug, then point to Breakpoints then click Toggle Breakpoint (F5).
-OR-

• Right-click, point to Breakpoints then click Toggle Breakpoint.
-OR-

• On the Breakpoint toolbar, click .

Removing breakpoints

In any region, place the cursor on the required breakpoint then:

• Click Debug, point to Breakpoints then click Toggle Breakpoint (F5).
 -OR-

• Right-click, point to Breakpoints then click Toggle Breakpoint.
 -OR-

• On the Breakpoint toolbar, click .
 -OR-

• In the Configure breakpoint(s) dialog box (CTRL+F5), select the breakpoint that yo
want to disable then click Remove.

The breakpoint set icon, , will disappear from the code window.

Remove all breakpoints

In any region, place the cursor on the required breakpoint then:

• Click Debug, point to Breakpoints then click Remove all Breakpoints (SHIFT+F5).
 -OR-

• On the Breakpoint toolbar, click .
 -OR-

• Right-click, point to Breakpoints then click Remove all Breakpoints.
 -OR-

• In the Configure breakpoint(s) dialog box, click Remove All (CTRL+F5).
118

CodeScape User Guide

ct

r
Enable a disabled breakpoint

In any region, place the cursor on the required breakpoint then:

Click Debug, point to Breakpoints then click Enable Breakpoint.
 -OR-

• Right-click, point to Breakpoints then click Enable Breakpoint.
 -OR-

• On the Breakpoint toolbar, click .
 -OR-

• In the Configure breakpoint(s) dialog box (CTRL+F5), click Code Settings and sele
Breakpoint Enabled.

The breakpoint set icon will change from to to show that the breakpoint is enabled.

Disable an enabled breakpoint

In any region, place the cursor on the required breakpoint then:

• Click Debug, point to Breakpoints then click Disable Breakpoint.
-OR-

• Right-click, point to Breakpoints then click Disable Breakpoint.
 -OR-

• On the Breakpoint toolbar, click .
 -OR-

• In the Configure breakpoint(s) dialog box (CTRL+F5), click Code Settings and clea
Breakpoint is Enabled.

The breakpoint set icon will change from to to show that the breakpoint is disabled.

Enable all breakpoints

Do one of the following:

• Click Debug, point to Breakpoints then click Enable all Breakpoints
(CTRL+SHIFT+F5).
 -OR-

• Right-click, point to Breakpoints then click Enable all Breakpoints.
 -OR-

• On the Breakpoint toolbar, click .
119

Debugging

5).

tions
Disable all breakpoints

Do one of the following:

• Click Debug, point to Breakpoints then click Disable all Breakpoints (CTRL+ALT+F
 -OR-

• Right-click, point to Breakpoints then click Disable all Breakpoints.
 -OR-

• On the Breakpoint toolbar, click .

Reset all breakpoints

Do one of the following:

• Click Debug, point to Breakpoints then click Reset all Breakpoints (ALT+F5).
 -OR-

• Right-click, point to Breakpoints then click Reset all Breakpoints.
 -OR-

• On the Breakpoint toolbar, click .

NOTE: Resetting all breakpoints sets all conditional values,

including the current count, to their starting conditions.

Reset the trigger count for a breakpoint

• In the Configure breakpoint(s) dialog box select the breakpoint, click Reset.

Reset only the current value of the count for a breakpoint

• In the Configure breakpoint(s) dialog box select the breakpoint, click General Condi
and click Reset Current.
120

CodeScape User Guide

 and

.

Configuring breakpoints

CodeScape enables breakpoint configuration including data accesses within memory ranges
breakpoints on external peripheral devices.

To configure a breakpoint:

• Click Debug, point to Breakpoints then click Configure Breakpoint(s)… (CTRL+F5)
 -OR-

• Right-click, point to Breakpoints then click Configure Breakpoint(s)…
 -OR-

• On the Breakpoint toolbar, click .

NOTE: Software breakpoints cause exceptions during program

execution if encountered in a memory area other than the one they

were defined in.

NOTE: You can add a breakpoint and configure it manually using the

Configure breakpoint(s) dialog box.

NOTE: Watch breakpoints trigger on data access, and code

breakpoints trigger on the fetch-execute phase of the instruction

cycle.

The Configure breakpoint(s) dialog box

In the Configure breakpoint(s) dialog box you can:

• Add, remove, and configure code and watch breakpoints.
• Enable or disable a breakpoint, set its location, and the resources it will use.
• Specify when a breakpoint will occur.
• Configure a prompt for when a breakpoint occurs.
121

Debugging

 at the
elect a

ing
en
ect

e

get
Using the Code Settings tab

Code breakpoints trigger on instruction execution. When a code breakpoint triggers the PC is
same instruction in the pipeline. The Code Settings tab becomes available when you add or s
code breakpoint to configure.

1) Do one of the following:

• Select a code breakpoint to configure from the list.

 -OR-

• Click code to add a code breakpoint to configure.

2) Select Breakpoint Enabled (default), to enable a breakpoint.
You may be prompted to re-configure a disabled breakpoint. This can occur dur
code execution, restoring sessions, or when attributes could not be validated wh
configuring commands within this dialog box. A disabled breakpoint does not aff
code execution or use any hardware resources.

3) Specify the position in memory where the code will stop on execution. In the Location
Expression text box:

• Enter the required expression.

-OR-

• Click Define. The Breakpoint Location Expression dialog box appears.
Evaluate the expression to set the location address.

4) Then do one of the following:

• Select C/C++, to use C/C++ expression syntax.

-OR-

• Select Assembly, to use SHx assembly language syntax.

5) In the Implementation mechanism group box:

• Select Automatic and CodeScape will manage breakpoint resources.
Breakpoints are implemented in software by default. If this is not possibl
then hardware resources are used.

-OR-

• Select Software to specify a software breakpoint.

-OR-

• Select Hardware to set a hardware breakpoint that is specific to your tar
processor.

NOTE: You can set a maximum of two Hardware breakpoints for each

SH2 processor on a Sega Saturn target.
122

CodeScape User Guide

the PC

figure.

ng

ode

n

tch
r the
ion

e
Using the Watch Settings tab

Watch (data) breakpoints trigger on memory data access. When a Watch breakpoint triggers
is several instructions ahead of that breakpoint in the pipeline.

The Watch Settings tab becomes available when you select or add a watch breakpoint to con

1) Do one of the following:

• Select a watch breakpoint to configure from the list.

-OR-

• Click Watch to add a watch breakpoint to configure.

2) Select Breakpoint Enabled (default), to enable a breakpoint.
You may be prompted to re-configure a disabled breakpoint. This can occur duri
code execution, restoring sessions, or when attributes are not validated during
command configuration in this dialog box. A disabled breakpoint does not affect c
execution or use any hardware resources.

3) Specify the position in memory where the breakpoint is accessed. In the Locatio
Expression text box:

• Enter the required expression.

-OR-

• Click Define. The Breakpoint location expression dialog box appears.
Evaluate the expression to set the location address.

4) Select Include Data Condition to change the Watch Access breakpoint into a Wa
Data breakpoint that uses the features of the UBC (User Break Controller). Ente
required Data Expression, then click Define. The Breakpoint watch data express
dialog box appears. Evaluate the expression to set the location address.

5) Then do one of the following:

• Select C/C++, to use C/C++ expression syntax.

-OR-

• Select Assembly, to use the Assembler’s expression syntax.

6) In the Implementation mechanism group box:

• Select Automatic and CodeScape will manage breakpoint resources.
Breakpoints are implemented in software by default. If this is not possibl
then hardware resources are used.

-OR-

• Select Software to specify a software breakpoint.

-OR-
123

Debugging

get

u use

nd
• Select Hardware to set a hardware breakpoint that is specific to your tar
processor.

7) Under Access Size, enter the Access Size required (the default is Any). When yo
Toggle to add a watch breakpoint its size, if known, will be used instead of Any.

8) Under Access Type, select the Access Type required. The default is Both read a
write access.

NOTE: If you place a watch (data) breakpoint on a member of a union

it will trigger for all members of that size, regardless of type.

This also applies to anonymous unions, except that two members of

the same size appear as two variables sharing the same address in

memory.
124

CodeScape User Guide

s
 that it

n

 false

tion

ion

set in

nt

Using the General Conditions tab

The General Conditions tab is for defining conditions that must be valid before a breakpoint i
triggered. You can condition a breakpoint by memory access type and data value, and confirm
executed on the correct trigger count.

NOTE: To use a conditional expression select Include Conditional

Expression.

1) Do one of the following:

• Enter a valid expression in the Include Conditional Expression text box.

-OR-

• Click Define to open the Breakpoint condition expression dialog box, the
define the expression.

2) Do one of the following:

• Select C/C++, to use C/C++ expression syntax.

-OR-

• Select Assembly, to use the Assembler’s expression syntax.
The expression is evaluated for a logical result where a value of zero represents
and non-zero values represent true.

3) Select Include Trigger Count Condition to include the trigger condition. The condi
is true when the Current Count reaches the specified Trigger Count value.

4) Enter the value for the Current Count to reach to make the Trigger Count Condit
true.

5) Under Counters, check that the value in the Current box matches the value you
the Trigger box. Click Reset Current to return the current count to zero.

6) Select when to increment the count. The default is to increment the Current Cou
whenever the breakpoint occurs or is evaluated.

7) If both expression and count conditions are included, select when to break in the
expression. The default is OR.
125

Debugging

the
ter all

ssage

t has

tart or

s been

n met.
Using the Trigger Actions tab

Use the commands on the Trigger Actions tab to specify how CodeScape responds when a
breakpoint has triggered.

Select any or all of the following radio buttons:

• Select Halt execution when conditions match to stop the program executing when
breakpoint conditions have been met. Clear this check box to continue execution af
other requested actions have been performed.

• Select Single shot - breakpoint is discarded when conditions match to discard the
breakpoint after it has been triggered and all conditions have been met.

• Select Message box prompt when conditions match. CodeScape will display a me
when the breakpoint has been triggered and all conditions have been met.

• Select Beep when conditions match. Your computer will beep when the breakpoin
been triggered and all conditions have been met.

• Select Cause processor simulation to and specify whether the Simulator should S
Stop when the breakpoint has been triggered.

• Select Log Expression and choose either to produce a log when the breakpoint ha
triggered or every time. Enter a valid Log expression.

• Run Script and specify a script to execute when the breakpoint conditions have bee

NOTE: If there is no Log region for the Target Processor,

CodeScape creates one.

NOTE: You can only set one Start breakpoint and one Stop

breakpoint for the Profiler.
126

CodeScape User Guide

ese

 Set
wise.

ese

 Set
wise.

ta

Using the Advanced tab to specify options for a code breakpoint

NOTE: The Location Address text box is read-only. To set the

location, click the Code Settings tab.

NOTE: The ASID Mask Selector field is set to its default state and

cannot be configured. It will be enabled in future releases.

On the Advanced tab are commands for using the Hardware Implementation Mechanism. Th
commands apply only to Watch breakpoints and Code breakpoints.

1) Select Location Mask to specify which bits of the Location Address to mask out.
Location Mask bits to 1 to ignore the corresponding Location Address bit, 0 other

2) In the Break Mode text box select either:

• Before Execution.

-OR-

• After Execution.

Using the Advanced tab to specify options for a watch breakpoint

NOTE: The Location Address text box is read-only. To set the

location, click the Code Settings tab.

NOTE: The ASID Mask Selector field is set to its default state and

cannot be configured. It will be enabled in future releases.

On the Advanced tab are commands for using the Hardware Implementation Mechanism. Th
commands apply only to Watch breakpoints and Code breakpoints.

1) Select Location Mask to specify which bits of the Location Address to mask out.
Location Mask bits to 1 to ignore the corresponding Location Address bit, 0 other

2) In the Data Mask text box, set Data Mask bits to 1 to ignore the corresponding Da
Address bit, 0 otherwise.

3) In the Bus cycle field, select the bus cycles to include, either CPU, or Peripheral
(DMA), or both.
127

Debugging

Global
he

n

t

will

 into

lt).
 you

out
Using the Global tab to specify the debug environment for Hitachi

SH4-EVA processors

On the Global tab are commands for setting the target processor’s debug environment. The
tab appears when you connect to an SH4-EVA target processor and you can specify any of t
available options.

1) In the Global ASE Break Conditions for SH4-EVA CPU field:

• Select Enable on-chip access detection and CodeScape will generate a
on-chip I/O exception.

The values displayed are the last on-chip address accessed, and the las
on-chip data access when the exception occurred.

• Select Enable break after LDTLB instruction execution and CodeScape
generate an LDTLB instruction break.

The values displayed are the last PTEH loaded, and the last PTEL loaded
the MMU.

2) In the Global UBC Exception Handler Option field, select Use DBR vector (defau
CodeScape will use the debug stub default exception handler for UBCs. This lets
define exception handling routines in your program, and to modify the VBR with
affecting the behavior of UBC breakpoints.
128

CodeScape User Guide

ions

ister

.

.

 than

tput.
s

Breakpoint expression format

CodeScape has a powerful expression formatting facility for controlling the display of express
in the Log tab on the Input / Output window.

Control formatting with expressions that work in a similar way to the C `printf' function. The
expressions are numbered from 0 and can be any valid debugger expression referencing reg
names or memory locations. The syntax for a formatting expression is:

 {"FormattingString"|FormattingString}[,C/C++Expression]

Formatting string

A formatting string is a series of alpha numeric characters and three special format specifiers

Formatting string

A formatting string is a series of alpha numeric characters and three special format specifiers

In the format %[flags] [width] [.precision] type, use the fields in the following ways:

• [flags] is an optional character or characters that control justification of output and
printing of signs, blanks, decimal points, and octal and hexadecimal prefixes. More
one flag can appear in a format specification.

• [width] is an optional number that specifies the minimum number of characters ou
• [.precision] is an optional number that specifies the maximum number of character

printed for all or part of the output field, or the minimum number of digits printed for
integer values.

• type is a required character that determines whether the associated argument is
interpreted as a character, a string, or a number.

Use the format: To:

\character Explicitly define a character. For
example, \$ displays a $ character.

$param_num Change the next argument index. For
example, $0 sets the argument index to 0.

%[flags] [width] [.precision] type Print a series of formatted characters
and values to the Log tab on the Input /
Output window. Type %% to print a single
percent character.
129

Debugging

 octal
Flags specification

A flag directive is a character that justifies output and prints signs, blanks, decimal points, and
and hexadecimal prefixes. More than one flag directive may appear in a format specification.

Flag Meaning

- Left align the result within the given field width. The default
is right align.

+ Prefix the output value with a sign (+ or -) if the output value
is of a signed type. The sign appears only for negative signed
values by default.

0 If width is prefixed with 0, zeros are added until the minimum
width is reached. If 0 and - appear, the 0 is ignored. If 0 is
specified with a none integer format (e.g. f, g, e) the 0 is
ignored. The default is no padding.

blank (� �) Prefix the output value with a blank if the output value is
signed and positive; the blank is ignored if both the blank and
+ flags appear. Default :No blank appears.

When used with the o, x, or X format, the # flag prefixes any
nonzero output value with 0, 0x, or 0X, respectively. Default:
No blank appears.

When used with the e, or f format, the # flag forces the output
value to contain a decimal point in all cases. Default: Decimal
point appears only if digits follow it.

When used with the g or G format, the # flag forces the output
value to contain a decimal point in all cases and prevents the
truncation of trailing zeros. Default: Decimal point appears
only if digits follow it. Trailing zeros are truncated.

Ignored when used with c, d, i, u, or s.
130

CodeScape User Guide

ent
utput
 unless
seful

 output
rinted

alue.
nt or

than

rs to be

nding
sult is

 the
Width specification

The second optional field of the format specification is the width specification. The width argum
is a nonnegative decimal integer controlling the minimum number of characters printed. If the o
value has fewer characters than the specified width, blanks are added to the right of the value
the left align flag (-) is set. If width is prefixed with 0, zeros are added instead of blanks (not u
for left aligned numbers).

The width specification never causes a value to be truncated. If the number of characters in the
value is greater than the specified width, or if width is not given, all characters of the value are p
to the Log tab (subject to the precision specification).

If the width specification is an asterisk (*), an int argument from the argument list supplies the v
The width argument must precede the value being formatted in the argument list. A nonexiste
small field width does not cause the truncation of a field; if the result of a conversion is wider
the field width, the field expands to contain the conversion result.

Precision specification

The third optional field of the format specification is the precision specification. It specifies a
nonnegative decimal integer, preceded by a period (.), which specifies the number of characte
printed, the number of decimal places, or the number of significant digits. Unlike the width
specification, the precision specification can cause either truncation of the output value or rou
of a floating-point value. If precision is specified as 0 and the value to be converted is 0, the re
no characters output, as shown below:

"%.0d", 0 /* No characters output */

If the precision specification is an asterisk (*), an int argument from the argument list supplies
value. The precision argument must precede the value being formatted in the argument list.
131

Debugging
Type specification

Character Type Output Format

c int Single-byte character.

C int Single-byte character.

d int Signed decimal integer.

i int Signed decimal integer.

o int Unsigned octal integer.

u int Unsigned decimal integer.

x int Unsigned hexadecimal integer, using "abcdef."

X int Unsigned hexadecimal integer, using "ABCDEF."

e double Signed value with the form [-]d.dddd e [sign]ddd
where d is a single decimal digit, dddd is one or
more decimal digits, ddd is three decimal digits, and
sign is + or -.

f double Signed value with the form [-]dddd.dddd, where dddd
is one or more decimal digits. The number of digits
before the decimal point depends on the magnitude of
the number, and the number of digits after the
decimal point depends on the requested precision.

g double Signed value printed in f or e format, whichever is
more compact for the given value and precision. The e
format is only used when the exponent of the value is
less than -4 or greater than or equal to the
precision argument. Trailing zeros are truncated,
and the decimal point appears only if one or more
digits follow it.

G double Identical to the g format.

p Pointer to Prints the address pointed to by the argument in the
form similar to %X (i.e. uppercase hexadecimal
digits).

s String Specifies a single-byte-character string. Characters
are printed up to the first null character or until
the precision value is reached.

S String Specifies a single-byte-character string. Characters
are printed up to the first null character or until
the precision value is reached.
132

CodeScape User Guide

al
bly of
ack to
Examples

Evaluate and display the expression "$pc" (this must be a register) as a lowercase hexadecim
number prepended by "0x" and padded with zeroes to 8 characters followed by the disassem
the op-code at that address with qualified symbol names. The $0 reset the parameter index b
zero so the expression "$pc" is used for both formatted options.

i Address Displays (by disassembling) the op-code at the
specified address.

l Address Displays (by disassembling) the op-code at the
specified address with qualified symbol names if
available.

t Insert timestamp.

T Insert timestamp.

Expression Description

"%X", pc Evaluate and display the expression "pc" (this could
be a variable or register) as an uppercase
hexadecimal number.

Output: 3b0

"0x%08x", $pc Evaluate and display the expression "$pc" (this must
be a register) as a lowercase hexadecimal number
prepended by "0x" and padded with zeroes to 8
characters.

Output: 0x000003b0

"0x%08x -> $0 %I ", $pc Evaluate and display the expression "$pc" (this must
be a register) as a lowercase hexadecimal number
prepended by "0x" and padded with zeroes to 8
characters followed by the disassembly of the
op-code at that address with qualified symbol names.
The $0 reset the parameter index back to zero so the
expression "$pc" is used for both formatted options.

Output: 0x000003b0 -> mov.l #BaseClass::i, r3

Character Type Output Format
133

Debugging
134

Simulating a target
processor
he

cuting
Some
ions
own at

g a
t is part
The Simulator is an optimizing tool for Hitachi SH series processors. It uses real targets for t
Memory and Register regions.

When you single step in a Simulator region the cursor is shown at the instruction currently exe
in the pipeline. During simulation the PC fetches instructions ahead of the current instruction.
instructions are not executed because of changes in the program flow. For example, instruct
fetched after a branch. When you single step in any other CodeScape region, the cursor is sh
the PC (program counter).

The Simulator enables you to optimize timing critical sections of Assembly code by simulatin
target’s processor operations. For example, you can set breakpoints to simulate a function tha
of a loop in your program.

NOTE: You cannot run the Profiler and the Simulator at the same

time.

NOTE: For details about processor pipeline operations, refer to

the relevant Hitachi Programming Manual. For a copy of the manual,

contact your Hitachi supplier, or connect to the Hitachi Japanese

web site at http://www.hitachi.co.jp

NOTE: Memory timings do not model SDRAM banks (6000000-607FFFF,

6080000-60FFFFF).
 135

Simulating a target processor
Using the Simulator�s shortcut menu

Select: To:

Highlight Cache Misses See in which slot a pipeline operation missed the
cache.

Highlight Pipeline Stalls See in which slot a pipeline operation stalled.

Show Stall Type Show the type of stall generated.

Show Only Active Stages Show active / all pipeline stages used.

Show Uppercase Show instructions in upper case.

Show Symbols Show operand values as symbols.

Show EAs & Lits. Show the effective address and literals.

Source/Disassembly
Tracking

Track the Simulator�s cursor in source and
disassembly regions.

Print Print the results of program simulation.

Save to file... Save the results of program simulation to a file.

Execution Run, stop, and restart your program. Run your
program to the cursor position, or until it
executes a specified address. Run all of your
program files simultaneously. Stop all of your
programs running simultaneously.

Use the single stepping options, or run the step
options.

Breakpoints Toggle a breakpoint on or off. Enable, disable,
configure, reset, and remove breakpoints.
136

CodeScape User Guide

embly
. Use
ng

you

nd

tatus
Running the Simulator

When you run the Simulator it generates information about the pipeline operation for each Ass
instruction. It also highlights any loss of performance in the processor cache and the pipeline
the Simulator’s shortcut menu commands to configure the Simulator and access the debuggi
functions.

In the Target region, select the processor that you want to simulate:

• Select Debug, click Simulate Processor.
-OR-

• Right-click in the Target region, then click Simulate Processor.
-OR-

• Press CTRL+ALT+Z.

NOTE: You cannot run the Profiler and the Simulator at the same

time.

Running restrictions

The Simulator does not support the following features:

• DMA.
• Timers.
• Division unit.
• Power down mode.
• Memory mapped registers except for the CCR.
• External interrupts.

The Simulator disables external interrupts when it is running. If you use the sleep instruction
cannot wake the Simulator from sleep/standby mode.

Internal exceptions and interrupts are:

• Simulate NOP (no operation) and inform CodeScape of the appropriate exception.
• TRAPA 32 which is used for FileServer operation, software breakpoint operation, a

hardware breakpoint operation.
• Address errors, illegal slot, and invoked instructions as reported on the processor s

line.
137

Simulating a target processor

gging
oints,

cuting
Some
ions
own at

each
esults
Debugging operations in the Simulator

All of CodeScape’s debugging functions are available when the Simulator is running. The debu
functions include commands for: controlling program execution, stepping code, using breakp
and setting the cursor to the PC and visa versa.

When you single step in a Simulator region the cursor is shown at the instruction currently exe
in the pipeline. During simulation the PC fetches instructions ahead of the current instruction.
instructions are not executed because of changes in the program flow. For example, instruct
fetched after a branch. When you single step in any other CodeScape region, the cursor is sh
the PC (program counter).

Simulation results

During program simulation the Simulator generates information about pipeline operation for
Assembly instruction. You can read any loss of processor performance from the simulation r
shown in the Simulator’s regions, or by printing the results.
138

CodeScape User Guide

e
:

an

e in

tion)
Information generated by the Simulator

When you simulate your project each instruction is executed in a Simulated slot (time). As th
Simulator steps through time a linear description of pipeline operation is shown in its regions

• The Address in memory for each line of source code.
• The Op-code for each instruction.
• The CPU time taken to execute each instruction at an address in memory.
• The Disassembly of the op-code for each instruction.
• Slot information for each stage of pipeline operation:

1) The vertical cursor indicates the time taken by the processor to execute
instruction for each slot.

2) The horizontal cursor indicates the instruction that is being allocated tim
the active slot.

• Processor status information.

Execution time

The execution time is the CPU time accumulated from the start of an instruction’s ‘ex’ (execu
phase to the start of the next instruction’s ‘ex’ phase.

Processor status information

Data displayed on the status bar for an active slot

NOTE: The information generated by the Simulator can be saved in

a configuration file with the extension *.sim.

This status area: Describes:

Diagnosis: The type of stall encountered and what caused it.

Cache: Cache memory operation stalls which occur when there is
a read/write miss.

System clock: The total time taken for processor operations upto the
current cursor position.
139

Simulating a target processor

. The
t the

hown

.
ta bus.
ter r3.
Pipeline interaction

The Simulator evaluates an instruction’s functionality at the appropriate stage of the pipeline
following instruction tells the processor to read 32 bits from the address stored in r0, then pu
results in r3.

mov.L@r0,r3

When the instruction executes in a simulated slot (time) the following instruction stages are s
in the simulated pipeline:

IF|ID|EX|MA|WB

During the instruction’s execution the following operations take place:

• At the IF stage the op-code for the instruction is read from memory.
• At the ID stage the instruction is decoded.
• At the EX stage instruction execution starts, and the contents of register r0 is read
• At the MA stage memory is accessed at register r0 and the value is stored on the da
• At the WB stage the value stored on the data bus is written back to memory at regis

Instruction execution in the Pipeline region

The mnemonic: Indicates:

IF Instruction fetch.

if Dummy instruction fetch where external memory is not
accessed.

ID Instruction decoded / issued (All SH series
processors.)Instruction decoded / issued / register read.
(SH4 processors only.)

D Decode stage locked.

d Register read only. (SH4 processors only.)

EX Instruction execution.

SX Execution phase, the SX stage used.

SX* SX stage locked not used.

NA Memory not accessed / no operation address.

MA Memory accessed / operation address.

MAm Memory accessed / multiplier use. (SH2 processors only.)
140

CodeScape User Guide
NOTE: In the *.sim file all of the instructions are represented

by the mnemonics listed above except, >FPSCR< which is represented

by FC, and Mam which is represented Mm.

mm Multiplier busy. (SH2 processors only.)

WB Register write back (data stored to registers after
operation).

F0 Floating point 0 stage accessed. (Special Stage inner
product / transforms).

F1 Floating point 1 stage accessed.

F1* Floating point 1 stage locked and not accessed.

f1 Floating point 1 stage partial usage (can overlap with other
f1's but not F1).

F2 Floating point 2 stage accessed.

F3 Floating point 3 stage accessed. (Special Stage divide /
square root).

FS Floating point store / writeback.

>FPSCR< Floating point status register updated.

The mnemonic: Indicates:
141

Simulating a target processor

en an
se.

ction
the
Processor operation

The CPU time accumulated by each slot is highlighted to show the state of the processor wh
operation went off. Different colors and mnemonics’ describe pipeline interaction at each pha

Processor operation in the Pipeline region

Pipeline stalls

Where a stage from one instruction is in contention with a stage of the next or previous instru
a stall occurs. This slows down the operation of the pipeline. Simulation may show a stall in
processor’s pipeline.

Remove a stall, in one of the following ways:

• Reorder the instruction sequence to remove an Instruction sequence stall.
 -OR-

• Move an instruction address in memory to remove an Instruction alignment stall.

NOTE: For details about contention in instruction stages and

execution states refer to the Hitachi Programming Manual for the

7600 Series.

An operation colored: Indicates that the processor:

Black Was OK

Red Stalled

Blue Missed the cache

Pink Stalled and missed the cache
142

CodeScape User Guide
Pipeline instruction stalls recognized by the Simulator

NOTE: For details about pipeline instruction stalls refer to the

Hitachi Programming Manual for the 7600 Series.

This
symbol: Shows this type of stall:

If possible, increase the speed
of pipeline execution by:

r> A memory access conflicting
with an instruction fetch.
(SH1 and SH2 processors
only.)

To align instructions that access
memory on longword boundaries.

W> A write back from the
registry when a memory
access is incomplete.

So that instructions that follow
memory loads do not immediately use
the same destination register.

x> A multiplier usage stall.
(SH1 / SH2 processors only.)

So that instructions that use the
multiplier execute
non-consecutively.

i> An instruction generated
stall.

You cannot do anything about this
stall type. TRAP, TAS, RTE always
stall.

R> Two instructions trying to
lock the same register. (SH4
processors only.)

So that instructions using the same
register execute sequentially to
ensure that they are not dual
issued.

s> The SX stage of the
instruction being in use.

So that the instruction that locks
the SX stage executes before
instructions that use the SX stage
non-consecutively.

f> A floating point pipeline
stall, caused by multiple
use of the: F0, or F1, or F3
stages.

So that it uses instructions in the
F0, or F1, or F3 stages once.

c> One or more control group
instructions being dual
issued.

You cannot do anything about this
stall type.

g> Instructions of the same
type occurring together and
causing a dispatch failure.

So that instructions of the same
type (such as EX + EX, LS + LS, BR +
BR, FE + FE) do not occur together.

?> An unknown stall type.
143

Simulating a target processor

uring
Reading the results of simulation

The Simulator generates information about pipeline operation for each Assembly instruction d
program simulation. Any loss of processor performance appears in the results shown in the
Simulator’s regions. You can print the simulation results. (For an example of how to read the
simulation results refer to the Simulator tutorial.)
144

Profiling program files
 files

race.
are
icient
The Profiler is a powerful analysis tool that lets you examine the run-time behavior of program
written for Hitachi SH series processors.

You can configure the Profiler to analyze your program with two levels of detail: statistical and t
The Profiler can help you to find out where your program spends its time, and how functions
called when it executes. You can use information generated by the Profiler to identify any ineff
sections of code.

NOTE: To ensure accurate results, set the debug stub to run with

the cache off when you trace profile. To do this, run DACHECK.

For more information refer to the Help supplied with DACHECK.

NOTE: You cannot run the Profiler and the Simulator at the same

time.
 145

Profiling program files

ion:
Using the profiler: an overview

Open the Profiler and load a program file

1) Click Tools, then click Profiler.
The Profiler appears.

2) In the Target window, right-click, click Load Program File.
The Load Program File dialog box appears.

3) Specify the Target, Processor, Program File, and Load Options.

4) Click OK.

Profile the program file on the selected target processor

1) 1 In the Profiler, right-click, click Setup...

• Select Statistical for general profiling.

 -OR-

• EVA for detailed information.

2) Click to start profiling the selected program file.

3) In the Target window, right-click, select Execution, then click Run.

NOTE: You can sort the profile data on the fly.

NOTE: Click to stop profiling the program file.

Display a specific function(s)

1) Double-click on the function that you want to profile to select (tag) it.

2) Right-click and select Trace Tree Profile Display to find out for the selected funct
the functions that called it, and the functions it called.

3) Right-click, select Function Profile Filter, then click Show Tagged to switch the
display from Show All functions to Show All Tagged functions
The selected function will be the only function shown on the display.

4) Analyze the results.

NOTE: You can tag more than one function to profile.
146

CodeScape User Guide

ick

nly
View the source or disassembly of a specific function

1) Double-click on the function that you want to view to tag it.

2) To view the:

• Disassembly of the function, right-click then select Disassembly Display.

• Source of the function, right-click then select Source Display.

Set and use a Profiler breakpoint

1) Insert a Profiler Start breakpoint in one of the following ways:

• Right-click in the Profiler Source Display, select breakpoints, then click
Toggle Breakpoint.

-OR-

• Right-click in the Profiler Disassembly Display, select breakpoints, then cl
Toggle Breakpoint.

Profiling starts at the breakpoint insertion point. Profile information is generated o
for the function that contains the breakpoint and the functions it calls.

2) In the Target window, right-click, click restart.

3) Click to start profiling the selected program file.

4) In the Target window, right-click, select Execution, then click Run.
147

Profiling program files
The Profiler�s commands

Using the Profiler�s shortcut menu

NOTE: To set a tag on a specific function, double-click it�s entry

in the Profiler.

Select: To:

File Load or save program profile information. Program
profiles are saved using the extension *.prf.

Enable Profiler Start or stop profiling your program file.

Enable Pass Between
Breakpoints

Remove All Profiler
Breakpoints

Remove all Profiler breakpoints.

Trace Tree Profile Display Find out for each function, the functions that
called it, and the functions it called.

Function Profile Display Find out for each function, the functions that
called it, and the functions it called. Also, how
much time your program spent in each function,
and how many times each function is called.

Function Profile Filter Arrange the view to show one of the following:
all functions, all tagged functions, or all
untagged functions.

Untag All Untag all currently tagged functions.

Sort Arrange the column view of the active Function
Profile Display.

Source Display View your program�s original source code.

Disassembly Display View your program at instruction level (assembly
code).

Rename Function... Enter a new name for a specific function.

Profiler Display Setup... Specify the profile display options.

Setup... Specify options for Statistical Profiling, or EVA
Trace Profiling.
148

CodeScape User Guide
Options on the Profiler�s toolbar

NOTE: If you want to Trace Profile, you must run the Profiler

before you run your program.

NOTE: To set a tag on a specific function, double-click its entry

in the Profiler.

To issue this command: Click:

Start profiling the current program file.

Stop profiling the current program file

Toggle the display between a Trace Tree Profile and a
Function Profile.

Switch the display from Show All functions to Show All
Tagged functions.

Switch the display from Show All Tagged functions to
Show All Not Tagged functions.

Switch the display from Show All Not Tagged functions to
Show All functions.

Go to the next tagged function in the list.

Display the program file�s original source code.

Display the program file at instruction level (assembly
code).

Toggle the sort options.
149

Profiling program files

gging
oints,

bout
Debugging commands in the Profiler

All of CodeScape’s debugging functions are available when the Profiler is running. The debu
functions include commands for: controlling program execution, stepping code, using breakp
and setting the cursor to the PC and visa versa.

NOTE: Profiler breakpoints are not standard breakpoints.

Profiler breakpoints

• Profiler breakpoints are not standard breakpoints. Note the following information a
Profiler breakpoints:

• You can only set one Start Breakpoint, but you can set multiple Stop Breakpoints.
• Program execution does not stop when a Profiler breakpoint occurs.
• A frequently hit breakpoint increases the profile time.
• If you set a Profiler Start Breakpoint at the start of a function then the profiler only

profiles that function and the functions it called. If an interrupt occurs during this
function then it will be profiled.

• You do not have to set a Profiler Stop Breakpoint.

Insert a Profiler Start breakpoint in one of the following ways:

1) Right-click in the Profiler Source Display or the Profiler Disassembly Display.

2) Select breakpoints, then click Toggle Breakpoint.
-OR-

1) Right-click in the Profiler Source Display or the Profiler Disassembly Display.

2) Select breakpoints, then click Configure Breakpoint(s)...

3) Select the Breakpoint that you want to configure.

4) On the Trigger Actions tab select Cause processor profiling to, then:

• Select Start to set a Profiler Start breakpoint.

-OR-

• Select Stop to set a Profiler Stop breakpoint.
150

CodeScape User Guide

ts
even
s you
.

.

 calls.

ing
 for
Tracing interrupt subroutines

When the Profiler is enabled program files execute more slowly than usual, but timer interrup
continue to trigger in real time. This can cause interrupts to trigger continuously inhibiting or
preventing Profiler from generating profile data outside of the exception handlers. If this occur
may want to stop the Profiler profiling subroutines handled in interrupt and exception routines

You can prevent interrupt subroutines from being traced and profiled in one of two ways:

• In the Profiler using the Interrupt Trace Subroutine Filter.
Use this command when an interrupt or exception handler has few subroutine calls
-OR-

• In your program file using the disable and enable profiling BIOS calls commands.
Use these commands when an interrupt or exception handler has many subroutine

Interrupt Trace Subroutine Filter

CAUTION: Do not select the Interrupt Trace Subroutine Trace Filter

check-box if disable and enable profiling BIOS calls are used in

your program file.

NOTE: If an interrupt permanently triggers, use the disable and

enable profiling BIOS calls commands in your interrupt routine.

Use this command to stop the Profiler profiling subroutines handled in interrupt and exception
routines.

Disable and enable profiling BIOS calls

CAUTION: Using these BIOS calls incorrectly causes invalid Profile

data.

NOTE: Only use the disable and enable profiling BIOS calls

commands with DA Firmware 4.4.0a onwards.

The disable and enable profiling BIOS calls commands let you control subroutine profile trac
within your program file. To speed up the profile time, you can specify sections of your program
the Profiler to ignore.
151

Profiling program files

tion
ng

Profiler display types

You can view the profile of your program by: function hits, function count (and children), func
clock cycle (and children). Arrange the profile run-time order to view the functions in increasi
order (Incremental), or decreasing order (Decremental).

Setting the display

To specify the display options for the current profile:

1) Right-click in the Profiler, then click Profiler Display Setup.
The Profiler Display Setup dialog box appears.

2) In the Column Data text box select one of the following options:

• Display Both.

• -OR-

• Display Counts / Cycles.

• -OR-

• Display Percent.

3) In the Columns text box, select any of the following options:

• Display Hits.

• Display C1.

• Display C1 + Children.

• Display C2.

• Display C2 + Children.

4) Click OK.

The Trace Tree Profile Display

The Trace Tree Profile Display tells you for each function; the functions that called it, and the
functions it called. A Trace Profile also shows, the total amount of time your program spends
executing each function, and how much time it spends in each function and its children.

NOTE: To ensure accurate results, set the debug stub to run with

the cache off when you trace profile. To do this, run DACHECK.

For more information refer to the Help supplied with DACHECK.
152

CodeScape User Guide

ortcut
cle
The Function Profile Display

The Function Profile Display lists the functions called. You can use the sort options on the sh
menu to view the profile relative to: function hit, function count (and children), function clock cy
(and children). The Function Profile Filter lets you specify how you view tagged functions.

NOTE: To tag a function, double-click its entry in the Profiler.

Searching for a function

To search for a function:

1) Move the insertion point to where you want to start searching from.

2) Type the Search string in the current profile.
The Profiler automatically finds, and displays the nearest match.

3) To continue the search:

• Press ENTER.

-OR-

• Press F3.

NOTE: You can search for strings, whole words, or parts of words.

NOTE: The Profiler looks for exact matches first, then the nearest

matches in descending order.

NOTE: The call tree automatically expands and contracts to display

search results.

Changing the name of a specific function

To rename a function:

1) Select the function that you want to rename.

2) Right-click, click Rename Function...
The Rename Function dialog box appears.

3) Enter the new name for the selected function.

4) Click OK.
153

Profiling program files

,

tals.

ss to a

as:

ler's
. This
illion.

ile.
Profiling limitations

NOTE: The Profiler does not support JMP and BRA type instructions.

The Profiler:

• Only receives Performance Counter information on the following events: JSR, RTS
RTE, BSR, BSRF, Interrupt, and Exception. It matches:

• JSR, BSR, and BSRF with RTS.

• Interrupts and exceptions with RTE.

Any difference in the counter information is recorded and added to the to

• Ignores RTS unless it is preceeded and matched to a JSR.

• Cannot detect inline functions.

• Assumes RTE is a Context Switch (Task Swap) unless it matches the return addre
current task.

• Does not profile System Areas. The total time spent in the system areas is shown
#TOTAL OF SYSTEM CALLS.

• Run slowly if your program file is complex and contains many functions.
Large program files force the Profiler to use Virtual Memory. This increases the Profi
memory access times from ~ 10 nano (E -09) seconds to ~ 10 mili (E -03) seconds
means the memory access times have dropped by an approximate factor of One M

To increase the speed of the Profiler, do one of the following:

• Use the Profiler breakpoints to specify a part of your program file to prof

• Install more memory in your development computer.
154

Viewing GD-M log
information
ntrol
The Workshop tab on the Input/Output window displays GD-M log information, and lets you co
the log events.

NOTE: For more information, refer to How to emulate and test a GD

project in the Help supplied with GDWorkshop.
 155

Viewing GD-M log information
Using the shortcut menu on the Workshop tab

NOTE: For more information, refer to How to emulate and test a GD

project in the Help supplied with GDWorkshop.

NOTE: If you enable hard errors during emulation you may not see

errors in the log until after the next read command, because the

data being read from the emulation may already be cached. If you

enable hard errors before emulating you will see all the errors

as they occur.

Select: To:

Disable Updates Disable Workshop message logging.

Close Door Close the door and start emulating a virtual CD.

Switch To Emulator / Switch
To GD-ROM

Toggle between the emulated GD-ROM image and the
actual GD-ROM.

Nudge Create a soft error on the next operation.

Hard Errors On Enable hard errors as defined in Workshop. If you
use this command, enable it before emulating.

Clear Clear the log contents of the Workshop tab.

Allow Docking Toggle docking for the window on or off.

Hide Hide the window.
156

Writing scripts to
automate tasks
to
t and
s of
CodeScape’s script commands let you run Microsoft® JScript™ and VBScript macro scripts
automate routine tasks. CodeScape’s script commands are demonstrated in example JScrip
VBScript files. You can use the functions available in either script language to add command
your own.

For details about using JScript and VBScript connect to the scripting area on the Microsoft
Developer Network at: http://msdn.microsoft.com/scripting

• Using scripts
• Using the shortcut menu on the Script tab
• Adding a script to the menu
• Running a script
• CodeScape’s scripting commands
• Expressing Numeric values and Numeric addresses
• Example VBScript
• Example JScript
 157

Writing scripts to automate tasks

pt tab
Using scripts

When you run a script the Input / Output window appears automatically and displays the Scri
with all messages generated by the current script.

To open the Input / Output window without running a script:

• Click View, Toolbar, then select the Input / Output check-box and click OK.

NOTE: You can dock the Input / Output window at the top and bottom

of the main window, or leave it free floating.

The shortcut menu on the Scripts tab

Select: To:

Run Script Select and run a script.

Clear Clear the contents of the Script tab.

User Scripts This option appears in gray until you add a
script to the menu. When you add a script its
name appears on the menu.

Allow Docking Toggle docking for the window on or off.

Hide Hide the window.
158

CodeScape User Guide

nu. You

ove.

t.

 list.
Adding a script to the menu

When you add a script its name appears on the menu bar, and on the Script tab shortcut me
can add up to ten script files to run from either the menu bar, or the shortcut menu.

1) Click Tools, select Customize, then click Scripts...
The Customize dialog box appears.

2) Click Add.

3) In the Menu Text box, enter the script name to display on menu.
To remove an entry highlight the script’s name in the Menu Text box and click Rem

4) In the Menu Contents box, highlight the name of the script.

5) In the Script box, enter the path location and script file name.

6) Select either JScript, or VBScript to specify the script file type.

7) Do one of the following:

• In the Arguments text box, enter any arguments to be passed to the scrip
Click OK.

-OR-

• Select the Prompt for arguments check-box.

NOTE: Select a command in the Menu Contents box, then Use Move Up

and Move Down to set where it appears on the Tools menu.

NOTE: To assign a keyboard shortcut to the script click Tools,

select Customize then click Keyboard...

Running a script

• Click Tools, then select Scripts and click a script in the list.
-OR-

• On the Input / Output window, right-click on the Scripts tab, then click a script in the

NOTE: Currently, scripts only support debugging a single target

processor. When you run a script it automatically uses the

selected target processor.

NOTE: A script that contains an infinite loop causes CodeScape to

lock-up.
159

Writing scripts to automate tasks

lse 0.
Scripting commands

LoadProgramFile

Loads the specified program file.

Syntax

LoadProgramFile(path and filename)

Remarks

This command uses the file path as a parameter and returns 1 if the file is loaded, e

HardReset

Resets the target processor with a hard reset.

Syntax

HardReset()

SoftReset

Resets the target processor with a soft reset.

Syntax

SoftReset()

Run

Runs the target processor.

Syntax

Run()

WriteMessage

Writes a message string to the script window.

Syntax

WriteMessage(string Message)
160

CodeScape User Guide
WriteRegister

Sets the specified register to the given value.

Syntax

WriteRegister(Register value,Numeric value)

RegisterValue ReadRegister

Gets the value held in the specified register.

Syntax

RegisterValue ReadRegister(RegisterName)

LoadBinaryFile

Loads a binary file from the specified location.

Syntax

LoadBinaryFile(Path and filename,Numeric binary location)

SetBreakpoint

Sets a code breakpoint at the specified address.

Syntax

SetBreakpoint(Numeric address)

ClearAllBreakpoints

Clears all breakpoints.

Syntax

ClearAllBreakpoints()
161

Writing scripts to automate tasks

r on
RemoveBreakpoint

Removes the breakpoint from the specified address.

Syntax

RemoveBreakpoint(Numeric address)

CreateBreakpoint

Creates a breakpoint of the given type at the address. Returns a breakpoint identifie
success, otherwise 0.

Syntax

CreateBreakpoint(Type,Address)

Remarks

Breakpoint type specifiers:

EnableBreakpoint

Enables or disables the specified breakpoint.

Syntax

EnableBreakpoint(identifier,boolean enable)

Remarks

identifier: the breakpoint identifier.

enable: 1 to enable; 0 to disable.

Breakpoint Type

Code 0

Watch 1

Simulator or Start 2

Profiler start 3

Profiler stop 4
162

CodeScape User Guide
SetBreakpointActions

Enables or disables the specified breakpoint action.

Syntax

SetBreakpointActions(identifier,numeric action,boolean
enable)

Remarks

enable: 1 to enable , 0 otherwise.

identifier: the breakpoint identifier.

SetBreakpointLog

Sets a log expression for the breakpoint specified by the breakpoint identifier.

Syntax

SetBreakpointLog(breakpoint identifier,string
expression,boolean logType)

Remarks

breakpoint identifier: the breakpoint identifier.

expression: the log expression.

logType: false to always log or true to log when conditions match.

Action Value

Halt breakpoint when hit. 0

Remove breakpoint after being hit. 1

Display a message box prompt when hit. 2

Beep when hit. 3
163

Writing scripts to automate tasks
SetBreakpointScript

Attaches a script to a breakpoint.

Syntax
SetBreakpointScript(

identifer,
string script path,
numeric script type,
string script arguments,

boolean prompt)

Remarks

identifier: the breakpoint identifier.

script path: the file path for the script

script type: 0 for JScript and1 for VBScript

script arguments: string holding the script's arguments

prompt: 1 to request arguments when the breakpoint triggers, 0 otherwise.
164

CodeScape User Guide

ount

ak
SetBreakpointCondition

Sets a conditional expression for the breakpoint.

Syntax
SetBreakpointCondition(

identifier,
string expression,
numeric expression type,
numeric trigger count,
boolean incOnTrue,
boolean breakWhen)

Remarks

identifier: the breakpoint identifier.

expression: a string representing the condition.

expression type: 0 for C; non-zero for assembly

trigger count: the number of hits before breakpoint actions are performed.

incOnTrue: false to always increment the trigger count; true to increment the trigger c
only when conditions are true.

breakWhen: false to break when the trigger reaches 0 or condition is true; true to bre
when trigger reaches zero and the condition is true.
165

Writing scripts to automate tasks
BOOL SetWatchBreakpointParameters

Sets the parameters for a watch breakpoint.

Syntax

BOOL SetWatchBreakpointParameters(Identifier,Boolean

incDataCondition,string dataCondition,numeric

expressionType,numeric accessSize,numeric accessType)

Remarks

identifier: the breakpoint identifier.

incDataCondition: include a data condition.

dataCondition: expression specifying the data condition.

expressionType: the type of the specified expression.

accessSize: the access size. For example, byte, word, or long.

accessType: the type of access (read, write, or both).

Size Value Type Value

Any 0 Read 1

Byte 1 Write 2

Word 2 Read or Write 3

Long 4

Quad 8
166

CodeScape User Guide
SetBreakpointLocationMask

Select a location mask for the breakpoint.

Syntax

SetBreakpointLocationMask(breakID,maskSelect)

Remarks

SetBreakpointDataMask

Sets the data mask for a watch breakpoint.

Syntax
SetBreakpointDataMask(identifier,mask)

ReadByte

Reads a byte from the specified area of memory.

Syntax

ReadByte(Numeric address)

Mask Value

No bits masked 1

Lower 10 bits 2

Lower 12 bits 3

Lower 16 bits 4

Lower 20 bits 5

All bits 6
167

Writing scripts to automate tasks
ReadWord

Reads a word from the specified area of memory.

Syntax

ReadWord(Numeric address)

ReadLong

Reads a long from the specified area of memory.

Syntax

ReadLong(Numeric address)

WriteByte

Writes a byte from the specified area of memory.

Syntax

WriteByte(Numeric address,Numeric value)

WriteWord

Writes a word from the specified area of memory.

Syntax

WriteWord(Numeric address,Numeric value)

WriteLong

Writes a long from the specified area of memory.

Syntax

WriteLong(Numeric address,Numeric value)
168

CodeScape User Guide
GetParam

Returns a specific parameter.

Syntax

GetParam(short param)

GetParamCount

Returns the number of parameters passed to the script.

Syntax

GetParamCount()

IsRunning

Returns 1 if running, 0 if not running.

Syntax

IsRunning()

ConfigureTraceHistory

Specifies the events saved in the Trace history.

Syntax

ConfigureTraceHistory(numeric Setting,boolean Enable)

Remarks

Uses the settings:

Events Setting

Log exceptions, interrupts, and rte 8

Log subroutines, bsr, bsrf, jsr, rts 4

Log branches, bf, bt, bf/s, bt/s, bra, braf,jmp 2
169

Writing scripts to automate tasks
DisplayTraceHistory

Displays the current history in the script's window.

Syntax

DisplayTraceHistory()

Remarks

Uses the format:

ClearDisplay

Clear the script output window.

Syntax

ClearDisplay()

Source Destination

0x0c010356 0x0c0103aa rts

0x0c0101e6 0x0c010350 rts

0x0c0100e6 0x0c010128 bra $0c010128

0x0c01034c 0x0c010028 bsr BigTest

0x0c0103a6 0x0c010334 bsr struct_test

0x0c010280 0x0c0103a0 rts

0x0c01039c 0x0c010214 bsr BitFieldTest
170

CodeScape User Guide
Example VBScript

' This script does not do anything useful other than demonstrate the
functions available

ClearDisplay
HardReset
SoftReset
DisplayParameters
LoadSomeBinary
LoadProgramFile("d:\\projects\\maketest\\hello.elf")
SetBreakpoint("add_fn")
ConfigureTraceHistory TH_LOGEXCEPT + TH_LOGSUB, true
Dim Running
Running = 1
Do

Running=IsRunning
Loop Until Running = 0
DisplayTraceHistory
ReadSomeRegisters
WriteSomeRegisters
ReadSomeMemory
WriteSomeMemory
ReadSomeMemory
ClearAllBreakpoints
CreateCodeBP
ClearAllBreakpoints
CreateWatchBP
WriteMessage("Script complete. Removing all breakpoints.")
ClearAllBreakpoints

'
'Breakpoint types

'
BPTYPE_CODE= 0
BPTYPE_WATCH=1
BPTYPE_SIMSTART=2
BPTYPE_PROFSTART=3
BPTYPE_PROFSTOP=4

'
'Breakpoint Actions

'
BPACTION_HALT=0
BPACTION_ONESHOT=1
BPACTION_PROMPT=2
BPACTION_BEEP=3

'
'Breakpoint Script Types

'
BPSCRIPT_JSCRIPT=0
BPSCRIPT_VBSCRIPT=1

'

171

Writing scripts to automate tasks
'Breakpoint expression types
'
BPEXPR_C = 0
BPEXPR_ASSEMBLY=1

'
'Breakpoint address masks

'

BPLOCMASK_NONE=1
BPLOCMASK_LOW10=2
BPLOCMASK_LOW12=3
BPLOCMASK_LOW16=4
BPLOCMASK_LOW20=5
BPLOCMASK_ALL=6
 '

'Breakpoint access sizes
'

BPACCESSSIZE_ANY=0
BPACCESSSIZE_BYTE=1
BPACCESSSIZE_WORD=2
BPACCESSSIZE_LONG=4
BPACCESSSIZE_QUAD=8

'
'Breakpoint access types

'

BPACCESSTYPE_READ=1
BPACCESSTYPE_WRITE=2
BPACCESSTYPE_RW=3

'
'Trace history configuration options

'

TH_LOGEXCEPT=8
TH_LOGSUB=4
TH_LOGBRANCH=2

'
'Create a breakpoint on the 1K aligned block of memory that
'the symbol main resides in.

'
Sub CreateCodeBP()

Dim breakID
breakID=CreateBreakpoint(BPTYPE_CODE, "main")
SetBreakpointAction breakID, BPACTION_HALT, true
SetBreakpointAction breakID, BPACTION_ONESHOT, false
SetBreakpointAction breakID, BPACTION_PROMPT, false
SetBreakpointAction breakID, BPACTION_BEEP, true
SetBreakpointScript breakID,

"e:\\projects\\codescape\\debugs\\testscript.js",
BPSCRIPT_JSCRIPT, "arg1 arg2 arg3", false
172

CodeScape User Guide
SetBreakpointLog breakID, "Hello John", BPEXPR_C
SetBreakpointLocationMask breakID, BPLOCMASK_LOW10
setBreakpointCondition breakID, "index == 375", BPEXPR_C, 37,

true, true
End Sub

Sub CreateWatchBP()
breakID= CreateBreakpoint(BPTYPE_WATCH, "main")
SetWatchBreakpointParameters breakID, true,"14", BPEXPR_C,

BPACCESSSIZE_BYTE, BPACCESSTYPE_WRITE
End Sub

Sub WriteSomeRegisters()
WriteRegister "fr0", 3.14159
WriteRegister "r0", "0xabcdef"
WriteRegister "pc", "main + 0x30"

End Sub

Sub ReadSomeRegisters()
WriteMessage("Value of pc = " & ReadRegister("pc"))
WriteMessage("Value of r0 = " & ReadRegister("r0"))

End Sub

 Sub LoadSomeBinary()
LoadBinaryFile "d:\\projects\\codescape\\satmon.bin",

"201392128"
LoadBinaryFile "d:\\projects\\codescape\\satmon.bin", 201392128
LoadBinaryFile "d:\\projects\\codescape\\satmon.bin",

"0xc010000"
LoadBinaryFile "d:\\projects\\codescape\\satmon.bin", "main"

End Sub

Sub DisplayParameters()
NumParams=GetParamCount
WriteMessage("Number of parameters = " & NumParams)
For i = 1 To NumParams

WriteMessage("Parameter " & i & " = " & GetParam(i - 1))
Next

End Sub

Sub ReadSomeMemory()
WriteMessage("Byte at main = " & ReadByte("main"))
WriteMessage("Word at main + 4 = " & ReadWord("main + 4"))
WriteMessage("Long at main + 8 = " & ReadLong("main + 8"))

End Sub

Sub WriteSomeMemory()
WriteByte "main", 255
WriteWord "main + 4", "0xabcd"
WriteLong "main + 8", "0xfedcba"

End Sub
173

Writing scripts to automate tasks
Example JScript

// Note: this script does not do anything useful. It just
demonstrates the current
// script commands and how they can be called.
//
// Breakpoint types
//
BPTYPE_CODE= 0;
BPTYPE_WATCH=1;
BPTYPE_SIMSTART=2;
BPTYPE_PROFSTART=3;
BPTYPE_PROFSTOP=4;

//
// Breakpoint Actions
//
BPACTION_HALT=0;
BPACTION_ONESHOT=1;
BPACTION_PROMPT=2;
BPACTION_BEEP=3;

//
// Breakpoint Script Types
//
BPSCRIPT_JSCRIPT=0;
BPSCRIPT_VBSCRIPT=1;

//
// Breakpoint expression types
//
BPEXPR_C = 0;
BPEXPR_ASSEMBLY=1;

//
// Breakpoint address masks
//

BPLOCMASK_NONE=1;
BPLOCMASK_LOW10=2;
BPLOCMASK_LOW12=3;
BPLOCMASK_LOW16=4;
BPLOCMASK_LOW20=5;
BPLOCMASK_ALL=6;

//
// Breakpoint access sizes
//

BPACCESSSIZE_ANY=0;
BPACCESSSIZE_BYTE=1;
BPACCESSSIZE_WORD=2;
BPACCESSSIZE_LONG=4;
BPACCESSSIZE_QUAD=8;

//
174

CodeScape User Guide
// Breakpoint access types
//

BPACCESSTYPE_READ=1;
BPACCESSTYPE_WRITE=2;
BPACCESSTYPE_RW=3;

//
// Trace history configuration options
//

TH_LOGEXCEPT=8;
TH_LOGSUB=4;
TH_LOGBRANCH=2;

 //
// Create breakpoint on the 1k aligned block of memory that the
symbol main resides in
//
function CreateCodeBP()
{

breakID=CreateBreakpoint(BPTYPE_CODE, "main");
SetBreakpointAction(breakID, BPACTION_HALT, true);
SetBreakpointAction(breakID, BPACTION_ONESHOT, false);
SetBreakpointAction(breakID, BPACTION_PROMPT, false);
SetBreakpointAction(breakID, BPACTION_BEEP, true);
SetBreakpointScript(breakID,

"e:\\projects\\codescape\\debugs\\testscript.js", BPSCRIPT_JSCRIPT,
"arg1 arg2 arg3", false);

SetBreakpointLog(breakID, "Hello John", BPEXPR_C);
SetBreakpointLocationMask(breakID, BPLOCMASK_LOW10);
setBreakpointCondition(breakID, "index == 375", BPEXPR_C, 37,

true, true);
}

function CreateWatchBP()
{

breakID= CreateBreakpoint(BPTYPE_WATCH, "main");
SetWatchBreakpointParameters(breakID, true,"14", BPEXPR_C,

BPACCESSSIZE_BYTE, BPACCESSTYPE_WRITE);
}

function WriteSomeRegisters()
{

WriteRegister("fr0", 3.14159);
WriteRegister("r0", "0xabcdef");
WriteRegister("pc", "main + 0x30");

}

function ReadSomeRegisters()
{

WriteMessage("Value of pc = " + ReadRegister("pc"))
175

Writing scripts to automate tasks
WriteMessage("Value of r0 = " + ReadRegister("r0"))
}

function LoadSomeBinary()
{

LoadBinaryFile("d:\\projects\\codescape\\satmon.bin",
"201392128");

LoadBinaryFile("d:\\projects\\codescape\\satmon.bin",
201392128);

LoadBinaryFile("d:\\projects\\codescape\\satmon.bin",
"0xc010000");

LoadBinaryFile("d:\\projects\\codescape\\satmon.bin", "main");
}

function DisplayParameters()
{

NumParams=GetParamCount()
WriteMessage("Number of parameters = " + NumParams);
for(i = 0; i < NumParams; i++)
{

WriteMessage("Parameter " + i + " = " + GetParam(i))
}

}

function ReadSomeMemory()
{

WriteMessage("Byte at main = " + ReadByte("main"));
WriteMessage("Word at main + 4 = " + ReadWord("main + 4"));
WriteMessage("Long at main + 8 = " + ReadLong("main + 8"));

}

function WriteSomeMemory()
{

WriteByte("main", 255);
WriteWord("main + 4", "0xabcd");
WriteLong("main + 8", "0xfedcba");

}
 ClearDisplay();
HardReset();
SoftReset();
DisplayParameters();
LoadSomeBinary();
LoadProgramFile("d:\\projects\\maketest\\hello.elf");
SetBreakpoint("add_fn");
ConfigureTraceHistory(TH_LOGEXCEPT + TH_LOGSUB, true);
Run();
while(IsRunning() != 0)
{

;
}
DisplayTraceHistory();
ReadSomeRegisters();
WriteSomeRegisters();
ReadSomeMemory();
WriteSomeMemory();
176

CodeScape User Guide
ReadSomeMemory();
ClearAllBreakpoints();
CreateCodeBP();
ClearAllBreakpoints();
CreateWatchBP();
WriteMessage("Script complete. Removing all breakpoints.");
ClearAllBreakpoints();
177

Writing scripts to automate tasks
178

Evaluating expressions
Goto
ssion
The expression evaluator dialog is used for several operations, including: Edit Register, and
Address. In the dialog you can use the C/C++ expression evaluator or the Assembler’s expre
evaluator.
 179

Evaluating expressions

 edit
Expression evaluator dialog box (ALT+E)

The expression evaluator is a general purpose dialog used for several operations, including:
register, edit memory value, edit local value, edit watch value, and goto address.

The options on the Expression Evaluator

NOTE: When you evaluate assembler expressions in a watch region

the maximum number of characters you can enter is 127.

Use the: To:

Expression Combo box Edit an existing expression, or select one from the
history list.

Result field View the results of an expression evaluation
including any error messages.

Expression Format radio
buttons

Select C/C++, or Assembly as the expression format.

Default radix radio
buttons

Select binary, octal, decimal, or hex, as the radix
to use for the expression, or specify another radix
in the Other text box. For C expressions this permits
only control of the output radix.

Evaluate button Evaluate an expression in the Expression Combo text
box.

Symbol button Use the Symbol Completion dialog box to search for a
symbol from those available in the program file.

File button View a list of all the files used to build the
program file in the List Files in Program File dialog
box. The dialog box also provides access to the
address for "file:line number" information.

Lock check box Lock the current expression to a file or symbol.
180

CodeScape User Guide
Symbol Completion dialog box (ALT+S)

Use the Symbol Completion dialog box to search for a symbol in the program file.

Options on the Symbol Completion dialog box

Use the: To:

Find String text box Enter the first few characters of the symbol
to search for.

Only Search For Symbols Within
Scope check box

Search for symbols in scope (select the check
box), or to search for symbols in the whole
program (deselect the check box).

Include Linkage Level Symbols
check box

Include low level symbols in the search
(select the check box). The default is
deselected.

Possible Completions text box View a list of all symbols that match the
current Search String.

Lookup button Click Lookup to start another search.

OK button Accept the current search string.

Cancel button Ignore current search string.
181

Evaluating expressions
C/C++ expressions

The C/C++ expression evaluator accepts expressions in a C-like format.

Operator precedence

Operator Type Usage Description

() Primary Parenthesis
Brackets

[] Primary pointer[expr] Subscripting

. Binary object.member Member selection

-> Binary pointer->member Member selection

sizeof() Unary sizeof(expr) Size of object.

sizeof() Unary sizeof(type) Size of type

- Unary - expr Unary Minus

+ Unary + expr Unary Plus

~ Unary ~ expr Bitwise NOT

! Unary ! expr Logical NOT

* Unary * expr De-reference

& Unary & lvalue Address of

* Binary expr *expr Multiply

/ Binary expr/expr Divide

% Binary expr % expr Modulo (remainder)

+ Binary expr + expr Add (plus)

- Binary expr - expr Subtract (minus)

<< Binary expr << expr Shift Left

>> Binary expr >> expr Shift Right

< Binary expr < expr Less than
182

CodeScape User Guide
Operands that the C/C++ operators act on

<= Binary expr <= expr Less than or equal

> Binary expr > expr Greater than

>= Binary expr => expr Greater than or
equal

== Binary expr == expr Equal

!= Binary expr != expr Not Equal

& Binary expr & expr Bitwise AND

^ Binary expr ^ expr Bitwise Exclusive
OR

| Binary expr | expr Bitwise Inclusive
OR

&& Binary expr && expr Logical AND

|| Binary expr || expr Logical Inclusive
OR

Operand Definition

Constants (Floating or
Integer)

Constants can be: hexadecimal numbers prefixed
with �Ox�. Octal numbers prefixed with �O�, or
unsigned numbers postfixed with a �U�.
Characters, for example �A�, are not accepted.

Registers The name of a valid register.

Symbols Symbol names take into account their type. For
example a variable defined as (char chr = �A�)
would return �A� when evaluated. To get the
address of the object �&chr� is required.

Operator Type Usage Description
183

Evaluating expressions

valid.

or

e.
Operator limitations:

• Typecasts. Typecasts of basic type, such as int, float, unsigned int, int *, char *, are
Typecasts to user defined type such as, struct basic *, are not valid.

• Scope operator, ‘::’. The scope operator is valid as part of a class element name, f
example, c_basic::print.

• Assignment operators, such as =, +=, *=, ++, --, are not implemented in this releas
• File/line number format is not implemented in this release.
184

CodeScape User Guide
Assembler expressions

The assembler expression evaluator is fully compatible with SNASM2.

Operator precedence:

Operator Type Usage Description

() Primary (expr) Parenthesis
Brackets

[] Primary [expr] Address of

- Unary - expr Negative expr

+ Unary + expr Positive expr

~ Unary ~ expr Bitwise NOT

<< Binary expr << expr Shift left

>> Binary expr >> expr Shift right

& Binary expr & expr Logical AND

! Unary ! expr Logical NOT

| Binary | expr Logical Inclusive
OR

^ Binary ^ expr Logical Exclusive
OR

* Binary expr * expr Multiply

/ Binary expr / expr Divide

% Binary expr % expr Modulo (remainder)

+ Binary expr + expr Add (plus)

- Binary expr - expr Subtract (minus)

= Binary expr = expr Equals

<> Binary expr <> expr Not Equals

< Binary expr < expr Less Than
185

Evaluating expressions
Operands that the assembly operators act on

<= Binary expr <= expr Less Than or
Equals

> Binary expr > expr Greater Than

>= Binary expr >= expr Greater Than or
Equals

Operand Definition

Constants
(Integer)

Constants can be defined in several operators to denote
different radix:

Variable

Hex

Decimal

Binary

X_<number> where X is a
single digit base

prefix �$� or �0x�
postfix �h�

prefix �#� postfix
�d�

prefix �%� postfix
�b�

Registers The name of a valid register.

Symbols Symbols are evaluated to labels, so a variable of type (char chr
= �A�), would return the address of (label to) the variable A
when evaluated. Labels can be qualified by:

�.b�, �.w�, �.l� for byte, word or long respectively

[symbol]@b, [symbol]@w, [symbol]@l

:<number> for the filename line number

Operator Type Usage Description
186

Using the command-line
pe can

hes.
Use the command-line commands to specify how CodeScape will run. For example, CodeSca
run from another application such as the Codewright editor, or from a batch file.

To run CodeScape from the command-line, type CodeScape then one or more optional switc
Always separate switches a space, but do not use spaces within the argument of a switch.

The syntax is:
codescape[Switch]...

Files used by CodeScape

Filename Description

Session This file contains the information needed to
restore a previous debugging session.

Program The object file. This contains binary and
optionally, source level debug and symbol table
information produced by the assembler or
compiler.
 187

To change file or folder properties:

1) Click the file or folder whose properties you want to change.

2) On the File menu, click Properties.

NOTE: You can drag a file's icon into a document, or even drag a

shortcut icon.

Command-line switches

Use this switch: To:

[-|/]? Run CodeScape and view Help on using the
command-line.

[-|/]nologo Run CodeScape without the splash screen appearing.

[-|/]c View information on the Log tab as each command of
the Cross Products Fileserver library (libcross)
executes. (Crosslib Verbose mode.)

[-|/]i=Session Run CodeScape and open the session file "Session".
The session file specifies: target connections,
object files used by each target, processor update
rates, breakpoints, watch expressions, log
expressions, and window positions and displays. If
memory ranges are not set, CodeScape looks for them
in DEFAULT.SSN. (Use Project Info.)

[-|/]autoload Run CodeScape using the last loaded session file.

[-|/]noautoload Run CodeScape without opening the last loaded
session file. Use this option to override autoload
specified in a batch file.

-nomake Disable the project make facility. If CodeScape is
running, it ignores this option.

-s=script[,param-list] Run a script with the given (optional) parameter
list

-nogui If none of the other options specified require the
gui to be present, exit CodeScape after loading and
starting the program(s). If CodeScape is running, it
ignores this option.
188

CodeScape User Guide

cessor
cified
Loading a program file from the command-line

When you load a program file from the command-line, use the switch format:
-t#p#[b][n][r+ | r- | r(expression)][h | s][c+ | c-][l+ | l-
]:Program

You must specify the target (t#) and processor (p#) to use, and the program file to load. The pro
is identified by its processor ID # (0-7) where 1=Master and 2=Slave. The program file is spe
by "program".

Optional switches for loading a program file

The following options are mutually exclusive:

• The run options: r+, r-, and r(expression).
• The reset options, h and s.
• The load options, c+ and c-.

Use this switch: To:

b Download the binary from the object file.

n Suppress debug information. The n option does not
require symbols. If you use the n option without the
b option it has no effect.

r+ Load and run the program file.

r- Load, but don't run the program file.

r(expression) Load and run the program file, then break at the
address specified. "expression" is usually a symbol
such as "main".

h Perform a hard reset of the target, then load the
program file.

s Perform a soft reset of the target, then load the
program file.

c+ Concatenate the sections in the program file.

c- Don't concatenate the sections in the program file.

l+ Lock the program file.

l- Don't lock the program file.
189

190

Appendix A: Frequent
operations
e

TER.
Keyboard shortcuts are available for frequently used debugging operations. All operations ar
supported by Access keys which are shown on each menu item by an underlined letter.

To use the keyboard to access CodeScape’s commands:

• Press F10, select an item with the cursor keys, press ENTER.
-OR-

• Press the menu’s keyboard shortcut, select an item with the cursor keys, press EN
 191

Appendix A: Frequent operations
File menu ALT+F

Keyboard shortcuts for the File menu commands

Option Keyboard shortcut

Session New... CTRL+SHIFT+N

Session Open... CTRL+O

Session Close none available

Session Save... CTRL+S

Session Save As... none available

Soft Reset CTRL+F2

Hard Reset ALT+F2

Load Program File... CTRL+SHIFT+C

Restart CTRL+SHIFT+R

Save Binary... none available

Load Binary... none available

Print... CTRL+P

Print Setup... none available

Exit ALT+F4
192

CodeScape User Guide
Edit menu ALT+E

Keyboard shortcuts for the Edit menu commands

View menu ALT+V

Keyboard shortcuts for the View menu commands

Option Keyboard shortcut

Undo CTRL+Z

Redo CTRL+Y

Cut CTRL+X

Copy CTRL+C

Paste CTRL+V

Find... CTRL+F

Find Next F3

Replace... none available

Go To... CTRL+G

Option Keyboard shortcut

Toolbar... none available

Status Bar none available

Properties... none available
193

Appendix A: Frequent operations
Project menu ALT+P

Keyboard shortcuts for the Project menu commands

Debug menu ALT+D

Keyboard shortcuts for the Debug menu commands

Option Keyboard shortcut

Setup Project... none available

Setup Editor... none available

Make CTRL+M

Stop Make none available

Edit Source Path... none available

Set FileServer Root Directory... none available

Option Keyboard shortcut

Execution none available

Run All CTRL+F9

Stop All none available

Run/Stop F9

Run to Address... SHIFT+F9

Run to Cursor ALT+F9

Single Step F7

Forced Step Into none available

Step Over F8

Step Out CTRL+F8

Unstep CTRL+F7

Enable Animated Step Run none available
194

CodeScape User Guide
Step Run In SHIFT+F7

Step Run Out SHIFT+F8

Step Run ALT+F7

Step Run Until... ALT+F8

Restart CTRL+SHIFT+R

Breakpoints none available

Toggle Breakpoint F5

Enable Breakpoint none available

Disable Breakpoint none available

Configure Breakpoint(s)... CTRL+F5

Reset all Breakpoints ALT+F5

Enable all Breakpoints CTRL+SHIFT+F5

Disable all Breakpoints CTRL+ALT+F5

Remove all Breakpoints SHIFT+F5

Set Cursor to PC CTRL+SHIFT+P

Set PC to Cursor CTRL+ALT+P

Goto Address... CTRL+G

Configure DA Settings... none available

Option Keyboard shortcut
195

Appendix A: Frequent operations
Region menu ALT+R

Keyboard shortcuts for the Region menu commands

Option Keyboard shortcut

Split Left CTRL+SHIFT+LEFT ARROW

Split Right CTRL+SHIFT+RIGHT ARROW

Split Up CTRL+SHIFT+UP ARROW

Split Down CTRL+SHIFT+DOWN ARROW

Delete CTRL+D

Type none available

Disassembly ALT+1

Locals ALT+3

Memory ALT+4

Register ALT+5

Source ALT+6

Watch ALT+7

Edit ALT+8

Call Stack ALT+9

Update all regions now CTRL+U

Stop all region updates CTRL+SHIFT+U
196

CodeScape User Guide
Tools menu

Keyboard shortcuts for the Tools menu commands

Option Keyboard shortcut

Simulate Processor CTRL+ALT+Z

Profiler CTRL+ALT+X

Workshop none available

Disable Updates none available

Open Door none available

Close Door none available

Switch to Emulator none available

Switch to GD-ROM none available

Nudge none available

Hard Errors On none available

Scripts none available

Run Script... none available

Customize none available

Keyboard... none available

Tools... none available

Scripts... none available

Options... none available
197

Appendix A: Frequent operations
Window menu ALT+W

Keyboard shortcuts for the Window menu commands

Help menu ALT+H, or F1

Keyboard shortcuts for the Help menu commands

Option Keyboard shortcut

New Window CTRL+N

Cascade none available

Tile none available

Arrange Icons none available

Close All Windows none available

Option Keyboard shortcut

Help Topics... F1

Keyboard none available

About CodeScape... none available
198

CodeScape User Guide
New Windows

Keyboard shortcuts for creating a new window of a specific region type

miscellaneous commands options

Keyboard shortcuts for miscellany

Option Keyboard shortcut

Disassembly ALT+1

Locals ALT+3

Memory ALT+4

Register ALT+5

Source ALT+6

Watch ALT+7

Edit ALT+8

Call Stack ALT+9

Option Keyboard shortcut

Toggle Window Headers CTRL+ALT+H

Evaluate Expression CTRL+E

Cycle Radix CTRL+H
199

Appendix A: Frequent operations
Profiler options

Keyboard shortcuts for the Profiler commands

Option Keyboard shortcut

Save Profile none available

Load Profile none available

Enable Profiler none available

One Pass Between Breakpoints none available

Remove All Profiler Breakpoints none available

Trace Tree Profile Display none available

Function Profile Display none available

Function Profile Filter none available

Untag All none available

Sort none available

Source Display none available

Disassembly Display none available

Rename Function... none available

Profiler Display Setup... none available

Setup... none available
200

CodeScape User Guide
Disassembly region

Keyboard shortcuts for the Disassembly region commands

Option Keyboard shortcut

Synchronize Cursor none available

Source Annotation CTRL+SHIFT+A

Show Address CTRL+A

Show Labels CTRL+B

Show Opcode Words CTRL+W

Show Hexadecimal CTRL+H

Show Uppercase CTRL+L

Show Symbols CTRL+Y

Show EAs & Lits. CTRL+I

Goto Source File... none available

View As (Source, Disassembly, or Both) none available

Evaluate none available

Tools none available

Find... CTRL+F

Find Next F3

Disassemble to File... none available
201

Appendix A: Frequent operations
Source region

Keyboard shortcuts for the Source region commands

Call Stack region

Keyboard shortcuts for the Call Stack region commands

Option Keyboard shortcut

Show Address CTRL+A

Show Line Nos. CTRL+L

Tools none available

Find... CTRL+F

Find Next F3

Tab Width... CTRL+T

Syntax Highlighting none available

Option Keyboard shortcut

Show Parameter Names none available

Show Parameter Types none available

Show Parameter Values none available

Show Parameter Registers none available

Show Octal none available

Show Decimal none available

Show Hexadecimal none available
202

CodeScape User Guide
Editor region

Keyboard shortcuts for the Editor region commands

Option Keyboard shortcut

New none available

Open... none available

Save none available

Save As... none available

Tabs... none available

Find... CTRL+F

Find Next F3

Replace... CTRL+H

Go To CTRL+G

Bookmarks none available

Toggle CTRL+B

Next F2

Previous none available

Delete All none available
203

Appendix A: Frequent operations
Editor Keys

Keyboard shortcuts for the Editor Keys commands

Option Keyboard shortcut

Select none available

Select All CTRL+A

Select Up SHIFT+UP ARRORW

Select Down SHIFT+DOWN ARROW

Select Start SHIFT+HOME

Select End SHIFT+END

Select To End Of File CTRL+SHIFT+END

Select To Start Of File CTRL+SHIFT+HOME

Select Page Down SHIFT+PAGE DOWN

Select Page Up SHIFT+PAGE UP

Select Left SHIFT+LEFT ARROW

Select Right SHIFT+RIGHT ARROW

Select Word Left CTRL+SHIFT+LEFT ARROW

Select Word Right CTRL+SHIFT+RIGHT ARROW

Cursor Movement none available

Move Down DOWN

Move Up UP

Move End END

Move Home HOME

Move Down A Page PAGE DOWN

Move Up A Page PAGE UP
204

CodeScape User Guide
Move To Top CTRL+HOME

Move To Bottom CTRL+END

Move Left LEFT ARROW

Move Right RIGHT ARROW

Move Word Left CTRL+LEFT ARROW

Move Word Right CTRL+RIGHT ARROW

Backspace BACKSPACE

Delete DELETE

Toggle Insert/Overwrite INSERT

Tab TAB

Back Tab SHIFT+TAB

Option Keyboard shortcut
205

Appendix A: Frequent operations
Local Watch region

Keyboard shortcuts for the Local Watch region commands

Option Keyboard shortcut

Delete DELETE

Open RIGHT ARROW

Close LEFT ARROW

Keep in View CTRL+ALT+V

Show Octal none available

Show Decimal none available

Show Hexadecimal none available

Edit Local Value... CTRL+ALT+E

Highlight Changes none available

Cache Expanded Symbols none available
206

CodeScape User Guide
Memory region

Keyboard shortcuts for the Memory region commands

Option Keyboard shortcut

Display Bytes CTRL+B

Display Words CTRL+W

Display Longs CTRL+L

Display Quadwords CTRL+Q

Display ASCII CTRL+A

Highlight Changes none available

Set Bytes Per Line... CTRL+SHIFT+L

Edit ASCII CTRL+ALT+A

Edit Memory Value... CTRL+ALT+E

Follow Pointer CTRL+T

Write Protect CTRL+ALT+W

Tools none available

Find... CTRL+F

Find Next F3

Fill... none available

Hex Dump to File... none available
207

Appendix A: Frequent operations
Register region

Keyboard shortcuts for the Register region commands

Option Keyboard shortcut

Increment Register NUM +

Decrement Register NUM -

Change Inc/Dec Value... none available

Write Protect CTRL+ALT+W

Edit Register... CTRL+ALT+E

Column Format none available

2 Columns CTRL+2

4 Columns CTRL+4

Auto CTRL+0

Show Banked Registers CTRL+B

Show Float Registers CTRL+L

Show Contents at SEA/DEA none available

Show Float Registers As Hexadecimal none available

Tools none available

Save Registers none available

Restore Registers none available
208

CodeScape User Guide
Watch region

Keyboard shortcuts for the Watch region commands

Symbols

Keyboard shortcuts for the Symbol Completion dialog box

Build

Keyboard shortcuts for the Project Build commands

Option Keyboard shortcut

Delete DELETE

Open RIGHT ARROW

Close LEFT ARROW

Insert CTRL+I

Append CTRL+A

Show Octal none available

Show Decimal none available

Show Hexadecimal none available

Edit Watch Value... CTRL+ALT+E

Option Keyboard shortcut

Symbol Complete ALT+S

Choose Global/Static ALT+G

Option Keyboard shortcut

Next Error F4

Previous Error SHIFT+F4
209

Appendix A: Frequent operations
Simulator

Keyboard shortcuts for the Simulator commands

Target Settings

Keyboard shortcuts for configuring the target processor

Option Keyboard shortcut

Highlight Cache Misses none available

Highlight Pipeline Stalls none available

Show Stall Type none available

Source/Disassembly Tracking none available

Print... none available

Save to file... none available

Option Keyboard shortcut

Configure Processor none available
210

CodeScape User Guide
ToolBars

Keyboard shortcuts for displaying the toolbars

Option Keyboard shortcut

Breakpoint none available

Debug none available

Processor Combo none available

Input / Output none available

Region none available

Region Combo none available

Splitter none available

Standard none available

Target none available

Target Combo none available

Editor none available

Workshop none available
211

Appendix A: Frequent operations
212

Cross Products Company Confidential

CodeScape Scripting Page 1 of 12

Script commands in CodeScape Version 2.2.0 Build 111

Write scripts to automate tasks
CodeScape’s script commands let you run Microsoft® JScript™ and VBScript macro scripts to
automate routine tasks.

CodeScape’s script commands are demonstrated in the example JScript and VBScript files included
in this document. Use the functions available in either script language to add your own commands.

For details about using JScript and VBScript connect to the scripting area on the Microsoft
Developer Network at http://msdn.microsoft.com/scripting

CodeScape’s script commands

Note: Some scripting engines reserve the use of Write, use CodeScape’s
WriteMessage function when you need the Write function.

Description Syntax

Load the specified program file. This command uses the file
path as a parameter and returns 1 if the file is loaded, else 0.

LoadProgramFile(
path and filename)

Reset the target processor with a hard reset. HardReset()

Reset the target processor with a soft reset. SoftReset()

Run the target processor. Run()

Write a message string to the script window. WriteMessage(
string Message)

Set the specified register to the given value. WriteRegister(
Register value,
Numeric value)

Get the value held in the specified register. RegisterValue ReadRegister(
RegisterName)

Load a binary file from the specified location. LoadBinaryFile(
Path and filename,
Numeric binary location)

Set a code breakpoint at the specified address. SetBreakpoint(
Numeric address)

Clear all breakpoints. ClearAllBreakpoints()

Remove the breakpoint from the specified address. RemoveBreakpoint(
Numeric address)

Read a byte from the specified area of memory. ReadByte(
Numeric address)

Read a word from the specified area of memory. ReadWord(
Numeric address)

Read a long from the specified area of memory. ReadLong(
Numeric address)

Write a byte from the specified area of memory. WriteByte(Numeric address,
 Numeric value)

Cross Products Company Confidential

CodeScape Scripting Page 2 of 12

Description Syntax

Write a word from the specified area of memory. WriteWord(Numeric address,
 Numeric value)

Write a long from the specified area of memory. WriteLong(Numeric address,
 Numeric value)

Return a specific parameter. GetParam(
short param)

Returns the number of parameters passed to the script. GetParamCount()

Return 1 if running, 0 if not running. IsRunning()

Specify the events saved in the Trace history:

Events Setting
Log exceptions, interrupts, and rte 8
Log subroutines, bsr, bsrf, jsr, rts 4
Log branches, bf, bt, bf/s, bt/s, bra, braf,jmp 2

ConfigureTraceHistory(
numeric Setting,
boolean Enable)

Display the current history in the script’s window in this format:
Source Destination
0x0c010356 0x0c0103aa rts
0x0c0101e6 0x0c010350 rts
0x0c0100e6 0x0c010128 bra $0c010128
0x0c01034c 0x0c010028 bsr BigTest
0x0c0103a6 0x0c010334 bsr struct_test
0x0c010280 0x0c0103a0 rts
0x0c01039c 0x0c010214 bsr BitFieldTest

DisplayTraceHistory()

Clear the script output window. ClearDisplay()

Create a breakpoint of the given type at the address. Returns a
breakpoint identifier on success, otherwise 0. The breakpoint
identifier is used in subsequent operations on the breakpoint.

Breakpoint Type
Code 0
Watch 1
Simulator or Start 2
Profiler start 3
Profiler stop 4

CreateBreakpoint(
Type,
Address)

Enable or disable the breakpoint:
identifier: the breakpoint identifier.
enable: 1 to enable; 0 to disable.

EnableBreakpoint(
identifier,
boolean enable)

Enable or disable the specified breakpoint action:
enable: 1 to enable , 0 otherwise.
identifier: the breakpoint identifier.

Action Value
Halt breakpoint when hit. 0
Remove breakpoint after being hit. 1
Display a message box prompt when hit 2
Beep when hit 3

SetBreakpointActions(
identifier,
numeric action,
boolean enable)

Set a log expression for the breakpoint specified by the
breakpoint identifier:

breakpoint identifier: the breakpoint identifier.
expression: the log expression.
logType: false to always log or true to log when
conditions match.

SetBreakpointLog(
breakpoint identifier,
string expression,
boolean logType)

Cross Products Company Confidential

CodeScape Scripting Page 3 of 12

Description Syntax

Attach a script to a breakpoint:
identifier: the breakpoint identifier.
script path: the file path for the script
script type: 0 for JScript and1 for VBScript
script arguments: string holding the script’s arguments
prompt: 1 to request arguments when the breakpoint
triggers, 0 otherwise.

SetBreakpointScript(
identifer,
string script path,
numeric script type,
string script arguments,
boolean prompt)

Set the conditional expression for the breakpoint:
identifier: the breakpoint identifier.
expression: a string representing the condition.
expression type: 0 for C; non-zero for assembly
trigger count: the number of hits before breakpoint
actions are performed.
incOnTrue: false to always increment the trigger count;
true to increment the trigger
count only when conditions are true.
breakWhen: false to break when the trigger reaches 0
or condition is true; true to break when trigger reaches
zero and the condition is true.

SetBreakpointCondition(
identifier,
string expression,
numeric expression type,
numeric trigger count,
boolean incOnTrue,
boolean breakWhen)

Set the parameters for a watch breakpoint:
identifier: the breakpoint identifier.
incDataCondition: include a data condition.
dataCondition: expression specifying the data condition.
expressionType: the type of the specified expression.
accessSize: the access size e.g. byte, word, or long etc.
accessType: the type of access (read, write, or both).

Size Value Type Value
Any 0 Read 1
Byte 1 Write 2
Word 2 Read or Write 3
Long 4
Quad 8

BOOL SetWatchBreakpointParameters(
Identifier,
Boolean incDataCondition,
string dataCondition,
numeric expressionType,
numeric accessSize,
numeric accessType)

Select a location mask for the breakpoint:

Mask Value
No bits masked 1
Lower 10 bits 2
Lower 12 bits 3
Lower 16 bits 4
Lower 20 bits 5
All bits 6

SetBreakpointLocationMask(
breakID,
maskSelect)

Set the data mask for a watch breakpoint SetBreakpointDataMask(
identifier,
mask)

Cross Products Company Confidential

CodeScape Scripting Page 4 of 12

You can express Numeric values and Numeric addresses as:

• A number, for example, 124 or 3.1415926

-OR-

• A string, for example, "124"

-OR-

• Hexadecimal in a string, for example, "0xabcdef"

-OR-

• A symbol, for example, "main" or "main + 0xabc"

Note: Registers are only passed as strings, for example, "pc", "fr0", "r0".

Note: Currently, scripts only support debugging a single target processor. When you
run a script it automatically uses the selected target processor.

Note: A script that contains an infinite loop will cause CodeScape to lock-up.

Cross Products Company Confidential

CodeScape Scripting Page 5 of 12

Example VBScript

' This script does not do anything useful other than demonstrate the functions available

ClearDisplay
HardReset
SoftReset
DisplayParameters
LoadSomeBinary
LoadProgramFile("d:\\projects\\maketest\\hello.elf")
SetBreakpoint("add_fn")
ConfigureTraceHistory TH_LOGEXCEPT + TH_LOGSUB, true
Dim Running
Running = 1
Do

Running = IsRunning
Loop Until Running = 0
DisplayTraceHistory
ReadSomeRegisters
WriteSomeRegisters
ReadSomeMemory
WriteSomeMemory
ReadSomeMemory
ClearAllBreakpoints
CreateCodeBP
ClearAllBreakpoints
CreateWatchBP
WriteMessage("Script complete. Removing all breakpoints.")
ClearAllBreakpoints

'
' Breakpoint types
'
BPTYPE_CODE = 0
BPTYPE_WATCH = 1
BPTYPE_SIMSTART = 2
BPTYPE_PROFSTART = 3
BPTYPE_PROFSTOP = 4

'
' Breakpoint Actions
'
BPACTION_HALT = 0
BPACTION_ONESHOT = 1
BPACTION_PROMPT = 2
BPACTION_BEEP = 3

'
' Breakpoint Script Types
'
BPSCRIPT_JSCRIPT = 0
BPSCRIPT_VBSCRIPT = 1

'
' Breakpoint expression types
'
BPEXPR_C = 0
BPEXPR_ASSEMBLY = 1

'
' Breakpoint address masks
'

BPLOCMASK_NONE = 1
BPLOCMASK_LOW10 = 2
BPLOCMASK_LOW12 = 3
BPLOCMASK_LOW16 = 4
BPLOCMASK_LOW20 = 5
BPLOCMASK_ALL = 6

Cross Products Company Confidential

CodeScape Scripting Page 6 of 12

'
' Breakpoint access sizes
'

BPACCESSSIZE_ANY = 0
BPACCESSSIZE_BYTE = 1
BPACCESSSIZE_WORD = 2
BPACCESSSIZE_LONG = 4
BPACCESSSIZE_QUAD = 8

'
' Breakpoint access types
'

BPACCESSTYPE_READ = 1
BPACCESSTYPE_WRITE = 2
BPACCESSTYPE_RW = 3

'
' Trace history configuration options
'

TH_LOGEXCEPT = 8
TH_LOGSUB = 4
TH_LOGBRANCH = 2

'
' Create a breakpoint on the 1K aligned block of memory that
' the symbol main resides in.

'

Sub CreateCodeBP()

Dim breakID

breakID = CreateBreakpoint(BPTYPE_CODE, "main")

SetBreakpointAction breakID, BPACTION_HALT, true

SetBreakpointAction breakID, BPACTION_ONESHOT, false

SetBreakpointAction breakID, BPACTION_PROMPT, false
SetBreakpointAction breakID, BPACTION_BEEP, true
SetBreakpointScript breakID, "e:\\projects\\codescape\\debugs\\testscript.js",

BPSCRIPT_JSCRIPT, "arg1 arg2 arg3", false
SetBreakpointLog breakID, "Hello John", BPEXPR_C
SetBreakpointLocationMask breakID, BPLOCMASK_LOW10
setBreakpointCondition breakID, "index == 375", BPEXPR_C, 37, true, true

End Sub

Sub CreateWatchBP()
breakID = CreateBreakpoint(BPTYPE_WATCH, "main")
SetWatchBreakpointParameters breakID, true, "14", BPEXPR_C, BPACCESSSIZE_BYTE,

BPACCESSTYPE_WRITE
End Sub

Sub WriteSomeRegisters()
WriteRegister "fr0", 3.14159
WriteRegister "r0", "0xabcdef"
WriteRegister "pc", "main + 0x30"

End Sub

Sub ReadSomeRegisters()
WriteMessage("Value of pc = " & ReadRegister("pc"))
WriteMessage("Value of r0 = " & ReadRegister("r0"))

End Sub

Cross Products Company Confidential

CodeScape Scripting Page 7 of 12

Sub LoadSomeBinary()
LoadBinaryFile "d:\\projects\\codescape\\satmon.bin", "201392128"
LoadBinaryFile "d:\\projects\\codescape\\satmon.bin", 201392128
LoadBinaryFile "d:\\projects\\codescape\\satmon.bin", "0xc010000"
LoadBinaryFile "d:\\projects\\codescape\\satmon.bin", "main"

End Sub

Sub DisplayParameters()
NumParams = GetParamCount
WriteMessage("Number of parameters = " & NumParams)
For i = 1 To NumParams

WriteMessage("Parameter " & i & " = " & GetParam(i - 1))
Next

End Sub

Sub ReadSomeMemory()
WriteMessage("Byte at main = " & ReadByte("main"))
WriteMessage("Word at main + 4 = " & ReadWord("main + 4"))
WriteMessage("Long at main + 8 = " & ReadLong("main + 8"))

End Sub

Sub WriteSomeMemory()
WriteByte "main", 255
WriteWord "main + 4", "0xabcd"
WriteLong "main + 8", "0xfedcba"

End Sub

Cross Products Company Confidential

CodeScape Scripting Page 8 of 12

Example JScript

// Note: this script does not do anything useful. It just demonstrates the current
// script commands and how they can be called.
//
// Breakpoint types
//
BPTYPE_CODE = 0;
BPTYPE_WATCH = 1;
BPTYPE_SIMSTART = 2;
BPTYPE_PROFSTART = 3;
BPTYPE_PROFSTOP = 4;

//
// Breakpoint Actions
//
BPACTION_HALT = 0;
BPACTION_ONESHOT = 1;
BPACTION_PROMPT = 2;
BPACTION_BEEP = 3;

//
// Breakpoint Script Types
//
BPSCRIPT_JSCRIPT = 0;
BPSCRIPT_VBSCRIPT = 1;

//
// Breakpoint expression types
//
BPEXPR_C = 0;
BPEXPR_ASSEMBLY = 1;

//
// Breakpoint address masks
//

BPLOCMASK_NONE = 1;
BPLOCMASK_LOW10 = 2;
BPLOCMASK_LOW12 = 3;
BPLOCMASK_LOW16 = 4;
BPLOCMASK_LOW20 = 5;
BPLOCMASK_ALL = 6;

//
// Breakpoint access sizes
//

BPACCESSSIZE_ANY = 0;
BPACCESSSIZE_BYTE = 1;
BPACCESSSIZE_WORD = 2;
BPACCESSSIZE_LONG = 4;
BPACCESSSIZE_QUAD = 8;

//
// Breakpoint access types
//

BPACCESSTYPE_READ = 1;
BPACCESSTYPE_WRITE = 2;
BPACCESSTYPE_RW = 3;

//
// Trace history configuration options
//

TH_LOGEXCEPT = 8;
TH_LOGSUB = 4;
TH_LOGBRANCH = 2;

Cross Products Company Confidential

CodeScape Scripting Page 9 of 12

//
// Create breakpoint on the 1k aligned block of memory that the symbol main resides in
//
function CreateCodeBP()
{

breakID = CreateBreakpoint(BPTYPE_CODE, "main");
SetBreakpointAction(breakID, BPACTION_HALT, true);
SetBreakpointAction(breakID, BPACTION_ONESHOT, false);
SetBreakpointAction(breakID, BPACTION_PROMPT, false);
SetBreakpointAction(breakID, BPACTION_BEEP, true);
SetBreakpointScript(breakID, "e:\\projects\\codescape\\debugs\\testscript.js",

BPSCRIPT_JSCRIPT, "arg1 arg2 arg3", false);
SetBreakpointLog(breakID, "Hello John", BPEXPR_C);
SetBreakpointLocationMask(breakID, BPLOCMASK_LOW10);
setBreakpointCondition(breakID, "index == 375", BPEXPR_C, 37, true, true);

}

function CreateWatchBP()
{

breakID = CreateBreakpoint(BPTYPE_WATCH, "main");
SetWatchBreakpointParameters(breakID, true, "14", BPEXPR_C, BPACCESSSIZE_BYTE,

BPACCESSTYPE_WRITE);
}

function WriteSomeRegisters()
{

WriteRegister("fr0", 3.14159);
WriteRegister("r0", "0xabcdef");
WriteRegister("pc", "main + 0x30");

}

function ReadSomeRegisters()
{

WriteMessage("Value of pc = " + ReadRegister("pc"))
WriteMessage("Value of r0 = " + ReadRegister("r0"))

}

function LoadSomeBinary()
{

LoadBinaryFile("d:\\projects\\codescape\\satmon.bin", "201392128");
LoadBinaryFile("d:\\projects\\codescape\\satmon.bin", 201392128);
LoadBinaryFile("d:\\projects\\codescape\\satmon.bin", "0xc010000");
LoadBinaryFile("d:\\projects\\codescape\\satmon.bin", "main");

}

function DisplayParameters()
{

NumParams = GetParamCount()
WriteMessage("Number of parameters = " + NumParams);
for(i = 0; i < NumParams; i++)
{

WriteMessage("Parameter " + i + " = " + GetParam(i))
}

}

function ReadSomeMemory()
{

WriteMessage("Byte at main = " + ReadByte("main"));
WriteMessage("Word at main + 4 = " + ReadWord("main + 4"));
WriteMessage("Long at main + 8 = " + ReadLong("main + 8"));

}

function WriteSomeMemory()
{

WriteByte("main", 255);
WriteWord("main + 4", "0xabcd");
WriteLong("main + 8", "0xfedcba");

}

Cross Products Company Confidential

CodeScape Scripting Page 10 of 12

ClearDisplay();
HardReset();
SoftReset();
DisplayParameters();
LoadSomeBinary();
LoadProgramFile("d:\\projects\\maketest\\hello.elf");
SetBreakpoint("add_fn");
ConfigureTraceHistory(TH_LOGEXCEPT + TH_LOGSUB, true);
Run();
while(IsRunning() != 0)
{

;
}
DisplayTraceHistory();
ReadSomeRegisters();
WriteSomeRegisters();
ReadSomeMemory();
WriteSomeMemory();
ReadSomeMemory();
ClearAllBreakpoints();
CreateCodeBP();
ClearAllBreakpoints();
CreateWatchBP();
WriteMessage("Script complete. Removing all breakpoints.");
ClearAllBreakpoints();

Cross Products Company Confidential

CodeScape Scripting Page 11 of 12

Using scripts
When you run a script the Input / Output window appears automatically and displays the Script tab
with all messages generated by the current script.

To open the Input / Output window without running a script:

• Click View, Toolbar, then select the Input / Output check-box and click OK.

Note: You can dock the Input / Output window at the top and bottom of the main
window, or leave it free floating.

The shortcut menu on the Script tab

Click: To:

Run Script Select and run a script.

Clear Clear the contents of the Script tab.

User Scripts This option appears in gray until you add a script to the menu.
When you add a script its name appears on the menu.

Allow Docking Toggle docking for the window on or off.

Hide Hide the window.

Add a script to the menu

When you add a script its name appears on the menu bar, and on the Script tab shortcut menu. You
can add up to ten script files to run from either the menu bar, or the shortcut menu.

1 Click Tools, select Customize, then click Scripts…

The Customize dialog box appears.

2 Click Add.

3 In the Menu Text box, enter the script name to display on menu.

To remove an entry from the Menu Text box, select the script, then click Remove.

4 In the Menu Contents box, highlight the name of the script.

5 In the Script box, enter the path location and script file name.

6 Select either JScript, or VBScript to specify the script file type.

7 Do one of the following:

• In the Arguments text box, enter any arguments to be passed to the script. Click OK.

 –OR-

• Select the Prompt for arguments check-box.

Note: Select a command in the Menu Contents box, then Use Move Up and Move
Down to set where it appears on the Tools menu.

Note: To assign a keyboard shortcut to the script click Tools, select Customize then
click Keyboard…

Cross Products Company Confidential

CodeScape Scripting Page 12 of 12

Run a script

• Click Tools, then select Scripts and click a script in the list.

-OR-

• On the Input / Output window, right-click on the Scripts tab, then click a script in
the list.

Note: Currently, scripts only support debugging a single target processor. When you
run a script it automatically uses the selected target processor.

Note: A script that contains an infinite loop will cause CodeScape to lock-up.

Cross Products Company Confidential

LibCross fileserver
 1999 Cross Products Limited. All rights reserved.

LibCross fileserver

for CodeScape v2.2.0 build 114

Cross Products Company Confidential

LibCross fileserver Page 1 of 15
 1999 Cross Products Limited. All rights reserved.

LibCross fileserver

The LibCross fileserver provides low level routines that interface CodeScape with the standard C
run-time library (libc.a). The fileserver supports the following functions:

int debug_open (const char *filename, int flags);
int debug_close (int file);
int debug_read(int file, char *ptr, int len);
int debug_write (int file, char *ptr, int len);
int debug_lseek(int file, int offset, int origin);

char * debug_getcwd(char *buffer, int maxlen);
int debug_chdir(const char *dirname);
int debug_mkdir(const char *dirname);
int debug_rmdir(const char *dirname);

int debug_findfirst(const char *filespec, struct SNASM_finddata_t *fileinfo);
int debug_findnext(int handle, struct SNASM_finddata_t *fileinfo);
int debug_findclose(int handle);

int _ASSERT(int nFlag);

int dedug_printf(char *format, …);

Note: The header file usrsnasm.h has information on using the fileserver functions. It
defines all functions and custom data types such as struct SNASM_finddata_t.

Note: If the fileserver returns an error errno describes the problem. For information
about errno refer to your C run-time library documentation.

This release includes:

• .\libcrs - contains source, object files for the transport functions. The source of
wrapper functions for Hitachi system calls.

• .\sample - contain a demonstration program 'sample.elf'.

Using the fileserver with the Hitachi SHC compiler

To use the fileserver with the Hitachi SHC compiler you need wrapper functions for the system calls
open(),close(),read(), write(), lseek(). The source code for these wrapper functions is included in this
release.

Note: Do not transfer more than 32K in any SINGLE read or write command as not all
communications are buffered by the fileserver transport functions.

Cross Products Company Confidential

LibCross fileserver Page 2 of 15
 1999 Cross Products Limited. All rights reserved.

Fileserver functions

Open a file Required header

int debug_open (const char *filename, int flags); #include <usrsnasm.h>

Return Value

Returns a file handle for an open file. If the return value is –1 an error occurred, refer to errno for
one of the following:

The errno setting: Means that the file cannot be opened because:

SNASM_EACCESS It is read-only; or it is not a shared resource; or the path or
filename are incorrect.

SNASM_EEXIST The filename already exists.

SNASM_EINVAL An invalid flags argument is defined.

SNASM_EMFILE No file handles are available, close one or more files and
try again.

SNASM_ENOENT File or path not found.

Parameters

filename Name of file to open.

flags Open flags for type of operations desired.

Remarks

The flags parameter can be a combination of the following definitions defined in <sn_fcntl.h>.

SNASM_O_RDONLY open for read only
SNASM_O_WRONLY open for write only
SNASM_O_RDWR open for read and write
SNASM_O_APPEND writes done at end of file
SNASM_O_CREAT create new file
SNASM_O_TRUNC truncate existing file
SNASM_O_NOINHERIT file is not inherited by child process
SNASM_O_TEXT text file
SNASM_O_BINARY binary file
SNASM_O_EXCL exclusive open

SNASM_O_BINARY and SNASM_O_TEXT are essential when opening the file if the host is an IBM
PC or Compatible device.

Note: Within the open wrapper command for Hitachi the flags parameter is translated
from machine specific to a compiler independent format for translation transfer
to the host. For example, O_BINARY will be converted to SNASM_O_BINARY.

Cross Products Company Confidential

LibCross fileserver Page 3 of 15
 1999 Cross Products Limited. All rights reserved.

Close a file Required header

int debug_close (int file); #include <usrsnasm.h>

Return Value

debug_close returns 0 if the file closed successfully. If the return value is –1 an error occurred, refer
to errno for the following:

The errno setting: Means that the file cannot be closed because:

SNASM_EBADF The file handle is invalid.

Parameters

file Handle returned by debug_open to the file.

Remarks

CodeScape will close all open file handles when either the target is reset or when the CodeScape
application is closed.

Cross Products Company Confidential

LibCross fileserver Page 4 of 15
 1999 Cross Products Limited. All rights reserved.

Read data from a file Required header

int debug_read(int file, char *ptr, int len) #include <usrsnasm.h>

Return Value

On success debug_read returns the number of bytes read. If the function tries to read at end of file, it
returns 0. If the return value is –1 an error occurred, refer to errno for the following:

The errno setting: Means that the data cannot be read because:

SNASM_EBADF The file handle is invalid; or the file is not open for reading;
or the file is locked.

Parameters

file Handle to the file.

ptr Pointer to buffer where read data is to be stored.

len Maximum number of bytes.

Remarks

The debug_read operation occurs from the position of the file pointer. After a successful
debug_read, the file position is at the return value number of bytes along the file.

Use debug_lseek to move the file position around.

Cross Products Company Confidential

LibCross fileserver Page 5 of 15
 1999 Cross Products Limited. All rights reserved.

Write data to a file Required header

int debug_write (int file, char *ptr, int len); #include <usrsnasm.h>

Return Value

debug_write returns the number of bytes written. If the return value is –1 an error occurred, refer to
errno for one of the following:

The errno setting: Means that:

SNASM_EBADF The file handle is invalid; or the file is not open for writing.

SNASM_ENOSPC There is not enough available disk space.

Parameters

file Handle to the file.

ptr Pointer to buffer where write data is stored.

len Number of bytes.

Remarks

Two channels, SNASM_STDOUT and SNASM_STDERR, are used to display information on the Log
tab of CodeScape’s Input / Output window by default.

Cross Products Company Confidential

LibCross fileserver Page 6 of 15
 1999 Cross Products Limited. All rights reserved.

Move a file to a specific location Required header

int debug_lseek (int file, int offset, int origin) #include <usrsnasm.h>

Return Value

debug_lseek returns the offset, in bytes, of the new position from the beginning of the file. If the
return value is –1 an error occurred, refer to errno for one of the following:

The errno setting: Means that the:

SNASM_EBADF File handle is invalid.

SNASM_ENIVAL Origin value is invalid; or the specified location is before
the start of the file.

Parameters

file Handle to the file.

offset Number of bytes from origin.

origin Flag indicating the origin.

Remarks

The origin flag can be any of the following predefined values:

SNASM_SEEK_SET From start of file position
SNASM_SEEK_CUR From current position
SNASM_SEEK_END From end of file

Cross Products Company Confidential

LibCross fileserver Page 7 of 15
 1999 Cross Products Limited. All rights reserved.

Get current working directory Required header

char * debug_getcwd (const char *buffer, int maxlen) #include <usrsnasm.h>

Return Value

debug_getcwd returns a pointer to the buffer. If the return value is NULL an error occurred, refer to
errno for the following:

The errno setting: Means that the:

SNASM_ERANGE Path is longer than maxlen characters.

Parameters

buffer Allocated space in which to store the path.

maxlen Number of bytes from in buffer.

Remarks

The working directory is specified in CodeScape’s Set Fileserver Path… dialog box.

Cross Products Company Confidential

LibCross fileserver Page 8 of 15
 1999 Cross Products Limited. All rights reserved.

Change current working directory Required header

int debug_chdir (const char *dirname) #include <usrsnasm.h>

Return Value

debug_chdir returns a value of 0. If the return value is –1 an error occurred, refer to errno for the
following:

The errno setting: Means that the:

SNASM_ENOENT Specified path could not be found.

Parameters

dirname Path of the new working directory.

Remarks

The directory set in the dirname parameter must exist. The function may be used to change the drive
and working directory. For example, to change the drive to “C” and the working directory to
“\window\temp” enter: debug_chdir(“c:\\windows\\temp”);

Use “\\” to describe a single “\” in a C string literal.

The working directory is specified in CodeScape’s Set Fileserver Path… dialog box.

Cross Products Company Confidential

LibCross fileserver Page 9 of 15
 1999 Cross Products Limited. All rights reserved.

Create a new directory Required header

int debug_mkdir (const char *dirname) #include <usrsnasm.h>

Return Value

debug_mkdir returns a value of 0. If the return value is –1 an error occurred, refer to errno for one of
the following:

The errno setting: Means that the directory cannot be created because:

SNASM_EEXISTS It already exists.

SNASM_ENOENT The specified path does not exist.

Parameters

dirname Path of the new directory.

Remarks

The function only creates one directory per call.

Cross Products Company Confidential

LibCross fileserver Page 10 of 15
 1999 Cross Products Limited. All rights reserved.

Delete a new directory Required header

int debug_rmdir (const char *dirname) #include <usrsnasm.h>

Return Value

debug_rmdir returns a value of 0. If the return value is –1 an error occurred, refer to errno for one of
the following:

The errno setting: Means that the directory cannot be deleted because:

SNASM_EACCESS It does not exist; or it is not empty; or it is the current
working directory; or it is the root directory.

SNASM_ENOENT The specified path was not found.

Parameters

dirname Path of the new directory.

Remarks

The function deletes the specified directory. The directory must be empty and it cannot be the root
directory or the current working directory.

Cross Products Company Confidential

LibCross fileserver Page 11 of 15
 1999 Cross Products Limited. All rights reserved.

Information about the first instance of a filename Required header

int debug_findfirst (const char *filespec, struct SNASM_finddata_t *
fileinfo)

#include <usrsnasm.h>

Return Value

debug_findfirst returns a search handle. If the return value is –1 an error occurred, refer to errno for
one of the following:

The errno setting: Means that the file specification:

SNASM_ENOENT Is invalid.

SNASM_EINVAL Could not be found.

Parameters

filespec Target file specification.

fileinfo Pointer to structure to hold file specification.

Remarks

The function returns information on the first file that matches the file specification. The file
specification can contain wildcards, for example, the following command searches for C files in the
current working directory:

int hSearchHandle = debug_findfirst(“*.c”, &FileSpecification);

The file information structure contains 3 parameters:

unsigned long m_ulSize; /* file size */
unsigned long m_ulAttributes; /* file attributes */
char m_szFilename[260]; /* file name */

The attributes will be one of the following values:

SNASM_A_NORMAL /* Normal. File can be read or written to without
restriction. */
SNASM_A_RDONLY /* Read-only. File cannot be opened for writing, and a
file with the same name cannot be created. */
SNASM_A_HIDDEN /* Hidden file. Not normally seen with the DIR command,
unless the /AH option is used. Returns information about normal files as well
as files with this attribute.*/
SNASM_A_SYSTEM /* System file. Not normally seen with the DIR command,
unless the /A or /A:S option is used. */
SNASM_A_SUBDIR /* Subdirectory. */
SNASM_A_ARCH /* Archive. Set whenever the file is changed, and cleared
by the BACKUP command. */

Cross Products Company Confidential

LibCross fileserver Page 12 of 15
 1999 Cross Products Limited. All rights reserved.

Information about the next instance of a filename Required header

int debug_findnext (int handle, struct SNASM_finddata_t * fileinfo) #include <usrsnasm.h>

Return Value

debug_findnext returns 0. If the return value is –1 an error occurred, refer to errno for the following:

The errno setting: Means that:

SNASM_ENOENT No more files matched the file specification.

Parameters

handle Search handle supplied by debug_findfirst.

fileinfo Pointer to a structure to hold file specification.

Remarks

The function returns information on the next file that matches the file specification.

The file information structure contains 3 parameters:

unsigned long m_ulSize; /* file size */
unsigned long m_ulAttributes; /* file attributes */
char m_szFilename[260]; /* file name */

The attributes field shows one of the following values:

SNASM_A_NORMAL /* Normal. File can be read or written to without
restriction. */
SNASM_A_RDONLY /* Read-only. File cannot be opened for writing, and a
file with the same name cannot be created. */
SNASM_A_HIDDEN /* Hidden file. Not normally seen with the DIR command,
unless the /AH option is used. Returns information about normal files as well
as files with this attribute.*/
SNASM_A_SYSTEM /* System file. Not normally seen with the DIR command,
unless the /A or /A:S option is used. */
SNASM_A_SUBDIR /* Subdirectory. */
SNASM_A_ARCH /* Archive. Set whenever the file is changed, and cleared
by the BACKUP command. */

Cross Products Company Confidential

LibCross fileserver Page 13 of 15
 1999 Cross Products Limited. All rights reserved.

Close a search handle Required header

int debug_findclose (int handle) #include <usrsnasm.h>

Return Value

debug_findclose returns 0. If the return value is –1 an error occurred and the operation failed to
close the handle.

Parameters

handle Search handle supplied by debug_findfirst.

Remarks

Free up resources allocated to the file search operations.

Cross Products Company Confidential

LibCross fileserver Page 14 of 15
 1999 Cross Products Limited. All rights reserved.

Halt and inform the user Required header

int _ASSERT (int nFlag) #include <usrsnasm.h>

Return Value

Returns 0.

Parameters

nFlag Test nFlag, if expression evaluates to zero an assert is generated on host.

Remarks

When a _ASSERT occurs and the flag evaluates to zero the host is told. The host prompts for
instruction and the _ASSERT() encountered dialog box appears, select:

Yes to stop the program and tell CodeScape to put the cursor on the _ASSERT statement.

No to ignore the assert and continue running the program.

Cancel to ignore this and all further asserts.

You can set and view the status and control of ignore all in CodeScape’s Global Options dialog box.

Some compilers generate code that cause CodeScape to stop on the instruction following a
_ASSERT. The sample program supplied includes a macro that ensures that a _ASSERT will stop
on the line that generated it. The file also shows how all asserts can be removed with a global
definition.

/*
 * Macro Redefinition of _ASSERT to ASSERT. This is performed to cause the
 * compiler to insert at least one opcode after the jsr _ASSERT has returned
 * it also permits the ASSERT code to be included / removed based on a
 * compiler define.
 */
#ifdef _DEBUG_BUILD_

/* Since _ASSERT always return zero the expression will only be evaluated once */
#define ASSERT(X) while(_ASSERT(X)) { ; }

#else
#define ASSERT(X)

#endif /* _DEBUG_BUILD_ */

Cross Products Company Confidential

LibCross fileserver Page 15 of 15
 1999 Cross Products Limited. All rights reserved.

Prints data to the Log tab Required header

int dedug_printf(char *format, …); #include <usrsnasm.h>

Return Value

The return value is the number of characters printed to the Log tab. Returns a negative value if an
error occurs.

Parameters

Format Format control

Argument Optional arguments

Remarks

The function formats and prints data to the Log tab on the Input / Output window.

Note: If arguments follow the format string, the format string must contain argument
output format specifications. The format argument consists of ordinary
characters, escape sequences, and (if arguments follow format) format
specifications.

	CodeScape User Guide v2.2..0 build 121
	Legal Notice
	Contents
	Before you begin
	Document conventions
	This guide
	The CodeScape software

	Using and configuring the interface
	The commands on the menu bar
	Customizing shortcut keys
	The commands on the toolbars
	View, hide, dock, and move toolbars

	Commands on each toolbar

	How windows and regions work
	Using windows
	Using regions
	Configuring regions
	Target window
	Target Processor display
	Input/Output window

	The Source and Disassembly regions
	The Call Stack region
	The Watch and Local Watch regions
	The Watch region
	The Local Watch region
	The Memory region
	The Register region
	Hitachi target processor register region display

	The Edit region
	Opening and saving files
	Search and replace
	Cutting and pasting text
	Using bookmarks

	Interacting with target processors
	Connecting to a target processor

	Working with sessions
	Add files to a project
	Restarting a program

	Working with projects
	Setting up a project build environment
	Setting up an editor
	Setting up an external editor

	Setting up the project commands

	Debugging
	Debugging modes
	Running and stopping programs
	Stepping into (tracing) code
	Breakpoints
	Configuring breakpoints
	Breakpoint expression format
	Flags specification
	Width specification
	Precision specification
	Type specification
	Examples

	Simulating a target processor
	Information generated by the Simulator
	Reading the results of simulation

	Profiling program files
	Using the profiler: an overview
	The Profiler’s commands

	Viewing GD-M log information
	Writing scripts to automate tasks
	Scripting commands

	Evaluating expressions
	Expression evaluator dialog box (ALT+E)
	C/C++ expressions
	Assembler expressions

	Using the command-line
	Appendix A: Frequent operations
	Script commands in CodeScape Version 2.2.0 Build 111
	Write scripts to automate tasks
	CodeScape's script commands
	Expressing numeric values and addresses
	Example VBScript
	Example JScript

	Using scripts

	LibCross fileserver
	LibCross fileserver
	The fileserver functions
	Open a file: debug_open
	Close a file: debug_close
	Read data from a file: debug_read
	Write data to a file: debug_write
	Move a file to a specific location: debug_lseek
	Get current working directory: char * _getcwd
	Change current working directory: debug_chdir
	Create a new directory: debug_mkdir
	Delete a new directory: debug_rmdir
	Information about the first instance of a filename: debug_findfirst
	Information about the next instance of a filename: debug_findnext
	Close a search handle: debug_findclose
	Halt and inform the user: _ASSERT
	Prints data to the Log tab: debug_printf

	Add a script to the menu
	Run a script

