Sega@ Dreamcast.

Dreamcast
GNUPro” Toolkit
Libraries

GNUPro C Library
GNUPro Math Library
GNU C++ lostream library

Important Information

This documentation has been provided courtesy of CYGNUS. The contents are applicable to GNUPro™ Toolkit
development, however, all references to development support offered by CYGNUS should be ignored.

Technical support for this product as it applies to the Sega Dreamcast™ development environment should be
directed to Sega Third Party Developer Technical Support at 415/701-4060. Future updates and/ or additional
information may also be found at Sega’s DTS Website at, http//:www.dts.sega.com/NextGen

Copyright © 1991-1998 Cygnus.
All rights reserved.

GNUPro™, theGNUPro™ logo and the Cygnus logo are all trademarks of Cygnus. All
other brand and product names are trademarks of their respective owners.

Permission is granted to make and distribute verbatim copies of this documentation,
provided the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this documentation
under the conditions for verbatim copying, provided also that the entire resulting
derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this documentation into
another language, under the above conditions for modified versions.

This documentation has been prepared by Cygnus Technical Publications; contact the
Cygnus Technical Publications staffic@cygnus.com .

ii @ GNUPro Libraries GNUPro Toolkit

Frontispiece

GNUPro Warrant y

The GNUPro Toolkit is free software, covered by the GNU General Public License,
and you are welcome to change it and/or distribute copies of it under certain
conditions. This version of GNUPro Toolkit is supported for customers of Cygnus.

For non-customers, GNUPro Toolkit software has NO WARRANTY.

Because this software is licensed free of charge, there are no warranties for it, to the
extent permitted by applicable law. Except when otherwise stated in writing, the
copyright holders and/or other parties provide the software “as is” without warranty of
any kind, either expressed or implied, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. The entire risk as to
the quality and performance of the software is with you. Should the software prove
defective, you assume the cost of all necessary servicing, repair or correction.

In no event, unless required by applicable law or agreed to in writing, will any
copyright holder, or any other party who may modify and/or redistribute the program
as permitted above, be liable to you for damages, including any general, special,
incidental or consequential damages arising out of the use or inability to use the
program (including but not limited to loss of data or data being rendered inaccurate or
losses sustained by you or third parties or a failure of the program to operate with any
other programs), even if such holder or other party has been advised of the possibility
of such damages.

CYGNUS

GNUPro Libraries = i

How to contact C ygnus

Use the following information for contacting Cygnus.

Cygnus Headquarters
1325 Chesapeake Terrace
Sunnyvale, CA 94089 USA
Telephone (toll free}+1 800 CYGNUS-1
Telephone (main line): +1 408 542 9600
Telephone (hotline}1 408 542 9601
FAX: +1-408 542 9699
(Faxes are answered 8 a.m.—5 p.m., Monday through Friday.)
email:info@cygnus.com
Website:www.cygnus.com .

Cygnus United Kingdom
36 Cambridge Place
Cambridge CB2 1NS
United Kingdom
Telephone: +44 1223 728728
FAX: +44 1223 728728
email:info@cygnus.co.uk/

Cygnus Japan
Nihon Cygnus
Madre Matsuda Building
4-13 Kioi-cho Chiyoda-ku
Tokyo 102
Telephone: +81 3 3234 3896
FAX: +81 3 3239 3300
email:info@cygnus.co.jp
Website:http://www.cygnus.co.jp/

Use the hotline€1 408 542 960)to get help, although the most reliable way to resolve
problems with GNUPro Toolkit is by using email:
bugs@cygnus.com .

iv m GNUPro Libraries GNUPro Toolkit

Contents

L NN [T o (oA = T4 = o iii
[[0V (o T oo = Tt A O | N iv

GNUPro C Library

Standard Utility FUNCLIONS §tdlib.h) weeeeeeieeeieeeeeeeie e 3

=Y o Yo o A 5
=Y o L= 6
o TSTo =) 7
oY1= 1 A 8
P (o | - 1o 1 9
=Y (o R o 10
[01CY == 1] o 11
o7 1| oo 12
L 2 13
LYoV A=YV, A (o3 SR 03V, « S PP 14

L=YoaY 1o TU L AR 03V 1 o1 | PP 15

=1 16
013110 1Y/ S 17
[0 1V 037 STV « P 18
51 o L= 19
o1 2 20

CYGNUS

GNUPro Libraries m v

Contents

malloc , realloc , free
mallinfo , malloc_stats
__malloc_lock , __ malloc_unlock
010101 1 (0 1o
(010§ PP PP
rand , SraNd ..ooeviiiii
strtod , strtodf .o
£ 1 (o
StHOUl e e
Y1 =1 1 (PSPPSR
Y1 (o] 1 1
Character Type Macrosand Functionstfpe.h)

ISAINUM oo
isalpha .o
(5= L] o
ISCNEIT
ISAIGIt e
ISIOWET o
isprint ,isgraph ...
ISPUNCE ceivieiii e
ISSPACE tuiviriiiiiiii
L5 o] 01
ISXAIGIt e e
T0ASCH veieiieir i
TOIOWET i
1(010] 0] 1] PP

Input and Output étdio.h

ClEArEIT i e
fClOSE i
fAOPEN e
fEOf e
fOITOr e
flluSh e
L0 =] (o PPN
fOEIPOS ceieii i
FELS ot s
fiprintf e

FSEEK triiitiii i e

o= (oS

vi m GNUPro Libraries

GNUPro Toolkit

Contents

013 £ 77
0T 181 78
00T o T 111 =11 1] oS PPNt 79
0 1= 1 (o S PPN 80
printf frintf) SPHNIE oeeeee e eaa 81
o1 U L 86
61U o3 1T 87
61U £ 88
=Y 0 103 89
=Y 0T 0= S a0
=2 T N 91
LoTor= L N Yo=Y o | A=Y oo | 92
LTS 1 97
L= 077 o1 98
L] 43 L PPN 99
11007111 PP 100
0T o 4= Va g TR (=Y 23T o] 0T o PPN 101
vprintf viprntf | VSPIINIE oo e e 103
Strings and MemMOTY ring.n) .eeeeeeiieiieiiiiiie e 105

ool 1T T PP 107
ool T Y PP 108
0 7.Z=Y o J 109
e = G 110
00 1=Y 0T o P 111
L0 T=T00TeT 0o YU 112
1T Ted oY PP 113
00711011101V 114
00110411 P 115
L8107 1= G 116
Lo | PP 117
L] o1 o PP 118
Y13 101 TP 119
L1 || 120
LY e3 o)A U 121
Lot o o 122
LS (=Y (o) PP 123
L5111 1=Y PP 126
L1117 SN 127
LY (1 o PP 128
L5147 | 129
LYot 1T T PP 130
LTt o)V PP 131
L0 o< 132
L1112 133
L1127 o] PP 134
L1151 1 S 135
L1110 GRS 136

CYGNUS

GNUPro Libraries m Vvii

Contents

L4102 137
Signal Handling Gignalh) ...eeeeeeiiiiececeeie e 139
7= 1= 141
USIONAL 142
TIME FUNCLONS ME.h) ittt e e e e e e 145
oYYt 1102 1= S 147
o Lo Yo <N 148
o110 1= 149
o 111112 =S 150
010011740 U PPR 151
[o721 170 2 = 152
001 T 153
L= 1170213 154
1110073 156
LOCAIE 0CAIE.N) vttt 157
L=y (o Yo=Y (=S [o Tot=1 F=Yodo |V PR 160
REENITANCY ...t a e e e e e e r e e aaaaaes 161
Miscellaneous Macros and FUNCHONScoovvuiiiiiiiiiiccccceeeeee e 163
3T £ 164
SYSIEM CAIIS ... 165
DefinitioNs fOr OS INtEITACE.........cieei e 166
Reentrant covers for OS SUDIOULINES..........viiiiiiiiicceee e 171
Variable ArgumMENT LISTSuuiiiiiiiiiiiiiieee e 173
ANSI-standard macroStlarg.n).....cooevoeiiiiiie e 174
ATz Y = A PPN 175
Y- Y- (T SRR 176
177 Y=Y 0 PPN 177
Traditional MacCrOSVBrargs.n) .oooeoeeeiiie et e e e e e eeeas 178
1772 Yo [PPN 179
1772 =1 - o SRR 180
LYz Y- Lo PP 181
A2 Y=Y Lo 182

GNUPro Math Library

Mathematical FUNCLIONS Kath.h) .ooceeieeeiiiiiiiiiiiiii e 185
Version of Math rary.........oooiii e 188
10 L= 1o L= PP 189
T 1] (=Y 1] 1 PPN 190
TS TR Y= 1 | A PP 191
P YT TS Y= 0 1 A PN 192
P21 r= 0 T =Y o | AP 193
L= V2= =Y o122 PN 194

viii @ GNUPro Libraries GNUPro Toolkit

Contents

P Y= L] = 1 7= 2] 0| 195
LN L L V71 PO 196
ol o £ R o) o 1 PR 197
(oT0) o)Vl N 7o) o) 2= T 4| A 198
LoTo 1=y T ot 1= 1 199
Y=Y 1 R = 1 { oS = o o A 200
Lo T =2 4 | 201
Lo 01 A= o T o 1 PN 202
L= 1oL =Y o 1= PSP 203
floor ,floorf , CeIl |, CRIIF 1euieniir i e 204
L0 0ToTo IR 0T T | PP 205
L1 TR (1= 4o 206
gamma gammaf, lgamma, lgammaf ,
gamma_r, gammaf_r, lgamma_r , Igammaf 'cccieiiiiiiiiiieiier e 207
03] 0T TG 1Y/ o] 1 PPN 209
oTe TN 1T o) A USRS 210
0T 0Ty YA 11112111 AR 211
isnan ,isnanf ,isinf ,isinff , finite , fiNitef ceovriiiiii e 212
10 134« N 1o 1= o PN 213
1o TR T o | P 214
oY} 0T o T 0 PPN 215
oY} o TN T i) PPN 216
11T 110 1= o SO P 217
070 o | 0o T L 219
LT V0 T 0 =10 220
LTSN E= =) GO o 1=V - =Y o A 221
0oL T 1 PP 222
rint ,rintf, remainder , reMainderf ..ocviiviiiiiiiiiieie e 223
LYoo T =T o =1 o o | PP 224
LST0 L =Y o xS 225
LT TR oo Lo P o o) A 226
LT =T 1 227
121 0 TR =Y 0| PR 228
12101 TN v=Y o1 o P 229
Reentrancy Properties m ... 230

GNU C++ lostreams Library

INtrodUCTION O TOSIIEAMSeviiiiiiiee e 233
Licensing terms fOMDIO eeeiiiiiiiiiiiiii e 234
ACKNOWIEAGMENTS.... .o e e e e e e e e e e e e sear e e e eeeeeeennes 235

Operators and Default StreamsSooooviiiiiiiii e 237
INput and OULPUL OPEIAtAIS.uuuii i e eeieeeeiiiis s e et e e e e e eeee e e e e eeeeeeeenes 238
Managing operators for input and OULPULuvviiiieeiiiiiiiiiiece e 239

CYGNUS GNUPro Libraries m ix

Contents

YT T O F= TS 241
Shared properties: CIAaBSccciiiiioiiiiii et eeeee e eeeeeeeeeeeeeeees 243
Checking the state Of & StrEAIML........coiv i 244
ChOICES IN TOMMALHING. .. .eeeeeiieee et a e 246
Managing output Streams: CIAaBSeamcccvviiiiieiriiiiiiiieee e 253
Managing input Streams: ClaiSBeam iiiiiiiiiiiiiiiiiie e 256
Input and output together: ClaBSIreamcccveiiiiiiiiiiiiiiiiee e 261

Classes for Files and StriNgSii oo 263
Reading and WIitiNg fileS........ouuuiiiii e e eeee 264
Reading and WIitiNng iN MEMIOLY.........coiiiiieiiiii i eee e e e e e e e e ee e eeaeeeeenes 267

UsiNg thestreambuf LAYEcevviiiiiiiiiiiai et eeeeeeaees 269
Areas Of @BIEAMDBUT ...eeiiiiiiiiiiie e 270
Reading/writing from/to @ PIPe....cooerieeiie e e 274

C INPUL AN OULPUL ..ot e e e e e e e e e e eanes 277

T = PRSPPI 279

x m GNUPro Libraries GNUPro Toolkit

GNUPRO™ TOOLKIT

GNUPro C Library

June, 1998
98r1l

CYGNUS

Copyright © 1991-1998 Cygnus.

All rights reserved.

GNUPrg", the GNUPrd' logo and the Cygnus logo are all trademarks of Cygnus.
All other brand and product names are trademarks of their respective owners.

Permission is granted to make and distribute verbatim copies of this documentation,
provided the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this documentation
under the conditions for verbatim copying, provided also that the entire resulting
derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this documentation into
another language, under the above conditions for modified versions.

This documentation has been prepared by Cygnus Technical Publications; contact the
Cygnus Technical Publications stadbc@cygnus.com .

2 m GNUPro C Library GNUPro Toolkit

Standard Utilit y Functions
(stdlib.h)

The following documentation groups utility functions, useful in a variety of programs,
corresponding to declarations in the header $it#lib.h
o “abort” on page 5

o “abs” on page 6

o “assert” on page 7

o “atexit” on page 8

o “atof, atoff” on page 9

o “atoi, atol” on page 10

o “bsearch” on page 11

o “calloc” on page 12

o “calloc” on page 12

o “calloc” on page 12

o “div’ on page 13

o “ecvt, ecvtf, fevt, fevtf” on page 14

o “ecvtbuf, fcvtbuf’ on page 15

o “exit” on page 16

o “exit” on page 16

o “getenv’ on page 17

o “gvevt, gevtf” on page 18

GNUPro Toolkit GNUPro C Library m 3

o “labs” on page 19

o “Idiv’ on page 20

o “malloc, realloc, free” on page 21

o “mallinfo, malloc_stats, mallopt” on page 23
o “__malloc_lock, malloc_unlock” on page 25
o “mmbtowc” on page 26

o “gqsort” on page 27

o “rand, srand” on page 28

o “strtod, strtodf” on page 29

o “strtol” on page 30

o “strtoul” on page 32

o ‘“system” on page 34

o “wctomb” on page 35

4 m GNUPro C Library GNUPro Toolkit

abort

abort

[abnormal termination of a program]

SYNOPSIS #include <stdlib.h>

DESCRIPTION

RETURNS

COMPLIANCE

void abort(void);

Useabort to signal that your program has detected a condition it cannot deal
with. Normally,abort ends your program’s execution.

Before terminating your prograrabort raises the exceptid@IGABRT
(usingraise(SIGABRT)). If you have usedignal to register an exception
handler for this condition, that handler has the opportunity to retain control,
thereby avoiding program termination.

In this implementationgabort does not perform any stream- or file-related
cleanup (the host environment may do so; if not, you can arrange for your
program to do its own cleanup wittS86GABRT exception handler).

abort does not return to its caller.

ANSI C requiresbort .
Supporting OS subroutines requirgdtpid , kill

CYGNUS

GNUPro C Library m 5

abs

abs
[integer absolute value (magnitude)]

SYNOPSIS #include <stdlib.h>
int abs(int 1);

DESCRIPTION abs returns k|, the absolute value of(also called the magnitude of That
is, if 1 is negative, the result is the opposite dbut if / is nonnegative, the
result is/ .

The similar functionlabs , uses and returisng rather thannt values.
RETURNS The result is a honnegative integer.

COMPLIANCE abs is ANSI.
No supporting OS subroutines are required.

6 m GNUPro C Library GNUPro Toolkit

assert

assert
[macro for debugging diagnostics]
SYNOPSIS #include <assert.h>
void assert(int expression);

DESCRIPTION Use the macrassert , to embed debugging diagnostic statements in your
programs. The argumentxpression , should be an expression which
evaluates to true (nonzero) when your program is working as you intended.
Whenexpression evaluates to false (zer@ssert callsabort , after first
printing a message showing what failed and where, as in the following
example.

Assertion failed: expression | file filename | line lineno
The macro is defined to permit you to turn off all useassért at compile
time by definingNDEBUGs a preprocessor variable. If you do this, the
assert macro expands, as in the following example.
(void(0))
RETURNS assert does not return a value.
COMPLIANCE Theassert macro is required by ANSI, as is the behavior WRBEBUGS
defined.
Supporting OS subroutines required (only if enableldye , fstat
getpid ,isatty ,kill ,Iseek ,read ,sbrk ,write
CYGNUS GNUPro C Library m 7

atexit

atexit

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[request execution of functions at program exit]

#include <stdlib.h>
int atexit(void (* function)(void);

You can usatexit to enroll functions in a list of functions that will be

called when your program terminates normally. The argument is a pointer to a
user-defined function (which must not require arguments and must not return
a result).

The functions are kept inldaFO stack; that is, the last function enrolled by
atexit ~ will be the first to execute when your program exits.

There is no built-in limit to the number of functions you can enroll in this list;
however, after every group of 32 functions is enroléekit will call

malloc to get space for the next part of the list. The initial list of 32 functions
is statically allocated, so you can always count on at least that many slots
available.

atexit returnso if it succeeds in enrolling your functioti, if it fails
(possible only if no space was availablerfailoc to extend the list of
functions).

atexit is required by the ANSI standard, which also specifies that
implementations must support enrolling at least 32 functions.
Supporting OS subroutines requirethse , fstat ,isatty ,Iseek ,read ,
sbrk , write

8 m GNUPro C Library GNUPro Toolkit

atof , atoff

atof , atoff
[string to double or float]

SYNOPSIS #include <stdlib.h>
double atof(const char * s);
float atoff(const char * s);

DESCRIPTION atof converts the initial portion of a string talauble . atoff converts the
initial portion of a string to #oat

The functions parse the character striydpcating a substring which can be
converted to a floating point value. The substring must match the following
format.

[+]-] digits [] digits][(e|E)[+|] digits]
The substring converted is the longest initial fragmenttbit has the
expected format, beginning with the first non-whitespace character. The
substring is empty itr is empty, if it consists entirely of whitespace, or if
the first non-whitespace character is something other#han , or a digit.

atof(s) is implemented asirtod(s, NULL) . atoff(s) is implemented
asstrtodf(s, NULL) .

RETURNS atof returns the converted substring value, if any, dsuale ; or0.0 , if no
conversion could be performed. If the correct value is out of the range of
representative values, plus or mirtlsGE_VALs returned, anBRANGHS
stored inerrno . If the correct value would cause underfl®@ is returned
andERANGHS stored irerrno .

atoff obeys the same rulesasf , except that it returnsfat

COMPLIANCE atof is ANSI C.atof ,atoi , andatol are subsumed kytrod andstrol
but are used extensively in existing code. These functions are less reliable, but
may be faster if the argument is verified to be in a valid range.
Supporting OS subroutines requiretbse , fstat ,isatty ,lIseek ,read ,
sbrk , write

CYGNUS GNUPro C Library m 9

atoi , atol

atoi , atol
[string to integer]

SYNOPSIS #include <stdlib.h>
int atoi(const char * s);
long atol(const char * s);

DESCRIPTION atoi converts the initial portion of a string to @n . atol converts the
initial portion of a string to &ng .
atoi(s) is implemented a@nt)strtol(s, NULL, 10) .atol(s) is
implemented astrtol(s, NULL, 10)

RETURNS The functions return the converted value, if any. If no conversion was tade,
is returned.

COMPLIANCE atoi is ANSI.
No supporting OS subroutines are required.

10 = GNUPro C Library GNUPro Toolkit

bsearch

bsearch

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[binary search]

#include <stdlib.h>

void *bsearch(const void * key, const void * base,
size_t nmembhsize_t size ,
int (* compar)(const void *, const void *));

bsearch searches an array beginningade for any element that matches

key, using binary searchmembis the element count of the arraye is the

size of each element. The array must be sorted in ascending order with respect
to the comparison functiomgmpar (compar being a variable, replaced with

the appropriate comparison function as the last argumésseafch).

You must define the comparison functi@¢n compar) , to have two

arguments; its result must be negative if the first argument is less than the
second, zero if the two arguments match, and positive if the first argument is
greater than the second (where “less than” and “greater than” refer to
whatever arbitrary ordering is appropriate).

Returns a pointer to an element of array that matededf more than one
matching element is available, the result may point to any of them.

bsearch is ANSI.
No supporting OS subroutines are required.

CYGNUS

GNUPro C Library = 11

calloc

calloc
[allocate space for arrays]

SYNOPSIS #include <stdlib.h>
void *calloc(size_t n, size_t s);

void *calloc_r(void * reent , size_t <n>, <size_t> S);

DESCRIPTION Usecalloc to request a block of memory sufficient to hold an array of
elements, each of which has size,

The memory allocated malloc comes out of the same memory pool used
by malloc , but the memory block is initialized to all zero bytes. (To avoid
the overhead of initializing the space, usaloc instead.)

The alternate function,calloc_r , is reentrant. The extra argumengnt ,
is a pointer to a reentrancy structure.

RETURNS If successful, a pointer to the newly allocated space. If unsuccesstill,

COMPLIANCE calloc is ANSI.

Supporting OS subroutines requiretbse , fstat ,isatty ,lIseek ,read ,
sbrk , write

12 = GNUPro C Library GNUPro Toolkit

div

div

[divide two integers]

SYNOPSIS #include <stdlib.h>

div_t div(int nint d);
DESCRIPTION div divides n by d, returning quotient and remainder as two integers in a
structurediv_t
RETURNS The result is represented with the following example.
typedef struct
{
int quot;
int rem;
}div_t;
The previous example has tipot field representing the quotient, and the
rem field representing the remainder.
For nonzeral, if r=div(n, d); ,thennequals.rem+ d*r.quot .
To dividelong rather tharint values, use the similar functiddiv
COMPLIANCE div is ANSI.
No supporting OS subroutines are required.
CYGNUS GNUPro C Library = 13

ecvt , ecvtf , fovt

, fevtf

ecvt , ecvtf | fcvt | fovtf

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[double or float to string]

#include <stdlib.h>

char *ecvt(double val ,int chars ,int* decpt ,int* sgn);
char *ecvtf(float val , int chars ,int* decpt ,int* sgn);
char *fcvt(double val , int decimals ,int* decpt

int* sgn);
char *fevtf(float val ,int decimals ,int* decpt

int* sgn);

ecvt andfcvt produce (null-terminated) strings of digits representing the
double numbewal .ecvtf andfcvtf produce the corresponding character
representations dibat numbers.

(Thestdlib functions,ecvtbuf andfcvtbuf , are reentrant versions of
ecvt andfevt)

The only difference betweestvt andfcvt is the interpretation of the

second argumentf{ars or decimals). Forecvt , the second argument,

chars , specifies the total number of characters to write (which is also the
number of significant digits in the formatted string, since these two functions
write only digits). Foffcvt , the second argumernkcimals , specifies the
number of characters to write after the decimal point; all digits for the integer
part ofval are always included.

Sinceecvt andfcvt write only digits in the output string, they record the
location of the decimal point indecpt , and the sign of the number+ingn.

After formatting a number,decpt contains the number of digits to the left of
the decimal point: sgn contains0 if the number is positive, aridif it is
negative.

All four functions return a pointer to the new string containing a character
representation ofal .

None of these functions are ANSI C.

Supporting OS subroutines requirethse , fstat ,isatty ,Iseek ,read ,
sbrk , write

14 = GNUPro C Library GNUPro Toolkit

ecvtbuf , fevtbuf

ecvtbuf | fcvtbuf

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[double or float to string]

#include <stdio.h>
char *ecvtbuf(double val , int chars ,int* decpt
int* sgn,char* buf);

char *fcvtbuf(double val , int decimals ,int* decpt ,
int* sgn,char* buf),

ecvtbuf andfcvtbuf produce NULL-terminated) strings of digits
representing thdouble numberyval .

The only difference betweestvtbuf andfevtbuf is the interpretation of

the second argumenthars or decimals). Forecvtbuf , the second
argumentchars , specifies the total number of characters to write (which is
also the number of significant digits in the formatted string, since these two
functions write only digits). Foevtbuf | the second argumenkcimals
specifies the number of characters to write after the decimal point; all digits
for the integer part ofa/ are always included.

Sinceecvtbuf andfcvtbuf write only digits in the output string, they
record the location of the decimal pointitecpt , and the sign of the number
in * sgn. After formatting a number,decpt contains the number of digits to
the left of the decimal point.sgn containg if the number is positive, arid

if it is negative. For both functions, you supply a pointer, to an area of
memory to hold the converted string.

Both functions return a pointer tof , the string containing a character
representation ofal .

Neither function is ANSI C.

Supporting OS subroutines requirethse , fstat ,isatty ,Iseek ,read ,
sbrk , write

CYGNUS

GNUPro C Library = 15

exit

exit
[end program execution]

SYNOPSIS #include <stdlib.h>
void exit(int code);

DESCRIPTION Useexit to return control from a program to the host operating environment.
Use the argumentpde, to pass an exit status to the operating environment:
two particular valueEXIT_SUCCESSandEXIT_FAILURE, are defined in
stdlib.n to indicate success or failure in a portable fashion.

exit does two kinds of cleanup before ending execution of your program.

« It calls all application-defined cleanup functions you have enrolled with
atexit

« Files and streams are cleaned up: any pending output is delivered to the
host system, each open file or stream is closed, and files created by
tmpfile are deleted.

RETURNS exit does not return to its caller.

COMPLIANCE ANSI C requiresxit , and specifies th&XIT_SUCCESSand
EXIT_FAILURE must be defined.

Supporting OS subroutines requiredxit

16 = GNUPro C Library GNUPro Toolkit

getenv

getenv
[look up environment variable]
SYNOPSIS #include <stdlib.h>
char *getenv(const char * name);

DESCRIPTION getenv searches the list of environment variable names and values (using the
global pointerchar **environ) for a variable whose name matches the
string atname. If a variable name matcheaggtenv returns a pointer to the
associated value.

RETURNS A pointer to the (string) value of the environment variabl&yuiL, if there is
no such environment variable.

COMPLIANCE getenv is ANSI, but the rules for properly forming names of environment
variables vary from one system to another.
getenv requires a global pointegpviron

CYGNUS GNUPro C Library m 17

gvevt |, gevtf

gvevt |, gevtf

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[format double or float as string]

#include <stdlib.h>
char *gcvt(double val , int precision ,char* buf);
char *gcvtf(float val ,int precision , char* buf);

gevt writes a fully formatted number asN&JLL-terminated string in the
buffer,* buf .

gevtf produces corresponding character representatiditmof numbers.
gevt uses the same rules as phiatf -format, %precision g. Only

negative values are signed (wit)) and either exponential or ordinary
decimal-fraction format is chosen, depending on the number of significant
digits (specified byrecision).

The result is a pointer to the formatted representatioa/ofthe same as the
argumentpufr).

Neither function is ANSI C.

Supporting OS subroutines requirethse , fstat ,isatty ,Iseek ,read ,
sbrk , write

18 m GNUPro C Library GNUPro Toolkit

labs

labs
[long integer absolute value]

SYNOPSIS #include <stdlib.h>
long labs(long 1);

DESCRIPTION labs returns K |, the absolute value of (also called the magnitude of.
That is, if/ is negative, the result is the opposite dbut, if / is nonnegative,
the result ig . The similar functionabs, uses and returrist rather than
long values.

RETURNS The result is a honnegative long integer.

COMPLIANCE labs is ANSI.
No supporting OS subroutine calls are required.

CYGNUS GNUPro C Library = 19

[div

ldiv
[divide two long integers]

SYNOPSIS #include <stdlib.h>
Idiv_t Idiv(long n, long d);

DESCRIPTION Idiv dividesn by g, returning quotient and remainder as two long integers in
a structureldiv_t

RETURNS The result is represented with the following example.

typedef struct
{

long quot;
long rem;
}Idiv_t;

The previous example has tinot field representing the quotient, aresn
representing the remainder.

For nonzeral, if r=Idiv(n, d); , thenn equalsr.rem+ ¢d* r.quot.
To divideint rather tharlong values, use the similar functiadiy .

COMPLIANCE Idiv is ANSI.
No supporting OS subroutines are required.

20 = GNUPro C Library GNUPro Toolkit

malloc , realloc , free

malloc ,realloc |, free

[manage memory]

SYNOPSIS #include <stdlib.h>

DESCRIPTION

void *malloc(size_t nbytes);

void *realloc(void * aptr , size_t nbytes);
void free(void * aptr);

void *memalign(size_t align , size_t nbytes);

size_t malloc_usable_size(void * aptr);

void *_malloc_r(void * reent , size_t nbytes);
void *_realloc_r(void * reent ,void* aptr ,size_t nbytes);
void _free_r(void * reent , void * aptr);

void *memalign_r(void * reent , size_t align , size_t nbytes);
size_t _malloc_usable_size_r(void * reent ,void* aptr);

These functions manage a pool of system memory.

Usemalloc to request allocation of an object with at leastes bytes of
storage available. If the space is availabialloc returns a pointer to a
newly allocated block as its result.

If you already have a block of storage allocateehbljoc , but you no longer
need all the space allocated to it, you can make it smaller by calithar

with both the object pointer and the new desired size as arguneaiits.
guarantees that the contents of the smaller object match the beginning of the
original object.

Similarly, if you need more space for an object,nesloc to request the
larger size; againealloc guarantees that the beginning of the new, larger
object matches the contents of the original object.

When you no longer need an object originally allocatechéifoc or

realloc (or the related functioralloc), return it to the memory storage
pool by callingfree with the address of the object as the argument. You can
also useaealloc for this purpose by calling it with as thenbytes

argument.

Thememalign function returns a block of sizebytes , aligned to align
boundary. Theaiign argument must be a power of two.
Themalloc_usable_size function takes a pointer to a block allocated by
malloc . It returns the amount of space that is available in the block.

CYGNUS

GNUPro C Library = 21

malloc , realloc , free

This may or may not be more than the size requestedriiaioc , due to
alignment or minimum size constraints.

The alternate functionsmalloc_r , realloc_ r , and free r , are
reentrant versions. The extra argumesdyt , is a pointer to a reentrancy

structure.
The alternate functionsmalloc_r , realloc. r , free r ,
_memalign_r , and_malloc_usable_size r , are reentrant versions. The

extra argumenteent , iS a pointer to a reentrancy structure.

If you have multiple threads of execution calling any of these routines, or if
any of these routines may be called reentrantly, then you must provide
implementations of the malloc_lock and__malloc_unlock functions

for your system.

See“ malloc_lock, malloc_unlock” on page 25 for those functions.

These functions operate by calling the functiossyk_r orsbrk , which
allocates space. You may need to provide one of these functions for your
system, sbrk_r is called with a positive value to allocate more space, and
with a negative value to release previously allocated space if it is no longer
required. See “System Calls” on page 165, specifically, “Reentrant covers for
OS subroutines” on page 171.

RETURNS malloc returns a pointer to the newly allocated space, if successful;
otherwise, it returnslULL Ifyour application needs to generate empty objects,
you may usenalloc(0) for this purpose.
realloc returns a pointer to the new block of memoryyory, if a new
block could not be allocateNULL is also the result when you use
realloc(aptr ,0) (which has the same effectfese(aptr)). You should
always check the result ofalloc ; successful reallocation is not guaranteed
even when you request a smaller object.
free does not return a result.
memalign returns a pointer to the newly allocated space.

malloc_usable_size returns the usable size.

COMPLIANCE malloc ,realloc , andfree are specified by the ANSI standard, but other
conforming implementations afalloc may behave differently whemytes

is zero.
memalign is part of SVR4.
malloc_usable_size is not portable.

Supporting OS subroutines requirsdtk .

22 m GNUPro C Library GNUPro Toolkit

mallinfo , malloc_stats , mallopt

mallinfo

SYNOPSIS

DESCRIPTION

RETURNS

, malloc_stats , mallopt
[malloc support]

#include <malloc.h>

struct mallinfo mallinfo(void);

void malloc_stats(void);

int mallopt(int parameter , value);

struct mallinfo _mallinfo_r(void * reent);
void _malloc_stats_r(void * reent);
int _mallopt_r(void * reent ,int parameter , value);

mallinfo returns a structure describing the current state of memory
allocation. The structure is definednralloc.h . The following fields are
defined:

» arena is the total amount of space in the heap.

« ordblks is the number of chunks which are not in use.

« uordblks is the total amount of space allocatedhimlioc .

« fordblks s the total amount of space not in use.

» keepcost is the size of the top most memory block.

malloc_stats prints some statistics about memory allocation on standard
error.

mallopt takes a parameter and a value. The parameters are defined in
malloc.h , and may be one of the following:

» M_TRIM_THRESHOLBets the maximum amount of unused space in the
top most block before releasing it back to the system in free (the space
is released by calling _sbrk_r with a negative argument).

« M_TOP_PADs the amount of padding to allocate whenewbrk r is
called to allocate more space.

The alternate functionsmallinfo r , _malloc_stats_r , and
_mallopt_r , are reentrant versions. The extra argumeat; , is a pointer
to a reentrancy structure.

mallinfo returns amallinfo structure. The structure is defined in
malloc.h

malloc_stats does not return a result.

mallopt returns zero if the parameter could not be set, or non-zero if it could
be set.

CYGNUS

GNUPro C Library = 23

mallinfo , malloc_stats , mallopt

COMPLIANCE mallinfo andmallopt are provided by SVR4, butallopt takes different
parameters on different systems.

malloc_stats is not portable.

24 m GNUPro C Library GNUPro Toolkit

__malloc_lock , _ malloc_unlock

__malloc_lock , malloc_unlock

[lock malloc pool]

SYNOPSIS #include <malloc.h>

DESCRIPTION

void __malloc_lock (void * reent);
void __malloc_unlock (void * reent);
Themalloc family of routines call these functions when they need to lock

the memory pool. The version of these routines supplied in the library does
not do anything. If multiple threads of execution canalloc , or if

malloc can be called reentrantly, then you need to define your own versions
of these functions in order to safely lock the memory pool during a call. If you
do not, the memory pool may become corrupted.

A calltomalloc may call_malloc_lock recursively; that is, the sequence

of calls may go_malloc_lock ,__malloc_lock ,__malloc_unlock
__malloc_unlock . Any implementation of these routines must be careful to
avoid causing a thread to wait for a lock that it already holds.

CYGNUS

GNUPro C Library m 25

mmbtowc

mmbtowc
[minimal multibyte to wide char converter]

SYNOPSIS #include <stdlib.h>
int mbtowc(wchar_t * pwe, const char * s, size_t ny;

DESCRIPTION This is a minimal ANSI-conforming implementationrobtowc . The only
“multibyte character sequences” recognized are single bytes, and they are
“converted” to themselves.

Each call tanbtowc copies one character from to* pwe, unless is aNULL
pointer.

In this implementation, the argument,is ignored.

RETURNS This implementation ohbtowc returns0 if s is NULL it returnsi otherwise
(reporting the length of the character “sequence” used).

COMPLIANCE mbtowc is required in the ANSI C standard. However, the precise effects vary
with the locale.

mbtowc requires no supporting OS subroutines.

26 m GNUPro C Library GNUPro Toolkit

gsort

qgsort

[sort an array]

SYNOPSIS #include <stdlib.h>

DESCRIPTION

RETURNS

COMPLIANCE

void gsort(void * base, size_t nmemb size_t size
int (* compar)(const void *, const void *));

gsort sorts an array (beginning iase) of nmembobjectssize describes
the size of each element of the array.

You must supply a pointer to a comparison function, using the argument
shown asompar . (This permits sorting objects of unknown properties.)

Define the comparison function to accept two arguments, each a pointer to an
element of the array starting itse . The result of* compar) must be

negative if the first argument is less than the second, zero if the two arguments
match, and positive if the first argument is greater than the second (where
“less than” and “greater than” refer to whatever arbitrary ordering is
appropriate).

The array is sorted in place; that is, whyart returns, the array elements
beginning abase have been reordered.

gsort does not return a result.

gsort meets ANSI standards (without specifying the sorting algorithm).

CYGNUS

GNUPro C Library m 27

rand , srand

rand , srand
[pseudo-random numbers]

SYNOPSIS #include <stdlib.h>
int rand(void);

void srand(unsigned int seed);
int _rand_r(void * reent),
void _srand_r(void * reent , unsigned int seed);

DESCRIPTION rand returns a different integer each time it is called; each integer is chosen
by an algorithm designed to be unpredictable, so that you caangsevhen
you require a random number. The algorithm depends on a static variable
called therandom seegdstarting with a given value of the random seed, and
always producing the same sequence of numbers in successive caits to

You can set the random seed usirand ; it does nothing beyond storing its
argument in the static variable usedréayd . You can exploit this to make the
pseudo-random sequence less predictable, if you wish, by using some other
unpredictable value (often the least significant parts of a time-varying value)
as the random seed before beginning a sequence of aaltsltpor, if you

wish to ensure (for example, while debugging) that successive runs of your
program use the samandomnumbers, you can useand to set the same
random seed at the outset.

_rand_r and_srand_r are reentrant versions @hd andsrand . The
extra argumenteent , is a pointer to a reentrancy structure.

RETURNS rand returns the next pseudo-random integer in sequence; it is a number
betweerd andRAND_MAXinclusive).

srand does not return a result.

COMPLIANCE rand is required by ANSI, but the algorithm for pseudo-random number
generation is not specified; therefore, even if you use the same random seed,
you cannot expect the same sequence of results on two different systems.

rand requires no supporting OS subroutines.

28 m GNUPro C Library GNUPro Toolkit

strtod , strtodf

strtod , strtodf

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[string to double or float]

#include <stdlib.h>

double strtod(const char * str , char ** tail);
float strtodf(const char * str , char ** tail);
double _strtod_r(void * reent , const char * str ,

char ** tail);

The functionstrtod , parses the character strikg, , producing a substring
which can be converted to a double value. The converted substring is the
longest initial subsequence @f , beginning with the first non-whitespace
character, and it has the following format.

[+]-] digits [] digits][(e|E)[+|] digits]
The substring contains no characterarif is empty, if it consists entirely of
whitespace, or if the first non-whitespace character is something othet, than
-, ., oradigit. If the substring is empty, no conversion is done, and the value
of str is stored inftail . Otherwise, the substring is converted, and a pointer
to the final string (which will contain at least the terminating null character of
str) is stored ir¥ tail . If you want no assignment taai , pass a null
pointer agail . strtodf is identical tostrtod except for its return type.
This implementation returns the nearest machine number to the input decimal
string. Ties are broken by using the IEEE round-even rule. The alternate
function,_strtod_r , is a reentrant version. The extra argumesetyt , is a
pointer to a reentrancy structure.

strtod returns the converted substring value, if any. If no conversion could
be performed, 0 is returned. If the correct value is out of the range of
representative values, plus or mirHISGE_VALs returned, anB8RANGHS

stored inerrno . If the correct value would cause underflows returned and
ERANGHS stored irerrno .

Supporting OS subroutines requiretbse , fstat ,isatty ,lIseek ,read ,
sbrk , write

CYGNUS

GNUPro C Library = 29

strtol

strtol
[string to long]

SYNOPSIS #include <stdlib.h>
long strtol(const char * s, char ** ptr ,int base);

long _strtol_r(void * reent , const char * s,
char ** ptr , int base);

DESCRIPTION The functiongstrtol , converts the string,s, to along . First, it breaks
down the string into three parts: leading whitespace, which is ignored; a
subject string consisting of characters resembling an integer in the radix
specified bypase ; and a trailing portion consisting of zero or more
unparseable characters, and always including the terminating null character.
Then, it attempts to convert the subject string intmg and returns the
result.

If the value ofbase is 0, the subject string is expected to look like a normal C
integer constant: an optional sign, a possilsléndicating a hexadecimal

base, and a number.dfse is between 2 and 36, the expected form of the
subject is a sequence of letters and digits representing an integer in the radix
specified bypase , with an optional plus or minus sign. The letters; (or,
equivalently A-Z) are used to signify values from 10 to 35; only letters whose
ascribed values are less thae are permitted. lbase is 16, a leadingx is
permitted.

The subject sequence is the longest initial sequence of the input string that has
the expected form, starting with the first non-whitespace character. If the
string is empty or consists entirely of whitespace, or if the first
non-whitespace character is not a permissible letter or digit, the subject string
is empty.

If the subject string is acceptable, and the valumef is zero strtol

attempts to determine the radix from the input string. A string with a leading
ox is treated as a hexadecimal value; a string with a led@diaigd nox is

treated as octal; all other strings are treated as decimakelfis between 2

and 36, it is used as the conversion radix, as described in the previous
paragraphs. If the subject string begins with a minus sign, the value is
negated. Finally, a pointer to the first character past the converted subject
string is stored imptr , if ptr is NOINULL

If the subject string is empty (or not in acceptable form), no conversion is
performed and the value sfis stored irptr (if ptr is NOtNULL).

The alternate functionstrtol r , IS a reentrant version. The extra

30 = GNUPro C Library GNUPro Toolkit

strtol

argumentyeent , isa pointer to a reentrancy structure.

RETURNS strtol returns the converted value, if any. If no conversion was ndade,
returned.
strtol returnsLONG_MAXr LONG_MINif the magnitude of the converted
value is too large, and setsno to ERANGE
COMPLIANCE strtol is ANSI.
No supporting OS subroutines are required.
CYGNUS GNUPro C Library = 31

strtoul

strtoul

[string to unsigned long]

SYNOPSIS #include <stdlib.h>

DESCRIPTION

unsigned long strtoul(const char * S,
char** ptr ,int base);

unsigned long _strtoul_r(void * reent , const char * S,
char ** ptr ,int base);

The functionstrtoul , converts the string,s, to anunsigned long . First,

it breaks down the string into three parts: leading whitespace, which is
ignored; a subject string consisting of the digits meaningful in the radix
specified bypase (for examplep through? if the value ofvase is 8); and a
trailing portion consisting of one or more unparseable characters, which
always includes the terminating null character. Then, it attempts to convert
the subject string into an unsigned long integer, and returns the result.

If the value ofvase is zero, the subject string is expected to look like a

normal C integer constant (save that no optional sign is permitted): a possible
0x, indicating hexadecimal radix, and a numbebale is between 2 and 36,

the expected form of the subject is a sequence of digits (which may include
letters, depending awase) representing an integer in the radix specified by
base . The lettersa—z (or A-Z), are used as digits valued from 10 to 35. If

base is 16, a leadin@x is permitted.

The subject sequence is the longest initial sequence of the input string that has
the expected form, starting with the first non-whitespace character. If the
string is empty or consists entirely of whitespace, or if the first non-
whitespace character is not a permissible digit, the subject string is empty.

If the subject string is acceptable, and the valugagd is zero strtoul

attempts to determine the radix from the input string. A string with a leading
Ox is treated as a hexadecimal value; a string with a le@damgl nox is

treated as octal; all other strings are treated as decinsabelfis between 2

and 36, it is used as the conversion radix, as described in the previous
paragraphs. Finally, a pointer to the first character past the converted subject
string is stored imptr , if ptr is NOINULL

If the subject string is empty (that is*i§ does not start with a substring in
acceptable form), no conversion is performed and the valsiés$tored in

ptr (if ptr is notNULL).

The alternate functionstrtoul_r , is a reentrant version. The extra
argumentyeent , is a pointer to a reentrancy structure.

32 m GNUPro C Library GNUPro Toolkit

strtoul

RETURNS strtoul returns the converted value, if any. If no conversion was noade,
returned.

strtoul returnsULONG_MAXf the magnitude of the converted value is too
large, and setsrrno to ERANGE

COMPLIANCE strtoul is ANSI.
strtoul requires no supporting OS subroutines.

CYGNUS GNUPro C Library m 33

system

system
[execute command string]

SYNOPSIS #include <stdlib.h>
int system(char * s);

int _system_r(void * reent ,char*),

DESCRIPTION Usesystem to pass a command strings, to/bin/sh on your system, and
wait for it to finish executing. Ussystem(NULL) to test whether your
system hagbin/sh available.

The alternate functionsystem _r , is a reentrant version. The extra
argumentyeent , is a pointer to a reentrancy structure.

RETURNS system(NULL) returns a non-zero value/ifin/sh is available, and if it
is not. With a command argument, the resultlyafem is the exit status
returned bybin/sh

COMPLIANCE ANSI C requiresystem , but leaves the nature and effects of a command
processor undefined. ANSI C does, however, specifysiisam(NULL)
return zero or nonzero to report on the existence of a command processor.
POSIX.2 requiresystem , and requires that it invokesa. Wheresh is
found is left unspecified.

Supporting OS subroutines requiredxit , _execve , _fork r , _wait_r

34 m GNUPro C Library GNUPro Toolkit

wctomb

wctomb
[minimal wide char to multibyte converter]
SYNOPSIS #include <stdlib.h>
int wctomb(char * s, wchar_t wchar);

DESCRIPTION This is a minimal ANSI-conforming implementationwdtomb . The only
“wide characters” recognized are single bytes, and they are “converted” to
themselves.

Each call tavctomb copies the charactewchar, to* s, unlesss is a null
pointer.

RETURNS This implementation ofictomb returns0 if s is NULL; it returnsl otherwise
(reporting the length of the characsequencgenerated).

COMPLIANCE wctomb is required in the ANSI C standard. However, the precise effects vary
with the locale.
wctomb requires no supporting OS subroutines.

CYGNUS GNUPro C Library m 35

wctomb

36 m GNUPro C Library GNUPro Toolkit

Character T ype Macros
and Functions (ctype.h)

The following documentation groups macros (which are also available as subroutines)
that classify characters into several categories (alphabetic, numeric, control
characters, whitespace, and so on), or perform simple character mappings. The header
file, ctype.h , defines the macros.

« ‘“isalnum” on page 38
« ‘“isalpha” on page 39
« ‘“isascii” on page 40
« ‘“iscntrl” on page 41

« ‘“isdigit” on page 42

« ‘“islower” on page 43
« ‘“isprint, isgraph” on page 44
« ‘“ispunct” on page 45
« ‘“isspace” on page 46
« ‘“isupper” on page 47
« ‘“isxdigit” on page 48
« “toascii” on page 49
« “tolower” on page 50
« “toupper” on page 51

CYGNUS

GNUPro Libraries m 37

isalnum

Isalnum

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[alphanumeric character predicate]

#include <ctype.h>
int isalnum(int c);

isalnum is @ macro which classifies ASCII integer values by table lookup. It
is a predicate returning non-zero for alphabetic or numeric ASCII characters,
and O for other arguments. It is defined for all integer values.

You can use a compiled subroutine instead of the macro definition by
undefining the macro usingindef isalnum

isalnum returns non-zero i is a letter §— or A-z) or a digit 0—9).

isalnum is ANSI C.
No OS subroutines are required.

38 m GNUPro Libraries GNUPro Toolkit

isalpha

isalpha
[alphabetic character predicate]

SYNOPSIS #include <ctype.h>
int isalpha(int c);

DESCRIPTION isalpha is a macro which classifies ASCII integer values by table lookup. It
is a predicate returning non-zero wherepresents an alphabetic ASCII
character, and 0 otherwise. It is defined only wik&stii(¢) is true orc is
EOF

You can use a compiled subroutine instead of the macro definition by
undefining the macro usingindef isalpha

RETURNS isalpha returns non-zero i is a letter 4~z ora—z).

COMPLIANCE isalpha is ANSI C.
No supporting OS subroutines are required.

CYGNUS GNUPro Libraries m 39

isascii

Isascii
[ASCII character predicate]

SYNOPSIS #include <ctype.h>
int isascii(int c);
DESCRIPTION isascii is a macro which returns non-zero whers an ASCII character,
and 0 otherwise. It is defined for all integer values.
You can use a compiled subroutine instead of the macro definition by
undefining the macro usingindef isascii

RETURNS isascii returns non-zero if the low order bytecis in the range 0 to 127
(0x00 -0x7F).

COMPLIANCE isascii is ANSI C.
No supporting OS subroutines are required.

40 m GNUPro Libraries GNUPro Toolkit

iscntrl

iscntrl
[control character predicate]

SYNOPSIS #include <ctype.h>
int iscntrl(int c);

DESCRIPTION iscntrl is a macro which classifies ASCII integer values by table lookup. It
is a predicate returning non-zero for control charactersp &mdother
characters. It is defined only wh&asci(¢) is true orc is EOF

You can use a compiled subroutine instead of the macro definition by
undefining the macro usingindef iscntrl

RETURNS iscntrl returns non-zero i is a delete character or ordinary control
characterdx7F or 0x00 -Ox1F).

COMPLIANCE iscntrl is ANSI C.
No supporting OS subroutines are required.

CYGNUS GNUPro Libraries m 41

isdigit

isdigit
[decimal digit predicate]
SYNOPSIS #include <ctype.h>
int isdigit(int c);

DESCRIPTION isdigit is a macro which classifies ASCII integer values by table lookup. It
is a predicate returning non-zero for decimal digits, and O for other characters.
It is defined only whelsascii(¢) is true orc is EOF

You can use a compiled subroutine instead of the macro definition by
undefining the macro usingindef isdigit

RETURNS isdigit ~ returns non-zero if is a decimal digitq—9).

COMPLIANCE isdigit is ANSI C.
No supporting OS subroutines are required.

42 m GNUPro Libraries GNUPro Toolkit

islower

islower
[lower-case character predicate]

SYNOPSIS #include <ctype.h>
int islower(int c);

DESCRIPTION islower is a macro which classifies ASCII integer values by table lookup. It
is a predicate returning non-zero for minuscules (lower-case alphabetic
characters), ana for other characters. It is defined only whesci(c¢) is
true orc is EOF

You can use a compiled subroutine instead of the macro definition by
undefining the macro usingindef islower

RETURNS islower returns non-zero if is a lower case lettes{z).

COMPLIANCE islower is ANSI C.
No supporting OS subroutines are required.

CYGNUS GNUPro Libraries m 43

isprint , isgraph

Isprint , isgraph

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[printable character predicates]

#include <ctype.h>
int isprint(int c);
int isgraph(int c);

isprint IS @ macro which classifies ASCII integer values by table lookup. It
is a predicate returning non-zero for printable characters) &rdother
character arguments. It is defined only wivascii(¢) is true orc is EOF

You can use a compiled subroutine instead of the macro definition by
undefining either macro usingndef isprint or #undef isgraph

isprint returns non-zero if is a printing characterpx20 -0x7E). isgraph
behaves identically teprint , except that the space charactzeq) is
excluded.

isprint andisgraph are ANSI C.
No supporting OS subroutines are required.

44 m GNUPro Libraries GNUPro Toolkit

ispunct

Ispunct

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[punctuation character predicate]

#include <ctype.h>
int ispunct(int c);

ispunct is @ macro which classifies ASCII integer values by table lookup. It
is a predicate returning non-zero for printable punctuation characters, and
for other characters. It is defined only wheascii(¢) is true orc is EOF

You can use a compiled subroutine instead of the macro definition by
undefining the macro usingindef ispunct

ispunct returns non-zero i is a printable punctuation character
(isgraph(¢) && lisalnum(¢)).

ispunct is ANSI C.
No supporting OS subroutines are required.

CYGNUS

GNUPro Libraries m 45

isspace

ISspace

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[whitespace character predicate]

#include <ctype.h>
int isspace(int c);

isspace IS @ macro which classifies ASCII integer values by table lookup. It
is a predicate returning non-zero for whitespace characters, and 0 for other
characters. It is defined only wh&asci(¢) is true orc is EOF

You can use a compiled subroutine instead of the macro definition by
undefining the macro usingindef isspace

isspace returns non-zero i is a space, tab, carriage return, new line, vertical
tab, or formfeedaxo9 -0x0D, 0x20).

isspace is ANSI C.
No supporting OS subroutines are required.

46 m GNUPro Libraries GNUPro Toolkit

isupper

iIsupper
[uppercase character predicate]
SYNOPSIS #include <ctype.h>
int isupper(int c);

DESCRIPTION isupper is a macro which classifies ASCII integer values by table lookup. It
is a predicate returning non-zero for uppercase lettery @nd O for other
characters. It is defined only wh&asci(¢) is true orc is EOF

You can use a compiled subroutine instead of the macro definition by
undefining the macro usingindef isupper

RETURNS isupper returns non-zero if is a uppercase lettex-¢).

COMPLIANCE isupper is ANSI C.
No supporting OS subroutines are required.

CYGNUS GNUPro Libraries m 47

isxdigit

isxdigit
[hexadecimal digit predicate]
SYNOPSIS #include <ctype.h>
int isxdigit(int c);

DESCRIPTION isxdigit is a macro which classifies ASCII integer values by table lookup. It
is a predicate returning non-zero for hexadecimal digits, and O for other
characters. It is defined only wh&asci(¢) is true orc is EOF

You can use a compiled subroutine instead of the macro definition by
undefining the macro usingindef isxdigit

RETURNS isxdigit ~ returns non-zero if is a hexadecimal digit{9, a-f, or A-F).

COMPLIANCE isxdigit is ANSI C.
No supporting OS subroutines are required.

48 m GNUPro Libraries GNUPro Toolkit

toascii

toascill
[force integers to ASCII range]
SYNOPSIS #include <ctype.h>
int toascii(int c);
DESCRIPTION toascii is a macro which coerces integers to the ASCII range) by
zeroing any higher-order bits.
You can use a compiled subroutine instead of the macro definition by
undefining this macro usingindef toascii
RETURNS toascii returns integers between 0 and 127.
COMPLIANCE toascii is not ANSI C.
No supporting OS subroutines are required.
CYGNUS GNUPro Libraries m 49

tolower

tolower

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[translate characters to lower case]

#include <ctype.h>
int tolower(int c);
int _tolower(int c);

tolower IS @ macro which converts uppercase characters to lower case,
leaving all other characters unchanged. It is only defined wlean integer
in the rangeEOFto 255.

You can use a compiled subroutine instead of the macro definition by
undefining this macro usingindef tolower

_tolower performs the same conversion@sver , but should only be used
whenc is known to be an uppercase character),

tolower returns the lowercase equivalentcafhen it is a character between
A andz, andc, otherwise.

_tolower returns the lowercase equivalentafhen it is a character between
A andz. If ¢ is not one of these characters, the behaviotowiver is
undefined.

tolower iS ANSI C._tolower is not recommended for portable programs.
No supporting OS subroutines are required.

50 m GNUPro Libraries GNUPro Toolkit

toupper

toupper
[translate characters to upper case]
SYNOPSIS #include <ctype.h>

int toupper(int c);
int _toupper(int c);

DESCRIPTION toupper is a macro which converts lower-case characters to upper case,
leaving all other characters unchanged. It is only defined wlean integer
in the rangeEOFto 255.
You can use a compiled subroutine instead of the macro definition by
undefining this macro usingindef toupper
_toupper performs the same conversionasper , but should only be used
whenc is known to be a lowercase character).

RETURNS toupper returns the uppercase equivalent e@fhen it is a character between

a andz, andc, otherwise.
_toupper returns the uppercase equivalent @fhen it is a character between
a andz. If ¢ is not one of these characters, the behaviotoofpper is
undefined.

COMPLIANCE toupper is ANSI C._toupper is not recommended for portable programs.
No supporting OS subroutines are required.

CYGNUS GNUPro Libraries m 51

toupper

52 m GNUPro Libraries GNUPro Toolkit

Input and Output (stdio.h)

The following documentation comprises those functions that manage files or other
input/output streams. Among these functions are subroutines to generate or scan
strings according to specifications from a format string.

« ‘“clearerr” on page 55
« “fclose” on page 56
« “fdopen” on page 57
« “feof’ on page 58

« “ferror” on page 59

« “fflush” on page 60

« “fgetc” on page 61

« “fgetpos” on page 62
« “fgets” on page 63

« “fiprintf” on page 64
« “fopen”on page 65

« “fputc” on page 67

« “fputs” on page 68

« “fread” on page 69

« “freopen” on page 70

CYGNUS

GNUPro Libraries m 53

« “fseek” on page 71

« “ftell” on page 73

« “fwrite” on page 74

=« “getc” on page 75

« ‘“getchar’ on page 76

« “gets” on page 77

« Ciprintf” on page 78

« “mktemp, mkstemp” on page 79

« “perror’ on page 80

« “printf, fprintf, sprintf” on page 81

« “putc’ on page 86

« ‘“putchar’ on page 87

« “puts” on page 88

« “remove” on page 89

« “rename” on page 90

« ‘“rewind” on page 91

« “scanf, fscanf, sscanf’ on page 92

« ‘“setbuf’ on page 97

« ‘“setvbuf’ on page 98

« “siprintf” on page 99

« “tmpfile” on page 100

« “tmpnam, tempnam” on page 101

« C‘vprintf, viprintf, vsprintf” on page 103
The underlying facilities for input and output depend on the host system, but these
functions provide a uniform interface.
The corresponding declarations aretifio.h

The reentrant versions of these functions use the following macros.
_stdin_r(reent)
_stdout_r(reent)
_stderr_r(reent)

These reentrant versions are used instead of the glefaals, stdout , andstderr
The argumentieent , is a pointer to a reentrancy structure.

54 m GNUPro Libraries GNUPro Toolkit

clearerr

clearerr
[clear file or stream error indicator]
SYNOPSIS #include <stdio.h>
void clearerr(FILE * fp);

DESCRIPTION Thestdio functions maintain an error indicator with each file poinger,to
record whether any read or write errors have occurred on the associated file or
stream. Similarly, it maintains an end-of-fileop) indicator to record whether
there is no more data in the file. Usearerr to reset both of these
indicators. Seerror andfeof to query the two indicators.

RETURNS clearerr does not return a result.

COMPLIANCE ANSI C requireglearerr
No supporting OS subroutines are required.

CYGNUS GNUPro Libraries m 55

fclose

fclose
[close a file]

SYNOPSIS #include <stdio.h>
int fclose(FILE * fp);

DESCRIPTION If the file or stream identified bfp is openjfclose closes it, after first
ensuring that any pending data is written (by caltingh(fo)).

RETURNS fclose returns if successful (including whef isNULLor not an open file);
otherwise, it returngoF

COMPLIANCE fclose is required by ANSI C.
Required OS subroutinesose |, fstat , isatty , Iseek , read , sbrk , write

56 m GNUPro Libraries GNUPro Toolkit

fdopen

fdopen

[turn open file into a stream]

SYNOPSIS #include <stdio.h>
FILE *fdopen(int fd , const char * mode);
FILE *_fdopen_r(void * reent , int fd , const char * mode);
DESCRIPTION fdopen produces a file descriptor of tygaLE * , from a descriptor for an
already-open file (returned, for example, by the system subrouisie,
rather than byopen). Themode argument has the same meanings apén .
RETURNS File pointer omULL, as forfopen .
COMPLIANCE fdopen is ANSI.
CYGNUS GNUPro Libraries m 57

feof

feof
[test for end of file]

SYNOPSIS #include <stdio.h>
int feof(FILE * fp);

DESCRIPTION feof tests whether or not the end of the file identifiedyhas been
reached.

RETURNS feof returnso if the end of file has not yet been reached; if at end of file, the
result is nonzero.

COMPLIANCE feof is required by ANSI C.
No supporting OS subroutines are required.

58 m GNUPro Libraries GNUPro Toolkit

ferror

ferror

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[test whether read/write error has occurred]

#include <stdio.h>
int ferror(FILE * fp);

Thestdio functions maintain an error indicator with each file poinger,to
record whether any read or write errors have occurred on the associated file or
stream. Useerror to query this indicator.

Seeclearerr to reset the error indicator.

ferror returnso if no errors have occurred; it returns a nonzero value
otherwise.

ANSI C requiresSerror
No supporting OS subroutines are required.

CYGNUS

GNUPro Libraries m 59

fflush

fflush
[flush buffered file output]

SYNOPSIS #include <stdio.h>
int filush(FILE * fp);

DESCRIPTION Thestdio output functions can buffer output before delivering it to the host
system, in order to minimize the overhead of system callsffiulge to
deliver any such pending output (for the file or stream identifie@ byo the
host system. Ifp iSNULL, flush delivers pending output from all open files.

RETURNS fflush returnso unless it encounters a write error; in that situation, it returns
EOF

COMPLIANCE ANSI C requiresflush
No supporting OS subroutines are required.

60 m GNUPro Libraries GNUPro Toolkit

fgetc

fgetc

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[get a character from a file or stream]

#include <stdio.h>
int fgetc(FILE * fp);

Usefgetc to get the next single character from the file or stream identified by
fo . As a side effectgetc advances the file’s current position indicator.

For a macro version of this function, see “getc” on page 75.

The next character (read @signed char , and cast tint) is returned,

unless there is no more data, or the host system reports a read error; in either
of these situationggetc returnseor

You can distinguish the two situations that causea#result by using the

ferror andfeof functions.

ANSI C requiresgetc .
Supporting OS subroutines requiredse , fstat , isatty , Iseek , read ,
sbrk , write

CYGNUS

GNUPro Libraries m 61

fgetpos

fgetpos
[record position in a stream or file]

SYNOPSIS #include <stdio.h>
int fgetpos(FILE * fo , fpos_t* pos);

DESCRIPTION Objects of typeFILE , can have @ositionthat records how much of the file
your program has already read. Many ofdld® functions depend on this
position, and many change it as a side effect.

You can uségetpos to report on the current position for a file identified by
fp ; fgetpos will write a value representing that position gbs. Later, you
can use this value witketpos to return the file to this position.

In the current implementatiofgetpos simply uses a character count to

represent the file position; this is the same number that would be returned by
ftell

RETURNS fgetpos returnso when successful. tfetpos fails, the result is. Failure
occurs on streams that do not support positioning; the gebal, , indicates
this condition with the valu&SsPIPE.

COMPLIANCE fgetpos is required by ANSI C, but the meaning of the value it records is not
specified beyond requiring that it be acceptable as an arguntestpde

In particular, other conforming C implementations may return a different
result fromftell than whatgetpos writes at* pos.

No supporting OS subroutines are required.

62 m GNUPro Libraries GNUPro Toolkit

fgets

fgets

SYNOPSIS

DESCRIPTION
RETURNS

COMPLIANCE

[get character string from a file or stream]

#include <stdio.h>
char *fgets(char * buf ,int n, FILE * fp);

fgets reads at most-1 characters fronp until a newline is found. The
characters including to the newline are storeshin The buffer is terminated
with ao.

fgets returns the buffer passed to it, with the data filled in. If end ofefibe)(
occurs with some data already accumulated, the data is returned with no other
indication. If no data are readyLL is returned instead.

fgets should replace all uses gdts . Note however thagets returns all of
the data, whilgets removes the trailing newline (with no indication that it
has done so.)

Supporting OS subroutines requiredse , fstat , isatty , Iseek , read ,

sbrk , write

CYGNUS

GNUPro Libraries m 63

fiprintf

fiprintf

SYNOPSIS

DESCRIPTION
RETURNS

COMPLIANCE

[format output to file (integer only)]

#include <stdio.h>
int fiprintf(FILE * fd , const char * format , ..);

fiprintf is a restricted version gfrintt it has the same arguments and
behavior, save that it cannot perform any floating-point formatting-+the
g-, G, e-, andr-type specifiers are not recognized.

fiprintf returns the number of bytes in the output string, save that the
concludingNULL is not countediprintf returns when the end of the format
string is encountered. If an error occuisintf returnseor

fiprintf is not required by ANSI C.

Supporting OS subroutines requiredse , fstat , isatty , Iseek , read ,
sbrk , write

64 m GNUPro Libraries GNUPro Toolkit

fopen

fopen

SYNOPSIS #include <stdio.h>

DESCRIPTION

[open a file]
FILE *fopen(const char * file , const char * mode);
FILE *_fopen_r(void * reent , const char * file

const char * mode);

fopen initializes the data structures needed to read or write a file. Specify the
file’s name as the string @ , and the kind of access you need to the file
with the string atnode.
The alternate functionjfopen_r , is a reentrant version. The extra argument,
reent , iS a pointer to a reentrancy structure.
Three fundamental kinds of access are availabbd write, andappend
* mode must begin with one of the three characters, ora, in order to select
any of the modes. The following documentation describes the access.
] r
Open the file foreading the operation will fail if the file does not
exist, or if the host system does not permit you to read it.
n w
Open the file fomriting from the beginningf the file: effectively, this
always creates a new file. If the file whose name you specified already
existed, its old contents are discarded.
n a
Open the file fomppendingdata, such as writing from the end of file.
When you open a file this way, all data always goes to the current end
of file; you cannot change this usifsgek .
Some host systems distinguish betwbgrary andtextfiles. Such systems
may perform data transformations on data written to, or read from, files
opened agext If your system is one of these, then you can appéntb any
of the three modes, to specify that you are opening the file as a binary file (the
default is to open the file as a text file).
rb , then, meaneead binary wb, write binary, ab, append binary
To make C programs more portable, ithie accepted on all systems, whether
or not it makes a difference.
Finally, you might need to both read and write from the same file. You can
also append + to any of the three modes, to permit this. (If you want to
append botlvy and+, you can do it in either order: for example; means
the same thing asb when used as a mode string.)
User+ (orrb+) to permit reading and writing anywhere in an existing file,

CYGNUS

GNUPro Libraries m 65

fopen

without discarding any data:+ (or wb+) to create a new file (or begin by
discarding all data from an old one) that permits reading and writing
anywhere in it; and+ (orab+) to permit reading anywhere in an existing file,
but writing only at the end.

RETURNS fopen returns a file pointer which you can use for other file operations,
unless the file you requested could not be opened; in that situation, the result
is NULL If the reason for failure was an invalid stringmatie, errno is set to
EINVAL.

COMPLIANCE fopen is required by ANSI C.

Supporting OS subroutines requiredse , fstat , isatty , Iseek , open,
read , sbrk , write

66 m GNUPro Libraries GNUPro Toolkit

fputc

fputc

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[write a character on a stream or file]

#include <stdio.h>
int fputc(int ch,FILE* fp);

foutc converts the argument;, from anint to anunsigned char , then
writes it to the file or stream identified lay.

If the file was opened with append mode (or if the stream cannot support
positioning), then the new character goes at the end of the file or stream.
Otherwise, the new character is written at the current value of the position
indicator, and the position indicator advances by one.

For a macro version of this function, see “putc” on page 86.

If successfulfputc returns its argumentp. If an error intervenes, the result
iS EOF You can useerror(fp) to query for errors.

fputc is required by ANSI C.

Supporting OS subroutines requiredse , fstat , isatty , Iseek , read ,
sbrk , write

CYGNUS

GNUPro Libraries m 67

fputs

fputs
[write a character string in a file or stream]

SYNOPSIS #include <stdio.h>
int fputs(const char * s,FILE* fp);

DESCRIPTION fputs writes the string at (but without the trailinguuLL) to the file or stream
identified byfp .

RETURNS If successful, the result is otherwise, the result BOE

COMPLIANCE ANSI C requiresputs , but does not specify that the result on success must
beo; any non-negative value is permitted.

Supporting OS subroutines requiredse , fstat , isatty , Iseek , read ,
sbrk , write

68 m GNUPro Libraries GNUPro Toolkit

fread

fread
[read array elements from a file]
SYNOPSIS #include <stdio.h>
size_t fread(void *buf, size_t size , size_t count ,
FILE* fp);
DESCRIPTION fread attempts to copy, from the file or stream identifiedibycount
elements (each of sizeize) into memory, starting atf . fread may copy
fewer elements thatount if an error, or end of fileHOR, intervenes.
fread also advances the file position indicator (if any)ffoiby the number
of charactersactually read.
RETURNS The result ofread is the number of elements it succeeded in reading.
COMPLIANC ANSI C requiresread .
E Supporting OS subroutines requiredse , fstat ,isatty , Iseek ,read ,
sbrk , write
CYGNUS GNUPro Libraries m 69

freopen

freopen

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[open a file using an existing file descriptor]

#include <stdio.h>
FILE *freopen(const char * file , const char * mode,
FILE* fp);

Usefreopen , a variant ofopen , if you wish to specify a particular file
descriptorp (notablystdin , stdout , orstderr), for the file.

If o was associated with another file or streawapen closes that other file
or stream (but ignores any errors while closing it).

file andmode are used just as fopen .

If successful, the result is the same as the argumenf,the file cannot be
opened as specified, the resullig L

ANSI C requireSreopen .

Supporting OS subroutines requiredse , fstat , isatty , Iseek , open,
read , sbrk , write

70 m GNUPro Libraries GNUPro Toolkit

fseek

fseek

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[set file position]

#include <stdio.h>
int fseek(FILE * fo , long offset ,int whence)

Objects of typeriLE , can have positionthat records how much of the file
your program has already read. Many ofdld® functions depend on this
position, and many change it as a side effect. You cafsdge to set the
position for the file identified byp .

The value obffset determines the new position, in one of three ways,
selected by the value efence (defined as macros bwdio.h).

» SEEK_SETF—offset is the absolute file position (an offset from the
beginning of the file) desiredffset must be positive.

» SEEK_CUR-offset is relative to the current file positiooffset can
meaningfully be either positive or negative.

» SEEK _ENB—offset is relative to the current end of fileffset can
meaningfully be either positive (to increase the size of the file) or
negative.

See“ftell” on page 73 to determine the current file position.

fseek returnso when successful. tfeek fails, the result i€EOF The reason
for failure is indicated irrmo : eitherESPIPE (the stream identified b
doesn’t support repositioning) BmVvAL (invalid file position).

ANSI C requireSseek .

Supporting OS subroutines requiredse , fstat , isatty , Iseek , read ,
sbrk , write

CYGNUS

GNUPro Libraries m 71

fseek

fsetpos
[restore position of a stream or file]

SYNOPSIS #include <stdio.h>
int fsetpos(FILE * fp , const fpos_t * pos);

DESCRIPTION Obijects of typeFILE , can have @ositionthat records how much of the file
your program has already read. Many ofdfd® functions depend on this
position, and many change it as a side effect.

You can usésetpos to return the file identified bfp to a previous position
*pos (after first recording it withigetpos).
See “fseek” on page 71 for a similar facility.

RETURNS fgetpos returnso when successful. tfetpos fails, the result ig. The
reason for failure is indicated émrno : eitherespIPE (the stream identified
by fo doesn’t support repositioning) BINVAL (invalid file position).

COMPLIANCE ANSI C requiressetpos , but does not specify the naturepbs beyond
identifying it as written bygetpos
Supporting OS subroutines requiredse , fstat , isatty , Iseek , read ,
sbrk , write .

72 m GNUPro Libraries GNUPro Toolkit

ftell

ftell

[return position in a stream or file]

SYNOPSIS #include <stdio.h>

DESCRIPTION

RETURNS

COMPLIANCE

long ftell(FILE * o),

Objects of typeriLE , can have positionthat records how much of the file

your program has already read. Many ofdld® functions depend on this
position, and many change it as a side effect.

The result oftell is the current position for a file identified by. If you

record this result, you can later use it widek to return the file to this

position.

In the current implementatiofigll simply uses a character count to

represent the file position; this is the same number that would be recorded by
fgetpos

ftell returns the file position, if possible. If it cannot do this, it returns
Failure occurs on streams that do not support positioning; the giahal,,
indicates this condition with the valuesPIPE.

ftell is required by the ANSI C standard, but the meaning of its result (when
successful) is not specified beyond requiring that it be acceptable as an
argument taseek . In particular, other conforming C implementations may
return a different result fromell than whatgetpos records.

No supporting OS subroutines are required.

CYGNUS

GNUPro Libraries m 73

fwrite

fwrite
[write array elements]

SYNOPSIS #inc | ude <stdio.h>
size _t fwrite(const v oid* buf, size_t size size_t count ,
FILE* fp);

DESCRIPTION fwri te attemptgo copy starting from the meony location,buf , count
elements (each of size, size) into the file or stream identified by . fwrite
may copy fewer elements tharvount if an error intervenes.
fwri te al® advances the file position indicatar (if any) for fp by the number
of characters acually written.

RETURNS If fwrite succeedsin writing al the elements/ou specify, the resilt isthe
same aslhe agument, count . In any event, the result is the number of
complete elements thatvrite copied o thefil e.

COMPLIANCE ANSI C requireswrite

Supporting OSsubroutines regired: close , fsta t, isatty ,Isee k, read ,
sbrk , write

74 m GNUPro Libraries GNUPro Toolkit

getc

getc

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[read a character (macro)]

#include <stdio.h>
int getc(FILE * fp);

getc is a macro, defined itdio.h . You can usgetc to get the next single
character from the file or stream identified by As a side effecietc
advances the file’s current position indicator.

For a subroutine version of this macro, see “fgetc” on page 61.

The next character (read @signed char , and cast tit), unless there is
no more data, or the host system reports a read error; in either of these
situationsgetc returnsEOFR

You can distinguish the two situations that causea#result by using the
ferror andfeof functions.

ANSI C requiregetc ; it suggests, but does not require, dwat be
implemented as a macro. The standard explicitly permits macro
implementations ofetc to use the argument more than once; therefore, in a
portable program, you should not use an expression with side effects as the
getc argument.

Supporting OS subroutines requiredse , fstat , isatty , Iseek , read ,
sbrk , write

CYGNUS

GNUPro Libraries m 75

getchar

getchar

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[read a character (macro)]

#include <stdio.h>
int getchar(void);

int _getchar_r(void * reent);

getchar is a macro, defined idio.h . You can us@etchar to get the next
single character from the standard input stream. As a side gtfeatr
advances the standard input’s current position indicator.

The alternate functiongetchar r , is a reentrant version. The extra
argumentyeent , is a pointer to a reentrancy structure.

The next character (read asuahigned char , and cast tint), unless there
is no more data, or the host system reports a read error; in either of these
situationsgetchar returnsEoOr

You can distinguish the two situations that causea#result by using
ferror(stdin) andfeof(stdin)

ANSI C requiregetchar ; it suggests, but does not require, deathar be
implemented as a macro.

Supporting OS subroutines requiredse , fstat , isatty , Iseek , read ,
sbrk , write

76 m GNUPro Libraries GNUPro Toolkit

gets

gets

SYNOPSIS

DESCRIPTION

WARNING!

RETURNS

COMPLIANCE

[get character string] (obsolete, dgets instead)]

#include <stdio.h>
char *gets(char * buf);

char *_gets_r(void * reent ,char* buf);

gets reads characters from standard input until a newline is found. The
characters up to the newline are storebuin The newline is discarded, and
the buffer is terminated with@

The alternate functiongets_r , is a reentrant version. The extra argument,
reent , is a pointer to a reentrancy structure.

This is adangerousfunction, as it has no way of checking the amount of

space available inuf . One of the attacks used by the Internet Worm of 1988
used this function to overrun a buffer allocated on the stack of the finger
daemon and overwrite the return address, causing the daemon to execute code
downloaded into it over the connection.

gets returns the buffer passed to it, with the data filled in. If end of gfite)(
occurs with some data already accumulated, the data is returned with no other
indication. IfEOFoccurs with no data in the buffeérJLLis returned.

Supporting OS subroutines requiredse , fstat , isatty , Iseek , read ,
sbrk , write

CYGNUS

GNUPro Libraries m 77

iprintf

iprintf

SYNOPSIS

DESCRIPTION
RETURNS

COMPLIANCE

[write formatted output (integer only)]

#include <stdio.h>
int iprintf(const char * format , ..);

iprintf is a restricted version @fintf : it has the same arguments and
behavior, save that it cannot perform any floating-point formattingf T lge,
G, e- andF-type specifiers are not recognized.

iprintf returns the number of bytes in the output string, save that the
concludingNULL is not countediprintt returns when the end of the format
string is encountered. If an error occlgsntt returnsEOF

iprintt IS not required by ANSI C.

Supporting OS subroutines requiredse , fstat , isatty , Iseek , read ,
sbrk , write

78 m GNUPro Libraries GNUPro Toolkit

mktemp, mkstemp

mktemp, mkstemp
[generate unused file name]

SYNOPSIS #include <stdio.h>
char *mktemp(char * path);
int mkstemp(char * path);

char *_mktemp_r(void * reent ,char* path);
int *_mkstemp_r(void * reent ,char* path);

DESCRIPTION mktemp andmkstemp attempt to generate a file name that is not yet in use for
any existing filemkstemp creates the file and opens it for reading and writing;
mktemp simply generates the file name.

You supply a simple pattern for the generated file name, as the stpang at
The pattern should be a valid flename (including path information if you
wish) ending with some number Xfcharacters. The generated filename will
match the leading part of the name you supply, with the traflingaracters
replaced by some combination of digits and letters.

The alternate functionsmktemp_r and_mkstemp_r , are reentrant versions.
The extra argumenteent , is a pointer to a reentrancy structure.

RETURNS mktemp returns the pointepath , to the modified string representing an
unused filename, unless it could not generate one, or the pattern you provided
is not suitable for a filename; in that case, it retunis.

mkstemp returns a file descriptor to the newly created file, unless it could not
generate an unused filename, or the pattern you provided is not suitable for a
filename; in that case, it returris.

COMPLIANCE ANSI C does not require eithekiemp or mkstemp ; the System V Interface
Definition requiresnktemp as of Issue 2.

Supporting OS subroutines requirgékpid , open, stat .

CYGNUS GNUPro Libraries m 79

perror

perror
[print an error message on standard error]

SYNOPSIS #include <stdio.h>
void perror(char * prefix);

void _perror_r(void * reent ,char* prefix);

DESCRIPTION Useperror to print (on standard error) an error message corresponding to
the current value of the global variabdeno .
Unless you us®ULL as the value of the argumepfefix , the error message
will begin with the string aprefix , followed by a colon and a space ().
The remainder of the error message is one of the strings described for
strerror
The alternate functionperror_r , is a reentrant version. The extra argument,
reent , iS a pointer to a reentrancy structure.

RETURNS perror returns no result.

COMPLIANCE ANSI C requiresperror , but the strings issued vary from one
implementation to another.

Supporting OS subroutines requiredse , fstat , isatty , Iseek , read ,
sbrk , write

80 m GNUPro Libraries GNUPro Toolkit

printf , fprintf , sprintf

printf , fprintf | sprintf
[format output]

SYNOPSIS #include <stdio.h>

int printf(const char * format [, arg, ..]);
int fprintf(FILE * fd , const char * format [, arg,..]);
int sprintf(char * str , const char * format [, arg, ..]);

DESCRIPTION printt accepts a series of arguments, applies to each a format specifier from
* format , and writes the formatted datastadout , terminated with a null
character.

The behavior ofrintt is undefined if there are not enough arguments for the
format.printf returns when it reaches the end of theat string. If there
are more arguments than the format requires, excess arguments are ignored.
forintf andsprintt are identical tprintf , other than the destination of the
formatted outputtprintt sends the output to a specified fite, while
sprintf stores the output in the specifigdr array,str . Forsprintt , the
behavior is also undefined if the output stringlr , overlaps with one of the
argumentstormat is a pointer to a character string containing two types of
objects: ordinary characters (other thgnwhich are copied unchanged to the
output, and conversion specifications, each of which is introduced ('
include%in the output, usevin the format string.)
A conversion specification uses fields in the following form.
AUflags][width][.prec][size][type]
The fields of the conversion specification (represented in the previous
example of a conversion specificationfags , width , . prec , size , and
type) have the following meanings.
= [flags]
flags , an optional sequence of characters, controls output justification,
numeric signs, decimal points, trailing zeroes, and octal and hex
prefixes. The flag characters angnus(-), plus(+), space(), zero
(0), andsharp(#). They can appear in any combination.

With -, theminus sigrflag, the result of the conversion is left
justified, and the right is padded with blanks. If you do not use the
minus sign flag, the result is right justified, and padded on the left.

CYGNUS GNUPro Libraries m 81

printf , fprintf , sprintf

+

With +, theplus signflag, the result of a signed conversion (as
determined by the specification fgpe) will always begin with a
plus or minus sign.

IMPORTANT: If you don’t use this flag, positive values won'’t begin with a plus sign.

space
If the first character of a signed conversion specification is not a sign,
or if a signed conversion results in no characters, the result will begin
with a space. If the space flag and the plus flag both appear, the space
flag is ignored.

0
If the type character is, i, o, u, x, X, e, E, f, g, OrG, leading zeroes
are used to pad the field width (following any indication of sign or
base). If the zer®} and minus flags both appear, the zero flag will be
ignored. Fom, i, o, u, x, andx conversions, iprec is specified, the
zero flag is ignored.

IMPORTANT: Do not use spaces padding. Alsas interpreted as a flag, not as the
beginning of a field width.
#
With #, the result is to be converted to an alternative form, according
to one of the following subsequent characters.

0

Increases precision to force the first digit of the result to be a zero.
X

A non-zero result will have @& prefix.
X

A non-zero result will have @ prefix.
e, Eorf
The result will always contain a decimal point even if no digits
follow the point. (Normally, a decimal point appears only if a digit
follows it.) Trailing zeroes are removed.
gorG
Same as OrE, but trailing zeroes are not removed.
All others
Undefined.
» [width]
width stands for an optional minimum field width. Either specify it
directly as a decimal integer, or indirectly by, instead, using an asterisk
(*), in which case amt argument is used as the field width. Negative

82 m GNUPro Libraries GNUPro Toolkit

printf , fprintf , sprintf

field widths are not supported; if you try to specify a negative field
width, it is interpreted as a minus flag,(followed by a positive field
width.
[-prec]
prec is an optional field; if present, it is introduced with (a period).
This field gives the maximum number of characters to printin a
conversion; the minimum number of digits of an integer to print, for
conversions with types, i , o, u, x, andx; the maximum number of
significant digits, for thg andc conversions; or the number of digits to
print after the decimal point, fef, E, andf conversions. You can
specify the precision either directly as a decimal integer or indirectly by
using an asterisk §, in which case amt argument is used as the
precision. Supplying a negative precision is equivalent to omitting the
precision. If only a period is specified, the precision is zero. If a
precision appears with any other conversion type than the ones
specified in this description, the behavior is undefined.
[size]
h,1, andL are optionabize characters which override the default way
thatprintf interprets the data type of the corresponding argument.
forces the followingi, i , o, u, x or X conversion type to apply to a
short Orunsigned short . h also forces a following type to apply to
a pointer to ahort . Similarly, anl forces the followingi, i , o, u, x or
X conversion type to apply tod@g Orunsignedlong .1 also forces a
following n type to apply to a pointer tolang . If anh or anl appears
with another conversion specifier, the behavior is undefinéatces a
following e, E, f, g or G conversion type to apply tol@ng double
argument. IfL appears with any other conversion type, the behavior is
undefined.
[type]
type specifies what kind of conversigrintt performs. The
following discussion describes the corresponding arguments.
%

Prints the percent character.
C

Printsarg as single character.
S

Prints characters until precision is reached wuiEL terminator is

encountered; takes a string pointer.
D

Prints a signed decimal integer; takesnan (same as).

CYGNUS

GNUPro Libraries m 83

printf , fprintf , sprintf

[
Prints a signed decimal integer; takesnan (same as).

[0}
Prints a signed octal integer; takesran.

u
Prints an unsigned decimal integer; takesan

X
Prints an unsigned hexadecimal integer (ualiegef as digits
beyond 9); takes ant .

X
Prints an unsigned hexadecimal integer (usiBgDEFas digits
beyond 9); takes ant .

f
Prints a signed value of the forf9999.9999 ; takes a floating
point number.

E
Prints a signed value of the forf9.9999¢[+|-1999 ; takes a
floating point number.

E
Prints the same way asbut usinge to introduce the exponent; takes
a floating point number.

G
Prints a signed value in eithielor e form, based on given value and
precision—trailing zeros and the decimal point are printed only if
necessary; takes a floating point number.

G
Prints the same way gsbut usinge for the exponent if an exponent
is needed; takes a floating point number.

N
Stores (in the same object) a count of the characters written; takes a
pointer toint .

p
Prints a pointer in an implementation-defined format. This
implementation treats the pointer asuasigned long (same asu).

RETURNS sprintf returns the number of bytes in the output string, save that the
concludingNULL is not countedprintt andfprintt return the number of
characters transmitted. If an error occuriaff andfprintt returnEor No
error returns occur faprintf

COMPLIANCE The ANSI standard for C specifies that implementations must support

84 m GNUPro Libraries GNUPro Toolkit

printf , fprintf , sprintf

formatted output of up to 509 characters.

Supporting OS subroutines requiredse , fstat , isatty , Iseek , read ,
sbrk , write

)

=
=
©
)
7}
N—r
=
=3
=%
2
S
(@)
ge}
c
@®©
-
>
o
c
™

CYGNUS GNUPro Libraries m 85

putc

putc

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[write a character (macro)]

#include <stdio.h>
int putc(int ch, FILE * fp);

putc is a macro, defined isidio.h . putc writes the argumenth, to the file

or stream identified by , after converting it from aint to anunsigned

char .

If the file was opened with append mode (or if the stream cannot support
positioning), then the new character goes at the end of the file or stream.
Otherwise, the new character is written at the current value of the position
indicator, and the position indicator advances by one.

For a subroutine version of this macro, see “fputc” on page 67.

If successfulputc returns its argumenth. If an error intervenes, the result is
EOF You can useerror(fo) to query for errors.

ANSI C requires byutc ; it suggests, but does not require, fhat be
implemented as a macro. The standard explicitly permits macro
implementations ofutc to use thegp argument more than once; therefore, in

a portable program, you should not use an expression with side effects as this
argument.

Supporting OS subroutines requiredse , fstat , isatty , Iseek , read ,

sbrk , write

86 m GNUPro Libraries GNUPro Toolkit

putchar

putchar
[write a character (macro)]
SYNOPSIS #include <stdio.h>
int putchar(int ch);
int _putchar_r(void * reent , int ch);
DESCRIPTION putchar is a macro, defined igidio.h . putchar writes its argument to the
standard output stream, after converting it fronmanto anunsigned char
The alternate functionputchar_r , is a reentrant version. The extra
argumentyeent , is a pointer to a reentrancy structure.
RETURNS If successfulputchar returns its argumenth. If an error intervenes, the
result iSEOF You can useerror(stdin) to query for errors.
COMPLIANCE ANSI C requiresutchar ; it suggests, but does not require, thathar be
implemented as a macro.
Supporting OS subroutines requiredse , fstat , isatty , Iseek , read ,
sbrk , write
CYGNUS GNUPro Libraries m 87

puts

puts

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[write a character string]

#include <stdio.h>
int puts(const char * s);

int _puts_r(void * reent , const char * s);

puts writes the string at (followed by a newline, instead of the trailiRgLL)

to the standard output stream.

The alternate functionputs_r , is a reentrant version. The extra argument,
reent , iS a pointer to a reentrancy structure.

If successful, the result is a nonnegative integer; otherwise, the re=oit is

ANSI C requiresuts , but does not specify that the result on success must be
0; any non-negative value is permitted.

Supporting OS subroutines requiredse , fstat , isatty , Iseek , read ,

sbrk , write

88 m GNUPro Libraries GNUPro Toolkit

remove

remove

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[delete a file’s name]

#include <stdio.h>
int remove(char * filename);

int _remove_r(void * reent ,char* filename),

Useremove to dissolve the association betwegename (the whole string

at filename) and the file it represents. After callirgnove with a particular
filename , you will no longer be able to open the file by that name.

In this implementation, you may usgnove on an open file without error;
existing file descriptors for the file will continue to access the file’s data until
the program using them closes the file.

The alternate functionyemove_r , is a reentrant version. The extra argument,
reent , iS a pointer to a reentrancy structure.

remove returns O if it succeeds, -1 if it fails.

ANSI C requiresemove , but only specifies that the result on failure be
nonzero. The behavior efmove , when you call it on an open file, may vary
among implementations.

Supporting OS subroutine requireatink

CYGNUS

GNUPro Libraries m 89

rename

rename

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[rename a file]

#include <stdio.h>
int rename(const char * old , const char * new);

int _rename_r(void * reent , const char * old ,
const char * new);

Userename to establish a new name (the whole stringea) for a file now
known by the string adld . After a successful rename, the file is no longer
accessible by the string ait/ .

If rename fails, the file namedold is unaffected. The conditions for failure
depend on the host operating system.

The alternate functionyename_r , is a reentrant version. The extra argument,
reent , iS a pointer to a reentrancy structure.

The result is either 0 (when successful) or -1 (when the file could not be
renamed).

ANSI C requiresename, but only specifies that the result on failure be
nonzero. The effects of using the name of an existing fiteagmay vary
from one implementation to another.

Supporting OS subroutines requir@ek , unlink , Orrename .

90 m GNUPro Libraries GNUPro Toolkit

rewind

rewind
[reinitialize a file or stream]
SYNOPSIS #include <stdio.h>
void rewind(FILE * fp);

DESCRIPTION rewind returns the file position indicator (if any) for the file or stream,
identified byfp , to the beginning of the file. It also clears any error indicator
and flushes any pending output.

RETURNS rewind does not return a result.
COMPLIANCE ANSI C requiresewind .
No supporting OS subroutines are required.
CYGNUS GNUPro Libraries m 91

scanf , fscanf , sscanf

scanf |, fscanf |, sscanf

[scan and format input]

SYNOPSIS #include <stdio.h>

DESCRIPTION

int scanf(const char * format [, arg, ..]);
int fscanf(FILE * fd , const char * format [, arg, ..]);
int sscanf(const char * str , const char * format

[armg,..]);

scanf scans a series of input fields from standard input, one character at a
time. Each field is interpreted according to a format specifier passeghto

in the format string atformat . scanf stores the interpreted input from each
field at the address passed to it as the corresponding argument following
format . You must supply the same number of format specifiers and address
arguments as there are input fields.

There must be sufficient address arguments for the given format specifiers; if
not the results are unpredictable and likely disastrous. Excess address
arguments are merely ignored.

scanf often produces unexpected results if the input diverges from an
expected pattern. Since the combinatiogeaf orfgets followed bysscanf

is safe and easy, that is the preferred way to be certain that a program is
synchronized with input at the end of a line.

fscanf andsscanf are identical tgcanf , other than the source of input:
fscanf reads from a file, angbcanf from a string.

The string at format is a character sequence composed of zero or more
directives. Directives are composed of one or more whitespace characters,
non-whitespace characters, and format specifications.

Whitespace characters are blank (), tah,(or newline \n). Whenscanf
encounters a whitespace character in the format string it will read (but not
store) all consecutive whitespace characters up to the next non-whitespace
character in the input.

Non-whitespace characters are all other ASCII characters except the percent
sign @9. Whenscanf encounters a non-whitespace character in the format
string it will read, but not store a matching non-whitespace character.

Format specifications tedtanf to read and convert characters from the input
field into specific types of values, and store them in the locations specified by
the address arguments. Trailing whitespace is left unread unless explicitly
matched in the format string.

The format specifiers must begin with a percent siggatid use the following
example’s form.

92 m GNUPro Libraries GNUPro Toolkit

scanf , fscanf , sscanf

o J[widthj[size][type]
Each format specification begins with the percent charadterMhe other
fields are described in the following discussions.

]
An optional marker; if present] suppresses interpretation and
assignment of this input field.
[width]
An optional maximum fielgwidth] specifier: a decimal integer, which
controls the maximum number of characters that will be read before
converting the current input field. If the input field has fewer than
[width] charactersscanf reads all the characters in the field, and then
proceeds with the next field and its format specification. If a whitespace
or a non-convertible character occurs befof@dih) character is
read, the characters up to that character are read, converted, and stored.
Thenscanf proceeds to the next format specification.
[size]
h, 1, andL are optionafsize] characters which override the default
way thatscanf interprets the data type of the corresponding argument.
See Table 1 for more details sige characters.

Table 1:size characters

Modifier Type(s)

h d, i, o, u, x Convert input tashort , store in
short object.

h D, 1,0U X, No effect.

e,f,c,s,n,p
I d, i, 0, u, x Convert input tdong , store in

long oObject.

[e, f, g Convert input talouble , store
in adouble object.

I D,1,0U,X, No effect.

c,s,n,p

L d, i, o, u, x Convert toong double , store
in long double

L All others No effect.

[type]
[type] , a character that specifies what kind of conversiant
performs. Usage of thgpe] field is described in the following
discussions.
%

No conversion is done; the percent characteis(stored.

CYGNUS

GNUPro Libraries m 93

scanf , fscanf , sscanf

C

S

Scans one character. Corresponding argunaeat: arg .

Reads a character string into the array supplied. Corresponding
argumentchar arg[] .

[pattern]

d

D

(o]

o

Reads a non-empty character string into memory startisrg at his

area must be large enough to accept the sequence and a terminating
NULL character, which will be added automatically. Corresponding
argumentchar * arg .

A pattern character surrounded by square brackets can be used
instead of thes-type charactempattern is a set of characters which
define a search set of possible characters making ujpdiife-input

field. If the first character in the brackets is a cargtthe search set

is inverted to include all ASCII characters except those between the
brackets. There is also a range facility which you can use as a
shortcut%[0-9] matches all decimal digits. The hyphen must not be
the first or last character in the set. The character prior to the hyphen
must be lexically less than the character after it.

See Table 2 for sonjpattern] examples.
Table 2: [pattern] examples

%[abcd] Matches strings containing onby, b, ¢, andd.

%[abcd] Matches strings containing any characters except
a, b,c, ord.

%[A-DW-Z] Matches strings containing B, C, D, WX, Y, Z.

%[z-a] Matches the charactets,- , anda.

Floating point numbers (for field typesf, g, E, F, or G) must
correspond to the following general form. Objects enclosed in square
brackets are optional, amdd represents decimal, octal, or
hexadecimal digits.

[+/] ddddd[.] ddd [E|e[+]-] ddd]
Reads a decimal integer into the corresponding argument: arg .
Reads a decimal integer into the corresponding argument: arg .

Reads an octal integer into the corresponding argunnent: arg .

Reads an octal integer into the corresponding argunoest* arg .

94 m GNUPro Libraries

GNUPro Toolkit

scanf , fscanf , sscanf

u
Reads an unsigned decimal integer into the corresponding argument:

unsigned int * arg .
U
Reads an unsigned decimal integer into the corresponding argument:
unsigned long * arg .
X, X
Read a hexadecimal integer into the corresponding argument:
int * arg.
e, f,g
Read a floating point number into the corresponding argument;
float * arg .
EF,G
Read a floating point number into the corresponding argument;
double *arg
i
Reads a decimal, octal or hexadecimal integer into the corresponding
argumentint * arg .

|
Reads a decimal, octal or hexadecimal integer into the corresponding

argumentiong * arg .

n
Stores the number of characters read in the corresponding argument:
int * arg.

p
Stores a scanned pointer. ANSI C leaves the de-tails to each
implementation; this implementation treatsexactly the same asJ
Corresponding argumeniid ** arg .

RETURNS scanf returns the number of input fields successfully scanned, converted and

stored; the return value does not include scanned fields which were not stored.
If scanf attempts to read at end-of-file, the return valusos

If no fields were stored, the return value is 0.

scanf might stop scanning a particular field before reaching the normal field
end character, or may terminate entirely.

scanf Stops scanning and storing the current field and moves to the next input
field (if any) in any of the following situations.

The assignment suppressing characteappears after thwin the
format specification; the current input field is scanned but not stored.

CYGNUS

GNUPro Libraries m 95

scanf , fscanf , sscanf

« [width] characters have been readyih] is a width specification, a
positive decimal integer.
« The next character read cannot be converted under the current format
(for example, if & is read when the format is decimal).
« The next character in the input field does not appear in the search set (or
does appear in the inverted search set).
Whenscanf stops scanning the current input field for one of these reasons,
the next character is considered unread and used as the first character of the

following input field, or the first character in a subsequent read operation on
the input.

scanf Wwill terminate under the following circumstances.
« The next character in the input field conflicts with a corresponding
non-whitespace character in the format string.
« The next character in the input fielddsr
« The format string has been exhausted.

When the format string contains a character sequence that is not part of a
format specification, the same character sequence must appear in the input;
scanf Will scan but not store the matched characters. If a conflict occurs, the
first conflicting character remains in the input as if it had never been read.

COMPLIANCE scanf is ANSI C.

Supporting OS subroutines requiredse , fstat , isatty , Iseek , read ,
sbrk , write

96 m GNUPro Libraries GNUPro Toolkit

setbuf

setbuf
[specify full buffering for a file or stream]

SYNOPSIS #include <stdio.h>
void setbuf(FILE * fo ,char* buf);

DESCRIPTION setbuf specifies that output to the file or stream identifieddoghould be
fully buffered. All output for this file will go to a buffer (of sizByFsiz,
specified instdio.h). Output will be passed on to the host system only when
the buffer is full, or when an input operation intervenes.
You may, if you wish, supply your own buffer by passing a pointer to it as the
argumentpuf . It must have sizeUFSIZ. You can also useuLL as the value
of buf , to signal that theetouf function is to allocate the buffer.

WARNING! You may only useetbuf before performing any file operation other than
opening the file. If you supply a non-nullf , you must ensure that the
associated storage continues to be available until you close the stream
identified by#p .

RETURNS setbuf does not return a result.

COMPLIANCE Both ANSI C and the System V Interface Definition (Issue 2) reguibef .
However, they differ on the meaning oReaLL buffer pointer: the System V
Interface Definition (Issue)2 specification says thataL buffer pointer
requests unbuffered output. For maximum portability, avoid. buffer
pointers.
Supporting OS subroutines requiredse , fstat , isatty , Iseek , read ,
sbrk , write .

CYGNUS GNUPro Libraries m 97

setvbuf

setvbuf

SYNOPSIS

DESCRIPTION

WARNING!

RETURNS

COMPLIANCE

[specify file or stream buffering]

#include <stdio.h>
int setvbuf(FILE * fo ,char* buf,int mode, size_t size);

Usesetvbuf to specify what kind of buffering you want for the file or stream
identified byfo , using one of the following values (fraswlio.h) as the
mode argument:
» _IONBF
Do not use a buffer; send output directly to the host system for the file
or stream identified by .

« _IOFBF
Use full output buffering; output will be passed on to the host system
only when the buffer is full, or when an input operation intervenes.

« _IOLBF
Use line buffering; pass on output to the host system at every newline,
as well as when the buffer is full, or when an input operation intervenes.

Use thesize argument to specify how large a buffer you wish. You can
supply the buffer itself, if you wish, by passing a pointer to a suitable area of
memory aguf . Otherwise, you may pass/LL as thebur argument, and

setvbuf will allocate the buffer.

You may only useetvbuf before performing any file operation other than
opening the file. If you supply a non-nuallf , you must ensure that the
associated storage continues to be available until you close the stream
identified by#p .

A result of 0 indicates success, @ukindicates failure (invalignode or size
can cause failure).

Both ANSI C and the System V Interface Definition (Issue 2) require
setvbuf . However, they differ on the meaning ofiaLL buffer pointer: the
System V Interface Definition (Issue 2) specification says tivatLa buffer
pointer requests unbuffered output. For maximum portability, avoid
buffer pointers.

Both specifications describe the result on failure only as a nonzero value.

Supporting OS subroutines requiredse , fstat , isatty , Iseek , read ,
sbrk , write

98 m GNUPro Libraries GNUPro Toolkit

siprintf

siprintf

SYNOPSIS

DESCRIPTION
RETURNS

COMPLIANCE

[write formatted output (integer only)]

#include <stdio.h>
int siprintf(char * str , const char * format [, arg, ..]);

siprintf is a restricted version efrintt : it has the same arguments and
behavior, save that it cannot perform any floating-point formatting:-ihe,
G, e-, andr-type specifiers are not recognized.

siprintt returns the number of bytes in the output string, save that the
concludingNULL is not countedsiprintt returns when the end of format
(EOR string is encountered.

siprintf is not required by ANSI C.

Supporting OS subroutines requiredse , fstat , isatty , Iseek , read ,
sbrk , write

CYGNUS

GNUPro Libraries m 99

tmpfile

tmpfile

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[create a temporary file]

#include <stdio.h>
FILE *tmpfile(void);

FILE *_tmpfile_r(void * reent);

tmpfile creates a temporary file (a file which will be deleted automatically),
using a hame generated thpnam. The temporary file is opened with the
mode, wb+, permitting you to read and write anywhere in it &énary file
(without any data transformations the host system may perform for text files).
The alternate function fmpfile r , is a reentrant version.

The argumentyeent , is a pointer to a reentrancy structure.

tmpfile normally returns a pointer to the temporary file. If no temporary file
could be created, the resuliNBLL, andermo records the reason for failure.

Both ANSI C and the System V Interface Definition (Issue 2) require
tmpfile

Supporting OS subroutines requiredse , fstat , getpid , isatty , Iseek |,
open, read , sbrk , write

tmpfile also requires the global pointenyiron

100 m GNUPro Libraries GNUPro Toolkit

tmpnam, tempnam

tmpnam, tempnam

[name for a temporary file]

SYNOPSIS #include <stdio.h>

DESCRIPTION

DANGERI!!

RETURNS

COMPLIANCE

char *tmpnam(char * s);

char *tempnam(char * dir ,char* pfx);

char *_tmpnam_r(void * reent ,char*),

char *_tempnam_r(void * reent ,char* dir ,char* pfx);

Use either of these functionsypnam or tempnam, to generate a name for a
temporary file. The generated name is guaranteed to avoid collision with other
files (for up totmMP_MAXcalls of either function).

tmpnam generates file names with the valueeodnpdir (defined in

stdio.h) as the leading directory component of the path.

You can use thenpnam argumensto specify a suitable area of memory for
the generated filename; otherwise, you cante@ham(NULL) to use an
internal static buffer.

tempnam allows you more control over the generated filename: you can use
the argumentiir to specify the path to a directory for temporary files, and
you can use the argumerit to specify a prefix for the base filename.

If dir isNULL, tempnam will attempt to use the value of environment
variableTMPDIR instead; if there is no such valwempnam uses the value of
P_tmpdir (defined instdio.h).

If you don’t need any particular prefix to the basename of temporary files, you
can passiULL as thepfx argument taempnam.

_tmpnam_r and_tempnam_r are reentrant versions @fpnam andtempnam
respectively. The extra argumesaént is a pointer to a reentrancy structure.

The generated filenames are suitable for temporary files, but do not in
themselves make files temporary. Files with these names must still be
explicitly removed when you no longer want them.

If you supply your own data ares, for tmpnam, you must ensure that it has
room for at least_tmpnam elements of typehar .

Both tmpnam andtempnam return a pointer to the newly generated filename.

ANSI C requiresmpnam, but does not specify the userofmpdir . The
System V Interface Definition (Issue 2) requires hoffnam andtempnam.
Supporting OS subroutines requiredse , fstat , getpid , isatty , Iseek
open, read , sbrk , write

CYGNUS

GNUPro Libraries m 101

tmpnam, tempnam

The global pointergnviron , is also required.

102 m GNUPro Libraries GNUPro Toolkit

vprintf , vfprintf , vsprintf

vprintf , vfprintf , vsprintf
[format argument list]

SYNOPSIS #include <stdio.h>
#include <stdarg.h>

int vprintf(const char * fmt , va_list list);
int vfprintf(FILE * fp , const char * fmt , va_list list),
int vsprintf(char * str , const char * fmt , va_list list);
int _vprintf_r(void * reent , const char * fmt ,
va_list list);
int _vfprintf_r(void * reent ,FILE* fp, constchar * fmt ,
va_list list);
int _vsprintf_r(void * reent ,char* str ,
const char * fmt , va_list list);

DESCRIPTION wvprintf , viprintf , andvsprintf are (respectively) variants pfintf
fprintf , andsprintt . They differ only in allowing their caller to pass the
variable argumentist , as ava_list object (initialized bya_start) rather
than directly accepting a variable number of arguments.

RETURNS The return values are consistent with the corresponding functispristf
returns the number of bytes in the output string, save that the conaluding
is not countedvprintt andvfprintf return the number of characters
transmitted. If an error occurgyrintt andvfprintf returneok. No error
returns occur fovsprintf

COMPLIANCE ANSI C requires all three functions.

Supporting OS subroutines requiredse , fstat , isatty , Iseek , read ,
sbrk , write

CYGNUS GNUPro Libraries m 103

vprintf , vfprintf , vsprintf

104 m GNUPro Libraries GNUPro Toolkit

Strin gs and Memor y (string.h)

The following documentation describes string-handling functions and functions for
managing areas of memory. The corresponding declarationssariagrh
o “bcmp” on page 107

o “bcopy” on page 108

o “bzero” on page 109

o “index” on page 110

o “memchr” on page 111

o “memcmp” on page 112

o “memcpy”’ on page 113

o “memmove” on page 114

o “memset” on page 115

o “rindex” on page 116

o ‘“strcat” on page 117

o “strchr” on page 118

o “strcmp” on page 119

o “strcoll” on page 120

o ‘“strcpy” on page 121

o “strcspn” on page 122

o ‘“strerror” on page 123

GNUPro Toolkit GNU C++ lostream Library = 105

“strlen” on page 126
“striwr” on page 127
“strupr’ on page 128
“strncat” on page 129
“strncmp” on page 130
“strncpy” on page 131
“strpbrk” on page 132
“strrchr” on page 133
“strspn” on page 134
“strstr” on page 135
“strtok” on page 136
“strxfrm” on page 137

106 m GNUPro C Library

GNUPro Toolkit

bcmp

bcmp

[compare two memory areas]

SYNOPSIS #include <string.h>
int bcmp(const char * s1, const char * s2, size_t n;

DESCRIPTION The function, bcmp, compares not more thamaracters of the object
pointed to bysz with the object pointed to byg. This function is identical to
memcmp.

RETURNS The function returns an integer greater than, equal to or less than zero,
according to whether the object pointed toshyis greater than, equal to or
less than the object pointed to &

COMPLIANCE bcmp requires no supporting OS subroutines.

CYGNUS GNUPro C Library = 107

bcopy

bcopy
[copy memory regions]

SYNOPSIS #include <string.h>
void bcopy(const char * in,char* out,size_t ny;

DESCRIPTION The functionpcopy , copiesn bytes from the memory region pointed toidy
to the memory region pointed to byt . This function is implemented in term
of memmove

RETURNS bcopy does not return a result.

COMPLIANCE bcopy requires no supporting OS subroutines.

108 m GNUPro C Library GNUPro Toolkit

bzero

bzero
[initialize memory to zero]

SYNOPSIS #include <string.h>
void bzero(char * b, size_t length);

DESCRIPTION bzero initializeslength bytes of memory, starting at addresso zero.
RETURNS bzero does not return a result.

COMPLIANCE bzero is in the Berkeley Software Distribution. Neither ANSI C nor the
System V Interface Definition (Issue 2) requizro .

bzero requires no supporting OS subroutines.

CYGNUS GNUPro C Library = 109

index

index
[search for character in string]

SYNOPSIS #include <string.h>
char *index(const char * string , int c);

DESCRIPTION The functionjndex , finds the first occurrence of(converted to ahar) in
the string pointed to bytring (including the terminating null character).

This function is identical tetrchr

RETURNS Returns a pointer to the located character, or a null pointetaés not occur
in string

COMPLIANCE index requires no supporting OS subroutines.

110 = GNUPro C Library GNUPro Toolkit

memchr

memchr
[find character in memory]

SYNOPSIS #include <string.h>
void *memchr(const void * src , int c, size_t length);

DESCRIPTION The functionmemchr, searches memory starting*st for the characteg.
The search only ends with the first occurrence, @fr afteriength
characters; in particulafULL does not terminate the search.

RETURNS If the characterg, is found withinlength characters ofsrc , a pointer to the
character is returned. éfis not found, themULL is returned.

COMPLIANCE memchr>is ANSI C.
memchr requires no supporting OS subroutines.

CYGNUS GNUPro C Library = 111

memcmp

memcmp
[compare two memory areas]

SYNOPSIS #include <string.h>
int memcmp(const void * s1, const void * s2, size_t ny;

DESCRIPTION The functionmemcmpcompares not more tharcharacters of the object
pointed to bysz with the object pointed to kye.

RETURNS The function returns an integer greater than, equal to or less than zero
according to whether the object pointed toshyis greater than, equal to or
less than the object pointed to &3
COMPLIANCE memcmgs ANSI C.
memcmgrequires no supporting OS subroutines.

112 = GNUPro C Library GNUPro Toolkit

memcpy

memcpy
[copy memory regions]
SYNOPSIS #include <string.h>
void *memcpy(void * out , const void * in, size_t ny;
DESCRIPTION The function, memcpy, copies n bytes from the memory region pointed to by
in to the memory region pointed to by out.
If the regions overlap, the behavior is undefined.
RETURNS memcpyreturns a pointer to the first byte of the region.
COMPLIANCE memcpyis ANSI C.
memcpy requires no supporting OS subroutines.
CYGNUS GNUPro C Library = 113

memmove

memmove
[move possibly overlapping memory]

SYNOPSIS #include <string.h>
void *memmove(void * dst , const void * src , size_t length);

DESCRIPTION The functionmemmove movesiength characters from the block of memory
starting at'sre to the memory starting adst . memmovereproduces the
characters correctly adést even if the two areas overlap.

RETURNS The function returngst as passed.

COMPLIANCE memmoves ANSI C.
memmoverequires no supporting OS subroutines.

114 = GNUPro C Library GNUPro Toolkit

memset

memset
[set an area of memory]
SYNOPSIS #include <string.h>
void *memset(const void *dst, int ¢, size_t length);
DESCRIPTION The functionmemset, converts the argument, into anunsigned char
and fills the firsttength characters of the array pointed todsy to the value.
RETURNS memset returns the value of
COMPLIANCE memset is ANSI C.
memset requires no supporting OS subroutines.
CYGNUS GNUPro C Library m 115

rindex

rindex
[reverse search for character in string]

SYNOPSIS #include <string.h>
char *rindex(const char * string , int c);

DESCRIPTION The functionfindex , finds the last occurrence of(converted tehar) in
the string pointed to bytring (including the terminating null character).

This function is identical tetrrchr

RETURNS Returns a pointer to the located character, or a null pointetaés not occur
in string

COMPLIANCE rindex requires no supporting OS subroutines.

116 = GNUPro C Library GNUPro Toolkit

strcat

strcat
[concatenate strings]

SYNOPSIS #include <string.h>
char *strcat(char *dst, const char *src);

DESCRIPTION strcat appends a copy of the string pointed toshy (including the
terminating null character) to the end of the string pointed t@sbyThe
initial character obrc overwrites the null character at the endiaf.

RETURNS strcat returns the initial value afst .

COMPLIANCE strcat is ANSI C.
strcat requires no supporting OS subroutines.

CYGNUS GNUPro C Library = 117

strchr

strchr
[search for character in string]

SYNOPSIS #include <string.h>
char *strchr(const char * string , int c);

DESCRIPTION The functionstrchr , finds the first occurrence of(converted tahar) in
the string pointed to bytring (including the terminating null character).

RETURNS Returns a pointer to the located character, or a null pointetaés not occur
in string

COMPLIANCE strchr is ANSI C.
strchr requires no supporting OS subroutines.

118 m GNUPro C Library GNUPro Toolkit

stremp

strcmp
[character string compare]

SYNOPSIS #include <string.h>

int strcmp(const char * a, const char * b);
DESCRIPTION strcmp compares the string atto the string ab.

RETURNS If *a sorts lexicographically aftep, strcmp returns a number greater than
zero. If the two strings matcktrcmp returns zero. Ifa sorts
lexicographically beforeb, strcmp returns a number less than zero.

COMPLIANCE strcmp is ANSI C.
strcmp requires no supporting OS subroutines.
CYGNUS GNUPro C Library = 119

strcoll

strecoll

SYNOPSIS
DESCRIPTION

RETURNS

COMPLIANCE

[locale specific character string compare]

#include <string.h>
int strcoll(const char * stra , const char * strb);

strcoll ~ compares the string pointed to déma to the string pointed to by
strb , Using an interpretation appropriate to the curt€ntCOLLATEState.

If the first string is greater than the second stréngpll returns a number
greater than zero. If the two strings are equivaktrigll returns zero. If
the first string is less than the second stringoll returns a number less
than zero.

strcoll is ANSI C.
strcoll requires no supporting OS subroutines.

120 = GNUPro C Library GNUPro Toolkit

strcpy

strcpy
[copy string]
SYNOPSIS #include <string.h>
char *strcpy(char * dst , const char * src);

DESCRIPTION strcpy copies the string pointed to by (including the terminating null
character) to the array pointed to dsy .

RETURNS strcpy returns the initial value afst .

COMPLIANCE strcpy is ANSI C.
strcpy requires no supporting OS subroutines.

CYGNUS GNUPro C Library m 121

strcspn

strcspn

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[count chars not in string]

#include <string.h>
size_t strcspn(const char * s1, const char * s2);

The functionstrcspn , computes the length of the initial part of the string
pointed to bysz which consists entirely of characters not from the string
pointed to bys2 (excluding the terminating null character).

strcspn returns the length of the substring found.

strcspn is ANSI C.
strcspn requires no supporting OS subroutines.

122 m GNUPro C Library GNUPro Toolkit

strerror

strerror
[convert error number to string]

SYNOPSIS #include <string.h>

char *strerror(int errnum);

DESCRIPTION strerror converts the error numbesiynum |, into a string. The value of
errnum is usually a copy odrrno . If errnum is not a known error number,
the result points to an empty string.

This implementation odtrerror prints out the strings for each of the values
defined inerrno.h , using the conversions in Table 3.

Table 3: Strings for values defined byerrno.h

E2BIG arg list too long

EACCES Permission denied

EADV Advertise error

EAGAIN No more processes

EBADF Bad file number

EBADMSG Bad message

EBUSY Device or resource busy

ECHILD No children

ECOMM Communication error

EDEADLK Deadlock

EEXIST File exists

EDOM Math argument

EFAULT Bad address

EFBIG File too large

EIDRM Identifier removed

EINTR Interrupted system call

EINVAL Invalid argument

EIO I/O error

EISDIR Is a directory

ELIBACC Cannot access a needed shared library
ELIBBAD Accessing a corrupted shared library
ELIBEXEC Cannot exec a shared library directly

CYGNUS

GNUPro C Library m 123

strerror

ELIBMAX

ELIBSCN
EMFILE
EMLINK
EMULTIHOP

ENAMETOOLONG

ENFILE
ENODEV
ENOENT
ENOEXEC
ENOLCK
ENOLINK
ENOMEM
ENOMSG
ENONET
ENOPKG
ENOSPC
ENOSR
ENOSTR
ENOSYS
ENOTBLK
ENOTDIR
ENOTEMPTY
ENOTTY
ENXIO
EPERM
EPIPE
EPROTO
ERANGE
EREMOTE
EROFS
ESPIPE

Attempting to link in more shared libraries than system

limit

lib section ina.out corrupted

Too many open files

Too many links

Multihop attempted

File or path name too long

Too many open files in system
No such device

No such file or directory
exec format error

No lock

Virtual circuit is gone

Not enough space

No message of desired type
Machine is not on the network
No package

No space left on device

No stream resources

Not a stream

Function not implemented
Block device required

Not a directory

Directory not empty

Not a character device

No such device or address
Not owner

Broken pipe

Protocol error

Result too large

Resource is remote
Read-only file system

Illegal seek

124 m GNUPro C Library

GNUPro Toolkit

strerror

ESRCH No such process
ESRMNT srmount error
ETIME Streamioctl timeout
ETXTBSY Text file busy

EXDEV Cross-device link

RETURNS This function returns a pointer to a string. Your application must not modify
that string.

COMPLIANCE ANSI C requiresstrerror , but does not specify the strings used for each
error number.

Although this implementation afrerror is reentrant, ANSI C declares
that subsequent calls ¢orerror may overwrite the result string; therefore
portable code cannot depend on the reentrancy of this subroutine.

This implementation oftrerror ~ provides for user-defined extensibility.
errno.h defines_ ELASTERRORwhich can be used as a base for
user-defined error values. If the user supplies a routine named
_user_strerror , anderrnum passed tatrerror does not match any of
the supported values, _user_strerror is called svitlum as its argument.

_user_strerror takes one argument of typet , and returns a character

pointer. Iferrnum is unknown to user_strerror , _user_strerror
returnsNULL The default, user_strerror , returnsNULL for all input
values.

strerror requires no supporting OS subroutines.

CYGNUS GNUPro C Library m 125

strlen

strlen
[character string length]

SYNOPSIS #include <string.h>
size_t strlen(const char * str);

DESCRIPTION strlen works out the length of the string startingsat by counting
characters until it reaches\N&LL character.

RETURNS strlen returns the character count.

COMPLIANCE strlen is ANSI C.
strlen requires no supporting OS subroutines.

126 = GNUPro C Library GNUPro Toolkit

striwr

striwr
[force string to lower case]

SYNOPSIS #include <string.h>
char *strlwr(char * a);

DESCRIPTION striwr converts each characters in the string, & lower case.
RETURNS strlwr returns its argument,

COMPLIANCE striwr is not widely portable.
striwr requires no supporting OS subroutines.

CYGNUS GNUPro C Library m 127

strupr

strupr
[force string to uppercase]

SYNOPSIS #include <string.h>
char *strupr(char * a);

DESCRIPTION strupr converts each characters in the string, & upper case.
RETURNS strupr returns its argumens,

COMPLIANCE strupr is not widely portable.
strupr requires no supporting OS subroutines.

128 m GNUPro C Library GNUPro Toolkit

strncat

strncat
[concatenate strings]
SYNOPSIS #include <string.h>
char *strncat(char * dst , const char * src , size_t length);
DESCRIPTION strncat appends not more thaamgth characters from the string pointed to
by sre (including the terminating null character) to the end of the string
pointed to byist . The initial character afrc overwrites the null character at
the end ofust . A terminating null character is always appended to the result.
WARNING! A null is always appended, so that if the copy is limited byetigh
argument, the number of characters appendesttis n +1 .
RETURNS strncat returns the initial value afst .
COMPLIANCE strncat is ANSI C.
strncat requires no supporting OS subroutines.
CYGNUS GNUPro C Library m 129

strncmp

strncmp
[character string compare]

SYNOPSIS #include <string.h>
int strncmp(const char * a, const char * b, size_t length);

DESCRIPTION strncmp compares up tength characters from the string ato the string
atb.

RETURNS If *a sorts lexicographically afteb, strncmp returns a number greater than
zero. If the two strings are equivalesttncmp returns zero. Ifa sorts
lexicographically beforeb, strncmp returns a number less than zero.

COMPLIANCE strncmp is ANSI C.
strncmp requires no supporting OS subroutines.

130 = GNUPro C Library GNUPro Toolkit

strncpy

strncpy
[counted copy string]
SYNOPSIS #include <string.h>
char *strncpy(char * dst , const char * src , size_t length);
DESCRIPTION strncpy copies not more thaangth characters from the string pointed to
by sre (including the terminating null character) to the array pointed to by
dst . If the string pointed to byrc is shorter thamength characters, null
characters are appended to the destination array until a tetadiof
characters have been written.
RETURNS strncpy returns the initial value afst .
COMPLIANCE strncpy is ANSI C.
strncpy requires no supporting OS subroutines.
CYGNUS GNUPro C Library = 131

strpbrk

strpbrk

SYNOPSIS
DESCRIPTION
RETURNS

COMPLIANCE

[find chars in string]

#include <string.h>
char *strpbrk(const char * s1, const char * s2);

strpbrk locates the first occurrence in the string pointed tezbgf any
character in string pointed to By (excluding the terminating null character).

strpbrk returns a pointer to the character foundinor a null pointer if no
character froms2 occurs ins1.

strpbrk requires no supporting OS subroutines.

132 m GNUPro C Library GNUPro Toolkit

strrchr

strrchr
[reverse search for character in string]

SYNOPSIS #include <string.h>
char * strrchr(const char * string , int c);

DESCRIPTION strrchr finds the last occurrence of(converted tehar) in the string
pointed to bystring (including the terminating null character).

RETURNS Returns a pointer to the located character, or a null pointetaés not occur
in string

COMPLIANCE strrchr is ANSI C.
strrchr requires no supporting OS subroutines.

CYGNUS GNUPro C Library = 133

strspn

strspn

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[find initial match]

#include <string.h>
size_t strspn(const char * s1, const char * s2);

strspn computes the length of the initial segment of the string pointed to by
s1, consisting entirely of characters from the string pointed teeby
(excluding the terminating null character).

strspn returns the length of the segment found.

strspn is ANSI C.
strspn requires no supporting OS subroutines.

134 m GNUPro C Library GNUPro Toolkit

strstr

strstr
[find string segment]

SYNOPSIS #include <string.h>
char *strstr(const char * s1, const char * s2);

DESCRIPTION strstr locates the first occurrence in the string pointed teibgf the
sequence of characters in the string pointed teekgxcluding the
terminating null character).

RETURNS strstr returns a pointer to the located string segment, or a null pointer if the
string, s2, is not found. Ifs2 points to a string with zero length, theis
returned.

COMPLIANCE strstr is ANSI C.
strstr requires no supporting OS subroutines.

CYGNUS GNUPro C Library = 135

strtok

strtok

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[get next token from a string]

#include <string.h>

char *strtok(char * source , const char * delimiters)

char *strtok_r(char * source , const char * delimiters
char ** fasts)

A series of calls tatrtok breaks the string starting &burce into a

sequence of tokens. The tokens are delimited from one another by characters
from the string atdelimiters , at the outset. The first call $ortok

normally has a string address as the first argument; subsequent calls can use
NULL as the first argument, to continue searching the same string. You can
continue searching a single string with different delimiters by using a

different delimiter string on each call.

strtok begins by searching for any character not in the delimiters string: the
first such character is the beginning of a token (and its address will be the
result of thestrtok call). strtok then continues searching until it finds
another delimiter character; it replaces that charactsiuhy and returns. (If
strtok comes to the end of theource string without finding any more
delimiters, the entire remainder of the string is treated as the next token).

strtok starts its search atource , unless you pagsULL as the first

argument; if source INULL, strtok continues searching from the end of the
last search. Exploiting theULL first argument leads to non-reentrant code.
You can easily circumvent this problem by saving the last delimiter address in
your application, and always using it to pass a non-null source argument.

strtok returns a pointer to the next token NLL if no more tokens can be
found.

strtok is ANSI C.
strtok requires no supporting OS subroutines.

136 m GNUPro C Library GNUPro Toolkit

strxfrm

strxfrm

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[transform string]

#include <string.h>
size_t strxfrm(char * s1, const char * s2, size_t n;

strxfrm transforms the string pointed to &y and places the resulting string
into the array pointed to byz. The transformation is such that if tstecmp
function is applied to the two transformed strings, it returns a value greater,
than, equal to, or less than zero, corresponding to the resudtrobla

function applied to the same two original strings.

No more tham characters are placed into the resulting array pointed 4o,by
including the terminating null characternlfs zero,s1 may be a null pointer.
If copying takes place between objects that overlap, the behavior is undefined.

With a C locale, this function just copies.

Thestrxfrm function returns the length of the transformed string (not
including the terminating null character). If the value returnedoismore,
the contents of the array pointed todayare indeterminate.

strxfrm is ANSI C.

strxfrm requires no supporting OS subroutines.

CYGNUS

GNUPro C Library m 137

strxfrm

138 m GNUPro C Library GNUPro Toolkit

Signal Handlin g (signal.h)

A signalis an event that interrupts the normal flow of control in your program.

Your operating environment normally defines the full set of signals available (see
sysisignal.h), as well as the default means of dealing with them—typically, either
printing an error message and aborting your program, or ignoring the signal. All
systems support at least the signals in Table 4.

Table 4: Signals

SIGABRT Abnormal termination of a program,; raised by #hert function (see
“abort” on page 5).

SIGFPE A domain error in arithmetic, such as overflow, or division by zero.

SIGILL Attempt to execute as unexecutable function data.

SIGINT Interrupt; an interactive attention signal.

SIGSEGV An attempt to access an unavailable memory location.

SIGTERM A request that your program end execution.
Two functions are available for dealing with asynchronous signals—one to allow your
program to send signals to itself (callaiking a signal; see “raise” on page 141), and
one to specify subroutines (callbdndlers see “signal” on page 142) to handle

particular signals that you anticipate may occur—whether raised by your own
program or the operating environment.

To support these functionggnal.h defines the three macros in Table 5 on
page 140.

GNUPro Toolkit GNU C++ lostream Library = 139

Table 5: Asynchronous signals

SIG_DFL

SIG_IGN

SIG_ERR

Used with thesignal ~ function in place of a pointer to a
handler subroutine, to select the operating environment’s
default handling of a signal.

Used with thesignal function in place of a pointer to a
handler, to ignore a particular signal.

Returned by theignal function in place of a pointer to a
handler, to indicate that your request to set up a handler
could not be honored for some reason.

signal.h also defines an integral typgg_atomic_t . This type is not used in any
function declarations; it exists only to allow your signal handlers to declare a static
storage location where they may store a signal value. (Static storage is not otherwise
reliable from signal handlers.)

140 = GNUPro C Library

GNUPro Toolkit

raise

raise
[send a signal]

SYNOPSIS #include <signal.h>
int raise(int sig);
int _raise_r(void * reent , int sig);

DESCRIPTION raise sends the signadig (one of the macros frogys/signal.h). This
interrupts your program’s normal flow of execution, and allows a signal
handler (if you've defined one, usisgnal) to take control.

The alternate functionyaise_r , is a reentrant version. The extra argument,
reent , iS a pointer to a reentrancy structure.

RETURNS The result is 0 ikig was successfully raised, 1 otherwise. However, the
return value (since it depends on the normal flow of execution) may not be
visible, unless the signal handler kg terminates with a return or unless
SIG_IGN is in effect for this signal.

COMPLIANCE ANSI C requiresaise , but allows the full set of signal numbers to vary from
one implementation to another.

Required OS subroutinegstpid , kill
CYGNUS GNUPro C Library m 141

signal

signal

SYNOPSIS

DESCRIPTION

RETURNS

[specify handler subroutine for a signal]

#include <signal.h>
void (* signal(int sig ,void(* func)(int)))(int);

void (* _signal_r(void *reent,
int sig ,void(* func)(int)))(int);

int raise (int sig);
int _raise_r (void * reent , int sig);

signal andraise provide a simple signal/raise implementation for
embedded targets.

signal allows you to request changed treatment for a particular signal,
You can use one of the predefined macsos, DFL (for selecting system
default handling) osIG_IGN (for ignoring this signal) as the valuefofic ;
otherwise func is a function pointer that identifies a subroutine in your
program as the handler for this signal.

Some of the execution environment for signal handlers is unpredictable;
notably, the only library function required to work correctly from within a
signal handler isignal itself, and only when used to redefine the handler for
the current signal value.

Static storage is likewise unreliable for signal handlers, with one exception: if
you declare a static storage locationvastile sig_atomic_t , then you
may use that location in a signal handler to store signal values.

If your signal handler terminates using return (or implicit return), your
program’s execution continues at the point where it was when the signal was
raised (whether by your program itself, or by an external event). Signal
handlers can also use functions sucbxas andabort to avoid returning.

raise sends the signadig , to the executing program. It returns zero if
successful, non-zero if unsuccessful.

The alternate functionssignal r and_raise_r , are the reentrant versions.
The extra argumentgent , is a pointer to a reentrancy structure.

If your request for a signal handler cannot be honored, the residt ERR a
specific error number is also recordedckiitmo .

Otherwise, the result is the previous handler (a function pointer or one of the
predefined macros).

142 m GNUPro C Library GNUPro Toolkit

signal

COMPLIANCE ANSI C requiresaise andsignal . No supporting OS subroutines are
required to link withsignal , but it will not have any useful effects, except for

software generated signals, without an operating system that can actually raise
exceptions.

CYGNUS GNUPro C Library m 143

signal

144 m GNUPro C Library GNUPro Toolkit

Time Functions (time.h)

The following documentation includes functions used either for reporting on time
(elapsed, current, or compute time) or to perform calculations based on time.

« “asctime” on page 147

« “clock” on page 148

« ‘“ctime” on page 149

« C“difftime” on page 150

« “‘gmtime” on page 151

« ‘“localtime” on page 152

« “mktime” on page 153

« “strftime” on page 154

« “time” on page 156

The header fileéme.h defines three typesiock_t andtime_t are both used for
representations of time particularly suitable for arithmetic. (In this implementation,
guantities of typelock_t have the highest resolution possible on your machine, and

guantities of typeime_t resolve to secondssiye_t is also defined if necessary for
guantities representing sizes.

time.n also defines the structuie for the traditional representation of Gregorian
calendar time as a series of numbers, with the fields in Table 1.

GNUPro Toolkit GNU C++ lostream Library m 145

Figure 1: Field representations fortime.h

tm_sec Seconds.

tm_min Minutes.

tm_hour Hours.

tm_mday Day.

tm_mon Month.

tm_year Year (since 1900).

tm_wday Day of week: the number of days since Sunday.

tm_yday Number of days elapsed since last January 1.

tm_isdst Daylight Savings Time flag: positive means DST in effect, zero
means DST not in effect, negative means no information about DST
is available.

146 m GNUPro C Library GNUPro Toolkit

asctime

asctime
[format time as string]
SYNOPSIS #include <time.h>
char *asctime(const struct tm* clock);
char *asctime_r(const struct tm* clock ,char* buf);
DESCRIPTION asctime formats the time value albock into a string of the following form.
Wed Jun 15 11:38:07 1988\n\0
The string is generated in a static buffer; each caldome overwrites the
string generated by previous calls.
RETURNS A pointer to the string containing a formatted timestamp.
COMPLIANCE ANSI C requiresisctime .
asctime requires no supporting OS subroutines.
CYGNUS GNUPro C Library m 147

clock

clock
[cumulative processor time]

SYNOPSIS #include <time.h>
clock_t clock(void);

DESCRIPTION clock calculates the best available approximation of the cumulative amount
of time used by your program since it started. To convert the result into
seconds, divide by the maci,0CKS_PER_SEC

RETURNS The amount of processor time used so far by your program, in units defined
by the machine-dependent maacopcks_PER_SEdf no measurement is
available, the result is -1.
COMPLIANCE ANSI C requireglock andCLOCKS_PER_SEC
Supporting OS subroutine requireidies .

148 m GNUPro C Library GNUPro Toolkit

ctime

ctime
[convert time to local and format as string]

SYNOPSIS #include <time.h>
char *ctime(time_t clock);
char *ctime_r(time_t clock ,char* buf),

DESCRIPTION ctime converts the time value aibck to local time (likelocaltime) and
formats it into a string of the following form (like&ctime).
Wed Jun 15 11:38:07 1988\n\0

RETURNS A pointer to the string containing a formatted timestamp.

COMPLIANCE ANSI C requirestime .
ctime requires no supporting OS subroutines.

CYGNUS GNUPro C Library m 149

difftime

difftime
[subtract two times]

SYNOPSIS #include <time.h>
double difftime(time_t timl | time_t tim2);

DESCRIPTION difitime subtracts the two times in the arguments2 fromtim1 .
RETURNS The difference (in seconds) betwegre andtim1 ,as adouble .

COMPLIANCE ANSI C requiresiifiime , and define its result to be in seconds in all
implementations.

diftime requires no supporting OS subroutines.

150 = GNUPro C Library GNUPro Toolkit

gmtime

gmtime

SYNOPSIS

DESCRIPTION

RETURNS
COMPLIANCE

[convert time to UTC traditional form]

#include <time.h>
struct tm *gmtime(const time_t * clock);
struct tm *gmtime_r(const time_t * clock , struct tm * res);

gmtime assumes the time abck represents a local timgmtime converts it

to UTC (Universal Coordinated Time, also known in some countries as GMT,
Greenwich Mean time), then converts the representation from the arithmetic
representation to the traditional representation defineghly tm

gmtime constructs the traditional time representation in static storage; each
call togmtime orlocaltime will overwrite the information generated by
previous calls to either function.

A pointer to the traditional time representatietutt tm).

ANSI C requiregmtime .
gmtime requires no supporting OS subroutines.

CYGNUS

GNUPro C Library = 151

localtime

localtime

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[convert time to local representation]

#include <time.h>
struct tm *localtime(time_t * clock);
struct tm *localtime_r(time_t * clock | struct tm * res);

localtime converts the time atock into local time, then converts its
representation from the arithmetic representation to the traditional
representation defined Byuct tm

localtime constructs the traditional time representation in static storage;
each call tggmtime oOrlocaltime will overwrite the information generated by
previous calls to either function.

mktime IS the inverse abcaltime
A pointer to the traditional time representatietutt tm).

ANSI C requiresocaltime
localtime requires no supporting OS subroutines.

152 m GNUPro C Library GNUPro Toolkit

mktime

mktime
[convert time to arithmetic representation]

SYNOPSIS #include <time.h>
time_t mktime(struct tm * timp);

DESCRIPTION mktime assumes the time ahp is a local time, and converts its
representation from the traditional representation definedday tm into a
representation suitable for arithmetic.
localtime is the inverse ohktime .

RETURNS If the contents of the structurettp do not form a valid calendar time
representation, the result is -1. Otherwise, the result is the time, converted to a
time_t value.

COMPLIANCE ANSI C requiresnktime .
mktime requires no supporting OS subroutines.

CYGNUS GNUPro C Library = 153

strftime

strftime

SYNOPSIS

DESCRIPTION

[flexible calendar time formatter]

#include <time.h>
size_t strftime(char * s, size_t maxsize ,
const char * format , const struct tm * timp);

stritime converts atruct tm representation of the time @@bp) into a
string, starting a and occupying no more thafaxsize characters.

You control the format of the output using the stringpatar . *format can
contain two kinds of specifications: text to be copied literally into the
formatted string, and time conversion specifications.

Time conversion specifications are two-character sequences beginning with
(usenuto include a percent sign in the output). Each defined conversion
specification selects a field of calendar time data fronp , and converts it

to a string; see Table 2 for more details of the character sequences for
conversion.

Figure 2. Time conversion character sequences

%a
%A
%b
%B
%c

RETURNS

COMPLIANCE

An abbreviation for the day of the week.
The full name for the day of the week.
An abbreviation for the month name.
The full name of the month.

A string representing the complete date and time, as in the
following example:

Mon Apr 01 13:13:13 1992

Mon Apr 01 1992

13:13:13

When the formatted time takes up no more thaxsize characters, the result

is the length of the formatted string. Otherwise, if the formatting operation
was abandoned due to lack of room, the result is 0, and the string stasting at
corresponds to just those parts#ofmat that could be completely filled in
within the maxsize limit.

ANSI C requirestriime , but does not specify the contentsofwhen the
formatted string would require more thaaxsize characters.

stritime requires no supporting OS subroutines.

154 m GNUPro C Library GNUPro Toolkit

strftime

Figure 3: Representations of time

%d The day of the month, formatted with two digits.

%H The hour (on a 24-hour clock), formatted with two digits.

%l The hour (on a 12-hour clock), formatted with two digits.

%j The count of days in the year, formatted with three digits (from
001 t0366).

%m The month number, formatted with two digits.

%M The minute, formatted with two digits.

%p EitherAMor PMas appropriate.

%S The second, formatted with two digits.

%U The week number, formatted with two digits (fromto 53; week

number 1 is taken as beginning with the first Sunday in a year).
See also “%W” on page 155.

%w A single digit representing the day of the week, Sunday being day
0.

%W Another version of the week number: like) but counting week 1
as beginning with the first Monday in a year.

%X A string representing the complete date, as in the following
example.

Figure 4. Strings for time
%X A string representing the full time of day (hours, minutes, and

seconds), as in the following example.
Figure 5. Special time requirements

%y The last two digits of the year.
%Y The full year, formatted with four digits to include the century.
%Z Defined by ANSI C as eliciting the time zone, if available; it is not

available in this implementation (which acceBbut generates
no output for it).

%% A single characteppo

CYGNUS GNUPro C Library = 155

time

time
[get current calendar time (as single number)]

SYNOPSIS #include <time.h>
time_t time(time_t * t);

DESCRIPTION time looks up the best available representation of the current time and returns
it, encoded asi@me_t . It stores the same valuetatinless the argument is
NULL

RETURNS A -1 result means the current time is not available; otherwise the result
represents the current time.
COMPLIANCE ANSI C requiresime .

Supporting OS subroutine required. Some implementations require
gettimeofday

156 m GNUPro C Library GNUPro Toolkit

Locale (locale.h)

A localeis the name for a collection of parameters (affecting collating sequences and
formatting conventions) that may be different depending on location or culture.

The“c” locale is the only one defined in the ANSI C standard.

This is a minimal implementation, supporting only the required value for locale;
strings representing other locales are not honored. is also accepted; it represents
the default locale for an implementation, equivalentdo.

locale.h defines the structurepnv , to collect the information on a locale, using the

following fields. See “setlocale, localeconv” on page 160 for more specific

discussion.

char *decimal_point
The decimal point character used to format “ordinary” numbers (all numbers
except those referring to amounts of monety),” in the C locale.

char *thousands_sep
The character (if any) used to separate groups of digits, when formatting ordinary
numbers,© » inthe C locale.

char *grouping
Specifications for how many digits to group (if any grouping is done at all) when
formatting ordinary numbers. Theimeric valueof each character in the string
represents the number of digits for the next group, and a value of O (that is, the
string’s trailingNuLL) means to continue grouping digits using the last specified
value. UsecHAR_MAXo indicate that no further grouping is desired, inthe

GNUPro Toolkit GNUPro C Library = 157

C locale.

char *int_curr_symbol
The international currency symbol (first three characters), if any, and the character
used to separate it from numbers,” in the C locale.

char *currency_symbol
The local currency symbol, if any, » in the C locale.

char*mon_decimal_point
The symbol used to delimit fractions in amounts of money; inthe C locale.

char *mon_thousands_sep
Similar tothousands_sep , but used for amounts of money, » in the C locale.

char *mon_grouping
Similar togrouping , but used for amounts of money, ” in the C locale.

char *positive_sign
A string to flag positive amounts of money when formatting, in the C
locale.

char *negative_sign
A string to flag negative amounts of money when formatting; in the C
locale.

char int_frac_digits
The number of digits to display when formatting amounts of money to
international conventiongHAR_MAXthe largest number representative aisaa)
in the C locale.

char frac_digits
The number of digits to display when formatting amounts of money to local
conventionsCHAR_MAXn the C locale.

char p_cs_precedes
1 indicates that the local currency symbol is usefibrea positive or zero
formatted amount of money;indicates that the currency symbol is plaaéer
the formatted numbegHAR_MAXN the C locale.

char p_sep_by_space
1 indicates that the local currency symbralstbe separated fropositive or zero
numbers by a space;ndicates that it ifmmediately adjacertb numbers,
CHAR_MAXN the C locale.

char n_cs_precedes
1 indicates that the local currency symbol is usefibrea negativeformatted
amount of moneyy indicates that the currency symbol is plaaftér the
formatted numbeiGHAR_MAXN the C locale.

char n_sep_by_space
1 indicates that the local currency symhbulstbe separated fromegative
numbers by a space;ndicates that it ifmmediately adjacertb numbers,

158 m GNUPro C Library GNUPro Toolkit

CHAR_MAXN the C locale.

char p_sign_posn
Controls the position of thgositivesign for numbers representing money.
means parentheses surround the numbereans the sign is placedforeboth
the numbeandthe currency symbof means the sign is placeéter boththe
numberandthe currency symbog means the sign is placgdt beforethe
currency symbols means the sign is placgdt afterthe currency symbol,
CHAR_MAXN the C locale.

char n_sign_posn
Controls the position of theegativesign for numbers representing money, using
the same rules assign_posn , CHAR_MAXin the C locale.

CYGNUS GNUPro C Library = 159

setlocale , localeconv

setlocale

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

, localeconv
[select or query locale]

#include <locale.h>
char *setlocale(int category, const char * locale);
Iconv *localeconv(void);

char *_setlocale_r(void * reent ,
int category , constchar * locale),
Iconv *_localeconv_r(void * reent);

setlocale is the facility defined by ANSI C to condition the execution
environment for international collating and formatting information;
localeconv reports on the settings of the current locale.

This is a minimal implementation, supporting only the requiedvalue for
locale ; since strings representing other locales are not honored.is also
accepted, representinglafault locale for an implementation, equivalent to

"C")

If you useNULL as thelocale argumentsetiocale returns a pointer to the
string representing the current locale (alwags in this implementation).

The acceptable values fadtegory are defined imocale.h as macros,
beginning with"Lc” , although this implementation does not check the values
you pass in theategory argument.

localeconv returns a pointer to a structure (also defineddstle.h) that
describes the locale-specific conventions currently in effectleconv_r
and_setlocale_r are reentrant versions lotaleconv andsetlocale
respectively. The extra argumendent , is a pointer to a reentrancy structure.

setlocale returns either a pointer to a string naming the locale currently in
effect (always"c” for this implementation), or, if thlecale request cannot
be honorednuLL

localeconv returns a pointer to a structure of typenv , describing the
formatting and collating conventions in effect (in this implementation, always
those of the C locale).

ANSI C requiresetlocale , although the only locale required across all
implementations is the C locale.

No supporting OS subroutines are required.

160 m GNUPro C Library GNUPro Toolkit

Reentranc y

Reentrancyis a characteristic of library functions allowing multiple processes to use
the same address space with assurance that the values stored in those spaces will
remain constant between calls. Cygnus implements the library functions to ensure

that, whenever possible, these library functions are reentrant.

However, there are some functions that camniglly be made reentrant. Hooks

have been provided to allow for using these functions in a fully reentrant fashion.

These hooks use the structuresent , defined inreent.h . All functions which

must manipulate global information are available in the following two versions.

o The first version has the usual name, using a single global instance of the
reentrancy structure.

o The second has a different name, normally formed by prependiagd
appending _r , taking a pointer to the particular reentrancy structure to use.

For example, the functiofgpen , takes two argumentsle andmode, and uses
the global reentrancy structure. The functidiepen_r , takes the argument,
struct_reent , which is a pointer to an instance of the reentrancy structure,
file andmode.

Each function that uses the global reentrancy structure uses the global variable,
_impure_ptr , which points to a reentrancy structure.

This means that you have the following two ways to achieve reentrancyyatlith
requiring thateachthread of execution control initializeuaique global variablef
type,struct _reent

GNUPro Toolkit GNUPro C Library = 161

o Using the reentrant versions of the library functi@iter initializing a global
reentrancy structure f@achprocess. Use the pointer to this structure as the extra
argument for all library functions.

o Ensuring thatachthread of execution control has a pointer to its own unique
reentrancy structure in the global variabliqpure_ ptr , which calls the
standard library subroutines.

The following functions are provided in both reentrant and non-reentrant versions.

_asctime_r _read_r
_cClose_r _raise_r
_dtoa _r _rand_r
_ermno_r _setlocale_r
_fdopen_r _stdin_r
_free_r _stdout_r
_fork_r _stderr_r
_fopen_r _tempnam_r
_fstat_r _tmpnam_r
_getchar_r _tmpfile_r
_gets_r _signal_r
_iprintf_r _realloc_r
_localeconv_r _strtoul_r
_Iseek_r _srand_r
_link_r _system_r
_mkstemp_r _strtod_r
_mktemp_r _strtol_r
_malloc_r _strtok_r
_open_r _sbrk_r
_perror_r _stat_r
_putchar_r _unlink_r
_puts_r _wait_r
_remove_r _write_r
_rename_r

162 m GNUPro C Library GNUPro Toolkit

9

Miscellaneous Macros and
Functions

The following documentation usually describes miscellaneous functions not discussed
elsewhere. However, now, many use other header files.

One macro remains to discuss, “unctrl” on page 164.

CYGNUS GNUPro C Library = 163

unctrl

unctrl
[translate characters to upper case]

SYNOPSIS #include <unctrl.h>
char *unctrl(int c);
int unctrllen(int c);

DESCRIPTION unctrl is a macro that returns the printable representatierasfa string.
unctrllen IS a macro that returns the length of the printable representation of
C.

RETURNS unctrl returns a string of the printable representatioa. of

unctrllen returns the length of the string that is the printable representation
of c.

COMPLIANCE unctrl and unctrllen are not ANSI C.
No supporting OS subroutines are required.

164 = GNUPro C Library GNUPro Toolkit

10

System Calls

The C subroutine library depends on a handful of subroutine calls for operating
system services.

If you use the C library on a system that complies with the POSIX.1 standard (also
known as IEEE 1003.1), most of the following subroutines are supplied with your
operating system.

If some of these subroutines arat provided with your system—in the extreme case,
if you are developing software for a bare board system, without an OS—you will at
least need to provide do-nothiatubs(or subroutines witiminimal functionality).
Providing stubs will allow your programs to link with the subrouting®dra

CYGNUS GNUPro C Library m 165

Definitions for OS interface

Definitions for OS interface

The following discussions describe the complete set of system definitions (primarily
subroutines) required. The accompanying examples implement the minimal
functionality required to allowbc to link, failing gracefully where OS services are
not available.

Graceful failure is permitted by returning an error code. A minor complication arises
since the C library must be compatible with development environments that supply
fully functional versions of these subroutines.

Such environments usually return error codes in a glebad, .

However, the GNUPro C library provides a macro definitiorefoio in the header
file, errno.h , serving to support reentrant routines (see “Reentrancy” on page 161).
The bridge between these two interpretationsmabd is straightforward: the C
library routines with OS interface calls capturedheo values returned globally,
recording them in the appropriate field of the reentrancy structure (so that you can
guery them using th@mo macro fromerrno.h). This mechanism becomes visible
when you write stub routines for OS interfaces. You must ingliudeh , andthen
disable the macro, as in the following example.

#include <errno.h>

#undef errno
extern int errno;

The examples in the following documentation describe the subroutines and their

corresponding treatment @fno .

—eXit
Exits a program without cleaning up files. If your system doesn't provide this
routine, it is best to avoid linking with subroutines that require it (suekitasor
system).

Close . - -
Closes a file. Minimal implementation is shown in the following example (in
whichfile stands for théilenameto substitute).

int close(int file){
return -1;
}

environ))]) o
Points to a list of environment variables and their values. For a minimal
environment, the following empty list is adequate.

char*_env[1]={0}
char **environ = __env;

166 m GNUPro C Library GNUPro Toolkit

Definitions for OS interface

execve
Transfers control to a new process. Minimal implementation (for a systbout
processes) is shown in the following example (in whighe stands for the
process nameo substituteargy stands for thargument valu¢o subtitute, and
env stands for thenvironmento substitute).
#include <errno.h>
#undef errno
extern int errno;
int execve(char * name, char ** argv , char ** env){
errno=ENOMEM,;
return -1;
}
fork
Create a new process. Minimal implementation (for a system without processes)
is shown in the following example.
#include <errno.h>
#undef errno
extern int errno;
int fork() {
errno=EAGAIN;
return -1;
}

fstat

Status of an open file. For consistency with other minimal implementations in
these examples, all files are regarded as character special devices.

Thesys/stat.h header file required is distributed in thelude subdirectory
for this C library.

#include <sys/stat.h>

int fstat(int file , struct stat * st){
st->st_mode = S_IFCHR;
return O;

}

getpid
Process-ID; this is sometimes used to generate strings unlikely to conflict with
other processes. Minimal implementation, for a system without processes is
shown in the following example.
int getpid() {
return 1;
}

isatty
Query whether output stream is a terminal. For consistency with the other
minimal implementations, which only support outpusttout , the minimal
implementation is shown in the following example.
int isatty(int file)
return 1;

CYGNUS GNUPro C Library = 167

Definitions for OS interface

}
kil
Send a signal. Minimal implementation is shown in the following example.
#include <errno.h>
#undef errno
extern int errno;
int kill(int pid ,int sig){
errno=EINVAL,;
return(-1);
}
link
Establish a new name for an existing file. Minimal implementation is shown in the
following example.
#include <errno.h>
#undef errno
extern int errno ;
int link(char * old ,char* new){
ermno=EMLINK;
return -1;

}

Iseek
Set position in a file. Minimal implementation is shown in the following example.
int Iseek(int file ,int ptr ,int dir){
return O;

}

read
Read from a file. Minimal implementation is shown in the following example.
int read(int file ,char* ptr ,int len){
return O;
}

sbrk
Increase program data space. As malloc and related functions depend on this, it is
useful to have a working implementation. The following suffices for a standalone
system; it exploits the symbeaid, automatically defined by the GNU linker,.

caddr_t sbrk(int incr){
extern char end;

I* Defined by the linker. */
static char * heap_end ;

char* prev_heap_end ;

if (heap_end ==0){
heap_end =& end,
}

prev_heap_end = heap_end;

if (heap_end + incr > stack_ptr)

168 m GNUPro C Library GNUPro Toolkit

Definitions for OS interface

{

_write (1, "Heap and stack collision\n", 25);
abort ();

}

heap_end +=incr;
return (caddr_t) prev_heap_end;

}
stat
Status of a file (by name). Minimal implementation is shown in the following
example.
int stat(char * file , struct stat * st){
st->st_mode = S_IFCHR;
return O;
}
times

Timing information for current process. Minimal implementation is shown in the
following example.
int times(struct tms * buf){
return -1;
}

unlink
Remove a file’s directory entry. Minimal implementation is shown in the
following example.
#include <errno.h>
#undef errno
extern int errno;

int unlink(char * name){
errno=ENOENT;
return -1;
}
wait
Wait for a child process. Minimal implementation is shown in the following
example.

#include <errno.h>

#undef errno

extern int errno;

int wait(int * status) {
errno=ECHILD;
return -1;

CYGNUS GNUPro C Library = 169

Definitions for OS interface

write
Write a character to a filebc subroutines will use this system routine for output
to all files,includingstdout —so if you need to generate any output (for instance,
to a serial port for debugging), you should make your minimal write capable of
accomplishing this objective. The following minimal implementation is an
incomplete example; it relies orwatechar ~ subroutine to actually perform the
output (this subroutine is not provided here since it is usually in assembler form
from examples provided by your hardware manufacturer).
int write(int file ,char* ptr ,int len){
int todo ;

for(todo =0; todo < len; todo ++){
writechar(* ptr ++);

}

return len ;

170 = GNUPro C Library GNUPro Toolkit

Reentrant covers for OS subroutines

Reentrant covers for OS subroutines

Since the system subroutines are used by other library routines that require reentrancy,
libc.a providescover routinegfor example, the reentrant versionf@k is
_fork_r). These cover routines are consistent with the other reentrant subroutines in
the GNUPro library, and achieve reentrancy by usirgsarved global data block
(see “Reentrancy” on page 161).
_open_r

A reentrant version afpen . It takes a pointer to the global data block, which

holdserrno , as shown in the following example.

int _open_r(void *reent,
const char *file, int flags, int mode);

_close_r

A reentrant version afiese . It takes a pointer to the global data block, which
holdserrno , as shown in the following example.

int _close_r(void * reent ,int fd);

Iseek_r
A reentrant version afeek . It takes a pointer to the global data block, which
holdserrno , as shown in the following example.
off_t _Iseek_r(void * reent
int fd, off_t pos, int whence);

read_r
A reentrant version aotad . It takes a pointer to the global data block, which
holdserrno , as shown in the following example.
long _read_r(void * reent
int fd, void * buf | size_t cnt);
_write_r
A reentrant version aofrite . It takes a pointer to the global data block, which
holdserrno , as shown in the following example.
long _write_r(void * reent ,
int fd, const void * buf | size_t cnt);
_fork_r
A reentrant version dbrk . It takes a pointer to the global data block, which
holdserrno , as shown in the following example.
int _fork_r(void * reent);
_wait_r
A reentrant version ofait . It takes a pointer to the global data block, which
holdserrno , as shown in the following example.
int _wait_r(void * reent ,int* status);
_stat_r
A reentrant version aftat . It takes a pointer to the global data block, which
holdserrno , as shown in the following example.

CYGNUS GNUPro C Library m 171

Reentrant covers for OS subroutines

int _stat_r(void * reent ,
const char * file , struct stat * pstat);

fstat_r
A reentrant version détat . It takes a pointer to the global data block, which
holdserrno , as shown in the following example.
int _fstat_r(void * reent ,int fd ,
struct stat * pstat);
_link_r
A reentrant version aink . It takes a pointer to the global data block, which
holdserrno , as shown in the following example.
int _link_r(void * reent ,
const char * old , const char * new);
_unlink_r
A reentrant version afnlink . It takes a pointer to the global data block, which
holdserrno , as shown in the following example.
int _unlink_r(void * reent , const char * file);

_shrk_r
A reentrant version afork . It takes a pointer to the global data block, which
holdserrno , as shown in the following example.

char *_sbrk_r(void * reent , size_t incr);

172 m GNUPro C Library GNUPro Toolkit

11

Variable Ar gument Lists

Theprintt family of functions is defined to accept a variable number of arguments,
rather than a fixed argument list. You can define your own functions with a variable
argument list, by using macro definitions from eitktearg.h (for compatibility

with ANSI standards for C) or fromarargs.n (for compatibility with a popular
convention prior to meeting ANSI standard requirements for C). The following
documentation describes in further detail the variable argument lists.

« “ANSl-standard macros (stdarg.h)” on page 174
“va_start” on page 175
“va_arg” on page 176
“va_end” on page 177
« “Traditional macros (varargs.h)” on page 178
“va_dcl” on page 179
“va_start” on page 180
“va_arg” on page 181
“va_end” on page 182

CYGNUS GNUPro Libraries m 173

ANSI-standard macros (stdarg.h)

ANSI-standard macros (stdarg.h)

By ANSI standards for C, a function has a variable number of arguments when its
parameter list ends in an ellipsi9.(The parameter list must also include at least one
explicitly named argument; that argument is used to initialize the variable list data
structure.

ANSI standards for C define three macnas §tart , va_arg , andva_end) to operate

on variable argument liststdarg.h also defines a special type to represent variable
argument lists; this type is called list

174 m GNUPro Libraries GNUPro Toolkit

va_start

va_start
[initialize variable argument list]
SYNOPSIS #include <stdarg.h>
void va_start(va_list ap, rightmost);

DESCRIPTION Useva_start to initialize the variable argument ligt, so thava_arg can
extract values from itightmost is the name of the last explicit argument in
the parameter list (the argument immediately preceding the ellipsisthat
flags variable arguments in an ANSI C function header). You can only use
va_start in a function declared using this ellipsis notation (not, for example,
in one of its subfunctions).

RETURNS va_start does not return a result.
COMPLIANCE ANSI C requirewva_start
CYGNUS GNUPro C Library m 175

va_arg

va_arg
[extract a value from argument list]

SYNOPSIS #include <stdarg.h>
type va_arg(va_list ap, type);

DESCRIPTION va_arg returns the next unprocessed value from a variable argumedt list
(which you must previously create with start). Specify the type for the
value as the second parameter to the macro, type.

You may pass @a_list object ap to a subfunction, and waearg from the
subfunction rather than from the function actually declared with an ellipsis in
the header; however, in that case you may onlyaseg from the

subfunction. ANSI C does not permit extracting successive values from a
single variable-argument list from different levels of the calling stack.

There is no mechanism for testing whether there is actually a next argument
available; you might instead pass an argument count (or some other data that
implies an argument count) as one of the fixed arguments in your function
call.

RETURNS va_arg returns the next argument, an object of type, .

COMPLIANCE ANSI C requiresa_arg .

176 m GNUPro Libraries GNUPro Toolkit

va_end

va_end
[abandon a variable argument list]

SYNOPSIS #include <stdarg.h>
void va_end(va_list ap);

DESCRIPTION Useva_end to declare that your program will not use the variable argument
list ap any further.

RETURNS va_end does not return a result.

COMPLIANCE ANSI C requiresva_end .

CYGNUS GNUPro C Library m 177

Traditional macros (varargs.h)

Traditional macros (varargs.h)

If your C compiler predates requirements set by ANSI standards for C, you may still

be able to use variable argument lists using the macros frovardhgs.n header

file. These macros resemble their ANSI counterparts, but have important differences
in usage. In particular, since traditional C has no declaration mechanism for variable
argument lists, two additional macros are provided simply for the purpose of defining
functions with variable argument lists.

As with stdarg.h , the typeva_list is used to hold a data structure representing a
variable argument list.

178 m GNUPro Libraries GNUPro Toolkit

va_dcl

va_dcl
[declare variable arguments]
SYNOPSIS #include <varargs.h>
function (va_alist)
va_dcl
DESCRIPTION To use thearargs.h version of variable argument lists, you must declare
your function with a call to the macra_alist as its argument list, and use
va_dcl as the declaration.
WARNING! Do not use a semicolon after dcl .
RETURNS These macros cannot be used in a context where a return is syntactically
possible.
COMPLIANCE va_alist andva_dcl were the most widespread method of declaring variable
argument lists prior to ANSI C.
CYGNUS GNUPro C Library m 179

va_start

va_start
SYNOPSIS
DESCRIPTION

RETURNS

COMPLIANCE

[initialize variable argument list]

#include <varargs.h>
va_list ap;
va_start(ap);

With thevarargs.h macros, usea_start to initialize a data structueg to
permit manipulating a variable argument ligi. must have the type
va_alist

va_start does not return a result.

va_start is also defined as a macro in ANSI C, but the definitions are
incompatible; the ANSI version has another parameter begides

180 m GNUPro Libraries GNUPro Toolkit

va_arg

va_arg
[extract a value from argument list]
SYNOPSIS #include <varargs.h>
type va_arg(va_list ap, type);

DESCRIPTION va_arg returns the next unprocessed value from a variable argumedt list
(which you must previously create with start). Specify the type for the
value as the second parameter to the magro,.

RETURNS va_arg returns the next argument, an object of type, .

COMPLIANCE Theva_arg defined invarargs.h has the same syntax and usage as the ANSI

C version fromstdarg.h
CYGNUS GNUPro C Library = 181

va_end

va_end
[abandon a variable argument list]

SYNOPSIS #include <varargs.h>
va_end(va_list ap);

DESCRIPTION Useva_end to declare that your program will not use the variable argument
list ap any further.

RETURNS va_end does not return a result.

COMPLIANCE Theva_end defined invarargs.h has the same syntax and usage as the ANSI
C version fromstdarg.h

182 m GNUPro Libraries GNUPro Toolkit

GNUPRO™ TOOLKIT

GNURPro Math Library

June, 1998
98r1l

CYGNUS

Copyright © 1991-1998 Cygnus.

All rights reserved.

GNUPrg", the GNUPrd' logo and the Cygnus logo are all trademarks of Cygnus.
All other brand and product names are trademarks of their respective owners.

Permission is granted to make and distribute verbatim copies of this documentation,
provided the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this documentation
under the conditions for verbatim copying, provided also that the entire resulting
derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this documentation into
another language, under the above conditions for modified versions.

This documentation has been prepared by Cygnus Technical Publications; contact the
Cygnus Technical Publications stadbc@cygnus.com .

184 m GNUPro Math Library GNUPro Toolkit

Mathematical Functions
(math.h)

The following documentation groups a wide variety of mathematical functions. The
corresponding definitions and declarations an@ath.h .

« “Version of math library” on page 188
« “acos, acosf” on page 189

« ‘“acosh, acoshf’ on page 190

« “asin, asinf’ on page 191

« “asinh, asinhf’ on page 192

« ‘“atan, atanf” on page 193

« ‘“atan2, atan2f’ on page 194

« “atanh, atanhf’ on page 195

« "IN, jNf, yN, yNf” on page 196

« “cbrt, cbrtf” on page 197

« “copysign, copysignf” on page 198
« “cosh, coshf” on page 199

« Cerf, erff, erfc, erfcf” on page 200

« “exp, expf” on page 201

« “expml, expmlf’ on page 202

« “fabs, fabsf’ on page 203

CYGNUS GNU Math Library m 185

« “floor, floorf, ceil, ceilf” on page 204

« “fmod, fmodf” on page 205

« “frexp, frexpf” on page 206

« “gamma, gammaf, lIgamma, lgammaf, gamma_r, gammaf_r, lgamma_r,
lgammaf_r” on page 207

« “hypot, hypotf” on page 209

« ‘“illogh, ilogbf’ on page 210

« “infinity, infinityf” on page 211

« ‘“isnan, isnanf, isinf, isinff, finite, finitef” on page 212

« “Idexp, Idexpf’ on page 213

« ‘“log, logf” on page 214

« “logl0, log10f’ on page 215

« ‘“loglp, loglpf” on page 216

« “matherr” on page 217

« “modf, modff’ on page 219

« ‘“nan, nanf’ on page 220

« “nextafter, nextafterf’ on page 221

« “pow, powf’ on page 222

« “rint, rintf, remainder, remainderf” on page 223

« ‘“scalbn, scalbnf” on page 224

« “sqrt, sqrtf” on page 225

« “sin, sinf, cos, cosf’” on page 226

« “sinh, sinhf” on page 227

« “tan, tanf’ on page 228
“tanh, tanhf’ on page 229

Two definitions frommath.h are of particular interest.

» The representation of infinity asdauble is defined asiUGE_VAL this number
being returned on overflow by many functions.

» The structuregxception , is used when you write customized error handlers for
the mathematical functions. You can customize error handling for most of these
functions by defining your own version @ftherr ; see the discussion with “nan,
nanf’ on page 220 for specific details.

Since the error handling code cafists , the mathematical subroutines requtebs
or minimal implementations for the same list of OS subroutingsias : close ,

186 = GNU Math Library GNUPro Toolkit

fstat ,isatty ,lIseek ,read ,sbrk ,write . See “Reentrant covers for OS subroutines”
on page 171 for specific discussion of subroutine calls, and for sample minimal
implementations of these support subroutines.

Alternative declarations of the mathematical functions, which exploit specific
machine capabilities to operate faster—although, generally, they have less error
checking and may reflect additional limitations on some machines—are available
when you includeastmath.h instead ofmath.h .

See also “Reentrancy Properties of libm” on page 230.

CYGNUS

GNU Math Library = 187

Version of math library

Version of math librar y

There are four different versions of the math library routines: IEEE, POSIX, X/Open,
or SVID.

The version may be selected at runtime by setting the global variaisle/ERSION,
defined inmath.h . It may be set to one of the following constants defined in math.h:
IEEE, _POSIX_, _XOPEN, Or_SVID_.

The_LIB_VERSION variable is not specific to any thread, and changing it will affect all
threads.

The versions of the library differ only in how errors are handled.

In IEEE mode, thenatherr function is never called, no warning messages are printed,
anderrno is never set.

In POSIX modeermo is set correctly, but th@atherr function is never called and
no warning messages are printed.

In X/Open modegrro is set correctly, andatherr is called, but warning messages
are not printed. In SVID mode, functions that overflow return
3.40282346638528860e+38, the maximum single precision floating point value,
rather than infinity. Alsoerrno is set correctlymatherr is called, and, ifmatherr
returnso, warning messages are printed for some errors. For example, by default
‘log(-1.0) ' writes the following message on standard error output.

log: DOMAIN error.

The library is set to X/Open mode by default.

188 m GNU Math Library GNUPro Toolkit

acos , acosf

acos , acosf

[arc cosine]

SYNOPSIS #include <math.h>

double acos(double X);
float acosf(float X);
DESCRIPTION acos computes the inverse cosine (arc cosine) of the input value. Arguments
to acos must be in the range of -1 to 1.
acosf is identical toacos , except that it performs its calculations on floats.
RETURNS acos andacosf return values in radians, in the range of Otto
If x is not between -1 and 1, the returned valuais(not a number), the
global variablegermo , is set tteEDOMand aDOMAIN error message is sent as
standard error output.
You can modify error handling for these functions usiagherr .
CYGNUS GNU Math Library = 189

acosh , acoshf

acosh , acoshf

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[inverse hyperbolic cosine]

#include <math.h>
double acosh(double X);
float acoshf(float X);
acosh calculates the inverse hyperbolic cosine.of

acosh is defined as the following equation shows.

IN(x+ J/x2—1)
x in the synopsis is the samexas the equation and must be a number
greater than or equal to 1.
acoshf is identical, other than taking and returning floats.
acosh andacoshf return the calculated value.Xfis less than 1, the return
value isNaNandermo is set tcEDOM
You can change the error-handling behavior with the non-AnSikerr
function.
Neitheracosh noracoshf are ANSI C.
They are not recommended for portable programs.

190 = GNU Math Library GNUPro Toolkit

asin , asinf

asin , asinf
[arc sine]
SYNOPSIS #include <math.h>
double asin(double X);
float asinf(float X);

DESCRIPTION asin computes the inverse sine (arc sine) of the argumeAtguments to
asin must be in the range -1 to 1.

asinf is identical taasin , other than taking and returning floats.
You can madify error handling for these routines usiagerr .

RETURNS asin returns values in radians, in the range-mf 2 (@

If x is notin the range -1to 4sin andasinf returnNaN (not a number), set
the global variablesrrno , to EDOMand issue BOMAIN error message.

You can change this error treatment usitagherr .

CYGNUS GNU Math Library = 191

asinh , asinhf

asinh , asinhf
[inverse hyperbolic sine]

SYNOPSIS #include <math.h>
double asinh(double X);
float asinhf(float X);

DESCRIPTION asinh calculates the inverse hyperbolic sinecof
asinh is defined as in the following calculation.

sign(X x In(|x + J/1+ x2)

asinhf is identical, other than taking and returning floats.
RETURNS asinh andasinhf return the calculated value.

COMPLIANCE Neitherasinh norasinhf are ANSI C.

192 m GNU Math Library GNUPro Toolkit

atan , atanf

atan , atanf
[arc tangent]

SYNOPSIS #include <math.h>
double atan(double x);
float atanf(float x);

DESCRIPTION atan computes the inverse tangent (arc tangent) of the input value.
atanf is identical toatan , save that it operates on floats.

RETURNS atan returns a value in radians, in the rangenmf'2 @

COMPLIANCE atan is ANSIC.
atanf IS an extension.

CYGNUS GNU Math Library = 193

atan2 , atan2f

atan2 , atan2f
[arc tangent of/x]

SYNOPSIS #include <math.h>
double atan2(double y,double X);
float atan2f(float y,float X);

DESCRIPTION atan2 computes the inverse tangent (arc tangengxofatan2 produces the
correct result even for angles neam/ 2 rof 2 . (that is, whismear 0).
atan2f is identical taatan2 , save that it takes and returns float.

RETURNS atan2 and atan2f return a value in radians, in the rangemof m to . i both

andy are 0.0atan2 causes @OMAIN error . You can modify error handling
for these functions usingatherr .

COMPLIANCE atan2 is ANSI C.
atan2f is an extension.

194 = GNU Math Library GNUPro Toolkit

atanh , atanhf

atanh , atanhf
[inverse hyperbolic tangent]

SYNOPSIS #include <math.h>
double atanh(double X);
float atanhf(float X);

DESCRIPTION atanh calculates the inverse hyperbolic tangent.of
atanhf is identical, other than taking and returning float values.
RETURNS atanh andatanhf return the calculated value.

If |x| is greater than 1, the globahno , is set teEbomvand the result is maN
A DOMAIN error is reported.

If |x is 1, the globalerrno , is set tcEDOMand the result is infinity with the
same sign as. A SING error s reported.

You can modify the error handling for these routines usizgerr .

COMPLIANCE Neitheratanh noratanhf are ANSI C.

CYGNUS GNU Math Library = 195

JN, JNf | yN, yNf

[Bessel functions]

SYNOPSIS #include <math.h>

DESCRIPTION

RETURNS

COMPLIANCE

double jo(double X);

float jOf(float X);

double j1(double X);

float j1f(float X);

double jn(int n, double X);
float jnf(int n, float X);
double yO(double X);

float yOf(float X);

double y1(double X);

float y1f(float X);

double yn(int n, double X);
float ynf(int n, float X);

The Bessel functions are a family of functions that solve the following
differential equation.

XY 4 AY 4 (52— p2)y=
X22L + x=d + (x2—p?)y= 0
2+ XL+ (@ —p2y
These functions have many applications in engineering and physics.

jn calculates the Bessel function of the first kind of ordejn randj1 are
special cases for order, 0, and order, 1, respectively. Simijarbalculates
the Bessel function of the second kind of order, n,yarahdy1 are special
cases for order, 0 and 1, respectively.

jnf ,jof ,jaf ,ynf,yof , andyif perform the same calculations, butfioat
rather thardouble values.

The value of each Bessel functionkas returned.

None of the Bessel functions are in ANSI C.

196 = GNU Math Library GNUPro Toolkit

cbrt , cbrtf

cbrt , cbrtf
[cube root]

SYNOPSIS #include <math.h>
double cbrt(double X);
float cbrtf(float X);
DESCRIPTION cbrt computes the cube root of the argument.
RETURNS The cube root is returned.

COMPLIANCE cbrt isin System V release 4.
cbrtf is an extension.

CYGNUS GNU Math Library = 197

copysign , copysignf

copysign , copysignf
[sign of ¥, magnitude o]

SYNOPSIS #include <math.h>
double copysign (double X, double ¥);
float copysignf (float X, float ¥);

DESCRIPTION copysign constructs a number with the magnitude (absolute value) of its first
argumenty, and the sign of its second argumennt,
copysignf ~ does the same thing; the two functions differ only in the type of
their arguments and result.

RETURNS copysign returns a double with the magnitudexaind the sign of.
copysignf returns a float with the magnitude ofind the sign of.

COMPLIANCE copysign is hot required by either ANSI C or the System V Interface
Definition (Issue 2).

198 = GNU Math Library GNUPro Toolkit

cosh , coshf

cosh , coshf

[hyperbolic cosine]

SYNOPSIS #include <math.h>

DESCRIPTION

RETURNS

COMPLIANCE

double cosh(double x);

float coshf(float x)

cosh computes the hyperbolic cosine of the argument x.
cosh(x) is defined as the following equation.

(€% +¢e7)
2

Angles are specified in radiareshf is identical, save that it takes and
returns float.

The computed value is returned. When the correct value would create an
overflow, cosh returns the valuejUGE_VAL with the appropriate sign, and the
global valuegrmo , is set ttERANGE

You can modify error handling for these functions using the function,
matherr .

cosh is ANSI.

coshf is an extension.

CYGNUS

GNU Math Library = 199

erf , erff ,erfc , erfcf

erf ,erff ,erfc ,erfcf
[error function]

SYNOPSIS #include <math.h>

double erf(double X);
float erff(float X);
double erfc(double X);
float erfcf(float X);

DESCRIPTION erf calculates an approximation to teor function which estimates the
probability that an observation will fall withinstandard deviations of the
mean (assuming a normal distribution).

The error function is defined as the following differential equation.

2 —t?
= x J’Xe dt
Jm JO
erfc calculates the complementary probability; thagis(x) isi1-erf(x).

erfc is computed directly, so that you can use it to avoid the loss of precision
that would result from subtracting large probabilities (on lajgeom 1.

erff anderfcf differ fromerf anderfc only in the argument and result
types.

RETURNS For positive argumentsif and all its variants return a probability—a
number between 0 and 1.

COMPLIANCE None of the variants afif are ANSI C.

200 = GNU Math Library GNUPro Toolkit

exp, expf

exp, expf
[exponential]
SYNOPSIS #include <math.h>
double exp(double X);
float expf(float X);

DESCRIPTION exp andexpf calculate the exponential efthat is,ex (whereis the base of
the natural system of logarithms, approximately 2.71828).
You can use the (non-ANSI) functionatherr , to specify error handling for
these functions.

RETURNS On successxp andexpf return the calculated value. If the result underflows,
the returned value is 0. If the result overflows, the returned valussis_VAL
In either casesrro is set teERANGE
COMPLIANCE exp is ANSI C.
expf is an extension.

CYGNUS GNU Math Library = 201

expml, expmif

expml, expmlf
[exponential minus 1]

SYNOPSIS #include <math.h>
double expmi(double X);
float expm1f(float X);

DESCRIPTION expml andexpmif calculate the exponential efand subtract 1, that isx—1

(where e is the base of the natural system of logarithms, approximately
2.71828).

The result is accurate even for small values @fhere usingxp(x)-1 would
lose many significant digits.

RETURNS ex-1.

COMPLIANCE Neitherexpml norexpmif is required by ANSI C or by the System V
Interface Definition (Issue 2).

202 = GNU Math Library GNUPro Toolkit

fabs , fabsf

fabs , fabsf
[absolute value (magnitude)]

SYNOPSIS #include <math.h>
double fabs(double X);
float fabsf(float X);

DESCRIPTION fabs andfabsf calculatgx| , the absolute value (magnitude) of the argument,
x, by direct manipulation of the bit representation.of

RETURNS The calculated value is returned. No errors are detected.

COMPLIANCE fabs is ANSI.
fabsf IS an extension.

CYGNUS GNU Math Library = 203

floor , floorf , ceil , ceilf

floor | floorf ,ceill , ceillf
[floor and ceiling]

SYNOPSIS #include <math.h>

double floor(double X);
float floorf(float X);
double ceil(double X);
float ceilf(float X);

DESCRIPTION floor andfloorf find [x_, the nearest integer less than or equal teil
andceilf find [x7, the nearest integer greater than or equal to

RETURNS floor andceil return the integer result asi@ble .
floorf andceilf return the integer result asi@at

COMPLIANCE floor andceil are ANSI.
floorf andceilf are extensions.

204 = GNU Math Library GNUPro Toolkit

fmod , fmodf

fmod , fmodf

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[floating-point remainder (modulo)]

#include <math.h>
double fmod(double X, double)
float fmodf(float X, float y)

Thefmod andfmodf functions compute the floating-point remaindes/pf
(x moduloy).

Thefmod function returns the valuex —i , for the largest integesuch
that, ify is nonzero, the result has the same sighasd magnitude less than
the magnitude of.

fmod(x,0) returnsNaN and set®rrmo to EDOM
You can modify error treatment for these functions usiagerr .

fmod is ANSI C.
fmodf IS an extension.

CYGNUS

GNU Math Library = 205

frexp , frexpf

frexp , frexpf

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[split floating-point number]

#include <math.h>
double frexp(double val ,int* exp);
float frexpf(float val ,int* exp);

All non-zergnormal numbergan be described as* 2*p

frexp represents the doubley , as anantissam and a power op®

The resulting mantissa will always be greater than or equal to 0.5, and less
than 1.0 (as long a&/ is non-zero).

The power of two will be stored itexp .
mandp are calculated so that/ = mX 2P
frexpf is identical, other than taking and returning floats rather than doubles.

frexp returns the mantissay, If val is O, infinity, orNaN, frexp will set *exp
to 0 and returnal .

frexp is ANSI.
frexpf IS an extension.

206 = GNU Math Library GNUPro Toolkit

gamma gammaf, lgamma, lgammaf , gamma_r, gammaf_r, Ilgamma_r , Igammaf_r

gammagammaf, l[gamma, l[gammaf ,
gamma_r, gammaf r,Ilgamma_r ,lgammaf r

[logarithmic gamma function]

SYNOPSIS #include <math.h>

DESCRIPTION

RETURNS

double gamma(double X);

float gammaf(float X);

double Igamma(double X);

float Igammaf(float X);

double gamma_r(double X, int* signgamp);
float gammaf_r(float X, int* signgamp);
double lgamma_r(double X, int* signgamp);
float Igammaf_r(float X, int* signgamp);

gammacalculatesIn (I (X)) , the natural logarithm of the gamma function of
x. The gamma functio@xp(gamma(x))) is a generalization of factorial, and
retains the property thatfN) =N x"(N_;. . Accordingly, the results of the

gammafunction itself growery quickly gammais defined asin(I" (x)) rather
than simplyl™ (X) , to extend the useful range of results representable.

The sign of the result is returned in the global variadidegam , which is
declared immath.h .

gammaf performs the same calculationgagima although using and returning
float values.

lgamma andigammaf are alternate names fggmmaandgammaf. The use of
lgamma instead ofammais a reminder that these functions compute the log of
the gammafunction, rather than theammafunction itself.

The functionsgamma_r, gammaf_r , lIgamma_r , andigammaf_r are just like
gamma gammaf, lgamma, andigammaf , respectively, although they take an
additionalargument. This additional argument is a pointer to an integer. As
an additional argument, it is used to return the sign of the result, and the
global variablesigngam , is not used. These functions may be used for
reentrant calls (although they will still set the global variabtae | if an

error occurs.

Normally, the computed result is returned.

Whenx is a nonpositive integeammareturnsHUGE_VAL anderrno s set to
EDOMIf the result overflowsgammareturnsHUGE_VAL anderrno is set to

CYGNUS

GNU Math Library = 207

gamma gammaf, [gamma, I[gammaf , gamma_r, gammaf _r, lgamma_r , Igammaf r

ERANGE You can modify this error treatment usingtherr .

COMPLIANCE Neithergammanorgammaf is ANSI C.

208 = GNU Math Library GNUPro Toolkit

hypot , hypotf

hypot , hypotf

[distance from origin]

SYNOPSIS #include <math.h>

double hypot(double X, double ¥);
float hypotf(float X, float y);

DESCRIPTION hypot calculates the Euclidean distan,/x’+ y° between the odgipgnd
a point represented by the Cartesian coordinatek fypotf differs only in
the type of its arguments and result.

RETURNS Normally, the distance value is returned. On overflagot returns

HUGE_VALand setermo to ERANGE
You can change the error treatment wikhherr .

COMPLIANCE hypot andhypotf are not ANSI C.

CYGNUS

GNU Math Library = 209

ilogbh , ilogbf

ilogb , ilogbf
[get exponent of floating point number]

SYNOPSIS #include <math.h>
int ilogb(double val);
int ilogbf(float val);

DESCRIPTION All non zero, normal numbers can be describegras: p.ilogb and
ilogbf ~examine the argumenty/ , and returrp. The functionsfrexp and
frexpf , are similar talogb andilogbf , but also returm

RETURNS ilogb andilogbf return the power of two used to form the floating point
argument. lfva/ is0, they returniNT_MAX (INT_MAXis defined inimits.h).
If val is infinite, orNaN, they returnNT_MAX.

COMPLIANCE Neitherilogb norilogbf is required by ANSI C or by the System V
Interface Definition (Issue 2).

210 = GNU Math Library GNUPro Toolkit

infinity , infinityf

infinity , Infinityf
[representation of infinity]
SYNOPSIS #include <math.h>
double infinity(void);

float infinityf(void);

DESCRIPTION infinity andinfinityf return the special number IEERinity , in,
respectively, double and single precision arithmetic.

CYGNUS GNU Math Library = 211

isnan ,isnanf ,isinf ,isinff ,finite , finitef

Isnan ,isnanf ,isinf isinff | finite , finitef

SYNOPSIS

DESCRIPTION

RETURNS

[test for exceptional numbers]

#include <ieeefp.h>

int isnan(double arg);
int isinf(double arg);
int finite(double arg);
int isnanf(float arg);
int isinff(float arg);
int finitef(float arg);

These functions provide information on the floating point argument supplied.

The following are five major number formats.

Zero
A number which contains all zero bits.

subnormal
Used to represent number with a zero exponent, but a non-zero fraction.

normal
A number with an exponent, and a fraction.
infinity
A number with an all 1's exponent and a zero fraction.

NAN
A number with an all 1's exponent and a non-zero fraction.

isnan returns 1 if the argument isxaN
isinf returns 1 if the argument is infinity.
finite returns 1 if the argument is zero, subnormal or normal.

Theisnanf ,isinff andfinitef perform the same operations as tixekn |,
isinf andfinite counterparts, but on single precision floating point
numbers.

212 m GNU Math Library GNUPro Toolkit

Idexp , Idexpf

ldexp , Idexpf

[load exponent]

SYNOPSIS #include <math.h>

DESCRIPTION

RETURNS

COMPLIANCE

double Idexp(double val ,int exp);
float Idexpf(float val ,int exp);

ldexp calculates the valueal x 28*P, Idexpf is identical, save that it takes
and returndloat rather thardouble values.

Idexp returns the calculated value. Underflow and overflow bothrset to
ERANGEOnN underflow]dexp andidexpf returno.o . On overflow,ldexp
returns plus or miNnUSUGE_VAL

Idexp IS ANSI;Idexpf is an extension.

CYGNUS

GNU Math Library = 213

log , logf

log , logf
[natural logarithms]

SYNOPSIS #include <math.h>
double log(double X);
float logf(float X);

DESCRIPTION Return the natural logarithm ef that is, its logarithm base, (wheree is the
base of the natural system of logarithms, 2.71828g.)andlogf are
identical save for the return and argument types.

You can use the (non-ANSI) functionatherr , to specify error handling for
these functions.

RETURNS Normally, returns the calculated value. Wheis zero, the returned value is
-HUGE_VALanderrno is set tERANGEWhenx is negative, the returned value
is -HUGE_VALanderrno is set tcEDOMYou can control the error behavior,
usingmatherr .

COMPLIANCE log is ANSI,logf is an extension.

214 m GNU Math Library GNUPro Toolkit

log10 , logl0f

log10 , logl0f

[base 10 logarithms]

SYNOPSIS #include <math.h>
double log10(double X);
float log10f(float X);
DESCRIPTION log10 returns the base 10 logarithmxofit is implemented as
log(x)/log(10)
log10f is identical, save that it takes and retuildss values.
RETURNS Ilog10 andioglof return the calculated value. See the description for “log,
logf” on page 214 for information on errors.
COMPLIANCE log10 is ANSI C.log10f is an extension.
CYGNUS GNU Math Library m 215

loglp , loglpf

loglp , loglpf

[log of 1 +X]
SYNOPSIS #include <math.h>

double loglp(double X);

float log1pf(float X);

DESCRIPTION loglp calculatesn(1+x), the natural logarithm af+x. You can uségilp
rather thanog(1+ x) for greater precision whenis very small.

logipf calculates the same thing, but accepts and retusns values rather
thandouble .

RETURNS loglp returns alouble , the natural log of+x. loglpf returns dloat |, the
natural log ofi+x.

COMPLIANCE Neitherloglp norlogipf is required by ANSI C or by the System V
Interface Definition (Issue 2).

216 = GNU Math Library GNUPro Toolkit

matherr

matherr
[modifiable math error handler]

SYNOPSIS #include <math.h>
int matherr(struct exception * e);

DESCRIPTION matherr is called whenever a math library function generates an error. You
can replacenatherr by your own subroutine to customize error treatment.
The customizeehatherr must return O if it fails to resolve the error, and
non-zero if the error is resolved.

Whenmatherr returns a nonzero value, no error message is printed and the
value oferrno is not modified.
You can accomplish either or both of these things in yourreatierr using
the information passed in the structure, The following example shows the
exception structure (defined imath.h).

struct exception {

int type;
char *name;
double argl, arg2, retval;
int err;
2
The members of the exception structure have the following meanings.
type

The type of mathematical error that occurred; macros encoding error
types are also defined imath.h .

name
A pointer to a null-terminated string holding the name of the math
library function where the error occurred.

argl , arg2
The arguments which caused the error.

retval
The error return value (what the calling function will return).

err
If set to be non-zero, this is the new value assignedrio .

The error types defined math.n represent possible mathematical errors as
follows.
DOMAIN
An argument was not in the domain of the function; &g-1.0)

CYGNUS GNU Math Library m 217

matherr

SING
The requested calculation would result in a singularity; e.g.,
pow(0.0,-2.0)

OVERFLOW
A calculation would produce a result too large to represent; e.g.,
exp(1000.0)

UNDERFLOW
A calculation would produce a result too small to represent; e.g.,
exp(-1000.0)

TLOSS
Total loss of precision. The result would have no significant digits; e.g.,
sin(10e70)

PLOSS
Partial loss of precision.

RETURNS The library definition fomatherr returnso in all cases. You can change the
calling function’s result from a customizettherr by modifying
e->retval , which propagates backs to the callemdtherr returnso
(indicating that it was not able to resolve the error) the calleeseis to an
appropriate value, and prints an error message.

COMPLIANCE matherr is not ANSI C.

218 m GNU Math Library GNUPro Toolkit

modf, modff

modf, modff
[split fractional and integer parts]

SYNOPSIS #include <math.h>
double modf(double val, double * ipart);
float modff(float val, float * ipart);

DESCRIPTION modf splits the doublea/ apart into an integer part and a fractional part,
returning the fractional part and storing the integer paripiat . No
rounding whatsoever is done; the sum of the integer and fractional parts is
guaranteed to be exactly equalto .

That is, if. realpart =modf(val ,& intpart) ; thenrealpart +intpart is the
same aval .

modff is identical, save that it takes and retutsse rather thardouble
values.

RETURNS The fractional part is returned. Each result has the same sign as the supplied
argumentyal .

COMPLIANCE modf is ANSI C.modff is an extension.

CYGNUS GNU Math Library = 219

nan, nanf

nan, nanf
[representation of infinity]
SYNOPSIS #inc | ude <math.h>
doub | e nan(void);

floa t nanf(void);

DESCRIPTION nan andnanf return an I[EEE NaN (Not a Number) in dauble ard single
precision arithmetic repectively.

220 = GNU Math Library GNUPro Toolkit

nextafter , nextafterf

nextafter , nextafterf
[get next number]
SYNOPSIS #include <math.h>
double nextafter(double val , double dir);
float nextafterf(float val , float dir);
DESCRIPTION nextafter returns the double precision floating point number closest/to
in the direction towardir .
nextafterf ~ performs the same operation in single precision. For example,
nextafter(0.0,1.0) returns the smallest positive number, which is
representable in double precision.
RETURNS Returns the next closest numbew4o in the direction towardir .
COMPLIANCE Neithernextafter ~ nornextafterf is required by ANSI C or by the System
V Interface Definition (Issue 2).
CYGNUS

GNU Math Library m 221

pow, powf

pow, powf
[X to the powely]

SYNOPSIS #include <math.h>
double pow(double X, double),
float pow(float X, float)

DESCRIPTION pow andpowf calculatex raised to the expl.0nty. (Thatxg,)

RETURNS On successiow andpowf return the value calculated.

When the argument values would produce overflaw,returnsHUGE_VAL
and seterrmo to ERANGEIf the argumenk passed t@ow or powf is a
negative noninteger, ands also not an integer, thenno is set teeDOMIf x
andy are both 0, thepow andpowf returni.

You can maodify error handling for these functions usiagerr .

COMPLIANCE pow is ANSI C.powf is an extension.

222 m GNU Math Library GNUPro Toolkit

rint ,rintf , remainder , remainderf

rint ,rintf |, remainder , remainderf
[round and remainder]

SYNOPSIS #include <math.h>

double rint(double X);

float rintf(float X);

double remainder(double X, double y);
float remainderf(float X, float y);

DESCRIPTION rint andrintt returns their argument rounded to the nearest integer.
remainder andremainderf find the remainder of/ y; this value is in the
range-y /2 ... +yl2.

RETURNS rint andremainder return the integer result as a double.

COMPLIANCE rint andremainder are System Vr4intt andremainderf are extensions.

CYGNUS GNU Math Library m 223

scalbn , scalbnf

scalbn , scalbnf
[scale by integer]

SYNOPSIS #include <math.h>
double scalbn(double x,int y);
float scalbnf(float X, int)

DESCRIPTION scalbn andscalbnf scalex by n, returningx times 2 to the power. The
result is computed by manipulating the exponent, rather than by actually
performing an exponentiation or multiplication.

RETURNS x times 2 to the power.

COMPLIANCE Neitherscalbn norscalbnf is required by ANSI C or by the System V
Interface Definition (Issue 2).

224 m GNU Math Library GNUPro Toolkit

sqrt , sqrtf

sqgrt , sqrtf
[positive square root]

SYNOPSIS #include <math.h>
double sqrt(double X);
float sqrtf(float X);

DESCRIPTION sgrt computes the positive square root of the argument. You can modify
error handling for this function withatherr .

RETURNS On success, the square root is returnedidfreal and positive, then the result
is positive. Ifx is real and negative, the global valueo is set tctEDOM
(domain error).

COMPLIANCE sqrt is ANSI C.sgrtf is an extension.

CYGNUS GNU Math Library m 225

sin , sinf , cos, cosf

sin , sinf |, cos, cosf
[sine or cosine]

SYNOPSIS #include <math.h>

double sin(double X);
float sinf(float X);
double cos(double X);
float cosf(float X);

DESCRIPTION sin andcos compute (respectively) the sine and cosine of the argument
Angles are specified in radians.

sinf andcosf are identical, save that they take and retiaan values.
RETURNS The sine or cosine ofis returned.

COMPLIANCE sin andcos are ANSI Csinf andcosf are extensions.

226 m GNU Math Library GNUPro Toolkit

sinh , sinhf

sinh , sinhf

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[hyperbolic sine]

#include <math.h>
double sinh(double X);
float sinhf(float X);

sinh computes the hyperbolic sine of the argumemtngles are specified in
radianssinh(x) is defined as:

g-e”
2

sinhf is identical, save that it takes and retulss values.

The hyperbolic sine of is returned. When the correct result is too large to be
representable (an overflovglph returnsHUGE_VALwith the appropriate sign,
and sets the global valeeno to ERANGE

You can modify error handling for these functions wiithherr .

sinh IS ANSI C.sinhf is an extension.

CYGNUS

GNU Math Library m 227

tan , tanf

tan , tanf
[tangent]
SYNOPSIS #include <math.h>
double tan(double X);
float tanf(float X);

DESCRIPTION tan computes the tangent of the argumeningles are specified in radians.
tanf is identical, save that it takes and retutsss values.

RETURNS The tangent of is returned.

COMPLIANCE tan is ANSl.tanf is an extension.

228 m GNU Math Library GNUPro Toolkit

tanh , tanhf

tanh , tanhf
[hyperbolic tangent]

SYNOPSIS #include <math.h>
double tanh(double X);
float tanhf(float X);

DESCRIPTION tanh computes the hyperbolic tangent of the argumeAngles are specified
in radians.

tanh(x) is defined as the following input.
sinh(x)/cosh(x)

tanhf is identical, save that it takes and retulss values.
RETURNS The hyperbolic tangent afis returned.

COMPLIANCE tanh is ANSI C.tanhf is an extension.

CYGNUS GNU Math Library = 229

Reentrancy Properties of libm

Reentranc y Properties of libm

When aibm function detects an exceptional casewo may be set, theatherr
function may be called, and a error message may be written to the standard error
stream. This behavior may not be reentrant.

With reentrant C libraries like the GNUPro C libragimo is a macro which expands
to the per-thread error value. This makes it thread safe.

When the user provides his owiatherr function it must be reentrant for the math
library as a whole to be reentrant.

In normal debugged programs, there are usually no math subroutine errors—and
therefore no assignmentsdeno and namatherr calls; in that situation, the math
functions behave reentrantly.

230 = GNU Math Library GNUPro Toolkit

GNUPRO™ TOOLKIT

GNU C++ lostreams
Library

June, 1998
98r1l

CYGNUS

Copyright © 1991-1998 Cygnus.

All rights reserved.

GNUPrg", the GNUPrd' logo and the Cygnus logo are all trademarks of Cygnus.
All other brand and product names are trademarks of their respective owners.

Permission is granted to make and distribute verbatim copies of this documentation,
provided the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this documentation
under the conditions for verbatim copying, provided also that the entire resulting
derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this documentation into
another language, under the above conditions for modified versions.

This documentation has been prepared by Cygnus Technical Publications; contact the
Cygnus Technical Publications stadbc@cygnus.com .

232 m GNU C++ lostreams Library GNUPro Toolkit

Introduction to lostreams

lostream classes implement most of the features of AT&T versiansgzdam

library classes, and most of the features of the ANSI X3J16 library draft (based on the
AT&T design). However they only support streams of typer, , rather than using a
template.

The following documentation is meant as a reference. For tutorial material on
iostreams, see the corresponding section of any popular introduction to C++.

« ‘“Licensing terms for libio” on page 234

« “Acknowledgments” on page 235

« “Operators and Default Streams” on page 237
« “Stream Classes” on page 241

« “Classes for Files and Strings” on page 263

« “Using the streambuf Layer” on page 269

« “C Input and Output” on page 277

CYGNUS GNU C++ lostreams Library = 233

Licensing terms for libio

Licensin g terms for libio

Since thaostream classes are so fundamental to standard C++, the Free Software
Foundation has agreed to a special exception to its standard license, in order to link
programs witHibio.a

As a special exception, in order to link this library with files compiled with a GNU
compiler to produce an executable, the resulting executable does not have the
coverage of the GNU General Public License. This exception does not however
invalidate any other reasons why the executable file might have the coverage of the
GNU General Public License.

The code is under the GNU General Public License (version 2) for all purposes other
than linking with this library, meaning that you can modify and redistribute the code
as usual, although, if you do, your modifications, and anything you link with the
modified code, must be available to others on the same terms.

234 m GNU C++ lostreams Library GNUPro Toolkit

Acknowledgments

Acknowled gments

Per Bothner wrote most of thetream library, although some portions have their
origins elsewhere in the free software community.

Heinz Seidl wrote the IO manipulators.
The floating-point conversion software is by David M. Gay of AT&T.

Some code was derived from parts of BSD 4.4, written at the University of California,
Berkeley.

Theiostream classes are found in thigo library. An early version was originally
distributed iniibg++ . Doug Lea was the original authoriiof++ , and some of the

file management code still imio s his property.

Various people found bugs or offered suggestions. Hongjiu Lu worked hard to use the
library as the defaultidio implementation for Linux, and has provided much
stress-testing of the library.

CYGNUS

GNU C++ lostreams Library m 235

Acknowledgments

236 m GNU C++ lostreams Library GNUPro Toolkit

Operators and Default Streams

The GNUiostream library, libio , implements the standard input and output

facilities for C++. These facilities are roughly analogous (in their purpose and
ubiquity, at least) with those defined by thet@o functions. Although these
definitions come from a library, rather than being part of the core language, they are
sufficiently central to be specified in the latest draft standard for C++. The following
documentation discusses operators and default streams in more detail.

« “Input and Output Operators” on page 238
« “Managing operators for input and output” on page 239

CYGNUS GNU C++ lostreams Library m 237

Input and Output Operators

Input and Output Operators

You can use two operators defined in this library for basic input and output operations.
They are familiar from any C++ introductory textboek:for output, and>> for

input. (Think of data flowing in the direction of tlerows) The<< (output) and>>

(input) operators are often used in conjunction with the following three streams that
are open by default.

ostream cout
(Variable)

The standard output stream, analogous to tkedGt .
ostream cin
(Variable)

The standard input stream, analogous to tkaiic .
ostream cerr
(Variable)

An alternative output stream for errors, analogous to thiee€ . The barebones
C++ version of the traditionahéllo ” program uses< andcout , as the
following example shows.

#include <iostream.h>

int main(int argc, char **argv)

{
out << "Well, hi there.\n";
return O;

238 m GNU C++ lostreams Library GNUPro Toolkit

Managing operators for input and output

Managing operators for input and
output

Casual use of these operators may be seductive, but—other than in writing throwaway
code for your own use—it is not necessarily simpler than managing input and output
in any other language. For example, robust code should check the state of the input
and output streams between operations (for example, using the metiddSee
“Checking the state of a stream” on page 244. You may also need to adjust maximum
input or output field widths, using manipulators ldegw or setprecision

<< onostream

(Operator)

Write output to an open output stream of ctasgam . Defined by this library on any
object of a C++ primitive type, and on other classes of the library. You can overload
the definition for any of your own applications’ classes.

Returns a reference to the implied argumaiiit, (the open stream it writes on),
permitting multiple inputs like the following statement.
cout << "The value of i is " << i <<"\n";

>> onistream

(Operator)

Read input from an open input stream of classam . Defined by this library on
primitive numerig pointer, andstring types, you can extend the definition for any of
your own applications’ classes.

Returns a reference to the implied argumaehit, (the open stream it reads),
permitting multiple inputs in one statement.

CYGNUS GNU C++ lostreams Library m 239

Managing operators for input and output

240 m GNU C++ lostreams Library GNUPro Toolkit

Stream Classes

In the documentation for “Input and Output Operators” on page 238, there is a
discussion of the classesiream andistream , for output and input, respectively.
These classes share certain properties, captured in their base<lass,

The following documentation discusses the properties and functionality of the stream
classes.

« “Shared properties: class ios” on page 243

« “Checking the state of a stream” on page 244

« “Choices in formatting” on page 246

« “Changing stream properties using manipulators” on page 249
« “Extended data fields” on page 250

« “Synchronizing related streams” on page 251

« “Reaching the underlying streambuf”’ on page 252

« “Managing output streams: class ostream” on page 253
« “Managing input streams: class istream” on page 256

« “Writing on an ostream” on page 253

« “Repositioning an ostream” on page 254

« “Miscellaneous ostream utilities” on page 255

« “Reading one character” on page 256

CYGNUS

GNU C++ lostreams Library = 241

« “Reading strings” on page 257

« “Repositioning an istream” on page 258

« “Miscellaneous istream utilities” on page 259

« “Input and output together: class iostream” on page 261

242 m GNU C++ lostreams Library GNUPro Toolkit

Shared properties: class ios

Shared properties: class 10S

The base classs provides methods to test and manage the state of input or output
streams.

ios delegates the job of actually reading and writing bytes to the abstract class,
streambuf , which is designed to provide buffered streams (compatible with C, in the
GNU implementation). See “Using the streambuf Layer” on page 269 for information
on the facilities available at tk@eambuf level.

i0S::i0S (streambuf * sb [, ostream * tie)
(Constructor)

Theios constructor by default initializes a new , and if you supply a

streambuf sb to associate with it, sets the stgded in the newlos object. It

also sets the default properties of the new object. You can also supply an optional
second argumentie , to the constructor; if present, it is an initial value for

ios::tie, to associate the news object with another stream.

i0S::~i0s()
(Destructor)

Theios destructor is virtual, permitting application-specific behavior when a
stream is closed—typically, the destructor frees any storage associated with the
stream and releases any other associated objects.

CYGNUS

GNU C++ lostreams Library m 243

Checking the state of a stream

Checkin g the state of a stream

Use this collection of methods to test for (or signal) errors and other exceptional
conditions of streams:

i0s::operator void* () const

(Method)
You can do a quick check on the state of the most recent operation on a stream by
examining a pointer to the stream itself. The pointer is arbitrary except for its truth
value; itis true if no failures have occurréak(:fail is not true). For instance, you
might ask for input orin only if all prior output operations succeeded, as in the
following example.
if (cout)

{
/I Everything OK so far

cin >> new_value;

}
ios:.operator ! () const

(Method)

In case it is more convenient to check whether something has failed, the operator,
I, returns true ifos::fail is true (signifying that an operation has failed).
For instance, you might issue an error message if input failed, as in the following
example.

if (Icin)

{

// Oops
cerr << "Eh?\n";

}
iostate i0s::rdstate ()const
(Method)
Return the state flags for this stream. The value is from the enumedsatien .
You can test for any combination of the following flags.
ios::goodbit
There are no indications of exceptional states on this stream.
ios::eofbit

End of file.

244 m GNU C++ lostreams Library GNUPro Toolkit

Checking the state of a stream

ios::failbit
An operation has failed on this stream; this usually indicates bad format of
input.
ios::badbit
The stream is unusable.
void i0S::setstate(iostate state)
(Method)

Set the state flag for this streamstare in addition to any state flags already set.
Synonym (for upward compatibilityjs::set
Seeios::clear to set the stream state without regard to existing state flags.
Seeios::good |, ios:eof |, ios::falil , andios::bad , to test the state.
int i0S::good ()const
(Method)
Test the state flags associated with this stream; true if no error indicators are set.
int ios::bad ()const
(Method)
Test whether a stream is marked as unusable. (Wheshietdbit is set.)
int i0s::eof()const
(Method)
True if end of file was reached on this streamiogtfeofbit is set.)
int ios::fail ()const
(Method)

Test for any kind of failure on this stream: either some operation failed, or the
stream is marked as bad. (If eithes:failbit or ios::badbit is set.)

void i0s::clear (iostate state)
(Method)

Set the state indication for this stream to the argustemst . You may call
ios::clear with no argument, in which case the state is sgido (no errors
pending).

Seeios::good , ios::eof , ios::fail , andios::bad , to test the state; see
ios::set Orios:setstate for an alternative way of setting the state.

CYGNUS

GNU C++ lostreams Library m 245

Choices in formatting

Choices in formattin g

The following methods control (or report on) settings for some details of controlling
streams, primarily to do with formatting output.

char ios:fill ()const

(Method)

Returns the curremtadding character.
char ios:fill (char padding)

(Method)

Sets the padding character for fill output requirements. You can also use the
manipulatorsetfil . See“Changing stream properties using manipulators” on page
249.

Default: space.
int ios::precision (const
(Method)

Report the number of significant digits currently in use for output of floating point
numbers.

Default: 6.
int ios::precision(int signif)
(Method)

Set the number of significant digits (for input and output numeric conversions) to
signif . You can also use the manipulatetprecision for this purpose. See
“Changing stream properties using manipulators” on page 249.

int ios::width ()const
(Method)

Report the current output field width setting (the number of characters to write on
the next<< output operation).

Default:0, which means to use as many characters as necessary.
int ios:width (int num
(Method)
Set the input field width setting tmm Return the previous value for this stream.

This value resets to zero (the default) every time youusi¢is essentially an
additional implicit argument to that operator.

246 m GNU C++ lostreams Library GNUPro Toolkit

Choices in formatting

You can also use the manipulasetw for this purpose. See “Changing stream
properties using manipulators” on page 249.

fmtflags i0s::flags ()const
(Method)

Returns the current value of the complete collection of flags controlling the format
state. The following documentation describes the flags and their meanings when
set.
ios::dec
ios::oct
ios::hex
Each of these flags is for a numeric base to use in converting integers from
internal to display representation, or vice versa::dec decimal,os::oct,
octal, orios::hex, hexadecimal, respectively. (You can change the base using
the manipulatosetbase , or any of the manipulatordec oct, or hex; see
“Changing stream properties using manipulators” on page 249.)

On input, if none of these flags is set, reads numeric constants according to
the prefix: decimal, (if no prefix, or a”suffix), octal (if ao prefix is
present), or hexadecimal (ifoa prefix is present).
Default:dec.
ios::fixed
Avoid scientific notation, and always show a fixed number of digits after the
decimal point, according to the output precision in effect.ibseprecision
to set precision.
ios::left
ios::right
ios::internal
Where output is to appear in a fixed-width fidlnks::left sets as left-justified,
ios::right sets as right-justified, ands::internal sets with padding in the
middle (such as between a numeric sign and the associated value).
ios::scientific
Uses scientific (exponential) notation to display humbers.
ios::showbase
Displays the conventional prefix as a visual indicator of the conversion base:
no prefix for decimalp for octal,0x for hexadecimal.
ios::showpoint
Displays a decimal point followed by trailing zeros to fill out numeric fields,
even when redundant.

CYGNUS

GNU C++ lostreams Library m 247

Choices in formatting

ios::showpos
Displays a positive sign on display of positive numbers.
ios::skipws
Skips white space. (On by default).
ios::stdio
Flushes the Gtdio streamsstdout andstderr , after each output operation
(for programs that mix C and C++ output conventions).
ios::unitbuf
Flushes after each output operation.
ios:.uppercase
Uses uppercase rather than lowercase characters in numeric displays; for
instancepx7A rather tharx7a, or3.14e+09 rather thars.14e+09 .
fmtflags i0s::flags (fmtflags value)
(Method)

Sets a value as the complete collection of flags controlling the format state. See
the descriptions for the flag values with “fmtflags ios::flags ()const” on page 247.

Useios::setforios::unsetfto change one property at a time.
fmtflags ~ i0S::setf (fmtflags flag)
(Method)

Sets one particular flag (of those describeddsr.flags () ; returns the complete
collection of flaggpreviouslyin effect. (Usdos::unsetfto cancel.)

fmtflags i0S::setf (fmtflags flag , fmtflags mask)
(Method)

Clears the flag values indicated hyisk, then sets any of them that are also in

flag . See the descriptions for flag values for “fmtflags ios::flags ()const” on page
247. Returns the complete collection of flapgeviouslyin effect. (See “fmtflags
ios:.unsetf (fmtflags flag)” on page 248 for another way of clearing flags.)

fmtflags 10S::unsetf (fmtflags flag)
(Method)

The converse dbs::setf, returning the old values of those flags. Makes certain
flag is not set for this streamiag signifies a combination of flag values; see the
discussions with “fmtflags ios::flags ()const” on page 247).

248 m GNU C++ lostreams Library GNUPro Toolkit

Changing stream properties using manipulators

Changing stream properties using manipulators

For convenience, manipulators provide a way to change certain properties of streams,

or otherwise affect them, in the middle of expressions involving << or >>. For

example, you might use the following input statement to produce |**234| as output.
cout << "|" << setfill("*) << setw(5) << 234 << "|";

Manipulators that take an argument requirelude <iomanip.h>
ws
(Manipulator)

Skips whitespace.

flush

(Manipulator)
Flushes an output stream. For instance, the imputk<...<<flush; , has the
same effect as the inpubut<<...; cout.flush();

end|

(Manipulator)
Writes an end of line charactar,, then flushes the output stream.
ends
(Manipulator)
Writes the string terminator character,
setprecision(int signif)
(Manipulator)

Changes the value afs::precision in << expressions with the manipulator,
setprecision(signif) with, for instance, the use of the following input to print
46 .

Manipulators such astprecision(signif) that take an argument require
#include <iomanip.h>
cout << setprecision(2) << 4.567;
setw(nt n)
(Manipulator)

Changes the value afs::width in << expressions with the manipulator,
setw(n); use the following input statement, for example.
cout << setw(5) << 234;

This input print234 with two leading spaces.
Requirestinclude <iomanip.h>

CYGNUS

GNU C++ lostreams Library m 249

Extended data fields

setbasqint base)
(Manipulator)

Changes the base value for numeric representations, wdserées one of10
(decimal),s (octal), orie (hexadecimal).

Requirestinclude <iomanip.h>
dec
(Manipulator)
Selects decimal base; equivalensdtase(10)
hex
(Manipulator)
Select hexadecimal base; equivalendetbase(16)
oct
(Manipulator)
Selects octal base; equivalenttthase(8)
seftfill (char padding)
(Manipulator)
Sets thepadding character, in the same wayias::fill .
Requirestinclude <iomanip.h>

Extended data fields

A related collection of methods allows you to extend the collection of flags and
parameters for many applications, without risk of conflict between them.

static fmtflags ios::bitalloc ()
(Method)

Reserves a bit (the single bit on in the result) to use as a flag. titsilng
guards against conflict between two packages thabssibjects for different
purposes.

This method is available for upward compatibility, but is not in the ANSI working
paper. The number of bits available is limited; a return valwenoéans no bit is

available.
static int ios::xalloc ()
(Method)

Reserves space for a long integer or pointer parameter. The result is a unique
non-negative integer. You can use it as an indéstaword orios::pword. Use

250 m GNU C++ lostreams Library GNUPro Toolkit

Synchronizing related streams

xalloc to arrange for arbitrary special-purpose data in yasiobjects, with-out
risk of conflict between packages designed for different purposes.

long& ios:iword (int index)
(Method)

Returns a reference to arbitrary data, of long integer type, storedds an
instanceindex , conventionally returned froims::xalloc, identifies the particular
data you need.

long ios:iword (int index) const
(Method)
Returns the actual value of a long integer stored ins@n
void*& i0s::pword (int index)
(Method)

Returns a reference to an arbitrary pointer, stored iosanstanceindex ,
originally returned fromos::xalloc, identifies a particular pointer you need.

void* i0s::pword (int index)const
(Method)
Returns the actual value of a pointer stored ifoan

Synchronizing related streams

You can use the following methods to synchronize related streams so that they
correspond:

ostream* j0S::tie () const
(Method)

Report on what output stream, if any, is to be flushed before accessing this one. A
pointer value ob means no stream is tied.

ostream* i0S::tie (ostream* assoc)
(Method)

Declare that an output streamsoc , must be flushed before accessing this
stream.

int ios::sync_with_stdio(int switch)
(Method)

Unless iostreams anddiilio are designed to work together, you may have to
choose between efficient C++ streams output and output which is compatible with
Cstdio . Useios::sync_with_stdiq) to select C compatibility. The argument,

CYGNUS

GNU C++ lostreams Library m 251

Reaching the underlying streambuf

switch , iS aGNU extension; since the default value $atich is usually1, useo
as the argument to choose output that is not necessarily compatible sadis C

If you install thestdio implementation that comes with GNiblo , there are
compatible input/output facilities for both C and C++. In that situation, this
method is unnecessary— but you may still want to write programs that call it, for
portability.

ReaChing the Underlying streambuf

Finally, you can use the following method to access the underlying object:

streambuf* i0s::rdbuf ()const
(Method)

Return a pointer to th@reambuf object that underlies thies.

252 m GNU C++ lostreams Library GNUPro Toolkit

Managing output streams: class ostream

Managing output streams: class
ostream

Objects of thestream class inherit the generic methods friamg, and in addition
have the following methods available. Declarations for this class come from
iostream.h

ostream::ostreant)

(Constructor)
The simplest form of the constructor for@mream simply initializes a
newios object.

ostream::ostreangstreambuf* sb [, ostream tie)

(Constructor)

This alternative constructor requires a first argument(of type streambuf*) to
use an existing open stream for output. It also accepts an optional second
argumenttie , to specify a relateestream* as the initial value foios::tie.

If you use this constructor, the argumeunt, is not destroyed (or deleted or
closed) when thestream is destroyed.

Writing on an ostream

These methods write on astream . You may also use the operatot; see “” on
page 237.

ostream& OStream::put(char c)
(Method)
Write the single charactex,
ostream& oOsStream::write(string ,int length)
(Method)

Write length characters of a string to this ostream, beginning at the pointer,
string . string may have any of these typesar , unsigned char* | signed
char* .

ostream& o0Ostream::form(const char* format , ...)
(Method)
A GNU extension, similar teprintf file , format ,..)

format is aprintf -Style format control string, which is used to format the
(variable number of) arguments, printing the result onodlisam . See

CYGNUS

GNU C++ lostreams Library m 253

Repositioning an ostream

ostream::vform for a version that uses an argument list rather than a variable
number of arguments.

ostream& OStream::vform (const char format , va_list args)
(Method)
A GNU extension, similar tefprintf(file , format , args).format isa
printt -style format control string, which is used to format the argument list,

args , printing the result on thisstream . Seeostream::form for a version that
uses a variable number of arguments rather than an argument list.

Repositioning an ostream

You can control the output position (on output streams that actually support positions,
typically files) with the following methods.

streampos OStream::tellp ()
(Method)
Returns the current write position in the stream.
ostream& OStream::seekp(streampos foc)
(Method)
Resets the output positionfte (which is usually the result of a previous
call toostream::tellp). loc specifies an absolute position in the output
stream.
ostream& 0OStream::seekp(streamoff loc , rel)
(Method)
Resets the output position te , relative to the beginning, end, or current output
position in the stream, as indicatedsy (a value from the enumeration of
ios::seekdir):
beg
Interpretioc as an absolute offset from the beginning of the file.
cur
Interpretioc as an offset relative to the current output position.
end
Interpretioc as an offset from the current end of the output stream.

254 m GNU C++ lostreams Library GNUPro Toolkit

Miscellaneous ostream utilities

Miscellaneous ostream Utilities

You may need to use the followingiream methods for housekeeping.
ostream& flush ()
(Method)
Deliver any pending buffered output for tlisream .
int ostream::opfx ()
(Method)

opfx is a prefix method for operations ostream o0bjects; it is designed to be
called before any further processing. See the following metsiidiam::osfx
for the converse adpfx functionality.

opfx tests that the stream is in staded, and if so flushes any stream tied to this

one. The result is whenopfx succeeds; else (if the stream state igyoat), the
result iso.

void ostream::0sfx()
(Method)

osfxis a suffix method for operations estream objects; it is designed to be
called at the conclusion of any processing. Alldsteeam methods end by
calling osfx. See the previous methamktream::opfx, for the converse afsfx
functionality. If theunitouf flag is set for this streamsfx flushes any buffered
output for it.

If the stdio flag is set for this streamsfx flushes any output buffered for the C
output streamsstdout andstderr

CYGNUS

GNU C++ lostreams Library m 255

Managing input streams: class istream

Managing input streams: class
IStream

Classistream o0bjects are specialized for input; asdetream , they are derived from
ios, so you can use any of the general-purpose methods from that base class.
Declarations for this class also come friogtream.h

istream::istream ()

(Constructor)
When used without arguments, thieeam constructor initializes thies
object and initializes the input counter (the value reported by
istream::gcount) to o.

istream::istream (streambuf* sb [, ostream tie)

(Constructor)
Calls the constructor with one or two arguments. The first argustent,
is astreambuf* ; with this pointer, the constructor uses thiatambuf
for input. The second optional argumenat, , specifies a related output
stream as the initial value fas::tie.
Using this constructor, the argumestt, is not destroyed (or deleted or
closed) when thestream is destroyed.

Reading one character

Use the following methods to read a single character from the input stream.
int istream::get ()
(Method)

Reads a single character @mr from the input stream, returning it (coerced to an
unsigned char) as the result.

istream& istream::get (char &c)
(Method)
Reads a single character from the input streamgnto
int istream::peek()
(Method)

Returns the next available input character vithioutchanging the current input
position.

256 m GNU C++ lostreams Library GNUPro Toolkit

Reading strings

Reading strings

Use the following methods to read strings (for example, a line at a time) from the input
stream.

istream& istream::get (char* c,int len [, char delim 1)
(Method)

Reads a string from the input stream into the array Bthe remaining arguments limit
how much to read: up ten-1 characters, or up to (but not including) the first
occurrence in the input of a particular delimiter charaeteir, —newline {n), by

default. (Naturally, if the stream reaches end of file first, that too will terminate
reading.) Ifaelim was present in the input, it remains available as if unread; to discard
it instead, se@stream::getline.

getwrites\o at the end of the string, regardless of which condition terminates the
read.

istream& istream::get (streambuf& sb [,char delim])

(Method)

Reads characters from the input stream and copies them aresh®uf object,sb.
Copying ends either just before the next instance of the delimiter character,
delim —newline {n), by default, or when either stream endslelfn was present in
the input, it remains available as if unread.

istream& istream::getline (charptr ,int len [char delim])

(Method)

Reads a line from the input stream, into the arrayiaptr . charptr may be any of
three kinds of pointekhar* , unsigned char* , Orsigned char*

The remaining arguments limit how much to read: up to (but not including) the first
occurrence in the input of a line delimiter charaateii;m —newline {n), by default,
or up tolen-1 characters (or to end of file, if that happens sooner).

If getline succeeds in reading a full line, it also discards the trailing delimiter character
from the input stream. (To preserve it as available input, see the similar form of
iostream::get) If delim was not found beforen characters or end of filggtline

sets thaos::fail flag, as well as thims:.eofflag if appropriategetline writes a null
character at the end of the string, regardless of which condition terminates the read.

istream& istream::read (pointer ,int len)

(Method)
Readlen bytes into the location abinter , unless the input ends first.
pointer may be of typehar* , void* , unsigned char* , Orsigned char* . If the

CYGNUS

GNU C++ lostreams Library m 257

Repositioning an istream

istream ends before readingn bytesread sets theos::fail flag.
istream& istream::gets(char* s, char delim 1)
(Method)

A GNU extension, reads an arbitrarily long string from the current input position
to the next instance of the charactern —newline {n), by default.

To permit reading a string of arbitrary lengffetsallocates whatever memory is
required.
NOTE: The first arguments, is an address to record a character pointer, rather than
the pointer itself.
istream& istream::scan(const char * format , ...)
(Method)

A GNU extension, similar t&scanf(file , format ,..) .format iSa
scanf -style format control string, which is used to read the variables in the
remainder of the argument list from tiseream.

istream& istream::vscan(const char * format , va_list args)
(Method)
Like istream::scan, although only taking a single_list argument.

Repositioning an istream

Use the following methods to control the current input position.
streampos istream::tellg ()
(Method)

Returns the current read position, in order to save it and return to it later with
istream::seekg

istream& istream::seekg(streampos p)
(Method)

Resets the input pointer (if the input device permits ip) tosually the result of an
earlier call tastream::tellg.

istream& istream::seekg(streamoff offset , ios::seek_dir ref)
(Method)

Resets the input pointer (if the input device permits itytet characters from
the beginning of the input, the current position, or the end of input. Specifies how
to interpretoffset with one of the following values for the second argument,

Interpretsioc as an absolute offset from the beginning of the file.

258 m GNU C++ lostreams Library GNUPro Toolkit

Miscellaneous istream utilities

Interpretsioc as an offset relative to the current output position.
Interpretsioc as an offset from the current end of the output stream.

Miscellaneous isweam Utilities

Use the following methods for housekeepingsiream objects.

int istream::gcount ()

(Method)
Reports how many characters were read fromigtisam in the last unformatted
input operation.

int istream::ipfx (int keepwhite)

(Method)

Ensures that thistream object is ready for reading; checks for errors and end of
file and flushes any tied streaipfx skips whitespace if you specifyas the
keepwhite argumentandif ios::skipws is set for this stream.

To avoid skipping whitespace (regardless ofstty@vs setting on the stream),
use1 as the argument.

Callistream::ipfx to simplify writing non-standardized methods for reading
istream objects.

void istream::isfx ()
(Method)

A placeholder for compliance with the draft ANSI standard; this method does
nothing whatsoever.

In order to write portable standard-conforming codéstneam objects, callsfx
after any operation that reads fromistneam; if istream::ipfx has any special
effects that must be canceled when dastecam::isfx will cancel them.
istream& istream::ignore (fint n]f,int delim 1)
(Method)

Discards some number of characters pending input. The first optional argament,
specifies how many characters to skip.

The second optional argumenié/im , specifies a “boundary” character: ignore
returns immediately if this character appears in the input.

By default,delim iSEOF that is, if you do not specify a second argument, only the
count,n, restricts how much to ignore (while input is still available).

If you do not specify how many characters to ignore, ignore returns after
discarding only one character.

CYGNUS

GNU C++ lostreams Library m 259

Miscellaneous istream utilities

istream& istream::putback (char ch)
(Method)

Attempts to back up one character, replacing the character backed-up eker by
Returns=oFif this is not allowed. Putting back the most recently read character is
always allowed. (This method corresponds to the C funatigeic .)

istream& istream::unget ()
(Method)
Attempts to back up one character.

260 m GNU C++ lostreams Library GNUPro Toolkit

Input and output together: class iostream

Input and output to gether: class
lostream

In order to use the same stream for input and output, use an object of the class,
iostream, derived from botlistream andostream

The constructors fdpstream behave just like the constructors fstream.
iostream::iostream ()

(Constructor)
When used without argumenisstream constructs ths object, and initializes
the input counter (the value reportedifigam::gcount) to 0.
iostream::iostream (streambuf* sb [,ostream* tie)
(Constructor)

You can also call a constructor with one or two arguments. The first argument,
is astreambuf* ; if you supply this pointer, the constructor uses theambuf

for input and output. You can use the optional second argumgent(an

ostream*) to specify a related output stream as the initial valuefortie.

As for ostream andistream, iostream simply uses thés destructor. However,
aniostream is not deleted by its destructor.

You can use all thistream, ostream andios methods with aipstream object.

CYGNUS

GNU C++ lostreams Library m 261

Input and output together: class iostream

262 m GNU C++ lostreams Library GNUPro Toolkit

Classes for Files and Strin gs

There are two very common special cases of input and output: using files, and using
strings in memorylibio defines the following four specialized classes for such
cases.

= ifstream
Methods for reading files.

= ofstream
Methods for writing files.

= istrstream
Methods for reading strings from memory.

[] ostrstream
Methods for writing strings in memory.

The following documentation discusses in more detail the classes for files and strings.
« “Reading and writing files” on page 264
« “Reading and writing in memory” on page 267

CYGNUS GNU C++ lostreams Library = 263

Reading and writing files

Readin g and writin g files

The following methods are declaredisneam.n . You can read data from class
ifsream with any operation from clagsream

There are also a few specialized facilities, as in the following methods.

ifstream::ifstream ()
(Constructor)

Make anifstream associated with a new file for input. (If you use this version of
the constructor, you need to cdditream::open before actually reading anything)

ifstream::ifstream (int fd)
(Constructor)

Make anitstream for reading from a file that was already open, using file
descriptorfd . (This constructor is compatible with other versionegafeams
for POSIX systems, but is not part of the ANSI working paper.)

ifstream::ifstream (const char* fname [, int model, int prot 1))
(Constructor)

Open a file*fname , for thisitstream object.
By default, the file is opened for input (withs::in asmode).

If you use this constructor, the file will be closed wheniftiream is destroyed.

You can use the optional argumertie to specify how to open the file, by
combining these enumerated values (with—the bitwise ‘or’ signifier). These
values are actually defined in class, so that all file-related streams may inherit
them. Only some of these modes are defined in the latest draft ANSI specification;
if portability is important, you may wish to avoid the others.

» i0S:2iN
Open for input. (Included ians! draft.)
» i0S::0ut
Open for output. (Included imnsi draft.)
» i0S::ate
Set the initial input (or output) position to the end of the file.
« i0S::app
Seek to end of file before each write. (Includedns! draft.)
» i0S::trunc
Guarantee a fresh file; discard any contents that were previously associated
with it.

264 m GNU C++ lostreams Library GNUPro Toolkit

Reading and writing files

» i0S::nocreate
Guarantee an existing file; fail if the specified file did not already exist.

=« i0S::noreplace
Guarantee a new file; fail if the specified file al-ready existed.
=« i0s::binary
Open as a binary file (on systems where binary and text files have different
properties, which is typically hown'’ is mapped; included in ANSI draft).
The last optional argumeptot is specific to Unix-like systems; it specifies the
file protection (by defaultg44).

ifstream::open (const char* fname [,int model, int prot]])

(Method)

Open a file explicitly after the associatetteam object already exists (for
instance, after using the default constructor). The arguments, options and defaults
all have the same meanings as in the fully specifieehm constructor.

You can write data to classtream with any operation from clagstream . The
following documentation describes a few specialized facilities

ofstream::ofstream)
(Constructor)

Make anofstream associated with a new file for output.

ofstream::ofstream(int fd)
(Constructor)

Make anofstream for writing to a file that was already open, using file
descriptorfd .

ofstream::ofstream (const char * fname [,int model[,nt prot 1))
(Constructor)

Open a file*fname , for thisofstream object.

By default, the file is opened for output (withs::out as mode). You can use the
optional argumentnode, to specify how to open the file, just as described for
ifstream::ifstream.

The last optional argumentrot , specifies the file protection, which is, by
default,644).

ofstream::~ofstream()
(Destructor)

The files associated wiidistream objects are closed when the corresponding
object is destroyed.

CYGNUS

GNU C++ lostreams Library m 265

Reading and writing files

void ofstream::open(const char* fname [,int mode [,int prot 1)
(Method)
Open a file explicitly after the associatgistream object already exists (for
instance, after using the default constructor). The arguments, options and defaults
all have the same meanings as in the fully specifie&am constructor.
The classstream combines the facilities aktream andofstream |, just as
iostream combinegstream andostream .
The classstreambase underlies botlfstream andofstream . They both inherit
this additional method:

void fstreambase::clos€)
(Method)

Close the file associated with this object, andasetfail in this object to mark the
event.

266 m GNU C++ lostreams Library GNUPro Toolkit

Reading and writing in memory

Reading and writin g in memor y

The classesstrstream |, ostrstream , andstrstream , provide some additional
features for reading and writing strings in memory—both static strings, and
dynamically allocated strings. The underlying classireambase , provides some
features common to all thregistreambuf underlies that in turn.

istrstream::istrstream (const char * str [, int size)
(Constructor)

Associate the new input string classstream , with an existing static string
starting atstr , of size,size . If you do not specifgize , the string is treated as a
NULL terminated string.

ostrstream::ostrstream ()
(Constructor)

Create a new stream for output to a dynamically managed string, which will grow
as needed.

ostrstream::ostrstream (char* str ,int size [,int modé)
(Constructor)

A new stream for output to a statically defined string of lerggh, starting at

str . You may optionally specify one of the modes described for
ifstream::ifstream; if you do not specify one, the new stream is simply open for
output, with modeos::out.

int ostrstream::pcount ()
(Method)

Report the current length of the string associated withoéhigream

char* ostrstream::str ()
(Method)

A pointer to the string managed by thigstream . ImplieSostrstream::freeze()

NOTE: If you want the string to be NULL terminated, you must do that yourself
(perhaps by writingnds to the stream).

void ostrstream::freeze(int n))

(Method)

If nis nonzero (the default), declare that the string associated with this
ostrstream s not to change dynamically; while frozen, it will not be reallocated
if it needs more space, and it will not be de-allocated wheostheeam is
destroyed. Uskeeze(1) if you refer to the string as a pointer after creating it via
ostrstream facilities.freeze(0) cancels this declaration, allowing a

CYGNUS GNU C++ lostreams Library m 267

Reading and writing in memory

dynamically allocated string to be freed whervsisstream is destroyed. If this
ostrstream is already static—that is, if it was created to manage an existing
statically allocated string4reeze is unnecessary, and has no effect.

int ostrstream::frozen ()
(Method)

Test whethefreeze(1) is in effect for this string.

strstreambuf * strstreambase::rdbuf ()
(Method)

A pointer to the underlyingtrstreambuf

268 m GNU C++ lostreams Library GNUPro Toolkit

Using the streambuf Layer

Theistream andostream classes are meant to handle conversion between objects in
your program and their textual representation.

By contrast, the underlyingreambuf class is for transferring raw bytes between
your program, and input sources or output sinks. Diffesessmbuf subclasses
connect to different kinds of sources and sinks.

The following documentation discusses the streambuf layer with more details.
« “Areas of a streambuf” on page 270
“Simple output re-direction by redefining overflow” on page 271
“C-style formatting for streambuf objects” on page 272
“Wrappers for C stdio” on page 273
« “Reading/writing from/to a pipe” on page 274
“Backing up” on page 275
“Forwarding I/O activity” on page 276

CYGNUS GNU C++ lostreams Library = 269

Areas of a streambuf

Areas of a streambuf

streambuf buffer management is fairly sophisticated (or complicated).
The standard protocol has the followiaiggas

« Theput areacontains characters waiting for output.

» Theget areacontains characters available for reading.

The following methods are used to manipulate these areas. These are all protected
methods, which are intended to be used by virtual function in classes derived from
streambuf . They are also all ANSI/ISO-standard, and the ugly names are traditional.

NOTE: If a pointer points to the ‘end’ of an area, it means that it points to the
charactegfter the area.

char * streambuf::pbase()const
(Method)
Returns a pointer to the start of {at area

char * streambuf::epptr ()const
(Method)

Returns a pointer to the end of {ingt area

char * streambuf::pptr ()const
(Method)

If pptr() < epptr () , thepptr() returns a pointer to the currgnit position.

(In that case, the next write will overwritgptr() , and incremengdptr() .)
Otherwise, there is nput position available (and the next character written will
causestreambuf::overflow to be called).

void streambuf::pbump (int N
(Method)

Add nto the currenput pointer No error checking is done.

void streambuf:setp(char * P, char * F)
(Method)

Sets the start of theut areato P, the end of theut areato £, and the currerut
pointeralso tor.

char * streambuf::eback ()const
(Method)

Returns a pointer to the start of tpet area

270 m GNU C++ lostreams Library GNUPro Toolkit

Simple output re-direction by redefining overflow

char * streambuf::egptr ()const
(Method)

Returns a pointer to the end of tet area

char * streambuf::gptr ()const
(Method)

If gptr() < egptr () , thengptr() returns a pointer to the curregdt position
(In that case, the next read will reagtr() , and possibly incremegptr() .)
Otherwise, there is no read position available (and the next read will cause
streambuf::underflow to be called).

void streambuf:gbump(int N
(Method)

Add ~Nto the currenget pointer No error checking is done.

void streambuf::setg(char * B, char * P, char * E)
(Method)

Sets the start of thget areato B, the end of thget areato £, and the currerput
pointerto P.

Simple output re-direction by redefining overflow

Suppose you have a functiafrite_to_window , that writes characters to a window
object. If you want to use thwtream function to write to it, what follows is one
(portable) way to do it (remembering that this process depends on the default
buffering, if any exists).

#include <iostream.h>

/*Returns number of characters successfully written to win.*/

extern int write_to_window (window* win, char* text, int
length);

class windowbuf : public streambuf {

window* win;

public:

windowbuf (window* w) { win = w; }

int sync ();

int overflow (int ch);

/I Defining xsputn is an optional optimization.

/I (streamsize was recently added to ANSI C++, not
portable yet.)

streamsize xsputn (char* text, streamsize n);

k

int windowbuf::sync ()
{ streamsize n = pptr () - pbase ();

CYGNUS

GNU C++ lostreams Library m 271

C-style formatting for streambuf objects

return (n && write_to_window (win, pbase (), n) !=n) ?
EOF : 0;

int windowbuf::overflow (int ch)
{ streamsize n = pptr () - pbase ();
if (n && sync ()

return EOF;
if (ch 1= EOF)
{
char cbuf[1];
cbuf[0] = ch;
if (write_to_window (win, cbuf, 1) != 1)
return EOF;
}
pbump (-n); // Reset pptr().
return O;
}
streamsize windowbuf::xsputn (char* text, streamsize n)
{ return sync () == EOF? 0 : write_to_window (win, text, n); }
int
main (int argc, char**argv)
{
window *win = ...;
windowbuf wbuf(win);
ostream wstr(&wbuf);
wstr << "Hello world\n";
}

C-style formatting for streambuf objects

The GNUstreambuf class supportsintf -like formatting and scanning.

int streambuf::vform (const char * format , ...)
(Method)

Similar tofprintf (file , format ,..) .Theformat is aprintf -style format
control string, which is used to format the (variable number of) arguments,
printing the result on thiais streambuf. The result is the number of characters
printed.

int streambuf::vform (const char * format , va_list args)

(Method)
Similar tovfprintf (file , format , args).Theformat is aprintf -style

format control string, which is used to format the argumentaligt,, printing the
result on thehis streambuf. The result is the number of characters printed.

272 m GNU C++ lostreams Library GNUPro Toolkit

Wrappers for C stdio

int streambuf::scan (const char * format , ...)
(Method)

Similar tofscanf (file , format ,..) . Theformat is ascanf -style format
control string, which is used to read the (variable number of) arguments from the
this streambuf. The result is the number of items assigne@awin case of

input failure before any conversion.

int streambuf::vscan (const char * format , va_list args)
(Method)

Like streambuf::scan but takes a singhe_list argument.

Wrappers for C stdio

A stdiobuf is astreambuf object that points to BILE object (as defined by
stdio.h). All streambuf operations on thediobuf are forwarded to thelLE . Thus
thestdiobuf object provides a wrapper aroundiee , allowing use oétreambuf
operations on &ILE . This can be useful when mixing C code with C++ code.

The pre-defined streamsn , cout , andcerr , are normally implemented as
stdiobuf objects that point to, respectivedyiin , stdout , andstderr . This is
convenient, but it does cost some extra overhead.

If you set things up to use the implementatiost@$ provided with this library, then
cin , cout , andcerr will be set up to ussdiobuf objects, since you get their
benefits for free. See “C Input and Output” on page 277.

CYGNUS

GNU C++ lostreams Library m 273

Reading/writing from/to a pipe

Readin g/writin g from/to a pipe

Theprocbuf class is a GNU extension. It is derived fre@ambuf . A procbuf can
be closed (in which case it does nothing), or open (in which case it allows
communicating through a pipe with some other program).

procbuf::procbuf ()

(Constructor)

Creates arocbuf in aclosedstate.
procbuf * procbuf::open (const char * command int mode)
(Method)

Uses the shellgin/sh) to run a program specified by command.

If modeisios::in, standard output from the program is sent to a pipe; you can read
from the pipe by reading from theocbuf.

This is similar tapopen (command "r")

If modeisios:.out, output written to th@rocbuf is written to a pipe; the program
is set up to read its standard input from (the other end of) the pipe.

This is similar topopen (command "w")

Theprocbuf must start out in the closed state. Retursgs on success, and
NULL on failure.

procbuf::procbuf (const char * command int mode)
(Constructor)

Callsprocbuf::open (command mode) .

procbuf * procbuf::close ()
(Methaod)

Waits for the program to finish executing, and then cleans up the resources used.
Returnst this on success, arMULL on failure.

procbuf::~procbuf ()
(Destructop

Callsprocbuf::close.

274 m GNU C++ lostreams Library GNUPro Toolkit

Backing up

Backing up

The GNU iostream library allows you to aski@ambuf to remember the current
position back up. This allows you to go back to this position later, after reading
further. You can back up arbitrary amounts, even on unbuffered files or multiple
buffers’ worth, as long as you tell the library in advance. This unbounded backup is
very useful for scanning and parsing applications. The following example shows a
typical scenario.
/I Read either "dog", "hound", or "hounddog".
/I'If "dog" is found, return 1.
/l'1f "hound" is found, return 2.
//'If "hounddog" is found, return 3.
/I 1f none of these are found, return -1.
int my_scan(streambuf* sb)
{
streammarker fence(sb);
char buffer[20];
I/l Try reading "hounddog":
if (sb->sgetn(buffer, 8) == 8
&& strncmp(buffer, "hounddog”, 8) == 0)
return 3;
/I No, no "hounddog": Back up to 'fence’
sb->seekmark(fence); //
/... and try reading "dog":
if (sb->sgetn(buffer, 3) == 3
&& strncmp(buffer, "dog", 3) == 0)
return 1;
/I No, no "dog" either: Back up to ‘fence’
sb->seekmark(fence); //
/... and try reading "hound":
if (sb->sgetn(buffer, 5) == 5
&& strncmp(buffer, "hound", 5) == 0)
return 2;
/I No, no "hound" either: Back up and signal failure.
sb->seekmark(fence); // Backup to ‘fence’
return -1;

}
streammarker::streammarker (streambuf * sbuf)

(Constructor)

Create astreammarker associated withbuf that remembers the current position
of theget pointer

int streammarker::delta (streammarker& mark2)
(Method)

Return the difference between tpet positionsorresponding te this and

CYGNUS

GNU C++ lostreams Library m 275

Forwarding I/O activity

mark2 , which must point into the samseeambuffer asthis .
int streammarker::delta ()
(Method)
Return the position relative to tereambuffer’s currentget position
int streambuf::seekmark (streammarker& mark)
(Method)
Move theget pointerto where it (logically) was whemark was constructed.

Forwarding 1/O activity

An indirectbuf is one that forwards all of its 1/O requests to another streambuf.

An indirectbuf can be used to implement Common Lisp synonym-streams and
two-way-streams, as with the following example.
class synonymbuf : public indirectbuf
{ Symbol *sym;
synonymbuf(Symbol *s) { sym = s; }
virtual streambuf *lookup_stream(int mode) {
return coerce_to_streambuf(lookup_value(sym));

276 m GNU C++ lostreams Library GNUPro Toolkit

C Input and Output

libio is distributed with a complete implementation of the ANSItdio facility. It
is implemented usingreambuf objects. See “Wrappers for C stdio” on page 273.

Thestdio package is intended as a replacement for whaseser is in the C library.
Sincestdio works best when you builthc to contain it, and that may be
inconvenient, it is not installed by default.

The following extensions are beyond ANSI.

« Astdio FILE is identical to astreambuf. So, there is no need to worry about
synchronizing C and C++ input/output—they are by definition always
synchronized.

« If you create a newtreambuf sub-class (in C++), you can use it a8l& from
C. Thus the system is extensible using the starstegdmbuf protocol.

« You can arbitrarily mix reading and writing, without having to seek between the
two processes.

« Unboundedingetc() buffer.

CYGNUS GNU C++ lostreams Library m 277

278 m GNU C++ lostreams Library GNUPro Toolkit

Index

Symbols
.. 238 239
%, TOr TOrMALS ..ot 93
*ininput fields ..., 93
>3 fOr INPUL.c.vveeeeee e 238
>>, iNPUt ON iStreamc.ccoeeeveieevieeriecreenen, 239
__ELASTERROR.......ccitiiiiiiiiieeee e, 125
oz (o Lo O S 12
_ClOSE Tt 171
EXITe it 166
FAOPEN_T et 57
FOPEN It 65 161
FOTK I e 171
A=Y T SRS 22
151 L S SO 17
_QEtChar .o LD
B [=1 (T OSSR 7.
== = 188
CIMPUIE_ P et 162
CIMPUIE_PE e, 161
o] = =1 = 08
IOLBF ...ttt 9
IONBF ...

LIB VERSION........oviiiiiiiiieiieeeeeee e 188
INK T 172
[OCAIECONV Feveveeeeveeeeeeeee e, 160
ISEEK T e 171
B 11 (o To T T 22
CMKSEEMP T e 79
CMKEEMP_ T, 79
o) =1 o OO OO 171
B 0= 1 7o) (N SO 80
CPOSIX e, 188
CPULCNAT T 87
CPUES T e 88.
B 11N TR 141 142
=216 1 GO 28
(=Yoo I S 171
=Yoo Lo SN 22
1= 2| OO 161
B = =101 L= Y 90.
B o1 TSRO 172
LY=L 1[o o= (=T T 160
SIGNALT v, 142
L= 100 [28
L1 L SO 171
LS U410 [N GO 29

CYGNUS

GNUPro Libraries m 279

B (1 (o] I RSSO 30
B (4 (o U | R PRSTSRO 32
31 X 188
_IEMPNAM_T e 101
AMPAlE I 100
_IMPNAM_T e 101
UNDNK T i 172
USET SHEITON .ovevievieiieeiee et sie e sieieeea 125
VPRI I 103
CVPHNEE T oo 103
CVSPHNE T 103
Bz UL S SO SRS 171
L (T TSRS 171
CXOPEN_ oo 188
A

a (appending data)...........c.cccevevevereerereeenenan. 65.
ab (append binary)ccocooeeveeeeeeieeeen ab.
ADOT .t 5.
ADS 1. 6....
absolute value (magnitude) 203
ACOS .vvvvireieiete ettt sttt 189
ACOSN ...veviiictie e 190
ACOSNT ... 190
address SPACE.........cveveeveveeeereiereeeeeeieveians 161
alternative declarationsc.ocevenne. 187
ansi EXLENSIONSccceeevereverieiereeee s 277
ANSI Standardsocceeerieveeereeirieeeeenn, 174
ANSI X3J16 library......cccccvevieeeeiieeeniieee 233
AP vttt 182
applications in engineering and physics196
AIC COSINE ...vvvvvieeiretceee ettt 189
AIC SINE 1.vvevieeeiiereee et 191
arC tANQENt......cveveeeeceeeeee e 193 194
arc tangent of Y/Xcccveeeveeeeeeeeeeeeeee 194
ATBAS v.veveeieetete ettt 2170
AIGL oo 217
AIG2 oot 217
ASCHIME ...t 147
P =Y 11011 TR 147
ASIN L.ttt 191
ASINT. .o 191
ASINN e 192

ASINNT...eciee e 192
oY1= 7.
2 7= 10 TR 193
212210 194
2 1210 74 A 194
ALANT . 193
ALANN ... 195
ALANNT oo 195
o (3 (1 PO 8.
=Y (o] RS ..
P21 (0] SO 9..
=Y (o [P 10
=1 1o)[R 10
B

DACKING UP.vveeieeeceeeeeeeeee e 275
bare boardc.coveveeeieeee e 165
bare board Systemc.ccceveeeveveeeennnne. 165
base 10 logarithm............ccceveveveeeeeerenenne. 215
DCMP e 107
[07070] o) 20RO 108
07T U URU 254
Bessel fuNCHIONScccveveeiiceeee e 196
bit representationc.cccceeeeeeveeeeneennne. 203
DSEACH ...t 11.
BUFSIZ.....coooeeeeie i) 97
(o74=1 1« T 109
C

C and C++, iNPUY/OULPULc.vvriirenee 277
C stdio fUNCLIONSccveveeeeeieeceee e, 237
(O3 (o1 S 238
CAllOC ... vt 12
Cartesian coordinates.............cocevveveveinennas 209
(ol o 197
ol o 1 TR 197
(o7 P ROST 204
o= L R 204
ceiling funCtionccccvvevvenirieeee e 204
CIT ettt ettt ee et e e ree e 238 273
character mappingscooevevereeieserierennens 37.
characters, classifying.........cccocovereiereeennnns 37
Child ProCESS ...cvvveiiiieeieeee e 169

CYGNUS

GNUPro Libraries m 280

Gttt 238 273
ClASS 10S ..cvviiceeeceee et 243
Class OSIrEAMcccveeivieicreecree e 253
(o1 [=Y: 1] { R 55,
(o1 Lo Yo <SR 148
ClOCK it 145
CLOCKS_PER_SECovomiveomeereeeesereeneee, 148
(ol (01T =IO 166

collating sequences and formatting conventions
157

controlling Streams...........cccceveeeveveueeveeenanns 246
COPYSION ..ttt e, 198
COPYSIONT ... 198
COS oeeteeete et et te et e ettt 226
COST ettt 226
COSN L.t 199
COSNT ...t 199
COSINE ..ttt 226
COUL. vttt ettt 238 273
COVET TOULINES.....c.veveveeeeceeveeeeteeteee e 171
CHIME .ottt 149
(011102 T= 3 SRR 149
CEYPE.N o 37.
CUDE FOOL . 197
CUP ettt aen 254
current position for afile...........ccoceveveienenn.e. 62
D

data StIUCIUIE ..o 178
Daylight Savings Time flagcc.ccccvvvruenee. 146
EC et 250
AIfftime.....eieeieceece e 150
AIFECHIVES ...t 92
distance from origin.........cc.ccoevvvrerererienen 209
IV o 13
DOMAIN ..ot 217
DOMAIN EITOFveeueereireeceecreecee e eneeens 188
double precision number.............c..c..ccoc..... 221
dynamically allocated strings.............cc........ 267
E

e, logarithmc.ccooovevie, 201, 202 214
BV ettt ettt 14.

ECVEUT ..t 14,15
<103V, 1 14
EDOM.. oot 225
EINVAL ..o 71
EllIPSIS ..vevveie e 174
embedded targetsccocevererieieiereeeeeas 142
L= 1L T 168 254
=Y Lo O 249
E Lo [249
ENGINEEIING ..vvoveiereeieieee et 196
ENVITON .t 17,166
ERANGE............. 29,199 208 209 213 227
=Y R 200
L= (o SRPPY 200
=Y (o1 ST 200
=Y T 200
BIT ettt 217
EITNO .. 207,214 217 230
EITNO.N oo 166
EITNUM ...ttt ee et eraeeneas 123
€ITOr FUNCHON ..o 200
€ITOr geNEration.........ccccevevveieieeeeeeeeenreens 217
error NANAIEIScccueeieiiceeceeeece e 186
ESPIPE ... Q2.
Euclidean distancecccoceveeeeeevvveeveeennen. 209
exception structure, defined......................... 217
EXECVE .ot eetie e eteeeee et eeaeenae e 167
L= (L A 16
EXP et eterterte sttt et en e ne s 201
EXP e 201
EXPML ittt 202
EXPMLE o 202
exponent 10ading..........ccoeeeenereieieerieeennns 213
exponential.........cc.cceevecieeiiieieieens 222 224
exponentialsccoeeveeeeieeie e, 201, 202
extended data fieldscccocceeveeiiieennnn, 250
extended data methodc.ccceeueneeee, 250
F

111 T T 203
FADST . 203
faStMAtN.N. e 187
FCIOSE ...ttt 56.

CYGNUS

GNUPro Libraries m 281

{03 SRR 14 fstream.h .o 264
FOVEDUT e 14,15 fstreambase::CloSe........cceevceeeeeeeeeeeeeee e 266
{031 TR T4 fellioiiieceeee s 73
10 [6] o =Y s TSR K7 functions, and miscellaneous routines......... 163
FEOT e 55,58 functions, reentrantcccoeeeeeeveeeeeeeeenn.. 162
FRITON e 55,59 functions, reentrant, non-reentrant............... 162
FAIUSH < 1O T 171 (= T 74
1011 (3PS 6l

1011010 LSRR 62

011 £ USSR 63 G

flE NAME. ettt 79 GAMMA s 207
B 1 eeeveee e eesees e eesse s 212 GAMMAT oo 207
T T 212 9AMMAf s 207
FIDHINEE 1o oo B4 9AMMAL Ko 207
fIXEA ATGUMENT ..o 173 OOV i 18
FLAGS . .e v 8L OOV 18
FIOAL NUMDETS ..ot 18 98lArBA.. s 2.0
floating point numbers, single precision....... 212 (0[] (o PP PP 75.
floating point, EXPONENtvveerreeerereenne. 210 [0 1=1 0 1 = | SO UUURUURRRRRY 4 o X
floating-point reMaINderoovcvvvvevvven.. 205 gete.nv .. 17
FIOOT ettt 204 GBPId s 167
F10OF FUNCHON oo 204 get377
FIOOTT ettt 204 9lobal FeeNtrancy......coivirmveiinnrinssnnirase 161
AUSH oo 249 255 GMT .. 151
MO o 205 OMEME .o 151
FNOAF ..t 205 Greenwich Mean ime..........coovovriviiiinneens 151
FOPEN o g5, Gregoriantime, representingooo.... 145
{011 167

formatting conventions for locale.................. 157 H

formatting OUIPULoooovviviiiiiis 286 o e 250
for_mattmg streambuf........cccooceeiiiiie, 272 HUGE_VAL 29, 186 199 207,209 214 227
FEINT e 81 BYPEDONC COSINE wevvvereereeeeeeeeeeeeeeeeeeen 199
FPULC e 6.7 RYPETDONC SINE - vvvvvveeeeve oo 227
fput§ """"""" B 63 186 hyperbolic tangentcooveeeveeeereeeeen. 229
fractional and integer Parts....................... 219 RYPOL e 209
freadooooivviieee e 69. YO v eee e 209
{01 21

FIEOPEN v 0.

FEXD oo 206210 |

L14=0 0o | F RO 206 210 IEEE... e 188 220
[7To7=1 0 | TR 92, IEEE 1003.1.....ccoeiiiiiiieiieeieeeeee e 165
fSEEK cvvveviieeviee e seresere e TEEE INfINIY v 211
FSBUPOS vttt L2, IfSeAM ...cvciceciceeceee e 263
1151 R 167 ifstream:ifStreamcccoooeeeieeeeieieeeeennn, 264
CYGNUS GNUPro Libraries m 282

H0GDF .o 210
INAEX.. ettt 110
INdirectbufc.ccooeviee e 276
INFINIEY oo 211
infinity representationcc.ccoceeerenienns 186
INFINIEYT e 211
INPUL e 256 263
INPUL/OULPUL ... 277
INPUL/OULPUL SIrEAMS......cvveveie e h3
INT_MAX oo 210
Internet Worm of 1988.........ccccccovvvriereseniennns 71
invalid file PoSitionccccoevvireierereene 71
inverse hyperbolic cosine...........ccoccoevreruenne. 190
inverse hyperbolic Sine.........ccccccvvvrererennn. 192
inverse hyperbolic tangentc.cccceeuee.. 195
1S vttt 244 245

flagS. .o 247
10S::08A ... 245
10S::DIAllOC. .. .cvivc e 250
I0SIICIEANcviviiictcve et 245
I0SIIAEC oottt 247
I0S:I8O0T vt 245
1022l oo 245
H0S::Mill oo 246
10S::flagS....cvevcee e 247 248
108220000,ceecvieiieeeeeeeeeee s 245
TSI NEX 1ottt 247
I0S:IINTErNaAl ..., 247
I0S:II0S 1.ttt 243
TOSIIIWOI L.vveeievcee e 251
HOSIIETt oo 247
I0SII0CE. 1ttt 247
10S2:0PEIALON ...t 244
10S:IPrECISIONovvceecveeecteeee e 246
[o XS0 11 SRR 247
10S::SCIENTIIC ...vevevrvveveee e 247
I0S:ISEL vttt 248
10SIISELSIALE ... evereeeeeie et 245
10S::SNOWDASE ... 247
10S2:SNOWPOINEcvveveeiieceiie e 247
10S:ISNOWPOS ..ot 248
10STISKIPWS .ot 248

101 TRE=1 1o [T FOTU U 248
i0S::8yNC_With_Stdioccvevrreriieiciiciennae 251
[o13R 1 [P P 251
1o1TRA UL a 111010 U 248
I0SIIUPPEICASE ...vvvvveveeiesiesieneeriereeeeneeeeneens 248
10S::XANOC.ceveeevee it 250
0153 £=1 (=R 244
jostream, AT&T version 2.0ccceeeeeeernnn... 233
HOSTEAM.N....c.eeiceee e 253
IOSITEAMIGET L.vveveee e 257
i0Stream::iostream.........ccoveeveeveeeeiveereennenn, 261
IPIN L. 78
15721 (21U T 3 R 38
[E3: 1/ o] 1T USRS 39.
1572 Yo | 40,
ISAMY .o vevveeeeetee ettt 167
iscntrl ... 41
17) U 212
130 R 212
1[0V 43
17T 3 F SR 212
ISNANT.....eeeiee et 212
£ o4 44
ISPUNCE ...ttt 45.
ISSPACE .+ veeveeteierieste et ete et neeneens 46.
istream utilities, miscellaneous................... 259
istream, defined.......cc.oooeeeeicieeeeeeeeeee e, 241
ISreamM:IgCoUNtoveeeveiciiecee e 259
IStrEAMIIgeT ..o 256 257
(1T L e] S 258
ISrEAM:IGNOTE ..vvevveve e 259
iStream::istream.........cccoeveeveeecee e, 256
IStrEAMIIPEEK ...vvveiieeeie e 256
istream::putback.........ccoevvreerieerieneeieiien 260
IStreamM::readcoveeeeeevee e 257
IStrEaM:ISEEKY . ovveeeeeevirie e 258
istream:tellgcooveveeeieeiriee e 258
ISEISTIEAM. ...t 263 267
istrstream::istrstream.............coceeeeeveieenennn, 267
ISUPPET ..vevvevieeviiee e sessvesn e L
ISXOAIGIL ++ v evr ettt 48

CYGNUS

GNUPro Libraries m 283

J

T e, 196
N s 196
K

Kill oo 168
L

[0S ..ot 19.
LC _COLLATE......ccoii et 120
IHEXP .ottt 213
IHEXPF o, 213
IAIV e 20
IGAMMAL....ecveeeee et 207
IQAMMAL T .. 207
IQAMMAT ..o 207
IGAMMAT T ..oiiieceeeceeceeeee e 207
TIOC vttt 277
TG ettt 165
IO e 237
TI0.8 v 234
TINK 1ottt 168
LINUX vttt ee e 235
LiSp Synonym-streamscccceeveeevenen.s 276
LiSp tWO-Way-Streams...........ccoveveeerevereenanns 276
[OCAIEveveeviereeie et 157
locale, definedccceeerveeieeiciciecea 157
10CAIE.N ... 157
[0CAIBCONV ...t 160
10CAIIME.cvieiiveieieie et 152
[0CAILIME I et 152
location or culture dependencies................. 157
1OQ cervviveiee ettt 214
10G OF 1HX vt 216
10GL0 c.vvieeeeieectee e e 215
1OGLOF vviiievetie et 215
JOGLP veeeveeeereeieteee ettt 216
oY 11) OO 216
logarithmic gamma function......................... 207
JOGF vttt 214
ISEEK .v.vvvevveverei ettt 168

M

Magnitude Of Xccvverereneiicieee e 198
MAIOC ..ot 21 168
managing areas of memory............c.cc.coe.... 105
managing fileS.......ccccovvererieieveieeeeeee e 53
managing input/output streams...................... 53
managing output Streamsc..ceeeevvenene. 253
MANLISSA ..cveiveeireeiecie et 206
MAth.h o 185217
matherr.... 186 188 199 208 214 217,218
222 225230

MBIOWC.....eiiiie e 26
MEMCIT ..ot 111
MEMCPY . veveerereereerestestesteseeseesteseeseereeneeressenns 113
MEMMOVE.eeieeitieieereeie e eie e eve e e ereas 114
MEMSEL.....oiviiiiiitieiecie et 115
MKSEEMP ..ttt see s 7.9.
(101 =T 1 o S 79
MKEME oo 153
MOF . e 219
MOt 219
MOTUIO ..ot 205
multibyte character sequences...................... 26
MUItIPIE INPULS ...veve e 239
N

NAME....viitiiitectie ettt et ete e te e 217
(3 F= o RSOOSR 220
NANT .. 220
natural l0garithmscc.ccocevvreiererinieee, 214
natural system of logarithms....................... 202
NEXLAtETocvveieciececece s 221
nextafterf..........cccoei e 221
@)

OCE 1ottt 250
OfFSEL ottt 71
OFSITEAM ... 263
OfStreaAmM:IOPEN ...o.vevvveeceeeeeeeeee e 266
one character iNPUL..........c.cceveveveveeereennene. 256
OPEIALOLSeveeeeeeeeeeeee ettt 238
OS interface calls and ermo........................ 166

CYGNUS

GNUPro Libraries m 284

ostream utilities, miscellaneous................... 255

ostream, defined..........oceeeevveeeeeeieeeeeeeen, 241
0Stream::forM.......coeveeeceiece e 253
OSIrEAM:IOPFX wevieieii e 255
(o1 (=T 1§ 011 SRR 255
OSIreaM::0SreaAMccvvevvivierecee e 253
OSITEAMIPUL ..ot 253
OSIreaAM:ISEEKP «ovveverieiiierie et 254
ostream:itellpocoovve e 254
0Stream:VIOrM.......coveeeeeceeceeecee e 254
OSEIEAMIIWIILE .veevvee e 253
OSEISIIEAM ... 263 267
ostrstream::freeze......cccocvveveeeeee e v, 267
ostrstream::frozenc.coveeeevveicee e, 268
OSIrstream::oStrstream..........cc.eeveeveeveeenenens 267
OSIrStream::PCoUNt.......covevrreree e, 267
OSHISIIEAMIISI ...t 267
OULPUL 1.ttt enea 263
OULPUL POSItION ...vvviiereiieeeie e 254
OULPUL SUPPOIT ..ot sie e sieneenas 254
OVERFLOW......oeeeieiecie e 218
OVEITIOW ... 213271
P

PAAAING.....eoveeeeeee e 246
parameter list............ccceeeeveeereeeeeee e, 174
parsing applicationscccceceeveeeeenanns 215
PALEIN ..t 94.
[01=Y 170 SRR 80.
PRYSICS .t 196
PLOSS ..ottt 218
POSIEION.c..eevieete ettt 13
POSItiVe SQUAIe rO0t.........coveveerererereererenne. 225
0 15) G 188
POSIX.1 standardccovevvveereeieienns 165
POW .ottt ettt en e 222
POWT <.t 222
[0 4= TR 83.
precision arithmetic.............ccccceveveunne.. 211 220

double 220
single 220

o472 SO 81,173
PrOCOUF ...t 274

procbuf::~prochufccccvevvrieiieieniie e, 274
Procbuf:iClOSE.ccovieieiieieee e 274
Procbuf:iOPeNcuvcveieeceieee e 274
procbuf::procbufccccevereveriiieieice e 274
(o018 17 USRS 270
PULC .ottt 86.
PULCHAT ©.eecieii e 87
0101 38.
Q

OSOM 1ottt 27
R

r (reading data).........c.cceveveeveeeeeverereeeeeenean) 6b.
FAUISE....vovevirivererereeieieresee e serens 141,142
raising a Signal.........cc.ceeeueeveeeeeereeeereene, 139
FANG oot 28
RAND_MAX . i 28
random SEEMcveveirivierireieeeeiereee e 28.
rb (read binary)c.ccoeeeeeveeeeeceeee e, 65
TEAM ...vveviiieeeeee ettt 168
reading and writing fileSccoeeeevennne. 264
reading Strings........cccccoeeveeeveeevereenne, 257 267
FEAIIOC .ttt 21
FEENEN .ot 161
FEENITANGCYcvevveveeeeveeeee e e teeeeve e 161
reentrancy properties of libm...................... 230
reentrant CallS..........ccovevvveeeervreeeieiseeeienns 2Q7
FEMAINTET ...viveveeecei et 223
FEMAINAENT.....cooivivcieeiiecee e 223
TEIMOVEveviveiietevese et sere e 89,
TENAMEv.veveeeeiereteree ettt eaete e b ns Q0.
FEIVAL 1oviveiecteiee e 217
FEWING ..ot 91
FINAEX cvvveveveviee ettt 116
TNttt 223
FINEE e 223
round and remaindercc.ccecerverereriennen. 223
S

SOIK e 168
SCAIDN . 224

CYGNUS

GNUPro Libraries m 285

SCAIDNT ...t 224

scale by iINtEgErcccceveveeeiiice e 224
SCANT ..ttt 92.
scanning applicationS.........ccoceeevereeeeeenenn. 275
scanning streambufccocveevvirieneneiene 272
SEEK _CURooveveveeeeeeeeeee e L
SEEK_END .ooiiiiiiiiiieeceeee e 71
SEEK_SET ..ot 71
SEDASE ...veereiice e 250
SEOUF. .. 97.
SEHll 1. 250
SEHOCAIE ..o 160
SELPIECISION ..vvveeeieieiieie e 249
SEIVOUF ... a8.
SEUW 1.ttt sttt sttt eenea 249
SIG_DFL .vovviveieieie e 140 142
SIG_ERRooviviiveiicte e 140 142
SIG_IGN ..ciieiiieiieieeeeeeeee, 140 141 142
SIGABRT ... 139
SIGFPE ... 139
1] [1 PN 139
SIGINT e 139
SIGN OF Y oo 198
SIGNAL e 142
SIGNGAM ..ot eenea 2Q7
SIGSEGV ... 139
SIGTERM ..o 139
SIN ettt 226
SINE ottt 226
Sine and COSINEccovveverieier e 226
SINF L s 226
SING .. 218
single precision NUMDETcccccevveverinenn. 221
SINN s 227
SINNF oo 227
SIPHNT v a9
SIZE e s 83 93
SIZE i 145
split floating-point numbercccccoeevnee. 206
SPIIN e 81
o | £ AR 225
E{o | 11 PP 225
7= T USSR 28
SSCANT .ottt 92

SEAtiC StHNGS cvvvviveeeerie e 267
stdarg.N. oo, 173178
SEACIT . 54 273
SEAIN..ee e 54,273
LS00 [T TR 277
SEAIO N 54,273
100 1] 01U | AT 273
StAIB. N, 3.
SEAOUL. ...t 54 273
LYo\ SRR 117
Y] 1| PR 118
SECIMP 1o 119
YT gero] | N 120
SEICPY vvveveere et ettt re e 121
L1 (1] o] [T 122
stream method, defined............c..ccceeevenn. 244
SIreambufcoeeiveieeiecece e 243
streambuf Class..........coveevveveeiciece e, 269
streambuf::eback..........coceveeeiieiiiiceieen, 270
streambuf:iegptr.....ccooeeveiei e 271
streambuf:iePPLr.....ccceveveieece e 270
Streambuf:igptr.....coceeveeieee e 271
streambuf:ipbaseccocveereverieieieneee s 270
streambuf::pbumpccoovvivvenie e 270
Streambuf: PPtcvee e 270
streambuf:iScanocooceevveeeiieeece e, 273
streambuf::seekmark............cccceveveeieeriennenn, 276
Streambuf:iSetP ..o e 270
streambuf:viormcccoeeveveececece e, 272
streambuf:ivscancoecveveciecieeiceieen, 273
streambuf:gbumpc.ccveevrerierereee 271
streammarker::deltacccceeveeeeenenn. 275276
streammarker::streammarker 275
streams
conditions 244
errors 244

(=1 (o) SRRSO 123
SHTME ... 154
SHNG.N oo 105
string-handling functionsccccceveevennne. 105
StriNgSs iIN MEMOTY ...oveveerieeieiecee e 267
Y11 [10 F RO 126
Y107 | RSO 129
SENCMP wveieieteeee e 130

CYGNUS

GNUPro Libraries m 286

SHNCPY eevvereeeeerierieie et 131

SHPOIK coeeee e 132
SUTCNI ..t 133
SIISPN vttt eee 134
SIS vttt ettt 135
SISITEAM ...ttt 267
SIrSIreambase.coveevveveeeciece e 267
strstreambase::rdbuf.............cceevveiieicinenen, 268
Strstreambuf..........ccceevveieciiiiceciee e 267
SO vttt 29
SHEOUF .. 29
SIEOK c.veieeecie e cee ettt v 136
YU 1o] G TS 136
SO 1.ttt 30
SIEOU vttt 32
StrUCtUre exXCeptioncovvveveseseieeeean, 186
SUXIIM et 137
SHUDS oottt 165
SUDIOULINES ... 165171
SVID oo 188
synchronizing related streams..................... 251
SYS/SIGNALN ..o 139
SYSIEIM 1.ttt 34.
system memory, managing...........cc.coeeveeene 21
T

17: 10 RO 228
17101 OO 228
171010 1=Y | SO 228
17:10] 2 TSRO 229
tANNT .o 229
TEMPNAM.....eoeiieecce e 101
thread safe properties.........ccccccceeeeveuennene. 230
threadsc.ooveeeieeeceeeece e 188
11101 156
HME.N o, 145
(181 LY T 145
TLOSS .ot 218
111 PR UOOTO 145
tM_NOUT e 146
TM_ISASE ... 146
tM_MAAY ..o, 146
TN MIN e 146

EM_IMON 1. 146
TM_SEC .eveeiieeie ettt 146
EM_WOAY oo 146
EM_YAAY v 146
EM_YBAN woviiie et 146
TMP_MAX ..o, 101
TMPDIR ... 101
IMPFIE e 100
EMPNAM .o 101
TOBSCHI cvveveeeecre ettt 49,
TOIOWET ...t 50
100 o] o= O TRSPSUSPRP 51
two-character SeqUENCESccovervevveveennn. 154
TYPE vttt 83,93 217
U

unbounded backup..........cccceveeeevceeennnnne. 275
UNCH ottt 164
UNCEIIEN .. 164
UNDERFLOW ... 218
UNAEITIOWvvicc e 213
UNGEIC . coeeveeeeieeeete ettt e 277
Universal Coordinated Time.............c.......... 151
UNINK (ot 169
USING SHNGS ..veveeveve et 263
UTC ittt 151
\Y

VAL AlIST ... 180
VA_AIT.eeieieverireeiieiereee s 174176 181
(Y- e (o] PRSP 179
VA_EN oo, 174 177,182
VA_LISt.veiicvcce e 174178
Va_Stat.....ccviiicerce e 174175180
VArargS.N..oooeevceieeeeeeee e, 173178
variable argument............cccecveveuennene., 173178
VAMADIEScveveiietiic s 188
versions of math routines............cccceeveenee. 188
VERINE o 103
volatile sig_atomic_t.......cc.ccecerveivereeinnrennnns 142
VPRI o 103
VSPIN ..o 103

CYGNUS

GNUPro Libraries m 287

W

W (WItING dALA)vevvereeeeeeieire e 65
L TP 169
Warning MESSAGEScoverververeererreerereesenseees 188
WD (Write DINAry)ccccoveeeieeeeeeee e 65
WCLOMD...ee e 35
WHENCE ... oL
WIOEN <o 82 93
WIEE L.ttt sttt 170
(41 1=To] T TS 170
WItING StNGS oo 267
WS 1.ttt etes e steseeseesee et eteene et nnesee e naeneenens 249
X

D (@] o= H T 188
Y

VI et 196
YN e 196
CYGNUS

GNUPro Libraries m 288

	Dreamcast GNUPro Toolkit Toolkit Libraries
	Contents
	Standard Utility Functions (stdlib.h)
	abort
	abs
	assert
	atexit
	atof, atoff
	atoi, atol
	bsearch
	calloc
	div
	ecvt, ecvtf, fcvt, fcvtf
	ecvtbuf, fcvtbuf
	exit
	getenv
	gvcvt, gcvtf
	labs
	ldiv
	malloc, realloc, free
	mallinfo, malloc_stats, mallopt
	__malloc_lock, __malloc_unlock
	mmbtowc
	qsort
	rand, srand
	strtod, strtodf
	strtol
	strtoul
	system
	wctomb

	Character Type Macrosand Functions (ctype.h)
	isalnum
	isalpha
	isascii
	iscntrl
	isdigit
	islower
	isprint, isgraph
	ispunct
	isspace
	isupper
	isxdigit
	toascii
	tolower
	toupper

	Input and Output (stdio.h)
	clearerr
	fclose
	fdopen
	feof
	ferror
	fflush
	fgetc
	fgetpos
	fgets
	fiprintf
	fopen
	fputc
	fputs
	fread
	freopen
	fseek
	fsetpos
	ftell
	fwrite
	getc
	getchar
	gets
	iprintf
	mktemp, mkstemp
	perror
	printf, fprintf, sprintf
	putc
	putchar
	puts
	remove
	rename
	rewind
	scanf, fscanf, sscanf
	setbuf
	setvbuf
	siprintf
	tmpfile
	tmpnam, tempnam
	vprintf, vfprintf, vsprintf

	Strings and Memory (string.h)
	bcmp
	bcopy
	bzero
	index
	memchr
	memcmp
	memcpy
	memmove
	memset
	rindex
	strcat
	strchr
	strcmp
	strcoll
	strcpy
	strcspn
	strerror
	strlen
	strlwr
	strupr
	strncat
	strncmp
	strncpy
	strpbrk
	strrchr
	strspn
	strstr
	strtok
	strxfrm

	Signal Handling (signal.h)
	raise
	signal

	Time Functions (time.h)
	asctime
	clock
	ctime
	difftime
	gmtime
	localtime
	mktime
	strftime
	time

	Locale (locale.h)
	setlocale, localeconv

	Reentrancy
	Miscellaneous Macros and Functions
	unctrl

	System Calls
	Definitions for OS interface
	Reentrant covers for OS subroutines

	Variable Argument Lists
	ANSI-standard macros (stdarg.h)
	va_start
	va_arg
	va_end

	Traditional macros (varargs.h)
	va_dcl
	va_start
	va_arg
	va_end

	Mathematical Functions (math.h)
	Version of math library
	acos, acosf
	acosh, acoshf
	asin, asinf
	asinh, asinhf
	atan, atanf
	atan2, atan2f
	atanh, atanhf
	jN, jNf, yN, yNf
	cbrt, cbrtf
	copysign, copysignf
	cosh, coshf
	erf, erff, erfc, erfcf
	exp, expf
	expm1, expm1f
	fabs, fabsf
	floor, floorf, ceil, ceilf
	fmod, fmodf
	frexp, frexpf
	gamma, gammaf, lgamma, lgammaf, gamma_r, gammaf_r, lgamma_r, lgammaf_r
	hypot, hypotf
	ilogb, ilogbf
	infinity, infinityf
	isnan, isnanf, isinf, isinff, finite, finitef
	ldexp, ldexpf
	log, logf
	log10, log10f
	log1p, log1pf
	matherr
	modf, modff
	nan, nanf
	nextafter, nextafterf
	pow, powf
	rint, rintf, remainder, remainderf
	scalbn, scalbnf
	sqrt, sqrtf
	sin, sinf, cos, cosf
	sinh, sinhf
	tan, tanf
	tanh, tanhf

	Reentrancy Properties of libm

	Introduction to Iostreams
	Licensing terms for libio
	Acknowledgments

	Operators and Default Streams
	Input and Output Operators
	Managing operators for input and output

	Stream Classes
	Shared properties: class ios
	Checking the state of a stream
	Choices in formatting
	Changing stream properties using manipulators
	Extended data fields
	Synchronizing related streams
	Reaching the underlying streambuf

	Managing output streams: class ostream
	Writing on an ostream
	Repositioning an ostream
	Miscellaneous ostream utilities

	Managing input streams: class istream
	Reading one character
	Reading strings
	Repositioning an istream
	Miscellaneous istream utilities

	Input and output together: class iostream

	Classes for Files and Strings
	Reading and writing files
	Reading and writing in memory

	Using the streambuf Layer
	Areas of a streambuf
	Simple output re-direction by redefining overflow
	C-style formatting for streambuf objects
	Wrappers for C stdio

	Reading/writing from/to a pipe
	Backing up
	Forwarding I/O activity

	C Input and Output
	Index

