

Ninja Guide

Table of Contents
1 View Function ... NGD–1

Use njInitView(). ...NGD–1
Directly set VIEW structure members. ..NGD–2

View movement and rotation ... NGD–3

Notes for using old View functions .. NGD–3
The detail of the caution 1) ..NGD–4
The detail of the caution 2) ..NGD–4
The correct/incorrect examples using old View functions. ...NGD–4

2 Reminders of Ninja Motion .. NGD–7

Concept of motions in Ninja ... NGD–7

Procedure to produce motions in Ninja .. NGD–9

3 How to Realize an Effective Strip .. NGD–11

The way of connecting vertices of a strip ... NGD–14

Material and Texture .. NGD–15

Comparison of expressions of a strip .. NGD–15

Index type structure .. NGD–15
Direct expression structure of vertices ..NGD–16

Data reduction rate by strip ... NGD–17
NGD-iii

Ninja Guide

4 Basic Model Specification ...NGD–19

Model Structures ..NGD–20
Description of Structures ... NGD–21

Model Structures ..NGD–26
Meshsets ... NGD–27
Texture Structures .. NGD–31
Ninja Attributes .. NGD–34
Texture Format ... NGD–38

5 Motion Specification ..NGD–41

Object Structure ...NGD–41
Basic object structure ... NGD–41
Chunk object structure .. NGD–42
Explanation of evalflags .. NGD–42

Camera Structure ...NGD–43

Light Structure ..NGD–43

Motion Structures ..NGD–46
Explanation of Structure .. NGD–47

Object Motion ...NGD–51
Explanation of Structure .. NGD–52

Camera Motion ...NGD–53

Light Motion ...NGD–54

Other Information ...NGD–55

6 NINJA LIGHT ..NGD–57

void njCreateLight(NJS_LIGHT*, Int) ... NGD–57
void njDeleteLight(NJS_LIGHT*) .. NGD–57
void njLightOff(NJS_LIGHT*) ... NGD–57
void njLightOn(NJS_LIGHT*) .. NGD–58
void njMultiLightMatrix(NJS_LIGHT*, NJS_MATRIX*) ... NGD–58
void njSetLight(NJS_LIGHT*) .. NGD–58
void njSetLightAlpha(NJS_LIGHT*, Float) ... NGD–58
void njSetLightAngle(NJS_LIGHT*, NJS_Angle, NJS_Angle) ... NGD–58
void njSetLightColor(NJS_LIGHT*, Float, Float, Float) ... NGD–58
void njSetLightDirection(NJS_LIGHT*, Float, Float, Float) .. NGD–59
void njSetLightIntensity(NJS_LIGHT*, Float, Float, Float) .. NGD–59
void njSetLightLocation(NJS_LIGHT*, Float, Float, Float) .. NGD–59
void njSetLightRange(NJS_LIGHT*, Float, Float) .. NGD–59
void njSetUserLight(NJS_LIGHT*, NJF_LIGHT_FUNC*) ... NGD–60
void njUnitLightMatrix(NJS_LIGHT*) ... NGD–60
void njTranslateLightV(NJS_LIGHT*, NJS_VECTOR*) .. NGD–60
void njTranslateLight(NJS_LIGHT*, Float, Float, Float) ... NGD–60
void njRotateLightX(NJS_LIGHT*, NJS_Angle) ... NGD–60
NGD-iv

Table of Contents

void njRotateLightXYZ(NJS_LIGHT*, NJS_Angle, NJS_Angle, NJS_Angle) NGD–61
void njRotateLightY(NJS_LIGHT*, NJS_Angle) ... NGD–61
void njRotateLightZ(NJS_LIGHT*, NJS_Angle) ... NGD–61
Macro ... NGD–61
How to use .. NGD–62
LIGHTstructure Specification ... NGD–65
The members of NJS_LIGHT structure ... NGD–65
The members of NJS_LIGHT_ATTR structure ... NGD–66
The members of NJS_LIGHT_CAL structure .. NGD–68

7 Scroll Guide ...NGD–69

Ver.0.04 .. NGD–69
Ver.0.05 .. NGD–69

Image Units as Related to Scrolling ...NGD–70
Overview ... NGD–70
Image Units ... NGD–70

Scroll Rotation, Resizing, and Movement ..NGD–71
Overview ... NGD–71
Scroll Rotation, Resizing, and Movement .. NGD–71

Scroll Programming ..NGD–72
Overview ... NGD–72
Example of Programming a Scroll ... NGD–72

Color ...NGD–75
Overview ... NGD–75
Color Mode ... NGD–75

Scroll function, Structures, and Definitions ..NGD–76
Overview ... NGD–76
Scroll–related Functions .. NGD–76
Scroll–related Structure ... NGD–77
Scroll-related Definitions .. NGD–77
Texture Structures for Use in Cell Programming .. NGD–78
NGD-v

Ninja Guide

8 Texture Guide ..NGD–79

Overview ... NGD–79
Creating Textures ...NGD–81

Overview ... NGD–81
PVR Format ... NGD–81
Category Code .. NGD–82
Color Format ... NGD–83

Memory ..NGD–84
Overview ... NGD–84
Texture Memory ... NGD–84
Cache .. NGD–84

Loading Textures ...NGD–85
Overview ... NGD–85
Flowchart of Texture Loading .. NGD–85
Setting a Texture Buffer ... NGD–86
Setting Cache Buffer ... NGD–88
Creating a Texture List .. NGD–89
Texture Numbers .. NGD–91
Global Index Number .. NGD–91
Automatic allocation of Global Index Number ... NGD–92
Texture Load Error ... NGD–92
Memory Texture ... NGD–94
Render Texture ... NGD–95

Texture functions, Structures, and Definitions ...NGD–97
Overview ... NGD–97
Texture Functions ... NGD–97
Texture Structures .. NGD–117
Texture Definitions ... NGD–118

Sample Program ...NGD–120
Overview ... NGD–120
Sample .. NGD–120

Notes for Texture functions ...NGD–124
Overview ... NGD–124
Notes for Switchover from SET2 to SET4/SET5 .. NGD–124
Notes for using texture functions in SET5 .. NGD–124
NGD-vi

Table of Contents

9 Chunk Model Specifications ..NGD–125

Chunk Model Features .. NGD–126
Model Structures ...NGD–127

 Structure Diagram ... NGD–127
Chunk Specifications ..NGD–129

Chunk Types ... NGD–129
Chunk Structure ... NGD–129
Chunk NULL .. NGD–130
Chunk End .. NGD–130
Chunk Bits ... NGD–131
Chunk Tiny ... NGD–136
Chunk Material ... NGD–137
Chunk Vertex .. NGD–143
Chunk Volume .. NGD–158
Chunk Strip ... NGD–162

ASCII Output Precautions ...NGD–173

10 Nindows Tutorial ..NGD–175

Special Features of Nindows .. NGD–175
Creating a Simple Nindows Application ..NGD–176

Integrating Nindows .. NGD–176
Description of Functions used in Integrating Nindows ... NGD–177

Using Nindows and Nindows Utilities ...NGD–179
Using Nindows ... NGD–179
Nindows Utilities ... NGD–180
Changing Fonts ... NGD–184

Windows ..NGD–185
Summary ... NGD–185
Creating a Window .. NGD–185
Creating a Child Window ... NGD–186
Window Related Parameters .. NGD–186
Description of Window Support Functions ... NGD–186
Samples and a Description of Window Support Functions ... NGD–189

Scroll Windows ..NGD–196
Summary ... NGD–196
Creating a Scroll Window ... NGD–196
Description of Functions Used to Create a Scroll Window .. NGD–196

Edit Windows ...NGD–199
Summary ... NGD–199
Creating and Using an Edit Window .. NGD–199
Description of Functions Used in Creating Edit Windows .. NGD–200
Description of Functions Used in Nindows' Debug Window Utility ... NGD–201

Scrollbar Controls ..NGD–201
Summary ... NGD–201
NGD-vii

Ninja Guide

Creating Scrollbar Controls .. NGD–201
Description of Functions Used in Creating Scrollbar Controls ... NGD–202
Creating Scrollbar Controls that Use Low-level Scrollbar Functions ... NGD–203
Description of Low-level Scrollbar Functions .. NGD–204

Button Controls ..NGD–207
Summary ... NGD–207
Creating a Button Control ... NGD–207
Button Validity and Invalidity ... NGD–207
Description of Functions for Button Controls .. NGD–208

Menus ...NGD–209
Summary ... NGD–209
Creating and Entering Menu Tables .. NGD–209
Menu Callback Functions .. NGD–210
Checkmarks ... NGD–210
Description of Functions for Entering User Menus ... NGD–211
Creating Popup Menus .. NGD–213
Description of Functions Used in Creating Popup Menus .. NGD–213

Mouse ...NGD–214
Summary ... NGD–214
Getting Mouse Information .. NGD–214
Description of Functions Used for Getting Mouse Information .. NGD–214

Fonts ...NGD–216
Overview ... NGD–216
Description of Font Functions .. NGD–216
Problems with Changing Fonts .. NGD–216
NGD-viii

1. View Function
1 Initialization method

View initialization must be completed before the njSetView() function is executed.

There are two methods of initialization.

1.1 Use njInitView().

Set the view as follows:

Current position of viewpoint: (px, py, pz) = (0,0,0)

Current orientation of viewpoint: (vx, vy, vz) = (0,0,-1)

Current tilt of viewpoint: (roll, tilt versus Z axis of viewline) 0 degrees

Base position of viewpoint: (apx, apy, apz) = (0,0,0)

Base orientation of viewpoint: (avx, avy, avz) = (0,0,-1)

Base tilt of viewpoint: (aroll, tilt versus Z axis of viewline) 0 degrees

View matrix = Unit matrix
NGD-1

Ninja Guide

1.2 Directly set VIEW structure members.

The following settings must be made:

1) When performing relative operations:
* px, py, pz

* vx, vy, vz

* roll

2) hen performing absolute operations:
* px, py, pz

* vx, vy, vz

* roll

After setting direct values for the above, execute void njSetBaseView(NJS_VIEW *v). Or, set the same respective
values in the following:

* apx, apy, apz

* avx, avy, avz

* aroll

The view matrix settings are not needed.

Caution: The viewline vector must be converted to unit vectors.
NGD-2

1. View Function
2 View movement and rotation
All nj*Relative() and nj*Absolute() functions must be executed before the njSetView() function.

Example:

 Initialize view

:

:

 while(1){

njSetView();

:

:

:

Draw

:

:<-----Execute nj*Relative() and nj*Absolute(), and then proceed to the next viewpoint.

:

}

Important: In the flow of the program, be certain to execute any nj*Relative() or nj*Absolute() function before the
njSetView() function.

3 Notes for using old View functions

njMultiViewMatrix

njRotateViewX

njRotateViewY

njRotateViewZ

njRotateViewXYZ

njTranslateView

njTranslateViewV

njUnitViewMatrix

The above eight functions are left to keep compatibility with old Ninja Libraries.

As there is a possibility that these functions will be deleted from the library in future, please do not use these
functions for new programs. If you use these functions unavoidably, please keep the following cautions.

1) Executes the above functions only after the njSetView() function.

2) After executing the above functions, please be sure to execute njClearMatrix().

If you do not follow these two cautions, the library might not work correctly.
NGD-3

Ninja Guide
3.1 The detail of the caution 1)

The old View functions operate members of the structure and NJS_MATRIX m directly.

But in the current View functions,

Float px,py,pz; // Current position of viewpoint

Float vx,vy,vz; // Current orientation of viewpoint (vector)

Angle roll; // Current tilt versus Z axis of viewline

Float apx,apy,apz; // Base position of viewpoint

Float avx,avy,avz; // Base orientation of viewpoint (vector)

Angle aroll; // Base tilt versus Z axis of viewline

each member of the above list are operated. Then members and NJS_MATRIX m are renewed by the njSetView
functionCo nsequently, if a View is operated by using old View functions before executing njSetView() function,
the matrix is overwritten by the njSetView() function

3.2 The detail of the caution 2)

A View must be reflected in a matrix stack.

Though this function is incorporated in the njSetView() function, because of the above reason, a View can not be
reflected in a matrix stack by using the njSetView() funtions.

Therefore, in case of using old View functions, please do not forget to execute old Matrix functions and
njClearMatrix().

3.3 The correct/incorrect examples using old View functions.

? The correct example using old View functions

NJS_VIEW _view_;

njInitView(&_view_);

njSetView(&_view_);

njTranslateView(&_view_, 0.f, 0.f, 1000.f); // etc

njClearMatrix();

? The incorrect example using old View functions

NJS_VIEW _view_;

njInitView(&_view_);

njTranslateView(&_view_, 0.f, 0.f, 1000.f); // etc

njSetView(&_view_);

njClearMatrix();
NGD-4

1. View Function
As the matrix of the View is overwritten by the njSetView() function, a View is left as it was initialized.

? The incorrect example using old View functions2

NJS_VIEW _view_;

njInitView(&_view_);

njSetView(&_view_);

njTranslateView(&_view_, 0.f, 0.f, 1000.f); // etc

As the result of the execution of the njTranslateView() function is not reflected in the matrix stack, a View is left as
it was initialized.

Structures

typedef struct {

 Float px,py,pz; // Current position of viewpoint

 Float vx,vy,vz; // Current orientation of viewpoint (vector)

 Angle roll; // Current tilt versus Z axis of viewline

 Float apx,apy,apz; // Base position of viewpoint

 Float avx,avy,avz; // Base orientation of viewpoint (vector)

 Angle aroll; // Base tilt versus Z axis of viewline

 NJS_MATRIX m; // View matrix

} NJS_VIEW;
NGD-5

Ninja Guide
NGD-6

2. Reminders of Ninja Motion
1 Concept of motions in Ninja
Usually multiple motions are provided to one model. A model is actuated by assigning translation, rotation and
scaling necessary for a motion to hierarchical tree model. In Ninja, motion is expressed by the difference from the
base pose. In other words, motion consists of only information necessary for parts which should be actuated. A base
pose should be determined carefully, since it can reduce the differential information when it contains parameters
for stationary joints in each motion.

Figure 0.1 Ninja Motion Concept

Differentia linformation
from base pose

Ninja Motion File (name file)

Base Pose Motion Pose
NGD-7

Ninja Guide
There are three forms of motions in Ninja. To reduce the amount of data, they are selected according to the
conditions.

Shape motion, interpolation methods (linear, spline, etc) are not described here. Please refer to other documentation
for the format in detail.

In place of parameters skipped in type A and type B, translation, rotation, and scaling of each nodes of model tree
data of base pose are used. Consequently, skipped date should be constant and coincide with the model tree of base
pose. In some cases, rotation is skipped in type A. If the rotation of a node does not change during a motion and it
remains as that in the base motion, the rotation is omitted.

By the method described thus far, Ninja retains motion data to small amount.

Type A (TRRR) Root node has translation and rotation, the other nodes have rotation only.

Type B (TRTR) Each node has translation and rotation.

Type C (TRS) Each node has translation, rotation and scaling.
NGD-8

2. Reminders of Ninja Motion
2 Procedure to produce motions in Ninja

<step 1> Determine base pose.

<step 2> Produce nja file and mrs file by converting a model. Here, mrs file implies motion
resources, which is an information file containing two-level hierarchy and values for
translation, rotation and scaling for each node.

<step 3> Convert to nam file using mrs file containing base pose information. These motion data
become differential information from single base pose.

Basically, a model and its motions are stored in one scene on a modeler, and can be converted simultaneously. When
they are converted simultaneously, please note that multiple motions cannot be conducted using one base pose,
since differences are produced based on the pose in the scene as a base pose, and the base pose changes at every
motion. For a model requiring motions, make sure to produce a base pose model and mrs file which is a base for
display first and to produce motions based on this model.
NGD-9

Ninja Guide
NGD-10

3. How to Realize an
Effective Strip
Warning: • This document is under preparation.
• The current specifications and format for the strip is preliminary.
NGD-11

Ninja Guide
1 What is a strip?
A strip means a continuous polygon. Conventionally, a polygon means a surface consisting of three or
more vertices.

Figure 1.1 Examples of Polygons

A Strip reduces the amount of data and calculation and increases the performance by treating neighboring multiple
polygons as one data by connecting them (when applied to triangle polygons, it is called triangle strip). In addition,
improving bus transfer neck by reducing the amount of transferred data to drawing hardware effectively enhances
the peak performance (This assumes that the hardware has a function to process strip data. This hardware supports
triangle strip).

Figure 1.2 Example of Triangle Strip

The following section describes why the data is reduced compared with independent triangle polygons.

It can be considered that a quadrangle polygon consists of two triangle polygons. It can also be considered that a
quadrangle is a strip produced by connecting two triangle polygons. Since three vertices are necessary for
describing a triangle polygon, six vertices are required for two triangle polygons. At the same time, quadrangle
polygon needs four vertices which are two vertices less.

Reentering polygon (d) is not used due to the specifications of the hardware.

(a) (b) (c) (d)

Trangle Polygons (Trangle) Strip

Convert to Strip
NGD-12

3. How to Realize an Effective Strip
Figure 1.3 Comparison of Number of Vertexes in Quadrangle Expression

This is because two vertices on a each side of contacting lines of two triangles can be shared. A polygon model in a
game consists of triangle polygons covering it in three dimension, and contains of a lot of shared vertices. The idea
of strip is to increase the expression efficiency by sharing vertices. The reduction rate of data is as follows.

Figure 1.4 Shared Vertexes in Strip

Except for vertex 0 and 15, other vertices are shared. In addition vertices 2 – 13 are shared by consecutive three
triangle polygons. In other words, in a strip, the same result of color calculation can be used two or three times
except for the first and the last vertices. As a result, the amount calculation can be reduced. From the second triangle
onward, a triangle can be expressed by assigning one vertex in addition to two vertices from the previous triangle.
The number of necessary vertices for a strip connecting N triangle polygons.

Number of vertices of a strip ? 3 (Number of vertices of the first triangle) + (N-1)

In figure above, 14 triangle polygons are connected.

3 +(14 - 1) = 16(16 from 0 to 15)

The following is observed.

Except for the first triangle, one triangle can be expressed by one vertex in a strip. Consequently if a strip is long
enough, the data necessary for a triangle polygon can be one vertex. When triangle polygons consisting a model
are connected in a row and the row is long enough, three vertices for an independent triangle polygon can be
reduced to one vertex and the amount of data is reduces to one third (33.333…%) of the original data amount. This
gives the theoretical limit of data reduction of a triangle strip.

3 Vertexes x 2 6 4 Vertexes

Shared Vertexes

0

2 4 6 8 10 12 14

31 5 7 9 11 13
15
NGD-13

Ninja Guide
2 The way of connecting vertices of a strip
The way of expressing a polygon is determined by the way of listing vertices of a polygon. There are two
expressions, clockwise and counterclockwise.

Figure 1.5 Polygons Expressed by Vertexes

Choosing counterclockwise or clockwise is a matter of culture and either can do as a convention. In this
documentation, it is assumed that usually an independent polygon is expressed by listing vertices counterclockwise.
Also this direction of listing has a important role to determine the outer side of a polygon in 3D space. If the
following vertices in ascending order give a counterclockwise rotation, the surface is defined to be the outer side.
Otherwise, the surface is defined to be the inner side. Usually the inner side of a polygon cannot be observed. If it is
concluded that the inner side of a polygon is observed from the viewpoint, the polygon becomes a subject of culling
(deleting from drawing list).

In a strip, since it is necessary to use two vertices of the previous polygon, clockwise and counterclockwise appears
alternately. In a strip, the processing is conducted assuming that clockwise and counterclockwise is the outer
side alternately.

Figure 1.6 Clockwise and Counterclockwise Listing of Vertexes in Strip

In Ninja, in order to make a strip as long as possible, both clockwise and counterclockwise are allowed for the
direction of listing vertices of the first polygon. Clockwise is expressed by setting the flag at the MSB of the
parameter for the length of a strip.

Counterclockwise Clockwise

0

2
1

0 CW CW CW CW CW CW CW

CCW CCW CCW CCW CCW CCW CCW

2 4 6 8 10 12 14

31 5 7 9 11 13 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Triangle 1 (clockwise)

Triangle 2 (counterclockwise)

Triangle 3 (clockwise)

Triangle 4 (counterclockwise)
NGD-14

3. How to Realize an Effective Strip
Figure 1.7 Example of Strip Structure in Ninja

3 Material and Texture
As described in Figure .4, a vertex of a strip is used three times by neighboring triangles. For that purpose, the
information used by each triangle must be the same. A vertex has the information of the normal, the material, the
texture and the UV value used for Gouraud calculation. Only neighboring triangles with vertices which have the
same information and thus can be shared can be connected as a strip data.

4 Comparison of expressions of a strip
The following two forms of strip list (also applicable to polygon list) are possible.

• Index type structure of vertex list

• Direct expression structure of vertices

5 Index type structure
An index type consists of a vertex list and a strip list made up with the entry numbers of vertices.

Figure 1.8 Index Type Strip

0x800I16

FlagINo. of Vertexes Vertex list

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

Index
Numbers

Vertex List Strip List

Strip expressed by listing index numbers

x y z nx ny nz u v ... 0, 1, 2, 3, ...

x y z nx ny nz u v ...

x y z nx ny nz u v ...

x y z nx ny nz u v ...

...
NGD-15

Ninja Guide
Merit

• Since vertices used in a model are arranged as a list without redundancy, a strip is expressed by referring
results calculated before in stead of calculating again.

• Since data used more than once are expressed by indexes, the amount of data is reduced compared with
the case where vertices are assigned directly.

Demerits

• Since an index and a vertex list are stored in different addresses, it tends to introduce CPU cache errors
(this problem can be solved by a design suppressing cache errors).

In Ninja, index type strip is utilized.

5.1 Direct expression structure of vertices

Figure 1.9 Vertex direct expression strip

A strip list is composed by listing vertex data directly. If a vertex is used in multiple strips, the vertex is registered
in a list each time when it is used. Compared with assigning a vertex by an index, the amount of data increases. It is
supposed that the frequency of using one vertex is 1 - 10 (4 in average (estimation)) for an independent vertex, and
is 1 - 3 (2-2.5 in average (estimation)) for a data model connected well by a strip. Therefore, the amount of data (in a
simple direct expression) is larger than that in an index type strip. To compensate this large amount of data, such an
approach as restraining the increase of the amount of data to some extent by reducing the number of bits expressing
vertices and normals becomes necessary. Each time when a vertex is used, the 3D calculation should be conducted
again. In case of a vertex used four times, four times of calculation will occur compared with the index type.

Strip 1 List

Strip 1

Strip 2

A strip is composed by listing vertex data directly.

Strip 2 List

x y z nx ny nz u v ...

x y z nx ny nz u v ...

x y z nx ny nz u v ...

x y z nx ny nz u v ...

...

x y z nx ny nz u v ...

x y z nx ny nz u v ...

x y z nx ny nz u v ...

x y z nx ny nz u v ...

...

Shared vertices are used both in Strip 1 and Strip 2.
Since in direct expression structure of vertices, vertex
information is directly written into each strip list, vertex
information data is doubled regarding to vertex a in size

a

NGD-16

3. How to Realize an Effective Strip
Merits

• Cache errors can be avoided since the data address is sequential.

• A buffer storing a calculated vertex list is not necessary.

• Since unit of processing can be each polygon, a small program can be executed at high speed.

Demerits

• Data can be large (a few times in simple estimation). However it can be suppressed to a certain degree by
enhancing strip performance and reducing precision.

• It is difficult to express vertex animation.

• 3D calculations for the same vertex should be repeated as frequently as the vertex is used.

6 Data reduction rate by strip
The following section summarizes the expected amount of data reduction by the strip. The items listed below are
reminders for that estimation.

• The strip (the strip means a triangle strip here) is a group of an independent triangle polygons which
consist of originally sharable vertices.
NGD-17

Ninja Guide
NGD-18

4. Basic Model Specification
1 Overview
Besides the Basic Model format described in this document, Ninja also supports the Chunk Model format. While a
drawing function is executed in the Chunk Model, the data are placed in a continuous memory space so as to
maintain integrity of the SH4 cache. Expandability, flexibility, and data expression efficiency are excellent. In future,
further tuning will be carried out, centering on the Chunk Model. The Basic Model is supported, but does not
include the new features.

In the Chunk Model, the model structure contents have been significantly changed. The object structure is not
changed, except for the fact that the model structure pointers have been altered to the Chunk Model.

Motions and textures besides the model use the same format as before. However, for compatibility with camera and
light, the format of structure members has been changed.

For information on the Chunk Model, refer to the Chunk Model Specifications.
NGD-19

Ninja Guide
2 Model Structures

Figure 1.1 Diagram of Structures

Object Tree
NJS_OBJECT structure

NJS_OBJECT structure

NJS_MODEL structure

typedef struct obj {
 Uint32 evalflags; /* Evaluation method optimization */
 NJS_MODEL *model; /* Model structure */
 Float pos[3]; /* Parallel motion */
 Angle ang[3]; /* Rotation */
 Float scl[3]; /* Scale */
 struct obj *child; /* Child pointer */
 struct obj *sibling; /* Sibling pointer */
 } NJS_OBJECT;

typedef struct {
 Float x, y, z;
 }NJS_POINT3, NJS_VECTOR;

typedef struct {
 NJS_COLOR diffuse;
 NJS_COLOR specular;
 Float exponent;
 Uint32 attr_texId;
 Uint32 attrflags;
 } NJS_MATERIAL;

typedef union {
 Uint32 color;
 struct { Sint16 u, v; } tex;
 struct { Sint8 b,g,r,a;} argb;
 } NJS_COLOR;

• The two upper bits give the data type.
 (There are four types.)

• List of triangular polygons only

• List of quadrilateral polygons only

• List of N-sided polygons

• Contiguous polygons (TRIMESH)

typedef struct {
 NJS_POINT3 *points; /* Vertex list */
 NJS_VECTOR *normals; /* Normal line vector list */
 Uint32 nbPoint; /* Number of points */
 NJS_MESHSET *meshsets; /* Polygon list */
 NJS_MATERIAL *mats; /* Material lists */
 Uint16 nbMeshset; /* Number of mesh lists */
 Uint16 nbMat; /* Number of mats */
 NJS_POINT3 center; /* Model center */
 Float r; /* Radius of circumscribed sphere */
 } NJS_MODEL;

typedef struct {
 Uint16 type_matId; /* Type and material ID */
 Uint16 nbMesh; /* Total number of polygons */
 Sint16 *meshes; /* Polygon list */
 Uint32 *attrs; /* Polygon attributes */
 NJS_VECTOR *normals; /* Polygon normal line list */
 NJS_COLOR *vertcolor; /* Vector color list */
 NJS_COLOR *vertuv; /* Vector UV list */
 } NJS_MESHSET;

If "attrs", "normals", "vertcolor", and "vertuv" for the
polygon vertices are not needed, these variables are NULL.

Gives parent-child hierarchy of model.

TRIMESH and polygon list by material and type

Gives vertices, (contiguous) polygons, and material data.
NGD-20

4. Basic Model Specification
2.1 Description of Structures

Float, Angle

typedef float Float/* Floating-point operation type */

typedef Sint32 Angle /* Angle of rotation */

• For angles, 0x000 to 0xFFFF correspond to 0 to 360 degrees.

Color structure

 typedef union {

 Uint32 color; /* Long access */

 struct {

 Sint16 u; /* Texture u value */

 Sint16 v; /* Texture v value */

 } tex; /* Texture access */

 struct {

 Uint8 b; /* b value */

 Uint8 g; /* g value */

 Uint8 r; /* r value */

 Uint8 a; /* Alpha blend value */

 } argb; /* argb access */

 } NJS_COLOR;

• This structure stores colors and texture UVs. This structure uses a union.

• This tool sets the data from "color" and accesses the library from "tex" and "argb".

Object structure

 typedef struct obj {

 Uint32 evalflags;/* Evaluation method optimization flag */

 NJS_MODEL *model;/* Model structure pointer */

 Float pos[3];/* Parallel motion */

 Angle ang[3];/* Rotation */

 Float scl[3];/* Scale */

 struct obj *child;/* Child object pointer */

 struct obj *sibling;/* Sibling object pointer */

 } NJS_OBJECT;

• Gives the parent/child structure of the model.

• Polygons and TRIMESHes (contiguous polygons) are set in "model".
NGD-21

Ninja Guide
Explanation of evalflags

 #define NJD_EVAL_UNIT_POSBIT_0/* Motion can be ignored */

 #define NJD_EVAL_UNIT_ANG BIT_1 /* Rotation can be ignored */

 #define NJD_EVAL_UNIT_SCL BIT_2 /* Scale can be ignored */

 #define NJD_EVAL_HIDE BIT_3 /* Do not draw model */

 #define NJD_EVAL_BREAK BIT_4 /* Break child trace */

 #define NJD_EVAL_ZXY_ANG BIT_5 /* Specification for evaluation */

 /* of rotation expected by */

 /* LightWave3D */

 #define NJD_EVAL_SKIP BIT_6 /* Skip motion */

 #define NJD_EVAL_SHAPE_SKIPBIT_7 /* Skip shape motion */

 #define NJD_EVAL_MASK 0xff /* Mask for extracting above bits */

These flags are set by the converter.

• NJD_EVAL_UNIT_POS is set when the parallel motion amount is "0". Parallel motion matrix processing
is omitted when this flag is set.

• NJD_EVAL_UNIT_ANG is set when the rotation angle is "0". Rotation matrix processing is omitted when
this flag is set.

• NJD_EVAL_UNIT_SCL is set when the scale is "1" for x, y, and z. Scale matrix processing is omitted when
this flag is set.

• If NJD_EVAL_UNIT_POS, NJD_EVAL_UNIT_ANG, and NJD_EVAL_UNIT_SCL are all set, all matrix
processing steps are omitted, and the matrix "push pop" operation is also omitted.

• The NJD_EVAL_HIDE is set by the user. If this flag is set, the model is not drawn. This flag is used when
switching the gun or blade with which a model is equipped.

• The NJD_EVAL_BREAK is set by the user. If this flag is set, the child search is halted at this point. For
example, setting this flag in the root node causes the entire model to disappear. When NJD_EVAL_BREAK
is used in combination with motion, data coordination is lost. Therefore this flag should only be used in
the root node. It can be used in intermediate nodes, but the user is responsible for such usage.

• The rotation evaluation sequence for LightWave3D is "ZXY". Because this sequence is normally "XYZ" in
Ninja, the NJD_EVAL_ZXY_ANG is provided for execution via a library with the LightWave3D evaluation
sequence. When this flag is set to ON, the rotation processing sequence is changed to "ZXY".

• The NJD_EVAL_SKIP indicates that this node does not include motion data. During motion execution,
matrix processing is carried out using the object structure value without incrementing the motion node,
and then proceeds to the next node. This allows motion also with polygon models having a different
configuration, provided that the bone structure is the same.

• The NJD_EVAL_SHAPE_SKIP indicates that this node does not include shape motion data.

Point structure

 typedef struct {

 Float x; /* X value */

 Float y; /* Y value */

 Float z; /* Z value */

 } NJS_POINT3, NJS_VECTOR;

• Gives the X, Y, and Z values of a vertex.
NGD-22

4. Basic Model Specification
Texture name structure

 typedef struct {

 void *filename;/* Texture file name */

 Uint32 attr;/* Texture attributes */

 Void *texaddr;/* Texture memory address */

 } NJS_TEXNAME;

• Textures are specified by file name.

• "globalIndex" is a unique texture number specified by a Uint32-type variable. However, 0xfffffff0 through
0xffffffff cannot be used since the library uses them as internal flags.

• "globalIndex" is stored in the texture file. The "globalIndex" chunk is always placed at the start of a Ninja
texture file.

• "globalIndex" is assigned and managed by this tool. In Ninja, this number is used to detect identical
textures, thus avoiding duplicate registrations in texture memory.

• "attr" is used in the texture type and cache specifications.

 #define NJD_TEXATTR_TYPE_FILE 0/* File texture */

 #define NJD_TEXATTR_CASHE BIT_31 /* Registers texture in cache */

 #define NJD_TEXATTR_TYPE_MEMORYBIT_30 /* Memory texture */

 #define NJD_TEXATTR_BOTH BIT_29 /* Registers texture in cache */

 /* and texture memory */

 #define NJD_TEXATTR_MASK 0xE0000000

• In a memory-type texture, it is necessary to set the texture color type and category code in "attr". This is
the same bit string that is set in the ".pvr" file texture type.

 /* Color type */

 #define NJD_TEXFMT_ARGB_1555(0x00)

 #define NJD_TEXFMT_RGB_565(0x01)

 #define NJD_TEXFMT_ARGB_4444(0x02)

 #define NJD_TEXFMT_YUV_422(0x03)

 #define NJD_TEXFMT_BUMP (0x04)

 #define NJD_TEXFMT_RGB_555(0x05)

 #define NJD_TEXFMT_COLOR_MASK(0xFF)

 /* Category code */

 #define NJD_TEXFMT_TWIDDLED(0x0100)

 #define NJD_TEXFMT_TWIDDLED_MM(0x0200)

 #define NJD_TEXFMT_VQ (0x0300)

 #define NJD_TEXFMT_VQ_MM (0x0400)

 #define NJD_TEXFMT_PALETTIZE4(0x0500)

 #define NJD_TEXFMT_PALETTIZE4_MM(0x0600)

 #define NJD_TEXFMT_PALETTIZE8(0x0700)

 #define NJD_TEXFMT_PALETTIZE8_MM(0x0800)

 #define NJD_TEXFMT_RECTANGLE(0x0900)

 #define NJD_TEXFMT_STRIDE (0x0B00)

 #define NJD_TEXFMT_SMALLVQ(0x1000)

 #define NJD_TEXFMT_SMALLVQ_MM(0x1100)

 #define NJD_TEXFMT_TYPE_MASK(0xFF00)
NGD-23

Ninja Guide
• "texaddr" stores the texture memory address that is assigned when "texlist" is set in the current "texlist"
in the target. This address is used in the current texture specification within the library.

 Texture list structure

 typedef struct {

 NJS_TEXNAME *textures; /* Texture name list */

 Uint16 nbTexture; /* Number of textures */

 } NJS_TEXLIST;

• This list is used to batch write multiple textures to texture memory. The library texture specification is
made for each "texlist".

 Material structure

 typedef struct {

 NJS_COLOR diffuse; /* Diffuse reflection */

 /* (model color)0 to 255 */

 NJS_COLOR specular; /* Specular reflection */

 /* (highlights) 0 to 255 */

 FLOAT exponent; /* Highlight spread 0 to 300 */

 Uint32 attr_texId; /* Attribute and texture ID */

 Uint32 attrflags;

/* Attribute flag */

 } NJS_MATERIAL;

• "attr_texId" specifies a texture number in the current texture list "texlist". "attr" area is not currently used.

• The only texture information in the model tree that corresponds to a "texlist" entry number is "texId". The
user sets the "texlist" corresponding to the current model as the current texture list.
For details on the attributes that are set in "attrflags", refer to section 3.3, "Ninja Attributes."

31

attr texID

29 28 … 0

attr_texID
NGD-24

4. Basic Model Specification
Meshset structure

 typedef struct {

 Uint16 type_matId;/* Type and material ID (0 to 4095) */

 Uint16 nbMesh;/* Number of polygons/contiguous */

 /* polygons */

 Sint16 *meshes;/* Polygon list */

 Uint32 *attrs;/* Polygon attributes */

 NJS_VECTOR *normals;/* Polygon normal line vector list */

 NJS_COLOR *vertcolor;/* Polygon vertex color list */

 NJS_COLOR *vertuv;/* Polygon vertex UV list */

 } NJS_MESHSET;

• The attributes of individual polygons are set in "attrs". The attributes that are set in "attrs" are the same
as those that are set in "attrflags" for "NJS_MATERIAL".
For details on meshsets, refer to, "Meshsets" section in, "Construction of a Model" section.
For details on the attributes that are set in "attrs", refer to, "Ninja Attributes" section.

 Model structures

typedef struct {

NJS_POINT3 *points;/* Vertex list*/

NJS_VECTOR *normals;/* Vertex normal line vector list*/

Uint32 nbPoint;/* Number of vertices*/

NJS_MESHSET *meshsets;/* Polygon and TRIMESH list*/

NJS_MATERIAL *mats;/* Material list*/

Uint16 nbMeshset;/* Number of meshsets; maximum: 65,535*/

Uint16 nbMat;/* Number of mats; maximum: 65,535*/

NJS_POINT3 center;/* The center of the model*/

Float r; /* Radius of circumscribed sphere */

 /* from the center of the model*/

} NJS_MODEL;

• The vertex list includes all of the vertices used in multiple meshsets that are set in the MODEL structure.

• If vertex normal lines are not needed, set NULL in "normals".

• "meshset" is a combined list of a single type of polygon (triangular polygons, quadrilateral polygons,
N-sided polygons, TRIMESHes) that uses a single material.

• Each meshset has a material ID, and its position in the "mats" array can be specified.

• "center" and "r" are used when calculating model collisions, etc.
NGD-25

Ninja Guide
3 Model Structures

Figure 1.2 Diagram of Structure

Type: TRIMESH

Object Tree

ID = 0

ID = 1

ID = 2

NJS_OBJECT
 *model;
 ...

NJS_MODEL
 *meshsets
 ...
 *mats;

Material List

NJS_MATERIAL
 ...
 attr_texId;

NJS_MATERIAL
 ...
 attr_texId;

 ...

Meshset List

NJS_MESHSET
 type_matId;
 *meshes;
 *attrs;
 *normals;
 *vertcolor;
 *vertuv;

Type: triangular polygon

Polygon vertex list

Polygon attribute list

Polygon normal line list

Polygon vertex color list

Polygon vertex UV coordinate list

Type: quadrilateral polygon

Type: N-sided polygon

NJS_MESHSET
 type_matId;
 ...

NJS_MESHSET
 type_matId;
 ...

NJS_MESHSET
 type_matId;
 ...

Gives parent-child hierarchy of model.

Gives vertices, (contiguous) polygons,
and material data.
NGD-26

4. Basic Model Specification
3.1 Meshsets

typedef struct {

 Uint16 type_matId;/* Type and material ID (0 to 16384)*/

Uint16 nbMesh;/* Number of polygons/contiguous */

/* polygons */

Sint16 *meshes;/* Polygon list*/

 Uint32 *attrs;/* Polygon attributes*/

 NJS_VECTOR *normals;/* Polygon normal line vector list*/

 NJS_COLOR *vertcolor;/* Polygon vertex color list*/

 NJS_COLOR *vertuv;/* Polygon vertex UV list*/

 } NJS_MESHSET;

• This structure stores data strings for triangular polygons only, quadrilateral polygons only, N-sided
polygons only, or TRIMESHes (contiguous polygons) only.

• The vertex sequence is the drawing (zig-zag) sequence for all of the contiguous polygons.

• Multiple types of meshset arrays are set for "*meshsets".

• When the data includes triangular polygons, quadrilateral polygons, and N-sided polygons, the Ninja
converter divides the data into separate meshsets according to the number of vertices.

• If multiple materials are used for triangular polygons (for example), the data is divided into separate
meshsets for each material.

• In "type_matId", the two most significant bits (bits 14 and 15) indicate the meshset type, while the 14 least
significant bits (bits 0 to 13) indicate which material in the model structure material list is being used.

15

type material Id

14 13 0

type_matId

Triangle
0

1

0

2

0, 1, 2

0, 1, 3, 2

0, 1, 4, 2, 3

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

1

Quadralateral

N-sided

Contiguous polygons

4
0

1

1 3 5 7 109

20 4 6 8
2

3

3

NGD-27

Ninja Guide
#define NJD_MESHSET_30x0000

#define NJD_MESHSET_4 0x4000

#define NJD_MESHSET_N 0x8000

#define NJD_MESHSET_TRIMESH0xc000

An explanation of the data structure for each type follows.

 For a Triangular Polygon List (NJD_MESHSET_3)

 Example:

 Polygon1 Polygon2

 meshes[] = {3, 4, 5, 9, 8, 6, 2, 10, 7, 13, 14, 11,}

 attrs[] = NULL;

 normals[] = {{1.0,0.0,0.0}, {0.0, 1.0, 0.0}, ...}

 vertcolor[] = {0xFFFF,0xEEEE,0xCCCC,...}

 vertuv[] = {0xEFAB,0xFF98,0x44FF,...}

 nbMesh = number of vertices in "meshes"/3

• Attribute setting with "attrs" are not possible for individual polygons.

• One normal line is allocated to each polygon. The normal line for the nth polygon is "normals[n]". (n = 0,
1, 2, ...)

• The color and UV for the meshes[i] vertex are "vertcolor[i]" and "vertuv[i]", respectively. (i = 0, 1, 2,...)

• The NULL pointer is set for "attrs", "normals", "vertcolor" , and "vertuv" if they are not needed.
NGD-28

4. Basic Model Specification
 For a Quadrilateral Polygon List (NJD_MESHSET_4)

 Example:

 Polygon1 Polygon2

 meshes[] = {3, 4, 5, 9, 8, 6, 2, 10, 7, 13, 14, 11,}

 attrs[] = NULL;

 vertcolor[] = {0xFFFF,0xEEEE,0xCCCC,...}

 vertuv[] = {0xEFAB,0xFF98,0x44FF,...}

 nbMesh = number of vertices in "meshes"/4

• Attribute setting with "attrs" are not possible for individual polygons.

• One normal line is allocated to each polygon. The normal line for the nth polygon is "normals[n]". (n = 0,
1, 2, ...)

• The color and UV for the meshes[i] vertex are "vertcolor[i]" and "vertuv[i]", respectively. (i = 0, 1, 2,...)

• The NULL pointer is set for "attrs", "normals", "vertcolor" , and "vertuv" if they are not needed.

For a Contiguous Polygon List (NJD_MESHSET_TRIMESH)

A continuous polygon is expressed by writing the number of vertices composing it at the beginning.

Example:

 trimesh1 trimesh2

 meshes[] = {6, 3, 4, 5, 9, 8, 6, 4, 2, 10, 7, 13,11,}

 attrs[] =NULL;

 normals[] ={{1.0,0.0,0.0}, {0.0, 1.0, 0.0}, ...}

 vertuv[] = {0xEFAB,0xFF98,0x44FF,...}

 vertcolor[] = {0xFFFF,0xEEEE,0xCCCC,...}

 nbMesh = Number of trimeshes

• Attribute setting with "attrs" are not possible for individual polygons.

• Although the normal line of a trimesh is usually derived from the external product, the normal line can
be stored as data in "normals".
NGD-29

Ninja Guide
• One normal line is allocated to each polygon after conversion to triangular polygons. The normal line for
the nth triangular polygon is "normals[n]". (n = 0, 1, 2, ...)

• The color and UV of the vertex of meshes[i] are respectively vertcolor[i-(k+1)] and vertuv[i-k+1)] (i=0, 1.,
2, …). Here, k is the current trimesh number (the k’th trimesh).

• The NULL pointer is set for "attrs", "normals", "vertcolor" , and "vertuv" if they are not needed.

Note: For high efficiency in joining trimesh shapes (triangle strips), Ninja supports start from trimesh
right rotation and left rotation. When right rotation is used, the most significant bit of the start value
indicating the length is set as a 1-bit flag.
Start from left rotation: length, vertex 1, vertex 2, ...
Start from right rotation: 0x800|length, vertex 1, vertex 2, ...

For an N-sided Polygon List (NJD_MESHSET_N)

• Here, "N" represents a value of "5" or more. In other words, this declaration is used to generate a polygon
with five or more sides. In the future, it will be possible to generate lists of polygons with three or more
sides through a converter option.

• It is important to note that in the case of an N-sided polygon, the "meshes" vertex number will deviate
from the "vertcolor" and "vertuv" numbers

Example:

 Polygon1 Polygon2

meshes[] = {5, 3, 4, 5, 9, 8, 7, 6, 2, 10, 7, 13, 14, 11,}

• The underlined value indicates the number of vertices (N), and is followed by N vertices.

 attrs[]=NULL;

• Attribute setting with "attrs" are not possible for individual polygons.?

 normals[]={{1.0,0.0,0.0}, {0.0, 1.0, 0.0}, ...}

• A normal line vector is assigned to each polygon. The normal line for the kth polygon is "normals[k]". (k
= 0, 1, 2, ...)

• Each vertex of an N-sided polygon is assumed to lie on the same plane, so the normal line that is derived
from the first three points is regarded to be the normal line for the entire polygon.

vertcolor[] ={0xFFFF,0xEEEE,0xCCCC,...}

vertuv[] ={0xEFAB,0xFF98,0x44FF,...}

• The color and UV for the meshes[i] vertex are "vertcolor[i-(k+1)]" and "vertuv[i-(k+1)]", respectively. (k =
0, 1, 2,...; i = 0, 1, 2,...) Here, "k" is the number of the current ("kth") polygon. This is because "meshes" has
the value "N" that indicates the number of sides for each polygon, while "vertcolor" and "vertuv" do not.

NbMesh= Number of N-sided polygons

• The NULL pointer is set for "attrs", "normals", "vertcolor" , and "vertuv" if they are not needed.
NGD-30

4. Basic Model Specification
3.2 Texture Structures

Figure 1.3 Diagram of Structure

Object Tree

NJS_TEXTLIST structure

Texlist

NJS_OBJECT structure
 *model;

NJS_OBJECT structure
 *mats;

NJS_OBJECT structure
 attr texId;

typedef struct {
 NJS_TEXNAME *textures; /* Texture name list */
 Uint16 nbTex; /* Number of textures */

 } NJS_TEXLIST;

typedef struct {
 void *filename; /* Texture file name */

 Uint32 attr; /* Texture attributes */
 void *texaddr; /* Texture attributes */

} NJS_TEXNAME;

This indicates the number of the texture to be used from "texlist".
This structure has no "texlist" data; it uses the "texlist" that is set as
the current "texlist".

Table of multiple textures

NJS_TEXTNAME structure Manages the textures.

texlist

• Textures are managed through
 real files and texlists.
• Texture memory is overwritten in
 units of whole texlists.
• Memory data can be specified
 instead of a file.

globalIndex

• "globalIndex" is a unique number
 that is assigned to all textures.
• Texture duplication is checked
 by comparing the "globalIndex"
 numbers.
• "globalIndex" is stored in a
 texture file.

texaddr

• The current texture is set in terms
 of individual texlists by the library
 function. The registered address
 is then stored in texture memory.
NGD-31

Ninja Guide
Figure 1.4 Overview of Texture Processing

[Model]
[Motion]
[Texture]

• Unified management of
 textures and assignment
 of “globalIndex” numbers
• texlist generation

Establish
correspondence
through texId

[Model]
[Motion]
[Texture]

Textures are specified by file name, and registered in memory in units of texture lists

Unique index number that is assigned to all textures; stored in texture files.

Whether a texture has already been registered in texture memory is checked by comparing the “globalIndex”
numbers. The “globalIndex” numbers of the textures in current memory are managed by the library.

Texlist Texture Motion

Material0
 texId =0

Texlist
 tex0;
 tex1;
 tex2;
 …

texId=0
texId=1
texId=2

Material1
 texId =2

Material2
 texId =1

Model
 mats;

…

Converter

Texture database

Graphics Tool

globalIndex

”texfile”, 101

”texfile”, 102 ”texfile1”, 101

”texfile2”, 102

”texfile3”, 103

Texlist1

”texfile3”, 103

Texlist2

Katana Texture Memory

Within the program:

<step 1> Specify the texlist corresponding
 to the model as the current texture

<step 2> Draw the model

”texfile2”, 102 ”texfile2”, 102
NGD-32

4. Basic Model Specification
Memory-type Textures and the Texture Cache

For details, refer to the library specifications. The following is an overview only.

When the NJD_TEXATTR_CASHE flag is set in "attr", only the texture cache is set. If NJD_TEXATTR_BOTH
is set, then when textures are registered in texlist units in texture memory, any textures in the cache are
automatically registered in texture memory from the cache.

Explanation of the Structure of Textures

• Normally, multiple textures are applied to a model; the texlist structure is defined in order to handle these
models as a batch.

• The texlist structure consists of an array of multiple texture file names.

• The "globalIndex" numbers are stored in texture files, and are retrieved when the file is loaded.

• The "globalIndex" chunk is located at the top of the texture file. The "globalIndex" numbers are required,
because they are essential for improved library performance.

• The "globalIndex" numbers are managed by the Ninja graphics tool, and are assigned in such a manner
that there are no duplicates within an entire project.

• When multiple texlists that contain the same texture are loaded into memory, duplicates are detected
through their "globalIndex" numbers.

• During model conversion, all of the texture files in the texture group used in the object tree are output as
a single texlist.

• When model conversion is repeated, if the textures that appear had "globalIndex" numbers assigned to
them previously, those same "globalIndex" numbers are assigned to them again.

• If the user assigns his own "globalIndex" numbers, he creates a table of all of the textures that are used
and then writes those entry numbers in the "globalIndex" chunks of all of the texture files.

• The model texture information bears no direct relationship with the "globalIndex" numbers since the
information is expressed by texIds only, which are just the texlist entry numbers.

Set NJD_TEXATTR_TYPE_MEMORY

Texname structure

Texname1
Texname2
Texname3
 …

filename
attr
 …

Texlist File Type

filename
attr
 …

Memory Type
Texname structure

Used to create textures through calculations, etc.

Pointer to memory

File name text string pointer

Set NJD_TEXATTR_TYPE_FILE
NGD-33

Ninja Guide
• The correspondence between textures and models is established before the model is drawn by setting as
the current texture the texlist that is to be used. Textures can then be easily substituted by changing
the texlist.

• During current texture registration, the address in texture memory is stored in texaddr. This address is
used by the library.

• Because the texture file is assumed to reside in a specific folder, the path name for a texture file is not
included in the texture file name description in texlist.

• The texture extension ".pvr" is omitted in order to reduce the amount of data.

• The user is responsible for maintaining agreement between texlists and models (object trees). In order to
improve performance, the library does not detect disagreements between the number of textures in a
texlist and the number of textures used in an object tree.

3.3 Ninja Attributes

The attribute defined here is used for "attrflags" of NJS_MATERIAL. The polygon-unit attribute "attrs" is always
NULL. The polygon-unit attribute is used in the Chunk Model.

31-29: SRC Alpha Instruction ?Alpha blending parameter; explained later?
 28-26: DST Alpha Instruction ?Alpha blending parameter; explained later?
 25: Ignore Lights ?Light source enabled/disabled; disabled when "1"?
 24: Flat Shading ?Flat shading ON/OFF?
 23: Double Side ?Double side polygon ON/OFF?
 22: Environment Mapping ?Environment mapping ON/OFF?
 21: Use Texture ?Texture enabled/disabled; enabled when "1"??
 20: Use Alpha ?Alpha enabled/disabled; enabled when "1"?
 19: Ignore Specular ?Ignores specular; disabled when "1"?
 18-17: Flip UV ?Flip control?
 16-15: Clamp UV ?Clamp control?
 14-13: Filter-Mode 0 … Point Sampled(hard spec)
 1 … Bilinear Filter(hard spec)
 2 … Tri-liner Filter(hard spec)
 12: Super-Sample Texture ?Anisotropic Fliter ON/OFF?
 11-8: Mip-Map ‘D’ adjust ?16-step mip-map adjustment; explained later?
 7: Pick Status ?Stroes the status that has been picked?
 6-0: User Flags ?Not used?

• The bit string 25-21, 19, 14-13, 7-0 has a separate meaning for the hardware. This part is masked by the
library, and the control value expected by the hardware is set and used by the library.

• Alpha blending parameter
In the blending function, two RBGA values and SRC and DST, are combined as described below, and the
result is returned to DST.

 DST := SRC * BlendFunction(SRC Alpha Instruction) +

 DST * BlendFunction(DST Alpha Instruction)

31-29 28-26 25 24 23 22 21 20 19 18-17 16-15 14-13 12 11-8 7 6-0
NGD-34

4. Basic Model Specification
Here, a 3-bit instruction is input along with the SRC and DST colors in BlendFunction (Instruction). This function
then returns coefficients that have been weighted by the four alpha values for each RGBA.

"Other Color" and "Inverse Other Color" indicate that the DST color is to be used if specified in the SRC
instruction, or that the SRC color is to be used if specified in the DST instruction.

The addition operation is performed after the coefficients have been determined and the SRC/DST
multiplication operations have been performed. In this case, overflow checking and clamping of the result
that was obtained are performed when appropriate.

• Filter Mode

• Mip-Map ‘D’ adjust

Although the mip-map "D" value is calculated by the drawing engine internally, there are instances where
fine adjustments are made forcibly in order to find meeting points between aliasing and blurring. These
adjustments are made by multiplying the computed "D" value by the specified adjustment value (a 4-bit
unsigned fixed-decimal value with a 2-bit decimal field).

o Specification not permitted

Instruction Field Value Values Returned

Zero 0 (0,0,0,0)

One 1 (1,1,1,1)

‘Other’ Colour 2 (OR, OG,OB,OA)

Inverse ‘Other’ Colour 3 (1 – OR,1- OG,1 - OB,1 - OA)

SRC Alpha 4 (SA, SA, SA, SA)

Inverse SRC Alpha 5 (1- SA, 1 - SA, 1 - SA, 1 - SA)

DST Alpha 6 (DA, DA, DA, DA)

Inverse DST Alpha 7 (1- DA, 1 - DA, 1- DA, 1 - DA)

Field Values Filter Mode

0 Point Sampled

1 Bilinear Filter

2 Tri-linear

3 Reserved

Example ‘D’ Adjust bit pattern Equivalent value

00.00 Illegalo

00.01 0.25

01.00 1.0

11.11 3.75
NGD-35

Ninja Guide
The Ninja flags are defined below. They are labelled as flags, except for those fields that consist of two or
more bits. Other portions are defined separately. Although the UV Flip and Clamp fields are two-bit fields,
they are regarded as flags for U and V, separately. Numerous masks used for extracting these flags are also
defined.

/* SRC Alpha Instr(31-29) */

#define NJD_SA_ZERO (BIT_0) /* 0 zero*/

#define NJD_SA_ONE (BIT_29) /* 1 one*/

#define NJD_SA_OTHER (BIT_30) /* 2 Other Color*/

#define NJD_SA_INV_OTHER (BIT_30|BIT_29) /* 3 Inverse Other Color*/

#define NJD_SA_SRC (BIT_31) /* 4 SRC Alpha*/

#define NJD_SA_INV_SRC (BIT_31|BIT_29) /* 5 Inverse SRC Alpha*/

#define NJD_SA_DST (BIT_31|BIT_30) /* 6 DST Alpha*/

#define NJD_SA_INV_DST (BIT_31|BIT_30|BIT_29) /* 7 Inverse DST Alpha*/

#define NJD_SA_MASK (BIT_31|BIT_30|BIT_29) /* MASK*/

/* DST Alpha Instr(31-29) */

#define NJD_DA_ZERO (0) /* 0 zero*/

#define NJD_DA_ONE (BIT_26) /* 1 one*/

#define NJD_DA_OTHER (BIT_27) /* 2 Other Color*/

#define NJD_DA_INV_OTHER (BIT_27|BIT_26) /* 3 Inverse Other Color*/

#define NJD_DA_SRC (BIT_28) /* 4 SRC Alpha*/

#define NJD_DA_INV_SRC (BIT_28|BIT_26) /* 5 Inverse SRC Alpha*/

#define NJD_DA_DST (BIT_28|BIT_27) /* 6 DST Alpha*/

#define NJD_DA_INV_DST (BIT_28|BIT_27|BIT_26) /* 7 Inverse DST Alpha*/

#define NJD_DA_MASK (BIT_28|BIT_27|BIT_26) /* MASK*/

/* filter mode */

#define NJD_FILTER_POINT (0)

#define NJD_FILTER_BILINEAR(BIT_13)

#define NJD_FILTER_TRILINEAR(BIT_14)

#define NJD_FILTER_BLEND (BIT_14|BIT_13)

#define NJD_FILTER_MASK (BIT_14|BIT_13)

/* Mip-Map ‘D’ adjust */

#define NJD_D_025 (BIT_8) /* 0.25*/

#define NJD_D_050 (BIT_9) /* 0.50*/

#define NJD_D_075 (BIT_9|BIT_8) /* 0.75*/

#define NJD_D_100 (BIT_10) /* 1.00*/

#define NJD_D_125 (BIT_10|BIT_8) /* 1.25*/

#define NJD_D_150 (BIT_10|BIT_9) /* 1.50*/

#define NJD_D_175 (BIT_10|BIT_9|BIT_8) /* 1.75*/

#define NJD_D_200 (BIT_11) /* 2.00*/

#define NJD_D_225 (BIT_11|BIT_8) /* 2.25*/

#define NJD_D_250 (BIT_11|BIT_9) /* 2.50*/

#define NJD_D_275 (BIT_11|BIT_9|BIT_8) /* 2.75*/

#define NJD_D_300 (BIT_11|BIT_10) /* 3.00*/

#define NJD_D_325 (BIT_11|BIT_10|BIT_8) /* 3.25*/

#define NJD_D_350 (BIT_11|BIT_10|BIT_9) /* 3.50*/

#define NJD_D_375 (BIT_11|BIT_10|BIT_9|BIT_8)/* 3.75*/

#define NJD_D_MASK (BIT_11|BIT_10|BIT_9|BIT_8)/* MASK*/
NGD-36

4. Basic Model Specification
/* flags */

#define NJD_FLAG_IGNORE_LIGHT(BIT_25)

#define NJD_FLAG_USE_FLAT (BIT_24)

#define NJD_FLAG_DOUBLE_SIDE(BIT_23)

#define NJD_FLAG_USE_ENV (BIT_22)

#define NJD_FLAG_USE_TEXTURE(BIT_21)

#define NJD_FLAG_USE_ALPHA (BIT_20)

#define NJD_FLAG_IGNORE_SPECULAR(BIT_19)

#define NJD_FLAG_FLIP_U (BIT_18)

#define NJD_FLAG_FLIP_V (BIT_17)

#define NJD_FLAG_CLAMP_U (BIT_16)

#define NJD_FLAG_CLAMP_V (BIT_15)

#define NJD_FLAG_USE_ANISOTROPIC(BIT_12)

#define NJD_FLAG_PICK (BIT_7)

/* Flip and clamp masks */

#define NJD_FLAG_FLIP_MASK (NJD_FLAG_FLIP_U| NJD_FLAG_FLIP_V)

#define NJD_FLAG_CLAMP_MASK\

(NJD_FLAG_CLAMP_U| NJD_FLAG_CLAMP_V)

/* Mask for flags that are sent directly to the hardware */

#define NJD_FLAG_HARD_MASK (NJD_FLAG_USE_ALPHA\

| NJD_FLAG_FLIP_MASK | NJD_FLAG_CLAMP_MASK \

| NJD_FLAG_USE_ANISOTROPIC)

/* Mask for flags that are evaluated by the library */

/* (i.e., masks that are not sent directly to the hardware) */

#define NJD_FLAG_SOFT_MASK (NJD_FLAG_IGNORE_LIGHT\

| NJD_FLAG_USE_FLAT| NJD_FLAG_DOUBLE_SIDE\

| NJD_FLAG_USE_ENV| NJD_FLAG_USE_TEXTURE\

| NJD_FLAG_IGNORE_SPECULAR|NJD_FLAG_PICK)

/* Mask for all flags */

#define NJD_FLAG_MASK (NJD_FLAG_HARD_MASK \

| NJD_FLAG_SOFT_MASK)

/* Default user mask */

#define NJD_DEFAULT_USER_MASK \

(BIT_6|BIT_5|BIT_4|BIT_3|BIT_2|BIT_1|BIT_0)

/* Default system mask */

#define NJD_DEFAULT_SYS_MASK~NJD_DEFAULT_USER_MASK

/* Mask for fields that are sent as is to the hardware */

#define NJD_SYS_HARD_MASK (NJD_SA_MASK|NJD_SD_MASK \

|NJD_FLAG_HARD_MASK|NJD_D_MASK)
NGD-37

Ninja Guide
3.4 Texture Format

The ".pvr" format is used. The converter is "pvrconv". Textures that are embedded in the model converter and are
automatically used in models are wholly converted.
The converter checks the alpha value of the original image, switches the format automatically to one of the
following three formats, and then outputs the image.

If there is no alpha value: Outputs the image in RGB565 format.

If there is an alpha value:Outputs the image in ARGB4444 format.

If the alpha value is 0 or 255:Outputs the image in ARGB1555 format.

In addition, if the texture is square, the converter automatically selects twiddled format; if the texture is rectangular,
the converter automatically selects rectangle format.

twiddled format

With this texture, the pixels are arranged in the order in which they were read out of memory at high speed.
Mip-map can be used. Display is fast.

rectangle format

With this texture, the pixel order is that of the image. Display is slow, compared to twiddled format. Note
that mip-map cannot be used.

Bump mapping

The bump mapping texture is provided for gray scale images. This texture cannot handle RGB color images.
The converter converts the data to a format that is expected by the hardware.

VQ

Performs texture compression using vector quantization. For details, refer to the VQ Specifications.

Specifications for YUV422 and palette texture are pending.

Texture format

An overview of the texture format follows. The format is an IFF-based chunk format (header + size + data).
The data portion consists of the internal data structure as is, as expected by the hardware. Details of this
format are not covered here.
NGD-38

4. Basic Model Specification
The chunk format is as follows:

The bit string that is produced by ORing the color type with the category code is set for the texture type.

/* Color type */

#define NJD_TEXFMT_ARGB_1555(0x00)

#define NJD_TEXFMT_RGB_565 (0x01)

#define NJD_TEXFMT_ARGB_4444(0x02)

#define NJD_TEXFMT_YUV_422 (0x03)

#define NJD_TEXFMT_BUMP (0x04)

#define NJD_TEXFMT_RGB_555 (0x05)

#define NJD_TEXFMT_COLOR_MASK(0xFF)

/* Category code */

#define NJD_TEXFMT_TWIDDLED(0x0100)

#define NJD_TEXFMT_TWIDDLED_MM(0x0200)

#define NJD_TEXFMT_VQ (0x0300)

#define NJD_TEXFMT_VQ_MM (0x0400)

#define NJD_TEXFMT_PALETTIZE4(0x0500)

#define NJD_TEXFMT_PALETTIZE4_MM(0x0600)

#define NJD_TEXFMT_PALETTIZE8(0x0700)

#define NJD_TEXFMT_PALETTIZE8_MM(0x0800)

#define NJD_TEXFMT_RECTANGLE(0x0900)

#define NJD_TEXFMT_STRIDE (0x0B00)

#define NJD_TEXFMT_SMALLVQ (0x1000)

#define NJD_TEXFMT_SMALLVQ_MM(0x1100)

#define NJD_TEXFMT_TYPE_MASK(0xFF00)

‘PVRT’ (chunk name) Uint32

Texture data
The size and contents are
determined by the texture
type. This is a block of the
internal data that is set in
the hardware.

IFF-format header. If the chunk name is
unknown, the byte size is used to skim
over the data up to the next chunk.

IFF-format header. If the chunk name is
unknown, the byte size is used to skim
over the data up to the next chunk.

Byte size (data size) Uint32

Texture type Uint32

Width Uint16 Height Uint16
NGD-39

Ninja Guide
Aside from the PVRT chunk, the GBIX and PVRI chunks are defined in Ninja.

Specifies the "globalIndex" for the texture. When using a pvr file in Ninja, this chunk is placed at the top
of the file.

This filed stores the texture control data. The details are currently under study.

’GBIX’ (chunk nameUint32)

4 (byte) Uint32

globalindex Uint32

’PVRI’ (chunk name) Uint32

Byte size Uint32

Data

texture control data
NGD-40

5. Motion Specification
1 Overview
Ninja defines model, camera, and light motion in a single structure.

Data arrays are used as keyframe setting units, with pointer tables defining the entire motion. This method uses
motion only in the required sections, and keyframe interpolation can be performed for each parameter. Also, it is
possible to reuse common motion parts for camera and light.

2 Object Structure
The object structure can be linked to other objects with child and sibling pointers, creating a parent/child hierarchic
model. Motion in the hierarchic model is implemented by tracing the layers in the order child/sibling and
combining the sorted motion data for the nodes in this sequence with the "pos", "ang", and "scl" values of the object
structure. The "evalflags" serve for suppressing matrix processing and controlling other motion options. For
information on the model data structure, refer to the Basic Model Specifications and the Chunk Model
Specifications.

2.1 Basic object structure

typedef struct obj {

 Uint32 evalflags; /* Evaluation method optimization*/

 NJS_MODEL *model; /* Model structure pointer*/

 Float pos[3]; /* Parallel motion*/

 Angle ang[3]; /* Rotation*/

 Float scl[3]; /* Scale*/

 struct obj *child; /* Child object pointer*/

 struct obj *sibling; /* Sibling object pointer*/

 } NJS_OBJECT;
NGD-41

Ninja Guide
2.2 Chunk object structure

typedef struct cnkobj {

 Uint32 evalflags; /* Evaluation method optimization*/

 NJS_CNK_MODEL *model; /* Model structure pointer*/

 Float pos[3]; /* Parallel motion*/

 Angle ang[3]; /* Rotation*/

 Float scl[3]; /* Scale*/

 struct obj *child; /* Child object pointer*/

 struct obj *sibling; /* Sibling object pointer*/

 } NJS_CNK_OBJECT;

• Gives the parent/child structure of the model.

• Polygons and TRIMESHes (continuous polygons) are set in "model".

2.3 Explanation of evalflags

 #define NJD_EVAL_UNIT_POSBIT_0/* Motion can be ignored */

 #define NJD_EVAL_UNIT_ANG BIT_1/* Rotation can be ignored */

 #define NJD_EVAL_UNIT_SCL BIT_2/* Scale can be ignored */

 #define NJD_EVAL_HIDE BIT_3/* Do not draw model */

 #define NJD_EVAL_BREAK BIT_4/* Break child trace */

 #define NJD_EVAL_ZXY_ANG BIT_5

 /* Specification for evaluation of rotation expected by LightWave3D */

 #define NJD_EVAL_SKIPBIT_6

 /* Skip motion */

 #define NJD_EVAL_SHAPE_SKIPBIT_7

 /* Skip shape motion */

 #define NJD_EVAL_MASK0xff

 /* Mask for extracting above bits */

These flags are set by the converter.

• NJD_EVAL_UNIT_POS is set when the parallel motion amount is "0". Parallel motion matrix processing
is omitted when this flag is set.

• NJD_EVAL_UNIT_ANG is set when the rotation angle is "0". Rotation matrix processing is omitted when
this flag is set.

• NJD_EVAL_UNIT_SCL is set when the scale is "1" for x, y, and z. Scale matrix processing is omitted when
this flag is set.

• If NJD_EVAL_UNIT_POS, NJD_EVAL_UNIT_ANG, and NJD_EVAL_UNIT_SCL are all set, all matrix
processing steps are omitted, and the matrix "push pop" operation is also omitted.

• The NJD_EVAL_HIDE is set by the user. If this flag is set, the model is not drawn. This flag is used when
switching the gun or blade with which a model is equipped.

• The NJD_EVAL_BREAK is set by the user. If this flag is set, the child search is halted at this point. For
example, setting this flag in the root node causes the entire model to disappear. When
NJD_EVAL_BREAK is used in combination with motion, data coordination is lost. Therefore this flag
should only be used in the root node. It can be used in intermediate nodes, but the user is responsible for
such usage.
NGD-42

5. Motion Specification
• The rotation evaluation sequence for LightWave3D is "ZXY". Because this sequence is normally "XYZ" in
Ninja, the NJD_EVAL_ZXY_ANG is provided for execution via a library with the LightWave3D
evaluation sequence. When this flag is set to ON, the rotation processing sequence is changed to "ZXY".

• The NJD_EVAL_SKIP indicates that this node does not include motion data. During motion execution,
matrix processing is carried out using the object structure value without incrementing the motion node,
and then proceeds to the next node. This allows motion also with polygon models having a different
configuration, provided that the bone structure is the same.

• The NJD_EVAL_SHAPE_SKIP indicates that this node does not include shape motion data.

3 Camera Structure
The camera structure is as described below.

The motion parameters are position, vector, roll, and angle.

 NJS_CAMERA structure

 typedef struct{

 Float px, py, pz; (Camera position)

 Float vx, vy, vz; (Camera vector in unit direction [Local Z axis])

 Angle roll; (Camera roll)

 Angle ang; (Camera angle)

 Float n_clip; (Near clip)

 Float f_clip; (Far clip)

 NJS_VECTOR ?????? (Camera local X, Y axis)

 } NJS_CAMERA

4 Light Structure
The light structure is as described below.

The motion parameters are position, vector, and color. For the spotlight, additional motion parameters are near
limit value, far limit value, inner limit angle, and outer limit angle. For a detailed explanation of the light structure,
refer to the section "Light Settings".

 NJS_LIGHT structure

 struct {

 NJS_MATRIX mtrx; ?Light source matrix?

 NJS_POINT3 pnt; ?Light source position?

 NJS_VECTOR vctr; ?Light source vector in unit direction?

 BOOL stat; ?Status: light source used/not used?

 Int reserve; ?Reserved)

 NJS_LIGHT_CAL ltcal; ?Light calculation structure?

 NJS_LIGHT_ATTR attr; ?Attribute structure?

 } NJS_ LIGHT;

 <stat>

 #define NJD_LIGHT_ON Reflects light

 #define NJD_LIGHT_OFF Does not reflect light

NGD-43

Ninja Guide
 NJS_LIGHT_ATTR structure

 struct {

 Int lsrc; ?Light source type?

 Float ispc; ?Specular light intensity: 0 to 1?

 Float idif; ?Diffuse intensity: 0 to 1?

 Float iamb; ?Ambient intensity: 0 to 1?

 Float nrang; ?Distance for maximum light intensity:
near limit value?

 Float frang; ?Distance for light intensity cutoff:
far limit value?

 void* func; ?Callback function pointer?

 Angle iang; ?Angle for maximum light intensity:
inner limit angle?

 Angle oang; ?Angle for light intensity cutoff:
outer limit angle?

 NJS_ARGB argb; ?Light color?

 } NJS_ LIGHT_ATTR

 <lsrc>

 Light source type

 #define NJD_SPOT_LIGHT Spotlight

 #define NJD_DIR_LIGHT Parallel light source

 #define NJD_POINT_LIGHT Point light

 #define NJD_AMBIENT Ambient light

 #define NJD_SPEC_DIR Parallel beam highlight

 #define NJD_SPEC_POINT Point beam highlight

 #define NJD_LAMBERT_DIR Parallel beam Lambert

 #define NJD_LAMBERT_POINT Point beam Lambert

 #define NJD_PHONG_DIR Parallel beam Phong

 #define NJD_PHONG_POINT Point beam Phong

 #define NJD_USER_LIGHT User-defined light

 #define NJD_BLOCK_LIGHT Block light

·

 ·

 ·

 <ispc, idif, iamb>

 Light balance (as per equation below)

 SPECULAR(R,G,B) x ispc + DIFFUSE(R,G,B) x idif + AMBIENT(R,G,B) x iamb

 Upper limit (lower lamp) is clamped.

 <near, far>

 Effective light range (distance) as specified by NJD_POINT_LIGHT (point light source), NJD_SPOT_LIGHT
(spot light source), etc.

 nrang Distance limit value where light is at upper limit value. Default: 1.f

 frang Distance limit value where light processing is performed. Default: 65535.f
NGD-44

5. Motion Specification
 <iang, oang>

 Effective light range (distance) as specified by NJD_SPOT_LIGHT (spot light source), etc.

 iang Angle limit value where light is at upper limit value. Default: (DEG)10.f

 oang Angle limit value where light processing is performed. Default: (DEG)30.f

Figure 1.1 Diagram of Structure

frang

nrang

Light Source

near

oang

Light Source

iang

far

Example: spotlight Example: point light source
NGD-45

Ninja Guide
5 Motion Structures

NJS_ACTION structure

typedef struct {
 NJS_OBJECT *object; /* Pointer to the top of the object tree */
 NJS_MOTION *motion; /* Motions */
 } NJS_ACTION;

Gives pairings of objects and motions.

NJS_MOTION structure Motion for element No. 1

Motion for element No. 1

typedef struct {
 void *mdata; /* Array for object tree */
 Uint16 nbFrame; /* Number of motion frames */
 Uint16 type; /* Motion element bit string */

 } NJS_MOTION;

NJD_MTYPE_POS_0 (1<<0)
NJD_MTYPE_ANG_1 (1<<1)
NJD_MTYPE_SCL_2 (1<<2)
NJD_MTYPE_SHAPE_3 (1<<3)
NJD_MTYPE_VEC_4 (1<<4)
NJD_MTYPE_ANG_X_5 (1<<5)

typedef struct {
 Uint32 keyframe;
 Float key[3];
} NJS_MKEY_F;

typedef struct {
 Uint32 keyframe;
 Float key[3];
} NJS_MKEY_F;

NJS_MDATA1 structure
Under reviewNJS_SHAPE structure

Float-type keyframe (pos, scl, vec)NJS_MKEY_F structure

Angle-type keyframe (ang)

The specifications for SCENE and SHAPE are being reviewed

NJS_MKEY_A structure

Substitute “3” for “2” in NJS_MDATA2

Substitute “4” for “3” in NJS_MDATA2

Motion for element No. 2

typedef struct {
 void *p[1]; /* Motion pointer */
 Uint32 nb[1]; /* Number of keyframes */
} NJS_MDATA1;

typedef struct {
 void *p[2]; /* Motion pointer */
 Uint32 nb[2]; /* Number of keyframes */
} NJS_MDATA2;

NJS_MDATA2 structure

Motion for element No. 3NJS_MDATA3 structure

Motion for element No. 3NJS_MDATA3 structure
NGD-46

5. Motion Specification
5.1 Explanation of Structure

 Action structure for model

 typedef struct {

 NJS_OBJECT *object;/* Pointer to the top of the object tree*/

 NJS_MOTION *motion;/* Motion list*/

 } NJS_ACTION;

• "object" has a tree structure with a parent-child hierarchy.

• "motion" sets the motion that is to be applied to "object".

 Action structure for camera

 typedef struct {

 NJS_CAMERA *camera;/* Pointer to camera structure*/

 NJS_MOTION *motion;/* Motion list*/

 }NJS_CACTION

 Action structure for light

 typedef struct {

 NJS_LIGHT *light;/* Pointer to light structure*/

 NJS_MOTION *motion;/* Motion list*/

 }NJS_LACTION

 Motion structure

 typedef struct {

 void *mdata;/* Array for object tree*/

 Uint32 nbFrame;/* Number of motion frames*/

 Uint16 type; /* Motion element bit string*/

 Uint16 inp_fn;/* Interpolation method and number of elements*/

 ?NJS_MOTION;

• "mdata" contains, in the form of an array, a number of NJS_MDATA sufficient for all of the NJS_OBJECTs
included in the object tree.

• For NJS_MDATA, the NJS_MDATA1 to 5 structures are used according to the number of motion
configuration elements.

 #define NJD_MTYPE_POS_0 (1<<0) /* Uses NJS_MKEY_F*/

 #define NJD_MTYPE_ANG_1 (1<<1) /* Uses NJS_MKEY_A*/

 #define NJD_MTYPE_SCL_2 (1<<2) /* Uses NJS_MKEY_F*/

 #define NJD_MTYPE_VEC_3 (1<<3) /* Uses NJS_MKEY_F*/

 #define NJD_MTYPE_VERT_4 (1<<4) /* Uses NJS_MKEY_P*/

 #define NJD_MTYPE_NORM_5 (1<<5) /* Uses NJS_MKEY_P*/

 #define NJD_MTYPE_TARGET_3(1<<6) /* Uses NJS_MKEY_F*/

 #define NJD_MTYPE_ROLL_6 (1<<7) /* Uses NJS_MKEY_A1*/

 #define NJD_MTYPE_ANGLE_7 (1<<8) /* Uses NJS_MKEY_A1*/

 #define NJD_MTYPE_RGB_8 (1<<9) /* Uses NJS_MKEY_UI32*/

 #define NJD_MTYPE_INTENSITY_9(1<<10)/* Uses NJS_MKEY_F1*/

 #define NJD_MTYPE_SPOT_10 (1<<11)/* Uses NJS_MKEY_SPOT*/

 #define NJD_MTYPE_POINT_10(1<<12)/* Uses NJS_MKEY_F2*/
NGD-47

Ninja Guide
• When normal motion includes the three elements of parallel motion ("pos"), rotation ("ang") and scale
("scl"), NJS_MDATA3 is used. The number at the end of the label gives the order of the motion elements.

• The vector component "vec" is used in conjunction with "pos" in light source and camera motion.

• The interpolation calculation method is specified by the two most significant bits of "inp_fn".
 #define NJD_MTYPE_LINER 0x0000/* Linear interpolation*/

 #define NJD_MTYPE_SPLINE 0x0040/* Spline interpolation*/

 #define NJD_MTYPE_USER 0x0080/* User function interpolation*/

 #define NJD_MTYPE_MASK 0x00c0/* Sampling mask*/

• The element number that indicates which structure is being used is stored in the least significant four bits
of "inp_fn".

 NJS_MDATA1 to 5 structure

 typedef struct {

 void *p[1]; /* Motion pointer*/

 Uint32 nb[1]; /* Number of keyframes*/

 } NJS_MDATA1;

 typedef struct {

 void *p[2]; /* Motion pointer*/

 Uint32 nb[2]; /* Number of keyframes*/

 } NJS_MDATA2;

 typedef struct {

 void *p[3]; /* Motion pointer */

 Uint32 nb[3]; /* Number of keyframes */

 } NJS_MDATA3;

• All data are expressed as keyframes.

• Number of motion keyframes of p[i] element is inserted in nb[i].

7 6 0

inp_fn

Interpolation Element number
NGD-48

5. Motion Specification
MDATA4 and MDATA5 are defined for the light source. MDATA5 is used only for spotlight

light sources.

 typedef struct {

 void *p[4]; /* Motion pointer*/

 Uint32 nb[4]; /* Number of keyframes*/

 } NJS_MDATA4;

 typedef struct {

 void *p[5]; /* Motion pointer*/

 Uint32 nb[5]; /* Number of keyframes*/

 } NJS_MDATA5;

 Key structure

 typedef struct {

 Uint32 keyframe; /* Keyframe number*/

 Float key[3]; /* Float type key value (array 3)*/

 } NJS_MKEY_F;

• Used for parallel motion (POS), scale (SCL), and vector (VEC).

 typedef struct {

 Uint32 keyframe; /* Keyframe number*/

 Angle key[3]; /* Angle type key value (array 3)*/

 } NJS_MKEY_A;

• Used for rotation (ANG).

 typedef struct {

 Uint32 keyframe; /* Keyframe number*/

 Void *key; /* Pointer*/

 } NJS_MKEY_P;

• Used for shape (SHAPE).

 typedef struct {

 Uint32 keyframe; /* Keyframe number */

 Uint32 key; /* Unsigned int32 type key value */

 } NJS_MKEY_UI32;

• Used for light color.

 typedef struct {

 Uint 32 keyframe; /* Keyframe number */

 Sint32 key; /* Signed int32 type key value */

 } NJS_MKEY_A1;

• Used for camera roll (ROLL) and angle (ANGLE).

typedef struct {

 Uint32 keyframe; /* Keyframe number */

 Float key; /* Float type key value */

 } NJS_MKEY_F1;
NGD-49

Ninja Guide
• Used for light intensity (INTENSITY) and angle (ANGLE).

 typedef struct {

 Uint32 keyframe; /* Keyframe number */

 Float key[2]; /* Float type key value (array 3) */

 } NJS_MKEY_F2;

• Used for point light source (POINT).

 typedef struct {

 Uint32 keyframe;/* Keyframe number */

 Float near;/* Float type / near limit value key value */

 Float far;/* Float type / far limit value key value */

 Angle iang;/* Angle type / inner limit angle key value */

 Angle oang;/* Angle type / inner limit angle key value */

 } NJS_MKEY_SPOT;

• Used for spotlight (SPOT).
NGD-50

5. Motion Specification
6 Object Motion

Figure 1.2 Diagram of Structure

Object Tree

NJS_ACTION
 *object;
 *motions;

Example: For "pos" only, NJS_MDATA1 is used because there is only one element.
NJS_MOTION structure type = NJD_MKEY_POS_0;
NJS_MKEY_F pos[] = {, , , ...};
NJS_MDATA1 mdata[] = {{pos, poskey_n}, ...};

Example: For "pos" ,"ang", and "scl", NJS_MDATA3 is used because there are three elements.
type = NJD_MTYPE_POS_0 | NJD_MTYPE_ANG_1 | NJD_MTYPE_SCL_2;
MKEY_F pos[] = {, , , ...};
MKEY_A ang[] ={, , , ...};
MKEY_F scl[] = {, , ,...};
MDATA3 mdata[] = {{pos, ang, scl, poskey_n, angkey_n, sclkey_n}, ...};

Example: For "pos" and "vec" for a light source, NJS_MDATA2 is used because there are two elements.
type = NJD_MTYPE_POS_0 | NJD_MTYPE_VEC_4;
NJS_MKEY_F pos[] = {, , , ...};
NJS_MKEY_F vec[] ={, , , ...};
NJS_MDATA2 mdata[] = {{pos, vec, poskey_n, veckey_n}, ...};

NJS_MOTION
 *mdata;
 type;

NJS_MDATA1 4
 *p[n];
 nb[n];

NJS_OBJECT

NJS_MDATA array

Trace of tree

1:1 correspondence

Gives parent-child hierarchy of model.
NGD-51

Ninja Guide
6.1 Explanation of Structure

• All motion is given by keyframe data.

• The user executes motion using linear interpolation of keyframe data and spline.

• The interpolation method can be defined by the user in the Ninja library through the callback function
(Currently unsupported).

• The keyframe numbers start from zero. The negative value cannot be used.

• Object motion has the above five elements.

• Because of problems that can occur when implementing the library, the shape data "Vertex" and "Normal"
are output as separate data (.nas) from the "Position", "Angle", and "Scale data (.nam). The maximum
number of elements therefore is three. The structures NJS_MDATA1 through NJS_MDATA3 are provided
for object motion. NJS_MDATA4 and NJS_MDATA5 are defined for light source and camera.

• The pointers for the storage of each NJS_MDATA element are void, and in all cases it is necessary to
stipulate the data storage order.

 #define NJD_MTYPE_POS_0(1<<0) /* Use NJS_MKEY_F*/

 #define NJD_MTYPE_ANG_1 (1<<1) /* Use NJS_MKEY_A*/

 #define NJD_MTYPE_SCL_2 (1<<2) /* Use NJS_MKEY_F*/

 #define NJD_MTYPE_VEC_3 (1<<3) /* Use NJS_MKEY_F*/

 #define NJD_MTYPE_VERT_4 (1<<4) /* Use NJS_MKEY_P*/

 #define NJD_MTYPE_NORM_5 (1<<5) /* Use NJS_MKEY_P*/

• The numbers indicated at the end of the "define" character string indicate the order of the data, with the
newest data coming first. The above flags are set to the motion structure member type.

 Example: For "pos" and "ang"

 type = NJD_MTYPE_POS_0 | NJD_MTYPE_ANG_1;

 mdata[] = {pos, ang, ...}

• The motion interpolation method is specified by the upper 2 bits of "type".

 #define NJD_MTYPE_LINER 0x0000

 #define NJD_MTYPE_SPLINE 0x0040

 #define NJD_MTYPE_USER 0x0080

 #define NJD_MTYPE_MASK 0x00c0

Position Parallel motion

 Angle Rotation

 Scale Enlargement/reduction

 Vertex Animation by polygon vertex motion (shape)

 Normal Normal line for animation by polygon verte
NGD-52

5. Motion Specification
• NJD_MTYPE_LINER indicates linear interpolation.

• NJD_MTYPE_SPLINE indicates spline interpolation.

• NJD_MTYPE_USER indicates interpolation through a user-defined routine.

• The root is "pos" and "ang"; in other cases, such as an "ang"-only motion model, the NJS_MDATA2
structure is used. A non-root "pos" is handled by using the NULL pointer.

 type = NJD_MTYPE_POS_0 | NJD_MTYPE_ANG_1;

 NJS_MDATA2 mdata[] = {

 {*pos1, *ang1},

 {NULL, *ang2},

 {NULL, *ang3},

 }

• Note that in the above example, "ang2" and "ang3" must not be directly adjacent to "NULL".

7 Camera Motion
Because camera does not use a parent/child hierarchic configuration, it is basically the same as a motion structure
for a single object.

The action structure uses NJS_CACTION.

Camera has the following four elements:

• Position (POS)

• Vector (VEC) or target (TARGET)

• Roll (ROLL)

• Angle (ANGLE)

These use NJS_MTYPE_1 through NJS_MTYPE_4, as required.

 #define NJD_MTYPE_POS_0(1<<0) /* Uses NJS_MKEY_F*/

 #define NJD_MTYPE_VEC_3 (1<<3) /* Uses NJS_MKEY_F*/

 #define NJD_MTYPE_TARGET_3(1<<6) /* Uses NJS_MKEY_F*/

 #define NJD_MTYPE_ROLL_6 (1<<7) /* Uses NJS_MKEY_A1*/

 #define NJD_MTYPE_ANGLE_7 (1<<8) /* Uses NJS_MKEY_A1*/

"Vec" stands for vector, and "Target" for the target position.

The common "3" in NJD_MTYPE_VEC_3 and NJD_MTYPE_TARGET_3 means that these cannot be used
simultaneously.

• Free camera (with direction as vector)
type=NJD_MTYPE_POS_0|NJD_MTYPE_VEC_3|NJD_MTYPE_ROLL_6|NJD_MTYPE_ANGLE_7;

• Target camera (with direction as target position and image angle animation)
type=NJD_MTYPE_POS_0|NJD_MTYPE_TERGET_3|NJD_MTYPE_ROLL_6|NJD_MTYPE_ANGLE_7;

• Interpolation method is specified with the upper 2 bits of "inp_fn". This is the same as for object motion.
NGD-53

Ninja Guide
8 Light Motion
Because light does not use a parent/child hierarchic configuration, it is basically the same as a motion structure for
a single object.

The action structure uses NJS_LACTION.

Light motion objects are either point light source, parallel light source, or spotlight.

Point light source has the following four elements:

• Position (POS)

• Range (POINT)

• Color (RGB)

• Intensity (INTENSITY)

The range element is comprised in the near limit value (NearRange) and far limit value (FarRange).

Parallel light source has the following four elements:

• Position (POS)

• Vector (VEC) or target (TARGET)

• Color (RGB)

• Intensity (INTENSITY)

For the spotlight, the four elements of the parallel light source are comprised in the near limit value (near),
far limit value (far), inside limit angle (iang), and outside limit angle (oang). With the addition of the

• Spot (SPOT))

element, the total number of elements is five.

Therefore the parallel light source uses NJS_MDATA_1 through NJS_MDATA_4, and the spot light uses
NJS_MDATA_1 through NJS_MDATA_5.

 #define NJD_MTYPE_POS_0(1<<0) /* Uses NJS_MKEY_F*/

 #define NJD_MTYPE_VEC_3 (1<<3) /* Uses NJS_MKEY_F*/

 #define NJD_MTYPE_TARGET_3(1<<6) /* Uses NJS_MKEY_F*/

 #define NJD_MTYPE_RGB_8 (1<<9) /* Uses NJS_MKEY_UI32*/

 #define NJD_MTYPE_INTENSITY_9(1<<10)/* Uses NJS_MKEY_F1*/

 #define NJD_MTYPE_SPOT_10 (1<<11)/* Uses NJS_MKEY_SPOT*/

 #define NJD_MTYPE_POINT_10(1<<12)/* Uses NJS_MKEY_F2*/

"Vec" stands for vector, and "Target" for the target position.

The common "3" in NJD_MTYPE_VEC_3 and NJD_MTYPE_TARGET_3, and the common "10" in
NJD_MTYPE_SPOT_10 and NJD_MTYPE_POINT_10 means that these cannot be used simultaneously.
NGD-54

5. Motion Specification
Type setting examples

• Point light source

type=NJD_MTYPE_POS_0|NJD_MTYPE_RGB_8|NJD_MTYPE_INTENSITY_9| NJD_MTYPE_POINT_11 ;

• Parallel light source (with direction as vector)

type=NJD_MTYPE_POS_0|NJD_MTYPE_VEC_3 |NJD_MTYPE_RGB_8| NJD_MTYPE_INTENSITY_9;

• Spot light source (with direction as target)
type=NJD_MTYPE_POS_0|NJD_MTYPE_TERGET_3 |NJD_MTYPE_RGB_8
|NJD_MTYPE_INTENSITY_9|NJD_MTYPE_SPOT_10 ;

Interpolation method is specified with the upper 2 bits of "inp_fn". This is the same as for object motion.

9 Other Information
The start of the light file contains the following data, which contain alignment settings intended for SH:

?if USE_LIGHT_ALIGN

?pragma USE_ALIGNDATA(LightName)

?endif
NGD-55

Ninja Guide
NGD-56

6. NINJA LIGHT
1 How to set LIGHT

1.1 void njCreateLight(NJS_LIGHT*, Int)

Parameter: NJS_LIGHT*ptr

Int lsrc

Description: This function defines the kind of light source lsrc and
registers Light ptr newly.

Return Value: None

Remarks: None

1.2 void njDeleteLight(NJS_LIGHT*)

Parameter: NJS_LIGHT*ptr

Description: This function deletes created Light ptr.

Return Value: None

Remarks: None

1.3 void njLightOff(NJS_LIGHT*)

Parameter: NJS_LIGHT*ptr

Description: This function does not reflect set Light ptr.

Return Value: None

Remarks: You can use macro.
NGD-57

Ninja Guide
1.4 void njLightOn(NJS_LIGHT*)

Parameter: NJS_LIGHT*ptr

Description: This function reflects set Light ptr in the model.

Return Value: None

Remarks: You can use macro.

1.5 void njMultiLightMatrix(NJS_LIGHT*, NJS_MATRIX*)

Parameter: NJS_LIGHT*ptr

NJS_MATRIX*m

Description: This function multiples Light matrix registered by
njCreateLight and matrix m.

Return Value: None

Remarks: The scale factor should not be included in Matrix m.

1.6 void njSetLight(NJS_LIGHT*)

Parameter: NJS_LIGHT*ptr

Description: This function registers Light ptr newly which is already
defined by tools.

Return Value: None

Remarks: None

1.7 void njSetLightAlpha(NJS_LIGHT*, Float)

Parameter: NJS_LIGHT*ptr

Float alpha

Description: This function sets alpha value for the light registered
by njCreateLight.

Return Value: None

Remarks: TBS

1.8 void njSetLightAngle(NJS_LIGHT*, NJS_Angle, NJS_Angle)

Parameter: NJS_LIGHT*ptr

 NJS_Angleiang

 NJS_Angleoang

Description: This function sets limit angle value for the light registered
by njCreateLight.

Return Value: None

Remarks: Only spot light is used (for now)

1.9 void njSetLightColor(NJS_LIGHT*, Float, Float, Float)

Parameter: NJS_LIGHT*ptr

 Float red

 Float green

 Float blue

Description: This function sets RGB value for the light registered
by njCreateLight.

Return Value: None

Remarks: None
NGD-58

6. NINJA LIGHT
1.10 void njSetLightDirection(NJS_LIGHT*, Float, Float, Float)

Parameter: NJS_LIGHT*ptr

 Float dx

 Float dy

 Float dz

Description: This function sets the light source direction for the
light registered by

 njCreateLight.

Return Value: None

Remarks: Only parallel light source and spotlight are used.(for now)

1.11 void njSetLightIntensity(NJS_LIGHT*, Float, Float, Float)

Parameter: NJS_LIGHT*ptr

 Float spc

 Float dif

 Float amb

Description: This function sets the intensity of light registered
by njCreateLight.

Return Value: None

Remarks: None

1.12 void njSetLightLocation(NJS_LIGHT*, Float, Float, Float)

Parameter: NJS_LIGHT*ptr

 Float px

 Float py

 Float pz

Description: This function sets the location of light registered
by njCreateLight.

Return Value: None

Remarks: Only point light source and spotlight is used. (for now)

1.13 void njSetLightRange(NJS_LIGHT*, Float, Float)

Parameter: NJS_LIGHT*ptr

 Float nrang

 Float frang

Description: This function sets limit range value for the light
registered by njCreateLight.

Return Value: None

Remarks: Only point light source and spotlight is used. (for now)
NGD-59

Ninja Guide
1.14 void njSetUserLight(NJS_LIGHT*, NJF_LIGHT_FUNC*)

Parameter: NJS_LIGHT*ptr

NJF_LIGHT_FUNC func

Description: This function sets user setting light function func for Light
ptr.

Return Value: None

Remarks: None

1.15 void njUnitLightMatrix(NJS_LIGHT*)

Parameter: NJS_LIGHT*ptr

Description: This function sets light matrix registered by njCreateLight as
unit matrix

Return Value: None

Remarks: None

1.16 void njTranslateLightV(NJS_LIGHT*, NJS_VECTOR*)

Parameter: NJS_LIGHT*ptr

 NJS_VECOTR *vctr

Description: This function translates light matrix registered by
njCreateLight in the direction of vector vctr.

Return Value: None

Remarks: None

1.17 void njTranslateLight(NJS_LIGHT*, Float, Float, Float)

Parameter: NJS_LIGHT *ptr

 Float tx

 Float ty

 Float tz

Description: This function translates light matrix registered by
njCreateLight in the direction

 of (tx, ty, tz).

Return Value: None

Remarks: None

1.18 void njRotateLightX(NJS_LIGHT*, NJS_Angle)

Parameter: NJS_LIGHT*ptr

 NJS_Angleang

Description: This function rotates light matrix registered by njCreateLight
around X axis at ang angle.

Return Value: None

Remarks: None
NGD-60

6. NINJA LIGHT
1.19 void njRotateLightXYZ(NJS_LIGHT*, NJS_Angle,

NJS_Angle, NJS_Angle)

Parameter: NJS_LIGHT*ptr

 NJS_Anglexang

 NJS_Angleyang

 NJS_Anglezang

Description: This function rotates light matrix resgistered by
njCreateLight around XYZ axis.

Return Value: None

Remarks: None

1.20 void njRotateLightY(NJS_LIGHT*, NJS_Angle)

Parameter: NJS_LIGHT*ptr

NJS_Angleang

Description: This function rotates light matrix registered by
njCreateLight around Y axis

 at ang angle.

Return Value: None

Remarks: None

1.21 void njRotateLightZ(NJS_LIGHT*, NJS_Angle)

Parameter: NJS_LIGHT*ptr

NJS_Angleang

Description: This function rotates light matrix registered by
njCreateLight around Z axis

 at ang angle.

Return Value: None

Remarks: None

1.22 Macro

 NJS_LIGHT * l

 #define NJM_LIGHT_INIT_VECTOR(l)l->vctr (The vector of initial light)

 #define NJM_LIGHT_INIT_POINT(l)l->pnt(The point of initial light)

 #define NJM_LIGHT_MATRIX(l)l->mtrx (The matlrix of light)

 #define NJM_LIGHT_VECTOR(l)(l->ltcal).lvctr(The present vector of light)

 #define NJM_LIGHT_POINT(l)(l->ltcal).lpnt(The present point of light)

 #define NJM_LIGHT_AMB(l) (l->ltcal).amb(The intensity of ambient light)

 #define NJM_LIGHT_DIF(l) (l->ltcal).dif(The intensity of diffused light)

 #define NJM_LIGHT_SPC(l) (l->ltcal).spc(The intensity of specular light)

 #define NJM_LIGHT_EXP(l) (l->ltcal).exp(The Index number:exponent
for specular)

 #define NJM_LIGHT_COLOR(l)(l->attr).argb(The color of light)
NGD-61

Ninja Guide
1.23 How to use

The calculation of light source is based on the light structure which describes necessary light information such as
location, direction, color and kind of light. Light structure is set by 2 kinds of light function.

Light function njCreateLight is generally used and creates new light structure based on the kinds of light source
which are defined by arguments. You can add more detail light source information by using functions
njSetLight...

The other way for setting light structure is the way to use njSetLight. This way is used for the structure for which
light source information has already been set.

Please note that it registers light source (=light structure) only.

The registered light source is reflected on the model by default.Then if you want to stop calculation of light source
for a certain model, you must set njLightOff before drawing model.

Please note that njLightOff and njLightOn keep current status.

Please refer to Reference for more detail information about functions, arguments, structures etc.

Example1) Sets Light lt1 as spotlight and Lightlt2 as ambient light + point light source
(Lambert model).

#include <ninja.h>

.......

// Declare Light.

NJS_LIGHT lt1, lt2;

.......

// This is initial routine

/* Initialize and register Light.*/

njCreateLight(<1, NJD_SPOT_LIGHT);

njSetLightAngle(<1, DegToAngle(30.f), DegToAngle(60.f));

njSetLightRange(<1, 1000.f, 1500.f);

njSetLightLocation(<1, 0.f, 10.f, 15.f);

njSetLightDirection(<1, 0.f, 1.f, 0.f);

njSetLightColor(<1, 1.f, 0.f, 0.f);

njCreateLight(<2, NJD_LAMBERTIAN_POINT);

/*Set various Light property.*/

njSetLightColor(<2, 0.5f, 0.5f, 0.5f);

njSetLightIntensity(<2, 0.f, 1.f, 1.f); // Default intensity is (1.f, 1.f, 1.f).

njSetLightRange(<2, 100.f, 1500.f);

.......
NGD-62

6. NINJA LIGHT
// Drawing routine is as follows.

while(-1)

{

.......

/* Reflect Light lt1, lt2 on the model. */

njDrawModel(...);

.......

/* Remove Light lt2. */

njLightOff(lt2);

/* Reflect Light lt1 on the model. */

njDrawModel(...);

/* Reflect Light lt2 on the model. */

njLightOn(lt2);

.......

}

Example2) Changes spot light color of Light lt1 by branch processing and add

 parallel light source lt3 newly.

.......

/* Change color of Light lt1. */

njSetLightColor(<1, 0.f, 1.f, 1.f);

/* Initialize and register Light. */

njCreateLight(<3,NJD _ DIRECTIONAL_LIGHT);

/* Set various kinds of Light property. */

njSetLightDirection(<3, 1.f, 0.f, 0.f);

njSetLightIntensity(<3, 0.f, 1.f, 1.f);

.......

// Drawing routine is as follows.

while(-1)

{

.......

/* Reflect Light lt1, lt2, lt3on the model. */

njDrawModel(...);

.......

}

NGD-63

Ninja Guide
Example 3) Sets user functions for Light lt.

//Set up user functions .(The arguments of functions is as follows.)

void

userfunc(NJS_ARGB* argb, NJS_POINT3* pnt, NJS_VECTOR* nml, NJS_LIGHT_PTR light)

{

.......

// Internal product of polygon normal vector and direction of light

deg = - nml->x * NJM_LIGHT_VECTOR(light). x

 - nml->y * NJM_LIGHT_VECTOR(light).y

 - nml->z * NJM_LIGHT_VECTOR(light).z;

argb->a = deg * NJM_LIGHT_DIF(light).a;

argb->r = deg * NJM_LIGHT_DIF(light).r;

argb->g = deg * NJM_LIGHT_DIF(light).g;

argb->b = deg * NJM_LIGHT_DIF(light).b;

}

//Main routine (omit some part)

.......

njCreateLight(<, NJD_USER_LIGHT);

.......

/*Set User function userfunc for Light lt*/

njSetUserLight (<, userfunc);

/*Color setting for Light lt*/

njSetLightColor(<, 0.f, 1.f, 1.f);

.......

// Drawing routine is as follows.

while(-1)

{

.......

/* Reflect Light lt on the model. */

DrawModel(...);

.......

}

NGD-64

6. NINJA LIGHT
1.24 LIGHTstructure Specification

Though users do not have to use Light structure directly, we will show you the specification below.

specular: highlight Softimage sets 0 to 1 for nomal RGB value.

diffuse: Normal light Softimage sets 0 to 1 for nomal RGB value.

ambient: Ambient light Softimage sets 0 to 1 for nomal RGB value.

exponent: Exponent for highlight Softimage set 0 to 300 for nomal RGB value.

(We will not support HSV at Ninja Library.)

1.25 The members of NJS_LIGHT structure

struct {

BOOL stat;(Status:Use/Not use of Lightsource)

NJS_POINT3 pnt; (Point of light source)

NJS_VECTOR vctr;(Light source unit vector)

NJS_MATRIX mtrx;(Light source matrix)

NJS_LIGHT_ATTRattr;(Attribute structure)

NJS_LIGHT_CAL ltcal; (Light calculation structure)

} NJS_ LIGHT;

<stat>

#define NJD_LIGHT_ON Reflects light

#define NJD_LIGHT_OFF Do not reflect light

Ninja Softimage [NJS_MATERIALstructure] [NJS_LIGHT_ATTRstructure]

[specular] argb or rgb intensity_spec

[diffuse] argb or rgb intensity_diff

[ambient] (argb or rgb :pending) intensity_amb

[exponent] exp None
NGD-65

Ninja Guide
1.26 The members of NJS_LIGHT_ATTR structure

struct {

Int lsrc; (Kind of light source)

Float ispc; (Intensity of specular light:0 to 1)

Float idif; (Intensity of diffusion:0 to 1)

Float iamb; (Intensity of ambience:0 to 1)

Float nrang; (Range of maximum light intensity:Limit value in front)

Float frang; (Range for cutting off light intensity:Limit value of back)

void* func; (Pointer of callback function)

Angle iang; (Angle of maximum light intensity:Inside limit angle)

Angle oang; (Range for cutting off light intensity:Outside limit angle)

NJS_ARGB argb; (Color of light)

} NJS_ LIGHT_ATTR

<lsrc>

The kinds of light source

#define NJD_SPOT_LIGHTSpot light

#define NJD_DIR_LIGHTParallel light source

#define NJD_POINT_LIGHTpoint light source

#define NJD_AMBIENTAmbience

#define NJD_SPEC_DIRParallel light source highlight

#define NJD_SPEC_POINTPoint light source highlight

#define NJD_LAMBERTIAN_DIRParallel light source lambert

#define NJD_LAMBERTIAN_POINTPoint light source lambert

#define NJD_PHONG_DIRParallel light source phong

#define NJD_PHONG_POINTPoint light source phong

#define NJD_USER_LIGHTUser set light

#define NJD_BLOCK_LIGHTBlock light

<ispc, idif, iamb>

The balance of light (is calculated as follows).

SPECULAR(R,G,B) x ispc + DIFFUSE(R,G,B) x idif + AMBIENT(R,G,B) x iamb

But, top (bottom) of the limit is clamped.

<near, far>

The effective range of light which is defined by NJD_POINT_LIGHT (point light source),

NJD_SPOT_LIGHT (spot light).

nrang The limit value of range which light is upper limit value.
Default value:1.f

frang The limit value of range for calculation of the light. Default
value:65535.f

<iang, oang>

The effective range of light which is defined by NJD_SPOT_LIGHT(spotlight)etc.

iang The limit value of angle which light is upper limit value.
Default value:(DEG)10.f

oang The limit value of angle for calculation of the light. Default
value:(DEG)30.f
NGD-66

6. NINJA LIGHT
Figure 1.1 Spot light source.

Figure 1.2 Point light source.

near

oang

Light Source

iang

far

frang

nrang

Light Source
NGD-67

Ninja Guide
1.27 The members of NJS_LIGHT_CAL structure

struct

{

Float ratten; (Attenuation rate: It is used by block light)

Float ipd; (Inner Product:It is used by block light)

Float nrr; (Limit judgement value of the light source, near:nrang * nrang)

Float frr; (Limit judgement value of the light source, far:frang * fag)

Float cosi; (Limit judgement value of the light source, internal:cos * cos)

Float cose; (Limit judgement value of the light source, external:cos * os)

Float idev; (Division judgement value of the light source, inter)

Float odev; (Division judgement value of the light source, outer)

Float rate; (Attenuaion ratio of light source - for spot light)

Float intns; (Intensity of light source, 0 to 1)

Int exp; (Diffusion exponent of light source)

Int reserve; (reserve)

NJS_POINT3 lpnt; (Point of light source)

NJS_VECTOR lvctr; (Directional vector of light source)

NJS_VECTOR lmvctr; (Directional vector of light source: It is used by block light)

NJS_ARGB atten; (intns * argb(Color of light source))

NJS_ARGB amb; (iamb*atten)

NJS_ARGB dif; (idif*atten)

NJS_ARGB spc; (ispc*atten)

} NJS_LIGHT_CAL;

<exp>

This parameter gives glossiness. It is used in material structure. (This parameter is related to the “specular
exponent” used in many lighting models.)
NGD-68

7. Scroll Guide
1 Revision Information

1.1 Ver.0.04

The member clip of the scroll structure can not be used.

1.2 Ver.0.05

* “3.2.5” and the description of the member clip in ”5.3 Scroll-related Structure” were changed.

* “5.4 Color Definition” was modified.
NGD-69

Ninja Guide
2 Image Units as Related to Scrolling

2.1 Overview

This chapter explains the image units which Ninja uses in scrolling.

2.2 Image Units

Pixel

The smallest component unit of an image

Cell

The smallest unit of an image which makes up a scrolling screen Cells in Ninja are composed of between 8
and 1024 pixels.
The maximum number of Cells which a program can hold is defined by NJD_CELL_NUM_MAX.

Map

Maps are composed of collections of Cells The maximum number of maps which a program can hold is
defined by NJD_MAP_MAX.

Cell

Display Area

Map
NGD-70

7. Scroll Guide
3 Scroll Rotation, Resizing, and Movement

3.1 Overview

This chapter shows the meanings of the various values used in setting scroll displays and scroll structures, and how
those values are calculated.

3.2 Scroll Rotation, Resizing, and Movement

Scroll Rotation, Resizing, and Movement are described as follows.

(1) Both the scroll area and clip area use the upper left corner of the screen as the origin.

The x and y coordinates which mark the starting point of a scroll cell are designated bx, by (see Figure).

(2) Points on the Scroll Display move in bx, by from the origin by -bx, -by (see Figure).

(3)To perform rotations, move toward the origin by the difference of the center of rotation (cx, cy). (see Figure)

(4) Make the center of rotation into the origin, and rotate via the matrix m (see Figure)

(5) After rotation, restore to original by degree that Scroll Display was moved (see Figure).

(bx, by)

Scroll Cell
Starting Point

Origin
(0,0) Clip area

Origin (0,0)

(-bx, -by)

x‘ x - bx
 =
y’ y - by

Origin (0,0)
Center of rotation

(cx, cy)

Origin (0,0)
Center of rotation

x‘ x - bx - cx
 = m
y’ y - by - cy
NGD-71

Ninja Guide
(6) Resize by sx, sy, centering on the center of risizing (spx, spy) (see Figure).

(7) Finally, move by px, py (see Figure).

4 Scroll Programming

4.1 Overview

In this chapter, we cover everything from drawing of Cells to depicting Scroll area.

4.2 Example of Programming a Scroll

Draw a Cell Image

Draw a Cell image by following the texture creation rules. Note that Cell size must be from 8 to 1024.
Ex.: Draw four 128x128 textures in one 256x256 texture.

Convert Cell Image to pvr format

Use tools to convert textures to PVR format.

Create Texture List

Create the texture name structure and texture list structure. Refer to “Texture Guide” for the detail on the
way to create them.

Origin (0,0)

Center of rotation

x‘ x - bx - cx cx
 = m +
y’ y - by - cy cy

Origin (0,0)

Center of resizing

128

128
256

256
NGD-72

7. Scroll Guide
Creating a Map

Create the following map as an example.

The map data comes from the previously created files in the following order.
0, 1, 2, 3 from test0.pvr
4, 5, 6, 7 from test1. pvr
8, 9, 10, 11 from test2. pvr
12, 13, 14, 15 from test3. pvr
16, 17, 18, 19 from test4. pvr

Texture numbers are taken in the order they were stored in the list's creation, starting with test0.pvr.
test0.pvr is 0, and test4.pvr is 4. We use this and the mapmaking macro NJM_MAP to create maps. NJM_MAP
is NJM_MAP(texture number, texture U, texture V). Thus, the 0 area of the map is NJM_MAP(0, 0, 0), 1 is
NJM_MAP(0, 128, 0), etc. The map array that results from this is

Uint32 map[4][5] ={

{NJM_MAP(0,0,0), NJM_MAP(0,128,0), NJM_MAP(1,0,0),NJM_MAP(1,128,0),
NJM_MAP(4,0,0)},

{NJM_MAP(0,0,128),NJM_MAP(0,128,128),NJM_MAP(1,0,128),NJM_MAP(1,128,128),
NJM_MAP(4,128,0)},

{NJM_MAP(2,0,0), NJM_MAP(2,128,0), NJM_MAP(3,0,0),NJM_MAP(3,128,0),
NJM_MAP(4,0,128)},

{NJM_MAP(2,0,128),NJM_MAP(2,128,128),NJM_MAP(3,0,128),NJM_MAP(3,128,128),
NJM_MAP(4,128,128)}

};

0 1 4 5 16

2 3 6 7 17

8 9 12 13 18

10 11 14 15 19
NGD-73

Ninja Guide
Define the Scroll Structure

Define all the elements of the Scroll Structure

celps assigns cell pixel size between 8 and 1024.

mapw assigns map width in number of Cells

maph assigns map height in number of Cells

sw assigns horizontal scroll display image size.

sh assigns vertical scroll display image size

list assigns pointer to texture list structure

map assigns pointer to top address of map array.

Make sure that map is at least of dimensions

map[maph][mapw].

Anything smaller will leave this variable undefined

px,py assigns coordinates for movement of scroll display

bx,by assigns coordinates for beginning of map draw

pr assigns scroll priority

sflag sets resize flag (ON, OFF).

sx,sy sets the ratio for x- and y-axis resizing

spx,spy assigns coordinates for center of resizing area

mflag sets rotation matrix flag (ON, OFF).

cx,cy assigns coordinates for center of rotation area

m assigns rotation matrix.

colmode assigns color mode

colmix assigns color computations (unimplemented at present)

clip[2] Not used in this version

attr attribute (unimplemented at present)

sclc applies color to entire scroll. Varies according to color mode

Use Scroll Functions

Finally, we will try out the scroll functions (using the map and texture list previously created).

First, load the textures.

njInitTexture(&texmemlist,5);

njLoadTexture(&texlist);

Assign scroll structure (see section 5)

scl.celps = 128;
:
:(omitted)

Using the scroll functions, you can draw the scrolls
njDrawScroll(&scl);
NGD-74

7. Scroll Guide
5 Color

5.1 Overview

This chapter explains about color modes which can be used in colmode of scroll structures

5.2 Color Mode

NJD_COLOR_MODE_FLAT_TEXTURE

This mode is used when “No translucent” (RGB565) is set for the textures of all cells.
NJD_COLOR_MODE_FLAT_TEXTURE_TRANS

This mode is used when some (even if only one) of textures of the cell is “translucent” (ARGB1555 or
ARGB 4444).
NGD-75

Ninja Guide
6 Scroll function, Structures, and Definitions

6.1 Overview

This chapter explains Ninja scroll functions, scroll structures, and scroll definitions.

6.2 Scroll–related Functions

njDrawScroll

Draws 2D scroll

Format

#include <Ninja.h>

 void njDrawScroll(*scl)

 NJS_SCROLL *scl

Parameters

 *scl scroll structure pointer

Return value

none

Function

 Draws 2D scroll in clip display

Notes

 For details on creating textures, refer to the Texture document.
NGD-76

7. Scroll Guide
6.3 Scroll–related Structure

NJS_SCROLLStructure

typedef struct {

Uint16 celps; /* Cell Pixel size */

Uint16 mapw,maph; /* Number of Cells*/

Uint16 sw,sh; /* Scroll display image size */

NJS_TEXLIST list; /* Pointer to texture list structure
*/

Uint16 *map; /* Pointer to top address of map array
*/

Float px,py; /* Coordinates for drawing scroll
*/

Float bx,by /* Coordinates for drawing scroll origin
*/

Float pr; /* Priority */

Sint16 sflag; /* Resize flag (ON, OFF)*/

Float sx,sy; /* x- and y-axis resizing ratio*/

Float spx,spy;/* center of resizing area*/

Sint16 mflag; /* Rotation flag (ON, OFF)*/

Float cx,cy; /* Center of rotation area*/

NJS_SCLMTRX m; /* Rotation Matrix */

Uint16 colmode; /* Color Mode */

Uint16 colmix; /* Color Computations
(unimplemented at present)*/

NJS_POINT2 clip[2] /* Clip point */

NJS_SCLATTR attr; /* Attribute */

NJS_COLOR sclc; /* ITE Color*/

}NJS_SCROLL;

6.4 Scroll-related Definitions

Maximum Values
#define NJD_CELL_NUM_MAX 0xFFFF /* the maximum of cell's number */

#define NJD_MAP_W_MAX 0xFF /* the maximum of map's width */

#define NJD_MAP_H_MAX 0xFF /* the muximum of map's height */

#define NJD_MAP_MAX (NJD_MAP_W_MAX*NJD_MAP_H_MAX)

Color definitions (colormode)

#define NJD_COLOR_MODE_PACKED_TEXTURE 33

#define NJD_COLOR_MODE_PACKED_TEXTURE_TRANS41
NGD-77

Ninja Guide
6.5 Texture Structures for Use in Cell Programming

NJS_TEXINFOStructure

typedef struct{

void*texaddr; /* texture memory address cache */

NJS_TEXSURFACE texsurface;

} NJS_TEXINFO;

NJS_TEXNAMEStructure

typedef struct{

void *filename; /* Pointer to filename or NJS_TEXINFO structure
*/

Uint32 attr; /* Texture Attributes */

Uint32 texaddr; /* Texture Address */

}NJS_TEXNAME;

NJS_TEXLISTStructure

typedef struct {

NJS_TEXNAME *textures; /* texture array*/

Uint32 nbTexture;/* texture count*/

} NJS_TEXLIST;
NGD-78

8. Texture Guide
1 Terminology

1.1 Overview

This chapter explains the meanings of terms applying to making textures with Ninja.

Textures

In Ninja, the term "texture" refers to all images applied to 2D graphics, 3D graphics, sprites, scrolls, models,
etc. Ninja can use textures of the following lengths and widths: 1024, 512, 256, 128, 64, 32, 16, 8.

Texture List

A list of all the textures used at a given time is called a texture list. The basic concept in Ninja is to
manipulate textures at the texture list level. Texture list creation is covered in Chapter 4

Texture Number

Number assigned in ascending order to textures in a texture list, 0, 1, 2...etc. Details will be covered at a later
date.

Global Index Number

Number applied consistently to a given texture throughout source code. Textures with the same global
index number are considered to be the same texture.

Current Texture List

Designation for the texture list being operated on by a texture function.

Current Texture

Designation for the texture in the current texture list being operated by a texture function.

Many of the texture functions perform texture manipulations on the current texture.
NGD-79

Ninja Guide
PVR Format

Format for texture files that can be loaded with Ninja.

U, V Coordinates

Coordinates within a texture are designated U (horizontal) and V (vertical). Both U and V range from 0 to
1, even if the aspect ratio between U and V varies.

Aspect Ratio

The ratio of horizontal to vertical in a texture is called the aspect ratio.

Mipmap

Designation for a set of textures which are represented by the same texture map order.

LOD (level of detail)

The mipmap level.

Texture Memory

Memory used for texture storage.

Cache

As many textures (more than the portion for which the texture memory can load) are used, textures are
preloaded into a portion of main memory. This is referred to as the cache, and can be used most effectively
when holding textures that are used and replaced frequently.

Texture Information Area

The area within Ninja where information about textures loaded into texture memory is stored.

Cache Information Area

The area within Ninja where information about textures loaded into the cache is stored.

Category Code

The texture format which can be used in Ninja. The following texture formats can be used in

Ninja: Twiddled, Twiddled Mipmap, VQ, VQ Mipmap, Pallettize4, Palettize4 Mipmap, Pallettize8,
Pallettize8 Mipmap, Rectangle, Stride. Refer to the chapter2 for the detail.

Stride Value

Specify when the STRIDE format texture is used by NINJA. Acceptable values are multiples of 32 between
32 and 992.
NGD-80

8. Texture Guide
2 Creating Textures

2.1 Overview

This chapter describes the category code and color format which can be used in Ninja.

2.2 PVR Format

There are two PVR formats : both with and without global index header.

The category code and color format are specified as the texture attribute.

Global Index Tag ID Area “GBIX” 4byte

Byte Number to the Next Tag 4byte

Global Index 4byte

PVR Format Tag ID Area “PVRT” 4byte

Byte Number to the Next Tag 4byte

Texture Attribute 4byte

Width 2byte

Length 2byte

Each Data
NGD-81

Ninja Guide
2.3 Category Code

The texture formats which can be used in Ninja are called “category code”. The details for each category code is as
follows.

Twiddled, Twiddled Mipmap format

Twiddled format is the basic format of Ninja. In this format, the inside of the texture is optimized and
reallocated in order to load each filter and texture. For this reason, the inside of the texture is not lined in
the raster order. Also, textures must be square for Twiddled format.

VQ,VQ Mipmap format (Vector Quantization)

VQ texture is the compression texture format of high compression rate. VQ textures create the image using
the color table which is called Codebook and Index which shows the location of the codebook.

Palettize4, Palettize4 Mipmap format, Palettize8, Palettize8 Mipmap format

There are two types of Palettized textures: 4bpp mode and 8bpp mode. These two can be used
simultaneously. This format is the same as Twiddled format on the memory. Not supported yet by Ninja.

Rectangle format

Different sizes can be specified for the width and length of Rectangle texture. Mipmap can not be used for
Rectangle textures. Also, the performance of Rectangle format is lower than the one of the Twiddled texture.

0 2 8 10 32

32

6331

1 3

128 130

129 1319 11

4 6 12 14

5 7

16 18

17

20

64 192

19

13 15
NGD-82

8. Texture Guide
Stride format

As a special form of RECTANGLE rendering is possible in this area, and it can be used as a texture. When
using a STRIDE format texture, a STRIDE value must be specified. NINJA uses the njSetRenderWidth
function. The STRIDE format texture determines the texel using the following addressing method.

Addr = U + V*Stride

For example, when a 640 x 480 area is to be used as a Stride texture in a 1024 x 1024 texture area, specify 640
as the Stride value. In this case, the UV value is (U,V) = (0,0) – (0.625f,0.46875f) to apply to the full size
screen.

2.4 Color Format

The color formats which can be used in Ninja are described as follows.

Normal Texture Color Format

The color formats which can be used in Ninja normally are ARGB1555, ARGB4444, RGB565.

YUV422 format

1 pixel can be displayed by 8bit in this format. Not supported yet by Ninja.

Bump format

Texture format for bump mapping. Not supported yet by Ninja.

ARGB8888 format

The format for Palettizing. Not supported yet by Ninja.

Table 1.1 Texture formats supported by NINJA
A: Available F: Available in future version X: Not available

ARGB1555 RGB565 ARGB444 YUV422 Bump ARGB8888

Twiddled A A A F F X

Twiddled MM A A A F F X

VQ A A A F F X

VQ MM A A A F F X

Palettized 4,8 F F F X X F

Palettized MM F F F X X F

Rectangle A A A F F X

Stride A A A F F X
NGD-83

Ninja Guide
3 Memory

3.1 Overview

Ninja uses both texture memory and cache memory for loading textures. This chapter explains the two types
of memory.

3.2 Texture Memory

The texture memory is the area reserved for textures. The texture memory area can be read.

3.3 Cache

In order to make effective use of the texture memory area, users can set the area where textures can be loaded on
the main memory. This area is called “cache area”. Ninja gives priority to loading textures stored in the cache. To
load textures into the cache, set the texture's attribute to cache at time of loading. Note that textures already loaded
into main memory are not loaded into the cache; only textures in file storage are loaded into the cache.

* Cache textures can not be used in SET4.

Load into Texture Memory
No setting

NJD_TEXATTR_BOTH

Load into Cache
NJD_TEXATTR_Cache
NJD_TEXATTR_BOTH

Load Texture

When file is both in storage and in cache,
priority is given to loading from cache.

Texture Memory Cache Memory
(User-configurable)
NGD-84

8. Texture Guide
4 Loading Textures

4.1 Overview

Now we will try using texture functions to load a texture. We will begin with a general flowchart of the texture
loading process, followed by explanations of how to create texture lists, texture numbers, and global index numbers.

4.2 Flowchart of Texture Loading

Load into Texture Memory Load into Cache

Set Texture Information
njSetTextureInfo

njSetTextureName

Set Current Texture
njSetTextureNum

njSetTextureNumG

Reload Texture
njReloadTextureNum

njReloadTextureNumG

Load Cache Texture
njLoadCacheTextureNum

njLoadCacheTextureNumG

Release Cache Texture
njReleaseCacheTextureAll

njReleaseCacheTextureNum
njReleaseCacheTextureNumG

Release Texture
njReleaseTextureAll

njReleaseTexture
njReleaseTextureNum

njReleaseTextureNumG

Set Texture Information Area
njInitTexture

Set Texture Path
njSetTexturePath

Set Cache
(when loading texture)

Load Texture
njLoadTexture

Load Texture
njLoadTextureNum

Frame Buffer
njFrameBufferBmp

Set Current Texture List
njSetTexture

Exit Texture
njExitTexture

Draw Texture
NGD-85

Ninja Guide
Note: When executing njLoadTextureNum, run njSetTexture, and set the current texture list.

Note: njSetTexturePath and njFramBufferBmp can not be used by target.

4.3 Setting a Texture Buffer

In Ninja for Set2, work buffer which is required when loading a texture can be obtained inside texture functions.
After this, this work area is set by the following function.

void njInitTextureBuffer (Sint8 *addr,Uint32 size)

“addr” is the head pointer of texture work buffer and “size” is the size of work buffer.

About “size”, it becomes the biggest one in PVR files when loading from a file. When loading from memory, work
buffer is not required for files which are conformed to PVR files. About targets of SET4 and over, in order to load
files from CD, a unit of loading becomes 1 sector (2048Byte) and also about the buffer size, the numbers below 1
sector is raised to the next sector.

Work buffer is used only during executing njLoadTexture and njLoadTextureNum and is not used except this
time. So it is OK to open it as soon as finished loading of textures.

Texture size of PVR files are as follows.

Table 1.2 TWIDDLED(GLOBALINDEX 12Byte, including the header 16Byte)

SET2 SET4

Size MIPMAP NO MIPMAP MIPMAP NO MIPMAP

8x8 0xC8 0x9C 0x800 0x800

16x16 0x2C8 0x21C 0x800 0x800

32x32 0xAC8 0x81C 0x1000 0x1000

64x64 0x2AC8 0x201C 0x3000 0x2800

128x128 0xAAC8 0x801C 0xB000 0x8800

256x256 0x2AAC8 0x2001C 0x2B000 0x20800

512x512 0xAAAC8 0x8001C 0xAB000 0x80800

1024x1024 0x2AAAC8 0x20001C 0x2AB000 0x200800
NGD-86

8. Texture Guide
Table 1.3 VQ(GLOBALINDEX 12Byte, including the header 16Byte)

Table 1.4 RECTANGLE,STRIDE(GLOBALINDEX 12Byte, including the header 16Byte)

SET2 SET4

Size MIPMAP NO MIPMAP MIPMAP NO MIPMAP

8x8 0x832 0x82C 0x1000 0x1000

16x16 0x872 0x86C 0x1000 0x1000

32x32 0x972 0x91C 0x1000 0x1000

64x64 0xD72 0xC1C 0x1000 0x1000

128x128 0x1D72 0x181C 0x2000 0x2000

256x256 0x5D72 0x481C 0x6000 0x5000

512x512 0x15D72 0x1081C 0x16000 0x11000

1024x1024 0x55D72 0x4081C 0x56000 0x41000

SET2 SET4

Size MIPMAP NO MIPMAP MIPMAP NO MIPMAP

8x8 X 0x5C X 0x800

8x16,16x8 X 0x11C X 0x800

8x32,32x8 X 0x21C X 0x800

8x64,64x8 X 0x41C X 0x800

8x128,128x8 X 0x81C X 0x1000

8x256,256x8 X 0x101C X 0x1800

8x512,512x8 X 0x201C X 0x2800

8x1024,1024x8 X 0x401C X 0x4800

16x16, X 0x21C X 0x800

16x32,32x16 X 0x41C X 0x800

16x64,64x16 X 0x81C X 0x1000

16x128,128x16 X 0x101C X 0x1800

16x256,256x16 X 0x201C X 0x2800

16x512,512x16 X 0x401C X 0x4800

16x1024,1024x16 X 0x801C X 0x8800
NGD-87

Ninja Guide
4.4 Setting Cache Buffer

The cache area which has been obtained inside cache functions so far is now set by users as same as texture buffer.
Being different from texture buffer, cache buffer requires total size all through the time for save. The cache size
required for cache buffer equals to the total size after subtracting header size from each texture size.

void njInitCacheTextureBuffer(Sint8 *addr,Uint32 size)

32x32 X 0x81C X 0x1000

32x64,64x32 X 0x101C X 0x1800

32x128,128x32 X 0x201C X 0x2800

32x256,256x32 X 0x401C X 0x4800

32x512,512x32 X 0x801C X 0x8800

32x1024,1024x32 X 0x1001C X 0x10800

64x64 X 0x201C X 0x2800

64x128,128x64 X 0x401C X 0x4800

64x256,256x64 X 0x801C X 0x8800

64x512,512x64 X 0x1001C X 0x10800

64x1024,1024x64 X 0x2001C X 0x20800

128x128 X 0x801C X 0x8800

128x256,256x128 X 0x1001C X 0x10800

128x512,512x128 X 0x2001C X 0x20800

128x1024,1024x128 X 0x4001C X 0x40800

256x256 X 0x2001C X 0x20800

256x512,512x256 X 0x4001C X 0x40800

256x1024,1024x256 X 0x8001C X 0x80800

512x512 X 0x8001C X 0x80800

512x1024,1024x512 X 0x10001C X 0x100800

1024x1024 X 0x20001C X 0x200800

SET2 SET4
NGD-88

8. Texture Guide
4.5 Creating a Texture List

In Ninja, the texture list is the fundamental part of the texture manipulation. This section describes texture
list settings

1. Define a texture name structure with as many elements as there are textures.

NJS_TEXNAME structure

void *filename
Uint32 attr
Uint32 texaddr

*filename

NJS_TEXINFO pointer, used when loading textures from designated
memory; sets file name for PVR format texture files to string

attr

It sets source and destination of texture load. It takes the OR of the various tags

> Load Source
NJD_TEXATTR_TYPE_FILE

Load PVR format file. Designate file name with *filename.

NJD_TEXATTR_TYPE_MEMORY

Load from memory. Designate NJS_TEXINFO pointer with *filename
* Load Destination (will load into texture memory if not specified)

NJD_TEXATTR_TYPE_FRAMEBUFFER (Modified)

Can not be used in SET4 and over.

> Load Destination (will load into texture memory if not specified)

NJD_TEXATTR_CACHE

 Load only into cache memory
 NJD_TEXATTR_BOTH
 Load into both texture memory and cache memory

texaddr

 It sets the global index for the memory texture. It becomes the pointer for
 the internal table after texture loading.
NJS_TEXINFO

 void* texaddr;
NJS_TEXSURFACEtexsurface;
texaddr

 It is used to reserve the texture in the texture memory.
texsurface

 It is the format to pass the data to the inside.
NGD-89

Ninja Guide
NJS_TEXSURFACE structure

Uint32 Type;
Uint32 BitDepth;
Uint32 PixelFormat;
Uint32 nWidth;
Uint32 nHeight;
Uint32 TextureSize;
Uint32 fSurfaceFlags;
Uint32 *pSurface;
Uint32 *pVirtual; <- New
Uint32 *pPhysical; <- New

Type

The color format and category code are set for the memory texture.

nWidth

The width of the texture is set for the memory texture.

nHeight

The length of the texture is set for the memory texture.
As for other members, these are set in the load function.
When the load source is memory, the NJS_TEXINFO structure needs to be set:

2. Use the texture name structures created in part 1 to set up a texture list structure

NJS_TEXLIST

NJS_TEXNAME *textures;
Uint32 nbTexture;

textures

Sets pointer to NJS_TEXNAME structure, which holds texture information

nbTexture: number of textures

nbTexture

Number of textures
Ex.: file01.pvr and the memory texture image are specified as the texture is as follows.
extern Uint16 Image[];

NJS_TEXINFO Info;
NJS_TEXNAME texname[2];
NJS_TEXLIST texlist={texname,2};
NGD-90

8. Texture Guide
/* Memory textureImage
Category codeTWIDDLED
Color formatARGB1555
Size 256x256
*/
njSetTextureInfo(&Info,Image,NJD_TEXFMT_TWIDDLED|NJD_TEXFMT_ARGB_1555,256,256);

/* Set the file “file0.pvr” for texname[0] by GlobalIndex “0”*/
njSetTextureName(&texname[0],"file0.pvr",0,NJD_TEXATTR_TYPE_FILE);

/* Set the memory texture image for texname[1] by GlobalIndex”1”*/
njSetTextureName(&texname[1],&Info,1,NJD_TEXATTR_TYPE_MEMORY);

/* Setting texture buffer
 (It is enough with 0x2001C but better to set a rather large number)*/
njInitTextureBuffer(buffer, 0x30000);

/* The initial of the texture */
njInitTexture(texmemlist,2);

/* Load texture*/
njLoadTexture(&texlist);

4.6 Texture Numbers

For the current texture list, assign texture numbers 0, 1, 2...etc. to the structure NJS_TEXNAME created in 6.3, in
setting order:

NJS_TEXNAME texname[] = { {“file0.pvr”,,,,}, /* texture number 0 */

{“file1.pvr”,,,,}, /* texture number 1 */

{“file2.pvr”,,,,}, /* texture number 2 */

{“file3.pvr”,,,,}, /* texture number 3 */

:

{“filen.pvr”,,,,}}; /* *texture number n */

The texture numbers used in Ninja texture functions are taken from the texture numbers in the current texture list

4.7 Global Index Number

Ninja assigns numbers which apply globally throughout an application to ensure that a given texture only gets
loaded once into texture memory, even when working with multiple texture lists. These numbers are called global
index numbers. Textures with the same global index number are treated as the same texture. Global index numbers
apply to all textures, including those for 2D and 3D graphics, sprites, scrolls, and models, so be careful that one
number gets assigned to only one texture. Conversely, if you apply different global index numbers to the same
texture, the textures which match up will be loaded into texture memory.

In the file of PVR format, there is a chunk inside to hold the global index. The global index of the PVR format
textures are managed by the tools.

Assign global index numbers from 0 to 0xFFFFFFEF. As the numbers from 0xFFFFFFF0 to 0xFFFFFFFF is used by
the system, do not use it as a global index number assignment.
NGD-91

Ninja Guide
4.8 Automatic allocation of Global Index Number

In NINJA Ver00040032 or over, textures without global index can be loaded. In this case, Global index allocates
global index numbers in descending order (from 0xFFFFFFEF to 0xFFFFFFEE, 0xFFFFFFED…).

The initial value of global index used for automatic allocation can be set by the following function.

void njInitTextureGlobalIndex(Uint32 globalIndex);

Starting from the global index set by this function, global index numbers are allocated in the order of globalIndex,
globalIndex-1, globalIndex-2…

As automatic allocation of Global Index heads for only in the descending order, even if a texture is deleted, the next
number is allocated by global index. To set back the global index, please reset by njInitTextureGlobalIndex function.

Also, please note that if global index collides with the one set by the normal way, the one loaded earlier has priority
over the other one.

4.9 Texture Load Error

The data after load request is stored in the texture memory list (NJS_TEXMEMLIST) which is set in njInitTexture by
the user. The following data is stored in the texture memory list.

Uint32 globalIndex; Global Index

Uint32 tspparambuffer; Data set by H/W<- New

Uint32 texparambuffer; Data set by H/W <- New

Uint32 texaddr; BIT_0: Load into texture memoryBIT_1: Load into cache

NJS_TEXINFO texinfo; Texture info structure

Uint16 count; Use number of times

Uint16 dummy; Error code (New addition)

In case that an error is found when textures are loaded, the following error codes are set to the dummy.

#define NJD_TEXERR_OTHER (1) //Other errors

#define NJD_TEXERR_FILEOPEN (2) //File open error

#define NJD_TEXERR_EXTND (3) //Extention error

#define NJD_TEXERR_HEADER (4) //Header error

#define NJD_TEXERR_FILELOAD (5) //File load error

#define NJD_TEXERR_SURFACE (6) //Surface creation error

#define NJD_TEXERR_MAINMEMORY (7) //Main memory malloc error

#define NJD_TEXERR_TEXMEMLOAD (8) //Texture memory load error

#define NJD_TEXERR_GLOBALINDEX (9) //Globalindex error
NGD-92

8. Texture Guide
NJD_TEXERR_FILEOPEN

This error appears when files cannot be opened as they are not in the specified location.

NJD_TEXERR_EXTND

This error appears when the extention of the file is not “.pvr ”.

NJD_TEXERR_HEADER

The header of the texture file is not correct. This error appears when the way to use GBIX tag and PVRT tag
is not correct.

NJD_TEXERR_FILELOAD

This error appears when files cannot be loaded or the data is smaller than the size expected.

NJD_TEXERR_SURFACE

This error appears when the area to load textures can not be resereved in the texture memory. Also, this
error appears when the texture size is too big or the texture which can not be loaded is specified.

NJD_TEXE.RR_MAINMEMORY

This error appears when the area for the work buffer can not be reserved in the texture load function.

NJD_TEXERR_TEXMEMLOAD

This error appears when textures can not be loaded into the texture memory.

This error does not appear usually (as NJ_TEXERRR_SURFACE is supposed to appear before this error).

Global Index Error

This error is output when an invalid global index is specified, or when a global index could not be obtained.
NGD-93

Ninja Guide
4.10 Memory Texture

Texture data expanded in main memory or texture data created in main memory can be loaded and used as texture
data. The format which can be used as texture data is header information (global index tags, header tags) + data.
Only the part of data can also be used as texture data. The following are setting method for each case.

In case that memory texture includes header information

Table 1.5 Uint16 T009[] = {

TWIDDLED Texture

RGB565

includes data of 128x128

?

};

Global index header part

PVR header part

Texture data part

NJS_TEXINFOinfo; Don't have to save info after loading textures.

NJS_TEXNAME texname[1];

NJS_TEXLIST texlist = {texname,1};

njSetTextureInfo(&info[0],T009,0,0,0);

njSetTextureName(&texname[0],&info[0],0,NJD_TEXATTR_TYPE_MEMORY);

In case that header information includes global index information, don't have to specify global index information
as the 3rd and 4th argument of njSetTextureName function. Also, as there is PVR header information, don't have to
set information to the 3rd, 4th and 5th argument of njSetTextreInfo function.

In case that memory texture does not include header information

Table 1.6 Uint16 T009[] = {

0x4247, 0x5849, 0x0004, 0x0000, 0x1d4c, 0x0000, 0x5650, 0x5452,

0x8008, 0x0000, 0x0101, 0x0000, 0x0080, 0x0080, 0xad20, 0xeee1,

0xac40, 0xe5c0, 0xff41, 0xff21, 0xf5e0, 0xe580, 0xd580, 0xf700,

0xde00, 0xff80, 0xff40, 0xfee0, 0xffe0, 0xffe0, 0xff21, 0xf720,

0xac40, 0xe5c0, 0xff41, 0xff21, 0xf5e0, 0xe580, 0xd580, 0xf700,

0xde00, 0xff80, 0xff40, 0xfee0, 0xffe0, 0xffe0, 0xff21, 0xf720,
NGD-94

8. Texture Guide
TWIDDLED Texture

RGB565

Includes data of 128x128

?

};

Texture data part

NJS_TEXINFOinfo; Don't have to save info after loading textures

NJS_TEXNAME texname[1];

NJS_TEXLIST texlist = {texname,1};

njSetTextureInfo(&info,T009,NJD_TEXFMT_RGB_565|NJD_TEXFMT_TWIDDLED,128,128);

njSetTextureName(&texname[0],&info,0,NJD_TEXATTR_TYPE_MEMORY|NJD_TEXATTR_GLOBALINDEX);

In case that there is only data part of PVR format without both global index information and PVR header
information, set global index information to the 3rd or 4th argument of njSetTextureName function, and set texture
type and color format to the 3rd argument and set texture length and width to the 4th and 5th argument of
njSetTextreInfo function.

4.11 Render Texture

When the category of the texture is STRIDE or RECTANGLE, instead of rendering to the usual frame buffer,
rendering to a texture can be done. By using this texture, a user can do suspected environment mapping. As render
texture is done by doing ren-dering to a texture and drawing again using it, if doing multiple render textures in one
frame, the number of doing rendering increases as much as the number of doing render texture, and then the
performance falls. If the texture which are specified by the render texture is smaller than the frame buffer, rendering
is done as much as the number of the size of the texture started from the upper-left in the display. Also, the color
mode of the texture which is used when doing render texture must be same as the color mode of the frame buffer.
Render texture reserves just specified size in the texture area This is a difference of a render texture and a frame
buffer texture.
NGD-95

Ninja Guide
Example

void njUserInit(void)

{

/*In case of using render texture, let color modes of njInitSystem and a frame buffer

same. */

njInitSystem(NJD_RESOLUTION_VGA, NJD_FRAMEBUFFER_MODE_RGB565, 1);

:

/* Obtain the dummy memory area for textures. */

buff = njMalloc(0x8001C);

/* Let the color same as a frame buffer. Set the size 512x512 */

njSetTextureInfo(&info,buff,NJD_TEXFMT_STRIDE|NJD_TEXFMT_RGB_565,512,512);

njSetTextureName(&texname[0],&info,0,NJD_TEXATTR_TYPE_MEMORY|

NJD_TEXATTR_GLOBALINDEX);

/* buff is required only during njLoadTexture */

njInitTextureBuffer(buff,0x8001C);

njInitTexture(tex, 100);

njLoadTexture(&texlist);

/* After njLoadTexture, OK to open the area obtained as a dummy. */

njFree(buff);

/* Set the stride value to 512*/

njSetRenderWidth(512);

}

Sint32 njUserMain(void)

{

?

/* Draw models etc. */

njDrawObject(OBJECT);

?

njSetTexture(&texlist);

/* Rendering to the texture number 0.

As the size of this texture is 512x512, rendering is started from the upper-left for
512x512. */

njRenderTextureNum(0);

/* Draw using texture to which rendering is done*/

njDrawTexture(poly, 4, 0,TRUE);

?

}

NGD-96

8. Texture Guide
5 Texture functions, Structures, and Definitions

5.1 Overview

This chapter covers Ninja texture functions, texture structures, and texture definitions

5.2 Texture Functions

njInitTexture

Set texture information area

Format

#include <Ninja.h>

void njInitTexture(*addr,n);

NJS_TEXMEMLIST *addr

Uint32 n

Parameter

*addr NJS_TEXMEMLIST structure pointer to area of n elements

n number of textures

Return Value

 none

Function

By setting an NJS_TEXMEMLIST structure area of a size n, where n is the num-ber of textures to be used, to
a pointer to addr, this function makes it into an area for holding texture information. Be sure to execute this
function before loading textures

Note

The memory area defined in this function is used internally by texture-related functions.

njInitTextureBuffer (New function)

Set work buffer of a texture
NGD-97

Ninja Guide
Format

#include <Ninja.h>

void njInitTextureBuffer(addr,size);

Sint8* addr

Uint32 size

Parameter

*addr Head pointer of a workbuffer size

Work buffer size

Return Value

none

Function

Set required memory for work buffer of a texture. It is OK to open the memory set here after executing
njLoadTexture or njLoadTextureNum.

Note

This function must be called before executing njLoadTexture or njLoadTextureNum,

njInitCacheTextureBuffer (New Function)

Set cache texture buffer

Format

 #include <Ninja.h>

 void njInitCacheTextureBuffer(addr,size);

 Sint8* addr

 Uint32 size

Parameter

*addr The head pointer of cache texture buffer

size Cache texture buffer size
NGD-98

8. Texture Guide
Return Value

None

Function

Set required memory for the cache texture. Memory set here is required all through the time using the
cache texture.

Note

njLoadTexture

Load texture

Format

#include <Ninja.h>

Sint32 njLoadTexture(texlist);

NJS_TEXLIST *texlist

Parameter

*texlist NJS_TEXLIST structure pointer

Return Value

Success 1

Failure -1

Function

The texture file specified in the texlist structure is loaded as texture memory, cache memory or the frame
buffer texture.

Note

Before executing this function, it is necessary to run njInitTexture first.

In SET5 or over, DMA is used when the address of texture buffer for transfer to texture memory becomes
32 byte align. Therefore, in case of using njLoadTexture with forbidding interrupt, be careful not to let the
address be 32 byte align.
NGD-99

Ninja Guide
njLoadTextureNum

Load textures by texture number.

Format

#include <Ninja.h>

Sint32 njLoadTextureNum(n);

Uint32 n

Parameter

n texture number of current texture list

Return Values

Success 1

Failure -1

Function

Load the texture in the current texture list with texture number n into texture memory or cache memory. If
texture number n is not in current texture list, func-tion returns an error

Note

Before running this function, it is necessary to run njInitTexture and njSetTexture. In SET5 or over, DMA is
used when the address of texture buffer for transfer to texture memory becomes 32 byte align.

Therefore, in case of using njLoadTextureNum with forbidding interrupt, be careful not to let the address
be 32 byte align.

njSetTexture

Set current texture list

Format

#include <Ninja.h>

Sint32 njSetTexture(texlist);

NJS_TEXLIST *texlist

Patameter

*texlist NJS_TEXLIST structure pointer
NGD-100

8. Texture Guide
Return Value

Success 1

Failure -1

Function

Set current texture list to texlist

Notes

The texture list set herein will become the current texture list until the next call of njSetTexture. Texture
functions, and such functions as njXXXXNum and njXXXXNumG, operate on the current texture list.

njSetTextureNum

Set current texture to texture number

Format

 #include <Ninja.h>

 Sint32 njSetTextureNum(n);

 Uint32 n

Patameter

n texture number n

Return Value

 Success 1

 Failure -1

Function

Set texture number n in current texture list to current texture.

This will remain the current texture until the next calls of njSetTextureNum or njSetTextureNumG.

Notes

The assigned texture must be in texture memory.

 njSetTextureNumG

Set current texture by global index number
NGD-101

Ninja Guide
Format

#include <Ninja.h>

Sint32 njSetTextureNumG(globalIndex);

Uint32 globalIndex

Patameter

globalIndex global index number

Return Value

Success 1

Failure -1

Function

Set the current texture of global index number globalIndex to current texture. This will remain the current
texture until the next calls of njSetTextureNum or njSetTextureNumG

Notes

The assigned texture must be in texture memory

njLoadCacheTexture

Load texture from cache memory to texture memory

Format

#include <Ninja.h>

Sint32 njLoadCacheTextureNum(n);

Uint32 n

Patameter

*texlist The pointer of NJS_TEXLIST structure

Return Value

Success 1

Failure -1

Function

Load texture in the texture list from cache memory into texture memory
NGD-102

8. Texture Guide
Notes

Selected texture must be loaded into cache memory.

njLoadCacheTextureNum

Load texture from cache memory to texture memory

Format

#include <Ninja.h>

Sint32 njLoadCacheTextureNum(n);

Uint32 n

Patameter

n current texture list texture number

Return Value

Success 1

Failure -1

Function

Load texture of texture number n from cache memory into texture memory

Notes

Current texture list must first be set using njSetTexture. Selected texture must be loaded in cache
memory.

njLoadCacheTextureNumG

Load texture by global index number from cache memory to texture memory

Format

#include <Ninja.h>

Sint32 njLoadCacheTextureNumG(globalIndex);

Uint32 globalIndex

Patameter

globalIndex global index number
NGD-103

Ninja Guide
Return Value

Success: 1

Failure: -1

Function

Load texture of global index number globalIndex from cache memory into texture memory

Notes

Selected texture must be in cache memory. Even if cache memory is released, tex-tures in texture memory
are not released.

njReleaseTextureAll

Release all texture memory

Format

#include <Ninja.h>

void njReleaseTextureAll(void);

Patameter

none

Return Value

none

Function

Release all texture memory

Notes

To use a texture again, that texture will have to be reloaded using njLoadTexture or re-lated function.

njReleaseTexture

Release texture in texture list from texture memory

Format

#include <Ninja.h>

Sint32 njReleaseTexture(*texlist);

NJS_TEXLIST *texlist
NGD-104

8. Texture Guide
Patameter

*texlist NJS_TEXLIST structure pointer

Return Value

Success: 1

Failure: -1

Functions

Release texture in texture list texlist from texture memory

Notes

In order to release a texture from texture memory, that texture must be released from any and all loaded
texture lists in which the texture appears. Also, textures with the same global index number are considered
the same texture.

njReleaseTextureNum

Release texture by texture number from texture memory

Format

#include <Ninja.h>

Sint32 njReleaseTextureNum(n);

Uint32 n

Patameter

n texture number

Return Value

Success: 1

Failure: -1

Functions

Release current texture list texture of texture number n from texture memory

Notes

In order to release a texture from texture memory, that texture must be released from any and all loaded
texture lists in which the texture appears. Also, textures with the same global index number are considered
as the same texture.
NGD-105

Ninja Guide
njReleaseTextureNumG

Release texture by global index number from texture memory

Format

#include <Ninja.h>

Sint32 njReleaseTextureNumG(globalIndex);

Uint32 globalIndex

Patameter

globalIndex global index number

Return Value

Success: 1

Failure: -1

Functions

Release current texture list texture of global index number globalIndex from tex-ture memory.

Notes

In order to release a texture from texture memory, that texture must be released from any and all loaded
texture lists in which the texture appears. Also, textures with the same global index number are considered
the same texture.

njReleaseCacheTextureAll

Release all cache memory

Format

#include <Ninja.h>

void njReleaseCacheTextureAll(void);

Patameter

none

Return Value

none

Function

Release all cache memory. Cache information area will not be released
NGD-106

8. Texture Guide
Notes

Even if cache memory is released, textures in texture memory are not released.

njReleaseCacheTextureNum

Release texture by texture number from cache memory

Format

#include <Ninja.h>

Sint32 njReleaseCacheTextureNum(n);

Uint32 n

Parameter

n texture number in current texture list

Return Value

Success: 1

Failure: -1

Function

Release texture of texture number n from cache memory.

Notes

Current texture list must be set using njSetTexture. Selected texture must be loaded into cache memory.
Even if cache memory is released, textures in texture memory are not.

njReleaseCacheTextureNumG

Release texture by global index number from cache memory

Format

#include <Ninja.h>

Sint32 njReleaseCacheTextureNumG(globalIndex);

Uint32 globalIndex

Patameter

globalIndex global index number
NGD-107

Ninja Guide
Return Value

Success: 1

Failure: -1

Functions

Release texture of which global index number is globalIndex from cache memory.

Notes

Selected texture must be loaded into cache memory. Even if cache memory is re-leased, textures in texture
memory are not.

njGetTextureNumG

Get global index number of current texture

Format

#include <Ninja.h>

Uint32 njGetTextureNumG(void);

Parameter

none

Return Value

Success: global index number from 0 to 0xFFFFFFFE

Failure: 0xFFFFFFFF

Functions

Get global index number of current texture

Notes

If current texture is not previously defined with njSetTextureNum or

njSetTextureNumG, this function serves no purpose.

njCalcTexture

Calculate remaining texture memory

Format

#include <Ninja.h>

Uint32 njCalcTexture(Flag);
NGD-108

8. Texture Guide
Patameter

Uint32 flag NJD_TEXMEM_FREESIZE or

NJD_TEXMEM_MAXBLOCK

Specify NJD_TEXMEM_MAXSIZE

Return Value

Returning all free area in texture memory or maximum free block

Functions

Calculate remaining texture memory

NJD_TEXMEM_FREESIZE Texture memory free size

NJD_TEXMEM_MAXBLOCK Texture memory maximum free block

NJD_TEXMEM_MAXSIZE Total capacity of texture memory

Notes

njInitTexture must be called prior to this function.

njExitTexture

Quit texture usage

Format

#include <Ninja.h>

void njExitTexture(void);

Patameter

none

Return Value

none

Functions

Quit texture usage. Also releases cache if that has not been done yet

Notes

Be sure to call this function when finished using textures.

njSetTexturePath(Can not be used in the target)

Set path of the directory which has texture
NGD-109

Ninja Guide
Format

#include <Ninja.h>

void njSetTexturePath(path);

Patameter

Uint8 *path Path to the directory

Return Value

none

Functions

Set the path to the directory which has the texture. It is available for loading tex-tures from files in
njLoadTexture,njLoadTextureNum. The path set herein is available until it is changed.

Notes

This functions must be called prior to njLoadTexture and njLoadTextureNum.

njSetTextureInfo

Set information to the texture info structure.

Format

#include <Ninja.h>

void njSetTextureInfo(NJS_TEXINFO *,Uint16 *,Sint32,Sint32,Sint32)

Parameter

NJS_TEXINFO *infoTexture Information (output)

Uint16 *texPointer of memory texture

Sint32 TypeTexture type

Sint32 nWidthTexture width

Sint32 nHeightTexture length

Return Value

none
NGD-110

8. Texture Guide
Functions

For memory textures, set texture information to the info of texture information structure.

Set color format and category code as Type. Set info which is set herein to addr of NjSetTexturename.

Note

See sample program for the way to use.

Color format
NJD_TEXFMT_ARGB_1555

NJD_TEXFMT_RGB_565

NJD_TEXFMT_ARGB_4444

NJD_TEXFMT_YUV_422 Not available

NJD_TEXFMT_BUMP Not available

Category code
NJD_TEXFMT_TWIDDLED

NJD_TEXFMT_TWIDDLED_MM

NJD_TEXFMT_VQ

NJD_TEXFMT_VQ_MM

NJD_TEXFMT_PALETTIZE4 Not available

NJD_TEXFMT_PALETTIZE4_MM Not available

NJD_TEXFMT_PALETTIZE8 Not available

NJD_TEXFMT_PALETTIZE8_MM Not available

NJD_TEXFMT_RECTANGLE

NJD_TEXFMT_STRIDE

njSetTextureName

Set data to texture name structure.

Format

#include <Ninja.h>

void njSetTextureName(NJS_TEXNAME *,void *,Uint,Uint32)

Parameter

NJS_TEXNAME *texname Texture name structure (output)

void *addr File name or pointer for NJD_TEXINFO structure

Uint32 globalIndex Global index

Uint32 attr Texture attribute

Return value

None
NGD-111

Ninja Guide
Functions

Set filenames to addr to load textures from files.

Set NJD_TEXATTR_TYPE_FILE to attr. For textures in PVR format, in case that global index is not used in
files or there is no chunk of Global index in PVR format texture, set NJD_TEXATTR_TYPE_MEMORY to attr
and set globalIndex to global index.

 In case of memory textures, the pointer of NJS_TEXINFO structure which is set in njSetTextureInfo is set to
addr.

Set NJD_TEXATTR_TYPE_MEMORY to attr and set globalIndex to global index.

Notes

See sample program for the way to use.

njReLoadTextureNum

Reload texture by texture number

Format

#include <Ninja.h>

Shint32 njReLoadTextureNum(n,texaddr,attr,lod);

Parameters

Unit32 n Current texture list texture number

Vold *texaddrFilename or texture memory address

Unit32 attrTexture attribute

Unit32 lodMip-map level

Return Value

Success 1

Failure -1

Functions

Reloads texture number n in the current texture list. The reloaded texture is the same as that loaded before.
Set attr to NJD_TEXATTR_TYPE_FILE to load the texture from a file, or to NJD_TEXATTR_TYPE_MEMORY
to load the texture from memory.

For a mip-map texture, reload lod with the corresponding mip-map level. For example, setting lod to 128
reloads only the 128 x 128 texture level. To reload all mip-map texture levels, set lod to 0. When loading from
memory, reload the lod level from the address specified by texaddr.
NGD-112

8. Texture Guide
Notes

For the texture memory case, specify the head of the texture that was set by lod.

njReLoadTextureNumG

Reload the global index number texture.

Format

#include <Ninja.h>

Shint32 njReLoadTextureNumG(globallndex, texaddr, attr, lod);

Parameters

Unit32 n Global index texture number

Vold *texaddrFilename or texture memory address

Unit32 attrTexture attribute

Unit32 lodMip map level

Return Value

Success 1

Failure -1

Functions

Reloads the texture of the global index number globalindex. The reloaded texture is the same as that loaded
before. Set attr to NJD_TEXATTR_TYPE_FILE to load the texture from a file, or to
NJD_TEXATTR_TYPE_MEMORY to load the texture from memory.

For a mip-map texture, reload lod with the corresponding mip-map level. For example, setting lod to 128
reloads only the 128 x 128 texture level. To reload all mip-map texture levels, set lod to 0. When loading
from memory, reload the lod level from the address specified by texaddr.

Notes

For the texture memory case, specify the head of the texture that was set by lod.

njRenderTextureNum

Do rendering to the texture area of the texture number.

Format

#include <Ninja.h>

void njSetRenderTextureNum(n);
NGD-113

Ninja Guide
Parameter

Uint32 n Texture number of the current texture list

Return Value

None

Functions

Do rendering to the texture of the number n in the current texture list.

The texture to which rendering can be done is NJD_TEXFMT_RECTANGLE or

NJD_TEXFMT_STRIDE. When the texture area is smaller than the display, do rendering to the area where
is from the upper-left of the display to its coordinate.

In case of NJD_TEXFMT_STRIDE, the stride value must be set by njSetRenderWidth.

The stride value equals to the width of the rendering area usually.

Notes

Doing rendering to the texture area means that rendering is done twice adding up the usual rendering to
the frame buffer.

njRenderTextureNumG

Do rendering to the texture area of the Global Index number.

Format

#include <Ninja.h>

void njRenderTextureNumG(globalIndex);

Parameter

Uint32 globalIndex GlobalIndexNumber

Return Value

None

Functions

Do rendering to the texture of which Global Index number is globalIndex

The texture to which rendering can be done is NJD_TEXFMT_RECTANGLE or NJD_TEXFMT_STRIDE.

When the texture area is smaller than the display, do rendering to the area where is from the upper-left of
the display to its coordinate.

In case of NJD_TEXFMT_STRIDE, the stride value must be set by njSetRenderWidth.

The stride value equals to the width of the rendering area usually.
NGD-114

8. Texture Guide
Notes

By doing rendering to the texture area, it becomes that rendering is done twice adding up the usual
rendering to the frame buffer.

njSetRenderWidth

Set Stride value.

Format

#include <Ninja.h>

void njSetRenderWidth(nWidth);

Parameter

Uint32 nWidth Stride value

Return Value

None

Functions

Sets a Stride value when using a Stride texture format. When specifying a Stride texture with a render
texture, if the texture is smaller than the rendering area, set the width of the texture. Otherwise, if the
rendering area is smaller than the texture, set the width of the rendering area. Acceptable values are
multiples of 32 from 32 to 992.

Notes

NjFrameBufferBmp (Can not be used in the target)

Make a frame buffer into a bitmap.

Formats

#include <Ninja.h>

void njFrameBufferBmp(filename);

Parameter

Unit8*filename File name

Return Value

None
NGD-115

Ninja Guide
Functions

Makes a frame buffer into a 24-bit BMP. Currently only frame 0 can be a texture, so when frame 0 uses this
function during drawing, the partially rendered image appears. (Planned to be changed later)

Notes

In the future, the displayed frame will be modified to a BMP. Use for debugging

NjFrameBufferBmp2

Make a frame buffer into a bitmap. \

Formats

#include <Ninja.h>

void njFrameBufferBmp2(buffer);

Parameter

char *buffer Buffer for saving bitmap

Return Value

None

Functions

Makes a frame buffer into a 24-bit BMP. Buffer size can be calculated as shown below.

Buffer size (buffer) = Screen Length x Screen Width x 3 byte + 54 byte

Also, in case of using this function with the work area of njInitTextureBuffer, the following size is necessary.

Buffer size of njInitTextureBuffer =

Screen length x Screen width x Byte number of screen mode

* The byte number of screen mode becomes 2 byte when NJD_FRAMEBUFFER_

MODE function is specified.

Currently only frame 0 can be a texture, so when frame 0 uses this function during drawing, the partially
rendered image appears. (Planned to be changed later)

If the buffer specified by this function is binary saved in Codescape, it becomes a bitmap.

Notes

In the future, the displayed frame will be modified to a BMP. Use for debugging

Deleted functions

NjInitCache Texture

njLoadTextureNumG
NGD-116

8. Texture Guide
5.3 Texture Structures

NJS_TEXSURFACE

typedef struct{

Uint32 Type; /**/

Uint32 BitDepth;/**/

Uint32 PixelFormat;/**/

Uint32 nWidth;/**/

Uint32 nHeight;/**/

Uint32 TextureSize;/**/

Uint32 fSurfaceFlags;/**/

Uint32 *pSurface;/**/

Uint32 pVirtual;/**/ New member

Uint32 pPhysical;/**/ New member

}NJS_TEXSURFACE;

NJS_TEXINFO

typedef struct{

void* texaddr;/* texture buffer address */

NJS_TEXSURFACEtexsurface/* texture surface address */

} NJS_TEXINFO;

NJS_TEXNAME

typedef struct {

void *filename; /* texture filename strings*/

Uint32 texaddr;/* texture memory address cache */

} NJS_TEXNAME;

NJS_TEXLIST

typedef struct {

NJS_TEXNAME *textures;/* texture array*/

Uint32 nbTexture/* texture count */

} NJS_TEXLIST;
NGD-117

Ninja Guide
NJS_TEXMEMLIST

typedef struct {

Uint32 globalIndex;/* global unique texture ID*/

Uint32 tspparambuffer;/* TSPParambuffer*/ New Member

Uint32 tspparambuffer;/* TextureParambuffer*/ New Member

Uint32 texaddr; /* texture Flag */

NJS_TEXINFO texinfo; /* texinfo */

Uint16 count; /* texture count */

Uint16 dummy; /* texture error */

} NJS_TEXMEMLIST;

5.4 Texture Definitions

Used with nWidth, nHeight

#define NJD_TEXSIZE_1 1

#define NJD_TEXSIZE_2 2

#define NJD_TEXSIZE_4 4

#define NJD_TEXSIZE_8 8

#define NJD_TEXSIZE_16 16

#define NJD_TEXSIZE_32 32

#define NJD_TEXSIZE_64 64

#define NJD_TEXSIZE_128 128

#define NJD_TEXSIZE_256 256

#define NJD_TEXSIZE_512 512

#define NJD_TEXSIZE_1024 1024

Used with attr

Texture load source

#define NJD_TEXATTR_TYPE_FILE 0 Load from file

#define NJD_TEXATTR_TYPE_MEMORY BIT_30Load from memory

#define NJD_TEXATTR_TYPE_FRAMEBUFFER BIT_28Can not be used in SET4

Texture load source

#define NJD_TEXATTR_TYPE_FRAMEBUFFER BIT_28Load from frame buffer

#define NJD_TEXATTR_CACHE BIT_31Load into cache

#define NJD_TEXATTR_BOTH BIT_29Load into both cache and

#define NJD_TEXATTR_MASK 0xF0000000

#define NJD_TEXATTR_READAREA_MASK (BIT_|BIT_29)

#define NJD_TEXATTR_READTYPE_MASK (BIT_30|BIT_28)

#define NJD_TEXATTR_GLOBALINDEX BIT_23 Change

#define NJD_TEXATTR_AUTOMIPMAP BIT_22 Complies with the next period

#define NJD_TEXATTR_AUTODITHER BIT_21 Complies with the next period

#define NJD_TEXATTR_MASK 0xFFFF0000
NGD-118

8. Texture Guide
Used with Type, color format

 #define NJD_TEXFMT_ARGB_1555 (0x00)

#define NJD_TEXFMT_RGB_565 (0x01)

#define NJD_TEXFMT_ARGB_4444 (0x02)

#define NJD_TEXFMT_YUV_422 (0x03) Not available

#define NJD_TEXFMT_BUMP (0x04) Not available

#define NJD_TEXFMT_COLOR_MASK (0xFF)

Category code

#define NJD_TEXFMT_TWIDDLED (0x0100)

#define NJD_TEXFMT_TWIDDLED_MM (0x0200)

#define NJD_TEXFMT_VQ (0x0300)

#define NJD_TEXFMT_VQ_MM (0x0400)

#define NJD_TEXFMT_PALETTIZE4 (0x0500)Not available

#define NJD_TEXFMT_PALETTIZE4_MM (0x0600)Not available

#define NJD_TEXFMT_PALETTIZE8 (0x0700)Not available

#define NJD_TEXFMT_PALETTIZE8_MM (0x0800)Not available

#define NJD_TEXFMT_RECTANGLE (0x0900)

#define NJD_TEXFMT_STRIDE (0x0B00)

#define NJD_TEXFMT_TWIDDLED_RECTANGLE(0x0D00) Not available

#define NJD_TEXFMT_ABGR (0x0E00) Not available

#define NJD_TEXFMT_ABGR_MM (0x0F00)Not available

#define NJD_TEXFMT_TYPE_MASK (0xFF00)

Texture error code (new addition)

#define NJD_TEXERR_OTHER (1) //Other errors

#define NJD_TEXERR_FILEOPEN (2) //File open error

#define NJD_TEXERR_EXTND (3) //Extention error

#define NJD_TEXERR_HEADER (4) //Header error

#define NJD_TEXERR_FILELOAD (5) //File load error

#define NJD_TEXERR_SURFACE (6) //Surface creation error

#define NJD_TEXERR_MAINMEMORY (7) //Main memory malloc error

#define NJD_TEXERR_TEXMEMLOAD (8) //Texture memory load error

#define NJD_TEXERR_GLOBALINDEX (9) //Global Index Error

Acquire texture memory size (used with njCalcTexture)

#define NJD_TEXMEM_FREESIZE (0x00000000)

#define NJD_TEXMEM_MAXBLOCK (0x00000001)

#define NJD_TEXMEM_MAXSIZE (0x00000002)

Macro for getting texture data (New addition)

#define NJM_TEXTURE_WIDTH(texlist,n) \

(((NJS_TEXMEMLIST*)texlist->textures[(n)].texaddr)->texinfo.texsurface.nWidth)

#define NJM_TEXTURE_HEIGHT(texlist,n) \

(((NJS_TEXMEMLIST*)texlist->textures[(n)].texaddr)->texinfo.texsurface.nHeight)

#define NJM_TEXTURE_GLOBALINDEX(texlist,n) \

(((NJS_TEXMEMLIST*)texlist->textures[(n)].texaddr)->globalIndex)
NGD-119

Ninja Guide
6 Sample Program

6.1 Overview

This chapter contains simple sample programs illustrating the following examples:

Ex. 1: Display of a PVR texture file.

Ex. 2: Load a texture from memory and display it.

Ex. 3: Load file from cache and display texture.

6.2 Sample

Ex. 1 : Display of PVR texture file

1: #include <Ninjawin.h>
2:
3: NJS_TEXNAME texname[2];
4:
5: NJS_TEXLIST texlist ={texname,2};
6: NJS_TEXMEMLIST texmemlist[2];/*Reserve texture information area for 2 textures*/
7: NJS_POINT2COL p[4];
8: Sint8 buffer[0x2B000];
9:
10: void njUserInit(void)
11:{
12: njInitSystem(NJD_RESOLUTION_VGA, NJD_FRAMEBUFFER_MODE_RGB555, 1);
13: /* Set two textures */
14: njSetTextureName(&texname[0],"file0.pvr",0,NJD_TEXATTR_TYPE_FILE);
15: NJD_TEXATTR_GLOBALINDEX);
16: njSetTextureName(&texname[1],"file1.pvr",1,NJD_TEXATTR_TYPE_FILE);
17: NJD_TEXATTR_GLOBALINDEX);
18: njInitTextureBuffer(buffer,0x2B00);/* file0 and file1 are Twiddled Mipmap of 256x256*/
19: njInitTexture(texmemlist,2);
20: njLoadTexture(&texlist); /* Load textures */
21: njSetTexture(&texlist); /* Assignt texlist to Current texture list */
22: /* Assign current texture to texture 0 of texlist*/
23: njSetTextureNum(0);
24:
25: /* Polygon data input */
26: p[0].x = 100; p[0].y = 100;
27: p[1].x = 200; p[1].y = 100;
28: p[2].x = 200; p[2].y = 200;
29: p[3].x = 100; p[3].y = 200;
30: p[0].col.tex.u = 0;p[0].col.tex.v = 0;
31: p[1].col.tex.u = 255;p[1].col.tex.v = 0;
NGD-120

8. Texture Guide
32: p[2].col.tex.u = 255;p[2].col.tex.v = 255;
33: p[3].col.tex.u = 0;p[3].col.tex.v = 255;
34:}
35: Sint32 njUserMain(void)
36{
37: /* Draw polygon of texture */
38: njDrawPolygon2D(p,4,-100.f,NJD_FILL|NJD_USE_TEXTURE);
39: return NJD_USER_CONTINUE;
40:}
41: void njUserExit(void)
42:{
43: njExitTexture();
44: njExitSystem();
43:}

Ex. 2: Load a texture from memory and display it.

1: #include <Ninjawin.h>
2:
3: extern Uint16 Image[]; /* Assume there is mipmap data over 256 in other file */
4:
5: NJS_TEXINFO Info;
6: NJS_TEXNAME texname[2];
7:
8: NJS_TEXLIST texlist ={texname,2};
9: NJS_TEXMEMLIST texmemlist[2];/* Reserve texture information area for 2 textures */
10: NJS_POINT2COL p[4];
11:
12: void njUserInit(void)
13:{
14: njInitSystem(NJD_RESOLUTION_VGA, NJD_FRAMEBUFFER_MODE_RGB555, 1)
15: /* Set 2 textures*/
16: njSetTextureInfo(&Info,Image,NJD_TEXFMT_TWIDDLED|NJD_TEXFMT_ARGB_1555,256,256);
17: njSetTextureName(&texname[0],"file0.pvr",0,NJD_TEXATTR_TYPE_FILE);
18: njSetTextureName(&texname[1],&Info,1,NJD_TEXATTR_TYPE_MEMORY);
19: njInitTexture(texmemlist,2);
20: njLoadTexture(&texlist);/* Load texture */
21: njSetTexture(&texlist); /* Assign texlist to current texture list */
22: /* Assing texture 1 of texlis to current texture */
23: njSetTextureNum(1);
24:
25: /* Input plygon data */
26: p[0].x = 100; p[0].y = 100;
27: p[1].x = 200; p[1].y = 100;
NGD-121

Ninja Guide
28: p[2].x = 200; p[2].y = 200;
29: p[3].x = 100; p[3].y = 200;
30: p[0].col.tex.u = 0; p[0].col.tex.v = 0;
31: p[1].col.tex.u = 255;p[1].col.tex.v = 0;
32: p[2].col.tex.u = 255;p[2].col.tex.v = 255;
33: p[3].col.tex.u = 0; p[3].col.tex.v = 255;
34:}
35:
36: Sint32 njUserMain(void)
37{
38: /* Draw polygon of texture */
39: njDrawPolygon2D(p,4,-100.f,NJD_FILL|NJD_USE_TEXTURE);
40: return NJD_USER_CONTINUE;
41:}
42:
43: void njUserExit(void)
44{
45: njExitTexture();
46: njExitSystem();
47:}

Ex. 3: Load file from cache and display texture

1: #include <Ninjawin.h>
2:
3: NJS_TEXNAME texname[2];
4:
5: NJS_TEXLIST texlist ={texname,2};
6: NJS_TEXMEMLIST texmemlist[2]; /* Reserve texture information area for 2 textures */
7: NJS_POINT2COL p[4];
8: Sint8 buffer[0x2B000];
9: Sint8 cbuffer[0x2AAAC*2];
10:
11: :void njUserInit(void)
12:{
NGD-122

8. Texture Guide
13: njInitSystem(NJD_RESOLUTION_VGA, NJD_FRAMEBUFFER_MODE_RGB555, 1)
14: njInitTexture(texmemlist,2);
15: /* Set 2 textures */
16: njSetTextureName(&texname[0],"file0.pvr",0,NJD_TEXATTR_TYPE_FILE|
17: NJD_TEXATTR_CACHE|NJD_TEXATTR_GLOBALINDEX);
18: njSetTextureName(&texname[1],”file1.pvr”,1,NJD_TEXATTR_TYPE_MEMORY|
19: NJD_TEXATTR_CACHE|NJD_TEXATTR_GLOBALINDEX);
20: njInitTextureBuffer(buffer,0x2B000);
21: njInitCacheTextureBuffer(cbuffer,0x2AAAC*2);
22: njLoadTexture(&texlist); /* Load textures */
23: njSetTexture(&texlist); /* Specify texlist to current texture */
24: njLoadCacheTextureNum(0); /* Load texture of number 0 from cache */
25: njLoadCacheTextureNum(1); /* Load texture of number 1 from cache */
26: /* Assign texture 0 of texlist to current texture*/
27: njSetTextureNum(0);
28:
29: /* Polygon data input */
30: p[0].x = 100; p[0].y = 100;
31: p[1].x = 200; p[1].y = 100;
32: p[2].x = 200; p[2].y = 200;
33: p[3].x = 100; p[3].y = 200;
34: p[0].col.tex.u = 0;p[0].col.tex.v = 0;
35: p[1].col.tex.u = 255;p[1].col.tex.v = 0;
36: p[2].col.tex.u = 255;p[2].col.tex.v = 255;
37: p[3].col.tex.u = 0;p[3].col.tex.v = 255;
38:}
39:
40: Sint32 njUserMain(void)
41{
42: /* Draw texture polygon */
43: njDrawPolygon2D(p,4,-100.f,NJD_FILL|NJD_USE_TEXTURE);
44: return NJD_USER_CONTINUE;
45:}
46:
47: void njUserExit(void)
48{
49: njExitTexture();
50: njExitSystem();
51:}
NGD-123

Ninja Guide
7 Notes for Texture functions

7.1 Overview

This chapter contains notes for using texture functions.

7.2 Notes for Switchover from SET2 to SET4/SET5

1) In SET2, the work area for texture functions were allocated inside. But in SET4 or over, please get texture
buffer using njInitTextureBuffer. Refer to "4.3 Setting Texture Buffer" for the necessary size.

2) njSetTexturePath function can not be used in SET4 or over. Modify the part where
njSetTexturePath function is used as follows.

SET2:
njSetTexturePath(“\\image0”);

njLoadTexture(&texlist0);

njSetTexturePath(“\\image1”);

njLoadTexture(&texlist1);

SET4:
gdFsChangeDir("IMAGE0");

njLoadTexture(&texlist0);

gdFsChangeDir("..");

gdFsChangeDir("IMAGE1");

njLoadTexture(&texlist1);

3) As DMA transfer is unsupported in SET4, textures can not be loaded during rendering. Therefore,
cache texture and reload texture can not be used during rendering.

4) njFrameBufferBmp function can not be used in SET4 or over. Please substitute njFrameBufferBmp2 for
njFrameBufferBmp.

7.3 Notes for using texture functions in SET5

In SET5, transfer from main memory to texture memory is DMA transfer when

the head address of the buffer is 32 byte alignment. When the head address is other than 32 byte alignment, transfer
becomes CPU transfer.

In case of executing functions which are transferred to texture memory with the situation of forbidding interrupt,
if the buffer is one of 32 byte alignment, DMA end interrupt is ignored. Be careful not to let the buffer 32
byte alignment.
NGD-124

9. Chunk Model Specifications
1 Overview
Ninja supports two format models, called the Basic Model and the Chunk Model. While a drawing function is
executed in the Chunk Model, the data are placed in a continuous memory space so as to maintain integrity of the
SH4 cache. Expandability, flexibility, and data expression efficiency are excellent. In future, further tuning will be
carried out, centering on the Chunk Model. The Basic Model is supported, but does not include the new features.

In the Chunk Model, the model structure contents have been significantly changed. The object structure is not
changed, except for the fact that the model structure pointers have been altered to the Chunk Model.

Motions and textures besides the model use the same format as before. However, for compatibility with camera and
light, the format of structure members has been changed.

For information on the Basic Model and the texture structure, refer to the Basic Model Specifications.

The features of the Chunk Model are listed below.
NGD-125

Ninja Guide
1.1 Chunk Model Features

Based on triangular strip drawing. Currently, triangular, quadrilateral, and N-sided polygon drawing is not
supported. Performance has topmost design priority. The data consist of the vertex list "vlist" and polygon list
"plist". Data are arranged on "vlist" and "plist" in IFF chunk format for keeping the memory area uniform and for
protecting the cache during drawing execution. Both the polygon side and vertex side can contain vertex color
information. On the polygon side, the vertex can be assigned an individual color for each polygon.

The polygon side can have a vertex normal line. Because the vertex normal line is in polygon units, the "softimage"
vertex normal line can be output as is. Discontinuity data can also be output. The polygon side and the vertex side
can have a user flag area (max. 16 bit x 3 for the polygon side and 32 bit x 1 for the vertex side). Currently, this area
is used when outputting vertex color data to the user flag area. In future, tools for writing user data to this area are
planned. The material is stored in "plist", and only the difference to previous material (differential settings) are
updated. This reduces the number of material settings compared to the Basic Model. Material can be deleted at the
time of converter output. When drawing an identical model (for example a tree), data can be optimized by deleting
all material and making external user settings.

10-bit normal lines are supported, to allow a reduction in data volume. The XYZ normal lines are stored in Uint32
with 10 bits each. 2 bits are filled with 0 as reserved area.

Collision data Chunk Volume output is supported. Triangular, quadrilateral, and triangular strip output is possible,
without material information. A user flag area is possible. Currently, the material color is output in this area.
Separate triangular Chunk Volume (volume3) can also be used as modifier volume. When "volume34" is specified
for the converter, a quadrilateral shape is created from triangles adjoining at 0.1 degree angles. 3D Studio MAX can
only output triangular data, but in this case, quadrilateral collision data can be generated.

To use the SH4 hardware efficiently and allow high- speed processing, the vertex format is supported. (NJD_CV_SH,
NJD_CV_VN_SH). High speed is achieved by using the SH4 matrix processing commands efficiently. This is used
when performance has priority over data volume.

The following two types of UV value expressions are available: 0-255 UVN, and high-resolution 0-1023 UVH. UVN
is a conventional expression which has been used in Basic a Model. However, resolution suffers at sizes exceeding
256. With UVH and high-resolution mode, 1024 x 1024 texture can be specified in 1-pixel units. But compared to
UVN, the texture repeat count of UVH decreases proportionally to the increase in resolution (32 times for UVH vs.
128 times for UVN). UVN and UVH can be switched by convert option for the whole of model tree and also material
names can be used to switch at each model unit. In case that the UV value is specified by material name, UV value
expressions are changed by setting to only one material (among some materials used for single model). The default
is UVN.
NGD-126

9. Chunk Model Specifications
2 Model Structures

2.1 Structure Diagram

Chunk Object Tree

Structure Description

Float, Angle

typedef float Float /* Floating-point operation type */

typedef Sint32 Angle /* Angle of rotation */

For angles, 0x0000 - 0xFFFF correspond to 0 to 360 degrees.

Point structure

typedef struct {

Float x; /* X value */

Float y; /* Y value */

Float z; /* z value */

} NJS_POINT3, NJS_VECTOR;

Gives the vertex XYZ values.

Chunk Model structure

typedef struct {

 Sint32 *vlist; /* Vertex chunk list */

 Sint16 *plist; /* Polygon chunk lis t */

 NJS_POINT3 center; /* Model center */

 Float r; /* Model diameter */

 } NJS_CNK_MODEL;

"vlist" contains the vertex list data as a Sint32 array in "iff" chunk format.

"plist" contains polygon index list as a Sint16 array in "iff" chunk format.

"center" specifies the exterior circumference center of the model, with the radius "r".

Chunk object structure

 typedef struct cnkobj {

 Uint32 evalflags;/* Matrix processing evaluation flag*/

 NJS_CNK_MODEL *model;/* Chunk model pointer*/

 Float pos[3];/* Motion amount*/

 Angle ang[3];/* Rotation amount*/

 Float scl[3];/* Scale */

 struct cnkobj *child;/* Child pointer*/

 struct cnkobj *sibling;/* Sibling pointer*/

 } NJS_CNK_OBJECT;

Gives the child/parent structure of the model. The evalflags contain flags for matrix processing optimization, and
a chunk model structure pointer is hooked to the model. For nodes without polygons, this pointer is set to NULL.
"pos" specifies the amount of position motion, and "rot" specifies the rotation amount. "scl" specifies the scale and
"child" and "sibling" supply the child and sibling pointers.
NGD-127

Ninja Guide
Explanation of evalflags

#define NJD_EVAL_UNIT_POS BIT_0/* Motion can be ignored */

#define NJD_EVAL_UNIT_ANG BIT_1/* Rotation can be ignored */

#define NJD_EVAL_UNIT_SCL BIT_2/* Scale can be ignored */

#define NJD_EVAL_HIDE BIT_3/* Do not draw model */

#define NJD_EVAL_BREAK BIT_4/* Break child trace */

#define NJD_EVAL_ZXY_ANG BIT_5

 /* Specification for evaluation of rotation expected by LightWave3D*/
#define NJD_EVAL_SKIP BIT_6 /* Skip motion */

#define NJD_EVAL_SHAPE_SKIPBIT_7

 /* Skip shape motion */

#define NJD_EVAL_MASK 0xff

 /* Mask for extracting above bits */

These flags are set by the converter.

NJD_EVAL_UNIT_POS is set when the parallel motion amount is "0". Parallel motion matrix processing is omitted
when this flag is set.

NJD_EVAL_UNIT_ANG is set when the rotation angle is "0". Rotation matrix processing is omitted when this flag
is set.

NJD_EVAL_UNIT_SCL is set when the scale is "1" for x, y, and z. Scale matrix processing is omitted when this flag
is set.

If NJD_EVAL_UNIT_POS, NJD_EVAL_UNIT_ANG, and NJD_EVAL_UNIT_SCL are all set, all matrix processing
steps are omitted, and the matrix “push pop” operation is also omitted.

The NJD_EVAL_HIDE flag is set by the user. If this flag is set, the model is not drawn. This flag is used when
switching the gun or blade with which a model is equipped.

The NJD_EVAL_BREAK flag is set by the user. If this flag is set, the child search is halted at this point. For example,
setting this flag in the root node causes the entire model to disappear. When NJD_EVAL_BREAK is used in
combination with motion, data coordination is lost. Therefore this flag should only be used in the root node. It can
be used in intermediate nodes, but the user is responsible for such usage.

The rotation evaluation sequence for LightWave3D is "ZXY". Because this sequence is normally "XYZ" in Ninja, the
NJD_EVAL_ZXY_ANG flag is provided for execution via a library with the LightWave3D evaluation sequence. When
this flag is set to ON, the rotation processing sequence is changed to "ZXY".

The NJD_EVAL_SKIP flag indicates that this node does not include motion data. During motion execution, matrix
processing is carried out using the object structure value without incrementing the motion node, and then proceeds
to the next node. This allows motion also with polygon models having a different configuration, provided that the
bone structure is the same.

The NJD_EVAL_SHAPE_SKIP flag indicates that this node does not include shape motion data.

NJD_EVAL_SKIP and NJD_EVAL_SHAPE_SKIP can be specified by material names.
NGD-128

9. Chunk Model Specifications
3 Chunk Specifications

3.1 Chunk Types

Based on the basic structure, define a simplified chunk (Bits, Tiny, etc.) suitable for the respective purpose. The
Chunk Vertex for the vertex is stored in the "vlist" for the Chunk Model structure. Other chunks are stored in "plist".
These are defined by "NinjaCnk.h".

3.2 Chunk Structure

The basic chunk structure is as follows.

Chunk Vertex

[headbits(15-8)|ChunkHead(7-0)][longsize(15-0)][data ….]

Other than Chunk Vertex

[headbits(15-8)|ChunkHead(7-0)][shortsize(15-0)][data ….]

The ChunkHead supplies the function table entry number for that chunk. The library selects a function from this
number for execution. By dividing processing functions into chunks, draw routines are simplified and can execute
faster. Because the maximum table size is 256 entries, the upper 8 bits are available. These 8 bits (called headbits)
are used for storing a part of the attribute flags according to the chunk type and purpose, for more efficient use of
the data size. Note that the upper 8 bits must be masked when obtaining the function entry number of the
chunk table.

The "shortsize" and "longsize" gives the offset until the start of the next chunk.

Usually, in iff format, the data offset until the next chunk is given by byte unit. But as plist which becomes object is
the short arrangement and vlist is long arrangement, each offset is expressed at shortsize(2bytes) unit and
longsize(4bytes) unit. It has the effect to enlarge the maximum expressible number of the offset until the next chunk.
For example, when the user wants to rewrite only the material, it is possible to use "shortsize" to skip data until the
material chunk is found, and then to overwrite the material value obtained in this way.

Chunk name Symbol Size Description

Chunk NULL CN 16bit Long word alignment matching.

Chunk End CE 16bit Chunk data list end marker.

Chunk Bits CB 16bit Flag setting for Blend Alpha etc.

Chunk Tiny CT 32bit Flag and single value setting for
Texld etc.

Chunk Material CM Variable Diffuse, Specular, Exponent,
Ambient setting.

Chunk Vertex CV Variable Supplies vertex list.

Chunk Volume CO Variable Supplies collision and modifier
volume data.

Chunk Strip CS Variable Supplies strip data.
NGD-129

Ninja Guide
3.3 Chunk NULL

ChunkName : ‘NJD_CN’

(Chunk NULL)

Outline:

This chunk consists only of the ChunkHead (16 bits). It is inserted between chunks for long word alignment
matching in the "plist".

Format:

[ChunkHead(15-0)]

ChunkHead:

NJD_CN

Description:

#define NJD_CN (NJD_NULLOFF+0)

"plist" is a primary array based on Sint16. Therefore the strip end is not always a Sint32 boundary. Although the
Chunk Material is a Sint16 array, reading it as Sint32 data will improve efficiency. For this purpose, the NJD_CN is
added to the end of the Chunk Strip to create a Sint32 boundary. For performance reasons, boundary matching by
library collating is still under evaluation. If boundary matching is not performed, NJD_CN is not used.

3.4 Chunk End

ChunkName : ‘NJD_CE’

(Chunk End)

Outline:

This chunk consists only of the ChunkHead (16 bits). It specifies the end of the "plist" and "vlist" chunk list.
For "vlist", it is treated as a ChunkHead (32 bits). The actual value is queried by checking whether the
highest bit is raised to "1".

Format:

plist: [ChunkHead(15-0)]?16 bits chunk?

vlist: [ChunkHead(31-0)]?32 bits chunk?

ChunkHead:

NJD_CE

Description:

#define NJD_CE (NJD_ENDOFF+0)

etects the end of the list.
NGD-130

9. Chunk Model Specifications
3.5 Chunk Bits

Chunk bits are used for rewriting flags such as the attribute flag.

[headbits(15-8)|ChunkHead(7-0)](16 bits chunk)

The flags are stored in the upper 8 bits, and the lower 8 bits supply the chunk number. This chunk consists only of
the ChunkHead (16 bits). The actual Chunk Bits are explained below.

ChunkName : ‘NJD_CB_BA’

(Chunk Bits Blend Alpha)

Outline:

Sets "Blend Alpha" for the attribute flag in "plist".

Format:

[headbits(13-8)|ChunkHead(7-0)]

headbits:

13-11 = SRC Alpha Instruction(3bit)
10- 8 = DST Alpha Instruction(3bit)

ChunkHead:

NJD_CB_BA

Description:

#define NJD_CB_BA (NJD_BITSOFF+0)

"Blend Alpha" is set in two ways. As headbits for Chunk Material (see below), it can be set to "diffuse", "specular",
and "ambient", and it can also be set to "Blend Alpha". To set only "Blend Alpha" without changing the material, use
NJD_CB_BA.

The blending function combines the two RGBA values SRC and DST as shown below, and writes the result back
to DST.

DST :=SRC * BlendFunction(SRC Alpha Instruction) +

DST * BlendFunction(DST Alpha Instruction)

To the Blend function (instruction), a 3-bit instruction is input together with SRC/DST color. For each RGBA value,
a coefficient weighted with four alpha values is returned.
NGD-131

Ninja Guide
"Other Color" and "Inverse Other Color" indicate that the DST color is used when specified for the SRC instruction,
and the SRC color when specified for the DST instruction.

The abbreviations have the following meanings.
ZER: Zero

ONE: One

OC: `Other' Color

IOC: Inverse `Other' Color

SA: Src Alpha

ISA: Inverse SRC Alpha

DA: DST Alpha

IDA: Inverse DST Alpha

Flag Blending Src?

#define NJD_FBS_SHIFT 11

#define NJD_FBS_ZER 0<<NJD_FBS_SHIFT)

#define NJD_FBS_ONE (1<<NJD_FBS_SHIFT)

#define NJD_FBS_OC (2<<NJD_FBS_SHIFT)

#define NJD_FBS_IOC (3<<NJD_FBS_SHIFT)

#define NJD_FBS_SA (4<<NJD_FBS_SHIFT)

#define NJD_FBS_ISA (5<<NJD_FBS_SHIFT)

#define NJD_FBS_DA (6<<NJD_FBS_SHIFT)

#define NJD_FBS_IDA (7<<NJD_FBS_SHIFT)

#define NJD_FBS_MASK (0x7<<NJD_FBS_SHIFT)

Instruction Field Value Values Returned

Zero 0 (0, 0, 0, 0)

One 1 (1, 1, 1, 1)

‘Other’ Colour 2 (OR, OG, OB, OA)

Inverse ‘Other’ Colour 3 (1 – OR, 1- OG, 1 - OB, 1 - OA)

SRC Alpha 4 (SA, SA, SA, SA)

Inverse SRC Alpha 5 (1- SA, 1 - SA, 1 - SA, 1 - SA)

DST Alpha 6 (DA, DA, DA, DA)

Inverse DST Alpha 7 (1- DA, 1 - DA, 1- DA, 1 - DA)
NGD-132

9. Chunk Model Specifications
Flag Blending Dst?

#define NJD_FBD_SHIFT 8

#define NJD_FBD_ZER (0<<NJD_FBD_SHIFT)

#define NJD_FBD_ONE (1<<NJD_FBD_SHIFT)

#define NJD_FBD_OC (2<<NJD_FBD_SHIFT)

#define NJD_FBD_IOC (3<<NJD_FBD_SHIFT)

#define NJD_FBD_SA (4<<NJD_FBD_SHIFT)

#define NJD_FBD_ISA (5<<NJD_FBD_SHIFT)

#define NJD_FBD_DA (6<<NJD_FBD_SHIFT)

#define NJD_FBD_IDA (7<<NJD_FBD_SHIFT)

#define NJD_FBD_MASK (0x7<<NJD_FBD_SHIFT)

ChunkName : ‘NJD_CB_DA’

(Chunk Bits ‘D’ Adjust)

Outline:

Sets the mipmap 'D' adjust value for "plist".

Format:

[headbits(11-8)|ChunkHead(7-0)]

headbits:

11- 8 = Mipmap 'D' adjust(4)

ChunkHead:

NJD_CB_DA

Description:

#define NJD_CB_DA (NJD_BITSOFF+1)

Adjusts the mipmap switching depth. The default is 1.00. This chunk should not be changed frequently. It is
designed to suppress excessive mipmap switching.
NGD-133

Ninja Guide
Flag ‘D’ Adjust?

#define NJD_FDA_SHIFT 8

#define NJD_FDA_025 (1<<NJD_FDA_SHIFT) /* 0.25 */

#define NJD_FDA_050 (2<<NJD_FDA_SHIFT) /* 0.50 */

#define NJD_FDA_075 (3<<NJD_FDA_SHIFT) /* 0.75 */

#define NJD_FDA_100 (4<<NJD_FDA_SHIFT) /* 1.00 */

#define NJD_FDA_125 (5<<NJD_FDA_SHIFT) /* 1.25 */

#define NJD_FDA_150 (6<<NJD_FDA_SHIFT) /* 1.50 */

#define NJD_FDA_175 (7<<NJD_FDA_SHIFT) /* 1.75 */

#define NJD_FDA_200 (8<<NJD_FDA_SHIFT) /* 2.00 */

#define NJD_FDA_225 (9<<NJD_FDA_SHIFT) /* 2.25 */

#define NJD_FDA_250 (10<<NJD_FDA_SHIFT) /* 2.25 */

#define NJD_FDA_275 (11<<NJD_FDA_SHIFT) /* 2.25 */

#define NJD_FDA_300 (12<<NJD_FDA_SHIFT) /* 3.00 */

#define NJD_FDA_325 (13<<NJD_FDA_SHIFT) /* 3.25 */

#define NJD_FDA_350 (14<<NJD_FDA_SHIFT) /* 3.50 */

#define NJD_FDA_375 (15<<NJD_FDA_SHIFT) /* 3.75 */

#define NJD_FDA_MASK (0xf<<NJD_FDA_SHIFT)

ChunkName : ‘NJD_CB_EXP’

(Chunk Bits Exponent)

Outline:

Sets the Exponent for the "plist" "specular". Values from 0 to 16 are valid.

Format:

[headbits(12-8)|ChunkHead(7-0)]

headbits:

12- 8 = Exponent(5) range:0-16

ChunkHead:

NJD_CB_EXP

Description:

#define NJD_CB_EXP (NJD_BITSOFF+2)

The exponent is set in two ways. To set "specular" in Chunk Material (see below), the upper 8 bits of the specular
component in the Chunk Material are used to set the exponent (which becomes ERGB8888). To change only the
exponent without changing the previously set exponent, use NJD_CB_EXP.
NGD-134

9. Chunk Model Specifications
Flag EXPonent(range 0-16)?

#define NJD_FEXP_SHIFT 8

#define NJD_FEXP_00 (0<<NJD_FEXP_SHIFT) /* 0.0 */

#define NJD_FEXP_01 (1<<NJD_FEXP_SHIFT) /* 1.0 */

#define NJD_FEXP_02 (2<<NJD_FEXP_SHIFT) /* 2.0 */

#define NJD_FEXP_03 (3<<NJD_FEXP_SHIFT) /* 3.0 */

#define NJD_FEXP_04 (4<<NJD_FEXP_SHIFT) /* 4.0 */

#define NJD_FEXP_05 (5<<NJD_FEXP_SHIFT) /* 5.0 */

#define NJD_FEXP_06 (6<<NJD_FEXP_SHIFT) /* 6.0 */

#define NJD_FEXP_07 (7<<NJD_FEXP_SHIFT) /* 7.0 */

#define NJD_FEXP_08 (8<<NJD_FEXP_SHIFT) /* 8.0 */

#define NJD_FEXP_09 (9<<NJD_FEXP_SHIFT) /* 9.0 */

#define NJD_FEXP_10 (10<<NJD_FEXP_SHIFT) /* 10.0 */

#define NJD_FEXP_11 (11<<NJD_FEXP_SHIFT) /* 11.0 */

#define NJD_FEXP_12 (12<<NJD_FEXP_SHIFT) /* 12.0 */

#define NJD_FEXP_13 (13<<NJD_FEXP_SHIFT) /* 13.0 */

#define NJD_FEXP_14 (14<<NJD_FEXP_SHIFT) /* 14.0 */

#define NJD_FEXP_15 (15<<NJD_FEXP_SHIFT) /* 15.0 */

#define NJD_FEXP_16 (16<<NJD_FEXP_SHIFT) /* 16.0 */

#define NJD_FEXP_MASK (0x1f<<NJD_FEXP_SHIFT)
NGD-135

Ninja Guide
3.6 Chunk Tiny

Chunk Tiny is used to set the flag and one value. "TexId" corresponds to this. The size is fixed to 32 bits, consisting
of the 16-bit Chunk Head and a 16-bit constant.

[headbits(15-8)|ChunkHead(7-0)][value(15-0)] (32 bits chunk)

Currently, only "TexId" and NJD_CT_TID which sets the texture function attribute flag are defined for Chunk Tiny.

ChunkName : ‘NJD_CT_TID’

(Chunk Tiny TexId)

Outline:

Sets "TexId" (entry number in "TexList") in “plist”.

Format:

[headbits(15-8)|ChunkHead(7-0)][texbits(15-13)|TexId(12-0)]

headbits:

15-14 = FlipUV(2)
13-12 = ClampUV(2)
11- 8 = Mipmap 'D' adjust(4)

ChunkHead:

NJD_CT_TID

texbits:

15-14 = Filter Mode(2)
13 = Super Sample(1)

TexId:

0?8191 (TexId Max = 8191)

Description:

#define NJD_CT_TID (NJD_TINYOFF+0)

Sets the texture function attribute flag and "TexId". By controlling the timing for texture switching, effective texture
switching can be achieved. Because the number of bits allocated to "TexId" is 13, the maximum value is 8191.

Flag FLip (headbits)?

#define NJD_FFL_U (BIT_15)

#define NJD_FFL_V (BIT_14)

Controls the UV value flip.
NGD-136

9. Chunk Model Specifications
Flag CLamp (headbits)?

#define NJD_FCL_U (BIT_13)

#define NJD_FCL_V (BIT_12)

Controls the UV value clamp.

Flag Filter Mode (texbits):

PS : Point Sampled

BF : Bilinear Filter?default?

TF : Tri-liner Filter
#define NJD_FFM_SHIFT 14

#define NJD_FFM_PS (0<<NJD_FFM_SHIFT)

#define NJD_FFM_BF 1<<NJD_FFM_SHIFT)

#define NJD_FFM_TF (2<<NJD_FFM_SHIFT)

#define NJD_FFM_MASK (0x3<<NJD_FFM_SHIFT)

Controls the filter ring mode.

Flag Super Sample (texbits):

#define NJD_FSS (BIT_13)

Controls super sampling.
#define NJD_TID_MASK (~(NJD_FSS|NJD_FFM_MASK))

3.7 Chunk Material

Chunk Material includes the "diffuse", "specular", and "ambient" setting. Only a difference to the previous value is
set. If the headbits of the Chunk Strip (see below) contain the flag to disregard the "specular" value (NJD_FST_IL),
the "specular" setting is omitted. If the flag to disregard the "ambient" value (NJD_FST_IA) is included, the
"ambient" setting is omitted. "Blend Alpha" is set in the headbits (upper 8 bits). This part is equivalent to
NJD_CB_BA. Details on "Blend Alpha" are given in the section on NJD_CB_BA. The upper 8 bits of the "specular"
setting are used to specify the exponent. This part is functionally equivalent to NJD_CB_EXP. For NJD_CB_EXP, the
flag bits 0 - 16 (NJD_FEXP_*) were used for the setting, whereas Chunk Material "specular" sets the 0 - 16
values directly.

[headbits(13-8)|ChunkHead(7-0)][shortsize(15-0)][Data]

headbits:

13-11 = SRC Alpha Instruction(3)

10- 8 = DST Alpha Instruction(3)

ChunkHead:

NJD_CM_D, NJD_CM_A, NJD_CM_DA, NJD_CM_S,

NJD_CM_DS, NJD_CM_AS, NJD_CM_DAS
NGD-137

Ninja Guide
Data:

Diffulse?ARGB8888

Specular?ERGB8888?E?exponent 0?16?

Ambient?NRGB8888?N?NOOP?

ChunkName : ‘NJD_CM_D’

(Chunk Material Diffuse)

Outline:

Sets the "diffuse" value in "plist". The alpha value is stored in the upper 8 bits of the "diffuse" setting.

Format:

[headbits(13-8)|ChunkHead(7-0)][2(shortsize)][ARGB]

headbits:

13-11 = SRC Alpha Instruction(3)

10- 8 = DST Alpha Instruction(3)

ChunkHead:

NJD_CM_D

ARGB:

ARGB8888

Description:?

#define NJD_CM_D (NJD_MATOFF+1)

Sets only "diffuse" for "Blend Alpha". The "specular" and "ambient" settings are kept at the current values.

ChunkName : ‘NJD_CM_A’

(Chunk Material Ambient)

Outline:

Sets the "ambient" value in "plist". The upper 8 bits of the "ambient" setting contain 255 as a dummy
value (NOOP).
NGD-138

9. Chunk Model Specifications
Format:

[headbits(13-8)|ChunkHead(7-0)][2(shortsize)][NRGB]

headbits:

13-11 = SRC Alpha Instruction(3)

10- 8 = DST Alpha Instruction(3)

ChunkHead:

NJD_CM_A

NRGB:

NRGB8888?N?NOOP 255?

Description:

#define NJD_CM_A (NJD_MATOFF+2)

Sets only "ambient" for "Blend Alpha". The "diffuse" and "specular" settings are kept at the current values.

ChunkName : ‘NJD_CM_DA’

(Chunk Material Diffuse and Ambient)

Outline:

Sets the "diffuse" and "ambient" values in "plist". The upper 8 bits of the "diffuse" setting contain the alpha
value. The upper 8 bits of the "ambient" setting contain 255 as a dummy value (NOOP).

Format:

[headbits(13-8)|ChunkHead(7-0)][4(shortsize)][ARGB][NRGB]

headbits:

13-11 = SRC Alpha Instruction(3)

10- 8 = DST Alpha Instruction(3)

ChunkHead:

NJD_CM_DA

ARGB:

ARGB8888

NRGB:

NRGB8888?N?NOOP 255?

Description:

#define NJD_CM_DA (NJD_MATOFF+3)

Sets "diffuse" and "ambient" for "Blend Alpha". The "specular" setting is kept at the current value.

ChunkName : ‘NJD_CM_S’

(Chunk Material Specular)
NGD-139

Ninja Guide
Outline:

Sets the "specular" value in "plist". The upper 8 bits of the "specular" setting contain the exponent (0 - 16).

Format:

[headbits(13-8)|ChunkHead(7-0)][2(shortsize)][ERGB]

headbits:

13-11 = SRC Alpha Instruction(3)

10- 8 = DST Alpha Instruction(3)

ChunkHead:

NJD_CM_S

ERGB:

ERGB8888(E?Exponent 0?16)

Description:

#define NJD_CM_S (NJD_MATOFF+4)

Sets only "specular" for "Blend Alpha". The "diffuse" and "ambient" settings are kept at the current values.

ChunkName : ‘NJD_CM_DS’

(Chunk Material Diffuse and Specular)

Outline:

Sets the "diffuse" and "specular" values in "plist". The upper 8 bits of the "diffuse" setting contain the alpha
value. The upper 8 bits of the "specular" setting contain the exponent (0 - 16).

Format:

[headbits(13-8)|ChunkHead(7-0)][4(shortsize)][ARGB][ERGB]

headbits:

13-11 = SRC Alpha Instruction(3)

10- 8 = DST Alpha Instruction(3)

ChunkHead:

NJD_CM_DS

ARGB:

ARGB8888

ERGB:

ERGB8888(E?Exponent 0?16)

Description:?

#define NJD_CM_DS (NJD_MATOFF+5)

Sets "diffuse" and "specular" for "Blend Alpha". The "ambient" setting is kept at the current value.

ChunkName : ‘NJD_CM_AS’
NGD-140

9. Chunk Model Specifications
(Chunk Material Ambient and Specular)

Outline:

Sets the "ambient" and "specular" values in "plist". The upper 8 bits of the "ambient" setting contain the
alpha value. The upper 8 bits of the "specular" setting contain the exponent (0 - 16).
NGD-141

Ninja Guide
Format:

[headbits(13-8)|ChunkHead(7-0)][4(shortsize)][NRGB][ERGB]

headbits:

13-11 = SRC Alpha Instruction(3)
10- 8 = DST Alpha Instruction(3)

ChunkHead:

NJD_CM_AS

NRGB:

NRGB8888(N?NOOP 255)

ERGB:

ERGB8888(E?Exponent 0?16)

Description:

#define NJD_CM_AS (NJD_MATOFF+6)

Sets "ambient" and "specular" for "Blend Alpha". The "diffuse" setting is kept at the current value.

ChunkName : ‘NJD_CM_DAS’

(Chunk Material Diffuse Ambient and Specular)

Outline:

Sets the "diffuse" and "specular" values in "plist". The upper 8 bits of the "diffuse" setting contain the alpha
value. The upper 8 bits of the "specular" setting contain the exponent (0 - 16).

Format:

[headbits(13-8)|ChunkHead(7-0)][6(shortsize)][ARGB][NRGB][ERGB]

headbits:

13-11 = SRC Alpha Instruction(3)
10- 8 = DST Alpha Instruction(3)

ChunkHead:

NJD_CM_DAS

ARGB:

ARGB8888

NRGB:

NRGB8888(N?NOOP 255)

ERGB:

ERGB8888(E?Exponent 0?16)

Description:
NGD-142

9. Chunk Model Specifications
#define NJD_CM_DAS (NJD_MATOFF+7)

Sets "diffuse, "ambient", and "specular" for "Blend Alpha".

3.8 Chunk Vertex

The Chunk Vertex gives the vertex list for the model. To allow the user to store desired data in the vertex list, it also
uses the chunk format. By switching chunk types, the vertex, normal line, vertex color, user flag, and other items
can be set as required in the vertex list. The upper 8 bits of the Chunk Head (headbits) are not used for the Chunk
Vertex. If several chunk types were to be used simultaneously by the model, multiple library processing would be
required. Currently, this is not supported. For one model, only one Chunk Vertex type is used. The header is based
on Sint16, but the store array is as follows:

[ChunkHead(31-16)|bytesize(15-0)]

[IndexOffset(31-16)|nbIndices(15-0)][Data]

ChunkHead:

<Format allowing high-speed processing with SH4>

NJD_CV_SH, NJD_CV_VN_SH

<Standard format without vertex normal line>

NJD_CV, NJD_CV_D8, NJD_CV_UF,

NJD_CV_NF, NJD_CV_S5, NJD_CV_S4, NJD_CV_IN

<Standard format with vertex normal line>
NJD_CV_VN, NJD_CV_VN_D8, NJD_CV_VN_UF,

NJD_CV_VN_NF, NJD_CV_VN_S5, NJD_CV_VN_S4,

NJD_CV_VN_IN

<32-bit vertex normal line with 10 bits each for x, y, z>

NJD_CV_VNX, NJD_CV_VNX_D8, NJD_CV_VNX_UF

The abbreviations have the following meanings.

VN : use vertex normal

VNX : 32bits vertex normal reserved(2)|x(10)|y(10)|z(10)

SH : SH4 optimize

D8 : Diffuse ARGB8888 only

S5 : Diffuse RGB565 and Specular RGB565

S4 : Diffuse RGB4444 and Specular RGB565

IN : Diffuse(16)|Specular(16)

NF : NinjaFlags32 for extention

UF : UserFlags32

The IndexOffset gives the start position for the library vertex intermediate buffer. For example, the vertex for the
parent node with offset 0 is calculated, then the child is specified with an offset corresponding to the number of
vertices in the parent node. When vertex processing data are stored starting at this position, the parent vertex
processing results in the intermediate buffer will not be overwritten. By specifying index numbers in ascending
order going towards the parent vertex, a polygon linking the parent and child vertices can be expressed.

"nbIndices" gives the number of vertices stored in the chunk.
NGD-143

Ninja Guide
ChunkName : ‘NJD_CV_SH’

(Chunk Vertex for SH4 Optimize)

Outline:

Defines the vertex list in "vlist", without normal line. The data arrangement takes the matrix processing
command characteristics of SH4 into consideration, to achieve high-speed processing.

Format:

[ChunkHead(31-16)|longsize(15-0)]

[IndexOffset(31-16)|nbIndices(15-0)][Data]

ChunkHead:

NJD_CV_SH

longsize:

Offset until next chunk..

IndexOffset:

Gives buffer start position for vertex intermediate buffer.

nbIndices:

Gives number of vertices.

Data:

x,y,z,1.0F, ...

Description:

#define NJD_CV_SH (NJD_VERTOFF+0)

For matrix processing commands, the dummy 1.0F is inserted after x, y, z, to read data in 128-bit units. Because
matrix processing is possible as is, high-speed execution can be realized. (Data to prove this effect are being
compiled.) A normal line is not used. In models which do not perform light calculation and draw only the vertex
color, no normal line is necessary. This chunk type should be used for such models.

ChunkName : ‘NJD_CV_VN_SH’

(Chunk Vertex VertexNormal for SH4 Optimize)

Outline:

Defines the vertex list in "vlist", with normal line. The data arrangement takes the matrix processing
command characteristics of SH4 into consideration, to achieve high-speed processing.
NGD-144

9. Chunk Model Specifications
Format:

[ChunkHead(31-16)|longsize(15-0)]

[IndexOffset(31-16)|nbIndices(15-0)][Data]

ChunkHead:

NJD_CV_VN_SH

longsize:

Offset until next chunk.

IndexOffset:

Gives buffer start position for vertex intermediate buffer.

nbIndices:

Gives number of vertices.

Data:

x,y,z,1.0F,nx,ny,nz,0.0F,...

Description:?

#define NJD_CV_VN_SH (NJD_VERTOFF+1)

For matrix processing commands, to read data in 128-bit units, the dummy 1.0F is inserted after x, y, z, and the
dummy 0.0F after the normal line nx, ny, nz. Because matrix processing is possible as is, high-speed execution can
be realized. (Data to prove this effect are being compiled.)

ChunkName : ‘NJD_CV’

(Chunk Vertex)

Outline:

Defines the vertex list in "vlist", without normal line.

Format:

[ChunkHead(31-16)|longsize(15-0)]

[IndexOffset(31-16)|nbIndices(15-0)][Data]

ChunkHead:

NJD_CV

longsize:

Offset until next chunk.

IndexOffset:

Gives buffer start position for vertex intermediate buffer.

nbIndices:

Gives number of vertices.
NGD-145

Ninja Guide
Data:

x,y,z, ...

Description:

#define NJD_CV (NJD_VERTOFF+2)

Gives the vertex list, without normal line.

ChunkName : ‘NJD_CV_D8’

(Chunk Vertex Diffuse ARGB8888)

Outline:

Defines the vertex list in "vlist", with vertex color, without normal line.

Format:

[ChunkHead(31-16)|longsize(15-0)]

[IndexOffset(31-16)|nbIndices(15-0)][Data]

 ChunkHead:

 NJD_CV_D8

 longsize:

 Offset until next chunk.

 IndexOffset:

 Gives buffer start position for vertex intermediate buffer.

 nbIndices:

 Gives number of vertices.

 Data:

 x,y,z,D8888,...

Description:

#define NJD_CV_D8 (NJD_VERTOFF+3)

Gives the vertex list, with vertex color, without normal line. The vertex color is packed in Sint32 arrays.

ChunkName : ‘NJD_CV_UF’

(Chunk Vertex UserFlag)

Outline:

Defines the vertex list in "vlist", without normal line. Provides a 32-bit user flag area.
NGD-146

9. Chunk Model Specifications
Format:

[ChunkHead(31-16)|longsize(15-0)]
[IndexOffset(31-16)|nbIndices(15-0)][Data]

ChunkHead:

NJD_CV_UF

longsize:

Offset until next chunk..

IndexOffset:

Gives buffer start position for vertex intermediate buffer.

nbIndices:

Gives number of vertices.

Data:

x,y,z,UserFlags32, ...

Description:

#define NJD_CV_UF (NJD_VERTOFF+4)

Gives the vertex list, without normal line. Provides a 32- bit user flag area. Currently, the vertex color can be output
to this area. In future releases, it will be possible to write user data to this area.

ChunkName : ‘NJD_CV_NF’

(Chunk Vertex NinjaFlags32)

Outline:

Defines the vertex list in "vlist", without normal line. Provides a 32-bit Ninja expansion flag area.

Format:

[ChunkHead(31-16)|longsize(15-0)]

[IndexOffset(31-16)|nbIndices(15-0)][Data]

ChunkHead:

NJD_CV_NF

longsize:

Offset until next chunk..

IndexOffset:

Gives buffer start position for vertex intermediate buffer.

nbIndices:

Gives number of vertices.

Data:
NGD-147

Ninja Guide
x,y,z,NinjaFlags32, ...

Description:

#define NJD_CV_NF (NJD_VERTOFF+5)

Gives the vertex list, without normal line. Provides a 32- bit Ninja expansion flag area. This area is reserved for
expanded Ninja functions.

ChunkName : ‘NJD_CV_S5’

(Chunk Vertex Diffuse RGB565 and Specular RGB565)

Outline:

Defines the vertex list in "vlist", without normal line. Provides "diffuse" and "specular" vertex colors.

Format:

[ChunkHead(31-16)|longsize(15-0)]
[IndexOffset(31-16)|nbIndices(15-0)][Data]

ChunkHead:

NJD_CV_S5

longsize:

Offset until next chunk..

IndexOffset:

Gives buffer start position for vertex intermediate buffer.

nbIndices:

Gives number of vertices.

Data:

x,y,z,D565(31-16)|S565(15-0),...

Description:

#define NJD_CV_S5 (NJD_VERTOFF+6)

Gives the vertex list, without normal line. Vertex color can be set to "diffuse" and "specular". The "specular" setting
is designed to enhance the color effect, but currently there is no setting method for the "specular" vertex color. Future
releases will incorporate a method for setting "diffuse" and "specular" to be calculated for each vertex color by the
converter, using the light source position of the scene (pre-light).

ChunkName : ‘NJD_CV_S4’

(Chunk Vertex Specular RGB565 and Diffuse ARGB4444)

Outline:

Defines the vertex list in "vlist", without normal line. Provides "diffuse" and "specular" vertex colors.
NGD-148

9. Chunk Model Specifications
Format:

[ChunkHead(31-16)|longsize(15-0)]
[IndexOffset(31-16)|nbIndices(15-0)][Data]

ChunkHead:

NJD_CV_S4

longsize:

Offset until next chunk..

IndexOffset:

Gives buffer start position for vertex intermediate buffer.

nbIndices:

Gives number of vertices.

Data:

x,y,z,D4444(31-16)|S565(15-0),...

Description:

#define NJD_CV_S4 (NJD_VERTOFF+7)

Gives the vertex list, without normal line. Vertex color can be set to "diffuse" and "specular". The "specular" setting
is designed to enhance the color effect. "diffuse" can be set to the alpha value ARGB4444. Currently there is no
setting method for the "specular" vertex color. Future releases will incorporate a method for setting "diffuse" and
"specular" to be calculated for each vertex color by the converter, using the light source position of the scene
(pre-light).

ChunkName : ‘NJD_CV_IN’

(Chunk Vertex INtensity Diffuse and Specular)

Outline:

Defines the vertex list in "vlist", without normal line. The high-speed Intensity mode is used to provide the
vertex color. "diffuse" and "specular" vertex colors are available.
NGD-149

Ninja Guide
Format:

[ChunkHead(31-16)|longsize(15-0)]

[IndexOffset(31-16)|nbIndices(15-0)][Data]

ChunkHead:

NJD_CV_IN

longsize:

Offset until next chunk..

IndexOffset:

Gives buffer start position for vertex intermediate buffer.

nbIndices:

Gives number of vertices.

Data:

x,y,z,D16|S16,...

Description:

#define NJD_CV_IN (NJD_VERTOFF+8)

Gives the vertex list, without normal line. The Intensity mode is used to provide the vertex color. The "specular"
setting is designed to enhance the color effect. In Intensity mode, "diffuse" and "specular" are specified only by the
intensity. Both values have a 16-bit range and are set in D16 and S16. Currently there is no setting method for the
"specular" vertex color. Future releases will incorporate a method for setting "diffuse" and "specular" to be calculated
for each vertex color by the converter, using the light source position of the scene (pre-light).

ChunkName : ‘NJD_CV_VN’

(Chunk Vertex VertexNormal)

Outline:

Defines the vertex list in "vlist", with normal line.
NGD-150

9. Chunk Model Specifications
Format:

[ChunkHead(31-16)|longsize(15-0)]

[IndexOffset(31-16)|nbIndices(15-0)][Data]

ChunkHead:

NJD_CV_VN

longsize:

Offset until next chunk..

IndexOffset:

Gives buffer start position for vertex intermediate buffer.

nbIndices:

Gives number of vertices.

Data:

x,y,z,nx,ny,nz, ...

Description:

#define NJD_CV_VN (NJD_VERTOFF+9)

Gives the vertex list, with normal line. This is the most commonly used vertex list.

ChunkName : ‘NJD_CV_VN_D8’

(Chunk Vertex VertexNormal and Diffuse ARGB8888)

Outline:?

Defines the vertex list in "vlist", with vertex color, with normal line.

Format:?

[ChunkHead(31-16)|longsize(15-0)]

[IndexOffset(31-16)|nbIndices(15-0)][Data]

ChunkHead:

NJD_CV_VN_D8

longsize:

Offset until next chunk..

IndexOffset:

Gives buffer start position for vertex intermediate buffer.

nbIndices:

Gives number of vertices.

Data:

x,y,z,nx,ny,nz,D8888,...
NGD-151

Ninja Guide
Description:

#define NJD_CV_VN_D (NJD_VERTOFF+10)

Gives the vertex list, with vertex color, with normal line. The vertex color is packed in Sint32 arrays.

ChunkName : ‘NJD_CV_VN_UF’

(Chunk Vertex VertexNormal and UserFlags32)

Outline:

Defines the vertex list in "vlist", with normal line. Provides a 32-bit user flag area.

Format:

[ChunkHead(31-16)|longsize(15-0)]

[IndexOffset(31-16)|nbIndices(15-0)][Data]

ChunkHead:

NJD_CV_VN_UF

longsize:

Offset until next chunk..

IndexOffset:

Gives buffer start position for vertex intermediate buffer.

nbIndices:

Gives number of vertices.

Data:

x,y,z,nx,ny,nz,UserFlags32,...

Description:

#define NJD_CV_VN_UF (NJD_VERTOFF+11)

Gives the vertex list, with normal line. Provides a 32-bit user flag area. Currently, the vertex color can be output to
this area. In future releases, it will be possible to write user data to this area.

ChunkName : ‘NJD_CV_VN_NF’

(Chunk Vertex VertexNormal and NinjaFlags32)

Outline:

Defines the vertex list in "vlist", with normal line. Provides a 32-bit Ninja expansion flag area.
NGD-152

9. Chunk Model Specifications
Format:

[ChunkHead(31-16)|longsize(15-0)]

[IndexOffset(31-16)|nbIndices(15-0)][Data]

ChunkHead:

NJD_CV_VN_NF

longsize:

Offset until next chunk..

IndexOffset:

Gives buffer start position for vertex intermediate buffer.

nbIndices:

Gives number of vertices.

Data:

x,y,z,nx,ny,nz,NinjaFlags32,...

Description:

#define NJD_CV_VN_NF (NJD_VERTOFF+12)

Gives the vertex list, with normal line. Provides a 32-bit Ninja expansion flag area. This area is reserved for
expanded Ninja functions.

ChunkName : ‘NJD_CV_VN_S5’

(Chunk Vertex VertexNormal, Diffuse RGB565 and Specular RGB565)

Outline:

Defines the vertex list in “vlist”, with normal line. Provides “diffuse” and “specular” vertex colors.

Format:?

[ChunkHead(31-16)|bytesize(15-0)]

[IndexOffset(31-16)|nbIndices(15-0)][Data]

ChunkHead:

NJD_CV_VN_S5

longsize:
Offset until next chunk..
IndexOffset:
Gives buffer start position for vertex intermediate buffer.
nbIndices:
Gives number of vertices.
Data:
x,y,z,nx,ny,nz,D565(31-16)|S565(15-0),...
NGD-153

Ninja Guide
Description:

#define NJD_CV_VN_S5 (NJD_VERTOFF+13)

Gives the vertex list, with normal line. Vertex color is packed in Sint32 arrays. Vertex color can be set to "diffuse" and
"specular". The "specular" setting is designed to enhance the color effect, but currently there is no setting method
for the "specular" vertex color. Future releases will incorporate a method for setting "diffuse" and "specular" to be
calculated for each vertex color by the converter, using the light source position of the scene (pre-light).

ChunkName : ‘NJD_CV_VN_S4’

(Chunk Vertex VertexNormal, Specular RGB565 and Diffuse ARGB4444)

Outline:

Defines the vertex list in “vlist”, with normal line. Provides “diffuse” and “specular” vertex colors.

Format:

[ChunkHead(31-16)|longsize(15-0)]

[IndexOffset(31-16)|nbIndices(15-0)][Data]

ChunkHead:

NJD_CV_VN_S4

longsize:

Offset until next chunk..

IndexOffset:

Gives buffer start position for vertex intermediate buffer.

nbIndices:

Gives number of vertices.

Data:

x,y,z,nx,ny,nz,D4444(31-16)|S565(15-0),...

Description:

#define NJD_CV_VN_S4 (NJD_VERTOFF+14)

Gives the vertex list, with normal line. Vertex color is packed in Sint32 arrays. Vertex color can be set to "diffuse" and
"specular". The "specular" setting is designed to enhance the color effect. "diffuse" can be set to the alpha value
ARGB4444. Currently there is no setting method for the "specular" vertex color. Future releases will incorporate a
method for setting "diffuse" and "specular" to be calculated for each vertex color by the converter, using the light
source position of the scene (pre-light).

ChunkName : ‘NJD_CV_VN_IN’

(Chunk Vertex VertexNormal, INtensity Diffuse and Specular)

Outline:

Defines the vertex list in “vlist”, with normal line. The high-speed Intensity mode is used to provide the
vertex color. “diffuse” and “specular” vertex colors are available.
NGD-154

9. Chunk Model Specifications
Format:

[ChunkHead(31-16)|longsize(15-0)]

[IndexOffset(31-16)|nbIndices(15-0)][Data]

ChunkHead:

NJD_CV_VN_IN

longsize:

Offset until next chunk..

IndexOffset:

Gives buffer start position for vertex intermediate buffer.

nbIndices:

Gives number of vertices.

Data:

x,y,z,nx,ny,nz,D16|S16,...

Description:

#define NJD_CV_VN_IN (NJD_VERTOFF+15)

Gives the vertex list, with normal line. Vertex color is packed in Sint32 arrays. The Intensity mode is used to provide
the vertex color. The "specular" setting is designed to enhance the color effect. In Intensity mode, "diffuse" and
"specular" are specified only by the intensity. Both values have a 16-bit range and are set in D16 and S16. Currently
there is no setting method for the "specular" vertex color. Future releases will incorporate a method for setting
"diffuse" and "specular" to be calculated for each vertex color by the converter, using the light source position of the
scene (pre-light).

ChunkName : ‘NJD_CV_VNX’

(Chunk Vertex VertexNormal 32bits(X))

Outline:

Defines the vertex list in "vlist", with 32-bit normal line.
NGD-155

Ninja Guide
Format:

[ChunkHead(31-16)|longsize(15-0)]

[IndexOffset(31-16)|nbIndices(15-0)][Data]

ChunkHead:

NJD_CV_VNX

longsize:

Offset until next chunk..

IndexOffset:

Gives buffer start position for vertex intermediate buffer.

nbIndices:

Gives number of vertices.

Data:

x,y,z,nxyz32, ...

Description:

#define NJD_CV_VNX (NJD_VERTOFF+16)

Gives the vertex list, with 32-bit normal line. Vertex normal line data are reduced, in order to decrease the data
amount. x,y,z are assigned 10 bits each, and the remaining 2 bits are reserved. Resolution is 1024. Using the vertex
normal line at this resolution, glow processing is performed.

ChunkName : ‘NJD_CV_VNX_D8’

(Chunk Vertex VertexNormal 32bits(X) and Diffuse ARGB8888)

Outline:

Defines the vertex list in “vlist”, with 32-bit normal line, and with vertex color.

Format:

[ChunkHead(31-16)|longsize(15-0)]

[IndexOffset(31-16)|nbIndices(15-0)][Data]

ChunkHead:

NJD_CV_VNX_D8

longsize:

Offset until next chunk..

IndexOffset:

Gives buffer start position for vertex intermediate buffer.

nbIndices:

Gives number of vertices.
NGD-156

9. Chunk Model Specifications
Data:

x,y,z,nxyz32,D8888,...

Description:

#define NJD_CV_VNX_D8 (NJD_VERTOFF+17)

Gives the vertex list, with 32-bit normal line. Vertex normal line data are reduced, in order to decrease the data
amount. x,y,z are assigned 10 bits each, and the remaining 2 bits are reserved. Resolution is 1024. Using the vertex
normal line at this resolution, glow processing is performed. Vertex color is provided, packed in Sint32 arrays.

ChunkName : ‘NJD_CV_VNX_UF’

(Chunk Vertex VertexNormal 32bits(X) and UserFlags32)

Outline:

Defines the vertex list in “vlist”, with 32-bit normal line. Provides a 32-bit user flag area.

Format:

[ChunkHead(31-16)|longsize(15-0)]

[IndexOffset(31-16)|nbIndices(15-0)][Data]

ChunkHead:

NJD_CV_VNX_UF

longsize:

Offset until next chunk..

IndexOffset:

Gives buffer start position for vertex intermediate buffer.

nbIndices:

Gives number of vertices.

Data:

x,y,z,nxyz32,UserFlags32,...

Description:

#define NJD_CV_VNX_UF (NJD_VERTOFF+18)

Gives the vertex list, with 32-bit normal line. Vertex normal line data are reduced, in order to decrease the data
amount. x,y,z are assigned 10 bits each, and the remaining 2 bits are reserved. Resolution is 1024. Using the vertex
normal line at this resolution, glow processing is performed. Vertex color is provided, packed in Sint32 arrays.
Provides a 32-bit user flag area.
NGD-157

Ninja Guide
3.9 Chunk Volume

Chunk Volume is provided only as collision and modifier volume. It cannot be used directly by the library for
drawing, and it has no material data. Currently, there are three Chunk Volume types. NJD_CO_P3 consists of
separate triangular data, and NJD_CO_P4 of separate quadrilateral data. In 3D Studio MAX, only triangular data
are output, but NinjaExport has an option for connecting quadrilateral shapes with a screen angle of max. 0.1
degrees and restoring separate quadrilateral shapes for output. This allows the creation of quadrilateral collisions
also in 3D Studio MAX. When the original data are for mixed triangular/quadrilateral/N-sided polygons, a
converter option can divide them into triangular polygon data and recreate separate triangular and quadrilateral
data. In this case, N-sided data will be eliminated, and the "plist" contains NJD_CO_P3 and NJD_CO_P4. NJD_CO_ST
is the triangular strip Chunk Volume. Chunk Volume can contain a Chunk Strip area (see below) and user flag areas
(16, 32, 48 bits) for equivalent polygons. The material color set with the modeler can be output to the user flag area
for each polygon.

The triangular Chunk Volume NJD_CO_P3 can be used by the modifier volume as is. However, the modifier volume
must be a closed 3D space. This is a hardware specification. Note that the modifier volume can only use separate
triangular data. The upper 8 bits of the Chunk Head (headbits) are not used for the Chunk Volume.

[ChunkHead(15-0)][shortsize(15-0)]

[UserOffset(15-14)|nbPolygon(13-0)][Data]

The user flag area is handled in 16-bit units (because "plsit" is a Sint16 primary array). Its size can be 16, 32, or 48
bits. It is set with the UserOffset allocated to the top 2 bits of nbPolygon which gives the number of polygons.

UserFlags Offset:

#define NJD_UFO_SHIFT 14

#define NJD_UFO_0 (0<<NJD_UFO_SHIFT)

#define NJD_UFO_1 (1<<NJD_UFO_SHIFT)

#define NJD_UFO_2 (2<<NJD_UFO_SHIFT)

#define NJD_UFO_3 (3<<NJD_UFO_SHIFT)

#define NJD_UFO_MASK (0x3<<NJD_UFO_SHIFT) /* 0 - 3 */

NJD_UFO_0: UserFlags size 0

NJD_UFO_1: UserFlags size 16 bits

NJD_UFO_2: UserFlags size 32 bits

NJD_UFO_3: UserFlags size 48 bits

ChunkName : ‘NJD_CO_P3’

(Chunk vOlume Polygon3)

Outline:

Defines the volume polygon list in "plist". This is not used for direct drawing, but for collision and modifier
volumes. Material information is not included, but there is a user flag area to which the polygon color can
be output.
NGD-158

9. Chunk Model Specifications
Format:

[ChunkHead(15-0)][shortsize(15-0)]

[UserOffset(15-14)|nbPolygon(13-0)][Data]

ChunkHead:

NJD_CO_P3

shortsize:

Offset until next chunk.

UserOffset:

Gives user flag area size.

nbPolygon:

Gives number of polygons.

Data:

index0, index1, index2, UserflagPoly0(*N),
index3, index4, index5, UserflagPoly1(*N), ...

Description:

#define NJD_CO_P3 (NJD_VOLOFF+0)

These are separate triangular data for collision and modifier volumes. Material information is not included, but
polygon color can be output to a user flag area. The polygon color is as set for the material. There is a user flag area
after the polygon index. The size of this area is determined by the UserOffset value (NJD_UFO_0: none;
NJD_UFO_1: 16 bits; NJD_UFO_2: 32 bits; NJD_UFO_3: 48 bits). The library simply skips the user flag area without
doing anything. When original data are mixed triangular/quadrilateral/N-sided, a converter option can divide
them into triangular data and output these to NJD_CO_P3.

ChunkName : ‘NJD_CO_P4’

(Chunk vOlume Polygon4)

Outline:

Defines the volume polygon list in "plist". This is not used for direct drawing, but for collision and modifier
volumes. Material information is not included, but there is a user flag area to which the polygon color can
be output.

Format:

[ChunkHead(15-0)][shortsize(15-0)]

[UserOffset(15-14)|nbPolygon(13-0)][Data]

ChunkHead:

NJD_CO_P4

shortsize:

Offset until next chunk.
NGD-159

Ninja Guide
UserOffset:

Gives user flag area size.

nbPolygon:

Gives number of polygons.

Data:

index0, index1, index2, index3, UserflagPoly0(*N),
index4, index5, index6, index7, UserflagPoly1(*N), ...

Description:

#define NJD_CO_P4 (NJD_VOLOFF+1)

These are separate quadrilateral data for collision and modifier volumes. Material information is not included, but
polygon color can be output to a user flag area. The polygon color is as set for the material. In 3D Studio MAX, the
object color can be used. There is a user flag area after the polygon index. The size of this area is determined by the
UserOffset value (NJD_UFO_0: none; NJD_UFO_1: 16 bits; NJD_UFO_2: 32 bits; NJD_UFO_3: 48 bits). The library
simply skips the user flag area without doing anything. In 3D Studio MAX, only triangular data are output, but a
converter option allows connecting two quadrilateral shapes with a screen angle of max. 0.1 degrees and restoring
separate quadrilateral shapes for output. This allows the creation of separate quadrilateral data.

ChunkName : ‘NJD_CO_ST’

(Chunk vOlume Triangle STrip)

Outline:

Defines the volume polygon list in "plist". This is not used for direct drawing, but for collision and modifier
volumes. Material information is not included, but there is a user flag area to which the polygon color can
be output.
NGD-160

9. Chunk Model Specifications
Format:

[ChunkHead(15-0)][shortsize(15-0)]

[UserOffset(15-14)|nbPolygon(13-0)][Data]

ChunkHead:

NJD_CO_ST

shortsize:

Offset until next chunk..

UserOffset:

Gives user flag area size.

nbPolygon:

Gives number of polygons.

Data:

[flag(15)|len(14-0), i0, i1, i2, Userflag2(*N), i3, Userflag3(*N), ...

Description:

#define NJD_CO_ST (NJD_VOLOFF+2)

Used for collision. Compared to NJD_CO_P3 and NJD_CO_P4, the collision data size is reduced. However, note that
triangular strip connection proceeds in the most effective direction which is not necessarily the direction intended
by the user. The flag specifies the triangular rotation direction (right rotation/left rotation) at the strip start. The
Chunk Model can switch between left and right rotation using a negative or positive prefix. Negative prefix means
right rotation. "len" indicates the number of vertices included in the strip. "i?" is the polygon vertex index. Material
information is not included, but polygon color can be output to a user flag area. The polygon color is as set for the
material. There is a user flag area after the polygon index. The size of this area is determined by the UserOffset value
(NJD_UFO_0: none; NJD_UFO_1: 16 bits; NJD_UFO_2: 32 bits; NJD_UFO_3: 48 bits). The library simply skips the
user flag area without doing anything. When original data are mixed triangular/quadrilateral/N-sided polygon
data, the converter automatically divides all into separate triangular data and outputs these to NJD_CO_ST.
NGD-161

Ninja Guide
3.10 Chunk Strip

Chunk Strip creates the triangular strip, using the entry number in the vertex intermediate buffer created in the
library from the Chunk Vertex list. It can include a vertex color, vertex normal line, and individual user flag areas
for each polygon. Because the polygon side includes vertex color, individual vertex color setting for each polygon
is possible also at the same vertex. By using the normal line for the polygon, the edge between polygons can be
raised. Discontinuity of "softimage" is supported, and the "softimage" vertex normal line can be output as is.
Polygon color set for the material can be output to the user flag area. It is not possible to have vertex color both in
Chunk Vertex and Chunk Strip. If vertex color output has been specified on the Chunk Strip side, vertex color data
cannot be output on the Chunk Vertex side. It is also not possible to have a normal line both in Chunk Vertex and
Chunk Strip. If normal line output has been specified on the Chunk Strip side, normal line data cannot be output
on the Chunk Vertex side.

The upper 8 bits of the Chunk Head (headbits) are used for the attribute flags (ChunkFlags) set for the material.

The abbreviations have the following meanings.

IL : Ignore light

IS : Ignore specular

IA : Ignore ambient

UA : Use alpha

DB : Double side

FL : Flat shading

ENV : Environment mapping

Flag STrip:
#define NJD_FST_SHIFT 8

#define NJD_FST_IL (0x01<<NJD_FST_SHIFT)

#define NJD_FST_IS (0x02<<NJD_FST_SHIFT)

#define NJD_FST_IA (0x04<<NJD_FST_SHIFT)

#define NJD_FST_UA (0x08<<NJD_FST_SHIFT)

#define NJD_FST_DB (0x10<<NJD_FST_SHIFT)

#define NJD_FST_FL (0x20<<NJD_FST_SHIFT)

#define NJD_FST_ENV (0x40<<NJD_FST_SHIFT)

#define NJD_FST_MASK (0xFF<<NJD_FST_SHIFT)

The Chunk Strip format is indicated below. Note that UserFlags are inserted in polygon units after index2. This is
because the first triangular polygon is created at the third point. From the 4th point and later, a triangular polygon
is created at every point. Each point is followed by a user flag.

No polygon vertex normal line, no vertex color, no texture:

[ChunkFlags(15-8)|ChunkHead(7-0)]

[shortsize(15-0)][UserOffset(15-14)|nbStrip(13-0)]

[flag(15)|len(14-0), index0(15-0),

index1(15-0),

index2, UserFlag2(*N), ...]
NGD-162

9. Chunk Model Specifications
No polygon vertex normal line, no vertex color, with texture:

[ChunkFlags(15-8)|ChunkHead(7-0)]

[shortsize(15-0)][UserOffset(15-14)|nbStrip(13-0)]

[flag(15)|len(14-0), index0(15-0), U0(15-0), V0(15-0),

index1, U1, V1,

index2, U2, V2, UserFlag2(*N), ...]

With polygon vertex normal line, no vertex color, no texture:

[ChunkFlags(15-8)|ChunkHead(7-0)]

[shortsize(15-0)][UserOffset(15-14)|nbStrip(13-0)]

[flag(15)|len(14-0), index0(15-0), vnx0(15-0), vny0(15-0), vnz0(15-0),

index1, vnx1, vny1, vny1,

index2, vnx2, vny2, vnz2, UserFlag2(*N),

index3, vnx2, vny2, vnz2, UserFlag3(*N), ...]

With polygon vertex normal line, no vertex color, with texture:

[ChunkFlags(15-8)|ChunkHead(7-0)]

[shortsize(15-0)][UserOffset(15-14)|nbStrip(13-0)]

[flag(15)|len(14-0),

index0(15-0), U0(15-0), V0(15-0),vnx0(15-0), vny0(15-0), vnz0(15-0),

index1, U1, V1, vnx1, vny1, vny1,

index2, U2, V2, vnx2, vny2, vnz2, UserFlag2(*N),

index3, U3, V3, vnx3, vny3, vnz3, UserFlag3(*N), ...]

No polygon vertex normal line, with vertex color, no texture:

[ChunkFlags(15-8)|ChunkHead(7-0)]

[shortsize(15-0)][UserOffset(15-14)|nbStrip(13-0)]

[flag(15)|len(14-0),

index0(15-0), AR0(15-0), GB0(15-0),

index1, AR1, GB1,

index2, AR2, GB2, UserFlag2(*N),

index3, AR3, GB3, UserFlag3(*N), ...]

No polygon vertex normal line, with vertex color, with texture:

[ChunkFlags(15-8)|ChunkHead(7-0)]

[shortsize(15-0)][UserOffset(15-14)|nbStrip(13-0)]

[flag(15)|len(14-0),

index0(16), U0(16), V0(16), AR0(16), GB0(16),

index1, U1, V1, AR1, GB1,

index2, U2, V2, AR2, GB2, UserFlag2(*N), ...]
NGD-163

Ninja Guide
The following two types of UV value expressions are available: 0-255 UVN, and high-resolution 0-1023 UVH. UVN
is a conventional expression which has been used in Basic a Model. However, resolution suffers at sizes exceeding
256. With UVH and high-resolution mode, 1024 x 1024 texture can be specified in 1-pixel units. But compared to
UVN, the texture repeat count of UVH decreases proportionally to the increase in resolution (32 times for UVH vs.
128 times for UVN). UVN and UVH can be switched by convert option for the whole of model tree and also material
names can be used to switch at each model unit. In case that the UV value is specified by material name, UV value
expressions are changed by setting to only one material (among some materials used for single model). The default
is UVN.

UVN : Normal type Uv (0-255)

UVH : Hiresolution type Uv (0-1023)

In the same way as for Chunk Volume, the user flag area in Chunk Strip is allocated by the top 2 bits of nbStrip
(UserOffset). It is handled in 16-bit units (because "plsit" is a Sint16 primary array). Its size can be 16, 32, or 48 bits.

UserFlags Offset:
#define NJD_UFO_SHIFT 14

#define NJD_UFO_0 (0<<NJD_UFO_SHIFT)

#define NJD_UFO_1 (1<<NJD_UFO_SHIFT)

#define NJD_UFO_2 (2<<NJD_UFO_SHIFT)

#define NJD_UFO_3 (3<<NJD_UFO_SHIFT)

#define NJD_UFO_MASK (0x3<<NJD_UFO_SHIFT) /* 0 - 3 */

NJD_UFO_0: UserFlags size 0

NJD_UFO_1: UserFlags size 16 bits

NJD_UFO_2: UserFlags size 32 bits

NJD_UFO_3: UserFlags size 48 bits

ChunkName : ‘NJD_CS’

(Chunk Strip)

Outline:

Defines the polygon list in "plist", without polygon vertex normal line, without vertex color, without
texture.
NGD-164

9. Chunk Model Specifications
Format:

[ChunkFlags(15-8)|ChunkHead(7-0)]

[shortsize(15-0)][UserOffset(15-14)|nbStrip(13-0)][Data]

ChunkFlags:

NJD_FST_IL(Ignore light source), NJD_FST_IS(Ignore specular),
NJD_FST_IA(Ignore ambient), NJD_FST_UA?Use Alpha?,
NJD_FST_DB(Dual-sided), NJD_FST_FL(Flat shading),
NJD_FST_ENV(Environment mapping)

ChunkHead:

NJD_CS

shortsize:

Offset until next chunk.

UserOffset:

Gives user flag area size.

nbStrip:

Gives number of strip vertices.

Data:

[flag(15)|len(14-0), index0(15-0),
index1(15-0),
index2, UserFlag2(*N), ...]

Description:

#define NJD_CS (NJD_STRIPOFF+0)

The flag specifies the triangular rotation direction (right rotation/left rotation) at the strip start. The Chunk Model
can switch between left and right rotation using a negative or positive prefix. Negative prefix means right rotation.
"len" indicates the number of vertices included in the strip. "index?" is the polygon vertex index. There is a user flag
area after the polygon index. The size of this area is determined by the UserOffset value (NJD_UFO_0: none;
NJD_UFO_1: 16 bits; NJD_UFO_2: 32 bits; NJD_UFO_3: 48 bits). The library skips the user flag area without doing
anything. Mixed triangular/quadrilateral/N-sided polygon data are automatically divided into separate
triangular data and converted to strips for output.

ChunkName : ‘NJD_CS_UVN’

(Chunk Strip UVN)

Outline:

Defines the polygon list in "plist", without polygon vertex normal line, without vertex color, with texture.
The UV value is given by UVN (0 - 255).
NGD-165

Ninja Guide
Format:

[ChunkFlags(15-8)|ChunkHead(7-0)]

[shortsize(15-0)][UserOffset(15-14)|nbStrip(13-0)][Data]

ChunkFlags:

NJD_FST_IL(Ignore light source), NJD_FST_IS(Ignore specular),
NJD_FST_IA(Ignore ambient), NJD_FST_UA?Use Alpha?,
NJD_FST_DB(Dual-sided), NJD_FST_FL(Flat shading),
NJD_FST_ENV(Environment mapping)

ChunkHead:

NJD_CS_UVN

shortsize:

Offset until next chunk.

UserOffset:

Gives user flag area size.

nbStrip:

Gives number of strip vertices.

Data:

[flag(15)|len(14-0), index0(15-0), U0(15-0), V0(15-0),
index1, U1, V1,
index2, U2, V2, UserFlag2(*N), ...]

Description:

#define NJD_CS_UVN (NJD_STRIPOFF+1)

The UV value is given by UVN (0 - 255). The flag specifies the triangular rotation direction (right rotation/left
rotation) at the strip start. The Chunk Model can switch between left and right rotation using a negative or positive
prefix. Negative prefix means right rotation. "len" indicates the number of vertices included in the strip. "index?" is
the polygon vertex index. There is a user flag area after the polygon index. The size of this area is determined by the
UserOffset value (NJD_UFO_0: none; NJD_UFO_1: 16 bits; NJD_UFO_2: 32 bits; NJD_UFO_3: 48 bits). The library
skips the user flag area without doing anything. Mixed triangular/quadrilateral/N-sided polygon data are
automatically divided into separate triangular data and converted to strips for output.

ChunkName : ‘NJD_CS_UVH’

(Chunk Strip UVH)

Outline:

Defines the polygon list in "plist", without polygon vertex normal line, without vertex color, with texture.
The UV value is given by UVH (0 - 1023).
NGD-166

9. Chunk Model Specifications
Format:

[ChunkFlags(15-8)|ChunkHead(7-0)]

[shortsize(15-0)][UserOffset(15-14)|nbStrip(13-0)][Data]

ChunkFlags:

NJD_FST_IL(Ignore light source), NJD_FST_IS(Ignore specular),
NJD_FST_IA(Ignore ambient), NJD_FST_UA?Use Alpha?,
NJD_FST_DB(Dual-sided), NJD_FST_FL(Flat shading),
NJD_FST_ENV(Environment mapping)

ChunkHead:

NJD_CS_UVH

shortsize:

Offset until next chunk.

UserOffset:

Gives user flag area size.

nbStrip:

Gives number of strip vertices.

Data:

[flag(15)|len(14-0), index0(15-0), U0(15-0), V0(15-0),
index1, U1, V1,
index2, U2, V2, UserFlag2(*N), ...]

Description:

#define NJD_CS_UVH (NJD_STRIPOFF+2)

The UV value is given by UVH (0 - 1023). The flag specifies the triangular rotation direction (right rotation/left
rotation) at the strip start. The Chunk Model can switch between left and right rotation using a negative or positive
prefix. Negative prefix means right rotation. "len" indicates the number of vertices included in the strip. "index?" is
the polygon vertex index. There is a user flag area after the polygon index. The size of this area is determined by
the UserOffset value (NJD_UFO_0: none; NJD_UFO_1: 16 bits; NJD_UFO_2: 32 bits; NJD_UFO_3: 48 bits). The
library skips the user flag area without doing anything. Mixed triangular/quadrilateral/N-sided polygon data are
automatically divided into separate triangular data and converted to strips for output.

ChunkName : ‘NJD_CS_VN’

(Chunk Strip VertexNormal)

Outline:

Defines the polygon list in "plist", with polygon vertex normal line, without vertex color, without texture.
NGD-167

Ninja Guide
Format:

[ChunkFlags(15-8)|ChunkHead(7-0)]

[shortsize(15-0)][UserOffset(15-14)|nbStrip(13-0)][Data]

ChunkFlags:

NJD_FST_IL(Ignore light source), NJD_FST_IS(Ignore specular),
NJD_FST_IA(Ignore ambient), NJD_FST_UA?Use Alpha?,
NJD_FST_DB(Dual-sided), NJD_FST_FL(Flat shading),
NJD_FST_ENV(Environment mapping)

ChunkHead:

NJD_CS_VN

shortsize:

Offset until next chunk.

UserOffset:

Gives user flag area size.

nbStrip:

Gives number of strip vertices.

Data:

[flag(15)|len(14-0), index0(15-0), vnx0(15-0), vny0(15-0), vnz0(15-0),
index1, vnx1, vny1, vny1,
index2, vnx2, vny2, vnz2, UserFlag2(*N),
index3, vnx2, vny2, vnz2, UserFlag3(*N), ...]

Description:

#define NJD_CS_VN (NJD_STRIPOFF+3)

The flag specifies the triangular rotation direction (right rotation/left rotation) at the strip start. The Chunk Model
can switch between left and right rotation using a negative or positive prefix. Negative prefix means right rotation.
"len" indicates the number of vertices included in the strip. "index?" is the polygon vertex index. There is a user flag
area after the polygon index. The size of this area is determined by the UserOffset value (NJD_UFO_0: none;
NJD_UFO_1: 16 bits; NJD_UFO_2: 32 bits; NJD_UFO_3: 48 bits). The library skips the user flag area without doing
anything. Mixed triangular/quadrilateral/N-sided polygon data are automatically divided into separate triangular
data and converted to strips for output.

ChunkName : ‘NJD_CS_UVN_VN’

(Chunk Strip UVN VertexNormal)

Outline:

Defines the polygon list in "plist", with polygon vertex normal line, without vertex color, with texture. The
UV value is given by UVN (0 - 255).
NGD-168

9. Chunk Model Specifications
Format:

[ChunkFlags(15-8)|ChunkHead(7-0)]

[shortsize(15-0)][UserOffset(15-14)|nbStrip(13-0)][Data]

ChunkFlags:

NJD_FST_IL(Ignore light source), NJD_FST_IS(Ignore specular),
NJD_FST_IA(Ignore ambient), NJD_FST_UA?Use Alpha?,
NJD_FST_DB(Dual-sided), NJD_FST_FL(Flat shading),
NJD_FST_ENV(Environment mapping)

ChunkHead:

NJD_CS_UVN_VN

shortsize:

Offset until next chunk.. Based on IFF format.

UserOffset:

Gives user flag area size.

nbStrip:

Gives number of strip vertices.

Data:

[flag(15)|len(14-0),
index0(15-0), U0(15-0), V0(15-0),vnx0(15-0), vny0(15-0), vnz0(15-0),
index1, U1, V1, vnx1, vny1, vny1,
index2, U2, V2, vnx2, vny2, vnz2, UserFlag2(*N),
index3, U3, V3, vnx3, vny3, vnz3, UserFlag3(*N), ...]

Description:

#define NJD_CS_UVN_VN (NJD_STRIPOFF+4)

The UV value is given by UVN (0 - 255). The flag specifies the triangular rotation direction (right rotation/left
rotation) at the strip start. The Chunk Model can switch between left and right rotation using a negative or positive
prefix. Negative prefix means right rotation. "len" indicates the number of vertices included in the strip. "index?" is
the polygon vertex index. There is a user flag area after the polygon index. The size of this area is determined by
the UserOffset value (NJD_UFO_0: none; NJD_UFO_1: 16 bits; NJD_UFO_2: 32 bits; NJD_UFO_3: 48 bits). The
library skips the user flag area without doing anything. Mixed triangular/quadrilateral/N-sided polygon data are
automatically divided into separate triangular data and converted to strips for output.

ChunkName : ‘NJD_CS_UVH_VN’

(Chunk Strip UVH VertexNormal)

Outline:

Defines the polygon list in "plist", with polygon vertex normal line, without vertex color, with texture. The
UV value is given by UVH (0 - 1023).
NGD-169

Ninja Guide
Format:

[ChunkFlags(15-8)|ChunkHead(7-0)]

[shortsize(15-0)][UserOffset(15-14)|nbStrip(13-0)][Data]

ChunkFlags:

NJD_FST_IL(Ignore light source),NJD_FST_IS(Ignore specular),
NJD_FST_IA(Ignore ambient), NJD_FST_UA?Use Alpha?,
NJD_FST_DB(Dual-sided), NJD_FST_FL(Flat shading),
NJD_FST_ENV(Environment mapping)

ChunkHead:

NJD_CS_UVH_VN

shortsize:

Offset until next chunk.

UserOffset:

Gives user flag area size.

nbStrip:

Gives number of strip vertices.

Data:

[flag(15)|len(14-0),
index0(15-0), U0(15-0), V0(15-0),vnx0(15-0), vny0(15-0), vnz0(15-0),
index1, U1, V1, vnx1, vny1, vny1,
index2, U2, V2, vnx2, vny2, vnz2, UserFlag2(*N),
index3, U3, V3, vnx3, vny3, vnz3, UserFlag3(*N), ...]

Description:

#define NJD_CS_UVH_VN (NJD_STRIPOFF+5)

The UV value is given by UVH (0 - 1023). Note that the maximum repeat value possible with UVH (32 repetitions)
is lower than for UVN. The flag specifies the triangular rotation direction (right rotation/left rotation) at the strip
start. The Chunk Model can switch between left and right rotation using a negative or positive prefix. Negative
prefix means right rotation. "len" indicates the number of vertices included in the strip. "index?" is the polygon
vertex index. There is a user flag area after the polygon index. The size of this area is determined by the UserOffset
value (NJD_UFO_0: none; NJD_UFO_1: 16 bits; NJD_UFO_2: 32 bits; NJD_UFO_3: 48 bits). The library skips the user
flag area without doing anything. Mixed triangular/quadrilateral/N-sided polygon data are automatically divided
into separate triangular data and converted to strips for output.

ChunkName : ‘NJD_CS_D8’

(Chunk Strip Diffuse ARGB8888)

Outline:

Defines the polygon list in "plist", without polygon vertex normal line, with vertex color, without texture.
NGD-170

9. Chunk Model Specifications
Format:

[ChunkFlags(15-8)|ChunkHead(7-0)]

[shortsize(15-0)][UserOffset(15-14)|nbStrip(13-0)][Data]

ChunkFlags:

NJD_FST_IL(Ignore light source),NJD_FST_IS(Ignore specular),
NJD_FST_IA(Ignore ambient), NJD_FST_UA?Use Alpha?,
NJD_FST_DB(Dual-sided), NJD_FST_FL(Flat shading),
NJD_FST_ENV(Environment mapping)

ChunkHead:

NJD_CS_D8

shortsize:

Offset until next chunk.

UserOffset:

Gives user flag area size.

nbStrip:

Gives number of strip vertices.

Data:

[flag(15)|len(14-0),
index0(15-0), AR0(15-0), GB0(15-0),
index1, AR1, GB1,
index2, AR2, GB2, UserFlag2(*N),
index3, AR3, GB3, UserFlag3(*N), ...]

Description:

#define NJD_CS_D8 (NJD_STRIPOFF+7)

The flag specifies the triangular rotation direction (right rotation/left rotation) at the strip start. The Chunk Model
can switch between left and right rotation using a negative or positive prefix. Negative prefix means right rotation.
"len" indicates the number of vertices included in the strip. "index?" is the polygon vertex index. There is a user flag
area after the polygon index. The size of this area is determined by the UserOffset value (NJD_UFO_0: none;
NJD_UFO_1: 16 bits; NJD_UFO_2: 32 bits; NJD_UFO_3: 48 bits). The library skips the user flag area without doing
anything. Mixed triangular/quadrilateral/N-sided polygon data are automatically divided into separate
triangular data and converted to strips for output.

ChunkName : ‘NJD_CS_UVH_D8’

(Chunk Strip UVH Diffuse ARGB8888)

Outline:

Defines the polygon list in "plist", without polygon vertex normal line, with vertex color, with texture. The
UV value is given by UVH (0 - 1023).
NGD-171

Ninja Guide
Format:

[ChunkFlags(15-8)|ChunkHead(7-0)]

[shortsize(15-0)][UserOffset(15-14)|nbStrip(13-0)][Data]

ChunkFlags:

NJD_FST_IL(Ignore light source),NJD_FST_IS(Ignore specular),
NJD_FST_IA(Ignore ambient), NJD_FST_UA?Use Alpha?,
NJD_FST_DB(Dual-sided), NJD_FST_FL(Flat shading),
NJD_FST_ENV(Environment mapping)

ChunkHead:

NJD_CS_UVH_D8

shortsize:

Offset until next chunk.

UserOffset:

Gives user flag area size.

nbStrip:

Gives number of strip vertices.

Data:

[ChunkFlags(15-8)|ChunkHead(7-0)]
[bytesize(15-0)][UserOffset(15-14)|nbStrip(13-0)]
[flag(15)|len(14-0),
index0(16), U0(16), V0(16), AR0(16), GB0(16),
index1, U1, V1, AR1, GB1,
index2, U2, V2, AR2, GB2, UserFlag2(*N), ...]

Description:

#define NJD_CS_UVH_D8 (NJD_STRIPOFF+8)

The UV value is given by UVH (0 - 1023). Note that the maximum repeat value possible with UVH (32 repetitions)
is lower than for UVN. The flag specifies the triangular rotation direction (right rotation/left rotation) at the strip
start. The Chunk Model can switch between left and right rotation using a negative or positive prefix. Negative
prefix means right rotation. "len" indicates the number of vertices included in the strip. "index?" is the polygon
vertex index. There is a user flag area after the polygon index. The size of this area is determined by the UserOffset
value (NJD_UFO_0: none; NJD_UFO_1: 16 bits; NJD_UFO_2: 32 bits; NJD_UFO_3: 48 bits). The library skips the user
flag area without doing anything. Mixed triangular/quadrilateral/N-sided polygon data are automatically divided
into separate triangular data and converted to strips for output.
NGD-172

9. Chunk Model Specifications
4 ASCII Output Precautions
This section contains precautions for Chunk Model .nja file output.

Because "vlist" uses a Sint32 array format, float values for vertex or vertex normal lines cannot be input as is.
Therefore ASCII output is expressed in hexadecimal notation. When wishing to have a value recognized as a float
value, use the converter option to output the float value as a comment.

In the Chunk Model, all flags are also output as character strings. Character strings were chosen to be non-common
and as short as possible. The character string appears unchanged in the .nja file, with the "NJD_" part removed. For
details, refer to the section on NjDef.h.
NGD-173

Ninja Guide
NGD-174

10. Nindows Tutorial
1 Summary
Nindows is an easy to use GUI system for performing tasks essential to game development such as debugging and
adjusting parameters on the actual machine and the host machine.

1.1 Special Features of Nindows

You can use the same controls as those in Windows and other common GUIs.

Windows can be freely created in an application with the Nindows API.

Handy utilities can be used in debugging the Texture Viewer and other areas without
complicated programming.

Parameters adjusted with Nindows can be confirmed in real time, allowing rapid adjustment of
game balance.

Adjusted parameters can be saved to a file on the host machine or to backup memory on the actual machine.
(Not supported in this version)
NGD-175

Ninja Guide
2 Creating a Simple Nindows Application
This chapter explains how to integrate Nindows into an existing Ninja application. Nindows functions can be easily
enabled by adding just a few line changes to the source file.

2.1 Integrating Nindows

0.Preparing the Ninja application.

Get the source file which contains the functions njUserInit(), njUserMain(), and njUserExit().

1.Include the Nindows header file

Add the following line to the source file.

#include <Nindows.h>

2.Call the Nindows initialization function

After the call to njInitTexture(), add the following line.

nwInitSystem(numTextures);

numTextures is the number of texture memory lists.

It assigns the value specified in njInitTexture().

* Assign the value that is added 3 to the number used in the application, as three textures are used for the
font of Nindows.

3.Call the function to execute Nindows

Change the last instance of return NJD_USER_CONTINUE in njUserMain to the following line.

return nwExecute();

4. Call the function to exit Nindows

Before the call to njExitSystem() add the following line.

nwExitSystem();

5.Linking the Nindows Library

Add Nindows.lib to the project.

The preceding steps enable:

1. Use of Nindows' Nindows Utility

2.Calls to Nindows API functions
NGD-176

10. Nindows Tutorial
The result of the preceding steps is the following source code.

2.2 Description of Functions used in Integrating Nindows

Table 2.1 List of functions used in integrating Nindows

nwInitSystem Initialization function

Format void nwInitSystem(Uint32 numTextures)

Parameters NumTextures Number of texture memory lists

Return value None Function

Initializes the Nindows system and enables Nindows utilities and Nindows
API functions.

Please assign the same value to numTextures as was assigned in
njInitTexture().

Reference NwExecute(),nwExitSystem(),nwInitResource(),njInitTexture(),njClipZ()

Note Automatically loads the textures used in Nindows.

When using the njReleaseAllTexture() Ninja function, call
nwInitResource() and reload the textures.

Nindows reserves texture global index numbers 0xfffffff0 to 0xfffffffe,
so applications cannot use textures stored in this range.

Example #define MAX_TEXTURE 1000

static NJS_TEXMEMLIST texlist[MAX_TEXTURE];

void njUserInit(void)

{

njInitSystem(NJD_RESOLUTION_VGA, NJD_FRAMEBUFFER_MODE_RGB555, 1);

njInitVertexBuffer(500000, 0, 500000, 0);

njInitTexture(texlist, MAX_TEXTURE);

nwInitSystem(MAX_TEXTURE);

}

Function Description

NwInitSystem Initializes the Nindows system

NwExitSystem Exits the Nindows system

NwExecute Draws all windows

NwInitResource Loads textures used in Nindows
NGD-177

Ninja Guide
NwExitSystem Initialization function

Format void nwExitSystem(void)

Parameters None

Return value None

Function Exits Nindows.

Reference njExitSystem()

Note

Example void njUserExit(void)

{

nwExitSystem();

njExitSystem();

}

nwExecute Execution Function

Format Sint32 nwExecute(void)

Parameters None

Return value If 'Exit' is selected from the System Menu it returns
NJD_USER_EXIT, in

all other cases it returns NJD_USER_CONTINUE.

Function Performs all Nindows drawing.

Reference njUserMain()

Note Call once each frame.

When this function is called, the Nindows system draws all windows.

As in the example below, when the function's return value is used
as

the return value for njUserMain(), the application can be exited by
selecting the 'Exit' menu.

Example Sint32 njUserMain(void)

{

:

:

:

return nwExecute();

}

nwInitResource Initialization Function

Format Void nwInitResource(void)

Parameters None

Return value None

Function Loads the textures used in Nindows

Reference nwInitSystem(),njInitTexture(),njReleaseTexture()

Note Usually there is no need to use this function, but when
njReleaseTextureAll() is used as in the example, the textures used

by Nindows are also released. Therefore, you should always call
this function after calling njReleaseTextureAll().

Example njReleaseTextureAll();

nwInitResource();
NGD-178

10. Nindows Tutorial
3 Using Nindows and Nindows Utilities

3.1 Using Nindows

In section 2, the integration of Nindows was completed. When a Nindows integrated application (hereafter
Nindows application) is executed, the mouse cursor is displayed on the screen and moves on the screen in response
to mouse manipulation.

System Menu

When the right mouse button is clicked on the desktop, a popup menu is displayed. This is called the
System Menu from which menus can be selected to use Nindows utilities. The System Menu contains the
following items.

Table 2.2 List of System Menu items

Figure 1.1 In this diagram, The System Menu is displayed with the right button and the "Debug" menu is selected

Menu Item Description

Debug Displays the Nindows Utility menu.

User(Undefined) Displays a user-defined menu. At the time of Nindows initialization, the User Menu is not
entered in the system, so it is displayed in a light color and cannot be selected.

Font Change Font

Exit Exits the application.
NGD-179

Ninja Guide
3.2 Nindows Utilities

The menu items that are displayed when "Debug" is selected from the System Menu are the Nindows utilities.
Nindows contains the following utilities.

Table 2.3 List of Nindows Utilities

Ninja Info Window

Figure 1.2 Ninja Info Window

The following information is displayed in the Ninja Info Window.

Name Description

Ninja Info Displays the Ninja library version number, and other information.

Texture Viewer All of the textures which are read in can be displayed.

Peripheral Info Displays information about peripherals.

Window Info Displays information about the active windows

Debug Window A handy window for displaying debug messages.

Performance Meter Describes the application's drawing performance.

Display Contents

Ninja Ver. Ninja library version number

Nindows Ver. Nindows version number

Vertex Number of vertices

Calc polygon Number of polygons

Draw polygon Number of draw polygons

Texture Memory Amount of Texture Memory available and total memory
NGD-180

10. Nindows Tutorial
Table 2.4 Information shown in the Ninja Info Window

Texture Viewer Window

Figure 1.3 Texture Viewer Window

All entered textures can be viewed.

The textures can be changed via four buttons. The following information is displayed in the Texture
Viewer Window.

Table 2.5 Texture Viewer Window Information

Display Contents

Texture Texture numbers and the total number of textures.

GlobalIndex Global Index

Address Texture addresses

SIze Texture size

PixelFormat Pixel format

SurfaceFlags Surface flag:
The highlighted items are the flags for the texture.Refer to the texture related
document for the details.

Memory Flag Similarly, this flag is set by the texture. Refer to the texture documentation for
details on this flag.

Error Code This error code is for texture loading. "OK" is displayed when loading succeeds.
Refer to the texture documentation for error code details.
NGD-181

Ninja Guide
Peripheral Info Window

Figure 1.4 Peripheral Info Window

Window which displays information about peripherals (input devices). Peripheral ports can be selected using the
[<] and [>] buttons.

The Peripheral Info Window displays the following information

Table 2.6 Info Displayed in the Peripheral Info Window

Window Info Window

Figure 1.5 Peripheral Info Window

Display Contents

Port Peripheral port name

Dev Name of the peripheral attached to the port

ON Info about the button being pressed

OFF Info about the button not being pressed

PRESS Info about the button the moment it is pressed

RELEASE Info about the button the moment it is released

X X axis value

Y Y axis value
NGD-182

10. Nindows Tutorial
Displays information about the window under the mouse cursor (the active window).

It can also be used for debugging things like application windows created with the Nindows API.

The Peripheral Info Window displays the following information.

Table 2.7 Information Displayed in the Peripheral Info Window

*The x, y coordinates are not the absolute screen coordinates, it depends on the window style.

Debugging Window

Figure 1.6 Debugging Window

At first, nothing is displayed in this window.

Display the debugging characters using the nwDebugPrintf() function.

This function can be used in the same way as the standard printf() function.

For more details, please refer to the Edit Window chapter.

Display Contents

Title of the active window

x,y Upper left coordinates of the window's client area

w,h Size of the window's client area
NGD-183

Ninja Guide
Performance Meter Window

Figure 1.7 Performance Meter Window

Provides an intuitive understanding of an application's performance (calculation, drawing speed).

If the meter revolves once per second, the frame rate is 60fps.

3.3 Changing Fonts

Select 'Font' from the System menu to select normal or large font size. If normal size is hard to read on an NTSC
monitor, select a larger font size.

* This version does not automatically resize the window according to changes in font size. If you change the
font, do so before opening another window after executing the application.
NGD-184

10. Nindows Tutorial
4 Windows

4.1 Summary

The window is the most fundamental element of Nindows. An application draws to the window's client area by
creating a window and specifying a drawing callback function. Or it can create controls such as another window, a
button, or scrollbar and control it as a child window.

Types of Windows and Window Classes

The following are the types of windows divided into Window Classes.

Table 2.8 Types of Windows and Window Classes

The next section will mainly discuss the Standard window.

4.2 Creating a Window

For example, let's create a window on the desktop which displays a counter in the client area. To create the window,
we will use the function nwCreateWindow().

Now, a window will be displayed on the screen at the specified location, and the counter display will be
incremented. Furthermore, the window will be displayed in the next frame after calling nwExecute() and the return
from njUserMain().

The window is destroyed by calling the function nwDestroyWindow() or by clicking on the close box in the caption
bar with the mouse. (Only windows which have NWD_WS_CONTROL specified in their window style have a close box.)

Window Class Window Type

NWD_WC_WIN Standard window

NWD_WC_SCRWIN Window with scrolling enabled in the client area

NWD_WC_EDITWIN Edit window

NWD_WC_SCRBAR Scrollbar control

NWD_WC_BUTTON Button control

NWD_WC_MENUWIN Menu window
NGD-185

Ninja Guide
4.3 Creating a Child Window

The last argument in nwCreateWindow() is a window handle for a parent window. In the last example, this
argument was set to NULL, so we created a window which did not have a parent (actually, the Desktop Window is
a parent). The next example shows how to create a parent window and a child window.

When a parent window is destroyed using the nwDestroyWindow() function or by mouse operation, all of its child
windows are automatically destroyed. In this example, if the parent window hWndParent is destroyed, the child
window hWnd is also destroyed.

Furthermore, scrollbars (class NWD_WC_SCRBAR), buttons (class NWD_WC_BUTTON) and menus (class
NWD_WC_MENUWIN) cannot be specified as a parent window (they cannot have a child window). However, it is
possible for a menu to have a child menu (sub menu). For more details, please refer to chapter 9.

4.4 Window Related Parameters

The window handle NWHWND is actually a pointer to the NWS_WIN structure.

By directly setting this structure's members through the handle of the window created, the window can be made to
do various actions. Here we will discuss members which are useful to know and representative ways of using them.

Client drawing callback function hWnd->clientDraw

Used in the window creation example, it is the most representative member.

Usually, some kind of callback function address is set in this member, and the drawing to the client area is processed
within that callback function.

Destructor hWnd->destructor

If a function address is set in this member, it will be called back when the window is destroyed.

User Data hWnd->param1, hWnd->param2

A Sint32 type member which can be freely set and referenced in the application.

User Data hWnd->userBuf

When you want to save a lot of user data, this data address is specified.

Please reserve a separate data buffer in the application.

4.5 Description of Window Support Functions

Table 2.9 List of Functions for Creating Windows

Function Description

nwCreateWindow Creates a window

nwDestroyWindow Destroys a window
NGD-186

10. Nindows Tutorial
Nindows API

nwCreateWindow Window Creation Functions

Format NWHWND nwCreateWindow(Sint32 wClass, Sint8* caption, Sint32
style,

Sint32 x, Sint32 y, Sint32 w, Sint32 h, NWHWND
hWndParent)

Parameters wClass Window class

caption Window name (caption)

style Window style

x,y Upper left coordinate of the client area

w,h Width and height of the client area

hWndParentParent window handle

Return value If successful, it returns the handle of the window created. If the
window

could not be created, NULL is returned.

Function Creates a window

Reference nwDestroyWindow(),nwCreateMenuWindow(),nwCreateEditWindow(),
nwCreateScrollBar(),nwCreateButton()

NWS_WIN structure

Note For creating menu windows, edit windows, scrollbars, and buttons
it is

recommended to use the more convenient
nwCreateMenuWindow(),nwCreateEditWindow(),
nwCreateScrollBarArray(),nwCreateButton().

Example // Creates a window

NWHWND hWnd;

hWnd = nwCreateWindow(NWD_WC_WIN,

"Test Window",

NWD_WS_CAPTION | NWD_WS_BORDER | NWD_WS_SHADOW,

50, 50, 100, 100,

NULL);
NGD-187

Ninja Guide
The following flags are set in the Window style.

If NWD_WC_SCRBAR is specified in the Window class, please also specify one of the following flags.

nwDestroyWindow Window Creation Function

Format void nwDestroyWindow(NWHWND hWnd)

Parameters hWnd the handle of the window to be destroyed

Return value None

Function Destroys the window

Reference NwCreateWindow(),NWS_WIN structure

Note If a callback function is set in hWnd->desructor, it calls back
that function.

Example

// Destroys a window

nwDestroyWindow(hWnd);

Window Style Meaning

NWD_WS_CAPTION Has a caption

NWD_WS_BORDER Has a thin border line

NWD_WS_THICKFRAME Has a thick, resizable border line

NWD_WS_SHADING Window color can be set at each vertex

NWD_WS_CONTROL Has a close box

NWD_WS_SHADOW Window has a shadow

NWD_WS_INVISIBLE Creates an invisible window

NWD_WS_NOMOVE Cannot be moved with the mouse

NWD_WS_OFFSET Creates a window in a position (x, y) relative to the parent window

Window Style Meaning

NWD_WS_SB_HORZ Create a horizontal scrollbar

NWD_WS_SB_VERT Create a vertical scrollbar
NGD-188

10. Nindows Tutorial
Callback Functions

ClientDrawCallback Window Callback Function

Format Void ClientDrawCallback(NWHWND hWnd)

Parameters HWnd Handle of the window where the callback originated

Return value None

Function An application defined function which a window calls back for drawing

Reference nwCreateWindow(),NWS_WIN structure

Note

DestroyCallback Window Callback Function

Format void DestroyCallback(NWHWND hWnd)

Parameters hWnd Handle of the window where the callback originated

Return value None

Function Application defined function called back when a window is destroyed

Reference nwDestroyWindow(),NWS_WIN structure

Note

4.6 Samples and a Description of Window Support Functions

In addition to nwCreateWindow() and nwDestroyWindow() the Nindows API has many functions to support the
management of windows. The sample below uses a joystick to move a window.

Table 2.10 List of Functions for Creating Windows

Function Description

nwFindWindow Searches the window with the specified caption

nwFindWindowByPos Searches the window in the specified location

nwGetClientRect Gets the rectangle of the specified window's client area

nwGetWindowColor Gets the color of the specified window

nwGetWindowPos Gets the upper left coordinates of the specified window's client area

nwGetWindowRect Gets the overall rectangle of the specified window

nwGetWindowSize Gets the width and height of the specified window's client area

nwGetWindowStyle Gets the style of the specified window

nwGetWindowText Gets the caption string of the specified window

nwSetWindowColor Changes the color of the specified window

nwSetWindowPos Sets the upper left coordinates of the client area and moved the specified window

nwSetWindowSize Changes the width and height of the specified window's client area

nwSetWindowStyle Changes the window style of the specified window

nwSetWindowText Changes the caption string of the specified window
NGD-189

Ninja Guide
Nindows API

nwFindWindow Window Support Function

Format NWHWND nwFindWindow(NWHWND hWnd, Sint8* caption)

Parameters HWnd The parent window which starts searching for the window

Caption The caption string of the window being searched for

Return value If the window is found, it returns its window handle else it returns NULL.

Function Searches the specified parent window's child windows for the window
with the specified caption string

If you want to search all windows, specify NULL for the parent window.

Reference NwFindWindowByPos()

Note

Example //Searches all of the windows for the window "Material Window"

hWnd = nwFindWindow(NULL, "Material Window");

nwFindWindowByPos Window Support Function

Format NWHWND nwFindWindowByPos(Sint16 x, Sint16 y)

Parameters x, y Screen coordinates

Return value If the window is found, it returns its window handle else it
returns NULL.

Function Searchs windows which are displayed in the specified screen
coordinates (x, y).

Reference nwFindWindow

Note

Example // Checks to see if the window is displayed at the coordinates of
the mouse cursor

NJS_PERIPHERAL* mouse = njGetPeripheral(NJD_PORT_SYSMOUSE);

if (nwFindWindowByPos(mouse->x, mouse->y) {

// The window is displayed

} else {

// The window is not displayed

}

nwGetClientRect Window Support Function

Format Bool nwGetClientRect(NWHWND hWnd, NWS_RECT* rect)

Parameters hWnd Window handle

rect Address which holds the rectangle information

Return value If it succeeds, it returns TRUE, else it returns FALSE

Function Gets the rectangle of the window's client area

Reference

Note The rectangle it gets is the absolute coordinates on the screen
without any relation to the NWD_WS_OFFSET flag in the window style.

Example NWS_RECT rect;

nwGetClientRect(hWnd, &rect);
NGD-190

10. Nindows Tutorial
nwGetWindowColor Window Support Function

Format Bool nwGetWindowColor(NWHWND hWnd, NWS_RGBA col[4])

Parameters hWnd Window handle

col Address of the NWS_RGBA structure array which gets the color

Return value If it succeeds, it returns TRUE, else it returns FALSE

Function Gets the window color.

The color of the upper left vertex, upper right, lower right and lower
left are stored in order from col[0].

Reference

Note

Example NWS_RGBA col[4];

nwGetWindowColor(hWnd, col);

nwGetWindowPos Window Support Function

Format Bool nwGetWindowPos(NWHWND hWnd, Sint32* x, Sint32* y)

Parameters hWnd Window handle

x,y Address which stores the coordinates

Return value If it succeeds, it returns TRUE, else it returns FALSE

Function Gets the upper left coordinates of the window's client area

Reference

Note If NWD_WS_OFFSET is specified in the window style, the coordinates are
relative to the parent window.

Example Sint32 x, y;

nwGetWindowPos(hWnd, &x, &y);

nwGetWindowRect Window Support Function

Format Bool nwGetWindowRect(NWHWND hWnd, NWS_RECT* rect)

Parameters hWnd Window handle

rect Address which stores the rectangle information

Return value If it succeeds, it returns TRUE, else it returns FALSE

Function Gets the window's entire rectangle, including the caption and border line

Reference

Note The rectangle it gets is the absolute coordinates on the screen without
any relation to the NWD_WS_OFFSET flag in the window style.

Example NWS_RECT rect;

nwGetWindowRect(hWnd, &rect);

nwGetWindowSize Window Support Function

Format Bool nwGetWindowSize(NWHWND hWnd, Sint32* w, Sint32* h)

Parameters hWnd Window handle

w,h Address which stores the width and height

Return value If it succeeds, it returns TRUE, else it returns FALSE

Function Gets the width and height of the window's client area

Reference

Note

Example Sint32 width, height;

nwGetWindowSize(hWnd, &width, &height);
NGD-191

Ninja Guide
nwGetWindowStyle Window Support Function

Format Bool nwGetWindowStyle(NWHWND hWnd, Sint32* style)

Parameters hWnd Window handle

style Address which gets the style

Return value If it succeeds, it returns TRUE, else it returns FALSE

Function Gets the window style

Reference

Note

Example

Sint32 style; nwGetWindowStyle(hWnd, &style);

if (style & NWD_WS_SHADOW) {

// if it is a window with a shadow

}

nwGetWindowText Window Support Function

Format Sint32 nwGetWindowStyle(NWHWND hWnd, Sint8* caption, Sint32 size)

Parameters hWnd Window handle

caption Buffer address which stores the window caption string

size Buffer size

Return value If it succeeds, it returns TRUE, else it returns FALSE

Function Gets the caption string displayed in the window's caption bar and
copies it to the buffer

Reference

Note

Example // Gets the window hWnd's in buf

Sint8 buf[256];

nwGetWindowText(hWnd, buf, sizeof(buf));

nwSetWindowColor Window Support Function

Format Bool nwSetWindowColor(NWHWND hWnd, NWS_RGBA col[4])

Parameters hWnd Window handle

col Array address which stores the color of each window vertex

Return value If it succeeds, it returns TRUE, else it returns FALSE

Function Changes the window's color.

Please specify the color of the upper left vertex, upper right, lower
right and lower left in order from col[0].

Reference

Note If NWD_WS_SHADING is not specified in the window style, the color of
the upper left vertex is applied to all vertices.

Example NWS_RGBA col[4] = {

{255, 0, 0,255},// Color of the upper left vertex

{ 0,255, 0,255},// Color of the upper right vertex

{ 0, 0,255,255},// Color of the lower right vertex

{ 0, 0, 0,255},// Color of the lower left vertex

};

nwSetWindowColor(hWnd, col);
NGD-192

10. Nindows Tutorial
nwSetWindowPos Window Support Function

Format Bool nwSetWindowPos(NWHWND hWnd, Sint32 x, Sint32 y)

Parameters hWnd Window handle

x,y Upper left coordinates of the client area

Return value If it succeeds, it returns TRUE, else it returns FALSE

Function Changes the display coordinates of the window.

The window moves so that the upper left coordinates of the client area
are at the point (x, y).

If NWD_WS_OFFSET is specified in the window style, the coordinates are
relative to the parent window.

Reference

Note

Example // Moves the window to the point (100, 50).

nwSetWindowPos(hWnd, 100, 50);

nwSetWindowSize Window Support Function

Format Bool nwSetWindowSize(NWHWND hWnd, Sint32 w, Sint32 h)

Parameters HWnd Window handle

w,h Width and height of the client area

Return value If it succeeds, it returns TRUE, else it returns FALSE

Function Changes the size of the window.

(w,h) are the width and height of the client area

Reference

Note

Example // Changes the width and height of the window's client area to (128, 64)

nwSetWindowSize(hWnd, 128, 64);

nwSetWindowStyle Window Support Function

Format Bool nwSetWindowStyle(NWHWND hWnd, Sint32 and_style, Sint32 or_style)

Parameters hWnd Window handle

and_style and style

or_style or style

Return value If it succeeds, it returns TRUE, else it returns FALSE

Function Changes the window style

Reference

Note We cannot guarantee what will happen if the window class and

other parameters have conflicting settings.

When using the and_style please do not forget to attach a "
~ " as in the example.

> We cannot guarantee what will happen if the NWD_WS_CONTROL
flag is set in this function for a window which did not have

the NWD_WS_CONTROL flag set at the time it was created.

Example // Removes the shadow from the window and attached a caption

nwSetWindowStyle(hWnd, ~NWD_WS_SHADOW, NWD_WS_CAPTION);
NGD-193

Ninja Guide
NwSetWindowText Window Support Function

Format Bool nwSetWindowStyle(NWHWND hWnd, Sint8* caption)

Parameters HWnd Window handle

caption Pointer to the NULL terminal caption string

Return value If it succeeds, it returns TRUE, else it returns FALSE

Function Changes the caption displayed in the window's caption bar.

Reference

Note

Example // Changes the window's caption to "New Caption"

nwSetWindowText(hWnd, "New Caption");

Structure

NWS_WIN Structure

Definition typedef struct _NWS_WIN {

Sint32 style;

Sint32 wClass;

Sint8 *caption;

Sint32 font;

struct _NWS_WIN *parent;

struct _NWS_WIN *child;

struct _NWS_WIN *before;

struct _NWS_WIN *next;

Sint32 x, y;

Sint32 w, h;

NWS_RGBA col[4];

NWS_MSGHANDLE *msgHandle;

void *menuTable;

void *userBuf;

void (*clientDraw)(struct _NWS_WIN *NWFUNC);

void (*execFunc)(struct _NWS_WIN *NWFUNC);

void (*destructor)(struct _NWS_WIN* NWFUNC);

Sint32 param1, param2;

struct _NWS_WIN* hClose;

struct _NWS_WIN* hMaximize;

struct _NWS_WIN* hMinimize;

} NWS_WIN;

Members style Window style

wClass Window class

caption Caption string

font Font type

parent Parent window handle

child Child window handle

before Previous window handle

next Next window handle

x, y Upper left coordinates of the client area

w, h Width and height of the client area

col Color of the 4 vertices

msgHandle Not used (reserved)

menuTable Menu table
NGD-194

10. Nindows Tutorial
userBuf Buffer for user

clientDraw Address of client drawing callback function

execFunc Address of window execution function

destructor Address of window destruction callback function

param1, param2 User parameters

hClose Window handle of the close box

hMaximize Reserved

hMinimize Reserved

Description The fundamental structure of all windows. The window handle is a
pointer to this structure.

Reference

NWS_RGBA Structure

Definition typedef struct _NWS_RGBA {

Uint8 r;

Uint8 g;

Uint8 b;

Uint8 a;

} NWS_RGBA;

Description It is mainly a structure that defines the window's color.

Members

r Red(0-255)

g Green(0-255)

b Blue(0-255)

a Transparency(0-255) 0 is completely transparent, 255 is opaque

Reference nwGetWindowColor(),nwSetWindowColor()

NWS_RECT Structure

Definition typedef struct _NWS_RECT {

Sint32 left;

Sint32 top;

Sint32 right;

Sint32 bottom;

} NWS_RECT;

Description Structure which defines the rectangle area on the screen.

Members left Left side

top Top side

right Right side

bottom Bottom side

Reference nwGetWindowRect()
NGD-195

Ninja Guide
5 Scroll Windows

5.1 Summary

A Scroll Window is a window which has the window class NWD_WC_SCRWIN.

Scroll Windows, unlike normal windows, have a function which allows scrolling of the contents displayed in the
client area.

5.2 Creating a Scroll Window

A scroll window is created by using the function nwCreateWindow(), the same function used to create normal
windows. A scroll window is created by specifying NWD_WC_SCRWIN in the window class.

A scroll window created in this manner looks like a normal window, but the client area can be scrolled with the
mouse. Placing the mouse cursor in the client area and pressing the left button, the area can be freely scrolled by
moving the mouse. Immediately after creating the window, the client area can be scrolled up and down and left and
right, but it can also be set to only scroll up and down or only left and right.

Setting the window to only scroll up and down

nwScrWinEnableScroll(hWnd, NWD_ES_VERTICAL);

Setting the window to only scroll left and right

nwScrWinEnableScroll(hWnd, NWD_ES_HORIZONTAL);

Setting the window to scroll up and down as well as left and right

nwScrWinEnableScroll(hWnd, NWD_ES_VERTICAL | NWD_ES_HORIZONTAL);

Setting the window to not scroll in any direction

nwScrWinEnableScroll(hWnd, 0);

5.3 Description of Functions Used to Create a Scroll Window

Table 2.11 List of Functions for Creating scroll windows

Function Description

nwScrWinEnableScroll Enables or disables scrolling in the scroll window

nwScrWinSetClip Sets the scrolling area of the scroll window

nwScrWinScroll Scrolls the scroll window
NGD-196

10. Nindows Tutorial
Nindows API

nwScrWinEnableScroll Scroll Window Function

Format Bool nwScrWinEnableScroll(NWHWND hWnd, long flag)

Parameters hWnd Window handle of the scroll window

flag The direction in which you want to enable scrolling

NWD_ES_VERTICAL Enable up/down scrolling

NWD_ES_HORIZONTAL Enable left/right scrolling

Return value If it succeeds, it returns TRUE, else it returns FALSE

Function Sets the scrolling direction of the scroll window's client area

Set the flag to 0 to disable scrolling in any direction

Set the flag to 1 to enable scrolling up/down and left/right.

Reference NwScrWinSetClip(),nwScrWinScroll()

Note This function's settings are only valid for scrolling with the mouse.
Scrolling via nwScrWinScroll() is always valid in every direction.

Example// Enables scrolling in every direction

nwScrWinEnableScroll(hWnd, NWD_ES_VERTICAL | NWD_ES_HORIZONTAL);

nwScrWinSetClip Scroll Window Function

Format Bool nwScrWinSetClip(NWHWND hWnd, NWS_RECT* rect)

Parameters hWnd Window handle of the scroll window

rect Rectangular area with scrolling enabled

Return value If it succeeds, it returns TRUE, else it returns FALSE__

Function Sets the range of scrolling in the client area of the scroll window.

Reference NwScrWinEnableScroll(),nwScrWinScroll()

Note This function's settings are only valid for scrolling with the mouse.

The initial value of the clipping area is an area nine (3x3) times the

size of the client area, centered on the client area.

Example // Sets the range of scrolling to (-10,-10)-(10,10)

NWS_RECT rect = {-10, -10, 10, 10};

NwScrWinSetClip(hWnd, &rect);
NGD-197

Ninja Guide
nwScrWinScroll Scroll Window Function

Format Bool nwScrWinScroll(NWHWND hWnd, Sint32 x, Sint32 y)

Parameters HWnd Window handle of the scroll window

x, y Scrolling value

Return value If it succeeds, it returns TRUE, else it returns FALSE__

Function Scrolls the client area of the scroll window by the specified number of
dots

Reference NwScrWinEnableScroll(),nwScrWinSetClip()

Note

Example //Scrolls up one dot at a time

Sint32 njUserMain(void)

{

NWHWND hWnd = nwFindWindow(NULL, "Scroll Window");

if (hWnd) {

nwScrWinScroll(hWnd, 0, 1);

}

:

:

return nwExecute();

}

nwScrWinGetScroll Scroll Window Function

Format Bool nwScrWinGetScroll(NWHWND hWnd, Sint32* x, Sint32* y)

Parameters hWnd Window handle of the scroll window

x, y Pointer which gets the scroll coordinates

Return value If it succeeds, it returns TRUE, else it returns FALSE__

Function Gets the present scrolling coordinates of the scroll window

Reference nwScrWinScroll()

Note

Example //Sets scrolling

Sint32 x, y;

nwScrWinGetScroll(hWnd, &x, &y);

nwScrWinSetScroll(hWnd, -x, -y);
NGD-198

10. Nindows Tutorial
6 Edit Windows

6.1 Summary

An Edit Window is a window which has the window class NWD_WC_EDITWIN and it includes the functions of a
scroll window(window class NWD_WC_SCRWIN).

An edit window has the following special features.

It has a text buffer, text can be set and automatically displayed.

Several lines of text can be displayed.

The window's client area can also be made to scroll.

The Nindows utility "Debug Window" is created as an Edit Window.

6.2 Creating and Using an Edit Window

An Edit Window is created by calling the function nwCreateEditWindow().

Next, let's add some text to this window. This is accomplished by using the function nwEditWinAddString().

The function nwEditWinPrintf() is also available to use in the same way as the printf() function.

As a result of the preceding operations, the following window will be displayed on the screen.

Figure 1.8 An example of creating an Edit Window

As text strings are added to the Edit Window and they cannot be displayed in the window's client area, the window
will automatically scroll.

Furthermore, the Edit Window also has the functionality of a Scroll Window, so the display contents of the client
area can be freely scrolled by dragging the mouse.

When the added text fills up the buffer, data will be erased from the beginning of the buffer.

An Edit Window is destroyed like any other window by using the function. nwDestroyWindow().

*In the present version of Nindows, text strings set using nwEditWinAddString() and nwEditWinPrint() must have
the linefeed character '\n' at the end. Please note that if the linefeed character is not appended, the previously
entered text will not be displayed until text which includes the linefeed character is set using these functions.
NGD-199

Ninja Guide
6.3 Description of Functions Used in Creating Edit Windows

Table 2.12 List of Functions for Creating Edit Windows

Nindows API

nwCreateEditWindow Window Creation Function

Format NWHWND nwCreateEditWindow(Sint32 lines, Sint8* caption, Sint32 style,
Sint32 x, Sint32 y, Sint32 w, Sint32 h, NWHWND hWndParent)

Parameters lines Maximum number of text lines

caption Window name string (caption)

style Window style

x,y Upper left coordinate of the client area

w,h Width and height of the client area

hWndParent Parent window handle

Return value If successful, it returns the handle of the created edit window, or if it
couldn't create an edit window it returns NULL.

Function Creates an edit window and reserves a text buffer.

Reference nwDestroyWindow(),nwCreateMenuWindow(),nwCreateEditWindow(),
nwCreateScrollBar(),nwCreateButton()

NWS_WIN structure

Note

Example NWHWND hWnd;

hWnd = nwCreateEditWindow(500, "Edit Window",

NWD_WS_CAPTION | NWD_WS_CONTROL | NWD_WS_BORDER | NWD_WS_SHADING,

50, 50, 150, 100, NULL);

nwEditWinAddString Edit Window Function

Format Bool nwEditWinAddString(NWHWND hWnd, Sint8* string)

Parameters hWnd Window handle of the edit window that text is being added to

string Pointer to the text being added

Return value If the text is successfully added, it returns TRUE, else it returns FALSE.

Function Adds text to an edit window and displays it.

Reference nwCreateEditWindow(),nwEditWinPrintf()

Note

Example nwEditWinAddString(hWnd, "AddText\n");

Function Description

NwCreateEditWindow Creates an Edit Window

NwEditWinAddString Adds text to an Edit Window

NwEditWinPrintf Adds text to the Edit Window in the printf() format
NGD-200

10. Nindows Tutorial
nwEditWinPrintf Edit Window Function

Format Bool nwEditWinPrintf(NWHWND hWnd, Sint8* fmt, ...)

Parameters hWnd Window handle of the edit window that text is being added to

fmt printf() format text string

Return value If the text is successfully added, it returns TRUE, else it returns FALSE.

Function Adds text to an edit window and displays it.

The printf() format can be used.

Reference NwCreateEditWindow(),nwEditWinAddString()

Note

Example NwEditWinPrintf(hWnd, "i = %d\n", i);

6.4 Description of Functions Used in Nindows' Debug Window Utility

nwDebugPrintf Edit Window Function

Format void nwDebugPrintf(Sint8* fmt, ...)

Parameters fmt printf() format text string

Return value None

Function Adds text to the Debug window and displays it

The printf() format can be used.

Reference NwEditWinPrintf()

Note

Example NwDebugPrintf("i = %d\n", i);

7 Scrollbar Controls

7.1 Summary

Scrollbars are controls which are very well suited to adjusting various numerical parameters. For example, they can
be used to change things such as backgrounds, the color of models, adjusting the movement speed of objects, and
various other uses.

7.2 Creating Scrollbar Controls

This example shows how to change a model's material (NJS_ARGB structure) using a scrollbar.

In this example, we first create a parent window called "Material Window" and then four scrollbars as its child
windows. This is the standard way to do it. When this is done, the following window is displayed.

Figure 1.9 An example of creating a scrollbar control

The values of the NJS_ARGB structure members a,r,g,b change in response to manipulation of the scrollbar's knob.

When the "Material Window" is destroyed, its four child windows, the scrollbars, are automatically destroyed.
NGD-201

Ninja Guide
7.3 Description of Functions Used in Creating Scrollbar Controls

Table 2.13 List of Functions Used in Creating Scroll Bar Controls

Nindows API

nwCreateScrollBarArray Scrollbar Function

Format Bool nwCreateScrollBarArray(NWS_SCROLLBARLIST* list, NWHWND hWndParent)

Parameters list Pointer to the scrollbar list

hWndParent Parent window handle

Return value If all the scrollbar controls were created, it returns TRUE, else it
returns FALSE.

Function Creates several scrollbar controls together and sets the parameters.

Reference Low-level Scrollbar Function:

nwCreateScrollBar(),nwSetScrollBarPos(),nwSetScrollBarRange(),nwSet
ScrollBarData(),nwSetScrollBarLineMove(),nwSetScrollBarPageMove()

Note This function is easier to use than creating scrollbars one by one and
setting their parameters, but you cannot get the handles of the scrollbars
that were created. Usually there is no need to get the scrollbar handles,
but if necessary please use a low level scrollbar function or search for
the window using nwFindWindow().

Example

Structure

NWS_SCROLLBARLIST Structure

Definition

typedef struct {

Sint32 n;

Sint32 style;

Sint16 x, y;

Sint16 w, h;

NWS_SCROLLBARINFO* info;

} NWS_SCROLLBARLIST;

Description When creating scrollbars with the function nwCreateScrollBarArray(),
it is needed with the NWS_SCROLLBARINFO structure.

Members n Number of elements in the NWS_SCROLLBARINFO array

style NWD_WS_SB_HORZ for a horizontal scrollbar,

NWD_WS_SB_VERT for a vertical scrollbar.

x, y Display coordinates of the first scrollbar (relative
to parent window).

w, h Width and height of one scrollbar.

info Array address of the NWS_SCROLLBARINFO structure

Reference NWS_SCROLLBARINFO,NWS_DATA, nwCreateScrollBarArray()

Function Description

NwCreateScrollBarArray Creates several scrollbar control together
NGD-202

10. Nindows Tutorial
NWS_SCROLLBARINFO Structure

Definition typedef struct {

Sint8* caption;

NWS_DATA data;

Float min, max;

Float line, page;

Float pos;

} NWS_SCROLLBARINFO;

Description When creating scrollbars with the function nwCreateScrollBarArray(), it
is needed with the NWS_SCROLLBARLIST structure. One of these structures
corresponds to one scrollbar. Usually used as an array to create several
scrollbars together.

Members caption Scrollbar caption strings.

data Pointer to the data structure associated with the scrollbar

min The minimum value in the associated data.

max The maximum value in the associated data.

line The amount of data changed when the scrollbar's arrow is clicked.

page The amount of data changed when the scroll area is clicked.

pos Initial value of the associated data.

Reference NWS_SCROLLBARLIST,NWS_DATA, nwCreateScrollBarArray()

NWS_DATA Structure

Definition typedef struct _NWS_DATA {

void *dt;

int type;

} NWS_DATA;

Description Data structure associated with a scrollbar

Members dt Pointer to the data.

type Data type. Specify from the table below.

Reference Low-level Scrollbar Function

7.4 Creating Scrollbar Controls that Use Low-level Scrollbar Functions

Here we will discuss how to create the same material window using a more low-level function than the previously
described nwCreateScrollBarArray(). Those readers who are not interested in this example may skip to the next
chapter.

The code above will create a "Material Window" that looks and functions the same as the one in Diagram 7-1.

Data Type Meaning

NWD_DT_CHAR char(Sint8) data type

NWD_DT_SHORT short(Sint16) data type

NWD_DT_LONG long(Sint32) data type

NWD_DT_FLOAT float(Float) data type

NWD_DT_UCHAR unsigned char(Uint8) data type

NWD_DT_USHORT unsigned short(Uint16) data type

NWD_DT_ULONG unsigned long(Uint32) data type
NGD-203

Ninja Guide
7.5 Description of Low-level Scrollbar Functions

Table 2.14 List of Low-level Scrollbar Functions

Nindows API

nwCreateScrollBar Low-level Scrollbar Function

Format NWHWND nwCreateScrollBar(Sint32 type, Sint8 *caption,

Sint32 x, Sint32 y, Sint32 w, Sint32 h, NWHWND hWndParent);

Parameters type Horizontal scrollbars are NWD_WS_SB_HORZ, vertical
scrollbars are NWD_WS_SB_VERT

caption Scrollbar caption string

x, y Coordinates of scrollbar creation (relative to parent)

w, h Scrollbar width and height

hWndParent Window handle of the parent window

Return value If successful in creating the scrollbar controls, it returns the window
handle of the created scrollbar controls, else it returns NULL.

Function Creates scrollbar controls.

Reference nwCreateScrollBarArray(),

Low-level Scrollbar Function:

nwSetScrollBarPos(),nwSetScrollBarRange(),nwSetScrollBarData(),nwSet
ScrollBarLineMove(),nwSetScrollBarPageMove()

Note Please initialize the settings of the scrollbars created using

nwSetScrollBarPos(),nwSetScrollBarRange(),nwSetScrollBarData().

Example NWHWND hScl = nwCreateScrollBar(NWD_WS_SB_HORZ, "Alpha Sroll",

80, 3, 200, 11, hWndParent);

Function Description

NwCreateScrollBar Creates a scrollbar control

NwSetScrollBarData Associates data with a scrollbar

NwSetScrollBarRange Sets the extent of the scrollbar

NwSetScrollBarPos Sets the position of the scrollbar knob

NwSetScrollBarLineMove Sets the distance to move when the scrollbar's arrow is clicked

NwSetScrollBarPageMove Sets the distance to move when the scrollbar's area is clicked.
NGD-204

10. Nindows Tutorial
nwSetScrollBarData Low-level Scrollbar Function

Format void nwSetScrollBarData(NWHWND hScl, NWS_DATA* data)

Parameters hScl Window handle of the scrollbar control

data Associated data structure

Return value None

Function Associates data with the scrollbar control

Reference nwSetScrollBarPos(),nwSetScrollBarRange(),
nwSetScrollBarLineMove(),nwSetScrollBarPageMove()

Note

Example // Associates the long variable a with the scrollbar

long a;

NWS_DATA data = {&a, NWD_DT_LONG};

nwSetScrollBarData(hWNd, &data);

nwSetScrollBarRange Low-level Scrollbar Function

Format void nwSetScrollBarRange(NWHWND hScl, Float min, Float max)

Parameters hScl Window handle of the scrollbar control

min Minimum value of the data associated with the scrollbar

max Maximum value of the data associated with the scrollbar

Return value None

Function Sets the range of the scrollbar

Reference nwSetScrollBarPos(),nwSetScrollBarData(),nwSetScrollBarLineMove(),
nwSetScrollBarPageMove()

Note

Example // Sets the range to (-30 ~ 30)

nwSetScrollBarRange(hWnd, -30.f, 30.f);

nwSetScrollBarPos Low-level Scrollbar Function

Format void nwSetScrollBarPos(NWHWND hScl, Float pos)

Parameters hScl Window handle of the scrollbar control

pos Value of the data associated with the scrollbar

Return value None

Function Sets the value of the data associated with the scrollbar

Reference nwSetScrollBarRange(),nwSetScrollBarData(),nwSetScrollBarLineMove(),
nwSetScrollBarPageMove()

Note Used when setting the initial data value when the scrollbar is created.

Example // Sets the initial data value to 0

nwSetScrollBarPos(hWnd, 0.f);
NGD-205

Ninja Guide
nwSetScrollBarLineMove Low-level Scrollbar Function

Format void nwSetScrollBarLineMove(NWHWND hScl, Float step)

Parameters hScl Window handle of the scrollbar control

step Step value

Return value None

Function Sets the amount of data changed when the scrollbar arrows are pressed

Reference nwSetScrollBarRange(),nwSetScrollBarData(),nwSetScrollBarPos(),
nwSetScrollBarPageMove()

Note The default is 1.0

Example // Sets the amount of data changed when the scrollbar arrow is pressed to 2

nwSetScrollBarLineMove(2.f);

nwSetScrollBarPageMove Low-level Scrollbar Function

Format void nwSetScrollBarPageMove(NWHWND hScl, Float step)

Parameters hScl Window handle of the scrollbar control

step Step value

Return value None

Function Sets the amount of data changed when the scrollbar's area is clicked

Reference nwSetScrollBarRange(),nwSetScrollBarData(),nwSetScrollBarPos(),
nwSetScrollBarLineMove()

Note The default is 10.0

Example // Sets the amount of data changed when the scrollbar area is clicked to 5

nwSetScrollBarLineMove(5.f);
NGD-206

10. Nindows Tutorial
8 Button Controls

8.1 Summary

A button is a control which produces a callback when clicked and can be used for many purposes. Buttons are
convenient for many uses such as a toggle switch for application flag variables, an interface for choosing one object
out of a group, etc.

8.2 Creating a Button Control

As an example, we will create a sample which selects the textures used in environment mapping by using "Back"
and "Next" buttons.

As a result of the previous code, the following texture selection window is displayed.

Figure 1.10 Example Creation of a Texture Selection Window

When the "Back" and "Next" buttons are clicked, the specified callback functions are called, and the value of the
variable texno is changed. In response, the texture used in the environment mapping also changes.

When the texture selection window is destroyed, its child windows, the two buttons, are also automatically
destroyed.

8.3 Button Validity and Invalidity

In the preceding example, the "Back" and "Next" buttons are always valid, a callback will always work when they
are clicked. However, depending on the situation, there is a need to do things like disable a button. Let's modify the
previous sample to add that kind of operation.

The operation to be added will make the "Back" button invalid when the buttons are created and check the texture
number in the button's parent window callback function to set the two buttons to valid or invalid. In order to do
this, we should make the buttons' window handles into global variables.

To set the buttons to valid or invalid, we will use the function nwEnableButton().

Operation to make the button valid

nwEnableButton(button, TRUE);

Operation to make the button invalid

nwEnableButton(button, FALSE);

The text on an invalid button is displayed with a light color and even if the button is clicked, the animation and
callback will not work.
NGD-207

Ninja Guide
8.4 Description of Functions for Button Controls

Table 2.15 List of Functions for Creating Button Controls

Nindows API

nwCreateButton Button Function

Format NWHWND nwCreateButton(NWF_BUTTONFUNC func, Sint8 *caption,

Sint32 x, Sint32 y, Sint32 w, Sint32 h, NWHWND hWndParent);

Parameters func Button callback function

caption Text displayed on the button surface

x, y Coordinates where the button is created (relative to parent)

w, h Width and height of button

hWndParent Window handle of parent window

Return value If the button creation is successful, it returns the window handle, else
it returns NULL.

Function Creates button controls.

Reference nwEnableButton(),nwDestroyWindow(),

Note A button which has just been created is valid.

Example //Creates an "OK" button

NWHWND button = nwCreateButton(button_callback_back,

"OK", 3, 20, 48, 13, hWndParent);

nwEnableButton Button Function

Format void nwEnableButton(NWHWND hWnd, Bool flag)

Parameters hWnd Button's window handle

flag If the button is valid it is TRUE, else FALSE

Return value None

Function Sets a button to valid or invalid. An invalid button has text displayed
in a light color and will not work even if clicked.

Reference nwCreateButton()

Note A button which has just been created is valid.

Example // Make a button invalid

nwEnableButton(button, FALSE);

Function Description

nwCreateButton Creates a button control

nwEnableButton Switches a button's validity and invalidity
NGD-208

10. Nindows Tutorial
Callback Function

ButtonCallback Button Callback Function

Format void ButtonCallback(NWHWND hWnd)

Parameters hWnd Button handle where the callback originated

Return value None

Function Application defined function which is called back when the button

is clicked.

Reference nwCreateButton(),nwEnableButton()

Note

9 Menus

9.1 Summary

Nindows has an API for creating popup menus like common GUI systems.

The most representative menu in Nindows is the System Menu, but inside this menu is an item labeled "User
(undefined)" in light colored text.

Figure 1.11 The "User (undefined)" item in the System Menu

This menu item is for setting user defined menus. By creating a menu table and entering it into this item, user
defined menus can be easily used. This chapter discusses how to create and enter menu tables. It will also cover
how to create windows that popup directly without entering them in the System Menu.

9.2 Creating and Entering Menu Tables

Menu tables are created as an array of NWS_MENUTABLE. The following is an example of the simplest menu table
with one item.

To enter this menu table into the System Menu's "User(undefined)" item, we will use the function
nwSetUserMenu().

By calling this function the light colored "User(undefined)" item has changed to "User >" and the "Test Menu 1"
which was entered pops up as a sub-menu.

Figure 1.12 Condition where the user menu has been entered (1)
NGD-209

Ninja Guide
When this menu is selected, the callback function menu_callback() set in the menu table is called back.
menu_callback() isn't doing any processing, so nothing happens. This callback function will be explained in the
next section.

Let's look at a more complex example of a menu table.

If this table is entered in the same way using nwSetUserMenu(), you get the following menu.

Furthermore, when a new menu is entered using nwSetUserMenu(), the previously entered menu table is
overwritten and the new menu is enabled.

Figure 1.13 Condition where the user menu has been entered (2)

The entry of a user menu is deleted in the following way.

Once again, the display changes to a lightly colored "User(undefined)" and the user menu cannot be selected.

9.3 Menu Callback Functions

Menu callback functions are user defined functions, entered in the menu table, which are called back when the
menu is selected. In the previous example the function menu_callback() was a callback function.

static void menu_callback(NWHWND hWndMenu, Sint32 idx, Sint32 param)

The window handle of the menu window where the callback originated is passed to hWndMenu. There is usually
no need to do this.

The parameter idx is the numerical position of the selected menu item in the menu, starting from 0. This can be used
to tell which menu item has been selected in such cases where you want to process several menu items with the
same callback function.

param is a parameter defined by the user in the menu table. In the same way, this is used when you want to process
several menu items with one callback function.

9.4 Checkmarks

Checkmarks can be displayed on the left side of the menu item text strings. Checkmarks are useful for telling the
user if an item is valid or if it is being selected. The diagram shows the Nindows utility "Ninja Info" when it is
selected. The checkmark to the left of the "Ninja Info" item name shows that the "Ninja Info" window is being
displayed. If the "Ninja Info" window is closed, the checkmark will disappear.

Figure 1.14 Checkmark Example
NGD-210

10. Nindows Tutorial
The display of the checkmarks is turned on and off by directly setting the type member in the menu table. In the
example, the checkmark for the top item in the menu table called menu_table is switched.

Display checkmark

menu_table[0].type |= NWD_MF_CHECKED;

Hide checkmark

menu_table[0].type &= ~NWD_MF_CHECKED;

Let's look at a more concrete example.

This menu table is entered with nwSetUserMenu() and when "Test Window" is selected, it performs the window
creation and destruction and then switches the checkmarks.

The reason why the window destructor (hWnd->destrctor)is set and inside that the checkmarks are erased is
because there are cases where windows are destroyed by methods other than menu selection. The following code
looks correct, but in cases such as when the close box is clicked and the window is destroyed, the checkmark is not
erased.

9.5 Description of Functions for Entering User Menus

Table 2.16 List of Functions for Entering User Menus

Nindows API

nwSetUserMenu Menu Function

Format void nwSetUserMenu(NWS_MENUTABLE* menuTbl)

Parameters menuTbl Array address of the menu table structure

Return value None

Function Enters user menus as popup menus in the "User" item of the System Menu.
If the argument is specified as NULL, the previously entered menu
is destroyed.

Reference Note

Example nwSetUserMenu(user_menu);

Function Description

nwSetUserMenu Enters a user menu in the System Menu
NGD-211

Ninja Guide
Callback Function

MenuCallback Menu Function

Format void MenuCallback(NWHWND hWnd, Sint32 idx, Sint32 param)

Parameters hWnd Window handle of the menu window where the callback originated

idx Index of the selected menu item in the menu table

param Parameter set in the menu table

Return value None

Function User defined function called back by the menu window when the menu is
selected.

Reference

Note

Example

Structure

NWS_MENUTABLE Structure

Definition

typedef struct _NWS_MENUTABLE {

Sint32 type;

Sint8 *title;

NWF_MENUHANDLE func;

Sint32 param;

} NWS_MENUTABLE;

Description Defines the contents of the menu when a user menu is entered with the
nwSetUserMenu() function or when a menu window is created with the
nwCreateMenu() function.

Members type Menu item type

title Menu item text

func Callback function for when the menu is selected

param Parameter passed to the callback function

Reference

Menu Type Flag Meaning

NWD_MF_NORMAL Normal menu item. Cannot be specified at the same time with NWD_MF_POPUP, NWD_MF_SEPARATOR.

NWD_MF_POPUP Has a popup sub-menu. Cannot be specified at the same time with NWD_MF_NORMAL, NWD_MF_SEPARATOR

NWD_MF_SEPARATOR Separator. Cannot be specified at the same time with NWD_MF_NORMAL, NWD_MF_POPUP.

NWD_MF_CHECKED Has a checkmark.

NWD_MF_GRAYED Item displayed with a light color, cannot be selected.
NGD-212

10. Nindows Tutorial
9.6 Creating Popup Menus

Creating a Simple Popup Menu

Up until now, we have discussed how to set a user menu in the System Menu, but there is also a method
for creating popup menus which appear on the screen without being entered in the System Menu. This is
done with the function nwCreateMenuWindow().

Here, the following popup menu is displayed on the screen.

Figure 1.15 Popup Menu

The menu window we created will automatically be destroyed when a menu item is selected or the mouse is clicked
outside the menu window area.

Creating a Popup Menu that Stays on the Screen

Because the menu window will automatically be destroyed when a menu item is selected or when the
mouse is clicked outside the menu window area, the menu can only be selected once at most. It will be
necessary to use nwCreateMenuWindow() and make the same menu.

The following code shows how to make a menu which stays on the screen

Every frame it checks to see if the menu window already exists and if it doesn't it recreates it. In this way, the popup
menu appears to stay on the screen.

9.7 Description of Functions Used in Creating Popup Menus

nwCreateMenuWindow Menu Function

Format NWHWND nwCreateMenuWindow(NWS_MENUTABLE *menuTbl, Sint8 *caption,

Sint32 x, Sint32 y, NWHWND hWndParent);

Parameters menu Array address of the menu table structure

Return value If successful, it returns the window handle of the newly created menu
window, else it returns NULL.

Function Creates a popup menu window.

Reference nwDestroyWindow(),NWS_MENUTABLE structure

Note

Example NWHWND hWnd = nwCreateMenu(menu_tbl, "MENU",

100, 100, NULL);
NGD-213

Ninja Guide
10 Mouse

10.1 Summary

Nindows does not have any special functions for the mouse. Getting the coordinates of the mouse cursor, button
information is done with the Ninja functions.

10.2 Getting Mouse Information

Mouse information is acquired by using the Ninja function njGetPeripheral(). Please refer to the following example.

If you want to know what window is at the mouse cursor coordinates, do the following.

10.3 Description of Functions Used for Getting Mouse Information

Here we will focus on Ninja peripheral functions and structures for the mouse.

Table 2.17 List of Functions for Entering User Menus

Nindows API

njGetPeripheral Ninja Function

Format NJS_PERIPHERAL* njGetPeripheral(long port)

Parameters port Peripheral port number

Please specify NJD_PORT_SYSMOUSE to get information
about the mouse

Return value Address of the structure which stores the mouse information

Function Gets information about the mouse.

Reference NJS_PERIPHEAL structure

Note This can be called many times per frame, but the information is changed
as the frame is updated.

Example Sint32 njUserMain(void)

{

NJS_PERIPHERAL* mouse = njGetPeripheral(NJD_PORT_SYSMOUSE);

:

}

Function Description

njGetPeripheral Gets information about peripherals
NGD-214

10. Nindows Tutorial
Structure

NJS_PERIPHERAL Ninja Structure

Definition typedef struct {

Uint32 id;

Uint32 on;

Uint32 off;

union {

Uint32 push;

Uint32 press;

};

union {

Uint32 pull;

Uint32 release;

};

Sint16 x;

Sint16 y;

Sint16 z;

Sint16 r;

Sint16 u;

Sint16 v;

Sint8* name;

void* extend;

Uint32 old;

} NJS_PERIPHERAL;

Description This structure is not defined by Nindows, it is a Ninja structure. It
stores information about joysticks, the keyboard, mouse and other
input devices.

Members id Peripheral ID(NJD_DEV_SYSMOUSE)

on The bit corresponding to the pressed button is 1.

off The bit corresponding to the pressed button is 0.

push, press The bit corresponding to the button the moment it is
pressed is 1.

pull, release The bit corresponding to the button the moment it is
pressed is 0.

x, y The mouse coordinates are stored.

z, r, u, v Unused (reserved)

name Peripheral name

extend Unused (reserved)

old Reserved

Reference njGetPeripheral()
NGD-215

Ninja Guide
11 Fonts

11.1 Overview

Fonts can be changed only by selecting 'Font' from the Nindows System menu. This version supports only functions
to acquire the typeface, width and height of a selected font.

11.2 Description of Font Functions

Table 2.18 User Menu Input-Related Function List.

Nindows API

nwGetFontSize Font Function

Syntax Sint32 nwGetFontSize(Sint32* width, Sint32* height

Parameters width, height Pointers to get font width and height

Return Value Selected font typeface

Purpose Get the typeface, width and height of the font selected on the

System menu.

Reference

Remarks

Example Sint32 width, height;

nwGetFontSize(&width, &height);

11.3 Problems with Changing Fonts

Nindows does not automatically resize the window according to changes in font size. Also, parts of special
windows and Properties controls may not display correctly with large font sizes.

Function Purpose

nwGetFontSize Get the width and height of a font
NGD-216

	Ninja Guide
	Table of Contents
	1. View Function
	1 Initialization method
	1.1 Use njInitView().
	1.2 Directly set VIEW structure members.

	2 View movement and rotation
	3 Notes for using old View functions
	3.1 The detail of the caution 1)
	3.2 The detail of the caution 2)
	3.3 The correct/incorrect examples using old View functions.

	2. Reminders of Ninja Motion
	1 Concept of motions in Ninja
	2 Procedure to produce motions in Ninja

	3. How to Realize an Effective�Strip
	1 What is a strip?
	2 The way of connecting vertices of a strip
	3 Material and Texture
	4 Comparison of expressions of a strip
	5 Index type structure
	5.1 Direct expression structure of vertices

	6 Data reduction rate by strip

	4. Basic Model Specification
	1 Overview
	2 Model Structures
	2.1 Description of Structures

	3 Model Structures
	3.1 Meshsets
	3.2 Texture Structures
	3.3 Ninja Attributes
	3.4 Texture Format

	5. Motion Specification
	1 Overview
	2 Object Structure
	2.1 Basic object structure
	2.2 Chunk object structure
	2.3 Explanation of evalflags

	3 Camera Structure
	4 Light Structure
	5 Motion Structures
	5.1 Explanation of Structure

	6 Object Motion
	6.1 Explanation of Structure

	7 Camera Motion
	8 Light Motion
	9 Other Information

	6. NINJA LIGHT
	1 How to set LIGHT
	1.1 void njCreateLight(NJS_LIGHT*, Int)
	1.2 void njDeleteLight(NJS_LIGHT*)
	1.3 void njLightOff(NJS_LIGHT*)
	1.4 void njLightOn(NJS_LIGHT*)
	1.5 void njMultiLightMatrix(NJS_LIGHT*, NJS_MATRIX*)
	1.6 void njSetLight(NJS_LIGHT*)
	1.7 void njSetLightAlpha(NJS_LIGHT*, Float)
	1.8 void njSetLightAngle(NJS_LIGHT*, NJS_Angle, NJS_Angle)
	1.9 void njSetLightColor(NJS_LIGHT*, Float, Float, Float)
	1.10 void njSetLightDirection(NJS_LIGHT*, Float, Float, Float)
	1.11 void njSetLightIntensity(NJS_LIGHT*, Float, Float, Float)
	1.12 void njSetLightLocation(NJS_LIGHT*, Float, Float, Float)
	1.13 void njSetLightRange(NJS_LIGHT*, Float, Float)
	1.14 void njSetUserLight(NJS_LIGHT*, NJF_LIGHT_FUNC*)
	1.15 void njUnitLightMatrix(NJS_LIGHT*)
	1.16 void njTranslateLightV(NJS_LIGHT*, NJS_VECTOR*)
	1.17 void njTranslateLight(NJS_LIGHT*, Float, Float, Float)
	1.18 void njRotateLightX(NJS_LIGHT*, NJS_Angle)
	1.19 void njRotateLightXYZ(NJS_LIGHT*, NJS_Angle, NJS_Angle,�NJS_Angle)
	1.20 void njRotateLightY(NJS_LIGHT*, NJS_Angle)
	1.21 void njRotateLightZ(NJS_LIGHT*, NJS_Angle)
	1.22 Macro
	1.23 How to use
	1.24 LIGHTstructure Specification
	1.25 The members of NJS_LIGHT structure
	1.26 The members of NJS_LIGHT_ATTR structure
	1.27 The members of NJS_LIGHT_CAL structure

	7. Scroll Guide
	1 Revision Information
	1.1 Ver.0.04
	1.2 Ver.0.05

	2 Image Units as Related to Scrolling
	2.1 Overview
	2.2 Image Units

	3 Scroll Rotation, Resizing, and Movement
	3.1 Overview
	3.2 Scroll Rotation, Resizing, and Movement

	4 Scroll Programming
	4.1 Overview
	4.2 Example of Programming a Scroll

	5 Color
	5.1 Overview
	5.2 Color Mode

	6 Scroll function, Structures, and Definitions
	6.1 Overview
	6.2 Scroll–related Functions
	6.3 Scroll–related Structure
	6.4 Scroll-related Definitions
	6.5 Texture Structures for Use in Cell Programming

	8. Texture Guide
	1 Terminology
	1.1 Overview

	2 Creating Textures
	2.1 Overview
	2.2 PVR Format
	2.3 Category Code
	2.4 Color Format

	3 Memory
	3.1 Overview
	3.2 Texture Memory
	3.3 Cache

	4 Loading Textures
	4.1 Overview
	4.2 Flowchart of Texture Loading
	4.3 Setting a Texture Buffer
	4.4 Setting Cache Buffer
	4.5 Creating a Texture List
	4.6 Texture Numbers
	4.7 Global Index Number
	4.8 Automatic allocation of Global Index Number
	4.9 Texture Load Error
	4.10 Memory Texture
	4.11 Render Texture

	5 Texture functions, Structures, and Definitions
	5.1 Overview
	5.2 Texture Functions
	5.3 Texture Structures
	5.4 Texture Definitions

	6 Sample Program
	6.1 Overview
	6.2 Sample

	7 Notes for Texture functions
	7.1 Overview
	7.2 Notes for Switchover from SET2 to SET4/SET5
	7.3 Notes for using texture functions in SET5

	9. Chunk Model Specifications
	1 Overview
	1.1 Chunk Model Features

	2 Model Structures
	2.1 Structure Diagram

	3 Chunk Specifications
	3.1 Chunk Types
	3.2 Chunk Structure
	3.3 Chunk NULL
	3.4 Chunk End
	3.5 Chunk Bits
	3.6 Chunk Tiny
	3.7 Chunk Material
	3.8 Chunk Vertex
	3.9 Chunk Volume
	3.10 Chunk Strip

	4 ASCII Output Precautions

	10. Nindows Tutorial
	1 Summary
	1.1 Special Features of Nindows

	2 Creating a Simple Nindows Application
	2.1 Integrating Nindows
	2.2 Description of Functions used in Integrating Nindows

	3 Using Nindows and Nindows Utilities
	3.1 Using Nindows
	3.2 Nindows Utilities
	3.3 Changing Fonts

	4 Windows
	4.1 Summary
	4.2 Creating a Window
	4.3 Creating a Child Window
	4.4 Window Related Parameters
	4.5 Description of Window Support Functions
	4.6 Samples and a Description of Window Support Functions

	5 Scroll Windows
	5.1 Summary
	5.2 Creating a Scroll Window
	5.3 Description of Functions Used to Create a Scroll Window

	6 Edit Windows
	6.1 Summary
	6.2 Creating and Using an Edit Window
	6.3 Description of Functions Used in Creating Edit Windows
	6.4 Description of Functions Used in Nindows' Debug Window Utility

	7 Scrollbar Controls
	7.1 Summary
	7.2 Creating Scrollbar Controls
	7.3 Description of Functions Used in Creating Scrollbar Controls
	7.4 Creating Scrollbar Controls that Use Low-level Scrollbar Functions
	7.5 Description of Low-level Scrollbar Functions

	8 Button Controls
	8.1 Summary
	8.2 Creating a Button Control
	8.3 Button Validity and Invalidity
	8.4 Description of Functions for Button Controls

	9 Menus
	9.1 Summary
	9.2 Creating and Entering Menu Tables
	9.3 Menu Callback Functions
	9.4 Checkmarks
	9.5 Description of Functions for Entering User Menus
	9.6 Creating Popup Menus
	9.7 Description of Functions Used in Creating Popup Menus

	10 Mouse
	10.1 Summary
	10.2 Getting Mouse Information
	10.3 Description of Functions Used for Getting Mouse Information

	11 Fonts
	11.1 Overview
	11.2 Description of Font Functions
	11.3 Problems with Changing Fonts

