Sega@ Dreamcast

The Dreamcast
Audio 64 API

Sega@ Dreamcast

Table of Contents

[(] - AUD-ix
1. Dreamcast AUAI064 DVEIVIEW ... s s s s s s s AUD-1
Introduction AUD-1
AM Layer AUD-2
=10 01 01 U RRRRRRRRO AUD-2
P00 0571 o 1 TSP AUD-3
200 01 1 <IN AUD-3
AMNHEAP .ot AUD-3
P21 0 411010 0 s T KNSR AUD-4
F2W 0415 (Y21 0 o KRNU PR AUD+4
P20 4 10Y T & AR RRORRRTRRRT AUD-5
THE AC LAYET ucuerererirerereririrererenereteieesesesesesesesesesesesesesesesssssssesesssssesesssesssssesssssssssssssesesssssssssesssssssssssssesssssens AUD-5
Tools Overview AUD-6
IMIKSCIIPE vttt et nene AUD-6
IMLKBATIK ettt ettt ettt et e et e e e e st e e et e e st e e et e eateeaseeeabeeaasesabeesttesateesseesstesneeesabeenteesaseeaeens AUD-7
IMIKSET@AIIL ettt ettt ettt ettt e et e et e e et e e e s et eeseabeeesaseesasaaeesasaeessaseesanseeessseessaseesanseeesnsaeesssseesanseessnseessnns AUD-7
File Formats AUD-8

AUD-iii

The Dreamcast Audio 64 API

2. The AICA Control LAyer APl ... cececstcssess s s s s sss s sssss s s ssssssssssssssssssessssssnsssssssness AUD-9
acSystemRequestArmInterrupt............cccocoee. Causes the driver to raise an ARM external interrupt.cccoeeeeercureunenn. AUD-9
acDIgIPlayc.cvvieeieiicici Starts a buffer playing. ..o AUD-10
acDigiPlayWithLoopParameters............cccccc...... Starts a buffer playing Set 100p points.ccoeevrvvireiniicencenes AUD-11
acDigiPlayWithParameters..........ccococveeuricuninec. Starts a buffer playing with all common parameters.ccoceveurecurenee. AUD-12

acDigiMultiSetMaskccceveuvencuvinciricrricnniann. Sets the bit masks for acDigiMUultiPlay()ccccoeeeuveerveemniemneieenerrienenen AUD-14
acDIgIMUultiPlay........cccceveuvcuvincirinciricrieisecien, Sets the bit masks for acDigiMUultiPlay()c.ccocveueureereereeeneereerenereeneeees AUD-15
acDigiMUultiStOpccovvvviiiiiiiiiiccccs Sets the bit masks for acDigiMUultiPlay()ccccceeureureereereeeeeemememenneeneees AUD-16
acDigiOPen ..o Open a DA Streaming Port for playback.cccccooviiiiiiininiiiinns AUD-17
acDigiSetSampleRate...... Set the playback rate (sample rate) of audio stream.cccceueeucurrunrnnee AUD-18

acDigiCloseccccevunee Closes port previously opened. ..., AUD-19
acDigiSetCurrentPitch.... Changes the playback rate of a running channel.cccoccecevernernininnce AUD-20
acDigiSetVolume..........ccccooviniiiniiniiiiiiiinns Adjusts volume of a voice channel.ccceinininineeeereneneneeneeees AUD-21
aCDIGISetPancccvveuiuiiiiicc s Adjusts the pan placement of a voice channel.cccccooeeeuecuccmvcrncneennes AUD-22
acDigiRequestEvent.............ccocoooiiiin Used to generate an interrupt when a certain buffer

POSition is reached. ... AUD-23
acDIGIStOP ..o Stops a voice channel playing.coccoveeeneeuneremnereererennens
ACMIdIOPeN......ciiiiiiicic s Open a MIDI Port buffer for SMF format 0 playback.cccccecoeeurinianes AUD-25
acMidiSetTonebankcccevvveeeeeeeeneeneeeneenne. Assign a MIDI Program Bank (tonebank) to an active bank slot. AUD-26
acMidiClose Close @ MIDI POIt.ocuieriiiciieeiei e AUD-27
ACMIdiPlay.....coiueieiiciciecc e Starts playback on opened MIDI port.ccccooeeeiniviniiininieeniicennes AUD-28
ACMIISEOP vttt Stops standard MIDI file playback on port.ccccoeveieiniiiceinieicieiiinnnns AUD-29
acMidiRequestEvent...........ccccovvvvniinnnninnnn Generates interrupt to host upon MIDI port reaching specified address. AUD-30
acMidiPause. ..o Pauses an active MIDI port.ccoooiiiiiiiiiicccccccccccnes AUD-31

acMidiReSUMEcocvruiiiiiiiiiiiccas Resumes playback on active MIDI port.cccocoevviiiiiniinininiiiiiinnns AUD-32
acMidiSetVolume.........ccccooviniiiviininininiciciinns Sets scaled volume setting for MIDI port.cccccoeuvviiiiiiniieininicciiinns AUD-33
acMidiReSsetcccueveicerieiicc e Resets MIDI controllers on port to default values.ccocvuviviruiriininnnns AUD-34
acMidiSetTempo............. Set playback tempo of MIDI port.cccceevveveicnernnes AUD-35
acMidiSendMessage Sends raw MIDI messages to POIts. ..., AUD-36
acCdSetVolumecccccviiiiniiiniiniiinicciicans Sets Left & Right Channels for Redbook Volume Control

(dependent on channel Pan).cocvveeveremvemrerneineneneeeeeeeeesencsenenns AUD-37
acCdSetPan..........cccvieuiicinciniericicececens Sets Left & Right Channel pan position.cccccceverereeeeeevcmcmncrneeneenees AUD-38
acCdInitccooeveivvereiicnnnn Resets CDDA channels to hard pan positions and maximum volume. . AUD-39
acDspSetQSoundAngle...... Sets Q-Sound POSIHION.cuevevieiicieiiiieiect e AUD-40
acDsplnstallProgram............. Registers a dsp program bank with the driver.
acDsplnstallOutputMixer Registers an output mixer patch with the driver.ccooocevecrncrncnennce AUD-42
acDspSetMixerChannel............ccocevevvcuvcuncrnenenn. Sets DSP mixer level and channel for that port.cccceeevevercrccrncnienee AUD-43
acErrorGetLast Gets a pointer to the error structure.cccocuene. AUD-44
ACEITOrEXiStS ..o Checks to see if an error condition eXists.c.ccocveeveereereeeecercercuneenenennes AUD-45
aCErTorClear ... Clears the AC eIT0r StrUCEUTE.covuieiicicicicicececeeeee e AUD-46
acIntInstallOsChainDeleteManager Installs pointer to interrupt chain delete routine.c..ccoeceuveuvencrrevcunenee. AUD-47
acIntInstallOsChainAddManager...... Installs proc pointer to interrupt chain add routine.ccccceveverneeneence AUD-48

acIntInstallCallbackHandler............... Installs a callback handler into the ARM interrupt handler. AUD-49
acIntInstallArmInterruptHandler....................... Installs an ARM interrupt handler. ... AUD-50
acIntSetAicaChainldcccoocvevecicincmncrncncnnenn. Sets the AICA interrupt chain ID.cccoooiiinnninirrcece s AUD-51
acIntShutdownccccueeunecrnciencircrcrecen, Shuts down the ac interrupt SYStemML.coceuiueeiurecrrecrneerneenrerenereecerenes AUD-52
acIntInit.......cccovvviivni Initializes the ac iNterrupt SYStEM.cccvvueviuemiveecrnicrreeneereieeereeeeseaes AUD-53
acSystemShutdown........c.cecueucuvncirinciriciricien, Shuts down the AC ayer.cccocuvciniciniciieiccie e seeseeseaens AUD-54
acSystemGetIntArrayStartOffsetccccceeuee. Gets the interrupt array write cursor OffSet.cooveveveereeererersernerneenens AUD-55
acSystemGetIntArrayStartPtr.........ccooevenne Gets a pointer to the start of the drivers interrupt message array. AUD-56
acSystemGetBaseOfSoundMemory.................... Gets the starting address for sound Mmemory.cccocveveeucucuncunceneenes AUD-57

acSystemGetINtATray ..o Gets the address of the SH4 side interrupt message array.ccco...... AUD-58
acSystemGetIntArrayLength.........cccccoecuvicunnnee. Gets the length of the drivers interrupt message array.cccocceeeeueeee. AUD-59
acSystemCheckDriverRevision...........cccecueee. Tests the driver version against the supplied version.ccccccoecueee. AUD-60
acSystemGetDriverRevision..........cccoceevevevriennes Tests the driver version against the supplied version.ccccccoeeuneence. AUD-61
acSystemWaitUntilG2FifolsEmpty..... Waits until the G2 FIFO is clear.ccoueueuvemvcmncuneeneeneenees AUD-62
acSystembDelaycocoeeiniiininnies Use to delay for short periods of me.cccccocnuririereereeeceeeeecrcneees AUD-63
acSystemEnableArmInterrupts........cccoevvvvennee Use to enable the ARM INterrupt.c.occveeeiueeereeeuneerneeernerenseseneseeeesenns AUD-64

AUD-iv

Table of Contents

acSystemDisableArmInterrupts..........ccccceeeneee Use to disable the ARM iNterrupt.ccveeeiueeiueeeinierneerseensenenseneeensenenne AUD-65
acSystemInit........cocooeeiiiiii Makes the ac system ready t0 USE.ocveeveeeeeereerernernernennerneineeneeneeeeensenne AUD-66
acGetSystemFlag ..o True if the system has been initialized.AUD-67

acSystemGetFirstFreeSoundMemory.... Gets the address of first free sound memory.AUD-68
acSystemGetCommandFlag................... Gets address of driver command flag register.c.ccocoverinivcnniiinnnnnen. AUD-69
acSystemResetArmInterruptccccceeeveciecnns Resets the ARM interrupt flag.ccooeovecuemncmniniiniinineseccsceeeeeeeeene AUD-70
acSystemlInstallDriver........ccooeiiiiiiiiiicnnns Installs the SOUNA AIIVET.coviuiiiiiciricicccce e AUD-71
3. The AICA Manager APl ... s s s s a s s p s AUD-73
amBankFetchMidiUsSpqnccocveuveeeevceccecucnnees Fetches uspqn from a MIDI type asset.ccocveueeeeeecemcmcmncmnemncrreenceneene AUD-73
amBankFetchMidiLoopcccccoeiuveuvievieniecicnnnn Fetches the loop flag from a MIDI type asset.ccccccovucucmncmncmncmrinneeenn. AUD-74
amBankFetchMidiPpgn.......c.ccccveecuricenicvniuenncnens Fetches ppqn from a MIDI type katbank asset.cccoeceuveeurevevnereereunencn. AUD-75
amBankFetchMidiVolume............... Fetches master volume from a MIDI type katbank asset.AUD-76
amBankFetchMidiGmModeFlag Fetches GM mode flag from a MIDI type katbank asset. ... AUD-77
amBankLoadccccceviiniiininiinnen, Loads a katbank asset from disk into sound memory. AUD-78
amBankFetchAssetParameters.............ccccccuenee. Fetches parameters from any katbank asset.ccceoeuecurcuncuncrncrncncenenn. AUD-79
amBankFetchWaveLoopFlag...........cccccceueuuunee Fetches the loop flag from a katbank asset.ccccccovuvueurcmncncnciinienn. AUD-80
amBankFetchWaveRandomPitchcc.ccco...... Fetches random pitch amount from a katbank asset.ccccocceveuevreunence. AUD-81

amBankFetchWaveSampleRate..............ccccceuc.... Fetches the sample rate from a katbank WAVE asset.AUD-82

amBankFetchWaveBitDepth..........c.ccccvveveeruennce Fetches the bit depth of a WAVE type asset in a katbank.ccccueue.e. AUD-83
amBankFetchUnknownParameters.................... Fetches one of the 7 user parameters from a katbank

"UNKNOWN" EYPE ASSEL. ...vuvvviiiiriici s AUD-84
amBankFetchASSetc.ceveuveverrecurecenieerieneens Fetches an asset from a Katbank.cccoevieenieecrnecrnecrneennerennerensesneenn. AUD-85
amBankGetAssetSize ... Gets the size of an asset from a katbank.AUD-86
amBankGetNumberOfAssetscccccoeuiuvennee. Gets the number of assets in a katbank.AUD-87
amBankGetHeaderSize.........cccooveuneurierieeneercnnen Gets the size of the header portion of a katbank.cccccceeuvcunenereneunn. AUD-88
amDmMaMemCPyccooeeeeeiccccccce Performs DMA copys to sound memory. ... AUD-89
amDspFetchProgramBank Fetches and installs a DSP program bank from a KatBank asset. AUD-90
amDspFetchOutputBank............ccccocvevcvivinnnnes Fetches and installs a DSP output bank from a KatBank asset. AUD-91
amErrorGetLast ..o Gets a pointer to the error Structure.c.ceeeeeeeuvicneerneeneeneneereneenn. AUD-92
amEITOrEXists. ..o Checks to see if an error condition exists.AUD-93

..AUD-94

amErrorClear ... Clears the AM error structure.coceveveucmvernennnes .

amHeapShutdowncccocvcnininencnieicncnnes Shuts down the AM heap management system.AUD-95
amHeapGetInfo ..o, Gets info necessary to start an audio heap.ccccocoveveecencncncncncnenenn. AUD-96
amHeapGetFree..........cccocovvviciiiiiiceicee, Gets the amount of free MEMOTY.cccovveuemiiriiniiriiirece e AUD-97
amHeapAllocccccvvinnne Allocates aligned memory from the audio heap.AUD-98
amHeapGetMaxPurgable Gets amount of memory available from a full purge.ccccceceveurinnnee. AUD-99
amHeapPurge..........ccccceo... Purges memory marked as purgable.ccccoeiiiiiiiiiniiie AUD-100
amHeapFree ... Frees purgable memory allocated using amHeapAlloc()ccccoeunnee AUD-101
amHeapInit.......ccccooeevviiviniiice Initializes the audio heap. ... AUD-102
amHeapCheck........... Checks the MCB fingerprints for OVerwrites.coouveveerericueunennee AUD-103

amlnitSelectDriver ... Selects driver to be installed by amInit()ccocoeeeureerneerneemnerrirerriennenee AUD-104
amShutdown............. Shuts down the AM audio SUDSYSEMm.c..cceuevreureurerrerreineeneeeneeneenenennes AUD-105
AmMINit ..o Starts up the AM audio SUDSYSIEIML.ccevuereerercireireireireireiseeenienienenennes AUD-106
amFileRewindcccocvuivivciiinciniciiiciiiiiees Seeks to the start Of a file. ...c.ccocveurevcirieinieiiecrc et AUD-107
amFileLoad Loads specified file into the buffer. AUD-108
amFileRead Reads from a file that is already Open. ... AUD-109
amFileOpen. ... Opens a file for reading. ... AUD-110

AMEFILECIOSEveeveevveteeereeereeteereeteeteee e ClOSES @ FIl€. evevvireereerectecteeteee ettt ettt er e reeteeteetsersersensenseseerenrees AUD-111

amFileGetSize ..., Gets the 8ize 0f @ file.cuovuevercieireirereicree et AUD-112
amFileInstallAlternateloManager Installs a custom I0 Proc. ... AUD-113
amStreamIsr0 - 4........cooeeiviiiniii e Interrupt Service Routine for the amStream subsystem.cccccccucene. AUD-114
amMemSh4ALLOCc.vueueueeerecrreeirecreeeieeies Sh4 memory allocation Shell. ... AUD-115
amMemSh4Free Sh4 memory free shell. ..o AUD-116

amMemINit.......cccveeunieinienericreeeeees Initializes the Sh4 memory shell SYStem.cccocveeneureereireeneeeeeenenennennes AUD-117
amMemInstallAlternateMemoryManager Allows redirection of sh4 MemOry requests.cc.cveveereereeeveeremsenrennee AUD-118
amMidiSetTempo ..o Sets the tempo of @ MIDI SEQUENCE.ceuvueeemcmeereereneereeseeseeeneeseeesenennes AUD-119

AUD-v

The Dreamcast Audio 64 API

amMidiSetLoopFlagcccccevvvnninnnnininnnen Sets the loop flag on a MIDI SEQUENCE.covecurecmreverrirenerenerenensesenseaenn. AUD-120
amMidiFetchToneBankc.cccocvuvcuriciricunennn. Installs an MTB asset from a bank file aggregate.cccccovuvicinininnes AUD-121
amMidiLoadToneBank...........cccccocoeiivininniiininnnns Loads a Sega tone bank assetcccccoviiiiniiiiiiiniccees AUD-122
amMidilnstallCallbackccccoviiiinininiiiininnns Sets the callback proc for a SEqUENCE.cccecuviurieieeereeeemcmncrrerrereeeene AUD-123
amMidiAllocateSequencePort..........c.cccoeuevevninnes Allocates a MIDI port for the sequence.cococveereevececmrcmncuncrnerncnneen. AUD-124
amMidiFetchSequenceccccocvueuncuncuncrncnnnnn. Fetches a sequence asset from a katBank.cccccovevuvueuncmncncncncnen. AUD-125
amMidiPlay ... Plays a MIDI SEqQUENCE.cceimiimimiminiiniiiiniicccccscsssccscscsanens AUD-126
amMidiPlayRaw........ Plays a MIDI sequence given the basic parameters.cc.ccccveuveureuneunn. AUD-127

amMidiStop........... Stops a currently playing MIDI sequence.ccooeeviiiiiininiicnniiinnns AUD-128
amMidiSetVolume Sets the master volume of a MIDI seqUence.ccceuerruemerrmninnienenennn. AUD-129
amMidiPause ..o Pauses a currently playing MIDI sequence.cccoeoevveeuninicerenninnns AUD-130
amMidiResumeccocevirinininiceinceenes Resumes playback of a paused MIDI sequence.c.c.cocoevvuevrecunrerrinnnns AUD-131
amMidiTransferToneBank...........cccccccececcuiinianes Transfers a Sega tone bank to sound memory and sets it as

the current bank. ..o AUD-132
amMidiSetChannelProgram...........cccccecuveureuneen. Sets the current bank SIOt. ..o AUD-133
amMIidiNOteON ..o, Plays a MIDI triggered sound effect.ccccooeiiiiiiiiniiniccninns AUD-134
amMIidiNOteOSfcoeveiiiiis Stops a MIDI triggered sound effect.c.cocooeeveiviniiiniieiccnns AUD-135
amMidiSetChannelVolume Sets volume of a midi sound. AUD-136
amMidiSetChannelPan.........cc.ccooeueevcurecrrecunennn. Sets the pan of @ MIDI SOUNA.c..cccviueviuriiiriciicineieeieeeeeneseeesseseeseaenne AUD-137
amSoundSetQSoundChannels.............cccccccuueeee. Used to identify which channels in an output bank are..........cccecovevevcercercrnennnn.

Q-Sound channels.cceeeeeevereeeeeeeeeeeee e ns
amSoundSetEffectsBuss ... Sets the effects buss send and source mix for a sound object. AUD-139
amSoundFetchSample....... Fetches a sound and its parameters from a Katana format bank. AUD-140
amSoundISLOOPING........ccovvrueriiicieiniicieieinas Tells if the given sound has a loop.ccccccnininininininccceccene AUD-141
amSoundAllocateVoiceChannel Allocates a hardware voice channel.ccccccovvenicnicnicneeencirienenn. AUD-142
amSoundGetSampleRateccccoeuvviiiiininnnns Gets the real world sample rate.cceeeremnenieneeneeneererersennensenneaneen. AUD-143
amSoundGetVolumeccccovviininininiiiininnas Gets the current volume SEHHNG.ccoveveuemeureuniereireeerenenenserenenseaeene AUD-144
amSoundGetPan.........ccccviniiiiiicnincens Gets the current pan poSItON.couceeucuvcuncrnemneeniereereeeemesensencseceeeene AUD-145
amSoundGetVoiceChannel............cccccccecuvcuncnnnen. Gets the current voice channel assignment.ccccocoeeeecuvcuncncncncneen. AUD-146
amSoundGetCallback.........cccoevvvirueiriennieriiiennas Gets the address of the user callback.c.coceveerneernieenerernernencereceneenn. AUD-147
amSoundSetCurrentPlaybackRate Sets the playback rate.ccoccvueurieunneee AUD-148
amSoundSetVolumeccccoevviiiivininciininnas Sets a SOUNAS VOIUME.coviiiiiiiiiiiiiiiii e AUD-149
amSoundSetPan..........cccccviiininiininns Sets @ SOUNAS PAN.c.cviiimiiiiiiii e AUD-150
amSoundSetCallbackcccccvuviuvineiriciricininnn. Sets the user callback. ... AUD-151
amSoundIsPlayingc.cocoeveviiviineininiccieininns Tells if a sound is currently playing.ccccccoeveeiniiicnninenceenes AUD-152
amSoundStop Stops a currently playing sound. AUD-153
amSoundPlay Plays @ SOUN. ... AUD-154
amSoundPlayRaw ..o, Plays a sound given all of the required parameters.c.cccocveurerreunn. AUD-155
amStreamSetMix Sets volume and pan for all tracks in a stream. AUD-157
amStreamlInitFile.............. Initializes a stream object to play a file.cccoeeveiiiiiiiiis AUD-158
amStreamlInitBuffer Initializes a stream object to play a mono stream from a buffer. AUD-159
amStreamlInstallUserCallbackcccoeuvviinnnen Installs a user callback for a stream. ..o, AUD-160
amStreamRewind..........cocovvvviiiiiiinn Rewinds an open stream to its start.cccovviiiiiiie, AUD-161
amStreamGetMemoryRequirement Gets memory sizes necessary to play the stream.cccccoeeveuverrerncrnencen. AUD-162
amStreamSetBufferSizes...........cccooeviviiiiiinnnns Sets the sizes for the play and transfer buffers.ccooeeeuveurcrnenernennnn. AUD-163
amStreamSetBuffers...........cccoooevviiiiiniiinns Sets buffer memory pointers in a stream.cccccoeeiiniiiniicninns AUD-164
amStreamSetIsT ..o Sets the streams data transfer ISR.cccccocvimninininerececncsercececeeeene AUD-165
amStreamAllocateVoiceChannels..............c........ Allocates voice Chanmels.c..ccveieeineeinicinieineeneeneieese e esesseaenne AUD-166
amStreamPrimeBuffers Primes the play buffer.ccccoccnieunee. AUD-167
amStreamGetTrackLengthInFrames. Gets the length of a stream in frames.c.ccocoveveercercereererernernernerneneen. AUD-168
amStreamGetNibblesPerFrame............cccccooocuce. Gets the number of nibbles in a frame.cccccooeveereurereceeevcnernereneeen. AUD-169
amStreamGetSampleRatecccooveiriiiiiiinnns Gets the real world sample rate of a Stream.cocoeeeeecuvcurcurcurcrncenenn. AUD-170
amStreamGetMsPerlrq........cccoovviceininicicicininnns Gets the number of milliseconds per callback.cccoeueurcuncuncincrnceneen. AUD-171
amStreamSetVolume Sets the volume on a stream.cccecuvecurecunenenn. AUD-172
amStreamSetPan...........coovvvviiinnii Sets the pan on a MONO SLrEAIMN.ccvueviueeiiiciiciieireieeeeee et AUD-173
amMStreamStoP.....ccovvvvvvviivinieiii Stops a currently playing stream.cccocvviiiiinniciiniiceens AUD-174
amStreamPlaying............ Monitors if a stream is currently playing.ccccccoveiiniininiciiinnns AUD-175
amStreamGetVolume Gets the streams CUITENt VOIUIMEovueuuemcmimieieceeieieeeme e AUD-176
amStreamGetPan..........c.cocooveeiiiininins Gets the streams CUITENE PAILcc.vueeeeeeecmcicincieeeeeeeeseee e AUD-177

AUD-vi

Table of Contents

amStreamGetIsrCount.........cocccviiceiiicincnnns Gets the Interrupt Service ROUtNE COUNt.oceuiecuivcuniueineierereierrienenes AUD-178
amStreamCloSe ..o Closes a Stream ODJECL.cccccciuiiiiiiiiiiiiiiiicc s AUD-179
amStreamStart........... Starts a stream object playing. ... AUD-180

amStreamlIsStereo Tells if a stream is StEreo. ..o AUD-181
amStreamIsMono Tells if a stream is MONO.ccccvviiiiiiiiiiic s AUD-182
AMSEIEAMSEIVET ...ovvieieirceeie e Serves data to a currently playing stream.cccoovvveriniieiieiceieine AUD-183
amStreamOPencceveviiiiiiiiccce Opens a stream ObJECt.c.ccccuiviiiiiiiiiiiiccc AUD-184
amStreamSetTransferMethod...........cccocccuiueennneee Selects DMA or memcpy as the data transfer method.cc.ccccccvucunnce AUD-185

amStreamlolnstall AlternateloManager Installs a custom I0 Proc. ... AUD-186
amUtilGetAicaVolume. ..o, Converts midi volume units to AICA unitscccocoevvvnniiniccninnnn. AUD-187
amUtiIALignNumber...........cccocoevvicieininienen Performs numerical boundry alignment.ccccocoevviiiinninincccinnnen. AUD-188
amUtilGetLengthInFrames............ccccccvcvvvunnnees Gets the length of a stream in frames.cccocoeneincinininininirieieennes AUD-189
amUtilGetNibblesPerFrame Gets the number of nibbles in a frame. AUD-190
amUtilGetSampleRateccccooviiiiiiniinininnen. Gets the real world sample rate of a stream.ccoccoeeeuvereencrvicciricennenee AUD-191
amUtilGetLengthInMSs.......c.ccocvveniuneereeneeeneerennen Gets the length of a stream in milliSECONdS.coeereereurerrerreereeereererenennee AUD-192
amUtIGetMsPerlrq.......coooorviiiniiiiiiciciinen, Gets the number of milliseconds per callback.ccocveureereeeverecucencnnee AUD-193
amUtilGetAicaSampleType........cccocovvviruerrennen. Extrapolates sample bit depth to AICA sample type.cocoeueucurcuncunee AUD-19%4
amUtilGetAicaSampleRate Makes a real world sample rate into an AICA sample rate. AUD-195
amUtilGetMiddleOfBufferInFrames................... Calculates the middle of the buffer in frames.cccooeceuveenerevcrriccnnnnee AUD-196
amUtilGetEndOfBufferInFrames........................ Calculates the end of the buffer in frames.c.coocvererereneveerenrennennes AUD-197
amVoicelnit ..., Initializes the voice pool.ccccoveveneurernennnn. AUD-198

amVoiceAllocate Allocates a vOice Chanmnel.ooovveieiiuiveieiieieeeeeeeeeeee ettt AUD-199

AUD-vii

The Dreamcast Audio 64 API

AUD-viii

Sega@'Dreamcast.

Preface

The Sega of America audio solutions (Audio64 and MidiDa) offer a different approach to using the audio hardware
resources of the Dreamcast console. The main differences fall into the following areas:

¢ Sound memory usage

¢ Interrupt notification

¢ Control of AICA hardware
e Sound asset creation

e Layered API approach

The basic approach to memory usage is to allow a completely dynamic usage of the sound memory resource. This
means that you can write any sound assets you require to any available area of the sound RAM and play them. You
can also dynamically allocate this memory and dynamically replace it. There are no static “memory maps” to restrict
your usage of this memory. Along with the freedom to use this memory as you see fit comes the possibility of
unpredictable results if you misuse this resource.

Interrupt notification is implemented for sound (PCM or ADPCM) playback and MIDI playback, and sound driver
command processing. This means that you can know immediately when sound resources become available and
reuse the resource, thereby increasing the bandwidth of the audio system.

Control of the AICA hardware is intended to be as exposed as possible, implementation time permitting. This means
that you can directly allocate all 64 audio channels (in the case of the Audio64 sound driver) and control each
channels pan, volume control and sample rate playback directly. You can also gang multiple channels for
phase-locked audio playback (up to 64 channels), and can dynamically control DSP effects on each.

All audio assets can be bundled together into banks of multiple or individual type data. The collection into banks
is as easy as copying standard assets (.wav or .fpb or .fob or .mid or .mpb files, etc.) into a directory and running a
DOS-level utility. Streams can be built in a like manner, and multiple track streams are accommodated by the tools.

Providing a layered API means developers can work at the level they are most comfortable with, and that multiple
approaches are accommodated. We believe that full access to the hardware will yield the best results, that
developers can adapt their current game development environments more easily and be immediately more
productive. The AC (AICA Control) layer allows direct control of the AICA sound driver and hardware, while the
AM (AICA Manager) layer provides higher level control with an architecture that provides dynamic resource
allocation and stream playback control, among other things.

AUD-ix

The Dreamcast Audio 64 API

The AICA hardware is an audio subsystem that supports 2 MB of sound RAM, has 64 audio playback channels
which can play 16, 8 or 4 bit data at sample rates from > 11 megaHertz (theoretically) down to 172 hz
(approximately). It also contains a built-in DSP unit which can provide high quality reverb and Qsound and a
multitude of DSP effects which can be flexibly configured. It has a built-in digital 16 channel mixer, and can route
Redbook audio through the DSP. Each voice channel also has a hardware 5 stage resonant Low Pass Filter, wave
selectable amplitude and pitch LFOs, and an amplitude ADSR envelope. The sound subsystem has an embedded
RISC ARM7 CPU running at 25 MHZ, and the AICA sound registers are controlled by one of the sound drivers
(Audio64 or MidiDa) written in ARM7 assembler. SH4 CPU usage is minimized by utilizing ARM7 control.

AUD-x

Sega@'Dreamcast.

1. Dreamcast
Audio64 Overview

1.1 Introduction

The Audio64/MidiDa API is designed to be a logically named, easy to use, fault tolerant, componentized
audio system.

It is broken down into layers. Use of the AC layer will not involve any AM layer components.
The examples all include some boilerplate code that will allow the inclusion of sound into a game in under an hour.

There are two drivers available, Audio64 , and MidiDa . One is 64 channels of digital audio while the other is 16
channels of digital audio 16 MIDI ports with 48 note MIDI poliphony.

Note: The MidiDa driver is not an official part of R8 but can be obtained from Sega DTS.

The naming convention is [layer][subsystem][function] such asamSoundPlay oracDigiOpen . There are
NO abbreviations used anywhere in the library and the Capping scheme is strictly adhered to, this should put to
rest the problem of strange and absurd API naming conventions.

Fault tolerance is provided through extensive error trapping and reporting through an error messaging system that
gives both an error number as well as a text message that gives the name of the failing procedure and the likely cause
of the failure. Each layer has its own error reporting system.

The overall system obtains its necessary OS services through procedural vectors that allow it to be totally OS
independent. This allows developers the ability to customize and control the file IO and interrupt handling
capabilities to fit their individual needs. Application programmers will appreciate the componentized nature of the
system allowing them to replace sub-systems with their own custom code.

Neither the AM nor the AC layer allocates or frees SH4 side memory; there is a SH4 memory allocation shell in place
but that is not used.

The mid-level layer, AM, is implemented using only AC layer calls, at no point does it “go to the metal” and use a
functionality that is not exposed in the AC layer. That insures that it is possible for an audio oriented developer to
match or exceed the AM layers capabilities using the AC layer calls.

AUD-1

The Dreamcast Audio 64 API

The AM system is designed to use industry standard assets such as.wav files and Type 0 MIDI (.mid) files. This will
allow audio artists to work in the tools that they are familiar with rather then having to use a proprietary tool to
make what should be standard assets. It also allows the full range of commercial DSP plugins to be used with a
minimum or difficulty in the audio art production process. Certain assets that are Sega specific i.e. DSP Program
banks, DSP output banks and MIDI tone banks, can be manufactured using the Sega Macintosh tools set.

An asset aggregation system is supplied that knows about the types of assets that will be used for sound and allows
the audio programmer access to some frequently tweaked parameters in pre-built script files. The script file is
completely written by a script file builder so the learning curve for building assets is very minimal. Basically throw
the assets in a directory, run the script builder then the bank builder. This system also allows for the inclusion of
parameterized developer specific assets.

The AM layer streamer will stream files that have multiple tracks to allow for a degree of interactivity to be
implemented in a streaming audio presentation via track muting and scene mixing. If you look in the samples you
will find a sample that streams, in phase coherent sync, 8 tracks of full bandwidth (44.1/16 bit) audio.

1.2 AM Layer

The AM layer controls system resources to a degree that the AC layer does not, it doesn’t own these resources. They
still must be given to it by the application.

All volume/pan parameter ranges for the AM layer are the same as MIDI ranges 0-127.

If sound memory is needed it can be partitioned using the amHeap system or by the developers proprietary
memory / heap management system. As with memory management for any audio system this memory must not be
relocatable. If the memory were to be moved while the driver is playing it ugly artifacts or failures will be produced.

AM has a number of discreet sub-systems that you may use as desired.

Central to the operation of the AM system is its main shared code resource the voice pool manager. All of the AM
systems that play sound use the amVoice system. This manager controls allocation of voices and MIDI ports, tracks
their activity and closes their voice channels when the play is completed.

Because of this interrupt driven action it is of the utmost importance that sound objects, AM_SOUNDAM_STREAM
and AM_SEQUENC Igersist until the sound is finished playing.

The voice pool retains a pointer to the sound object and will issue AC commands and adjust the internal state of the
object on completion of the play cycle. If this object is created on the local stack and control goes out of the scope of
that function, then, when the end of the sound is reached the voice manager will write and read that address...
which is part of the stack of another function now. Upon further processing, the system will fail.

Needless to say this is unfortunate when it happens so we advise that sound objects be global in scope as their
addresses are retained and written to at the end of the sound, stream or sequence.

In the registration of callbacks for the different sound entities the callback proc must be registered after the voices
are allocated, the function can not be registered if the voice pool does not know what voice owns the pointer.

The callback handler in MyInt.c is the default AM callback handler, if you want to post ARM interrupt messages
with the driver and field the response, or add functionality to voice channel/ port messages, while still using the
AM system, this allows you to hack into the default callback handler and add your code to it.

1.2.1 amlinit

Initialization of the AM layer is simple, install the OS service procs, select the driver and call amInit

See the examples and the boilerplate modules for examples of the OS service proc wrappers and the initialization
sequence.

AUD-2

1. Dreamcast Audio64 Overview

1.2.2 amBank

This APl is an asset picker for the DOS command line asset aggregation tools that are supplied with the
development kit.

It allows you to “fetch” an asset and it parameters from a kat bank in an orderly fashion. amSound, amMidi and
amDspall have “fetch” functions. In the future we will supply a way to use your own aggregation tool with
these APT’s.

The kat bank consists of a DWORD that contains the number of header records/ assets in the bank, then n header
records, then the assets in the same order as the header records. See ambnkhdr.h for more detail on the structure
of the header records.

1.2.3 amfFile

This is a redirectable file system that uses a monolithic IO proc to perform all disk based functions. This is used by
all AM subsystems that perform file IO operations. The amStream sub-system uses a similar IO proc to read in
stream files. This allows you to customize the IO proc’s or change the file system being used.

Because the file system is OS dependent it is excluded from the library code and this indirect interface is supplied.

For this reason the system is initialized prior to calling aminit by passing proc pointers to
amFilelnstallAlternateloManager and amStreamlolnstallAlternateloManager .If the file system is
not initialized amInit will fail.

This file system is also used in the examples to obtain assets from disk.

Boilerplate of the monolithic IO procs may be found in MyFile.c

1.2.4 amHeap

This is a standalone memory manager system that can be used to partition sound memory. It has some knowledge
of the special requirements of Dreamcast sound memory i.e. DWORD aligned writes only. Despite the fact that the
memory manager will not allocate odd sized blocks of memory it is still possible to trash memory by writing an
odd ((size % 4)==true) sized asset into the block.

Each block is aligned to the starting address alignment given with the amHeapAlloc call, each block ends with the
mark RCTT on a DWORD boundary.

Because of this alignment there is a little bit of wastage with each block, but, to obtain both head and tail alignment
it is unavoidable.

Two types of memory can be allocated; fixed, from the top of the heap and purgable, from the bottom of the heap.
This will allow you to allocate persistent buffers while allocating transient buffers without fragmenting the heap.

Each memory block has a callback routine that is called when the block is either purged or freed. amHeapPurge
will perform a top down purge of the bottom of the heap to gain sizeNeeded blocks of memory.

The amHeapFree call allows a less drastic approach to this by allowing a top down releasing of the memory blocks.
It will not release a block that is not the top block as that would fragment the bottom of the heap zone.

You can either use this system or your own as none of the AM sub-systems call to this APL

AUD-3

The Dreamcast Audio 64 API

1.2.5 amSound

This subsystem plays one shot sound effects that are contained in aggregated bank files. Because the memory that
holds the bank file has already been allocated it this sub-system does not ask for nor allocate sound memory.

The sound effects have some simple parameters that are accessed via the bank build script that is produced by the
MkScript tool. This allows you to inflict random pitch on sound effects to prevent player burn out and monotony,
volume control and loop control.

Provisions for real time control of the sounds’ placement in the sound field via volume, pan, and Q-Sound are
provided.

In the case of the set volume and pan functions if they are called when the sound is not playing the value will be set
in the sound object and when the play call is made that value will be sent to the driver. This avoids sending the
driver unnecessary messages.

For a comprehensive example of using the amSound system see the file MySfx.c in the examples.

The amSoundPlay call uses the amSoundPlayRaw call which will play a raw asset.
1.2.6 amStream

The streamer uses block interleaved files made by the MkStream tool. These files have a 2048 byte header area that
starts with a data structure, then some plain text information about the file and possibly the contents of an abstract
file that can provide further plain text information. The structure of the header can be seen in amstrhdr.h

Open the samples stream file in a hex editor (MSVC or whatever) and you will see this information. This is provided
so that the programmer who didn’t make the file can see what the spec’s are for that file without too much pain.

Stream files have n tracks and each track has 1 or 2 channels. Currently streams can only contain mono tracks or
stereo tracks. If a mixture is needed deinterleave the stereo file(s) and make them into mono tracks panned hard left
and hard right.

The file needs to be interleaved so that each block of sound data in the file is the same size as half of the play buffer
size that is requested for the stream. Further this must be a number divisible by 2048 as this reduces the loading of
the low level file system.

This block sizing allows the streamers data pump to fill half of each play buffer in one cycle. The transfer buffer
should be at least the play buffer size * the number of channel in the file.

The streamer works by interrupt, for a mono stream two points are calculated in the play buffer, the middle in
frames and the end in frames. The play buffer is primed from the transfer buffer and a callback is set for the middle
of the buffer, play is initiated and control returns to the caller.

When the interrupt comes in the streams ISR is invoked by the voice pool. This ISR sets a callback for the end of the
buffer and a flag that says its time to fill the front of the buffer. The amStreamManager sees this flag and fills the
front of the buffer. At this point the “pump” is running and it will continue to run until either stopped or the number
of interruptsTillEnd is reached. When the end is reached if a user callback was installed it will be invoked
during the final interrupt.

For a comprehensive example of using the amStream system see the file MyStream.c in the examples.

AUD-4

1. Dreamcast Audio64 Overview

1.2.7 amMidi

This API allows the playing of Type 0 Standard MIDI files. There are a number of high level functions that allow
control of the MidiDa drivers sequencer and then a number of lower level functions that allow the sending of MIDI
messages to the drivers MIDI parser directly.

Supplied with the examples are a General Midi instrument bank and a GM drum bank. These may be used in your
products on a royalty free basis.

User callbacks are supported, note that since all callbacks are registered with the amVoice manager the MIDI port
must be allocated prior to the installation of the callback.

In the case of the set volume and pan functions if they are called when the sequence is not playing the value will be
set in the sequence object and when the play call is made that value will be sent to the driver. This avoids sending
the driver unnecessary messages.

The amMidiPlay call uses the amMIdiPlayRaw call which will play a raw MIDI asset.

1.3 The AC Layer

This layer consists of functions that fill out driver control blocks, AC_COMMANDand send them to the driver. The
driver has a 32 entry command queue that the commands are placed in by the acWriteCommand() function. As
the SH4 is so much faster then the ARM7 processor it is possible to flood the command queue if more then 32
commands are sent at a time. Certain “Meta” commands have been created to ease the bandwidth in the AC->driver
command pipe.

All of the AC layer commands take the control values that are native to the system. These are called AICA values,
0-15 for volume and 0-31 for pan.

AC functions are error trapped, if NULL parameters or out of range values that can not be corrected are used the
functions will not pass these bad values to the driver. In that case the function will return false and issue an error
message. If the value is correctable like an out of range volume it will be corrected to the nearest in range value and
a warning message will be issued via the error messaging system. All procedures that fix-up argumentary values
are noted in that specific functions documentation.

The hardware platform has 64 digital voice channels, with the audio64 driver all of these are available for digital
audio playback. Under the MidiDa driver 48 of these digital voices are dynamically allocated to the MIDI playback
engine. These are controlled by 16 fully polyphonic midi ports. The remaining 16 voice channels, 0-15, are available
for digital audio playback. The MIDI ports are numbered 0-15 as well but are reported back by the drivers interrupt
messaging service as channels 16-31.

All assets that are used by the AC layer must reside in sound memory and be an even multiple of 4 in size. This is
because sound memory can only be written as DWORD'’s, byte writes to sound memory will cause the memory
system to malfunction.

The AC layer uses raw (headerless) PCM or ADPCM audio data and Standard MIDI file type 0 assets. The DSP and
MIDI tonebank assets are a Sega proprietary format that is created using the Sega Macintosh tool set. A DLS Level
1 Instrument Collection to tonebank converter is also available.

When writes are made to sound memory they pass through a 32 byte deep FIFO. For critical writes to sound
memory the state of this G2 buss FIFO must be observed. Failure to observe this FIFO and creating sustained writes
(> 16 msec) can lead to loss of data on the Maple bus.

The acSystem sub-system is a group of slightly higher level functions that provide driver installation and system
interrogotory functions. This allows the programmer access to the inner workings of the AC layer and the driver.

The acint sub-system provides calls to install OS services for interrupt chaining and removal of interrupts as well
as a default ARM interrupt handler. The default handler may be found also in the boilerplate code in MyInt.c in
the examples.

AUD-5

The Dreamcast Audio 64 API

By using only the AC layer and installing a custom callback handler callbacks can be fielded with out the pain of
writing an interrupt handler.

The acMidi group of functions will only have an effect if the MidiDa driver is installed. Otherwise they will have
no effect, in R8 they will return true but no action will be taken, in R9 they will return false.

This group of functions allow manipulation of the MIDI sequencer that is part of the driver.

The acDigi group of functions allow for the playing and real-time control of digital sound effects. They work with
either driver but are subject to the channel restrictions stated at the start of this section.

With all Midi and Digi library sub-systems the order of calls is:

Open
Play
Stop
Close

It is necessary to call the close function prior to reopening the port. The close returns ports to a known default state,
and is especially necessary if ports are dynamically allocated and re-used, where sample or bit rates may change.

The acCd subsystem allows the initialization of the audio output path of the CD’s Redbook playback system. The
actual calls to make the drive read (play) a Redbook track are part of the file system for your specific operating
system. That is why the play, stop and pause calls are not found in the AC layer. If the AC CD subsystem is not set
up prior to playing Redbook tracks the result is undefined.

acDsp allows the installation of the two part DSP program objects created by the Sega DSP editor tool. The
programs consist of two parts, the actual DSP program code and, the output assignments. The DSP output system
has 16 channels that can either be assigned to the program, dry, or Q-Sound.

If a channel has the Q-Sound algorithm assigned to it gains an additional 0 based index starting with the first
Q-Channel found in the output bank. This is because the Q-Sound algorithm has some internally settable
parameters that are not part of the standard output channels controls.

In the example banks the first 12 channels are assigned to a medium reverb patch on channel 0, the next 4 channels
are Q-Sound channels; these are output on channels 12-15. They are Q-Sound channels 0-3.

1.4 Tools Overview

For specific operation instructions for each tool see that tools readme.txt file. Each example that uses a tool on its
assets contains an assets directory. In this directory is a makeit.bat file that contains the command lines used to build
the assets. Running this batch file will rebuild the assets for the example.

1.4.1 MkScript

This tool writes build scripts for the bank builder tool MkBank. These scripts can be edited by hand to change the
audio asset parameters for each asset type. The parameters are documented in the head of each script file.

This is set up so that each bank’s assets can be placed in a directory then have the script and bank builders run on
them.

Because some hand work may be done on the scripts when MkScript is re-run it renames the last script file rather
then overwriting it.

To control the order of assets in a bank either edit the file names so that the standard directory sort order is correct or
change their order in the script. The assets will be placed into the bank in the same order that they appear in
the script.

AUD-6

1. Dreamcast Audio64 Overview

1.4.2 MkBank

This tool reads bank scripts made by MkScript and then based on the information contained within builds a
concatenated bank file from the assets.

Bank files may contain up to 3 bytes of 0x00 at the end to make them be writable to sound memory (evenly divisible
by 4).

Banks will recognize certain file extensions. The extensions are .mid, .wav, .mpb, .fpb and .fob a file with any other
extension will be added to the bank as an “unknown” type asset.

It is important that these standard assets have the correct extensions so that the fetch routines will work. If the
extension is incorrect the asset will be built into the bank as the wrong type and it’s respective fetch routine will
reject it.

The “unknown” type is there so that you may add your own proprietary types of assets to banks. This type allows
8 user parameters, it is up to you to determine what you want these parameters to represent for your unknown
assets. All of these parameters will be defaulted to 0 in the raw script file, these parameters will be represented
internally as signed longs.

When a bank is built a header (.h) file is generated, this contains constants that may be used to fetch the assets in
the bank. The constants are a synthesis of an identifier and the assets file name and type. The header also contains
a constant containing the file name of the bank using this system producing the right asset at the right time should
be greatly simplified.

1.4.3 MkStream

This tool builds stream (.str) files. This file format allows a number of tracks and each track has one or two
channels. The interleave rate of the file must match the interleave rate being requested by the programmer or the
streamer code will reject the file. Further the interleave rate is forced to be a multiple of 2048 by having it stated on
the command line in terms of 2048 byte blocks.

An abstract can be added to the header of the file as plain text allowing the inclusion of build, copyright or
other information.

The stream file details its specs in the header in plain text just prior to the abstract file. Open one in a text or hex
editor and you will see the human readable header information. The first part of the header is a binary
representation of the files specs that is used by the API to set up the play for that file.

AUD-7

The Dreamcast Audio 64 API

1.5

File Formats

Bank File (.kat)

[numberOfAssets] 4 bytes
[headerRecord] sizeof(AM_BANK_FILE_UNION)
[| sizeof(AM_BANK_FILE_UNION)
[asset0] variable
[] variable

Stream File (.str), 1 track 2 channels, play buffer size 16384 bytes

Header contains...

[binaryHeader | sizeof(AM_STREAM_FILE_HEADER)
[textinfo] 2048 - sizeof(AM_STREAM_FILE_HEADER)

File contains...

[header] 2048 bytes
[tlcl] 8192 bytes
[tlc2] 8192 bytes
[tlcl] 8192 bytes
[tlc2] 8192 bytes
[

AUD-8

Sega@'Dreamcast.

2. The AICA Control Layer API

acSyStem RequestArm Interru pt Causes the driver to raise an ARM external interrupt.

FORMAT

#include <ac.h>
KTBOOLlacSystemRequestArminterrupt(KTU32 interruptid)

PARAMETERS
KTU32 interruptld, This value will be reported into the callback handler as its arg (0-255).

RETURN VALUE

KTTRUE(successful
KTFALSEIif unable to send command or interruptld is out of range (0-255).

FUNCTION

Will raise an ARM external interrupt that will be fielded by the ARM interrupt handler on the SH4 side.

Under the audio64 DA driver the first 64 ID's (0-63) are taken for use by the 64 voice channels; the MidiDa

Note:
driver will use the first 32 (0-31) ID’s to report the voice’sports.

The remaining ID’s are available for USER application purposes.

AUD-9

The Dreamcast Audio 64 API

acDigiPIay Starts a buffer playing.

FORMAT
#include <ac.h>

KTBOOLacDigiPlay(KTU32 port,KTU32 startOffset, KTS16 aicaLoopFlag)

PARAMETERS
port Voice channel number, 0-63 for audio64 driver, 0-15 for MidiDa driver.
startOffset Play from start of buffer assigned to port (only 0 supported for this release).
aicaLoopFlag Play looping buffer, 0 (loop off) or 0xff (loop on). If this is out of range it will be
set to AC_LOOP_OFF
RETURN VALUE
KTTRUEf successful

KTFALSEIf port is out of range or startOffset != 0 or unable to send command.
FUNCTION

Plays buffer assigned to the voice channel by acDigiOpen() . The total length of buffer must be < 64k
sample frames.

AUD-10

2. The AICA Control Layer API

acDigiPIayWith LoopParameters Starts a buffer playing Set loop points.

FORMAT

#include <ac.h>

KTBOOLacDigiPlay(KTU32 port,
KTU32 startOffset,

KTS16 aical.oopFlag,

KTU16 loopStartOffsetinFrames,
KTU16 loopEndOffsetinFrames)

PARAMETERS
port Voice channel number, 0-63 for audio64 driver, 0-15 for MidiDa driver.
startOffset Play from start of buffer assigned to port. (only 0 supported for this release)
aicaLoopFlag Play looping buffer, AC_LOOP_ONr AC_LOOP_OFF

Note: If this is out of range it will be set to AC_LOOP_OFF

loopStartOffsetinFrames The 0 based loop start offset in sample frames.

loopEndOffsetinFrames The 0 based loop ending offset in sample frames.
RETURN VALUE

KTTRUEf successful.

KTFALSE:if port is > 63, or startOffset != 0, or unable to send command

FUNCTION

Plays buffer assigned to the voice channel by acDigiOpen() . The total length of buffer must be < 64k
sample frames. The sample loop offsets are 0 based numbers that are expressed in sample frames e.g. 16 bit
data is 2 bytes, 8 bit is 1 byte and 4 bit (ADPCNis 1 nibble per frame.

AUD-11

The Dreamcast Audio 64 API

acDigiPlayWithParameters

FORMAT

#include <ac.h>

KTBOOL acDigiPlayWithParameters(
KTU32 volume,

KTU32 pan,

KTU32 dspMixerChannel,

KTU32 dspSendLevel,

KTS32 frequencyOrCentsOffset,

Starts a buffer playing with all common parameters.

KTU32 port,

AC_PITCH_SET_TYPE frequencyOrCentsFlag,

KTU32 callbackOffsetinFrames,
KTU16 loopStartOffsetinFrames,
KTU16 loopEndOffsetinFrames)

PARAMETERS

port

volume

pan

dspMixerChannel
dspSendLevel
frequencyOrCentsOffset

frequencyOrCentsFlag
AC_PITCH_NO_CHANGE
AC_PITCH_AS _SAMPLE_RATE

AC_PITCH_AS_CENT_VALUE

callbackOffsetinFrames
loopStartOffsetinFrames
loopEndOffsetinFrames

RETURN VALUE

KTTRUECS successful.

KTFALSEif port or dspMixerChannel

Voice channel number, 0-63 for audio64 driver, 0-15 for
MidiDa driver.

0-15, soft to loud.
0-31, left to right.
0-15, needs to match DSP algorithm mapping.
0-15, min to max.

either the real world sample rate i.e. 44100, 32000, 22050 etc. or the
pitch offset in cents.

One of the following values from ac.h
values in frequencyOrCentsOffset are ignored.

value in frequencyOrCentsOffset
world sample rate.

will be interpreted as a real

value in frequencyOrCentsOffset will be interpreted as a cents
offset from the root pitch at which the port was opened.

The 0 based callback offset in sample frames
The 0 based loop start offset in sample frames, ignore == 0.

The 0 based loop ending offset in sample frames, ignore == 0.

is out of range or command write failed,

AUD-12

2. The AICA Control Layer API

FUNCTION

Plays buffer assigned to the voice channel by acDigiOpen() . The total length of buffer must be < 64k
sample frames. The sample loop offsets are 0 based numbers that are expressed in sample frames e.g. 16 bit
data is 2 bytes, 8 bit is 1 byte and 4 bit (ADPCMis 1 nibble per frame.

Note: If volume, pan or dspSendLevel are out of range they will be set to equal the max value for the range.

Note: If the loop offsets are set to O they will be ignored by the driver.

AUD-13

The Dreamcast Audio 64 API

aCDIQIM ultiSetMask Sets the bit masks for acDigiMultiPlay()
FORMAT
#include <ac.h>
KTBOOLacDigiMultiSetMask(KTU32 port,KTU32 * uppermask ,KTU32* lowermask)
PARAMETERS
port Voice channel number, 0-63 for audio64 driver, 0-15 for MidiDa driver.
KTU32 *uppermask, A pointer to the upper 32 channel mask, voices 32-63
KTU32 *lowermask, A pointer to the lower 32 channel mask, voices 0-31
RETURN VALUE
KTTRUE(f successful

KTFALSEif upperMask or lowerMask is NULLor port is out of range.

FUNCTION

Creates channel masks for use with the acDigiMultiPlay() function. This may be called in a loop to set
multiple channels in the mask.

AUD-14

2. The AICA Control Layer API

acDigiMuItiPIay Sets the bit masks for acDigiMultiPlay()

FORMAT

#include <ac.h>

KTBOOL acDigiMultiPlay(KTS32 aicaLoopFlag, KTU32 upperMask, KTU32 lowerMask)

PARAMETERS
KTS32 aicalLoopFlag, Start channels as looping or not, AC_LOOP_ONr AC_LOOP_OFF
KTU32 *upperMask, A pointer to the upper 32 channel mask, voices 32-63
KTU32 *lowerMask, A pointer to the lower 32 channel mask, voices 0-31
RETURN VALUE
KTTRUE if successful
KTFALSE if upperMask is 0 or the top 4 bits of lowerMask are set and MidiDa driver is
in use.
if upper and lower masks are 0.
FUNCTION

Starts a group of channels as a phase locked gang.

AUD-15

The Dreamcast Audio 64 API

acDigiM u |tiStOp Sets the bit masks for acDigiMultiPlay()

FORMAT

#include <ac.h>

KTBOOL acDigiMultiStop(KTU32 upperMask, KTU32 lowerMask)

PARAMETERS
KTU32 *upperMask, The upper 32 channel mask, voices 32-63
KTU32 *lowerMask, The lower 32 channel mask, voices 0-31
RETURN VALUE
KTTRUEf successful
KTFALSE if upperMask is 0 or the top 4 bits of lowerMask are set and MidiDa driver is
in use.
if upper and lower masks are 0.
FUNCTION

Stops a group of channels as a phase locked gang.

AUD-16

2. The AICA Control Layer API

acDigiOpen Open a DA Streaming Port for playback.

FORMAT

#include <ac.h>

KTBOOL acDigiOpen(KTU32 port,KTU32 address,KTU32 sizelnBytes,AC_AUDIO_TYPE
aicaAudioType, KTS32 aicaSampleRate)

PARAMETERS
port Voice channel number, 0-63 for audio64 driver, 0-15 for MidiDa driver.
address the address in sound memory
sizelnBytes buffer length in bytes, maximum 128k for 16bit data,64k for 8bit data, 32k for
4bit (ADPCMdata.
aicaAudioType format type 4, 8, or 16 bit. See AC_AUDIO_TYPE data type enumeration in ac.h
typedef enum
{
AC_16BIT,
AC_8BIT,
AC_ADPCM
AC_ADPCM_LOOP
}AC_AUDIO_TYPE;
sampleRate Base real world sample rate. Further play commands on this open port will start

at this rate unless changed by a call to acSetSampleRate()

RETURN VALUE
KTTRUE if successful
KTFALSE if port is out of range, address is 0, sizeInBytes is 0, audioType is out of range,
sampleRate exceeds 1128900 or command write fails.
FUNCTION

Opens a digital voice channel and assigns a buffer, root pitch and loop status to the voice.

AUD-17

The Dreamcast Audio 64 API

acDigiSetSampIeRate Set the playback rate (sample rate) of audio stream.

FORMAT

#include <ac.h>

KTBOOL acDigiSetSampleRate(KTU32 port, KTS32 sampleRate)

PARAMETERS

port Voice channel number, 0-63 for audio64 driver, 0-15 for MidiDa driver.

sampleRate The real world sample rate to set for the indicated the voice channel.
RETURN VALUE

KTTRUE if successful

KTFALSE if port is out of range, sampleRate exceeds 1128900, or command write fails.
FUNCTION

This changes sample rate (playback rate) of a currently running voice channel.

The voice will be set to the closest approximation of that sample rate the hardware is capable of
reproducing.

AUD-18

2. The AICA Control Layer API

aCDigiC|Ose Closes port previously opened.

FORMAT

#include <ac.h>

KTBOOL acDigiClose(KTU32 port)

PARAMETERS

port Voice channel number, 0-63 for audio64 driver, 0-15 for MidiDa driver.
RETURN VALUE

KTTRUE if successful

KTFALSE if port is out of range or command write fails.
FUNCTION

Closes voice channels opened with acDigiOpen() . Itis important to close a channel and to not iterativly
open the results of that type of methodology are undefined.

AUD-19

The Dreamcast Audio 64 API

acDigiSetCurrentPitch Changes the playback rate of a running channel.

FORMAT

#include <ac.h>

KTBOOL acDigiSetCurrentPitch(KTU32 port,KTS32 pitchOffsetinCents)

PARAMETERS
port Voice channel number, 0-63 for audio64 driver, 0-15 for MidiDa driver.
pitchOffsetinCents Pitch in cents. (-8400 to 8400)
RETURN VALUE
KTTRUE if successful
KTFALSE if port is out of range or command write fails.
FUNCTION

Changes the pitch of a currently running voice channel in increments of cents.
Cents is a musical measurement of pitch, one octave (frequency double or half) is 1200 cents.

Making this call will not change the default setting of the voice channel but it will change the pitch of a
sound that is currently playing on that channel.

If the currently playing sound stops and is retriggered with a call to acDigiPlay() it will play at the
sample rate that the vice channel was set up for in the acDigiOpen() call.

Calling this with an arg of 1200 will make the sound play up one octave, a second call to this with an arg of
0 will make the sound play at the setting to which the voice was initialized in the acDigiOpen() call.

AUD-20

2. The AICA Control Layer API

acDigiSetVqume Adjusts volume of a voice channel.

FORMAT

#include <ac.h>

KTBOOL acDigiSetVolume(KTU32 port, KTU32 aicaVolume) aicaVolume is 0-15

PARAMETERS
port Voice channel number, 0-63 for audio64 driver, 0-15 for MidiDa driver.
aicaVolume 0-15, soft to loud.

RETURN VALUE
KTTRUE(f successful

KTFALSE:If the port is out of range or command write fails.

FUNCTION

Changes the direct output volume of an open voice channel, if a sound is currently playing on the channel
the volume of that sound will be changed, if the channel is not playing this will set the volume used when
that channel is started with a call to acDigiPlay()

Note: If aicaVolume is out of range it will be set to AC_MAX_VOLUME

AUD-21

The Dreamcast Audio 64 API

acDigiSetPan Adjusts the pan placement of a voice channel.

FORMAT

#include <ac.h>

KTBOOL acDigiSetPan(KTU32 port,KTU32 aicaPan)

PARAMETERS
port Voice channel number, 0-63 for audio64 driver, 0-15 for MidiDa driver.
aicaPan 0-31, left to right.

RETURN VALUE
KTTRUEf successful

KTFALSEIif the port is out of range or command write fails.

FUNCTION

Changes the direct output pan of an open voice channel, if a sound is currently playing on the channel the
pan of that sound will be changed, if the channel is not playing this will set the pan used when that channel
is started with a call to acDigiPlay()

Note: If aicaPan is out of range it will be set to AC_MAX_PAN

AUD-22

2. The AICA Control Layer API

acDigiRequestEvent Used to generate an interrupt when a certain buffer position is reached.

FORMAT
#include <ac.h>

KTBOOL acDigiRequestEvent(KTU32 port,KTU32 offsetFromBeginninginFrames)

PARAMETERS
port Voice channel number, 0-63 for audio64 driver, 0-15 for
MidiDa driver.
offsetFromBeginningInFrames 0 based offset from start of buffer in sample frames. (0-65535)
RETURN VALUE
KTTRUETf successful

KTFALSE:Iif the port is out of range or command write fails.

FUNCTION

When channel playback position reaches the indicated offset the driver will raise an ARM external
interrupt causing the ARM interrupt handler to be invoked. The channel number of the calling channel will
be placed into the drivers interrupt array. If multiple channels are reporting event requests at the same time
there will be multiple entries in the drivers interrupt array. The number of channels reporting may be
observed by measuring the incrementation of the interrupt array start offset which is available via the
acSystem call acSystemGetIntArrayStartOffset()

Note: The parameter offsetFromBeginningInFrames is not error trapped.

AUD-23

The Dreamcast Audio 64 API

acDigiStop Stops a voice channel playing.

FORMAT

#include <ac.h>

KTBOOL acDigiStop(KTU32 port)
PARAMETERS

port Voice channel number, 0-63 for audio64 driver, 0-15 for MidiDa driver.

RETURN VALUE
KTTRUEf successful

KTFALSE:Iif the port is out of range or command write fails.

FUNCTION

Stops playback of a previously started voice channel.

AUD-24

2. The AICA Control Layer API

acMidiOpen Open a MIDI Port buffer for SMF format 0 playback.

FORMAT

#include <ac.h>

KTBOOL acMidiOpen(KTU32 port,

KTU8 gmMode,
KTU32 address,
KTU32 sizelnBytes,
KTU32 pulsesPerQuarterNote)
PARAMETERS
port MIDI port number, 0-15.
gmMode AC_GM_Odt AC_GM_OFFselects General MIDI mode on or off.
Allows use of a Bank 0 General MIDI instrument and drumset.
address address in sound ram of the start of buffer.
MidiBufferSize buffer length in bytes.
TicksPerQNote time base in ticks per quarter note (ppqn).
RETURN VALUE
KTTRUEf successful

KTFALSEIif the port is out of range, address is 0, sizeInBytes is 0 or command write fails.

FUNCTION

Opens a MIDI port. Midi ports are fully polyphonic 16 channel ports for MIDI streams. This call sets the
default set of parameters for a MIDI port, i.e. GM mode, the address of the Standard MIDI Type 0 asset in
sound memory and the PPQN (pulses per quarter note) for that asset.

Note: If gmModeis out of range it will be set to AC_GM_OFF

AUD-25

The Dreamcast Audio 64 API

acMidiSetTonebank Assign a MIDI Program Bank (tonebank) to an active bank slot.

FORMAT

#include <ac.h>

KTBOOL acMidiSetTonebank(KTU8 toneBank,
AC_BANK_TYPE bankType,

KTU32 address,
KTU32 sizelnBytes,
KTU32 mttPtr)
PARAMETERS
toneBank tone bank slot number (0-15)
bankType AC_MELODIC_BANKfor melodic banks or AC_DRUM_BANfr drum banks.
address offset in sound memory of start of tone bank.
offset= (addressInSoundMemory & 0x003fffff)
sizelnBytes size of tone bank in bytes
mttPtr MIDI translate table pointer (not implemented yet)
RETURN VALUE
KTTRUE if successful
KTFALSE if the toneBank or bankType is out of range, address is 0, sizeInBytes is 0 or
command write fails.
FUNCTION

Sets a tonebank for active playback. Assigns a bank number to a tonebank slot that will be accessable via
MIDI Bank Select messages in the sequence data.

AUD-26

2. The AICA Control Layer API

acMidiClose Close a MIDI port.

FORMAT

#include <ac.h>

KTBOOL acMidiClose(KTU32 port)
PARAMETERS

port MIDI port number, 0-15.

RETURN VALUE
KTTRUETS successful

KTFALSEI f the port is out of range, or command write fails.

FUNCTION

Closes the indicated MIDI port and sends an All Notes Off message to the drivers midi parser.

AUD-27

The Dreamcast Audio 64 API

acMidiPIay Starts playback on opened MIDI port.

FORMAT

#include <ac.h>

KTBOOL acMidiPlay(KTU32 port,KTU32 startOffset, KTS16 aicaLoopFlag)

PARAMETERS
port MIDI port number, 0-15.
startOffset Start playback layback from buffer start position + offset.
loopFlag Loop MIDI playback buffer, AC_LOOP_ONr AC_LOOP_OFF
RETURN VALUE
KTTRUE(f successful

KTFALSE:If the port is out of range, or command write fails.

FUNCTION

Starts Standard MIDI File Type 0 playback on the given port from the start of the port’s buffer plus
startOffset. The default tempo is 120 BPM, until a MIDI tempo message is parsed.

Note: If aicalLoopFlag is out of range it will be set to AC_LOOP_OFF

AUD-28

2. The AICA Control Layer API

aCMidiStOp Stops standard MIDI file playback on port.

FORMAT

#include <ac.h>

KTBOOL acMidiStop(KTU32 port)
PARAMETERS

port MIDI port number, 0-15.

RETURN VALUE
KTTRUETS successful

KTFALSEI f the port is out of range, or command write fails.

FUNCTION

Stops MIDI playback on the indicated port and sends an "All Notes Off" message to the drivers midi parser.

AUD-29

The Dreamcast Audio 64 API

acMidiRequestEvent Generates interrupt to host upon MIDI port reaching specified address.

FORMAT

#include <ac.h>

KTBOOL acMidiRequestEvent(KTU32 port,KTU32 offsetFromBeginninginBytes)

PARAMETERS
port MIDI port number, 0-15.
portEventAddress Sound memory event address.
RETURN VALUE
KTTRUEf successful

KTFALSE:If the port is out of range, or command write fails.

FUNCTION

When MIDI playback position reaches the indicated offset the driver will raise an ARM external interrupt
causing the ARM interrupt handler to be invoked. The channel (port + 16) number of the caller will be
placed into the drivers interrupt array. If multiple channelsports are reporting event requests at the same
time there will be multiple entries in the drivers interrupt array. The number of channelsports reporting
may be observed by measuring the incrementation of the interrupt array start offset which is available via
the acSystem call acSystemGetintArrayStartOffset().

Note: The parameter offsetFromBeginningInBytes is not error trapped.

AUD-30

2. The AICA Control Layer API

acMidiPause Pauses an active MIDI port.

FORMAT

#include <ac.h>

KTBOOL acMidiPause(KTU32 port)

PARAMETERS

port MIDI port number, 0-15.
RETURN VALUE

KTTRUE if successful

KTFALSE if the port is out of range, or command write fails.
FUNCTION

Pauses playback on an activly playing MIDI port. Sends an All Notes Off message to the drivers
midi parser.

AUD-31

The Dreamcast Audio 64 API

acMidiResume Resumes playback on active MIDI port.

FORMAT

#include <ac.h>

KTBOOL acMidiResume(KTU32 port)

PARAMETERS
port MIDI port number, 0-15.

RETURN VALUE

KTTRUEf successful

KTFALSE:If the port is out of range, or command write fails.
FUNCTION

Resumes playback on the given MIDI port. When playback is resumed running status mode is retained
from the point at which the sequence was paused.

AUD-32

2. The AICA Control Layer API

acMidiSetVolume Sets scaled volume setting for MIDI port.

FORMAT

#include <ac.h>

KTBOOL acMidiSetVolume(KTU32 port,KTU32 portMasterVVolume)

PARAMETERS
port MIDI port number, 0-15.
portMasterVolume Global volume setting for port, (0-127).
RETURN VALUE
KTTRUE(successful

KTFALSE:Iif the port is out of range, or command write fails.

FUNCTION

Sets global volume setting for the given MIDI port. This will cause the driver to scale all MIDI CC7
(volume) messages accordingly. This will affect ALL channels in the sequence running on the port.

Note: If portMasterVolume is out of range it will be set to AC_MAX_MIDI_VOLUME

AUD-33

The Dreamcast Audio 64 API

acMidiReset Resets MIDI controllers on port to default values.

FORMAT

#include <ac.h>

KTBOOL acMidiReset(KTU32 port)
PARAMETERS
port MIDI port number, 0-15.

RETURN VALUE
KTTRUEf successful

KTFALSE:If the port is out of range, or command write fails.

FUNCTION

Resets controller values to standard defaults. The bank select per channel is set to 0.

The MIDI continuous controller settings affected are as follows:

cc7 =100
Cc11 =127
CC10, CC71,CC74 =64
CC20-CC28, CC88 =32
CCO0, CC52-CC56, CC70 =0

Pitch Bend =0 (center).

AUD-34

2. The AICA Control Layer API

aCMidiSEtTempO Set playback tempo of MIDI port.

FORMAT

#include <ac.h>

KTBOOL acMidiSetTempo(KTU32 port,KTU32 microSecondsPerQuarterNote)

PARAMETERS
port MIDI port number, 0-15.
microSecondsPerQuarterNote Sets the Microseconds per Quarter Note for MIDI port.
RETURN VALUE
KTTRUE(successful

KTFALSE:Iif the port is out of range, or command write fails.

FUNCTION

Allows real-time control of tempo for port.

Note: The parameter microSecondsPerQuarterNote is not error trapped.

AUD-35

The Dreamcast Audio 64 API

acMidiSendMessage Sends raw MIDI messages to ports.

FORMAT

#include <ac.h>

KTBOOL acMidiSendMessage(KTU32 port,

KTU32 channel,
KTU32 midiMessage,
KTU32 valuel,
KTU32 value2)
PARAMETERS
port MIDI port number, 0-15.
channel MIDI channel number, 0-15.
midiMessage MIDI command number (channel nibble ignored),
Channel voice messages 0x80-0xe0.
midiValuel First MIDI voice message data byte.
midiValue2 Second MIDI voice message data byte.
RETURN VALUE
KTTRUETf successful

KTFALSE:If the port, channel, valuel or value2 is out of range, or command write fails.

FUNCTION

Immediately sends raw MIDI message to port by channel number. Allows real-time dynamic control of
note-on and controller messages, etc.

Note: The parameter midiMessage is not error trapped.

AUD-36

2. The AICA Control Layer API

acCdSetVolume Sets Left & Right Channels for Redbook Volume Control (dependent on channel pan).

FORMAT

#include <ac.h>

KTBOOL acCdSetVolume(KTU32 leftVolume,KTU32 rightVolume)

PARAMETERS

leftVolume Volume level for left audio channel, 0-127.
rightVolume Volume level for right audio channel, 0-127.

RETURN VALUE

KTTRUE(successful

KTFALSE:Iif the leftVolumerightVolume is out of range, or command write fails.
FUNCTION

Sets volume level for CD-DA (Redbook) playback channels.

Note: Left and right depend on CD-DA Pan position.

See: gdfsgdda documentation for calls to play and stop tracks.

AUD-37

The Dreamcast Audio 64 API

acCdSetPan Sets Left & Right Channel pan position.

FORMAT

#include <ac.h>
KTBOOL acCdSetPan (KTU32 leftPan,KTU32 rightPan)

PARAMETERS

leftPan Pan Position for left audio channel, 0-127, left to right.
rightPan Volume level for right audio channel, 0-127, left to right.

RETURN VALUE

KTTRUEf successful
KTFALSE:if the leftPanrightPan is out of range, or command write fails.

FUNCTION

Sets pan position for CD-DA playback channels.

Note: This may affect the behavior of volume command since left channel can be set to the right pan position
and vice versa.

AUD-38

2. The AICA Control Layer API

acCdInit Resets CDDA channels to hard pan positions and maximum volume.

FORMAT

#include <ac.h>

KTBOOL acCdInit(void)
PARAMETERS

void
RETURN VALUE

KTTRUETS successful
KTFALSEif command write fails.

FUNCTION

Sets default pan position and volume for CDDA playback channels.

Note: This must be called prior to playing back redbook audio from the CD.

AUD-39

The Dreamcast Audio 64 API

acDspSetQSoundAngle

Sets Q-Sound position.
FORMAT

#include <ac.h>

KTBOOL acDspSetQSoundAngle(KTU32 gSoundChannel KTU32 angle)

PARAMETERS
gSoundChannel The 0 based Q-Sound channel number, if the effect patch has 4 channels of
gsound and they are mixer channels 12-16 then for the sound on mixer channel
12 the Q-Sound channel is 0, 13 = 1 etc... range: 0-7
angle 0-127, left to right.
RETURN VALUE
KTTRUE(f successful

KTFALSEif command write fails.

FUNCTION

Allows the setting of the Q-Sound angle parameter in real time.

Note:

The parameter angle is trapped so that if it is out of range it will be set to 127 and the function will continue
to execute.

AUD-40

2. The AICA Control Layer API

achpInstalIProgram Registers a dsp program bank with the driver.

FORMAT

#include <ac.h>

KTBOOL acDsplnstallProgram(KTU32 address,KTU32 sizelnBytes)

PARAMETERS
KTU32 address, The address of the program bank in sound memory.
KTU32 sizelnBytes , The size in bytes of the program bank.
RETURN VALUE
KTTRUE(successful
KTFALSEif address is NULL, size in bytes is 0 or command write failed.
FUNCTION

Sets a DSP program bank as the current DSP program. This program bank is currently produced using the
Mac DSP editor tool.

AUD-41

The Dreamcast Audio 64 API

achpInstaIIOutputMixer Registers an output mixer patch with the driver.

FORMAT

#include <ac.h>

KTBOOL acDsplnstallOutputMixer(KTU32 address,KTU32 sizelnBytes)

PARAMETERS
KTU32 address, The address of the output mixer bank in sound memory.
KTU32 sizelnBytes, The size in bytes of the output mixer bank.

RETURN VALUE
KTTRUEf successful

KTFALSEIf address is NULL, size in bytes is 0 or command write failed...

FUNCTION

Sets an output mixer bank as the current output routing. This output mixer bank is currently produced
using the Mac DSP editor tool.

AUD-42

2. The AICA Control Layer API

achpSetMixerChannel Sets DSP mixer level and channel for that port.

FORMAT

#include <ac.h>

KTBOOL acDspSetMixerChannel(KTU32 port, KTU32 mixer,KTU32 level)

PARAMETERS
port Voice channel number, 0-63 for audio64 driver, 0-15 for MidiDa driver.
toMixerChannel DSP mixer channel number, 0-15.
sendLevel Audio signal level, 0-15.
RETURN VALUE
KTTRUETS successful

KTFALSE:If port is out of range or command write failed...

FUNCTION

Set port's audio signal to DSP mixer channel to enable DSP effects for stream. This allows stream to be
altered by reverb, etc.

Note: The parameters mixer and level are not error trapped.

AUD-43

The Dreamcast Audio 64 API

acErrorGetlLast Gets a pointer to the error structure.

FORMAT

#include <ac.h>

AC_ERROR_PTR acErrorGetLast(void)
PARAMETERS

void
RETURN VALUE

AC_ERROR_STRUCT a pointer to the AC error structure.

FUNCTION

Gets a pointer to the AC error structure. This contains an error number enumerated as an AC_ERROR_TYPE
inac.h and a more informative error message that tells the name of the function that failed as well as some
descriptive text regarding the cause of the failure.

AUD-44

2. The AICA Control Layer API

acErrorExists Checks to see if an error condition exists.

FORMAT

#include <ac.h>

KTBOOL acErrorExists(void)
PARAMETERS

void
RETURN VALUE

KTTRUECS a error exists
KTFALSEIif no error exists.

FUNCTION

Allows checking of the error state for the AC layer in a single call returning a bool.

AUD-45

The Dreamcast Audio 64 API

acErrorClear Clears the AC error structure.

FORMAT

#include <ac.h>

void acErrorClear(void)

PARAMETERS

RETURN VALUE

KTTRUEf successful
KTFALSEif unable to send command or interruptld is out of range (0-255).

FUNCTION

Clears the AC Error structure.

AUD-46

2. The AICA Control Layer API

aclntlnstal|OSChainDe|eteManager Installs pointer to interrupt chain delete routine.

FORMAT

#include <am.h>

KTBOOL aclntinstallOsChainDeleteManager(AC_INT_CHAIN_DELETE_MANAGER
theChainDeleteManager)

PARAMETERS

AC_INT_CHAIN_DELETE_MANAGEReChainDeleteManager , a pointer to the wrapped routine.
The wrapper prototype is defined as follows:

void feiux(KTU32);
RETURN VALUE

KTTRUE if the proc was installed.

KTFALSE if the proc was not installed due to a prior initialization of the vector.
FUNCTION

Allows installation of OS specific interrupt chain removal procPointer . The procedure’s wrapper must
have the following prototype: void foo(KTU32); the argument being the chain ID to be removed.

Note: This MUST be done prior to calling aclnit() oramlnit() or init failure will result.

See Also: MyInt.c (a part of the samples)

AUD-47

The Dreamcast Audio 64 API

aCIntInStaIIOSChainAddmanager Installs proc pointer to interrupt chain add routine.

FORMAT

#include <am.h>

KTBOOL aclntinstallOsChainAddManager(AC_INT_CHAIN_ADD_MANAGER theChainAddManager)

PARAMETERS

AC_INT_CHAIN_ADD_MANAGHReChainAddManager , a pointer to the wrapped routine.
The wrapper prototype is defined as follows:

KTU32 foo(KTS16,AC_ARM_INTERRUPT_HANDLER,KTU32,void *);

RETURN VALUE

KTTRUE if the proc was installed.

KTFALSE if the proc was not installed due to a prior initialization of the vector.
FUNCTION

This allows the app programmer to wrap a given OS’s interrupt chain add routine and send it to the audio
system. This provides for OS neutrality.

See Also: MyInt.c (a part of the samples)

AUD-48

2. The AICA Control Layer API

acintinstallCallbackHandler instalis a caliback handler into the ARM interrupt handler.

FORMAT

#include <am.h>

KTBOOL aclntinstallCallbackHandler(AC_CALLBACK_HANDLER theCallbackHandler)

PARAMETERS
AC_CALLBACK_HANDLER theCallbackHandler , a pointer to a callback handler function.
The prototype of the callback handler function is as follows:
void fuu(volatile KTU32);
RETURN VALUE
KTTRUE if the proc was installed.
KTFALSE if the proc was not installed due to a prior initialization of the vector.
FUNCTION

Installs a callback handler into the ARM interrupt handler. This allows developers wanting to work at the
AC level to get callbacks from both the voice channelsmidi ports and from the interruptld arg to
acSystemRequestArminterrupt()

Please note that the audio64 driver claims the first 64 ID’s (0-63) while the MidiDa driver claims the first
32 (0-31) ID's. MIDI ports report the (port + 16) so in using the MidiDa driver 0-15 are the 16 available
digital voice channels and 16-31 are the 16 available MIDI ports.

The ARM interrupt handler is installed into the OS’s ARM external interrupt chain. It is invoked when ever
an ARM interrupt is raised. The interrupt handler parses the drivers interrupt array to determine which
channels are reporting on this interrupt cycle, it then calls the callback handler once for each message it
finds in the drivers interrupt array.

See Also: KTBOOLacSystemRequestArminterrupt(KTU32 interruptld)
See Also: MyInt.c (a part of the samples)

AUD-49

The Dreamcast Audio 64 API

aclntlnstalIArmInterruptHandIer Installs an ARM interrupt handler.

FORMAT

#include <am.h>

KTBOOL acintinstallArminterruptHandler(AC_ARM_INTERRUPT_HANDLER thelnterruptHandler)

PARAMETERS

AC_ARM_INTERRUPT_HANDLER thelnterruptHandler, a pointer to an interrupt handler function.
The prototype of the callback handler function is as follows:

void feeb(void *);

The value AC_ARM_INTERRUPT_HANDLER_ill be incoming as the argument to this function if it is a
legitimate interrupt message.

RETURN VALUE

KTTRUE if the proc was installed.

KTFALSE if the proc was not installed due to a prior initialization of the vector.
FUNCTION

Initializes the ARM interrupt handler vector with your function. A default function will be installed if this
vector has not been initialized at startup time. This default handler is illustrated in MyInt.c and is described
below.

The default ARM interrupt handler is installed into the OS’s ARM external interrupt chain.
This is done at start up if a user handler has not been supplied via this routine.

Itis invoked when ever an ARM interrupt is raised. The interrupt handler parses the drivers interrupt array
to determine which channels are reporting on this interrupt cycle, it then calls the callback handler once for
each message it finds in the drivers interrupt array.

See Also: KTBOOL acSystemRequestArminterrupt(KTU32 interruptid)
See Also: MyInt.c (a part of the samples)

AUD-50

2. The AICA Control Layer API

acintSetAicaChainld Sets the AICA interrupt chain ID.

FORMAT

#include <am.h>

void acIntSetAicaChainld(KTU32 chainld)

PARAMETERS
KTU32 chainld, The OS specific ID for the AICA EXTERNAL interrupt in the case of Shinobi it
is Oxb20
RETURN VALUE
void
FUNCTION

Sets the interrupt ID for the AICA external interrupt, this is used when installing interrupt handlers.

Note: This defaults to 0xb20

See Also: MyInt.c (a part of the samples)

AUD-51

The Dreamcast Audio 64 API

acintShutdown Shuts down the ac interrupt system.

FORMAT

#include <am.h>

void acIntShutdown(void)
PARAMETERS

void
RETURN VALUE

void
FUNCTION

Shuts down the am interrupt system by removing the ARM interrupt callback from the OS using the chain
delete function and clearing the OS service vectors.

See Also: MyInt.c (a part of the samples)

AUD-52

2. The AICA Control Layer API

acintinit Initializes the ac interrupt system.

FORMAT

#include <am.h>

void acIntlnit(void)

PARAMETERS
void
RETURN VALUE
KTTRUE if the interrupt system was successfully initialized
KTFALSE if OS based chain add or delete managers not installed, see the following
functions to install these OS based services.
KTBOOL aclntinstallOsChainAddManager(AC_INT_CHAIN_ADD_MANAGER
theChainAddManager);
KTBOOL
aclntinstallOsChainDeleteManager(AC_INT_CHAIN_DELETE_MANAG
ER theChainDeleteManager);
FUNCTION

Initializes the am interrupt system by installing the ARM interrupt handler to the OS’s ARM
interrupt chain.

If user interrupt handler and or callback handlers have been installed these will not be overwritten by
this function.

See Also: MyInt.c (a part of the samples)

AUD-53

The Dreamcast Audio 64 API

acSystemSh utdown Shuts down the AC layer.

FORMAT

#include <ac.h>

void acSystemShutdown(void)
PARAMETERS

void
RETURN VALUE

void
FUNCTION

Shuts down the AC layer by removing the interrupt handler using the delete chain vector and clearing all
of the OS service vectors.

AUD-54

2. The AICA Control Layer API

aCSVStemGEtI ntArraySta rtOffset Gets the interrupt array write cursor offset.

FORMAT

#include <ac.h>

KTBOOL acSystemGetintArrayStartOffset(KTU32 *interruptArrayStartOffset)

PARAMETERS
KTUS32 *interruptArrayStartOffset, a byte pointer expressed as a KTU32 indicating the
current write position within the drivers interrupt
message array.
RETURN VALUE
KTTRUE if successful
KTFALSE if interruptArrayStartOffset is NULL or driver is not installed.
FUNCTION

Gets the interrupt array start offset from the driver. By comparing the movement of this number from
interrupt to interrupt it can be determined how many messages are being returned and where they are
located in the drivers interrupt message array.

The audio64 driver claims the first 64 ID’s (0-63) while the MidiDa driver claims the first 32 (0-31) ID's.
MIDI ports report the (port + 16) so in using the MidiDa driver 0-15 are the 16 available digital voice
channels and 16-31 are the 16 available MIDI ports.

See Also: MyInt.c (a part of the samples)

AUD-55

The Dreamcast Audio 64 API

acSystemGetlntArraySta rtPtr Gets a pointer to the start of the drivers interrupt message array.

FORMAT

#include <ac.h>

KTBOOL acSystemGetIntArrayStartPtr(char **intArrayStartPointer)

PARAMETERS

char **intArrayStartPointer, a pointer to the start of the interrupt message array.

RETURN VALUE

KTTRUE on success
KTFALSE if drive is not installed or *intArrayStartPointer is NULL

FUNCTION

Gets a pointer to the start of the 64 byte interrupt message array in the driver.

This address is in SOUNBnemory so NO BYTE READSmove it into SH4 memory before you start to dissect
it in a byte wise fashion or sound memory will be turned into putty.

The audio64 driver claims the first 64 ID’s (0-63) while the MidiDa driver claims the first 32 (0-31) ID's.
MIDI ports report the (port + 16) so in using the MidiDa driver messages 0-15 are the 16 available digital
voice channels and 16-31 are the 16 available MIDI ports.

AUD-56

2. The AICA Control Layer API

acSystemGetBaseOfSounlelemory Gets the starting address for sound memory.

FORMAT

#include <ac.h>

KTBOOLacSystemGetBaseOfSoundMemory(KTU32 *bhaseOfSoundMemory)

PARAMETERS
KTU32 *baseOfSoundMemory, the address of the base of sound memory represented as a KTU32

RETURN VALUE

KTTRUE on success.

KTFALSE if the baseOfSoundMemory is NULL or driver is not installed.
FUNCTION

Gets the address of the base of sound memory represented as a KTU32.

AUD-57

The Dreamcast Audio 64 API

acSystemGetIntArray Gets the address of the SH4 side interrupt message array.

FORMAT

#include <ac.h>

KTBOOL acSystemGetintArray(char *interruptArray)

PARAMETERS
RETURN VALUE

KTTRUE if

KTFALSE *interruptArray is NULL or driver is not installed.
FUNCTION

Gets the address of the SH4 side interrupt message array buffer that is contained in the acSystem structure.

Note: This is broken in R8 as it gets the SH4 side array but does not fill it from the driver.

AUD-58

2. The AICA Control Layer API

acSystemGetIntArrayLength Gets the length of the drivers interrupt message array.

FORMAT

#include <ac.h>

KTBOOL acSystemGetintArrayLength(KTU32 *interruptArrayLength)

PARAMETERS
KTU32 *interruptArrayLength, the length of the interrupt message array is returned via
this pointer.
RETURN VALUE
KTTRUE on success
KTFALSE if interruptArrayLength is NULL or the driver is not installed.
FUNCTION

Gets the length of the drivers interrupt message array.

Note: This is a vestigal function from when the Midi driver had a shorter message array then the DA driver. Now
they both use 64 byte arrays.

AUD-59

The Dreamcast Audio 64 API

acSystemCheckDriverRevision Tests the driver version against the supplied version.

FORMAT
#include <ac.h>

KTBOOL acSystemCheckDriverRevision(KTU8 *driver,KTU8 major,KTU8 minor,KTCHAR local)

PARAMETERS
KTUS8 *driver, An image in memory of the driver
KTU8 major, The major revision desired
KTUS8 minor, The minor revision desired
KTCHAR local The local version desired
RETURN VALUE

KTTRUE(f it is the same version
KTFALSEiIf it is not the same version

FUNCTION

Used in acSystemInstallDriver() to test the driver revision.
See: The top of ac.h for the constants that it uses to test the driver.

AUD-60

2. The AICA Control Layer API

acSystemGetDriverRevision Tests the driver version against the supplied version.

FORMAT

#include <ac.h>

KTBOOL acSystemGetDriverRevision(KTU8 *driver, KTU8 *major,KTU8 *minor, KTCHAR *local)

PARAMETERS
KTUS8 *driver, An image in memory of the driver
KTUS8 *major, The major revision is returned via this pointer
KTUS8 *minor, The minor revision is returned via this pointer
KTCHAR *local The local version is returned via this pointer
RETURN VALUE

KTTRUEthe version was returned intact
KTFALSEIf driver was NULL

FUNCTION

Called by acSystemCheckDriverRevision to obtain the driver revision.

AUD-61

The Dreamcast Audio 64 API

acSystemWaitUntilG2FifolsEmpty Wiaits until the G2 FIFO is clear.

FORMAT

#include <ac.h>

void acSystemWaitUntilG2FifolsEmpty(void)
PARAMETERS

void
RETURN VALUE

void
FUNCTION

The G2 FIFO is 32 bytes deep, when writing critical messages to sound RAM the FIFO status must be
checked to determine when the write is complete. For each check that it makes of the FFST bits it increments
a counter to allow real time observation of the amount of waiting required.

AUD-62

2. The AICA Control Layer API

aCSVStem Delay Use to delay for short periods of time.

FORMAT

#include <ac.h>

void acSystemDelay(KTU32 delay)
PARAMETERS

KTU32 delay, the number of NOP’s of delay.
RETURN VALUE

void
FUNCTION

Uses a loop with a no-op in it to delay for short periods of time, used to allow memory to “settle” or for
ARM wrrites to take place fully when critical values are read from sound memory.

AUD-63

The Dreamcast Audio 64 API

acSystem EnabIeArmInterrupts Use to enable the ARM interrupt.

FORMAT

#include <ac.h>

void acSystemEnableArminterrupts(void)
PARAMETERS

void
RETURN VALUE

void
FUNCTION

Enables the ARM external interrupt. The driver does not enable or disable the interrupt this allows the
interrupt to be enabled \ disabled in critical sections.

AUD-64

2. The AICA Control Layer API

acSystem DisabIeArmInterrupts Use to disable the ARM interrupt.

FORMAT

#include <ac.h>

void acSystemDisableArminterrupts(void)
PARAMETERS

void
RETURN VALUE

void
FUNCTION

Disables the ARM external interrupt. The driver does not enable or disable the interrupt this allows the
interrupt to be enabled \ disabled in critical sections.

AUD-65

The Dreamcast Audio 64 API

acSystemInit Makes the ac system ready to use.

FORMAT

#include <ac.h>

KTBOOL acSysteminit(void)
PARAMETERS

void
RETURN VALUE

KTBOOL

FUNCTION

Makes the ac system ready to use, must be called prior to any AC lib calls.

AUD-66

2. The AICA Control Layer API

acGetSystem Flag True if the system has been initialized.

FORMAT

#include <ac.h>

KTBOOL acGetSystemFlag(void)
PARAMETERS
void
RETURN VALUE
KTTRUE If the driver has been installed and the system initialized.

Or...
KTFALSE If not.

FUNCTION

Returns KTTRUES the function aclnstallDriver has been run successfully.

AUD-67

The Dreamcast Audio 64 API

acSystemGetFirstFreeSounlelemory Gets the address of first free sound memory.

FORMAT

#include <ac.h>

volatile KTU32 * acSystemGetFirstFreeSoundMemory(void)
PARAMETERS

void
RETURN VALUE

a pointer to the first free memory in the sound heap as obtained from the driver

FUNCTION

Gets the address of the first free memory in the sound memory area as specified by the driver

AUD-68

2. The AICA Control Layer API

acSystemGetCom mandFlag Gets address of driver command flag register.

FORMAT

#include <ac.h>

volatile KTU32 * acSystemGetCommandFlag(void)
PARAMETERS

void
RETURN VALUE

a pointer to the command flag register

FUNCTION

Gets the command flag register address for system usage. The command flag is written after commands are
placed into the drivers command queue to indicate to the driver that there are commands to be processed.

When setting the flag the value should be Oxffffffff, the driver will then start processing the command
queue from its last queue position. When writing commands it is necessary to observe the state of the G2
buss FIFO to ensure that the command write has completed prior to setting the command flag.

AUD-69

The Dreamcast Audio 64 API

acSystemResetArminterrupt

FORMAT

#include <ac.h>

void acSystemResetArminterrupt(void)
PARAMETERS

void
RETURN VALUE

void
FUNCTION

Resets the ARM interrupt status flag

Resets the ARM interrupt flag.

AUD-70

2. The AICA Control Layer API

acSystemInstaIIDriver Installs the sound driver.

FORMAT

#include <ac.h>

KTBOOL acSystemInstallDriver(void)
PARAMETERS

void
RETURN VALUE

KTBOOILKTTRUE(S the driver was successfully installed and started

FUNCTION

Installs the AICA driver image and sets the system data structure.

AUD-71

The Dreamcast Audio 64 API

AUD-72

Sega@'Dreamcast.

3. The AICA Manager API

amBankFetchMidiUspqn

FORMAT

Fetches uspgn from a MIDI type asset.

#include <am.h>
KTBOOL amBankFetchMidiUspgn(AM_BANK_PTR theBank ,KTU32 assetNumber ,KTU32 *uspgn)
PARAMETERS

AM_BANK_PTR theBank,

A pointer to a .kat bank.
KTU32 assetNumber

, The number of the asset.
KTU32 *uspqn, The the microseconds pqn is returned via this pointer.
RETURN VALUE
KTTRUE on success
KTFALSE theBank is NULL,
uspgn is NULL,
assetNumber is not in this bank
assetNumber isnot a MIDI asset
FUNCTION

Fetches the microseconds per quarter note (uspqn) of a midi asset in a bank file.

AUD-73

The Dreamcast Audio 64 API

amBankFetchMidiLoop

Fetches the loop flag from a MIDI type asset.
FORMAT

#include <am.h>

KTBOOL amBankFetchMidiLoop(AM_BANK_PTR theBank ,KTU32 assetNumber ,KTU32 *loop)

PARAMETERS

AM_BANK_PTR theBank,

A pointer to a .kat bank.
KTU32 assetNumber,

The number of the asset.

KTU32 *loop, The loop flag is returned via this pointer.
RETURN VALUE

KTTRUE, on success

KTFALSE, theBank is NULL,
loop is NULL,
assetNumber is not in this bank
assetNumber is not a MIDI asset

FUNCTION

Fetches the loop flag of a midi asset in a bank file.

AUD-74

3. The AICA Manager API

amBankFetchMidiPpqgn

FORMAT

#include <am.h>

Fetches ppgn from a MIDI type katbank asset.

KTBOOL amBankFetchMidiPpgn(AM_BANK_PTR theBank ,KTU32 assetNumber ,KTU32 *ppgn)

PARAMETERS
AM_BANK_PTR theBank,
KTU32 assetNumber,
KTU32 *ppgn,

RETURN VALUE

KTTRUE,
KTFALSE,

FUNCTION

A pointer to a .kat bank.
The number of the asset.

The ppqn is returned via this pointer.

on success

theBank is NULL,

ppqn is NULL,

assetNumber is not in this bank
assetNumber is not a MIDI asset

Gets the ppgn(pulses per quarter note) from a SMF Type 0 MIDI file asset in a bank.

AUD-75

The Dreamcast Audio 64 API

amBankFetchMidiVolume Fetches master volume from a MIDI type katbank asset.

FORMAT

#include <am.h>
KTBOOL amBankFetchMidiVolume(AM_BANK_PTR theBank ,KTU32 assetNumber ,KTU32

*masterVolume)
PARAMETERS
AM_BANK_PTR theBank, A pointer to a .kat bank.
KTU32 assetNumber, The number of the asset.
KTU32 *masterVolume, The master volume of the asset is returned via this pointer.
RETURN VALUE
KTTRUE, on success
KTFALSE, theBank is NULL,
masterVolume is NULL,
assetNumber is not in this bank
assetNumber isnot a MIDI asset
FUNCTION

Fetches the master volume setting from a MIDI type katbank asset. This setting is set in the katbank build
script file (.0ss) via the”Volume” tag and is used to set the overall starting volume of a MIDI sequence.
This allows the volumes of the sequences used in a game to be balanced against each other.

AUD-76

3. The AICA Manager API

amBankFetChMidiGmMOdEFIag Fetches GM mode flag from a MIDI type katbank ~asset.

FORMAT

#include <am.h>

KTBOOL amBankFetchMidiGmModeFlag(AM_BANK_PTR theBank ,KTU32 assetNumber ,KTU32

*gmModeFlag)

PARAMETERS
AM_BANK_PTR theBank,
KTU32 assetNumber,
KTU32 *gmModeFlag,

RETURN VALUE

KTTRUE,
KTFALSE,

FUNCTION

A pointer to a .kat bank.
The number of the asset.

The GM mode of the asset is returned via this pointer.

on success

theBank is NULL,

gmModeFlag is NULL,
assetNumber is not in this bank
assetNumber is not a MIDI asset

This fetches the value set via the GmModeag in the katbank build script file. This should be set to 1 if it is

a GM sequence or 0 if it is not.

AUD-77

The Dreamcast Audio 64 API

amBankLoad Loads a katbank asset from disk into sound memory.

FORMAT

#include <am.h>
KTBOOL amBankLoad(KTSTRING fileName,AM_BANK_PTR buffer)

PARAMETERS
KTSTRING fileName, The filename and path of the bank to load.
AM_BANK_PTR buffer, A 32 byte aligned buffer in sound memory big enough to
hold the asset.
RETURN VALUE
KTTRUE on success
KTFALSE fileName is NULL,
File not found
buffer is NULL,
buffer is not 32 byte aligned.
FUNCTION

Loads a katbank asset from disk into sound memory. This calls the redirectable file system (amFile ...) to
do the loading operation.

AUD-78

3. The AICA Manager API

amBankFetchAssetParameters Fetches parameters from any katbank ~asset.

FORMAT

#include <am.h>

KTBOOL amBankFetchAssetParameters
KTU32 assetNumber
AM_BANK_FILE_UNION_PTR parameters
)

PARAMETERS

AM_BANK_ PTR theBank,

KTU32 assetNumber,

AM_BANK_FILE_UNION_PTR parameters
RETURN VALUE

KTTRUE
KTFALSE

FUNCTION

(AM_BANK_PTR theBank ,

A pointer to a .kat bank.
The number of the asset.

The parameter block is returned via this pointer.

on success

theBank is NULL,
parameters is NULL,
assetNumber is not in this bank

This will fetch the parameter block from any type of katbank asset.

AUD-79

The Dreamcast Audio 64 API

amBankFetchWaveLoopFIag Fetches the loop flag from a katbank ~asset.

FORMAT

#include <am.h>
KTBOOL amBankFetchWavelLoopFlag(AM_BANK_PTR theBank ,KTU32 assetNumber ,KTBOOL

*loopFlag)
PARAMETERS
AM_BANK_PTR theBank, A pointer to a .kat bank.
KTU32 assetNumber, The number of the asset.
KTBOOL *loopFlag, The loop flag value is returned via this pointer.
RETURN VALUE
KTTRUE on success
KTFALSE theBank is NULL,
loopFlag is NULL,
assetNumber is not in this bank
assetNumber is not a MIDI asset
FUNCTION

Fetches the loop flag from a WAVE type katbank asset. The loop flag is set in the katbank build script via
the “Loop” tag. If the wave is to loop the value is set to 1 if not it is set to 0.

AUD-80

3. The AICA Manager API

amBankFetchWaveRandomPitch Fetches random pitch amount from a katbank ~asset.

FORMAT

#include <am.h>
KTBOOL amBankFetchWaveRandomPitch(AM_BANK_PTR theBank ,KTU32 assetNumber ,KTU32

*randomPitchAmount)
PARAMETERS
AM_BANK_PTR theBank, A pointer to a .kat bank.
KTU32 assetNumber, The number of the asset.
KTBOOL *randomPitchAmount, The random pitch amount is returned via this pointer.
RETURN VALUE
KTTRUE on success
KTFALSE theBank is NULL,
randomPitchAmount is NULL,
assetNumber is not in this bank
assetNumber is not a MIDI asset
FUNCTION

Fetches the random pitch amount from a WAVE type katbank asset. This amount will be applied as a
random percentage of change from the root pitch of the sound when it is played using the
amSound... interface.

AUD-81

The Dreamcast Audio 64 API

amBankFetchWaveSampleRate

FORMAT

Fetches the sample rate from a katbank WAVE asset.

#include <am.h>

KTBOOL amBankFetchWaveSampleRate(AM_BANK_PTR theBank ,KTU32 assetNumber ,KTU32
*sampleRate)

PARAMETERS

AM_BANK_PTR theBank,

A pointer to a .kat bank.
KTU32 assetNumber,

The number of the asset.

KTBOOL *sampleRate, The real world sample rate is returned via this pointer.
RETURN VALUE

KTTRUE on success

KTFALSE theBank is NULL,
sampleRate is NULL,
assetNumber is not in this bank
assetNumber is not a MIDI asset

FUNCTION

Fetches the sample rate from a katbank WAVE asset. This is the real world sample rate number that is set
in the katbank build script (.0ss) using the “SampleRate” tag.

AUD-82

3. The AICA Manager API

amBankFetchWaveBitDepth Fetches the bit depth of a WAVE type asset in a katbank .

FORMAT

#include <am.h>

KTBOOL amBankFetchWaveBitDepth(AM_BANK_PTR

PARAMETERS

AM_BANK_PTR theBank,
KTU32 assetNumber,
KTBOOL *hitDepth,

RETURN VALUE

KTTRUE
KTFALSE

FUNCTION

theBank ,KTU32 assetNumber ,KTU32 *hitDepth)

A pointer to a .kat bank.
The number of the asset.

The bit depth is returned via this pointer.

on success

theBank is NULL

bitDepth is NULL,

assetNumber is not in this bank
assetNumber is not a MIDI asset

Fetches the bit depth of a WAVE type asset in a katbank .

AUD-83

The Dreamcast Audio 64 API

amBankFetchUnknownParameters retches one of the 7 user parameters from a katbank

"unknown" type asset.

FORMAT

#include <am.h>

KTBOOL amBankFetchUnknownParameters(AM_BANK PTR theBank ,
KTU32 assetNumber ,
KTU32 parameterNumber,
KTS32 *parameterValue
)
PARAMETERS
AM_BANK_ PTR theBank, A pointer to a .kat bank.
KTU32 assetNumber, The number of the asset.
KTU32 parameterNumber, The parameter to fetch (0-7)
KTBOOL *parameterValue, The parameter value is returned via this pointer.

RETURN VALUE

KTTRUE on success

KTFALSE theBank is NULL,
parameterValue is NULL,
assetNumber is not in this bank,
parameterNumber is out of range,
assetNumber is not a UNKNOW&a$set

FUNCTION

Fetches one of the seven user parameters from a katbank asset. These parameters are defined in the
katbank build script using the Parameter0 to Parameter7 tags.

AUD-84

3. The AICA Manager API

amBankFetchAsset
FORMAT

#include <am.h>

KTBOOL amBankFetchAsset(
AM_BANK_FILE_UNION_PTR parameters,
KTU32 assetNumber

KTU32 **theAsset,

KTU32 *assetSize

)
PARAMETERS

AM_BANK_PTRheBank ,
AM_BANK_FILE_UNION_PTR parameters,
KTU32 assetNumber,

KTU32 **theAsset,

KTU32 *assetSize

RETURN VALUE

KTTRUE
KTFALSE

FUNCTION

Fetches an asset from a katbank .

AM_BANK_PTR theBank ,

A pointer to a .kat bank.

The parameter block is returned via this pointer.
The number of the asset.

A pointer to the asset is returned via this handle.

The assets size is returned via this pointer.

on success

theBank is NULL,

parameters is NULL,

assetSize is NULL,

theAsset is NULL,

assetNumber is not in this bank,

Fetches an asset from a katbank aggregation. Returns the size, parameters and a pointer to data via

the arguments.

AUD-85

The Dreamcast Audio 64 API

amBankGetAssetSize Gets the size of an asset from a katbank .

FORMAT

#include <am.h>
KTBOOL amBankGetAssetSize(AM_BANK_PTR theBank KTU32 assetNumber ,KTU32 *assetSize)

PARAMETERS
AM_BANK_PTR theBank, A pointer to a .kat bank.
KTU32 assetNumber, The number of the asset.
KTU32 *assetSize, The size of the asset is returned via this pointer.
RETURN VALUE
KTTRUE on success
KTFALSE theBank is NULL,
assetSize is NULL,
assetNumber is not in this bank,
FUNCTION

Fetches the size of an asset from a katbank .

AUD-86

3. The AICA Manager API

amBankGetNumberOfAssets Gets the number of assets in a katbank .

FORMAT

#include <am.h>
KTBOOL amBankGetNumberOfAssets(AM_BANK_PTR theBank ,KTU32 *numberOfAssets)

PARAMETERS
KTU8 *theBank, A pointer to either the header from a bank file or an entire
bank file.
KTU32 *numberOfAssets, The number of assets in the katbank is returned via this pointer.
RETURN VALUE
KTTRUE on success
KTFALSE theBank is NULL
assetSize is NULL
assetNumber is not in this bank,
FUNCTION

Gets the number of assets in a katbank file.

AUD-87

The Dreamcast Audio 64 API

amBankGetHeaderSize Gets the size of the header portion of a katbank .

FORMAT

#include <am.h>
KTBOOL amBankGetHeaderSize (AM_BANK PTRtheBank ,KTU32* headerSize)

PARAMETERS
KTU8 *theBank, A pointer to either the header from a bank file or an entire
bank file.
KTU32 *headerSize, The size of the katbank header is returned via this
pointer.
RETURN VALUE
KTTRUE on success
KTFALSE theBank is NULL
headerSize is NULL,
assetNumber is not in this bank,
FUNCTION

Gets the size of the header portion of a katbank .

AUD-88

3. The AICA Manager API

amDmaMemCpy

FORMAT

#include <am.h>

Performs DMA copys to sound memory.

KTBOOL amDmaMemCpy(KTU32 *target, KTU32 *source, KTU32 size, KTU32 bytesPerTransfer, KTU32

dmaChannel)

PARAMETERS

KTU32 *target,

KTU32 *source,

KTU32 size,

KTU32 bytesPerTransfer,
KTU32 dmaChannel

RETURN VALUE

KTTRUE
KTFALSE

FUNCTION

The target buffer, must be large enough to hold size bytes.
The source buffer
The number of bytes to transfer

The number of bytes to transfer in one DMA frame

AM_DMA_CHANNEIbnly for now.

On success

target or source is NULL,

size is0

bytesPerTransfer isnot 1,2,4,8 or 32
dmaChannel is not AM_DMA_CHANNEL

Note: This is not implemented in R8, the function will simply return false with an AC error condition.

Copies memory from one place to the other starting at the bottom of the block. The source target and size

must be multiples of bytesPerTransfer

or failure will result. The transfer is made in burst mode rather

then cycle steal mode as timelyness is important to streaming audio processes.

AUD-89

The Dreamcast Audio 64 API

amDspFetch ProgramBankFetches and installs a DSP program bank from a KatBank asset.

FORMAT

#include <am.h>
KTBOOL amDspFetchProgramBank(AM_BANK_PTR theBank ,KTU32 assetNumber)

PARAMETERS
AM_BANK_PTR theBank, A pointer to a .kat bank.
KTU32 assetNumber, The number of the asset.
RETURN VALUE
KTTRUE On success
KTFALSE theBank is NULL
assetNumber is not in this bank,
unable to send driver command.
FUNCTION

Fetches and installs a DSP program bank from a KatBank asset.

AUD-90

3. The AICA Manager API

amDspFetchOutputBank Fetches and installs a DSP output bank from a KatBank asset.

FORMAT

#include <am.h>
KTBOOL amDspFetchOutputBank(AM_BANK_PTR theBank ,KTU32 assetNumber)

PARAMETERS
AM_BANK_PTR theBank, A pointer to a .kat bank.
KTU32 assetNumber , The number of the asset.
RETURN VALUE
KTTRUE On success
KTFALSE theBank is NULL,
assetNumber is not in this bank,
unable to send driver command
FUNCTION

Fetches and installs a DSP output bank from a KatBank asset.

AUD-91

The Dreamcast Audio 64 API

amErrorGetLast Gets a pointer to the error structure.

FORMAT

#include< ac.h >
AC_ERROR_PTR amErrorGetLast(void)

PARAMETERS
void
RETURN VALUE

AC_ERROR_STRUCT a pointer to the AM error structure.

FUNCTION

Gets a pointer to the AM error structure. This contains an error number enumerated as an AC_ERROR_TYPE
inac.h and a more informative error message that tells the name of the function that failed as well as some
descriptive text regarding the cause of the failure.

AUD-92

3. The AICA Manager API

amErrorExists Checks to see if an error condition exists.

FORMAT

#include< ac.h >
KTBOOL amErrorExists(void)

PARAMETERS
void

RETURN VALUE

KTTRUE if a error exists
KTFALSE if no error exists.

FUNCTION

Allows checking of the error state for the AM layer in a single call returning a bool.

AUD-93

The Dreamcast Audio 64 API

amErrorCIear Clears the AM error structure.

FORMAT

#include< ac.h >
void amErrorClear(void)

PARAMETERS
RETURN VALUE
KTTRUE if successful
KTFALSE if unable to send command or interruptld is out of range
(0-255).
FUNCTION

Clears the AM Error structure.

AUD-94

3. The AICA Manager API

amHeapShutdown Shuts down the AM heap management system.

FORMAT

#include <am.h>
void amHeapShutdown(void)

PARAMETERS
void

RETURN VALUE
void

FUNCTION

Shuts down the AM heap management system.

AUD-95

The Dreamcast Audio 64 API

amHeapGetInfo Gets info necessary to start an audio heap.

FORMAT

#include <am.h>
KTBOOL amHeapGetinfo(volatile KTU32 *freeSoundMemory,KTU32 *size)

PARAMETERS
volatile KTU32 **freeSoundMemory, The pointer to the first free sound memory is returned via
this handle.
KTU32 *size The size of the free portion of sound memory.
RETURN VALUE
KTTRUE on success
KTFALSE freeSoundMemory is NULL
size is NULL
the sound driver has not been successfully installed
FUNCTION

Gets the necessary information for the amHeaplnit() call from the sound driver.

Note: The driver must have been successfully installed prior to this call.

AUD-96

3. The AICA Manager API

amHeapGetFree Gets the amount of free memory.

FORMAT

#include <am.h>
KTBOOL amHeapGetFree(KTU32 *freeMemory)

PARAMETERS
KTU32 *freeMemory, The amount of free memory is returned via this pointer.
RETURN VALUE
KTTRUE On success.
KTFALSE If the heap has not been initialized,
freeMemory is NULL
FUNCTION

Gets the amount of free memory remaining in the heap.

AUD-97

The Dreamcast Audio 64 API

amHeapAIIoc Allocates aligned memory from the audio heap.

FORMAT

#include <am.h>

KTBOOL amHeapAlloc(

volatile KTU32 **buffer,

KTU32 size,KTU32 alignment,
AM_HEAP_MEMORY_TYPE memoryType,
AM_MEMORY_CALLBACK callback

)

PARAMETERS
volatile KTU32 **pbuffer, A pointer to the block of memory is returned via this
handle.
KTU32 size,KTU32 alignment, The desired alignment for the block (4 or 32)

AM_HEAP_MEMORY_TYPE memoryType, The type of memory desired AM_FIXED_MEMORM
AM_PURGABLE_MEMORY

AM_MEMORY_CALLBACK callback, A pointer to a callback function for the memory
RETURN VALUE
KTTRUE if the operation was successful
KTFALSE buffer is NULL,
sizeis 0

size exceeds available free memory
alignment is not 4 or 32

memoryType is not AM_FIXED_MEMORM
AM_PURGABLE_MEMORY

FUNCTION

Allocates aligned memory from the audio heap zone. The memory can be allocated in alignments of either
4 or 32 bytes. Non DWORD aligned writes to the audio memory area are illegal and will corrupt the audio
memory area severly. If the type is AM_FIXED_MEMORYie blocks will be allocated from the top of the heap
progressing downwards, if the type is AM_PURGABLE_MEMOIR¥ blocks are allocated from the bottom of
the heap progressing upwards.

There is a variable amount of block overhead, this is applied as a fixed amount of ((alignment-1) * 2) + 4
when the parameters are tested so it is not possible to call for the amount of free memory remaining and
allocate all of it. Depending on the alignment value the maximum allocation would be: alignment=4,
maxMem - 10; or alignment=32, maxMem-66; The callback function will be invoked when the block is either
purged or freed. The argument of the function is the address of the block that owned the callback.

Prototype for callback: void MyCallback(KTU32 blockAddress)

Note: All GD file system calls currently require that the buffer be aligned on a 32 byte boundry.

This may only be called post a successful call to amHeaplnit()

AUD-98

3. The AICA Manager API

am HeapGetMaxPurgabIe Gets amount of memory available from a full purge.

FORMAT

#include <am.h>
KTBOOL amHeapGetMaxPurgable(KTU32 *maxPurgable)

PARAMETERS
KTU32 *maxPurgable, The free memory size is returned via this pointer.
RETURN VALUE
KTTRUE on success
KTFALSE heap is not initialized
maxPurgable is NULL
FUNCTION

Gets the amount of memory available from the free memory pool + all AM_PURGABLE_MEMORY type
blocks. This amount of memory is only available if a call is made to the function
amHeapClear (AM_PURGABLE_MEMORY a call to amHeapPurge (sizeNeeded).

AUD-99

The Dreamcast Audio 64 API

amHeapPurge

FORMAT

#include <am.h>
KTBOOL amHeapPurge(KTU32 sizeNeeded)

PARAMETERS

KTU32 sizeNeeded,

RETURN VALUE

KTTRUE
KTFALSE

FUNCTION

Purges memory marked as purgable.

The size of the block of memory needed.

If the memory is now available.

If the heap has not been initialized,
sizeNeeded is 0,
sizeNeeded exceeds free + purgable,

Will purge (if necessary) blocks of purgable memory in a top down fashion until sufficient memory is
available to fill the requested size. If there is sufficient free memory to fill the request the function returns
KTTRUEand does nothing. When a block is purged its callback (if installed) is invoked. This returns the

address of the block to the application.

This function will not alter blocks of memory allocated as AM_FIXED_MEMORY

AUD-100

3. The AICA Manager API

amHeapFree

FORMAT

#include <am.h>
KTBOOL amHeapFree(volatile KTU32 *buffer)

PARAMETERS

volatile KTU32 *buffer,

RETURN VALUE

KTTRUE
KTFALSE

FUNCTION

Frees purgable memory allocated using amHeapAlloc()

A pointer to the buffer to be freed.

On success

If buffer is NULL,

buffer does not point to an allocated block

buffer is not the higest address allocated in purgable
memory.

This will free purgable memory from the top down by block address. If there is a block allocated with a
higher address the call will fail, this prevents fragmentation. On freeing a block, if the block has a callback,

it will be executed.

AUD-101

The Dreamcast Audio 64 API

amHeapInit Initializes the audio heap.

FORMAT

#include <am.h>
KTBOOL amHeaplnit(volatile KTU32 *memoryPool KTU32 size)

PARAMETERS
volatile KTU32 *memoryPool, The start of the audio heap zone
KTU32 size, The size of the heap
RETURN VALUE
KTTRUE If the operation was successful
KTFALSE If memoryPool is NULL,
size is 0,
heap is already open,
FUNCTION

Initializes the heaps data structures

Note: A warning will be issued if size is not a multiple of 4, in this case size will be rounded down to the next
multiple of 4.

AUD-102

3. The AICA Manager API

am HeapCheck Checks the MCB fingerprints for overwrites.

FORMAT

#include <am.h>
KTBOOL amHeapCheck(void)

PARAMETERS
void

RETURN VALUE

KTTRUE If the heap fingerprints are intact
KTFALSE If the fingerprints are corrupted or the heap is not open.

FUNCTION

Checks the MCB fingerprints in the heap to detect overwrites in that memory zone. Use this liberally to
detect corruption or its possibility it will disappear in non-DEBUG versions.

Note: This is a MACRO that is expanded to the heap check function if DEBUG is defined.

If DEBUG is not defined it will become ((void)0); a null statement

AUD-103

The Dreamcast Audio 64 API

amlnitSelectDriver Selects driver to be installed by amInit()

FORMAT

#include <am.h>
KTBOOL aminitSelectDriver(AM_DRIVER_TYPE driverType)

PARAMETERS

AM_DRIVER_TYPEHKlriverType, Either AM_DA_DRIVERr AM_MIDI_DRIVER
RETURN VALUE

KTTRUE on success

KTFALSE on falil, Driver is already installed or bad arg for driverType
FUNCTION

Allows selection of the type of driver to be loaded by the amlInit() call. The default driver is the audio64
driver so if this call is not made the system will be set up as audio64 .

Note: This must be called PRIOR to the call to amlnit()

AUD-104

3. The AICA Manager API

amShutdown Shuts down the AM audio subsystem.

FORMAT

#include <am.h>
void amShutdown(void)

PARAMETERS
void

RETURN VALUE
void

FUNCTION

Shuts down the AM audio subsystem by stopping all sounds and closing their voice channels, releasing all
OS service vectors and closing the amHeapsubsystem.

AUD-105

The Dreamcast Audio 64 API

aminit Starts up the AM audio subsystem.

FORMAT

#include <am.h>
KTBOOL aminit(void)

PARAMETERS
void

RETURN VALUE

KTTRUE on success

KTFALSE on fail, Driver file not found
Driver startup fail

FUNCTION

Starts up the AM audio subsystem. This will load the driver into the middle of the audio heap then install
that image using aclnstallDriver . It then starts up the am interrupt and heap management systems.
This also calls acCdlInit() to initialize the redbook playback mechanism.

AUD-106

3. The AICA Manager API

amFileRewind Seeks to the start of a file.

FORMAT

#include <am.h>
KTBOOL amFileRewind(ACFILE fd)

PARAMETERS

ACFILE fd, A GD system file descriptor
RETURN VALUE

KTBOOLKTTRUEoN success, KTFALSEon fail
FUNCTION

Seeks to the head (byte 0) of the file. This operates through the am lib IO shell and is redirectable to the
applications file system.

See: amFilelnstallAlternateloManager()

An example of this redirection is available in MyFile.c as well as a boilerplate copy of the IO proc
for modification.

AUD-107

The Dreamcast Audio 64 API

amFileLoad Loads specified file into the buffer.

FORMAT

#include <am.h>
KTBOOL amFileLoad(KTSTRING fileName,KTUS * buffer)

PARAMETERS
KTSTRING fileName, The name of the file to load
KTU8 * buffer, Abuffer large enough to hold the file
RETURN VALUE
KTBOOL KTTRUBEon success,
KTFALSEon fail
FUNCTION

Loads a file given the file name and a buffer to load it into. This operates through the am lib IO shell and is
redirectable to the applications file system.

See: amFilelnstallAlternateloManager()

An example of this redirection is available in MyFile.c as well as a boilerplate copy of the IO proc
for modification.

AUD-108

3. The AICA Manager API

amFileRead Reads from a file that is already open.

FORMAT

#include <am.h>
KTBOOL amFileRead(ACFILE fd,KTUS8 * buffer, KTU32 size)

PARAMETERS

ACFILE fd, A GD system file descriptor

KTUS8 * buffer, A pointer to a buffer into which to read

KTU32 size, The size of the data to be read
RETURN VALUE

KTBOOL KTTRUEon success,

KTFALSEon fail

FUNCTION

Reads from an open file. This operates through the am lib IO shell and is redirectable to the applications
file system.

See: amFilelnstallAlternateloManager()

An example of this redirection is available in MyFile.c as well as a boilerplate copy of the IO proc
for modification.

AUD-109

The Dreamcast Audio 64 API

amFiIeOpen Opens a file for reading.

FORMAT

#include <am.h>
KTBOOL amFileOpen(KTSTRING fileName,ACFILE *fd)

PARAMETERS
KTSTRING fileName, The name of the file to load
ACFILE fd, A GD system file descriptor
RETURN VALUE
KTBOOL KTTRUEon success,
KTFALSEon fail
FUNCTION

Loads a file given the file name and a buffer to load it into. This operates through the am lib IO shell and is
redirectable to the applications file system.

See: amFilelnstallAlternateloManager()

An example of this redirection is available in MyFile.c as well as a boilerplate copy of the IO proc
for modification.

AUD-110

3. The AICA Manager API

amFileClose Closes a file.

FORMAT

#include <am.h>
KTBOOL amFileClose(ACFILE fd)

PARAMETERS
ACFILE fd, A GD system file descriptor
RETURN VALUE
KTBOOL KTTRUBEon success,
KTFALSEon fail
FUNCTION

Closes a file. This operates through the am lib IO shell and is redirectable to the applications file system.
See: amFilelnstallAlternateloManager()

An example of this redirection is available in MyFile.c as well as a boilerplate copy of the IO proc
for modification.

AUD-111

The Dreamcast Audio 64 API

amFileGetSize Gets the size of a file.

FORMAT

#include <am.h>
KTBOOL amFileGetSize(KTSTRING fileName, KTU32 * size)

PARAMETERS
KTSTRING fileName, The name of the file to load
KTU32* size, The size of the asset is returned via this pointer.
RETURN VALUE
KTBOOL KTTRUEon success,
KTFALSEon fail
FUNCTION

Gets the size of a file. This operates through the am lib IO shell and is redirectable to the applications
file system.

See: amFilelnstallAlternateloManager()

An example of this redirection is available in MyFile.c as well as a boilerplate copy of the IO proc
for modification.

AUD-112

3. The AICA Manager API

amFiIelnstaIIAIternateloManager Installs a custom lo proc.

FORMAT

#include <am.h>
void amFilelnstallAlternateloManager(AM_IO_PROC ioProc)

PARAMETERS
AM_IO_PROC ioProc, A pointer to a custom Io proc, see the example in
MyFile.c
RETURN VALUE
void
FUNCTION

Installs a custom Io proc into the Io shell, this allows all file system calls to be intercepted by the
applications file system.

The prototype for the IO proc is as follows:

KTBOOL MyCustomloProc(KTSTRING fileName,
ACFILE *fd,

KTUS * buffer,

KTU32 * size,

AM_FILE_OPERATION_MODE mode

)

An example of this redirection is available in MyFile.c as well as a boilerplate copy of the IO proc
for modification.

AUD-113

The Dreamcast Audio 64 API

amStreamisr0 - 4 Interrupt Service Routine for the amStream subsystem.
FORMAT

#include <am.h>

void _amStreamlsrO(KTU32 streamPtr)
void _amStreamlsr1(KTU32 streamPtr)
void _amStreamlIsr2(KTU32 streamPtr)
void _amStreamIsr3(KTU32 streamPtr)
void _amStreamlsr4(KTU32 streamPtr)

PARAMETERS

RETURN VALUE

KTTRUE On success
KTFALSE

FUNCTION

ISR routine for the amStream subsystem. These routines are used as the thelsr ~ argument to the
amStreamSetlsr() call.

See Also: KTBOOL amStreamSetlsr(AM_STREAM_PTR theStream,AM_STREAM _ISR thelsr)

AUD-114

3. The AICA Manager API

amMemSh4Alloc

FORMAT

#include <am.h>

KTBOOL amMemSh4Alloc(volatile KTU32 ** base,

volatile KTU32 ** aligned,
KTU32 size,
KTU32 alignment)

PARAMETERS

volatile KTU32 ** base,

volatile KTU32 ** aligned,
address

KTU32 size,KTU32 alignment,

RETURN VALUE

KTTRUE
KTFALSE

FUNCTION

Sh4 memory allocation shell.

an unaligned pointer to the block allocated

a pointer to the first aligned address after the base

the alignment desired

if a block was successfully allocated

if insufficient memory available.

This is a shell that verifies a proc pointer then calls it to invoke whatever malloc proc is currently installed.

Note: Neither the AM nor AC layers allocate or free SH4 memory.

AUD-115

The Dreamcast Audio 64 API

amMemSh4Free Sh4 memory free shell.

FORMAT

#include <am.h>
void amMemSh4Free(volatile KTU32 * block)

PARAMETERS
volatile KTU32 * block, a pointer to the unaligned base address of the block to
be freed
RETURN VALUE
void
FUNCTION

This is a shell that verifys a proc pointer then calls it to invoke whatever free proc is currently installed.

Note: Neither the AM nor AC layers allocate or free SH4 memory.

AUD-116

3. The AICA Manager API

amMemlinit Initializes the Sh4 memory shell system.

FORMAT

#include <am.h>
void amMeminit(void)

PARAMETERS
void

RETURN VALUE
void

FUNCTION

Initializes the memory manager shell proc pointers with the default routines if they have not been
previously initialized. Called by aminit()

Note: Neither the AM nor AC layers allocate or free SH4 memory.

AUD-117

The Dreamcast Audio 64 API

amMeminstallAlternateMemoryManager Aiows redirection of sh4 memory requests.

FORMAT

#include <am.h>

void amMeminstallAlternateMemoryManager(AM_SH4_ALLOC_PROC allocProc,AM_SH4 FREE_PROC
freeProc)

PARAMETERS

AM_SH4_ALLOC_PRO4locProc, a pointer to an correctly prototyped malloc proc
AM_SH4_FREE_PROfteeProc, a pointer to an correctly prototyped free proc

RETURN VALUE
void
FUNCTION

Initializes the malloc and free proc pointers in the audio engines memory allocation shell.

Note: This MUST be called prior to the call to amlnit()

Note: Neither the AM nor AC layers allocate or free SH4 memory.

AUD-118

3. The AICA Manager API

amMidiSetTempo Sets the tempo of a MIDI sequence.

FORMAT

#include <am.h>
KTBOOL amMidiSetTempo(AM_SEQUENCE_PTR theSequence,KTS32 percentOfChange)

PARAMETERS

AM_SEQUENCE_PTReSequence, A pointer to an AM_SEQUENG#bject.
KTS32 percentOfChange, The percent of change over or under the root tempo.

RETURN VALUE

KTTRUE on success
Or...
KTFALSEon fail, theSequence is NULL

FUNCTION

Changes the tempo of a currently playing midi sequence to the new tempo. This is expressed as a
percentage of change from the root (original) tempo. i.e. the tempo of the file is 120, a +10% change is
applied, the sequence is now playing at tempo 132. If a change of 0 is specified the sequence will play at its
root tempo.

Note: This group of functions will only work with the MidiDa driver, they will not work with the Audio64 driver.

AUD-119

The Dreamcast Audio 64 API

amMidiSetLoopFIag Sets the loop flag on a MIDI sequence.

FORMAT

#include <am.h>
KTBOOL amMidiSetLoopFlag(AM_SEQUENCE_PTR theSequence,KTBOOL onOrOff)

PARAMETERS

AM_SEQUENCE_PTtReSequence, a pointer to an AM_SEQUENG#bject.
KTBOOLonOrOff, KTTRUEto loop, KTFALSEto not.

RETURN VALUE

KTTRUE on success
or...
KTFALSEon fail, bad arguments, theSequence is NULL

FUNCTION

Sets the loop flag in an AM_SEQUENGEbject.

Note: if onOrOff is out of range it will be set to KTTRUE

Note: This group of functions will only work with the MidiDa driver, they will not work with the Audio64 driver.

AUD-120

3. The AICA Manager API

amMidiFetchToneBank Installs an MTB asset from a bank file aggregate.

FORMAT

#include <am.h>
KTBOOL amMidiFetchToneBank(AM_BANK_PTR theBank ,KTU32 assetNumber ,KTU8 toneBankSlot)

PARAMETERS

AM_BANK_PTR theBank, A pointer to a .kat bank type asset aggregation.
KTU32 assetNumber, The number of the tone bank asset in the bank.
KTUS8 toneBankSlot, The slot number of the bank 0-15

RETURN VALUE

KTTRUE on success
of...

KTFALSEon fail, asset is wrong type, asset number not in bank, unable to post command to driver.

FUNCTION

Installs an MTB asset that is contained in a .kat bank aggregate file.

Note: This group of functions will only work with the MidiDa driver, they will not work with the Audio64 driver.

AUD-121

The Dreamcast Audio 64 API

amMidiLoadToneBank Loads a Sega tone bank asset

FORMAT

#include <am.h>

KTBOOL amMidiLoadToneBank(KTSTRING fileName, KTU8 gmMode,volatile KTU32 * buffer, KTU32
bankSize,KTUS8 toneBanksSlot)

PARAMETERS
KTSTRING fileName, The name of the bank file to be loaded from the
GD system.
KTU8 gmMode, AC_GM_ONr AC_GM_OFfFenables or disables general
midi mode
volatile KTU32 * buffer, A 32 byte aligned buffer in sound memory
KTU32 bankSize, The size of the bank to be loaded
KTUS8 toneBankSilot, The slot number of the bank 0-15
RETURN VALUE
KTTRUE on success

or...

KTFALSEon fail, buffer not 32 byte aligned, file not found or unable to send driver command.

FUNCTION

This loads a midi tonebank made by the SOJ mac tool from the GD-ROM using the redirectable file system.

Note: If gmModeis out of range it will be set to AC_GM_ON

Note: This group of functions will only work with the MidiDa driver, they will not work with the Audio64 driver.

AUD-122

3. The AICA Manager API

amMidilnstallCallback Sets the callback proc for a sequence.

FORMAT

#include <am.h>
KTBOOL amMidilnstallCallback(AM_SEQUENCE_PTR theSequence, AC_MIDI_CALLBACK theCallback)

PARAMETERS
AM_SEQUENCE_PTR theSequence, A properly initialized sequence object.
AC_MIDI_CALLBACK theCallback, The callback proc.
RETURN VALUE
KTTRUE on success
Or...
KTFALSEon fail, unable to send command to driver
theSequence is NULL
FUNCTION

Sets the callback proc for a sequence.

The voice channel number is returned to the callback, however, please note that this is not the same as the
midiPort number. The midiPort number is 16 less then the voice channel number.

The format of the callback is:
void MyCallbackProc(KTU32 voiceChannelNumber)

Note:

This must be called prior to the amMidiAllocateSequencePort() and amMidiPlay() calls.

Note:

This group of functions will only work with the MidiDa driver, they will not work with the Audio64 driver.

AUD-123

The Dreamcast Audio 64 API

amMidiAIIocateSequencePort Allocates a MIDI port for the sequence.

FORMAT

#include <am.h>
KTBOOL amMidiAllocateSequencePort(AM_SEQUENCE_PTR theSequence)

PARAMETERS

AM_SEQUENCE_PTR theSequence, A properly initialized sequence object.

RETURN VALUE

KTTRUE on success
or...
KTFALSE on fail, unable to send command to driver

theSequence is NULL
port allocation failed (all voices busy)

FUNCTION

Allocates a MIDI port for the sequence. This calls amVoiceAllocate() and allocates a AM_MIDI_VOICE
type channel. This voice channel number is the midiPort number + 16.

Note: This sets the user callback in the voice management system so the callback proc must be installed prior to
making this call.

Note: This group of functions will only work with the MidiDa driver, they will not work with the Audio64 driver.

AUD-124

3. The AICA Manager API

amMidiFetchSequence Fetches a sequence asset from a katBank .
FORMAT

#include <am.h>
KTBOOL amMidiFetchSequence(AM_SEQUENCE_PTR theSequence,KTU8* theBank ,KTU32

sequenceNumber)
PARAMETERS
AM_SEQUENCE_PTR theSequence, A properly initialized sequence object.
AM_BANK_PTR theBank, A pointer to a katBank in sound memory.
KTU32 sequenceNumber, The bank asset number to fetch, see the banks .h file for
bank and asset info.
RETURN VALUE
KTTRUE on success
or...
KTFALSEon fail, unable to send command to driver
theSequence is NULL
theBank is NULL
the asset fetch failed (asset not present in bank)
the requested asset was not a MIDI asset
the bank header is corrupt
FUNCTION

Fetches a standard MIDI type 0 sequence asset from a kat type bank using the amBank...() APIL This type
of bank is manufactured with the mkscript and mkbank utilities.

Note: This group of functions will only work with the MidiDa driver, they will not work with the Audio64 driver.

AUD-125

The Dreamcast Audio 64 API

amMidiPIay Plays a MIDI sequence.

FORMAT

#include <am.h>
KTBOOL amMidiPlay(AM_SEQUENCE_PTR theSequence)

PARAMETERS

AM_SEQUENCE_PTR theSequence, A properly initialized sequence object.
RETURN VALUE

KTTRUE on success

or...

KTFALSEon fail, unable to send command to driver

theSequence is NULL

FUNCTION

Plays a standard MIDI type 0 asset obtained from a kat bank using amMidiPlayRaw() . This type of bank
is manufactured with the mkscript and mkbank utilities.

Note: This group of functions will only work with the MidiDa driver, they will not work with the Audio64 driver.

AUD-126

3. The AICA Manager API

amMidiPlayRaw

FORMAT

#include <am.h>

KTBOOL amMidiPlayRaw(KTU32 ~midiPort

Plays a MIDI sequence given the basic parameters.

,KTU8 gmMode,KTU32 ticksPQN,KTU32 sequenceSize,

KTU32 *sequenceAddress,KTU32 midiVolume,AC_MIDI_CALLBACK callback)

PARAMETERS

KTU32 midiPort,
KTU8 gmMode,

KTU32 ticksPQN,

KTU32 sequenceSize,

KTU32 *sequenceAddress,
KTU32 midiVolume,
AC_MIDI_CALLBACK callback,

RETURN VALUE
KTTRUE

or...
KTFALSEon fail,

FUNCTION

The MIDI port number (0-15)

AC_GM_ONr AC_GM_OFfFenables or disables general
midi mode

The number of ticks per quarter note. (often 480)

The size in bytes of the MIDI sequence data

The address of a MIDI type 0 asset in sound memory
The MIDI volume at which to start the sequence (0-127)
The address of a callback proc or KTNULLfor no callback

on success

unable to send command to driver
sequenceAddress is NULL
sequenceSize is0

Plays a MIDI type 0 asset in sound memory at the given volume with an optional callback that will be raised
at the end of the sequences play. The voice channel number is returned to the callback however please note

that this is not the same as the midiPort

channel number.

number. The midiPort number is 16 less then the voice

Note: If midiVolume is out of range it will be set to 127

If gmModeis out of range it will be set to AC_GM_ON

The format of the callback is:

void MyCallbackProc(KTU32 voiceChannelNumber)

Note: This group of functions will only work with the MidiDa driver, they will not work with the Audio64 driver.

AUD-127

The Dreamcast Audio 64 API

amMidiStop Stops a currently playing MIDI sequence.

FORMAT

#include <am.h>
KTBOOL amMidiStop(AM_SEQUENCE_PTR theSequence)

PARAMETERS

AM_SEQUENCE_PTR theSequence, A properly initialized sequence object.
RETURN VALUE

KTTRUE on success

or...

KTFALSE on fall, unable to send command to driver

theSequence is NULL

FUNCTION

This call stops a currently playing standard MIDI type 0 sequence. This releases the midi port back to the

voice pool post this call another call must be made to amMidiAllocateSequencePort() to aquire a new
midi port for playback. The callback, if one has been set using amMidilnstallCallback() , is still
in place.

Note: This group of functions will only work with the MidiDa driver, they will not work with the Audio64 driver.

AUD-128

3. The AICA Manager API

amMidiSetVolume Sets the master volume of a MIDI sequence.

FORMAT

#include <am.h>
KTBOOL amMidiSetVolume(AM_SEQUENCE_PTR theSequence,KTU32 newAicaVolume)

PARAMETERS

AM_SEQUENCE_PTR theSequence, A properly initialized sequence object.

KTU32 newMidiVolume, the MIDI volume for the port master (0-127).
RETURN VALUE

KTTRUE on success

Oor...

KTFALSEon fail, unable to send command to driver

theSequence is NULL

FUNCTION

This call sets the MASTER’olume of a MIDI sequence. The MASTER/olume is the overall volume of the
sequence as opposed to the CHANNElvolume which would affect only one of the 16 possible MIDI channels
in the sequence.

If the newMidiVolume value is out of range it will be set to 127

Note: This group of functions will only work with the MidiDa driver, they will not work with the Audio64 driver.

AUD-129

The Dreamcast Audio 64 API

amMidiPause Pauses a currently playing MIDI sequence.

FORMAT

#include <am.h>
KTBOOL amMidiPause(AM_SEQUENCE_PTR theSequence)

PARAMETERS

AM_SEQUENCE_PTR theSequence, A properly initialized sequence object.
RETURN VALUE

KTTRUE on success

or...

KTFALSEon fail, unable to send command to driver

theSequence is NULL

FUNCTION

Pauses a currently playing MIDI sequence. This will silence all currently sounding notes.

Note: This group of functions will only work with the MidiDa driver, they will not work with the Audio64 driver.

AUD-130

3. The AICA Manager API

amMidiResume Resumes playback of a paused MIDI sequence.

FORMAT

#include <am.h>
KTBOOL amMidiResume(AM_SEQUENCE_PTR theSequence)

PARAMETERS

AM_SEQUENCE_PTR theSequence, A properly initialized sequence object.
RETURN VALUE

KTTRUE on success

or...

KTFALSE on fail, unable to send command to driver

theSequence is NULL

FUNCTION

Resumes playback of a previously paused MIDI sequence.

Note: This group of functions will only work with the MidiDa driver, they will not work with the Audio64 driver.

AUD-131

The Dreamcast Audio 64 API

amMidiTransferToneBank Transfers a Sega tone bank to sound memory and sets it as

the current bank.

FORMAT

#include <am.h>

KTBOOL amMidiTransferToneBank(volatile KTU32 *destination,KTU32*source, KTU8 gmMode, KTU32
bankSize,KTUS8 toneBanksSlot)

PARAMETERS
volatile KTU32 * destination, A dword aligned buffer in sound memory.
KTU32 *source, A buffer that contains the bank to be transferred.
KTU8 gmMode, AC_GM_ONr AC_GM_OFfFenables or disables general
midi mode
KTU32 bankSize, The size of the bank.
KTUS8 toneBankSilot, The slot number of the bank 0-15
RETURN VALUE
KTTRUE on success
Or...
KTFALSEon fail, destination is not 32 byte aligned, unable to send
driver command
FUNCTION

This transfers a midi tonebank made by the SOJ mac tool from any memory to sound memory

and sets it as the current bank.

Note: If gmModeis out of range it will be set to AC_GM_ON

Note: This group of functions will only work with the MidiDa driver, they will not work with the Audio64 driver.

AUD-132

3. The AICA Manager API

amMidiSetChanneIProgram Sets the current bank slot.

FORMAT

#include <am.h>
KTBOOL amMidiSetChannelProgram(KTU32 midiPort ,KTU32 midiChannel ,KTU32

midiProgramNumber)
PARAMETERS
KTU32 midiPort , The MIDI port number 0-15
KTU32 midiChannel, The MIDI channel number 1-16
KTU8 midiProgramNumber, The slot number of the program to be played for the
midi channel
RETURN VALUE
KTTRUE on success
or...

KTFALSEon fail, unable to send command to driver

FUNCTION

Prior to playing a sound effect from a midi bank the bank slot must be made the current bank slot this
allows the setting of a current bank for a given portchannel configuration.

Note: This group of functions will only work with the MidiDa driver, they will not work with the Audio64 driver.

AUD-133

The Dreamcast Audio 64 API

amMidiNoteOn Plays a MIDI triggered sound effect.
FORMAT

KTBOOL amMidiNoteOn(KTU32 midiPort ,KTU32 midiChannel ,KTU8 midiNoteNumber,KTU32
midiNoteOnVelocity)

#include <am.h>

PARAMETERS
KTU32 midiPort, The MIDI port number 0-15
KTU32 midiChannel, The MIDI channel number 1-16
KTU8 midiNoteNumber, The MIDI note number of the sound to be played. 0-127
KTU32 midiNoteOnVelocity, The MIDI note on velocity 0-127
RETURN VALUE
KTTRUE on success
or...
KTFALSEon fail, unable to send command to driver
midiPort out of range (0-15)
midiChannel out of range (1-16)
midiNoteNumber out of range (0-127)
FUNCTION

Plays a MIDI triggered sound effect from a Sega Tonebank type asset loaded with the
amMidiLoadBank() call.

Note: If midiNoteOnVelocity is out of range it will be set to AC_MAX_MIDI_VELOCITY(127).

Note: This group of functions will only work with the MidiDa driver, they will not work with the Audio64 driver.

AUD-134

3. The AICA Manager API

amMidiNoteOff

FORMAT

#include <am.h>
KTBOOL amMidiNoteOff(KTU32 ~ midiPort

PARAMETERS

KTU32 midiPort,
KTU32 midiChannel,
KTU8 midiNoteNumber,

RETURN VALUE
KTTRUE

Oor...
KTFALSEon fail,

FUNCTION

Stops a MIDI triggered sound effect.

,KTU32 midiChannel ,KTU8 midiNoteNumber)

The MIDI port number 0-15
The MIDI channel number 1-16
The MIDI note number of the sound to be played.

on success

unable to send command to driver
midiPort out of range (0-15)
midiChannel out of range (1-16)
midiNoteNumber out of range (0-127)

This will stop a MIDI triggered sound effect if it is currently playing.

Note: This group of functions will only work with the MidiDa driver, they will not work with the Audio64 driver.

AUD-135

The Dreamcast Audio 64 API

amMidiSetChannelVolume Sets volume of a midi sound.

FORMAT

#include <am.h>
KTBOOL amMidiSetChannelVolume(KTU32 midiPort ,KTU32 midiChannel ,KTU32 midiVolume)

PARAMETERS
KTU32 midiPort The MIDI port number 0-15
KTU32 midiChannel , The MIDI channel number 1-16
KTU32 midiVolume, The MIDI volume to set 0-127
RETURN VALUE
KTTRUE on success
Or...
KTFALSEon fail, unable to send command to driver
midiPort out of range (0-15)
midiChannel out of range (1-16)
FUNCTION

Sets CHANNELvolume of a currently playing MIDI triggered sound. This sends a MIDI Control Change 7
value ? to the driver.

Note: If midi volume is out of range it will be set to AC_MAX_MIDI_VOLUMI127)

Note: This group of functions will only work with the MidiDa driver, they will not work with the Audio64 driver.

AUD-136

3. The AICA Manager API

amMidiSetChannelPan

FORMAT

#include <am.h>
KTBOOL amMidiSetChannelPan(KTU32

PARAMETERS

KTU32 midiPort,
KTU32 midiChannel,
KTU32 midiPan,

RETURN VALUE
KTTRUE

Oor...
KTFALSEon fail,

FUNCTION

midiPort

Sets the pan of a MIDI sound.

,KTU32 midiChannel ,KTU32 midiPan)

The MIDI port number 0-15
The MIDI channel number 1-16
The MIDI pan to set 0-127

on success

unable to send command to driver
midiPort out of range (0-15)
midiChannel out of range (1-16)

Sets pan (position) of a currently iterating MIDI triggered sound. This sends a MIDI Control Change 10

value ? to the driver.

Note:

If midi pan is out of range it will be set to AC_MAX_MIDI_PAN(127)

Note:

This group of functions will only work with the MidiDa driver, they will not work with the Audio64 driver.

AUD-137

The Dreamcast Audio 64 API

amSoundSetQSoundChannels usedto identify which channels in an output bank are

Q-Sound channels.

FORMAT

#include <am.h>
KTBOOL amSoundSetQSoundChannels(KTU32 firstQChannel KTU32 numberOfQChannels)

PARAMETERS

KTU32 firstQChannel, The first Q-Sound channel in the output bank

(.fob) asset.

KTU32 numberOfQChannels The number of Q-Sound channels in the output bank

(.fob) asset.

RETURN VALUE

KTTRUE On success
KTFALSE firstQChannel is out of range
numberOfQChannels > AM_MAX_Q_CHANNELS
FUNCTION

Used to identify which channels in an output bank are Q-Sound channels. If this is called with
numberOfQChannels==0 then the Q channel identification system is cleared.

AUD-138

3. The AICA Manager API

amSoundSetEffectsBuss sets the effects buss send and source mix for a sound object.

FORMAT

#include <am.h>
KTBOOL amSoundSetEffectsBuss(AM_SOUND_PTR theSound,KTU32 dspMixerChannel, KTU32 sourceMix)

PARAMETERS
AM_SOUND_PTR theSound, A pointer to a properly initialized sound object
KTU32 dspMixerChannel, The DSP mixer channel to route the dry send into.
KTU32 sourceMix, The percentage of the dry volume to route to wet volume
(1-100)
RETURN VALUE
KTTRUE On success
KTFALSE if theSound is NULL
if dspMixerChannel >
AM_MAX_DSP_MIXER_CHANNELS
if sourceMix > AM_MAX_DSP_SOURCE_MIX
FUNCTION

This will set the effects send and source mixof the given sound. The argument sourceMix is how much of
a DSP program is added to the dry send. If a source mix of 100% is selected and the sound has a volume of
90 then the wet level will be 90 and the dry level will be 90, if a sourceMix of 50% is selected the the wet
level will be 45 and the dry level 90.

AUD-139

The Dreamcast Audio 64 API

amSoundFetchSample

FORMAT

#include <am.h>

Fetches a sound and its parameters from a Katana format bank.

KTBOOL amSoundFetchSample(AM_BANK_PTR theBank ,KTU32 soundNumber,AM_SOUND_PTR theSound)

PARAMETERS
AM_BANK_PTR theBank,

KTU32 soundNumber,
AM_SOUND_PTR sound,

RETURN VALUE

KTTRUE
KTFALSE

FUNCTION

Fetches a digital sound from a given Katbank .
Calls: amBankFetchAsset()

A pointer to a katbank containing the sound to be
fetched.

The sound number to be fetched.

A pointer to an AM_SOUNBtructure, this will contain all
needed information on the sound on successful return
from this function.

On fail this structure will be filled with 0x00.

on success
theSound is NULL

theBank is NULL

soundNumber is out of range

the bank asset is not of the right type

AUD-140

3. The AICA Manager API

amSoundIsLooping Tells if the given sound has a loop.

FORMAT

#include <am.h>
KTBOOL amSoundisLooping(AM_SOUND_PTR theSound,KTBOOL *loopFlag)

PARAMETERS

AM_SOUND_PTR theSound, A pointer to a properly initialized sound object

KTBOOL *loopFlag, The loop flag is returned via this pointer
RETURN VALUE

KTTRUE on success

KTFALSE theSound is NULL

loopFlag is NULL

FUNCTION

Queries weather a given sound has a loop or not.

Note: The sound structure must have been initialized with the amBankFetchSound function for it to contain
valid data.

AUD-141

The Dreamcast Audio 64 API

amSoundAllocateVoiceChannel Allocates a hardware voice channel.

FORMAT

#include <am.h>
KTBOOL amSoundAllocateVoiceChannel(AM_SOUND_PTR theSound)

PARAMETERS
AM_SOUND_PTR theSound, A pointer to a properly initialized sound object
RETURN VALUE
KTBOOL, KTTRUE on success
KTFALSE can’t allocate voice (all channels busy)
theSound is NULL
FUNCTION

This allocates a hardware voice channel (an ac lib "port") for playback by the amSound subsystem. The
channel is freed via the system callback mechanism when the sound has been stopped prior to the end or

has finished playing.

Note: The sound structure must have been initialized with the amBankFetchSound function for it to contain
valid data.

AUD-142

3. The AICA Manager API

amSoundGetSa mpIeRate Gets the real world sample rate.

FORMAT

#include <am.h>
KTBOOL amSoundGetSampleRate(AM_SOUND_PTR theSound,KTU32 *realWorldSampleRate)

PARAMETERS
AM_SOUND_PTR theSound, A pointer to a properly initialized sound object
KTU32 *realWorldSampleRate, The real world sample rate is returned via this pointer.
RETURN VALUE
KTBOOL, KTTRUE on success
KTFALSE can’t allocate voice (all channels busy)
theSound is NULL
realWorldSampleRate is NULL
FUNCTION

This will return the real world sample rate of the given sound. Real world rates are 44100, 22050 etc.

Note: The sound structure must have been initialized with the amBankFetchSound function for it to contain
valid data.

AUD-143

The Dreamcast Audio 64 API

amSoundGetVolume Gets the current volume setting.

FORMAT

#include <am.h>
KTBOOL amSoundGetVolume(AM_SOUND_PTR theSound,KTU32 *volume)

PARAMETERS

AM_SOUND_PTR theSound, A pointer to a properly initialized sound object

KTU32 *volume, The volume (0-127) is returned via this pointer.
RETURN VALUE

KTBOOL, KTTRUE on success

KTFALSE theSound is NULL

volume is NULL

FUNCTION

This returns the current volume of the sound in normal volume units (0-127).

Note: The sound structure must have been initialized with the amBankFetchSound function for it to contain
valid data.

AUD-144

3. The AICA Manager API

amSoundGetPan Gets the current pan position.

FORMAT

#include <am.h>
KTBOOL amSoundGetPan(AM_SOUND_PTR theSound,KTU32 *aicaPan)

PARAMETERS

AM_SOUND_PTR theSound, A pointer to a properly initialized sound object

KTU32 *pan, The pan (0-127) is returned via this pointer.
RETURN VALUE

KTBOOL, KTTRUE on success

KTFALSE theSound is NULL

panis NULL

FUNCTION

This returns the current pan of the sound in normal pan units (0-127).

Note: The sound structure must have been initialized with the amBankFetchSound function for it to contain
valid data.

AUD-145

The Dreamcast Audio 64 API

amSoundGetVoiceChannel Gets the current voice channel assignment.

FORMAT

#include <am.h>
KTBOOL amSoundGetVoiceChannel(AM_SOUND_PTR theSound,KTU32 *voiceChannel)

PARAMETERS

AM_SOUND_PTR theSound, A pointer to a properly initialized sound object

KTU32 *voiceChannel, The voice channel is returned via this pointer.
RETURN VALUE

KTTRUE on success

KTFALSE theSound is NULL

voiceChannel is NULL

FUNCTION

This gets the current voice channel assignment of a sound. If the sound has not yet been initialized with a
voice channel assignment the value AM_UNINITIALIZED_VOICE_CHANNEL will be returned.

Note: The sound structure must have been initialized with the amBankFetchSound function for it to contain
valid data.

AUD-146

3. The AICA Manager API

amSoundGetCallback Gets the address of the user callback.

FORMAT

#include <am.h>
KTBOOL amSoundGetCallback(AM_SOUND_PTR theSound,AM_USER_CALLBACK *theCallback)

PARAMETERS

AM_SOUND_PTR theSound, A pointer to a properly initialized sound object

AM_USER_CALLBACK *theCallback, A pointer to the callback is returned via this handle.
RETURN VALUE

KTTRUE on success

KTFALSE theSound is NULL

theCallback is NULL

FUNCTION

This gets the address of the user callback proc assigned to a sound, if no callback has been assigned KTNULL
will be returned.

Note: The sound structure must have been initialized with the amBankFetchSound function for it to contain
valid data.

AUD-147

The Dreamcast Audio 64 API

amSoundSetCurrentPlaybackRate Sets the playback rate.

FORMAT

#include <am.h>
KTBOOL amSoundSetCurrentPlaybackRate(AM_SOUND_PTR theSound,KTU32 sampleRate)

PARAMETERS
AM_SOUND_PTR theSound, A pointer to a properly initialized sound object
RETURN VALUE
KTTRUE on success
KTFALSE theSound is NULL
sampleRate is > 1128900
can’t send a command to the driver
FUNCTION

If called prior to playing a sound this will set the sounds initial playback rate. If called while the sound is
playing the current playback rate will be set.

Note: The sound structure must have been initialized with the amBankFetchSound function for it to contain
valid data.

AUD-148

3. The AICA Manager API

amSoundSetVolume Sets a sounds volume.

FORMAT

#include <am.h>
KTBOOL amSoundSetVolume(AM_SOUND_PTR theSound,KTU32 newVolume)

PARAMETERS
AM_SOUND_PTR theSound, A pointer to a properly initialized sound object
KTU32 newVolume, The volume to set (0-127)
RETURN VALUE
KTTRUE on success
KTFALSE can't send a command to the driver
theSound is NULL
FUNCTION

If called prior to playing a sound this will set the sounds initial playback volume. If called while a sound is
playing it will set the current playback volume.

Note: The sound structure must have been initialized with the amBankFetchSound function for it to contain
valid data.

If newVolume > AM_MAX_VOLUME(127) newVolume will be set to AM_MAX_VOLUME

Further the aica volume range is 0-15 so the 0-127 range is quantitized into 15 steps.

AUD-149

The Dreamcast Audio 64 API

amSoundSetPan Sets a sounds pan.
FORMAT

#include <am.h>
KTBOOL amSoundSetPan(AM_SOUND_PTR theSound,KTU32 newPan)

PARAMETERS
AM_SOUND_PTR theSound, A pointer to a properly initialized sound object
KTU32 newPan, The pan to set (0-127)
RETURN VALUE
KTTRUE on success
KTFALSE can’t send a command to the driver
theSound is NULL
FUNCTION

If called prior to playing a sound this will set the sounds initial playback pan position.

If called while a sound is playing it will set the current playback pan position.

Note: The sound structure must have been initialized with the amBankFetchSound function for it to contain
valid data.

If pan > AM_MAX_PAN127) pan will be set to AM_MAX_PAN
Because the AICA pan scale is 0-31 the normal pan numbers of 0-127 are quantitized to 31 steps.

AUD-150

3. The AICA Manager API

amSoundSetCallback Sets the user callback.

FORMAT

#include <am.h>
KTBOOL amSoundSetCallback(AM_SOUND_PTR theSound,AM_USER_CALLBACK callback)

PARAMETERS

AM_SOUND_PTR theSound, A pointer to a properly initialized sound object

KTU32 callback, The address of a user callback function.
RETURN VALUE

KTTRUE on success

KTFALSE theSound is NULL

theSound is playing

FUNCTION

Sets the user callback for a sound. This function will be called when a sound has finished playing. The
callback function will need to be protyped as void foo(KTU32 voiceChannel).

Note: The sound structure must have been initialized with the amBankFetchSound function for it to contain
valid data.

AUD-151

The Dreamcast Audio 64 API

amSoundIsPIaying Tells if a sound is currently playing.

FORMAT

#include <am.h>
KTBOOL amSoundisPlaying(AM_SOUND_PTR theSound)

PARAMETERS
AM_SOUND_PTR theSound, A pointer to a properly initialized sound object
RETURN VALUE
KTTRUE if the sound is playing.
KTFALSE if theSound is NULL
the sound is not playing.
FUNCTION

Note: The sound structure must have been initialized with the amBankFetchSound function for it to contain
valid data.

AUD-152

3. The AICA Manager API

amSoundStop Stops a currently playing sound.

FORMAT

#include <am.h>
KTBOOL amSoundStop(AM_SOUND_PTR theSound)

PARAMETERS
AM_SOUND_PTR theSound, A pointer to a properly initialized sound object
RETURN VALUE
KTTRUE if the sound was stopped
KTFALSE if the sound was not playing.
can’t send a command to the driver
theSound is NULL
FUNCTION

This stops a currently playing sound and releases its voice channel.

Note: The sound structure must have been initialized with the amBankFetchSound function for it to contain

valid data.

AUD-153

The Dreamcast Audio 64 API

amSoundPIay Plays a sound.

FORMAT

#include <am.h>
KTBOOL amSoundPlay(AM_SOUND_PTR theSound)

PARAMETERS
AM_SOUND_PTteSound, A pointer to a properly initialized sound object
RETURN VALUE
KTTRUE if the sound was played
KTFALSE can’t send a command to the driver
theSound is NULL
a voice channel had not been allocated
FUNCTION

This will start a properly initialized sound object playing.

Note: The sound structure must have been initialized with the amBankFetchSound function for it to contain
valid data.

On Failure, due to failing amSoundPlayRaw() or internal error, this will release the voice channel that was
allocated for the sound to prevent a failed call from leaking a voice channel.

The member theSound->voiceChannel will be set to AM_UNINITIALIZED_VOICE_CHANNELIif it has
been released.

AUD-154

3. The AICA Manager API

amSoundPlayRaw

Plays a sound given all of the required parameters.

FORMAT

#include <am.h>

KTBOOL amSoundPlayRaw(
KTU32 sizelnBytes,

KTU32 address,

KTU32 sampleRate,
AC_AUDIO_TYPE aicaAudioType,
KTU32 pitchOffsetinCents,

KTS32 aicalL.oopFlag,
AM_USER_CALLBACK userCallbackProc,
KTU32 dryVolume,

KTU32 wetVolume,

KTU32 pan,

KTU32 mixerChannel,

KTBOOL effectsOnOrOff

)

PARAMETERS

KTS32 voiceChannel,

KTU32 sizelnBytes,

KTU32 address,

KTU32 sampleRate,
AC_AUDIO_TYPE aicaAudioType,

KTU32 pitchOffsetinCents,
KTS32 aicalLoopFlag,

AM_USER_CALLBACK userCallbackProc,
KTU32 dryVolume,

KTU32 wetVolume,

KTU32 pan,

KTU32 mixerChannel

KTBOOL effectsOnOrOff

RETURN VALUE

void

KTS32 voiceChannel,

The DA port number to use for the sound playback.
The size of the sound in bytes

The address of the sound in sound memory

The real world sample rate, i.e. 44100, 22050, 16000 etc

The audio type, i.e. AC_16BIT, AC_8BIT,
AC_ADPCM_LOORP, see ac.h

The amount to offset the pitch (positive offset only)

The aicaloop flag, eithe AC_LOOP_OnrAC_LOOP_OFF,
see ac.h

A pointer to a user callback proc or KTNULL
The normal volume (0-127)

The effects volume (0-127)

The normal pan (0-127)

The effects bank mixer channel to use

True if mixer channel supplied is valid, turns effects on
and off

AUD-155

The Dreamcast Audio 64 API

FUNCTION

Plays a raw PCM intel byte order sound from sound memory. If a user callback proc is supplied the callback
will be invoked when the sound is finished with its play.

The proc will need to have the following prototype:

void MyCallbackProc(KTU32 voiceChannel);

The voice channel (DA port #) that raised the interrupt will be passed up in the arg voiceChannel

AUD-156

3. The AICA Manager API

amStreamSetMix Sets volume and pan for all tracks in a stream.

FORMAT

#include <am.h>
KTBOOL amStreamSetMix(AM_STREAM_PTR theStream,AM_STREAM_MIX_PTR theMix)

PARAMETERS

AM_STREAM_PTR theStream, The stream object to be set

AM_STREAM_MIX_PTR theMix, The new scene mix to be set.
RETURN VALUE

KTBOOLKTTRUE if the mix was successfully set.
FUNCTION

Sets the volume and pan of all tracks in a stream to new values. If a value in the new scene is the same as
the current value the command is not sent.

AUD-157

The Dreamcast Audio 64 API

amStreaminitFile Initializes a stream object to play a file.

FORMAT

#include <am.h>

KTBOOL amStreaminitFile(AM_STREAM_PTR theStream,KTSTRING fileName)
PARAMETERS

AM_STREAM_PTR theStream, the stream object to be initialized

KTSTRING fileName, the file name of the .str file to stream
RETURN VALUE

KTBOOLKTTRUE if the stream object was successfully initialized
FUNCTION

Sets the members of the stream object necessary to the preparation for a call to amStreamOpen()

Note: if the length of the filename is in excess of AM_STREAM_FILENAME_LEf}ie call will fail.

AUD-158

3. The AICA Manager API

amStreamlinitBuffer Initializes a stream object to play a mono stream from a buffer.

FORMAT

#include <am.h>

KTBOOL amStreaminitBuffer(AM_STREAM_PTR theStream,
volatile KTU32 *buffer,
KTU32 size,
KTU32 sampleRate,
KTU32 bitDepth)
PARAMETERS
AM_STREAM_PTR theStream, The stream object to be initialized
volatile KTU32 *buffer, A buffer in either sh4 memory or sound memory
KTU32 size, The size of the buffer,
NOTE: the buffer MUST be a multiple of the play buffer
size
KTU32 sampleRate, The real world integral sample rate of the file, 44100,
22050, or 11025
KTU32 bitDepth, 4,8 or 16
RETURN VALUE

KTBOOIL KTTRUE(f the stream object was successfully initialized

FUNCTION

Sets the members of the stream object necessary to the preparation for a call to amStreamOpen() , this
allows the playback of a chunk of headerless raw sound data. This is the way to play a stream that is to be
constructed at play time. When preparing the buffer it should be sized to be an even multiple of the
playbuffer size, allocate the buffer wherever you want it, sound or sh4 memory, then fill it with silence.
For ADPCM data silence is 0x80, for 8 and 16 bit data silence is 0x00.

For a 16 bit44.1k memory stream a 4096 byte play buffer is sufficient.

Note: This does not use the streamlO subsystem, it is also possible to play multitrack buffers using
that subsystem.

AUD-159

The Dreamcast Audio 64 API

amStreamlinstallUserCallback Installs a user callback for a stream.

FORMAT

#include <am.h>
KTBOOLamStreaminstallUserCallback(AM_STREAM_PTRtheStream,AM_USER_CALLBACKuserCallback)

PARAMETERS

AM_STREAM_PTR theStream, The stream object.

AM_USER_CALLBACK userCallback, The address of the callback function, see am.h
RETURN VALUE

KTBOOL, KTTRUE If the callback was installed

KTFALSE If the stream object has not been opened or is corrupt.
FUNCTION

This function will call _amVoicelnstallUserCallback to install a user callback into the interrupt

handling system.

The callback will be issued when the stream is stopped via amStreamStop or the stream reaches the end.

Note: This must be called post the call to amStreamAllocateVoiceChannels() and the call to
amStreamOpen() .

AUD-160

3. The AICA Manager API

amStreamRewind Rewinds an open stream to its start.

FORMAT

#include <am.h>
KTBOOL amStreamRewind(AM_STREAM_PTR theStream)

PARAMETERS

AM_STREAM_PTR theStream, The stream object to rewind.
RETURN VALUE

KTBOOL, KTTRUE If the stream was successfully rewound.

KTFALSE If the seekrewind call failed or the stream is not open.
FUNCTION

Allows an open stream to be rewound to its start with out closing and reopening the file to get to
its beginning.

AUD-161

The Dreamcast Audio 64 API

amStreamGetMemoryRequirement Gets memory sizes necessary to play the

stream.

FORMAT

#include <am.h>

KTBOOL amStreamGetMemoryRequirement(AM_STREAM_PTR theStream,
KTU32 *transferBufferSize,
KTU32 *playBufferSize
)
PARAMETERS
AM_STREAM_PTR theStream, The stream object to get the requirement from.

KTU32 *transferBufferSize,

The size of the transfer buffer is returned via this pointer.
KTU32 *playBufferSize,

The size of the play buffer(s) are returned via this pointer.
RETURN VALUE

KTBOOL, KTTRUE If the memory requirements were returned.

KTFALSE If the stream was not open or is corrupt.
FUNCTION
Gets the minimum amount of memory that will need to be passed into the amStreamSetBuffers() call.

Note: This must be called post the calls to amStreamOpen() and amSetBufferSizes()

AUD-162

3. The AICA Manager API

amStreamSetBufferSizes Sets the sizes for the play and transfer buffers.

FORMAT

#include <am.h>

void amStreamSetBufferSizes(AM_STREAM_PTR theStream,
KTU32 transferBufferSize,
KTU32 playBufferSize)
PARAMETERS
AM_STREAM_PTR theStream, The stream object to be set.
KTU32 transferBufferSize, The size of the transfer buffer.
KTU32 playBufferSize, The size of a play buffer.
RETURN VALUE
KTBOOL, KTTRUE If the sizes were set.
KTFALSE If the stream is already open.
FUNCTION

Sets the buffer sizes in a stream that is not currently open.

Currently the basic recommendations for buffer sizes are as follows:

1) Play buffer size must be a multiple of 2048

2) Mono streams play well with a 2048 byte play buffer, stereo with a 4096 byte play buffer.
3) Transfer buffer size should be as follows: transferBufferSize = (playBufferSize * 2)

Note: This must be called PRIOR to the call to amStreamOpen()

AUD-163

The Dreamcast Audio 64 API

amStreamSetBuffers Sets buffer memory pointers in a stream.

FORMAT

#include <am.h>

KTBOOL amStreamSetBuffers(AM_STREAM_PTR theStream,
volatile KTU32 *transferBuffer,

volatile KTU32 *playBuffer)

PARAMETERS
AM_STREAM_PTR theStream, The stream object to be set.
volatile KTU32 *transferBuffer, The transfer buffer memory
volatile KTU32 *playBuffer, The play buffer memory
RETURN VALUE
KTBOOL, KTTRUE If the buffer pointers were set.
KTFALSE If amStreamSetBufferSizes() has not been called
successfully
If amStreamOpen() was not called successfully
If the stream is corrupt.
FUNCTION

Sets the buffers necessary to run a stream, stereo and multi track streams require a play buffer per channel.
This routine will subdivide the buffer passed in for the play buffer as necessary for the given stream.

Note: This must be called post the call to amStreamSetBufferSizes() and the call to amStreamOpen()

AUD-164

3. The AICA Manager API

amStreamSetlsr

FORMAT

#include <am.h>

Sets the streams data transfer ISR.

KTBOOL amStreamSetlsr((AM_STREAM_PTR theStream,AM_STREAM_ISR thelsr)

PARAMETERS

AM_STREAM_PTR theStream,
AM_STREAM_ISR thelsr,
Library ISR identifiers:

void _amStreamlsrO
void _amStreamlsrl
void _amStreamlsr2
void _amStreamisr3
void _amStreamisr4

RETURN VALUE

KTBOOL, KTTRUE

The stream object to be set.

A pointer to a data transfer ISR

(KTU32 streamPtr)
(KTU32 streamPtr)
(KTU32 streamPtr)
(KTU32 streamPtr)
(KTU32 streamPtr)

If the ISR was installed successfully.

KTFALSE If the stream was not open
FUNCTION
Sets the streams ISR that pumps data from the transfer buffer to the play buffer(s) . To determine if a

stream is mono or stereo, post amStreamOpen() , use the calls:

amStreamIsMono() or amStreamisStereo().

Note:

This must be called post the calls to amStreamOpen() and amStreamAllocateVoiceChannels()

AUD-165

The Dreamcast Audio 64 API

amStreamAllocateVoiceChannels Allocates voice channels.

FORMAT

#include <am.h>
KTBOOL amStreamAllocateVoiceChannels(AM_STREAM_PTR theStream)

PARAMETERS
AM_STREAM_PTR theStream, The stream object to get voices.
RETURN VALUE
KTBOOL, KTTRUE, If the voice(s) were successfully allocated.
KTFALSE, If the allocation failed.
If the stream was not open.
FUNCTION
This calls amVoiceAllocate() to allocate voices for the given stream, playback requires one voice per

channel of program. A mono stream is one channel, a single track of stereo is two channels.

Note: This must be called post to call to amStreamOpen() .

AUD-166

3. The AICA Manager API

amStreamPrimeBuffers Primes the play buffer.

FORMAT

#include <am.h>
KTBOOL amStreamPrimeBuffers(AM_STREAM_PTR theStream)

PARAMETERS

AM_STREAM_PTtheStream, the stream object to be primed.

RETURN VALUE
KTBOOLKTTRUE If the stream was successfully primed.
KTFALSE If the stream was not open.
If the read failed.
If the stream is corrupt.
FUNCTION

Moves the first load of data into the transfer and play buffer(s) for the given stream.

Note: This must be called post the call to amStreamOpen() .

AUD-167

The Dreamcast Audio 64 API

amStrea mGetTrackLengthIn Frames Gets the length of a stream in frames.

FORMAT

#include <am.h>
KTBOOL amStreamGetTrackLengthinFrames(AM_STREAM_PTR theStream,KTU32 trackNumber,KTU32
*trackLengthinFrames)

PARAMETERS
AM_STREAM_PTR theStream, the stream object to get the length from.
KTU32 trackNumber, the number of the track.
KTU32 *trackLengthinFrames, the length of a stream in frames is returned via this

pointer.

RETURN VALUE
KTBOOL

FUNCTION
Gets the length of a stream in frames.

Note: This must be called post the call to amStreamOpen() or it will return 0 amUtilGetNibblesPerFrame 0

AUD-168

3. The AICA Manager API

amStreamGetNibblesPerFrame Gets the number of nibbles in a frame.

FORMAT

#include <am.h>
KTBOOL amStreamGetNibblesPerFrame(AM_STREAM_PTR theStream,KTU32 *nibblesPerFrame)

PARAMETERS

AM_STREAM_PTR theStream, The stream object
KTU32 *nibblesPerFrame, The number of nibbles in a frame of data.

RETURN VALUE

KTBOOL

FUNCTION

Gets the number of nibbles in a frame for the sample format of the given stream.

Note: This must be called post the call to amStreamOpen() or it will return O

AUD-169

The Dreamcast Audio 64 API

amStreamGetSampIeRate Gets the real world sample rate of a stream.

FORMAT

#include <am.h>
KTBOOL amStreamGetSampleRate(AM_STREAM_PTR theStream,KTU32 *sampleRate)

PARAMETERS
AM_STREAM_PTR theStream, The stream object

KTU32 *sampleRate, The real world sample rate of a stream.

RETURN VALUE

KTBOOL

FUNCTION

Returns the real world (44100, 22050, 11025, ...) sample rate of a stream. In the stream object the sample rate
is AICA encoded and bears no resemblance to the real world rate. This allows access to a meaningful value
for sample rate.

Note: This must be called post the call to amStreamOpen() or it will return O

AUD-170

3. The AICA Manager API

a mStreamGetMsPerIrq Gets the number of milliseconds per callback.

FORMAT

#include <am.h>
KTBOOL amStreamGetMsPerlrg(AM_STREAM_PTR theStream,KTU32 *millisecondsPerlrq)

PARAMETERS

AM_STREAM_PTR theStream, The stream object

KTU32 *millisecondsPerlrqg, The number of milliseconds per callback.
RETURN VALUE

vKTBOOL

FUNCTION

Gets the number of milliseconds per callback. There are two callbacks per iteration of the play buffer which
is playing at sample rate in frames, this resolves all of the variables to produce the number of milliseconds
per callback.

Note: This must be called post the call to amStreamOpen() or it will return 0

AUD-171

The Dreamcast Audio 64 API

amStreamSetVolume Sets the volume on a stream.

FORMAT

#include <am.h>
KTBOOL amStreamSetVolume(AM_STREAM_PTR theStream,KTU8 newVolume)

PARAMETERS
AM_STREAM_PTR theStream, The stream object of the stream to have its volume set
KTU8 newVolume, The new volume to set (0-127)
RETURN VALUE
KTBOOLKTTRUE if the pan was successfully set
KTFALSE if the stream is not playing.
FUNCTION

Sets the volume of the currently playing mono or stereo stream.

AUD-172

3. The AICA Manager API

amStreamSetPan Sets the pan on a mono stream.

FORMAT

#include <am.h>
KTBOOL amStreamSetPan(AM_STREAM_PTR theStream,KTU8 newPan)

PARAMETERS
AM_STREAM_PTHeStream, The stream object of the stream to be panned
KTU8 newPan, The new setting for the pan (0-127)
RETURN VALUE
KTBOOL KTTRUE f the pan was successfully set
KTFALSE if the stream is not playing or the stream is stereo
FUNCTION

Sets the pan of a currently playing MONO stream, if a stereo sream is submitted the call will return
KTFALSEas stereo streams can not be panned.

AUD-173

The Dreamcast Audio 64 API

amStreamStop Stops a currently playing stream.

FORMAT

#include <am.h>
KTBOOL amStreamStop(AM_STREAM_PTR theStream)

PARAMETERS

AM_STREAM_PTHheStream, the stream object of the stream to be stopped
RETURN VALUE

KTBOOL KTTRUE(f the stream was successfully stopped
FUNCTION

Used to stop a currently playing stream, this routine is called by amStreamServer() at the end of a
stream. This closes and frees the port, removes and releases the callback and releases the port and the
buffers from the stream.

AUD-174

3. The AICA Manager API

amStreamPIaying Monitors if a stream is currently playing.

FORMAT

#include <am.h>
KTBOOL _amsStreamPlaying(AM_STREAM_PTR theStream)

PARAMETERS

AM_STREAM_PTR theStream, the stream object to be monitored for play activity
RETURN VALUE

KTBOOL, KTTRUE if the stream is currently playing
FUNCTION

Used to monitor the play status of a stream.

AUD-175

The Dreamcast Audio 64 API

amStreamGetVolume Gets the streams current volume

FORMAT

#include <am.h>
KTU32 amStreamGetVolume(AM_STREAM_PTR theStream)

PARAMETERS

AM_STREAM_PTR theStream, The stream object to get the volume from

KTU32 *volume, The volume is returned via this pointer.
RETURN VALUE

KTBOOL, KTTRUBon success

KTFALSE on NULL parameter or track number out of range.
FUNCTION

Gets the current volume of a stream.

AUD-176

3. The AICA Manager API

amStreamGetPan Gets the streams current pan

FORMAT

#include <am.h>
KTU32 amStreamGetVolume(AM_STREAM_PTR theStream)

PARAMETERS

AM_STREAM_PTR theStream, The stream object to get the volume from

KTU32 *pan, The pan is returned via this pointer.
RETURN VALUE

KTBOOL, KTTRUBEon success

KTFALSE on NULL parameter or track number out of range.
FUNCTION

Gets the current pan of a stream.

AUD-177

The Dreamcast Audio 64 API

amStreamGetlsrCount Gets the Interrupt Service Routine count.

FORMAT

#include <am.h>
KTU32 amStreamGetlsrCount(AM_STREAM_PTR theStream)

PARAMETERS

AM_STREAM_PTR theStream, the stream object to get the ISR count from
RETURN VALUE

KTU32, The number of times the ISR has been invoked for this stream.
FUNCTION

Gets the number of times that the ISR has been invoked in this play cycle.

AUD-178

3. The AICA Manager API

amStreamClose Closes a stream object.

FORMAT

#include <am.h>
KTBOOL amStreamClose(AM_STREAM_PTR theStream)

PARAMETERS

AM_STREAM_PTR theStream, the stream object to be closed
RETURN VALUE

KTBOOL, KTTRUE if the stream object was (or is) closed
FUNCTION

Used to close a stream file. This closes the file but does not release the resources.

AUD-179

The Dreamcast Audio 64 API

amStreamStart Starts a stream object playing.

FORMAT

#include <am.h>
KTBOOL amStreamStart(AM_STREAM_PTR theStream)

PARAMETERS

AM_STREAM_PTeStream, the stream object to be started
RETURN VALUE

KTBOOLKTTRUE if the stream was successfully started
FUNCTION

Starts the given stream object playing, aquires callback procs and aquires and configures the ports based on
the type of stream contained in the .str file.

AUD-180

3. The AICA Manager API

amStreamlsStereo Tells if a stream is stereo.

FORMAT

#include <am.h>
KTBOOL amStreamlisStereo(AM_STREAM_PTR theStream)

PARAMETERS

AM_STREAM_PTHeStream, the stream object to be queried.
RETURN VALUE

KTBOOLKTTRUE if the stream is stereo.
FUNCTION

If the given stream is stereo this will return KTTRUE

AUD-181

The Dreamcast Audio 64 API

amStreamlisMono Tells if a stream is mono.

FORMAT

#include <am.h>
KTBOOL amStreamisMono(AM_STREAM_PTR theStream)

PARAMETERS

AM_STREAM_PTHheStream, the stream object to be queried.
RETURN VALUE

KTBOOL, KTTRUE if the stream is mono
FUNCTION

If the given stream is mono this will return KTTRUE

AUD-182

3. The AICA Manager API

amStreamServer Serves data to a currently playing stream.

FORMAT

#include <am.h>
KTBOOL amStreamServer(AM_STREAM_PTR theStream)

PARAMETERS

AM_STREAM_PTR theStream, the stream object to be served
RETURN VALUE

KTBOOL, KTTRUE if the stream is currently playing, KTFALSEif it is finished
FUNCTION

Fills the transfer buffer of a given stream when its contents have been completely transferred by the ISR.

AUD-183

The Dreamcast Audio 64 API

amStreamOpen Opens a stream object.

FORMAT

#include <am.h>
KTBOOL amStreamOpen(AM_STREAM_PTR theStream)

PARAMETERS
AM_STREAM_PTR theStream, the stream object to be opened
RETURN VALUE
KTBOOL, KTTRUE if the stream was successfully started
FUNCTION
Opens the stream file named in the InitStream() call, aquires buffers and “primes” the play buffer(s)

with data from the transfer buffer.

AUD-184

3. The AICA Manager API

amStreamSetTransferMethod sciects bmA or memcpy as the data transfer method.

FORMAT

#include <am.h>

KTBOOL amStreamSetTransferMethod(AM_STREAM_PTR theStream,
AM_STREAM_TRANSFER_METHOD transferMethod,

KTU32 dmaChannel,

KTU32 dmaFrameSize)

PARAMETERS

AM_STREAM_PTR theStream, the stream object.

AM_STREAM_TRANSFER_METHOD transferMethod, either AM_STREAM_DMA
AM_STREAM_NON_DMA

KTU32 dmaChannel, AM_DMA_CHANNEL

KTU32 dmaFrameSize, 4,8 or 32 bytes per frame
RETURN VALUE

KTTRUE on success

KTFALSE if theStream is open

if theStream is NULL

if transferMethod is not AM_STREAM_DM*%
AM_STREAM_NON_DMA

if dmaChannel is not AM_DMA_ CHANNEL
if dmaFrameSize is not 4,8 or 32

FUNCTION

Causes the stream to be transfered via DMA rather then using the foreground memcpy process.
dmaFrameSize controls how many bytes are transferred in a single dma transfer.

Note: This must be called prior to StreamOpen()

AUD-185

The Dreamcast Audio 64 API

amStream|o|nstaIIAIternateloManager Installs a custom lo proc.

FORMAT

#include <am.h>
void amStreamlolnstallAlternateloManager(AM_STREAM_IO_PROC ioProc)

PARAMETERS
AM_STREAM_IO_PROC ioProc, A pointer to a custom Io proc, see the example in
MyFile.c
RETURN VALUE
void
FUNCTION

Installs a custom Io procinto the Io shell, this allows all file system calls to be intercepted by the applications
file system.

The prototype for the IO proc is as follows:

KTBOOL MyCustomloProc(KTSTRING fileName,
KTU32 * sd,

KTUS * buffer,

KTU32 * size,

AM_FILE_OPERATION_MODE mode

)

An example of this redirection is available in MyFile.c as well as a boilerplate copy of the IO proc
for modification.

AUD-186

3. The AICA Manager API

amUtilGetAicaVolume Converts midi volume units to AICA units

FORMAT

#include <am.h>
KTBOOL amULtilGetAicaVolume(KTU32 midiVolume,KTU32 *aicaVolume)

PARAMETERS

KTU32 midiVolume, the midi volume to be converted (0-127)

KTU32 *aicaVolume, the AICA volume (0-15) is returned via this pointer
RETURN VALUE

KTTRUE on success

KTFALSE if aicaVolume is NULL
FUNCTION

Converts from midi volume units (0-127) to AICA (0-15) volume units.

Note: If midiVolume is > 127 it will be set to 127 and a debug warning issued.

AUD-187

The Dreamcast Audio 64 API

am UtilAlig nNumber Performs numerical boundry alignment.

FORMAT

#include <am.h>
KTBOOL amULtilAlignNumber(KTU32 theNumber,KTU32 theAlignment,KTU32 *theResult)

PARAMETERS

KTU32 theNumber , the number to be aligned

KTU32 theAlignment, the desired boundry

KTU32 *theResult, the aligned number is returned via this pointer
RETURN VALUE

KTTRUE on success

KTFALSE if alignment is 0

if theResult is NULL

FUNCTION

Rounds a number up to the next multiple of alignment. If the number is evenly divisible by alignment it
will be returned untouched.

AUD-188

3. The AICA Manager API

amUti IGetLength InFrames Gets the length of a stream in frames.
FORMAT

#include <am.h>

KTU32 amUtilGetLengthinFrames(AC_AUDIO_TYPE type, KTU32 channels,KTU32 size,KTU32
*lengthinFrames)

PARAMETERS
AC_AUDIO_TYPE type, the AICA type of the sound, see ac.h
KTU32 channels, the number of channels in the sound, 1=mono 2=stereo
KTU32 size, the size of the sound in bytes
KTU32 *lengthInFrames, the length is reurned via this pointer.
RETURN VALUE
KTU32, The length of a stream in frames.
FUNCTION

Gets the length of a stream in frames.

Note: This must be called post the call to amUtilOpen() or it will return O

AUD-189

The Dreamcast Audio 64 API

amUtilGetNibblesPerFrame Gets the number of nibbles in a frame.
FORMAT

#include <am.h>
KTBOOL amUtilGetNibblesPerFrame(AC_AUDIO_TYPE type,KTU32 *nibblesPerFrame)

PARAMETERS
AC_AUDIO_TYPE type, the AICA type of the sound, see ac.h
KTU32 *nibblesPerFrame, the number of nibbles in a frame is returned via this
pointer
RETURN VALUE
KTBOOL
FUNCTION

Gets the number of nibbles in a frame for the sample format of the given stream.

AUD-190

3. The AICA Manager API

amUtiIGetSampIeRate Gets the real world sample rate of a stream.

FORMAT

#include <am.h>
KTBOOL amUtilGetSampleRate(KTU32 aicaSampleRate, KTU32 *sampleRate)

PARAMETERS
KTU32 aicaSampleRate, the AICA sample rate as defined in ac.h
KTU32 *sampleRate, The real world sample rate of a stream is returned via
this pointer.
RETURN VALUE
KTBOOL fails if sampleRate is NULLor aicaSampleRate is not
a correct value.
FUNCTION

Returns the real world (44100, 22050, 11025, ...) sample rate of a stream. In the stream object the sample rate
is AICA encoded and bears no resembalance to the real world rate. This allows access to a meaningful value

for sample rate.

Note: This must be called post the call to amUtilOpen() or it will return O

AUD-191

The Dreamcast Audio 64 API

amUtiIGetLengthInMs Gets the length of a stream in milliseconds.
FORMAT

#include <am.h>

KTBOOL amUtilGetLengthinMs(AC_AUDIO_TYPE type,KTU32 channels,KTU32 size,KTU32
aicaSampleRate,KTU32 *lengthinMs)

PARAMETERS
AC_AUDIO_TYPE type, the AICA type of the sound, see ac.h
KTU32 channels, the number of channels in the sound, 1=mono 2=stereo
KTU32 size, the size of the sound in bytes
KTU32 aicaSampleRate, the AICA sample rate of the sound, see ac.h
KTU32 *lengthinMs, the length of a stream in milliseconds.
RETURN VALUE
KTBOOL
FUNCTION

Gets the length of a stream in milliseconds.

Note: This must be called post the call to amUtilOpen() or it will return O

AUD-192

3. The AICA Manager API

amUti IGetMsPerqu Gets the number of milliseconds per callback.
FORMAT

#include <am.h>

KTBOOL amUtilGetMsPerlrq(AC_AUDIO_TYPE type, KTU32 aicaSampleRate, KTU32
playBufferSizelnBytes,KTU32 *msPerlrq)

PARAMETERS
AC_AUDIO_TYPE type, the AICA type of the sound, see ac.h
KTU32 aicaSampleRate, the AICA sample rate of the sound, see ac.h
KTU32 playBufferSizelnBytes, the size of the playback buffer in bytes
KTU32 *msPerlrq, the number of milliseconds per callback.

RETURN VALUE

FUNCTION

Gets the number of milliseconds per callback. There are two callbacks per iteration of the play buffer which
is playing at sample rate in frames, this resolves all of the variables to produce the number of milliseconds
per callback.

Note: This must be called post the call to amUtilOpen() or it will return O

AUD-193

The Dreamcast Audio 64 API

am UtiIGetAicaSampleType Extrapolates sample bit depth to AICA sample type.

FORMAT

#include <am.h>
KTBOOL amULtilGetAicaSampleType(KTU32 bitDepth,AC_AUDIO_TYPE_PTR aicaSampleType)

PARAMETERS

KTU32 bitDepth, The bit depth of the sample.
AC_AUDIO_TYPE_PTR aicaSampleType, The returned AICA sample type.

RETURN VALUE

KTTRUEon success
Or...
KTFALSEon fail

FUNCTION

Extrapolates sample bit depth to AICA sample type. See the AC_AUDIO_TYPEenum in ac.h for the types
returned by this function.

Note: This will always identify 4 bit data as the type AC_ADPCM_LOOP

AUD-194

3. The AICA Manager API

amUtiIGetAicaSampIeRate Makes a real world sample rate into an AICA sample rate.

FORMAT

#include <am.h>
KTBOOL amUtilGetAicaSampleRate(KTU32 realWorldSampleRate, KTS32 *aicaSampleRate)

PARAMETERS

KTU32 realWorldSampleRate, The real world sample rate, i.e. 44100, 22050, 11025, 5012
KTS32 *aicaSampleRate, The returned AICA sample rate.

RETURN VALUE

KTTRUEon success
Or...
KTFALSEon fail

FUNCTION

Extrapolates from real world sample rates to AICA sample rates, the only allowed AICA rates are 44100,
22050, 11025 and 5012. Using any other rate will cause this function to fail.

AUD-195

The Dreamcast Audio 64 API

amUtiIGetMiddIEOfBUfferlnFrames Calculates the middle of the buffer in frames.

FORMAT

#include <am.h>

KTBOOL amUtilGetMiddleOfBufferinFrames(KTU32 bitDepthOfSample, KTU32
sizeOfBufferinBytes,KTU32 * middlelnFrames)

PARAMETERS

KTU32 bitDepthOfSample, the bit depth of the sample data

KTU32 sizeOfBufferinBytes, the size of the buffer in bytes

KTU32 * middleInFrames, the offset of the middle in frames is returned via this value
RETURN VALUE

KTBOOLKTTRUEf the calculation was successful, KTFALSEif the bit depth is unsupported

FUNCTION

Calculates the middle of the buffer in frames.

AUD-196

3. The AICA Manager API

amUtilGetEndOfBufferInFrames Calculates the end of the buffer in frames.

FORMAT

#include <am.h>

KTBOOL amULtilGetEndOfBufferinFrames(KTU32 bitDepthOfSample,KTU32
sizeOfBufferinBytes,KTU32 * middlelnFrames)

PARAMETERS

KTU32 bitDepthOfSample, the bit depth of the sample data

KTU32 sizeOfBufferinBytes, the size of the buffer in bytes

KTU32 * endInFrames, the offset of the end in frames is returned via this value
RETURN VALUE

KTBOOL, KTTRUEI f the calculation was successful, KTFALSEif the bit depth is unsupported

FUNCTION

Calculates the end of the buffer in frames.

AUD-197

The Dreamcast Audio 64 API

amVoicelnit Initializes the voice pool.

FORMAT

#include <am.h>
void amVoicelnit(void)

PARAMETERS
void

RETURN VALUE
void

FUNCTION

Initializes the voice pool and voice (port) allocation functionality.

AUD-198

3. The AICA Manager API

amVoiceAllocate Allocates a voice channel.

FORMAT

#include <am.h>
KTBOOL amVoiceAllocate(KTU32 * voiceChannel, AM_VOICE_TYPE voiceType,void * owner)

PARAMETERS
KTU32 * voiceChannel, The voice channel allocated is returned via this pointer.
AM_VOICE_TYPE voiceType, The type, AM_ONESHOT_VOIC& AM_STREAM_VOIGE
see am.h
void * owner, The address of the AM_SOUNDr AM_STREAMDbject that
holds the channel,
RETURN VALUE
KTTRUE If a channel was available.
or...
KTFALSE If no channels are available.
FUNCTION

Allocates voice channels (DA port #'s) needed for playing sounds with the ac layer. If the type is
AM_ONESHOT_VOICthe owner arg is the address of the AM_SOUNBtructure that holds the sound to be
played on that channel.

If the type is AM_STREAM_VOICEhe owner arg is the address of the AM_STREAMtructure. If the type is
AM_MIDI_VOICE the midi port number that must be used is the following;:

(voiceChannel - AM_FIRST_MIDI_VOICE)

The midi ports are 0-15 but the driver reports them as event numbers 16-31 in the interrupt message array.

AUD-199

The Dreamcast Audio 64 API

AUD-200

	The Dreamcast Audio 64 API
	Preface
	1. Dreamcast Audio64�Overview
	1.1 Introduction
	1.2 AM Layer
	1.2.1 amInit
	1.2.2 amBank
	1.2.3 amFile
	1.2.4 amHeap
	1.2.5 amSound
	1.2.6 amStream
	1.2.7 amMidi

	1.3 The AC Layer
	1.4 Tools Overview
	1.4.1 MkScript
	1.4.2 MkBank
	1.4.3 MkStream

	1.5 File Formats

	2. The AICA Control Layer API
	acSystemRequestArmInterrupt Causes the driver to raise an ARM external interrupt.
	acDigiPlay Starts a buffer playing.
	acDigiPlayWithLoopParameters Starts a buffer playing Set loop points.
	acDigiPlayWithParameters Starts a buffer playing with all common parameters.
	acDigiMultiSetMask Sets the bit masks for acDigiMultiPlay()
	acDigiMultiPlay Sets the bit masks for acDigiMultiPlay()
	acDigiMultiStop Sets the bit masks for acDigiMultiPlay()
	acDigiOpen Open a DA Streaming Port for playback.
	acDigiSetSampleRate Set the playback rate (sample rate) of audio stream.
	acDigiClose Closes port previously opened.
	acDigiSetCurrentPitch Changes the playback rate of a running channel.
	acDigiSetVolume Adjusts volume of a voice channel.
	acDigiSetPan Adjusts the pan placement of a voice channel.
	acDigiRequestEvent Used to generate an interrupt when a certain buffer position is reached.
	acDigiStop Stops a voice channel playing.
	acMidiOpen Open a MIDI Port buffer for SMF format 0 playback.
	acMidiSetTonebank Assign a MIDI Program Bank (tonebank) to an active bank slot.
	acMidiClose Close a MIDI port.
	acMidiPlay Starts playback on opened MIDI port.
	acMidiStop Stops standard MIDI file playback on port.
	acMidiRequestEvent Generates interrupt to host upon MIDI port reaching specified address.
	acMidiPause Pauses an active MIDI port.
	acMidiResume Resumes playback on active MIDI port.
	acMidiSetVolume Sets scaled volume setting for MIDI port.
	acMidiReset Resets MIDI controllers on port to default values.
	acMidiSetTempo Set playback tempo of MIDI port.
	acMidiSendMessage Sends raw MIDI messages to ports.
	acCdSetVolume Sets Left & Right Channels for Redbook Volume Control (dependent on channel pan).
	acCdSetPan Sets Left & Right Channel pan position.
	acCdInit Resets CDDA channels to hard pan positions and maximum volume.
	acDspSetQSoundAngle Sets Q-Sound position.
	acDspInstallProgram Registers a dsp program bank with the driver.
	acDspInstallOutputMixer Registers an output mixer patch with the driver.
	acDspSetMixerChannel Sets DSP mixer level and channel for that port.
	acErrorGetLast Gets a pointer to the error structure.
	acErrorExists Checks to see if an error condition exists.
	acErrorClear Clears the AC error structure.
	acIntInstallOsChainDeleteManager Installs pointer to interrupt chain delete routine.
	acIntInstallOsChainAddManager Installs proc pointer to interrupt chain add routine.
	acIntInstallCallbackHandler Installs a callback handler into the ARM interrupt handler.
	acIntInstallArmInterruptHandler Installs an ARM interrupt handler.
	acIntSetAicaChainId Sets the AICA interrupt chain ID.
	acIntShutdown Shuts down the ac interrupt system.
	acIntInit Initializes the ac interrupt system.
	acSystemShutdown Shuts down the AC layer.
	acSystemGetIntArrayStartOffset Gets the interrupt array write cursor offset.
	acSystemGetIntArrayStartPtr Gets a pointer to the start of the drivers interrupt message array.
	acSystemGetBaseOfSoundMemory Gets the starting address for sound memory.
	acSystemGetIntArray Gets the address of the SH4 side interrupt message array.
	acSystemGetIntArrayLength Gets the length of the drivers interrupt message array.
	acSystemCheckDriverRevision Tests the driver version against the supplied version.
	acSystemGetDriverRevision Tests the driver version against the supplied version.
	acSystemWaitUntilG2FifoIsEmpty Waits until the G2 FIFO is clear.
	acSystemDelay Use to delay for short periods of time.
	acSystemEnableArmInterrupts Use to enable the ARM interrupt.
	acSystemDisableArmInterrupts Use to disable the ARM interrupt.
	acSystemInit Makes the ac system ready to use.
	acGetSystemFlag True if the system has been initialized.
	acSystemGetFirstFreeSoundMemory Gets the address of first free sound memory.
	acSystemGetCommandFlag Gets address of driver command flag register.
	acSystemResetArmInterrupt Resets the ARM interrupt flag.
	acSystemInstallDriver Installs the sound driver.

	3. The AICA Manager API
	amBankFetchMidiUspqn Fetches uspqn from a MIDI type asset.
	amBankFetchMidiLoop Fetches the loop flag from a MIDI type asset.
	amBankFetchMidiPpqn Fetches ppqn from a MIDI type katbank asset.
	amBankFetchMidiVolume Fetches master volume from a MIDI type katbank asset.
	amBankFetchMidiGmModeFlag Fetches GM mode flag from a MIDI type katbank asset.
	amBankLoad Loads a katbank asset from disk into sound memory.
	amBankFetchAssetParameters Fetches parameters from any katbank asset.
	amBankFetchWaveLoopFlag Fetches the loop flag from a katbank asset.
	amBankFetchWaveRandomPitch Fetches random pitch amount from a katbank asset.
	amBankFetchWaveSampleRate Fetches the sample rate from a katbank WAVE asset.
	amBankFetchWaveBitDepth Fetches the bit depth of a WAVE type asset in a katbank.
	amBankFetchUnknownParameters Fetches one of the 7 user parameters from a katbank "unknown" type a...
	amBankFetchAsset Fetches an asset from a katbank.
	amBankGetAssetSize Gets the size of an asset from a katbank.
	amBankGetNumberOfAssets Gets the number of assets in a katbank.
	amBankGetHeaderSize Gets the size of the header portion of a katbank.
	amDmaMemCpy Performs DMA copys to sound memory.
	amDspFetchProgramBank Fetches and installs a DSP program bank from a KatBank asset.
	amDspFetchOutputBank Fetches and installs a DSP output bank from a KatBank asset.
	amErrorGetLast Gets a pointer to the error structure.
	amErrorExists Checks to see if an error condition exists.
	amErrorClear Clears the AM error structure.
	amHeapShutdown Shuts down the AM heap management system.
	amHeapGetInfo Gets info necessary to start an audio heap.
	amHeapGetFree Gets the amount of free memory.
	amHeapAlloc Allocates aligned memory from the audio heap.
	amHeapGetMaxPurgable Gets amount of memory available from a full purge.
	amHeapPurge Purges memory marked as purgable.
	amHeapFree Frees purgable memory allocated using amHeapAlloc()
	amHeapInit Initializes the audio heap.
	amHeapCheck Checks the MCB fingerprints for overwrites.
	amInitSelectDriver Selects driver to be installed by amInit()
	amShutdown Shuts down the AM audio subsystem.
	amInit Starts up the AM audio subsystem.
	amFileRewind Seeks to the start of a file.
	amFileLoad Loads specified file into the buffer.
	amFileRead Reads from a file that is already open.
	amFileOpen Opens a file for reading.
	amFileClose Closes a file.
	amFileGetSize Gets the size of a file.
	amFileInstallAlternateIoManager Installs a custom Io proc.
	amStreamIsr0 - 4 Interrupt Service Routine for the amStream subsystem.
	amMemSh4Alloc Sh4 memory allocation shell.
	amMemSh4Free Sh4 memory free shell.
	amMemInit Initializes the Sh4 memory shell system.
	amMemInstallAlternateMemoryManager Allows redirection of sh4 memory requests.
	amMidiSetTempo Sets the tempo of a MIDI sequence.
	amMidiSetLoopFlag Sets the loop flag on a MIDI sequence.
	amMidiFetchToneBank Installs an MTB asset from a bank file aggregate.
	amMidiLoadToneBank Loads a Sega tone bank asset
	amMidiInstallCallback Sets the callback proc for a sequence.
	amMidiAllocateSequencePort Allocates a MIDI port for the sequence.
	amMidiFetchSequence Fetches a sequence asset from a katBank.
	amMidiPlay Plays a MIDI sequence.
	amMidiPlayRaw Plays a MIDI sequence given the basic parameters.
	amMidiStop Stops a currently playing MIDI sequence.
	amMidiSetVolume Sets the master volume of a MIDI sequence.
	amMidiPause Pauses a currently playing MIDI sequence.
	amMidiResume Resumes playback of a paused MIDI sequence.
	amMidiTransferToneBank Transfers a Sega tone bank to sound memory and sets it as the current bank.
	amMidiSetChannelProgram Sets the current bank slot.
	amMidiNoteOn Plays a MIDI triggered sound effect.
	amMidiNoteOff Stops a MIDI triggered sound effect.
	amMidiSetChannelVolume Sets volume of a midi sound.
	amMidiSetChannelPan Sets the pan of a MIDI sound.
	amSoundSetQSoundChannels Used to identify which channels in an output bank are Q-Sound channels.
	amSoundSetEffectsBuss Sets the effects buss send and source mix for a sound object.
	amSoundFetchSample Fetches a sound and its parameters from a Katana format bank.
	amSoundIsLooping Tells if the given sound has a loop.
	amSoundAllocateVoiceChannel Allocates a hardware voice channel.
	amSoundGetSampleRate Gets the real world sample rate.
	amSoundGetVolume Gets the current volume setting.
	amSoundGetPan Gets the current pan position.
	amSoundGetVoiceChannel Gets the current voice channel assignment.
	amSoundGetCallback Gets the address of the user callback.
	amSoundSetCurrentPlaybackRate Sets the playback rate.
	amSoundSetVolume Sets a sounds volume.
	amSoundSetPan Sets a sounds pan.
	amSoundSetCallback Sets the user callback.
	amSoundIsPlaying Tells if a sound is currently playing.
	amSoundStop Stops a currently playing sound.
	amSoundPlay Plays a sound.
	amSoundPlayRaw Plays a sound given all of the required parameters.
	amStreamSetMix Sets volume and pan for all tracks in a stream.
	amStreamInitFile Initializes a stream object to play a file.
	amStreamInitBuffer Initializes a stream object to play a mono stream from a buffer.
	amStreamInstallUserCallback Installs a user callback for a stream.
	amStreamRewind Rewinds an open stream to its start.
	amStreamGetMemoryRequirement Gets memory sizes necessary to play the stream.
	amStreamSetBufferSizes Sets the sizes for the play and transfer buffers.
	amStreamSetBuffers Sets buffer memory pointers in a stream.
	amStreamSetIsr Sets the streams data transfer ISR.
	amStreamAllocateVoiceChannels Allocates voice channels.
	amStreamPrimeBuffers Primes the play buffer.
	amStreamGetTrackLengthInFrames Gets the length of a stream in frames.
	amStreamGetNibblesPerFrame Gets the number of nibbles in a frame.
	amStreamGetSampleRate Gets the real world sample rate of a stream.
	amStreamGetMsPerIrq Gets the number of milliseconds per callback.
	amStreamSetVolume Sets the volume on a stream.
	amStreamSetPan Sets the pan on a mono stream.
	amStreamStop Stops a currently playing stream.
	amStreamPlaying Monitors if a stream is currently playing.
	amStreamGetVolume Gets the streams current volume
	amStreamGetPan Gets the streams current pan
	amStreamGetIsrCount Gets the Interrupt Service Routine count.
	amStreamClose Closes a stream object.
	amStreamStart Starts a stream object playing.
	amStreamIsStereo Tells if a stream is stereo.
	amStreamIsMono Tells if a stream is mono.
	amStreamServer Serves data to a currently playing stream.
	amStreamOpen Opens a stream object.
	amStreamSetTransferMethod Selects DMA or memcpy as the data transfer method.
	amStreamIoInstallAlternateIoManager Installs a custom Io proc.
	amUtilGetAicaVolume Converts midi volume units to AICA units
	amUtilAlignNumber Performs numerical boundry alignment.
	amUtilGetLengthInFrames Gets the length of a stream in frames.
	amUtilGetNibblesPerFrame Gets the number of nibbles in a frame.
	amUtilGetSampleRate Gets the real world sample rate of a stream.
	amUtilGetLengthInMs Gets the length of a stream in milliseconds.
	amUtilGetMsPerIrq Gets the number of milliseconds per callback.
	amUtilGetAicaSampleType Extrapolates sample bit depth to AICA sample type.
	amUtilGetAicaSampleRate Makes a real world sample rate into an AICA sample rate.
	amUtilGetMiddleOfBufferInFrames Calculates the middle of the buffer in frames.
	amUtilGetEndOfBufferInFrames Calculates the end of the buffer in frames.
	amVoiceInit Initializes the voice pool.
	amVoiceAllocate Allocates a voice channel.

