SEGA

Dreamcast SH4
C Compiler
User’'s Manual

Hitachi Microcomputer Support
Software

SH Series C Compiler
User's Manual

HITACHI

HS0700CLCU4SE
Rev. 4.0

10/6/97

Hitachi, Ltd.

’

(]
-

o
Hitach?

semiconductor

Preface

This manual explains the facilities and operating procedures for the SH series C compiler. Please
read this manual and the related manuals listed below before using the C compiler to fully
understand the system. The C compiler translates source programs written in C into relocatable
object programs or assembly source programs for Hitachi superH RISC engine family
microcomputers (SH1, SH2, SH3, and SH3E).

Features of this compiler system are as follows:

1. generates an object program that can be written to ROM to be installed in a user system.

2. supports an optimization option that increases execution speed of object programs or
minimizes program size.

3. supports a debugging-information output function for a C source level debugging or C source
analysis using a debugger .

4. selects an assembly source program or relocatable object program and outputs it.

This manual consists of four parts and appendixes. The information contained in each part is
summarized below.

1. PART | OVERVIEW AND OPERATIONS
The overview sections cover C compiler functions and developing procedures.
The operation sections cover how to invoke the compiler, how to specify optional functions,
and how to interprete listings created by the C compiler.

2. PART Il C PROGRAMMING
This part explains the limitations of the C compiler and the special factors in object program
execution which should be considered when creating a program.

3. PART Il SYSTEM INSTALLATION
This part explains the object program being written in ROM and memory allocation when
installing an object program generated by the C compiler on a system. In addition,
specifications of the low-level interface routine must be made by the user when using C
language standard I/O library and memory management library.

4. PART IV ERROR MESSAGES
This part explains the error messages corresponding to compilation errors and the standard
library error messages corresponding to run time errors.

This manual describes the SH C compiler that operates on UNIKMS-DOS* that runs

(operates) on the IBM-P&4and PC compatibles. In this manual, compilers functioning on a
UNIX system are referred to as UNIX version and compilers functioning on an MS-DOS system
are referred to as PC systems.

HITACHI

Notes on Symbols:The following symbols are used in this manual.

Symbols Used in This Manual

Symbol Explanation
<> Indicates an item to be specified.
[1 Indicates an item that can be omitted.

Indicates that the preceding item can be repeated.

A Indicates one or more blanks.

(RET) Indicates the carriage return key (return key).

| Indicates that one of the items must be selected.

(CNTL) Indicates that the control key should be held down while
pressing the key that follows.

Notes: 1. UNIX is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited.

2. MS-DOS is an operating system administrated by Microsoft Corporation.
3. IBM PC is a registered trademark of International Business Machines Corporation.

Related Manuals: Refer to the following manuals together with the SH Series C Compiler when
creating a program using the C compiler.

SH Series Cross Assembler User’'s Manual

SH Series Simulator/Debugger User’'s Manual
Integrated Manager User’s Manual

H Series Linkage Editor User's Manual

H Series Librarian User's Manual

E7000 SH7032, SH7034 Emulator User’'s Manual
E7000 SH7604 Emulator User’'s Manual

E7000 SH7708 Emulator User’'s Manual

Refer to the following manuals for details on the SH instruction execution:

SH7000 Series Programming Manual
SH7000/SH7600 Series Programming Manual
SH7700 Series Programming Manual

HITACHI

Contents

PrEIACE ettt i
PART I OVERVIEW AND OPERATIONS ... 1
SECHON 1 OVEIVIEW. ..ottt s e 3
Section 2 Developing ProCeAULES.............c.ccuciiieieicceeeceeeeeee e 5
Section 3 C Compiler EXECULIQN..........cccoi i 7
3.1 How to INVOKe the C COMPIIEI......cciiiiiiiiie i 7
3.1.1 ComMPIlING PrOGIaMSceiiiiiiiiiies ittt e bbb e e e e 7
3.1.2 Displaying Command Line Format and Compiler Optionsccccccccevvvvvcnvvnnn 7
G0 I B O] 101 o 11T S @] o] i o 1= PSSR 8
3.1.4 Compiling MUltiple C ProgramsScoouuiiiiiiiieiieeeae e e e 8
3.2 NAMING FIES.... ettt ettt e e e e e e e e s e anbbe e e eeaaae s 9
3.3 COMPIIET OPLIONS .ttt e st e e st e e aaane e s 10
I O o 1To] W @] 4] o] 4 F= Vi o] o - J PP PP PRPPPPPPPIN 20
3.5 Correspondence to Standard LIDrari€suueeeiiiieeiiiiiiiciiieeee e e e e e e e 21
I T O @] 1 o1 o1 (=T I 1] o 1P SSSRRRR 23
3.6.1 Structure of C Compiler LiStINGScccuuriiiiiiiiieeei e 23
3.6.2 SOUICE LISTING .eeeeiiiiiiieiiiiiitte ettt ettt e e e e e e ettt e e e e e e e e e e e e s aanbnbaeeeeeas 24
K G TRC B O o =Tt I 1 1] o TP PP UOUPPPPTOPPPPPTN 26
3.6.4 Statistics INfOrmMation..........cc.vuiiiiiiiii e 28
3.6.5 Command Line SPeCIfiCationccccurrriiiiiiie e 29
3.7 C Compiler Environment Variablesuuviiiiiiiiiii e 30
3.8 Implicit Declaration by OPLON..........cc.uuiiiiiiiiiie e 31
PART Il C PROGRAMMINGc.ciiiiiiieeeeeeee e 33
Section 1 Limits of the C COMPILEN...........cccoooiiiiiiiiiiecce e 35
Section 2 Executing @ C Programl...........ccccoceeiiieiiiiiieeeisiceeseeesse e 37
2.1 Structure Of ODJECE PrOGIaMSuuuiiiiiiiie ittt e et e e e e e e s ribe e e eaaaaaaeaeas 38
2.2 Internal Data REPIrESENTALIONcciiiiiiiiie ittt e 41
2.2.1 SCAlAr-TYPE DALA......oieiiiiiiiiiiie e 42
2.2.2 COmMDINEA-TYPE DAuvuvviiiiiiieiee e i i s it e e e e e e s s s e e e e e e e e s e s sennanbe e e e eeaaeen 43
2.2.3 BIt FIEIAS ..ot 45
2.2.4 Memory Allocation of Little ENIanccooiiiiiiiiiiiiiiieeeiiiiieeeee e 48
2.3 Linkage with ASSEMDIY PrOgrams........ooo ittt 50
I}

HITACHI

2.3.1 External Identifier REErenCeoeeeiiiiiiiiiii e
2.3.2 Function Call INtErfaceoo i
Section 3 Extended SPeCIfiCatiONS..........cccoiviiiicceeesss s 61
R T R [(=4 U] o T o 1 o] SRR
0 I A =T o] 1 o] o P ERERUPRN
.12 EXPIANALION ...t e e e e e e
I 70 G T (0] (= ST PP TP P PP TTTRR RN
R I | 1 1 £ (o T o 1 o RO
3.2.1 INtrNSIC FUNCHIONS ...ttt e e e e e e e e e e e e e e s st eeeeeaee s
G 07 =1 o] (o] o PSSR
3.2.3 Intrinsic Function Specifications...........ccccvieiiiiee i
T S o] (= ST PP PP P PPN
.25 EXAMPIE..ciiieeee e e e e e e e e e e e anaae
3.2.6 Dividing <mMachine.n>.........cciiii e
3.3 Section Change FUNCHIONcuuiiieiiieie ettt
G0 0 A D =T o] o] o PSSR
TR I o d o] F= 4 = o) o SRR
TR TG N (0] (= ST PP PP PP PP TR
.34 EXAMPIE.. ittt a e e e e e e e e e e e aaanaae
3.4 Single-Precision Floating-Point LIDIary..........coocuuiiiiiiiiee e
o R B T2 od]] o] EP PP P O OUPRRPN
G N0 2 TP PP P PP PPPPPPRRIN
3.5 Japanese Description in String LIiteralScccccvviiiiiiiie e
3.6 INIINE FUNCHON ...t e et e e e e e e e e e s e eee e
TG 0 A B =2 o 1 o] 1o o TP PPRTUPTN
3.6.2 EXPlANALIONeiiiiiiiiiie et e e
G 7L TR T o (=
LG S e T 1 1] o] =PSRN
3.7 Inline Expansion in ASSEMDBIY LANQUAGEccciiiiiiiiiiiiiieee e et e e e e e e
O A A B =2 ox 1 o] 1o o OO PPPTPPTN
3.7.2 EXPIANALION ... e e e e
TG T o] (= TSP
BT 4 EXAMPIO i
3.8 Specifying Two-byte Address Variables............oovvveiiiiiiiiciiicece e
S 0 A B =T o] 1 o] o PSRRI
3.8.2 EXPIANALIONttt
S TG N (0] (= ST TP T PP P PP TP
3.9 Specifying GBR Base Variables............ocuiiiiiiiiiiii e
I T R B 1= 2ol]] o] EO PP PP OTPPPPN
LS A o q o] =10 = o) o S
TR TR T (o] (T PP PP PP
3.10 Register Save and RECOVErY CONIIOL........coiiiiiiiiiiiiiiiiieeee et
\

HITACHI

G0 0 0 A B T =TT o3] 1o TP PP PUPR PR 83

3.10.2 EXPIANGLION ...cciiiiiiei ittt e e e e e e e et r e e e e e e e e e 83
G 700 0 TRC T [0 (=T TSRO TURPRP PP 83
3104 EXAMPIE .. e 84
3.11 Global Variable Register AlIOCAtIONccviiiieiiiiiiiiiiieie e e e e e e 84
0 5 T A I =Yo7]) 4 o SRR 84
3112 EXPIANGTION ...cciii ittt e e e e e e e e e e e e e e e e 84
0t I G B (0] (=3 TP PO PO UPPUPPPPPTP 85
114 EXAMPIE....ieiieeeeee et e e e e aae 85
Section 4 Notes on Programming............cceeueueiiriiiiisieeeeeeeeeeisse e 87
o R @70 To 10 To T o] =1 87
4.1.1 float Type Parameter FUNCHONcciiiiiiiiiiiiitie et 87
4.1.2 Program Whose Evaluation Order is Not Regulated.............cccceeeeieiiiiiiiiiiiinnen. 87
4.1.3 Overflow Operation and Zero DiVISION............eeieiiuiiiieiiiiiiiee i 88
4.1.4 Assignment to cONSt Variablesc..oooviiiiiiiiiii e 89
4.1.5 Precision of Mathematical Function Librariesccccovoiiniiinie v 89
4.2 Notes on Program DeVEIOPMENL..........ccooi it e e e e e e s e e e e e e e e e e 90
PART Il SYSTEM INSTALLATION oo 93
Section 1 Overview of System Installation..............cccooevrrrnniiiccceces 95
Section 2 Allocating MemOrY AF€aS..........cccceveveveviveieeeeeeeeeieieeeeeee e 97
2.1 StatiCc Area AlIOCATION.eeeiiiiiieeee ittt s e s e e e 97
2.1.1 Datato be Allocated iN STAtIC Ar€@.......cceiiiieiiiiiiiiiiii et 97
2.1.2 Static Area Size CalCUlationcooieeeiiiiiiiiiieee e 97
2.1.3 ROM and RAM AlIOCALIONcccueriiieiiieiee e et e e e e e s e e e e e e e e e e e e e nnnns 99
2.1.4 Initialized Data Area AlIOCALIONceeeiriieiiiieeree e 99
2.1.5 Memory Area Allocation Example/Address Specification at Program Linkage. 99
2.2 DYNamiC Area AllOCALIONuiiiiiiiiee ettt e e e e e e e e e e e e e e e aanes 101
2.2. 1 DYNAIMIC ATCBS ..o eiiii ittt ettt e e e e e e ettt e e e e e e e e e e e et bbbt e et e aaae e s e s s nbbbbeseeeaaaaaean 101
2.2.2 Dynamic Area Size CalCulationccueeiiiiiiiieeiiiee e 101
2.2.3 Rules for Allocating DYNamIC AF &cccuiiuuriiieiiiiiiieeiiiieeeessireee e sibeee e sieeeen 104
Section 3 Setting the Execution ENVIronmMent..............cccooevevevevcccccceieneene, 105
3.1 Vector Table Setting (VEC _TBL).....uuuiiiiiiiiiiiii et 106
3.2 INItANZAtION (L INTT) ceeee et e e e e e e e e e s e bbb e e e e e e e e e e e s 107
3.3 Section Initialization (_ _INITSCT)...uuiiiiiiiiiee e 108
Section 4 Setting the C Library Function Execution Environment........... 111
4.1 Vector Table Setting (WVEC _TBL)....cccciiiiiiiiee et e e e e e e e e ae e 113
4.2 Initializing ReIStErs ([INIT) oottt 113
\"

HITACHI

4.3 Initializing SectionNs (_ _INITSCT) ..eoiiiiiiiiiieie et e e e 113

4.4 |Initializing C Library FUNCtions (_ _INITLIB) ..ccciiiiiiiiiiiiiiieeieeeee e 114
4.4.1 Creating Initialization Routine (_INIT_IOLIB)
for Standard 1/O Library FUNCHON...........eiiiiiiiiiic e 115
4.4.2 Creating Initialization Routine (_INIT_OTHERLIB)
for Other Library FUNCHIONuuiiiiiiii e r e e e e e e 117
4.5 CloSING FIleS (L CLOSEALL) ...ttt ettt e e e e e e e e 118
4.6 Creating Low-Level Interface ROULINESooouiiiiiiiiiiiiie e 119
4.6.1 Concept Of I/O OPEIratiONS.ccivuriiieiiiiiii ettt 120
4.6.2 Low-Level Interface Routine SPecifiCations.............cceveeiiiiiie i, 121
PART IV ERROR MESSAGES ... 129
SECHON 1 EITOr MESSAGES. ...cc ittt 131
Section 2 C Standard Library Error MESSageS........ccceovvrrnnniriniccicneeeenen, 151
APPENDIX ettt 155
Appendix ALanguage and Standard Library Function Specifications
Of the C COMPIIEL ... 157
A.1 Language Specifications of the C COMPIIEr........cccuveiiiiiiiiiiii e 157
A.1.1 Compilation SPeCIfiCatiONSccceeeii i 157
A.1.2 Environmental SPeCIfiCationscccuviiiiiiiee e 157
AL3 TENTTIEIS. ...t e e 158
N A O o F- 1 7= Tl (= = TSR TP PPN 159
LN ST [01 (=T o [T TP PP PPPPPPPPRRPPPN 160
A.1.6 Floating-Point NUMDEIScoouiiiiiiiiii e 161
N A AN 4 -\ VST L To [o1] (=T PR 162
N T = 1= o 11 (=] SRR 162
A.1.9 Structure, Union, Enumeration, and Bit Field TYPesSccccccvriiiiiiiiiiiiicenneeen 163
N I O T @ 10T 1 1= 163
N I R B =Tl - = 4o 1 PP 164
N I I S = (=] 1= o SRR 164
N I G o = o 0 o] =T PRSI 165
A.2 C Library FUNCtion SPECIfiCatiONS........ccciiiiiiiiiiiiiiiei e e e e e 166
A2 SEAAETN oo 166
AL2.2 ASSEITN . 166
AL2.3 CEYPE.N e 166
N S 41T 1 T8 o SO 167
A2 S M. N e e a e ————————— 167
A2.6 SHAIO.N Lo e 168
A2.7 SHING. Nt e e e e 169
Vi

HITACHI

F N < T =1 1 1 o TN o 170

A.2.9 Libraries that are Not Supported by the SH C Compiler.........c.cccooviiiiiiiiiieenennenn. 171
A.3 Floating-Point Number SPecifiCationsoocuviiiiiiiiiieii e 172
A.3.1 Internal Representation of Floating-Point NUmMbersccccoviiiiiiiiiic e, 172
ALB.2 FlOBL. ... 174
A.3.3 double and 1oNg dOUDIE ... 175
A.3.4 Floating-point Operation SpPecifiCationsccccciiiiiiiiiiiiiieee e 177
Appendix B Parameter Allocation EXample............ccoooiiiiiicccess 181
Appendix C Usage of Registers and Stack Area..........cccooovevvvevecccciieiieices 185
Appendix DCreating Termination FUNCLIONS..............cccooveeiiviiiiccccce e 187
D.1 Creating Library onexit FUNCHIONcoiiiiiiiiiiiiieie e a e 187
D.2 Creating eXit FUNCLONoiiiiiiiiie ittt 188
D.3 Creating ADOI ROULINE........oooiiiiiie et 190
Appendix E Examples of Low-Level Interface Routing...............c.ccccooevevevnan. 191
APPENIX F ASCII COUES..... .o 197
15T (= TSSO 198
Figures
Figure 1.1 C COMPIlEr FUNCLIONSciiiiiieeiie ittt e e e e e e e e e e e e eanens 3
Figure 1.2 Relationship between the C Compiler and Other Software...........cccccceviiiiiiiinnen. 5
Figure 1.3 Source Listing Output for show = noinclude, NOEXPANSION...........ceeerrurieeerriineeenn 24
Figure 1.4 Source Listing Output for show = include, expansion............ccccceeeeviiieeeeeiniieeeene 25
Figure 1.5 Object Listing Output for show = source, ObjJeCt............coovvciiiiiiiiieiee e, 26
Figure 1.6 Object Listing Output for show = nosource, Object............cccccviiieveeieeee i, 27
Figure 1.7 StatiStiCS INfOrMALIONeeiiiiiiiii i e e e e e 28
Figure 1.8 Command Line SPeCifiCationuuueeiiiiiiiiiiiee e 29
Figure 2.1 Allocation and Deallocation of a Stack Frameccccooiiiiiiiiiiiic e 52
Figure 2.2 Parameter Area AllOCAION..........ccoiiiiiiiiiiiiiiiee it 57
Figure 2.3 Example of Allocation to Parameter REQIStErS........c.uuvvviiieeeeiiiiiiiiiieeeeeeee e e 58
Figure 2.4 Return Value Setting Area Used When Return Value Is Written to Memory........ 60
Figure 2.5 Stack Processing by an Interrupt FUNCHONcooiiiiiiiiiiiiiiiiiiee e 64
Figure 3.1 Section Size INFOrMEALIONccoiiiiiiiiii e e 97
Figure 3.2 Static Area AlIOCALION..........ueiiieiiie et 100
Figure 3.3 Nested Function Calls and Stack Size ... 103
Figure 3.4 Program Configuration (No C Library Function is Used)........cccccccveeeviniiiinvnnnnnnn. 105
Figure 3.5 Program Configuration When C Library Functions are Used................c.eeeuvvneee. 111
FIQUre 3.6 FILE-TYPE Dal@.. ..ottt e e et e e e e e e e e e e e e 117
Vi

HITACHI

Figure A.1
Figure C.1

Tables
Table 1.1
Table 1.2
Table 1.3
Table 1.4
Table 1.5
Table 1.6
Table 1.7
Table 1.8
Table 2.1
Table 2.3
Table 2.4
Table 2.5
Table 2.6
Table 2.7
Table 2.8
Table 2.9
Table 2.10
Table 2.11
Table 2.12
Table 2.13
Table 3.1
Table 3.2
Table 4.1
Table A.1
Table A.2
Table A.3
Table A.4
Table A.5
Table A.6
Table A.7
Table A.8
Table A.9
Table A.10
Table A.11
Table A.12
Table A.13
Table A.14
Table A.15

Vii

Structure for the Internal Representation of Floating-Point Numbers.................... 172
Usage of Registers and Stack AFCa...........eeuiiiiiiaiiiiiiiiiiiiieeee e a e 185
Standard File Extensions Used by the C Compilerccccceeeiiiiiiiiiiiiieeicece e 9
C COMPIIET OPLIONSueiieiiietee ettt e e e e e e e e b e e e e e e e e e e e e aannnees 10
Macro Names, Names, and Constants Specified by the Define Option 15
OPtioN COMDBINALIONSiiiiiiiiiiee ittt e e 20
Correspondence between Standard Libraries and Compile Options...................... 22
Structure and Contents of C Compiler LiStiNgS........c.uuvueeireieeeiiiiiiciiiiieieeee e 23
Environment Variablesc.oo i 30
IMPICIE DECIAIALIONeeeiiiiie e e e 31
Limits Of the C COMPIIEE ... 35
Internal Representation of Scalar-Type Data..........cccoocvvieeiiiiiieieiniieee e 42
Internal Representation of Combined-Type Data.........ccccceeviiiiiiiiiiiiie e 43
Bit Field Member Specifications............uuviiiiviei e 45
Rules on Changes in Registers After a Function Callccccccoeeeeiiiiiiiiiiiieeneennn. 53
General Rules on Parameter Area AllOCAION...........oceeiiiiieeeiiiieiee e 58
Return Value Type and Setting Ar€a.........ooouiiiiiiiiiiiiiieia e 59
INtErruUPt SPECITICALIONS ... 62
INEFANSIC FUNCHIONS ..ot e e e e s e e e e e e e e s e s e areeeeeaeee s 67
Function List of Single-Precision Floating-Point Libraryccccccceeeeiiiiiiinvnnnnn. 76
Default Settings of JApPaNESE COUE........uuuiiiiieeeei i a e 77
TrOUDIESNOOTINGeeeiiiiieee e 90
Stack Size Calculation EXamPIeeoiiiiiiiiiiiiiee e 103
Low-Level Interface ROULINESccuuiiiiiiiiiiee e 119
List of Standard Library Error MESSAgES.cccouvuriieiiiiiiiee ittt 152
Compilation SPECIfiCAtIONS.......uuuiiiiiiee e 157
Environmental SPeCIfiCatiONSueiiiiiiiiii e 157
Identifier SPECIfICALIONS.........ciiii i 158
Character SPeCIfiCAtIONScoiiii i 159
INteger SPECIfICALIONS.oiuuiiiieiiie et 160
Integer Types and Their Corresponding Data Rangeccccovvvveeeiiiiiieeniiniiieeen 160
Floating-Point Number Specifications............cccccviieiiiiie e 161
Limits on Floating-Point NUMDBEISuuiiiiiiiieiiiiccieeee e 161
Array and Pointer SPecifiCationScccuuuiiiiiiiiiii e 162
Register SPeCifiCatiONS.ooi i 162
Specifications for Structure, Union, Enumeration, and Bit Field Types................ 163
Qualifier SPECIfICALIONScoiuriiiei it 163
Declaration SPeCifiCatiONScocciuiiiiiiiie e 164
Statement SPECITICALIONSuuviiiiiiiie e 164
Preprocessor SPeCIfiCAtIONScciii i 165

HITACHI

Table A.16
Table A.17
Table A.18
Table A.19
Table A.20
Table A.21
Table A.22
Table A.23
Table A.24
Table A.25
Table A.26
Table A.27

Stddef.n SPECIfICALIONSccoiiiiiiiii e 166
assert.h SPeCIfiCatiONS.........ccuuiiiiie e 166
CtyPe.N SPECIFICALIONScoeiiiiiiiie it 166
Set of Characters that REtUINS TrUE.......ocuuiiiiiiiiiie e 167
Math.h SPECITICALIONS........ccoiiiiee e e e 167
SetiMpP.h SPECITICALIONSuvvieiiiiie e 167
Stdin.N SPECITICALIONS ...t 168
Infinity and NOt @ NUMDET..........uiie e 169

StriNg.h SPECIfICAtIONS.......iiiiiiiie e 169
€rrno.N SPECITICALIONSc.ciiiiiiiii i 170
Libraries that are Not Supported by the SH C Compiler...........ccccoovvccivviiinneeeeennn. 171

Types of Values Represented by Floating-Point Numbers............ccccoccveeeeiiiinn 173

HITACHI

PART |
OVERVIEW AND OPERATIONS

HITACHI

HITACHI

Section 1 Overview

The SH series C compiler converts source programs written in C to SH series relocatable object
programs or assembly source programs.

The C compiler supports the SH1, SH2, SH3, and SH3E microcomputers (collectively referred to
as SH).

Figure 1.1 shows C compiler functions.

SH series SH relocatable
C compiler object program

C source /\
program v

SH assembly source
program

~_

Figure 1.1 C Compiler Functions

A standard library file (a group of C language level functions that is used in C language program
as standard) is also provided in addition to the C compiler.

HITACHI

HITACHI

Section 2 Developing Procedures

Figure 1.2 shows the relationship between the C compiler package and other software for program
development. The C compiler package includes the software enclosed by the dotted line.

C
source

file
creation

|
|
| *2 | Software
User ! — included in
\ .
include gt‘oﬁ";’: Standard | the package
file p! include :
file H
1
_________________________ 1
1
1
Userbl Assembly *3 :
assemoly source 1
source program !
rogram 1
1
1
1
1
Relo- !
1 1
SH series catable _ \
cross assembler object |r :
program ! 1
| |
1 1
! | Standard :
. 1 librai
Routine H series 1 ﬁlery |
created linkage editor : :
by user I, a1

H series
object converter Load
module
SH series

simulator/debugger

Target system

Notes:

1. Assembly source programs are output depending on option specification.

2. The standard include file defines C library functions and their macro names in order to use C library functions.

3. Debug information can also be added depending on option specification.

4. A function group, consisting of C library functions and run time routines, is used as standard in the C program.
(Refer to section 2.1, Static Area Allocation, in part lll, SYSTEM INSTALLATION.)

Figure 1.2 Relationship between the C Compiler and Other Software

HITACHI

HITACHI

Section 3 C Compiler Execution

This section explains how to invoke the C compiler, specify C compiler options, and interpret C
compiler listings.

3.1 How to Invoke the C Compiler

The format for the command line used to invoke the C compiler is as follows.

shc[A<option>...][A<file name>[A<option>...]...]

The general operations of the C compiler are described below.

3.1.1 Compiling Programs

shc Atest.c (RET)

The C source program test.c is compiled.

3.1.2 Displaying Command Line Format and Compiler Options

shc (RET)

The command line format and the list of the compiler options are displayed on the screen.

HITACHI

3.1.3 C Compiler Options

Insert minus (=) before optionddbug listfile, andshow). Slash (/) can also be inserted in place
of minus (=) for PC. When multiple options are specified, separate them with aspatbd
following shows the options for UNIX and PC. Also when multiple suboptions are specified,
separate them with a comma (,).

shc A-debug A-listfile A-show=noobject,expansion Atest.c (RET)

In PC, when multiple suboptions are specified, they can be enclosed in parentheses (()).

shc A/debug Allistfile A/show=(noobject,expansion) Atest.c(RET)

3.14 Compiling Multiple C Programs
Several C source programs can be compiled by a single command.

Example 1: Specifying multiple programs

shc Atestl.c Atest2.c (RET)

Example 2: Specifying options for all C source programs

shc A-listfile Atestl.c Atest2.c (RET)

Thelistfile option is valid for both testl.c and test2.c.

Example 3: Specifying options for particular C source programs

shc Atestl.c Atest2.c A-listfile (RET)

Thelistfile option is valid for only test2.c. Options specified for particular C source programs
have priority over those specified for all C source programs.

HITACHI

3.2 Naming Files

A standard file extension is automatically added to the name of a compiled file when omitted. The
standard file extensions used by the C compiler and related software are shown in table 1.1. For
details on naming files, refer to the user's manual of the host computer because naming rules vary
according to each host computer.

Table 1.1 Standard File Extensions Used by the C Compiler

File Extension Description

c Source program file written in C
h Include file

lis, Ist Listing file*

obj Relocatable object program file
src Assembly source program file
lib Library file

abs Absolute load module file

rel Relocatable load module file
map Linkage map listing file

Note: The listing file extension is lis on UNIX systems and Ist on PC systems.

HITACHI

3.3 Compiler Options

Table 1.2 shows C compiler option formats, abbreviations, and defaults. Characters underlined
indicate the minimum valid abbreviation. Bold characters indicate default assumptions.

Table 1.2 C Compiler Options

Item Format Suboption Specification
CPU type cpu = shl | SH1 object is generated.
sh2 | SH2 object is generated.
sh3 | SH3 object is generated.
sh3e SH3E object is generated.
Optimization optimize = 0 | Object without optimization
is output.
1 Object with optimization is
output.
Optimization speed Optimization in both speed
select and size.
nosp eed Optimization in balance

between execution speed
and execution size is

selected.
size Optimization in program
size is selected.
Debugging debug Output
information nodeb ug No output
Listings and show = source | nosource | Source list yes/no
formats object | noobject | Object list yes/no
statistics | nostatistics | Statistics information
yes/no
include | noinclude | List after include expansion
yes/no
expansion | noexpansion | List after macro expansion
yes/no
width = <numeric value> | Maximum characters per
line:
0,80to 132
length = <numeric value> Maximum lines per page:
0, 40 to 255
Default:
w =132,
| =66
10

HITACHI

Table 1.2 C Compiler Options (cont)

Item Format Suboption Specification

Listing file listfile [= <list file name>] Output

nolistfile No output

Obiject file objectfile = <object file name> Output

Object program code = machinecode | Program in machine

format language is output.

asmcode Assembly source program
is output.

Macro name define = <macro name> = <name> | <name> is defined as
<macro name>.

<macro name> = <constant>| <constant> is defined as
<macro name>.

<macro name> <macro name> is assumed
to be defined.

Include file include = <path name> Include file destination path
name is specified (multi-
specification is possible).

Section name section = program = <section name> | Program area section

name is specified.

const = <section name> |

Constant area section
name is specified.

data = <section name> |

Initialized data area section
name is specified.

bss =<section name>

Non-initialized data area
section name is specified.

Default: p=P,

c=C,

d=D, b=B
Help message help Output
Position pic = 0 | Position independent code
independent is not generated.
code 1 Position independent code

is generated.

Area of string string = const | String literal is output to
literal to be constant section (C).
output data String literal is output to

initialized data section (D).

HITACHI

11

Table 1.2 C Compiler Options (cont)
ltem Format Suboption Specification
Comment comment = nest | Permits comment (/* */)
nesting nesting.
nonest Does not permit comment
(/* */) nesting.
Japanese code euc Selects euc code.
select in string sjis Selects sjis code.
literals
Subcommand file subcommand = <file name> Includes command option
select from a file specified by
<file name>.
Division division = cpu | Uses cpu's division
operation instruction.
peripheral | Uses a divider (with
masking interruption).
nomask Uses a divider (without
masking interruption).
Memory bit order endian = big | Specifies maximum big
endian.
little Specifies little endian.
Inline expansion inline Specifies inline
specification expansion.
inline = <numeric value> Specifies the maximum
size of a function to
expand where the function
is called.
noinline
Default header preinclude = <file name> Includes contents of a
file specified file at the
beginning of compilation
units.
MACH and macsave = 0 | Does not guarantee
MACL registers contents of MACH and
MACL registers at function
call.
1 Guarantees contents of

MACH and MACL
registers at function call.

12

HITACHI

Table 1.2 C Compiler Options (cont)

Iltem

Format

Suboption

Specification

Information
message output

message

Outputs information
message.

nome ssage

Does not output
information message.

Label 16-byte
alignment

alignl16

Labels placed immediately
after an unconditional
branch instruction other
than a subroutine call in a
program section must be
aligned in 16 bytes.

noalignl6

Does not place labels
aligned in 16 bytes.

Double type to
single precision

double =

float

Treats double type (double
precision floating point
number) as float type
(single precision floating
point number) as object.

Japanese
character
conversion

utcode =

(@]

Selects euc code.

Selects sjis code.

ABS16
declaration

abs16 =

Assumes all execution
routines to have been
declared with #pragma
abs16.

[

Generates all label
addresses in 16 bits.

Loop unroll

loop

Optimizes loop unrolling.

nolo op

Does not optimize loop
unrolling.

Inline expansion

nestinline =

<numeric value>

Specifies the number of
times to expand nested
inline functions.

EXTS and EXTU
creation at data
return

rtnext

Creates a sign-extension
or zero-extension
instruction for the upper
bytes when returning a
value to a program by the
return statement.

—

nort next

Does not create a sign-
extension or zero-
extension instruction.

HITACHI

13

—cpu =shl]| sh2 | sh3 | sh3e
This option specifies a target CPU. A library to be linked differs according to a
CPU. For details, refer to section 3.5, Correspondence to Standard Libraries in
part I, OVERVIEW AND OPERATIONS.

—optimize =0 [1
This option specifies compiler optimization.
optimize = 0 disables compiler optimization.

optimize = 1 enables compiler optimization.

—speed—nhospeed

This option specifies speed optimization. When a speed option is specified,
program is executed faster but program size may increase. When nospeed is
specified but size option is not specified, optimization is performed in program
execution speed and program size.

—size

This option specifies optimization in object size.

—dehig,—nodebug

This option specifies whether or not to output debugging information which is
necessary for C source level debugging.

—show = source jhosairce | object | noolbect [statistics | nostatistics fnclude jnoinclude|
expansion hoexpansion|width = <numeric value> gngth = <numeric value>

This option specifies the output format of a list file. This option is valid when a
listfile option is specified.
show = width =0 One line ends at a carriage code.
show =length=0 The maximum number of lines is not specified;
therefore, pagination is not performed.

—listfile [=<listfile name>]—nalistfile
This option specifies whether a list file is output. When a file name is not
specified, a file that has the same name as the source file with a standard
extension lis/Ist is generated.

—objectfile = <objectfile name>
This option specifies an object file name to be output.

14
HITACHI

—code =machinecodd asmcode
This option specifies whether the compiler outputs an object file in a machine
language or an assembler source file.

—define = <macro name> = <name> | <macro name> = <constant> | <macro name>
This option enables a macro definition at the beginning of a source program.
Table 1.3, describes macro names, names, and constants which can be specified using this option.

Table 1.3 Macro Names, Names, and Constants Specified by the Define Option

ltem Description

Macro name A string literal beginning with a letter or an underscore followed by zero or
more letters, underscores, and numbers.

Name A string literal beginning with a letter or an underscore followed by zero or
more letters, underscores, and numbers.

Constant Decimal constant: A string literal of one or more numbers (0 to 9),
or a string literal of one or more numbers
followed by a period (.) followed by zero or
more numbers.

Octal constant: A string literal that begins with a zero followed
by one or more numbers (0 to 7).

Hexadecimal constant: A string literal that begins with a zero followed
by an x, then followed by one or more numbers
or alphabetical letters (A to F).

—include = <path name>
This option specifies a directory where an include file is searched for. For
details on how to search, refer to Appendix A.1.13, Preproccessor.

—=sedion = [program = <section namezgdnst = <section namexta = <section nameb$s =

< section name >
This option changes section names in object programs. Section names when this
option is omitted are program area section P, constant area section C, initialized
data area section D, and non-initialized data area section B.

—help
This option displays a list of compiler options. Once this option is specified, the
other option(s) will be disabled.

15
HITACHI

—pic=0]1

When pic = 1 is specified, a program section after linking can be allocated to any
address and executed. A data section can only be allocated to an address
specified at linking. When using this option as a position independent code, a
function address cannot be specified as an initial vdilate that if cpu = SH1

is specified, pic = 1 is ignoredA library to be linked varies according to the

cpu, pic, endian, or double option. For details, refer to section 3.5,
Correspondence to Standard Libraries in part I, OVERVIEW AND
OPERATIONS.

Example
extern int f ();
int *fp)() = f; <— Cannot be specified

—string =const|data

When string = const is specified, string literals are output to constant area section
(default is C). When string = data is specified, string literals are output to
initialized data area section (default is D).

—conment =nest jnonest

=gjis

16

This option specifies whether or not to permit comment /* */ nesting.

Example
/* comment
int a; [* nestl /[* nset2 * *

*

When comment = nest is specified, an underlined section is treated as a nested
comment and the outermost comment is enforced.

When comment = nonest is specified, a comment is treated to end by nest2*/.
Therefore, a section after nest2*/ is treated as an error.

This option selects euc for the Japanese code for string literals in C program.
When this option is omitted, euc or sjis is selected according to the host
computer. For details, refer to section 3.5, Japanese Description in String
Literals in part Il, C Programming.

This option selects sjis for the Japanese code for string literals in C program.
When this option is omitted, euc or sjis is selected according to the host
computer. For details, refer to section 3.5, Japanese Description in String
Literals in part Il, C Programming.

HITACHI

—sulcommand = <file name>

This option assumes contents of a specified file name as an option. This option
can be specified in a command line more than once. In a subcommand file, an
parameters must be delimited by a space, a carriage return, or a tab. Contents in
a subcommand file will be expanded to an area specified by a subcommand in a
command line parameter. A subcommand option cannot be specified in a
subcommand file.

Example: The following examples are the same as shc —debug —cpu=sh2 test.c.

Command line
shc —sub=test.sub test.c

Contents of test.sub
—debug
—cpu=sh2

—division =cpu | peripheral pomask

This option selects an execution routine for an integer division in a C source
program. This option can be combined with a suboption in the cpu option.
However, only the SH2 can execute an object program that specifies peripheral
or nonmask as suboption.

1. cpu: specifies an execution routine which uses the DIV1
instruction

2. peripheral: specifies an execution routine using a divider
(15 is set to interrupt mask level)

3. nomask: specifies an execution routine using a divider
(no change in interrupt mask level)

Note the following before specifying a peripheral or nomask option.

1. Zero division is not checked or errno is not set.

2. If nomask is specified and an interrupt occurs during operation of a
divider and the divider is used in an interrupt routine, the correct
operation is not guaranteed.

3. An overflow interrupt is not supported.

4. Results after operation such as zero division or overflow depend on the
divider specifications. Some of them may be different from those when
a cpu suboption is specified.

17
HITACHI

—erdian =big | little
This option can be combined with a suboption in a cpu option. However, only
the SH3 or SH3E can execute an object program for little endian. The library to
be linked depends on endian, cpu, pic, and double options. For details, refer to
section 3.5, Correspondence to Standard Libraries in part I, OVERVIEW AND
OPERATIONS.

—inline,=inline = <numeric value>noinline
This option specifies whether to expand a function automatically at the statement
where the function is called. The value specified in suboption <numeric value>
indicates the maximum number of nodes of a function (the total number of
characters of operators and variables excluding the declaration field) to expand
where the function is called. The default of speed option specification is inline =
20. The default when nospeed, size, or optimize = 0 option is specified noinline.

—preinclude = <file name>
This option includes file contents at the beginning of compilation units.

—macsave = 0]
This option specifies whether contents of the MACH or MACL registers are
guaranteed before and after a function call.
macsave = 0 does not guarantee the contents of the MACH or MACL registers
before and after a function call. macsave = 1 guarantees the contents of MACH
and MACL registers before and after a function call. A function that is compiled
using macsave = 1 cannot call a function that is compiled using macsave = 0.
However, the opposite is possible.

—messagenomessage
This option specifies information message output. nomessage option does not
output information message.

—align16,noalign16
This option aligns all labels placed immediately after an unconditional branch
instruction other than subroutine calls in a program section in 16 bytes.
noalign16 option does not place labels aligned in 16 bytes.

—double =float
This option treats double type declaration/cast (double precision floating point
number) as float type declaration/cast (single precision floating point number)
before generating object.

18

HITACHI

—outcode =eLc |sjis
This option selects euc for the Japanese character code when outcode = euc is
specified, and sjis when outcode = sjis is specified.

—aks16 =run |all
This option assumes all execution routines to have been declared with #pragma

abs16 when abs16 = run is specified, and generates all label addresses in 16 bits
when abs16 = all is specified.

—loop,—noloop
This option specifies whether to optimize loop unrolling.
The loop option performs loop unrolling. The noloop option does not perform

loop unrolling.

—nestinline = <numeric value>
This option specifies the number of times to expand the inline function. Up to
16 times can be specified. When this option is not specified (default), the inline
function is expanded once (nestinline=1).

—rtnext,=nortnext
This option performs sign extension or zero extension after setting a value in RO,
which is the place to set the return value, in a return statement of a function that
returns a (unsigned) char type or (unsigned) short type (see section 2.2.3 in part
I, C PROGRAMMING) to a program. This enables type conversion for a return
value before the actual value is returned to a program. If a prototype is declared
at the caller, this option is not required. The nortnext option does not perform
sign extension or zero extension.

19
HITACHI

3.4 Option Combinations

If a pair of conflicting options or suboptions are specified for a file, only one of them is considered
valid. Table 1.4 shows such option combinations.

Table 1.4 Option Combinations

Valid Option Invalid Option
nolist show
code = asmcode* debug*

show = object

help All other options
cpu =shl pic=1
optimize =0 loop

Note: When debug option is specified during assembly source output, a .LINE directive is
embedded in the output code. A .LINE directive gives C language source line information
to a debugger. After that, C language source lines are displayed for debugging. However,
C language level debugging is not performed for variable values.

20
HITACHI

3.5 Correspondence to Standard Libraries

There are 22 types of standard library combinations. Link a library listed in table 1.5 according to
the combination of a cpu, pic, endian, or double option.

shclib.lib (for SH1)

shcnpic.lib (for SH2, not for position independent code)

shcpic.lib (for SH2, for position independent code)

shc3npb.lib (for SH3, not for position independent code, big endian)

shc3pb.lib (for SH3, for position independent code, big endian)

shc3npl.lib (for SH3, not for position independent code, little endian)

shc3pl.lib (for SH3, for position independent code, little endian)

shcenpb.lib (for SH3E, not for position independent code, big endian)

shcepb.lib (for SH3E, for position independent code, big endian)

shcenpl.lib (for SH3E, for position independent code, little endian)

shcepl.lib (for SH3E, for position independent code, little endian)

shclibf.lib (for SH1, double = float option specification)

shcnpicf.lib (for SH2, not for position independent code, double = float option specification)
shcpicf.lib (for SH2, for position independent code, double = float option specification)
shc3npbf.lib (for SH3, not for position independent code, big endian, double = float option

specification)

shc3pbf.lib (for SH3, for position independent code, big endian, double = float option
specification)

shc3nplf.lib (for SH3, not for position independent code, little endian, double = float option
specification)

shc3plf.lib (for SH3, for position independent code, little endian, double = float option
specification)

shcenpbf.lib (for SH3E, not for position independent code, big endian, double = float option
specification)

shcepbf.lib (for SH3E, for position independent code, big endian, double = float option
specification)

shcenplf.lib (for SH3E, not for position independent code, little endian, double = float option
specification)

shceplf.lib (for SH3E, for position independent code, little endian, double = float option
specification)

21
HITACHI

Table 1.5 Correspondence between Standard Libraries and Compile Options

double specification None

endian specification endian = big endian = little

pic specification pic =0 pic =1 pic=0 pic=1
cpu =shl shclib.lib — — —

cpu = sh2 shcnpic.lib shcpic.lib — —

cpu = sh3 shc3npb.lib shc3pb.lib shc3npl.lib shc3pl.lib
cpu =sh3e shcenpb.lib shcepb.lib shcenpl.lib shcepl.lib
double specification double = float

endian specification endian = big endian = little

pic specification pic=0 pic=1 pic=0 pic=1
cpu =shl shclibf.lib — — —

cpu = sh2 shcnpicf.lib shcpicf.lib — —

cpu = sh3 shc3npbf.lib shc3pbf.lib shc3nplf.lib shc3plf.lib
cpu =sh3e shcenpbf.lib shcepbf.lib shcenplf.lib shceplf.lib
22

HITACHI

3.6 C Compiler Listings

This section describes C compiler listings and their formats.

3.6.1 Structure of C Compiler Listings

Table 1.6 shows the structure and contents of C compiler listings.

Table 1.6 Structure and Contents of C Compiler Listings

List Structure

Contents

Option Specification
Method**

Default

Source listing

Listing consists of
source programs

show=[no]source

No output

Source program listing after
include file and macro
expansion

(show=[no]include)* 2

(show=[no]expansion)

No output

Obiject listing

Machine language generated by
the C compiler and assembly
code

show=[no]object

Output

Statistics

Total number of errors, number
of source program lines, size of
each section (byte), and number
of symbols

show=[no]statistics

Output

Command line
specification

File names and options
specified in the command line

Output

Notes: 1. All options are valid when listfile is specified.
2. The option enclosed in parentheses is only valid when show = source is specified.

HITACHI

23

3.6.2 Source Listing

The source listing can be output in two ways. Wsleow = noinclude,noexpansionis specified,
the unpreprocessed source program is output. \Atm@mw = include, expansiorns specified, the
preprocessed source program is output. Figures 1.3 and 1.4 show examples of these output
formats. Bold characters in figure 1.4 show the differences.

wrxmkkeekk QOURCE LISTING *rxkkkkiksk

FILE NAME: m0260.c

Seq File Line O----#----1----t--m-2-mmotomm-Bommotommfommtona 5o
m0260.c 1 #include "header.h"

1

4 m0260.c 2

5 m0260.c 3 intsum2(void)
6 mo0260.c 4 { intj;

7 m0260.c 5

8 m0260.c 6 #ifdef SMALL
9 m0260.c 7 j=SML_INT;
10 m0260.c 8 #else

11 m0260.c 9 JFLRG_INT;

12 m0260.c 10 #endif
13 m0260.c 11

14 m0260.c 12 return j;/* continue123456789012345678901234567
1)) 3) +2345678901234567890 */
Q]

15 m0260.c 13 }

Figure 1.3 Source Listing Output for show = noinclude, noexpansion

24
HITACHI

sxtrrtrirtt GOURCE LISTING *tbkstirts
FILE NAME: m0260.c

Seq File Line 0----t----1----t----2-mmmtonno3emmm b oot Bo o

1 m0260.c 1 #include "header.h"

2 headerh 1 #define SML_INT 1

3 header.h 2 #define LRG_INT 100 4
4 m0260.c 2

5 m0260.c 3 int sum2(void)

6 m0260.c 4 { intj;

7 m0260.c 5

8 m0260.c 6 #ifdef SMALL

9 m0260.c 7 X J=SML_INT;

10 m0260.c 8 (5) telse

11 m0260.c 9 E j=100;

12 m0260.c 10 (6) #endif

13 m0260.c 11

14 m0260.c 12 return j;/* continue123456789012345678901234567

(1) (2) (3) +2345678901234564890 */

™
15 m0260.c 13 }

Figure 1.4 Source Listing Output for show = include, expansion

Description:

(1) Listing line number

(2) Source program file name or include file name

(3) Line number in source program or include file

(4) Source program lines resulting from an include file expansion shm@n = includeis
specified.

(5) Source program lines that are not to be compiled due to conditional compile directives such as
#ifdef and#elif being marked with an X whesow = expansioris specified.

(6) Source program lines containing a macro expansiefine directives being marked with an E
whenshow = expansionis specified.

(7) If a source program line is longer than the maximum listing line, the continuation syisol (
used to indicate that the source program line is extended over two or more listing lines.

25
HITACHI

3.6.3 Object Listing

The object listing can be output in two ways. Whbow = source pbject is specified, the source
program is output. Wheshow = nosourcepbject is specified, the source program is not output.
Figures 1.5 and 1.6 show examples of these listings.

wxxwrkrresk OBJECT LISTING **rsskkk

FILE NAME: m0251.c

SCT OFFSET CODE CLABEL INSTRUCTION OPERAND COMMENT
(€] @ 3 @ ®)
mO0251.c 1 extern int multipli(int);
m0251.c 2
m0251.c 3 int multipli(int x)
P 00000000 _multipli: ;function: multipli

; frame size=16)
; used runtime library name:

; muli 8)

00000000 4F22 STS.L PR,R15
00000002 7FF4 ADD #-12,R15
00000004 1F42 MOV.L R4,@(8,R15)

m0251.c 4 {

m0251.c 5 inti;

m0251.c 6 int j;

m0251.c 7

m0251.c 8 =1,
00000006 E201 MoV #1,R2
00000008 2F22 MOV.L R2,@R15

m0251.c 9 for(i=1;i<=x;i++){
0000000A E301 MoV #1,R3
0000000C 1F31 MOV.L R3,@(4,R15)
0000000E A009 BRA L213
00000010 0009 NOP
00000012 L214:

m0251.c 10 j*=i;
00000012 50F1 MOV.L @(4,R15),R0
00000014 61F2 MoV @R15,R1
00000016 D30A MOV.L L216+2,R3 i _muli
00000018 430B JSR @R3

Figure 1.5 Object Listing Output for show = source, object

26
HITACHI

wxxxrrrrrrrk QBIJECT LISTING *rwwkwkkkkk

FILE NAME: m0251.c

SCT OFFSET CODE CLABEL INSTRUCTION OPERAND COMMENT
1)) 3) 4 ©)
P ; File m0251.c .Line 3 ;block

00000000 _multipli: (6) ;function: multipli
; frame size=16 7
; used runtime library name:

; muli (8)

00000000 4F22 STS.L PR,@R15
00000002 7FF4 ADD #-12,R15
00000004 1F42 MOV.L R4,@(8,R15)

;File m0251.c ,Line 4 ;block

;File m0251.c ,Line 8 ;expression statement
00000006 E201 MOV #1,R2
00000008 2F22 MOV.L R2,@R15

;File m0251.c ,Line 9 ;for
0000000A E301 MOV #1,R3
0000000C 1F31 MOV.L R3,@(4,R15)
0000000E A009 BRA L213
00000010 0009 NOP
00000012 L214:

;File m0251.c ,Line 9 ;block

;File m0251.c ,Line 10 ;expression statement
00000012 50F1 MOV.L @(4,R15),R0
00000014 61F2 MOV.L @R15,R1
00000016 D30A MOV.L L216+2,R3 ;__muli
00000018 430B JSR @R3

Figure 1.6 Object Listing Output for show = nosource, object

Description:
(1) Section attribute (P, C, D, and B) of each section

(2) Offset address relative to the beginning of each section
(3) Contents of the offset address of each section
(4) Assembly code corresponding to machine language

(5) Comments corresponding to the program (only output when not optimized; however, labels are
always output)

(6) Line information of the program (only output when not optimized)
(7) Stack frame size in bytes (always output)
(8) Routine name that is being executed

27
HITACHI

3.6.4 Statistics Information

Figure 1.7 shows an example of statistics information.

wrwcersk STATISTICS INFORMATION #ersies

wxxkikrks ERROR INFORMATION *ttskskrx

NUMBER OF ERRORS: 0

NUMBER OF WARNINGS: 0

NUMBER OF INFORMATIONS: 0

wrxexrikk SOURCE LINE INFORMATION rkaorrk

COMPILED SOURCE LINE: 13

wrxxrikk SECTION SIZE INFORMATION #*xxkikex

PROGRAM SECTION(P): 0x000044 Byte(s)
CONSTANT SECTION(C): 0x000000 Byte(s)
DATA SECTION(D): 0x000000 Byte(s)
BSS SECTION(B): 0x000000 Byte(s)

TOTAL PROGRAM SIZE: 0x000044 Byte(s)

wxxwirrnk | ABEL INFORMATION *#¥rsssk

NUMBER OF EXTERNAL REFERENCE SYMBOLS: 1
NUMBER OF EXTERNAL DEFINITION SYMBOLS: 1
NUMBER OF INTERNAL/EXTERNAL SYMBOLS: 6

M

@

®

Q]

28

Figure 1.7 Statistics Information

HITACHI

Description:

(1) Total number of messages by the level

(2) Number of compiled lines from the source file

(3) Size of each section and total size of sections

(4) Number of external reference symbols, number of external definition symbols, and total
number of internal and external labels

Note: NUMBER OF INFORMATIONS in messages by the level ((1) above) is not output when
message option is not specified. Section size information (3) and label information (4) are
not output if an error-level error or a fatal-level error has occurred or when option
noobject is specified. In addition, section size information (3) is output (indicated as “1")
or not output (indicated as “0") according to its specification when optide = asmcode
is specified.

3.6.5 Command Line Specification

The file names and options specified on¢benxmandline when the compiler is invoked are
displayed. Figure 1.8 shows an exampleafimandline specification information.

*** COMMAND PARAMETER ***

-listfile test.c

Figure 1.8 Command Line Specification

29
HITACHI

3.7 C Compiler Environment Variables

Environment variables to be used by the compiler are listed in table 1.7.

Table 1.7

Environment
Variable

Environment Variables

Explanation in Use

SHC_LIB

Specifies a directory at which compiler load module and system
include file exists.

SHC_INC

Specifies a directory at which a system include file exists. More than
one directory can be specified by dividing directories using commas. A
system include file is searched for at a directory specified using an
include option specified directory, SHC_INC-specified directory, and
system directory (SHC_LIB) in this order.

SHC_TMP

Specifies a directory where the compiler generates a temporary file.
This environment variable is required for a PC. For UNIX, a directory
indicated in TMPDIR is specified when this environment variable is
specified. If SHC_TMP or TMPDIR is not specified, a temporary file is
generated in /usr/tmp.

SHCPU

Specifies CPU type by compiler —cpu option using environment
variables. The following is specified:

SHCPU=SH1 (same as —cpu=sh1l)

SHCPU=SH2 (same as —cpu=sh2)

SHCPU=SHDSP (same as —cpu=sh2)

SHCPU=SH3 (same as —cpu=sh3)

SHCPU=SH3E (same as —cpu=sh3e)
An error will occur if anything other than the above is specified.
Specifying lower case characters will also generate an error.
When the specification of CPU by SHCPU environment variable and
—cpu option differs, a warning message is displayed. —cpu option has
priority to SHCPU specification.

30

HITACHI

3.8 Implicit Declaration by Option

Using—cpu, —pic, —endian, or—double option results in an implicitdefine declaration. See the
following.

Table 1.8 Implicit Declaration

Option Implicit Declaration

—cpu =shl #define _SH1 (including default)
—cpu = sh2 #define _SH2

—cpu =sh3 #define _SH3

—cpu =sh3e #define _SH3E

—pic #define _PIC

—endian = big #define _BIG (including default)
—endian = little #define _LIT

—double = float #define _FLT

The following shows an specification example.
Example:

#ifdef _BIG
#ifdef _SH1
...... Valid when—cpu = shl —endian = bigption is specified
...... (Also valid when no option is specified fecpu or—endian)
#endif
#endif
#ifdef _SH2
...... Valid when—cpu = sh2option is specified
#endif
#ifdef _SH3
#ifdef _BIG
...... Valid when—cpu = sh3 —endian = bigption is specificed
#endif
#ifdef _LIT
...... Valid when—cpu = sh3 —endian = littleoption is specified
#endif
#endif

Rules: 1. If no option is specified (defaulfdefine _SH1lor#define _BIGis set.
2. The implicit#definedeclaration is specified #sindefin the source file.

31
HITACHI

32

HITACHI

PART I
C PROGRAMMING

HITACHI

33

34

HITACHI

Section 1 Limits of the C Compiler

Table 2.1 shows the limits on source programs that can be handled by the C compiler. Source
programs must fall within these limits. To edit and compile efficiently, it is recommended to split
the source program into smaller programs (approximately two ksteps) and compile them
separately.

Table 2.1 Limits of the C Compiler

Classification Item Limit
Invoking the C Number of source programs that can be compiled at one None**
compiler time
Total number of macro names that can be specified None
using the define option
Length of file name (characters) 128
Source programs Length of one line (characters) 4096
Number of source program lines in one file 65535
Number of source program lines that can be compiled None
Preprocessing Nesting levels of files in an #include directive 30

Total number of macro names that can be specified in a None
#define directive

Number of parameters that can be specified using a 63
macro definition or a macro call operation
Number of expansions of a macro name 32
Nesting levels of #if, #ifdef, #ifndef , #else, or #elif 32
directives
Total number of operators and operands that can be 512
specified in an #if or #elif directive

Declarations Number of function definitions 512
Number of internal labels*? 32767
Number of symbol table entries** 24576
Total number of pointers, arrays, and functions that 16

qualify the basic type

Array dimensions 6

35
HITACHI

Table 2.1 Limits of the C Compiler (cont)

Classification ltem Limit

Statements Nesting levels of compound statements 32

Nesting levels of statement in a combination of repeat 32
(while , do, and for) and select (if and switch)

statements
Number of goto labels that can be specified in one 511
function
Number of switch statements 256
Nesting levels of switch statements 16
Number of case labels 511
Nesting levels of for statements 16
Expressions Number of parameters that can be specified using a 63
function definition or a function call operation
Total number of operators and operands that can be About 500
specified in one expression
Standard library Number of files that can be opened at once in open 20
function

Notes: 1. For PC, the number of command line that can be compiled at one time is limited to 127
characters.

2. Aninternal label is internally generated by the C compiler to indicate a static variable
address, case label address, goto label address, or a branch destination address
generated by if, switch , while , for, and do statements.

3. The number of symbol table entries is determined by adding the following numbers:
Number of external identifiers
Number of internal identifiers for each function
Number of string literals
Number of initial values for structures and arrays in compound statements
Number of compound statements
Number of case labels
Number of goto labels

36
HITACHI

Section 2 Executing a C Program

This section covers object programs which are generated by the C compiler. In particular, this
section explains the items necessary for the linkage of the C program with an assembly program,
or when incorporating a program into an SH system.

2.1 Structure of Object Programs: This section discusses the characteristics of memory areas
used for C programs and standard library functions.

2.2 Internal Data Representation: This section explains the internal representation of data used
by a C program. This information is required when data is shared among C programs, hardware,
and assembly programs.

2.3 Linkage with Assembly Programs: This section explains the rules for variables and function
names that can be mutually referenced by multiple object programs. This section also discusses
how to use registers, and how to transfer parameters and return values when a C program calls a
function. This information is required for C program functions calling assembly program routines
or vice versa.

Refer to respective hardware manuals for details on SH hardware.

37
HITACHI

2.1 Structure of Object Programs

This section discusses the characteristics of memory areas used by a C program or standard library
function in terms of the following items.

1. Section
Composed of memory areas which are allocated statically by the C compiler. Each section has
a name and type. A section name can be changed by the compilersegtion
2. Write Operation
Indicates whether write operations are enabled or disabled at program execution.
3. Initial Value
Shows whether there is an initial value when program execution starts.
4. Alignment
Restricts addresses to which data is allocated.

Table 2.2 shows the types and characteristics of those memory areas.

38
HITACHI

Table 2.2

Memory Area Types and Characteristics

Memory

Area Section Section Write Initial

Name Name™ Type Operation Value Alignment Contents

Program P code Disabled Yes 4 bytes” Stores machine

area codes.

Constant C data Disabled Yes 4 bytes Stores const

area data.

Initialized D data Enabled Yes 4 bytes Stores initial

data area value.

Non- B data Enabled No 4 bytes Stores data

initialized whose initial

data area values are not
specified.

Stack area @ — — Enabled No 4 bytes Required for
program
execution.
Refer to section
2.2 Dynamic
Area Allocation,
in part 111,
SYSTEM
INSTALLATION.

Heap area — — Enabled No — Used by a
library function
(malloc
realloc , or
calloc). Refer to
section 2.2
Dynamic Area
Allocation, in
part lll SYSTEM
INSTALLATION.

Notes: 1. Section name shown is the default generated by the C compiler when a specific name
is not specified by the compiler —section option.

2. Becomes 16 bytes when —align16 option is specified.

HITACHI

39

Example:
This program example shows the relationship between a C program and the sections

generated by the C compiler.

. Program area main(){...}
int a=1;
char b;
. Constant area c
const int c=0;
mai n(){ L
Initialized data area a
! Non-initialized data area b
file.c
C program Areato be generated by the compiler and
datato be stored in it.
40

HITACHI

2.2 Internal Data Representation

This section explains the internal representation of C language data types. The internal data
representation is determined according to the following four items:

1. Size
Shows the memory size necessary to store the data.

2. Alignment
Restricts the addresses to which data is allocated. There are three types of alignment; 1-byte
alignment in which data can be allocated to any address, 2-byte alignment in which data is
allocated to an even byte address, and 4-byte alignment in which data is allocated to an address
indivisible by four.

3. Datarange
Shows the range of scalar-type data.

4. Data allocation example
Shows how the elements of combined-type data are allocated.

41
HITACHI

221

Scalar-Type Data

Table 2.3 shows the internal representation of scalar-type data used in C.

Table 2.3 Internal Representation of Scalar-Type Data
Data Range
Size Alignment Minimum Maximum

Data Type (bytes) (bytes) Sign Value Value

char (signed 1 1 Used -2 (-128) 2" -1(127)

char)

unsigned char 1 1 Unused 0 2% —1(255)

short 2 2 Used —2% (-32768) 2% — 1 (32767)

unsigned short 2 2 Unused 0 2" — 1 (65535)

int 4 4 Used —2% (-2147483648) 2% -1
(2147483647)

unsigned int 4 4 Unused 0 2% 1
(4294967295)

long 4 4 Used —2% (-2147483648) 2% -1
(2147483647)

unsigned long 4 4 Unused 0 2% 1
(4294967295)

enum 4 4 Used —2% (-2147483648) 2% -1
(2147483647)

float 4 Used - + o0

double 8" Used - o + 00

long double

Pointer 4 4 Unused 0 2% -1
(4294967295)

Note: The size of double type is 4 bytes if —double=float option is specified.

42

HITACHI

2.2.2 Combined-Type Data

This part explains the internal representation of array, structure, and union data types. Table 2.4
shows the internal data representation of combined-type data.

Table 2.4 Internal Representation of Combined-Type Data

Data Type Alignment (bytes) Size (bytes) Data Allocation Example
Array Maximum array Number of array elements int a[10];
element alignment X element size Alignment: 4 bytes
Size: 40 bytes
Structure** Maximum structure Total size of members** struct {
member alignment inta, b;
}
Alignment: 4 bytes
Size: 8 bytes
Union Maximum union Maximum size of union {
member alignment member*? int a,b;
}
Alignment: 4 bytes
Size: 4 bytes
43

HITACHI

In the following notes, a rectangle indicates four bytes.

Note 1:
When allocating a member of a structure type, an empty area may be created between a
member and the previous member to adjust the alignment of a data type of the member.

struct {
char a;
int b;}z;

z.b

When a structure has a four-byte alignment, and the last member ends at the first, second or
third byte, the remaining bytes are included in a structure type area.

struct {
int a;
char b;}x;

Note 2:
When a union has a four-byte alignment, and the maximum value of the member size is not a
multiple of four, the remaining bytes up to a multiple of four are included in the union type
area.

union {
int a;
char b [7];}w;

w.b[O]w.b[1]w.b[2]w.b[3]

W.b[4]w.b[5]w.b[6]

44
HITACHI

223 Bit Fields
A bit field is a member of a structure. This part explains how bit fields are allocated.
Bit field members: Table 2.5 shows the specifications of bit field members.

Table 2.5 Bit Field Member Specifications

Item Specifications

Type specifier allowed for bit fields char, unsigned char, short, unsigned short, int,
unsigned int, long, and unsigned long

How to treat a sign when data is A bit field with no sign (unsigned is specified for

extended to the declared type** type): Zero extension**

A bit field with a sign (unsigned is not specified for
type): Sign extension**

Notes: 1. To use a member of a bit field, data in the bit field is extended to the declared type.

One-bit field data with a sign is interpreted as the sign, and can only indicate 0 and —1.

To indicate 0 and 1, bit field data must be declared with unsigned .
2. Zero extension: Zeros are written to the high-order bits to extend data.

3. Sign extension: The most significant bit of a bit field is used as a sign and the sign is
written to all higher-order bits to extend data.

HITACHI

45

Bit field allocation: Bit field members are allocated according to the following five rules:

1. Bit field members are placed in an area beginning from the left, that is, the most significant bit.

Example: 3 0
struct bl{ = |x.aix.bi |
int a:2; Yy
int b:3;
}X;

2. Consecutive bit field members having type specifier of the same size are placed in the same
area as much as possible.

Example: 2 0
struct bi{ = |yaiy.b!
| ong a: 2; Y
unsi gned int b:3;
by

3. Bit field members having type specifier with different sizes are allocated to the following
areas.

Example: 31 0
struct bi{ [za ! |
int a:b5; o 5
char b: 4, X |
. zb
1z ==

4. If the number of remaining bits in the area is less than the next bit field size, though type
specifier indicate the same size, the remaining area is not used and the next bit field is
allocated to the next area.

Example: 31 24 16
struct b2{ = va i /ivb i |
~—
char a:5; 5 4
char b: 4;
v

46
HITACHI

5. If a bit field member with a bit field size of O is declared, the next member is allocated to the

next area.

Example:

struct b2{ ° — 2
char a:5; = ua—//\ii'/l
char :0; 5 3
char c: 3;

w,

47
HITACHI

2.2.4 Memory Allocation of Little Endian
Memory is allocated to a data array using a little endian as follows.

One-byte data (char and unsigned char type):The order of bits in one-byte data for a big
endian and a little endian is the same.

Two-byte data (short and unsigned short type):The upper byte and the lower byte will be
reversed in two-byte data for a big endian and a little endian.

Example: When a two-byte data 0x1234 is allocated in an address 0x100:

big endian: address 0x100: 0x12 little endian: address 0x100: 0x34
address 0x101: 0x34 address 0x101: 0x12

Four-byte data (int, unsigned int, long, unsigned long, and float type)The upper byte and the
lower byte will be reversed in four-byte data for a big endian and a little endian.

Example: When a four-byte data 0x12345678 is allocated in an address 0x100:

big endian: address 0x100: 0x12 little endian: address 0x100: 0x78
address 0x101: 0x34 address 0x101: 0x56
address 0x102: 0x56 address 0x102: 0x34
address 0x103: 0x78 address 0x103: 0x12

Eight-byte data (double type): The order of eight-byte data will be reversed for a big endian and
a little endian.

Example: When a four-byte data 0x123456789abcdef is allocated in an address 0x100:

big endian: address 0x100: 0x01 little endian: address 0x100: Oxef
address 0x101: 0x23 address 0x101: Oxcd
address 0x102: 0x45 address 0x102: Oxab
address 0x103: 0x67 address 0x103: 0x89
address 0x104: 0x89 address 0x104: 0x67
address 0x105: Oxab address 0x105: 0x45
address 0x106: Oxcd address 0x106: 0x23
address 0x107: Oxef address 0x107: 0x01

48
HITACHI

Combined-Type Data: Members of combined-type data will be allocated in the same way as that
of a big endian. However, the order of byte data of each member will be reversed according to the
rule of data size.

Example: When the following function exists in address 0x100:

struct {
short a;
int b;
}z={0x1234, 0x56789abc};

big endian: address 0x100: 0x12 little endian: address 0x100: 0x34
address 0x101: 0x34 address 0x101: 0x12
address 0x102: empty area address 0x102: empty area
address 0x103: empty area address 0x103: empty area
address 0x104: 0x56 address 0x104: Oxbc
address 0x105: 0x78 address 0x105: 0x9a
address 0x106: 0x9a address 0x106: 0x78
address 0x107: Oxbc address 0x107: 0x56

Bit field: Bit fields will be allocated in the same way as a big endian. However, the order of byte
data in each area will be reversed according to the rule of data size.

Example: When the following function exists in address 0x100:

struct {
long a:16;
unsigned int b:15;
short ¢:5
y={1,1,1}
big endian: address 0x100: 0x00 little endian: address 0x100: 0x02
address 0x101: 0x01 address 0x101: 0x00
address 0x102: 0x00 address 0x102: 0x01
address 0x103: 0x02 address 0x103: 0x00
address 0x104: 0x08 address 0x104: 0x00
address 0x105: 0x00 address 0x105: 0x08
address 0x106: empty area address 0x106: empty area
address 0x107: empty area address 0x107: empty area
49

HITACHI

2.3 Linkage with Assembly Programs

The C compiler supports intrinsic functions such as access to the SH microcomputer registers as.
Refer to section 3.2, Intrinsic Functions, in part Il, C PROGRAMMING, for details on intrinsic
functions. However, processes that cannot be written in C, such as the multiply and accumulate
operation using the MAC instruction, should be written in assembly language and afterwards
linked to the C program.

This section explains two key items which must be considered when linking a C program to an
assembly program:

« External identifier reference
* Function call interface

2.3.1 External Identifier Reference

Functions and variable names declared as external identifiers in a C program can be referenced or
modified by both assembly programs and C programs. The following are regarded as external
identifiers by the C compiler:

* A global variable which has a storage class other $ketic
e Avariable name declared in a function with storage @assrn
e A function name whose storage class is other sitiic

When variable names which are defined as external identifiers in C programs, are used in
assembly programs, an underscore character (_) must be added at the beginning of the variable
name (up to 250 characters without the leading underscore).

50
HITACHI

Example 1: An external identifier defined in an assembly program is referenced by a C program

e In an assembly program, symbol names beginning with an underscore character () are
declared as external identifiers by an .EXPORT directive.

* Ina C program, symbol names (with no underscore character (_) at the head) are declared as
external identifiers.

Assembly program (definition) C program (reference)

.EXPORT _a, _b

. SECTI ON D, DATA, AL| G\=4
a: .DATA L 1

extern int a,b;

_b: .DATA L 1 f()
. END {
a+=b;
}

Example 2: An external identifier defined in a C program is referenced by an assembly program

e Ina C program, symbol names (with no underscore character () at the head) are defined as
external identifiers.

* In an assembly program, external references to symbol names beginning with an underscore
character () are declared by an .IMPORT directive.

C program (definition) Assembly program (reference)

int a; . | MPORT _a
. SECTI ON P, CODE, ALI G\=2
MOV. L A a RL
MOV. L @r1, RO
ADD #1, RO
RTS
MOV. L RO, @R1
.ALI GN 4
A a: .DATA L _a
. END

HITACHI

51

2.3.2 Function Call Interface

When either a C program or an assembly program calls the other, the assembly programs must be
created using rules involving the following:

Stack pointer

Allocating and deallocating stack frames

Registers

Setting and referencing parameters and return values

M owbd PR

Stack Pointer: Valid data must not be stored in a stack area with an address lower than the stack
pointer (in the direction of address H'0), since the data may be destroyed by an interrupt process.

Allocating and Deallocating Stack Frames:In a function call (right after the JSR or the BSR
instruction has been executed), the stack pointer indicates the lowest address of the stack used by
the calling function. Allocating and setting data at addresses greater than this one must be done by
the calling function.

After the called function deallocates the area it has set with data, control returns to the calling
function usually with the RTS instruction. The calling function then deallocates the area having a
higher address (the return value address and the parameter area).

After function call and after
control returns from a function

* Lower address

- Area allocated by the called function

Sp —B» (during function call)

Return value address : Area deallocated by the called function
(after control returns from a function)

[]: Area deallocated by the calling function

Parameter area

* Upper address

Figure 2.1 Allocation and Deallocation of a Stack Frame

Registers: Some registers change after a function call, while some do not. Table 2.6 shows how
registers change according to the rules.

52
HITACHI

Table 2.6

ltem

Registers Used in a Function

Rules on Changes in Registers After a Function Call

Notes on Programming

Registers whose
contents may change

RO to R7, FROto FR11*,
FPUL*, and FPSCR*

If registers used in a function
contain valid data when a
program calls the function, the
program must push the data onto
the stack or register before
calling the function. The data in
registers used in called function
can be used freely without being
saved.

Registers whose
contents may not
change

R8 to R15, MACH, MACL, PR,
and FR12 to FR15*

The data in registers used in
functions is pushed onto the
stack or register before calling
the function, and popped from
the stack or register only after
control returns from the function.
Note that data in the MACH and
MACL registers are not
guaranteed if the option
macsave=0 is specified.

Note: Indicates a register for SH3E floating point.

HITACHI

53

The following examples show the rules on register changes.

54

A subroutine in an assembly program is called by a C program

Assembly program (called program)

.EXPORT _sub

. SECTI ON P, CODE, ALI G\=4
_sub: MOV. L R14, @ R15

MOV. L R13, @ R15

ADD #- 8, R15

ADD #8, R15

MOV. L @R15+, R13

RTS

MOV. L @R15+, R14

. END

C program (calling program)

Data in those registers needed by the called
function is pushed onto the stack.

Function processing

(Since data in registers RO to R7 is pushed onto
L a stack by the calling C program, the assembly

program can use them freely without

having to save them first.)

J} Register data is popped from the stack.

f0)
{

}

sub() ;

extern void sub();

HITACHI

A function in a C program is called by an assembly program

C program (called program)

voi d sub()
{

Assembly program (calling program)

.IMPORT _sub
. SECTI ON P, CODE, ALI GN=2

STS. L PR, @ R15
MOV. L Rl, @1, R15)
MOV R3, R12

MOV. L A sub, RO
JSR @0

NOP

LDS. L @R15+, PR

.DATA.L _sub
. END

A _sub:

HITACHI

;

The called function name prefixed with () is
declared by the .IMPORT directive.

Store the PR register (return address storage
register) when calling the function.

If registers RO to R7 contain valid data,

the data is pushed onto the stack or stored

in unused registers.

Calls function sub.

The PR register is restored.

Address data of function sub.

55

Setting and Referencing Parameters and Return ValuesThis section explains how to set and
reference parameters and return values. The ways of setting and referencing parameters and return
values for each function depend on whether or not the type of the parameter or the return value is
declared explicitly. A prototype function declaration is used to declare parameters and returns
values explicitly.

This section first explains the general rules concerning parameters and return values, and then how
the parameter area is allocated, and how areas are established for return values.

e General rules concerning parameters and return values

O Passing parameters
A function is called only after parameters have been copied to a parameter area in registers
or on the stack. Since the calling function does not reference the parameter area after
control returns to it, the calling function is not affected even if the called function modifies
the parameters.

O Rules on type conversion
Type conversion may be performed automatically when parameters are passed or a return
value is returned. The following explains the rules on type conversion.

Type conversion of parameters whose types are declared:

Parameters whose types are declared by prototype declaration are converted to the
declared types.

Type conversion of parameters whose types are not declared:

Parameters whose types are not declared by prototype declaration are converted
according to the following rules.

char, unsigned char short, andunsigned shorttype parameters are convertedro
type parameters.

float type parameters are converteditmbletype parameters.

Types other than the above cannot be converted to another type.

Return value type conversion:

A return value is converted to the data type returned by the function.

56
HITACHI

Example:

(1) long f();
long f()
{ float x;
return x; <——— Thereturnvaueis converted to long by a
prototype declaration.

}
(2) wvoidp (int,...);
()
{ char c;
P(1.0, c);

} E cisconvertedtoint because atypeisnot
declared for the parameter.
1.0 is converted to int because the type of

the parameter isint.

« Parameter area allocation

Parameters are allocated to registers, or when this is impossible, to a stack parameter area.
Figure 2.2 shows the parameter area allocation. Table 2.7 lists rules on general parameter area
allocation.

Stack
Lower
address
SP o _
Parameter storage registers
Return value address
R4 FR4
R5 FR5
Parameter /
area // 7 A Re FR6
R7 FR7
FR8
FR9
%
% Parameter area FR10
7 7 FR11

(When CPU is SH3E)

Figure 2.2 Parameter Area Allocation

57
HITACHI

Table 2.7 General Rules on Parameter Area Allocation

Parameters Allocated to Registers

Parameter Parameters
Storage Registers Target Type Allocated to a Stack
R4 to R7 char, unsigned char, short , (1) Parameters whose types are other

unsigned short , int, unsigned

int, long, unsigned long , float) .
(when CPU is not SH3E), and (2) Parameters of a function which has

than target types for register passing

pointer been declared by a prototype
declaration to have variable-number
parameters™
FR4 to FR11™ float (when CPU is SH3E) (3) Other parameters are already

allocated to R4 to R7.

Notes: 1. Indicates a register for SH3E floating point.

2. If a function has been declared to have variable-number parameters by a prototype
declaration, parameters which do not have a corresponding type in the declaration and
the immediately preceding parameter are allocated to a stack.

Example:
int f2(int,int,int,int,...);

f2(a, b, c,X,y, 2); «——X,y, and z are alocated to a stack.
» Parameter allocation
O Allocation to parameter storage registers

Following the order of their declaration in the source program, parameters are allocated to
the parameter storage registers starting with the smallest numbered register. Figure 2.3
shows an example of parameter allocation to registers.

f(char a,int b)
{

31 87 0

R4 Not guaranteed a

R5 b

Figure 2.3 Example of Allocation to Parameter Registers

58
HITACHI

O Allocation to a stack parameter area

Parameters are allocated to the stack parameter area starting from lower addresses, in the
order that they are specified in the source program.

Note: Regardless of the alignment determined by the structure type or union type, parameters are
allocated using 4-byte alignment. Also, the area size for each parameter must be a
multiple of four bytes. This is because the SH stack pointer is incremented or
decremented in 4-byte units.

Refer to appendix B, Parameter Allocation Example, for examples of parameter allocation.

e Return value writing area
The return value is written to either a register or memory depending on its type. Refer to table
2.8 for the relationship between the return value type and area.
When a function return value is to be written to memory, the return value is written to the area
indicated by the return value address. The caller must allocate the return value setting area in
addition to the parameter area, and must set the address of the former in the return value
address area before calling the function (see figure 2.4). The return value is not written if its
type isvoid.

Table 2.8 Return Value Type and Setting Area

Return Value Type Return Value Area

char, unsigned char , short , unsigned short , int, RO: 32 bits

unsigned int , long, unsigned long , float, and pointer (The contents of the upper three bytes of

char, or unsigned char and the
contents of the upper two bytes of short
or unsigned short are not guaranteed.)

However, when the —rtnext option is
specified, sign extension is performed
for char or short type, and zero
extension is performed for unsigned
char or unsigned short type.

FRO: 32 bits

(When cpu is SH3E, and the return
value is float type.)

double , long double , structure, union Return value setting area (memory)

59
HITACHI

SP

Stack

Return value
address area

/I\ Lower address

Parameter
area

\l/ Upper address

Return value
setting area
(allocated by the
calling side)

Figure 2.4 Return Value Setting Area Used When Return Value Is Written to Memory

60

HITACHI

Section 3 Extended Specifications

This section describes C compiler extended specifications:

interrupt functions

intrinsic functions

section change function
single-precision floating-point library
Japanese description in string literals
inline function

inline expansion in assembly language
specifying two-byte address variable
specifying GBR base variable
register save and recovery control
global variable register allocation

3.1 Interrupt Functions

3.1.1 Description

#pragma interrupt (function name [(interrupt specifications)]
[, function name [(interrupt specifications)]])

HITACHI

A preprocessor directivétpragma) specifies an external (hardware) interrupt function. The
following section describes how to create an interrupt function. Since the interrupt operation of
SH3 and SH3E differ from that of the SH1 and SH2, interrupt handlers are necessary.

61

Table 2.9 lists interrupt specifications.

Table 2.9 Interrupt Specifications

Item Form Options Specifications
Stack switching sp= <variable> | The address of a new stack is specified with a
specification &<variable> variable or a constant.
| <constant> <variable>: Variable value
&<variable>: Variable (pointer type) address
<constant>: Constant value
Trap-instruction tn= <constant> Termination is specified by the TRAPA instruction

return
specification

<constant>: Constant value
(trap vector number)

62

HITACHI

3.1.2 Explanation

#pragma interrupt declares an interrupt function. An interrupt function will preserve register
values before and after processing (all registers used by the function are pushed onto and popped
from the stack when entering and exiting the function). The RTE instruction directs the function

to return. However, if the trap-instruction return is specified, the TRAPA instruction is executed

at the end of the function. An interrupt function with no specifications is processed in the usual

procedure. The stack switching specification and the trap-instruction return specification can be
specified together.

Example:
extern int STK[100];

int *ptr = STK + 100;

#pragma interrupt (f(sp=ptr , tn=10))
@ (b)
Explanation:
(a) Stack switching specification: ptr is set as the stack pointer used by interrupt
function f.

(b) Trap-instruction return specification: After the interrupt function has
completed its processing, TRAPA #H'10 is executed. The SP at the beginning
of trap exception processing is shown in figure 2.5. After the previous PC and
SR (status register) are popped from the stack by the RTE instruction in the
trap routine, control is returned from the interrupt function.

63
HITACHI

Immediately after interrupt During interrupt function Just after the interrupt function

processing has completed processing
(Immediately before the TRAPA
Lower address instruction is issued)
STKIO0] STKIO]
STK[99] STK[99]
ptr —» sp —
Upper address ¢
Lower address
sp . , sp — .
Previous PC Previous PC Previous PC
Previous SR Previous SR Previous SR
Upper address ‘

Figure 2.5 Stack Processing by an Interrupt Function

64
HITACHI

3.1.3 Notes

1. Only global functions can be specified for an interrupt function definition and the storage class
specifier must bextern. Even if storage clastatic is specified, the storage class is handled
asextern.

The function must returwoid data. Theeturn statement cannot have a return value. If
attempted, an error is output.

Example:
#pragma interrupt(f1(sp=100),f2)
void fLO{.} e (@)
int f20{...} oo (b)

Description: (a) is declared correctly.
(b) returns data that is not void, thus (b) is declared incorrectly. An error
is output.

2. A function declared as an interrupt function cannot be called within the program. If attempted,
an error is output. However, if the function is called within a program which does not declare
it to be an interrupt function, an error is not output but correct program execution will not be
guaranteed.

Example (An interrupt function is declared)
#pragma interrupt(fl)
void f1(void){...}
int f20{ f10;} .vveennven. (@)

Description: Function f1 cannot be called in the program because it is declared as an
interrupt function. An error is output at (a).

Example (An interrupt function is not declared)
int f1();
int f20{ f10:;}cvvevnen. (b)
Description: Because function f1 is not declared as an interrupt function, an object for extern

int f1(); is generated. If function f1 is declared as an interrupt function in
another file, correct program execution cannot be guaranteed.

65
HITACHI

3.2 Intrinsic Functions

The C compiler provides the intrinsic functions for the SH microcomputer, which (functions) are
described below.

3.2.1 Intrinsic Functions
The following functions can be specified by intrinsic functions.

« Setting and referencing the status register

e Setting and referencing the vector base register

« 1/O functions using the global base register

e System instructions which do not compete with register sources in C

3.2.2 Description

<machine.h>, <umachine.h>, or <smachine.h> must be specified when using intrinsic functions.

3.2.3 Intrinsic Function Specifications

Table 2.10 lists intrinsic functions.

66
HITACHI

Table 2.10

Intrinsic Functions

No Item Function Specification Description
1 Status Setting the status void set_cr(int cr) Sets cr (32 bits) in the
register register status register
(SR)
2 Referencing to the int get_cr(void) Refers to the status
status register register
3 Setting the interrupt void set_imask(int mask) Sets mask (4 bits) in
mask the interrupt mask (4
bits)
4 Referencing to the int get_imask(void) Refers to the interrupt
interrupt mask mask (4 bits)
5 Vector Setting the vector void set_vbr(void Sets **base (32 bits)
base base register **hase) in VBR
6 register peferencing tothe void **get_vbr(void) Refers to VBR
(VBR) vector base register
7 Global Setting GBR void set_gbr(void *base) Sets *base (32 bits) in
base GBR
8 register peferencing to GBR void *get_gbr(void) Refers to GBR
(GBR)
9 Referencing to unsigned char Refers to byte data (8
GBR- based byte gbr_read_byte(int bits) at the address
offset) indicated by adding
GBR and the offset
specified
10 Referencing to unsigned short Refers to word data
GBR- based word gbr_read_word(int (16 hits) at the
offset) address indicated by
adding GBR and the
offset specified
11 Referencing to unsigned long Refers to long word

GBR- based long
word

gbr_read_long(int
offset)

data (32 bits) at the
address indicated by
adding GBR and the
offset specified

HITACHI

67

Table 2.10

Intrinsic Functions (cont)

No Item Function Specification Description
12 Global Setting GBR-based void gbr_write_byte Sets data (8 bits) at
base byte (int offset, the address indicated
register unsigned char data) by adding GBR and
(GBR) the offset specified
(cont)
13 Setting GBR-based void gbr_write_word Sets data (16 bits) at
word (int offset, the address indicated
unsigned short data) by adding GBR and
the offset specified
14 Setting GBR-based void gbr_write_long Sets data (32 bits) at
long word (int offset, the address indicated
unsigned long data) by adding GBR and
the offset specified
15 AND of GBR base void gbr_and_byte ANDs mask with the
(int offset, byte data at the
unsigned char mask) address indicated by
adding GBR and the
offset specified, and
then stores the result
at the same address
16 OR of GBR base void gbr_or_byte ORs mask with the
(int offset, byte data at the
unsigned char mask) address indicated by
adding GBR and the
offset specified, and
then stores the result
at the same address
17 XOR of GBR base void gbr_xor_byte XORs mask with the
(int offset, byte data at the
unsigned char mask) address indicated by
adding GBR and the
offset specified, and
then stores the result
at the same address
68

HITACHI

Table 2.10

Intrinsic Functions (cont)

Note: The instruction is
prefetched only when the
compiler option cpu =sh3 is
specified.

No Item Function Specification Description
18 Global TEST of GBR base int gbr_tst_byte ANDs mask with the
base (int offset, byte data at the
register unsigned char mask) address indicated by
(GBR) adding GBR and the
(cont) offset specified, and
checks if the byte
data at the offset from
GBR is 0 or not, and
sets theresultinthe T
bit
19 Special SLEEP instruction void sleep(void) Expands the SLEEP
instruc- instruction
tions
20 TAS instruction int tas(char *addr) Expands TAS.B
@addr
21 TRAPA instruction int trapa(int trap_no) Expands TRAPA
#trap_no
22 Special OS system call int trapa_svc(Enables executing HI-
instruc- int trap_no, int code, SH7 (Hitachi
tions typel paral, type2 Industrial Realtime
(cont) para2, type3 para3, Operating System
type4 parad) SH7000 Series) and
trap-no: Trap number other OS system
code: Function code calls. When
para 1to 4:Parameter (0 to 4 trapa_svc is
variables) executed, code is
type 1 to 4: Parameter type: specified in RO, and
general integer or pointer type para 1 to para4 in R4
to R7, respectively.
Then, TRAPA
#trap_no is executed.
23 PREF instruction void prefetch (void *p) If the instruction is

prefetched, an area
indicated by the
pointer (16-byte data
from (int) p&OxfffffffO)
is written to the cache
memory. This does
not affect any
programming logical
operation.

HITACHI

69

Table 2.10

Intrinsic Functions (cont)

No Item Function Specification Description
24 Mutiply and MAC.W int macw(A multiply and
accumulate instruction short *ptrl, short *ptr2, accumulate operation
operation unsigned int count) intrinsic function
multiplies and
int macwl(accumulates contents
short *ptrl, short *ptr2, of two data tables.
unsigned int count, Example:
unsigned int mask) short tbI1[]=
ptrl: Start address of data to {al,a2,a3,a4};
be multipled or short tbI2[]=
accumulated {b1,b2,b3,b4};
ptr2: Same as above In this case,
count: Number of times the macw(tbl1, tbl2, 3)
operation is performed calculates al*bl
mask: Address mask that +a2*b2+a3*b3. Using
correspond to the ring a ring buffer
buffer
25 MAC.L int macl(function, tbl2 can_be
instruction int *ptrl, int *ptr2, calculated recursively.
unsigned int count) The number_ of .
calculation times is 2".
int macll(Example: o
int *ptrl, int*ptr2, When the data size is
unsigned int count, two bytes an_d the ring
unsigned int mask) buffer mask is four
The parameter specification is the bytes (Oxfffffffb or up
same as those of No. 24. to 0x4), macwl(tbl1,
Note: macl and macll can be used (2. 4, Oxffffffb) is
only when the compiler option calculated as
cpu =sh2 , sh3, or sh3e is al*bl+az*b2+a3*bl+
specified. ad*b2.
70

HITACHI

3.24 Notes

1. The offsets (excluding No. 15 to 18) and masks (excluding No.3) shown in table 2.10, Intrinsic
Functions, must be constants.

2. The specification range for offsets is +255 bytes when the access size is shown as a byte, +510
bytes when the access size is shown as a word, and +1020 bytes when the access size is shown
as a long word.

3. Masks which can be specified for performing logical operations (AND, OR, XOR, or TEST)
on a location relative to GBR (global base register) must be within the range of 0 to +255.

4. As GBR is a control register whose contents are not preserved by all functions in this C
compiler, take care when changing GBR settings.

5. The multiply and accumulate operation’s instrinsic function does not check for parameters.
Therefore, keep the following in mind:

a. Tables indicated by ptrl and ptr2 must be aligned to sizes in 2 bytes and 4 bytes,
respectively.

b. Tables indicated by ptr2 in macwl and macwll must be aligned to the size of the ring buffer
maskx 2.

71
HITACHI

3.25 Example

#include <machine.h>
#define CDATA1 0
#define CDATA2 1
#define CDATA3 2
#define SDATAL 4
#define IDATAL 8
#define IDATA2 12

struct{
char cdatal, /* offset 0*/
char cdata2; [* offset 1 */
char cdata3; * offset 2 */
short sdatal; * offset 4 */
int idatal; * offset 8 */
int idata2; [* offset 12 */
Htable;
void f();
void ()
{
set_gbr(&table); * Set the start address of table to */
/* GBR. */
gbr_write_byte(CDATAZ2, 10); /* Set 10 to table.cdata2. */
gbr_write_long(IDATA2, 100); /* Set 100 to table.idata2. */
if(gbr_read_byte(CDATAZ2) != 10) /* Refer to table.cdata2. */

gbr_and_byte(CDATA2, 10); /* AND 10 and table.cdata2, and set */
/* it in table.cdata2. */

gbr_or_byte(CDATA2, OxOF); /* OR OxOF and table.cdata2, and set */
/* it in table.cdata2. */

sleep(); /* Expand to the sleep instruction */

72
HITACHI

Effective Use of Intrinsic Functions:
1. Allocate frequently accessed object to memory and set the start address of the object to GBR.

2. In step 1., byte data frequently used in logical operations should be declared within 128 bytes
of the start address of the structure. As a result, the following instructions can be reduced: start
address load instruction necessary for structure accessing and load/store instructions necessary
for performing logical operation.

3.2.6 Dividing <machine.h>
<machine.h> is divided as follows to correspond to the SH3 execution mode:

1. <machine.h>: Overall intrinsic functions
2. <smachine.h>: Intrinsic functions that can be used in the privilege mode
3. <umachine.h>: Intrinsic functions except <smachine.h>:

73
HITACHI

3.3 Section Change Function

A section name to be output in a C program by the compiler can be changed using #pragma
section. By using this section change function, you do not need to divide files in units of functions
or variables to allocate addresses, which was required previously. The following explains more
details on this function.

3.3.1 Description

#pragma section name | value
<source program>
#pragma section

3.3.2 Explanation

Specify a section name using #pragma section name or #pragma section value. A section after a
declaration in a source program will be P section name + name (numeric value), D section name +
name (numeric value), C section name + name (numeric value) and, B section name + name
(numeric value). A default section name becomes valid after #pragma section is declared.

3.3.3 Notes

1. #pragma section must be specified outside the function declaration.
2. A maximum of 64 section names can be declared in one file.

3.34 Example

#pragma section abc

int a; /* a is allocated to section Babc. */
extern const int c=1; /* ¢ is allocated to section Cabc. */
f(){ /* fis allocated to section Pabc. */
a=c;
}
#pragma section [* b is allocated to section B. */
int b; /* g is allocated to section P. */
90){
b=c;
}

In the above example, when the compile opsieation = P = PROGs specifiedf andg are
allocated to sectioRROGabcandPROG, respectively.

74
HITACHI

3.4 Single-Precision Floating-Point Library

A single-precision floating-point library (mathf.h) can be used in addition to an ANSI standard
floating-point library (math.h). The single-precision floating-point library consists of functions
listed in table 2.11.

34.1 Description

A suffix f is added to a double-precision ANSI standard library function name to be a single-
precision floating point library function name. If a parameter or return tyghguisle or pointer to
adouble-type, it will befloat or pointer tdfloat, respectively. Other specifications are the same
as those of the ANSI standard C library.

3.4.2 Notes

Before using this library, be sure to declare #include<mathf.h> and #include<math.h>.

75
HITACHI

Table 2.11

Function Name

Function List of Single-Precision Floating-Point Library

Description

float acosf (float x)

Anti cosine: acos x

float asinf (float x)

Anti sine: asin X

float atanf (float x)

Anti tangent: atan x

float atan2f (float y, float x)

Anti tangent of a result given by division: atan (x / y)

float cosf (float x)

Cosine: cos X

float sinf (float x)

Sine: sin x

float tanf (float x)

Tangent: tan x

float coshf (float x)

Hyperbolic cosine: cosh x

float sinhf (float x)

Hyperbolic sine: sinh x

float tanhf (float x)

Hyperbolic tangent: tanh x

float expf (float x)

Exponential function: e*

float frexpf (float x, int *p)

Divided into 0.5 and 1.0, and the square of two and multiplication:
suppose result=frexp (x, p), x=2*p x result (0.5 < result < 1.0)

float Idexpf (float x, int i)

Square of two and multiplication: x X 2'

float logf (float x)

Natural logarithm: log x

float log10f (float x)

Common logarithm that has 10 as a base: log,x

float modff (float x, float *p)

Suppose result = modff (X, y),
x is divided into integer *p and floating point result

float powf (float x, float y)

Square: x*

float sqrtf (float x)

Positive square root: VX

float ceilf (float x)

Result given by rounding up numbers after a decimal point of x

float fabsf (float x)

Absolute value: | x |

float floorf (float x)

Result given by rounding down numbers after a decimal point of x

float fmodf (float x, float y)

Reminder after division
Suppose result = fmodf (x, y) and q quotient,
X=q Xy +result

76

HITACHI

3.5 Japanese Description in String Literals

Japanese can be included in string literals. Select a character eagp§jis option. When
this option is omitted, the default setting is specified as table 2.12.

Table 2.12 Default Settings of Japanese Code

Host Computer Default Settings
SPARC EUC

HP9000 / 7000 Shift JIS
IBM-PC Shift JIS

Note: The character code in the object program will be the same as that in the source program.
Character constants cannot be specified in Japanese.

HITACHI

[

3.6 Inline Function

A function name to expand at compilation is specified.

3.6.1 Description

#pragma inline (function name, ...)

3.6.2 Explanation

A function specified by #pragma inline or a function with specifier inline will be expanded where
the function is called. However, a function will not be expanded where the function is called in
the following cases:

< afunction definition exists before the #pragma inline specification
« afunction has a flexible parameter

e a parameter address is referenced in a function

e an address of a function to be expanded is used to call a function

3.6.3 Notes

1. Specify #pragma inline before defining a function.

2. When a source program file includes an inline function description, be sure to sfaaify
before the function declaration because an external definition is generated for a function
specified by #pragma inline. $tatic is specified, an external definition will not be created.

3.6.4 Example

Source Program Inline expansion Image
#pragma inline(func) int x;
int func (int a, int b) main()
{ {
return (a+b)/2; int func_result;
} {
int x; inta_1=10,b_1=20;
main() func_result = (a_1+b_1)/2;
{ }
x = func(10, 20); x = func_result;
} }

78
HITACHI

3.7 Inline Expansion in Assembly Language

A function that is written in an assembly language is expanded where the function is called in a
C source file.

3.7.1 Description

#pragma inline_asm (function name[(size=numeric value)], ...)

3.7.2 Explanation

Parameters of a function that is written in an assembly language are referenced from an inline_asm
function because they are stacked or stored in registers in the same way as general function calls.
A return value of a function that is written in an assembly should be set in RO.

The specification (size=numeric value) specifies the size of the assembler inline function.

3.7.3 Notes

1. Specify #pragma inline_asm before defining a function.

2. When a source program file includes an inline function description, be sure to sfaaify
before the function declaration because an external definition is generated for a function
specified by #pragma inline_asm. sthtic is specified, an external definition will not be
created.

3. Be sure to use local labels in a function written in an assembly language.

4. When using registers R8 to R15 in a function written in an assembly language, the contents of
these registers must be saved and recovered at the start and end of the function.

5. Do not use RTS at the end of a function written in an assembly language.

6. When using this function, be sure to compile programs using the object type specification
optioncode=asmcode

7. When specifying a number by (size=numeric value), specify a number larger than the actual
object size. If a value smaller than the actual object size is specified, correct operation will not
be guaranteed. If a floating point or a numeric value below 0 is specified, an error will occur.

79
HITACHI

3.74 Example

Source Program
#pragma inline_asm(rotl)
int rotl (int a) __main
{
ROTL R4
MOV R4, RO
}
int x;
main()
{
X = 0x55555555;
X = rotl(x);

}

80

Output Result (partial)

:function main

frame size = 4

MOV.L R14, @-R15
MOV.L L220+2, R14; x
MOV.L L220+6, R3 ; H'55555555
MOV.L R3, @R14
MOV R3, R4
BRA L219
NOP

L220:

.RES.W 1

DATAL X

.DATA.L H'55555555
L219:

ROTL R4

MOV R4, RO

ALIGN 4

MOV.L RO, @R14

RTS

MOV.L @R15+, R14

.SECTION B, DATA, ALIGN=4
X ;static: x

.RES.L 1

.END

HITACHI

3.8 Specifying Two-byte Address Variables

A variable can be allocated to a two-byte address area (H'0000000 to H'0007FFF and H’'FFF8000
to H'FFFFFFF).

3.8.1 Description

#pragma abs16 (identifier, ...)

3.8.2 Explanation

A variable specified using an identifier or an address of a function is treated as
two-byte data. Then, program size can be reduced.

3.8.3 Notes

1. Directive #pragma abs16 cannot be used to specify an automatic object.

2. Variables declared in directive #pragma abs16 must be allocated in addresses H'0000000 to
H'0007FFF or H'FFF8000 to H'FFFFFFF.

81
HITACHI

3.9 Specifying GBR Base Variables

A variable is accessed using a GBR register with an offset value.

3.9.1 Description

#pragma gbr_base (variable name, ...)
#pragma gbr_basel (variable name, ...)

3.9.2 Explanation

Variables specified by #pragma gbr_base and #pragma gbr_basel are allocated to sections $G0
and $G1, respectively. The directive #pragma gbr_base is used when the variable is located in an
offset of 0 to 127 bytes from the address specified by the GBR register. The directive #pragma
gbr_basel is used when the variable is located in an offset of 128 or more bytes from the address
specified in the GBR register, that is, when a variable is in a range that cannot be accessed by
#pragma gbr_base. An offset value is 255 bytes at maximuncfararunsigned chartype,

510 bytes at maximum forshort or unsigned short and 1020 bytes at maximum for ian,

unsigned long, unsigned long float, ordouble type. Based on the above specification, the

compiler generates an object program in a GBR relative addressing mode that is optimized
according to variable reference and settings. The compiler also generates an optimized bit
instruction in the GBR indirect addressingctwar or unsignedtype data in the $GO section.

3.9.3 Notes

1. If the total program size after linking with section $G0 exceeds 128 bytes, the correct operation
will not be guaranteed. In addition, if there is data that has an offset value that exceeds those
specified above for #pragma gbr_basel in section $G1, correct operation will not be
guaranteed.

2. Section $G1 must be allocated immediately after 128 bytes of section $G0 when linking.

3. When using this function, be sure to set the start address of section $GO0 in the GBR register at
the beginning of program execution.

82
HITACHI

3.10 Register Save and Recovery Control

Register contents of a function can be saved or recovered.

3.10.1 Description

#pragma noregsave (function name, ...)
#pragma noregalloc (function name, ...)
#pragma regsave (function name, ...)

3.10.2 Explanation

1. Functions specified by #pragma noregsave do not save or allow the recovery of the contents of
registers to guarantee their values (see table 2.6) at the beginning or end of a function.

2. Functions specified by #pragma noregalloc do not save or allow the recovery of the contents of
registers to guarantee their values at the beginning or end of a function, but do generate an
object before or after the function call. Registers R8 to R14 are not allocated to the object.

3. Functions specified by #pragma regsave do not save or allow the recovery of the contents of
registers to guarantee their values at the beginning or end of a function, but do generate an
object before or after the function call. Registers R8 to R14 are not allocated to the object.

4. #pragma regsave and #pragma noregalloc can specify the same function at the same time. In
this case, the contents of registers R8 to R14 that guarantee their values are saved and
recovered at the beginning or end of a function, and generate an object before or after the
function call. Registers R8 to R14 are not allocated to the object.

5 Functions specified by #pragma noregsave can be used in the following conditions:

a. A function is first activated and is not called from any other function.

b. A function is called from a function that is specified by #pragma regsave.

c. A function is called from a function that is specified by #pragma regsave via #pragma
noregalloc.

3.10.3 Notes

If a function that is specified by #pragma noregsave is called in a way other than explained above,
the obtained data is not guaranteed.

83
HITACHI

3.10.4 Example

3.11

#pragma noregsave (f)
#pragma noregalloc (g)
#pragma regsave (h)
h()

{

g();

f0) /* function call immediately after function call (f) #pragma noregsave */
} /¥ from function (h) #pragma regsave */
gQ)
{

f(); /* function call (f) #pragma noregsave from function (h) #pragma */

/* regsave through function (g) #pragma noregalloc *

}
0
{

Global Variable Register Allocation

Registers are allocated to global variables.

3.11.1 Description

#pragma global_register (<variable name>=<register name>, ...)

3.11.2 Explanation

This function allocates the register specified in <register name> to the global variable specified in
<variable name>.

84

HITACHI

3.11.3 Notes

1. This function is used for a simple or pointer type variable in the global variable. Do not
specify adouble type variable unlessdouble=floatoption is specified.

2. Only use registers R8 to R14 and FR12 to FR15 (FR12 to FR15: when using SH3E).
3. The initial value cannot be set. In addition, the address cannot be referenced.
4. The specified variable cannot be referenced from the linked side.

3.11.4 Example

#pragma global_register(x=R13,y=R14)

int x;

char *y;

funcl()
{

X++;
}
func2()
{

*y=0;
}

func(int a)
{
X = a,;
funcl();
func2();

}

85
HITACHI

86

HITACHI

Section 4 Notes on Programming

This section contains notes on coding programs for the C compiler and troubleshooting when
compiling or debugging programs.

4.1 Coding Notes

411 float Type Parameter Function

Functions must declare prototypes or tfet type adoubletype when receiving and passing
float type parameters. Data cannot be preserved (guaranteed) fidertygpe parameter
function without a prototype declaration receives and passes data.

Example:

void f (float); ~ ceee-eeeeeaaaaaa - (1)

90
{

float a;
f(a);

)

void

f (float x)

Functionf has dloat type parameter. Therefore, a prototype must be declared as shown in (1)
above.

4.1.2 Program Whose Evaluation Order is Not Regulated

The effect of the execution is not guaranteed in a program whose execution results differ
depending on the evaluation order.

87
HITACHI

Example:

afi]=a[++i]; The value of i on the left side differs depending on whether the right
side of the assignment expression is evaluated first.

sub(++i, i); The value of i for the second parameter differs depending on whether
the first function parameter is evaluated first.

4.1.3 Overflow Operation and Zero Division

At run time if overflow operation or zero division is performed, error messages will not be output.
However, if an overflow operation or zero division is included in the operations for one or more
constants, error messages will be output at compilation.

Example:

main()

{
intia;
int ib;
float fa;

float fb;

ib=32767;
fb=3.4e+38f;

/* Compilation error messages are output when an overflow operation ~ */
/* and zero division are included in operations for one or more */

/* constants. */

i2a=99999999999; /* (W) Detect integer constant overflow. */
fa=3.5e+40f; /* (W) Detect floating pointing constant */

* overflow. */
ia=1/0; /* (E) Detect division by zero. */
fa=1.0/0.0; /* (W) Detect division by floating point zero. */

/* No error message on overflow at execution is output. */

ib=ib+32767; /* Ignore integer constant overflow. */

fb=fb+3.4e+38f; /* Ignore floating point constant overflow. */

88
HITACHI

41.4 Assignment to const Variables

Even if a variable is declared witlonsttype, if assignment is done to a variable other tuanrst
converted fronconsttype or if a program compiled separately uses a parameter of a different
type, the C compiler cannot detect the error

Example:
1. const char *p; /* Because the first parameter p in library */
/* function strcat is a pointer for char, */
/* the area indicated by the parameterp */
strcat(p, "abc”) /* may change. */
2. filel
constint i;
file 2
extern inti; [* In file 2, parameter i is not declared as */
/* const, therefore assignment to it in */
i=10; [* file 2 is not an error. */

415 Precision of Mathematical Function Libraries

For function acos (x) and asin (x), an error(i& x Therefore, precautions must be taken. Note the
error range below.

Absolute error for acos (1.0} double precision? (€ = 2%)
single precision 2' (e =29

Absolute error for asin (1.08} double precision? (€ = 2%)
single precision 2 (¢ =29

89
HITACHI

4.2

Table 2.13 shows troubleshootings for developing programs from compilation through debugging.

Notes on Program Development

Table 2.13 Troubleshooting
Trouble Check Points Solution References
When linking, error ~ The section name which is output by Specify the Section 2.1, Structure
314, cannot found the C compiler must be specified in correct of Object Programs
section, is output capitals in start option of linkage section in part 11,
editor. name. C PROGRAMMING
When linking, error If identifiers are mutually referenced Refer to Section 2.3.1,
105, undefined by a C program and an assembly parameters External Identifier
external symbol, is program, an underscore must be with the Reference, in part Il,
output attached to the symbol in the correct C PROGRAMMING
assembly program. parameters.
Check if the C program uses a Specify a Standard library
library function. standard specification: Section
library as 3.5, Correspondence
the input to Standard Libraries,
library at in part I, OVERVIEW
linkage. AND OPERATIONS
An undefined reference symbol Routine: Section 2.1
identifier must not start with a part lll, SYSTEM
_ _(A run time routine in a standard INSTALLATION
library must be used.)
Check if a standard 1/O library Create low Section 4.6, Creating
function is used in the C program. level Low-Level Interface
interface Routines, in part I,

routines for
linking.

SYSTEM
INSTALLATION

Debugging at the C
source level cannot
be performed

debug option must be specified at
both compilation and linkage.

Specify
debug
option at
both
compilation

and linkage.

A linkage editor of Ver.5.0 or higher
must be used.

Use a
linkage
editor of.
Ver.5.0 or
higher.

Section 3.3, Compiler
Options, in part I,
OVERVIEW AND
OPERATIONS

90

HITACHI

Table 2.13

Troubleshooting (cont)

Trouble Check Points Solution References
When linking, error Check if an offset value of a variable = Delete Section 3.9,
No. 108 relocation specified using a GBR base is within #pragma Specifying GBR Base
size overflow is the range. gbr_base/ Variables, in part Il
output gbr_basel C PROGRAMMING
declaration
for data
beyond the
range.
When linking, error Check if a variable or function Change the
No. 104 duplicate whose name is the same as that of name of the
symbol is output other variables or functions exists in variable or
more than one file. function, or
specify
static.
Check if a variable or function is Specify Section 3.6.3, Notes
externally defined in a header file to static. and 3.7.3, Notes, in

be included in more than one file
(the above is the same in the case
of a function specified (#pragma
inline/ inline_asm).

part Il,
C PROGRAMMING

HITACHI

91

92

HITACHI

PART Il
SYSTEM INSTALLATION

HITACHI

93

94

HITACHI

Section 1 Overview of System Installation

Part 11l describes how to install object programs generated by the C compiler on an SH system.
Before installation, memory allocation and execution environment for the object program must be
specified.

Memory Allocation: Allocate a stack area, a heap area, and each section of a C-compiler-
generated object program in ROM or RAM on a SH system.

Execution Environment Setting for a C-Compiler-Generated Object Program: Set the

execution environment by register initialization, memory area initialization, and C program
initiation. Write these processing functions in assembly language.

If C library functions such as the 1/O function are used, library must be initialized when setting the
execution environment specification.

Section 2 describes how to allocate C programs in memory area and how to specify linkage
editor's commands that actually allocate a program in memory area, using examples.

Section 3 describes items to be specified in execution environment setting and execution
environment specification programs.

Section 4 describes how to create C library function initialization and low-level routines.

Note: If I/O function (stdio.h) and memory allocation function (stdlib.h) are used, the user must
create low-level 1/O routines and memory allocation routines appropriate to the user
system.

95
HITACHI

96

HITACHI

Section 2 Allocating Memory Areas

To install an object program generated by the C compiler on a system, determine the size of each
memory area, and allocate the areas appropriately to the memory addresses.

Some memory areas, such as the area used to store machine code and the area used to store data
declared using external definitions or static data members, are allocated statically. Other memory
areas, such as the stack area, are allocated dynamically.

This section describes how the size of each area is determined and how to allocate an area in
memory.

2.1 Static Area Allocation

2.11 Data to be Allocated in Static Area

Allocate sections of object programs such as program area, constant area, initialized data area, and
non-initialized data area to the static area.

2.1.2 Static Area Size Calculation

Calculate the static area size by adding the size of C-compiler-generated object program and that
of library functions used by the C program. After object program linkage, determine the static
area size from each section size including library size output on a linkage map listing. Before
object program linkage, the approximate size of the static area can be determined from the section
size information on a compile listing. Figure 3.1 shows an example of section size information.

%% % % % % * SECTION SIZE INFORMATION * * * % % x *
PROGRAM SECTION(P): 0x00004A Byte(s)
CONSTANT SECTION(C): 0x000018 Byte(s)
DATA SECTION(D): 0x000004 Byte(s)

BSS SECTION(B): 0x000004 Byte(s)

TOTAL PROGRAM SIZE: 0xO0006A Byte(s)

Figure 3.1 Section Size Information

97
HITACHI

If the standard library is not used, calculate the static area size by adding the memory area size
used by sections shown in section size information. However, if the standard library is used, add
the memory area used by the library functions to the memory area size of each section. The
standard library includes C library functions based on the C language specifications and arithmetic
routines required for C program execution. Accordingly, link the standard library to the C source
program even if library functions are not used in the C source program.

The C compiler provides the standard library including C library functions (based on the C
language specifications), and arithmetic routines (runtime routines required for C program
execution). The size required for run time routines must also be added to the memory area size in
the same way as C library functions.

The run time routine used by the C programs are output as external reference symbols in the
assembly programs generated by the C compiler (optida = asmcode The user can see the
run time routine names used in the C programs through the external reference symbols.

The following shows the example of C program and assembly program listings.

C program

f(int a, int b)
{
a/=b;
return a;

}

Assembly program output by the C compiler

IMPORT _ _divls ; An external reference definition for the run time routine
.EXPORT _f
.SECTION P,CODE,ALIGN=4
_f: function: f
frame size=4
;used runtime library name:
;_ _divls

STS.L PR, @-R15
MOV RS5, RO
MOV.L L218, R3 ;__divis
JSR @R3
MOV R4, R1
LDS.L @R15+ PR
RTS
NOP

L218:
DATAL _ _divls
.END

98
HITACHI

In the above example,_divlsis a run time routine used in the C program.

2.1.3 ROM and RAM Allocation

When allocating a program to memory, allocate static areas to either ROM and RAM as shown
below.

Program area (section P): ROM

Constant area (section C): ROM

Non-initialized data area (section B): RAM

Initialized data area (section D): ROM and RAM (for details, refer to the following section)

2.14 Initialized Data Area Allocation

The initialized data area contains data with initial value. Since the C language specifications allow
the user to modify initialized data in programs, the initialized data area must be allocated to ROM
when linking and is copied to RAM before program execution. Therefore, the initialized data area
must be allocated in both ROM and RAM.

However, if the initialized data area contains only static variables that are not modified during
program execution, the initialized data needs to be allocated only to the ROM area. In this case,
the data does not need to be allocated to the RAM area.

2.15 Memory Area Allocation Example and Address Specification at Program Linkage

Each program section must be addressed by the option or subcommand of the linkage editor when
the absolute load module is created, as described below.

Figure 3.2 shows an example of allocating static areas.

99
HITACHI

0x0000000

Interrupt vector
0x0000400 Program area
P
Constant area
ROM
©
Initialized data area
(D)
0x9000000 — P,C,D,B: Default section name
Initialized data area generated by the
(R) C compiler
Non-initialized . i
data area RAM R: Section name specified

(B) by the linkage editor
ROM support function

OxFFFF800

Dynamic area

OXFFFFFFF

Figure 3.2 Static Area Allocation

Specify the following subcommands when allocating the static area as shown in figure 3.2.

ROM(D,R) =eercmercmeees 1)

STARTAP,C,D(400),R,B(9000000)--------)
Description:

(1) Define section R having the same size as section D, in the output load module. To reference
the symbol allocated to section D, reallocate to the address of section R and reference to the
symbol in section R. Sections D and R are allocated to initialized data section in ROM and
RAM, respectively.

(2) Allocate sections P, C, and D to internal ROM starting from address 0x400 and allocate
sections R and B to RAM starting from address 0x9000000.

100
HITACHI

2.2 Dynamic Area Allocation

221 Dynamic Areas

Two types of dynamic areas for C program are used:

1. Stack area
2. Heap area (used by the memory allocation library functions)

2.2.2 Dynamic Area Size Calculation

Stack Area: The stack area used in C programs is allocated each time a function is called and is
deallocated each time a function is returned. The total stack area size is calculated based on the
stack size used by each function and the nesting of function calls.

Stack Area Used by Each FunctionThe object list (frame size) output by the C compiler
determines the stack size used by each function. The following example shows the object list,
stack allocation, and stack size calculation method.

Example: The following shows the object list and stack size calculation in a C program.

extern int h(char, int *, double);
int h(char a, register int *b, double c)

{

char *d;

d= &a;
h(*d,b,c);
{

register int i;

i= *d;

return i;

101
HITACHI

kkkkkkkkkhkkk OBJECT LIST'NG kkkkkkkkkkkk

FILE NAME: m0251.c

SCT OFFSET CODE CLABEL INSTRUCTION OPERAND COMMENT

P
00000000 _h: ; function: h
: frame size=20
00000000 2FEG6 MOV.L R14,@-R15
00000002 4F22 STS.L PR,@-R15
Lower T
address
R15(SP) —= 0
Area used
within a Frame
function size
20
Upper
address l Stack

The size of the stack area used by a function is equal to frame size. Therefore, in the above
example, the stack size used by the funcdhias 20 bytes which is shown &rame size = 20n

COMMENT in OBJECT LISTING.

For details on the size of parameters to be pushed onto the stack, refer to the description of
parameter and return value setting and referencing in section 2.3.2, Setting and Referencing
Parameters and Return Values, Function Call Interface, in Part Il, C Programming.

102
HITACHI

Stack size calculation: The following example shows a stack size calculation depending on the
function call nesting.

Example: Figure 3.3 illustrates the function call nestings and stack size.

main ()

Function Name Stack Size (Bytes)

main 24
f()

f 32
\ g9 24
g()

Figure 3.3 Nested Function Calls and Stack Size

If function g is called via functior, the stack area size is calculated according to the formula
listed in table 3.1.

Table 3.1 Stack Size Calculation Example

Call Route Sum of Stack Size (Bytes)
main (24) - f (32) - g (24) 80
main (24) — g (24) 48

As can be seen from table 3.1, the maximum size of stack area required for the longest function
calling route should be determined (80 bytes in this example) and this size of memory should be
allocated in RAM.

When using standard library functions, the stack area sizes for library functions must also be
accounted for. Refer to the Standard Library Memory Stack Size Listing, included with the
C compiler package.

Note: If recursive calls are used in the C source program, first determine the stack area required
for a recursive call, and then multiply the size with the maximum number of recursive
calls.

103
HITACHI

Heap Area: The total heap area required is equal to the sum of the areas to be allocated by
memory management library functiortalloc, malloc, orrealloc) in the C program. An

additional 4 bytes must be summed for one call because a 4-byte management area is used every
time a memory management library function allocates an area.

An /O library function uses memory management library functions for internal processing. The
size of the area allocated in an input/output is determined by the following formula: 518 bytes
(maximum number of simultaneously open files)

Note: Areas released by the free function, which is a memory management library function, can
be reused. However, since these areas are often fragmented (separated from one another),
a request to allocate a new area may be rejected even if the net size of the free areas is
sufficient. To prevent this, take note of the following:
1. If possible, allocate the largest area first after program execution is started.
2. If possible, make the data area size to be reused constant.

223 Rules for Allocating Dynamic Area

The dynamic area is allocated to RAM. The stack area is determined by specifying the highest
address of the stack to the vector table, and refer to it as SP (stack pointer). Since the interrupt
operation of the SH3 and SH3E differ from that of the SH1 and SH2, interrupt handlers are
necessary. The heap area is determined by the initial specification in the low-level interface
routine Ebrk). For details on stack and heap areas, refer to section 3.1, Vector Table Setting
(VEC_TBL), and section 4.6, Creating Low-Level Interface Routine in part lll, System
Installation, respectively.

104
HITACHI

Section 3 Setting the Execution Environment

This section describes the environment required for C program execution. A C program
environment specification program must be created according to the user system specifications
because the C program execution environment differs depending on the user system. In this
section, basic C program execution specification, where no C library function is used, is described
as an example. Refer to section 4, Setting the C Library Function Execution Environment in part
I, System Installation, for details on using C library functions when using C library functions,
low-level I/O interface routine, or memory allocation routine.

Figure 3.4 shows an example of program configuration.

- N
Power-on reset
)) AN J/
|:| : Required routine
'} :Required table 2 Y
_INIT ; VEC_TBL E
/ ®) \
__INITSCT User program

Figure 3.4 Program Configuration (No C Library Function is Used)
Each routine is described below.

Vector table setting (VEC_TBL) (shown as (1) in figure 3.4):Sets the vector table so as to

initiate register initialization program_INIT and set the stack pointer (SP) by power-on reset.
Since the interrupt operation of the SH3 and SH3E differ from those of the SH1 and SH2, interrupt
handlers are necessary.

Initialization (_ _INIT) (shown as (2) in figure 3.4): Initializes registers and sequentially calls
initialization routines.

Section initialization (__INITSCT) (shown as (3) in figure 3.4): Clears the non-initialized data
area with zeros and copies the initialized data area in ROM to RAM.

The following describes how each process is implemented (in the order as described above).

105
HITACHI

3.1 Vector Table Setting (VEC_TBL)

To call register initialization routine _INIT at power-on reset, specify the start address of

function_ _INIT at address 0 in the vector table. Also to specify the SP, specify the highest
address of the stack to address H'4. Since the interrupt operation of the SH3 and SH3E differ from
those of the SH1 and SH2, interrupt handlers are necessary. When the user system executes
interrupt handling, interrupt vector settings are also performed ME: TBL routine. The

coding example o#EC_TBL is shown below.

Example:

. SECTION VECT,DATA,LOCATE=H'0000
; Assigns section VECT to address H'0 by the SECTION directive.

IMPORT _ _INIT

.IMPORT _IRQO
.DATA.L _ _INIT ;Assigns the start address of _ _INIT to addresses H'0x0 to H'0x3.
.DATAL (a) ; Assigns the SP to addresses H'0x4 to H'0x7.

; (@): The highest address of the stack
.ORG H'00000100
.DATAL _IRQO ; Assigns the start address of IRQO to addresses H'0x100 to H'0x103

.END

106
HITACHI

3.2 Initialization (_ _INIT)

_ _INIT initializes registers, calls initialization routine sequentially, and then calls the main
function. The coding example of this routine is shown below.

Example:

extern void _INITSCT (void);
extern void main (void);

void _INIT()
{
_INITSCT(); /* Calls section initialization routine */
/* _INITSCT. */
main(); [* Calls main routine _main. */

for(;;) /*Branches to endless loop after executing main */
; /* function and waits for reset. */

107
HITACHI

3.3 Section Initialization (_ _INITSCT)

To set the C program execution environment, clear the non-initialized data area with zeros and
copy the initialized data area in ROM to RAM. To execute thitNITSCT function, the
following addresses must be known.

e Start address (1) of initialized data area in ROM.
e Start address (2) and end address (3) of initialized data area in RAM
« Start address (4) and end address (5) of non-initialized data area in ROM

Address 0
Interrupt vector
Program area
(P)
Constant area ROM
©
1) — —
Initialized data area
(D)
(2) — ——
Initialized data area
@) — (R)
on-initialize
4) — Non-initialized
dat?Ba)lrea RAM
(5) —
Dynamic area

108
HITACHI

To obtain the above addresses, create the following assembly programs and link them together.

.SECTION D,DATA,ALIGN=4
.SECTION R,DATA,ALIGN=4
.SECTION B,DATA,ALIGN=4
.SECTION C,DATA,ALIGN=4

_ _D_ROM .DATAL (STARTOF D)

; start address of section D Q)
_ D BGN .DATAL (STARTOFR)

; start address of section R 2
_ D END .DATAL (STARTOF R) + (SIZEOF R)

; end address of section R)
_ _B_BGN .DATAL (STARTOF B)

; start address of section B (4)
_ _B_END .DATA.L (STARTOF B) + (SIZEOF B)

; end address of section B (5)

EXPORT __D_ROM
EXPORT __D_BGN
EXPORT __D_END
.EXPORT __B_BGN
EXPORT __B_END
.END

Notes: 1. Section names B and D must be the non-initialized data area and initialized data area
section names specified with the compiler opsention B and D indicate the default
section names.

2. Section name R must be the section name in RAM area specified wRDMeoption
at linkage. R indicates the default section name.

If the above preparation is completed, section initialization routine can be written in C as shown
below.

109
HITACHI

Example:

Section initialization routine

externint *_ D_ROM, * B_BGN,* B_END, * D_BGN, * D_END;
extern void _INITSCT()
{
int *p, *q ;
/* Non-initialized data area is initialized to zeros */
for(p=_B_BGN;p<_B_END; p++)
*p = 0 '
/* Initialized data is copied from ROM to RAM */
for(p =_D_BGN,q=_D ROM;p<_D_END; p++, q++)
*P=*d;
}

Note: The declaration of p and g must behar* type when the section size is not a multiple of
four bytes.

110
HITACHI

Section 4 Setting the C Library Function Execution
Environment

To use C library functions, they must be initialized to set the C program execution environment.
To use /0 $tdio.h) and memory allocatiors{dlib.h) functions, or to use the C library function to

terminate program processing, low-level I/O and memory allocation routines must be created for
each system.

This section describes how to set the C program execution environment when C library functions
are used. Figure3.5 shows the program configuration when C library functions are used.

[Power-on reset j

_INIT ; VEC_TBL :
_ _INITSCT _ _INITLIB User program _ _CLOSEALL

: Table always required

Standard library

|:| : Routine always required
/] :Routine required when library
is used
: Supplied by the C compiler Low-level
interface

Figure 3.5 Program Configuration When C Library Functions are Used

111
HITACHI

To use a C library functioaxit, onexit, orabort, which performs program termination

processing, the C library function that corresponds to the user system must be created beforehand.
For details on a program example, refer to Appendix D, Creating Termination Functions. If you
use a C library function assert macro, you must create an abort function first.

Each routine is required to execute library functions as follows.

Vector Table Setting (VEC_TBL): Sets the vector table to initiate register initialization program
(_ _INIT) and set the stack pointer (SP) at power-on reset. Since the interrupt of the SH3 and
SH3E differ from the SH1 and SH2, interrupt handlers are necessary.

Initializing Registers (_ _INIT): Initializes registers and sequentially calls the initialization
routines.

Initializing Sections (_ _INITSCT): Clears non-initialized data area with zeros and copies the
initialized data area in ROM to RAM.

Initializing C Library Functions (_ _INITLIB): Initializes C library functions required to be
initialized and prepares standard I/O functions.

Closing Files (_ _CLOSEALL): Closes all files with open status.

Low-Level Interface Routine: Interfaces library functions and user system when standard 1/0
and memory management library functions are used.

Creation of the above routines is described below.

112
HITACHI

4.1 Vector Table Setting (VEC_TBL)

Same as when no C library function is used. For details, refer to section 3, Setting the Execution
Environment, in part Ill, System Installation.

4.2 Initializing Registers (_ _INIT)

Initializes registers and sequentially calls the initialization routineNITLIB and file closing
routine_ _CLOSEALL. The coding example of _INIT is shown below. Since the interrupt
operation of the SH3 and SH3E differ from those of the SH1 and SH2, interrupt handlers are
necessary.

Example:

extern void _INITSCT(void);
extern void _INITLIB(void);
extern void main(void);

extern void _CLOSEALL(void);

void _INIT(void)

{
_INITSCT(); /* Calls section initialization routine _ _INITSCT. */
_INITLIB(); /* Calls library initialization routine _ _INITLIB. */
main(); /* Calls C program main function _main. */
_CLOSEALLY(); /* Calls file close routine _ _CLOSEALL. */
for(; ;) I* Branches to endless loop after executing main ~ */

X /* function and waits for reset. */
}

4.3 Initializing Sections (__INITSCT)

Same as when the C library functions are not used. For details, refer to section 3, Setting the
Execution Environment in part Ill, System Installation.

113
HITACHI

4.4 Initializing C Library Functions (_ _INITLIB)

Some C library functions must be initialized before being used. The following description
assumes the case when the initialization is performed INITLIB in the program initiation
routine.

To perform initialization, the following must be considered.

1. errno indicating the library error status must be initialized for all library functions.

2. When using each function eftdio.h> andassertmacro, standard I/O library function must
be initialized. The low-level interface routine must be initialized according to the user low-
level initialization routine specification if required.

3. When using theand andstrtok functions, library functions other than the standard 1/0 must
be initialized.

Library function initialization program example is shown below.

Example:
#include <errno.h>
extern void _INIT_LOWLEVEL (void) ;

extern void _INIT_IOLIB(void) ;
extern void _INIT_OTHERLIB(void) ;

void _INITLIB(void) [* Deletes an underline from symbol name */
[* used in the assembly routine */
{
errno=0; /* Initializes library functions commonly */
_INIT_LOWLEVEL(); /* Calls low-level interface */
[* initialization routine *
_INIT_IOLIB() ; /* Calls standard I/O initialization ~ */
[* routine */
_INIT_OTHERLIB() ; [* Calls initialization routine other ~ */
/* than that for standard 1/O */
}
114

HITACHI

The following shows examples of initialization routingNIT_IOLIB) for standard 1/O library
function and initialization routine (NIT_OTHERLIB) for other standard library function.
Initialization routine (INIT_LOWLEVEL) for low-level interface routine must be created
according to the user low-level interface routine's specifications.

44.1 Creating Initialization Routine (_INIT_IOLIB) for Standard I/O Library Function

The initialization routine for standard 1/O library function initialiZd&E -type data used to
reference files and open the standard 1/O files. The initialization must be performed before
opening the standard 1/O files (figure 3.6).

The following shows an example ofNIT _IOLIB .

115
HITACHI

Example:
#include <stdio.h>
void _INIT_IOLIB(void)
{
FILE *fp ;
[*Initializes FILE-type data*/

for (fp=_iob; fp<_iob+_NFILE; fp++){

fp -> _bufptr=NULL ; [*Clears buffer pointer */
fp -> _bufent=0 ; [*Clears buffer counter */
fp -> _buflen=0; [*Clears buffer length */
fp -> _bufbase=NULL ; /*Clears base pointer */
fp -> _ioflag1=0 ; [*Clears /O flag */
fp -> _ioflag2=0 ;
fp -> _iofd=0;
}

/*Opens standard /O file */

*1
if (freopen("stdin", “r*, stdin)==NULL) /*Opens standard input file */
stdin->_ioflag1=0xff ; /*Disables file access *2 %
stdin->_ioflagl |= _IOUNBUF ; /*No data buffering *3 */
*1

if (freopen("stdout" , "w", stdout)==NULL)/*Opens standard output file*/
stdout-> _ioflag1=0xff ;
stdout->_ioflagl |= _IOUNBUF ;
*1
if (freopen("stderr", "w", stderr)==NULL) /*Opens standard error file */
stderr-> _ioflag1=0xff ;
stderr->_ioflagl |= _IOUNBUF ;
}

Notes: 1. Standard I/O file names are specified. These names are used by the low-level interface
routineopen

2. If file could not be opened, the file access disable flag is set.

3. For equipment that can be used in interactive mode such as a console, the buffering
disable flag is set.

116
HITACHI

[*Declares FILE-type data in the C language*/

#define _NFILE 20
struct _iobuf{
unsigned char *_bufptr; /*Buffer pointer */

long _bufent; /*Buffer counter ¥/
unsigned char *_bufbase; /*Buffer base pointer */
long _buflen; /*Buffer length */
char _ioflagl; /*1/O flag */
char _ioflag2; /*1/0 flag */
char _iofd; /*1/O flag */

} iob[_NFILE];

Figure 3.6 FILE-Type Data

4.4.2 Creating Initialization Routine (_INIT_OTHERLIB) for Other Library Function

The following shows an example of initial setting program of C library function (rand function
and strtok function) that is necessary for initial setting beside the standard 1/O.

#include <stddef.h>

extern char *_slptr;
extern void srand(unsigned int) ;

void _INIT_OTHERLIB(void)

{
srand(1) ; /*Sets initial value when rand function is used */
_sSlptr=NULL ; /*Initializes the pointer used in the strtok */
[* function *
}

117
HITACHI

4.5 Closing Files (_ _CLOSEALL)

When a program ends normally, all open files must be closed. Usually, the data destined for a file
is stored in a memory buffer. When the buffer becomes full, data is output to an external storage
device. Therefore, if the files are not closed, data remaining in buffers is not output to external

storage devices and will be lost.

When an program is installed in a device and executed, the program will not end unless it finishes
its operation. However, if thmain function is terminated by a program error, all open files must

be closed.
The following shows an example of CLOSEALL .
Example:

#include <stdio.h>

void _CLOSEALL(void) /* Deletes an underscore character

/* from symbol name in assembly routine */

{
inti;
for (i=0; i<_NFILE; i++)
[*Checks that file is open*/
if(_iob]i]._ioflagl & (_IOREAD|_IOWRITE|_IORW))
/*Closes open files*/
fclose(&_iob[i]) ;
}
118

HITACHI

*/

4.6 Creating Low-Level Interface Routines

Low-level interface routines must be supplied for C programs that use the standard input/output or
memory management library functions. Table 3.2 shows the low-level interface routines used by
standard library functions.

Table 3.2 Low-Level Interface Routines

Name Explanation

open Open afile

close Close a file

read Reads data from a file

write Writes data to a file

Iseek Sets the file read/write position for data
sbrk Allocates a memory area

Refer to the attached Standard Library Memory Stack Size Listing for details on low-level
interface routines required for each C library function.

Initialization of low-level interface routines must be performed when the program is started. For
more information, see the explanation concerning théT_LOWLEVEL function in section
4.4, Initializing C Library Functions (_INITLIB).

The rest of this section explains the basic concept of low-level input and output, and gives the
specifications for each interface routine. Refer to appendix E, Examples of Low-Level Interface
Routines, for details on the low-level interface routines that run on the SH-series simulator
debugger.

119
HITACHI

4.6.1 Concept of I/O Operations

Standard input/output library functions manage files usingthE -type data. Low-level
interface routines manage files using file numbers (positive integers) which correspond directly to
actual files.

The open routine returns a file number for a given file name. The open routine must determine the
following, so that other functions can access information about a file using the file number:

« File device type (console, printer, disk, etc.)
(For a special device such as a console or printer file, the user chooses a specific file name that
can be recognized uniquely by thgenroutine.)

< Information such as the size and start address of the buffer used for the file

« For a disk file, the offset (in bytes) from the beginning of the file to the next read/write
position.

The input and output is determined by thad andwrite routine, respectively, or the start
position for read/write operations is determined bylskekroutine according to the information
determined by thepenroutine.

If buffers are used, th@oseroutine outputs the contents to their corresponding files. This allows
the areas of memory allocated by teenroutine to be reused.

120
HITACHI

4.6.2 Low-Level Interface Routine Specifications

This section explains the specifications for creating low-level interface routines, gives examples of
actual interfaces and explains their operations, and notes on implementation.

The interface for each routine is shown using the format below.
Create each interface routine by assuming that the prototype declaration is made.
Example:

(Routine name)

Purpose (Purpose of the routine)
Interface (Shows the interface as a C function declaration)
Parameters No. Name Type Meaning
1 (Parameter name) (Parameter (Meaning of the parameter)
type)
Return value Type (Type of return value)
Normal (Return value for normal termination)
Abnormal (Return value for abnormal termination)

121
HITACHI

openroutine

Purpose Opens a file
Interface int open (char *name,
int mode);
Parameters No. Name Type Meaning
1 name Pointer to String literal indicating a file name
char
2 mode int Processing specification
Return value Type int
Normal File number of the file opened
Abnormal -1

Explanation: Theopenroutine opens the file specified by the first parameter (file name) and
returns a file number. Thepenroutine must determine the file device type (console, printer, disk,
etc.) and assign this information to the file number. The file type is referenced using the file
number each time a read/write operation is performed.

The second parameter (mode) gives processing specifications for the file. The effect of each bit of
this parameter is explained as follows:

122
HITACHI

543210

FIFIEARERIEY

31

mode |

B
_—

O_RDONLY
L O_WRONLY
O_RDWR
O_CREATE
O_TRUNC
O_APPEND

Description:
(1) O_RDONLY (hit 0)
If this bit is 1, the file becomes read only.
(2) O_WRONLY (bit 1)
If this bit is 1, the file becomes write only.
(3) O_RDWR (bit 2)
If this bit is 1, the file becomes read/write.
(4) O_CREATE (bit 3)
If this bit is 1 and the file indicated by the file name does not exist, a new file is created.
(5) O_TRUNC (bit 4)
If this bit is 1 and the file indicated by the file name exists, the file contents are discarded and
the file size is set to zero.
(6) O_APPEND (bit 5)
If this bit is 1, the read/write position is set to the end of the file. If this bit is O, the read/write
position is set to the beginning of the file.

An error is assumed if the file processing specifications contradict with the actual characteristics
of the file.

Theopenroutine returns a file number (positive integer) which can be used byatiewrite,

Iseek andcloseroutines, provided the file opens normally. The relationship between file numbers
and actual files must be managed by the low-level interface routinesop€&heoutine returns a

value of —1 if the file fails to open properly.

123
HITACHI

closeroutine

Purpose Closes a file
Interface int close(int fileno);
Parameters No. Name Type Meaning
1 fileno int File number of the file to be closed
Return value Type int
Normal 0
Abnormal -1

Explanation: The file number, determined by tbpenroutine, is given as the parameter.

Release the area of memory allocated byoften routine for file management information, so that

it can be reused. If buffers are used, the contents are output to their corresponding files. Zero is
returned if the file closes normally. Otherwise, —1 is returned.

124
HITACHI

read routine

Purpose Reads data from a file
Interface int read (int fileno,
char *buf,

unsigned int count);

Parameters No. Name Type Meaning
1 fileno int File number of the file to be read
2 buf Pointer to Area to be used to store the read data
char
3 count unsigned Byte length of data to be read
int
Return value Type int
Normal Byte length of the data actually read
Abnormal -1

Explanation: The read routine loads data from the file indicated by the first pararfiketeo)

into the area indicated by the second parambtd).(The amount of data to be read is indicated

by the third parametec@unt). If an end of file is encountered during a read, less than the

specified number of bytes are read. The file read/write position is updated using the byte length of
the data actually read. If data is read normally, the routine returns the number of bytes of the data
read. Otherwise, theead routine returns a value of —1.

125
HITACHI

write routine

Purpose Writes data to a file
Interface int write (int fileno,
char *buf,

unsigned int count);

Parameters No. Name Type Meaning
1 fileno int File number
2 buf Pointer to char Area storing data to be written
in the file
3 count unsigned int Byte length of the data to be
written
Return value Type int
Normal Byte length of the data actually written
Abnormal -1

Explanation: Thewrite routine outputs data, whose byte length is indicated by the third
parameterdount), from the area indicated by the second parambtd) {nto the file indicated by

the first parameteffileno). If the device (such as a disk) where a file is stored becomes full, data
less than the specified byte length is written to the file. If zero is returned as the byte length of
data actually written several times, the routine assumes that the device is full and sends a return
value of —1. The file read/write position is updated using the byte length of data actually written.
If the routine ends normally, it returns the byte length of data actually written. Otherwise, the
routine returns a value of —1.

126
HITACHI

Iseekroutine

Purpose Determines the next read/write position in a file
Interface long Iseek (int fileno,
long offset,
int base);
Parameters No. Name Type Meaning
1 fileno int File number of the target file
2 offset long Offset in bytes from specified point in
the file
3 base int Base used for offset (bytes)
Return value Type long
Normal The offset (bytes) from the beginning of the file for the next

read/write position

Abnormal -1

Explanation: Thelseekroutine determines the next read/write position as an offset in bytes. The
next read/write position is determined according to the third pararbets as follows:

1. Base=0

The second parameter gives the new offset relative to the beginning of the file.
2. Base=1

The second parameter is added to the current position to give the new offset.
3. Base=2

The second parameter is added to the file size to give the new offset.

An error occurs if the file is on an interactive device (such as a console or printer), the new offset
value is negative, or the new offset value exceeds the file size in the case of 1 or 2, above.

If Iseekcorrectly determines a new file position, the new offset value is returned. This value
indicates the new read/write position relative to the beginning of the file. Otherwitsedke
routine returns a value of —1.

127
HITACHI

sbrk routine

Purpose Allocates a memory area
Interface char *sbrk (
unsigned long size);

Parameters No. Name Type Meaning

1 size unsigned long Size of the area to be

allocated (in bytes)

Return value Type Pointer to char

Normal Start address of the allocated area

Abnormal (char*) -1

Explanation: The size of the area to be allocated is given as a parameter. Cresltiék tfoaitine

so that consecutive calls allocate consecutive areas beginning with the lowest available address.
An error will occur if there is insufficient memory. If the routine ends normally, it returns the start
address of the allocated area. Otherwise, the routine returns (char *) — 1.

128
HITACHI

PART IV
ERROR MESSAGES

129
HITACHI

130
HITACHI

Section 1 Error Messages

This section gives lists of error messages in order of error number. A list of error messages are
provided for each level of errors (I = Information error, W=Warning error, E = Error, F = Fatal
error, or () = Internal error) in the format below.

Error number (Error Level: I, W, E, F, or (-)) Error Message Explanation

131
HITACHI

0001 (I) Character combination /* in comment
String literal /* exists in comment.

0002 (I) No declarator
A declaration without a declarator exists.

0003 (I) Unreachable statement
A statement that will not be executed exists.

0004 (I) Constant as condition
A constant expression is specified as conditionffor switch statement.

0005 (I) Precision lost
Precision may be lost when assigning with type conversion a right hand side value to the left hand
side value.

0006 (I) Conversion in argument
A function parameter expression is converted into a parameter type specified in the prototype
declaration.

0008 (I) Conversion in return
A return statement expression is converted into a value type that should be returned from a
function.

0010 (I) Elimination of needless expression
A needless expression exists.

0011 (I) Used before set symbol: “variable name”
A variable is used before setting its value.

0015 (I) No return value
A return statement is not returning a value in a function that should return a type other than the
void type, or a return statement does not exist.

0100 (I) Function "function name" not optimized
A function which is too large cannot be optimized.

0200 (W) No prototype function
There is no prototype declaration.

1000 (W) lllegal pointer assignment
A pointer is assigned to a pointer with a different data type.

1001 (W) lllegal comparison in "operator"
The operands of the binary operator == or != are a pointer and an integer other than 0.

132
HITACHI

1002 (W) lllegal pointer for "operator”
The operands of the binary operator ==, =, >, <, >=, or <= are pointers assigned to different types.

1005 (W) Undefined escape sequence
An undefined escape sequence (a character following a backslash) is used in a character constant
or string literal.

1007 (W) Long character constant
A character constant consists of two or more characters.

1008 (W) Identifier too long
An identifier's length exceeds 250 characters.

1010 (W) Character constant too long
A character constant consists of four or more characters.

1012 (W) Floating point constant overflow
The value of a floating-point constant exceeds the limit. Assumes the internally represented value
corresponding toee or -0 depending on the sign of the result.

1013 (W) Integer constant overflow
The value of unsigned long integer constant exceeds the limit. Assumes a value ignoring the
overflown upper bits.

1014 (W) Escape sequence overflow
The value of an escape sequence indicating a bit pattern in a character constant or string literal
exceeds 255. The low order byte is valid.

1015 (W) Floating point constant underflow
The absolute value of a floating-point constant is less than the lower limit. Assumes 0.0 as the
value of the constant.

1016 (W) Argument mismatch

The data type assigned to a pointer specified as a formal parameter in a prototype declaration
differs from the data type assigned to a pointer used as the corresponding actual parameter in a
function call. Uses the internal representation of the pointer used for the function call actual
parameter.

1017 (W) Return type mismatch

The function return type and the type in a return statement are pointers but the data types assigned
to these pointers are different. Uses the internal representation of the pointer specified in the
return statement expression.

133
HITACHI

1019 (W) lllegal constant expression
The operands of the relational operator <, >, <=, or >= in a constant expression are pointers to
different data types. Assumes 0 as the result value.

1020 (W) lllegal constant expression of
The operands of the binary operator - in a constant expression are pointers to different data types.
Assumes 0 as the result value.

1021 (W) Register saving pragma conflicts in interrupt function "function name"
Invalid #pragma that controls saving or recovery of register contents corresponding to an interrupt
function indicated by a function name. #pragma is ignored.

1022 (W) First operand of operator is not lvalue
The first operand operator cannot be the Ivalue.

1023 (W) Can not convert Japanese code “code” to output type
A Japanese code “code” cannot be converted to the specified output code.

1200 (W) Division by floating point zero
Division by the floating-point number 0.0 is carried out in a constant expression. Assumes the
internal representation value correspondingetoof -0 depending on the sign of the operands.

1201 (W) Ineffective floating point operation

Invalid floating-point operations such @s« or 0.0/0.0 are carried out in a constant expression.
Assumes the internal representation value corresponding to a not a number indicating the result of
an ineffective operation.

1300 (W) Command parameter specified twice
The same SH C compiler option is specified more than once. Uses the last specified compiler
option.

1400 (W) Function "function name" in #pragma inline is not expanded
A function specified using #pragma inline could not be expanded where the function is callled.
Compiling processing continues.

2000 (E) lllegal preprocessor keyword
An illegal keyword is used in a preprocessor directive.

2001 (E) lllegal preprocessor syntax
There is an error in preprocessor directive or in a macro call specification.

2002 (E) Missing ","
A comma (,) is not used to delimit two arguments in a #define directive.

134
HITACHI

2003 (E) Missing ")"
A right parenthesis ()) does not follow a name in a defined expression. The defined expression
determines whether the name is defined by a #define directive.

2004 (E) Missing ">"
A right angle bracket (>) does not follow a file name in an #include directive.

2005 (E) Cannot open include file "file name"
The file name specified by an #include directive cannot be opened.

2006 (E) Multiple #define's
The same macro name is redefined by #define directives.

2008 (E) Processor directive #elif mismatches
There is no #if, #ifdef, #ifndef, or #elif directive corresponding to an #elif directive.

2009 (E) Processor directive #else mismatches
There is no #if, #ifdef, or #ifndef directive corresponding to an #else directive.

2010 (E) Macro parameters mismatch
The number of macro call arguments and the number of macro definition arguments are not equal.

2011 (E) Line too long
After macro expansion, a source program line exceeds the compiler limit.

2012 (E) Keyword as a macro name
A preprocessor keyword is used as a macro name in a #define or #undef directive.

2013 (E) Processor directive #endif mismatches
There is no #if, #ifdef, or #ifndef directive corresponding to an #endif directive.

2014 (E) Missing #endif
There is no #endif directive corresponding to an #if, #ifdef, or #ifndef directive, and the end of file
is detected.

2016 (E) Preprocessor constant expression too complex
The total number of operators and operands in a constant expression specified by an #if or #elif
directive exceeds the limit.

2017 (E) Missing ”
A closing double quotation mark (") does not follow a file name in an #include directive.

2018 (E) lllegal #line
The line count specified by a #line directive exceeds the limit.

135
HITACHI

2019 (E) File name too long
The length of a file name exceeds 128 characters.

2020 (E) System identifier "name" redefined
The name of the defined symbol is the same as that of the run time routine.

2100 (E) Multiple storage classes
Two or more storage class specifiers are used in a declaration.

2101 (E) Address of register
An unary-operator & is used for a variable that has a register storage class.

2102 (E) lllegal type combination
A combination of type specifiers is illegal.

2103 (E) Bad self reference structure
A struct or union member has the same data type as its parent.

2104 (E) lllegal bit field width
A constant expression indicating the width of a bit field is not an integer or it is negative.

2105 (E) Incomplete tag used in declaration

An incomplete tag nhame declared with a struct or union, or an undeclared tag name is used in a
typedef declaration or in the declaration of a data type not assigned to a pointer or to a function
return value.

2106 (E) Extern variable initialized
A compound statement specifies an initial value for an extern storage class variable.

2107 (E) Array of function
An array with a function type is specified.

2108 (E) Function returning array
A function with an array return value type is specified.

2109 (E) lllegal function declaration
A storage class other than extern is specified in the declaration of a function variable used in a
compound statement.

2110 (E) lllegal storage class
The storage class in an external definition is specified as auto or register.

2111 (E) Function as a member
A member of a struct or union is declared as a function.

136
HITACHI

2112 (E) lllegal bit field
A type other than an integer type is specified for a bit field.

2113 (E) Bit field too wide
The width of a bit field is greater than the size (8, 16, or 32 bits) indicated by its type specifier.

2114 (E) Multiple variable declarations
A variable name is declared more than once in the same scope.

2115 (E) Multiple tag declarations
A struct, union, or enum tag name is declared more than once in the same scope.

2117 (E) Empty source program
There are no external definitions in the source program.

2118 (E) Prototype mismatch “function name”
A function type differs from the one specified in the declaration.

2119 (E) Not a parameter name “parameter name”
An identifier not in the function parameter list is declared as a parameter.

2120 (E) lllegal parameter storage class
A storage class other than register is specified in a function parameter declaration.

2121 (E) lllegal tag name
The combination of a struct, union, or enum with tag name differs from the declared combination.

2122 (E) Bit field width 0
The width of a bit field specifying a member name is 0.

2123 (E) Undefined tag name
An undefined tag name is specified in an enum declaration.

2124 (E) lllegal enum value
A non-integral constant expression is specified as a value for an enum member.

2125 (E) Function returning function
A function with a function type return value is specified.

2126 (E) lllegal array size
The value specifying the number of array elements is out of range of 1 to 2147483647.

2127 (E) Missing array size
The number of elements in an array is not specified where it is required.

137
HITACHI

2128 (E) lllegal pointer declaration for "*"
A type specifier other than const or volatile is specified following an asterisk (*), which indicates
a pointer declaration.

2129 (E) lllegal initializer type
The initial value specified for a variable is not a type that can be assigned to another variable.

2130 (E) Initializer should be constant
A value other than a constant expression is specified as either the initial value of a struct, union, or
array variable or as the initial value of a static variable.

2131 (E) No type nor storage class
Storage class or type specifiers is not given in an external data definition.

2132 (E) No parameter name
A parameter is declared even though the function parameter list is empty.

2133 (E) Multiple parameter declarations
Either a parameter name is declared in a macro function definition parameter list more than once
or a parameter is declared inside and outside the function declarator.

2134 (E) Initializer for parameter
An initial value is specified in the declaration of a parameter.

2135 (E) Multiple initialization
A variable is initialized more than once.

2136 (E) Type mismatch
An extern or static storage class variable or function is declared more than once with different data

types.

2137 (E) Null declaration for parameter
An identifier is not specified in the function parameter declaration.

2138 (E) Too many initializers

The number of initial values specified for a struct, union, or array is greater than the number of
struct members or array elements. This error also occurs if two or more initial values are specified
when the first members of a union are scalar.

2139 (E) No parameter type
A type is not specified in a function parameter declaration.

2140 (E) lllegal bit field
A bit field is used in a union.

138
HITACHI

2141 (E) Struct has no member name
The member name of a struct is not specified.

2142 (E) lllegal void type

void is used illegally. void can only be used in the following cases:

1. To specify a type assigned to a pointer

2. To specify a function return value type

3. To explicitly specify that a function whose prototype is declared does not have a parameter

2143 (E) lllegal static function
There is a function declaration with a static storage class function that has no definition in the
source program.

2144 (E) Type mismatch
Variables or functions with the same name which have an extern storage class are assigned to
different data types.

2145 (E) Const/volatile specified for imcomplete type
An incomplete type is specified as a const or volatile type.

2200 (E) Index not integer
An array index expression type is not an integer.

2201 (E) Cannot convert parameter “n”
The n-th parameter of a function call cannot be converted to the type of parameter specified in the
prototype declaration.

2202 (E) Number of parameters mismatch
The number of parameters for a function call is not equal to the number of parameters specified in
the prototype declaration.

2203 (E) lllegal member reference for ".
The expression to the left-hand side of the (.) operator is not a struct or union.

2204 (E) lllegal member reference for "->"
The expression to the left of the -> operator is not a pointer to a struct or union.

2205 (E) Undefined member name
An undeclared member name is used to reference a struct or union.

2206 (E) Modifiable Ivalue required for "operator"
The operand for a prefix or suffix operator ++ or -- has a left value that cannot be assigned (a left
value whose type is not array or const).

139
HITACHI

2207 (E) Scalar required for "!"
The unary operator ! is used on an expression that is not scalar.

2208 (E) Pointer required for "*"
The unary operator * is used on an expression that is not pointer or on an expression of a pointer
for void.

2209 (E) Arithmetic type required for "operator"
The unary operator + or - is used on a non-arithmetic expression.

2210 (E) Integer required for
The unary operator ~ is used on a non-integral expression.

2211 (E) lllegal sizeof
A sizeof operator is used for a bit field member, function, void, or array with an undefined size.

2212 (E) lllegal cast
Either array, struct, or union is specified in a cast operator, or the operand of a cast operator is
void, struct, or union and cannot be converted.

2213 (E) Arithmetic type required for "operator"
The binary operator *, /, *=, or /= is used in an expression that is not an arithmetic expression.

2214 (E) Integer required for "operator”
The binary operator <<, >>, &, |, *, %, <<=, >>=, &=, |=, =, or %= is used in an expression that
is not an integer expression.

2215 (E) lllegal type for "+"
The combination of operand types used with the binary operator + is not allowed.

2216 (E) lllegal type for parameter
Type void is specified for a function call parameter type.

2217 (E) lllegal type for "-"
The combination of operand types used with the binary operator - is not allowed.

2218 (E) Scalar required
The first operand of the conditional operator ?: is not a scalar.

2219 (E) Type not compatible with "?:"
The types of the second and third operands of the conditional operator ?: do not match with each
other.

2220 (E) Modifiable Ivalue required for "operator"
An expression whose left value cannot be assigned (a left value whose type is not array or const) is
used as an operand of an assignment operator =, *=, /=, %=, +=, -=, <<=, >>=, &=, "=, or | =.
140
HITACHI

2221 (E) lllegal type for "operator”
The operand of the suffix operator ++ or -- is a pointer assigned to function type, void type, or to a
data type other than scalar type.

2222 (E) Type not compatible for "=
The operand types for the assignment operator = do not match.

2223 (E) Incomplete tag used in expression
An incomplete tag name is used for a struct or union in an expression.

2224 (E) lllegal type for assign
The operand types of the assignment operator += or -= are illegal.

2225 (E) Undeclared name “name”
An undeclared name is used in an expression.

2226 (E) Scalar required for "operator"
The binary operator && or || is used in a non-scalar expression.

2227 (E) lllegal type for equality
The combination of operand types for the equality operator == or !=is not allowed.

2228 (E) lllegal type for comparison
The combination of operand types for the relational operator >, <, >=, or <= is not allowed.

2230 (E) lllegal function call
An expression which is not a function type or a pointer assigned to a function type is used for a
function call.

2231 (E) Address of bit field
The unary operator & is used on a bit field.

2232 (E) lllegal type for "operator"
The operand of the prefix operator ++ or -- is a pointer assigned to a function type, void type, or to
a data type other than scalar type.

2233 (E) lllegal array reference
An expression used as an array is an array or a pointer assigned to a data type other than a function
or void.

2234 (E) lllegal typedef name reference
A typedef name is used as a variable in an expression.

2235 (E) lllegal cast
An attempt is made to cast a pointer with a floating-point type.

141
HITACHI

2236 (E) lllegal cast in constant
In a constant expression, an attempt is made to cast a pointer with a char or short type.

2237 (E) lllegal constant expression
In a constant expression, a pointer constant is cast with an integer and the result is manipulated.

2238 (E) Lvalue or function type required for "&"
The unary operator & is not used on the Ivalue or is used in an expression other than function type.

2300 (E) Case not in switch
A case label is specified outside a switch statement.

2301 (E) Default not in switch
A default label is specified outside a switch statement.

2302 (E) Multiple labels
A label name is defined more than once in a function.

2303 (E) lllegal continue
A continue statement is specified outside a while, for, or do statement.

2304 (E) lllegal break
A break statement is specified outside a while, for, do, or switch statement.

2305 (E) Void function returns value
A return statement specifies a return value for a function with a void return type.

2306 (E) Case label not constant
A case label expression is not an integer constant expression.

2307 (E) Multiple case labels
Two or more case labels with the same value are used for one switch statement.

2308 (E) Multiple default labels
Two or more default labels are specified for one switch statement.

2309 (E) No label for goto
There is no label corresponding to the destination specified by a goto statement.

2310 (E) Scalar required
The control expression (that determines statement execution) for a while, for, or do statement is
not a scalar.

2311 (E) Integer required
The control expression (that determines statement execution) for a switch statement is not an
integer.

142
HITACHI

2312 (E) Missing (
The control expression (that determines statement execution) does not follow a left parenthesis ((
) for an if, while, for, do, or switch statement.

2313 (E) Missing ;
A do statement is ended without a semicolon (;).

2314 (E) Scalar required
A control expression (that determines statement execution) for an if statement is not a scalar.

2316 (E) lllegal type for return value
An expression in a return statement cannot be converted to the type of value expected to be
returned by the function.

2400 (E) lllegal character "character"
An illegal character is detected.

2401 (E) Incomplete character constant
An end of line indicator is detected in the middle of a character constant.

2402 (E) Incomplete string
An end of line indicator is detected in the middle of a string literal.

2403 (E) EOF in comment
An end of file indicator is detected in the middle of a comment.

2404 (E) lllegal character code "character code"
An illegal character code is detected.

2405 (E) Null character constant
There are no characters in a character constant (i.e., no characters are specified between two
guotation marks).

2406 (E) Out of float
The number of significant digits in a floating-point constant exceeds 17.

2407 (E) Incomplete logical line
A backslash (\) or a backslash followed by an end of line indicator (\ (RET)) is specified as the
last character in a non-empty source file.

2408 (E) Comment nest too deep
The nesting level of the comment exceeds the limit of 255 level.

2500 (E) lllegal token “phrase”
An illegal token sequence is used.

143
HITACHI

2501 (E) Division by zero
An integer is divided by zero in a constant expression.

2600 (E) String literal(s)
An error message specified by string literal #error is output to the list file if nolist option is not
specified.

2650 (E) Invalid pointer reference
The specified address does not match the boundary alignment value.

2700 (E) Function "function name" in #pragma interrupt already declared
A function specified in an interrupt function declaration #pragma interrupt has been declared as a
normal function.

2701 (E) Multiple interrupt for one function
An interrupt function declaration #pragma interrupt has been declared more than once for the same
function.

2702 (E) Multiple #pragma interrupt options
The same type of interrupt is declared more than once.

2703 (E) lllegal #pragma interrupt declaration
An interrupt function declaration #pragma interrupt is specified incorrectly.

2704 (E) lllegal reference to interrupt function
The interrupt function is referenced incorrectly.

2705 (E) lllegal parameter in interrupt function
Argument types to be used for an interrupt function do not match.

2706 (E) Missing parameter declaration in interrupt function
There is no declaration for a variable to be used for an optional specification of an interrupt
function.

2707 (E) Parameter out of range in interrupt function
The parameter value tn of an interrupt function exceeds the limit of 256.

2709 (E) lllegal section name declaration
The #pragma section specification is illegal.

2710 (E) Section name too long
The specified section name exceeds the limit of 31 characters.

2711 (E) Section name table overflow
The number of section specified in one file exceeds the limit of 64.

144
HITACHI

2712 (E) GBR based displacement overflow
The variable declared in #pragma gbr_base overflows.

2713 (E) lllegal #pragma interrupt function type
The function type specified #pragma interrupt in illegal.

2800 (E) lllegal parameter number in in-line function
Parameters to be used for an intrinsic function do not match.

2801 (E) lllegal parameter type in in-line function
There are different parameter types in an intrinsic function.

2802 (E) Parameter out of range in in-line function
A parameter exceeds the range that can be specified by an intrinsic function.

2803 (E) Invalid offset value in in-line function
An argument for an intrinsic function is specified incorrectly.

2804 (E) lllegal in-line function
An intrinsic function that cannot be used by the speciffgdoption exists.

2805 (E) Function "function name" in #pragma inline/inline_asm already declared
The function indicated by a function name exists before the #pragma specification.

2806 (E) Multiple #pragma for one function
Two or more #pragma directives are specified for one function incorrectly.

2807 (E) lllegal #pragma inline/inline_asm declaration
The #pragma inline or #pragma inline_asm is specified illegally.

2808 (E) lllegal option for #pragma inline_asm
The -code=machinecode option is specified in addition to the #pragma inline_asm specification
declaration.

2809 (E) lllegal option for #pragma inline/inline_asm function type
An identifier type that specifies #pragma inline or #pragma inline_asm is illegal.

2810 (E) Global variable “variable name” in #pragma gbr_base/gbr_basel already
declared
A variable definition indicated by variable name exists before #pragma specification.

2811 (E) Multiple #pragma for one global variable
Two or more #pragma directives are specified for one variable incorrectly.

2812 (E) lllegal #pragma gbr_base/gbr_basel declaration
The #pragma gbr_base or #pragma gbr_basel specification is illegal declaration.

145
HITACHI

2813 (E) lllegal #pragma gbr_base/gbr_basel global variable type
An identifier type that specifies #pragma gbr_bsee or #pragma gbr_basel is illegal.

2814 (E) Function “function name” in #pragma noregsave/norealloc/regsave already
declared
The function indicated by a function name exists before the #pragma specification declaration.

2815 (E) lllegal #pragma noregsave/noregalloc/regsave declaration
The #pragma noregsave, or #pragma noregalloc, or #pragma regsave specification is illegal.

2816 (E) lllegal #pragma noregsave/noregalloc/regsave function type
An identifier type that specifies #pragma noregsave, #pragma noregalloc, or #pragma regsave is
illegal.

2817 (E) Symbol "identifier" in #pragma abs16 already declared
A name indicated by an identifier exists before the #pragma specification declaration.

2818 (E) Multiple #pragma for one symbol
More than one #pragma is incorrectly specified for one identifier.

2819 (E) lllegal #pragma abs16 declaration
The #pragma abs16 specification is illegal declaration.

2820 (E) lllegal #pragma abs16 symbol type
An identifier type that specifies #pragma abs16 is illegal.

2821 (E) Global variable “variable name” in #pragma global_register already declared
The variable that specifies #pragma global_register has already been specified.

2822 (E) lllegal register “register” in #pragma global_register
The register that specified #pragma global_register is illegal.

2823 (E) lllegal #pragma global_register declaration
The specification method of #pragma global_register is illegal.

2824 (E) lllegal #pragma global_register type
A variable that cannot specify #pragma global_register exists.

3000 (F) Statement nest too deep
The nesting level of an if, while, for, do, and switch statements exceeds the limit. The maximum
number is 32 levels.

3001 (F) Block nest too deep
The nesting level of compound statements exceeds the limit. The maximum number is 32 levels.

146
HITACHI

3002 (F) #if nest too deep
The conditional compilation (#if, #ifdef, #ifndef, #elif, and #else) nesting level exceeds the limit.
The maximum number is 32 levels.

3006 (F) Too many parameters
The number of parameters in either a function declaration or a function call exceeds the limit. The
maximum number is 63.

3007 (F) Too many macro parameters
The number of parameters in a macro definition or a macro call exceeds the limit. The maximum
number is 63.

3008 (F) Line too long
After a macro expansion, the length of a line exceeds the limit. The maximum number is 4096
characters.

3009 (F) String literal too long

The length of string literal exceeds 512 characters. The length of string literal equals to the
number of bytes when linking string literals specified continuously. The length of the string literal
is not the length in the source program but the number of bytes included in the string literal data.
Escape sequence is counted as one character.

3010 (F) Processor directive #include nest too deep
The nesting level of the #include directive exceeds the limit. The maximum level is 30.

3011 (F) Macro expansion nest too deep
The nesting level of macro expansion performed by a #define directive exceeds the limit.
The maximum level is 32.

3012 (F) Too many function definitions
The number of function definitions exceeds the limit. The maximum number is 512.

3013 (F) Too many switches
The number of switch statements exceeds the limit. The maximum number is 256.

3014 (F) For nest too deep
The nesting level of a for statement exceeds the limit. The maximum level is 16.

3015 (F) Symbol table overflow
The number of symbols to be generated by the SH C compiler exceeds the limit. The maximum
number is 24576.

3016 (F) Internal label overflow
The number of internal labels to be generated by the SH C compiler exceeds the limit. The
maximum number is 32767.

147
HITACHI

3017 (F) Too many case labels
The number of case labels in one switch statement exceeds the limit. The maximum number is
511.

3018 (F) Too many goto labels
The number of goto labels defined in one function exceeds the limit. The maximum number is
511.

3019 (F) Cannot open source file "file name"
A source file cannot be opened.

3020 (F) Source file input error "file name"
A source or include file cannot be read.

3021 (F) Memory overflow
The SH C compiler cannot allocate sufficient memory to compile the program.

3022 (F) Switch nest too deep
The nesting level of a switch statement exceeds the limit. The maximum level is 16.

3023 (F) Type nest too deep
The number of types (pointer, array, and function) that qualify the basic type exceeds 16.

3024 (F) Array dimension too deep
An array has more than six dimensions.

3025 (F) Source file not found
A source file name is not specified in the command line.

3026 (F) Expression too complex
An expression is too complex.

3027 (F) Source file too complex
The nesting level of statements in the program is too deep or an expression is too complex.

3028 (F) Source line number overflow
The last source line number exceeds the limit. The maximum number is 65535.

3030 (F) Too many compound statements
The number of compound-statements exceeds the limit.

3031 (F) Data size overflow
The size of an array or a structure exceeds the limit of 2147483647 bytes.

3033 (F) Symbol table overflow
The number of symbols used for debugging information exceeds 32767.

148
HITACHI

3100 (F) Misaligned pointer access
There has been an attempt to refer or specify using a pointer that has an invalid alignment.

3201 (F) Object size overflow
The object file size exceeds the limit of 4 Gbytes.

3202 (F) Too many source lines for debug
There are too many source line to output debugging information.

3203 (F) Assembly source line too long
The assembly source line is too long to output.

3204 (F) lllegal stack access

The size of a stack to be used in a function (including a local variable area, register save area, and
parameter push area to call other functions) or a parameter area to call the function exceeds

2 Ghytes.

3300 (F) Cannot open internal file

An error occurred due to one of the following causes:

(1) An intermediate file internally generated by the SH C compiler cannot be opened.

(2) A file that has the same file name as the intermediate file already exists.

(3) The number of characters in a path name for a list file specification exceeds the limit of 128
characters.

(4) A file which the SH C compiler uses internally cannot be opened.

3301 (F) Cannot close internal file
An intermediate file internally generated by the SH C compiler cannot be closed. Make sure the
SH C compiler is installed correctly.

3302 (F) Cannot input internal file
An intermediate file internally generated by the SH C compiler cannot be read. Make sure the SH
C compiler is installed correctly.

3303 (F) Cannot output internal file
An intermediate file internally generated by the SH C compiler cannot be written.

3304 (F) Cannot delete internal file
An intermediate file internally generated by the SH C compiler cannot be deleted.

3305 (F) Invalid command parameter "option name"
An invalid compiler option is specified.

3306 (F) Interrupt in compilation
An interrupt generated by a (CNTL) C command (from a standard input terminal) is detected
during compilation.

149
HITACHI

3307 (F) Compiler version mismatch
File versions specified in the SH C compiler do not match the other file versions.

3320 (F) Command parameter buffer overflow
The command line specification exceeds 256 characters.

3321 (F) lllegal environment variable

An error occurred due to one of the following causes:

1. SHC_LIB was not specified.

2. A file name was specified incorrectly when SHC_LIB was specified or the number of
characters in a path name exceeds the limit of 118 characters.

3. Other than SH1, SH2, SHDSP, SH3, or SH3E is set for the environment variable SHCPU.

4000 — 4999 (—) Internal error
An internal error occurs during compilation. Report the error occurrence to your local Hitachi
dealer.

150
HITACHI

Section 2 C Standard Library Error Messages

For some library functions, if an error is generated during the library function execution, an error
number is set in the maceorno defined in the header file <errno.h> contained in the standard
library. Error messages are defined in the error numbers so that error messages can be output.
The following shows an example of an error message output program.

Example:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

main()

{
FILE *fp;

fp=fopen(“file”, “w");
fp=NULL,;

fclose(fp); /* error occurred */

printf(“%s\n”, strerror(errno)); /* print error message */

}

Description:
1. Since the file pointer of NULL is passed to tbiesefunction as an actual parameter, an error

will occur. In this case, an error number correspondiregrimo is set.

2. Thestrerror function returns a pointer of the string literal of the corresponding error message
when the error number is passed as an actual parameter. An error message is output by
specifying the output of the string literal of the printf function.

151
HITACHI

Table 4.1 List of Standard Library Error Messages
Functions to
Error No. Error Message/Explanation Set Error Numbers
1100 Data out of range atan, cos, sin, tan, cosh, sinh, tanh,
(ERANGE) An overflow occured. exp, fabs, frexp, l[dexp, modf, ceil,
floor, strtol, atoi, fscanf, scanf,
sscanf, atol
1101 Data out of domain acos, asin, atan2, log, log10, sqrt,
(EDOM) Results for mathematical fmod, pow
parameters are not defined.
1102 Division by zero divbs, divws, divls, divbu, divwu, diviu
(EDIV) Division by zero was performed.
1104 Too long string strtol, strtod, atof, atoi, atol
(ESTRN) The length of string literal exceeds
512 characters.
1106 Invalid file pointer fclose, fflush, freopen, setbuf,
(PTRERR) NULL pointer constant is specified setvbuf, fprintf, fscanf, printf,
as the file pointer value scanf, sprintf, sscanf, vfprintf, vprintf,
vsprintf, fgetc, fgets, fputc, fputs,
ungetc, fread, fwrite, fseek, ftell,
rewind, perror
1200 Invalid radix strtol, atol, atoi
(ECBASE) An invalid radix was specified.
1202 Number too long strtod, fscanf, scanf, sscanf, atof
(ETLN) The specified number exceeds 17
digits.
1204 Exponent too large strtod, fscanf, scanf, sscanf, atof
(EEXP) The specified exponent exceeds 3
digits.
1206 Normalized exponent too strtod, fscanf, sscanf, atof
(EEXPN) large
The exponent exceeds three digits
when the string literal is normalized
to the IEEE standard decimal
format.
1210 Overflow out of float strtod, fscanf, scanf, sscanf, atof
(EFLOATO) A float-type decimal value is out of
range (overflow).
1220 Underflow out of float strtod, fscanf, scanf, sscanf, atof
(EFLOATU) A float-type decimal value is out of
range (underflow).
152

HITACHI

Table 4.1 List of Standard Library Error Messages (cont)
Functions to
Error No. Error Message/Explanation Set Error Numbers
1250 Overflow out of double strtod, fscanf, scanf, sscanf, atof
(EDBLO) A double-type decimal value is out
of range (overflow).
1260 Underflow out of double strtod, fscanf, scanf, sscanf, atof
(EDBLU) A double-type decimal value is out
of range (underflow).
1270 Overflow out of long fscanf, scanf, fscanf
(ELDBLO) double
A long double-type decimal value is
out of range (overflow).
1280 Underflow out of long fscanf, scanf, sscanf
(ELDBLU) double
A long double-type decimal value is
out of range (underflow).
1300 File not open fclose, fflush, setbuf, setvbuf, fprintf,
(NOTOPN) The file is not open. fscanf, printf, scanf, sprintf, sscanf,
viprintf, vprintf, vsprintf, fgetc, fgets,
fputc, fputs, gets, puts, ungetc, fread,
fwrite, fseek, ftell, rewind, perror,
freopen
1302 Bad file number fprintf, fscanf, printf, scanf, sprintf,
(EBADF) An output function was issued for sscanf, vfprintf, vprintf, vsprintf, fgetc,
an input file, input file was issued for fgets, fputc, fputs, gets, puts, ungetc,
an output function. perror, fread, fwrite
1304 Error in format fprintf, fscanf, printf, scanf, sprintf,
(ECSPEC) An erroneous format was specified sscanf, vfprintf, vprintf, vsprintf,

for an input/output function using
format.

perror

HITACHI

153

154
HITACHI

APPENDIX

155
HITACHI

156
HITACHI

Appendix A Language and Standard Library Function
Specifications of the C Compiler

Al Language Specifications of the C Compiler

A.1.1 Compilation Specifications

Table A.1 Compilation Specifications

ltem

C Compiler Specification

Error information when an error is detected

Refer to part IV, Error Messages

A.l.2 Environmental Specifications

Table A.2 Environmental Specifications

Item C Compiler Specification
Actual argument for the main function Not specified
Interactive I/O device configuration Not specified

HITACHI

157

A1.3 Identifiers
Table A.3 Identifier Specifications

Item C Compiler Specification

Number of valid characters of internal identifiers not The first 250 characters are valid for an
used for external linkage internal or external identifier.

Number of valid characters of external identifiers
used for external linkage

Lowercase and uppercase character distinction in Lowercase characters are distinguished
external identifiers used for external linkage from uppercase characters.

Note: Two different identifiers with the same first 250 characters are considered to be identical
even if the 251st or later characters are different.

Example:
1. longabcde ... ab; (the 250th character is a and the 251st character is b)
2. longabcde ... ac; (the 250th character is a and the 251st character is c)
Identifiers1. and 2. are indistinguishable because the first 250 characters are the same.

158
HITACHI

Al.4 Characters

Table A.4 Character Specifications

Item

C Compiler Specification

Elements of source character set and execution
environment character set

ASCII character set

Kanji used in host environment can be
used for source program comment.

Shift state used for encoding multiple-byte characters

Shift state is not supported

The number of bits used to indicate a character set
during program execution

Eight bits are used for each character.

Correspondence between source character set used
in character constant or character string and
execution environment character set

ASCII is used for both.

Value of character constant including characters and
escape sequence that are not specified in the C
language

Characters and escape sequence other
than that specified by the C language are
not supported.

Character constant of two or more characters or wide
character constant including multiple-byte characters
of two or more characters

The upper one character of the character
constant is valid. Wide character constant
is not valid. If a character constant of
more than one character is specified, a
warning error message is output.

locale specifications used to convert multiple-byte
character to wide character

locale is not supported

Simple char having normal the value range same as
signed char or unsigned char .

The same range as the signed char.

HITACHI

159

A.15 Integer

Table A.5 Integer Specifications

Item C Compiler Specification

Integer-type data representation and value Table A.6 shows data representation and
value. (A negative value is shown in two's

complement.)

Effect when an integer is too large to be converted The lower one or two bytes of the integer
into a signed integer-type value or into a value which is used as the conversion result.

cannot be expressed using signed char type (when
the resulting value cannot be represented with the
resulting converted type)

The result of bitwise operations on signed integers signed value

Sign of the remainder for integer division Same as the sign of the dividend.
Effect of a right shift operation on the sign bit of The sign bit is unchanged by the shift
sighed integer-type data operation.

Table A.6 Integer Types and Their Corresponding Data Range

Type Range of Values Data Size
char (signed char) -128to 127 1 byte
unsigned char 0to 255 1 byte
short —32768 to 32767 2 bytes
unsigned short 0 to 65535 2 bytes
int —2147483648 to 2147483647 4 bytes
unsigned int 0 to 4294967295 4 bytes
long —2147483648 to 2147483647 4 bytes
unsigned long 0 to 4294967295 4 bytes

Note: Type specification in parenthesis () can be omitted. The order of type specification is

arbitrary.

160
HITACHI

A.1.6 Floating-Point Numbers

Table A.7 Floating-Point Number Specifications

Item C Compiler Specification

Data that can be represented as floating-point type The float, double , and long double are
and value provided as floating-point types.

See section A.3, Floating-Point Number
Specifications, for details on floating-point
numbers (internal representation,

Rounding down direction when converting an
integer number to a floating-point number that
cannot represent the integer's original value
correctly

conversion specifications, and operation
specifications). Table A.8 shows the limits
on representing floating-point numbers.

Rounding down or rounding method when
converting a floating-point number to a lower-
precision number

Table A.8 Limits on Floating-Point Numbers

Limit
Item Decimal ™ Hexadecimal
Maximum value of float type 3.4028235677973364e+38f TETFffff
(3.4028234663852886e+38f)
Positive minimum value of 7.0064923216240862e-46f 00000001
float type (1.4012984643248171e-45f)
Maximum value of double * 1.7976931348623158e+308 TTefffffffrff
or long double type (1.7976931348623157e+308)
Positive minimum value of 4.9406564584124655e-324 0000000000000001

double ?or long double type (4.9406564584124654e—324)

Notes: 1. Limits on decimal is non-zero minimum value or maximum value not infinitive value.
Values within () indicate theoretical values.
2. double type will have the same value as float type when —double=float
option is specified.

161
HITACHI

A.1.7 Arrays and Pointers

Table A.9 Array and Pointer Specifications

Item

C Compiler Specification

Integer type required for holding array's maximum
size (size_t)

unsigned long

Conversion from pointer-type data to integer-type
data (Pointer-type data size = Integer-type data size)

The lower byte of pointer-type data is used.

Conversion from pointer-type data to integer-type
data (Pointer-type data size < Integer-type data size)

Extended with signs

Conversion from integer-type data to pointer-type
data (Integer-type data size = Pointer-type data size)

The lower byte of integer-type data is used.

Conversion from integer-type data to pointer-type
data (Integer-type data size < Pointer-type data size)

Extended with signs

Integer type required for holding pointer difference
between members in the same array (ptrdiff_t)

int

A.1.8 Register

Table A.10 Register Specifications

Item

C Compiler Specification

The maximum number of register variables that can
be allocated to registers

7

Type of register variables that can be allocated to
registers

char, unsigned char, short, unsigned
short, int, unsigned int, long, unsigned
long, float, and pointers

162

HITACHI

A.1.9 Structure, Union, Enumeration, and Bit Field Types

Table A.11 Specifications for Structure, Union, Enumeration, and Bit Field Types

Item

C Compiler Specification

Effect of referencing a union-type member using

another member whose data type is different

Reference is possible but the referred value
is not guaranteed.

Structure member alignment

The maximum data size among structure
members is a boundary alignment number.
Refer to table A.6 Integer Types and Their
Corresponding Data Range. **

Sign of an int bit field

Assumed to be signed int

Allocation order of bit fields in int area

Beginning from the high order bit to low
order bit. *?

Result when a bit field has been allocated in an int
area and the next bit field to be allocated is larger

than the remaining int

The next bit field is allocated to the next int
area.*?

Type specifier allowed for bit field

char, unsigned char, short, unsigned
short, int, unsigned int, long, and
unsigned long

Integer describing enumeration

int

Notes: 1. See section 2.2.2 Combined-Type Data, in part || C Programming, for details on

structure member allocation.

2. See section 2.2.3, Bit Fields, in part Il C Programming, for details on bit field allocation.

A.1.10 Qualifier

Table A.12 Qualifier Specifications

Iltem

C Compiler Specification

volatile data access type

Not specified

163

HITACHI

A.1.11 Declarations

Table A.13 Declaration Specifications

Item C Compiler Specification

Types that can qualify the basic types Up to 16 types can be specified.
(pointer, array, and function)

1. Example of counting the number of types that qualify the basic types

Examples:

* inta;
a isint (basic type) and the number of declarators that qualify the basic type is zero.

e char *f();
fis a function type that returns pointerctoar (basic type). The number of declarators that
qualify the basic type is two.

A.1.12 Statement

Table A.14 Statement Specifications

Item C Compiler Specification

The number of case label that can be declared in a Up to 511 labels can be specified.
switch statement

164
HITACHI

A.1.13 Preprocessor

Table A.15 Preprocessor Specifications

Item

C Compiler Specification

Correspondence between single character constant
in a constant expression and execution environment
character set in the conditional compilation

Character strings in the preprocessor
statement match the execution environment
character set

Reading an include file

The file within < > is read from a directory
specified by the include option. When more
than one directory is specified, a file is
searched for in the specified order. If a
specified file is not found at a specified
directory, the search continues at a
directory specified by environment variable
SHC_INC and a system directory
(SHC_LIB) in this order.

Supporting an include file whose name is enclosed
in a pair of double quotation marks

The C compiler supports include files
whose names are delimited by double
guotation marks. The C compiler reads
these include files from the current
directory. If the include files are not in the
current directory, the C compiler reads them
from the directory specified in advance.

Blank character in the character string of an actual
parameter for a #define statement after expansion

Strings of blanks are expanded as one
blank character.

#pragma directive operation

#pragma interrupt, #pragma section,
#pragma inline, #pragma inline_asm,
#pragma abs16, #pragma gbr_base,
#pragma gbr_basel, #pragma noregsave,
#pragma noregalloc, #pragma regsave, and
#pragma global_register are supported.**

Value of _ _DATE_ _, __TIME_ _

Data depending on the host machine timer
when the compilation starts.

Note:
specifications.

See section 3, Extended Specification, in part Il C Programming, for details on #pragma

165

HITACHI

A.2 C Library Function Specifications

This section explains the specifications for C library functions that are not declared in C language
specification.

A2.1 stddef.h

Table A.16 stddef.h Specifications

Item C Compiler Specification

Value of macro NULL The value is 0 for a pointer type to a void
type

Contents of ptrdiff_t int type

A2.2 assert.h

Table A.17 assert.h Specifications

Item C Compiler Specification

Information output and terminal operation of assert See 1. for the format of output information.

function The program outputs information and then
calls the abort function to stop the
operation.

1. The following message is output when the value of the expression is 0 for assert (expression):
Assertion Failed: A<expressionaFile A<file name>Line A<line number>

A.2.3 ctype.h

Table A.18 ctype.h Specifications

Item C Compiler Specification

The character set for which the isalnum , isalpha , Character set that can be expressed in

iscntrl , islower , isprint , and isupper functions unsigned char type. Table A.19 shows the

check character set that results in a true return
value.

166

HITACHI

Table A.19 Set of Characters that Returns True

Function Name Characters That Become True
isalnum '0'to'9",'Ato'Z ,'a'to 'z '
isalpha '‘Ato'Z,'a'to 'z’

iscntrl "¥X00' to "¥X1f, ¥X7f

islower '‘a'to 'z’

isprint '¥X20' to "¥X7E'

isupper '‘Ato'Z

A.2.4 math.h

Table A.20 math.h Specifications

Item C Compiler Specification

Value returned by a mathematical function if an For details on format for not a number,

input parameter is out of the range refer to A.3, Floating-Point Number
Specifications

Returns a not a number.

Is errno set to the value of macro ERANGE if an No, it is not.
underflow error occurs in a mathematical function?

Does a range error occur if the 2nd actual parameter Returns a not a number and a range error
in the fmod function is O occurs.

Note: math.h defines macro names ENUM and ERANGE that indicates a standard library error
number.

A25 setjimp.h

Table A.21 setjmp.h Specifications

Item C Compiler Specification

What programs can a setjmp function be called in ? The following statements can call a setjmp
function if specified with setjimp() or
ver=setimp() format:

1. Asingle statement or an if, while , do,
or for statement that specifies
condition

2. switch orreturn statement

167
HITACHI

A.2.6 stdio.h

Table A.22 stdio.h Specifications

Item C Compiler Specification

Is a carriage return character indicating the last line
of input data required?

Not specified. Depends on the low-level
interface routine specifications.

Is a blank character immediately before the carriage
return character read?

Number of NULL characters added to data written to
binary file

Initial value of file position specifier in addition mode

Is a file data lost following text file output?

File buffering specifications

Does a file with file length 0 exist?

File name configuration rule

Can the same files be opened simultaneously?

Output data representation of the %p format
conversion in the fprintf function

Hexadecimal representation

Output data representation of the %p format
conversion in the fscanf function, the meaning of
(=) in the fscanf function

Hexadecimal representation

If (=) is not placed at the beginning or end
of a fscanf character string or does not
follow (") in a fscanf character string,
indicates the range between the previous
and following characters.

Value of errno specified by fgetpos and ftell
functions

The fgetpos function is not supported.

The ftell function does not specify the errno
value. The errno value is determined
depending on the low-level interface
routine.

Output format of messages generated by the perror

function

See 1. below for the output message
format.

calloc , malloc , or realloc function operation when

the size is 0

0 byte area is allocated.

1. Messages generated bgearor function follow this format:

<character string> : <error message corresponding to the error number indicated by errno>

2. Table A.23 shows the format used to indicate infinity and not a number for floating-point
numbers when using thpgintf or fprintf function.

168

HITACHI

Table A.23 Infinity and Not a number

Value C Compiler Specification

Positive infinity o+

Negative infinity _

Not a number kkkkk

A.2.7 string.h

Table A.24 string.h Specifications

Item

C Compiler Specification

Return value from an memcmp , strcmp , or
strncmp function.

Value is treated as a signed value.

Error message returned by the strerror function

Refer to section 2, C Standard Library, in
part IV Error Messages.

169

HITACHI

A.2.8 errmo.h

Table A.25 errno.h Specifications

Item C Compiler Specification

errno An error number is specified when an error occurs in an int
type variable or a library function.

ERANGE Refer to section 2, C Standard Library Error Messages, in part
IV Error Messages.

EDOM

EDIV

ESTRN

PTRERR

ECBASE

ETLN

EEXP

EEXPN

EFLOATO

EFLOATU

EDBLO

EDBLU

ELDBLO

ELDBLU

NOTOPN

EBADF

ECSPEC

170
HITACHI

A.2.9 Libraries that are Not Supported by the SH C Compiler

Table A.26 shows a list of libraries that are not supported by the SH C compiler but are defined in
the H series C language manual specification. Header files are not supposigddbh and

time.h.

Table A.26 Libraries that are Not Supported by the SH C Compiler

Header File Library

signal.h signal, raise

stdio.h remove, rename, tmpfile, tmpnam

stdlib.h getenv, system

time.h clock, difftime, time, asctime, ctime, gmtime,
localtime

171
HITACHI

A.3 Floating-Point Number Specifications

A.3.1 Internal Representation of Floating-Point Numbers

The internal representation of floating-point numbers follows the IEEE standard format. This
section explains the outline of the internal representation of IEEE-type floating-point numbers.

Internal Representation Format: float is represented in IEEE single precision (32 biteyble
andlong double are represented in IEEE double precision (64 bits).

Internal Representation Structure: Figure A.1 shows the structureftdat, double andlong
double in internal representation.

float

31 30 23 22 0
Sign_ Exponent Mantissa

(2 bit) (8 hits) (23 bits)

double’? and long double

63 62 52 51 0
Sign Exponent Mantissa
(1 bit) (11 bits) (52 bits)

Note: When —double = float option is specified, double type and float type have the same internal

representation.

Figure A.1 Structure for the Internal Representation of Floating-Point Numbers

The elements of the structure have the following meanings.

1.

Sign

This indicates the sign of a floating-point number. Positive and negative are represented by 0
and 1, respectively.

Exponent

This indicates the exponent of a floating-point number as a power of two.

Mantissa

This determines the significant digits of a floating-point number.

172

HITACHI

Types of Values: Floating-point numbers can represent infinity in addition to real numbers. The
rest of this section explains the types of values that can be represented by floating-point numbers.

1. Normalized Number
The exponent is not O or the maximum. A normalized number represents a real number.
2. Denormalized Number
The exponent is 0 and the mantissa is not 0. A denormalized number is a real number whose
absolute value is very small.
3. Zero
The exponent and mantissa are both 0. Zero represents the value 0.0.
4. Infinity
The exponent is the maximum and mantissa is O.
5. Not a Number

The exponent is the maximum and the mantissa is not 0. This is used to represent an operation
result that is undefined (such as 0.0/G», o —),

Note: A denormalized number represents a floating-point number whose absolute value is so
small that it cannot be represented as a normalized number. Denormalized numbers have
less significant digits than normalized numbers. The significant digits of a result are not
guaranteed if either the operation result or an intermediate result is a denormalized
number.

Table A.27 Types of Values Represented by Floating-Point Numbers

Exponent
Mantissa 0 Other than 0 or Maximum Maximum
0 0 Normalized number Infinity
Other than 0 Denormalized number Not a number

173
HITACHI

A.3.2 float

float is internally represented as 1 sign bit, 8 exponent bits, and 23 mantissa bits.

Normalized Number: The sign bit is either O (positive) or 1 (negative). The exponentis a

number from 1 to 254 2- 2). From the value 1 to 254, 127 is subtracted and the result is used as
the actual exponent. The range of actual exponents is =126 to 127. The mantissa is a value from 0
to 22— 1. The actual mantissa is assumed that the highest ordeéf)li (2and a decimal point

follows it.

Value represented by a normalized number is shown in the following expression:
(-1)<Sign>x p<exponent>127 » (14 <mantissax 229

Example:

31 30 2322 0
11/10000000[11000000000000000000000]

Sign: -

Exponent: 10000009 -127 =1 §, indicates binary data throughout this manual.)
Mantissa: 1.11,=1.75

Value: -1.75x 2 =-35

Denormalized Number: The sign bit is either O (positive) or 1 (negative). The exponentis 0
which makes the actual exponent equal to —126. The mantissa is a value frofh-11to Zhe
actual mantissa is assumed that a highest order’diig® and a decimal point follows it.

Value represented by a denormalized number is shown in the following expression:
(-1)<SIgN> x p<€Xponent>12s x (<mantissa>x 229

Example:

31 30 2322 0
[00000000011000000000000000000000|

Sign: +

Exponent: @, -126 =-126
Mantissa: 0.14,=0.75
Value: 0.75x 2%

174
HITACHI

Zero: The sign bit is either 0 (positive) or 1 (negative) and indicates +0.0 and —0.0, respectively.
The exponent and mantissa are 0. Both +0.0 and —0.0 represent 0.0. See appendix A.3.4,
Floating-Point Operation Specifications, for differences in each operation depending on the sign.

Infinity: The sign bit is either O (positive) or 1 (negative) and indicateanid -0, respectively.
The exponent is 255%2 1). The mantissa is 0.

Not a Number: The exponent is 255{2 1) and the mantissa is not equal to O.

Note: When the CPU is SH3E, the not a number for the most significant bit of the mantissa
which is 0 is called gNaN, and the not a number for the most significant bit of the
mantissa which is 1 is called sNaN. Other mantissa field values and sign parts are not
specified.

A.3.3 double and long double
A double orlong double is represented as 1 sign bit, 11 exponent bits, and 52 mantissa bits.

Normalized Number: The sign bit is either O (positive) or 1 (negative). The exponent is a

number from 1 to 2046 {2— 2). From the value 1 to 2046, 1023 is subtracted and the result is
used as the actual exponent. The range of actual exponents is —1022 to 1023. The mantissa is a
value from 0 to Z — 1. The actual mantissa is assumed that the highest ordef)ig (2and a

decimal point follows it.

Value represented by a normalized number is shown in the following expression:

(-1)<Sign>x 2<exponent>102s x (1+ <mantissa>x 2%)

Example:

63 52 51 0
|0|01111111111|1l1000OOOOOOOOOOOOOOOOOO0000OOOOOOOOOOOOOOOOOOOOOOOO

Sign: +

Exponent: 1111111113-1023=1
Mantissa: 1.113,=1.875

Value: 1.875x 2° =1.875

175
HITACHI

Denormalized Number: The sign bit is either O (positive) or 1 (negative). The exponent is 0
which makes the actual exponent equal to —1022. The mantissa value is froth-110 Zhe
actual mantissa is assumed that the highest orderitg® and a decimal point follows it.

Value represented by a denormalized number is shown in the following expression:
(-1)<SIgn>x p<eXxponent>1022 x (<mantissax 29

Example:

63 52 51 0
|0|00000000000|111000000000OOOOOOOOOOOO000000000000000000000000OOOO

Sign: -

Exponent: @,-1022=-1022
Mantissa: 0.114,=10.875
Value: 0.875x 21922= 1 875

Zero: The sign bit is either 0 (positive) or 1 (negative) and indicates +0.0 and —0.0, respectively.
The exponent and mantissa are 0. Both +0.0 and —0.0 represent 0.0. See appendix A.3.4,
Floating-Point Operation Specifications, for differences in each operation depending on the sign.

Infinity: The sign bit is either O (positive) or 1 (negative) and indicat@ard -« respectively.
The exponent is 2047%2- 1). The mantissa is 0.

Not a Number: The exponent is 2047 2- 1) and the mantissa is not equal to 0.

Note: When the CPU is SH3E, the not a number for the most significant bit of the mantissa
which is 0 is called gNaN, and the not a number for the most significant bit of the
mantissa which is 1 is called sNaN. Other mantissa field values and sign parts are not
specified.

176
HITACHI

A3.4

Floating-point Operation Specifications

This section explains the floating-point arithmetic used in C language functions. It also gives the
specifications for converting between the decimal representation and the internal representation of
floating-point numbers generated during C compiler or standard library function processing.

Arithmetic Operation Specifications:

1. Result Rounding
If the precise result of a floating-point operation exceeds the significant digits of the internally
represented mantissa, the result is rounded as follows:

a.
b.

The result is rounded to the nearest internally representable floating-point number.

If the result is directly between the two nearest internally representable floating-point
numbers, the result is rounded so that the lowest bit of the mantissa becomes 0.

When the CPU is SH3E, the number of digits that exceed the significant digit are rounded
down.

2. Overflow/Underflow and Invalid Operation Handling
Invalid operations, overflows and underflows resulting from numeric operations are handled as
follows:

a.
b.
c.

Note:

For an overflow, positive or negative infinity is used depending on the sign of the result.
For an underflow, positive or negative zero is used depending on the sign of the result.
An invalid operation is assumed when: i. infinity is added to infinity and each infinity has
a different sign, ii. infinity is subtracted from infinity and each infinity has the same sign,
iii. zero is multiplied by infinity, iv. zero is divided by zero, or v. infinity is divided by
infinity. In each case, the result is not a number.

Data accuracy cannot be guaranteed if the data overflows when converting floating-point
data to integer data.

Operations are performed with constant expressions at compile time. If an overflow,
underflow, or invalid operation is detected during these operations, a warning-level error
occurs.

3. Special Value Operations
More about special value (zero, infinity, and not a number) operations:

a.
b.

If positive zero and negative zero are added, the result is positive zero.

If zero is subtracted from zero and both zeros have the same sign, the result is positive
zero.

The operation result is always a not a number if one or both operands are not a numbers.
Positive zero is equal to a negative zero for comparison operations.

If one or both operands are not a numbers in a comparison or equivalence operation, the
result of != is always true and all other results are false.

177
HITACHI

Conversion between Decimal Representation and Internal Representatiorfhis section

explains the conversion between floating-point constants in a source program and floating-point
constants in internal representation. The conversion between decimal representation and internal
representation of ASCII character string floating-point numbers by library functions is also
explained.

1. To convert a floating-point number from decimal representation to internal representation, the
floating-point number in decimal representation is first converted to a floating-point number in
normalized decimal representation. A floating-point number in normalized decimal
representation is in the formail x 10tN. The following ranges of M and N are used:

a. For normalizedloat

0sM<10P-1

0<N<99
b. For normalizediouble andlong double

0<M<10"-1

0<N=<999
An overflow or underflow occurs if a floating-point number in decimal representation cannot
be normalized. If a floating-point number in normalized decimal representation contains too
many significant digits, as a result of the conversion, the lower digits are discarded. In the
above cases, a warning-level error occurs at compilation and the veraidas set equal to
the corresponding error number at run time.
To convert a floating-point number from decimal representation to normalized decimal
representation, the length of the original ASCII character string must be less than or equal to
511 characters. Otherwise, an error occurs at compile time and the vaniablés set equal
to the corresponding error number at run time.
To convert a floating-point number from internal representation to decimal representation, the
floating-point number is first converted from internal representation to normalized decimal
representation. The result is then converted to an ASCII character string according to a
specified format.

178
HITACHI

2. Conversion between Normalized Decimal Representation and Internal Representation
If the exponent of a floating-point number to be converted between decimal representation and
internal representation is too large or too small, a precise result cannot be obtained. This
section explains the range of exponents for precise conversion and the error that results from
exceeding the range.
a. Range of Exponents for Precise Conversion
Rounding as explained in the description, Result Rounding, in appendix A.3 4, Floating-
point Operation Specifications, is performed precisely for floating-point numbers whose
exponents are in the following ranges:
Forfloat : 0sM<10°-1, 0sN<13
Fordouble andlong double 0<M<10"-1, 0SN<27
An overflow or underflow will not occur if the exponent is within the proper ranges.
b. Conversion and Rounding Error
The difference between, a. the error occurring when the exponent outside the proper range
is converted, and b. the error occurring when the value is precisely rounded, does not
exceed the result of multiplying the least significant digit by 0.47. If an exponent outside
the proper range is converted, an overflow or underflow may occur. In such a case, a
warning-level error occurs at compilation and the variable errno is set to the corresponding
error number at run time.

179
HITACHI

180
HITACHI

Appendix B Parameter Allocation Example

Example 1. Register parameters are allocated to registers R4 to R7 depending on the order of
declaration.

int f(char,short,int,float); R4 No sign extension 1
: R5 No sign extension 2
f(1,2, 3,4.0): g
R6 3
R7 4.0

Example 2: Parameters which could not be allocated to registers R4 to R7 are allocated to the

stack area as shown below. I¢lzar (unsigned or short (unsigned type parameter is allocated
to a parameter area on a stack, it is extended to a 4-byte area.

int f(int,short,long,float,char); R4 1

f(1; 2,3,4.0,5); R5 | No sign extension 2
R6 3
R7 4.0

* Lower address

Parameter area . .
No sign extension 5
(stack)

* Upper address

181
HITACHI

Example 3: Parameters having a type that cannot be allocated to registers from R4 to R7 are
allocated to the stack area.

struct s{int x,y;}a; R4 1
int f(int,struct s,int);

R5 3

f(1,a3);

* Lower address

Parameter area
(stack)

ay

* Upper address

Example 4: If a function whose number of parameters changes is specified by prototype
declaration, parameters which do not have a corresponding type in the declaration and the
immediately preceding parameters are allocated to a stack.

int f(double,int,int,...) R4 2 |
f(1.0,2,3,4);
* Lower address
Parameter area 1.0
(stack)

* Upper address

182
HITACHI

Example 5: If a value returned by a function exceeds four bytes, or is a structure type, a return
value is specified just before parameter area. If structure size is not a multiple of four, an unused
area is generated.

struct s{char x,y,z;}a;
doubl e f(struct s): Parameter area Return value address

: (stack) a.x | ay | a.z Unused
f(a): area

* Lower address

Return value
setting area

* Upper address

Example 6: When the CPU is SH3E, float type parameters are allocated to FPU registers.

int f(char,float,short,float,double); R4 No sign extension | 1 FR4 2.0
: R5 [No sign extensionl 3 FR5 4.0
f(1,2.0,3,4.0,5.0);
R6 FR6
R7 FR7
FR8
FR9
FR10
FR11

* Lower address

Parameter area |
(stack) 5.0

+ Upper address

183
HITACHI

184
HITACHI

Appendix C Usage of Registers and Stack Area

This section describes how to use registers and stack area by the C compiler. The user does not
have to take care how to use this area, because registers and stack area used by a function are
operated by the C compiler. Figure C.1 shows the usage of registers and stack area.

(Only for SH3E)

FRO RO

FR1 R1

FR2 R2

T Lower address

FR3 R3 Stack area

FR4 R4

FR5 R5

FR6 R6

Area used by X

FR7 R7 the function Frame size

FR8 R8

FR9 7 R9
FR10 R10 Stack frame
FR11 R11 Return value address } 4 bytes
FR12 R12
FR13 R13

Parameter area
FR14 R14
FR15 R15(SP)
. Stack area i
FRO-FR15 : For variable or temporary ~ RO-R14 : For variable or temporary Upper address
data storage data storage
FR4-FR11 : For parameter storage R4-R7 : For parameter storage
(indicated by [71) (indicated by [71)

Figure C.1 Usage of Registers and Stack Area

185
HITACHI

186
HITACHI

Appendix D Creating Termination Functions

D.1 Creating Library onexit Function

This section describes how to create library onexit function that defines termination routines. The
onexit function defines a function address, which is passed as a parameter, in the termination
routine table. If the number of defined functions exceeds the limit value (assumed to be 32 in the
following example), or if the same function is defined twice or more, NULL is returned.

Otherwise, value other than NULL is returned. An example of onexit routine is shown below.

Example:

#include <stdlib.h>
typedef void *onexit_t;

int _onexit_count=0;
onexit_t (*_onexit_buf[32])(void);

extern onexit_t onexit(onexit_t (*)(void));

onexit_t onexit(f)
onexit_t (*f)(void);
{

inti;

for(i=0; i<_onexit_count ; i++)
if(_onexit_buffi]== /* Checks if the same function */
return NULL; /* has been defined *
if(_onexit_count==32) * Checks if the No. of */
/* defined functions exceed */
/* limit */
return NULL,
else{
_onexit_buf[_onexit_count]=f, /*Defines the function address*/
_onexit_count++;

return &_onexit_buf[_onexit_count -1];

}

187
HITACHI

D.2 Creating exit Function

This section describes how to create exit function that terminates program execution. Note that
the exit function must be created according to the user system specifications referring to the
following example, because how to terminate a program differs depending on the user system.

The exit function terminates C program execution based on the termination code returned as a
parameter and then returns to the environment at program initiation. Returning to the environment
at program initiation is achieved by the following two steps:

1. Sets a termination code in an external variable

2. Returns to the environment that is saved by the setjmp function immediately before calling the
main function

An example of the exit function is shown below.

#include <setjmp.h>
#include <stddef.h>

typedef void *onexit_t;
extern int _onexit_count;

extern onexit_t (*_onexit_buf[32])(void);

extern jmp_buf _init_env ;
extern int _exit_code ;

extern void _CLOSEALLY();
extern void exit(int);

void exit(code)

int code ;

{
_exit_code=code ; /*Sets return code to _exit_code */

for(int i=_onexit_count-1; i>0; i--)

(*_onexit_buf[i])(); /*Sequencially executes functions
defined by onexit*/
_CLOSEALL(); /*Closes all files opened*/
longjmp(_init_inv, 1) ; /*Returns to the environment saved
by the setjmp*/
}
188

HITACHI

Note: To return to the environment before program execution, creatalih@in function and
call thecallmain function instead of calling thmain function from thenit routine as
shown below.

#include <setjmp.h>
jmp_buf _init_env;
int _exit_code;

void callmain()

{

/* Saves current environment by setjmp function and calls the */
/* main function */

/* Terminates C program if a termination code is returned from the */
/* exit function */

if(setjmp(_init_env))
_exit_code = main();

}

189
HITACHI

D.3 Creating Abort Routine

To terminate the routine abnormally, the program must be terminated by an abort routine prepared
according to the user system specifications. The following shows an example of abort routine in
which an error message is output to the standard output device, closes all files, enters endless loop,
and waits for reset.

Example:
#include <stdio.h>

extern void abort();
extern void _CLOSEALL();

void abort()

printf("program is abort I\n"); /* Outputs message */
_CLOSEALLY(); I* Closes all files */
while(1); I* Enters endless loop */
}
190

HITACHI

Appendix E Examples of Low-Level Interface Routine

/
I* lowsrc.c: */

P e o e e e e e e e e ee e e */
I* SH-series simulator debugger interface routine */

/* - Only standard /O files (stdin, stdout, stderr) are supported */
/ /
#include <string.h>

[* file number */

#define STDIN 0 /* Standard input (console) */
#define STDOUT 1 /* Standard output (console) */
#define STDERR 2 /* Standard error output (console) */
#define FLMIN 0 /* Minimum file number */
#define FLMAX 3 /* Maximum number of files */
/* file flag */

#define O_RDONLY 0x0001 /* Read only */
#define O_WRONLY 0x0002 [* Write only */
#define O_RDWR 0x0004 /* Both read and write */

[* special character code */

#define CR 0x0d [* Carriage return */
#define LF Ox0a /* Line feed */

[* size of area managed by sbrk */

#define HEAPSIZE 1024

/ /
/* Declaration of reference function */

/* Reference of assembly program in which the simulator debugger input or */
[* output characters to the console */

/ /

extern void charput(char); /* One character input */

extern char charget(void); /* One character output */

/ /

/* Definition of static variable: */

/* Definition of static variables used in low-level interface routines */
/ /

char fimod[FLMAX]; /* Open file mode specification area */

static union {

long dummy ; /* Dummy for 4-byte boundary */
char heap[HEAPSIZE]; /* Declaration of the area managed */
[* by sbrk */
}heap_area ;

static char *brk=(char *)&heap_area;/* End address of area assigned by */
* sbrk */

191
HITACHI

/
1* open:file open */
I* Return value: File number (Pass) */
1* -1 (Failure) */
/ /
int open(char *name, /* File name */

int mode) /* File mode */

/* Check mode according to file name and return file numbers */

if(strcmp(name,"stdin")==0){ /* Standard input file */
if((mode&0O_RDONLY)==0)
return -1;
flmod[STDIN]=mode;
return STDIN;

}
else if(strcmp(name,"stdout")==0){ /* Standard output file */
if((mode&O_WRONLY)==0)
return -1;
flmod[STDOUT]=mode;
return STDOUT;
}
else if(strcmp(name,"stderr")==0){ /* Standard error file */
if((mode&O_WRONLY)==0)
return -1;
flmod[STDERR]=mode;
return STDERR,;
}
else
return -1; I* Error */
}
/ /
I* close:File close */
I* Return value:0 (Pass) */
1* -1 (Failure) */
/ /
int close(int fileno) /* File number */
if(fileno<FLMIN || FLMAX<fileno) /* File number range check */
return -1;
flmodl[fileno]=0; /* File mode reset */
return O;
}
192

HITACHI

!
/* read:Data read */
/* Return value:Number of read characters (Pass) */
I* -1 (Failure) */
/ /
int read(int fileno, /* File number */

char *buf, /* Destination buffer address */

unsigned int count) /* Number of read characters */
{

unsigned int i;

/*Check mode according to file name and store each character in buffer */

if(flimod[fileno]&O_RDONLY/||flmod[fileno]&O_RDWR){
for(i=count; i>0; i--)}{
*puf=charget();

if(*buf==CR) [*Line feed character replacement*/
*buf=LF;
buf++;
}
return count;
}
else
return -1,
}
/ /
[* write:Data write */
I* Return value:Number of write characters (Pass) */
I* -1 (Failure) */
/ /
int write(int fileno, [* File number */
char *buf, /* Destination buffer address */
unsigned int count) /* Number of write characters */
{
unsigned int i;
char c;
/* Check mode according to file name and output each character */
if(flmod[fileno]&O_WRONLY || fimod[fileno]&O_RDWR){
for(i=count; i>0; i--){
c=*buf++;
charput(c);
return count;
}
else
return -1;
}

HITACHI

193

/ /
[* Iseek:Definition of file read/write position */
/¥ Return value:Offset from the top of file read/write position(Pass)*/
1* -1 (Failure) */
/¥ (Iseek is not supported in the console input/output) */
/ /
long Iseek(int fileno, /* File number */
long offset, /* Read/write position */
int base) /* Origin of offset */
return -1;
}
/ /
/¥ sbrk:Data write */
I* Return value:Start address of the assigned area (Pass) */
1* -1 (Failure) */
/ /
char *sbrk(unsigned long size) /* Assigned area size */
{
char *p;
if(brk+size>heap_area.heap+HEAPSIZE) /* Empty area size */
return (char *)-1 ;
p=brk ; [* Area assignment */
brk += size ; /* End address update */
return p ;
}
194

HITACHI

SH SERIES SIMULATOR DEBUGGER INTERFACE ROUTINE
Input/output one character- |
.EXPORT _charput
.EXPORT _charget
SIM_IO: .EQU H'0080 ;Specifies TRAP_ADDRESS
.SECTION P, CODE, ALIGN=4

_charput:
MOV.L A_DATA, RO ;Specifies data
MOV.B R4, @RO
MOV.L A_PARM, R1 ;Specifies parameter block address
MOV.L RO, @(4,R1) ;Specifies data buffer start address
MOV.L A_FNO, RO ;Specifies file number

MOV.B @RO, RO
MOV.B RO, @(1, R1)

MOV.L F_putc, RO ;Specifies function code
MOV.L N_IO, R2

JSR @R2

NOP

RTS

NOP

_charget:
MOV.L A _PARM, R1 ;Specifies parameter block address
MOV.L A_DATA, RO ;Specifies data buffer start address
MOV.L RO, @(4,R1)
MOV.L A_FNO, RO ;Specifies file number
MOV.B @RO, RO
MOV.B RO, @(1, R1)
MOV.L F_getc, RO ;Specifies function code
MOV.L N_IO, R2

JSR @R2
NOP
MOV.L A_PARAM, R1 :References data

MOV.L @(4,R1), RO
@

MOV.B RO, RO

RTS

NOP

ALIGN 4
A_DATA: .DATA.L DATA ;Data buffer start address
A_PARM: .DATA.L PARM ;,Parameter block address
A_FNO:. .DATA.L FILENO ;File number area address

F_putc: .DATA.L H'01280000 ;fputc function number
F_getc: .DATA.L H01270000 ;fgetc function number
N_IO: .DATAL SIM_IO ;Trap address

HITACHI

.SECTION B,DATA,ALIGN=4

PARM: .RESL 1 ; Parameter block area
FILENO: .RES.B 1 ; File number area
DATA: .RESB 1 ; Data assign area
.END
196

HITACHI

Appendix F ASCII Codes

PARITY BIT bs

b7 v v v — — _ _

be v — — v v — —

bs v — v — v — v —
ba | b3 | b2 | b1 MsB 0 1 2 3 4 5 6 7

LSB
v v v v 0 NUL DCo SP 0 @ P ' p
vV |V |— 1 SOM X-ON ! 1 A Q a q
v v — |V 2 EOA TAPE " 2 B R b r
v v | — | — 3 EOM X-OFF # 3 C S c S
vVi— |V v 4 EOT TAPE $ 4 D T d t
V|i— |V |— 5 WRU ERROR % 5 E U e u
V|i—| =1V 6 RU SYNC & 6 F \% f \%
V|—|—|— 7 BELL LEM ' 7 G W g w
— v |V]|V 8 FEo CAN (8 H X h X
— |V A e 9 TAB S1) 9 | Y i y
— v |=1V A LF EOF * : J z j z
— |V |=]= B VT ESC + : K [k {
Y c FF Sa < L \ I |
— = v |= D CR Ss - = M 1 m }
— | ==V E SO Se > N n n ~
— = — | — F S1 S7 / ? (e} - o RUB
ouT
Notes: V : Yes
— > No
197

HITACHI

Index

A

abort routine (termiNatioN FOULINE)ciiiii ittt e e e e e e e e e e e e e e e ennneen 192
E= 0 RS Kol (0] o111 o) TSP PPPURPTRRN 13,19
abs16 (Pragma SPECITICALION)......cceiiiiiiiie ittt e et e e e e sbb e e e e 81
=1l To gl G (o] o] 1 o] o) PP PPPUUPPRRN 13,18
Y o T 0 =T 0| PSR 38,41, 43
= | (1] o Yo o111 o) SRR 13,19
AlIOCALING IMEIMOIY ATCASeetteeeeeeeee e e e e ettt ettt e e e e e e e et b et ettt e e e e e e e e e s aa b bbb e b e e e eeaaeeeeaaaaanbbnbeeeeaeaaaeaaaas 97
Array and Pointer SPeCIfiCatIONS.uuiiiiiiiieai e e e e e e e e e e 164
F 4=\ 1Y oL PP PP T PP OPPPPPPN 43
NS O o To 1= PRSP 199
P2 1] (oo [T (0] o] o] 1o o) 11, 14
assert.h (standard header fil€)uuuuiiiii i ———— 168
B

o1 ol CS18] oTo] o] (1] o) O T PSP PP PP PUPPR 12,18
oo =0 o L= o PSP 48, 49
27108 1= Lo PSPPSR 45, 165
o STR (578] oo] o] o] o) TSR PSERRRR 11,15
C

C library function SPECITICALIONSueiiiiiiiiei et 168
C standard [IDrary error MESSAGEc.oiiuurieie ittt e st e e s ab e e e s s b e e e s aebreeeeeanees 153
C compiler enViroNMENt VANADIES.oiiiiiiiiiiie et e e e e e e e e s reeeaaee s 30
C COMPIIET EXECULION. ...ttt ettt e e e e e e s e e e e et aeeeeesaa s s at e s aeeeeaaaeessesanntsrrnaneeeaeaeaans 7
(O3 ote] 00T o 1 (= g 1153 1] o TP TP TP PPPPPPPPPPPPN 23
(O oTe] aaT o 1 (=T g o] o] 1Te] o < TP TP PETR PR 8, 10
Character SPECITICALIONS. ..ottt ettt e e e e s bbb e e e e ananeeee s 161
close routine (low-level interface roUtiNg)uveeeeiiiiicciiiieire e 121, 126, 194
(oo To [N (o] o] 1T o) O SPEERRR 11, 14
(@00 [T a0 N a0 (=1 PRPRPY 87
Command lINE SPECITICALIONceii ittt e 29
(ol] 001 00 (=T 01 A (o] o1 [o] o) IF U TP TP 12,16
Compilation SPECITICALIONSciiiiiiii et eb e e 159
(o0} 4] P PSP P PP PUUPPPPPTRRTPPPPIN 89
o0 0 1S3 B €601 oo o) o 1) PSS 11, 15,16
10700151 121 a1 A= 1= PP TR PPPT 39
Correspondence to standard HDraries ..o 21
(o o TN I (o] o] 1 o] o) IS TP PPRTUTTR 10, 13
198

HITACHI

(o o NI ({01 oTo] o] i o] o) F TP TP PR PPPPPPN 12,17

Creating library 0nexXit FUNCHONuuiiiiiiei et e e e e e 189
ctype.h (standard header fil€)uueii i 168
D
Lo F= Y= T (18] o ToT 01110 o) PRSP 11, 15, 16
(o [=ToT0To I (o] 011 o] ¢) PP PPTPTTT TP 10, 14
Debugging INFOMMELIONeeiiiiiieei ettt e e e e e e e e s s bbb a et e e e aaaaeaeeaanns 14
Declaration SPECITICALIONS.ciiutiiiie ittt e e e e s e b e 166
(o] (TSN (o] o1 To] 1) I PO PR PRSP 11,14
DeNOIMAlIZEA NUMDETooiiiii ettt e s e e s e 178
DY To (= O PO PP PP PP PP PPPRPPPRN 17
(o [\ To] W (o] o) i o]) T PP U PP PUPPPRTPPN 12,17
(o (o T0] o] = TP PPPPPRTRTP 42
(o [o10]] (=3 (o] o] (o] 1) H PO P PP PRSPPI 13,18
DYNAIMIC BFBA. .. uteeieeiiitiiee ettt e e e ettt e ettt e e e ettt e e e e s bttt e e e e b b et e e e e aabe e e e e e aabbe e e e e ek bbeeeeeanbbeeeeeansbeeeesannne 102
DYNamiC ar€a @llOCAtIONccoiiiiiiiiiiiiiie e e e e e e e e e s s e e e e e e e e e s s s ssnn e r e rreeeeeeeeeannnnnn 102
E
=T g To [T= T (o] o 1] o) FEA TP PPPRURTRRN 12,18
(] 010 1 PP UPPPTTPTRPPUPPPN 42
T =T = o o PSRRI 165
ENVIrONMENt VANADIES.ooiieieii e 30
Environmental SPECIfICALIONSuuiiiiiiie i e e a e e e e e e 159
=T o PP TP PP PP 116, 172
errno.h (standard header fil@) e 172
[1 (o] SRR PTTTRRPPRRIN 133
ETTOI MESSAGES.o iiiiiiiiieiieiet et e oo e et e ettt ettt e e e re e a s e et et e e e e e e e eeeeeeeeeseeeeennnnnes 133
=0 (o (o] o 1 o] o) ISP 12,16, 77
L=TU (ol (10T oTo] o] 1 o] o) I UPSURPRN 13,18
EVAIUALION OFOEY ...ttt e e et e e e et e e s s e e e e e s nn e e e e s snnr e e e e e nnee 87
Examples of low-level interface roULINeoooiiiiiiiiii e 193
oy To 0] o[=W O o] (oo = 1 | TP P P PPPPPRPTIN 37
exit function (termination fUNCLION)uuiiiiiiiiii e 190
Lo L= L FST o] I €] oo o1 4o] 1) PSR 10, 14
(oL 0] 1= o | PRSPPI 177,178, 181
Extended SPECITICALIONSttt e e e e e e e e e e e e s e a e e aaa s 61
=] g g F= Lo (=] o1 11 =] O TR PP EPPPRP PN 50
External identifier FEfErENCE e a e e 50
F
FAIAL....ouiiii 133
File EXEBNSION....c.viiiiiiiii i 9
199

HITACHI

L 0= | PP TR PRSPPI 58, 60
L[0T 1R 1] o o] o1 1 o] o) IR OO PP P T POPPPPTPPPPPRPN 13,18
Floating-point number SPecCifiCatioNSueiiiiiiiiiie e 163,174
FIAIME SIZE .eeiieiiiieiee ettt ettt e e sttt e e e et b e e e e e e ab b et e e e s anb b et e e e e abbbeeeesanbbeeeeeabbaeeeenns 103
FUNCHON Call INEEITACEeiiieiiiiie et e e ettt e e e st e e e s snba e e e s sbaeeeaeaas 52
G

gbr_base (pragma SPECIfICALION)eeiiiiiiiiii it 82
gbr_basel (pragma SPeCIfiCAtION)ciiiiiiiiiiiiiiiii e 82
Global base regiSter (GBR)uiiiice ittt s e e e e e e e s s s s e e e e e e e e e e s e e nanreeaeees 66, 68, 71
Global base register (GBR) base variable ... 61, 82
H

HEAPD @I ... et e e e e e e e e e e e e e e e eeeeeaeanrnraaa 39, 95, 102, 105
TSI (o] o] 1T] o) OO OPP PP PPTPPRN 11,15
HOW t0 iNVOKE the C COMPIIET.....eeiiiiieeee et e e e e e s e e e e e e e e e e e s e s snnnrr e eeeeeaes 7

I

Identifier SPECIFICALIONSueeiiiiie ettt e e e e e e e e e e s e e bt e bbeeeaaaaeeeeeaanns 160
SRR 174
Lol [0 o [(o] o] 1 o] o) I PP PP PP PR 11,15
(1o 100 LT U] o To] o) 4o]) I P EPESSR 10, 14
ol 18 o L= 1= PR PRR 9
011 0T PP UPPRPRTRPPRR 171, 175, 177,178
INILIANIZEA JALA @I Aee ettt e e e e e e e e e e e e e e e e aaes 39, 100, 110
Initializing C lDrary fUNCHONSooiiiiiiii e 116
a1l TaT=I (o] o 1 e]) PP PT RPN 12,18
][It (o] = Te [aT= =] o 1= Tod o= 11 o] o) P 78
Tl TS (1] X o] o L PSR PRP 78
inline_asm (pragma SPECITICALION)uuuiiiiiiiie ettt e e e e e e e e s s bbb e ee e e e e e e e e e e 79
Inline expansion iN asSEMDBIY [ANQUAGEooiii it e e e e e e e 79
] PRSPPSO 42,48
INtEgEr SPECITICALIONS. ...cii ittt et et e e e st e e e s e ebe e e e e e nanees 162
Integer types and their corresponding data ranNge..........ceevviiiiiiiiiiiiiieee e 162
INternal data rePrESENTALIONcoii it e e e e e e e e s e e s e e e e e e e e e s seaasnrraaerreaaaeeaaeaaans 41
INEEINAL TADEI ... ettt e e e e e e e e e nbaeeen 35, 36
11T g T | PP OPPRPIN 133
INtErNAl rEPrESENTALION et e e ettt e e e e e e e e e e e e et e e e e e e eaeeeeeeannnnes 41, 43, 174
interrupt (pragma SPECIfICALION)vviiiiiiiiiie et 61
L1 C=T (o1 18] od T £ 61
T T Yo (1] o1 o] o = PRSPPI 66
[a\VZ=11To lo] o =T r= 11 o] o RO PP PP TP PPPRT 179
200

HITACHI

J

JAPANESE ...ttt e e e oo e et et ettt eette—eb— b —— e e e e e e e e e e e e eaaeaaaaeeeteeaeannrnras 12, 16, 77
Japanese code select in StriNG lILEralSooiiiiiiiiii e 12
K
L
Language SPECITICALIONSueiiieiiiiie ettt ettt e e e e e e e s e bbbt et et e e e e e e e e e aanbnbeeaeeeeaan 159
=70l (gl (18] o o] o1 i o]0) IR O POV P PP PPPPPPO 10, 14
o] 7= YRS 9,21
] o T PSPPSR 35
Limits Of the C COMPIIET ... e e e e e e s e e e e e e e e e e s e s sararaeareaeaeas 35
Limits on floating-point NUMDEISooiii e e e e 163
Linkage with aSSembIly PrOgramsS..... ...t e e ee e 50
T 1 o SRR 10, 23
TS 11T (o] 011 o] o) I PP PRPI 11,14
T L= ST oo 11T) PR 12,18
LITHIE @NOIAN ...t 12,18, 21, 48
[ONG AOUDBIE ...ttt e e e et e e e e e e e e s s bbb e e e e e aaaee e 42,60
(o] oo [P UU PO PPN 42, 45, 48, 58, 60
ToTo] o} (o] o] 110] o) TP PP PP POTPPPPN 13,19
Low-level interfaCe rOULINEc.ooovieeiie e 114, 117, 118, 121, 122
Iseek routine (low-level interface routing)coocciiiiiieiiie e 121, 129, 196
M
machine.h (standard header file)o 73
MAChINECOUE (SUDOPLION).....i ittt et e e s e b e e e e 11,14
Y F=Tod (o T g = 1 ¢ = P PTRPRPRTRN 11, 14
L= TotsT= 1YL= TN (o] o] 1o o) I SRRSO 12,18
IMBINTISSAL 1.ttt ettt 174,175, 176, 177, 178, 179
math.h (standard header fil€).............u i 75, 169
mathf.h (Standard hEAAEr fil€)couu e e e 75
LTSI T= T [P P TP T TR PPPPPTTPPPR 133
TSIt To [(o] o o]) PR RP TP PRRP 13,18
Mutiply and accumulate OPEIatioNicceueiiiiiiei e e e s e e e e e s e s s e e e e e e e e e s s e areeeaeeeen 70
N
L U= (o] o (o]) I TP PUTT TR 13,19
O
Lo o] [=ox B €8] oo o) o] 1) SRR 10, 14
L0 o] 1= 1153 1] o RPN 26, 27
(o] o][=Texu{1[=0 (o] o] 11] o) I PP T PP U PO PUPPPRUPPRN 11,14
201

HITACHI

onexit function (termination processing fUNCHON)uuuiiiiiiiiiii e 189

open routine (low level interface roUtiNe)coviiiiiiiiiiiiiii e 121,124,194
(o] o1 11aa1v4=3 (o] 011 o] o) IO PO PP PPP PRI 10, 13
(0] 1o U PO PPPPPPN 10
(@] 010 g 1o a1 o1 =1 1o o PR 20
Lo T0) (oo To [(0] 01110] o) TS PPERURRRRN 13,18
OVEITIOW ..ttt b et s bt s b b e e bb e e s br e e e snree e 88, 179, 180, 181
Overview Of SYStem INSTAIALIONooiiiii e 95
P

PaAFBMELEN ...t 52, 56, 57, 58
Parameter allocation @XAMPIEueeiiiii e a e e e s 183
Parameter area alloCALIONeiiiiiiiiie e 57, 58
peripheral (SUDOPLION)ooi i ettt e e e e e e e e e s s bbb a e e e e e e e e e e e e e anns 12,17
1Tl (o] 011 o]) PP PP PP T OUPPPRPN 11,16
Lo TS 1o TN aTo [T o =T a o [=T 0 Aol o Lo = TSR 11, 16, 21
1= T | 0T PSSR 61, 167
(o1 =TTa Tl [N o [(0] o110 o) I USSR 12,18
PreproCesSor SPECITICALIONSuiiiiii ittt e e e et e e e e e e s e anb b e e eeaaaeeas 167
[o]geTe] r=Ta N €01 o o] 01 io]) PP UUTTRUR PN 11,15
PrOQIAM GIE@ce ittt et e e e e s e e ettt e e e e e e s e e et e e e e e e e e e nnren 39
Program CONFIQUIALION.eiiiiiiiii et e e e e 107,113
1o 1 SRS 164, 168
Q

Qualifier SPECIFICALIONScoiieitie ettt e e e e e e e bbb e e e e e e e e e e e e e nannnneeees 165
R

RAM et e e 95, 100
read routine (low-level interface routing)............ccccuveiieiiie e 121, 127,195
Reading an INCIUAE filE ..ot e e e e e e e e e aeeen 167
T oI5 =] TP TR 53
Register save and reCOVEINY CONIONciiiiiiiiiiiiiiee ettt e e et bt e e e sabeeeae e 83
REQISter SPECITICALIONS.eiiieiiiiiiie ettt e ettt e et b e e e s sab b e e e e s nannreeas 164
regsave (pragma SPECIfICALION)cccueriiiieii i e e s s e e e e e s s e e e e e e e s e s e e e e e e e e e e e e e nnnn 83
RETUIMN VAIUE. ...tttk b ekt e e sa e e b e e e s e e nsbe e e nnne e e nanes 56
RetUrning VAlUE WIITING @Icuuiiiiiiiiiiiitie ettt ettt e e e e et e e e e e e e e e e s s bbb e reeeeaaaeeas 60
ROM ettt ettt ettt ek bt e h bt e ek bt e oo R bt e e ek bt e e eR R et e e be e e aRbe e e e be e e abe e e e nreeenen 95, 100
ROUNAING METNOM ...t e s e e e et e e s et e e e annee 163
[0S (Al (o] 011 o] o) PP RP T OTPPRPN 13,19
RuUleS 0N Changes IN REGISIEISccciii it e e e e e e e et e e s er e e e e e e s s s snassnb e e ereaaeeeanannns 53
LTI T0T o To] o] 1 oo) ISP REEPRRR 13,19
RUN TIME TOULINE ...ttt e et e e s s e e e e st e e s e e e e e ennee 98
202

HITACHI

S

sbrk routine (low-level interface routing)............c.uuuiiiiiiiiieii e 121, 130, 196
S Tor= 1= L Y o1 P PP PP PPP P OUPPPRP 42
LY=L o3 10] [38, 39, 82
£ Tox (0] o T (o]) [) SRR 11,15
section (pragma SPECITICALION)......iiiieee i ittt e e e e e e e e e s s e r e e e e e e e e s sa i nbraaerreaaaeaas 74
Section Change TUNCHION ...t e e e e e e e e bbb e ee e e e e e 74
SECHON INILALIZATIONeeiiiiee et e e e e e e e e s e b e e e e e e e e e e e e 107, 110
Section iNtIaliZatiON FOULINEcooiiiie et e e e e e e e e e s eeeaaaeeeeean 112
Y=Y 10T 1 4= 1y L= 11, 15
setimp.h (standard header fil€)ci i 169
Setting C library function exection ENVIrONMENtccciiiiiiiieiie e e 113
Setting the eXeCULION ENVIFONIMENTciiiiiii ittt e e e e e e e e e e e e e e e e e e e aaannans 107
S g {0 oT] o] 1 o] o) I TP PP UPPTRPTRN 10, 13
] (P (18] e To] o] 1T] o) O OO PP O OPPPPPTOPPPPPTN 10, 13
] QIR (S1W] e To] o] 1T] o) SO PP PPPPP PPN 10, 13
£ TGN (10T oTo] o) 1 o o) ISR 10, 13
I [O | PSPPI 30
S [O I 2 PO OPPPRPR: 30
S (O 111 PSRRI SUPSRR 30
S [0 = ST URRUPPPRP 30
£5] 2 (0] 1 42, 45, 48, 58, 60, 82
£ 10 1T (] 111) USSR 10, 14
S 1o [I =2 (=] 13 (o o SRR 45
Single-precision floating-poiNt lIDFArYooo e 75

S V4= (0] 0] 110] o) PP URTTTR RPN 10, 14
][R (o] e10e]) PO TP PO PP P PPPPPP 12,16, 77
][RR 18] oo 011 o] o) I PP P R PTPRRN 13,18
smachine.h (standard header fil€)............ov i 66, 73
o1 (o= (10 Lo o] o] 1T0] o) I RSSRRPR 10, 14
Yo 10 (ol 153 1] o PP TP PPPTPPPPPPP 23
SP (Stack SWItCh SPECITICALION).....ciiiiiieiii ittt e e e e e eeeeaae s 62
Y S (1 2= o) (0T 1 =]) USSP 63, 105, 107, 108
Specifications for Structure, Union, Enumeration, and Bit Field TYpesS.........ccccceevviiiieiiiniiieenenns 165
Specifying two-byte addreSs Variablescoociiiiiiiiiice e —————— 81
£ 0110 I (0] o 11T o) SRR 10, 14
SR (STAIUS FEOISTET) ittt e e e ettt et e e e e e e s s e bbb bbb e e e e e e aeeeeessannnbbbeeeeeen 63, 67
Y 2 o3 Q= T (=T TP T PRSPPI 39, 52
S = Tod Q=1 = USSR 52
SEACK POINEET ...ttt ettt e ettt e e s e a bt e e s o bbbt e e s asb b bt e e s sabba e e e e e nbb e e e e s annbnees 52
IS = Tod QS 111 o] 1 o SRR 62, 63
start (linkage editor SUBCOMMAN)coiiiiiii e e e 101
Statement SPECITICALIONSt e e e e e et e e e e e e e e e e e bbabeeeeeen 166

203

HITACHI

) = (o= (=T= W= | (o 1= 1 (o o T 97

] €2 LIS 1o TP PPPURPPPRT 23, 28
SEAtISTICS (SUDOPTION) ...ttt et e e ettt e e s et e e e e e annree 10, 14
stddef.h (standard header file)ooo i 168
stdio.h (standard header fil€)ueuviiree i 170,173
S (0] = (o (RN (=T 1) (= P UEEURR 58, 59
S gl To [N (o] o 1 Te] o) I PP PUTT PP TPPPPN 11, 16
string.h (standard header fil€) et 171
Y1 (001 10 £ PSSR UU PP PUPPPTTRPPRION 43
SErUCLUre Of ODJECT PrOGIAMS ...coi it et s e e e et e e e e sneeee 38
L5101 oot] g 4= o I (0] o111 o) RSP 12,17
SUDCOMMANG FIlE....eeee et e e 12,17
T

tn (trap intruction return SPECIfICALION)c.uuiiiiiiiii e 62
QLI V0B FS (U Tt 1o I =1 £ OSSR 62, 63
TRAPA INSIUCHION ...ttt sne e e e s nnnee e 62, 63, 69
LI 101 0] (=TS T] 113 Vo TR PRSP 90
TYPE CONVEISION OF PATAMELEIS ...ttt e e e et e e e e e e s e s aaab bbb et eeeeaeeaeeeaannnes 56
U

umachine.h (standard header fil€)ooi i 66, 73
LU g To 1= [TP 169, 179, 180
LU 01T] o TP P PSP PPPRPURP PRI 43, 44
(U107 To 0 [=To [T PUUTT PP UPPP 42, 45, 48
Usage Of regiSters and StACK @r€a...........ooouuuiriiiiiiiae ettt e e e e e e e e e 187
\%

Y=o o gl o F= RTINSy (=T V4= I 67
Y Z=Tex o] g =Y o [T = 111 Vo P PEEPRRR 108, 114
VEC_TBL (VECIOF tADIE) ... 108, 114
(V0] =] [P P P PO UPUPPUPTTR 165
W

LY = U0 11 o S 133
L7 Lo 1 g I TUT o To] o] 1 o] o) TP PEEPR 10, 14
write routine (Iow level interface roULINE)...........cciiiii e 121, 128, 195
X

Y

204

HITACHI

Z

A=) (o =) =] 41T 0] o [T 45
L CLOSEALL. ..t — e —— et b e e e e e e e e e e aaaaaaaaararaaaaes 114
D72 I =SSR 167
LN L RSOOSR 107, 108, 109
B 1 T T URE TR ROR 114, 115, 116
NI S T ittt e e e e e e e e e e e e s e et —r b e e e e e e e e e e s e e anrrrreen 107, 110, 115
B 1L 1 PR PER 117
N L L 0 I Y SRS 117
B I 1= L 2 S 117
N I 11,1 SRRt 167
Symbol
LIN E . et e e e et e ettt — e aeeeaeeeaeaeaetetetttt—— . ————————— 20
YO 82
Y 82

SH Series C Compiler User’s Manual

Publication Date: 1st Edition, April 1997
Published by: ~ Semiconductor and I1C Div.
Hitachi, Ltd.
Edited by: Technical Documentation Center
Hitachi Microcomputer System Ltd.
Copyright © Hitachi, Ltd., 1997. All rights reserved. Printed in Japan.

205
HITACHI

SEGA

1. Intrinsic functions

SH C Ver.5.0 Release0x, Releaselx Supplement

Table 1 Intrinsic Functions

No | Item Functions Specification Description

1 Floating-point unit Writes the void set_fpscr(int cr) Writes cr (32bits) to the
system%control floating-point unit floating-point unit
register(FPSCR) system/ control register system/ control register.

2 Reads to the int get_fpscr() Returns the

floating-point unit floating-point unit

system/ control register system/ control register.
Returns the FPSCR
value.

3 Single-precision Calculates inner float fipr(float vect1[4], | Returns the inner
floating-point vectors product of vectors float vect2[4]) product of vectl and
operations vect2.

4 Multiplies a vector and | void ftrv (float vect1[4], | Calculates vect2

a matrix float vect2[4]) =vect]- MTX. MTX is a
4x4 Matrix. Load MTX’s
data to extension
registers using
1d_ext(See No.12),
before using this
function.

5 Multiplies a vector and | void ftrvad (float Calculates vect3

a matrix and adds vect1[4], float vect2[4], =vectl-MTX+vect2.

another vector float vect3[4]) MTX is a 4x4 Matrix.
Load MTX’s data to
extension registers
using 1d_ext(See No.12),
before using this
function.

SHC-1

SHC/C++ Ver.5.0

No | Item Functions Specification Description
6 Multiplies a vector and | void ftrvsub (float Calculates vect3
a matrix and subtracts vect1[4], float vect2[4], =vectl-MTX-vect2.
another vector float vect3[4]) MTX is a 4x4 Matrix.
Load MTX’s data to
extension registers
using 1d_ext(See No.12),
before using this
function.
7 Adds two vectors void add4 (float Calculates vect3
vect1[4], float vect2[4], =vectl+vect2.
float vect3[4])

8 Single-precision Calculates difference of | void sub4 (float Calculates vect3
floating-point vectors vectors vect1[4], float vect2[4], =vectl-vect2.
operations float vect3[4])

9 Single-precision Multiplies matrices void mtrx4mul (float Calculates mtrx2
floating-point 4x4 mtrx1[4][4], float =mtrx]-MTX. MTX is a
matrix operation mtrx2[4][4]) 4x4 Matrix. Load MTX’s

data to extension
register using
1d_ext(See No.12),
before using this

function.
10 Multiplies matrices and | void mtrx4muladd Calculates mtrx3
adds another matrix (float mtrx1[4][4], float =mtrx1-MTX+mtrx2.
mitrx2[4][4], float MTX is a 4x4 Matrix.
mtrx3[4][4]) Load MTX’s data to
extension register using
1d_ext(See No.12),
before using this
function.
1 Multiplies matrices and | void mtrx4mulsub Calculates mtrx3

subtracts another
matrix

(float mtrx1[4][4], float
mtrx2[4][4], float
mtrx3[4][4])

=mtrx1-MTX-mtrx2.
MTX is a 4x4 Matrix.
Load MTX’s data to
extension register using
1d_ext(See No.12),
before using this
function.

12 | Floating-point
extension registers

Loads a matrix data to
extension registers

void 1d_ext (float
mtrx[4][4])

Loads a mtrx to
extension registers.

13

Stores a matrix data
from extension registers

void st_ext (float
mtrx[4][4])

Stores a mtrx from
extension registers.

SHC-2

1. Intrinsic functions

Private intrinsic functions

Table 2 lists private intrinsic functions. These functions are supported by Ver.5.0 Release01.

Usage: <private.h> must be specified when using private intrinsic functions.

Table 2 Private Intrinsic Functions

Functions

Specification

Description

1 Sine and cosine

FSCA instruction

void fsca (long rad, float
*sinval, float *cosval)

Calculates the

aﬁ)proximate value of
the sine and cosine of
the rad (signed
fixed-point number).
The sinval is the
approximate value of
the sine. The cosval is
the approximation
value of the cosine.

FSSCA instruction float fssca (float val) Returns approximate
value of the reciprocal
of square root of the
single-precision
floating-point number
of val.

2 Reciprocal of square
root

Library

There are 4 types of standard library combination for SH4. Link a library listed in table according to the combination
of a cpu, pic or endian option.

fpu specification double=float

endian specification Endian = big endian = little
Pic specification pic=0 pic=1 pic=0 pic=1
cpu=sh4 sh4nbfzz.lib sh4pbfzz.lib sh4nlfzz.lib sh4plfzz.lib

Compile Options

Specify -cpu=sh4 -double=float -endian=little options. When you need workaround code (avoids to a right
judgement logical bug in SH4-CPU. The bug is SPC(Saved Program Counter)=0 on Set4) for SH4, specify -cpu=sh4,
-double=float, -endian=little, -extra=a=400 options.

SHC-3

SHC/C++ Ver.5.0

#pragma aligndata8

The float type array used by an intrinsic function needs to be assigned to 8-byte alignment. These variables must
be specified as "#pragma aligndata8 (variable name,...). Refer to the sample below.

Example

#pragma al i gndat a8(vect 1, vect 2)

float vect1[4]={1.0,2.0,3,0,4.0};

float vect2[4]={4.0,3.0,2.0,1.0};

float func(){
float retval = fipr(vectl,vect2);
reutrn retval;

Note: "$8" is added to the section name. In this example, variables vectl and vect2 belong to "D$8"section.

SHC-4

	Dreamcast SH4 C Compiler User’s Manual
	Preface
	Contents
	PART I Overview and Operations
	Section 1 Overview
	Section 2 Developing Procedures
	Section 3 C Compiler Execution
	3.1 How to Invoke the C Compiler
	3.2 Naming Files
	3.3 Compiler Options
	3.4 Option Combinations
	3.5 Correspondence to Standard Libraries
	3.6 C Compiler Listings
	3.7 C Compiler Environment Variables
	3.8 Implicit Declaration by Option

	PART II C PROGRAMMING
	Section 1 Limits of the C Compiler
	Section 2 Executing a C Program
	2.1 Structure of Object Programs
	2.2 Internal Data Representation
	2.3 Linkage with Assembly Programs

	Section 3 Extended Specifications
	3.1 Interrupt Functions
	3.2 Intrinsic Functions
	3.3 Section Change Function
	3.4 Single-Precision Floating-Point Library
	3.5 Japanese Description in String Literals
	3.6 Inline Function
	3.7 Inline Expansion in Assembly Language
	3.8 Specifying Two-byte Address Variables
	3.9 Specifying GBR Base Variables
	3.10 Register Save and Recovery Control
	3.11 Global Variable Register Allocation

	Section 4 Notes on Programming
	4.1 Coding Notes
	4.2 Notes on Program Development

	PART III SYSTEM INSTALLATION
	Section 1 Overview of System Installation
	Section 2 Allocating Memory Areas
	2.1 Static Area Allocation
	2.2 Dynamic Area Allocation

	Section 3 Setting the Execution Environment
	3.1 Vector Table Setting (VEC_TBL)
	3.2 Initialization (_ _INIT)
	3.3 Section Initialization (_ _INITSCT)

	Section 4 Setting the C Library Function Execution Environment
	4.1 Vector Table Setting (VEC_TBL)
	4.2 Initializing Registers (_ _INIT)
	4.3 Initializing Sections (_ _INITSCT)
	4.4 Initializing C Library Functions (_ _INITLIB)
	4.5 Closing Files (_ _CLOSEALL)
	4.6 Creating Low-Level Interface Routines

	PART IV Error Messages
	Section 1 Error Messages
	Section 2 C Standard Library Error Messages

	APPENDIX
	Appendix A Language and Standard Library Function Specifications of the C Compiler
	A.1 Language Specifications of the C Compiler
	A.2 C Library Function Specifications
	A.3 Floating-Point Number Specifications

	Appendix B Parameter Allocation Example
	Appendix C Usage of Registers and Stack Area
	Appendix D Creating Termination Functions
	D.1 Creating Library onexit Function
	D.2 Creating exit Function
	D.3 Creating Abort Routine

	Appendix E Examples of Low-Level Interface Routine
	Appendix F ASCII Codes

	Index

