Sega@ Dreamcast.

Dreamcast
Roadmap and
Overview

Sega@ Dreamcast.

Table of Contents

1. The Sega Dreamcast Development SyStem ... ssesens RMP-1
Dreamcast Development COMPONENLScccuiuiuiiiiiiiiiiiiiccii e RMP-1
SUINIMATY ettt bbb a bbb bR b s bbb e b enn RMP-2
2. Sega Dreamcast Roadmap ... RMP-3
Three EXAMIPLEScovuiiiiiiiiiiciciiciie ettt ssaes RMP—4
3. Sega Dreamcast Hardware ... s s sssssssssssssssssssassssases RMP-5
The DTAMCASE CPUooiuiuiiriieieieirieeie ettt sttt ettt s ettt b ettt bbbt sttt st e b eneaeseses RMP-6
The Dreamcast Graphics HATAWATEc.cooveeuririieieriinieieieinineietsiccesenseeeiesessesteeiessesessaesessestaesessesessaesessescacsesees RMP-6
The Dreamcast SOUNA HAIAWATEcccoicuiciiiiiiiicieicieicieieeeie ettt ssaens RMP-6
The GD-ROM DIIVEccouiiiiiiiiiiiiiii it RMP-7
Dreamcast PErIPRETalSscoccuiiiiiiiiiciicici ettt RMP-7
Dreamcast MEIMOTIY ..o b bbb s RMP-7
SUINIMATY ettt a bbb b s a s bbb n st enn RMP-7

RMP-iii

Dreamcast Roadmap and Overview

4. Introducing Dreamcast GraphiCs ... sssasaseas RMP-9
Special Features of Dreamcast GIaphicscccoueiiiiriiiiniiiici s RMP-10
How Dreamcast Handles POLYONSc.cccciiiiiiiiiiiiiicicccccceeceeee e senene RMP-11

Translucent and Punch-Through Polygons ... RMP-11

How to Sort Translucent POLyZONScovieieiiiiiiiiiciccc s RMP-12

Applying Special Effects t0 VETtICESc.cccciiiiiiiiiiiiiccccccecceeecee e RMP-12
Tile Partitioningcccouoiiceeie et RMP-13

Tile Partitioning and Polygon CLPPING ..o RMP-14

A Point to Remember about TIlINGcccceiiiiiiiiiiiiecceeeecce e e RMP-15
MOIfier VOIUITIE ...ttt RMP-16
MIPINAPPINE «ovivieviriitiniitii bbbt a e a e s b r et et eaen RMP-17
TexXture FAILETINEcoviveiiiicii et RMP-18

POint SAMPIIIGoviiiiiiiiiiic e RMP-18

Bi-Linear FIltering ... s RMP-19

Tri-linear FIILeTINGoovoiiuiiiiiicieiec s RMP-20
Storing TeXtUTe Data ... RMP-21

VQ Texture COMPIESSIONc.cuoiiuiieieiieicie ettt ettt RMP-22
FOG ot RMP-22
BUMP MAPPING 1ttt RMP-23
SUINIMATY oo s b e b bbb a bbb RMP-25
5. Introducing Dreamcast AUdIo ... e RMP-27
AUAIO OVEIVIEW .oovititittctctctetctt ettt a bbb bbbt b bbb bt b e bbb et e bbb e e s st e s s et tetens RMP-27
The ADPCM Digital Sound FOIMAtc.ccoiiuiiiiiiiiiiiiciiciiic s RMP-28
WRAt i8S ADPCMY ...ttt RMP-30
SUITIIMIATY ..ottt ettt bbb a bbb bbb bbb bbb bbb b a bbb s st s st tees RMP-31
6. The SH4 and Memory Management ... sssssssssssssssssssssssssssssssssssssanes RMP-33
Dreamcast MEIMOTYc.ciiiiiiiiiicieictctcttt ettt ettt bbbttt bbbttt RMP-34
DIMA o RMP-35
The SHATIIMET ..ottt RMP-35
THE CACKE ..o RMP-36
The Pipelines and Superscalar UNItsc..ccociiiriiiiiiiiiiicc s sees RMP-37
SUINIMATY e bbb bbb bR bbb RMP-39

RMP-iv

Sega@ Dreamcast.

Preface

This document is a roadmap to the Sega Dreamcast development system and an overview of its hardware, with
special emphasis on its graphics and sound hardware and its CPU and memory architecture.

This is not a programming manual; it won’t show you how to write code or how to create and organize Dreamcast
programs. Its goal is far more modest; it merely introduces you to a fair number of the components of the Dreamcast
development system, and tries to give you an idea of how they all work together.

Once you know what the parts of the Dreamcast development system are, and what it can do, you'll be ready start
reading about Dreamcast programming. Then it will time to turn to the programming and user manuals that came
with your Dreamcast development system.

RMP-v

Dreamcast Roadmap and Overview

RMP-vi

Sega@ Dreamcast.

1. The Sega Dreamcast
Development System

The Sega Dreamcast Development System is an integrated hardware and software package for programmers who want
to develop software for the Sega Dreamcast console. This chapter lists and describes the components that make up
the Dreamcast development system.

1.1 Dreamcast Development Components

The Sega Dreamcast development system includes the following components:

The SH4 high-performance RISC engine is a 32-bit reduced instruction set microprocessor featuring
object-code upward compatibility with the SH1, SH2, and SH3 microprocessors. Software supplied with
the SH4 includes a C compiler, a cross-assembler, and a linkage editor/librarian/ object converter
package. To learn how to use the programming software supplied with the SH4 microprocessor, see the
Dreamcast SH4 Program Manual, the Dreamcast SH4 Compiler User’s Manual, the Dreamcast SH4 Cross
Assembler manual, and the Dreamcast SH4 Linkage Editor, Librarian, Object Converter User’s Manual.

The Shinobi library is a C-language library that provides four categories of system-level functions: a set of
system functions, a set of file-system functions, and a set of functions for obtaining data from peripherals. The
system functions provided in the Shinobi library initialize the Dreamcast hardware and make the Shinobi
library ready for use. The file-system functions are used to open, read, and close files; to provide directory
access; and to access the Dreamcast GD-ROM drive. The library’s memory-management library contains
functions for allocating and releasing memory, and its peripheral-interface functions are used to interface
the Dreamcast console with various kinds of user-operated controls. For more details, see the Katana
Shinobi Library Specification.

The Kamui graphics APl is alow-level library of graphics functions that directly manipulate the Dreamcast
hardware. The Kamui library provides a wide range of low-level graphics-related functions, including
functions for surface handling, setting scene parameters, setting vertex parameters, recording vertex data,
and handling textures. All the functions provided in the Kamui API are listed and described in the
Dreamcast Kamui Specification.

The Ninja library is a higher-level of C-language library that is designed to provide all the basic graphics
functionality needed to develop a title. The Ninja library contains matrix, collision, and mathematical
functions; 2D and 3D graphics functions; light, scrolling, modeling, and view functions; sprite,
special-effects, drawing, and special-effects functions; and more. To learn more about the Ninja library
and how to use it, see the Dreamcast Ninja Guide and the Dreamcast Ninja Library Specification.

RMP-1

Dreamcast Roadmap and Overview

® The Dragon SDK is a software-development system built around Microsoft Windows CE, an operating
system that is built into the Dreamcast console. The Dragon system is designed for developers who want
to create titles using the Microsoft Visual C++ compiler rather than the Dreamcast SH4 compiler, and who
want to create and manage graphics and game action using the Microsoft Direct X package. Dragon does
not interface with any of the other Dreamcast programming software described in this document; it is a
separate development path in its own right, and it is documented in a separate set of manuals.

The Dreamcast utilities package is a set of tools for converting files generated by various kinds of graphics
software packages into formats recognized by the Dreamcast development system. The Dreamcast
utilities kit includes tools for converting Studio 3D Max and Lightwave-format files into the Ninja file
format; a compression tool for converting PC bitmap files into compressed textures recognized by the
Dreamcast graphics hardware; and more. To learn more about what files are provided in the Katana
utilities package and how to use them, see the Dreamcast Utilities manual.

* The Dreamcast Visual Memory System (VMS) is a small peripheral that can be plugged into the Dreamcast
controller. The VMS has an LCD screen and can function either as a small handheld game console or as
an external backup memory. The VMS can also be plugged into a second VMS unit being held by another
player and then used as a multiplayer game module. When the VMS is used as a data-storage cartridge,
it can exchange information with other VMS cartridges. To find out more about the VMS cartridge and to
learn how to program it, see the Dreamcast (VMS) Visual Memory System manual.

® The Codescape debugger is a powerful and versatile windows-based debugger. To learn how to use it, see
the Dreamcast Codescape User Guide.

1.2 Summary

The Dreamcast development system has a number of different interlocking parts. There are two different compilers
to choose from, as well as several different sets of graphics APIs and utility package. So at first glance, it might
appear that the Dreamcast development system is made up of a large number of tools can be used together in many
different ways. But that is not strictly true. The next chapter tells why.

RMP-2

Sega@ Dreamcast.

2. Sega Dreamcast Roadmap

As explained in “Dreamcast Development Components” on page 1, the Dreamcast development system is an
integrated hardware and software package with a number of different interlocking parts. There are two different
compilers to choose from, as well as several different sets of graphics APIs and utility package. So at first glance, it
might appear that the Dreamcast development system is made up of a large number of tools can be used together
in many different ways.

Actually, that isn’t strictly true, because the tools that make up the Dreamcast development kit can’t be intermixed
with each other in just any old way. Each component in the system is designed to be interfaced with some of the
system’s other parts, but not with others. In fact, once you understand what each tool is designed for, you'll discover
that there are actually only three development pathways to choose from when you want to start creating a
Dreamcast title.

Furthermore, you'll probably find that it it’s quite easy to choose the path that suits you best. Generally speaking,
unless your boss rules differently, the development trail you take will probably depend on your background and
your preferences. Are you accustomed to programming in a console environment, or is your background mostly in
Windows? Are you a member of the C++ generation, or a hardcore C programmer? Do you like the elegance and
versatility of high-level graphics libraries, or do you like to think up ways to squeeze every ounce of performance
out of the platform you're programming for by getting as close to the metal as possible?

RMP-3

Dreamcast Roadmap and Overview

2.1 Three Examples

Your answers to questions like those will help determine which Dreamcast programming path is best for you. Here
are general descriptions of three fictitious developers, along with the development trail that each might choose as
he or she prepares to start work on a Dreamcast title:

* The Windows developer migrating to Dreamcast: Justin has experience programming for Windows, is most
comfortable working in C++, and has a popular library of graphics code written in C++ for the Windows
environment. He also has a collection of tools for converting 3D models generated by programs such as
3D Studio Max and Maya to file formats recognized by Direct X 5. And he has been asked to leverage
some of his company’s extensive Windows /Direct X code base into a collection of Dreamcast titles that
his boss wants to get out the door by Christmas of 1999.

The solution: As a short-term solution, Justin should probably start his career as a Dreamcast developer by
using the Dragon SDK (described in ChapterTitle 1., “The Sega Dreamcast Development System.”) with
Direct X 5 immediate mode and the Microsoft Visual C++ compiler. But when the great rush for Christmas
delivery is over, he should consider migrating away from Dragon and toward the Ninja development
platform. Why? Because Sega provides the Dragon system mainly as a stepping stone to help Windows
programmers migrate to the native Dreamcast development. By moving away from Dragon and toward
Ninja, Justin can make great strides in improving the performance of his titles and develop higher-quality
games.

The object-oriented game developer: Gramercy works for a company that has a robust library of
high-performance graphics code, some written in C and some written in C++. She comes from an
object-oriented background -- and, like Theodore, she has experience developing graphics programs
using Visual C++. But now she wants to start developing higher-performance games than she has been
able to using Direct X. She wants to learn how to optimize triangles for stripping and how to perform
other kinds of low-level operations that can reduce the overhead and enhance to performance of her
games.

The solution: Gramercy sounds like she may be ready to move from the Windows/Direct X programming
environment to a more powerful, lower-level environment such as Ninja (described in ChapterTitle 2.,
”Sega Dreamcast Roadmap.”). When she has finished migrating from Direct X to Ninja, she can also start
using most of the other non-Microsoft tools that the Dreamcast development system provides, such as the
Shinobi system-level library and the Dreamcast utilities package.

The console C developer: Theodore is an experienced game developer who has proven that he can handle
the challenges of working in a console environment. He has a robust library of high-performance 3D
graphics code written in C. He also has a good set of tools for converting models generated by programs
such as 3D Studio Max and Lightwave into code that a graphics pipe can parse. Theodore knows how to
optimize triangles for stripping when the need arises, as well as how to handle most other kinds of
low-level textbook-variety graphics programming tasks. Like Gramercy, Theodore likes to get as close to
the metal as possible so he can grab and make use of every spare cycle that’s available -- and, unlike
Gramercy, he has made his living doing just that for some time now.

The solution: Theodore should definitely consider developing his first Dreamcast title using the Kamui
graphics API (see Chapter 1, “The Sega Dreamcast Development System,”), along with the Shinobi
system-level library, the Dreamcast SH4 Optimizing Compiler, and -- on days when he really wants to
rock -- the Dreamcast SH4 Cross Assembler. By taking this development path, Theodore can pare his
system’s overhead down to its lowest theoretical limit, and can maximize the most powerful package of
programming resources that’s currently available to the Dreamcast developer.

RMP-4

Sega@ Dreamcast.

3. Sega Dreamcast Hardware

At first glance, the hardware used in the Dreamcast system looks much like what you may have seen used in other
high-performance 3D game consoles. But as you move in closer, you begin to see that the Dreamcast system is also
equipped with a number of powerful new hardware features that clearly set it apart it from earlier 3D game

consoles.

This chapter introduces and briefly describes some of the most important graphics and sound features of the
Dreamcast hardware. More details on the Dreamcast graphics and audio hardware are presented in Chapter 4,
“Introducing Dreamcast Graphics,” and Chapter 5, “Introducing Dreamcast Audio.”

Major topics discussed in this chapter are:

“The Dreamcast CPU” on page 6.

“The Dreamcast Graphics Hardware” on page 6.
“The Dreamcast Sound Hardware” on page 6.
“The GD-ROM Drive” on page 7.

“Dreamcast Peripherals” on page 7.

“Dreamcast Memory” on page 7.

“Summary” on page 7.

RMP-5

Dreamcast Roadmap and Overview

3.1 The Dreamcast CPU

The Dreamcast CPU is the Hitachi SH4 microprocessor, customized for Dreamcast, with an internal processing
speed of 200 MHz and a 100 MHz external bus. In the Dreamcast system, the SH4 handles processing involving the
game sequence, artificial intelligence, 3D calculation, and issuing 3D graphics instructions. The SH4 also provides
a general-purpose serial port with an FIFO buffer for use by external I/O devices.

The Dreamcast system is also equipped with an FPU (floating-point unit) module that can perform floating-point
calculations at high speed. This module is dedicated to numeric processing that would take a great deal of time if
unaided, such as the calculation of 3D coordinates.

The SH4 includes the following functions: FPU (floating-point calculation module) MMU (virtual memory
management module) DMA controller Timer 8K instruction cache, 16K data cache 5-stage pipeline, two
superscalar units

3.2 The Dreamcast Graphics Hardware

To handle graphics, Dreamcast uses the PowerVR module of the VL/NEC Holly graphics chip. The PowerVR
processor is optimized to handle complex 3D models, and has many preprogrammed graphics-related functions
onboard. The Dreamcast graphics system can render approximately 1 million polygons per second (a figure that can
vary according to the sizes and other characteristics of the polygons being processed).

The Dreamcast graphics hardware not only offers the standard capabilities of any high-performance 3D graphics
system, but also provides a number of special features and capabilities that distinguish it from the graphics
hardware used in earlier game systems. These special features include translucent and other special kinds of
polygons, a tiling system that splits the screen up into small squares for faster rendering, onboard hardware for
producing fog effects, and much more.

For more about the Dreamcast graphics system, see Chapter 4, “Introducing Dreamcast Graphics.”

3.3 The Dreamcast Sound Hardware

The sound chip used in the Dreamcast system is the Yamaha AICA, which relies on the ARM7DI -- manufactured
by Advanced RISC Machines (ARM) -- to be its sound controller. The Dreamcast audio system generates sound
using a 64-channel PCM/ ADPCM sound source that is built into the AICA microprocessor.

The AICA chip digitizes sound using the ADPCM format, a proprietary modification by Yamaha of the standard
PCM digital audio format. Instead of expressing volume at any given moment as a measured value -- as a standard
PCM system does -- the ADPCM method records as volume data the difference between the volume that is expected
(based on previous results) and the actual measured value. Because the degree of change in the difference from the
expected value is smaller than the change in the actual measured volume, less data needs to be recorded for a
waveform, and processing efficiency increases accordingly.

For a closer examination of the Dreamcast audio system, see Chapter 5, ”Introducing Dreamcast Audio.”

RMP-6

3. Sega Dreamcast Hardware

3.4 The GD-ROM Drive

The Dreamcast GD-ROM drive: The Dreamcast console uses a GD-ROM (Gigabyte Disk ROM), a special kind of
CD-ROM that can contain both standard CD-ROM data and game data stored in a proprietary, high-density storage
format.

The GD-ROM drive, unlike a conventional CD-ROM drive, rotates at a fixed speed. But it uses two read speeds: a
12X high-density speed for game data, and a 4X single-density speed for reading data that complies with the
conventional CD-ROM format. To store these two kinds of data, the Dreamcast GD-ROM uses two different areas
of an ordinary CD-ROM disk: a high-density band on the outside of the disk, nearest the spindle, for storing game
data, and a smaller single-density band on the inside of the disk, nearest to the spindle, for storage of audio
information and other data that complies with the conventional CD-ROM format. This band can hold about four
minutes of audio information.

3.5 Dreamcast Peripherals

Dreamcast has four peripheral slots that permit the connection of input devices such as analog controllers and guns.
The Dreamcast console also supports the use of a plug-in Dreamcast Visual Memory System (VMS), a small
peripheral device with an LCD screen. The VMS can function either as a portable handheld LCD game console or
as an external backup memory for the Dreamcast system.

When it is used for games, the VMS can function as a portable game player similar to the Tamagotchi console. When
two Dreamcast controllers are connected, separate messages and graphics screens can be displayed on the VMS
peripherals connected to each player’s controller. This capability makes it possible for multiple players to compete
in a game, with each individual player receiving different information on his or her VMS screen.

3.6 Dreamcast Memory

Dreamcast has 16MB of main system memory, plus 8MB of texture memory, including memory used for drawing
and display functions. There’s also 2MB of memory used for sound. All memory uses synchronous DRAM, a type
of RAM that allows high-speed access. The Dreamcast Visual Memory System (VMS), described in the preceding
section, can provide the system with expansion memory.

Dreamcast is equipped with a memory management unit (MMU) that assigns virtual addresses to addresses in
physical memory, allowing the system to behave as if it has more memory than it actually has. The Dragon
operating system (described in Chapter 1, ”The Sega Dreamcast Development System,”) uses this MMU module to
conceal the physical memory space to a certain extent and make segmented memory appear to be continuous
memory. The user does not need to be aware that memory is actually segmented.

Chapter 6, “The SH4 and Memory Management,” examines the Dreamcast memory components in more detail.

3.7 Summary

This chapter introduced and described some of the most important special features of the Dreamcast hardware.
More specific information about individual Dreamcast hardware components is provided in subsequent chapters.

RMP-7

Dreamcast Roadmap and Overview

RMP-8

Sega@ Dreamcast.

4. Introducing
Dreamcast Graphics

Although the Dreamcast graphics hardware has all the standard capabilities of any high-performance 3D graphics
system, it also has a number of special features and capabilities that distinguish it from the graphics hardware used
in other game systems. This section introduces the unique features of the Dreamcast graphics hardware, and

provides some general information on how you can use those features and capabilities in your own graphics titles.

Keep in mind, though, that this chapter is only a brief introduction to the Dreamcast graphics system. For more
detailed information on the topics introduced in this chapter, and for guidance on how to write the code that it takes
to implement Dreamcast programs, please refer to the various programming and user manuals listed and described
in Chapter 1, “The Sega Dreamcast Development System.”

Major topics examined in this chapter are:

“Special Features of Dreamcast Graphics” on page 10.
“How Dreamcast Handles Polygons” on page 11.
“Tile Partitioning” on page 13.

“Modifier Volume” on page 16.

“Mipmapping” on page 17.

“Texture Filtering” on page 18.

“Storing Texture Data” on page 21.

“Fog” on page 22.

“Bump Mapping” on page 23.

“Summary” on page 25.

RMP-9

Dreamcast Roadmap and Overview

4.1 Special Features of Dreamcast Graphics

The Dreamcast graphics hardware has a number of built-in features that distinguish it from other high-performance
3D graphics systems. Here’s a list that describes just a few of the most noteworthy graphics features and capabilities
of the Dreamcast system:

e Translucent and punch-through polygons: Along with standard opaque polygons, the Dreamcast system
supports the use of translucent polygons, which can give effects such as those of colored class, and
punch-through polygons, which have both transparent and opaque areas. For more details, see “How
Dreamcast Handles Polygons” on page 11.

Tile partitioning: When the Dreamcast hardware processes graphics, it partitions the screen into 32-pixel
by 32-pixel tiles, each of which can be processed separately. When Dreamcast renders a polygon, the only
tiles it redraws are those in which part of the polygon appears; it does not have to redraw the entire
screen. This distinctive Dreamcast feature dramatically reduces overhead and results in an enormous
increase in processing speed. For more information on this topic, see the section headed “Tile
Partitioning” on page 13.

Modifier volume: This unique Dreamcast feature answers the age-old question: How do you render
shadows in a 3D scene? It also allows you add other interesting effects, such as spotlights, to scenes in
your games. The section headed “Modifier Volume” on page 16 explains modifier volume in more detail
and explains how it can be used in Dreamcast titles.

* Mipmapping: The Dreamcast graphics hardware also has built-in support for mipmapping, a commonly
used mechanism for making textures look right when they are viewed from various distances. To read
more about how mipmapping works in the Dreamcast environment, see “Mipmapping” on page 17.

e Texture blending: Dreamcast supports three kinds of texture blending: point sampling, bi-linear filtering,
and tri-linear filtering. See “Texture Filtering” on page 18 for details.

* Hardware-controlled fog effects: The Dreamcast graphics hardware has built-in support for creating various
fog effects. Just store values in a table, and the hardware will extract them to give you just the kind of fog
you need. For more information about this feature, see“Fog” on page 22.

* Bump mapping: Dreamcast has a special built-in feature that you can use to create bump maps, or simulated
bumps on a surface. For more information about bump mapping, see “Bump Mapping” on page 23.

In the remaining sections of this chapter, each item in this list is examined in more detail.

RMP-10

4. Introducing Dreamcast Graphics

4.2 How Dreamcast Handles Polygons

Dreamcast supports the use of both individual triangle polygons and individual quad polygons. In addition,
Dreamcast supports the use of triangle stripping, a well-known technique for speeding up the calculation of vertices
during polygon processing. By combining triangles into strips, you can reduce both processing overhead and the
amount of polygon data that must be stored in memory. For example, in Figure 4.1, “Stripping Triangles,”, stripping
has reduced the number of vertices needed to render a set of triangles by more than half: from 15 to 7.

o

11

Triangle Strip
8 7

Individual Triangles 14 13

Figure 4.1 Stripping Triangles

Dreamcast supports the use of infinitely long strip data. But be careful: When triangles are combined into a strip,
Dreamcast must calculate all the vertex data for the entire strip whenever it needs to render even a single
polygon.To avoid inordinate slowdowns in processing speed, be sure to keep this requirement in mind when you
start laying out strip structures.

4.2.1 Translucent and Punch-Through Polygons

In addition to ordinary opaque polygons, Dreamcast supports the use of translucent polygons and punch-through
polygons. Figure 4.2, “Varieties of Polygons,” shows the characteristics of these three kinds of polygons.

TAY AV

Opagque Translucent Punch-Through
Polygon Polygon Polygon

Figure 4.2 Varieties of Polygons

As you can see, an opaque polygon hides all objects behind it, making extremely high-speed processing possible.
But translucent and punch-through polygons use special kinds of processing to allow parts of their backgrounds to
show through.

A translucent polygon can dramatically change the appearance of objects that appear behind it, making it possible to
achieve effects such as those of colored glass. But the rendering of a translucent polygon is considerably slower than
that of an opaque polygon. And if multiple translucent polygons overlap, processing speed can grind down to an
extremely slow pace. So for optimum drawing speed, you'll probably want to use translucent polygons sparingly.

RMP-11

Dreamcast Roadmap and Overview

Another option is to use a punch-through polygon — that is, a polygon that is completely transparent in some places
and completely opaque in others. Dreamcast can draw punch-through polygons much faster than it can process
translucent polygons — in fact, punch-through polygons can be drawn almost as rapidly as opaque polygons. So feel
free to used punch-through polygons for such things as sprites, trees, and other kinds of objects that look nice when
they have opaque and transparent parts.

4.2.2 How to Sort Translucent Polygons

Dreamcast offers a feature that automatically sorts translucent polygons. But use it with caution. When you
implement automatic translucent polygon sorting, Dreamcast draws your translucent polygons properly, even if
they are layered on top of each other — but, unfortunately, the algorithm that makes this precision possible tends to
be slow. If you sort your translucent polygons beforehand -- in your software -- and then pass them to the hardware
for rendering, the process goes much faster, and the visual result is the same as if you had ordered an automatic sort.

4.2.3 Applying Special Effects to Vertices

The Dreamcast graphics hardware can apply various effects to vertices. For example, it can apply different colors to
each vertex to change the color characteristics of polygons using Gouraud shading (color-complement shading), or
to create specular effects which (highlighting achieved by increasing the color brightness of vertices that light shines
on). With Dreamcast, you can specify original color information for each vertex in a polygon, as well as additional
color information (expressed as color offsets). Using this capability, you can create very realistic images created by
changing the light adjustment and position of models made up of polygons.

RMP-12

4. Introducing Dreamcast Graphics

4.3 Tile Partitioning

One distinctive feature of the PowerVR processor used by the Dreamcast SH4 chip is a Tiling Accelerator that
partitions the screen into 32-dot by 32-dot tiles for extraordinarily fast graphics processing. When Dreamcast
renders a scene, it processes individual tiles rather that processing the entire screen. Thus, if only one small part of
the screen changes prior to a refresh cycle, only the polygons in the region of the screen that has changed must
be redrawn.

Figure 4.3, “Tile Partitioning,” shows in a very simplified way how Dreamcast’s tile partitioning system works.
Suppose you have a scene in which only one triangle (the one shown in the picture) has moved since the last screen
refresh. During the next refresh cycle, the Dreamcast hardware will redraw only the four tiles occupied by the
changed triangle, and will leave the rest of the screen alone, resulting in an extraordinarily fast refresh of the
whole screen.

32 pixels Tile

<.

Figure 4.3 Tile Partitioning

What makes tile partitioning even better is the fact that the whole process is automatic. The Dreamcast graphics
hardware is designed in such a way that the Tiling Accelerator automatically keeps track of which tile partitions
have to be redrawn during each refresh cycle. So, each time the graphics hardware renders a scene, the Tiling
Accelerator automatically redraws only the portion of the screen that needs to be redrawn.

RMP-13

Dreamcast Roadmap and Overview

4.3.1 Tile Partitioning and Polygon Clipping

Because Dreamcast segments the screen into tiles, the ordinary clipping techniques that 3D programmers are
accustomed to have been supplemented by some additional kinds of clipping.

Briefly, Dreamcast supports two kinds of clipping: Tile clipping, which clip polygons displayed in adjacent tiles, and
pixel clipping, the familiar kind of clipping that is applied when polygons extend past the edges of the screen.

There are two kinds of tile clipping: Global tile clipping, which affects the whole screen, and user tile clipping, which
the developer can set to affect individual polygons.

To implement user tile clipping, you define a user tile clip area by specifying what tiles it will include. Then you can
use your clip area in two different ways. You can either clip off the edges of polygons that extend beyond the edges
of your clip area, or you can use your clip area as a mask, keeping the screen area outside the clip area intact but
clipping off the edges of polygons that extend into it.

Figure 4.4, “The Global and User Tile Clipping Areas,” is a simplified illustration of these two uses of the user tile
clip area.

Global Tile Clip gilobat-Tile Clip

Y T!!uﬂhp Uzer Tile Clip

Figure 4.4 The Global and User Tile Clipping Areas

RMP-14

4. Introducing Dreamcast Graphics

4.3.2 A Point to Remember about Tiling

Although the Dreamcast tiling mechanism generally works quite well without any particular assistance from the
developer, there is one tip that can speed up the tiling process under one set of unusual conditions.

Those conditions are illustrated in Figure 4.5, “A Tiling Problem,”, which shows a long, thin triangle that extends
diagonally across the screen

Because the triangle shown in the picture is so long, Dreamcast’s Tile Accelerator sees the triangle as affecting
almost every tile show — even though it actually appears inside a small number of them. To render a scene
containing such a triangle, the Tile Accelerator would redraw quite a few tiles that really don’t have to be redrawn.

Once you are aware that this kind of problem can arise, it isn’t difficult to avoid it. All you have to do is break the
offending polygon down into a number of smaller polygons, as shown in the diagram on the right. Then the Tile
Accelerator can redraw the screen using a much smaller number of tiles (those that are shaded in gray in

the diagram).

1
N
/7

To rendar this long triengla, To make drawing mone
the shadad tiles must be efficient, break tha triangle
redrawn ugr irdo smaller pieces.

Figure 4.5 A Tiling Problem

RMP-15

Dreamcast Roadmap and Overview

4.4 Modifier Volume

Modifier volume is a mechanism that compares a virtual model to an actual model to determine whether certain
properties of the two objects — such as texture and material -- are the same or different. The modifier volume
mechanism can then apply properties of the virtual model to the actual model at points where the two objects
intersect — or at points where they don’t. You can use modifier volume to create shadow effects or other special
effects such as spotlights and window masking.

Figure 4.6, “Modifier Volume,” shows how the modifier volume mechanism works. In the illustration, the texture
of a virtual model is applied to Area 1, which is the portion of the actual model where the virtual model and an
actual model intersect. The opposite is also possible; that is, the original model’s texture data can be left intact in
Area 1, while the virtual model’s texture data is applied to the non-overlapping area of the actual model (Area 0).

Note that the transparent cube shown in the diagram is not visible on the screen; it is used in the picture merely to
illustrate the operation of the modifier volume mechanism.

odifier Volume
(el actually sheawen on SCreen)

Figure 4.6 Modifier Volume

Modifier volume is an effective mechanism for applying shadows to models with uneven surfaces. For instance,
when modifier volume is used to create shadowing effects, only the shadowed area becomes darker, so it is not
necessary to set the other textures or materials.

And the property that is replaced in a modifier volume operation doesn’t even have to be a texture; it can be
derived from material data, vertex colors, and various other properties.

One very useful feature of the modifier volume mechanism is an intensity mode that you can use to control the
amount of darkening or the intensity of texturing that is applied affected areas.For more detailed information
about the modifier volume mechanism, see the various programmer’s manuals supplied with the

Dreamcast system.

RMP-16

4. Introducing Dreamcast Graphics

4.5 Mipmapping
Mipmapping is a commonly used mechanism for making a texture look right when it is viewed from different

distances. Dreamcast, like most high-performance 3D graphics systems, supports the use of mipmapping.

When a texture is displayed in a scene without the use of mipmapping, the becomes pixelated when it is viewed
from a distance that is very close, and can look distorted when it is viewed from a long distance away.

Figure 4.7, “Mipmapping for Close Viewing,” shows how mipmapping works. The top left quarter of the picture
shows a texture that was designed to be viewed from a certain distance. The top right quarter of the picture shows
what happens when the viewer zooms in closer; as you can see, the texture becomes pixelated and distorted.

The bottom left quarter of the picture shows a mipmap of the same texture. A mipmap is simply a differently
scaled drawing of a texture, specifically designed to make the texture look better when it is viewed from a
different distance. The use of a mipmap can make a texture look much better when it is viewed from a different
distance, as shown in the bottom right quarter of the picture.

*
P

Figure 4.7 Mipmapping for Close Viewing

RMP-17

Dreamcast Roadmap and Overview

@ »

g ®

Figure 4.8 Mipmapping for Distant Viewing

Figure 4.8, “Mipmapping for Distant Viewing,” shows how a mipmap can improve the appearance of a texture
when the camera moves in the opposite direction, pulling back to view the texture from a longer distance away.

This time, the top half of the picture shows what the texture looks like when the viewer pulls back from an
un-mipmapped texture that was designed to be viewed from a midrange distance. Again, the texture
becomes distorted.

The bottom half of the picture shows how the appearance of the texture improves when a mipmap is created for
distant viewing.

4.6 Texture Filtering

Dreamcast supports three filtering modes for texture mapping: point sampling, bi-linear filtering, and tri-linear
filtering. Figure 4.9, “Point Sampling,” shows how the point-sampling technique is used in Dreamcast.

Calmlated (u, +v)

\ Textare data foe
ll drawing pixel

-

Texture Map

Figure 4.9 Point Sampling

4.6.1 Point Sampling

As shown in Figure 4.9, “Point Sampling,”, the point sampling technique uses the data from a pair of texture
coordinates (u, v) that are derived from a sampling point (x,) as texture data for the drawing pixel. Of the three
kinds of texture-mapping that are available in Dreamcast, point-sampling imposes the lightest processing load on
the graphics hardware. But the quality of the image deteriorates if it is enlarged or compressed.

RMP-18

4. Introducing Dreamcast Graphics

4.6.2 Bi-Linear Filtering

Figure 4.10, “Bi-Linear Filtering,” on page 19 shows how bi-linear filtering can be used instead of point sampling in
Dreamcast programming,.

Bi-linear filtering takes the weighted average of the data from a pair of texture coordinates (u, v) that are derived
from a sampling point (x,), and the data from three adjacent texels (for a total of four texels), and uses the result
as texture data for the drawing pixel.

Because the weighted average is taken from data for four texels, the quality of the image when it is expanded or
compressed is better than images produced by point sampling (although in some cases, the image may appear to
be out of focus).

Calmlated
alemlated (u,) Weighted average

.I"I of data for fmr Textare data for
texels is taken drawing pixel
........ - .
Texture Map

Figure 4.10 Bi-Linear filtering

When a Dreamcast program is working with twiddled-format textures (see “The Twiddled Texture Data Format”
on page 21), processing time for bi-linear filtering is almost the same as that required by point sampling. But when
a program is working with non-twiddled format textures, processing time can double in a worst-case instance.

RMP-19

Dreamcast Roadmap and Overview

4.6.3 Tri-linear Filtering

We have seen that when a texture uses a single texture map, using bi-linear filtering instead of point sampling can
improve the quality of the texture image. We’ve also seen that mipmap processing can further improve the quality
of the texture image when the compression factor is large (that is, if the image has moved some distance away from
the viewer along the Z axis). However, even when bi-linear filtering and mipmap processing are used together, the
viewer can clearly see where switchovers occur between mipmap textures of different sizes.

Tri-linear filtering is one technique for solving this problem Figure 4.11, “Tri-linear Filtering,” shows how tri-linear
filtering works in Dreamcast programs.

‘ i
Culoulated (v 7) Weighted srerage Todure data for Weighted smeags Culmlated (. v)
/! of duts o foar drawing peeal of date for for /
eaiwlk li 1ekemn textali & eabiag]
...... Weightad awarage 1
ol dutn for b
texels i takoen
TeiTure map whiered TeErured map qf ad s
= daris o D valee = ey Gie

Figure 411 Tri-linear filtering

Tri-linear filtering takes the weighted average of the results produced when bi-linear filtering is used with mipmap
textures of two different sizes, and uses the result as texture data for the drawing pixel. Because the weighted
average is taken from data for a total eight texels in all, this approach offers maximum quality in enlarged and
compressed images, and the switchovers between mipmap textures appear smooth. However, because this
tri-linear filtering requires the most processing time of the three kinds of texture filtering that are available, it is not
recommended for use in all situations.

RMP-20

4. Introducing Dreamcast Graphics

4.7 Storing Texture Data

Dreamcast supports both an ordinary scan-line format and a special “twiddled” format for storage of texture data.
The twiddled format is an irregular storage format that is generally preferred in Dreamcast programs because it
permits the compression of texture data -- which, in turn provides very fast access to the data used to store textures.

Figure 4.12, “The Twiddled Texture Data Format,” shows how texture data is stored in the twiddled format. As you
can see, twiddled-format texture data is stored in a special order (a reverse "N") shown in the diagram below in
order to minimize performance loss when reading texture data for drawing,.

1281150

......................

......................

Figure 4.12 The Twiddled Texture Data Format

In Dreamcast, non-twiddled format texture data is stored in sequence, similar to bitmapped data. The non-twiddled
format is used in Dreamcast when drawing results are to be used as texture data. The non-twiddled format results
in reduced drawing performance compared to the twiddled format.

RMP-21

Dreamcast Roadmap and Overview

4.7.1 VQ Texture Compression

One useful feature of the twiddled format is that it permits the use of compressed texture data. More specifically,
twiddling permits the use of a texture-compression technique called "VQ (Vector Quantization)."

To store a texture using the VQ compression format, you use two types of data: a index and a code book. The
relationship between the index and the code book is similar to the usual relationship between palette texture data
and palette data; that is, the index specifies a matrix of four texels (two horizontal texels by two vertical texels) of
the texture prior to compression, using a code book number.

Figure 4.13, “The VQ Compression Format,” shows how you use the VQ technique to compress texture data.

Texlure prior bo comp ression Index Code Bosk
B 1 LBE 2 1 0
1|3 r W
L 256+4%16 bt
¥+ =V =4*16 tut
[4 G4 tat r
1T +2

Figure 4.13 The VO Compression Format

The VQ code book is a grouping of units of data for storing textures. Each unit stores data for four texels (64 bits),
and usually consists of a matrix measuring 256 by 64 bits. The four-texel data in the code book is expanded in a
reverse "N" shape, similar to the storage format used by the twiddled format. The texture size that is actually drawn
is about twice the specified size in both the horizontal and vertical directions.

4.8 Fog

One interesting feature of Dreamcast is that support for fog effects is provided in the graphics hardware. When you
want to create fog effects in a scene, you can let the hardware can perform the calculations for you, or you can make
your calculations yourself and set the vertex data.

The programming mode in which you let the hardware do the calculations is called Lookup Table Mode. The mode in
which you perform fog calculations is called Per Vertex Mode. Figure 4.14, “Lookup Table Mode,” on page 23
illustrates this process.

When you use Lookup Table Mode and let the Dreamcast hardware perform fog calculations, it can apply fog only
in the Z or depth direction, but if you do the calculations yourself, you can create fog in the up and down directions
as well. When the hardware does the calculating, the fog’s shape at specified units in the Z direction is placed in a
table, and the hardware calculates other positions to fill out the fog’s appearance.

When you use Per Vertex Mode and perform calculations yourself, you calculate the fog’s shape for each vertex, but
the hardware still handles the rendering. You can then apply fog in the up and down directions as well as in the Z
direction, but because you have to calculate all of the data yourself, the processing takes more time.

RMP-22

4. Introducing Dreamcast Graphics

Values i the tahle

150 \\

120

sl 75 50
54

The fog's shape iz put into the 7
table beforehand.
Thehardware figures out the rest.

Figure 4.14 Lookup Table Mode

4.9 Bump Mapping

Bump mapping is a technique for creating the appearance of unevenness on a surface that does not originally have
any unevenness. When you apply bump mapping to a surface, you replace the pixel data in texture data with
information defining the unevenness of a surface.

Figure 4.15, “A Bump Map,” is an overhead view of a bump map.

A=C

Figure 4.15 A Bump Map

To implement the bump mapping mechanism, you assume that a polygon shape with a virtual uneven surface
exists on top of the original polygon. Then you express the normal line vectors of the virtual surface for each texel
in numeric terms, and use those values as the texture data. The result is that the texel data for a bump-mapping
texture is expressed not as color data, but as a pair of angles expressing the normal line vectors for the texel in
question. Figure 4.16, “Bump Mapping,” illustrates the concept of bump mapping. S and R are the angles
representing a normal line vector. In a bump map, you can calculate illumination information using this normal line
vector as a unit vector.

RMP-23

Dreamcast Roadmap and Overview

.
o {Jnrma] line wectof

Figure 4.16 Bump Mapping

From an internal storage point of view, a bump map texture is a monochrome texture in which only the [alpha] value
is changed by bump map processing. But often, this change alone will not be enough to give a surface the kind of
uneven look you might be looking for. So a bump-map texture is usually used in combination with other textures.
One way to create a really realistic-looking bump map to draw an opaque polygon that has a texture, and then to

overlay another texture that has been subjected to bump-map processing on top of that. The result is a texture that
gives an appearance of unevenness.

Figure 4.17, “Implementing Bump Mapping,” shows how bump mapping works in a Dreamcast program.

= and F are defermined tom the

romnal bne wectors: for each virtual

sariace and used &2 taddue deta.

— > 0 .

] E=10R=32 E=12R=102
i S5 R el 23 Rl

Bum g mapging tesdure data
u h Achusl pokydon

"Artus L il yean

Figure 4.17 Implementing Bump Mapping

RMP-24

4. Introducing Dreamcast Graphics

4.10 Summary

This chapter introduced some of the most important built-in graphics hardware features of the Dreamcast system,
and provided on some important information about them. It did not attempt to explain how to write source code
using the special features provided by Dreamcast, or how to create or structure Dreamcast programs. To learn how
to program the Dreamcast system at the source-code level, please refer to the various programming and user
manuals that came with your Dreamcast system.

RMP-25

Dreamcast Roadmap and Overview

RMP-26

Sega@ Dreamcast.

5. Introducing
Dreamcast Audio

This chapter introduces the audio components built into the Dreamcast development system, and shows how they
work together. It does not attempt to explain how to use the Dreamcast audio hardware in Dreamcast programs,
and it does not tell how to write audio-related software routines. To learn how to use the features and capabilities
of the Dreamcast audio system in your own programs, see the programming and user manuals that came with your
Dreamcast development system.

The major topics covered in this chapter are:

* “Audio Overview” on page 27.
* “The ADPCM Digital Sound Format” on page 28.
e “What is ADPCM?” on page 30.

® “Summary” on page 31.

5.1 Audio Overview

Dreamcast system has a state-of-the-art audio system powered by the Yamaha AICA sound chip, which uses the
ARMY7DI -- manufactured by Advanced RISC Machines (ARM) as a sound controller. Dreamcast generates sound
using a 64-channel PCM/ADPCM sound source that is built into the AICA microprocessor.

The Dreamcast sound system also includes:

e Separate LFOs (Low Frequency Oscillators) for each slot.

¢ 64-channel 4-segment EG (Envelope Generator) LPF with a cutoff frequency that varies over time
according to the 4-segment EG Forward loop function.

The system can generate up to 64 sounds simultaneously ADPCM permits pitch changes of up to one octave.

RMP-27

Dreamcast Roadmap and Overview

5.2 The ADPCM Digital Sound Format

The AICA chip digitizes sound using the ADPCM format, a proprietary modification by Yamaha of the standard
PCM digital audio format. Instead of expressing volume at any given moment as a measured value — as a standard
PCM system does — the ADPCM method records as volume data the difference between the volume that is expected
(based on previous results) and the actual measured value. Because the degree of change in the difference from the
expected value is smaller than the change in the actual measured volume, less data needs to be recorded for a
waveform, and processing efficiency increases accordingly.

To understand how the ADPCM digital sound format works, it helps to know that sound can be understood as a
composite of waves of various wavelengths that propagate through the air. Figure 5.1, “Sound Waveform,” is a
diagram representing a sound wave.

Valuir e

Time
Figure 5.1 Sound Waveform

This diagram illustrates the relationship between time and volume. The PCM method records the volume at specific
times; for example, 44.1KHz PCM divides one second into 44,100 equal segments and records what the volume was
in the first 1/44,100-second segment, what the volume was in the second 1/44,100-second segment, and so on.

So, in one second of sound there are 44,100 points at which the volume is measured. Normally, the volume value
that is measured here is an analog value such as "16dB." These values are then digitized into a range from 0 to 255,
or from 0 to 65,535. In the example we are discussing, 44.1kHz is called the sampling frequency, and the range of
digital values into which the volume is converted is expressed in terms of the number of quantization bits — for
example, 8 bits in the case of a range from 0 to 255 (= 2[8])).

RMP-28

5. Introducing Dreamcast Audio

Figure 5.2, “PCM Data,” shows the details.

Vaolume

g A lﬁ 44 1kH=z audin

Z L'{“—‘-w ==

144,100 zec. Titn e

Figure 5.2 PCM Data

RMP-29

Dreamcast Roadmap and Overview

5.3 What is ADPCM?

In the ADPCM method, instead of expressing the volume at a given time as a measured value, it records as volume
data the difference between the volume that is expected based on previous results and the actual measured value.
Because the degree of change in the difference from the expected value is smaller than the change in the actual
measured volume, less data needs to be recorded for a waveform than when recorded by the PCM method.

As illustrated in Figure 5.3, “How ADPCM Works,” the job of determining "expected values" can yield unexpected
results. For instance, given a data history of 54 and 71, one might expect the next value not to be 80, but to be 78.
Then again, one might expect a value 75. The truth is that no one value is correct; there’s a variety of different
forecasting methods.

Expected value: 30

Based on the last two)

values being 54 and

71, 80 15 expected.

The actial valie 15

68, so "-12"1s

F recorded.
«.H"'—'.x—_u

Figure 5.3 How ADPCM Works

One well-known technique is the Philips forecasting method, which is generally known as part of the XA standard. If
the same forecasting method is not used for both compression and decompression, then the decompressed
waveform will differ from the original audio waveform. Therefore, it is not possible to simply use ADPCM just
because you happen to have the ADPCM compression tool. Dreamcast uses the proprietary forecasting method
developed by Yamaha, which also developed the sound chip that is used by Dreamcast. Sega supplies ADPCM
compression tools that use the Yamaha forecasting method.

RMP-30

5. Introducing Dreamcast Audio

5.4 Summary

This chapter introduced the audio components built into the Dreamcast development system, and provided some
information about how they work. It id not attempt to explain how to use the Dreamcast audio hardware in
Dreamcast programs, and it does not tell how to write audio-related software routines. To learn how to use the
Dreamcast audio system to in your own game titles, please refer to the programming and user manuals that came
with your Dreamcast development system.

RMP-31

Dreamcast Roadmap and Overview

RMP-32

Sega@ Dreamcast.

6. The SH4 and
Memory Management

The Dreamcast CPU is the Hitachi SH4 microprocessor, customized for Dreamcast, with an internal processing
speed of 200 MHz and a 100 MHz external bus. In the Dreamcast system, the SH4 handles processing involving the
game sequence, artificial intelligence, 3D calculation, and issuing 3D graphics instructions. The SH4 also provides
a general-purpose serial port with an FIFO buffer for use by external I/O devices.

The Dreamcast system is also equipped with an FPU (floating-point unit) module that can perform floating-point
calculations at high speed. This module is dedicated to numeric processing that would take a great deal of time if
unaided, such as the calculation of 3D coordinates.

Dreamcast has 16MB of main system memory, plus 8MB of texture memory, including memory used for drawing
and display functions. There’s also 2MB of memory used for sound. All memory uses synchronous DRAM, a type
of RAM that allows high-speed access. The Dreamcast Visual Memory System (VMS) can provide the system with
expansion memory.

This chapter introduces the Dreamcast SH4 microprocessor and some of its associated processors. It covers these
main topics:

® “Dreamcast Memory” on page 34.

¢ “DMA” on page 35.

¢ “The SH4Timer” on page 35.

* “The Cache” on page 36.

e “The Pipelines and Superscalar Units” on page 37.

* “Summary” on page 39.

RMP-33

Dreamcast Roadmap and Overview

6.1 Dreamcast Memory

Dreamcast is equipped with a memory management unit (MMU) that assigns virtual addresses to addresses in
physical memory, allowing the system to behave as if it has more memory than it actually has. The Dragon
operating system (described in Chapter 1, “The Sega Dreamcast Development System,”) uses this MMU module to
conceal the physical memory space to a certain extent and make segmented memory appear to be continuous
memory. The user does not need to be aware that memory is actually segmented.

The Dreamcast MMU provides the following for the address conversion buffer (TLB) for the MMU:

¢ Instructions (can also be used for data): 4 entries.

e Data: 64 entries.

Figure 6.1, “The Dreamcast MMU,” shows the layout and functionality of the MMU used in the Dreamcast system.

Phyical meenat
weica ¥ Memoryas seen by user

Canfinuans

does not exist

The WD acto ao & bridge, etoring the tnformation on

the relationship batween & location as ssen by the

uger (ih the aser space) and the actual location in

phwmical paory

Figure 6.1 The Dreamcast MMU

Unlike other CPUs that have a built-in MMU, the SH4 supports a variable page size (the minimum memory block
size handled by the MMU): 1K, 4K, 64K, and 1MB.

RMP-34

6. The SH4 and Memory Management

These page sizes can co-exist; for example, following arrangement is possible:

¢ 1K page size in 0x0000000 to OxOFFFFFF
* 4K page size in 0x1000000 to Ox1FFFFFF
* 64K page size in 0x2000000 to Ox7FFFFFF
* 1M page size in 0x8000000 to OxFFFFFFF

If the 1K page size is used for the entire memory space, then a conversion table 16 x 1024 = 16,384 entries in size is
required in order to cover all of the Dreamcast’s main memory.

However, the SH4 only has a maximum of 68 entries in its conversion table.

If the conversion information for the desired address does not exist in the internal table, the MMU searches the
master conversion table that is allocated in main memory, and loads the data into the internal buffer. But this
process of loading the data into the internal buffer consumes much more time than simply referencing the internal
buffer. In a case such as this, where the master table must be referenced frequently, much processing time is wasted.

But what if the page size is, say, IMB? With a page size of 1MB, only 16 table entries are required, which is well
within the capacity of the internal buffer. But in this case, a different problem arises. When an instruction to allocate
memory is received by the MMU, it allocates memory according to the page size. So it still allocates 1MB of physical
memory even if it is instructed to allocate just 16 bytes, for example. Clearly, this wastes memory.

In short, in order to use the MMU's internal conversion table effectively and also to use memory effectively, a large
page size should be designated for an area that is required to handle large amounts of data, such as a buffer area
for a movie, while a smaller page size should be designated for program areas and temporary data areas (a data
heap, for example). However, because modules that are responsible for such things as OS management usually
handle this work, it is generally not necessary to be aware of these concerns.

6.2 DMA

In Dreamcast, the DMA transfers large amounts of data from one location to another. Because it is possible for the
CPU'’s calculation functions, etc., to operate in parallel while the DMA is transferring data, processing is not
interrupted until the transfer is completed. This makes it possible to stop time from being wasted.

The SH4 has four DMAs, but each channel is used for a different purpose. Of the four, two are used by the system,
and two are available for use at the user level. Of the two DMAs reserved for the system, one is used for high-speed
access to texture memory, and can only be used for transfers in the direction from main memory to texture RAM.
The other DMA reserved for the system is used for transfers between external devices and memory, including
transfers from texture RAM to main memory.

6.3 The SH4Timer

The SH4 has an internal timer that operates independently.

RMP-35

Dreamcast Roadmap and Overview

6.4 The Cache

The SH4 has an 8K instruction cache and a 16K data cache that can be used to reduce the number of accesses made
to external memory, which is slower. But accessing memory over the external bus is extremely slow, requiring 10
times longer that when accessing cache memory.

External memory CPT core

iZache

Sl |

Fast ||

The cache stores both the content of information that 1s stored in
external memory and the address (location) of that information.
(The more the better)

Llthough mitially the (slow) external memoryis accessed, the next
time that inforrmation 1s retriewved from the same location, the CPU
will actually read the mformation stored in the cache, which is

faster.

Figure 6.2 Benefits of the Cache

RMP-36

6. The SH4 and Memory Management

6.5 The Pipelines and Superscalar Units

The SH4 is equipped with a superscalar function. This feature gives the SH4 a tremendous advantage over earlier
processors.

Simply put, once an older CPU received an instruction (the "order" shown making its way into a factory in Figure
6.3, “Early CPUs,”) it was not able to accept any additional instructions until it completed processing of the first
instruction ("delivery"). This is similar to a situation in which there is only one machine to perform all processes on

a production line.

Orlox

Do liw oy

Figure 6.3 Farly CPUs
Because this arrangement is inefficient, a review of the work process resulted in the work being divided into several
independent processes.

In Figure 6.3, “Early CPUs,” imagine that separate machines were introduced for each process, and different tasks
had been assigned to each machine. This change would create the appearance of being able to handle multiple
orders. Figure 6.4, “Pipeline Processing,” shows the result.

—> I I—>

= 7 7

Collection | |Prooessi.ng | |Assemb1y| | Packing |

Becanse the collection line

15 finished with crder 1, it b, ﬁ
can begin processing the /
Order 2 .
next order. | Delivery 2
Collection | | Processing | | Asse:mbly| | Packing |

@D)—‘//_laa

Colle ction | |Pr\:\oessi.ug | |Assem'b1y|

Figure 6.4 Pipeline Processing

RMP-37

Dreamcast Roadmap and Overview

You may notice that three pipelines are shown in this picture. But the SH4 has five pipelines, so it can process five
instructions simultaneously, in the same way that three instructions are being processed in the diagram.

But it is important to note that if one order requires a product that results from the previous order for its own raw
material, processing of the later order cannot begin until the previous order is completed. This results in a decrease
in work efficiency. (In other words, such an arrangement should be avoided if at all possible in order to obtain the
best performance.) Figure 6.5, “Efficient Pipeline Usage,” shows an improved system.

Faw material Product

C

: .. Eawr material |

|

Althonghwork should hegin at this point, this wrark 1= delayed until here.

line requires the product from the preceding

line as its own raw material so...

| 7l
4

ﬂ Perform other unrelated work until the

>—- product fom the first hne 15 ready for

ﬂ the other line,

Figure 6.5 FEfficient Pipeline Usage

How can we further increase efficiency? The simplest method is to construct another factory. The superscalar units
in the SH4 — shown in Figure 6.6, “Superscalar Units,” — are the CPU equivalent to this method of increasing the
number of factories; they can handle two instructions completely simultaneously.

RMP-38

6. The SH4 and Memory Management

Figure 6.6 Superscalar Units

The process in each factory is segmented (into a pipeline) so that orders that are received can be handled efficiently.
However, as in the case previously referred to, if one process requires the product produced for a previous order,
work will come to a halt until that order is completed. Resolving this problem requires know-how about how to use
a CPU'’s resources efficiently. Another technique used to speed up processing in the SH4 is hurry up the completion
of slow tasks by boosting the clock speed. Considering that the SH2 used in the Saturn system ran at a 28MHz clock
speed, the 200MHz clock speed of the SH4 increases the speed of processing by a factor of 7.

6.6 Summary

This chapter introduced and described some of the most important special features of the SH4 microprocessor and
its associated processors.

RMP-39

Dreamcast Roadmap and Overview

RMP-40

	Dreamcast Roadmap and Overview
	Table of Contents
	1. The Sega Dreamcast Development System
	1.1 Dreamcast Development Components
	1.2 Summary

	2. Sega Dreamcast Roadmap
	2.1 Three Examples

	3. Sega Dreamcast Hardware
	3.1 The Dreamcast CPU
	3.2 The Dreamcast Graphics Hardware
	3.3 The Dreamcast Sound Hardware
	3.4 The GD-ROM Drive
	3.5 Dreamcast Peripherals
	3.6 Dreamcast Memory
	3.7 Summary

	4. Introducing Dreamcast Graphics
	4.1 Special Features of Dreamcast Graphics
	4.2 How Dreamcast Handles Polygons
	4.2.1 Translucent and Punch-Through Polygons
	4.2.2 How to Sort Translucent Polygons
	4.2.3 Applying Special Effects to Vertices

	4.3 Tile Partitioning
	4.3.1 Tile Partitioning and Polygon Clipping
	4.3.2 A Point to Remember about Tiling

	4.4 Modifier Volume
	4.5 Mipmapping
	4.6 Texture Filtering
	4.6.1 Point Sampling
	4.6.2 Bi-Linear Filtering
	4.6.3 Tri-linear Filtering

	4.7 Storing Texture Data
	4.7.1 VQ Texture Compression

	4.8 Fog
	4.9 Bump Mapping
	4.10 Summary

	5. Introducing Dreamcast Audio
	5.1 Audio Overview
	5.2 The ADPCM Digital Sound Format
	5.3 What is ADPCM?
	5.4 Summary

	6. The SH4 and Memory Management
	6.1 Dreamcast Memory
	6.2 DMA
	6.3 The SH4Timer
	6.4 The Cache
	6.5 The Pipelines and Superscalar Units
	6.6 Summary

