Sega@'Dreamcast.

Dreamcast
GNUPro” Toolkit
Embedded Systems

Important Information

This documentation has been provided courtesy of CYGNUS. The contents are applicable to GNUPro™ Toolkit
development, however, all references to development support offered by CYGNUS should be ignored.

Technical support for this product as it applies to the Sega Dreamcast™ development environment should be
directed to Sega Third Party Developer Technical Support at 415/701-4060. Future updates and/ or additional
information may also be found at Sega’s DTS Website at, http//:www.dts.sega.com/NextGen

Frontispiece

Copyright © 1991-1998 Cygnus.

All rights reserved.

GNUPrg", the GNUPrd' logo and the Cygnus logo are all trademarks of Cygnus.
All other brand and product names are trademarks of their respective owners.

Permission is granted to make and distribute verbatim copies of this documentation,
provided the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this documentation
under the conditions for verbatim copying, provided also that the entire resulting
derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this documentation into
another language, under the above conditions for modified versions.

This documentation has been prepared by Cygnus Technical Publications; contact the
Cygnus Technical Publications stadbc@cygnus.com .

Part #: 300-400-101000047

ii @ GNUPro Tools for Embedded Systems GNUPro Toolkit

Frontispiece

GNUPro Warrant y

The GNUPro Toolkit is free software, covered by the GNU General Public License,
and you are welcome to change it and/or distribute copies of it under certain
conditions. This version of GNUPro Toolkit is supported for customers of Cygnus.

For non-customers, GNUPro Toolkit software has NO WARRANTY.

Because this software is licensed free of charge, there are no warranties for it, to the
extent permitted by applicable law. Except when otherwise stated in writing, the
copyright holders and/or other parties provide the software “as is” without warranty of
any kind, either expressed or implied, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. The entire risk as to
the quality and performance of the software is with you. Should the software prove
defective, you assume the cost of all necessary servicing, repair or correction.

In no event, unless required by applicable law or agreed to in writing, will any
copyright holder, or any other party who may modify and/or redistribute the program
as permitted above, be liable to you for damages, including any general, special,
incidental or consequential damages arising out of the use or inability to use the
program (including but not limited to loss of data or data being rendered inaccurate or
losses sustained by you or third parties or a failure of the program to operate with any
other programs), even if such holder or other party has been advised of the possibility
of such damages.

CYGNUS

GNUPro Tools for Embedded Systems = iii

Frontispiece

How to Contact C ygnus

Use the following means to contact Cygnus.

Cygnus Headquarters
1325 Chesapeake Terrace
Sunnyvale, CA 94089 USA
Telephone (toll free}+1 800 CYGNUS-1
Telephone (main line): +1 408 542 9600
Telephone (hotline}1 408 542 9601
FAX: +1-408 542 9699
(Faxes are answered 8 a.m.—5 p.m., Monday through Friday.)
email:info@cygnus.com
Website:.www.cygnus.com .

Cygnus United Kingdom
36 Cambridge Place
Cambridge CB2 1NS
United Kingdom
Telephone: +44 1223 728728
FAX: +44 1223 728728
email:info@cygnus.co.uk/

Cygnus Japan
Nihon Cygnus Solutions
Madre Matsuda Building
4-13 Kioi-cho Chiyoda-ku
Tokyo 102-0094
Telephone: +81 3 3234 3896
FAX: +81 3 3239 3300
email:info@cygnus.co.jp
Website:http://www.cygnus.co.jp/

Use the hotline (+1 408 542 9601) to get help, although the most reliable way to
resolve problems with GNUPro Toolkit is by using email:
bugs@cygnus.com .

iv. m GNUPro Tools for Embedded Systems GNUPro Toolkit

Contents

L] NN L] (o T T = U Y 2 iii
[[0V (o I @ 0] g1 = Lox S @31 o | £ 11 L= iv
Using GNU tools on embedded SYSIEMSuuuiiiiiiiiiiiiiiieeeee e
INVOKING the GNU T00ISuiiiiiiiiiiiiiiiiieee et e e e e 2
gee, the GNU COMPIIEL....oooeiiieeeee s 2
CPP , tNE GINU PrEPIOCESSOL. .. .eeeiieiiiiiiieiee e e ettt e et e e e e s s b e e e e s anabeees 2
gas, the GNU ASSEMDBIBL..........ii e e eeas 3
o R TR N LU [T] =] PR 3
.coff for object file FOrmats..........ccccovi i 3
binutils , the GNU binary UtItIeS........ccoovvieiii s 3
gdb, the debugging tOQl...........oeiiiiii 5
libgloss , newlib andlibstd++ , the GNU liDraries.......ccc.occovvvveveiiivinieieeeeieeeennn, 5
crt0 , the main Startup fil..... ..o e 7
I L= LT] =T =3] o R 11
7L @ =101 o] oo 1 A o]0 To ISP 14
MEIMOTY SUPPOIL ...ttt ee ettt r ettt e e e e et e e e e e e e e e et e e e e esbe b n e e e eaeeeeennnn 15
Miscellaneous SUPPOIT FOULINES.......eeiiiiiiiiiiiriieee e ettt e et e e e e e e 16
Overview of supported targets for cross-development............cccccceeiiiiiniieeneennn. 17
Hitachi H8/300, H8S, H8/300H developmentcccoeveeeeeieeeieeeeieiieee e 19
Compiling for H8/300, H8S and HB8/30QH...........cccooiiiiiiiiiiieeieiiiiieieee e 20

CYGNUS GNUPT0 Tools for Embedded Systems m v

Contents

USING Ct ettt e ettt e e e e e s bbbt e e e e e et e e e e e 20
Predefined preproCeSSOr MACKOS.........uuuiiiiiariiiiiiieeeee e et eee e e s eeeenaeneees 21
Assembler options for H8/300, H8S and H8/3QQH.............cccooooeeiiiiviiiiiin e, 22
Calling conventions for H8/300, H8S and H8/300H............ccccoooiiiiiiiiiiiiiiiee e, 24
Debugging for H8/300, H8S and HB8/300H..........cccooeieiiiiiieiie e 25
Loading 0N SPECITIC TAIQELS.uuuuueiiiiiiiiiiiiiiiiiiee i er e e e e e e e e e e e e e aaaaaaaaaeas 28
Hitachi SH deVelOpMENTuuiiiiiiiii e 31
CompiliNg ON SH tAIgETS......uueiiiiieiiiiiiei e 32
Compiler OptioNS fOr SH..........uuiiiiiiii e 32
Preprocessor macros for SH targets..........coivie i e e e eeaeens 34
Assembler options for SH targets.........ooovviiiiiii e e 35
Calling conventions for SH targetS.......oooviiiii e e 37
Debugging 0N SH TAIQELS........uuuiiiiieeiiiie et 38
MIPS deVEIOPMENTo s e e e e e e e e e e e e e eeeeeeennnnes 41
Compiling ON MIPS targetS.ccoii ittt e 42
Compiler 0ptioNS fOr MIPS........ooii i 42
Options for architecture and code generation for MIRPS...........ccccocviiiiininenenn 42
Compiler options for floating point for MIPS............cooiiiii 44
Floating point SUDFOULINES...........uuiiuiiii e e e e e e 44
Preprocessor macros for MIPS targels..........ooouiiiiiiiieeiiiiieeee e 46
Assembler options for MIPS targels..........ccuii it 47
Assembler options for listing output for MIRS...........cccooiiiiiiiiiee, 47
Assembler listing-control directives for MIRS...........coooeeiiiiiiiiiiciiiin e, 48
Special assembler options for MIPS..........ccoo i e 48
Assembler directives for debugging informatian.................cccoiiiiiiin 49
MIPS ECOFF ODJECE COUR......eiiiiiiiiiiiiiii e 49
Options for MIPS ECOFF 0bjJect COQE...........ccuiiiiiiiiiiiiiieee e 50
Directives for MIPS ECOFF 0bJeCt COAE..........oiiiuiiiiiiieiiiiieieeccee e 50
Registers used for integer arguments for MIRS..........cccoooi i, 50
Registers used for floating-point arguments for MIRS..........cccooooeeiiiiiiiiiieennnn. 51
Calling conventions for integer arguments for MIPS............cccoooo i, 51
Calling conventions for floating-point arguments for MIRS.................ccooiinen 51
Debugging 0N MIPS targetsS........cuuiiiiiiiiiiiieiee ettt e e 52
Linking MIPS with the GOFAST lIDrary.........cooouiiiiiieeiieeeeeeeeee e 54
Full compatibility with the GOFAST library for MIRS............oooiiiiiii e, 55
Motorolamesk deVEIOPMENTcoouiiiiii e 57
Compiling fOrmB8K tArgeLS........cceiiieeeiiii i e e e e e e e 58
OptioNns fOr floAtiNg POINL........cooiiiiiiiiei e 58
Floating point SUDTOULINES.........cuiiiiiiiiiii e 59

vi = GNUPr0 Tools for Embedded Systems GNUPro Toolkit

Contents

Preprocessor macros fom68k targets........ccuurviieeeeiiiiiiiie e 59
Assembler options fANG8K tArgELS.uuuiieiiiii e 60
Assembler options for listing OULRUL............oiiiir i 60
Assembler listing-control dir€CHIVES.uuiiiiiiiiiiiiiiee e 61
Calling conventions fOMB8K TArgetS.uuuuruuurrriiiieiiieiiieeeieeeir e e eeee e e e e eeeeaeeaaeeeas 61
Debugging OMMBBK tAIGETS........uuviiiiee e e it eanees 62
POWEIPC deVelOPMENT ... 65
Compiling fOr POWEIPC tArgeLS.........uuviiiiiiiiiiiiiiiie ettt 66
Floating point subroutines for POWErRC............ccooiiiiiiiiiiiiiie e 73
Preprocessor macros for POWErPC targetS....cooovvvieeivieeeiiiiiiii e 73
Assembler options for POWEIrPC targelsS......cooeeiiieiiiiieeiiiiiin e e e e eeanens 74
Debugging POWEIPC targets........ooovveiiiiiiii e e e e 76
The StacK framE......ooeiieecee 77
ATGUMENT PASSING. .. eeiiiiiiiieee e e ettt et e e e s s e e e e e e s e e e e e e e e s ssbbb e e e e eeeaaaannneeeeeees 79
FUNCLION FETUIN VAIUES........oc oo 79
SPARC, SPARCIite development..........ccceoviiiiiiiiii e 81
Compiling for SPARC targelS......ccoe it e e e e et e e e e e e e e aeanen 83
Compiler options fOr SPARC.........o e 83
Options for floating point for SPARC and SPARCHLE.............ccovvviiieiinen e, 84
Floating point subroutines for SPARC and SPARCIIte.............cccvvvvvvvvvieeeenee. 84
Preprocessor macros for SPARC targetS.......cooouiiiiiieiiieiiiiiiieieeee e 85
Assembler options for SPARC targels........cuuiiiiiiiieiiiiieeeieiiiee e 86
Assembler options for listing output for SPARC, SPARCIItE..........cccevveviiiinnne 86
Assembler listing-control directives for SPARC, SPARCIite.............cccevvvvvnnnnn. 87
Assembler options for the SPARCIEE.........cooo i e 87
Calling conventions for SPARC and SPARCLULE...........ccoeiiiiiiiiiiiiee e, 88
Debugging SPARC and SPARCIItE targets...........uueeeeeiiiiiiiiiiiee i 89
... 91

CYGNUS GNUPTr0 Tools for Embedded Systems m Vvii

Contents

viii m GNUPTrO Tools for Embedded Systems GNUPro Toolkit

Using GNU tools
on embedded s ystems

The following GNUPro tools can be run on embedded targets.

« gcc, the GNUPro Toolkit compiler (see “gcc, the GNU compiler” on page 2)

« ccp, the GNU C preprocessor (see “cpp, the GNU preprocessor” on page 2)

» gas, the GNUPro Toolkit assembler (see “gas, the GNU assembler” on page 3)

« ld, the GNUPro Toolkit linker (see “Id, the GNU linker” on page 3)

« binutls , the GNUPro Toolkit directory of utilities (see “binutils, the GNU
binary utilities” on page 3)

« gdb, the GNUPro Toolkit debugger (see “gdb, the debugging tool” on page 5)

» libgloss , the support library for embedded targets @svdib , the C library
developed by Cygnus (see “libgloss, newlib and libstd++, the GNU libraries” on

page 5)
See the following documentation for more discussion on using the GNU tools.
« “Invoking the GNU tools” on page 2
« “crt0, the main startup file” on page 7
« “The linker script” on page 11
« “I/O support code” on page 14
« “Memory support” on page 15
« “Miscellaneous support routines” on page 16

CYGNUS

GNUPro Tools for Embedded Systems = 1

Invoking the GNU tools

Invokin g the GNU tools

gec invokes all the required GNU passes for you with the following utilities.

= cpp
The preprocessor which processes all the header files and macros that your target
requires.

u gcc

The compiler which produces assembly language code from the processed C files.
For more information, sddsing GNU CGn GNUPro Compiler Tools

[] gas
The assembler which produces binary code from the assembly language code and
puts it in an object file.

= Id
The linker which binds the code to addresses, links the startup file and libraries to
the object file, and produces the executable binary image.

There are several machine-independent compiler switches, among which are, notably,
-fno-exceptions (for C++), fritti (for C++) and-T1 (for linking).

You have four implicit file extensions: , .Cc, .s , and.s . For more information, see
Using GNU CGn GNUPro Compiler Tools

gcc , the GNU compiler

When you compile C or C++ programs with gnu C, the compiler quietly inserts a call
at the beginning ahain to agcc support subroutine calledmain . Normally this is
invisible—you may run into it if you want to avoid linking to the standard libraries, by
specifying the compiler optiomostdiib . Include-lgecc at the end of your compiler
command line to resolve this reference. This links with the compiler support library
libgec.a . Putting it at the end of your command line ensures that you have a chance
to link first with any of your own special libraries.

__main is the initialization routine for C++ constructors. Because GNU C is designed
to interoperate with GNU C++, even C programs must have this call: otherwise C++
object files linked with a C main might fail. For more informatiorgen, seeUsing

GNU CCin GNUPro Compiler Tools

CPpP , the GNU preprocessor

cpp merges in theinclude files, expands all macros definitions, and processes the
#ifdef sections. To see the outputepp, invokegec with the-E option, and the
preprocessed file will be printed etout .

2 m GNUPro Tools for Embedded Systems GNUPro Toolkit

gas, the GNU assembler

There are two convenient options to assemble handwritten files that require C-style
preprocessing. Both options depend on using the compiler driver pragtam,
instead of calling the assembler directly.

« Name the source file using the extens®r(capitalized) rather thas . gcc
recognizes files with this extension as assembly language requiring C-style
preprocessing.

« Specify the “source language” explicitly for this situation, usinggtheoption,
-xassembler-with-cpp

For more information otpp, seeThe C Preprocessdn GNUPro Compiler Tools

gas, the GNU assembler

gas can be used as either a compiler pass or a source-level assembler.

When used as a source-level assembler, it has a companion assembly language

preprocessor calleghsp . gasp has a syntax similar to most other assembly language
macro packages.

gas emits a relocatable object file from the assembly language source code. The
object file contains the binary code and the debug symbols.

For more information ogas, seeUsing ASin GNUPro Utilities.

Id , the GNU linker

.coff

Id resolves the code addresses and debug symbols, links the startup code and
additional libraries to the binary code, and produces an executable binary image.

For more information ofl , seeUsing LDin GNUPro Utilities.

for object file formats

.coff is the main object file format when using the tools on embedded target systems.
For more information on object files and object file formats, TdeeGNU Binary
Utilities in GNUPro Utilities.

binutils , the GNU binary utilities

The following are the binary utilities, although they are not included on all hests:
nm, objcopy , objdump , ranlib , size , strings , andstrip

For more information ohinutls , seeThe GNU Binary Utilitiesn GNUPro
Utilities.

The most important of these utilities akgcopy andobjdump .

CYGNUS

GNUPro Tools for Embedded Systems = 3

binutils , the GNU binary utilities

objcopy
A few ROM monitors, such asout , load executable binary images, and,
consequently, most load an S-record. An S-record is a printable ASCII
representation of an executable binary image.

S-records are suitable both for building ROM images for standalone boards and
for downloading images to embedded systems. Use the following example’s input
for this process.

objcopy -O srec infile outfile

infile in the previous example’s input is the executable binary filename, and
outfile is the filename for the S-record.

Most PROM burners also read S-records or some similar format. Use the
following example’s input to get a list of supported object file types for your
architecture.

objdump -i
For more information on S-records, see the discussions for
FORMAToutput-format in the documentation for “MRI comptible files” and the
discussion for “BFD” inUsing LDin GNUPro Utilities. For more discussion of
making an executable binary image, segcopy " in The GNU Binary Ultilities
in GNUPro Utilities.

objdump

objdump displays information about one or more object files. The options control
what particular information to display. This information is mostly useful to
programmers who are working on the compilation tools, as opposed to
programmers who just want their program to compile and work.

When specifying archivespjdump shows information on each of the member
object files.objfile... designates the object files to be examined.

A few of the more useful options for commands ate:disassemble and
--prefix-addresses
-d
--disassemble
Displays the assembler mnemonics for the machine instructionsfytm
This option only disassembles those sections that are expected to contain
instructions.
--prefix-addresses
For disassembling, prints the complete address on each line, starting each output
line with the address it's disassembling. This is the older disassembly format.
Otherwise, you only get raw opcodes.

4 m GNUPro Tools for Embedded Systems GNUPro Toolkit

gdb, the debugging tool

gdb, the debugging tool

To rungdb on an embedded execution target, ugégbebackend with thgdb standard
remote protocol or a similar protocol. The most common are the following two types
of gdb backend.
=« A gdb stub
This is an exception handler for breakpoints, and it must be linked to your
application.gdb stubs use thgdb standard remote protocol.

« An existing ROM monitor used agdb backend
The most common approach means using the following processes.
With a similar protocol to thgdb standard remote protocol.
With an interface that uses the ROM monitor directly. With such an interface,
gdb only formats and parses commands.

For more information on debugging tools, Ssbugging with GDBn GNUPro
Debugging Tools

Useful debugging routines

The following routines are always useful for debugging a project in progress.
= print()
Runs standalone ibgloss ~ with nonewlib support. Many timegrint()
works when there are problems that mpdkef() cause an exception.
= outbyte()
Used for low-level debugging.
= putnum()
Prints out values in hex so they are easier to read.

libgloss , newlib and libstd++ | the GNU
libraries

GNUPro Toolkit has three librarieiigloss , newlib andlibstd++

libgloss
libgloss , the library for GNU Low-level OS Support, contains the startup code,
the 1/0O support fogecc andnewlib (the C library), and the target board support
packages that you need to port the GNU tools to an embedded execution target.

The C library used throughout this manuaieglib , howevetibgloss could
easily be made to support other C libraries. Beckuggess resides in its own
tree, it's able to run standalone, allowing it to support GDB'’s remote debugging
and to be included in other GNU tools.

CYGNUS GNUPro Tools for Embedded Systems m 5

libgloss , newlib and libstd++ ,the GNU libraries

Several functions that are essentiajdo reside inibgloss . These include the
following functions.

crto , the main startup script (see “crt0, the main startup file” on page 7)
Id, the linker script (see “The linker script” on page 11)
I/0O support code (see “I/O support code” on page 14)
newlib
The Cygnus libraries, including the C libraiilys , and the C math libraryipm .
libstd++
The C++ library in development by Cygnus.

6 = GNUPro Tools for Embedded Systems GNUPro Toolkit

crt0 , the main startup file

crtO

, the main startup file

Thecrto (C RunTime 0) file contains the initial startup code.

Cygnus provides ato file, although you may want to write your owtto file for

each target. Theto file is usually written in assembler a#0.s ’, and its object

gets linked in first and bootstraps the rest of your applicationcrithefile defines a
special symbol likestart , which is both the default base address for the application
and the first symbol in the executable binary image.

If you plan to use any routines from the standard C library, you'll also need to
implement the functions on whighgloss depends. Therto file accomplishes the
following results. See “I/O support code” on page 14.

« crt0 initializes everything in your program that needs it.
This initialization section varies. If you are developing an application that gets
downloaded to a ROM monitor, there is usually no need for special initialization
because the ROM monitor handles it for you. If you plan to burn your code in a
ROM, thecrto file typically does all of the hardware initialization required to run
an application. This can include things like initializing serial ports and running a
memory check; however, results vary depending on your hardware.

The following is a typical basic initialization oft0.S

1. Set up concatenation macros.
#define CONCAT1(a, b) CONCAT2(a, b)
#define CONCAT2(a, b) a## b

Later, you'll use these macros.

2. Set up label macros, using the following example’s input.

#ifndef _ USER_LABEL_PREFIX__
#define _ USER_LABEL_PREFIX__
#endif

#define SYM(x) CONCAT1 (__USER_LABEL_PREFIX__, X)

These macros make the code portable betw&enanda.out . coff
always has an_ (underline) prepended to the front of its global
symbol namesa.out has none.

3. Set up register names (with the right prefix), using the following
example’s input.
#ifndef _ REGISTER_PREFIX__

#define _ REGISTER_PREFIX__
#endif

/* Use the right prefix for registers. */
#define REG(x) CONCAT1 (__REGISTER_PREFIX__, x)

CYGNUS

GNUPro Tools for Embedded Systems m 7

crt0 , the main startup file

#define dO REG (d0)
#define d1 REG (d1)
#define d2 REG (d2)
#define d3 REG (d3)
#define d4 REG (d4)
#define d5 REG (d5)
#define d6 REG (d6)
#define d7 REG (d7)
#define a0 REG (a0)
#define al REG (al)
#define a2 REG (a2)
#define a3 REG (a3)
#define a4 REG (a4)
#define a5 REG (a5)
#define a6 REG (ab)
#define fp REG (fp)

#define sp REG (sp)

Register names are for portability between assemblers. Some register
names have @or $ prepended to them.

Set up space for the stack and grab a chunk of memory.

.set stack_size, 0x2000 .

comm SYM (stack), stack_size
This can also be done in the linker script, although it typically gets done
at this point.

Define an empty space for the environment, using the following
example’s input.
.data
.align 2
SYM (environ):
ong O
This is bogus on almost any ROM monitor, although it's best generally
set up as a valid address, then passing the addres®&@o . This way,
if an application checks for an empty environment, it finds one.

Set up a few global symbols that get used elsewhere.

.align 2
text
.global SYM (stack)

.global SYM (main)
.global SYM (exit)
.global __bhss_start

This really should be bss_start , NOtSYM (__bss_start

__bss_start needs to be declared this way because its value is set in
the linker script.

8 m GNUPro Tools for Embedded Systems GNUPro Toolkit

crt0 , the main startup file

7. Set up the global symbatart , for the linker to use as the default
address for theext section. This helps your program run.
SYM (start):
link a6, #-8
moveal #SYM (stack) + stack_size, sp
crt0 zeroes thebss section
Make sure thenss section is cleared for uninitialized data, using the following
example’s input. All of the addresses in thss section need to be initialized to
zero so programs that forget to check new variables’ default values will get
predictable results.
moveal #__bss_start, a0
moveal #SYM (end), al
1:
movel #0, (a0)
leal 4(a0), a0
cmpal a0, al
bne 1b
Applications can get wild side effects from thes section being left uncleared,

and it can cause particular problems with some implementationsiadf)

crt0 callsmain()

If your ROM monitor supports it, set wpgc andargv for command line
arguments and an environment pointer before the caliitg) , using the
following example’s input.

Forg++, the code generator inserts a branch teain at the top of youinain()
routine.g++ uses_main to initialize its internal tables and then returns control to
yourmain() routine.

Forcrto to call yourmain() routine, use the following example’s input. First, set
up the environment pointer and jumpntain() . Call the main routine from the
application to get it going, using the following example’s input with
main (argc, argv, environ) , usingargv as a pointer to NULL.
pea O
pea SYM (environ)
pea sp@(4)
pea O
jsr SYM (main)
movel dO, sp@-4
crt0 calls (exit)
After main() has run, therto file cleans things up and returns control of the
hardware from the application. On some hardware there is nothing to return
to—especially if your program is in ROM— and if that's the case, you need to do
a hardware reset or branch back to the original start address.

CYGNUS

GNUPro Tools for Embedded Systems = 9

crt0 , the main startup file

If you're using a ROM monitor, you can usually call a user trap to make the ROM
take over. Pick a safe vector with no sides effects. Some ROM'’s have a built-in
trap handler just for this case.
Implementingexity here is easy.. First, wittexit , exit from the application.
Normally, this causes a user trap to return to the ROM monitor for another run.
Then, using the following example’s input, you proceed with the call.

SYM (exit):

trap #0
Bothromesk andbug can handle a user-caused exceptionwith no side effects.
Although thebug monitor has a user-caused trap that returns control to the ROM
monitor, thebug monitor is more portable.

10 = GNUPro Tools for Embedded Systems GNUPro Toolkit

The linker script

The linker script

The linker script accomplishes the following processes to result.
« Sets up the memory map for the application.

When your application is loaded into memory, it allocates some RAM, some disk
space for I/O, and some registers. The linker script makes a memory map of this
memory allocation which is important to embedded systems because, having no
OS, you have the ability then to manage the behavior of the chip.

« Forg++, sets up the constructor and destructor tables.

The actual section hames vary depending on your object file format.okor
andcoff , the three main sections at ,.data and.bss .

= Sets the default values for variables used elsewhere.

These default variables are usedstbrg() and therto file, typically called by
_bss_start and_end.

There are two ways to ensure the memory map is correct.
« By having the linker create the memory map by using the optiap, .

« By, after linking, using themutility to check critical addresses likeurt
bss_end and etext .

The following is an example of a linker script forraésk-based target board.

1. Use thesTARTUPcommand, which loads the file so that it executes first.
STARTUP(crt0.0)

Themesk-coff configuration default does not link é0.0 because it assumes
that a developer haso . This behavior is controlled in thenfig file for each
architecture in a macro calledfARTFILE_SPEC If STARTFILE_SPECIS set to
NULL, gecc formats its command line and doesn’t addlo . Any filename can
be specified wittsTARTUR although the default is alwayso.o

If you use onlyd to link, you control whether or not to link é#no.o on the
command line.

If you have multiplecrto files, you can leaveTARTUPOuUt, and link ircrto.o in
the makefile or use different linker scripts. Sometimes this option is used to
initialize floating point values or to add device support.

2. UsingGRoupload the specified file.
GROUP(-lgcc-liop-Ic)
In this case, the file is a relocated library that contains the definitions for the

low-level functions needed bigc.a . The file to load could have also been
specified on the command line, but as it's always needed, it might as well be here

CYGNUS

GNUPro Tools for Embedded Systems m 11

The linker script

as a default.

3. SEARCH_DIRspecifies the path in which to look for files.
SEARCH_DIR(.)

4. Using_DYNAMIG specify whether or not there are shared dynamic libraries. In the
following example’s case, there are no shared libraries.
__DYNAMIC = 0;
5. Set_stack , the variable for specifying RAM for the ROM monitor.

6. Specify a name for a section that can be referred to later in the script. In the
following example’s case, it's only a pointer to the beginning of free RAM space
with an upper limit at 2M. If the output file exceeds the upper limEORY
produces an error message. First, in this case, we’ll set up the memory map of the
board'’s stack for high memory for both tlee6sk andmonégk monitors.

MEMORY
{

}
Setting up constructor and destructor tables fgr+

1. Setupthetext section, using the following example’s input.
SECTIONS
{

ram : ORIGIN = 0x10000, LENGTH = 2M

text:

{
CREATE_OBJECT_SYMBOLS
*(.text)
etext = ,;
__ CTOR_LIST__ =
LONG((__CTOR_END__ -_ CTORL_LIST_)/4-2)
*(.ctors)
LONG(0)
__CTOR_END__ =
__DTOR_LIST__ =

LONG((_DTOR_END__ - _DTOR_LIST)/4-2)
*(.dtors)
LONG(0)
__DTOR_END__ =
*(.lit)
*(.shdata) }
>ram
.shbss SIZEOF(.text) + ADDR(.text) : {
*(.shbss)
}

In acoff file, all the actual instructions reside.igxt for also setting up the

12 = GNUPro Tools for Embedded Systems GNUPro Toolkit

The linker script

constructor and destructor tables o . Notice that the section description
redirects itself to the RAM variable that was set up in Step 5 of the earlier process
for thecrto file, “Set _stack, the variable for specifying RAM for the ROM
monitor.” on page 12.

2. Set up thedata section.

talias : {}>ram
.data : {
*(.data)
CONSTRUCTORS
_edata=;

}>ram

In acoff file, this is where all of the initialized data goe®NSTRUCTORS a
special command used ly.

Setting default values for variablesbss_start and_end

Set up thebss section:

.bss SIZEOF(.data) + ADDR(.data) :

{

__bss_start = ALIGN(0x8);

*(.bss)

*(COMMON)
end = ALIGN(0Ox8);
_end = ALIGN(0x8);
__end = ALIGN(0x8);

}

.mstack : {} > ram

srstack : {} >ram

.stab . (NOLOAD) :

{

}
.stabstr . (NOLOAD) :
{

}

[.stab]

[.stabstr]

}

In acoff file, this is where uninitialized data goes. The default values$er start
and_end are set here for use by thve file when it zeros thenss section.

CYGNUS GNUPro Tools for Embedded Systems m 13

I/O support code

I/O support code

Most applications use calls to the standard C library. However, when you initially link
libc.a , several I/O functions are undefined. If you don’t plan on doing any I/O,
you're OK; otherwise, you need to create two I/O functiepsn() andclose()
These don’t need to be fully supported unless you have a file system, so they are
normally stubbed out, usingl()
sbrk() is also a stub, since you can’t do process control on an embedded system, only
needed by applications that do dynamic memory allocation. It uses the varable,
which is set in the linker script.
The following routines are also used for optimization.
-inbyte

Returns a single byte from the console.

-outbyte
Used for low-level debugging, takes an argumenpder) and prints a byte
out to the console (typically used for ASCII text).

14 = GNUPro Tools for Embedded Systems GNUPro Toolkit

Memory support

Memory support

The following routines are for dynamic memory allocation.

sbrk()
The functionsmalloc() , calloc() , andrealloc() all callsbrk() at their
lowest levelssbrk() returns a pointer to the last memory address your
application used before more memory was allocated.

caddr_t
Defined elsewhere agar *

RAMSIZE
A compile-time option that moves a pointer to heap memory and checks for the
upper limit.

CYGNUS GNUPro Tools for Embedded Systems m 15

Miscellaneous support routines

Miscellaneous support routines

The following support routines are calledraylib , although they don’t apply to the
embedded environment.
isatty()
Checks for a terminal device.
kill()
Simply exits.
getpd()
Can safely return any value greater than 1, although the value doesn't effect
anything innewlib .

16 = GNUPro Tools for Embedded Systems GNUPro Toolkit

Overview of supported tar gets
for cross-development

The following documentation describes programming practices and options for

several of the embedded targets that GNUPro Toolkit supports. Since, by their very
nature, the tools are evolving to meet the needs of Cygnus customers, new targets are
frequently added (see the current matrix of supported embedded targets in
Introductionin Getting Started with GNUPro ToolKjt

The supported targets that are discussed can be found in the following documentation.

“Hitachi H8/300, H8S, H8/300H development” on page 19
“Hitachi SH development” on page 31

“MIPS development” on page 41

“Motorola m68k development” on page 57

“PowerPC development” on page 65

“SPARC, SPARCIite development” on page 81

CYGNUS

GNUPro Tools for Embedded Systems m 17

18 m GNUPro Tools for Embedded Systems GNUPro Toolkit

Hitachi H8/300, H8S, H8/300H
development

The following documentation discusses cross-development with the Hitachi H8/300
H8S and H8/300 processors. All the H8 tools (300, 300H and S) are part of the same
toolchain; older versions will not support the other two tools.

« “Compiling for H8/300, H8S and H8/300H” on page 20

“Assembler options for H8/300, H8S and H8/300H" on page 22
« “Calling conventions for H8/300, H8S and H8/300H" on page 24
« “Debugging for H8/300, H8S and H8/300H” on page 25

For more extensive documentation on the Hitachi H8/300, Hitachi Microsystems
makes available thd8/300 Microcomputer User’s ManualSemiconductor Design
& Development Center, 1992); contact your Field Application Engineer for details.

Cross-development tools in the GNUPro Toolkit are normally installed with names
that reflect the target machine, so that you can install more than one set of tools in the
same binary directory. The target name, constructed withtdhget option to
configure , is used as a prefix to the program name. For example, the compiler for the
Hitachi H8/300 (called simplycc in native configurations) is called with the
following input.

h8300-hms-gcc

CYGNUS

GNUPro Tools for Embedded Systems = 19

Compiling for H8/300, H8S and H8/300H

Compilin g for H8/300, H8S and H8/300H

The Hitachi target family toolchain controls variances in code generation directly
from the command line. When you rget, you can use command-line options to
choose whether to take advantage of the extra Hitachi machine instructions, and
whether to generate code for hardware or software floating point.

Using C++

There is support for the C++ language. This support may in certain circumstances add
up to 5K to the size of your executables.

The new C++ support involves new startup code that runs C++ initializers before
main() is invoked. If you have a replacement for the fite.o (or if you call
main()), you must call_main() before callingnain(.

You may need to run these C++ initializers even if you do not write in C++ yourself.
This could happen, for instance, if you are linking against a third-party library which
itself was written in C++. You may not be able to tell that it was written in C++
because you are calling it with C entry points prototyped in a C header file. Without
these initializers, functions written in C++ may malfunction.

If you are not using any third-party libraries, or are otherwise certain that you will not
require any C++ constructors, you may suppress them by adding the following
definition to your program:

int__main() {}
When you rurycc, you can use command-line options to choose machine-specific
details. For information on all the gcc command-line options, see “GNU CC
Command Options” ilvsing GNU CCn GNUPro Compiler Tools

Compiler options for H8/300

The following documentation discusses the compiler options.
-ms

Generate code for the H8S processor.
-mh

Generate code for the H8/300H chip.

-mint32
Use 32-bit integers when compiling for the H8/300H.

The compiler debugging optiorg" is essential to see interspersed high-level
source statements, since without debugging information the assembler cannot tie
most of the generated code to lines of the original source file.

20 = GNUPro Tools for Embedded Systems GNUPro Toolkit

Predefined preprocessor macros

Floating point subroutines

The Hitachi H8/300 has no floating point support. Two kinds of floating point
subroutines are useful witfec :

« Software implementations of the basic functions (floating-point multiply, divide,
add, subtract), for use when there is no hardware floating-point support.

» Animplementation of the standard C mathematical subroutine library. See
“Mathematical Functions (math.h)” @NUPro Math Libraryin GNUPro
Libraries.

Predefined preprocessor macros

gcc defines the following preprocessor macros for the Hitachi configurations:
Any Hitachi H8/300 architecture:
_ H8300__

The Hitachi H8/300H architecture:
__H8300H__

CYGNUS GNUPro Tools for Embedded Systems m 21

Assembler options for H8/300, H8S and H8/300H

Assembler options
for H8/300, H8S and H8/300H

To use the GNU assembler to assembleoutput, configurgec with the switch,
--with-gnu-as (in GNUPro Toolkit distributions) or with thengas option.
-mgas
Compile usings to assemblgcc output.
-Wa
If you invokeas through the GNU C compiler (version 2), you can use-the *
option to pass arguments through to the assembler. One common use of this option
is to exploit the assembler’s listing features. Assembler arguments that you
specify withgec -wa must be separated from each other by commas like the
options,-alh and-L , in the following example input separate frama.
$ h8300-hms-gcc -¢ -g -O -Wa,-alh, -L file.c

The additional assembler option " preserves local labels, which may make the
listing output more intelligible to humans.
For example, in the following commandline, the assembler optian, requests
a listing interspersed with high-level language and assembly language.

$ h8300-hms-gcc -c -g -O -Wa,-alh, -L file.c
‘L’ preserves local labels, while the compiler debugging optigngives the
assembler the necessary debugging information.

Assembler options for listing output

Use the following options to enaldisting output from the assembl@he letters after
‘-a’ may be combined into one option, suchas).
-a
By itself, ‘-a’ requests listings of high-level language source, assembly language,
and symbols.
-ah
Request a high-level language listing.
-al
Request an output-program assembly listing.
-as
Request a symbol table listing.
-ad
Omitdebugging directives from the listing.

22 m GNUPro Tools for Embedded Systems GNUPro Toolkit

Assembler options for H8/300, H8S and H8/300H

High-level listings require that a compiler debugging option, lig& be used, and

that assembly listings4|) also be requested.

Assembler listing-control directives

Use the following listing-control assembler directives to control the appearance of the

listing output (if you do not request listing output with one of thé options, the

following listing-control directives have no effect).

list
Turn on listings for further input.

.nolist
Turn off listings for further input.
.psize linecount , columnwidth

Describe the page size for your output (the defaeti,isoo). as generates form
feeds after printing each groupiakcount lines. To avoid these automatic form
feeds, specify aslinecount . The variable input fotolumnwidth uses the same
descriptive option.

.eject
Skip to a new page (issue a form feed).

title
Use as the title (this is the second line of the listing output, directly after the
source file name and page number) when generating assembly listings.

.shttl

Use as the subtitle (this is the third line of the listing output, directly after the title

line) when generating assembly listings.

-an
Turn off all forms processing.

CYGNUS

GNUPro Tools for Embedded Systems m 23

Calling conventions for H8/300, H8S and H8/300H

Callin g conventions
for H8/300, H8S and H8/300H

The Hitachi family passes the first three words of arguments in registerspugh

R2. All remaining arguments are pushed onto the stack, last to first, so that the lowest
numbered argument not passed in a register is at the lowest address in the stack. The
registers are always filled, so a double word argument, startikgy imould have the

most significant word ir2 and the least significant word on the stack. Function return
values are stored o andR1. Registersro throughr2, can be used for temporary

values. When a function is compiled with the default options, it must return with
registersRr3a throughre, unchanged.

NOTE: Functions compiled with different calling conventions cannot be run together
without some care.

24 m GNUPro Tools for Embedded Systems GNUPro Toolkit

Debugging for H8/300, H8S and H8/300H

Debugging for H8/300, H8S and H8/300H

The Hitachi-configureddb is called with the following input.
h8300-hms-gdb
gdb needs to know the following specifications.
« Specifications for one of the following interfaces:
target remote
GDB'’s generic debugging protocol, for using with the Hitachi low-cost
evaluation boardLCEVB) runningCMON.
target hms
Interface to H8/30@val boards running the HMS monitor.
target e7000
E7000 in-circuit emulator for the Hitachi H8/300.

target sim
Simulator, which allows you to rulb remotely without an external device.

« Specifications for what serial device connects your host to your Hitachi board (the
first serial device available on your host is the default).

« Specifications for what speed to use over the serial device (if you are using a Unix
host).

Use one of the followingdo commands to specify the connection to your target
board.

target interface port
To run a program on the board, starigdp with the name of your program as the
argument. To connect to the board, use the comnuagel, interface port ,
whereinterface is an interface from the previous list grugk is the name of the
serial port connected to the board. If the program has not already been
downloaded to the board, you may useldtheé command to download it.

You can then use all the usgab commands.

For example, the following example’s sequence connects to the target board
through a serial port, and loads and runs a program (designateg der
variable-dependent input in the following example) through the debugger.

host$ h8300-hms-gdb prog
(gdb) target remote /dev/ttyb
(gdb) load

(gdb) run

CYGNUS GNUPro Tools for Embedded Systems m 25

Debugging for H8/300, H8S and H8/300H

target interface hostname . portnumber

You can specify a TCP/IP connection instead of a serial port, using the syntax,
hostname : portnumber (assuming your board, designated hergoamame , is
connected so that this makes sense; for instance, the connection may use a serial
line, designated by your varialpjertnumber input, managed by a terminal
concentrator).

gdb also supportset remotedebug n. You can see some debugging information
about communications with the board by setting the variabigith the
commandremotedebug .

In comparison to the H8/300, the H8S has the following improvements.

Eight 16-bit expanded registers, and one 8-bit control register.
Normal mode supports the 64K-byte address space.

Advanced mode supports a maximum 16M-byte address space.
Addressing modes of bit-manipulation instructions improved.
Signed multiply and divide instructions.

Two-bit shift instructions.

Instructions for saving and restoring multiple registers.

A test and set instruction.

Basic instructions executing doublespeed.

The H8S uses a two-channel on-chip PC break controller (PBC) for debugging
programs with high-performance self-monitoring, without using an in-circuit
emulator.

The ROM is connected to the CPU by a 16-bit data bus, enabling both byte data
and word data to be accessed in one state. This makes possible rapid instruction
high-speed processing.

The H8S has eight 32-lgeneral registersall functionally alike for both address
registers and data registers. When a general register is used as a data register, it
can be accessed as a 32-hit, 16-bit, or 8-bit register.

When the general registers are used as 32-bit registers or address registers, they
use the lettergR (ER0 t0 ERY).

TheERregisters divide into 16-bit general registers designated by the Iet{eos,

to E7) andRr (RO to R7). These registers are functionally equivalent, providing a
maximum 16 6-bit registers.

TheE registers k0 to E7) are also referred to astended registers

TheRregisters divide into 8-bit general registers, using the leRE(®0Ht0 R7H)
andrL (ROL to R7L). These registers are functionally equivalent, providing a

26 = GNUPro Tools for Embedded Systems GNUPro Toolkit

Debugging for H8/300, H8S and H8/300H

maximum 16 8-bit registers.

« Thecontrol registersare the 24-bit program count&d, 8-bit extended control
register EXR), and 8-bit condition-code registerdR.

« The H8S supports eight addressing modes. See Table 1.
Table 1. Addressing Modes

Addressing Mode Symbol

1 Register direct Rn

2 Register indirect @ERn

3 Register indirect with displacement |@(d:16,ERn)
@(d:32,ERn)

4 Register indirect with post-increment @ERn+

Register indirect with pre-decrement|@ ERn

5 Absolute address @aa:8

@aa:16
@aa:24
@aa:32

6 Immediate #xX:8
#xx:16

#xx:32

7 Program-counter relative @(d:8,PC)
@(d:16,PC)

8 Memory indirect @@aa:8

The upper 8 bits of the effective address are ignored, giving a 16-bit address.

« HB8S initiatesexception handlingpy a reset, a trap instruction, or an interrupt.
Simultaneously generated exceptions are handled in order of priority. Exceptions
originate from various sources. Trap instruction exception handling is always
accepted in the program execution state. Trap instructions and interrupts are
handled as in the following sequence.

1. The program countepr(), condition code registec€¢R, and extend
register EXR are pushed onto the stack.

2. The interrupt mask bits are updated. THzt is cleared to O.

3. A vector address corresponding to the exception source is generated,
and program execution starts from that address.

For a reset exception, use Step 2 and Step 3.

CYGNUS GNUPro Tools for Embedded Systems m 27

Loading on specific targets

Loadin g on specific tar gets

With GNUPro Toolkit, downloading is possible to H8/300 boards and E7000
in-circuit emulators.

To communicate with a Hitachi H8/300 board, you can usgdtheemote serial
protocol. See “Thegdb remote serial protocol” iDebugging with GDBn GNUPro
Debugging Tooldor more details.

NOTE:. The HitachiLceve runningCMON has the stub already built-in.

Use the followinggdb command if you need to explicitly set the serial device.
device port

The defaultport , is the first available port on your host. This is only necessary on
Unix hosts, where it is typically something likev/ttya

The following sample tutorial illustrates the steps needed to start a prograngdmder
control on an H8/300. The example uses a sample H8 program c¢alledrhe

procedure is the same for other Hitachi chips in the series. First, hook up your
development board. In the example that follows, we use a board attached to serial port,
designated asom1

1. Callgdb with the name of your program as the argum@atame
gdb filename
2. gdb prompts you, as usual, with the following prompt.
(9db)
3. Use the following two special commands to begin your debugging session.

target hms port
Specify cross-debugging to the Hitachi board, and then use with the next input
to download your program to the board.

load filename
load displays the names of the program’s sections. (If you want to rejresh
data on symbols or on the executable file without downloading, ugethe
commandsiile , orsymbol-file).

The previous commands, specificalbad , are described in “Commands to
specify files” inDebugging with GDBn GNUPro Debugging Tools

4. The following message for this file then appears.
C:\H8\TEST> gdb t.x
GDB is free software and you are welcome to distribute copies

for details. GDB 4.15-96q1, Copyright 1994 Free Software
Foundation, Inc...

28 m GNUPro Tools for Embedded Systems GNUPro Toolkit

Loading on specific targets

(gdb) target hms com1

Connected to remote H8/300 HMS system.
(gdb) load t.x

.text: 0x8000 .. Oxabde ****rxxrrrk

.data: Oxabde .. 0xad30 *

.stack: 0xf000 .. 0xf014 *

At this point, you're ready to run or debug your program. Now you can use all of
the followinggdb commands.
break
Set breakpoints.
run
Start your program.
print
Display data.
continue
Resume execution after stopping at a breakpoint.

help
Display full information abougdb commands.

NOTE. Remember that operating system facilities aren’t available on your
development board. For example, if your program hangs, you can’t send an
interrupt—but you can press tReSET switch to interrupt your program.

Return to your program’s process with théb) command prompt after your
program finishes its hanging. The communications protocol provides no other
way forgdb to detect program completion. In either cage, sees the effect
of a reset on the development board asmmnal“exit " command to the
program
To use the E7000 in-circuit emulator to develop code for either the Hitachi H8/300 or
the H8/300H, use one of the following forms of thrget e7000 command to
connecigdb to your E7000.

target e7000 port speed
Use this command if your E7000 is connected to a serial porpofheargument
identifies what serial port to use (for exammeMm2. The third argumentpeed ,
is the line speed in bits per second (for example, input migbedog.

target e7000 hostname
If your E7000 is installed as a host on a TCP/IP network, substitute the network
name forhostname during the connectiogdb usegelnet to connect. The
monitor command set makes it difficult to load large amounts of data over the
network without usingtp . We recommend you try not to issded commands
when communicating over Ethernet; instead, us&dlbed command.

CYGNUS

GNUPro Tools for Embedded Systems m 29

Loading on specific targets

30 = GNUPro Tools for Embedded Systems GNUPro Toolkit

Hitachi SH development

The following documentation discusses cross-development with the Hitachi SH
processor.

« “Compiling on SH targets” on page 32

« “Preprocessor macros for SH targets” on page 34

« “Assembler options for SH targets” on page 35

« “Calling conventions for SH targets” on page 37

« “Debugging on SH targets” on page 38

Cross-development targets using the GNUPro Toolkit normally install with names
that reflect the target machine, so that you can install more than one set of tools in the
same binary directory. The target name, constructed withtdhget option to

configure , is used as a prefix to the program name. For example, the compiler for the
Hitachi SH (callinggec in native configurations) is namesthms-gcc .

For more documentation on the Hitachi SH, SeeMicrocomputer User’'s Manual
(Semiconductor Design & Development Center, 1992)Hitathi SH2

Programming Manual(Semiconductor and Integrated Circuit Division, 1994), from
Hitachi SH Microsystems; contact your Field Application Engineer for details.

CYGNUS

GNUPro Tools for Embedded Systems = 31

Compiling on SH targets

Compilin g on SH tar gets

The Hitachi SH target family toolchain controls variances in code generation directly
from the command line.

When you rurgec, you can use command-line options to choose whether to take
advantage of the extra Hitachi SH machine instructions, and whether to generate code
for hardware or software floating point.

Compiler options for SH

When you rurycc, you can use command-line options to choose machine-specific
details. For information on all the gcc command-line options, see “GNU CC
Command Options” ilvsing GNU CCn GNUPro Compiler Tools

Compiler options for architecture/code generation for SH

-9
The compiler debugging optica is essential to see interspersed high-level
source statements, since without debugging information the assembler cannot tie
most of the generated code to lines of the original source file.

-mshl
Generate little-endian Hitachi SH COFF output.

-ml
Generate code for the Hitachi SH-1 chip. This is the default behavior for the
Hitachi SH configuration.

-m2
Generate code for the Hitachi SH-2 chip.

-m3
Generate code for the Hitachi SH-3 chip.

-m3e
Generate code for the Hitachi SH-3E chip.

-mhitachi
Use Hitachi’s calling convention rather than thatdar. The registerayAcHand
MACI, are saved with this setting (see “Calling conventions for SH targets” on
page 37).

-mspace
Generate small code rather than fast code. By defauligenerates fast code
rather than small code.

-mb
Generate big endian code. This is the default.

32 = GNUPro Tools for Embedded Systems GNUPro Toolkit

Compiler options for SH

-ml
Generate little endian code.

-mrelax
Do linker relaxation. For the Hitachi SH, this meansjtsheinstruction can be
converted to thesr instruction.-mrelax replaces the obsolete optiempsr .

-mbigtable
Generate jump tables for switch statements using four-byte offsets rather than the
standard two-byte offset. This option is necessary when the code within a switch
statement is larger than 32K. If the option is needed and not supplied, the
assembler will generate errors.

Floating point subroutines for SH

Two kinds of floating point subroutines are useful with.

« Software implementations of the basic functions (floating-point multiply, divide,
add, subtract), for use when there is no hardware floating-point support.

« General-purpose mathematical subroutines.
The GNUPro Toolkit from Cygnus includes an implementation of the standard C
mathematical subroutine library. See “Mathematical Functieas.q)” in
GNUPro Math Libraryin GNUPro Libraries

CYGNUS GNUPro Tools for Embedded Systems m 33

Preprocessor macros for SH targets

Preprocessor macros for SH tar gets

gee defines the following preprocessor macros for the Hitachi SH configurations:
Any Hitachi SH architecture:
_sh__
Any Hitachi SH1 architecture:
_shl1
Any Hitachi SH2 architecture:
_sh2__
Any Hitachi SH3 architecture:
__sh3
Any Hitachi SH3E architecture:
__sh3e__
Hitachi SH architecture with little-endian numeric representation:
__little_endian___
Big-endian numeric representation is the default in Hitachi SH architecture.

34 = GNUPro Tools for Embedded Systems GNUPro Toolkit

Assembler options for SH targets

Assembler options for SH tar gets

The following documentation discusses the assembler options for the Hitachi SH
processor.

General assembler options for SH

To use the GNU assembler to assembleoutput, configurgec with the switch,
--with-gnu-as (in GNUPro Toolkit distributions) or with thengas option.
-mgas
Compile usings to assemblgcc output.
-Wa
If you invokeas through the GNU C compiler (version 2), you can use-the *

option to pass arguments through to the assembler. One common use of this option

is to exploit the assembler’s listing features. Assembler arguments that you
specify withgec -wa must be separated from each other by commas like the
options,-alh and-L , in the following example input separate froma.

$ h8300-hms-gcc -¢ -g -O -Wa,-alh, -L file.c

The additional assembler option * preserves local labels, which may make the
listing output more intelligible to humans.
For example, in the following commandline, the assembler optian, requests
a listing interspersed with high-level language and assembly language.

$ h8300-hms-gcc -c -g -O -Wa,-alh, -L file.c
‘L’ preserves local labels, while the compiler debugging optigngives the
assembler the necessary debugging information.

Assembler options for listing output for SH

Use the following options to enaldisting output from the assembl@he letters after
‘-a’ may be combined into one option, suchas).
-a

By itself, ‘-a’ requests listings of high-level language source, assembly language,

and symbols.
-ah

Request a high-level language listing.
-al

Request an output-program assembly listing.
-as

Request a symbol table listing.

CYGNUS

GNUPro Tools for Embedded Systems m 35

Assembler options for SH targets

-ad
Omitdebugging directives from the listing.

High-level listings require that a compiler debugging option, l&é be used, and
that assembly listings4|) also be requested.

Assembler listing-control directives for SH

Use the following listing-control Hitachi SH assembler directives to control the
appearance of the listing output (if you do not request listing output with one of the
‘-a’ options, the following listing-control directives have no effect).
list

Turn on listings for further input.

.nolist
Turn off listings for further input.

.psize linecount , columnwidth
Describe the page size for your output (the defaeti,isoo). as generates form
feeds after printing each groupiakcount lines. To avoid these automatic form
feeds, specify aslinecount . The variable input fotolumnwidth uses the same
descriptive option.

.eject
Skip to a new page (issue a form feed).

title
Use as the title (this is the second line of the listing output, directly after the
source file name and page number) when generating assembly listings.

.sbittl
Use as the subtitle (this is the third line of the listing output, directly after the title
line) when generating assembly listings.

-an
Turn off all forms processing.

36 = GNUPro Tools for Embedded Systems GNUPro Toolkit

Calling conventions for SH targets

Callin g conventions for SH tar gets

The Hitachi SH passes the first four words of arguments in regigtett&,oughr?.

All remaining arguments are pushed onto the stack, last to first, so that the lowest
numbered argument not passed in a register is at the lowest address in the stack. The
registers are always filled, so a double word argument, startiigy imould have the

most significant word ir7 and the least significant word on the stack. Function return
values are stored mo andr7. Registersro throughrz, as well asmAcCHandMACLcan

be used for temporary values. When a function is compiled with the default options, it
must return with registergs throughr1, unchanged.

The switch mhitachi SH , makes themAcHandMACLregisters caller-saved, for
compatibility with the Hitachi SH tool chain at the expense of performance.

NOTE:. Functions compiled with different calling conventions cannot be run together
without some care.

CYGNUS GNUPro Tools for Embedded Systems m 37

Debugging on SH targets

Debugging on SH tar gets

The Hitachi SH-configured debuggetp, is calledsh-hms-gdb .
gdb needs to know the following specifications to talk to your Hitachi SH.
« Specifications for one of the following interfaces:
target remote
gdb’s generic debugging protocol, for using with the Hitachi low-cost
evaluation boardLCEVB) runningCMON.
target hms
Interface to SHval boards running the HMS monitor.
target e7000
E7000 in-circuit emulator for the Hitachi SH.

target sim
Simulator, which allows you to rulb remotely without an external device.

« Specifications for what serial device connects your host to your Hitachi board (the
first serial device available on your host is the default).

« Specifications for what speed to use over the serial device (if you are using a Unix
host).

Use one of the followingdo commands to specify the connection to your target
board.

target interface port
To run a program on the board, starigdp with the name of your program as the
argument. To connect to the board, use the comnuagel, interface port ,
whereinterface is an interface from the previous list gruek is the name of the
serial port connected to the board. If the program has not already been
downloaded to the board, you may useldhe command to download it. You
can then use all the usugb commands.

For example, the following example’s sequence connects to the target board

through a serial port, and loads and runs a program (designateg der

variable-dependent input in the following example) through the debugger.
host$ sh-hms-gdb prog

(gdb) target remote /dev/ttyb

(gdb) load

(gdb) run

38 = GNUPro Tools for Embedded Systems GNUPro Toolkit

Debugging on SH targets

target interface hostname . portnumber

You can specify a TCP/IP connection instead of a serial port, using the syntax,
hostname : portnumber (assuming your board, designated hergoamame , is
connected so that this makes sense; for instance, the connection may use a serial
line, designated by your varialpjertnumber input, managed by a terminal
concentrator).

gdb also supportset remotedebug n. You can see some debugging information
about communications with the board by setting the variabigith the
commandremotedebug .

CYGNUS

GNUPro Tools for Embedded Systems m 39

Debugging on SH targets

40 = GNUPro Tools for Embedded Systems GNUPro Toolkit

MIPS development

The following documentation discusses cross-development with the MIPS family of
processors.

« “Compiling on MIPS targets” on page 42

« “Preprocessor macros for MIPS targets” on page 46
« “Assembler options for MIPS targets” on page 47

« “Debugging on MIPS targets” on page 52

« “Linking MIPS with the GOFAST library” on page 54

For documentation about the MIPS instruction setMi&S RISC Architecture by
Kane and Heindrich (Prentice-Hall).

Cross-development tools in the GNUPro Toolkit are normally installed with names
that reflect the target machine, so that you can install more than one set of tools in the
same binary directory. The target name, constructed withtdhget option to

configure , is used as a prefix to the program name. For example, the compiler for
MIPS (usinggec in native configurations) is called by one of the following names,

depending on which configuration you installets-ecoff-gcc , if configured for
big-endian byte ordering, amtlpsel-ecoff-gcc , if configured for little-endian byte
ordering.

CYGNUS

GNUPro Tools for Embedded Systems = 41

Compiling on MIPS targets

Compilin g on MIPS tar gets

The MIPS target family toolchain controls variances in code generation directly from
the command line. When you rgec, you can use command-line options to choose
whether to take advantage of the extra MIPS machine instructions, and whether to
generate code for hardware or software floating point.

Compiler options for MIPS

When you rurgec, you can use command-line options to choose machine-specific
details. For information on all thee command-line options, see “GNU CC

Command Options” ilusing GNU CGn GNUPro Compiler ToolsThere are a great
many compiler options for specific MIPS targets. Options for architecture and code
generation are for all MIPS targets (see “Options for architecture and code generation
for MIPS”).

NOTE: The compiler optionsmips2 , -mips3 and-mips4 , cannot be used on the
MIPS R3000.

Options for architecture and code generation for MIPS

The following options for architecture and code generation can be used on all MIPS
targets.
-9
The compiler debugging optiof, , is essential to locate interspersed high-level
source statements, since without debugging information the assembler cannot tie
most of the generated code to lines of the original source file.
-mcpu=r3000
-mcpu= cputype
Since most MIPS boards are based on the MIPS R3000.
The default for this particular configuration-iscpu=r3000 .

In the general case, usecpu=r3000 on any MIPS platform to assume the
defaults for the machine typegutype , when scheduling instructions.

The defaulteputype , on other MIPS configurations ig00 , which picks the
longest cycle times for any of the machines, in order that the code run at
reasonable rates on any MIPS processor.

Other choices fotputype arer2000 , r3000 , r4000 , r6000 , r4400 , r4600 , r4650 ,
r8000 , andorion .

While picking a specifieputype will schedule things appropriately for that
particular chip, the compiler will not generate any code that does not meet level 1

42 m GNUPro Tools for Embedded Systems GNUPro Toolkit

Options for architecture and code generation for MIPS

of the MIPS ISA (Instruction Set Architecture) unless you usentipe2 ,
-mips3 , Or-mips4 switch.
-mipsl
Generate code that meets level 1 of the MIPS ISA.
-mips2
Generate code that meets level 2 of the MIPS ISA.
-mips3
Generate code that meets level 3 of the MIPS ISA.
-mips4
Generate code that meets level 4 of the MIPS ISA.
-meb
Generate big endian code.
-mel
Generate little endian code.
-mad
Generate multiply-add instructions, which are part of the MIPS 4650.
-m4650
Generate multiply-add instructions along with single-float code.
-mfp64
Select the 64-bit floating point register size.
-mfp32
Select the 32-bit floating point register size.
-mgp64
Select the 64-bit general purpose register size.
-mfp32
Select the 32-bit general purpose register size.
-mlong64
Make long integers 64 bits long, not the default of 32 bits long. This works only if
you're generating 64-bit code.
-G num
Put global and static items less than or equalitdbytes into the smalldata ’ or
‘.bss ’ sections instead of into the normalata * and ‘.bss ' sections.

This allows the assembler to emit one-word memory reference instructions based
on the global pointergp or $28),instead of on the normal two words used. By
default,numis 8.

When you specify another valuge also passes thes nuni switch to the
assembler and linker.

CYGNUS GNUPro Tools for Embedded Systems m 43

Compiler options for floating point for MIPS

Compiler options for floating point for MIPS

The following options select software or hardware floating point.
-msoft-float

Generate output containing library calls for floating point. mipe-ecoff
configuration ofibgcc (an auxiliary library distributed with the compiler)
includes a collection of subroutines to implement these library calls.

In particular, thigicc configuration generates subroutine calls compatible with the
US Software GOFAST R3000 floating point library, giving you the opportunity to
use either thébgcc implementation or the US Software version.

To use thelibgcc ' version, you need nothing specigdr links with libgcc
automatically after all other object files and libraries.

Because the calling convention for MIPS architectures depends on whether or not
hardware floating-point is installedrisoft-float " has one further effectcc

looks for sub-routine libraries in a subdirectosgft-float ’, for any library

directory in your search patin@Te: This does not apply to directories specified
using the-1 ’ option.) With GNUPro Toolkit, you can select the standard libraries
as usual with the optionsjc' ' or ‘-Im ’, because the soft-float versions are

installed in the default library search paths.

WARNING: Treat “msoft-float " as anall or nothingproposition. If you compile any

program’s module withmsoft-float , it's safest to compile all modules of
the program that way—and it's essential to use this option when you link.

-mhard-float

Generate output containing floating point instructions, and use the corresponding
MIPS calling convention. This is the default.

-msingle-float

Generate code for a target that only has support for single floating point values,
such as the MIPS 4650.

Floating point subroutines

Two kinds of floating point subroutines are useful wth:

Software implementations of the basic functions
Floating-point functionality fomultiply, divide, add, subtractusage, used when
there is no hardware floating-point support.

When you indicate that no hardware floating point is available (withche
option-msoft-float , gcc generates calls compatible with the US Software
GOFAST library. If you do not have this library, you can still use software
floating point; liogec ', the auxiliary library distributed withec , includes

44 m GNUPro Tools for Embedded Systems GNUPro Toolkit

Floating point subroutines

compatible—though slower—subroutines.

General-purpose mathematical subroutines

GNUPro Toolkit includes an implementation of the standard C mathematical
subroutine library. See “Mathematical FunctionsGNUPro Math Libraryin
GNUPro Libraries

CYGNUS

GNUPro Tools for Embedded Systems m 45

Preprocessor macros for MIPS targets

Preprocessor macros for MIPS tar gets

gee defines the following preprocessor macros for the MIPS configurations.
Any MIPS architecture:

__Mmips__

MIPS architecture with big-endian numeric representation:
__MIPSEB__

MIPS architecture with little-endian numeric representation:
_ MIPSEL__

46 = GNUPro Tools for Embedded Systems GNUPro Toolkit

Assembler options for MIPS targets

Assembler options for MIPS tar gets

To use the GNU assembler to assemgbdeoutput, configurgcec with the
--with-gnu-as or the-mgas option.
-mgas
Compile usingyas to assemblgcc output.
-Wa
If you invokegas through the GNU C compiler (version 2), you can use-thig *
option to pass arguments through to the assembler. One common use of this option
is to exploit the assembler’s listing features. Assembler arguments that you
specify withgec -wa must be separated from each other by commas like the
options,-alh and-L , in the following example input separate froma.
$ mips-ecoff-gcc -c -g -O -Wa,-alh, -L file.c

The additional assembler option * preserves local labels, which may make the
listing output more intelligible to humans.
For example, in the following commandline, the assembler optian, requests
a listing interspersed with high-level language and assembly language.

$ mips-ecoff-gcc -c -g -O -Wa,-alh, -L file.c
‘-L’ preserves local labels, while the compiler debugging optigngives the
assembler the necessary debugging information.

Assembler options for listing output for MIPS

Use the following options to enalisting output from the assembl@he letters after
‘-a’ may be combined into one option, suchaas).
-a
By itself, ‘-a’ requests listings of high-level language source, assembly language,
and symbols.
-ah
Request a high-level language listing.
-al
Request an output-program assembly listing.
-as
Request a symbol table listing.
-ad
Omitdebugging directives from the listing.
High-level listings require that a compiler debugging option, li&é& be used, and
that assembly listingse{) also be requested.

CYGNUS GNUPro Tools for Embedded Systems m 47

Assembler listing-control directives for MIPS

Assembiler listing-control directives for MIPS

Use the following listing-control assembler directives to control the appearance of the
listing output (if you do not request listing output with one of thé options, the
following listing-control directives have no effect).
list

Turn on listings for further input.

.nolist
Turn off listings for further input.
.psize linecount , columnwidth

Describe the page size for your output (the defawali,iso0). as generates form
feeds after printing each groupiakcount lines. To avoid these automatic form
feeds, specify aslinecount . The variable input fotolumnwidth uses the same
descriptive option.

.eject
Skip to a new page (issue a form feed).

title
Use as the title (this is the second line of the listing output, directly after the
source file name and page number) when generating assembly listings.

.sbittl
Use as the subtitle (this is the third line of the listing output, directly after the title
line) when generating assembly listings.

-an
Turn off all forms processing.

Special assembler options for MIPS

The MIPS configurations afas support three special options, accepting one other for
command-line compatibility. See “Command-Line OptionstUsing ASn GNUPro
Utilities for information on the command-line options available with all
configurations of the GNU assembiler.
-G num
This option sets the largest size of an object that will be referenced implicitly with
thegp register. It is only accepted for targets that use ECOFF format. The default
value fornumis 8.
-EB
-EL
Any MIPS configuration ofas can select big-endian or little-endian output at run
time (unlike the other GNU development tools, which must be configured for one
or the other). UseeB to select big-endian output, argl for little-endian.

48 m GNUPro Tools for Embedded Systems GNUPro Toolkit

Assembler directives for debugging information

-nocpp
This option is ignored. It is accepted for command-line compatibility with other
assemblers, which use it to turn off C-style preprocessing. With the GNU
assembler, there is no need faicpp , because the GNU assembler itself never
runs the C preprocessor.

Assembler directives for debugging information

MIPS ECOFF usingas supports several directives for generating debugging
information that are not supported by traditional MIPS assemblers:

def endef dim
file scl size
tag type val
stabd stabn stabs

The debugging information generated by the thwee directives can only be read
by gdb, not by traditional MIPS debuggers (this enhancement is required to fully
support C++ debugging). These directives are primarily used by compilers, not
assembly language programmers. See “Assembler Directiveising ASn
GNUPro Utilities for full information on all GNU assembler directives.

MIPS ECOFF object code

The assembler supports some additional sections for a MIPS ECOFF target besides
the usualtext ,.data and.bss . The additional sections have the following
definitions.
.rdata

For readonly data
.sdata

For small data
.shss

For small common objects

When assembling for ECOFF, the assembler usesjth@28) register to form the
address of a small object. Any object in #fuata or.sbss section is considered

small in this sense. Using small ECOFF objects requires linker support, and assumes
that thesgp register has been correctly initialized (normally done automatically by the
startup code).

NOTE:. MIPS ECOFF assembly code must not modifydite register.

CYGNUS GNUPro Tools for Embedded Systems m 49

Options for MIPS ECOFF object code

Options for MIPS ECOFF object code

gce -G
For external objects, or for objects in thes section, you can use thec -G
option to control the size of objects addressed ugjpgthe default value is,
meaning that a reference to any object eight bytes or smaller wihpise

-GO
PassingG 0 togas preventgias from using thesgp register on the basis of object
size (the assembler uskp for objects insdata 0r.sbss in any case).

Directives for MIPS ECOFF object code

.comm

.Ilcomm
The size of an object in thiess section is set by theomm or .lcomm directive
that defines it.

.extern
The size of an external object may be set withdkiern directive. Use the
following input, for example.

.extern sym, 4

This directive declares that the objec#yat is 4 bytes in length, while leavirgm
otherwise undefined.

Registers used for integer arguments for MIPS

Arguments on MIPS architectures are not split, so that, if a double word argument
starts inR7, theentire word gets pushetzhto the stackistead of being spliietween

R7 and the stack. If the first argument is an integer, MIPS uses the following registers
for all arguments. The following calling convention for MIPS architectures depends
on whether or not hardware floating-point is installed. Even if it is, MIPS uses the
registers for integer arguments wheneveffitis¢ argument is an integer. MIPS uses

the registers for floating-point arguments only for floating-point arguments and only if
thefirst argument is a floating point. The following calling convention for MIPS also
depends on whether standard 32-bit mode or Cygnus 64-bit mode is in use; 32-bit
mode only allows MIPS to use even numbered registers, while 64-bit mode allows
MIPS to use both odd and even numbered registers.

NOTE: Functions compiled with different calling conventions cannot be run together
without some care.

« MIPS passes the first four words of arguments in regigietisroughr7, which
are also called registeas throughas.

« If the function return values are integers, they are stored #amdRr3.

50 = GNUPro Tools for Embedded Systems GNUPro Toolkit

Registers used for floating-point arguments for MIPS

Registers used for floating-point arguments for MIPS

If the first argument is a floating-point, MIPS uses the following registers for
floating-point arguments.

« In32-bit mode, MIPS passes the first four words of arguments in registeasd
F14.

« In 64-bit mode, MIPS passes the first four words of arguments in registers
throughFis.

If the function return value is a floating-point, it's storedton.

Calling conventions for integer arguments for MIPS

The following conventions apply to integer arguments.

RO is hardwired to the value 81, which is also calledT, is reserved as the
assembler’s temporary registees throughr29 andr31 have reserved uses.
RegistergR2 throughr1s, R24, andr25 can be used for temporary values.

When a function is compiled with the default options, it must returnmaigtthrough
R23 andR30 unchanged.

Calling conventions for floating-point arguments for
MIPS

The following conventions apply to floating-point arguments.

None of the registers has a reserved use.

« In 32-bit modeFo throughFi1s can be used for temporary values. When a
function is compiled with the default options, it must return with throughr3o
unchanged.

« In 64-bit modeFo throughF19 can be used for temporary values. When a
function is compiled with the default options, it must return witt throughrF3ai
unchanged.

CYGNUS GNUPro Tools for Embedded Systems m 51

Debugging on MIPS targets

Debugging on MIPS tar gets

The MIPS-configureddb uses the calling conventiomips-ecoff-gdb
gdb needs to know the following things to talk to your MIPS target.

« Specifications for what serial device connects your host to your MIPS board (the
first serial device available on your host is the default).

« Specifications for what speed to use over the serial device.

mips-ecoff-gdb uses the MIPS remote serial protocol to connect your development
host machine to the target board.

Use one of the followingdo commands to specify the connection to your target
board.
target mips port
To run a program on the board, starigdp with the name of your program as the
argument.

To connect to the board, use the commangkt mips port , whereport is the
name of the serial port connected to the board. If the program has not already been
downloaded to the board, you may useldtheé command to download it.

You can then use all the usgab commands.

For example, the following example’s sequence connects to the target board

through a serial port, and loads and runs a program (designateg der

variable-dependent input in the following example) through the debugger.
host$ mips-ecoff-gdb prog

(gdb) target remote /dev/ttyb

(gdb) load

(gdb) run

target mips hostname : portnumber
You can specify a TCP/IP connection instead of a serial port, using the syntax,
hostname : portnumber (@assuming your board, designated hereoamame , is
connected so that this makes sense; for instance, the connection may use a serial
line, designated by your varialpjertnumber input, managed by a terminal
concentrator).

gdb also supports the special commadud mipsfpu off , for MIPS targets.

52 = GNUPro Tools for Embedded Systems GNUPro Toolkit

Debugging on MIPS targets

If your target board does not support the MIPS floating point coprocessor, you should
use the commandet mipsfpu off (found in yourgdbinit file). This tellsgdb

how to find the return value of functions returning floating point values. It also allows
gdb to avoid saving the floating point registers when calling functions on the board.

If you neglect to use the command:, mipsfpu off , some calls will fail, such as

print strlen (“abc")

set remotedebug n
You can locate some debugging information about communications with the
board by setting themotedebug Vvariable. If you set it to 1 using
set remotedebug 1 , every packet will be displayed. If you set it to 2, every
character will be displayed. You can check the current value at any time with the
commandshow remotedebug .

CYGNUS

GNUPro Tools for Embedded Systems m 53

Linking MIPS with the GOFAST library

Linkin g MIPS with the GOFAST librar y

The GOFAST library is available with two interfaces.

gcc -msoft-float’ output places all arguments in registers, which (for subroutines
usingdouble arguments) is compatible with the interface identified as
“Interface 1: all arguments in registers " in the GOFAST documentation.

For information about US Software’s floating point library, r&t&i Software
GOFAST R3000 Floating Point Library{United States Software Corporation).

For full compatibility with all GOFAST subroutines, you need to make a slight
modification to some of the subroutines in the GOFAST library.

If you purchase and install the GOFAST library, you can link your code to that library
in a number of different ways, depending on where and how you install the library. To
focus on the issue of linking, the following examples assume you've already built
object modules with appropriate options (includimgoft-float).

This is the simplest case; it assumes that you've installed the GOFAST library as the
file, fp.a , in the same directory where you do development, as shown in the GOFAST
documentation.

$ mips-ecoff-gcc -0 prog prog.o...-Ilc fp.a

In a shared development environment, the following example may be more realistic.

IMPORTANT! The following documentation assumes you've installed the GOFAST library
asuser-dir /libgofast.a , Where Userdir '’ is an apporpriate directory on
your development system.
$ mips-ecoff-gcc -0 program program.o... -lc -Lussdir -Igofast
You can eliminate the need forla option with a little more setup, using an
environment variable like the following example (the example assumes you use a
command shell compatible with the Bourne shell):

$ LIBRARY_PATH= ussdir; export LIBRARY_PATH

$ mips-ecoff-gcc -0 program program.o...-Ic -Igofast
The GOFAST library is installed in the directotgerdir /libgofast.a , and the
environment variable,IBRARY_PATH instructsycc to look for the library iruserdir
(The syntax shown here for setting the environment variable is the Unix Bourne Shell,
/bin/sh , syntax; adjust as needed for your system.)

NOTE: All the variations on linking with the GOFAST library explicitly include
‘Ilc " before the GOFAST library-lt ' is the standard C subroutine library;
normally, you don’t have to specify this subroutine, since linking with the
GOFAST library is automatic.

54 = GNUPro Tools for Embedded Systems GNUPro Toolkit

Full compatibility with the GOFAST library for MIPS

When you link with an alternate software floating-point library, however, the order of
linking is important. In this situation, specifyc' ’ to the left of the GOFAST library,
to ensure that standard library subroutines also use the GOFAST floating-point code.

Full compatibility with the GOFAST library for MIPS

Thegce calling convention for functions whose first and second arguments have type,
float , is not completely compatible with the definitions of those functions in the
GOFAST library, as shipped. The following functions are affected:

fpcmp fpadd fpsub
fpmul fpdiv fpfmod
fpacos fpasin fpatan
fpatan2 fppow

Since the GOFAST library is normally shipped with source, you can make these
functions compatible with thgzc convention by adding the following instruction to
the beginning of each affected function, then rebuilding the library.

move $5,$6

CYGNUS

GNUPro Tools for Embedded Systems m 55

Full compatibility with the GOFAST library for MIPS

56 = GNUPro Tools for Embedded Systems GNUPro Toolkit

Motorola m68k development

The following documentation discusses cross-development with the Motmgda
targets.
« “Compiling for m68k targets” on page 58
“Preprocessor macros for mé8k targets” on page 59
“Assembler options for m68k targets” on page 60
« “Debugging on m68k targets” on page 62

Cross-development tools in the GNUPro Toolkit are normally installed with names
that reflect the target machine, so that you can install more than one set of tools in the
same binary directory. The target name, constructed with-thrget ’ option to

configure , is used as a prefix to the program name. For example, the compiler for the
Motorolamésk (gec in native configurations) is called, depending on which
configuration you have installed, 68k-coff-gcc ~ Or m68k-aout-gcc

CYGNUS GNUPro Tools for Embedded Systems m 57

Compiling for m68k targets

Compilin g for m68K targets

The Motorolamésk target family toolchain controls variances in code generation
directly from the command line.

When you ruryec, you can use command-line options to choose whether to take
advantage of the extra Motoratssk machine instructions, and whether to generate
code for hardware or software floating point.For information on aljdbe
command-line options, see “GNU CC Command OptiongJsing GNU CGin
GNUPro Compiler Tools
-9

The compiler debugging optios, , is essential to see interspersed high-level

source statements, since without debugging information the assembler cannot tie

most of the generated code to lines of the original source file.
-m68000
Generate code for the Motorot&so00.
-m68020
Generate code for the Motorot@sgo20.
-m68030
Generate code for the Motorot&so30.
-m68040
Generate code for the Motorot@sgo40. Also enables code generation for the
68881 FPU by default.
-m68060
Generate code for the Motorot@so60. Also enables code generation for the
68881 FPU by default.
-m68332
Generate code for the Motoralgu32 family, of which the Motorolan6s332 is a
member.

Options for floating point

-msoft-float
Generate output containing library calls for floating point. The Motorola
configurations ofibgcc include a collection of subroutines to implement these
library calls.

-m68881
Generate code for the Motorotasss1 FPU.

58 m GNUPro Tools for Embedded Systems GNUPro Toolkit

Floating point subroutines

Floating point subroutines

The following two kinds of floating point subroutines are useful with GCC.

Preprocessor macros for

Software implementations of the

basic functions (floating-point multiply, divide,

add, subtract), for use when there is no hardware floating-point support.

General-purpose mathematical subroutines, included with implementation of the
standard C mathematical subroutine library. See “Mathematical Functions” in

GNUPro Math Libraryin GNUPro

Libraries

mM68K targets

gee defines the following preprocessor macros for the Motonekk configurations.

Any Motorolamésk architecture:
_mc68000___

Any Motorolam68010 architecture:

—.mc68010___

Any Motorolam68020 architecture:

_.mc68020__

Any Motorolam68030 architecture:

—.mc68030___

Any Motorolamé8040 architecture:

_.mc68040___

Any Motorolam68o60 architecture:

—.mc68060___

Any Motorolamé8332 architecture:

_.mc68332__

Any Motorolamegss1 architecture:

__ HAVE_68881__

CYGNUS

GNUPro Tools for Embedded Systems m 59

Assembler options for m68k targets

Assembler options for me68k targets

To use the GNU assemblggs, to assemblgec output, configurgec with the
--with-gnu-as switch or with themgas option.
-mgas
Compile usingss to assemble GCC output.
-Wa
If you invokegas through the GNU C compiler (version 2), you can usewuhe
option to pass arguments through to the assembler. One common use of this option
is to exploit the assembler’s listing features.

Assembler arguments that you specify wjth-wa must be separated from each
other (and the -Wa) by commas, like the optieais, and-L, in the following
example input, separate fromva.

$ m68k-coff-gcc -¢c -g -O -Wa,-alh, -L file.c

The additional assembler option,, preserves local labels, which may make the
listing output more intelligible to humans.
For example, in the following commandline, the assembler optian, requests
a listing with interspersed high-level language and assembly language.

$ m68k-coff-gcc -c -g -O -Wa,-alh,-L file.c
-L preserves local labels, while the compiler debugging optiqgrgives the
assembler the necessary debugging information.

Assembler options for listing output

Use the following options to enable listing output from the assembler. The letters after
‘-a’ may be combined into one option, such-as .
-a
By itself, -a’ requests listings of high-level language source, assembly language,
and symbols.
-ah
Requests a high-level language listing.
-al
Request an output-program assembly listing.
-as
Requests a symbol table listing.
-ad
Omits debugging directives from listing. High-level listings require a compiler
debugging option likeg , and assembly listings (such-als) requested.

60 = GNUPro Tools for Embedded Systems GNUPro Toolkit

Assembler listing-control directives

Assembler listing-control directives

Use the following listing-control assembler directives to control the appearance of the
listing output (if you do not request listing output with one of thé options, the
following listing-control directives have no effect).
list

Turn on listings for further input.

.nolist
Turn off listings for further input.
.psize linecount , columnwidth

Describe the page size for your output (the defawali,iso0). as generates form
feeds after printing each groupiakcount lines. To avoid these automatic form
feeds, specify aslinecount . The variable input fotolumnwidth uses the same
descriptive option.

.eject
Skip to a new page (issue a form feed).

title
Use as the title (this is the second line of the listing output, directly after the
source file name and page number) when generating assembly listings.

.sbittl
Use as the subtitle (this is the third line of the listing output, directly after the title
line) when generating assembly listings.

-an
Turn off all forms processing.

Calling conventions for mM68K targets
The Motorolamésk pushes all arguments onto the stack, last to first, so that the lowest
numbered argument not passed in a register is at the lowest address in the stack.

Function return values for integers are storegdiandDi1. A7 has a reserved use.
Registersano, A1, DO, D1, FO, andrF1 can be used for temporary values.

When a function is compiled with the default options, it must return with registers
throughD7 and registers2 throughas unchanged.

If you have floating-point registers, then registexghroughrF7 must also be
unchanged.

NOTE:. Functions compiled with different calling conventions cannot be run together
without some care.

CYGNUS GNUPro Tools for Embedded Systems m 61

Debugging on m68k targets

Debugging on M68K targets

Themesk-configuredgdb is called bym6sk-coff-gdb Or m68k-aout-gdb
gdb needs to know the following specifications to talk to your Motow@ak.

« Specifications for wanting to use one of the following interfaces:

target rom68k
ROM monitor for the IDP board.

target cpu32bug
ROM monitor for other Motorola boards, such as the Motorola Business Card
Computer, BCC.

target est
EST Net/300 emulator.

target remote
gdb’s generic debugging protocol.

« Specifications for what serial device connects your host toryegk board (the
first serial device available on your host is the default).

»« Specifications for what speed to use over the serial device.

Use the followinggdo commands to specify the connection to your target board.
target interface serial-device
To run a program on the board, starigdp with the name of your program as the
argument. To connect to the board, use the comnuaget, interface
serial-device , Whereinterface is an interface from the previous list of
specifications anderial-device is the name of the serial port connected to the
board. If the program has not already been downloaded to the board, you may use
theload command to download it. You can then use all the ugibatommands.
For example, the following sequence connects to the target board through a serial
port, and loads and runs programs, designated heregasthrough the debugger.
host$ m68k-coff-gdb prog
GDB is free software and...
(gdb) target cpu32bug /dev/ttyb

(gdb) load

(gdb) run

62 = GNUPro Tools for Embedded Systems GNUPro Toolkit

Debugging on m68k targets

target m68k hostname : portnumber
You can specify a TCP/IP connection instead of a serial port, using the syntax,
hostname : portnumber (assuming your board, designated hergoamame , is
connected, for instance, to use a serial line, designateattbymber , managed
by a terminal concentrator).

gdb also supportset remotedebug n. You can see some debugging information
about communications with the board by setting the variadheiedebug .

CYGNUS GNUPro Tools for Embedded Systems m 63

Debugging on m68k targets

64 = GNUPro Tools for Embedded Systems GNUPro Toolkit

PowerPC development

The following documentation discusses cross-development with the PowerPC targets.
« “Compiling for PowerPC targets” on page 66

“Assembler options for PowerPC targets” on page 74
« “Debugging PowerPC targets” on page 76

Cross-development tools in the GNUPro Toolkit are normally installed with names
that reflect the target machine, so that you can install more than one set of tools in the
same binary directory. The target name, constructed with-thrget ’ option to

configure , is used as a prefix to the program name. For example, the compiler for the
PowerPC(gcc in native configurations) is called, depending on which configuration
you have installed, byowerpc-eabi-gcc

The following processors are supported for the PowerPC targets.

403Gx 603(e)
505 604
601 604(e)
602 821
603 860

CYGNUS

GNUPro Tools for Embedded Systems = 65

Compiling for PowerPC targets

Compilin g for PowerPC tar gets

The PowerPC target family toolchain controls variances in code generation directly
from the command line.

When you rurgec, you can use command-line options to choose whether to take
advantage of the extra PowerPC machine instructions, and whether to generate code
for hardware or software floating point.

When you rurgec, you can use command-line options to choose machine-specific
details.

Thesem options are defined for the and PowerPC.

-mpower
-mno-power

-mpower2

-mno-power2

-mpowerpc

-mno-powerpc

-mpowerpc-gpopt

-mno-powerpc-gpopt

-mpowerpc-gfxopt

-mno-powerpc-gfxopt
GNU CC supports two related instruction set architectures for the IBM RS/6000
and PowerPC. THeBOWERInstruction set are those instructions supported by the
rios chip set used in the original RS/6000 systems anBaResrPCinstruction
set is the architecture of the Motorola MP&IVIPC6xx, MCP8&x and the IBM
4xx microprocessors. The PowerPC architecture defines 64-bit instructions, but

they are not supported by any current processors.

Neither architecture is a subset of the other. However there is a large common
subset of instructions supported by both. An MQ register is included in processors
supporting the POWER architecture.

You use these options to specify which instructions are available on the processor
you are using. The default value of these options is determined when configuring
GNU CC. Specifying themcpu= cpu_type ' overrides the specification of these
options.

We recommend you use thenépu= cpu_type '’ option rather than any of these
options.

The “mpower ’ option allows GNU CC to generate instructions that are found only
in the POWER architecture and to use the MQ register. Specifytingwer2 ’

implies “power ' and also allows GNU CC to generate instructions that are
present in the POWER2 architecture but not the original POWER architecture.

The “mpowerpc ' option allows GNU CC to generate instructions that are found

66 = GNUPro Tools for Embedded Systems GNUPro Toolkit

Compiling for PowerPC targets

only in the 32-bit subset of the PowerPC architecture. Specifying
‘-mpowerpc-gpopt ' implies ‘-mpowerpc ' and also allows GNU CC to use the
optional PowerPC architecture instructions in the General Purpose group,
including floating-point square root. Specifyingpowerpc-gfxopt * implies
‘-mpowerpc ' and also allows GNU CC to use the optional PowerPC architecture
instructions in the Graphics group, including floating-point select.

If you specify both -mno-power " and “mno-powerpc ', GNU CC will use only

the instructions in the common subset of both architectures plus some special AIX
common-mode calls, and will not use the MQ register. Specifying bathwer ’

and “mpowerpc ' permits GNU CC to use any instruction from either architecture
and to allow use of the MQ register; specify this for the Motorola MPC601.

-mnew-mnemonics
-mold-mnemonics

Select which mnemonics to use in the generated assembler code.

‘-mnew-mnemonics ' requests output that uses the assembler mnemonics defined
for the PowerPC architecture, whilenbld-mnemonics ' requests the assembler
mnemonics defined for the POWER architecture. Instructions defined in only one
architecture have only one mnemonic; GNU CC uses that mnemonic irrespective
of which of these options is specified.

PowerPC assemblers support both the old and hew mnemonics, as will later
POWER assemblers. Current POWER assemblers only support the old
mnemonics. Specifymnew-mnemonics if you have an assembler that supports
them, otherwise specifymold-mnemonics

The default value of these options depends on how GNU CC was configured.
Specifying “mcpu= cpu_type ' sometimes overrides the value of these option.
Unless you are building a cross-compiler, you should normally not specify either
‘-mnew-mnemonics ' Or ‘-mold-mnemonics ’, but should instead accept the default.

-mcpu= cpu_type

Set architecture type, register usage, choice of mnemonics, and instruction
scheduling parameters for machine type type . Supported values for

cpu_type are ¥s6000 ’, ‘riosl ', ‘rios2 ’, ‘rsc ’, ‘601’, ‘602", ‘603", ‘603e’,

‘604’, ‘604e’, ‘620°, ‘power ’, ‘power2 ’, ‘powerpc ', ‘403’, ‘505’, ‘801", ‘821°,

‘823", ‘860’ and ‘commor.

The “mcpu=power ', ‘ -mcpu=power2 ', and “mcpu=powerpc ' specify generic
POWER, POWER?2 and pure PowerPC (i.e., not MPC601) architecture machine
types, with an appropriate, generic processor model assumed for scheduling
purposes.

Specifying “mcpu=rios1 ’, ‘-mcpu=rios2 ', ‘-mcpu=rsc ’, ‘-mcpu=power ’, Of
‘-mcpu=power2 ' enables the-impower ' option and disables thenipowerpc ’
option; “mcpu=601 ’ enables both thermpower * and ‘-mpowerpc ’ options;
‘-mcpu=602 ', ‘ -mcpu=603 ’, ‘-mcpu=603e ’, ‘-mcpu=604 ", ‘-mcpu=620 ’;
‘-mcpu=403 ', ‘' -mcpu=505 ', ‘ -mcpu=821 ", ‘-mcpu=860 ' and “-mcpu=powerpc ’

CYGNUS

GNUPro Tools for Embedded Systems m 67

Compiling for PowerPC targets

enable the-mpowerpc * option and disable thempower ' option; ‘-mcpu=common’
disables both thermpower ' and “mpowerpc ' options.

IBM AIX versions 4 or greater selectsntpu=common’ by default, so that code

will operate on all members of the IBM RS/6000 and PowerPC families. In that
case, GNU CC will use only the instructions in the common subset of both
architectures plus some special AIX common-mode calls, and will not use the MQ
register. GNU CC assumes a generic processor model for scheduling purposes.
Specifying “mcpu=rios1 ’, ‘-mcpu=rios2 ', ‘-mcpu=rsc ’, ‘-mcpu=power ’, Of
‘-mcpu=power2 " also disables thenéw-mnemonics * option.

Specifying “mcpu=601 ', * -mcpu=602 ', ‘ -mcpu=603 ’, ‘' -mcpu=603e ’,
‘-mcpu=604 ', ‘ -mcpu=620 ', ‘ -mcpu=403 ’, or ‘-mcpu=powerpc ' also enables the
‘new-mnemonics ' option.

Specifying *mcpu=403 ’, ‘ -mcpu=821 ", or ‘-mcpu=860 " also enables the
‘-msoft-float " option.

-mtune= cpu_type
Set the instruction scheduling parameters for machine ¢gpaype , but do not
set the architecture type, register usage, choice of mnemonics like
‘-mcpu= cpu_type ' would. The same values fewu_type are used for
‘-mtune= cpu_type ' as for ‘mcpu=cpu_type '. The “mtune= cpu_type 'option
overrides the-mcpu= cpu_type ' option in terms of instruction scheduling
parameters.

-mfull-toc

-mno-fp-in-toc

-mno-sum-in-toc

-mminimal-toc
Modify generation of the TOC (Table Of Contents), which is created for every
executable file. Therfull-toc * option is selected by default. In that case, GNU
CC will allocate at least one TOC entry for each unique non-automatic variable
reference in your program. GNU CC will also place floating-point constants in the

TOC. However, only 16,384 entries are available in the TOC.

If you receive a linker error message that saying you have overflowed the
available TOC space, you can reduce the amount of TOC space used with the
‘-mno-fp-in-toc "and “mno-sum-in-toc ’ options.

‘-mno-fp-in-toc ’ prevents GNU CC from putting floating-point constants in the
TOC and ‘mno-sum-in-toc ' forces GNU CC to generate code to calculate the
sum of an address and a constant at run-time instead of putting that sum into the
TOC. You may specify one or both of these options. Each causes GNU CC to
produce very slightly slower and larger code at the expense of conserving TOC
space.

If you still run out of space in the TOC even when you specify both of these
options, specify-mminimal-toc " instead. This option causes GNU CC to make
only one TOC entry for every file. When you specify this option, GNU CC will

’

68 m GNUPro Tools for Embedded Systems GNUPro Toolkit

Compiling for PowerPC targets

produce code that is slower and larger but which uses extremely little TOC space.
You may wish to use this option only on files that contain less frequently executed
code.

-msoft-float
-mhard-float

Generate code that does not use or does use the floating-point register set.
Software floating point emulation is provided if you use thedft-float '
option, and pass the option to GNU CC when linking.

-mmultiple
-mno-multiple

Generate code that uses (does not use) the load multiple word instructions and the
store multiple word instructions. These instructions are generated by default on
POWER systems, and not generated on PowerPC systems. Do not use
‘-mmultiple " on little endian PowerPC systems, since those instructions do not
work when the processor is in little endian mode.

-mstring

-mno-strlng
Generate code that uses (does not use) the load string instructions and the store
string word instructions to save multiple registers and do small block moves.
These instructions are generated by default on POWER systems, and not
generated on PowerPC systems.

WARNING: Do not usemstring on little endian PowerPC systems, since those
instructions do not work when the processor is in little endian mode.

-mupdate
-mno-update

Generate code that uses (or does not use) the load or store instructions that update
the base register to the address of the calculated memory location. These
instructions are generated by default.

If you use *mno-update ’, there is a small window between the time that the stack
pointer is updated and the address of the previous frame is stored, which means
code that walks the stack frame across interrupts or signals may get corrupted
data.

-mfused-madd
-mno-fused-madd

Generate code that uses (does not use) the floating point multiply and accumulate
instructions. These instructions are generated by default if hardware floating is
used.

-mno-bit-align
-mbit-align

On System V.4 and embedded PowerPC systems do not and do force structures
and unions containing bit fields aligned to the base type of the bit field. For
example, by default a structure containing nothing but 8 unsigned bitfields of

CYGNUS GNUPro Tools for Embedded Systems m 69

Compiling for PowerPC targets

length 1 would be aligned to a 4 byte boundary and have a size of 4 bytes. By
using-mno-bit-align , the structure would be aligned to a 1 byte boundary and
be one byte in size.

-mno-strict-align
-mstrict-align

On System V.4 and embedded PowerPC systems do not (do) assume that
unaligned memory references will be handled by the system.

-mrelocatable
-mno-relocatable

On embedded PowerPC systems generate code that allows (does not allow) the
program to be relocated to a different address at runtime. If you use

-mrelocatable ~ on any module, all objects linked together must be compiled with
-mrelocatable or -mrelocatable-lib

-mrelocatable-lib
-mno-relocatable-lib

On embedded PowerPC systems generate code that allows (does not allow) the
program to be relocated to a different address at runtime. Modules compiled with

‘-mreloctable-lib ' can be linked with either modules compiled without
‘-mrelocatable ' and “mrelocatable-lib " or with modules compiled with the
‘-mrelocatable ' options.

-mno-toc

-mtoc

On System V.4 and embedded PowerPC systems do not (do) assume that register
2 contains a pointer to a global area pointing to the addresses used in the program.

-mno-traceback
-mtraceback

On embedded PowerPC systems do not (do) generate a trace-back tag before the
start of the function. This tag can be used by the debugger to identify where the
start of a function is.

-mlittle
-mlittle-endian

On System V.4 and embedded PowerPC systems compile code for the processor

in little endian mode. Thenlittle-endian " option is the same asilittle .
-mbig
-mbig-endian

On System V.4 and embedded PowerPC systems compile code for the processor
in big endian mode. Thenbig-endian ' option is the same as
‘-mbig .

-mcall-sysv
On System V.4 and embedded PowerPC systems compile code using calling
conventions that adheres to the March 1995 draft of the System V Application
Binary Interface, PowerPC processor supplement. This is the default unless you
configured GCC usingpbwerpc-*-eabiaix "

70 = GNUPro Tools for Embedded Systems GNUPro Toolkit

Compiling for PowerPC targets

-mcall-sysv-eabi

Specify both ‘mcall-sysv " and “meabi ' options.

-mcall-sysv-noeabi

Specify both ‘mcall-sysv " and “mnoeabi ' options.

-mcall-aix

On System V.4 and embedded PowerPC systems compile code using calling
conventions that are similar to those used on AlX. This is the default if you
configured GCC usingpbwerpc-*-eabiaix

-mcall-solaris

On System V.4 and embedded PowerPC systems, compile code for the Solaris
operating system.

-mcall-linux

On System V.4 and embedded PowerPC systems, compile code for the Linux
operating system.

-mprototype
-mno-prototype

On System V.4 and embedded PowerPC systems assume that all calls to variable
argument functions are properly prototyped. Otherwise, the compiler must insert
an instruction before every non prototyped call to set or clear bit 6 of the condition
code registerdR to indicate whether floating point values were passed in the
floating point registers in case the function takes a variable arguments.

With ‘-mprototype ’, only calls to prototyped variable argument functions will set
or clear the bit.

-msim

On embedded PowerPC systems, assume that the startup module is called
sim-crt0.0 and the standard C libraries d@ibsim.a andlibc.a . This is
default for powerpc-*-eabisim ’ configurations.

-mmvme

On embedded PowerPC systems, assume that the startup module is called
mvme-crt0.o and the standard C libraries alienivme.a ' and flibc.a ’

-memb

On embedded PowerPC systems, sept® EMBbit in the ELF flags header to
indicate thakabi extended relocations are used.

-mads

On embedded PowerPC systems, assume that the startup module is called
‘crt0.0 ' and the standard C libraries afiedds.a ' and ‘libca '’

-myellowknife

On embedded PowerPC systems, assume that the startup module is called
‘crt0.o 'and ‘libyk.a 'and libc.a ' are the standard C libraries.

-meabi
-mno-eabi

On System V.4 and embedded PowerPC systems do (do not) adhere to the
Embedded Applications Binary Interface (EABI) which is a set of modifications

CYGNUS

GNUPro Tools for Embedded Systems m 71

Compiling for PowerPC targets

to the System V.4 specifications. Selectimgabi means that the stack is aligned
to an 8 byte boundary, a functioreabi is called to frommain to set up the EABI
environment, and themsdata ' option can use bott2 andr13 to point to two
separate small data areas.

Selectingmno-eabi means that the stack is aligned to a 16 byte boundary, do not
call an initialization function from main, and the
‘-msdata ' option will only user13 to point to a single small data area. The
‘-meabi ' option is on by default if you configured GCC using one of the
‘powerpc*-*-eabi* ' options.

-msdata=eabi
On System V.4 and embedded PowerPC systems, put small initialized const
global and static data in thaedata2 ' section, which is pointed to by register.
Put small initialized non-const global and static data in.theta ' section,
which is pointed to by register3 . Put small uninitialized global and static data in
the “sbss ' section, which is adjacent to thedata ’ section. The
‘-msdata=eabi ' option is incompatible with therrelocatable ' option. The
‘-msdata=eabi ' option also sets thememb' option.

-msdata=sysv
On System V.4 and embedded PowerPC systems, put small global and static data
in the ‘sdata ' section, which is pointed to by registes . Put small uninitialized
global and static data in thatiss ’ section, which is adjacent to thedata ’
section. The-msdata=sysv ' option is incompatible with therrelocatable
option.

-msdata=default

-msdata
On System V.4 and embedded PowerPC systemsyeiidi ' is used, compile
code the same asn'sdata=eabi ', otherwise compile code the same as
‘-msdata=sysv

-msdata-data
On System V.4 and embedded PowerPC systems, put small global and static data
in the ‘sdata ' section. Put small uninitialized global and static data in the
‘.sbss ’ section. Do not use registar3s to address small data however.

This is the default behavior unless othetstata * options are used.

-msdata=none

-mno-sdata
On embedded PowerPC systems, put all initialized global and static data in the
‘.data ' section, and all uninitialized data in thess ' section.

-G num
On embedded PowerPC systems, put global and static items less than or equal to
numbytes into the small data or bss sections instead of the normal data or bss
section. By defaultyumis 8. The ‘G nuni switch is also passed to the linker. All

72 m GNUPro Tools for Embedded Systems GNUPro Toolkit

Floating point subroutines for PowerPC

modules should be compiled with the same
‘-G nuni value.

-mregnames
-mno-regnames

On System V.4 and embedded PowerPC systems, do (do not) emit register names
in the assembly language output using symbolic forms.

Floating point subroutines for PowerPC

The following two kinds of floating point subroutines are useful with

« Software implementations of the basic functions (floating-point multiply, divide,
add, subtract), for use when there is no hardware floating-point support.

« General-purpose mathematical subroutines, included with implementation of the
standard C mathematical subroutine library. See “Mathematical Functions” in
GNUPro Math Libraryin GNUPro Libraries

Preprocessor macros for PowerPC targets

gee defines the following preprocessor macros for the PowerPC configurations.

« Any PowerPC architecture:
__powerpc-eabi___

CYGNUS GNUPro Tools for Embedded Systems m 73

Assembler options for PowerPC targets

Assembler options for PowerPC tar gets

To use the GNU assemblggs, to assemblgec output, configurgec with the
--with-gnu-as switch or with themgas option.
-mgas
Compile usingyas to assemblgcc output.
-Wa
If you invokegas through the GNU C compiler (version 2), you can usewuhe
option to pass arguments through to the assembler. One common use of this option
is to exploit the assembler’s listing features.

Assembler arguments that you specify wjth-wa must be separated from each
other (and thewa) by commas, like the optionsjh and-L , in the following
example input, separate froma.

$ powerpc-eabi-gcc -c -g -O -Wa,-alh, -L file.c

The additional assembler option,, preserves local labels, which may make the
listing output more intelligible to humans.
For example, in the following commandline, the assembler optian, requests
a listing with interspersed high-level language and assembly language.

$ powerpc-eabi-gcc -c -g -O -Wa,-alh,-L file.c
-L preserves local labels, while the compiler debugging optiqgrgives the
assembler the necessary debugging information.

Use the following options to enable listing output from the assembler. The letters after
‘-a’ may be combined into one option, such-as .
-a
By itself, -a’ requests listings of high-level language source, assembly language,
and symbols.
-ah
Requests a high-level language listing.
-al
Request an output-program assembly listing.
-as
Requests a symbol table listing.
-ad
Omits debugging directives from listing. High-level listings require a compiler
debugging option likeg , and assembly listings (such-as) requested.

74 m GNUPro Tools for Embedded Systems GNUPro Toolkit

Assembler options for PowerPC targets

Use the following listing-control assembler directives to control the appearance of the
listing output (if you do not request listing output with one of the 6ptions, the
following listing-control directives have no effect).
list

Turn on listings for further input.

.nolist
Turn off listings for further input.
.psize linecount , columnwidth

Describe the page size for your output (the defawlt,isgoo). gas generates
form feeds after printing each groupii@écount lines. To avoid these automatic
form feeds, specifg aslinecount . The variable input fotolumnwidth uses the
same descriptive option.

.eject
Skip to a new page (issue a form feed).

title
Use as the title (this is the second line of the listing output, directly after the
source file name and page number) when generating assembly listings.

.sbttl
Use as the subtitle (this is the third line of the listing output, directly after the title
line) when generating assembly listings.

-an
Turn off all forms processing.

CYGNUS

GNUPro Tools for Embedded Systems m 75

Debugging PowerPC targets

Debugging PowerPC tar gets

Thepowerpc -configuredgdb is called bypowerpc-eabi-gdb

gdb needs to know the following specifications to talk to PowerPC targets

Specifications for what you want to use one, sudargs remote , gdb’s
generic debugging protocol.

Specifications for what serial device connects your PowerPC board (the first serial
device available on your host is the default).

Specifications for what speed to use over the serial device.

Use the followinggdb commands to specify the connection to your target board.
target powerpc serial-device

To run a program on the board, starigdp with the name of your program as the
argument. To connect to the board, use the comnuaget, interface

serial-device ~, Whereinterface is an interface from the previous list of
specifications anderial-device is the name of the serial port connected to the
board. If the program has not already been downloaded to the board, you may use
theload command to download it. You can then use all the ugivatommands.

For example, the following sequence connects to the target board through a serial
port, and loads and runs programs, designated heregasthrough the debugger.

(gdb) target powerpc coml

breakinst () ../sparc-stub.c:975

975 }

(gdb) s

main 0 hello.c:50

50 writer(1, “Got to here\n");
(gdb)

target powerpc hostname : portnumber

You can specify a TCP/IP connection instead of a serial port, using the syntax,
hostname : portnumber (@assuming your board, designated hereoamame , is
connected, for instance, to use a serial line, designateatdymber , managed

by a terminal concentrator).

gdb also supportset remotedebug ~ n. You can see some debugging information
about communications with the board by setting the variadtetedebug .

76 m GNUPro Tools for Embedded Systems GNUPro Toolkit

The stack frame

The stack frame

The following information applies to the stack frame for the PowerPC.

« The stack grows downwards from high addresses to low addresses.

« A leaf function need not allocate a stack frame if it does not need one.
« A frame pointer need not be allocated.

« The stack pointer shall always be aligned to 4 byte boundaries.

»« The register save area shall be aligned to a 4 byte boundary.

Stack frames for functions taking a fixed number of arguments use the definitions in
the following chartFP points to the same location 8B.

Before call: After call:
arguments on stack arguments on stack
SP, FP _,

register save area

local variables

alloca
allocations

Low arguments on stack
memory SP,FP_,

CYGNUS GNUPro Tools for Embedded Systems m 77

The stack frame

Stack frames for functions that take a variable number of arguments use the following

definitions.
Before call: After call:

H|gh local VariableS, local VariableS,
memory register save area, register save area,
etc. etc.

arguments on stack arguments on stack

SP,FP_,
save area for
anonymous parms
passed in registers
(the size of this area
may be zero)
local variables
alloca
allocations
arguments on stack

Low

memory SP, FP

78 m GNUPro Tools for Embedded Systems GNUPro Toolkit

Argument passing

Argument passing

The following table shows the general purpose registers, floating point registers, and

the stack frame offset.

Figure 1: Parameter Passing Example Register

General Purpose Registe|Floating-Point Register{Stack Frame Offset
r3. c f1: ff 08: ptrto t

r4. d f2: gg Oc: (padding)

r5: e f3: hh 10: nn(lo)

ré: f f4: i 14: nn(hi)

r7: g 5: jj

r8: h 6: kk

ro: ptr to Id f7: 1l

rl0: ptrtos f8: mm

Function return values

Integers, floating point values, and aggregates of 8 bytes or less are returned in
register f0 ' (and ‘r1 ’ if necessary).

Aggregates larger than 8 bytes are returned by having the caller pass the address of a
buffer to hold the value ind " as an “invisible” first argument. All arguments are then
shifted down by one. The address of this buffer is returned in *

CYGNUS

GNUPro Tools for Embedded Systems m 79

Function return values

80 = GNUPro Tools for Embedded Systems GNUPro Toolkit

SPARC, SPARCIite development

The following documentation discusses cross-development with the SPARC and
SPARCIite targets. For thegc compiler in particular, special configuration options
allow use of special software floating-point code for the SPARC MB86930 processor,
as well as defaulting commnd-line options using special Fujitsu SPARCIite features.
For the FUjitsu SPARCIite, there is support for the ex930, ex932, ex933, ex934, and
the ex936 boards.

See the following documentation for more specific discussion concerning the SPARC
and SPARCIite targets.

« “Compiling for SPARC targets” on page 83

« “Preprocessor macros for SPARC targets” on page 85

« “Assembler options for SPARC targets” on page 86

« “Debugging SPARC and SPARCIite targets” on page 89

« “Loading on specific targets for SPARC, SPARCIite” on page 91
Cross-development tools in the GNUPro Toolkit are normally installed with names
that reflect the target machine, so that you can install more than one set of tools in the
same binary directory. The target name, constructed with-tkrget ' option to

configure , is used as a prefix to the program name. For example, the compiler for the
SPARC (gec in native configurations) is called, depending on which configuration

you have installed, bsparc-coff-gcc or sparc-aout-gcc . The compiler for the
SPARCIite (gec in native configurations) is called, depending on which configuration

CYGNUS GNUPro Tools for Embedded Systems = 81

you have installed, byparclite-coff-gcc Or sparclite-aout-gcc

SeeSPARCIite User’s ManualFujitsu Microelctronics, Inc., Semiconductor

Division, 1993) for full documentation of the Fujitsu SPARCIite family, architecture,
and instruction set.

82 m GNUPro Tools for Embedded Systems GNUPro Toolkit

Compiling for SPARC targets

Compilin g for SPARC tar gets

The SPARC target family toolchain controls variances in code generation directly
from the command line.

When you ruryec, you can use command-line options to choose whether to take
advantage of the extra SPARC machine instructions, and whether to generate code for
hardware or software floating point.

Compiler options for SPARC

When you rurycc, you can use command-line options to choose machine-specific
details. For information on all thee command-line options, see “GNU CC
Command Options” ilvsing GNU CCn GNUPro Compiler Tools
-9
The compiler debugging optios, , is essential to see interspersed high-level
source statements, since without debugging information the assembler cannot tie
most of the generated code to lines of the original source file.
-mvh
Generate code for the SPARC version 8. The only difference from version 7 code
is the compiler emits the integer multipmiul andumul) and integer divide
(sdiv andudiv) instructions that exist in SPARC version 8 and not version 7.
-mf930
Generate code for the Fujitsu SPARCIite chip, MB86930. This chip is equivalent
to the combinationmsparclite -mno-fpu .-mf930 is the default when the
compiler configures specifically to the Fujitsu SPARClite processor.
-mf934
Generate code specifically intended for the SPARC MB86934, a Fuijitsu
SPARCIite chip with a floating point .

This option is equivalent tensparclite
-mflat
Does not register windows in function calls.
-msparclite
The SPARC configurations of GCC generate code for the common subset of the
instruction set: the version 7 variant of the SPARC architecture.

-msparclite , on automatically for any of the Fujitsu SPARCIite configurations,
gives you SPARCIite code. This adds the integer multighyl(andumul, just as

in SPARC version 8), the integer divide-stepscc), and scansgan)

instructions that exist in SPARCIite but not in SPARC version 7.

Using-msparclite ~ when you run the compiler does not, however, give you

CYGNUS GNUPro Tools for Embedded Systems = 83

Options for floating point for SPARC and SPARCIite

floating point code that uses the entry points for US Software’s GOFAST library.

Options for floating point for SPARC and SPARClite

The following command line options are available for both the SPARC and the Fujitsu
SPARCIite configurations of the compiler. See “SPARC OptiongJsimg GNU CC
in GNUPro Compiler Tools
-mfpu
-mhard-float
Generate output containing floating point instructions as the default.
-msoft-float
-mno-sfpu
Generate output containing library calls for floating point. The SPARC
configurations ofibpgcc include a collection of subroutines to implement these
library calls.

In particular, the Fujitsu SPARCIite configurations generate subroutine calls
compatible with the US SoftwageFasta floating point library, giving you the
opportunity to use either thiegcc implementation or the US Software version.

To use the US Software library, include the appropriate call ogctheommand
line.

To use théibgcc version, you need nothing specigde links with libgee
automatically, after all other object files and libraries.

Floating point subroutines for SPARC and SPARClite

The following two kinds of floating point subroutines are useful with

« Software implementations of the basic functions (floating-point multiply, divide,
add, subtract), for use when there is no hardware floating-point support.

When you indicate that no hardware floating point is available (with either of the
gcc options,-msoft-float or -mno-fpu), the Fujitsu SPARCIite configurations

of gcc calls compatible with the US Software GOFAST library. If you do not have
this library, you can still use software floating poimticc , the auxiliary library
distributed withgcc , includes compatible, although slower, subroutines.

« General-purpose mathematical subroutines, included with implementation of the
standard C mathematical subroutine library. See “Mathematical Functions” in
GNUPro Math Libraryin GNUPro Libraries

84 m GNUPro Tools for Embedded Systems GNUPro Toolkit

Preprocessor macros for SPARC targets

Preprocessor macros for SPARC tar gets

gee defines the following preprocessor macros for the SPARC configurations.
« Any SPARC architecture:

__sparc__

« Any Fujitsu SPARCIite architecture:
__sparclite__

CYGNUS GNUPro Tools for Embedded Systems m 85

Assembler options for SPARC targets

Assembler options for SPARC tar gets

To use the GNU assemblggs, to assemblgec output, configurgec with the
--with-gnu-as switch or with themgas option.
-mgas
Compile usingyas to assemblgcc output.
-Wa
If you invokegas through the GNU C compiler (version 2), you can usewuhe
option to pass arguments through to the assembler. One common use of this option
is to exploit the assembler’s listing features.
Assembler arguments that you specify wjth-wa must be separated from each
other (and the -Wa) by commas, like the optieais, and-L, in the following
example input, separate fromva.
$ sparc-coff-gcc -c -g -O -Wa,-alh, -L file.c

The additional assembler option,, preserves local labels, which may make the
listing output more intelligible to humans.
For example, in the following commandline, the assembler optian, requests
a listing with interspersed high-level language and assembly language.

$ sparc-coff-gcc -c -g -O -Wa,-alh,-L file.c
-L preserves local labels, while the compiler debugging optiqgrgives the
assembler the necessary debugging information.

Assembler options for listing output for SPARC,
SPARClIite

Use the following options to enable listing output from the assembler. The letters after
‘-a’ may be combined into one option, such-as .
-a
By itself, -a’ requests listings of high-level language source, assembly language,
and symbols.
-ah
Requests a high-level language listing.
-al
Request an output-program assembly listing.
-as
Requests a symbol table listing.

86 = GNUPro Tools for Embedded Systems GNUPro Toolkit

Assembler listing-control directives for SPARC, SPARClite

-ad
Omits debugging directives from listing. High-level listings require a compiler
debugging option likeg , and assembly listings (such-as) requested.

Assembler listing-control directives for SPARC,
SPARCIlite

Use the following listing-control assembler directives to control the appearance of the
listing output (if you do not request listing output with one of thé 6ptions, the
following listing-control directives have no effect).
list

Turn on listings for further input.

.nolist
Turn off listings for further input.
.psize linecount , columnwidth

Describe the page size for your output (the defawslt,igoo). gas generates
form feeds after printing each groupii@écount lines. To avoid these automatic
form feeds, specify aslinecount . The variable input fotolumnwidth uses the
same descriptive option.

.eject
Skip to a new page (issue a form feed).

title
Use as the title (this is the second line of the listing output, directly after the
source file name and page number) when generating assembly listings.

.shitl
Use as the subtitle (this is the third line of the listing output, directly after the title
line) when generating assembly listings.

-an
Turn off all forms processing.

Assembler options for the SPARClite

When configured for SPARC, the assembler recognizes the additional Fujitsu
SPARCIite machine instructions that generatesAsparclite

A flag to the GNU assembler (configured for SPARC) explicitly selects this particular
SPARC architecture. The SPARC assembler automatically selects the Fujitsu
SPARCIite architecture whenever it encounters one of the SPARCIite-only
instructionsgdivscc Or scan .

CYGNUS GNUPro Tools for Embedded Systems m 87

Calling conventions for SPARC and SPARClite

Calling conventions for SPARC and SPARClite

The SPARC passes the first six words of arguments in regigénsoughr13. All
remaining arguments are stored in a reserved block on the stack, last to first, so that
the lowest numbered argument not passed in a register is at the lowest address in the
stack. The registers are always filled, so a double word argument starirsgwould

have the most significant word R13 and the least significant word on the stack.

Function return values are storedki RegisterRo is hardwired so that it always has
the valuen. R14 andr15 have reserved uses. Regis®rshroughr7 can be used for
temporary values.

When a function is compiled with the default options, it must return with regrsters
throughr29 unchanged.

NOTE: Functions compiled with different calling conventions cannot be run together
without some care.

88 m GNUPro Tools for Embedded Systems GNUPro Toolkit

Debugging SPARC and SPARCIite targets

Debugging SPARC and SPARCIite
targets

Thesparc -configuredgdb is called bysparc-coff-gdb or sparc-aout-gdb

Thesparclite -configuredgdb is called bysparclite-coff-gdb or
sparclite-aout-gdb

gdb needs to know the following specifications to talk to your SPARC or Fuijitsu
SPARCIite

« Specifications for what you want to use one, suchrgs remote , gdb’s
generic debugging protocol.

« Specifications for what serial device connects your SPARC board (the first serial
device available on your host is the default).

»« Specifications for what speed to use over the serial device.

Use the followinggdb commands to specify the connection to your target board.
target sparclite serial-device
To run a program on the board, starigdp with the name of your program as the
argument. To connect to the board, use the comnuaget, interface
serial-device , Whereinterface is an interface from the previous list of
specifications anderial-device is the name of the serial port connected to the
board. If the program has not already been downloaded to the board, you may use
theload command to download it. You can then use all the ugivatommands.
For example, the following sequence connects to the target board through a serial
port, and loads and runs programs, designated heregasthrough the debugger.
(gdb) target sparclite com1
[SPARCIite appears to be alive]
breakinst () ../sparc-stub.c:975

975 }
(gdb) s
main () hello.c:50
50 writer(1, “Got to here\n”);
(gdb)
target sparclite hostname : portnumber

You can specify a TCP/IP connection instead of a serial port, using the syntax,
hostname : portnumber (@assuming your board, designated hereoamame , is
connected, for instance, to use a serial line, designateatdymber , managed

by a terminal concentrator).

CYGNUS

GNUPro Tools for Embedded Systems = 89

Debugging SPARC and SPARCIite targets

gdb also supportset remotedebug n. You can see some debugging information
about communications with the board by setting the variadtetedebug .

90 = GNUPro Tools for Embedded Systems GNUPro Toolkit

Loading on specific targets for SPARC, SPARClite

Loadin g on specific tar gets for SPARC,
SPARCIlite

The SPARGeval boards use a host-based terminal program to load and execute
programs on the target. This programiuh , replaced the earlier ROM monitor,
which had the shell in the ROM.

To use thgdb remote serial protocol to communicate with a Fujitsu SPARClite
board, link your programs with the “stub” modugarc-stub.c ; this module
manages the communication with GDB. See “The GDB remote serial protocol” in
Debugging with GDBn GNUPro Debugging Tool$or more details.

CYGNUS

GNUPro Tools for Embedded Systems m 91

Loading on specific targets for SPARC, SPARClite

92 m GNUPro Tools for Embedded Systems GNUPro Toolkit

Symbols

#include files, with preprocess@
bss1l

.bss sectiorD, 13

.coff, the main object file formaB
datall 13

text 11

text sectionl2

_bss_startll

_bss_startand _enti3
_DYNAMIC, for shared dynamic libraried 2
_end11,13 14

A

a.outd
argv 9
asl 2
ASCII text 14
assemblerl, 3

B

binaries 3
binary utilities 1, 3

Index

binutils 1
breakpoints5

bug 10

bug monitor 10
built-in trap handlerl0

C

C library 1,6

C++ constructors?

coff file 13

compiler 1,2

concatenation macrog
constructor and destructor tabldd
constructor and destructor tables for G2
CONSTRUCTORS13

cpp 2

CREATE_OBJECT SYMBOLSL2
crt0 (C RunTime 0) file7

crt0 file 11

crtO files, multiple 11

crt0, the main startup scriyf

CYGNUS

GNUPro Tools for Embedded Systems = 93

Index

D

-d, for assembled

datal3

debuggerl

debugging5

debugging, low-leveb
destructor tabled. 1
-disassembled

dynamic libraries12

dynamic memory allocatiod 5

E
-E option 2
EABI, PowerPC71
embedded
tools 1
Embedded Applications Binary Interfadgl
exception handler for breakpoints
executable binary image, makiry
exit 9

F
FORMAT output-format4

G

gecl 2

GDB 5

gdb 1

GDB stub5

getpd(), for returning valud.6
global symbol named

global symbols8

gofast library54

gofast R3000 Floating Point Libraiy4
GROUP, for loadingl 1

H

hex values, printing out ifd
Hitachi
h8/300
introduction 19

h8/300h 20
Hitachi h8/300
as 22 35,47
C++ initializers 20
debugging on target®5, 38
€7000 in-circuit emulato25, 28 29, 38
floating point subroutine@1
gcec 19 22 35,47
gdb 25
gdb command£25, 38
GDB remote serial protoca?8
serial devices25, 38
Hitachi Microsystemsl9
Hitachi sh
compiling 32
gcc 31
gdb 38
options 32
preprocessor macras4
subroutines33
targets31
Hitachi sh MicrosystemS81

I/0 support codeb, 14
IBM RS/6000 and PowerP©6

94 m GNUPro Tools for Embedded Systems

GNUPro Toolkit

Index

IBM RS/6000 options
-G 72

-mads 71

-mbig 70
-mbig-endian70
-mbit-align 69
-mcall-aix 71
-mcall-linux 71
-mcall-solaris 71
-mcall-sysv 70
-mcall-sysv-eabi7 1
-mcall-sysv-noeabi/ 1
-meabi 71

-memb 71

-mfull-toc 68
-mhard-float69
-mlittle 70
-mlittle-endian 70
-mminimal-toc 68
-mmultiple 69
-mmvme 71
-mnew-mnemonicH7
-mno-bit-align 69
-mno-eabi71
-mno-multiple 69
-mno-power66
-mno-power266
-mno-powerpc66
-mno-powerpc-gfxopH 6
-mno-powerpc-gpopH6
-mno-prototype7 1
-mno-regnames/ 3
-mno-relocatable/0
-mno-relocatable-lib70
-mno-sdata/ 2
-mno-strict-align 70
-mno-string 69
-mno-sum-in-toc68
-mno-toc 70
-mno-traceback/0
-mold-mnemonics67

-mpower 66
-mpower2 66
-mpowerpc 66
-mpowerpc-gfxopt66
-mpowerpc-gpoptb6
-mprototype 71
-mregnames/ 3
-mrelocatable70
-mrelocatable-lib70
-msdata’2
-msdata=defauli/ 2
-msdata=eabi/ 2
-msdata=nonef 2
-msdata=sysv/ 2
-msdata-data/ 2
-msim 71
-msoft-float 69
-mstrict-align 70
-mstring 69
-mtoc 70
-mtraceback/0
-mtune=68
-myellowknife 71
idt/mips, configuring41
-inbyte 14

isatty(), for checking for a terminal devickb

K

ki) 14
kill(), for exiting 16

L

Id 1,2

Id, the GNU linker3
Id, the linker scriptb
libc 6

libgcc.a 2

libgloss 1,5

libm 6

libraries 2,5

CYGNUS

GNUPro Tools for Embedded Systems = 95

Index

libstd++ 5

linker 1

linker script 11
low-level debuggingl4

M

m68k-coff configuration11

macros 7

main 2, 8

main() 9

malloc() 9

math library 6

-mcpu 67

MEMORY 12

memory 8

memory mapll

mips
configuring 46
debugging52
GCC options42
gofast library54
preproccesor macro46

mips ecoff targed9

Motorola m68k57
calling conventions61
compiling 57
configurations59
debugging62
floating point subroutine$8, 59
gas 60, 74, 86
preprocessor macrds9

N

newlib 1,5, 16
nm utility 11
-nostdlib 2

@)

objcopy 3

objdump 3

object file format3

object file, with assemble8

object files and object file formats
object files, linking to C library2
OS Supportd

-outbyte 14

outbyte() 5

P

POWER 66
PowerPC67
prefix 7
-prefix-addresse4
preprocessing3
print() 5

PROM burners4
putnum() 5

R

RAM spacel2

RAM variable 13

register names/

ROM monitor 5, 8, 10

ROM monitors4

rom68k 10

rom68k and mon68k monitor?2

S

sbrk() 11,14
SEARCH_DIR, for specifying pathd2
section13
section named 1
sections, mainll
serial device
Hitachi h8/30025, 38

96 m GNUPro Tools for Embedded Systems

GNUPro Toolkit

Index

SPARC
assembler listing outpuf 4, 86
assembler listing-controf 5, 87
assembler optiong'4, 86
calling compiler81
calling conventions38
compiler debugging optio83
compiler options83
compiling 83
configuring for a debuggeB9
debugging89
documentation82
eval boards91
floating point options84
MB86934 83
pciuh 91
preprocessor macroé3, 85
registers88
ROM monitor 91
subroutines? 3, 84
US Software’s GOFAST librarg4

S-records4

stack spacé3

start 7,9
STARTFILE_SPEC11
STARTUP commandll
stdout 2

stub 14

support libraryl
support routinesl6
switches 2

SYM 8

T

Table Of Contents, executable fil&8
--target option19
trap handlerlO

U
uninitialized datal3

version 7 codeB3 \V/
version 883 .
SPARClite variables, default values fak1
assembler option87
MB86930 83
CYGNUS GNUPro Tools for Embedded Systems m 97

Index

98 m GNUPro Tools for Embedded Systems GNUPro Toolkit

	Dreamcast GNUPro Toolkit Embedded Systems
	Contents
	Using GNU tools on embedded systems
	Invoking the GNU tools
	gcc, the GNU compiler
	cpp, the GNU preprocessor
	gas, the GNU assembler
	ld, the GNU linker
	.coff for object file formats
	binutils, the GNU binary utilities
	gdb, the debugging tool
	libgloss, newlib and libstd++, the GNU libraries

	crt0, the main startup file
	The linker script
	I/O support code
	Memory support
	Miscellaneous support routines

	Overview of supported targets for cross-development
	Hitachi H8/300, H8S, H8/300H development
	Compiling for H8/300, H8S and H8/300H
	Using C++
	Predefined preprocessor macros

	Assembler options for H8/300, H8S and H8/300H
	Assembler options for listing output
	Assembler listing-control directives

	Calling conventions for H8/300, H8S and H8/300H
	Debugging for H8/300, H8S and H8/300H
	Loading on specific targets

	Hitachi SH development
	Compiling on SH targets
	Compiler options for SH

	Preprocessor macros for SH targets
	Assembler options for SH targets
	General assembler options for SH
	Assembler options for listing output for SH
	Assembler listing-control directives for SH

	Calling conventions for SH targets
	Debugging on SH targets

	MIPS development
	Compiling on MIPS targets
	Compiler options for MIPS
	Options for architecture and code generation for MIPS
	Compiler options for floating point for MIPS
	Floating point subroutines

	Preprocessor macros for MIPS targets
	Assembler options for MIPS targets
	Assembler options for listing output for MIPS
	Assembler listing-control directives for MIPS
	Special assembler options for MIPS
	Assembler directives for debugging information
	MIPS ECOFF object code
	Options for MIPS ECOFF object code
	Directives for MIPS ECOFF object code
	Registers used for integer arguments for MIPS
	Calling conventions for integer arguments for MIPS
	Calling conventions for floating-point arguments for MIPS

	Debugging on MIPS targets
	Linking MIPS with the GOFAST library
	Full compatibility with the GOFAST library for MIPS

	Motorola m68k development
	Compiling for m68k targets
	Options for floating point
	Floating point subroutines
	Preprocessor macros for m68k targets

	Assembler options for m68k targets
	Assembler options for listing output
	Assembler listing-control directives
	Calling conventions for m68k targets

	Debugging on m68k targets

	PowerPC development
	Compiling for PowerPC targets
	Floating point subroutines for PowerPC
	Preprocessor macros for PowerPC targets

	Assembler options for PowerPC targets
	Debugging PowerPC targets
	The stack frame
	Argument passing
	Function return values

	SPARC, SPARClite development
	Compiling for SPARC targets
	Compiler options for SPARC
	Options for floating point for SPARC and SPARClite
	Floating point subroutines for SPARC and SPARClite

	Preprocessor macros for SPARC targets
	Assembler options for SPARC targets
	Assembler options for listing output for SPARC, SPARClite
	Assembler listing-control directives for SPARC, SPARClite
	Assembler options for the SPARClite
	Calling conventions for SPARC and SPARClite

	Debugging SPARC and SPARClite targets
	Loading on specific targets for SPARC, SPARClite

	Index

