Dreamcast SH4
Program Manual

SEGA

Table of Contents

L0 4T HPM-1

SH7091 FEATUTES ...cucuereeiieeiieiieiieniiinienssenssesssaessssessssessssesssssssssssssssssssssssssssessssssssssssssesssssssssssssssssssesss HPM-1
BlOCK DIAGTAIMN ...ttt HPM-5

2. Programming MOdel ...t s s s s HPM-7

Data Formats .. HPM-7

Register CONFIGUIALION ...ccuceeveuruicriseniniinisaisiestssnsisiissssisisessssssesessssssesssssssssssssssssssesesssssssssssssssssssssssssses HPM-7
Privileged Mode and Banksc.coiiiiic e HPM-7
General REGISLEISc.cciuiiiiiiiiiiiiiic s HPM-10
Floating-Point REGISLETSc.cciuiiiiiiiiiieieieieieeeeeeee ettt HPM-11
CONEIOL REGISLETLS ...ttt HPM-12
System REGISLEISc.oviiiiiiiiiiic s HPM-14

Memory-Mapped ReGISterSnnninnisisinisisisisisisssssisisses HPM-15

Data Format in Registers ... HPM-15

Data Formats in MemOTYcccoeeeererereneeeeeneeeeeeeeneeeeesesessssesssesesssesesssesssssesssssssesens HPM-16

Processor States HPM-16

PrOCeSSOT IMOAESucuueeinretcniintccintcscessssce s ssae s s et n HPM-18

HPMe-iii

Dreamcast SH4 Program Manual

3. Memory Management Unit (MIMU) ... sssnns HPM-19
Overview HPM-19
FOATULIES ...ttt et HPM-19
ROIE Of the MMU ..o HPM-19
Register CONfigUIatioNcouoiiuiiiiiiicic e HPM-21
CAULIONL oo HPM-21
Register Descriptions HPM-21
Memory Space HPM-25
PhySical MEIMOTIY SPACEcecuerruririiererriieriereiieeeieneesestiesessestetaesessesesesesseststaesessestassesesseseaesessentasaesesencassessens HPM-25
External MemoOIy SPACEcccuiiueiiieiicicict et HPM-27
Virtual MemMOTY SPACEcucuiuimiiiiiiiiiiiiiicccc e HPM-27
ON-Chip RAM SPACE ...uveieneiieciincieicieieeeinteeiseie ittt ettt sttt st seneaenne HPM-28
Address Translation ... HPM-29
Single Virtual Memory Mode and Multiple Virtual Memory Modecccccceiiiiiiiiiccciccnnes HPM-29
Address Space Identifier (ASID)c.ccocieuerircceremririeteirenitieienieeeiessesestiesesseseasaesesseseaesessesesteesessescasseseens HPM-29
TLB Functions HPM-30
Unified TLB (UTLB) CONfIGUIAIONcuvvvrririeciereeiriieienreirierenriseeeseneesesseesesseseasaesesseseaesessesessessesseseasseneens HPM-30
Instruction TLB (ITLB) CONfIGUIALIONcvoveeeruerriririieieiriniarieieirieeeteneesesteesesseseseaesessescaesessasestecsessecasseseens HPM-32
Address Translation Methodccccuiciiciniciiiiccc e HPM-33
MMU Functions . HPM-35
MMU Hardware Managementcccccouiimieieiiiicieieecicie ettt HPM-35
MMU Software Managementcccccucucuiuiuiuiiiiiiieeceeeeeee et nenenen HPM-35
MMU INStrUCtioN (LDTLB) .oviiiieeiiticeieeeieeeeeee ettt ettt ettt esae st e aesasesaesatesaesasessesnsessesssesseensessesnsesssons HPM-35
Hardware ITLB Miss HaNAIINGc.c.ooeuiiiiiiiieiice e HPM-36
Avoiding Synonym Problems ... HPM-36
MMU Exceptions HPM-37
Instruction TLB Multiple Hit EXCEPHONooruiviiiiciii HPM-37
Instruction TLB Miss EXCEPIONcooviviiiiiiiiiiiiiiiiic e HPM-38
Instruction TLB Protection Violation EXCEPLIONcccciuimiiiiiiiiiiiiiiiiiiiiccicicccccccccssnnnes HPM-39
Data TLB Multiple Hit EXCEPLIONccouiiiiiiiiiiiiiiiiiiiiiiicic e HPM-39
Data TLB Miss EXCEPHION ..c.ccvviiiiiiiiiiiiciiiccccc s HPM—40
Data TLB Protection Violation EXCEPHONcccuiviiiiiiiiiiiiiiiicicicicicctccssnnne HPM—40
Initial Page Write EXCEPHON ...coouiviiiiiiiic HPM—41
Memory-Mapped TLB Configuration ... HPM-42
ITLB AddT@SS ATTAY oottt HPM—42
ITLB Data ATTay 1 ...ccioiiiciiiiicicitc s HPM—-43
ITLB Data ATTAY 2 ..ocvciiiiiiiiiieiciicc s bbb HPM-44
UTLB AddIESS ATTAY ..ocviuieriiiiicietete ettt sttt HPM—44
UTLB Data ArTay T ..ot HPM—-45
UTLB Data ATTAY 2 ..ot HPM-46

HPM-iv

Table of Contents

B. CACRES ..ottt AR HPM-47
Overview HPM-47
FOATUIES ..ttt HPM—-47
Register CONAGUIAIONc.ccuiuiuiuiuiiiiiieieieieieieeee et e e senene HPM-48
Register Descriptions HPM-48
Operand Cache (OC) HPM-50
CONFIGUIATION ..ottt ettt HPM-50
Read OPErationcccccuciiiiiiiiiiiiiiiiieice et HPM-52
WIite OPerationcciuiiiiiiiiiiiii s HPM-52
Write-Back BUETcovviiiiiiiiiiiiiiiii HPM-53
WIite-TRIOUGh BULLET ..ot HPM-53
RAM MOUE ..ot HPM-54
OC INAEX MOAE ...ttt HPM-54
Coherency between Cache and External MEmOTYcc.cccviuriiueiniueiniicinieiiciiessesseeessescsesesenenes HPM-55
PrefetCh OPETationc.c.cvccuerreriicieiiieereereeiciesseseatie et seseesestiesessestasaesesseseaesessastssaesessestassesssneasaesesses HPM-55
Instruction Cache (IC) HPM-55
CONFIGUTATION ..ottt es HPM-55
Read OPeration ...ttt s HPM-57
IC INAEX MOAE ...ttt bbb HPM-57
Memory-Mapped Cache Configuration HPM-57
IC AdAI@SS ATTAY ..oooeiiiieci ettt HPM-58
IC DAt ATTAY ..cuouiiiiiiiiiicicec et HPM-59
OC AdAIESss ATTAYcoiiiiiiiiiiiciiicc bbb HPM-59
OC Data ATTAY ..vovieeecieiieceie ettt bbb bbbttt HPM-60
Store Queues HPM-61
SQ CONFIGUIALION ...oiviviiiiiiiii ettt s HPM-61
SQ WIILES ...t HPM-62
Transfer to External MEMOTIYcccciiiiiiiiiiicccceeeee e nene HPM-62
b @ 20 5 Vo1 1=Tut u {0) o KU RTSRTR HPM-63
L =T 11 (1] HPM-65
Overview HPM-65
FALUTES ...ttt s HPM-65
Register CONAGUIALIONcccuiuiuiiiiiiiiiiiiiciceee et nene HPM-65
Register Descriptions HPM-66
Exception Handling Functions HPM-67
Exception Handling FIOWcccoiiiiiiiiii st HPM-67
Exception Handling Vector Addresses ...t HPM-67
Exception Types and Priorities ... HPM-68
Exception Flow HPM-71
EXCEPHION FLOW ..ottt HPM-71
Exception SoUrce ACCEPLANICEcvviviviiiiimiiiiiiiticecit sttt HPM-72
Exception Requests and BL Bitccooiiiiiiiiiic s HPM-73
Return from Exception Handling ... HPM-74

HMP-v

Dreamcast SH4 Program Manual

Description of Exceptions HPM-74
RESELS .ttt HPM-74
POWET-On RESEtoovviiiiiciit e HPM-74
ManUal RESEL ... s HPM-75
Hitachi-UDI RESELcocouiuiuiiiiiiiiiiiiiiici it HPM-76
Instruction TLB Multiple-Hit EXCEPONcovviviiiiiiiiiciic s HPM-76
Operand TLB Multiple-Hit EXCEPHONc.cciuiiiiiiiiiiiiiiiiccccccccceeceeeeencee e HPM-77
General EXCEPLIONS ... HPM-78
Data TLB Miss EXCEPHIONcuoviviiiiiiiiitiicictctctctctctctcttttttttt ittt HPM-78
Instruction TLB Miss EXCEPHONcovvvviiiiiiiiiiiiciiicc s HPM-78
Initial Page Write EXCEPHON ...c.cvviviiiiiiiiiiiiiciiciccttccs e HPM-79
Data TLB Protection Violation EXCEPIONccoveveuiiiiiicciiccec e HPM-79
Instruction TLB Protection Violation EXCEPLIONcccccceeiiiiiiiiiiiiiccccccccceeeennes HPM-80
Data AddIess EITOT ...ttt HPM-81
Instruction Address EITOTccccccciiiiiiiiiiiiiiii e HPM-82
Unconditional TTapc.cceeiiiiiiiicceeceeecee e HPM-82
General Illegal Instruction EXCEPHIONcccoviiiiiiiiiiiiiii HPM-83
Slot lllegal Instruction EXCEPHONcccoiviiiiiiicieiicic e HPM-83
General FPU Disable EXCEPHIONcooviiiiriiiiiiic e HPM-84
Slot FPU Disable EXCEPHIONccvuiuiiiiiiiiiiiiiiiicicicictssss s HPM-84
User Breakpoint TIAP ..ottt HPM-85
FPU EXCEPHION ..viviiiniiiiiicticttt st HPM-86
INEEITUPLS oo e HPM-86
INMI bbb HPM-86
IRL INEEITUPES vvveiiiieiietcetet s HPM-86
Peripheral Module INtEITUPESccoiiiiiiiiiiiiiiiicici e HPM-87
Priority Order with Multiple EXCEPHONSc.ccuviuieiiciiiiiicicccs e HPM-88
Usage Notes . HPM-89
6. Floating-Point Uit ...t ss s se e s s s s s s ensnens HPM-91
OVEIVIEW ettt s s s s ss s s s ssessnsnses HPM-91
Data Formats HPM-91
Floating-Point FOIMAtcccccciiiiiiiiiiiiccecececeeeee e HPM-91
INON-NUMDETS (INAN) ..ottt ettt ettt et e et te et ete e etessetsebessebessetessetessetensebensebessetansesansens HPM-93
Denormalized INUIMDETSccccccuiiiiiiiiiiiiiiiiiiii e HPM-94
Y 4 1] - OO HPM-94
Floating-Point REGISTEISc.oviuiiiiiiiicic et HPM-94
Floating-Point Status/Control Register (FPSCR)ccccoeuiueuniieunieiriciieinieisieieieeeeesesenessesessesesseaenns HPM-96
Floating-Point Communication Register (FPUL)ccccoveueirnieernniniererneieerenneeeereseesesseesessescssaesenne HPM-97
Rounding HPM-98
Floating-Point Exceptions .. HPM-98
Graphics Support Functions HPM-99
Geometric Operation INStIUCIONScccuvviiviiiiiiiiiii s HPM-99
Pair Single-Precision Data Transfer ... HPM-100

HPM-vi

Table of Contents

7. INSTrUCTION SOt ... ses e sesnnnas

Execution Environment

.. HPM-101

HPM-101

HPM-102

Addressing Modes .
Instruction Set

HPM-106

8. Pipelining ...

Pipelines

.. HPM-119

HPM-119

Parallel-Executability

HPM-126

Execution Cycles and Pipeline Stalling

9. Power-Down Modescccoveiererneisessmssessssssssssssssnnns

Overview

HPM-130

.. HPM-147

HPM-147

Types of Power-Down Modes
Register Configuration

.. HPM-147
.. HPM-148

HPM-149

Register Descriptions

Standby Control Register (STBCR)
Peripheral Module Pin High Impedance Control
Peripheral Module Pin Pull-Up Control
Standby Control Register 2 (STBCR2)

.. HPM-149
... HPM-151
... HPM-151
... HPM-152

HPM-152

Sleep Mode

Transition to Sleep Mode
Exit from Sleep Mode

Deep Sleep Mode

.. HPM-152
.. HPM-153

HPM-153

Transition to Deep Sleep Mode
Exit from Deep Sleep Mode

Standby Mode

.. HPM-153
.. HPM-153

HPM-153

Transition to Standby Mode
Exit from Standby Mode
Clock Pause Function

Module Standby Function

Transition to Module Standby Function
Exit from Module Standby Function

10. Instruction Descriptions

... HPM-153
... HPM-155
.. HPM-155

HPM-156

... HPM-156
... HPM-156

... HPM-157

HMP-vii

Dreamcast SH4 Program Manual

11. Realtime ClOCK (RTC)ccueeeeececereressssssssessessesse s s e ssssssssessssssassssssssassassassassassanes HPM-299
Overview HPM-299
FEALUTES ..ottt sttt ettt e et e st et e et e s st et e s et e besae e b e enee s e entenbeententeentenaeenee HPM-299
BIOCK DIAGTAM <...cviiiiiiicieicieiciccieeetee et e HPM-300
Pin ConfigUuration ..ottt HPM-301
Register CONfIGUIAtIONc.cciuiuiiiiiiiiiiiiciiicccc e HPM-302
Register Descriptions HPM-303
64 Hz Counter (ROACINT)ooovieceeeeeeeeeeeeeteeeetet ettt ettt et eae e eas s e s ese s esensessseseesessesessesessesensesenes HPM-303
Second Counter (RSECCNT) ..ottt et esae et et et e satestesatessesasessesntesesnsessssnsesseensesssensesssenes HPM-303
Minute Counter (RMINCNT)oooieuiieriietiietieteteetete ettt et esess s essese e s be s sessesesesessesasessssessesens HPM-304
Hour Counter (RHRCNT)ovoviiieeieeeeeeeeetee ettt ettt seseeseseesessesessesensesessesesesensesssessesessesens HPM-304
Day-of-Week Counter (RWKCINT)ccceuvieerrieererierietseeiererseeeeseseesesseesessesesssesessessessessesessacsenns HPM-305
Day Counter (RDAYCNT)ocuiiiiiiiiniiisiciicicsi s HPM-305
Month Counter (RMONGCNT)oooieuiiereeeteeerecteteeteee ettt ettt eseeseseesessesessesessesessesesesensesssessesessesens HPM-306
Year Counter (RYRCNT) ..ottt ettt ettt e st eesentesasestesasensesasensesntensesnsensssnsesseensesssensesssenes HPM-306
Second Alarm Register (RSECAR)c.cceuriririererrinieieieirenieeietsieeaeresseteesessesestessessesesesesessentsssessasescacsenns HPM-307
Minute Alarm Register (RMINAR)ccoeiuiiiiiiiiiiieiiciicieie it HPM-307
Hour Alarm Register (RHRAR) ...c.ccoviieriiiererriieeteereieeietseeiesenseteeseseesessaesesseesssesessessassessesessacsenne HPM-308
Day-of-Week Alarm Register (RWKAR)ccccouviiiiiiiiiiiiiiiciisi s HPM-308
Day Alarm Register (RDAYAR)ccccriiiiiiiriiieiiciiciiiciiiciete st HPM-309
Month Alarm Register (RMONAR)coouiueiriuerieeiieeiieneieiseessteseeseseesesessesesesesesessesessesessesessssesesscnns HPM-309
RTC Control Register 1 (RCR1)c.cccuiiiiiiiiiiiiiicieicicicie i HPM-310
RTC Control Register 2 (RCR2)cccvuiiiiuriiieiiiciiieiiieieiiciesie ettt sssse s HPM-311
(03T -1 4 PR HPM-313
Time Setting ProCeAUIES ..ot HPM-313
Time Reading Procedures ... HPM-314
AN F Vo 00 21 g odu o) o UUR TSRS HPM-315
Interrupts HPM-315
12. TIiMer Unit (TIMU)eeeeeetescseses s s s s s s et sssssssssssnsssssssssssnes HPM-317
Overview HPM-317
FRATUTES ..ottt ettt st s bt e s at e st esa e e s ab e e bt e s abe e bt e sabe e baesabeesaesateesbeenasesass HPM-317
BIOCK DIAGTAIM ..ottt HPM-318
Pin Configuration ... HPM-318
Register CONfIGUIAtIONcceuiuiuiuiuiiiiiiiicicicicccce e HPM-319
Register Descriptions HPM-320
Timer Output Control Register (TOCR)ccccceviiiierririniiieirricererieeieteeseeeeie e seesesaesenes HPM-320
Timer Start ReGISter (TSTR) ...ccvccueueurerieeuerririeererreieeiereesesteeiesseeseaesessesteeseseasestessessesesssesessestessessenessacsenns HPM-320
Timer Constant Registers (TCOR)ccoviuriiiiiiiiniiiiciiciic i HPM-321
Timer CoUNETS (TCINT) oottt ettt et e e et e et e sae et e saeesesatesesnsenseensesseensenssensesssenes HPM-322
Timer Control Registers (TCR) ...c.c.cverieeuerrenieererreieeiereireieeiesseeseaeresseteeseseasestessessescsssesessestessessasessacsenns HPM-322
Input Capture Register (TCPR2)ccccoiiiiiiiiiiiicicrc e sessss HPM-326

HPM-viii

Table of Contents

HPM-326

Operation

Counter Operation ...
TCNT Count Timing:cccccevvviiinnicieeccnnes
Input Capture Function ...,

Interrupts

.. HPM-326
.. HPM-328
.. HPM-329

HPM-330

HPM-331

Usage Notes

Register WTites ...
TCNT Register Reads ..o
Resetting the RTC Frequency Dividerccoccoveevnceeerceenenees
External Clock Frequency ...,

A. User's Manual Supplement HPM-333
Address List ..

.. HPM-331
.. HPM-331
.. HPM-331
.. HPM-331

HPM-333

B. Instruction Prefetch Side Effects HPM-341

Instruction Prefetch Side Effectsccoooovvivveieeveeeeeeseeeeeeenne
] 0 (=T § =Y J

.. HPM-341
.. HPM-341

HMP-ix

Dreamcast SH4 Program Manual

HPM-x

EGA

1. Overview

1.1 SH7091 Features

The SH7091 is a 32-bit RISC (reduced instruction set computer) microprocessor, featuring object code
upward-compatibility with SH-1, SH-2, SH-3, and SH-3E microcomputers. It includes an 8-kbyte instruction cache,
a 16-kbyte operand cache with a choice of copy-back or write-through mode, and an MMU (memory management
unit) with a 64-entry fully-associative unified TLB (translation lookaside buffer).

The SH7091 has an on-chip bus state controller (BSC) that allows direct connection to DRAM and synchronous
DRAM without external circuitry. Its 16-bit fixed-length instruction set enables program code size to be reduced by
almost 50% compared with 32-bit instructions.

The features of the SH7091 are summarized in table 1.

HPM-1

Dreamcast SH4 Program Manual

Table 1.1 SH7091 Features

Item Features

LSI e Operating frequency: 200 MHz
e Performance:
—360 MIPS (200 MHz)
—1.4 GFLOPS (200 MHz)
e Superscalar architecture: Parallel execution of two instructions
* \/oltage: 1.8V (internal), 3.3 V (I/0)
e Packages: 256-pin BGA, 208-pin QFP
e External buses
—Separate 26-bit address and 64-bit data buses
—LExternal bus frequency of 1/2, 1/3, 1/4, 1/6, or 1/8 times internal bus frequency

CPU Original Hitachi SH architecture
32-bit internal data bus
General register file:
—Sixteen 32-hit general registers (and eight 32-bit shadow registers)
—Seven 32-bit control registers
—TFour 32-bit system registers
¢ RISC-type instruction set (upward-compatible with SH Series)
—TFixed 16-bit instruction length for improved code efficiency
—Load-store architecture
—Delayed branch instructions
—Conditional execution
—C-based instruction set
e Superscalar architecture (providing simultaneous execution of two instructions) including FPU
® |nstruction execution time: Maximum 2 instructions/cycle
e Virtual address space: 4 Gbytes (448-Mbyte external memory space)
e Space identifier ASIDs: 8 bits, 256 virtual address spaces
© On-chip multiplier
e Five-stage pipeline

FPU e On-chip floating-point coprocessor
e Supports single-precision (32 bits) and double-precision (64 bits)
e Supports IEEE754-compliant data types and exceptions
e Two rounding modes: Round to Nearest and Round to Zero
e Handling of denormalized numbers: Truncation to zero or interrupt generation for compliance with IEEE754
o Eloaiing-point registers: 32 bits x 16 words x 2 banks (single-precision x 16 words or double-precision x 8 words) x 2
anks
e 32-bit CPU-FPU floating-point communication register (FPUL)
e Supports FMAC (multiply-and-accumulate) instruction
e Supports FDIV (divide) and FSQRT (square root) instructions
e Supports FLDIO/FLDI1 (load constant 0/1) instructions
e |nstruction execution times
—latency (FMAC/FADD/FSUB/FMUL): 3 cycles (single-precision), 8 cycles (double-precision)
—Pitch (FMAC/FADD/FSUB/FMUL): 1 cycle (single-precision), 6 cycles (double-precision)

Note: FMAC is supported for single-precision only.

e 3-D graphics instructions (single-precision only):
—14-dimensional vector conversion and matrix operations (FTRV): 4 cycles (pitch), 7 cycles (latency)
—4-dimensional vector (FIPR) inner product: 1 cycle (pitch), 4 cycles (latency)

e Five-stage pipeline

HPM-2

1. Overview

Item Features

Clock pulse generator ® Choice of main clock: 1/2, 1, 3, or 6 times EXTAL
(CPG) * Clock modes:
—~CPU frequency: 1, 1/2,1/3, 1/4, 1/6, or 1/8 times main clock: maximum 200 MHz
—Bus frequency: 1/2, 1/3, 1/4, 1/6, or 1/8 times main clock: maximum 100 MHz
——Peripheral frequency: 1/2, 1/3, 1/4, 1/6, or 1/8 times main clock: maximum 50 MHz
¢ Power-down modes
—Sleep mode
—Standby mode
—NModule standby function

e Single-channel watchdog timer

4-Gbyte address space, 256 address space identifiers (8-bit ASIDs

Single virtual mode and multiple virtual memory mode

Supports multiple page sizes: 1 kbyte, 4 kbytes, 64 kbytes, 1 Mbyte

4-entry fully-associative TLB for instructions

64-entry fully-associative TLB for instructions and operands

Supports software-controlled replacement and random-counter replacement algorithm
TLB contents can be accessed directly by address mapping

Memory management
unit (MMU)

Cache memory e [nstruction cache (IC)
—38 kbytes, direct mapping
—256 entries, 32-byte block length
—Normal mode (8-kbyte cache)
—Index mode
e Operand cache (OC)
—16 kbytes, direct mapping
—b512 entries, 32-byte block length
—Normal mode (16-kbyte cache)
—Index mode
—RAM mode (8-kbyte cache + 8-kbyte RAM)
—Choice of write method (copy-back or write-through)
e Single-stage copy-back buffer, single-stage write-through buffer

¢ Cache memory contents can be accessed directly by address mapping
(usable as on-chip memory)

Store queue (32 bytes x 2 entries)

Interrupt controller e Five independent external interrupts (NMI, IRL3 to IRLO)
(INTC) 15-level signed external interrupts: IRL3 to IRLO
On-chip peripheral module interrupts: Priority level can be set for each module

User break controller e Supports debugging by means of user break interrupts

(UBC) ® Two break channels

e Address, data value, access type, and data size can all be set as break conditions
e Supports sequential break function

Bus state controller (BSC) | @ Supports external memory access
—b64/32/16/8-hit external data bus
e External memory space divided into seven areas, each of up to 64 Mbytes, with the following parameters settable for
each area:
—Bus size (8, 16, 32, or 64 hits)
—Number of wait cycles (hardware wait function also supported)
—Direct connection of DRAM, synchronous DRAM, and burst ROM possible by setting space type
—Supports fast page mode and DRAM EDO
—Supports PCMCIA interface
—Chip select signals (CSO to CS6) output for relevant areas
* DRAM/synchronous DRAM refresh functions
—~Programmable refresh interval
—Supports CAS-before-RAS refresh mode and self-refresh mode
e DRAM/synchronous DRAM burst access function

e Big endian or little endian mode can be set

HPM-3

Dreamcast SH4 Program Manual

Item Features

Direct memory access e 4-channel physical address DMA controller
controller (OMAC) * Transfer data size: 8, 16, 32, or 64 bits, or 32 bytes
e Address modes:

—1-bus-cycle single address mode
—2-bus-cycle dual address mode

e Transfer requests: External, on-chip module, or auto-requests
¢ Bus modes: Cycle-steal or burst mode
e Supports on-demand data transfer

Timer unit (TMU) e 3-channel auto-reload 32-bit timer
® |nput capture function
e Choice of seven counter input clocks

Realtime clock (RTC) e On-chip clock and calendar functions
e Built-in 32 kHz crystal oscillator with maximum 1/256 second resolution (cycle interrupts)

Serial communication ¢ Two full-duplex communication channels (SCI, SCIF)

interface (SCI, SCIF) e Channel 1 (SCI):
—Choice of asynchronous mode or synchronous mode
—Supports smart card interface

e Channel 2 (SCIF)._ Supports asynchronous mode
—Separate 16-byte FIFOs provided for transmitter and receiver

Packages ® 256-pin BGA, 208-pin QFP

HPM-4

1. Overview

1.1.1 Block Diagram

Figure 1.1 shows an internal block diagram of the SH7091.
Figure 1.1 Block Diagram of SH7091 Functions

CPU UBC FPU
A
g 8| |z ~ —
T R Lower 32-bit dat Ak
HEIEI o% ower 32-bit data %U
= (%)) =| | L Q) (=
SHE gl |g||s sl (g
8l lsl18] [2|IE 3| |2
g2z [RHE I
;;‘ 2 % m_% Lower 32-bit data g3
318
™,
| cache O cache
(8 kB) ITLB CCN UTLB (16 kB)
|| § ol | ®
s [H 5l |5||2
- B
a2 18]S
: — [}
INTC e o
oe
<
©
© g 1
e CE 12 BSC >| DMAC
(SCIF) O% 2 —
2 £
8l IR
< 15[=
T oiE g MEE
5 8133
—= e
m [F < 13l13
- “I°
External
bus interface
26-bit .
addressU U 64-bit
data
CCN: Cache and TLB controller UTLB: Unified TLB (translation lookaside buffer)
BSC: Bus state controller RTC: Realtime clock
CPG: Clock pulse generator SClI: Serial communication interface
DMAC: Direct memory access controller SCIF: Serial communication interface with FIFO
FPU: Floating-point unit TMU: Timer unit
INTC: Interrupt controller UBC: User break controller

ITLB: Instruction TLB (translation lookaside buffer)

HPM-5

Dreamcast SH4 Program Manual

HPM-6

EGA

2. Programming Model

2.1 Data Formats
The data formats handled by the SH7091 are shown in figure 1.

Figure 2.1 Data Formats

7 0
Byte (8 bits)
15 0
Word (16 bits)
31 0
Longword (32 bits)
3130 22 0
Single-precision floating-point (32 bits) s| exp fraction
63 62 51 0
Double-precision floating-point (64 bits) |s| exp fraction

2.2 Register Configuration
2.2.1 Privileged Mode and Banks

Processor Modes: The SH7091 has two processor modes, user mode and privileged mode. The SH7091 normally
operates in user mode, and switches to privileged mode when an exception occurs or an interrupt is accepted. There
are four kinds of registers—general registers, system registers, control registers, and floating-point registers—and
the registers that can be accessed differ in the two processor modes.

HPM-7

Dreamcast SH4 Program Manual

General Registers: There are 16 general registers, designated RO to R15. General registers R0 to R7 are banked
registers which are switched by a processor mode change.

In privileged mode, the register bank bit (RB) in the status register (SR) defines which banked register set is accessed
as general registers, and which set is accessed only through the load control register (LDC) and store control register
(STC) instructions.

When the RB bit is 1 (that is, when bank 1 is selected), the 16 registers comprising bank 1 general registers
RO_BANKI1 to R7_BANKI1 and non-banked general registers R8 to R15 can be accessed as general registers RO to
R15. In this case, the eight registers comprising bank 0 general registers R0O_BANKO to R7_BANKO are accessed by
the LDC/STC instructions. When the RB bit is 0 (that is, when bank 0 is selected), the 16 registers comprising bank
0 general registers RO_BANKO to R7_BANKO and non-banked general registers R8 to R15 can be accessed as general
registers RO to R15. In this case, the eight registers comprising bank 1 general registers R0O_BANK1 to R7_BANK1
are accessed by the LDC/STC instructions.

In user mode, the 16 registers comprising bank 0 general registers R0O_BANKO to R7_BANKO0 and non-banked
general registers R8 to R15 can be accessed as general registers RO to R15. The eight registers comprising bank 1
general registers RO_BANKI1 to R7_BANKI1 cannot be accessed.

Control Registers: Control registers comprise the global base register (GBR) and status register (SR), which can be
accessed in both processor modes, and the saved status register (SSR), saved program counter (SPC), vector base
register (VBR), saved general register 15 (SGR), and debug base register (DBR), which can only be accessed in
privileged mode. Some bits of the status register (such as the RB bit) can only be accessed in privileged mode.

System Registers: System registers comprise the multiply-and-accumulate registers (MACH/MACL), the
procedure register (PR), the program counter (PC), the floating-point status/ control register (FPSCR), and the
floating-point communication register (FPUL). Access to these registers does not depend on the processor mode.

Floating-Point Registers: There are thirty-two floating-point registers, FRO-FR15 and XFO0-XF15. FRO-FR15 and
XF0-XF15 can be assigned to either of two banks (FPRO_BANKO0-FPR15_BANKO or FPRO_BANKI1-FPR15_BANK1).

FRO-FR15 can be used as the eight registers DR0/2/4/6/8/10/12/14 (double-precision floating-point registers, or
pair registers) or the four registers FV0/4/8/12 (register vectors), while XFO—XF15 can be used as the eight registers
XD0/2/4/6/8/10/12/14 (register pairs) or register matrix XMTRX.

Register values after a reset are shown in table 2.1.

Table 2.1 Initial Register Values

Type Registers Initial Value*
General registers RO_BANKO-R7_BANKO, Undefined
RO_BANK1-R7_BANKT1, R8—R15
Control registers SR MD bit=1,RBhit=1, BLbit=1, FD bit=0, I3-10 = 1111
(H'F), reserved bits = 0, others undefined
GBR, SSR, SPC, SGR, DBR Undefined
VBR H'00000000
System registers MACH, MACL, PR, FPUL Undefined
PC H'A0000000
FPSCR H'00040001
Floating-point registers FRO-FR15, XFO-XF15 Undefined

Note: *Initialized by a power-on reset and manual reset.

HPM-8

2. Programming Model

The register configuration in each processor is shown in figure 2.2.

Switching between user mode and privileged mode is controlled by the processor mode bit (MD) in the

status register.

Figure 2.2 CPU Register Configuration in Each Processor Mode

31 0 31 0 31 0
RO_BANKOQ*L*2 RO_BANK1*1#3 RO_BANKO*L*4
R1_BANKO0*2 R1_BANK1*3 R1_BANKO**
R2_BANKO0*2 R2_BANK1*3 R2_BANKO**
R3_BANKO*? R3_BANK1*3 R3_BANKO**
R4_BANKO0*2 R4_BANK1*3 R4_BANKO**
R5_BANKO*2 R5_BANK1*3 R5_BANKO**
R6_BANKO0*2 R6_BANK1*3 R6_BANKO**
R7_BANKO*2 R7_BANK1*3 R7_BANKO*
RS RS RS
R9 R9 R9
R10 R10 R10
R11 R11 R11
R12 R12 R12
R13 R13 R13
R14 R14 R14
R15 R15 R15
SR SR SR

SSR SSR
GBR GBR GBR
MACH MACH MACH
MACL MACL MACL
PR PR PR
VBR VBR
PC | PC PC
SPC SPC
SGR | SGR
DBR | DBR
RO_BANKO*L*4 RO_BANK1*L#3
R1_BANKO** R1_BANK1*3
R2_BANKO** R2_BANK1*3
R3_BANKO** R3_BANK1*3
R4_BANKO** R4_BANK1*3
R5_BANKO** R5_BANK1*3
R6_BANKO** R6_BANK1*3
R7_BANKO** R7_BANK1*3

(b) Register configuration in
privileged mode (RB = 1)

(c) Register configuration in
privileged mode (RB = 0)

(a) Register configuration
in user mode

Notes: 1. The RO register is used as the index register in indexed register-indirect addressing mode and

indexed GBR indirect addressing mode.

2. Banked registers

3. Banked registers
Accessed as general registers when the RB bit is set to 1 in the SR register. Accessed only by
LDC/STC instructions when the RB bit is cleared to 0.

4. Banked registers
Accessed as general registers when the RB bit is cleared to 0 in the SR register. Accessed only by
LDC/STC instructions when the RB bit is set to 1.

HPM-9

Dreamcast SH4 Program Manual

2.2.2 General Registers

Figure 2.3 shows the relationship between the processor modes and general registers. The SH7091 has twenty-four
32-bit general registers (RO_BANK0-R7_BANKO0, R0O_BANK1-R7_BANK1, and R8-R15). However, only 16 of these
can be accessed as general registers R0-R15 in one processor mode. The SH7091 has two processor modes, user
mode and privileged mode, in which R0-R7 are assigned as shown below.

¢ R0O_BANKO-R7_BANKO

In user mode (SR.MD = 0), RO-R7 are always assigned to R0O_BANKO0-R7_BANKO.

In privileged mode (SR.MD = 1), R0O-R7 are assigned to R0O_BANKO0-R7_BANKO only when SR.RB = 0.
* RO_BANKI1-R7_BANK1

In user mode, RO_BANK1-R7_BANKI1 cannot be accessed.

In privileged mode, RO-R7 are assigned to RO_BANK1-R7_BANKI1 only when SR.RB = 1.

Figure 2.3 General Registers

SR.MD =0 or
(SR.MD =1, SR.RB =0) (SR.MD =1, SR.RB=1)
RO RO_BANKO RO_BANKO
R1 R1_BANKO R1_BANKO
R2 R2_BANKO R2_BANKO
R3 R3_BANKO R3_BANKO
R4 R4_BANKO R4_BANKO
R5 R5_BANKO R5_BANKO
R6 R6_BANKO R6_BANKO
R7 R7_BANKO R7_BANKO
RO_BANK1 RO_BANK1 RO
R1_BANK1 R1 BANK1 R1
R2_BANK1 R2_BANK1 R2
R3_BANK1 R3_BANK1 R3
R4 _BANK1 R4_BANK1 R4
R5_BANK1 R5_BANK1 R5
R6_BANK1 R6_BANK1 R6
R7_BANK1 R7_BANK1 R7
RS R8 R8
R9 R9 R9
R10 R10 R10
R11 R11 R11
R12 R12 R12
R13 R13 R13
R14 R14 R14
R15 R15 R15

Programming Note: As the user’s RO-R7 are assigned to RO_BANKO0-R7_BANKQO, and after an exception or
interrupt RO-R7 are assigned to RO_BANK1-R7_BANKI], it is not necessary for the interrupt handler to save and
restore the user’s RO-R7 (RO_BANKO0-R7 BANKO).

After a reset, the values of R0O_BANKO-R7 BANKO, RO BANK1-R7 BANK1, and R8-R15 are undefined.

HPM-10

2. Programming Model

2.2.3 Floating-Point Registers

Figure 2.4 shows the floating-point registers. There are thirty-two 32-bit floating-point registers, divided into two
banks (FPRO_BANKO0-FPR15_BANKO and FPRO_BANKI1-FPR15_BANK1). These 32 registers are referenced as
FRO-FR15, DR0/2/4/6/8/10/12/14, FV0/4/8/12, XF0-XF15, XD0/2/4/6/8/10/12/14, or XMTRX. The
correspondence between FPRn_BANKi and the reference name is determined by the FR bit in FPSCR (see figure 2.4).

e Floating-point registers, FPRn_BANKi (32 registers)

FPRO_BANKO, FPR1_BANKO, FPR2_BANKO, FPR3_BANKO, FPR4_BANKO, FPR5_BANKO,
FPR6_BANKO, FPR7_BANKO, FPR8_BANKGO0, FPR9_BANKO, FPR10_BANKO, FPR11_BANKQO,
FPR12_BANKO, FPR13_BANKO, FPR14_BANKO, FPR15_BANKO

FPRO_BANKI, FPR1_BANKI1, FPR2_BANKI1, FPR3_BANK]1, FPR4_BANK1, FPR5_BANKI],
FPR6_BANKI1, FPR7_BANKI1, FPR8_BANKI1, FPR9_BANK1, FPR10_BANKI1, FPR11_BANKI1,
FPR12_BANKI1, FPR13_BANK]I1, FPR14_BANKI, FPR15_BANK1

* Single-precision floating-point registers, FRi (16 registers)
When FPSCR.FR = 0, FRO-FR15 are assigned to FPRO_BANKO0-FPR15_BANKO.
When FPSCR.FR = 1, FRO-FR15 are assigned to FPRO_BANKI1-FPR15_BANKI.

¢ Double-precision floating-point registers or single-precision floating-point register pairs, DRi (8
registers): A DR register comprises two FR registers.

DRO = {FRO0, FR1}, DR2 = {FR2, FR3}, DR4 = {FR4, FR5}, DR6 = {FR6, FR7},
DRS8 = {FRS, FR9}, DR10 = {FR10, FR11}, DR12 = {FR12, FR13}, DR14 = {FR14, FR15}

e Single-precision floating-point vector registers, FVi (4 registers): An FV register comprises four FR
registers

FVO0 = {FRO, FR1, FR2, FR3}, FV4 = {FR4, FR5, FR6, FR7},

FV8 = {FR8, FRY, FR10, FR11}, FV12 = {FR12, FR13, FR14, FR15}

* Single-precision floating-point extended registers, XFi (16 registers)

When FPSCR.FR = 0, XFO-XF15 are assigned to FPRO_BANK1-FPR15_BANKI.
When FPSCR.FR = 1, XFO-XF15 are assigned to FPRO_BANKO-FPR15_BANKO.

* Single-precision floating-point extended register pairs, XDi (8 registers): An XD register comprises two
XF registers

XDO0 = {XF0, XF1}, XD2 = {XF2, XF3}, XD4 = {XF4, XF5}, XD6 = {XF6, XF7},
XD8 = {XF8, XF9}, XD10 = {XF10, XF11}, XD12 = {XF12, XF13}, XD14 = {XF14, XF15}
¢ Single-precision floating-point extended register matrix, XMTRX: XMTRX comprises all 16 XF registers

XMTRX = XFO XF4 XF8 XF12
XF1 XF5 XF9 XF13
XF2 XF6 XF10 XF14
XF3 XF7 XF11 XF15

HPM-11

Dreamcast SH4 Program Manual

Figure 2.4 Floating-Point Registers

FPSCR.FR =0 FPSCR.FR=1
FVO DRO FRO FPRO_BANKO XFO XD0 XMTRX
FR1 FPR1_BANKO XF1
DR2 FR2 FPR2_BANKO XF2 XD2
FR3 FPR3_BANKO XF3

FV4 DR4 FR4 FPR4_BANKO XF4 XD4
FR5 FPR5_BANKO XF5
DR6 FR6 FPR6_BANKO XF6 XD6
FR7 FPR7_BANKO XF7
FV8 DR8 FRS8 FPR8_BANKO XF8 XD8
FR9 FPR9_BANKO XF9
DR10 FR10 FPR10_BANKO XF10 XD10
FR11 FPR11_BANKO XF11
FV12 DR12 FR12 FPR12_BANKO XF12 XD12
FR13 FPR13 BANKO XF13
DR14 FR14 FPR14 BANKO XF14 XD14
FR15 FPR15_BANKO XF15
XMTRX XDO XFO FPRO_BANK1 FRO DRO FVO
XF1 FPR1_BANK1 FR1
XD2 XF2 FPR2_BANK1 FR2 DR2
XF3 FPR3_BANK1 FR3
XD4 XF4 FPR4_BANK1 FR4 DR4 FV4
XF5 FPR5_BANK1 FR5
XD6 XF6 FPR6_BANK1 FR6 DR6
XE7 FPR7_BANK1 FR7
XD8 XF8 FPR8_BANK1 FR8 DR8 FV8
XF9 FPR9_BANK1 FR9
XD10 XF10 FPR10_BANK1 FR10 DRI10
XF11 FPR11_BANK1 FR11
XD12 XF12 FPR12_BANK1 FR12 DR12 FV12
XF13 FPR13_BANK1 FR13
XD14 XF14 FPR14 BANK1 FR14 DR14
XF15 FPR15_BANK1 FR15

Programming Note: After a reset, the values of FPRO_BANKO0-FPR15_BANKO0 and FPRO_BANK1-FPR15_BANK1
are undefined.

2.2.4 Control Registers

Status register, SR (32 bits, privilege protection, initial value = 0111 0000 0000 0000 0000 00XX 1111 00XX)
31 30 23 28 77 1615 14 109 8 7 4 3 2 1. 0

—|MD|[RB | BL — FD — M| Q IMASK — ST

Note: Reserved. These bits are always read as 0, and should only be written with 0.
X:Undefined

HPM-12

2. Programming Model

e MD: Processor mode

MD = 0: User mode (some instructions cannot be executed, and some resources cannot be accessed)
MD = 1: Privileged mode

* RB: General register bank specifier in privileged mode (set to 1 by a reset, exception, or interrupt)

RB = 0: R0O_BANKO-R7_BANKO are accessed as general registers RO-R7. (R0O_BANK1-R7_BANK1 can be
accessed using LDC/STC R0_BANK-R7_BANK instructions.)

RB = 1: RO_BANK1-R7_BANKI1 are accessed as general registers R0-R7. (RO_BANKO0-R7_BANKO can be
accessed using LDC/STC R0_BANK-R7_BANK instructions.)

 BL: Exception/interrupt block bit (set to 1 by a reset, exception, or interrupt)

BL = 1: Interrupt requests are masked. If a general exception other than a user break occurs while BL=1,
the processor switches to the reset state.

e FD: FPU disable bit (cleared to 0 by a reset)

FD = 1: An FPU instruction causes a general FPU disable exception, and if the FPU instruction is in a delay
slot, a slot FPU disable exception is generated. (FPU instructions: HF*** instructions, LDC(.L)/STS(.L)
instructions for FPUL /FPSCR)

* M, Q: Used by the DIV0S, DIVOU, and DIV1 instructions.
¢ IMASK: Interrupt mask level

External interrupts of a lower level than IMASK are masked.
* S: Specifies a saturation operation for a MAC instruction.

e T: True/ false condition or carry /borrow bit

Saved statusregister, SSR (32 bits, privilege protection, initial value undefined): The current contents of SR are
saved to SSR in the event of an exception or interrupt.

Savedprogramcounter,SPC(32bits,privilegeprotection,initialvalueundefined): Theaddressofaninstruction
at which an interrupt or exception occurs is saved to SPC.

Global base register, GBR (32 bits, initial value undefined): GBR is referenced as the base address in a
GBR-referencing MOV instruction.

Vector base register, VBR (32 bits, privilege protection, initial value = H'0000 0000): VBR is referenced as the
branch destination base address in the event of an exception or interrupt. For details, see section 5, Exceptions.

Saved general register 15, SGR (32 bits, privilege protection, initial value undefined): The contents of R15 are
saved to SGR in the event of an exception or interrupt.

Debug base register, DBR (32 bits, privilege protection, initial value undefined): When the user break debug
function is enabled (BRCR.UBDE = 1), DBR is referenced as the user break handler branch destination address
instead of VBR.

HPM-13

Dreamcast SH4 Program Manual

2.2.5 System Registers

Multiply-and-accumulate register high, MACH (32 bits, initial value undefined)
Multiply-and-accumulate register low, MACL (32 bits, initial value undefined)

MACH/MACL is used for the added value in a MAC instruction, and to store a MAC instruction or MUL
operation result.

Procedure register, PR (32 bits, initial value undefined): The return address is stored in PR in a subroutine call
using a BSR, BSREF, or JSR instruction, and PR is referenced by the subroutine return instruction (RTS).

Program counter, PC (32 bits, initial value = H'A000 0000): PC indicates the instruction fetch address.

Floating-point status/ control register, FPSCR (32 bits, initial value = H'0004 0001)
31 2221 20 19 18 17 12 11 7 6 210

— FR| SZ|PR|DN Cause Enable Flag RM

Note: Reserved. These bits are always read as 0, and should only be written with 0.

¢ FR: Floating-point register bank

FR = 0: FPRO_BANKO0-FPR15_BANKO are assigned to FRO-FR15; FPRO_BANK1-FPR15_BANKT1 are
assigned to XFO-XF15.

FR = 1: FPRO_BANKO-FPR15_BANKO are assigned to XF0-XF15; FPRO_BANKI1-FPR15_BANKI1 are
assigned to FRO-FR15.

¢ 5Z: Transfer size mode

SZ = 0: The data size of the FMOV instruction is 32 bits.

SZ = 1: The data size of the FMOV instruction is a 32-bit register pair (64 bits).
* PR: Precision mode

PR = 0: Floating-point instructions are executed as single-precision operations.

PR = 1: Floating-point instructions are executed as double-precision operations (the result of instructions
for which double-precision is not supported is undefined).

Mode setting [SZ = 1, PR = 1] is reserved. FPU operation results are undefined in this mode.
* DN: Denormalization mode

DN = 0: A denormalized number is treated as such.

DN = 1: A denormalized number is treated as zero.

Invalid Division by
FPU Error (E) | Operation (V) Zero (2) Overflow (0) | Underflow (U) | Inexact (l)

Cause FPU exception Bit 17 Bit 16 Bit 15 Bit 14 Bit 13 Bit 12

cause field
Enable FPU exception None Bit 11 Bit 10 Bit9 Bit 8 Bit7

enable field
Flag FPU exception None Bit 6 Bit5 Bit 4 Bit 3 Bit 2

flag field

HPM-14

2. Programming Model

When an FPU operation instruction is executed, the cause field is cleared to zero first. When the next FPU exception
is requested, the corresponding bits in the cause field and flag field are set to 1. The flag field holds the status of the
exception generated after the field was last cleared.

* RM: Rounding mode

RM = 00: Round to Nearest
RM = 01: Round to Zero
RM = 10: Reserved

RM = 11: Reserved

e Bits 22 to 31: Reserved

Floating-point communication register, FPUL (32 bits, initial value undefined): Data transfer between FPU
registers and CPU registers is carried out via the FPUL register.

Programming Note: When SZ = 1 and big endian mode is selected, FMOV can be used for double-precision
floating-point load or store operations. In little endian mode, two 32-bit data size moves must be executed, with SZ
=0, to load or store a double-precision floating-point number.

2.3 Memory-Mapped Registers

Appendix A shows the control registers mapped to memory. The control registers are double-mapped to the
following two memory areas. All registers have two addresses.

H'1F00 0000-H'1FFF FFFF
H'FF00 0000-H 'FFFF FFFF

These two areas are used as follows.
e H'1F00 0000-H'1FFF FFFF

This area must be accessed in address translation mode using the TLB. Since external memory is defined
as a 29-bit address space in the SH7091 architecture, the TLB's physical page numbers do not cover a 32-bit
address space. In address translation, the page numbers of this area can be set in the corresponding field of
the TLB by accessing a memory-mapped register. The page numbers of this area should be used as the
actual page numbers set in the TLB. When address translation is not performed, the operation of accesses
to this area is undefined.

e H'FF00 0000-H'FFFF FFFF
This area must be accessed without address translation.

Do not access undefined locations in either area The operation of an access to an undefined location is
undefined. Also, memory-mapped registers must be accessed using a fixed data size. The operation of an
access using an invalid data size is undefined.

Programming Note: Access to area H'FF00 0000-H 'FFFF FEFF in user mode will cause an address error.
Memory-mapped registers can be referenced in user mode by means of access that involves address translation.

2.4 Data Format in Registers

Register operands are always longwords (32 bits). When a memory operand is only a byte (8 bits) or a word (16
bits), it is sign-extended into a longword when loaded into a register.

31 0
Longword

HPM-15

Dreamcast SH4 Program Manual

2.5 Data Formats in Memory

Memory data formats are classified into bytes, words, and longwords. Memory can be accessed in 8-bit byte, 16-bit
word, or 32-bit longword form. A memory operand less than 32 bits in length is sign-extended before being loaded
into a register.

A word operand must be accessed starting from a word boundary (even address of a 2-byte unit: address 2n), and
a longword operand starting from a longword boundary (even address of a 4-byte unit: address 4n). An address
error will result if this rule is not observed. A byte operand can be accessed from any address.

Big endian or little endian byte order can be selected for the data format. The endian should be set with the MD5
external pin in a power-on reset. Big endian is selected when the MD5 pin is low, and little endian when high. The
endian cannot be changed dynamically. Bit positions are numbered left to right from most-significant to
least-significant. Thus, in a 32-bit longword, the leftmost bit, bit 31, is the most significant bit and the rightmost bit,
bit 0, is the least significant bit.

The data format in memory is shown in figure 2.5. In little endian mode, data written as byte-size (8 bits) should be
read as byte size, and data written as word-size (16 bits) should be read as word size.

Figure 2.5 Data Formats In Memory

A A+l A+2 A+3 A+11 A+10 A+9 A+8
31 23 15 7 0 31 23 15 7 0
7 of7 0|7 o7 0 7 0|7 0|7 0|7 0
Address A | gyte 0| Byte 1 | Byte 2 | Byte 3 Byte 3|Byte 2| Byte 1 | Byte 0| Address A+ 8
15 0|15 0 15 0|15 0
Address A + 4 Word 0 Word 1 Word 1 Word 0 Address A + 4
31 0 31 0
AddressA + 8 Longword Longword Address A
Big endian Little endian

Note: The SH7091 does not support endian conversion for the 64-bit data format. Therefore, if double-precision
floating-point format (64-bit) access is performed in little endian mode, the upper and lower 32 bits will
be reversed.

2.6 Processor States

The SH7091 has five processor states: the reset state, exception-handling state, bus-released state, program
execution state, and power-down state.

Reset State: In this state the CPU is reset. The reset state is entered when the RESET pin goes low. The CPU enters
the power-on reset state if the MRESET pin is high, and the manual reset state if the MRESET pin is low. For more
information on resets, see section 5, Exceptions.

In the power-on reset state, the internal state of the CPU and the on-chip peripheral module registers are initialized.
In the manual reset state, the internal state of the CPU and registers of on-chip peripheral modules other than the
bus state controller (BSC) are initialized. Since the bus state controller (BSC) is not initialized in the manual reset
state, refreshing operations continue. Refer to the register configurations in the relevant sections for further details.

Exception-Handling State: Thisis a transient state during which the CPU’s processor state flow is altered by a reset,
general exception, or interrupt exception handling source.

In the case of a reset, the CPU branches to address H'A000 0000 and starts executing the user-coded exception
handling program.

HPM-16

2. Programming Model

In the case of a general exception or interrupt, the program counter (PC) contents are saved in the saved program
counter (SPC), the status register (SR) contents are saved in the saved status register (SSR), and the R15 contents are
saved in saved general register 15 (SGR). The CPU branches to the start address of the user-coded exception service
routine found from the sum of the contents of the vector base address and the vector offset. See section 5,
Exceptions, for more information on resets, general exceptions, and interrupts.

Program Execution State: In this state the CPU executes program instructions in sequence.

Power-Down State: In the power-down state, CPU operation halts and power consumption is reduced. The
power-down state is entered by executing a SLEEP instruction. There are two modes in the power-down state: sleep
mode and standby mode. For details, see section 9, Power-Down Modes.

Bus-Released State: In this state the CPU has released the bus to a device that requested it.
Transitions between the states are shown in figure 2.6.

Figure 2.6 Processor State Transitions

MRESET =1

From any state when From any state when

RESET =0 and MRESET =1 RESET =0 and MRESET =0
\ 4
| Power-on reset state Manual reset state
RESET =0, '

Reset state

RESET =1, RESET =1,
MRESET =1 MRESET =0

Exception-handling state

Bus request
q Bus request

clearance
Interrupt Interrupt
Exception End of exception
Bus-released state interrupt transition
2 processing

Bus request

clearance
request

A

Bus request
clearance

Bus request Program execution state

SLEEP instruction
with STBY bit
cleared

SLEEP instruction
with STBY bit set

Sleep mode Standby mode

Power-down state

HPM-17

Dreamcast SH4 Program Manual

2.7 Processor Modes

There are two processor modes: user mode and privileged mode. The processor mode is determined by the
processor mode bit (MD) in the status register (SR). User mode is selected when the MD bit is cleared to 0, and
privileged mode when the MD bit is set to 1. When the reset state or exception state is entered, the MD bit is set to
1. When exception handling ends, the MD bit is cleared to 0 and user mode is entered. There are certain registers
and bits which can only be accessed in privileged mode.

HPM-18

SEGA

3. Memory Management Unit
(MMU)

3.1 Overview

3.1.1 Features

The SH7091 can handle 29-bit external memory space from an 8-bit address space identifier and 32-bit logical
(virtual) address space. Address translation from virtual address to physical address is performed using the
memory management unit (MMU) built into the SH7091. The MMU performs high-speed address translation by
caching user-created address translation table information in an address translation buffer (translation lookaside
buffer: TLB). The SH7091 has four instruction TLB (ITLB) entries and 64 unified TLB (UTLB) entries. UTLB copies
are stored in the ITLB by hardware. A paging system is used for address translation, with support for four page sizes
(1,4, and 64 kbytes, and 1 Mbyte). It is possible to set the virtual address space access right and implement storage
protection independently for privileged mode and user mode.

3.1.2 Role of the MMU

The MMU was conceived as a means of making efficient use of physical memory. As shown in figure 3.1, when a
process is smaller in size than the physical memory, the entire process can be mapped onto physical memory, but if
the process increases in size to the point where it does not fit into physical memory, it becomes necessary to divide
the process into smaller parts, and map the parts requiring execution onto physical memory on an ad hocbasis ((1)).
Having this mapping onto physical memory executed consciously by the process itself imposes a heavy burden on
the process. The virtual memory system was devised as a means of handling all physical memory mapping to
reduce this burden ((2)). With a virtual memory system, the size of the available virtual memory is much larger than
the actual physical memory, and processes are mapped onto this virtual memory. Thus processes only have to
consider their operation in virtual memory, and mapping from virtual memory to physical memory is handled by
the MMU. The MMU is normally managed by the OS, and physical memory switching is carried out so as to enable
the virtual memory required by a task to be mapped smoothly onto physical memory. Physical memory switching
is performed via secondary storage, etc.

The virtual memory system that came into being in this way works to best effect in a time sharing system (TSS) that
allows a number of processes to run simultaneously ((3)). Running a number of processes in a TSS did not increase
efficiency since each process had to take account of physical memory mapping. Efficiency is improved and the load
on each process reduced by the use of a virtual memory system ((4)). In this system, virtual memory is allocated to

HPM-19

Dreamcast SH4 Program Manual

each process. The task of the MMU is to map a number of virtual memory areas onto physical memory in an efficient
manner. It is also provided with memory protection functions to prevent a process from inadvertently accessing
another process’s physical memory.

When address translation from virtual memory to physical memory is performed using the MMU, it may happen
that the translation information has not been recorded in the MMU, or the virtual memory of a different process is
accessed by mistake. In such cases, the MMU will generate an exception, change the physical memory mapping,
and record the new address translation information.

Although the functions of the MMU could be implemented by software alone, having address translation
performed by software each time a process accessed physical memory would be very inefficient. For this reason, a
buffer for address translation (the translation lookaside buffer: TLB) is provided in hardware, and frequently used
address translation information is placed here. The TLB can be described as a cache for address translation
information. However, unlike a cache, if address translation fails—that is, if an exception occurs—switching of the
address translation information is normally performed by software. Thus memory management can be performed
in a flexible manner by software.

There are two methods by which the MMU can perform mapping from virtual memory to physical memory: the
paging method, using fixed-length address translation, and the segment method, using variable-length address
translation. With the paging method, the unit of translation is a fixed-size address space called a page (usually from
1 to 64 kbytes in size).

In the following descriptions, the address space in virtual memory in the SH7091 is referred to as virtual address
space, and the address space in physical memory as physical address space.

Figure 3.1 Role of the MMU

‘ Virtual h
memory MMU Physical
s phvaical) (- Physical Process 1 | _memory
ysica Process 1 memory
memory
Process 1
N J
(1)
N J N
e N e " N
P | Physical P 1 Virtual
rocess memo rocess memory
memory
Process 2, Process 2 i
Process 3," Process 3
3 4
L (©)]) L 4)

HPM-20

3. Memory Management Unit (MMU)

3.1.3 Register Configuration

The MMU registers are shown in table below 3.1.

Table 3.1 MMU Registers

Name Abbreviation R/W Initial Value*1 =~ P4 Address*2 | Area 7 Address*2 @ Access Size
Page table entry high register | PTEH R/W Undefined H'FFO0 0000 H"1F00 0000 32

Page table entry low register PTEL R/W Undefined H'FFO0 0004 H'1F00 0004 32

Page table entry assistance PTEA R/W Undefined H'FFO0 0034 H'1F00 0034 32

register

Translation table base register | TTB R/W Undefined H'FFO0 0008 H'1F00 0008 32

TLB exception address register | TEA R/W Undefined H'FF00 000C H'1F00 000C 32

MMU control register MMUCR R/W H'0000 0000 H'FFO0 0010 H'1F00 0010 32

Note: The initial value is the value after a power-on reset or manual reset.
This is the address when using the virtual/ physical address space P4 area. When making an access from
physical address space area 7 using the TLB, the upper 3 bits of the address are ignored.

3.1.4 Caution

Operation is not guaranteed if an area designated as a reserved area in this manual is accessed.

3.2 Register Descriptions

There are six MMU-related registers.

HPM-21

Dreamcast SH4 Program Manual

Figure 3.2 MMU-Related Registers

1. PTEH

31 10 9 8 7 0

VPN —|— ASID

2. PTEL

31 30 29 28 109 8 7 6 5 4 3 2 10

—|—|— PPN —|V|SZ| PR |SZ|C |D [SH|WT]|
3. PTEA

31 4 3 2 0

TC SA

4. TTB

31 0

TTB

5. TEA

31

Virtual address at which MMU exception or address error occurred

6. MMUCR

31 26 25 24 23 18 17 16 15 109 8 7 6 5 4 3 2 10

LRUI —|— URB —|— URC ‘SV—————TI—AT

\
SQMD

— indicates a reserved bit: the write value must be 0, and a read will return an undefined value.

Page table entry high register (PTEH): Longword access to PTEH can be performed from H'FF00 0000 in the P4
area and H'1F00 0000 in area 7. PTEH consists of the virtual page number (VPN) and address space identifier
(ASID). When an MMU exception or address error exception occurs, the VPN of the virtual address at which the
exception occurred is set in the VPN field by hardware. VPN varies according to the page size, but the VPN set by
hardware when an exception occurs consists of the upper 22 bits of the virtual address which caused the exception.
VPN setting can also be carried out by software. The number of the currently executing process is set in the ASID
field by software. ASID is not updated by hardware. VPN and ASID are recorded in the UTLB by means of the
LDLTB instruction.

Page table entry low register (PTEL): Longword access to PTEL can be performed from H'FF00 0004 in the P4 area
and H'1F00 0004 in area 7. PTEL is used to hold the physical page number and page management information to be
recorded in the UTLB by means of the LDTLB instruction. The contents of this register are not changed unless a
software directive is issued.

Page table entry assistance register (PTEA): Longword access to PTEA can be performed from H'FF00 0034 in the
P4 area and H'1F00 0034 in area 7. PTEL is used to store assistance bits for PCMCIA access to the UTLB by means
of the LDTLB instruction. The contents of this register are not changed unless a software directive is issued.

Translation table base register (TTB): Longword access to TTB can be performed from H'FF00 0008 in the P4 area
and H'1F00 0008 in area 7. TTB is used, for example, to hold the base address of the currently used page table. The
contents of TTB are not changed unless a software directive is issued. This register can be freely used by software.

HPM-22

3. Memory Management Unit (MMU)

TLB exception addressregister (TEA): Longword access to TEA can be performed from H'FF00 000C in the P4 area
and H'1F00 000C in area 7. After an MMU exception or address error exception occurs, the virtual address at which
the exception occurred is set in TEA by hardware. The contents of this register can be changed by software.

MMU control register MMUCR): MMUCR contains the following bits:

LRUI: Least recently used ITLB
URB: UTLB replace boundary
URC: UTLB replace counter
SQMD: Store queue mode bit
SV: Single virtual mode bit
TI: TLB invalidate

AT: Address translation bit

Longword access to MMUCR can be performed from H'FF00 0010 in the P4 area and H'1F00 0010 in area 7. The
individual bits perform MMU settings as shown below. Therefore, MMUCR rewriting should be performed by a
program in the P1 or P2 area. After MMUCR is updated, an instruction that performs data access to the P0, P3, U0,
or store queue area should be located at least four instructions after the MMUCR update instruction. Also, a branch
instruction to the PO, P3, or U0 area should be located at least eight instructions after the MMUCR update
instruction. MMUCR contents can be changed by software. The LRUI bits and URC bits may also be updated

by hardware.

e LRUL The LRU (least recently used) method is used to decide the ITLB entry to be replaced in the event
of an ITLB miss. The entry to be purged from the ITLB can be confirmed using the LRUI bits. LRUI
is updated by means of the algorithm shown below. A dash in this table means that updating is
not performed.

(5] (4] (3] 2] (1] [0]
When ITLB entry 0 is used 0 0 0 — — —
When ITLB entry 1 is used 1 — — 0 0 —
When ITLB entry 2 is used — 1 — 1 — 0

When ITLB entry 3 is used — — 1 — 1 1

Other than the above — — — — _ _

HPM-23

Dreamcast SH4 Program Manual

When the LRUI bit settings are as shown below, the corresponding ITLB entry is updated by an ITLB miss. An

asterisk

in this table means “don’t care”.

[5] (4] (3] [2] [1] (0]
ITLB entry 0 is updated 1 1 1 * * *
ITLB entry 1 is updated 0 * * 1 1 *
ITLB entry 2 is updated * 0 * 0 * 1
ITLB entry 3 is updated ¥ ¥ 0 * 0 0
Other than the above Setting prohibited

Ensure that values for which “Setting prohibited” is indicated in the above table are not set at the discretion of
software. After a power-on or manual reset the LRUI bits are initialized to 0, and therefore a prohibited setting is
never made by a hardware update.

* URB: Bits that indicate the UTLB entry boundary at which replacement is to be performed. Valid only
when URB > 0.

e URC: Random counter for indicating the UTLB entry for which replacement is to be performed with an
LDTLB instruction. URC is incremented each time the UTLB is accessed. When URB > 0, URC is reset to
0 when the condition URC = URB occurs. Also note that, if a value is written to URC by software which
results in the condition URC > URB, incrementing is first performed in excess of URB until URC = H'3F.
URC is not incremented by an LDTLB instruction.

* SQMD: Store queue mode bit. Specifies the right of access to the store queues.

0: User/ privileged access possible

1: Privileged access possible (address error exception in case of user access)

e SV: Bit that switches between single virtual memory mode and multiple virtual memory mode.
0: Multiple virtual memory mode

1: Single virtual memory mode

When this bit is changed, ensure that 1 is also written to the TI bit.

e TI: Writing 1 to this bit invalidates (clears to 0) all valid UTLB/ITLB bits. This bit always returns 0
when read.

* AT: Specifies MMU enabling or disabling.
0: MMU disabled
1: MMU enabled

MMU exceptions are not generated when the AT bit is 0. In the case of software that does not use the MMU,
therefore, the AT bit should be cleared to 0.

HPM-24

3. Memory Management Unit (MMU)

3.3 Memory Space
3.3.1 Physical Memory Space

The SH7091 supports a 32-bit physical memory space, and can access a 4-Gbyte address space. When the
MMUCR.AT bit is cleared to 0 and the MMU is disabled, the address space is this physical memory space. The
physical memory space is divided into a number of areas, as shown in figure 3.3. The physical memory space is
permanently mapped onto 29-bit external memory space; this correspondence can be implemented by ignoring the
upper 3 bits of the physical memory space addresses. In privileged mode, the 4-Gbyte space from the P0 area to the
P4 area can be accessed. In user mode, a 2-Gbyte space in the U0 area can be accessed. Accessing the P1 to P4 areas
(except the store queue area) in user mode will cause an address error.

Figure 3.3 Physical Memory Space (MMUCR.AT = 0)

External
memory space
H'0000 0000 T Areao | H'0000 0000
Area 1
Area 2
Area 3
PO area Area 4 U0 area
Cacheable Area 5 Cacheable
Area 6
Area 7
H'8000 0000) H'8000 0000
P1 area !
Cacheable
H'A000 0000 P2 area /
Non-cacheable | ! "
. ! Address error
H'C000 0000 P3 area /
Cacheable !
H'EO00 0000 H'E000 0000
P4 arhea " Store queue area H'E400 06000
H'EFEF EFEF Non-cacheable Address error H'FEEF EEFE
Privileged mode User mode

PO, P1,P3,U0 Areas: The PO, P1, P3, and U0 areas can be accessed using the cache. Whether or not the cache is used
is determined by the cache control register (CCR). When the cache is used, with the exception of the P1 area,
switching between the copy-back method and the write-through method for write accesses is specified by the
CCR.WT bit. For the P1 area, switching is specified by the CCR.CB bit. Zeroizing the upper 3 bits of an address in
these areas gives the corresponding external memory space address. However, since area 7 in the external memory
space is a reserved area, a reserved area also appears in these areas.

P2 Area: The P2 area cannot be accessed using the cache. In the P2 area, zeroizing the upper 3 bits of an address
gives the corresponding external memory space address. However, since area 7 in the external memory space is a
reserved area, a reserved area also appears in this area.

P4 Area: The P4 area is mapped onto SH7091 on-chip I/ O channels. This area cannot be accessed using the cache.
The P4 area is shown in detail in figure 3.4.

HPM-25

Dreamcast SH4 Program Manual

Figure 3.4 P4 Area

H'EO00 0000
Store queue

H'E400 0000

Reserved area
H'F000 0000 Instruction cache address array
H'F100 0000 Instruction cache data array
H'F200 0000 Instruction TLB address array
H'F300 0000 Instruction TLB data arrays 1 and 2
H'F400 0000 Operand cache address array
H'F500 0000 Operand cache data array
H'F600 0000 Unified TLB address array
H'F700 0000 Unified TLB data arrays 1 and 2
H'F800 0000

Reserved area
H'FF00 0000 Control register area

The area from H'E000 0000 to H'E3FF FFFF comprises addresses for accessing the store queues (SQs). When the
MMU is disabled (MMUCR.AT = 0), the SQ access right is specified by the MMUCR.SQMD bit. For details, see
section 4.6, Store Queues.

The area from H'F000 0000 to H'FOFF FFFF is used for direct access to the instruction cache address array. For details,
see section 4.5.1, IC Address Array.

The area from H'F100 0000 to H'F1FF FFFF is used for direct access to the instruction cache data array. For details,
see section 4.5.2, IC Data Array.

The area from H'F200 0000 to H'F2FF FFFF is used for direct access to the instruction TLB address array. For details,
see section 3.7.1, ITLB Address Array.

The area from H'F300 0000 to H'F3FF FFFF is used for direct access to instruction TLB data arrays 1 and 2. For details,
see sections 3.7.2, ITLB Data Array 1, and 3.7.3, ITLB Data Array 2.

The area from H'F400 0000 to H'FAFF FEFF is used for direct access to the operand cache address array. For details,
see section 4.5.3, OC Address Array.

The area from H'F500 0000 to H'F5FF FFEF is used for direct access to the operand cache data array. For details, see
section 4.5.4, OC Data Array.

The area from H'F600 0000 to H'F6FF FFEF is used for direct access to the unified TLB address array. For details, see
section 3.7.4, UTLB Address Array.

The area from H'F700 0000 to H'F7FF FEFF is used for direct access to unified TLB data arrays 1 and 2. For details,
see sections 3.7.5, UTLB Data Array 1, and 3.7.6, UTLB Data Array 2.

The area from H'FF00 0000 to H'FFFF FFEFF is the on-chip peripheral module control register area.

HPM-26

3. Memory Management Unit (MMU)

3.3.2 External Memory Space

The SH7091 supports a 29-bit external memory space. The external memory space is divided into eight areas as
shown in figure 3.5. Areas 0 to 6 relate to memory, such as SRAM, synchronous DRAM, DRAM, and PCMCIA. Area
7 is a reserved area. For details, see section 13, Bus State Controller (BSC), in the Hardware Manual.

Figure 3.5 External Memory Space

H'0000 0000 Area 0
H'0400 0000 Area 1
H'0800 0000 Area 2
H'0C00 0000 Area 3
H'1000 0000 Area 4
H'1400 0000 Area 5
H'1800 0000 Area 6
:1;‘32 g?:?:?: Area 7 (reserved area)

3.3.3 Virtual Memory Space

Setting the MMUCR.AT bit to 1 enables the PO, P3, and UO areas of the physical memory space in the SH7091 to be
mapped onto any external memory space in 1-, 4-, or 64-kbyte, or 1-Mbyte, page units. By using an 8-bit address
space identifier, the PO, UQ, P3, and store queue areas can be increased to a maximum of 256. This is called the virtual
memory space. Mapping from virtual memory space to 29-bit external memory space is carried out using the TLB.
Only when area 7 in external memory space is accessed using virtual memory space, addresses H'1F00 0000 to
H'1FFF FFFF of area 7 are not designated as a reserved area, but are equivalent to the P4 area control register area
in the physical memory space. Virtual memory space is illustrated in figure 3.6.

HPM-27

Dreamcast SH4 Program Manual

Figure 3.6 Virtual Memory Space (MMUCR.AT = 1)

256 = R External 256 -
ﬁ *._ memory space ﬁ
Area 0
Area 1
Area 2
PO area Area 3
U0 area
Cacheable Area 4
Address translation possible Cachea_b le .
Area 5 Address translation possible
Area 6
Area 7
'- ’:' --
Pl area
Cacheable i
Address translation not possible L
P2 area s
Non-cacheable ’.’
Address translation not possible i Address error
P3 area i
Cacheable |
Address translation possible
___________ Pdarea .. _______{ Store queue area
Non-cacheable
Address translation not possible Address error
Privileged mode User mode

PO, P3, U0 Areas: The P0 area (excluding addresses H'7C00 0000 to H'7FFF FFFF), P3 area, and U0 area allow access
using the cache and address translation using the TLB. These areas can be mapped onto any external memory space
in 1-, 4-, or 64-kbyte, or 1-Mbyte, page units. When CCR is in the cache-enabled state and the TLB enable bit (C bit) is
1, accesses can be performed using the cache. In write accesses to the cache, switching between the copy-back method
and the write-through method is indicated by the TLB write-through bit (WT bit), and is specified in page units.

Only when the P0, P3, and U0 areas are mapped onto external memory space by means of the TLB, addresses H'1F00
0000 to H'1FFF FFFF of area 7 in external memory space are allocated to the control register area. This enables
on-chip peripheral module control registers to be accessed from the U0 area in user mode. In this case, the C bit for
the corresponding page must be cleared to 0.

P1, P2, P4 Areas: Address translation using the TLB cannot be performed for the P1, P2, or P4 area (except for the
store queue area). Accesses to these areas are the same as for physical memory space. The store queue area can be
mapped onto any external memory space by the MMU. However, operation in the case of an exception differs from
that for normal PO, UO, and P3 spaces. For details, see section 4.6, Store Queues.

3.3.4 On-Chip RAM Space

In the SH7091, half (8 kbytes) of the instruction cache (16 kbytes) can be used as on-chip RAM. This can be done by
changing the CCR settings.

When the operand cache is used as on-chip RAM (CCR.ORA = 1), P0 area addresses H'7C00 0000 to H'7FFF FFFF
are an on-chip RAM area. Data accesses (byte/word /longword / quadword) can be used in this area. This area can
only be used in RAM mode.

HPM-28

3. Memory Management Unit (MMU)

3.3.56 Address Translation

When the MMU is used, the virtual address space is divided into units called pages, and translation to physical
addresses is carried out in these page units. The address translation table in external memory contains the physical
addresses corresponding to virtual addresses and additional information such as memory protection codes. Fast
address translation is achieved by caching the contents of the address translation table located in external memory
into the TLB. In the SH7091, basically, the ITLB is used for instruction accesses and the UTLB for data accesses. In
the event of an access to an area other than the P4 area, the accessed virtual address is translated to a physical
address. If the virtual address belongs to the P1 or P2 area, the physical address is uniquely determined without
accessing the TLB. If the virtual address belongs to the PO, U0, or P3 area, the TLB is searched using the virtual
address, and if the virtual address is recorded in the TLB, a TLB hit is made and the corresponding physical address
is read from the TLB. If the accessed virtual address is not recorded in the TLB, a TLB miss exception is generated
and processing switches to the TLB miss exception routine. In the TLB miss exception routine, the address
translation table in external memory is searched, and the corresponding physical address and page management
information are recorded in the TLB. After the return from the exception handling routine, the instruction which
caused the TLB miss exception is re-executed.

3.3.6 Single Virtual Memory Mode and Multiple Virtual Memory Mode

There are two virtual memory systems, single virtual memory and multiple virtual memory, either of which can be
selected with the MMUCR.SV bit. In the single virtual memory system, a number of processes run simultaneously,
using virtual address space on an exclusive basis, and the physical address corresponding to a particular virtual
address is uniquely determined. In the multiple virtual memory system, a number of processes run while sharing
the virtual address space, and a particular virtual address may be translated into different physical addresses
depending on the process. The only difference between the single virtual memory and multiple virtual memory
systems in terms of operation is in the TLB address comparison method (see section 3.4.3, Address

Translation Method).

3.3.7 Address Space Identifier (ASID)

In multiple virtual memory mode, the 8-bit address space identifier (ASID) is used to distinguish between processes
running simultaneously while sharing the virtual address space. Software can set the ASID of the currently
executing process in PTEH in the MMU. The TLB does not have to be purged when processes are switched by
means of ASID.

In single virtual memory mode, ASID is used to provide memory protection for processes running simultaneously
while using the virtual memory space on an exclusive basis.

HPM-29

Dreamcast SH4 Program Manual

3.4 TLB Functions
3.4.1 Unified TLB (UTLB) Configuration

The unified TLB (UTLB) is so called because of its use for the following two purposes:

1) To translate a virtual address to a physical address in a data access

2) As a table of address translation information to be recorded in the instruction TLB in the event of an
ITLB miss

Information in the address translation table located in external memory is cached into the UTLB. The address
translation table contains virtual page numbers and address space identifiers, and corresponding physical page
numbers and page management information. Figure 3.7 shows the overall configuration of the UTLB. The UTLB
consists of 64 fully-associative type entries. Figure 3.8 shows the relationship between the address format and

page size.

Entry O
Entry 1
Entry 2

Figure 3.7 UTLB Configuration

ASID [7:0] | VPN [31:10] | V| |PPN [28:10]

SZ[1:.0]

SH|C|PR[1:0]|D

WT|SA[2:0]|TC

ASID [7:0] | VPN [31:10] | V| |PPN [28:10]

SZ[1:.0]

SH|C|PR[1:0]|D

WT|SA[2:0]|TC

SZ[1:0]

SH|C|PR[1:0]|D

WT|SA[2:0]|TC

ASID [7:0] | VPN [31:10] | V| |PPN [28:10]

Entry 63 |ASID[7:0]|V.PN [31:10]|v| |PPN [28:10]|SZ[1:0]|SI-.||C|PR [1:O]|D|WT|SA[2:O]|TC|

Figure 3.8 Relationship between Page Size and Address Format

» 1-kbyte page

Virtual address

31 10 9 0 28 10 9 0
VPN Offset —) PPN Offset
» 4-kbyte page
Virtual address Physical address
31 1211 0 28 12 11 0
VPN Offset — PPN Offset
» 64-kbyte page
Virtual address Physical address
31 16 15 0 28 16 15 0
VPN Offset —) PPN Offset
» 1-Mbyte page
Virtual address Physical address
31 20 19 0 28 20 19 0
VPN Offset e PPN Offset

Physical address

HPM-30

3. Memory Management Unit (MMU)

e VPN: Virtual page number

For 1-kbyte page: upper 22 bits of virtual address
For 4-kbyte page: upper 20 bits of virtual address
For 64-kbyte page: upper 16 bits of virtual address
For 1-Mbyte page: upper 12 bits of virtual address
* ASID: Address space identifier

Indicates the process that can access a virtual page.

In single virtual memory mode and user mode, or in multiple virtual memory mode, if the SH bit is 0, this
identifier is compared with the ASID in PTEH when address comparison is performed.

e SH: Share status bit

When 0, pages are not shared by processes.
When 1, pages are shared by processes.

e SZ: Page size bits

Specify the page size.

00: 1-kbyte page

01: 4-kbyte page

10: 64-kbyte page

11: 1-Mbyte page

¢ V: Validity bit

Indicates whether the entry is valid.

0: Invalid

1: Valid

Cleared to 0 by a power-on reset.

Not affected by a manual reset.

¢ PPN: Physical page number

Upper 22 bits of the physical address.

With a 1-kbyte page, PPN bits [28:10] are valid.
With a 4-kbyte page, PPN bits [28:12] are valid.
With a 64-kbyte page, PPN bits [28:16] are valid.
With a 1-Mbyte page, PPN bits [28:20] are valid.

The synonym problem must be taken into account when setting the PPN (see section 3.5.5, Avoiding
Synonym Problems).

¢ PR: Protection key data

2-bit data expressing the page access right as a code.

00: Can be read only, in privileged mode

01: Can be read and written in privileged mode

10: Can be read only, in privileged or user mode

11: Can be read and written in privileged mode or user mode
e C: Cacheability bit

Indicates whether a page is cacheable.

0: Not cacheable

1: Cacheable

HPM-31

Dreamcast SH4 Program Manual

When control register space is mapped, this bit must be cleared to 0.

¢ D: Dirty bit

Indicates whether a write has been performed to a page.

0: Write has not been performed

1: Write has been performed

e WT: Write-through bit

Specifies the cache write mode.

0: Copy-back mode

1: Write-through mode

* SA: Space attribute bits

Valid only when the page is mapped onto PCMCIA connected to area 5 or 6.
000: Undefined

001: Variable-size I/ O space (base size according to IOIS16 signal)

010: 8-bit I/ O space

011: 16-bit I/ O space

100: 8-bit common memory space

101: 16-bit common memory space

110: 8-bit attribute memory space

111: 16-bit attribute memory space

e TC: Timing control bit

Used to select wait control register bits in the bus control unit for areas 5 and 6.
0: WCR2 (A5W2-A5W0) and PCR (A5PCW1-A5PCWO0, AS5TED2-A5TEDO, ASTEH2-A5TEHO0) are used
1: WCR2 (A6W2-A6W0) and PCR (A6PCW1-A6PCW0, A6TED2-A6TEDO, AGTEH2-A6TEHO) are used

3.4.2 Instruction TLB (ITLB) Configuration

The ITLB is used to translate a virtual address to a physical address in an instruction access. Information in the
address translation table located in the UTLB is cached into the ITLB. Figure 3.9 shows the overall configuration of
the ITLB. The ITLB consists of 4 fully-associative type entries. The address translation information is almost the
same as that in the UTLB, but with the following differences:

1) D and WT bits are not supported.
2) There is only one PR bit, corresponding to the upper of the PR bits in the UTLB.
Figure 3.9 /TLB Configuration

Entry 0 |ASID [7:0] | VPN [31:10]
Entry 1 |ASID [7:0] | VPN [31:10]
Entry 2 |ASID [7:0] | VPN [31:10]
Entry 3 |ASID [7:0] | VPN [31:10]

PPN [28:10] | SZ [1:0] | SH
PPN [28:10] | SZ [1:0] | SH
PPN [28:10] | SZ [1:0] | SH
PPN [28:10] | SZ [1:0] | SH

PR [SA[2:0]|TC
PR [SA[2:0]|TC
PR [SA[2:0]|TC
PR [SA[2:0]|TC

\
\
\
\

O[O0

HPM-32

3. Memory Management Unit (MMU)

3.4.3 Address Translation Method

ccesses using the UTLB and ITLB.

Figure 3.10 Fflowchart of Memory Access Using UTLB

Data access to virtual address (VA)

)

Figures 3.10 and 3.11 show flowcharts of memory a
VA's

in P4 area
On-chip 1/0O access

VAis
in P2 area

in

VAis

VA'is in PO, UO,

P1 area or P3 area

A

and (MMUCR.SV =0 or

VPNs match
andV=1

SR.MD = 0)

VPNs match
and ASIDs match and
V=1

No

Data TLB miss
exception

0 (User)

Data TLB multiple
hit exception

Data TLB protection
violation exception

Data TLB protection
violation exception

Cache access
in copy-back mode

Cache access
in write-through mode

Memory access

(Non-cacheable)

HPM-33

Dreamcast SH4 Program Manual

Figure 3.11 Fflowchart of Memory Access Using ITLB

Access prohibited

VPNs match

andV=1

No

Instruction access to virtual address (VA))
VA is VA is VA is VA s in PO, UO,
inP4 area |in P2 area in P1 area or P3 area
A
0

VPNs match
and ASIDs match and
V=1

Search UTLB

Instruction TLB
miss exception

Record in ITLB

Instruction TLB protection
violation exception

Hardware ITLB
miss handling

Only one
entry matches

Cc=1
and CCR.CE=1

1 (Privileged)

Instruction TLB
multiple hit exception

Cache access

A

I Memory access

(Non-cacheable)

HPM-34

3. Memory Management Unit (MMU)

3.5 MMU Functions
3.5.1 MMU Hardware Management

The SH7091 supports the following MMU functions.

1) The MMU decodes the virtual address to be accessed by software, and performs address translation by
controlling the UTLB/ITLB in accordance with the MMUCR settings.

2) The MMU determines the cache access status on the basis of the page management information read
during address translation (C, WT, SA, and TC bits).

3) If address translation cannot be performed normally in a data access or instruction access, the MMU
notifies software by means of an MMU exception.

4) If address translation information is not recorded in the ITLB in an instruction access, the MMU searches
the UTLB, and if the necessary address translation information is recorded in the UTLB, the MMU
copies this information into the ITLB in accordance with MMUCR.LRUL

3.5.2 MMU Software Management

Software processing for the MMU consists of the following:

1) Setting of MMU-related registers. Some registers are also partially updated by hardware automatically.

2) Recording, deletion, and reading of TLB entries. There are two methods of recording UTLB entries: by
using the LDTLB instruction, or by writing directly to the memory-mapped UTLB. ITLB entries can only
be recorded by writing directly to the memory-mapped ITLB. For deleting or reading UTLB/ITLB
entries, it is possible to access the memory-mapped UTLB/ITLB.

3) MMU exception handling. When an MMU exception occurs, processing is performed based on
information set by hardware.

3.5.3 MMVU Instruction (LDTLB)

ATLB load instruction (LDTLB) is provided for recording UTLB entries. When an LDTLB instruction is issued, the
SH7091 copies the contents of PTEH, PTEL, and PTEA to the UTLB entry indicated by MMUCR.URC. ITLB entries
are not updated by the LDTLB instruction, and therefore address translation information purged from the UTLB

entry may still remain in the ITLB entry. As the LDTLB instruction changes address translation information, ensure
that it is issued by a program in the P1 or P2 area. The operation of the LDTLB instruction is shown in figure 3.12.

HPM-35

Dreamcast SH4 Program Manual

Figure 3.12 Operation of LDTLB Instruction

MMUCR
31 26 2524 23 1817 16 15 109 8 7 3210
LRUI — URB — URC \sv — TI|—|aT
—_—
Entry specification SQMD
PTEL
31 2928 109876543210
— PPN —|vlsz] PR |sZ|c|D[sHwT
PTEH
31 109 8 7 0
VPN — ASID PTEA
31 432 0
— Tc| sa
A 4 IIi

Entry0 |ASID[7:0] |VPN[31:10] |V | |PPN[28:10] |SZ[1:0] |SH|C |PR[1:0] | D |WT|SA[2:0] | TC

Entry 1 |ASID[7:0] |VPN[31:10] [V | |PPN[28:10] [SZ[1:0] |SH|C |PR[1:0] | D |WT|SA[2:0] | TC

Entry2 |ASID[7:0] |VPN[31:10] [V | |PPN[28:10] [SZ[1:0] |SH|C |PR[1:0] | D |WT|SA[2:0] | TC

Entry 63 | ASID [7:0] | VPN [31:10] |V PPN [28:10] |SZ [1:0] | SH| C |PR[1:0] | D | WT|SA[2:0] | TC

UTLB
3.5.4 Hardware ITLB Miss Handling

In an instruction access, the SH7091 searches the ITLB. If it cannot find the necessary address translation
information (i.e. in the event of an ITLB miss), the UTLB is searched by hardware, and if the necessary address
translation information is present, it is recorded in the ITLB. This procedure is known as hardware ITLB miss
handling. If the necessary address translation information is not found in the UTLB search, an instruction TLB miss
exception is generated and processing passes to software.

3.5.5 Avoiding Synonym Problems

When 1- or 4-kbyte pages are recorded in TLB entries, a synonym problem may arise. The problem is that, when a
number of virtual addresses are mapped onto a single physical address, the same physical address data is recorded
in a number of cache entries, and it becomes impossible to guarantee data integrity. This problem does not occur
with the instruction TLB or instruction cache . In the SH7091, entry specification is performed using bits [13:5] of the
virtual address in order to achieve fast operand cache operation. However, bits [13:10] of the virtual address in the
case of a 1-kbyte page, and bits [13:12] of the virtual address in the case of a 4-kbyte page, are subject to address
translation. As a result, bits [13:10] of the physical address after translation may differ from bits [13:10] of the
virtual address.

Consequently, the following restrictions apply to the recording of address translation information in UTLB entries.

HPM-36

3. Memory Management Unit (MMU)

1) When address translation information whereby a number of 1-kbyte page UTLB entries are translated
into the same physical address is recorded in the UTLB, ensure that the VPN [13:10] values are the same.

2) When address translation information whereby a number of 4-kbyte page UTLB entries are translated
into the same physical address is recorded in the UTLB, ensure that the VPN [13:12] values are the same.

3) Do not use 1-kbyte page UTLB entry physical addresses with UTLB entries of a different page size.
4) Do not use 4-kbyte page UTLB entry physical addresses with UTLB entries of a different page size.

The above restrictions apply only when performing accesses using the cache. When cache index mode is used, VPN
[25] is used for the entry address instead of VPN [13], and therefore the above restrictions apply to VPN [25].

Note: When multiple items of address translation information use the same physical memory to provide for
future SH Series expansion, ensure that the VPN [20:10] values are the same. Also, do not use the same
physical address for address translation information of different page sizes.

3.6 MMU Exceptions

There are seven MMU exceptions: the instruction TLB multiple hit exception, instruction TLB miss exception,
instruction TLB protection violation exception, data TLB multiple hit exception, data TLB miss exception, data TLB
protection violation exception, and initial page write exception. Refer to figures 3.10 and 3.11 for the conditions
under which each of these exceptions occurs.

3.6.1 Instruction TLB Multiple Hit Exception

An instruction TLB multiple hit exception occurs when more than one ITLB entry matches the virtual address to
which an instruction access has been made. If multiple hits occur when the UTLB is searched by hardware in
hardware ITLB miss handling, a data TLB multiple hit exception will result.

When an instruction TLB multiple hit exception occurs a reset is executed, and cache coherency is not guaranteed.
Hardware Processing: In the event of an instruction TLB multiple hit exception, hardware carries out the

following processing:

1) Sets the virtual address at which the exception occurred in TEA.
2) Sets exception code H'140 in EXPEVT.
3) Branches to the reset handling routine (H'A000 0000).
Software Processing (Reset Routine): The ITLB entries which caused the multiple hit exception are checked in

the reset handling routine. This exception is intended for use in program debugging, and should not normally
be generated.

HPM-37

Dreamcast SH4 Program Manual

3.6.2

Instruction TLB Miss Exception

An instruction TLB miss exception occurs when address translation information for the virtual address to which an
instruction access is made is not found in the UTLB entries by the hardware ITLB miss handling procedure. The
instruction TLB miss exception processing carried out by hardware and software is shown below. This is the same
as the processing for a data TLB miss exception.

Hardware Processing: In the event of an instruction TLB miss exception, hardware carries out the
following processing:

1) Sets the VPN of the virtual address at which the exception occurred in PTEH.
2) Sets the virtual address at which the exception occurred in TEA.
3) Sets exception code H'040 in EXPEVT.

4) Sets the PC value indicating the address of the instruction at which the exception occurred in SPC. If the
exception occurred at a delay slot, sets the PC value indicating the address of the delayed branch
instruction in SPC.

5) Sets the SR contents at the time of the exception in SSR.

6) Sets the MD bit in SR to 1, and switches to privileged mode.

7) Sets the BL bit in SR to 1, and masks subsequent exception requests.
8) Sets the RB bitin SR to 1.

9) Branches to the address obtained by adding offset H'0000 0400 to the contents of VBR, and starts the
instruction TLB miss exception handling routine.

Software Processing (Instruction TLB Miss Exception Handling Routine): Softwareis responsible for searching
the external memory page table and assigning the necessary page table entry. Software should carry out the
following processing in order to find and assign the necessary page table entry.

1) Write to PTEL the values of the PPN, PR, SZ, C, D, SH, V, and WT bits in the page table entry recorded
in the external memory address translation table. If necessary, the values of the SA and TC bits should
be written to PTEA.

2) When the entry to be replaced in entry replacement is specified by software, write that value to URC in
the MMUCR register. If URC is greater than URB at this time, the value should be changed to an
appropriate value after issuing an LDTLB instruction.

3) Execute the LDTLB instruction and write the contents of PTEH, PTEL, and PTEA to the TLB.

4) Finally, execute the exception handling return instruction (RTE), terminate the exception handling
routine, and return control to the normal flow. The RTE instruction should be issued at least one
instruction after the LDTLB instruction.

HPM-38

3. Memory Management Unit (MMU)

3.6.3 Instruction TLB Protection Violation Exception

An instruction TLB protection violation exception occurs when, even though an ITLB entry contains address
translation information matching the virtual address to which an instruction access is made, the actual access type
is not permitted by the access right specified by the PR bit. The instruction TLB protection violation exception
processing carried out by hardware and software is shown below.

Hardware Processing: In the event of an instruction TLB protection violation exception, hardware carries out the
following processing:

1) Sets the VPN of the virtual address at which the exception occurred in PTEH.
2) Sets the virtual address at which the exception occurred in TEA.
3) Sets exception code H'0AQ in EXPEVT.

4) Sets the PC value indicating the address of the instruction at which the exception occurred in SPC. If the
exception occurred at a delay slot, sets the PC value indicating the address of the delayed branch
instruction in SPC.

5) Sets the SR contents at the time of the exception in SSR.

6) Sets the MD bit in SR to 1, and switches to privileged mode.

7) Sets the BL bit in SR to 1, and masks subsequent exception requests.
8) Sets the RB bit in SR to 1.

9) Branches to the address obtained by adding offset H'0000 0100 to the contents of VBR, and starts the
instruction TLB protection violation exception handling routine.

SoftwareProcessing(InstructionTLBProtectionViolationExceptionHandlingRoutine): Resolvetheinstruction
TLB protection violation, execute the exception handling return instruction (RTE), terminate the exception handling
routine, and return control to the normal flow. The RTE instruction should be issued at least one instruction after
the LDTLB instruction.

3.6.4 Data TLB Multiple Hit Exception

A data TLB multiple hit exception occurs when more than one UTLB entry matches the virtual address to which a
data access has been made. A data TLB multiple hit exception is also generated if multiple hits occur when the
UTLB is searched in hardware ITLB miss handling.

When a data TLB multiple hit exception occurs a reset is executed, and cache coherency is not guaranteed. The
contents of PPN in the UTLB prior to the exception may also be corrupted.

Hardware Processing: In the event of a data TLB multiple hit exception, hardware carries out the
following processing:

1) Sets the virtual address at which the exception occurred in TEA.
2) Sets exception code H'140 in EXPEVT.
3) Branches to the reset handling routine (H'A000 0000).
Software Processing (Reset Routine): The UTLB entries which caused the multiple hit exception are checked in

the reset handling routine. This exception is intended for use in program debugging, and should not normally
be generated.

HPM-39

Dreamcast SH4 Program Manual

3.6.5

Data TLB Miss Exception

A data TLB miss exception occurs when address translation information for the virtual address to which a data
access is made is not found in the UTLB entries. The data TLB miss exception processing carried out by hardware
and software is shown below.

Hardware Processing: In the event of a data TLB miss exception, hardware carries out the following processing:

1) Sets the VPN of the virtual address at which the exception occurred in PTEH.
2) Sets the virtual address at which the exception occurred in TEA.

3) Sets exception code H'040 in the case of a read, or H'060 in the case of a write, in EXPEVT (OCBP,
OCBWRB: read; OCBI, MOVCA.L: write).

4) Sets the PC value indicating the address of the instruction at which the exception occurred in SPC. If the
exception occurred at a delay slot, sets the PC value indicating the address of the delayed branch
instruction in SPC.

5) Sets the SR contents at the time of the exception in SSR.

6) Sets the MD bit in SR to 1, and switches to privileged mode.

7) Sets the BL bit in SR to 1, and masks subsequent exception requests.
8) Sets the RB bitin SR to 1.

9) Branches to the address obtained by adding offset H'0000 0400 to the contents of VBR, and starts the data
TLB miss exception handling routine.

Software Processing (Data TLB Miss Exception Handling Routine): Software is responsible for searching the

external

memory page table and assigning the necessary page table entry. Software should carry out the following

processing in order to find and assign the necessary page table entry.

3.6.6

1) Write to PTEL the values of the PPN, PR, SZ, C, D, SH, V, and WT bits in the page table entry recorded
in the external memory address translation table. If necessary, the values of the SA and TC bits should
be written to PTEA.

2) When the entry to be replaced in entry replacement is specified by software, write that value to URC in
the MMUCR register. If URC is greater than URB at this time, the value should be changed to an
appropriate value after issuing an LDTLB instruction.

3) Execute the LDTLB instruction and write the contents of PTEH, PTEL, and PTEA to the UTLB.

4) Finally, execute the exception handling return instruction (RTE), terminate the exception handling
routine, and return control to the normal flow. The RTE instruction should be issued at least one
instruction after the LDTLB instruction.

Data TLB Protection Violation Exception

A data TLB protection violation exception occurs when, even though a UTLB entry contains address translation

informa
the acce

tion matching the virtual address to which a data access is made, the actual access type is not permitted by
ss right specified by the PR bit. The data TLB protection violation exception processing carried out by

hardware and software is shown below.

HPM-40

3. Memory Management Unit (MMU)

Hardware Processing: In the event of a data TLB protection violation exception, hardware carries out the
following processing:

1) Sets the VPN of the virtual address at which the exception occurred in PTEH.
2) Sets the virtual address at which the exception occurred in TEA.

3) Sets exception code H'0AO in the case of a read, or H'0CO in the case of a write, in EXPEVT (OCBP,
OCBWRB: read; OCBI, MOVCA.L: write).

4) Sets the PC value indicating the address of the instruction at which the exception occurred in SPC. If the
exception occurred at a delay slot, sets the PC value indicating the address of the delayed branch
instruction in SPC.

5) Sets the SR contents at the time of the exception in SSR.

6) Sets the MD bit in SR to 1, and switches to privileged mode.

7) Sets the BL bit in SR to 1, and masks subsequent exception requests.

8) Sets the RB bit in SR to 1.

9) Branches to the address obtained by adding offset H'0000 0100 to the contents of VBR, and starts the data

TLB protection violation exception handling routine.

Software Processing (Data TLB Protection Violation Exception Handling Routine): Resolve the data TLB
protection violation, execute the exception handling return instruction (RTE), terminate the exception handling
routine, and return control to the normal flow. The RTE instruction should be issued at least one instruction after
the LDTLB instruction.

3.6.7 Initial Page Write Exception

An initial page write exception occurs when the D bit is 0 even though a UTLB entry contains address translation
information matching the virtual address to which a data access (write) is made, and the access is permitted. The
initial page write exception processing carried out by hardware and software is shown below.

Hardware Processing: In the event of an initial page write exception, hardware carries out the
following processing:

1) Sets the VPN of the virtual address at which the exception occurred in PTEH.
2) Sets the virtual address at which the exception occurred in TEA.
3) Sets exception code H'080 in EXPEVT.

4) Sets the PC value indicating the address of the instruction at which the exception occurred in SPC. If the
exception occurred at a delay slot, sets the PC value indicating the address of the delayed branch
instruction in SPC.

5) Sets the SR contents at the time of the exception in SSR.

6) Sets the MD bit in SR to 1, and switches to privileged mode.

7) Sets the BL bit in SR to 1, and masks subsequent exception requests.
8) Sets the RB bit in SR to 1.

9) Branches to the address obtained by adding offset H'0000 0100 to the contents of VBR, and starts the
initial page write exception handling routine.

HPM-41

Dreamcast SH4 Program Manual

SoftwareProcessing(InitialPage WriteExceptionHandlingRoutine): Thefollowingprocessingshouldbecarried
out as the responsibility of software:

1) Retrieve the necessary page table entry from external memory.
2) Write 1 to the D bit in the external memory page table entry.

3) Write to PTEL the values of the PPN, PR, SZ, C, D, WT, SH, and V bits in the page table entry recorded
in external memory. If necessary, the values of the SA and TC bits should be written to PTEA.

4) When the entry to be replaced in entry replacement is specified by software, write that value to URC in
the MMUCR register. If URC is greater than URB at this time, the value should be changed to an
appropriate value after issuing an LDTLB instruction.

5) Execute the LDTLB instruction and write the contents of PTEH, PTEL, and PTEA to the UTLB.

6) Finally, execute the exception handling return instruction (RTE), terminate the exception handling
routine, and return control to the normal flow. The RTE instruction should be issued at least one
instruction after the LDTLB instruction.

3.7 Memory-Mapped TLB Configuration

To enable the ITLB and UTLB to be managed by software, their contents can be read and written by a P2 area
program with a MOV instruction in privileged mode. Operation is not guaranteed if access is made from a program
in another area. A branch to an area other than the P2 area should be made at least 8 instructions after this MOV
instruction. The ITLB and UTLB are allocated to the P4 area in physical memory space. VPN, V, and ASID in the
ITLB can be accessed as an address array, PPN, V, SZ, PR, C, and SH as data array 1, and SA and TC as data array
2. VPN, D, V, and ASID in the UTLB can be accessed as an address array, PPN, V, SZ, PR, C, D, WT, and SH as data
array 1, and SA and TC as data array 2. V and D can be accessed from both the address array side and the data array
side. Only longword access is possible. Instruction fetches cannot be performed in these areas. For reserved bits, a
write value of 0 should be specified; their read value is undefined.

3.7.1 ITLB Address Array

The ITLB address array is allocated to addresses H'F200 0000 to H'F2FF FFFF in the P4 area. An address array access
requires a 32-bit address field specification (when reading or writing) and a 32-bit data field specification (when
writing). Information for selecting the entry to be accessed is specified in the address field, and VPN, V, and ASID
to be written to the address array are specified in the data field.

In the address field, bits [31:24] have the value HF2 indicating the ITLB address array, and the entry is selected by
bits [9:8]. As longword access is used, 0 should be specified for address field bits [1:0].

In the data field, VPN is indicated by bits [31:10], V by bit [8], and ASID by bits [7:0].
The following two kinds of operation can be used on the ITLB address array:

1) ITLB address array read VPN, V, and ASID are read into the data field from the ITLB entry corresponding
to the entry set in the address field.

2) ITLB address array write VPN, V, and ASID specified in the data field are written to the ITLB entry
corresponding to the entry set in the address field.

HPM-42

3. Memory Management Unit (MMU)

Address field

Data field

Figure 3.13 Memory-Mapped ITLB Address Array

31 2423 109 8 7
1121 201210]0[1]0] cceevrereremei E | cooeeereneiniennnn,
31 109 8 7

VPN -V ASID

VPN: Virtual page number

V: Validity bit
E: Entry

3.7.2 ITLB Data Array 1

ASID: Address space identifier
. Reserved bits (0 write value, undefined

read value)

ITLB data array 1 is allocated to addresses H'F300 0000 to H'F37F FFFF in the P4 area. A data array access requires
a 32-bit address field specification (when reading or writing) and a 32-bit data field specification (when writing).

Information for selecting the entry to be accessed is specified in the address field, and PPN, V, SZ, PR, C, and SH to
be written to the data array are specified in the data field.

In the address field, bits [31:23] have the value H'F30 indicating ITLB data array 1, and the entry is selected by bits

[9:8].

In the data field, PPN is indicated by bits [28:10], V by bit [8], SZ by bits [7] and [4], PR by bit [6], C by bit [3], and

SH by bit [1].

The following two kinds of operation can be used on ITLB data array 1:

1) ITLB data array 1 read PPN, V, SZ, PR, C, and SH are read into the data field from the ITLB entry
corresponding to the entry set in the address field.

2) ITLB data array 1 write PPN, V, SZ, PR, C, and SH specified in the data field are written to the ITLB entry
corresponding to the entry set in the address field.

Address field

Data field

Figure 3.14 Memory-Mapped ITLB Data Array 1

31 2423

109876543210

PPN

/

cl-

PPN: Physical page number PR:

V: Validity bit
E: Entry
SZ: Page size bits

C:
SH:

Protection key data PR SZ

Cacheability bit
Share status bit

read value)

: Reserved bits (0 write value, undefined

SH

HPM-43

Dreamcast SH4 Program Manual

3.7.3 ITLB Data Array 2

ITLB data array 2 is allocated to addresses H'F380 0000 to H'F3FF FFFF in the P4 area. A data array access requires
a 32-bit address field specification (when reading or writing) and a 32-bit data field specification (when writing).
Information for selecting the entry to be accessed is specified in the address field, and SA and TC to be written to
data array 2 are specified in the data field.

In the address field, bits [31:23] have the value H'F38 indicating ITLB data array 2, and the entry is selected by bits [9:8].
In the data field, SA is indicated by bits [2:0], and TC by bit [3].
The following two kinds of operation can be used on ITLB data array 2:

1) ITLB data array 2 read SA and TC are read into the data field from the ITLB entry corresponding to the
entry set in the address field.

2) ITLB data array 2 write SA and TC specified in the data field are written to the ITLB entry corresponding
to the entry set in the address field.

Figure 3.15 Memory-Mapped ITLB Data Array 2

31 2423 10 9 87 0
Address field | 11112100221 L] «cvcvereeeremememimiiiiienen, E | covereiiin
31 4320
Data field | ..o SA
|
\
L . . . TC
TC: Timing control bit SA: Space attribute bits
E: Entry ----: Reserved bits (0 write value, undefined read
value)

3.7.4 UTLB Address Array

The UTLB address array is allocated to addresses HF600 0000 to H'F6FF FFFF in the P4 area. An address array access
requires a 32-bit address field specification (when reading or writing) and a 32-bit data field specification (wWhen
writing). Information for selecting the entry to be accessed is specified in the address field, and VPN, D, V, and ASID
to be written to the address array are specified in the data field.

In the address field, bits [31:24] have the value H'F6 indicating the UTLB address array, and the entry is selected by
bits [13:8]. The address array bit [7] association bit (A bit) specifies whether or not address comparison is performed
when writing to the UTLB address array.

In the data field, VPN is indicated by bits [31:10], D by bit [9], V by bit [8], and ASID by bits [7:0].

The following three kinds of operation can be used on the UTLB address array:

1) UTLB address array read VPN, D, V, and ASID are read into the data field from the UTLB entry
corresponding to the entry set in the address field. In a read, associative operation is not performed
regardless of whether the association bit specified in the address field is 1 or 0.

2) UTLB address array write (non-associative) VPN, D, V, and ASID specified in the data field are written
to the UTLB entry corresponding to the entry set in the address field. The A bit in the address field
should be cleared to 0.

3) UTLB address array write (associative)

HPM-44

3. Memory Management Unit (MMU)

When a write is performed with the A bit in the address field set to 1, comparison of all the UTLB entries is carried
out using the VPN specified in the data field and PTEH.ASID. The usual address comparison rules are followed,
but the occurrence of a TLB miss exception results in no operation. If the comparison identifies a UTLB entry
corresponding to the VPN specified in the data field, D and V specified in the data field are written to that entry. If
there is more than one matching entry, a data TLB multiple hit exception results. This associative operation is
simultaneously carried out on the ITLB, and if a matching entry is found in the ITLB, V is written to that entry. Even
if the UTLB comparison results in no operation, a write to the ITLB side only is performed as long as there is an
ITLB match. If there is a match in both the UTLB and ITLB, the UTLB information is also written to the ITLB.

Figure 3.16 Memory-Mapped UTLB Address Array

31 2423 1413 8 7 210
Address field [1|1[{1]1]0]1|1]0] «-eevererrrreeememenmennnnn. E Al e
31302928 109 8 7 0
Data field VPN D|V ASID
VPN: Virtual page number ASID: Address space identifier
V: Validity bit A: Association bit
E: Entry ----: Reserved bits (0 write value, undefined
D: Dirty bit read value)

3.7.5 UTLB Data Array 1

UTLB data array 1 is allocated to addresses H'F700 0000 to H'F77F FFEF in the P4 area. A data array access requires
a 32-bit address field specification (when reading or writing) and a 32-bit data field specification (when writing).
Information for selecting the entry to be accessed is specified in the address field, and PPN, V, SZ, PR, C, D, SH, and
WT to be written to the data array are specified in the data field.

In the address field, bits [31:23] have the value HF70 indicating UTLB data array 1, and the entry is selected by
bits [13:8].

In the data field, PPN is indicated by bits [28:10], V by bit [8], SZ by bits [7] and [4], PR by bits [6:5], C by bit [3], D
by bit [2], SH by bit [1], and WT by bit [0].

The following two kinds of operation can be used on UTLB data array 1:

1) UTLB data array 1 read PPN, V, SZ, PR, C, D, SH, and WT are read into the data field from the UTLB
entry corresponding to the entry set in the address field.

2) UTLB data array 1 write PPN, V, SZ, PR, C, D, SH, and WT specified in the data field are written to the
UTLB entry corresponding to the entry set in the address field.

HPM-45

Dreamcast SH4 Program Manual

Figure 3.17 Memory-Mapped UTLB Data Array 1

31 2423 1413 8 7 0
Address field [11221021 2]2[0] -cccvereeeremimiminiinnnins E | cerereii
31302928 109876543210
Data field |....... PPN vl |pr!| lclD
/ |
PPN: Physical page number PR: Protection key data \/ / ‘
b Y4 H WT
V: Validity bit C: Cacheability bit S S
E: Entry SH: Share status bit
SZ: Page size bits WT: Write-through bit
D: Dirty bit -.... Reserved bits (0 write value, undefined
read value)

3.7.6 UTLB Data Array 2

UTLB data array 2 is allocated to addresses HF780 0000 to H'F7FF FFFF in the P4 area. A data array access requires
a 32-bit address field specification (when reading or writing) and a 32-bit data field specification (when writing).
Information for selecting the entry to be accessed is specified in the address field, and SA and TC to be written to
data array 2 are specified in the data field.

In the address field, bits [31:23] have the value H'F78 indicating UTLB data array 2, and the entry is selected by
bits [13:8].

In the data field, TC is indicated by bit [3], and SA by bits [2:0].

The following two kinds of operation can be used on UTLB data array 2:

1) UTLB data array 2 read SA and TC are read into the data field from the UTLB entry corresponding to the
entry set in the address field.

2) UTLB data array 2 write SA and TC specified in the data field are written to the UTLB entry
corresponding to the entry set in the address field.

Figure 3.18 Memory-Mapped UTLB Data Array 2

31 2423 14 13 87 0
Address field | 111210122l 1] «cvcvereeemeemeininnnns E | e
31 432 0
Data field | ..ovoeei SA
TC: Timing control bit SA: Space attribute bits TC
E: Entry ----1 Reserved bits (0 write value, undefined read
value)

HPM-46

4. Caches

4.1 Overview

4.1.1 Features

The SH7091 has an on-chip 8-kbyte instruction cache (IC) for instructions and 16-kbyte operand cache (OC) for data.
Half of the memory of the operand cache (8 kbytes) can also be used as on-chip RAM. The features of these caches
are summarized in table 4.1.

Table 4.1 Cache Features

Item Instruction Cache Operand Cache
Capacity 8-kbyte cache 16-kbyte cache or 8-kbyte cache + 8-kbyte RAM
Type Direct mapping Direct mapping
Line size 32 bytes 32 bytes
Entries 256 512
Write method Copy-back/write-through selectable
Item Store Queues
Capacity 2 x 32 bytes
Addresses H'E000 0000 to H'E3FF FFFF
Write Store instruction (1-cycle write)
Write-back Prefetch instruction
Access right MMU off: according to MMUCR.SQMD
MMU on: according to individual page PR

HPM-47

Dreamcast SH4 Program Manual

4.1.2 Register Configuration
Table 4.2 shows the cache control registers.

Table 4.2 Cache Control Registers

Name Abbreviation R/W Initial Value*1 P4 Address*2 ::lila::ss*z Access Size
Cache control register CCR R/W H'0000 0000 H'FF00 001C H"1F00 001C 32
Queue address control QACRO R/Ws Undefined H'FFO0 0038 H'1F00 0038 32
register 0
%Lég;ltee??dress control QACR1 R/W Undefined H'FFO0 003C H'1F00 003C 32
i

Note: The initial value is the value after a power-on or manual reset.

This is the address when using the virtual/ physical address space P4 area. When making an access from
physical address space area 7 using the TLB, the upper 3 bits of the address are ignored.

4.2 Register Descriptions

There are three cache and store queue related control registers, as shown in figure 4.1.

Figure 4.1 Cache and Store Queue Control Registers

CCR
31 161514 1211109 8 7 6 543 2 1 0
... | cesecssns | eoeeee ’ ces | | CB/ |
| | A
11X ICI ICE OIX ORA OCI WT OCE
QACRO
31 54 210
.. AREA Ceeeen
QACR1
31 54 210
.. AREA

HPM-48

4. Caches

(1) Cache Control Register (CCR): CCR contains the following bits:

IIX:
ICL:
ICE:
OIX:

ORA:

OCI:
CB:
WT:

OCE:

IC index enable

IC invalidation

IC enable

OC index enable

OC RAM enable

OC invalidation
Copy-back enable
Write-through enable
OC enable

Longword access to CCR can be performed from H'FF00 001C in the P4 area and H'1F00 001C in area 7. The CCR
bits are used for the cache settings described below. Consequently, CCR modifications must only be made by a
program in the non-cached P2 area. After CCR is updated, an instruction that performs data access to the P0, P1,
P3, or UOQ area should be located at least four instructions after the CCR update instruction. Also, a branch
instruction to the PO, P1, P3, or U0 area should be located at least eight instructions after the CCR update instruction.

e [IX: IC index enable bit

0: Address bits [12:5] used for IC entry selection

1: Address bits [25] and [11:5] used for IC entry selection

¢ ICI: IC invalidation bit

When 1 is written to this bit, the V bits of all IC entries are cleared to 0. This bit always returns 0 when read.
¢ ICE: IC enable bit

Indicates whether or not the IC is to be used. When address translation is performed, the IC cannot be used
unless the C bit in the page management information is also 1.

0: IC not used

1: IC used

e OIX: OC index enable bit

0: Address bits [13:5] used for OC entry selection

1: Address bits [25] and [12:5] used for OC entry selection
e ORA: OC RAM enable bit

When the OC is enabled (OCE = 1), the ORA bit specifies whether the 8 kbytes from entry 128 to entry 255
and from entry 384 to entry 511 of the OC are to be used as RAM. When the OC is not enabled (OCE = 0),
the ORA bit should be cleared to 0.

0: 16 kbytes used as cache
1: 8 kbytes used as cache, and 8 kbytes as RAM
¢ OCI: OC invalidation bit

When 1 is written to this bit, the V and U bits of all OC entries are cleared to 0. This bit always returns 0
when read.

® CB: Copy-back bit

Indicates the P1 area cache write mode.
0: Write-through mode

1: Copy-back mode

HPM-49

Dreamcast SH4 Program Manual

e WT: Write-through bit
Indicates the PO, U0, and P3 area cache write mode. When address translation is performed, the value of the
WT bit in the page management information has priority.

0: Copy-back mode
1: Write-through mode
¢ OCE: OC enable bit

Indicates whether or not the OC is to be used. When address translation is performed, the OC cannot be
used unless the C bit in the page management information is also 1.

0: OC not used
1: OC used

Queue Address Control Register 0 (QACRO0): Longword access to QACRO0 can be performed from H'FF00 0038 in
the P4 area and H'1F00 0038 in area 7. QACRO specifies the area onto which store queue 0 (SQO) is mapped when
the MMU is off.

Queue Address Control Register1(QACR1): Longword access to QACR1 can be performed from H'FF00 003C in
the P4 area and H'1F00 003C in area 7. QACR1 specifies the area onto which store queue 1 (5Q1) is mapped when
the MMU is off.

4.3 Operand Cache (OC)
4.3.1 Configuration

Figure 4.2 shows the configuration of the operand cache.

HPM-50

4. Caches

Figure 4.2 Configuration of Operand Cache
Effective address

31 26 25 131211109 543210

0 0 0N/ A

<
<

\4

RAM area
determination

v [11:5]

A

OlIX —» -"-_"- ORA —» -"
[13] [12]
22 / :
9 Longword (LW) selection
Address array 3 Data array
s 0| Tagaddress | U | V LWO | LW1 | LW2 | LW3 | LW4 [LW5 | LW6 | LW7
3
Q
Q
2]
MMU 2
<
L >
19
511 19 bits 1 bit|1 bit 32 hits|32 bits|32 bits|32 bits|32 bits |32 bits|32 bits|32 bits
A A A A 4 A A 4
l A4 A4 A4 A4 A4 A4 A4 A4
>

Compare, l T

Read data Write data

Hit signal

The operand cache consists of 512 cache lines, each composed of a 19-bit tag, V bit, U bit, and 32-byte data.
¢ Tag
Stores the upper 19 bits of the 29-bit external memory address of the data line to be cached. The tag is not
initialized by a power-on or manual reset.
* V bit (validity bit)
Indicates that valid data is stored in the cache line. When this bit is 1, the cache line data is valid. The V bit
is initialized to 0 by a power-on reset, but retains its value in a manual reset.
o U bit (dirty bit)

The U bit is set to 1 if data is written to the cache line while the cache is being used in copy-back mode. That
is, the U bit indicates a mismatch between the data in the cache line and the data in external memory. The
U bitis never set to 1 while the cache is being used in write-through mode, unless it is modified by accessing
the memory-mapped cache (see section 4.5, Memory-Mapped Cache Configuration). The U bit is initialized
to 0 by a power-on reset, but retains its value in a manual reset.

e Data field

The data field holds 32 bytes (256 bits) of data per cache line. The data array is not initialized by a power-on
or manual reset.

HPM-51

Dreamcast SH4 Program Manual

4.3.2 Read Operation

When the OC is enabled (CCR.OCE = 1) and data is read by means of an effective address from a cacheable area,
the cache operates as follows:

1) The tag, V bit, and U bit are read from the cache line indexed by effective address bits [13:5].
2) The tag is compared with bits [28:10] of the address resulting from effective address translation by the

MMU:
e If the tag matches and the V bitis 1 - (3a)
e If the tag matches and the V bit is 0 -~ (3b)
e If the tag does not match and the V bit is 0 -~ (3b)
e If the tag does not match, the V bit is 1, and the U bitis 0 - (3b)
e If the tag does not match, the V bit is 1, and the U bit is 1 - (3¢)

3a. Cache hit

The data indexed by effective address bits [4:0] is read from the data field of the cache line indexed by effective
address bits [13:5] in accordance with the access size (quadword /longword / word /byte).

3b. Cache miss (no write-back)

Data is read into the cache line from the external memory space corresponding to the effective address. Data reading
is performed, using the wraparound method, in order from the longword data corresponding to the effective address,
and when the corresponding data arrives in the cache, the read data is returned to the CPU. While the remaining one
cache line of data is being read, the CPU can execute the next processing. When reading of one line of data is
completed, the tag corresponding to the effective address is recorded in the cache, and 1 is written to the V bit.

3c. Cache miss (with write-back)

The tag and data field of the cache line indexed by effective address bits [13:5] are saved in the write-back buffer.
Then data is read into the cache line from the external memory space corresponding to the effective address. Data
reading is performed, using the wraparound method, in order from the longword data corresponding to the
effective address, and when the corresponding data arrives in the cache, the read data is returned to the CPU. While
the remaining one cache line of data is being read, the CPU can execute the next processing. When reading of one
line of data is completed, the tag corresponding to the effective address is recorded in the cache, 1 is written to the
V bit, and 0 to the U bit. The data in the write-back buffer is then written back to external memory.

4.3.3 Write Operation

When the OC is enabled (CCR.OCE = 1) and data is written by means of an effective address to a cacheable area,
the cache operates as follows:

1) The tag, V bit, and U bit are read from the cache line indexed by effective address bits [13:5].
2) The tag is compared with bits [28:10] of the address resulting from effective address translation by the MMU:

Copy-back Write-through

e If the tag matches and the V bitis 1 - (3a) -~ (3b)
e If the tag matches and the V bit is 0 - (3c) - (3d)
e If the tag does not match and the V bit is 0 - (30) - (3d)
e If the tag does not match, the V bit is 1, and the U bit is 0 = (30) -~ (3d)
e If the tag does not match, the V bit is 1, and the U bitis 1 - (3e) - (3d)

3a. Cache hit (copy-back)

HPM-52

4. Caches

A data write in accordance with the access size (quadword /longword /word /byte) is performed for the data
indexed by bits [4:0] of the effective address of the data field of the cache line indexed by effective address bits [13:5].
Then 1 is set in the U bit.

3b. Cache hit (write-through)

A data write in accordance with the access size (quadword /longword /word /byte) is performed for the data
indexed by bits [4:0] of the effective address of the data field of the cache line indexed by effective address bits [13:5].
A write is also performed to the corresponding external memory using the specified access size.

3c. Cache miss (no copy-back/write-back)

A data write in accordance with the access size (quadword /longword /word /byte) is performed for the data
indexed by bits [4:0] of the effective address of the data field of the cache line indexed by effective address bits [13:5].
Then, data is read into the cache line from the external memory space corresponding to the effective address. Data
reading is performed, using the wraparound method, in order from the longword data corresponding to the
effective address, and one cache line of data is read excluding the written data. During this time, the CPU can
execute the next processing. When reading of one line of data is completed, the tag corresponding to the effective
address is recorded in the cache, and 1 is written to the V bit and U bit.

3d. Cache miss (write-through)

A write of the specified access size is performed to the external memory corresponding to the effective address. In
this case, a write to cache is not performed.

3e. Cache miss (with copy-back/write-back)

The tag and data field of the cache line indexed by effective address bits [13:5] are first saved in the write-back
buffer, and then a data write in accordance with the access size (quadword /longword /word /byte) is performed
for the data indexed by bits [4:0] of the effective address of the data field of the cache line indexed by effective
address bits [13:5]. Then, data is read into the cache line from the external memory space corresponding to the
effective address. Data reading is performed, using the wraparound method, in order from the longword data
corresponding to the effective address, and one cache line of data is read excluding the written data. During this
time, the CPU can execute the next processing. When reading of one line of data is completed, the tag corresponding
to the effective address is recorded in the cache, and 1 is written to the V bit and U bit. The data in the write-back
buffer is then written back to external memory.

4.3.4 Write-Back Buffer

In order to give priority to data reads to the cache and improve performance, the SH7091 has a write-back buffer
which holds the relevant cache entry when it becomes necessary to purge a dirty cache entry into external memory
as the result of a cache miss. The write-back buffer contains one cache line of data and the physical address of the
purge destination.

Figure 4.3 Configuration of Write-Back Buffer

Physical address bits [28:5] | LWO | LW1 | LW2 | LW3 | LW4 | LW5 | LW6 | LW7

4.3.5 Write-Through Buffer

The SH7091 has a 64-bit buffer for holding write data when writing data in write-through mode or writing to a
non-cacheable area. This allows the CPU to proceed to the next operation as soon as the write to the write-through
buffer is completed, without waiting for completion of the write to external memory.

Figure 4.4 Configuration of Write-Through Buffer

Physical address bits [28:0] | LWO | LW1

HPM-53

Dreamcast SH4 Program Manual

4.3.6 RAM Mode

Setting CCR.ORA to 1 enables 8 kbytes of the operand cache to be used as RAM. The operand cache entries used as
RAM are entries 128 to 255 and 384 to 511 . Other entries can still be used as cache. RAM can be accessed using
addresses H'7C00 0000 to H'7FFF FFFE. Byte-, word-, longword-, and quadword-size data reads and writes can be
performed in the operand cache RAM area. Instruction fetches cannot be performed in this area.

An example of RAM use is shown below. Here, the 4 kbytes comprising OC entries 128 to 256 are designated as
RAM area 1, and the 4 kbytes comprising OC entries 384 to 511 as RAM area 2.

e When OC index mode is off (CCR.OIX = 0)

H'7C00 0000 to H'7C00 OFFF (4 kB): Corresponds to RAM area 1
H'7C00 1000 to H'7C00 1FFF (4 kB): Corresponds to RAM area 1
H'7C00 2000 to H'7C00 2FFF (4 kB): Corresponds to RAM area 2
H'7C00 3000 to H'7C00 3FFF (4 kB): Corresponds to RAM area 2
H'7C00 4000 to H'7C00 4FFF (4 kB): Corresponds to RAM area 1

RAM areas 1 and 2 then repeat every 8 kbytes up to H7FFF FFFF.
Thus, to secure a continuous 8-kbyte RAM area, the area from H'7C00 1000 to H'7C00 2FFF can be used, for example.
¢ When OC index mode is on (CCR.OIX = 1)
H'7C00 0000 to H'7C00 OFEF (4 kB): Corresponds to RAM area 1
H'7C00 1000 to H'7C00 1FFF (4 kB): Corresponds to RAM area 1
H'7C00 2000 to H'7C00 2FFF (4 kB): Corresponds to RAM area 1

H'7DFF F000 to H'7DFF FFFF (4 kB): Corresponds to RAM area 1
H'7E00 0000 to H'ZE00 OFFF (4 kB): Corresponds to RAM area 2
H'7E00 1000 to H'ZE00 1FFF (4 kB): Corresponds to RAM area 2

H'7FFF F000 to H'7FFF FFFF (4 kB): Corresponds to RAM area 2

As the distinction between RAM areas 1 and 2 is indicated by address bit [25], the area from H'7DFF F000 to H'7E00
OFFF should be used to secure a continuous 8-kbyte RAM area.

4.3.7 OC Index Mode

Setting CCR.OIX to 1 enables OC indexing to be performed using bit [25] of the effective address. This is called OC
index mode. In normal mode, with CCR.OIX cleared to 0, OC indexing is performed using bits [13:5] of the effective
address; therefore, when 16 kbytes or more of consecutive data is handled, the OC is fully used by this data. This
results in frequent cache misses. Using index mode allows the OC to be handled as two 8-kbyte areas by means of
effective address bit [25], providing efficient use of the cache.

HPM-54

4. Caches

4.3.8 Coherency between Cache and External Memory

Coherency between cache and external memory should be assured by software. In the SH7091, the following four
new instructions are supported for cache operations. For details of these instructions, see section 10, Instruction
Descriptions.

Invalidate instruction: OCBI @Rn Cache invalidation (no write-back)
Purge instruction: OCBP @Rn Cache invalidation (with write-back)
Write-back instruction: OCBWB @Rn Cache write-back

Allocate instruction: MOVCA.L RO,@Rn Cache allocation

4.3.9 Prefetch Operation

The SH7091 supports a prefetch instruction to reduce the cache fill penalty incurred as the result of a cache miss. If
it is known that a cache miss will result from a read or write operation, it is possible to fill the cache with data
beforehand by means of the prefetch instruction to prevent a cache miss due to the read or write operation, and so
improve software performance. If a prefetch instruction is executed for data already held in the cache, or if an MMU
exception occurs at the intended prefetch address, the result is no operation, and an exception is not generated. For
details of the prefetch instruction, see section 10.73, PREF.

Prefetch instruction: PREF @Rn

4.4 Instruction Cache (IC)
4.4.1 Configuration

Figure 4.5 shows the configuration of the instruction cache.

HPM-55

Dreamcast SH4 Program Manual

Figure 4.5 Configuration of Instruction Cache

Effective address

31 26 25 131211109 543210

000N \/

<
<

[11:5]

A4
IIX —» m=

22 Longword (LW) selection
8
Address array 3 Data array
5 0| Tag address | V LWO | LW1 [LW2 | LW3 | LW4 [LW5 | LW6 | LW7
2
ko)
(]
0
MMU fn
<
wl,
19
255 19 bits 1 bit 32 bits|32 bits|32 bits|32 bits|32 bits|32 bits|32 hits|32 bits
A A A A A A A A
A4 A\ v A\ v v v A\
\ 4 —>
Compare l
Read data

Hit signal
The instruction cache consists of 256 cache lines, each composed of a 19-bit tag, V bit, and 32-byte data
(16 instructions).
e Tag

Stores the upper 19 bits of the 29-bit external memory address of the data line to be cached. The tag is not
initialized by a power-on or manual reset.

o V bit (validity bit)

Indicates that valid data is stored in the cache line. When this bit is 1, the cache line data is valid. The V bit
is initialized to 0 by a power-on reset, but retains its value in a manual reset.

¢ Data array

The data field holds 32 bytes (256 bits) of data per cache line. The data array is not initialized by a power-on
or manual reset.

HPM-56

4. Caches

4.4.2 Read Operation

When the IC is enabled (CCR.ICE = 1) and instruction fetches are performed by means of an effective address from
a cacheable area, the instruction cache operates as follows:

1) The tag and V bit are read from the cache line indexed by effective address bits [12:5].
2) The tag is compared with bits [28:10] of the address resulting from effective address translation by the

MMU:
e If the tag matches and the V bit is 1 - (3a)
e If the tag matches and the V bit is 0 - (3b)
e If the tag does not match and the V bit is 0 - (3b)
e If the tag does not match and the V bit is 1 - (3b)

3a. Cache hit

The data indexed by effective address bits [4:2] is read as an instruction from the data field of the cache line
indexed by effective address bits [12:5].

3b. Cache miss

Data is read into the cache line from the external memory space corresponding to the effective address. Data
reading is performed, using the wraparound method, in order from the longword data corresponding to the
effective address, and when the corresponding data arrives in the cache, the read data is returned to the CPU as an
instruction. When reading of one line of data is completed, the tag corresponding to the effective address is
recorded in the cache, and 1 is written to the V bit.

4.4.3 IC Index Mode

Setting CCR.IIX to 1 enables IC indexing to be performed using bit [25] of the effective address. This is called IC
index mode. In normal mode, with CCR.IIX cleared to 0, IC indexing is performed using bits [12:5] of the effective
address; therefore, when 8 kbytes or more of consecutive program instructions are handled, the IC is fully used by
this program. This results in frequent cache misses. Using index mode allows the IC to be handled as two 4-kbyte
areas by means of effective address bit [25], providing efficient use of the cache.

4.5 Memory-Mapped Cache Configuration

To enable the IC and OC to be managed by software, their contents can be read and written by a P2 area program
with a MOV instruction in privileged mode. Operation is not guaranteed if access is made from a program in
another area. In this case, a branch to the P0, U0, P1, or P3 area should be made at least 8 instructions after this MOV
instruction. The IC and OC are allocated to the P4 area in physical memory space. Only data accesses can be used
on both the IC address array and data array and the OC address array and data array, and accesses are always
longword-size. Instruction fetches cannot be performed in these areas. For reserved bits, a write value of 0 should
be specified; their read value is undefined.

HPM-57

Dreamcast SH4 Program Manual

4.5.1 IC Address Array

The IC address array is allocated to addresses H'FO00 0000 to H'FOFF FFFF in the P4 area. An address array access
requires a 32-bit address field specification (when reading or writing) and a 32-bit data field specification. The entry
to be accessed is specified in the address field, and the write tag and V bit are specified in the data field.

In the address field, bits [31:24] have the value H'F0 indicating the IC address array, and the entry is specified by
bits [12:5]. CCR.IIX has no effect on this entry specification. The address array bit [3] association bit (A bit) specifies
whether or not association is performed when writing to the IC address array. As only longword access is used, 0
should be specified for address field bits [1:0].

In the data field, the tag is indicated by bits [31:10], and the V bit by bit [0]. As the IC address array tag is 19 bits in
length, data field bits [31:29] are not used in the case of a write in which association is not performed. Data field bits
[31:29] are used for the virtual address specification only in the case of a write in which association is performed.

The following three kinds of operation can be used on the IC address array:

1) IC address array read

The tag and V bit are read into the data field from the IC entry corresponding to the entry set in the address
field. In a read, associative operation is not performed regardless of whether the association bit specified in
the address field is 1 or 0.

2) IC address array write (non-associative)

The tag and V bit specified in the data field are written to the IC entry corresponding to the entry set in the
address field. The A bit in the address field should be cleared to 0.

3) IC address array write (associative)

When a write is performed with the A bit in the address field set to 1, the tag stored in the entry specified
in the address field is compared with the tag specified in the data field. If the MMU is enabled at this time,
comparison is performed after the virtual address specified by data field bits [31:10] has been translated to
a physical address using the ITLB. If the addresses match and the V bit is 1, the V bit specified in the data
field is written into the IC entry. This operation is used to invalidate a specific IC entry. If an instruction TLB
miss exception or protection violation exception occurs during address translation, or the comparison
shows a mismatch, no operation results and the write is not performed. If an instruction TLB multiple hit
exception occurs during address translation, processing switches to the instruction TLB multiple hit
exception handling routine.

Figure 4.6 Memory-Mapped IC Address Array

31 2423 1312 543210
Address field |1]{1[1]2]0[0]0]0]--erereerememmmmmiiiinans Entry A
31 109 10
Data field Tag address 00 e V
V @ Validity bit

A : Association bit
. Reserved bits (0 write value, undefined read value)

HPM-58

4. Caches

4.5.2 IC Data Array

The IC data array is allocated to addresses H'F100 0000 to H'F1FF FFFF in the P4 area. A data array access requires
a 32-bit address field specification (when reading or writing) and a 32-bit data field specification. The entry to be
accessed is specified in the address field, and the longword data to be written is specified in the data field.

In the address field, bits [31:24] have the value H'F1 indicating the IC data array, and the entry is specified by bits
[12:5]. CCR.IIX has no effect on this entry specification. Address field bits [4:2] are used for the longword data
specification in the entry. As only longword access is used, 0 should be specified for address field bits [1:0].

The data field is used for the longword data specification.

The following two kinds of operation can be used on the IC data array:

1) IC data array read

Longword data is read into the data field from the data specified by the longword specification bits in the
address field in the IC entry corresponding to the entry set in the address field.

2) IC data array write

The longword data specified in the data field is written for the data specified by the longword specification
bits in the address field in the IC entry corresponding to the entry set in the address field.

Figure 4.7 Memory-Mapped IC Data Array

31 2423 1312 54 210
Address field |11 1]1]0]0]0[1] --ervrrerrrmeremmieiinnn. Entry L |eeee-
31 0

Data field Longword data

L : Longword specification bits
... Reserved bits (0 write value, undefined read value)

4.5.3 OC Address Array

The OC address array is allocated to addresses H'F400 0000 to H'FAFF FFFF in the P4 area. An address array access
requires a 32-bit address field specification (when reading or writing) and a 32-bit data field specification. The entry
to be accessed is specified in the address field, and the write tag, U bit, and V bit are specified in the data field.

In the address field, bits [31:24] have the value H'F4 indicating the OC address array, and the entry is specified by
bits [13:5]. CCR.OIX and CCR.ORA have no effect on this entry specification. The address array bit [3] association
bit (A bit) specifies whether or not association is performed when writing to the OC address array. As only
longword access is used, 0 should be specified for address field bits [1:0].

In the data field, the tag is indicated by bits [31:10], the U bit by bit [1], and the V bit by bit [0]. As the OC address
array tag is 19 bits in length, data field bits [31:29] are not used in the case of a write in which association is not
performed. Data field bits [31:29] are used for the virtual address specification only in the case of a write in which
association is performed.

HPM-59

Dreamcast SH4 Program Manual

The following three kinds of operation can be used on the OC address array:

454

The OC

1) OC address array read

The tag, U bit, and V bit are read into the data field from the OC entry corresponding to the entry set in the
address field. In a read, associative operation is not performed regardless of whether the association bit
specified in the address field is 1 or 0.

2) OC address array write (non-associative)

The tag, U bit, and V bit specified in the data field are written to the OC entry corresponding to the entry
set in the address field. The A bit in the address field should be cleared to 0.

When a write is performed to a cache line for which the U bit and V bit are both 1, after write-back of that
cache line, the tag, U bit, and V bit specified in the data field are written.

3) OC address array write (associative)

When a write is performed with the A bit in the address field set to 1, the tag stored in the entry specified
in the address field is compared with the tag specified in the data field. If the MMU is enabled at this time,
comparison is performed after the virtual address specified by data field bits [31:10] has been translated to
a physical address using the UTLB. If the addresses match and the V bitis 1, the U bit and V bit specified in
the data field are written into the OC entry. This operation is used to invalidate a specific OC entry. If the
OC entry U bitis 1, and 0 is written to the V bit or to the U bit, write-back is performed. If a data TLB miss
exception occurs during address translation, or the comparison shows a mismatch, no operation results and
the write is not performed. If a data TLB multiple hit exception occurs during address translation,
processing switches to the data TLB multiple hit exception handling routine.

Figure 4.8 Memory-Mapped OC Address Array

31 24 23 1413 543210
Address field [1|1[1]12]0]1]0[0]- - -ereererremmmiiiiiinians. Entry U V. T
31 109 210
Data f|e|d Tag address ulv
V : Validity bit
U : Dirty bit
A : Association bit

: Reserved bits (0 write value, undefined read value)

OC Data Array

data array is allocated to addresses H'F500 0000 to H'FSFF FFFF in the P4 area. A data array access requires

a 32-bit address field specification (when reading or writing) and a 32-bit data field specification. The entry to be
accessed is specified in the address field, and the longword data to be written is specified in the data field.

In the address field, bits [31:24] have the value H'F5 indicating the OC data array, and the entry is specified by bits
[13:5]. CCR.OIX and CCR.ORA have no effect on this entry specification. Address field bits [4:2] are used for the
longword data specification in the entry. As only longword access is used, 0 should be specified for address field
bits [1:0].

HPM-60

4. Caches

The data field is used for the longword data specification.

The following two kinds of operation can be used on the OC data array:

1) OC data array read

Longword data is read into the data field from the data specified by the longword specification bits in the
address field in the OC entry corresponding to the entry set in the address field.

2) OC data array write

The longword data specified in the data field is written for the data specified by the longword specification
bits in the address field in the OC entry corresponding the entry set in the address field. This write does not
set the U bit to 1 on the address array side.

Figure 4.9 Memory-Mapped OC Data Array

31 2423 1413 54 210
Address field |1 122101101 coveereeereieiiiians Entry [P
31 0

Data field Longword data

L : Longword specification bits
. Reserved hits (0 write value, undefined read value)

4.6 Store Queues

Two 32-byte store queues (SQs) are supported to perform high-speed writes to external memory.

4.6.1 SQ Configuration

There are two 32-byte store queues, SQO0 and SQ1, as shown in figure 4.10. These two store queues can be
set independently.

Figure 4.10 Store Queue Configuration

SQO | SQO[O] | SQO[1] | SQO[2] | SQO[3] | SQO[4] | SQO[S] | SQO[6] | SQO[7]

SQ1 | SQ1[0] | SQ1[1] | SQ1[2] | SQ1[3] | SQ1[4] | SQL[5] | SQ1[6] | SQ1[7]

4B 4B 4B 4B 4B 4B 4B 4B

HPM-61

Dreamcast SH4 Program Manual

4.6.2

SQ Writes

A write to the SQs can be performed using a store instruction (MOV) on P4 area H'E000 0000 to H'E3FF FFFC. A
longword or quadword access size can be used. The meaning of the address bits is as follows:

[31:26]:
[25:6]:
[5]:
[4:2]:
[1:0]

4.6.3

111000 Store queue specification
Don’t care Used for external memory transfer/access right
0/1 0: SQO specification 1: SQ1 specification

LW specification ~ Specifies longword position in SQ0/SQ1
00 Fixed at 0

Transfer to External Memory

Transfer from the SQs to external memory can be performed with a prefetch instruction (PREF). Issuing a PREF
instruction for P4 area H'E000 0000 to H'E3FF FFFC starts a burst transfer from the SQs to external memory. The
burst transfer length is fixed at 32 bytes, and the start address is always at a 32-byte boundary. While the contents
of one SQ are being transferred to external memory, the other SQ can be written to without a penalty cycle, but
writing to the SQ involved in the transfer to external memory is deferred until the transfer is completed.

The SQ transfer destination external memory address bit [28:0] specification is as shown below, according to
whether the MMU is on or off.

e When MMU is on

The SQ area (H'E000 0000 to H'E3FF FFFF) is set in VPN of the UTLB, and the transfer destination external
memory address in PPN. The ASID, V, SZ, SH, PR, and D bits have the same meaning as for normal address
translation, but the C and WT bits have no meaning with regard to this page. Since burst transfer is
prohibited for PCMCIA areas, the SA and TC bits also have no meaning.

When a prefetch instruction is issued for the SQ area, address translation is performed and external
memory address bits [28:10] are generated in accordance with the SZ bit specification. For external memory
address bits [9:5], the address prior to address translation is generated in the same way as when the MMU
is off. External memory address bits [4:0] are fixed at 0. Transfer from the SQs to external memory is
performed to this address.

e When MMU is off

The SQ area (H'E000 0000 to H'E3FF FFFF) is specified as the address at which a prefetch is performed. The
meaning of address bits [31:0] is as follows:

[31:26]: 111000 Store queue specification
[25:6]: Address External memory address bits [25:6]
[B: 0/1 0: SQO specification
1: SQ1 specification and external memory address bit [5]
[4:2]: Don't care No meaning in a prefetch
[1:0] 00 Fixed at 0

External memory address bits [28:26], which cannot be generated from the above address, are generated
from the QACRO/1 registers.

QACRO [4:2]: External memory address bits [28:26] corresponding to SQO
QACRI [4:2]: External memory address bits [28:26] corresponding to SQ1

External memory address bits [4:0] are always fixed at 0 since burst transfer starts at a 32-byte boundary.

HPM-62

4. Caches

4.6.4 SQ Protection

It is possible to set protection against SQ writes and transfers to external memory. If an SQ write violates the
protection setting, an exception will be generated but the SQ contents will be corrupted. If a transfer from the SQs
to external memory (prefetch instruction) violates the protection setting, the transfer to external memory will be
inhibited and an exception will be generated.

¢ When MMU is on

Operation is in accordance with the address translation information recorded in the UTLB, and MMUCR.SQMD.
Write type exception judgment is performed for writes to the SQs, and read type for transfer from the SQs to
external memory (PREF instruction), and a TLB miss exception, protection violation exception, or initial page write
exception is generated. However, if SQ access is enabled, in privileged mode only, by MMUCR.SQMD, an address
error will be flagged in user mode even if address translation is successful.

* When MMU is off

Operation is in accordance with MMUCR.SQMD.

0: Privileged /user access possible

1: Privileged access possible

If the SQ area is accessed in user mode when MMUCR.SQMD is set to 1, an address error will be flagged.

HPM-63

Dreamcast SH4 Program Manual

HPM-64

EGA

5. Exceptions

5.1 Overview

5.1.1 Features

Exception handling is processing handled by a special routine, separate from normal program processing, that is
executed by the CPU in case of abnormal events. For example, if the executing instruction ends abnormally,
appropriate action must be taken in order to return to the original program sequence, or report the abnormality
before terminating the processing. The process of generating an exception handling request in response to abnormal
termination, and passing control to a user-written exception handling routine, in order to support such functions,
is given the generic name of exception handling.

SH7091 exception handling is of three kinds: for resets, general exceptions, and interrupts.

5.1.2 Register Configuration

The registers used in exception handling are shown in table 5.1.

Table 5.1 Exception-Related Registers

Name Abbreviation R/W Initial Value*1 P4 Address*2 Area 7 Address*2 | Access Size
TRAPA exception | TRA R/W Undefined H'FFO0 0020 H'1F00 0020 32

register

Exception event EXPEVT R/W H'0000 0000/ H'FFO0 0024 H'1F00 0024 32

register H'0000 0020*'

Interrupt event INTEVT R/W Undefined H'FFO0 0028 H'1F00 0028 32

register

Note: H'0000 0000 is set in a power-on reset, and H'0000 0020 in a manual reset.
This is the address when using the virtual/ physical address space P4 area. When making an access from
physical address space area 7 using the TLB, the upper 3 bits of the address are ignored.

HPM-65

Dreamcast SH4 Program Manual

5.2 Register Descriptions

There are three registers related to exception handling. These are allocated to memory, and can be accessed by
specifying the P4 address or area 7 address.

1) The exception event register (EXPEVT) resides at P4 address H'FF00 0024, and contains a 12-bit exception
code. The exception code set in EXPEVT is that for a reset or general exception event. The exception code
is set automatically by hardware when an exception occurs. EXPEVT can also be modified by software.

2) The interrupt event register (INTEVT) resides at P4 address H'FF00 0028, and contains a 12-bit exception
code. The exception code set in INTEVT is that for an interrupt request. The exception code is set
automatically by hardware when an exception occurs. INTEVT can also be modified by software.

3) The TRAPA exception register (TRA) resides at P4 address HFF00 0020, and contains 8-bit immediate
data (imm) for the TRAPA instruction. TRA is set automatically by hardware when a TRAPA instruction
is executed. TRA can also be modified by software.

The bit configurations of EXPEVT, INTEVT, and TRA are shown in figure 5.1.
Figure 5.1 fRegister Bit Configurations

EXPEVT and INTEVT

31 12 11 0
0 0 Exception code

TRA

31 10 9 210
0 0 imm 00

0: Reserved bits. These bits are always read as 0, and should only be written
with 0.
imm: 8-bit immediate data of the TRAPA instruction

HPM-66

5. Exceptions

5.3 Exception Handling Functions
5.3.1 Exception Handling Flow

In exception handling, the contents of the program counter (PC) and status register (SR) are saved in the saved
program counter (SPC) and saved status register (SSR), and the CPU starts execution of the appropriate exception
handling routine according to the vector address. An exception handling routine is a program written by the user
to handle a specific exception. The exception handling routine is terminated and control returned to the original
program by executing a return-from-exception instruction (RTE). This instruction restores the PC and SR contents
and returns control to the normal processing routine at the point at which the exception occurred.

The basic processing flow is as follows. See section 2, Data Formats and Registers, for the meaning of the individual
SR bits.

1) The PC and SR contents are saved in SPC and SSR.

2) The block bit (BL) in SR is set to 1.

3) The mode bit (MD) in SR is set to 1.

4) The register bank bit (RB) in SR is set to 1.

5) In a reset, the FPU disable bit (FD) in SR is cleared to 0.

6) The exception code is written to bits 11-0 of the exception event register (EXPEVT) or interrupt event
register INTEVT).

7) The CPU branches to the determined exception handling vector address, and the exception handling
routine begins.

5.3.2 Exception Handling Vector Addresses

The reset vector address is fixed at H'A000 0000. Exception and interrupt vector addresses are determined by
adding the offset for the specific event to the vector base address, which is set by software in the vector base register
(VBR). In the case of the TLB miss exception, for example, the offset is H'0000 0400, so if H'9C08 0000 is set in VBR,
the exception handling vector address will be H'9C08 0400. If a further exception occurs at the exception handling
vector address, a duplicate exception will result, and recovery will be difficult; therefore, fixed physical addresses
(P1, P2) should be specified for vector addresses.

HPM-67

Dreamcast SH4 Program Manual

5.4 Exception Types and Priorities

Table 5.2 shows the types of exceptions, with their relative priorities, vector addresses, and exception/interrupt codes.

Table 5.2 Exceptions

Exception = Execution Priority = Priority Exception
Category = Mode Exception Level Order Vector Address = Offset = Code
Reset Abort type Power-on reset 1 1 H'A000 0000 — H'000
Manual reset 1 2 H'A000 0000 — H'020
Hitachi-UDI reset 1 1 H'A000 0000 — H'000
Instruction TLB multiple-hit 1 3 H'A000 0000 — H140
exception
Data TLB multiple-hit exception 1 4 H'A000 0000 — H140

HPM-68

5. Exceptions

Exception = Execution Priority = Priority Exception
Category = Mode Exception Level Order Vector Address | Offset = Code
General Re-executio | User break before instruction 2 0 (VBR/DBR) H'100/ | H'1EO
exception n type execution®! —
Instruction address error 2 1 (VBR) H'100 H'0EQ
Instruction TLB miss exception 2 2 (VBR) H'400 H'040
Instruction TLB protection 2 3 (VBR) H'100 H'0A0
violation exception
General illegal instruction 2 4 (VBR) H'100 H'180
exception
Slot illegal instruction exception 2 4 (VBR) H'100 H'1A0
General FPU disable exception 2 4 (VBR) H'100 H'800
Slot FPU disable exception 2 4 (VBR) H'100 H'820
Data address error (read) 2 5 (VBR) H'100 H'0EQ
Data address error (write) 2 5 (VBR) H'100 H'100
Data TLB miss exception (read) 2 6 (VBR) H'400 H'040
Data TLB miss exception (write) 2 6 (VBR) H'400 H'060
Data TLB protection violation 2 7 (VBR) H'100 H'0AO
exception (read)
Data TLB protection violation 2 7 (VBR) H'100 H'0CO
exception (write)
FPU exception 2 8 (VBR) H'100 H'120
Initial page write exception 2 9 (VBR) H'100 H'080
Completion Unconditional trap (TRAPA) 2 4 (VBR) H'100 H'160
type
User break after instruction 2 10 (VBR/DBR) H'100/ | H'1EO
execution™1 —
Interrupt Completion Nonmaskable interrupt 3 — (VBR) H'600 H"1CO
type

HPM-69

Dreamcast SH4 Program Manual

Exception

Category

Priority Exception
Exception Order Vector Address | Offset = Code
External IRL3-1 | 0 *2 (VBR) H'600 | H200
interrupts RLO
1 H'220
2 H'240
3 H'260
4 H'280
5 H'2A0
6 H'2C0O
7 H'2E0
8 H'300
9 H'320
A H'340
B H'360
C H'380
D H'3A0
E H'3C0
Peri- TMUO | TUNIO *2 (VBR) H'600 | H'400
%hoedrale TMUT | TUNN H'420
interrupt
(module/ | TMUZ | TUNI2 H'440
source)
TICPI2 H'460
RTC ATl H'480
PRI H'4A0
cul H'4CO
SCl ERI H'4E0
SCI RXI H'500
™ H'520
TEI H'540
WDT | ITI H'560

HPM-70

5. Exceptions

Exception = Execution Priority = Priority Exception
Category = Mode Exception Level Order Vector Address | Offset = Code
REF RCMI H'580
ROVI H'5A0
Hitach | Hitachi- H'600
i-UDI | UDI
Interrupt Completion Peripheral | DMAC | DMTEQ 4 *2 (VBR) H'600 H'640
type module
Interrupt DMTE1 H'660
(module/
source) DMTE2 H'680
DMTE3 H'6A0
DMAE H'6CO
SCIF ERI H'700
RXI H'720
BRI H'740
X H'760

Priority: Priority is first assigned by priority level, then by priority order within each level (the lowest number
represents the highest priority).

Exception transition destination: Control passes to H'A000 0000 in a reset, and to [VBR + offset] in other cases.
Exception code: Stored in EXPEVT for a reset or general exception, and in INTEVT for an interrupt.
IRL: Interrupt request level (pins IRL3-IRLO).

Module/source: See the sections on the relevant peripheral modules.

Note: When BRCR.UBDE = 1, PC = DBR. In other cases, PC = VBR + H'100.
The priority order of external interrupts and peripheral module interrupts can be set by software.

5.5 Exception Flow
5.5.1 Exception Flow

Figure 5.2 shows an outline flowchart of the basic operations in instruction execution and exception handling. For
the sake of clarity, the following description assumes that instructions are executed sequentially, one by one. Figure
5.2 shows the relative priority order of the different kinds of exceptions (reset/ general exception/interrupt).
Register settings in the event of an exception are shown only for SSR, SPC, EXPEVT/INTEVT, SR, and PC, but other
registers may be set automatically by hardware, depending on the exception. For details, see section 5.6,
Description of Exceptions. Also, see section 5.6.4, Priority Order with Multiple Exceptions, for exception handling
during execution of a delayed branch instruction and a delay slot instruction, and in the case of instructions in
which two data accesses are performed.

HPM-71

Dreamcast SH4 Program Manual

Figure 5.2 Instruction Execution and Exception Handling

Reset Yes

requested?

Execute next instruction

Is highest-
priority exception
re-exception

General
exception requested?

Yes

Cancel instruction execution

Interrupt
requested?

type?
No result

Y

No SSR ~ SR
SPC ~ PC
SGR ~ R15

EXPEVT/INTEVT ~ exception code

SR.{MD,RB,BL} ~ 111

PC — (BRCR.UBDE=1 && User_Break?
DBR: (VBR + Offset))

EXPEVT ~ exception code
SR. {MD, RB, BL, FD, IMASK} ~ 11101111
PC — H'A000 0000

5.5.2 Exception Source Acceptance

A priority ranking is provided for all exceptions for use in determining which of two or more simultaneously

generated exceptions should be accepted. Five of the general exceptions—the general illegal instruction exception,
slot illegal instruction exception, general FPU disable exception, slot FPU disable exception, and unconditional trap
exception—are detected in the process of instruction decoding, and do not occur simultaneously in the instruction
pipeline. These exceptions therefore all have the same priority. General exceptions are detected in the order of

instruction execution. However, exception handling is performed in the order of instruction flow (program order).
Thus, an exception for an earlier instruction is accepted before that for a later instruction. An example of the order

of acceptance for general exceptions is shown in figure 5.3.

HPM-72

5. Exceptions

Figure 5.3 Example of General Exception Acceptance Order

Pipeline flow: V TLB miss (data access)
Instruction n IF | ID | EX | MA | WB
Instruction n+1 IF ID | EX | MA | WB
i A General illegal instruction exception
V TLB miss (instruction access)
Instruction n+2 | IF ‘ ID ‘ EX ‘ MA ‘ WB |
IF: Instruction fetch
ID: Instruction decode
Instruction n+3 | F | D | Ex | MA | ws | EX: Instruction execution

MA: Memory access
WB: Write-back

Order of detection:

General illegal instruction exception (instruction n+1) and
TLB miss (instruction n+2) are detected simultaneously

|

TLB miss (instruction n)

Order of exception handling: Program order
TLB miss (instruction n)
1
Re-execution of instruction n
General illegal instruction exception
(instruction n+1)
2

Re-execution of instruction n+1

TLB miss (instruction n+2)

i 3

Re-execution of instruction n+2

i

Execution of instruction n+3 4

5.5.3 Exception Requests and BL Bit

When the BL bit in SR is 0, exceptions and interrupts are accepted.

When the BL bit in SR is 1 and an exception other than a user break is generated, the CPU’s internal registers are
set to their post-reset state, the registers of the other modules retain their contents prior to the exception, and the
CPU branches to the same address as in a reset (H'A000 0000). For the operation in the event of a user break, see
section 20, User Break Controller. If an ordinary interrupt occurs, the interrupt request is held pending and is
accepted after the BL bit has been cleared to 0 by software. If a nonmaskable interrupt (NMI) occurs, it can be held
pending or accepted according to the setting made by software.

Thus, normally, SPC and SSR are saved and then the BL bit in SR is cleared to 0, to enable multiple exception state

acceptance.

HPM-73

Dreamcast SH4 Program Manual

5.5.4 Return from Exception Handling

The RTE instruction is used to return from exception handling. When the RTE instruction is executed, the SPC
contents are restored to PC and the SSR contents to SR, and the CPU returns from the exception handling routine
by branching to the SPC address. If SPC and SSR were saved to external memory, set the BL bit in SR to 1 before
restoring the SPC and SSR contents and issuing the RTE instruction.

5.6 Description of Exceptions

The various exception handling operations are described here, covering exception sources, transition addresses, and
processor operation when a transition is made.

5.6.1 Resets

Power-On Reset

* - Sources:
—SCK2 pin high level and RESET pin low level

—When the watchdog timer overflows while the WT/IT bit is set to 1 and the RSTS bit is cleared to 0 in
WTCSR. For details, see section 10, Clock Oscillation Circuits.

¢ Transition address: H'A000 0000
e Transition operations:

Exception code H'000 is set in EXPEVT, initialization of VBR and SR is performed, and a branch is made to
PC = H'A000 0000.

In the initialization processing, the VBR register is set to H'0000 0000, and in SR, the MD, RB, and BL bits
are set to 1, the FD bit is cleared to 0, and the interrupt mask bits (I3-10) are set to B'1111.

CPU and on-chip peripheral module initialization is performed. For details, see the register descriptions in
the relevant sections. For some CPU functions, the TRST pin and RESET pin must be driven low. It is
therefore essential to execute a power-on reset and drive the TRST pin low when powering on.

Power_on_reset()

{
EXPEVT = H'00000000;
VBR = H'00000000;
SRMD =1,
SR.RB=1;
SR.BL=1;
SR.(10-13) = B'1111;
SR.FD=0;
Initialize_ CPU();
Initialize_Module(PowerOn);
PC = H'A0000000;

HPM-74

5. Exceptions

Manual Reset

* Sources:
—SCK2 pin low level and RESET pin low level
—When a general exception other than a user break occurs while the BL bit is set to 1 in SR

—When the watchdog timer overflows while the RSTS bit is set to 1 in WTCSR. For details, see section 10,
Clock Oscillation Circuits.

e Transition address: H'A000 0000
¢ Transition operations:

Exception code H'020 is set in EXPEVT, initialization of VBR and SR is performed, and a branch is made to
PC = H'A000 0000.

In the initialization processing, the VBR register is set to H'0000 0000, and in SR, the MD, RB, and BL bits
are set to 1, the FD bit is cleared to 0, and the interrupt mask bits (I3-10) are set to B'1111.

CPU and on-chip peripheral module initialization is performed. For details, see the register descriptions in
the relevant sections.

Manual_reset()

{
EXPEVT = H00000020;
VBR = H'00000000;
SRMD=1;
SR.RB=1,;
SR.BL=1;
SR.(I0-13) = B1111;
SRFD=0;
Initialize_CPU();
Initialize_Module(Manual);
PC = H'A0000000;

}

Table 5.3 Types of Reset

Reset State Transition Conditions Internal States

Type SCK2 RESET CPU On-Chip Peripheral
Modules

Power-on reset High Low Initialized See Register
Configuration in each

Manual reset Low Low Initialized section

HPM-75

Dreamcast SH4 Program Manual

Hitachi-UDI Reset

* Source: SDIR.TI3-TI0 = B'0110 (negation) or B’0111 (assertion)
¢ Transition address: H'A000 0000
e Transition operations:

Exception code H'000 is set in EXPEVT, initialization of VBR and SR is performed, and a branch is made to
PC = H'A000 0000.

In the initialization processing, the VBR register is set to H'0000 0000, and in SR, the MD, RB, and BL bits
are set to 1, the FD bit is cleared to 0, and the interrupt mask bits (I3-10) are set to B'1111.

CPU and on-chip peripheral module initialization is performed. For details, see the register descriptions in
the relevant sections.

Hitachi-UDI_reset()

{
EXPEVT = H(00000000;
VBR = H'00000000;
SRMD=1;
SR.RB=1,;
SR.BL=1;
SR.(I0-13) = B'1111;
SR.FD =0;
Initialize_ CPU();
Initialize_Module(PowerOn);
PC = H'A0000000;

}

Instruction TLB Multiple-Hit Exception

e Source: Multiple ITLB address matches
¢ Transition address: H'A000 0000
¢ Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the corresponding virtual
page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates the ASID when this exception
occurred.

Exception code H'140 is set in EXPEVT, initialization of VBR and SR is performed, and a branch is made to
PC = H'A000 0000.

In the initialization processing, the VBR register is set to H'0000 0000, and in SR, the MD, RB, and BL bits
are set to 1, the FD bit is cleared to 0, and the interrupt mask bits (I3-10) are set to B'1111.

CPU and on-chip peripheral module initialization is performed in the same way as in a manual reset. For
details, see the register descriptions in the relevant sections.

HPM-76

5. Exceptions

TLB_multi_hit()

{

}

Operand TLB Multiple-Hit Exception

e Source: Multiple UTLB address matches
e Transition address: H'A000 0000

TEA = EXCEPTION_ADDRESS;
PTEH.VPN = PAGE_NUMBER,;
EXPEVT = H00000140;

VBR = H'00000000;

SR.MD =1,

SR.RB=1;

SRBL=1;

SR.(10-13) = B'1111;

SR.FD=0;

Initialize_CPU();
Initialize_Module(Manual);

PC = H'A0000000;

¢ Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the corresponding virtual
page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates the ASID when this exception
occurred.

Exception code H'140 is set in EXPEVT, initialization of VBR and SR is performed, and a branch is made to
PC = H'A000 0000.

In the initialization processing, the VBR register is set to H'0000 0000, and in SR, the MD, RB, and BL bits
are set to 1, the FD bit is cleared to 0, and the interrupt mask bits (I3-10) are set to B'1111.

CPU and on-chip peripheral module initialization is performed in the same way as in a manual reset. For

details, see the register descriptions in the relevant sections.

TLB_multi_hit()

{

TEA = EXCEPTION_ADDRESS;
PTEH.VPN = PAGE_NUMBER;
EXPEVT = H00000140;

VBR = H'00000000;

SRMD=1;

SR.RB=1,;

SR.BL=1;

SR.(I0-13) = B1111;

SRFD=0;

Initialize_CPUY();
Initialize_Module(PowerOn);

PC = H'A0000000;

HPM-77

Dreamcast SH4 Program Manual

5.6.2

General Exceptions

Data TLB Miss Exception

e Source: Address mismatch in UTLB address comparison
¢ Transition address: VBR + H'0000 0400
e Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the corresponding virtual
page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates the ASID when this exception
occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in SPC and SSR.

Exception code H'040 (for a read access) or H'060 (for a write access) is set in EXPEVT. The BL, MD, and RB
bits are set to 1 in SR, and a branch is made to PC = VBR + H'0400.

To speed up TLB miss processing, the offset is separate from that of other exceptions.

Data_TLB_miss_exception()

{
TEA = EXCEPTION_ADDRESS;
PTEH.VPN = PAGE_NUMBER;
SPC=PC;
SSR=SR,;
EXPEVT =read_access ? H00000040 : H'00000060;
SR.MD =1,
SR.RB=1,;
SR.BL=1;
PC =VBR + H'00000400;

}

Instruction TLB Miss Exception

* Source: Address mismatch in ITLB address comparison
¢ Transition address: VBR + H'0000 0400
¢ Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the corresponding virtual
page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates the ASID when this exception
occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in SPC and SSR.

Exception code H'040 is set in EXPEVT. The BL, MD, and RB bits are set to 1 in SR, and a branch is made to
PC = VBR + H'0400.

To speed up TLB miss processing, the offset is separate from that of other exceptions.

HPM-78

5. Exceptions

ITLB_miss_exception()

{
TEA = EXCEPTION_ADDRESS;
PTEH.VPN = PAGE_NUMBER;
SPC =PC;
SSR =SR;
EXPEVT = H'00000040;
SR.MD=1;
SRRB=1,;
SRBL=1;
PC = VBR + H'00000400;

}

Initial Page Write Exception

e Source: TLB is hit in a store access, but dirty bit D =0
e Transition address: VBR + H'0000 0100
¢ Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the corresponding virtual
page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates the ASID when this exception
occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in SPC and SSR.

Exception code H'080 is set in EXPEVT. The BL, MD, and RB bits are set to 1 in SR, and a branch is made to
PC = VBR + H'0100.

Initial_write_exception()
{
TEA = EXCEPTION_ADDRESS;
PTEH.VPN = PAGE_NUMBER;
SPC=PC;
SSR =SR,;
EXPEVT = H'00000080;
SRMD =1,
SR.RB=1,;
SR.BL=1;
PC = VBR + H'00000100;
}

Data TLB Protection Violation Exception

e Source: The access does not accord with the UTLB protection information (PR bits) shown below.

PR Privileged Mode User Mode

00 Only read access possible Access not possible

01 Read/write access possible Access not possible

10 Only read access possible Only read access possible
11 Read/write access possible Read/write access possible

HPM-79

Dreamcast SH4 Program Manual

¢ Transition address: VBR + H'0000 0100

e Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the corresponding virtual
page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates the ASID when this exception

occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in SPC and SSR.

Exception code H'0AO (for a read access) or H'0CO (for a write access) is set in EXPEVT. The BL, MD, and
RB bits are set to 1 in SR, and a branch is made to PC = VBR + H'0100.

Data_TLB_protection_violation_exception()
{
TEA = EXCEPTION_ADDRESS;
PTEH.VPN = PAGE_NUMBER;
SPC=PC;
SSR=SR,;
EXPEVT =read_access ? H'000000A0 : H'000000CO;
SRMD =1,
SR.RB=1,;
SR.BL=1;
PC = VBR + H'00000100;
}

Instruction TLB Protection Violation Exception

* Source: The access does not accord with the ITLB protection information (PR bits) shown below.

PR Privileged Mode

0 Access possible

User Mode

Access not possible

1 Access possible

Access possible

e Transition address: VBR + H'0000 0100

¢ Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the corresponding virtual page
number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in SPC and SSR.

Exception code H'0AO is set in EXPEVT. The BL, MD, and RB bits are set to 1 in SR, and a branch is made to PC =

VBR + H'0100.

HPM-80

5. Exceptions

ITLB_protection_violation_exception()
{
TEA = EXCEPTION_ADDRESS;
PTEH.VPN = PAGE_NUMBER;
SPC =PC;
SSR =SR;
EXPEVT = H'000000AO0;
SR.MD =1,
SR.RB=1;
SR.BL=1;
PC = VBR + H'00000100;
}

Data Address Error

e Sources:
—Word data access from other than a word boundary (2n +1)
—Longword data access from other than a longword data boundary (4n +1, 4n + 2, or 4n +3)

—Quadword data access from other than a quadword data boundary (8n +1, 8n + 2, 8n +3, 8n + 4, 8n + 5,
8n+6,0r 8n +7)

—Access to area H'8000 0000-H'FFFF FFFF in user mode
e Transition address: VBR + H'0000 0100
¢ Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the corresponding virtual
page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates the ASID when this exception
occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in SPC and SSR.

Exception code H'0EQ (for a read access) or H'100 (for a write access) is set in EXPEVT. The BL, MD, and RB
bits are set to 1 in SR, and a branch is made to PC = VBR + H'0100. For details, see section 3, Memory
Management Unit (MMU).

Data_address_error()

{
TEA = EXCEPTION_ADDRESS;
PTEN.VPN = PAGE_NUMBER,;
SPC =PC;
SSR =SR;
EXPEVT =read_access? H'000000EO: H'00000100;
SR.MD =1,
SR.RB=1,;
SR.BL=1,;
PC = VBR + H'00000100;

HPM-81

Dreamcast SH4 Program Manual

Instruction Address Error

e - Sources:

—Instruction fetch from other than a word boundary (2n +1)
—Instruction fetch from area H'8000 0000-H 'FFFF FFFF in user mode
¢ Transition address: VBR + H'0000 0100

¢ Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the corresponding virtual
page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates the ASID when this exception
occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in the SPC and SSR.

Exception code H'0EO is set in EXPEVT. The BL, MD, and RB bits are set to 1 in SR, and a branch is made to
PC = VBR + H'0100. For details, see section 3, Memory Management Unit (MMU).

Instruction_address_error()

{
TEA = EXCEPTION_ADDRESS;
PTEN.VPN = PAGE_NUMBER;
SPC =PC;
SSR =SR,;
EXPEVT = H'000000EQ;
SR.MD =1;
SR.RB=1;
SR.BL=1;
PC =VBR + H00000100;

}

Unconditional Trap

* Source: Execution of TRAPA instruction

¢ Transition address: VBR + H'0000 0100

¢ Transition operations:

As this is a processing-completion-type exception, the PC contents for the instruction following the TRAPA
instruction are saved in SPC. The value of SR when the TRAPA instruction is executed are saved in SSR. The
8-bit immediate value in the TRAPA instruction is multiplied by 4, and the result is set in TRA [9:0].

Exception code H'160 is set in EXPEVT. The BL, MD, and RB bits are set to 1 in SR, and a branch is made to
PC = VBR + H'0100.

TRAPA_exception()

{
SPC=PC+2;
SSR =SR;
TRA=Imm<<2;
EXPEVT = H'00000160;
SR.MD =1,
SR.RB=1,;
SR.BL=1;
PC = VBR + H'00000100;

HPM-82

5. Exceptions

General lllegal Instruction Exception

* Sources:

—Decoding of an undefined instruction not in a delay slot

Delayed branch instructions: JMP, JSR, BRA, BRAF, BSR, BSRE, RTS, RTE, BT/S, BE/S
Undefined instruction: H'FFFD

—Decoding in user mode of a privileged instruction not in a delay slot

Privileged instructions: LDC, STC, RTE, LDTLB, SLEEP, but excluding LDC/STC instructions that access
GBR

e Transition address: VBR + H'0000 0100
¢ Transition operations:
The PC and SR contents for the instruction at which this exception occurred are saved in SPC and SSR.

Exception code H'180 is set in EXPEVT. The BL, MD, and RB bits are set to 1 in SR, and a branch is made to
PC = VBR + H'0100. Operation is not guaranteed if an undefined code other than H'FFFD is decoded.

General_illegal_instruction_exception()

{

SPC =PC;

SSR =SR;

EXPEVT = H00000180;

SRMD =1;

SRRB=1,

SRBL=1,

PC =VBR + H'00000100;
}

Slot lllegal Instruction Exception

® Sources:

—Decoding of an undefined instruction in a delay slot

Delayed branch instructions: JMP, JSR, BRA, BRAF, BSR, BSRE, RTS, RTE, BT/S, BF/S
Undefined instruction: H'FFFD

—Decoding of an instruction that modifies PC in a delay slot

Instructions that modify PC: JMP, JSR, BRA, BRAF, BSR, BSRF, RTS, RTE, BT, BE, BT/S, BE/S, TRAPA, LDC
Rm, SR, LDC.L @Rm+, SR

—Decoding in user mode of a privileged instruction in a delay slot

Privileged instructions: LDC, STC, RTE, LDTLB, SLEEP, but excluding LDC/STC instructions that access
GBR

—Decoding of a PC-relative MOV instruction or MOVA instruction in a delay slot
¢ Transition address: VBR + H'0000 0100
¢ Transition operations:

The PC contents for the preceding delayed branch instruction are saved in SPC. The SR contents when this
exception occurred are saved in SSR.

Exception code H'1AQ is set in EXPEVT. The BL, MD, and RB bits are set to 1 in SR, and a branch is made
to PC = VBR + H'0100. Operation is not guaranteed if an undefined code other than H'FFFD is decoded.

HPM-83

Dreamcast SH4 Program Manual

Slot _illegal_instruction_exception()
{
SPC=PC-2;
SSR=SR,;
EXPEVT = H'000001A0;
SRMD =1,
SR.RB=1,;
SR.BL=1;
PC = VBR + H'00000100;
}

General FPU Disable Exception

* Source: Decoding of an FPU instruction® not in a delay slot with SR.FD =1

¢ Transition address: VBR + H'0000 0100

¢ Transition operations:

The PC and SR contents for the instruction at which this exception occurred are saved in SPC and SSR.

Exception code H'800 is set in EXPEVT. The BL, MD, and RB bits are set to 1 in SR, and a branch is made to
PC = VBR + H'0100.

Note:

*FPU instructions are instructions in which the first 4 bits of the instruction code are F (but excluding
undefined instruction H'FFFD), and the LDS, STS, LDS.L, and STS.L instructions corresponding to FPUL
and FPSCR.

General_fpu_disable_exception()
{
SPC=PC;
SSR=SR,;
EXPEVT = H'00000800;
SRMD =1,
SR.RB=1;
SR.BL=1;
PC = VBR + H'00000100;
}

Slot FPU Disable Exception

* Source: Decoding of an FPU instruction in a delay slot with SR.FD =1
¢ Transition address: VBR + H'0000 0100
e Transition operations:

The PC contents for the preceding delayed branch instruction are saved in SPC. The SR contents when this
exception occurred are saved in SSR.

Exception code H'820 is set in EXPEVT. The BL, MD, and RB bits are set to 1 in SR, and a branch is made to
PC = VBR + H'0100.

HPM-84

5. Exceptions

Slot_fpu_disable_exception()
{

SPC=PC-2;

SSR=SR;

EXPEVT = H00000820;

SR.MD =1;

SR.RB=1;

SR.BL=1;

PC =VBR + H'00000100;
}

User Breakpoint Trap

e Source: Fulfilling of a break condition set in the user break controller
e Transition address: VBR + H'0000 0100, or DBR

¢ Transition operations:

In the case of a post-execution break, the PC contents for the instruction following the instruction at which
the breakpoint is set are set in SPC. In the case of a pre-execution break, the PC contents for the instruction
at which the breakpoint is set are set in SPC.

The SR contents when the break occurred are saved in SSR. Exception code H'1EO is set in EXPEVT.

The BL, MD, and RB bits are set to 1 in SR, and a branch is made to PC = VBR + H'0100. It is also possible
to branch to PC = DBR.

For details of PC, etc., when a data break is set, see section 20, User Break Controller.

User_break_exception()
{
SPC = (pre_execution break? PC : PC + 2);
SSR=SR;
EXPEVT = H'000001EQ;
SRMD =1,
SR.RB=1;
SR.BL=1,;
PC = (BRCR.UBDE==1 ? DBR : VBR + H'00000100);

HPM-85

Dreamcast SH4 Program Manual

FPU Exception

* Source: Exception due to execution of a floating-point operation
¢ Transition address: VBR + H'0000 0100

e Transition operations:

The PC and SR contents for the instruction at which this exception occurred are saved in SPC and SSR. Exception
code H'120 is set in EXPEVT. The BL, MD, and RB bits are set to 1in SR, and a branch is made to PC = VBR + H'0100.

FPU_exception()
{
SPC=PC;
SSR=SR,;
EXPEVT = H'00000120;
SRMD =1,
SR.RB=1;
SR.BL=1;
PC = VBR + H'00000100;
}

5.6.3 Interrupts

NMI

* Source: NMI pin edge detection
¢ Transition address: VBR + H'0000 0600

¢ Transition operations:

The PC and SR contents for the instruction at which this exception is accepted are saved in SPC and SSR.

Exception code H'1CO0 is set in INTEVT. The BL, MD, and RB bits are set to 1 in SR, and a branch is made to
PC = VBR + H'0600. When the BL bit in SR is 0, this interrupt is not masked by the interrupt mask bits in
SR, and is accepted at the highest priority level. When the BL bit in SR is 1, a software setting can specify
whether this interrupt is to be masked or accepted. For details, see section 19, Interrupt Controller.

NMI()

{
SPC=PC,
SSR=SR,;
INTEVT = H'000001CO0;
SR.MD =1;
SR.RB=1,;
SR.BL=1;

PC = VBR + H00000600;
}

IRL Interrupts

* Source: The interrupt mask bit setting in SR is smaller than the IRL (3-0) level, and the BL bit in SR is 0
(accepted at instruction boundary).
¢ Transition address: VBR + H'0000 0600

e Transition operations:

HPM-86

5. Exceptions

The PC contents immediately after the instruction at which the interrupt is accepted are set in SPC. The SR
contents at the time of acceptance are set in SSR.

The code corresponding to the IRL (3-0) level is set in INTEVT. See table 19.5, Interrupt Exception Handling
Sources and Priority Order, for the corresponding codes. The BL, MD, and RB bits are set to 1in SR, and a
branch is made to VBR + H'0600. The acceptance level is not set in the interrupt mask bits in SR. When the
BL bit in SR is 1, the interrupt is masked. For details, see section 19, Interrupt Controller.

IRL()
{
SPC =PC;
SSR=SR;
INTEVT = H'00000200 ~ H'000003C0;
SRMD =1;
SRRB=1,
SRBL=1,;
PC = VBR + H'00000600;
}

Peripheral Module Interrupts

e - Source: The interrupt mask bit setting in SR is smaller than the peripheral module (Hitachi-UDI, DMAC,
TMU, RTC, SCI, SCIE, WDT, or REF) interrupt level, and the BL bit in SR is 0 (accepted at instruction
boundary).

e - Transition address: VBR + H'0000 0600

¢ - Transition operations:

The PC contents immediately after the instruction at which the interrupt is accepted are set in SPC. The SR
contents at the time of acceptance are set in SSR.

The code corresponding to the interrupt source is set in INTEVT. The BL, MD, and RB bits are set to 1 in
SR, and a branch is made to VBR + H'0600. The module interrupt levels should be set as values between
B’0000 and B'1111 in the interrupt priority registers (IPRA-IPRC) in the interrupt controller. For details, see
section 19, Interrupt Controller.

Module_interruption()
{
SPC=PC;
SSR=SR;
INTEVT = H'00000400 ~ H'00000760;
SR.MD =1,
SR.RB=1,
SR.BL=1;
PC = VBR + H'00000600;

HPM-87

Dreamcast SH4 Program Manual

5.6.4

Priority Order with Multiple Exceptions

With some instructions, such as instructions that make two accesses to memory, and the indivisible pair comprising
a delayed branch instruction and delay slot instruction, multiple exceptions occur. Care is required in these cases,
as the exception priority order differs from the normal order.

1) Instructions that make two accesses to memory

With MAC instructions, memory-to-memory arithmetic/logic instructions, and TAS instructions, two data
transfers are performed by a single instruction, and an exception will be detected for each of these data
transfers. In these cases, therefore, the following order is used to determine priority.

a) Data address error in first data transfer

b) TLB miss in first data transfer

c) TLB protection violation in first data transfer

d) Initial page write exception in first data transfer
e) Data address error in second data transfer

f) TLB miss in second data transfer

g) TLB protection violation in second data transfer

h) Initial page write exception in second data transfer

2) Indivisible delayed branch instruction and delay slot instruction

As a delayed branch instruction and its associated delay slot instruction are indivisible, they are treated as
a single instruction. Consequently, the priority order for exceptions that occur in these instructions differs
from the usual priority order. The priority order shown below is for the case where the delay slot instruction
has only one data transfer.

a) The delayed branch instruction is checked for priority levels 1 and 2.
b) The delay slot instruction is checked for priority levels 1 and 2.

c) A check is performed for priority level 3 in the delayed branch instruction and priority level 3 in the
delay slot instruction. (There is no priority ranking between these two.)

d) A check is performed for priority level 4 in the delayed branch instruction and priority level 4 in the
delay slot instruction. (There is no priority ranking between these two.)

If the delay slot instruction has a second data transfer, two checks are performed in step b, as in 1 above.

If the accepted exception (the highest-priority exception) is a delay slot instruction re-execution type
exception, the branch instruction PR register write operation (PC £ PR operation performed in BSR, BSRF,
JSR) is inhibited.

HPM-88

5. Exceptions

5.7 Usage Notes

1) Return from exception handling

a) Check the BL bit in SR with software. If SPC and SSR have been saved to external memory, set the BL
bit in SR to 1 before restoring them.

b) Issue an RTE instruction. When RTE is executed, the SPC contents are set in PC, the SSR contents are set
in SR, and branch is made to the SPC address to return from the exception handling routine.

2) If an exception or interrupt occurs when SR.BL = 1

a) Exception

When an exception other than a user break occurs, the CPU’s internal registers are set to their post-reset
state, the registers of the other modules retain their contents prior to the exception, and the CPU branches
to the same address as in a reset (H'A000 0000). The value in EXPEVT at this time is H'0000 0020; the value
of the SPC and SSR registers is undefined.

b) Interrupt

If an ordinary interrupt occurs, the interrupt request is held pending and is accepted after the BL bit in SR
has been cleared to 0 by software. If a nonmaskable interrupt (NMI) occurs, it can be held pending or
accepted according to the setting made by software. In the sleep or standby state, however, an interrupt is
accepted even if the BL bit in SR is set to 1.

3) SPC when an exception occurs

a) Re-execution type exception

The PC value for the instruction in which the exception occurred is set in SPC, and the instruction is
re-executed after returning from exception handling. If an exception occurs in a delay slot instruction,
however, the PC value for the delay slot instruction is saved in SPC regardless of whether or not the
preceding delay slot instruction condition is satisfied.

b) Completion type exception or interrupt

The PC value for the instruction following that in which the exception occurred is set in SPC. If an exception
occurs in a branch instruction with delay slot, however, the PC value for the branch destination is saved in
SPC.

4) An exception must not be generated in an RTE instruction delay slot, as the operation will be undefined in
this case.

HPM-89

Dreamcast SH4 Program Manual

HPM-90

SEGA

6. Floating-Point Unit

6.1 Overview

The floating-point unit (FPU) has the following features:
* Conforms to IEEE754 standard
e 32 single-precision floating-point registers (can also be referenced as 16 double-precision registers)
¢ Two rounding modes: Round to Nearest and Round to Zero
* Two denormalization modes: Flush to Zero and Treat Denormalized Number
e Six exception sources: FPU Error, Invalid Operation, Divide By Zero, Overflow, Underflow, and Inexact

e Comprehensive instructions: Single-precision, double-precision, graphics support, system control

When the FD bit in SR is set to 1, the FPU cannot be used, and an attempt to execute an FPU instruction will cause
an FPU disable exception.

6.2 Data Formats
6.2.1 Floating-Point Format

A floating-point number consists of the following three fields:
e Sign (s)
e Exponent (e)
e Fraction (f)

The SH7091 can handle single-precision and double-precision floating-point numbers, using the formats shown in
figures 6.1 and 6.2.

Figure 6.1 Format of Single-Precision Floating-Point Number

31 30 23 22 0

HPM-91

Dreamcast SH4 Program Manual

Figure 6.2 Format of Double-Precision Floating-Point Number

63 62 52 51 0

The exponent is expressed in biased form, as follows:

e =E + bias

The range of unbiased exponent E is Emin — 1 to Emax + 1. The two values Emin — 1 and Emax + 1 are distinguished
as follows. Emin — 1 indicates zero (both positive and negative sign) and a denormalized number, and Emax + 1
indicates positive or negative infinity or a non-number (NaN). Table 1 shows bias, Emin, and Emax values.

Table 6.1 Floating-Point Number Formats and Parameters

Parameter Single-Precision Double-Precision
Total bit width 32 bits 64 bits

Sign bit 1 bit 1 bit

Exponent field 8 hits 11 bits

Fraction field 23 bits 52 bits

Precision 24 bits 53 bits

Bias +127 +1023

Emax +127 +1023

Emin -126 -1022

Floating-point number value v is determined as follows:

IfE=Emax+1landf 110, v is a non-number (NaN) irrespective of sign s
If E=Emax + 1 andf=0, v=(-1)s (infinity) [positive or negative infinity]

If Emin £ E £ Emax , v = (-1)s2E (1.f) [normalized number]

IfE=Emin—21andf 110, v = (—=1)s2Emin (0.f) [denormalized number]

If E=Emin—1andf=0,v=(-1)s0 [positive or negative zero]

HPM-92

6. Floating-Point Unit

Table 6.2 shows the ranges of the various numbers in hexadecimal notation.

Table 6.2 Floating-Point Ranges

Single-Precision Double-Precision
Signaling non-number H'7FFFFFFF to H'7FC00000 H'7FFFFFFF H'FFFFFFFF to H'7FFB0000 H'00000000
Quiet non-number H'7FBFFFFF to H'7F800001 H'7FF7FFFF H'FFFFFFFF to H'7FFO0000 H'00000001
Positive infinity H'7F800000 H'7FF00000 H'00000
Positive normalized number H'7F7FFFFF to H'00800000 H'7FEFFFFF H'FFFFFFFF to H'00100000 H'00000000
Positive denormalized number H'007FFFFF to H'00000001 H'000FFFFF H'FFFFFFFF to H'00000000 H'00000001
Positive zero H'00000000 H'00000000 H'00000000
Negative zero H'80000000 H'80000000 H'00000000
Negative denormalized number H'80000001 to H'807FFFFF H'80000000 H'00000001 to H'B00FFFFF H'FFFFFFFF
Negative normalized number H'80800000 to H'FF7FFFFF H'80100000 H'00000000 to H'FFEFFFFF H'FFFFFFFF
Negative infinity H'FF800000 H'FFFO0000 H'00000000
Quiet non-number H'FF800001 to H'FFBFFFFF H'FFFO0000 H'00000001 to H'FFF7FFFF H'FFFFFFFF
Signaling non-number H'FFC00000 to H'FFFFFFFF H'FFF80000 H'00000000 to H'FFFFFFFF H'FFFFFFFF

6.2.2 Non-Numbers (NaN)

Figure 6.3 shows the bit pattern of a non-number (NaN). A value is NaN in the following case:
e Sign bit: Don’t care
¢ Exponent field: All bits are 1
e Fraction field: At least one bit is 1
The NaN is a signaling NaN (sNaN) if the MSB of the fraction field is 1, and a quiet NaN (qNaN) if the MSB is 0.
Figure 6.3 Single-Precision NaN Bit Pattern
31 30 23 22 0

X 11111111 NIXXXXXXXXX XXX XX XXXXXXXXK

N = 1: sNaN
N = 0: gNaN

HPM-93

Dreamcast SH4 Program Manual

An sNAN is input in an operation, except copy, FABS, and FNEG, that generates a floating-point value.
* When the EN.V bit in the FPSCR register is 0, the operation result (output) is a gNaN.

* When the EN.V bit in the FPSCR register is 1, an invalid operation exception will be generated. In this
case, the contents of the operation destination register are unchanged.

If a gNaN is input in an operation that generates a floating-point value, and an sNaN has not been input in
that operation, the output will always be a qNaN irrespective of the setting of the EN.V bit in the FPSCR
register. An exception will not be generated in this case.

The gNAN values generated by the SH7091 as operation results are as follows:
¢ Single-precision qNaN: H'7FBFFFFF
* Double-precision qNaN: H'7FF7FFFF FFFFFFFF

See section 10, Instruction Descriptions, for details of floating-point operations when a non-number (NaN) is input.

6.2.3 Denormalized Numbers

For a denormalized number floating-point value, the exponent field is expressed as 0, and the fraction field as a
non-zero value.

When the DN bit in the FPU’s status register FPSCR is 1, a denormalized number (source operand or operation
result) is always flushed to 0 in a floating-point operation that generates a value (an operation other than copy,
FNEG, or FABS).

When the DN bit in FPSCR is 0, a denormalized number (source operand or operation result) is processed as it is.
See the individual instruction descriptions for details of floating-point operations when a denormalized number
is input.

6.3 Registers
6.3.1 Floating-Point Registers

Figure 4 shows the floating-point register configuration. There are thirty-two 32-bit floating-point registers,
referenced by specifying FRO-FR15, DR0/2/4/6/8/10/12/14, FV0/4/8/12, XFO-XF15, XD0/2/4/6/8/10/12/14,
or XMTRX.

1) Floating-point registers, FPRi_BANKj (32 registers)
FPRO_BANKO-FPR15_BANKO
FPRO_BANK1-FPR15_BANK1
2) Single-precision floating-point registers, FRi (16 registers)
When FPSCR.FR = 0, FRO-FR15 indicate FPRO_BANKO0-FPR15_BANKO;
when FPSCR.FR = 1, FRO-FR15 indicate FPRO_BANKI1-FPR15_BANKI.
3) Double-precision floating-point registers, DRi (8 registers): A DR register comprises two FR registers
DRO = {FRO, FR1}, DR2 = {FR2, FR3}, DR4 = {FR4, FR5}, DR6 = {FR6, FR7},
DRS = {FR8, FR9}, DR10 = {FR10, FR11}, DR12 = {FR12, FR13}, DR14 = {FR14, FR15)

HPM-94

6. Floating-Point Unit

4) Single-precision floating-point vector registers, FVi (4 registers): An FV register comprises four
FR registers

FV0 = {FRO, FR1, FR2, FR3}, FV4 = {FR4, FR5, FR6, FR7},
FV8 = {FRS8, FRY, FR10, FR11}, FV12 = {FR12, FR13, FR14, FR15}

5) Single-precision floating-point extended registers, XFi (16 registers)
When FPSCR.FR = 0, XFO-XF15 indicate FPRO_BANK1-FPR15_BANK1;
when FPSCR.FR = 1, XF0-XF15 indicate FPRO_BANKO0-FPR15_BANKO.

6) Double-precision floating-point extended registers, XDi (8 registers): An XD register comprises two
XF registers

XD0 = {XF0, XF1}, XD2 = {XF2, XF3}, XD4 = {XF4, XF5}, XD6 = {XF6, XF7},
XD8 = {XF8, XF9}, XD10 = {XF10, XF11}, XD12 = {XF12, XF13}, XD14 = {XF14, XF15}
7) Single-precision floating-point extended register matrix, XMTRX: XMTRX comprises all 16 XF registers

|XMTRX | XFO | XF4 | XF8 | XF12 |
XF1 XF5 XF9 XF13
XF2 XF6 XF10 XF14
XF3 XF7 XF11 XF15

HPM-95

Dreamcast SH4 Program Manual

Figure 6.4 Floating-Point Registers

FPSCR.FR =0 FPSCR.FR =1
FVO DRO FRO FPRO_BANKO XFO XDO XMTRX
FR1 FPR1_BANKO XF1
DR2 FR2 FPR2_BANKO XF2 XD2
FR3 FPR3_BANKO XF3

Fv4 DR4 FR4 FPR4_BANKO XF4 XD4
FR5 FPR5_BANKO XF5
DR6 FR6 FPR6_BANKO XF6 XD6
FR7 FPR7_BANKO XF7
FV8 DR8 FRS8 FPR8_BANKO XF8 XD8
FR9 FPR9_BANKO XF9
DR10 FR10 FPR10_BANKO XF10 XD10
FR11 FPR11_BANKO XF11
FV12 DR12 FR12 FPR12_BANKO XF12 XD12
FR13 FPR13_BANKO XF13
DR14 FR14 FPR14 BANKO XF14 XD14
FR15 FPR15_BANKO XF15
XMTRX XDO XFO FPRO_BANK1 FRO DRO FVO
XF1 FPR1_BANK1 FR1
XD2 XF2 FPR2_BANK1 FR2 DR2
XF3 FPR3_BANK1 FR3
XD4 XF4 FPR4_BANK1 FR4 DR4 FV4
XF5 FPR5_BANK1 FR5
XD6 XF6 FPR6_BANK1 FR6 DR6
XF7 FPR7_BANK1 FR7
XD8 XF8 FPR8_BANK1 FR8 DR8 FV8
XF9 FPR9_BANK1 FR9
XD10 XF10 FPR10_BANK1 FR10 DR10
XF11 FPR11_BANK1 FR11
XD12 XF12 FPR12_BANK1 FR12 DR12 FV12
XF13 FPR13_BANK1 FR13
XD14 XF14 FPR14_BANK1 FR14 DR14
XF15 FPR15_BANK1 FR15

6.3.2 Floating-Point Status/Control Register (FPSCR)
* Floating-point status/ control register, FPSCR (32 bits, initial value = H'0004 0001)

31 22 21 20 19 18 17 12 11 7 6 21 0
Reserved FR |SZ |PR |[DN Cause Enable Flag RM

¢ FR: Floating-point register bank

FR = 0: FPRO_BANKO0-FPR15_BANKO are assigned to FRO-FR15; FPRO_BANKI1-FPR15_BANKT1 are
assigned to XFO-XF15.

FR = 1: FPRO_BANKO-FPR15_BANKO are assigned to XFO-XF15; FPRO_BANKI1-FPR15_BANK1 are
assigned to FRO-FR15.

¢ 5Z: Transfer size mode
SZ = 0: The data size of the FMOV instruction is 32 bits.
SZ = 1: The data size of the FMOV instruction is a 32-bit register pair (64 bits).

HPM-96

6. Floating-Point Unit

¢ PR: Precision mode
PR = 0: Floating-point instructions are executed as single-precision operations.

PR = 1: Floating-point instructions are executed as double-precision operations (graphics support
instructions are undefined).

Do not set SZ and PR to 1 simultaneously; this setting is reserved.
[SZ, PR = 11]: Reserved (FPU operation instruction is undefined.)
* DN: Denormalization mode

DN = 0: A denormalized number is treated as such.

DN = 1: A denormalized number is treated as zero.

(VET] Division
FPU Error (E) | Operation (V) by Zero(Z) Overflow (0) | Underflow (U) = Inexact (l)

Cause FPU exception Bit 17 Bit 16 Bit 15 Bit 14 Bit 13 Bit 12

cause field
Enable FPU exception None Bit 11 Bit 10 Bit 9 Bit 8 Bit 7

enable field
Flag FPU exception None Bit 6 Bit5 Bit4 Bit 3 Bit 2

flag field

When an FPU exception is requested, the corresponding bits in the cause and flag fields are set to 1. Each time an
FPU operation instruction is executed, the cause field is cleared to 0 first. The flag field retains the value of 1 until

cleared to 0 by software.

® RM: Rounding mode
RM = 00: Round to Nearest
RM = 01: Round to Zero
RM = 10: Reserved

RM = 11: Reserved

e Bits 22 to 31: Reserved

Note:

The following functions have been added to the FPU of the SH7091 (not provided in the FPU of

the SH7718):

The FR, SZ, and PR bits have been added.

Exception O (overflow), U (underflow), and I (inexact) bits have been added to the cause, enable, and flag
fields.

An exception E (FPU error) bit has been added to the cause field.

6.3.3 Floating-Point Communication Register (FPUL)

Information is transferred between the FPU and CPU via the FPUL register. The 32-bit FPUL register is a system
register, and is accessed from the CPU side by means of LDS and STS instructions. For example, to convert the
integer stored in general register R1 to a single-precision floating-point number, the processing flow is as follows:

R1 - (LDS instruction) - FPUL - (single-precision FLOAT instruction) - FR1

HPM-97

Dreamcast SH4 Program Manual

6.4 Rounding

In a floating-point instruction, rounding is performed when generating the final operation result from the
intermediate result. Therefore, the result of combination instructions such as FMAC, FTRV, and FIPR will differ
from the result when using a basic instruction such as FADD, FSUB, or FMUL. Rounding is performed once in
FMAC, but twice in FADD, FSUB, and FMUL.

There are two rounding methods, the method to be used being determined by the RM field in FPSCR.
* RM = 00: Round to Nearest
* RM = 01: Round to Zero

Round to Nearest: The value is rounded to the nearest expressible value. If there are two nearest expressible values,
the one with an LSB of 0 is selected.

If the unrounded value is 2E™3% (2 — 2-P) or more, the result will be infinity with the same sign as the unrounded
value. The values of Emax and P, respectively, are 127 and 24 for single-precision, and 1023 and 53 for
double-precision.

Round to Zero: The digits below the round bit of the unrounded value are discarded.

If the unrounded value is larger than the maximum expressible absolute value, the value will be the maximum
expressible absolute value.

6.5 Floating-Point Exceptions

FPU-related exceptions are as follows:

e General illegal instruction/slot illegal instruction exception

The exception occurs if an FPU instruction is executed when SR.FD = 1.

¢ FPU exceptions

The exception sources are as follows:

—FPU error (E): When FPSCR.DN = 0 and a denormalized number is input
—Invalid operation (V): In case of an invalid operation, such as NaN input
—Division by zero (Z): Division with a zero divisor

—Overflow (O): When the operation result overflows

—Underflow (U): When the operation result underflows

—Inexact exception (I): When overflow, underflow, or rounding occurs

The FPSCR cause field contains bits corresponding to all of above sources E, V, Z, O, U, and I, and the FPSCR flag
and enable fields contain bits corresponding to sources V, Z, O, U, and I, but not E. Thus, FPU errors cannot
be disabled.

When an exception source occurs, the corresponding bit in the cause field is set to 1, and 1 is added to the
corresponding bit in the flag field. When an exception source does not occur, the corresponding bit in the cause field
is cleared to 0, but the corresponding bit in the flag field remains unchanged.

e Enable/disable exception handling

The SH7091 supports enable exception handling and disable exception handling.
Enable exception handling is initiated in the following cases:

—FPU error (E): FPSCR.DN = 0 and a denormalized number is input

—Invalid operation (V): FPSCR.EN.V =1 and (instruction = FTRV or invalid operation)

HPM-98

6. Floating-Point Unit

—Division by zero (Z): FPSCR.EN.Z = 1 and division with a zero divisor
—Overflow (O): FPSCR.EN.O = 1 and instruction with possibility of operation result overflow
—Underflow (U): FPSCR.EN.U = 1 and instruction with possibility of operation result underflow

—Inexact exception (I): FPSCR.EN.I = 1 and instruction with possibility of inexact operation result

These possibilities are shown in the individual instruction descriptions. All exception events that originate in the FPU
are assigned as the same exception event. The meaning of an exception is determined by software by reading system
register FPSCR and interpreting the information it contains. If no bits are set in the cause field of FPSCR when one or
more of bits O, U, I, and V (in case of FTRV only) are set in the enable field, this indicates that an actual exception source
is not generated. Also, the destination register is not changed by any enable exception handling operation.

Except for the above, the FPU disables exception handling. In all processing, the bit corresponding to source V, Z,
O, U, or I is set to 1, and disable exception handling is provided for each exception.

—Invalid operation (V): qNAN is generated as the result.
—Division by zero (Z): Infinity with the same sign as the unrounded value is generated.

—Overflow (O):

When rounding mode = RZ, the maximum normalized number, with the same sign as the unrounded value,
is generated.

When rounding mode = RN, infinity with the same sign as the unrounded value is generated.
—Underflow (U):

When FPSCR.DN = 0, a denormalized number with the same sign as the unrounded value, or zero with the same
sign as the unrounded value, is generated.

When FPSCR.DN = 1, zero with the same sign as the unrounded value, is generated.

—Inexact exception (I): An inexact result is generated.

6.6 Graphics Support Functions

The SH7091 supports two kinds of graphics functions: new instructions for geometric operations, and pair
single-precision transfer instructions that enable high-speed data transfer.

6.6.1 Geometric Operation Instructions

Geometric operation instructions perform approximate-value computations. To enable high-speed computation
with a minimum of hardware, the SH7091 ignores comparatively small values in the partial computation results of
four multiplications. Consequently, the error shown below is produced in the result of the computation:
Maximum error = MAX (individual multiplication result x

>-MIN (number of multiplier significant digits—1, number of multiplicand significant digits—l)) + MAX (result value x 223 2—149)

The number of significant digits is 24 for a normalized number and 23 for a denormalized number (number of
leading zeros in the fractional part).

HPM-99

Dreamcast SH4 Program Manual

FIPR FVm, FVn (m, n: 0,4, 8,12): This instruction is basically used for the following purposes:

e Inner product (m 1n):
This operation is generally used for surface/rear surface determination for polygon surfaces.

* Sum of square of elements (m = n):
This operation is generally used to find the length of a vector.

Since approximate-value computations are performed to enable high-speed computation, the inexact exception (I)
bit in the cause field and flag field is always set to 1 when an FIPR instruction is executed. Therefore, if the
corresponding bit is set in the enable field, enable exception handling will be executed.

FTRV XMTRX, FVn (n: 0, 4, 8,12): This instruction is basically used for the following purposes:
e Matrix (4 x 4) ¢ vector (4):

This operation is generally used for viewpoint changes, angle changes, or movements called vector transformations
(4-dimensional). Since affine transformation processing for angle + parallel movement basically requires a 4 x 4
matrix, the SH7091 supports 4-dimensional operations.

e Matrix (4 x 4) x matrix (4 x 4):
This operation requires the execution of four FTRV instructions.

Since approximate-value computations are performed to enable high-speed computation, the inexact exception (I)
bit in the cause field and flag field is always set to 1 when an FTRV instruction is executed. Therefore, if the
corresponding bit is set in the enable field, enable exception handling will be executed. For the same reason, it is not
possible to check all data types in the registers beforehand when executing an FTRV instruction. If the V bit is set in
the enable field, enable exception handling will be executed.

FRCHG: This instruction modifies banked registers. For example, when the FTRV instruction is executed, matrix
elements must be set in an array in the background bank. However, to create the actual elements of a translation
matrix, it is easier to use registers in the foreground bank. When the LDC instruction is used on FPSCR, this
instruction expends 4 to 5 cycles in order to maintain the FPU state. With the FRCHG instruction, an FPSCR.FR bit
modification can be performed in one cycle.

6.6.2 Pair Single-Precision Data Transfer

In addition to the powerful new geometric operation instructions, the SH7091 also supports high-speed data
transfer instructions.

When FPSCR.SZ = 1, the SH7091 can perform data transfer by means of pair single-precision data
transfer instructions.

e FMOV DRm/XDm, DRn/XDRn (m, n: 0, 2, 4, 6, 8, 10, 12, 14)
e EMOV DRm/XDm, @Rn (m: 0, 2, 4, 6, 8, 10, 12, 14; n: 0 to 15)

These instructions enable two single-precision (2 x 32-bit) data items to be transferred; that is, the transfer
performance of these instructions is doubled.

e FSCHG

This instruction changes the value of the SZ bit in FPSCR, enabling fast switching between use and non-use
of pair single-precision data transfer.

HPM-100

SEGA

7. Instruction Set

7.1 Execution Environment

PC: At the start of instruction execution, PC indicates the address of the instruction itself.

Data sizes and data types: The SH7091’s instruction set is implemented with 16-bit fixed-length instructions. The
SH7091 can use byte (8-bit), word (16-bit), longword (32-bit), and quadword (64-bit) data sizes for memory access.
Single-precision floating-point data (32 bits) can be moved to and from memory using longword or quadword size.
Double-precision floating-point data (64 bits) can be moved to and from memory using longword size. When a
double-precision floating-point operation is specified (FPSCR.PR = 1), the result of an operation using quadword
access will be undefined. When the SH7091 moves byte-size or word-size data from memory to a register, the data
is sign-extended.

Load-Store Architecture: The SH7091 features a load-store architecture in which operations are basically executed
using registers. Except for bit-manipulation operations such as logical AND that are executed directly in memory,
operands in an operation that requires memory access are loaded into registers and the operation is executed
between the registers.

Delayed Branches: Except for the two branch instructions BF and BT, the SH7091’s branch instructions and RTE are
delayed branches. In a delayed branch, the instruction following the branch is executed before the branch
destination instruction. This execution slot following a delayed branch is called a delay slot. For example, the BRA
execution sequence is as follows:

Static Sequence Dynamic Sequence

BRA TARGET BRA TARGET
ADD R1, RO ADD R1, RO target_instr o ADD in delay slot is executed before branching to TARGET
next_2

Delay Slot: An illegal instruction exception may occur when a specific instruction is executed in a delay slot. See
section 5, Exceptions. The instruction following BF/S or BT/S for which the branch is not taken is also a delay
slot instruction.

HPM-101

Dreamcast SH4 Program Manual

T Bit: The T bit in the status register (SR) is used to show the result of a compare operation, and is referenced by
a conditional branch instruction. An example of the use of a conditional branch instruction is shown below.

ADD #1, RO ; T bit is not changed by ADD operation
CMP/EQR1, RO ;IfRO=RI1, Thbitissetto1
BT TARGET ; Branches to TARGET if T bit = 1 (RO = R1)

In an RTE delay slot, status register (SR) bits are referenced as follows. In instruction access, the MD bit is used
before modification, and in data access, the MD bit is accessed after modification. The other bits—S, T, M, Q, FD,
BL, and RB—after modification are used for delay slot instruction execution. The STC and STC.L SR instructions
access all SR bits after modification.

Constant Values: An 8-bit constant value can be specified by the instruction code and an immediate value. 16-bit
and 32-bit constant values can be defined as literal constant values in memory, and can be referenced by a
PC-relative load instruction.

MOV.W @(disp, PC), Rn
MOV.L @(disp, PC), Rn

There are no PC-relative load instructions for floating-point operations. However, it is possible to set 0.0 or 1.0 by
using the FLDIO or FLDI1 instruction on a single-precision floating-point register.

7.2 Addressing Modes

Addressing modes and effective address calculation methods are shown in table 7.1. When a location in virtual
memory space is accessed (MMUCR.AT = 1), the effective address is translated into a physical memory address. If
multiple virtual memory space systems are selected (MMUCR.SV = 0), the least significant bit of PTEH is also
referenced as the access ASID. See section 3, Memory Management Unit (MMU).

Table 7.1 Addressing Modes and Effective Addresses

Addressing Mode | Instruction Format | Effective Address Calculation Method Calculation Formula
Register direct Rn Effective address is register Rn.(Operand is register Bn | —

contents.)
Register indirect @Rn Effective address is register Rn contents. Rn — EA (EA: effective

address)

Register indirect @Rn+ Effective address is register Rn contents. A constantis | Rn — EAAfter instruction
with post-increment added to Rn after instruction execution: 1 for a byte execution

operand, 2 for a word operand, 4 for a longword Byte: Rn+1 — Rn

operand, 8 for a quadword operand. Word: Rn+ 2 - Rn

Longword: Rn + 4 — Rn
Quadword: Rn +8 - Rn

Rn + 1/2/4/8

1/2/4/8

HPM-102

7. Instruction Set

Addressing Mode

Instruction Format

Effective Address Calculation Method

Calculation Formula

Register indirect @-Rn Effective address is register Rn contents, decremented | Byte:Rn—1 - Rn
with pre-decrement by a constant beforehand: 1 for a byte operand, 2 fora | \word: Rn—2 — Rn
word operand, 4 for a longword operand, 8 for a] dRn—4 _R
quadword operand. ongword. hn =% —~hn
Quadword: Rn—8 — Rn
Rn Rn - EA (Instruction executed
with Rn after calculation)
Rn — 1/2/4/8
Register indirect @(disp:4, Rn) Effective address is register Rn contents with 4-hit Byte: Rn + disp — EA
with displacement displacement disp added. After disp is zero-extended, | \Word: Rn + disp x 2 — EA
it is multiplied by 1 (byte), 2 (word), or 4 (longword), L & R+ disox 4 EA
according to the operand size. ONgword- AN +dIspx & —
disp Rn + disp x 1/2/4 |
(zero-extended)
Indexed register @(R0, Rn) Effective address is sum of register Rn and RO Rn+R0 - EA
indirect contents.
©
GBR indirect with @(disp:8, GBR) Effective address is register GBR contents with 8-bit | Byte: GBR + disp — EA

displacement

displacement disp added. After disp is zero-extended,
it is multiplied by 1 (byte), 2 (word), or 4 (longword),
according to the operand size.

GBR
+ disp x 1/2/4

disp
(zero-extended)

Word: GBR + dispx 2 — EA
Longword: GBR + disp x 4 — EA
Indexed GBR indirect

HPM-103

Dreamcast SH4 Program Manual

added after being sign-extended and multiplied by 2.

PC + 4 + disp x 2

disp
(sign-extended)

@(R0, GBR) Effective address is sum of register GBR and RO GBR+R0O — EA
contents.
PC-relative with @(disp:8, PC) Effective address is PC+4 with 8-hit displacement disp | Word: PC + 4 + dispx 2 — EA
displacement added. After disp is zero-extended, it is multiplied by 2 | | onqword: PC & H'FFFFFFFC +
(word), or 4 (longword), according to the operand size. | 44 dispx 4 —, EA
With a longword operand, the lower 2 bits of PC are
masked.
PC + 4 + disp
x 2
or PC &
H'FFFFFFFC
(zero-extended) +4+dispx4
* With longword operand
PC-relative disp:8 Effective address is PC+4 with 8-hit displacement disp | PC+4 +dispx2 —

Branch-Target

HPM-104

7. Instruction Set

PC-relative disp:12 Effective address is PC+4 with 12-bit displacement disp | PC+4 +dispx 2 —
added after being sign-extended and multiplied by 2. Branch-Target

PC + 4 + disp x 2

(sign-extended)

Rn PC + 4 +Rn - Branch-Target
PC+4+Rn
Immediate #imm:8 8-bit immediate data imm of TST, AND, OR, or XOR —
instruction is zero-extended.
#mm:8 8-bit immediate data imm of MOV, ADD, or CMP/EQ —
instruction is sign-extended.
#mm:8 8-bit immediate data imm of TRAPA instruction is —

zero-extended and multiplied by 4.

Note: For the addressing modes below that use a displacement (disp), the assembler descriptions in this manual
show the value before scaling (x1, x2, or x4) is performed according to the operand size. This is done to
clarify the operation of the chip. Refer to the relevant assembler notation rules for the actual assembler

descriptions.

@ (disp:4, Rn) ; Register indirect with displacement
@ (disp:8, GBR) ; GBR indirect with displacement

@ (disp:8, PC) ; PC-relative with displacement
disp:8, disp:12 ; PC-relative

HPM-105

Dreamcast SH4 Program Manual

7.3 Instruction Set

Table 7.2 shows the notation used in the following SH instruction list.

Table 7.2 Notation Used in Instruction List

Item Format Description
Instruction 0PSz SRC, DEST OP: Operation code
mnemonic Sz Size
SRC: Source
DEST: Source and/or destination operand
Summary of 1, fl Transfer direction
operation (xx) Memory operand
M/Q/T SR flag bits
& Logical AND of individual bits
| Logical OR of individual bits
A Logical exclusive-OR of individual bits
~ Logical NOT of individual bits
<<n, >>n n-bit shift
Instruction code MSB « LSB mmmm: Register number (Rm, FRm)
nnnn: Register number (Rn, FRn)
0000: RO, FRO
0001: R1, FR1
1111: R15, FR15
mmm: Register number (DRm, XDm, Rm_BANK)
nnn: Register number (DRm, XDm, Rn_BANK)
000: DRO, XDO, RO_BANK
001: DR2, XD2, R1_BANK
111: DR14, XD14, R7_BANK
mm: Register number (FVm)
nn: Register number (FVn)
00: FVO
01: Fv4
10: Fv8
11 FV12
iii: Immediate data
dddd: Displacement
Privileged mode “Privileged” means the instruction can only be executed in privileged mode.
T bit Value of T bit after — No change
instruction execution

Note: Scaling (x1, x2, x4, or x8) is executed according to the size of the instruction operand(s).

HPM-106

7. Instruction Set

Table 7.3 Fixed-Point Transfer Instructions

Instruction

Operation

Instruction Code

Privileged | T Bit

MOV #imm,Rn imm — sign extension — Rn 1110nnnniiiiiiii — —
MOV.W @(disp,PC).Rn (dispx 2 + PC + 4) - sign extension — Rn 1001nnnndddddddd — —
MOV.L @(disp,PC),Rn (disp x 4 + PC & H'FFFFFFFC + 4) — Rn 110Tnnnndddddddd — —
MQV Rm,Rn Rm — Rn 0110nnnnmmmm0011 — —
MOV.B Rm,@Rn Rm - (Rn) 0010nnnnmmmm0000 — —
MOV.W Rm,@Rn Rm - (Rn) 0010nnnnmmmmO001 — —
MOV.L Rm,@Rn Bm - (Rn) 0010nnnnmmmm0010 — —
MOV.B @Rm,Rn (Rm) - sign extension — Rn 0110nnnnmmmmO000 — —
MOV.W @Rm,Rn (Rm) - sign extension — Rn 0110nnnnmmmmO001 — —
MOV.L @Rm,Rn (Rm) - Rn 0110nnnnmmmm0010 — —
MOV.B Rm,@-Rn Rn-1 - Rn, Rm - (Rn) 0010nnnnmmmm0100 — —
MOV.W Rm,@-Rn Rn-2 — Rn, Rm = (Rn) 0010nnnnmmmm0101 — —
MOV.L Rm,@-Rn Rn-4 — Rn, Rm - (Rn) 0010nnnnmmmm0110 — —
MOV.B @Rm+,Rn (Rm) - sign extension — Rn, Rm+1 - Rm | 0110nnnnmmmm0100 — —
MOV.W @Rm+,Rn (Rm) - sign extension — Rn, Rm+2 — Rm | 0110nnnnmmmm0101 — —
MOV.L @Rm+,Rn (Rm) - Rn,Rm +4 - Rm 0110nnnnmmmm0110 — —
MOV.B R0,@(disp,Rn) RO - (disp + Rn) 10000000nnnndddd — —
MOV.W RO, @(disp,Rn) RO - (dispx 2 +Rn) 10000001nnnndddd — —
MOV.L Rm,@(disp,Rn) Rm - (disp x 4 + Rn) 000Tnnnnmmmmdddd — —
MOV.B @(disp,Rm),R0 (disp + Rm) — sign extension — RO 10000100mmmmdddd — —
MOV.W @(disp,Rm),R0 (disp x 2 + Rm) - sign extension — RO 1000010Tmmmmdddd — —
MOV.L @(disp,Rm),Rn (dispx 4 +RBm) - Rn 010Tnnnnmmmmdddd — —
MOV.B Rm,@(R0,Rn) Rm - (RO + Rn) 0000nnnnmmmm0100 — —
MOV.W Rm,@(R0,Rn) Rm - (RO +Rn) 0000nnnnmmmmO101 — —
MOV.L Rm,@(R0,Rn) Rm - (RO + Rn) 0000nnnnmmmm0110 — —
MOV.B @(R0,Rm),Rn (RO +Rm) - sign extension — Rn 0000nnnnmmmm1100 — —
MOV.W @(R0,Rm),Rn (RO + Rm) - sign extension — Rn 0000nnnnmmmm1101 — —

HPM-107

Dreamcast SH4 Program Manual

Instruction Operation Instruction Code Privileged T Bit
MOV.L @(R0,Rm),Rn (RO +Rm) - Rn 0000nnnnmmmm1110 — —
MOV.B R0,@(disp,GBR) RO - (disp + GBR) 11000000dddddddd — —
MOV.W R0,@(disp,GBR) RO — (disp x 2 + GBR) 11000001dddddddd — —
MOV.L R0,@(disp,GBR) RO — (disp x 4 + GBR) 11000010dddddddd — —
MOV.B @(disp,GBR),R0 (disp + GBR) — sign extension — R0 11000100dddddddd — —

MOV.W @(disp,GBR),R0 (disp x 2 + GBR) - sign extension — RO 11000101dddddddd — —

MOV.L @(disp,GBR),RO (disp x 4 + GBR) — RO 11000110dddddddd — —
MOVA @(disp,PC),RO disp x 4 + PC & H'FFFFFFFC +4 — RO 11000111dddddddd — —
MOVT Rn T —ARn 0000nnnn00101001 — —
SWAPB Rm,Rn Rm — swap lower 2 bytes — REG 0110nnnnmmmm1000 — —
SWAPW Rm,Rn Rm — swap upper/lower words — Rn 0110nnnnmmmm 1001 — —
XTRCT Rm.Rn Rm:Rn middle 32 bits — Rn 0010nnnnmmmm1101 — —

HPM-108

7. Instruction Set

Table 7.4 Arithmetic Operation Instructions

Instruction Operation Instruction Code Privileged | T Bit
ADD Rm,Rn Rn+Rm = Rn 001Tnnnnmmmm1100 — —
ADD #imm,Rn Rn+imm - Rn 011 1nnnniiiiiiii — —
ADDC Rm,Rn Rn+Rm+T - Rn,carry - T 001Tnnnnmmmm1110 — Carry
ADDV Rm,Rn Rn+Rm - Rn, overflow — T 001Tnnnnmmmm71111 — Overflow
CMP/EQ #imm,RO When RO =imm, 1 - TOtherwise, 0 — T | 10001000iiiiiiii — Comparison
result
CMP/EQ Rm,Rn When Rn=Rm, 1 - TOtherwise,0 — T | 0011Tnnnnmmmm0000 — Comparison
result
CMP/HS Rm,Rn When Rn =Rm (unsigned), 1 — 0011Tnnnnmmmm0010 — Comparison
TOtherwise, 0 - T result
CMP/GE Rm,Rn When Rn = Rm (signed), 1 - 0011TnnnnmmmmO0011 — Comparison
TOtherwise, 0 - T result
CMP/HI Rm,Rn When Rn > Rm (unsigned), 1 — 001Tnnnnmmmm0110 — Comparison
TOtherwise, 0 —» T result
CMP/GT Rm,Rn When Rn >Rm (signed), 1 - 001Tnnnnmmmm0111 — Comparison
TOtherwise, 0 - T result
CMP/PZ Rn WhenRn=0,1 - TOtherwise, 0 - T 0100nnnn00010001 — Comparison
result
CMP/PL Rn WhenRn>0,1 - TOtherwise, 0 — T 0100nnnn00010101 — Comparison
result
CMP/STR Rm,Rn When any bytes are equal, 1 - 0010nnnnmmmm1100 — Comparison
TOtherwise, 0 - T result
DIV1 Rm,Rn 1-step division (Rn [Rm) 0011Tnnnnmmmm0100 — Calculation
result
DIVOS Rm,Rn MSB of Rn — Q, MSB of Rm — M, MAQ | 0010nnnnmmmm0111 — Calculation
N result
DIVoU 0 - M/Q/T 0000000000011001 — 0
DMULS.L Rm,Rn Signed, Rn x Rm — MAC, 32 x32 - 64 | 0011Tnnnnmmmm1101 — —
bits
DMULU.L Rm,Rn Unsigned, Rn x Rm - MAC, 32 x 32 - 001Tnnnnmmmm0101 — —
64 bits
DT Rn Rn—1 - Rn; whenRn=0,1 - TWhen | 0100nnnn00010000 — Comparison
Rn1t0,0 T result
EXTS.B Rm,Rn Rm sign-extended from byte — Rn 0110nnnnmmmm1110 — —
EXTS.W Rm,Rn Rm sign-extended from word — Rn 0110nnnnmmmm1111 — —

HPM-109

Dreamcast SH4 Program Manual

Instruction Operation Instruction Code Privileged | T Bit
EXTU.B Rm,Rn Rm zero-extended from byte — Rn 0110nnnnmmmm1100 — —
EXTU.W Rm,Rn Rm zero-extended from word — Rn 0110nnnnmmmm1101 — —
MAC.L @Rm+,@Rn+ | Signed, (Rn) x (Rm) + MAC — MACRn+ | 0000nnnnmmmm1111 — —

4 Bn,Bm+4 - Bm32x32+64 - 064

bits
MAC.W @Rm+,@Rn+ | Signed, (Rn) x (Rm) + MAC — MACRn + | 0100nnnnmmmm1111 — —

2 -RBn,Rm+2 - Bm16x16+64 - 64

bits
MUL.L Rm,Rn Rn x Rm — MACL 32 x 32 — 32 bits 0000nnnnmmmmO111 — —
MULS.W Rm,Rn Signed, Rn x Rm — MACL16 x 16 - 32 | 0010nnnnmmmm1111 — —

bits
MULU.W Rm,Rn Unsigned, Rn x Bm - MACL16x 16 — 0010nnnnmmmm1110 — —

32 bits
NEG Rm,Rn 0—RBm =Rn 0110nnnnmmmm71011 — —
NEGC Rm,Rn 0—Rm-T - Rn, borrow — T 0110nnnnmmmm1010 — Borrow
SUB Rm,Rn Rn—Rm = Rn 001Tnnnnmmmm1000 — —
SUBC Rm,Rn Rn—Rm—T = Rn, borrow - T 001Tnnnnmmmm1010 — Borrow
SUBV Rm,Rn Rn—Rm - Rn, underflow — T 001Tnnnnmmmm71011 — Underflow

HPM-110

7. Instruction Set

Table 7.5 Logic Operation Instructions

Instruction Operation Instruction Code Privileged T Bit

AND Rm,Rn Rn & Rm - Rn 0010nnnnmmmm1001 — —

AND #imm,R0 RO & imm - RO 11001007iiiiiii — —

AND.B #mm,@(R0,GBR) | (RO + GBR) & imm - (RO + GBR) 11001107iiiiiii — —

NOT Rm,Rn ~Bm - Rn 0110nnnnmmmm0111 — —

OR Rm,Rn Rn|Rm - Rn 0010nnnnmmmm 1011 — —

OR #imm,R0 RO | imm - RO 1100101 Tiiiiiiii — —

ORB #mm,@(R0,GBR) | (RO + GBR)|imm — (RO + GBR) 1100111 iiiiiii —

TAS.B @Rn When (Rn)=0, 1 - TOtherwise, 0 0100nnnn00011011 — Test result
- TIn both cases, 1 — MSB of (Rn)

TST Rm,Rn Rn & Rm; when result=0, 1 - 0010nnnnmmmm 1000 — Test result
TOtherwise, 0 — T

TST #imm,RO RO & imm; when result=0, 1 - 11001000iiiiiii — Test result
TOtherwise, 0 — T

TSTB #imm,@(R0,GBR) | (RO + GBR) & imm; when result=0, | 11001100iiiiiiii — Test result
1 - TOtherwise, 0 T

XOR Rm,Rn RnxRm - Rn 0010nnnnmmmm1010 — —

XOR #imm,R0 RO x imm — RO 11001010iiiiiii — —

XOR.B #mm,@(R0,GBR) | (RO + GBR) x imm - (RO + GBR) 11001110iiiiiiii — —

HPM-111

Dreamcast SH4 Program Manual

Table 7.6 Shift Instructions

Instruction Operation Instruction Code Privileged T Bit
ROTL Rn T < Rn < MSB 0100nnnn00000100 — MSB
ROTR Rn LSB - Rn - T 0100nnnn00000101 — LSB
ROTCL Rn T€Rn&T 0100nnnn00100100 — MSB
ROTCR Rn T-Rn T 0100nnnn00100101 — LSB
SHAD Rm,Rn When Rn =0, Rn << Bm — RnWhen | 0100nnnnmmmm1100 — —
Rn<0, Rn>>Rm - [MSB — Rn]
SHAL Rn T<Rn&0 0100nnnn00100000 — MSB
SHAR Rn MSB - Rn - T 0100nnnn00100001 — LSB
SHLD Rm,Rn When Rn =0, Bn <<Rm — RnWhen | 0100nnnnmmmm1101 — —
Rn<0,Rn>>Rm - [0 - Rn]
SHLL Rn T<Rn<0 0100nnnn00000000 — MSB
SHLR Rn 0-Rn T 0100nnnn00000001 — LSB
SHLL2 Rn Rn<<2 - Rn 0100nnnn00001000 — —
SHLR2 Rn Rn>>2 - Rn 0100nnnn00001001 — —
SHLL8 Rn Rn<<8 - Rn 0100nnnn00011000 — —
SHLR8 Rn Rn>>8 - Rn 0100nnnn00011001 — —
SHLL16 Rn Rn<<16 - Rn 0100nnnn00101000 — —
SHLR16 Rn Rn>>16 - Rn 0100nnnn00101001 — —

HPM-112

7. Instruction Set

Table 7.7 Branch Instructions

Instruction Operation Instruction Code Privileged | T Bit

BF label WhenT=0,dispx2+PC+4 — PCWhenT=1, | 10001011dddddddd — —
nop

BF/S label Delayed branch; when T=0, dispx2+PC+4 — | 10001111dddddddd — —
PCWhen T=1, nop

BT label WhenT=1,dispx2+PC+4 - PCWhenT=0, | 10001001dddddddd — —
nop

BT/S label Delayed branch; whenT=1, dispx2+PC+4 — | 10001101dddddddd — —
PCWhen T =0, nop

BRA label Delayed branch, dispx2 +PC + 4 — PC 1010dddddddddddd — —

BRAF Rn Rn+PC+4 - PC 0000nnnn00100011 — —

BSR label Delslé/ed branch, PC+4 — PR, dispx2+PC+4 | 1011dddddddddddd — —

BSRF Rn Delayed branch, PC+4 — PR, Rn+PC+4 — PC | 0000nnnn00000011 — —

JMP @Rn Delayed branch, Rn - PC 0100nnnn00101011 — —

JSR @Rn Delayed branch, PC +4 — PR, Rn - PC 0100nnnn00001011 — —

RTS Delayed branch, PR - PC 0000000000001011 — —

HPM-113

Dreamcast SH4 Program Manual

Table 7.8 System Control Instructions

Instruction Operation Instruction Code Privileged | TBit
CLRMAC 0 —» MACH, MACL 0000000000101000 — —
CLRS 0-S 0000000001001000 — —
CLRT 0T 0000000000001000 — 0
LDC Rm,SR Rm - SR 0100mmmm00001110 Privileged LSB
LDC Rm,GBR Rm - GBR 0100mmmm00011110 — —
LDC Rm,VBR Rm - VBR 0100mmmm00101110 Privileged —
LDC Rm,SSR Rm - SSR 0100mmmm00111110 Privileged —
LDC Rm,SPC Rm - SPC 0100mmmm01001110 Privileged —
LDC Rm,DBR Rm — DBR 0100mmmm11111010 Privileged —
LDC Rm,Rn_BANK Rm — Rn_BANK (n=0to07) 0100mmmm1nnn1110 Privileged —
LDC.L @Rm+,SR (Rm) - SR, Bm +4 — Rm 0100mmmm00000111 Privileged LSB
LDC.L @Rm+,GBR (Rm) — GBR, Rm +4 — Rm 0100mmmm00010111 — —
LDC.L @Rm+,VBR (Rm) - VBR,Rm +4 - Rm 0100mmmm00100111 Privileged —
LDC.L @Rm+,SSR (Rm) - SSR,Rm +4 — Rm 0100mmmm00110111 Privileged —
LDC.L @Rm+,SPC (Rm) - SPC,Rm +4 - Rm 0100mmmm01000111 Privileged —
LDC.L @Rm+,0BR (Rm) — DBR, Rm +4 — Rm 0100mmmm11110110 Privileged —
LDC.L @Rm+,Rn_BANK | (Rm) — Rn_BANK, Rm +4 — Rm 0100mmmm1nnn0111 Privileged —
LDS Rm,MACH Rm — MACH 0100mmmm00001010 — —
LDS Rm,MACL Rm — MACL 0100mmmm00011010 — —
LDS Rm,PR Rm - PR 0100mmmm00101010 — —
LDS.L @Rm+,MACH (Rm) — MACH, Rm + 4 - Rm 0100mmmm00000110 — —
LDS.L @Rm+,MACL (Rm) — MACL, Rm +4 — Rm 0100mmmm00010110 — —
LDS.L @Rm+,PR (Rm) - PR, Rm+4 — Rm 0100mmmm00100110 — —
LDTLB PTEH/PTEL - TLB 0000000000111000 Privileged —
MOVCA.L R0,@Rn RO - (Rn) (without fetching cache | 0000nnnn11000011 — —
block)

NOP No operation 0000000000001001 — —
0CBI @Rn Invalidates operand cache block 0000nnnn10010011 — —

HPM-114

7. Instruction Set

Instruction Operation Instruction Code Privileged | T Bit
0CcBpP @Rn Writes back and invalidates 0000nnnn10100011 — —
operand cache block
0CBWB @Rn Writes back operand cache block 0000nnnn10110011 — —
PREF @Rn (Rn) — operand cache 0000nnnn10000011 — —
RTE Eglayed branch, SSR/SPC — SR/ 0000000000101011 Privileged —
SETS 18 0000000001011000 — —
SETT 1T 0000000000011000 — 1
SLEEP Sleep or standby 0000000000011011 Privileged —
STC SR.Rn SR - Rn 0000nnnn00000010 Privileged —
STC GBR.Rn GBR - Rn 0000nnnn00010010 — —
STC VBR,Rn VBR - Rn 0000nnnn00100010 Privileged —
STC SSR.Rn SSR - Rn 0000nnnn00110010 Privileged —
STC SPC,Rn SPC - Rn 0000nnnn01000010 Privileged —
STC SGR.Rn SGR - Rn 0000nnnn00111010 Privileged —
STC DBR,Rn DBR - Rn 0000nnnn11111010 Privileged —
STC Rm_BANK,Rn Rm_BANK - Rn(m=0to7) 0000nnnn1Tmmm0010 Privileged —
STC.L SR,@-Rn Rn—4 - Rn, SR - (Rn) 0100nnnn00000011 Privileged —
STC.L GBR,@-Rn Rn—4 - Rn, GBR - (Rn) 0100nnnn00010011 — —
STC.L VBR,@-Rn Rn—4 - Rn, VBR - (Rn) 0100nnnn00100011 Privileged —
STC.L SSR,@-Rn Rn—4 - Rn, SSR - (Rn) 0100nnnn00110011 Privileged —
STC.L SPC,@-Rn Rn—4 - Rn, SPC - (Rn) 0100nnnn01000011 Privileged —
STC.L SGR,@-Rn Rn—4 - Rn, SGR - (Rn) 0100nnnn00110010 Privileged —
STCL DBR,@-Rn Rn—4 - Rn, DBR - (Rn) 0100nnnn11110010 Privileged —
STC.L Rm_BANK,@-Rn RrE]—t 47)—» Rn, Rm_BANK = (Rn)(m | 0100nnnnTmmmO0011 Privileged —
=0to

STS MACH,Rn MACH - Rn 0000nnnn00001010 — —
STS MACL,Rn MACL - Rn 0000nnnn00011010 — —
STS PR,Rn PR = Rn 0000nnnn00101010 — —

HPM-115

Dreamcast SH4 Program Manual

Instruction

Operation

Instruction Code

Privileged

T Bit

STS.L MACH,@-Rn Rn—4 - Rn, MACH = (Rn) 0100nnnn00000010 — —
STS.L MACL,@-Rn Rn—4 - Rn, MACL = (Rn) 0100nnnn00010010 — —
STS.L PR,@-Rn Rn—4 = Rn, PR - (Rn) 0100nnnn00100010 — —
TRAPA #mm PC+2 - SPC, SR — SSR, #imm<< | 1100001 1iiiiiiii — —
2 — TRA, H'160 — EXPEVT, VBR +
H'0100 - PC

Table 7.9 Floating-Point Single-Precision Instructions

Instruction Operation Instruction Code Privileged | T Bit
FLDIO FRn H'00000000 — FRn 1111nnnn10001101 — —
FLDI1 FRn H'3F800000 — FRn 1111nnnn10011101 — —
FMOV FRm,FRn FRm — FRn 111 Tnnnnmmmm1100 — —
FMOV.S @Rm,FRn (Rm) - FRn 1111Tnnnnmmmm1000 — —
FMOV.S @(R0,Rm),FRn (RO +Rm) — FRn 111Tnnnnmmmm0110 — —
FMOV.S @Rm+,FRn (Rm) - FRn, Rm + 4 - Rm 1111nnnnmmmm1001 — —
FMOV.S FRm,@Rn FRm - (Rn) 1111nnnnmmmm1010 — —
FMOV.S FRm,@-Rn Rn-4 - Rn, FBm - (Rn) 111 T nnnnmmmm10711 — —
FMOV.S FRm,@(R0,Rn) FRm - (RO + Rn) 111 1Tnnnnmmmm0111 — —
FMOV DRm,DRn DBm — DRn 1111nnnOmmm01100 — —
FMOV @Rm,DRn (Rm) = DRn 1111nnn0mmmm1000 — —
FMOV @(R0,Rm),DRn (RO + Rm) - DRn 1111nnn0mmmmQ0110 — —
FMOV @RBm+,DRn (Rm) — DRn, Rm +8 — Rm 1111nnn0Ommmm1001 — —
FMOV DRm,@Rn DRm - (Rn) 1111nnnnmmm01010 — —
FMOV DRm,@-Rn Rn-8 — Rn, DRm - (Rn) 1111Tnnnnmmm01011 — —
FMOV DRm,@(R0,Rn) DRm - (RO + Rn) 1111nnnnmmm007111 — —
FLDS FRm,FPUL FRm - FPUL 1111Tmmmm00011101 — —
FSTS FPUL,FRn FPUL — FRn 1111nnnn00001101 — —
FABS FRn FRn & H'7FFF FFFF - FRn 1111nnnn01011101 — —
FADD FRm,FRn FRn + FRm — FRn 111 1Tnnnnmmmm0000 — —

HPM-116

7. Instruction Set

Instruction

Operation

Instruction Code

Privileged

T Bit

FCMP/EQ FRm,FRn When FRn =FBm, 1 - 111 T nnnnmmmm0100 — Comparison
TOtherwise, 0 — T result
FCMP/GT FRm,FRn When FRn > FRm, 1 - 111 1Tnnnnmmmm0101 — Comparison
TOtherwise, 0 — T result
FDIV FRm,FRn FRn/FRm — FRn 111 Tnnnnmmmm0011 — —
FLOAT FPUL,FRn (float) FPUL — FRn 1111nnnn00101101 — —
FMAC FRO,FRm,FRn FRO*FRm + FRn — FRn 111 Tnnnnmmmm1110 — —
FMUL FRm,FRn FRn*FRm — FRn 111 TnnnnmmmmQ010 — —
FNEG FRn FRn A H'80000000 - FRn 1111nnnn01001101 — —
FSQRT FRn FRn — FRn 1111nnnn01101101 — —
FSUB FRm,FRn VFRn —FRm — FRn 111 TnnnnmmmmO001 — —
FTRC FRm,FPUL (long) FRm — FPUL 1111Tmmmm00111101 — —
Table 7.10 Floating-Point Double-Precision Instructions
Instruction Operation Instruction Code Privileged | T Bit
FABS DRn DRn & H'7FFF FFFF FFFF FFFF — 1111nnn001011101 — —
DRn
FADD DRm,DRn DRn + DRm — DRn 1111nnn0mmm00000 — —
FCMP/EQ DRm,DRn When DRn=DRm, 1 - 1111nnn0mmm00100 — Comparison
TOtherwise, 0 — T result
FCMP/GT DRm,DRn When DRn>DRm, 1 - 1111Tnnn0mmm00101 — Comparison
TOtherwise, 0 — T result
FDIV DRm,DRn DRn /DRm — DRn 1111nnn0mmmO0011 — —
FCNVDS DRm,FPUL double_to_ floatDRm] — FPUL 1111mmm010111101 — —
FCNVSD FPUL,DRn float_to_ double [FPUL] — DRn 1111nnn010101101 — —
FLOAT FPUL,DRn (float)FPUL — DRn 1111nnn000101101 — —
FMUL DRm,DRn DRn *DRm - DRn 11117nnn0mmm00010 — —
FNEG DRn Bgn A H'8000 0000 0000 0000 — 1111nnn001001101 — —
n
FSART DRn vDRn - DRn 1111nnn001101101 — —
FSUB DRm,DRn DRn—DRm - DRn 1111nnn0mmmO0001 — —
FTRC DRm,FPUL (long) DRm — FPUL 1111mmm000111101 — —

HPM-117

Dreamcast SH4 Program Manual

Table 7.11 Floating-Point Control Instructions

Instruction Operation Instruction Code Privileged T Bit
LDS Rm,FPSCR Rm - FPSCR 0100mmmm01101010 — —
LDS Rm,FPUL Rm — FPUL 0100mmmm01011010 — —
LDS.L @Rm+,FPSCR (Rm) — FPSCR, Rm+4 — Rm 0100mmmm01100110 — —
LDS.L @Rm+,FPUL (Rm) — FPUL, Rm+4 — Rm 0100mmmm01010110 — —
STS FPSCR.Rn FPSCR — Rn 0000nnnn01101010 — —
STS FPUL,Rn FPUL - Rn 0000nnnn01011010 — —
STS.L FPSCR.@-Rn Rn—4 - Rn, FPSCR - (Rn) 0100nnnn01100010 — —
STS.L FPUL,@-Rn Rn—4 - Rn, FPUL - (Rn) 0100nnnn01010010 — —

Table 7.12 Floating-Point Graphics Acceleration Instructions

Instruction Operation Instruction Code Privileged T Bit
FMOV DRm,XDn DRm — XDn 1111nnnTmmm01100 — —
FMQV XDm,DRn XDm - DRn 1111nnn0mmm11100 — —
FMOV XDm,XDn XDm - XDn 111 nnnTmmm11100 — —
FMOV @Rm,XDn (Rm) — XDn 1111nnnTmmmm1000 — —
FMOV @Rm+,XDn (Rm) - XDn, Rm +8 — Rm 1111nnnTmmmm1001 — —
FMOV @(R0,Rm),DRn (RO +Rm) — DRn 1111nnnTmmmm0110 — —
FMOV XDm,@Rn XDm - (Rn) 1111nnnnmmm11010 — —
FMOV XDm,@-Rn Rn—8 - Rn, XDm - (Rn) 111 1nnnnmmm11011 — —
FMOV XDm,@(R0,Rn) XDm - (RO+Rn) 111 1nnnnmmm107111 — —
FIPR FVm,FVn inner_product [FVm, FVn] - 1111nnmm11101101 — —
FRIn+3]
FTRV XMTRX,FVn 't:r\?nsform_vector [XMTRX, FVn] - | 1111nn0111111101 — —
n
FRCHG ~FPSCR.FR — SPFCR.FR 1111101111111101 — —
FSCHG ~FPSCR.SZ - SPFCR.SZ 1111001111111101 — —

HPM-118

EGA

8. Pipelining

The SH7091 is a 2-ILP (instruction-level-parallelism) superscalar pipelining microprocessor. Instruction execution
is pipelined, and two instructions can be executed in parallel. The execution cycles depend on the implementation
of a processor. Definitions in this section may not be applicable to SH-4 Series models other than the SH7091.

8.1 Pipelines

Figure 8.1 shows the basic pipelines. Normally, a pipeline consists of five or six stages: instruction fetch (I), decode
and register read (D), execution (EX/SX/F0/F1/F2/F3), data access (NA/MA), and write-back (S/FS). An
instruction is executed as a combination of basic pipelines. Figure 8.2 shows the instruction execution patterns.

HPM-119

Dreamcast SH4 Program Manual

1. General Pipeline

| D EX NA S
« Instruction fetch < Instruction « Operation * Non-memory » Write-back
decode data access

* Issue

« Register read

« Destination address calculation
for PC-relative branch

2. General Load/Store Pipeline

| D EX MA S
« Instruction fetch < Instruction * Address * Memory « Write-back
decode calculation data access

* Issue
« Register read

3. Special Pipeline
| D SX NA S
« Instruction fetch < Instruction « Operation * Non-memory » Write-back
decode data access

« Issue
« Register read

4. Special Load/Store Pipeline

| D SX MA S
« Instruction fetch < Instruction * Address * Memory « Write-back
decode calculation data access

* Issue
* Register read

5. Floating-Point Pipeline
| D F1 F2 FS
« Instruction fetch « Instruction * Computation 1« Computation 2« Computation 3
decode « Write-back
* Issue
* Register read
6. Floating-Point Extended Pipeline
| D FO F1 F2 FS
« Instruction fetch < Instruction * Computation 0« Computation1 < Computation 2 « Computation 3
decode » Write-back

* Issue
* Register read

7. FDIV/IFSQRT Pipeline

Computation: Takes several cycles

Figure 8.1 Basic Pipelines

HPM-120

8. Pipelining

. 1-step operation: 1 issue cycle

EXT[SU].[BW], MOV, MOV#, MOVA, MOVT, SWAP.[BW], XTRCT, ADD*, CMP*,
DIv*, DT, NEG*, SUB*, AND, AND#, NOT, OR, OR#, TST, TST#, XOR, XOR#,
ROT*, SHA*, SHL*, BF*, BT*, BRA, NOP, CLRS, CLRT, SETS, SETT,

LDS to FPUL, STS from FPUL/FPSCR, FLDIO, FLDI1, FMOV, FLDS, FSTS,
single-/double-precision FABS/FNEG

[| o [ex | na | s |

. Load/store: 1 issue cycle
MOV.[BWL]. FMOV*@, LDS.L to FPUL, LDTLB, PREF, STS.L from FPUL/FPSCR

[T T o [ex | ma | s |

. GBR-based load/store: 1 issue cycle
MOV.[BWL]@(d,GBR)

[1 | o [sx | wma | s |

. JMP, RTS, BRAF: 2 issue cycles

[1 T o EX NA s
D EX NA s |
. TST.B: 3 issue cycles
[1+] o SX MA s
D SX NA S
D SX NA S
. AND.B, OR.B, XOR.B: 4 issue cycles
[7 T o SX MA S
D SX NA S
D SX NA S
D SX MA S
. TAS.B: 5 issue cycles
[1] o EX MA S
D EX MA S
D EX NA S
D EX NA S
D EX MA
. RTE: 5 issue cycles
[1+] o EX NA S
D EX NA S
D EX NA S
D EX NA S
D EX NA
. SLEEP: 4 issue cycles
[v T o EX NA s
D EX NA S
D EX NA S
D EX NA S

Figure 8.2 Instruction Execution Patterns

HPM-121

Dreamcast SH4 Program Manual

10. OCBI: 1 issue cycle

[7 T o | Ex | wma s |
[mA
11. OCBP, OCBWSB: 1 issue cycle
[T o [ex | mA s |
[L_MA
MA
MA
MA
12. MOVCA.L: 1 issue cycle
[17 [o [ex | mA s |
MA
b MA
MA
MA
13. TRAPA: 7 issue cycles
[1] b EX NA s
D EX NA S
D EX NA S
D EX NA S
D EX NA
D EX
D
14. CR definition: 1 issue cycle
LDC to DBR/Rp_BANK/SSR/SPC/VBR, BSR
[T b [Ex NAa [s]
[L_sx
|| SX
15. LDC to GBR: 3 issue cycles
[T T o EX NA | s]
D SX
D || SX
16. LDC to SR: 4 issue cycles
[T T o EX NA | s]
D SX
D SX
D | sx
17. LDC.L to DBR/Rp_BANK/SSR/SPC/VBR: 1 issue cycle
L r [o [ex MAa [s |
SX
'—|| SX
18. LDC.L to GBR: 3 issue cycles
[T T o EX MA | s |
D SX
D || SX

Figure 8.2 Instruction Execution Patterns (cont)

HPM-122

8. Pipelining

19.

20

21

22

23

LDC.L to SR: 4 issue cycles

[1 T o EX MA [s |
D SX
D SX
| D [sx
. STC from DBR/GBR/Rp_BANK/SR/SSR/SPC/VBR: 2 issue cycles
[+ [b SX NA s
D sX NA s |
. STC.L from SGR: 3 issue cycles
[+ [b SX NA s
D SX NA S
D SX NA s |

. STC.L from DBR/GBR/Rp_BANK/SR/SSR/SPC/VBR: 2 issue cycles

24.

25.

26.

27.

28.

29.

30.

[1+] o SX NA S
D sX MA s |
. STC.L from SGR: 3 issue cycles
[7 T o SX NA s
D SX NA S
D SX MA s |
LDS to PR, JSR, BSRF: 2 issue cycles
[T T o EX NA [s]
[b SX
| sX
LDS.L to PR: 2 issue cycles
[T T b EX MA [s |
Lo SX
| sx
STS from PR: 2 issue cycles
[7 T o SX NA s
D SX NA s |
STS.L from PR: 2 issue cycles
[7 T o SX NA S
D SX MA s |
MACHY/L definition: 1 issue cycle
CLRMAC, LDS to MACHI/L
[+ [b | Ex NA [s]
[F1
[R [F2 T Fs]
LDS.L to MACH/L: 1 issue cycle
[1 [o | Ex MA | S]
F1
[T F2 T FS
STS from MACH/L: 1 issue cycle
[1 [o [T ex [Nna | s]

Figure 8.2 Instruction Execution Patterns (cont)

HPM-123

Dreamcast SH4 Program Manual

31.

32.

33.

34.

35.

36.

37.

38.

39.

STS.L from MACHIL: 1 issue cycle

[[o [T Eex [ma | s]
LDS to FPSCR: 1 issue cycle
[+ [o | Ex NA | s]
|L_F1
F1
LDS.Lto FPSCR: 1 issue cycle
[+ [b] Ex va [s]
|L_F1
F1

Fixed-point multiplication: 2 issue cycles
DMULS.L, DMULU.L, MUL.L, MULS.W, MULU.W

[7] o EX

NA

S

F1

D

EX

NA

[]

fl

MAC.W, MAC.L: 2 issue cycles

f1

[1 T o EX

MA

D

EX

MA

[]

Single-precision floating-point computation: 1 issue cycle

fl

fl

F2

FS

(CPU)

(FPU)

(CPU)

(FPU)

FCMP/EQ,FCMP/GT, FADD,FLOAT,FMAC,FMUL,FSUB,FTRC,FRCHG,FSCHG

[+ I o [rm]

F2

| Fs |

Single-precision FDIV/SQRT: 1 issue cycle

[1+ [o FL [F2 | Fs |
F3
F1 F2 FS |
Double-precision floating-point computation 1: 1 issue cycle
FCNVDS, FCNVSD, FLOAT, FTRC
[+ [D F1 F2 FS
d F1 F2 FS
Double-precision floating-point computation 2: 1 issue cycle
FADD, FMUL, FSUB
[1] b F1 F2 FS
d F1 F2 FS
d F1 F2 FS
d F1 F2 FS
d F1 F2 FS
F1 F2 FS

Figure 8.2 Instruction Execution Patterns (cont)

HPM-124

8. Pipelining

40. Double-precision FCMP: 2 issue cycles
FCMP/EQ,FCMP/GT

[+ [b

F1 F2 FS

41. Double-precision FDIV/SQRT: 1 issue cycle

D F1 F2 Fs |

FDIV, FSQRT
) F1 F2 FS
d F1 F2 |
F3 .
[A F2 F3
F1 F2 F3
) F1 F2 F3_|
42. FIPR: 1 issue cycle
L + I o [ro [[Fr2 | Fs |
43. FTRV: 1 issue cycle
[+ [b FO F1 F2 FS
d Fo F1 F2 FS
d FO F1 F2 FS
d FO F1 F2 Fs |
Notes: . Cannot overlap a stage of the same kind, except when two instructions are
executed in parallel.
. Locks D-stage
[d__|: Register read only
-~ : Locks, but no operation is executed.
: Can overlap another f1, but not another F1.

Figure 8.2 Instruction Execution Patterns (cont)

HPM-125

Dreamcast SH4 Program Manual

8.2 Parallel-Executability

Instructions are categorized into six groups according to the internal function blocks used, as shown in table 8.1.
Table 8.2 shows the parallel-executability of pairs of instructions in terms of groups. For example, ADD in the EX
group and BRA in the BR group can be executed in parallel.

Table 8.1 Instruction Groups

1. MT Group
CLRT CMP/HI Rm,Rn MOV Rm,Rn
CMP/EQ #Amm,BR0 CMP/HS Bm,An NOP
CMP/EQ Rm,Rn CMP/PL Rn SETT
CMP/GE Rm,Rn CMP/PZ Rn TST #mm,R0
CMP/GT Rm,Rn CMP/STR Rm,Rn TST Rm.Rn
ADD #Amm,BRn MOVT Rn SHLL ~ Rn
2
ADD Rm,Rn NEG RmRn SHLL Rn
8
ADDC Rm,Rn NEGC Rm,Rn SHL Rn
R
ADDV Rm,Rn NOT Rm,Rn SHL Rn
R16
AND #mm,R0 OR #mm, SHL Rn
RO R2
AND Rm,Rn OR Rm,Rn SHL Rn
R8
DIVOS Rm,Rn ROTCL Rn SUB Rm,Rn
DIVoU ROTCR Rn SUB Bm,Rn
C
DIV1 Rm,Rn ROTL Rn SUB Rm,Rn
V
DT Rn ROTR Rn SWA Bm,Rn
PB
EXTS.B Rm,Rn SHAD RmRn SWA Bm,Rn
P.W
EXTS.W Rm,Rn SHAL Rn XOR #imm,R0
EXTU.B Rm,Rn SHAR Rn XOR Rm,Rn

HPM-126

8. Pipelining

EXTU.W Rm,Rn SHLD Rm,Rn XTR Rm,Rn
CT
MoV #mm,Rn SHLL Rn
MOVA @(disp,P SHLL16 Rn
C).RO

3. BR Group
BF disp BRA disp BT disp
BF/S disp BSR disp BT/S disp

FABS DRn FMOV.S ~ @Rm+,FRn MOV.L R0,@(disp,GBR)
FABS FRn FMOV.S FRm,@(RO,Rn) MOV.L Rm,@(disp,Rn)
FLDIO FRn FMOV.S FRm,@-Rn MOV.L Rm,@(R0,Rn)
FLDI1 FRn FMOV.S FRm,@Rn MOV.L Rm,@-Rn
FLDS FRm,FPUL FNEG DRn MOV.L Rm,@Rn
FMoOV @(RO,Rm),.DRn FNEG FRn MOV.W @(disp,GBR),R0
FMOV @(R0,Rm),XDn FSTS FPUL,FRn MOV.W @(disp,PC).Rn
FMoOV @Rm,DRn LDS Rm,FPUL MOV.W @(disp,Rm),RO
FMOV @Rm,XDn MOV.B @(disp,GBR),RO MOV.W @(R0,Rm),Rn
FMOV @Rm+,DRn MOV.B @(disp,Rm),R0 MOV.W @Rm,Rn
FMOV @Rm+,XDn MOV.B @(R0,Rm),Rn MOVW @Rm+Rn
FMoOV DRm.@(R0,Rn) MOV.B @Rm,Rn MOV.W RO,@(disp,GBR)
FMOV DRm,@-Rn MOV.B @Rm+,Rn MOV.W RO,@(disp,Rn)
FMoOV DRm,@Rn MOV.B RO,@(disp,GBR) MOV.W Rm,@(R0,Rn)
FMOV DRm,DRn MOV.B RO0,@(disp,Rn) MOVW Rm,@-Rn
FMoOV DRm,XDn MQOV.B Rm,@(R0,Rn) MOV.W Rm,@Rn
FMOV FRm,FRn MOVB Rm,@-Rn MOVCAL R0O,@Rn

FMoOV XDm,@(RO,Rn) MOV.B Rm,@Rn QCBI @Rn

FMOV XDm,@-Rn MOV.L @(disp,GBR),RO OCBP @Rn

HPM-127

Dreamcast SH4 Program Manual

FMOV XDm,@Rn MOV.L @(disp,PC).Rn 0CBWB @Rn
FMOV XDm,DRn MOV.L @(disp,Rm),Rn PREF @Rn
FMOV XDm,XDn MOV.L @(R0,Rm),Rn STS FPUL.Rn
FMOV.S @(R0,Rm),FRn MOV.L ~ @Rm,Rn

FMOV.S @Rm,FRn MOV.L @Rm+Rn

FADD DRm,DRn FIPR FVm,FVn FSQRT DRn

FADD FRm,FRn FLOAT FPUL,DRn FSQRT FRn
FCMP/EQ FRm,FRn FLOAT FPUL,FRn FSUB DRm,DRn
FCMP/GT FRm,FRn FMAC ~ FRO,FRm,FRn FSUB FRm,FRn
FCNVDS DRm,FPUL FMUL ~ DRm,DRn FTRC DRm,FPUL
FCNVSD FPULDRn ~ FMUL FRm,FRn FTRC FRm,FPUL
FDIV DRm,DRn FRCHG FTRV XMTRX,FVn
FDIV FRm,FRn FSCHG

AND.B #imm,@(R0,GBR) LDS Rm,FPSCR STC SR.Rn
BRAF Rm LDS Rm,MACH STC SSR.Rn
BSRF Rm LDS Rm,MACL STC VBR,Rn
CLRMAC LDS Rm,PR STC.L DBR,@-Rn
CLRS LDS.L @Rm+,FPSCR STC.L GBR.@-Rn
DMULS.L Rm,Rn LDS.L @Rm+,FPUL STC.L Rp_BANK,@-Rn
DMULU.L Rm.Rn LDS.L @Rm+,MACH STC.L SGR.@-Rn
FCMP/EQ DRm,DRn LDS.L @Rm+,MACL STC.L SPC,@-Rn
FCMP/GT DRm,DRn LDS.L @Rm+,PR STC.L SR.@-Rn
JMP @Rn LDTLB STC.L SSR.@-Rn
JSR @Rn MAC.L @Rm+,@Rn+ STCL VBR.@-Rn
LDC Rm,DBR MACW @Rm+@Rn+ STS FPSCR.Rn

HPM-128

8. Pipelining

LDC Rm,GBR MUL.L Rm,Rn STS MACH,Rn

LDC Rm,Rp_BANK MULSW Rm,Rn STS MACL,Rn

LDC Rm,SPC MULUW Rm,Rn STS PR.Rn

LDC Rm,SR ORB #mm,@(R0,GBR) STS.L FPSCR,@-Rn
LDC Rm,SSR RTE STS.L FPUL,@-Rn

LDC Rm,VBR RTS STS.L MACH,@-Rn
LDC.L @Rm+,DBR SETS STS.L MACL,@-Rn
LDC.L @Rm+,GBR SLEEP STS.L PR,@-Rn

LDC.L @Rm+,Rp_BANK STC DBR,Rn TASB @Rn

LDC.L @Rm+,SPC STC GBR.Rn TRAPA #imm

LDC.L @Rm+,SR STC Rp_BANK,Rn TSTB #imm,@(R0,GBR)
LDC.L @Rm+,SSR STC SGR.Rn XOR.B #imm,@(R0,GBR)
LDC.L @Rm+,VBR STC SPC,Rn

Table 8.2 Parallel-Executability

2nd Instruction

1st MT 0 0 0 0 0 X
Instruction
EX 0 X 0 0 0 X
BR 0 0 X 0 0 X
LS 0 0 0 X 0 X
FE 0 0 0 0 X X
co X X X X X X

0: Can be executed in parallel
X: Cannot be executed in parallel

HPM-129

Dreamcast SH4 Program Manual

8.3 Execution Cycles and Pipeline Stalling

There are three basic clocks in this processor: the I-clock, B-clock, and P-clock. Each hardware unit operates on one
of these clocks, as follows:

¢ I-clock: CPU, FPU, MMU, caches
¢ B-clock: External bus controller
* P-clock: Peripheral units
The frequency ratios of the three clocks are determined with the frequency control register (FRQCR). In this section,

machine cycles are based on the I-clock unless otherwise specified. For details of FRQCR, see section 10, Clock
Oscillation Circuits.

Instruction execution cycles are summarized in table 8.3. Penalty cycles due to a pipeline stall or freeze are not
considered in this table.

e Issue rate: Interval between the issue of an instruction and that of the next instruction

e Latency: Interval between the issue of an instruction and the generation of its result (completion)

e Instruction execution pattern (see figure 8.2)

* Locked pipeline stages

e Interval between the issue of an instruction and the start of locking

* Lock time: Period of locking in machine cycle units
The instruction execution sequence is expressed as a combination of the execution patterns shown in figure 8.2. One
instruction is separated from the next by the number of machine cycles for its issue rate. Normally, execution, data
access, and write-back stages cannot be overlapped onto the same stages of another instruction; the only exception

is when two instructions are executed in parallel under parallel-executability conditions. Refer to (a) through (d) in
figure 8.3 for some simple examples.

Latency is the interval between issue and completion of an instruction, and is also the interval between the
execution of two instructions with an interdependent relationship. When there is interdependency between two
instructions fetched simultaneously, the latter of the two is stalled for the following number of cycles:

* (Latency) cycles when there is flow dependency (read-after-write)
* (Latency - 2) cycles when there is output dependency (write-after-write)

e 1 or 2 cycles when there is anti-flow dependency (write-after-read), as in the following cases:

— FTRV is the preceding instruction (1 cycle)
— A double-precision FADD, FSUB, or FMUL is the preceding instruction (2 cycles)

In the case of flow dependency, latency may be exceptionally increased or decreased, depending on the combination
of sequential instructions (figure 8.3 (e)).

* When a floating-point (FP) computation is followed by an FP register store, the latency of the FP
computation may be decreased by 1 cycle.

e If there is a load of the shift amount immediately before an SHAD /SHLD instruction, the latency of the
load is increased by 1 cycle.

e If an instruction with a latency of less than 2 cycles, including write-back to an FP register, is followed by
a double-precision FP instruction, FIPR, or FTRV, the latency of the first instruction is increased to 2 cycles.

HPM-130

8. Pipelining

The number of cycles in a pipeline stall due to flow dependency will vary depending on the combination of
interdependent instructions or the fetch timing (see figure 8.3. (e)).

For the stall cycles of an instruction with output dependency, the longest latency to the last write-back among all
the destination operands must be applied instead of “latency-2" (see figure 8.3 (f)). A stall due to output
dependency with respect to FPSCR, which reflects the result of an FP operation, never occurs. For example, when
FADD follows FDIV with no dependency between FP registers, FADD is not stalled even if both instructions update
the cause field of FPSCR.

Anti-flow dependency can occur only between a preceding double-precision FADD, FMUL, FSUB, or FTRV and a
following FMOV, FLDIO, FLDI1, FABS, or ENEG. See figure 8.3 (g).

If an executing instruction locks any resource—i.e. a function block that performs a basic operation—a following
instruction that happens to attempt to use the locked resource must be stalled (figure 8.3 (h)). This kind of stall can
be compensated by inserting one or more instructions independent of the locked resource to separate the interfering
instructions. For example, when a load instruction and an ADD instruction that references the loaded value are
consecutive, the 2-cycle stall of the ADD is eliminated by inserting three instructions without dependency. Software
performance can be improved by such instruction scheduling.

Other penalties arise in the event of exceptions or external data accesses, as follows.

e Instruction TLB miss: a penalty of 7 CPU clocks
e Instruction access to external memory (instruction cache miss, etc.)
e Data access to external memory (operand cache miss, etc.): a penalty of 2 CPU clocks + 3 bus clocks

e Data access to a memory-mapped control register. The penalty differs from register to register, and
depends on the kind of operation (read or write), the clock mode, and the bus use conditions when the
access is made.

During the penalty cycles of an instruction TLB miss or external instruction access, no instruction is issued, but
execution of instructions that have already been issued continues. The penalty for a data access is a pipeline freeze:
that is, the execution of uncompleted instructions is interrupted until the arrival of the requested data. The number
of penalty cycles for instruction and data accesses is largely dependent on the user’s memory subsystems.

HPM-131

Dreamcast SH4 Program Manual

(a) Serial execution: non-parallel-executable instructions

(b

~

©

(d)

-<—> lissue cycle

SHAD RO,R1 | D | EX|] NA] s
ADD R2,R3 I D | EX| NA| s |
next <—» 1stallcycle

Parallel execution: parallel-executable and no dependency

<—> lissue cycle

EX-group SHAD and EX-group ADD
cannot be executed in parallel. Therefore,
SHAD is issued first, and the following
ADD is recombined with the next
instruction.

EX-group ADD and LS-group MOV.L can
be executed in parallel. Overlapping of
stages in the 2nd instruction is possible.

AND.B and MOV are fetched
simultaneously, but MOV is stalled due to
resource locking. After the lock is released,
MOV is refetched together with the next
instruction.

No stall occurs if the branch is not taken.

If the branch is taken, the I-stage of the
branch destination is stalled for the period
of latency. This stall can be covered with a
delay slot instruction which is not parallel-
executable with the branch instruction.

Even if the BT/BF branch is taken, the |-
stage of the branch destination is not
stalled if the displacement is zero.

ADD R2,R1 | D EX NA S
MOV.L @R4,R5 | D EX MA S
Issue rate: multi-step instruction

< » 4 issue cycles
AND.B#1,@(R0,GBR) | | | D SX MA S

D SX NA S
D SX NA S
o D SX MA

vov RiR2 1] ol e 5]
next P N

4 stall cycles "
Branch
BT/S L_far I D EX | NA| s
ADD RO,R1 | D EX NA S
SUB R2,R3 I D | EX| NaA[s |

<+— > 2-cycle latency for |-stage of branch destination

BT/S L_far | D EX NA S
ADD RO,R1 | D EX NA S

<«—» 1stallcycle
L_far
BT L_skip I [b [Ex[nNna] s |
ADD #1,R0 | D — — —
L_skip: | D |

No stall

Figure 8.3 Examples of Pipelined Execution

HPM-132

8. Pipelining

(e) Flow dependency

MOV
ADD

ADD
MOV.L
next

MOV.L
ADD
next

MOV.L
SHAD
next

FADD
STS
STS

FADD

FMOV
FMOV

FLOAT

RO,R1
R2,R1

R2,R1
@R1,R1

@R1,R1
RO,R1

@R1,R1
R1,R2

FR1,FR2
FPUL,R1
FPSCR,R2

DRO,DR2

FR3,FR5
FR2,FR4

FPUL,DRO

FMOV.S FR1,@-R15

FLDI1
FIPR

FMOV
FTRV

FR3
FVO,FV4

@R1,XD14
XMTRX,FVO

Zero-cycle latency

The following instruction, ADD, is not
stalled when executed after an instruction
with zero-cycle latency, even if there is

ADD and MOV.L are not executed in
parallel, since MOV.L references the result
of ADD as its destination address.

Because MOV.L and ADD are not fetched
simultaneously in this example, ADD is
stalled for only 1 cycle even though the
latency of MOV.L is 2 cycles.

Due to the flow dependency between the
load and the SHAD/SHLD shift amount,
the latency of the load is increased to 3

» 7-cycle latency for lower FR

» 8-cycle latency for upper FR

| D EX NA S
| D EX NA S
dependency.
<—> 1-cycle latency
| D EX NA S
| i D EX [ma| s]
B |
1 stall cycle
<«——» 2-cycle latency
[D | EX| MA] s
| D J«—2ex| Na[| s |
! 1 stall cycle
<«——» 2-cycle latency
-<«+—> 1-cycle increase
| D EX MA S
I D d EX] Nna[s |
| B
2 stall cycles cycles.
<+—— > 4-cycle latency for FPSCR
[D | FL | F2 | Fs
| D EX NA S
|| >N D[x| nNnal s]
2 stall cycles
[[o[F]Fr]eFs
d F1 F2 FS
d F1 F2 ES
d F1 F2 FS
d F1 F2 ES. | FR3 write
F1

L]

F2 N\, FS | FR2 write

D [EXY NA[s

D Ex[Nna[s |

<+——— 3-cycle latency for lower FR

» 4-cycle latency for upper FR

[+] o] FL] F2] Fs\| FRLwite The latency of FLOAT is decreased by 1
d F1 = Fs | FRO write cycle, only if followed by a lower FR store.
| D VEX MA | S | This decrease does not apply to an upper
FR store.
Zero-cycle latency
<+— > 3-cycle increase
I D | EX[NA s
I D d Fo [Fra | F2] Fs|
<«——— » 3stallcycles
<«—» 2-cycle latency
<«—» 1-cycle increase
| D | ExX] ma] s
| D d FO F1 F2 FS
3 stall cycles d FO Fl F2 FS
d FO F1 F2 FS
d Fo [F1 [F2 | Fs |

Figure 8.3 Examples of Pipelined Execution (cont)

HPM-133

Dreamcast SH4 Program Manual

(e) Flow dependency (cont)

-<—» Effectively 1-cycle latency for consecutive LDS/FLOAT instructions

LDS RO,FPUL [D
FLOAT FPUL,FRO I

LDS R1,FPUL |

FLOAT FPUL,R1

FTRC FRO,FPUL [D

-<—> Effectively 1-cycle latency for consecutive

STS FPUL,RO |

FTRC FR1,FPUL |

STS FPUL,R1

() Output dependency

» 11-cycle latency

FSQRT FR4 [+ [o

EX NA S
D F1 | F2 | FS
D EXJ NA| S
| D F1 F2 Fs |
F1 F2 | FS
D EX NA s FTRC/STS instructions
D F1 F2 FS
| D | EX| NaNs |
FL Fr2[FS |
F3

[Fr] r2] Fs

> F1 | F2 AFs |

FMOV FROFR4 [1 | D |«

9 stall cycles = latency (11) - 2

The registers are written-back
in program order.

» 7-cycle latency for lower FR

A A

FADD DRO,DR2

» 8-cycle latency for upper FR

I | o[Fa] 2] ks
d F1 F2 FS
d F1 F2 FS
d F1 F2 FS
d F1 E2 FS | FR3 write

F1 E2 Fs | FR2 write

FMOV FRO,FR3 IIIE <

(g) Anti-flow dependency

6 stall cycles = longest latency (8) - 2

> EX | NA[s |

FTRV XMTRXFvo 1 | D [Fo[F1 | F2 [Fs
d FO | F1| F2 | Fs
d Fo | FL | F2 | Fs
d Fo | FL | r2 | Fs]
FMOV @Rixpo | I | D J«——f EX| MA[s
1 stall cycle
FADD DRoDR2 L I | D [Fi | F2 [Fs
d | F1 | F2 | Fs
d | F1 | F2 | Fs
d | F1 | F2 | FS
d | FL| F2 [Fs
F1 | 2 | Fs]
FMOV FR4FR1 1 | EX] Na s
2 stall cycles

Figure 8.3 Examples of Pipelined Execution (cont)

HPM-134

8. Pipelining

(h) Resource conflict

#1 #2 #3 #10 #11 #12
< > |atency
<«—» 1cyclelissue
EDIV FR7 [T] bo F1 [F2 [Fs | __<— Flstagelocked for 1 cycle
F3
FL [F2 [Fs |
FMAC FRO,FR8,FR9 [D Fl1 | F2 FS
FMAC FRO,FR10,FR11 | D F1 F2 FS
FMAC FRO,FR12,FR13 | D F1 F2 FS
FMAC FRO,FR14,FR15 | D |« FL | F2 [Fs |
1 stall cycle (F1 stage resource conflict)
FIPR FVBFVO (i1 [p[rR[RA[F]EFs
FADD FR15FR4 L1 [Dl F [Fr]Fs]
1 stall cycle
LDS.L @R15+PR [T T o] ex]wma]Frs |
D SX
SX
STC GBR,R2] [D SX | NA | s
< > D | sx| Nna| s |
3 stall cycles
FADD DRO,DR2 [T o[Fr[FrIJEFs
[d FL [2 | Fs
d F1 F2 FS
d F1 F2 FS
d F1 F2 FS
F1 F2 FS
MAC.W @R1+@R2+ [T [b« > EX | mMA| s |
5 stall cycles 1
D || Ex| ma] s |
f1
fl F2 | Fs |
f1 F2 FS
MAC.W @R1+,@R2+| | | D EX MA| S | f1 stage can overlap preceding f1,
1 but F1 cannot overlap f1.
D | EX [ma] s |
f1
f1 F2 ES
fL | F2 | Fs |
MACW @R1+@R2+ [| D EX| MA| s
1 stall f1
cycle D] Ex] MA] s |
f1
f1 F2 | Fs
fl F2 FS
FADD DR4,DR6 D F1 F2 ES
3 stall cycles 2 stall cycles d F1 F2 ES
d F1 F2 FS
d F1 F2 FS
d | FL | F2 [Fs |
F1

Figure 8.3 Examples of Pipelined Execution (cont)

HPM-135

Dreamcast SH4 Program Manual

Table 8.3 Execution Cycles

Functional Instruction Issue Execution

Category . Instruction Group Rate Latency Pattern Cycles

_Data tra_nsfer 1 EXTS.B Rm,Rn EX 1 1 #1 — — —

instructions
2 EXTS.W Rm,Rn EX 1 1 #1 — — —
3 EXTUB Rm,Rn EX 1 1 #1 — — —
4 EXTU.W Rm,Rn EX 1 1 #1 — — —
5 MQV Rm,Rn MT 1 0 #1 — — —
6 MOV #imm,Rn EX 1 1 #1 — — —
7 MOVA @(disp,PC),RO EX 1 1 #1 — — —
8 MOV.W @(disp,PC).Rn LS 1 2 #2 — — —
9 MQV.L @(disp,PC).Rn LS 1 2 #2 — — —
10 MOQV.B @Rm,Rn LS 1 2 #2 — — —
1 MOV.W @Rm,Rn LS 1 2 #2 — — —
12 MOV.L @Rm,Rn LS 1 2 #2 — — —
13 MOV.B @Rm+,Rn LS 1 1/2 #2 — — —
14 MOV.W @Rm+,Rn LS 1 1/2 #2 — — _
15 MQV.L @Rm+,Rn LS 1 1/2 #2 — _ _
16 MQV.B @(disp,Rm),R0 LS 1 2 #2 — — —
17 MOV.W @(disp,Rm),R0 LS 1 2 #2 — — —
18 MOV.L @(disp,Rm),Rn LS 1 2 #2 — — —
19 MOV.B @(R0,Rm),Rn LS 1 2 #2 — — —
20 MOV.W @(R0,Rm),Rn LS 1 2 #2 — — _
21 MQV.L @(R0,Rm),Rn LS 1 2 #2 — _ _
22 MQV.B @(disp,GBR),R0 LS 1 2 #3 — — —
23 MOV.W @(disp,GBR),R0 LS 1 2 #3 — — —
24 MOV.L @(disp,GBR),R0 LS 1 2 #3 — — —
25 MOV.B Rm,@Rn LS 1 1 #2 — — —
26 MOV.W Rm,@Rn LS 1 1 #2 — — —
27 MQV.L Rm,@Rn LS 1 1 #2 — — —
28 MQV.B Rm,@-Rn LS 1 11 #2 — — —

HPM-136

8. Pipelining

Functional Instruction Issue Execution

Category . Instruction Group Rate Latency Pattern Cycles
29 MOV.W Rm,@-Rn LS 1 il #2 — — —
30 MOV.L Rm,@-Rn LS 1 1/1 #2 — — _
31 MOV.B R0,@(disp,Rn) LS 1 1 #2 — — —
32 MOV.W R0,@(disp,Rn) LS 1 1 #2 — — —
33 MOV.L Rm,@(disp,Rn) LS 1 1 #2 — — —
34 MOV.B Rm,@(R0,Rn) LS 1 1 #2 — — —
35 MOV.W Rm,@(R0,Rn) LS 1 1 #2 — — —
36 MOV.L Rm,@(R0,Rn) LS 1 1 #2 — — _
37 MOV.B R0,@(disp,GBR) LS 1 1 #3 — — —
38 MOV.W R0,@(disp,GBR) LS 1 1 #3 — — —
39 MOV.L R0,@(disp,GBR) LS 1 1 #3 — — —
40 MOVCA.L RO,@Rn LS 1 3-7 #12 MA 4 3-7
41 MOVT Rn EX 1 1 #1 — — —
42 OCBI @Rn LS 1 1-2 #10 MA 4 1-2
43 0cBp @Rn LS 1 1-5 #11 MA 4 1-5
44 0CBWB @Rn LS 1 1-5 #11 MA 4 1-5
45 PREF @Rn LS 1 1 #2 — — —
46 SWAPB Rm,Rn EX 1 1 #1 — — —
47 SWAPW Rm,Rn EX 1 1 #1 — — —
48 XTRCT Rm,Rn EX 1 1 #1 — — —

Fixed-point 49 ADD Rm.Rn EX 1 1 #1 — — —

arithmetic

instructions
50 ADD #imm,Rn EX 1 1 #1 — — —
51 ADDC Rm.Rn EX 1 1 #1 — — —
52 ADDV Rm,Rn EX 1 1 #1 — — —
53 CMP/EQ #imm,RO MT 1 1 #1 — — —
54 CMP/EQ Rm,Rn MT 1 1 #1 — — —
55 CMP/GE Rm,Rn MT 1 1 #1 — — —
56 CMP/GT Rm,Rn MT 1 1 #1 — — —
57 CMP/HI Rm.Rn MT 1 1 #1 — — —

HPM-137

Dreamcast SH4 Program Manual

Functional Instruction Issue Execution

Category . Instruction Group Rate Latency Pattern Cycles
58 CMP/HS Rm,Rn MT 1 1 #1 — — —
59 CMP/PL Rn MT 1 1 #1 — — —
60 CMP/PZ Rn MT 1 1 #1 — — —
61 CMP/STR Rm,Rn MT 1 1 #1 — — —
62 DIVOS Rm,Rn EX 1 1 #1 — — —
63 DIvVoU EX 1 1 #1 — — —
64 DIV1 Rm,Rn EX 1 1 #1 — — —
65 DMULS.L Rm,Rn co 2 4/4 #34 F1 4 2
66 DMULU.L Rm,Rn co 2 4/4 #34 F1 4 2
67 DT Rn EX 1 1 #1 — — —
68 MAC.L @Rm+,@Rn+ co 2 2/2/4/4 #35 F1 4 2
69 MAC.W @Rm+,@Rn+ co 2 2/2/4/4 #35 F1 4 2
70 MUL.L Rm,Rn co 2 4/4 #34 F1 4 2
Al MULS.W Rm,Rn co 2 4/4 #34 F1 4 2
72 MULU.W Rm,Rn co 2 4/4 #34 F1 4 2
73 NEG Rm,Rn EX 1 1 #1 — — —
74 NEGC Rm,Rn EX 1 1 #1 — — —
75 SUB Rm,Rn EX 1 1 #1 — — —
76 SUBC Rm,Rn EX 1 1 #1 — — —
77 SUBV Rm,Rn EX 1 1 #1 — — —

Logical 78 AND Rm,Rn EX 1 1 #1 — — —

instructions
79 AND #imm,RO EX 1 1 #1 — — —
80 AND.B #mm,@(R0,GBR) CO 4 4 #6 — — —
81 NOT Rm,Rn EX 1 1 #1 — — —
82 OR Rm,Rn EX 1 1 #1 — — —
83 OR #imm,RO EX 1 1 #1 — — —
84 ORB #imm,@(R0,GBR) CO 4 4 #6 — — —
85 TAS.B @Rn co 5 5 #1 — — —
86 TST Rm,Rn MT 1 1 #1 — — —
87 TST #imm,RO MT 1 1 #1 — — —

HPM-138

8. Pipelining

Functional Instruction Issue Execution

Category Instruction Group Rate Latency Pattern Cycles
88 TSTB #mm,@(R0,GBR) CO 3 3 #5 — — —
89 XOR Rm,Rn EX 1 1 #1 — — —
90 XOR #imm,RO EX 1 1 #1 — — —
91 XOR.B #mm,@(R0,GBR) CO 4 4 #6 — _ _

shift 9 ROTL Rn EX 1 1 #1 — S —

instructions
93 ROTR Rn EX 1 1 #1 — — —
94 ROTCL Rn EX 1 1 #1 — — —
95 ROTCR Rn EX 1 1 #1 — — —
96 SHAD Rm,Rn EX 1 1 #1 — — —
97 SHAL Rn EX 1 1 #1 — — —
98 SHAR Rn EX 1 1 #1 — — —
99 SHLD Rm,Rn EX 1 1 #1 — — —
100 SHLL Rn EX 1 1 #1 — — —
101 SHLL2 Rn EX 1 1 #1 — — —
102 SHLL8 Rn EX 1 1 #1 — — —
103 SHLL16 Rn EX 1 1 #1 — — —
104 SHLR Rn EX 1 1 #1 — — —
105 SHLR2 Rn EX 1 1 #1 — — —
106 SHLR8 Rn EX 1 1 #1 — — —
107 SHLR16 Rn EX 1 1 #1 — — —

_Branch . 108 BF disp BR 1 2 (or1) #1 — — —

instructions
109 BF/S disp BR 1 2(or1) #1 — — —
110 BT disp BR 1 2(or 1) #1 — — —
m BT/S disp BR 1 2 (or1) #1 — — —
112 BRA disp BR 1 2 #1 — — —
113 BRAF Rn Co 2 3 #4 — — —
114 BSR disp BR 1 2 #14 SX 3 2
115 BSRF Rn Co 2 3 #24 SX 3 2
116 JMP @Rn co 2 3 #4 — — —

HPM-139

Dreamcast SH4 Program Manual

Functional Instruction Issue Execution

Category . Instruction Group Rate Latency Pattern Cycles
117 JSR @Rn co 2 3 #24 SX 3 2
118 RTS co 2 3 #4 — — —

System control 119 NOP MT 1 0 #1 — — —

instructions
120 CLRMAC co 1 3 #28 F1 3 2
121 CLRS co 1 1 #1 — — —
122 CLRT MT 1 1 #1 — — —
123 SETS co 1 1 #1 — — —
124 SETT MT 1 1 #1 — — —
125 TRAPA #mm co 7 7 #13 — — —
126 RTE Co 5 5 #3 — — —
127 SLEEP co 4 4 #9 — — —
128 LDTLB co 1 1 #2 — — —
129 LDC Rm,DBR co 1 3 #14 SX 3 2
130 LDC Rm,GBR co 3 3 #15 SX 3 2
131 LDC Rm,Rp_BANK co 1 3 #14 SX 3 2
132 LDC Rm,SR co 4 4 #16 SX 3 2
133 LDC Rm,SSR co 1 3 #14 SX 3 2
134 LDC Rm,SPC co 1 3 #14 SX 3 2
135 LDC Rm,VBR co 1 3 #14 SX 3 2
136 LDC.L @Rm+,DBR co 1 1/3 #17 SX 3 2
137 LDC.L @Rm+,GBR co 3 3/3 #18 SX 3 2
138 LDC.L @Rm+,Rp_BANK CO 1 1/3 #17 SX 3 2
139 LDC.L @Rm+,SR co 4 4/4 #19 SX 3 2
140 LDC.L @Rm+,SSR co 1 1/3 #17 SX 3 2
141 LDC.L @Rm+,SPC co 1 1/3 #17 SX 3 2
142 LDC.L @Rm+,VBR co 1 1/3 #17 SX 3 2
143 LDS Rm,MACH co 1 3 #28 F1 3 2
144 LDS Rm,MACL co 1 3 #28 F1 3 2
145 LDS Rm,PR co 2 3 #24 SX 3 2
146 LDS.L @Rm+,MACH co 1 1/3 #29 F1 3 2

HPM-140

8. Pipelining

Functional Instruction Issue Execution

Category . Instruction Group Rate Latency Pattern Cycles
147 LDS.L @Rm+,MACL co 1 1/3 #29 F1 3 2
148 LDS.L @Rm+,PR co 2 2/3 #25 SX 3 2
149 STC DBR.Rn co 2 2 #20 — — —
150 STC SGR.Rn co 3 3 #21 — — —
151 STC GBR,Rn Co 2 2 #20 — — —
152 STC Rp_BANK,Rn Co 2 2 #20 — — —
153 STC SR.Rn co 2 2 #20 — — —
154 STC SSR,Rn co 2 2 #20 — — —
155 STC SPC,Rn co 2 2 #20 — — —
156 STC VBR,Rn co 2 2 #20 — — —
157 STC.L DBR,@-Rn Co 2 2/2 #22 — — —
158 STC.L SGR.@-Rn Co 3 3/3 #23 — — —
159 STC.L GBR.@-Rn co 2 2/2 #22 — — —
160 STC.L Rp_BANK,@-Rn co 2 2/2 #22 — — —
161 STC.L SR,@-Rn co 2 2/2 #22 — — —
162 STC.L SSR,@-Rn co 2 2/2 #22 — — —
163 STC.L SPC,@-Rn Co 2 2/2 #22 — — —
164 STC.L VBR,@-Rn co 2 2/2 #22 — — —
165 STS MACH,Rn co 1 3 #30 — — —
166 STS MACL,Rn co 1 3 #30 — — —
167 STS PR.Rn co 2 2 #26 — — —
168 STS.L MACH,@-Rn co 1 il #31 — — —
169 STS.L MACL,@-Rn Co 1 il #31 — — —
170 STS.L PR.@-Rn co 2 2/2 #27 — — —

Single-precision 17 FLDIO FRn LS 1 0 #1 — — —

floating-point

instructions
172 FLDI FRn LS 1 0 #1 — — —
173 FMOV FRm,FRn LS 1 0 #1 — — —
174 FMOV.S @Rm,FRn LS 1 2 #2 — — —
175 FMOV.S @Rm+,FRn LS 1 1/2 #2 — — —

HPM-141

Dreamcast SH4 Program Manual

Functional Instruction Issue Execution

Category . Instruction Group Rate Latency Pattern Cycles
176 FMOV.S @(R0,Rm),FRn LS 1 2 #2 — — —
177 FMQV.S FRm,@Rn LS 1 1 #2 — — —
178 FMQV.S FRm,@-Rn LS 1 1N #2 — — —
179 FMQV.S FRm,@(R0,Rn) LS 1 1 #2 — — —
180 FLDS FRm,FPUL LS 1 0 #1 — — —
181 FSTS FPUL,FRn LS 1 0 #1 — — —
182 FABS FRn LS 1 0 #1 — — —
183 FADD FRm,FRn FE 1 3/4 #36 — — —
184 FCMP/EQ FRm,FRn FE 1 2/4 #36 — — —
185 FCMP/GT FRm,FRn FE 1 2/4 #36 — — —
186 FDIV FRm,FRn FE 1 12/13 #37 F3 2 10

F1 " 1
187 FLOAT FPUL,FRn FE 1 3/4 #36 F1 2 2
188 FMAC FRO,FRm,FRn FE 1 3/4 #36 — — —
189 FMUL FRm,FRn FE 1 3/4 #36 — — —
190 FNEG FRn LS 1 0 #1 — — —
191 FSQRT FRn FE 1 1112 #37 F3 2 9
F1 10 1

192 FSUB FRm,FRn FE 1 3/4 #36 — — —
193 FTRC FRm,FPUL FE 1 3/4 #36 — — —
194 FMQV DRm,DRn LS 1 0 #1 — — —
195 FMQV @Rm,DRn LS 1 2 #2 — — —
196 FMQV @Rm+,DRn LS 1 1/2 #2 — — —
197 FMOV @(R0,Rm),DRn LS 1 2 #2 — — —
198 FMOV DRm,@Rn LS 1 1 #2 — — —
199 FMQV DRm,@-Rn LS 1 ”n #2 — — —
200 FMQV DRm,@(R0,Rn) LS 1 1 #2 — — —

Double-precision 201 FABS DRn LS 1 0 #1 — — —

floating-point

instructions
202 FADD DRm,DRn FE 1 (7.8)/9 #39 F1 2 6
203 FCMP/EQ DRm,DRn co 2 3/5 #40 F1 2 2

HPM-142

8. Pipelining

Functional Instruction Issue Execution

Category . Instruction Group Rate Latency Pattern Cycles
204 FCMP/GT DRm,DRn Co 2 3/5 #40 F1 2 2
205 FCNVDS DRm,FPUL FE 1 4/5 #38 F1 2 2
206 FCNVSD FPUL,DRn FE 1 (3,4)/5 #38 F1 2 2
207 FDIV DRm,DRn FE 1 (24, 25)/26 #41 F3 2 21

F1 20 3
208 FLOAT FPUL,DRn FE 1 (3,4)/5 #38 F1 2 2
209 FMUL DRm,DRn FE 1 (7,8)/9 #39 F1 2 6
210 FNEG DRn LS 1 0 #1 — — —
21 FSQRT DRn FE 1 (23, 24)/25 #41 F3 2 20
F1 19 3

212 FSUB DRm,DRn FE 1 (7,8)/9 #39 F1 2 6
213 FTRC DRm,FPUL FE 1 4/5 #38 F1 2 2

FPU system 214 LDS Rm,FPUL LS 1 1 #1 — — —

control

instructions
215 LDS Rm,FPSCR Co 1 4 #32 F1 3 3
216 LDS.L @Rm+,FPUL co 1 1/2 #2 — — —
217 LDS.L @Rm+,FPSCR co 1 1/4 #33 F1 3 3
218 STS FPUL,Rn LS 1 3 #1 — — —
219 STS FPSCR,Rn co 1 3 #1 — — —
220 STS.L FPUL.@-Rn co 1 il #2 — — —
221 STS.L FPSCR,@-Rn co 1 n #2 — — —

Graphics 222 FMOV DRm,XDn LS 1 0 #1 — — —

acceleration

instructions
223 FMOV XDm,DRn LS 1 0 #1 — — —
224 FMOV XDm,XDn LS 1 0 #1 — — —
225 FMOV @Rm,XDn LS 1 2 #2 — — —
226 FMQV @Rm+,XDn LS 1 1/2 #2 — — —
227 FMQV @(R0,Rm),XDn LS 1 2 #2 — — —
228 FMQV XDm,@Rn LS 1 1 #2 — — —
229 FMOV XDm,@-Rm LS 1 n #2 — — —
230 FMOV XDm,@(R0,Rn) LS 1 1 #2 — — —

HPM-143

Dreamcast SH4 Program Manual

Functional Instruction Issue Execution
Category . Instruction Group Rate Latency Pattern Stage Start Cycles
231 FIPR FVm,FVn FE 1 4/5 #42 F1 3 1
232 FRCHG FE 1 174 #36 — — —
233 FSCHG FE 1 1/4 #36 — — —
234 FTRV XMTRX,FVn FE 1 (5.5,6,7)/8 #43 Fo 2 4

HPM-144

8. Pipelining

Functional Instruction Issue Execution
Category . Instruction Group Rate Latency Pattern Stage Start Cycles

Notes: 1. See table 8.1 for the instruction groups. F1 3 4

2. latency “L1/L2...": Latency corresponding to a write to
each register, including MACH/MACL/FPSCR.
Example: MOV.B @Rm-+, Rn “1/2": The latency for Rm is
1 cycle, and the latency for Rn is 2 cycles.

3. Branch latency: Interval until the branch destination
instruction is fetched

4. Conditional branch latency “2 (or 1)": The latency is 2
for a nonzero displacement, and 1 for a zero
displacement.

5. Double-precision floating-point instruction latency “(L1,
L2)/L3": L1 is the latency for FR [n+1], L2 that for FR [n],
and L3 that for FPSCR.

6. FTRV latency “(L1, L2, L3, L4)/L5": L1 is the latency for
FR [n], L2 that for FR [n+1], L3 that for FR [n+2], L4 that
for FR [n+3], and L5 that for FPSCR.

7. Latency “L1/L2/L3/L4" of MAC.L and MAC.W
instructions: L1 is the latency for Rm, L2 that for Rn, L3
that for MACH, and L4 that for MACL.

8. Latency “L1/L2" of MUL.L, MULS.W, MULU.W,
DMULS.L, and DMULU.L instructions: L1 is the latency
for MACH, and L2 that for MACL.

9. Execution pattern: The instruction execution pattern
number (see figure 8.2)

10. Lock/stage: Stage locked by the instruction

11. Lock/start: Locking start cycle; 1 is the first D-stage of
the instruction.

12. Lock/cycles: Number of cycles locked
Exceptions:

1. When a floating-point operation instruction is followed
by a floating-point store, the latency of the
floating-point operation is decreased by 1 cycle.

2. When the preceding instruction loads the shift amount
of the following SHAD/SHLD, the latency of the load is
increased by 1 cycle.

3. When an LS group instruction with a latency of less
than 3 cycles is followed by a double-precision
floating-point instruction, FIPR, or FTRV, the latency of
the first instruction is increased to 3 cycles.

Example: In the case of FMOV FR4,FRO and FIPR
FVO,FV4, FIPR is stalled for 2 cycles.

4. When MAC*/MUL* is followed by an STS.L MAC*,
@-Rn instruction, the latency of MAC*/MUL* is 5
cycles.

5. In the case of consecutive executions of MAC.W/
MAC.L, the latency is decreased to 2 cycles.

6. When an LDS to MAC* is followed by an STS.L MAC*,
@-Rn instruction, the latency of the LDS to MAC* is 4
cycles.

7. When an LDS to MAC* is followed by MAC.W/MAC.L,
the latency of the LDS to MAC* is 1 cycle.

8. When an FSCHG or FRCHG instruction is followed by an
LS group instruction that reads or writes to a
floating-point register, the aforementioned LS group
instruction[s] cannot be executed in parallel.

9. When asingle-precision FTRC instruction is followed by
an STS FPUL, Rn instruction, the latency of the
single-precision FTRC instruction is 1 cycle.

HPM-145

Dreamcast SH4 Program Manual

HPM-146

SEGA

9. Power-Down Modes

9.1 Overview

In the power-down modes, some of the on-chip peripheral modules and the CPU functions are halted, enabling
power consumption to be reduced.

9.1.1 Types of Power-Down Modes

The following power-down modes and functions are provided:

e Sleep mode

¢ Deep sleep mode

¢ Standby mode

¢ Module standby function (TMU, RTC, SCI/SCIF, and DMAC on-chip peripheral modules)

Table 9.1 shows the conditions for entering these modes from the program execution state, the status of the CPU and
peripheral modules in each mode, and the method of exiting each mode.

HPM-147

Dreamcast SH4 Program Manual

Table 9.1 Status of CPU and Peripheral Modules in Power-Down Modes

On-chip
Power- Entering Peripheral External Exiting
Down Mode | Conditions Modules Memory Method
Sleep SLEEP Operati | Halted Held Operating Held Refreshing * Interrupt
instruction ng (registers * Reset
executed held)
while STBY
bitis 0in
STBCR
Deep sleep SLEEP Operati | Halted Held Operating Held Self-refreshing | e Interrupt
instruction ng (registers (DMA * Reset
executed held) halted)
while STBY
bitis 0in
STBCR, and
DSLP bit is 1
in STBCR2
Standby SLEEP Halted | Halted Held Halted* Held Self-refreshing | e Interrupt
instruction (registers * Reset
executed held)
while STBY
bitis 1in
STBCR
Module Setting MSTP | Operati | Operating Held Specified Held Refreshing * Clearing
standby bitto 1in ng modules MSTP bit
STBCR halted* o0
® Reset
Note: The RTC operates when the START bit in RCR2 is 1 (see section 11, Realtime Clock (RTC), in the Hardware

Manual).

9.1.2 Register Configuration

Table 9.2 shows the registers used for power-down mode control.

Table 9.2 Power-Down Mode Registers

Area?
Name Abbreviation R/W Initial Value P4 Address Address Access Size
Standby control STBCR R/W H'00 H'FFC00004 H'1FC00004 8
register
Standby control STBCR2 R/W H'00 H'FFC00010 H'1FC00010 8
register 2

HPM-148

9. Power-Down Modes

9.2 Register Descriptions
9.2.1 Standby Control Register (STBCR)

The standby control register (STBCR) is an 8-bit readable / writable register that specifies the power-down mode
status. It is initialized to H'00 by a power-on reset via the RESET pin or due to watchdog timer overflow.

Bit: / 6 5 4 3 2 1 0
STBY PHZ PPU MSTP4 [MSTP3 | MSTPZ [MSTP1 | MSTPO

Initial value: 0 0 0 0 0 0 0 0
R/W: R/W R/W R/W R/W R/W R/W R/W R/W

Bit 7—Standby (STBY): Specifies a transition to standby mode.

Bit 7: STBY Description
0 Transition to sleep mode on execution of SLEEP instruction (Initial value)
1 Transition to standby mode on execution of SLEEP instruction

Bit 6—Peripheral Module Pin High Impedance Control (PHZ): Controls the state of peripheral module related
pins in standby mode. When the PHZ bit is set to 1, peripheral module related pins go to the high-impedance state
in standby mode.

For the relevant pins, see section 9.2.2, Peripheral Module Pin High Impedance Control.

Bit 6: PHZ DR
0 Peripheral module related pins are in normal state (Initial value)
1 Peripheral module related pins go to high-impedance state

Bit5—Peripheral Module Pin Pull-Up Control (PPU): Controls the state of peripheral module related pins. When
the PPU bit is cleared to 0, the pull-up resistor is turned on for peripheral module related pins in the input or
high-impedance state.

For the relevant pins, see section 9.2.3, Peripheral Module Pin Pull-Up Control.

Bit 5: PPU Description
0 Peripheral module related pin pull-up resistors are on (Initial value)
1 Peripheral module related pin pull-up resistors are off

HPM-149

Dreamcast SH4 Program Manual

Bit4—Module Stop 4 (MSTP4): Specifies stopping of the clock supply to the DMAC among the on-chip peripheral
modules. The clock supply to the DMAC is stopped when the MSTP4 bit is set to 1. When DMA transfer is used,
stop the transfer before setting the MSTP4 bit to 1. When DMA transfer is performed after clearing the MSTP4 bit
to 0, DMAC settings must be made again.

Bit 4: MSTP4 Description

0 DMAC operates (Initial value)

1 DMAC clock supply is stopped

Bit3—Module Stop 3 (MSTP3): Specifies stopping of the clock supply to serial communication interface channel 2
(SCIF) among the on-chip peripheral modules. The clock supply to the SCIF is stopped when the MSTP3 bit is set

,_,.
o
=

Bit 3: MSTP3 Description

0 SCIF operates (Initial value)

1 SCIF clock supply is stopped

Bit 2—Module Stop 2 (MSTP2): Specifies stopping of the clock supply to the timer unit (TMU) among the on-chip
peripheral modules. The clock supply to the TMU is stopped when the MSTP2 bit is set to 1.

Bit 2: MSTP2 Description

0 TMU operates (Initial value)

1 TMU clock supply is stopped

Bit 1—Module Stop 1 (MSTP1): Specifies stopping of the clock supply to the realtime clock (RTC) among the
on-chip peripheral modules. The clock supply to the RTC is stopped when the MSTP1 bit is set to 1. When the clock
supply is stopped, RTC registers cannot be accessed but the counters continue to operate.

Bit 1: MSTP1 Description

0 RTC operates (Initial value)

1 RTC clock supply is stopped

Bit 0—Module Stop 0 (MSTPO0): Specifies stopping of the clock supply to serial communication interface channel 1
(SCI) among the on-chip peripheral modules. The clock supply to the SCl is stopped when the MSTPO bit is set to 1.

Bit 0: MSTPO Description

0 SCl operates (Initial value)

1 SCl clock supply is stopped

HPM-150

9. Power-Down Modes

9.2.2 Peripheral Module Pin High Impedance Control

When bit 6 in the standby control register (STBCR) is set to 1, peripheral module related pins go to the
high-impedance state in standby mode.

e Relevant Pins

SCl related pins MDO/SCK MD1/TXD2
MD7/TXD MD8/RTS2
CTS2

DMA related pins DACKO DRAKD
DACK1 DRAK1

e Other Information

High impedance control is not performed when the above pins are used as port output pins.

9.2.3 Peripheral Module Pin Pull-Up Control

When bit 5 in the standby control register (STBCR) is cleared to 0, peripheral module related pins are pulled up
when in the input or high-impedance state.

® Relevant Pins

SCl related pins MD0/SCK MD1/TXD2 MD2/RXD2
MD7/TXD MD8/RTS2 SCK2/MRESET
RXD CTS2

DMA related pins DREQO DACKO DRAKO
DREQ1 DACK1 DRAK1

TMU related pin TCLK

HPM-151

Dreamcast SH4 Program Manual

9.2.4 Standby Control Register 2 (STBCR2)

Standby control register 2 (STBCR?2) is an 8-bit readable/ writable register that specifies the sleep mode and deep
sleep mode transition conditions. It is initialized to H'00 by a power-on reset via the RESET pin or due to watchdog
timer overflow.

Bit 7 6 5 4 3 2 1 0

DSLP | — — — — — — -

Initial value: 0 0 0 0 0 0 0 0
RAW: R/W R R R R R R R

Bit 7—Deep Sleep (DSLP): Specifies a transition to deep sleep mode

Bit 7: DSLP Description

0 Transition to sleep mode or standby mode on execution of SLEEP instruction, according to setting | (Initial value)
of STBY bit in STBCR register

1 Transition to deep sleep mode on execution of SLEEP instruction®

Note: *When the STBY bit in the STBCR register is 0

Bits 6 to 0—Reserved: Only 0 should only be written to these bits; operation cannot be guaranteed if 1 is written.
These bits are always read as 0.

9.3 Sleep Mode
9.3.1 Transition to Sleep Mode

If a SLEEP instruction is executed when the STBY bit in STBCR is cleared to 0, the chip switches from the program
execution state to sleep mode. After execution of the SLEEP instruction, the CPU halts but its register contents are
retained. The on-chip peripheral modules continue to operate, and the clock continues to be output from the
CKIO pin.

In sleep mode, a high-level signal is output at the STATUS1 pin, and a low-level signal at the STATUSO pin.

HPM-152

9. Power-Down Modes

9.3.2 Exit from Sleep Mode

Sleep mode is exited by means of an interrupt (NMI, IRL, or on-chip peripheral module) or a reset. In sleep mode,
interrupts are accepted even if the BL bit in the SR register is 1. If necessary, SPC and SSR should be saved to the
stack before executing the SLEEP instruction.

Exit by Interrupt: When an NM], IRL, or on-chip peripheral module interrupt is generated, sleep mode is exited
and interrupt exception handling is executed. The code corresponding to the interrupt source is set in the INTEVT
register.

Exit by Reset: Sleep mode is exited by means of a power-on or manual reset via the RESET pin, or a power-on or
manual reset executed when the watchdog timer overflows.

9.4 Deep Sleep Mode
9.4.1 Transition to Deep Sleep Mode

If a SLEEP instruction is executed when the STBY bit in STBCR is cleared to 0 and the DSLP bit in STBCR2 is set to
1, the chip switches from the program execution state to deep sleep mode. After execution of the SLEEP instruction,
the CPU halts but its register contents are retained. Except for the DMAC, on-chip peripheral modules continue to
operate, and the clock continues to be output from the CKIO pin.

In deep sleep mode, a high-level signal is output at the STATUS1 pin, and a low-level signal at the STATUSO pin.

9.4.2 Exit from Deep Sleep Mode

As with sleep mode, deep sleep mode is exited by means of an interrupt (NMI, IRL, or on-chip peripheral module)
or a reset.

9.5 Standby Mode
9.5.1 Transition to Standby Mode

If a SLEEP instruction is executed when the STBY bit in STBCR is set to 1, the chip switches from the program
execution state to standby mode. In standby mode, the on-chip peripheral modules halt as well as the CPU. Clock
output from the CKIO pin is also stopped.

The CPU and cache register contents are retained. Some on-chip peripheral module registers are initialized. The
state of the peripheral module registers in standby mode is shown in table 9.3.

HPM-153

Dreamcast SH4 Program Manual

Table 9.3 State of Registers in Standby Mode

Initialized Registers Registers That Retain Their Contents

Interrupt controller — All registers

User break controller — All registers

Bus state controller — All registers

On-chip oscillation circuits — All registers

Timer unit TSTR register® All registers except TSTR

Realtime clock — All registers

Direct memory access controller — All registers

Serial communication interface See Appendix A, Address List See Appendix A, Address List

Note: *Not initialized when the realtime clock (RTC) is in use (see section 12, Timer Unit (TMU), in the Hardware
Manual).

Note: DMA transfer should be terminated before making a transition to standby mode. Transfer results are not
guaranteed if standby mode is entered during transfer.

The procedure for a transition to standby mode is shown below.

1) Clear the TME bit in the WDT timer control register (WTCSR) to 0, and stop the WDT. Set the initial value
for the up-count in the WDT timer counter (WTCNT), and set the clock to be used for the up-count in
bits CKS2-CKS0 in the WTCSR register.

2) Set the STBY bit in the STBCR register to 1, then execute a SLEEP instruction.

3) When standby mode is entered and the chip’s internal clock stops, a low-level signal is output at the
STATUSI pin, and a high-level signal at the STATUSO pin.

HPM-154

9. Power-Down Modes

9.5.2 Exit from Standby Mode

Standby mode is exited by means of an interrupt (NMI, IRL, or on-chip peripheral module) or a reset via the
RESET pin.

Exit by Interrupt: A hot start can be performed by means of the on-chip WDT. When an NMI, IRL*1, or on-chip
peripheral module (except interval timer)*2 interrupt is detected, the WDT starts counting. After the count
overflows, clocks are supplied to the entire chip, standby mode is exited, and the STATUS1 and STATUSO pins both
go low. Interrupt exception handling is then executed, and the code corresponding to the interrupt source is set in
the INTEVT register. In standby mode, interrupts are accepted even if the BL bit in the SR register is 1, and so, if
necessary, SPC and SSR should be saved to the stack before executing the SLEEP instruction.

The phase of the CKIO pin clock output may be unstable immediately after an interrupt is detected, until standby
mode is exited.

Note: Only when the RTC clock (32.768 kHz) is operating (see section 19.2.2, IRL Interrupts, in the Hardware
Manual), standby mode can be exited by means of IRL3-IRLO (when the IRL3-IRLO level is higher than the
SR register I3-10 mask level).
Standby mode can be exited by means of an RTC interrupt.

Exit by Reset: Standby mode is exited by means of a reset (power-on or manual) via the RESET pin. The RESET pin
should be held low until clock oscillation stabilizes. The internal clock continues to be output at the CKIO pin.

9.5.3 Clock Pause Function

In standby mode, it is possible to stop or change the frequency of the clock input from the EXTAL pin. This function
is used as follows.

1) Enter standby mode following the transition procedure described above.

2) When standby mode is entered and the chip’s internal clock stops, a low-level signal is output at the
STATUSI pin, and a high-level signal at the STATUSO pin.

3) The input clock is stopped, or its frequency changed, after the STATUSI pin goes low and the STATUSO
pin high.

4) When the frequency is changed, input an NMI or IRL interrupt after the change. When the clock is
stopped, input an NMI or IRL interrupt after applying the clock.

5) After the time setin the WDT, clock supply begins inside the chip, the STATUS1 and STATUSO pins both
go low, and operation is resumed from interrupt exception handling.

HPM-155

Dreamcast SH4 Program Manual

9.6 Module Standby Function
9.6.1 Transition to Module Standby Function

Setting the MSTP4-MSTPO bits in the standby control register to 1 enables the clock supply to the corresponding
on-chip peripheral modules to be halted. Use of this function allows power consumption in sleep mode to be further
reduced.

In the module standby state, the on-chip peripheral module external pins retain their states prior to halting of the
modules, and most registers retain their states prior to halting of the modules.

Bit Description
MSTP4 0 DMAC operates

1 Clock supplied to DMAC is stopped
MSTP3 0 SCIF operates

1 Clock supplied to SCIF is stopped
MSTP2 0 TMU operates

1 Clock supplied to TMU is stopped, and register is initialized*1
MSTP1 0 RTC operates

1 Clock supplied to RTC is stopped*2
MSTPO 0 SCl operates

1 Clock supplied to SCl is stopped

Note: The register initialized is the same as in standby mode, but initialization is not performed if the RTC clock
is not in use (see section 12, Timer Unit (TMU), in the Hardware Manual).
The counter operates when the START bit in RCR2 is 1 (see section 11, Realtime Clock (RTC), in the
Hardware Manual).

9.6.2 Exit from Module Standby Function

The module standby function is exited by clearing the MSTP4-MSTPO0 bits to 0, or by a power-on reset via the RESET
pin or a power-on reset caused by watchdog timer overflow.

HPM-156

SEGA

10. Instruction Descriptions

Instructions are listed in this section in alphabetical order. The following format is used for the
instruction descriptions.

Instruction Name Full Name Instruction Type
Function (Indication of delayed branch instruction or
interrupt-disabling instruction)
Format Summary of Operation Instruction Code Execution States TBit
—The assembler input format — Summarizes the — Shown in MSB — The no-wait value is — Shows the T bit
is shown. imm and disp are operation of the LSB order. shown. value after
numeric values, expressions, instruction. execution of the
or symbols. instruction.
Description

Describes the operation of the instruction.

Notes

Identifies points to be noted when using the instruction.

HPM-157

Dreamcast SH4 Program Manual

Operation

Shows the operation in C. This is given as reference material to help understand the operation of the instruction.
Use of the following resources is assumed.

char 8-hit integer

short 16-bit integer

int 32-bit integer

long 64-bit integer

float single-precision floating point number(32 bits)
double double-precision floating point number(64 bits)

These are data types.

unsigned char Read_Byte(unsigned long Addr);

unsigned short Read Word(unsigned long Addr);

unsigned long Read Long(unsigned long Addr);

These reflect the respective sizes of address Addr. A word read from other than a 2n address, or a
longword read from other than a 4n address, will be detected as an address error.

unsigned char Write_Byte(unsigned long Addr, unsigned long Data);
unsigned short Write_ Word(unsigned long Addr, unsigned long Data);
unsigned long Write_Long(unsigned long Addr, unsigned long Data);

These write data Data to address Addr, using the respective sizes. A word write to other than a 2n
address, or a longword write to other than a 4n address, will be detected as an address error.

Delay_Slot(unsigned long Addr);
Shifts to execution of the slot instruction at address (Addr).

unsigned long R[16];

unsigned long SR,GBR,VBR;
unsigned long MACH,MACL,PR;
unsigned long PC;

Registers

struct SRO{
unsigned long dummy0:22;
unsignedlong MO:1;
unsigned long QO0:1;
unsigned long 10:4;
unsigned long dummy1:2;
unsignedlong S0:1;
unsignedlong TO:1;

g

SR structure definitions

define M ((*(struct SRO *)(&SR)).MO0)
#define Q ((*(struct SRO *)(&SR)).Q0)
#define S ((*(struct SRO *)(&SR)).S0)
#define T ((*(struct SRO *)(&SR)).T0)
Definitions of bits in SR

Error(char *er);
Error display function

HPM-158

10. Instruction Descriptions

These are floating-point number definition statements.

#define PZERO 0

#define NZERO 1

#define DENORM 2

#define NORM 3

#define PINF 4

#define NINF 5

#define gNaN 6

#define sNaN 7

#define EQ 0

#define GT 1

#define LT 2

#define UO 3

#define INVALID 4

#define FADD 0

#define FSUB 1

#define CAUSE 0x0003f000 /* FPSCR(bit17-12) */
#define SET_E 0x00020000 /* FPSCR(bit17) */
#define SET_V 0x00010040 /* FPSCR(bit16,6) */
#define SET_Z 0x00008020 /* FPSCR(hit15,5) */
#define SET_O 0x00004010 /* FPSCR(bit14,4) */
#define SET_U 0x00002008 /* FPSCR(bit13,3) */
#define SET_| 0x00001004 /* FPSCR(bit12,2) */

#define ENABLE_VOUI 0x00000b80 /* FPSCR(bit11,9-7) */
#define ENABLE_V ~ 0x00000800 /* FPSCR(bit11) */
#define ENABLE_Z 0x00000400 /* FPSCR(bit10)*/
#define ENABLE_OUI 0x00000380 /* FPSCR(bit9-7) */
#define ENABLE_| 0x00000080 /* FPSCR(bit7) */
#define FLAG 0X0000007C /* FPSCR(bit6-2) */

#define FPSCR_FR FPSCR>>21&1
#define FPSCR_PR FPSCR>>19&1
#define FPSCR_DN FPSCR>>18&1

#define FPSCR_| FPSCR>>12&1
#define FPSCR_RM FPSCR&1
#define FR_HEX frf.I[FPSCR_FR]
#define FR frf.fl FPSCR_FR]
#define DR frf.d FPSCR_FR]
#define XF_HEX frf.[~FPSCR_FR]
#define XF ff.f~FPSCR_FR]
#define XD frf.d[~FPSCR_FR]
union {

int 12][16];

float f[2][16];

double d[2](8];
}H,
int FPSCR;

HPM-159

Dreamcast SH4 Program Manual

int sign_of(int n)
{
return(FR_HEX[n]>>31);
}
int data_type_of(int n)
int abs;
abs = FR_HEX[n] & Ox7fffffff;
if(FPSCR_PR==0){ /* Single-precision */
if(abs < 0x00800000)
if(FPSCR_DN ==1) || (abs == 0x00000000)){
if(sign_of(n) == 0) return(PZERO);
else return(NZERO);

}
else return(DENORM);

}
else if(abs < 0x7f800000) return(NORM);
else if(abs == 0x7f800000) {
if(sign_of(n) ==0) return(PINF);
else return(NINF);
}
else if(abs < 0x7fc00000) return(gNaN);
else return(sNaN);
}
else { * Double-precision */
if(abs < 0x00100000){
if((FPSCR_DN == 1) || (abs == 0x00000000)){
if(sign_of(n) == 0) return(PZERO);
else return(NZERO);

}
else return(DENORM);

}
else if(abs < 0x7ff00000) return(NORM);
else if((abs == 0x7f00000) &&
(FR_HEX[n+1] == 0x00000000)) {
if(sign_of(n) == 0) return(PINF);
else return(NINF);
}
else if(abs < 0x7ff80000) return(gNaN);
else return(sNaN);
}
}
void register_copy(int m,n)
{
FR[n] =FR[m];
if(FPSCR_PR ==1) FR[n+1]=FR[m+1];
}

HPM-160

10. Instruction Descriptions

void normal_faddsub(int m,n,type)

{

union {
float f;
intl;

} dstf,srcf;

union {
double d;
int I[2];

} dstd,srcd;

union {
int double
int I[4];

} dstx;

*“long double” format: */
X; ¥ 1l-bitsign ¥/
f* 15-bit exponent */

f* 112-bit mantissa */

if(FPSCR_PR == 0) {

if(type =

else

dstd.d =

=FADD) srcf.f= FR[m];
srcf.f = -FR[m];
FR[n]; / Conversion from single-precision to double-precision */

dstd.d += srcf.f;

if(((dstd

.d==FR[n]) && (srcf.f1=0.0)) ||

((dstd.d == srcf.f) && (FR[n] = 0.0))) {
if(sign_of(m)" sign_of(n)) {

dstd.[1] = 1;

if(dstd.I[1] == Oxffffffff) dstd.[0] -= 1;

}
}

if(dstd.I[1] & Ox1fffffff) set_I();
dstf.f += srcf.f; * Round to nearest */
if(FPSCR_RM == 1) {

dstd.I[1] &= 0xe0000000; /* Round to zero */

dstf.f
}

=dstd.d;

check_single_exception(&FR[n],dstf.f);

}else {

if(type =

else

dstx.x =

=FADD) srcd.d = DR[m>>1];
srcd.d = -DR[m>>1];
DR[n>>1];

* Conversion from double-precision to extended double-precision */
dstx.x += srcd.d;

if(((dstx.x == DR[n>>1]) && (srcd.d = 0.0)) ||
((dstx.x == srcd.d) && (DR[n>>1] = 0.0))) {
set_I();
if(sign_of(m)™ sign_of(n)) {
dstx.I[3] =1,

if(dlstx.I[3] == Oxfffffff) dstx.[[2] -= 1;
if(dlstx.I[2] == Oxffffifff) dstx.[[1] -= 1;
if(dlstx.[1] == Oxffffffff) dstx.[[0] -= 1;

}
}

HPM-161

Dreamcast SH4 Program Manual

if((dstx.I[2] & OxOfffffff) || dstx.I[3]) set_I();
dst.d += srcd.d; * Round to nearest */
if(FPSCR_RM ==1) {
dstx.I[2] &= 0xf0000000; * Round to zero */
dstx.[[3] = 0x00000000;

dst.d = dstx.x;
}
check_double_exception(&DR[n>>1] ,dst.d);
}
}
void normal_fmul(int m,n)
{
union {
float f;
intl;
} tmpf,
union {
double d;
int I[2];
} tmpd;
union {
int double x;
int I[4];
}otmpx;
if(FPSCR_PR == 0) {
tmpd.d = FR[n]; /* Single-precision to double-precision */
tmpd.d *= FR[m]; /* Precise creation */
tmpf.f *= FR[m]; / Round to nearest */
if(tmpf.f 1= tmpd.d) set_I();
if((tmpf.f > tmpd.d) && (SPSCR_RM == 1)) {
tmpf.l -= 1; * Round to zero */
}
check_single_exception(&FR[n],tmpf.f);
}else {
tmpx.x = DR[n>>1]; /* Single-precision to double-precision */
tmpx.x *= DR[m>>1]; /* Precise creation */
tmpd.d *= DR[m>>1]; /* Round to nearest */
if(tmpd.d != tmpx.x) set_I();
if(tmpd.d > tmpx.x) && (SPSCR_RM == 1)){
tmpd.l[1] -= 1; / Round to zero */
if(tmpd.I[1] == Oxffffffff) tmpd.[0] -= 1;
}
check_double_exception(&DR[n>>1], tmpd.d);
}
}

HPM-162

10. Instruction Descriptions

void fipr(int m,n)

{

union {

}

double d;
int I[2];
mit[4];

float dstf;

if(data_type_of(m) == sNaN) || (data__type_of(n) == sNaN) ||
(data_type_of(m+1) == sNaN) || (data_type_of(n+1) == sNaN) ||
(data_type_of(m+2) ==sNaN) || (data_type_of(n+2) == sNaN) ||
(data_type_of(m+3) ==sNaN) || (data_type_of(n+3) == sNaN) ||
(check_product_invalid(m,n)) ||
(check_product_invalid(m+1,n+1)) ||
(check_product_invalid(m+2,n+2)) ||
(check_product_invalid(m+3,n+3))) invalid(n+3);
else if((data_type_of(m) == gNaN)|| (data_type_of(n) == gNaN)||
(data_type_of(m+1) == gNaN) || (data_type_of(n+1) ==gNaN) ||
(data_type_of(m+2) == gNaN) || (data_type_of(n+2) == gNaN) ||
(data_type_of(m+3) == gNaN) || (data_type_of(n+3) == gNaN)) gnan(n+3);
else if (check_ positive_infinity() &&
(check_negative_infinity()) invalid(n+3);
else if (check_ positive_infinity()) inf(n+3,0);
else if (check_negative_infinity()) inf(n+3,1);
else {
for(i=0;i<4;i++) {
[*If FPSCR_DN == 1, zeroize */
if (data_type of(m+i) == PZERO) FR[m+i] =+0.0;
else if(data_type_of(m+i) == NZERO) FR[m+i] =-0.0;
if (data_type_of(n+i) == PZERO) FR[n+i]=+0.0;
else if(data_type_of(n+i) == NZERO) FR[n+]=-0.0;
mitfi].d = FR[m+i];
mitfi].d *= FR[n+i];

/* To be precise, with FIPR, the lower 18 bits are discarded; therefore, this

description

is simplified, and differs from the hardware. */
mit[i].I[1] &= 0xff000000;

mit[il.I[1] |= 0x00800000;

}

mit[0].d += mit[1].d + mit[2].d + mit[3].d;
mit[0].I[1] &= Oxff800000;

dstf = mit[0].d;

set_1();
check_single_exception(&FR[n+3],dstf);

HPM-163

Dreamcast SH4 Program Manual

void check_single_exception(float *dst,result)
{
union {
float f;
intl;
}otmp;
float abs;
if(result < 0.0) tmp.| = 0xff800000; /* — infinity */
else tmp.l = 0x7f800000; /* + infinity */
if(result == tmp.f) {
set_O();
if(FPSCR_ RM==1) {
tmp.| = 1; /¥ Maximum value of normalized number */
result = tmp.f;
}
}

if(result < 0.0) abs = -result;
else abs = result;
tmp.| = 0x00800000; /* Minimum value of normalized number */
if(@bs < tmp.f) {
if(FPSCR_DN ==1) && (abs = 0.0)) {
set_1();
if(result < 0.0) result = -0.0; /* Zeroize denormalized number */
else result= 0.0;
}
if(FPSCR_1==1) set_U();
}
if(FPSCR & ENABLE_OUI) fpu_exception_trap();
else *dst = result;
}
void check_double_exception(double *dst,result)
{
union {
double d;
int I2];
}otmp;
double abs;
if(result < 0.0) tmp.I[0] = OxfffOO00O0; /* — infinity */
else tmp.l[0] = Ox7ff00000; /* + infinity */
tmp.I[1] = 0x00000000;
if(result == tmp.d)
set_O();
if(FPSCR_RM == 1) {
tmp.[0] =1,
tmp.I[1] = OXffffffff;
result = tmp.d; # Maximum value of normalized number */
}
}

HPM-164

10. Instruction Descriptions

if(result < 0.0) abs = -result;
else abs = result;
tmp.I[0] = 0x00100000; /* Minimum value of normalized number */
tmp.[[1] = 0x00000000;
if(@bs < tmp.d) {
if((FPSCR_DN ==1) && (abs !=0.0)) {
set_I();
if(result < 0.0) result = -0.0;
[* Zeroize denormalized number */
else result = 0.0;
}
if(FPSCR_I ==1) set_U();
}
if(FPSCR & ENABLE_OUI) fpu_exception_trap();
else *dst = result;
}
int check_product_invalid(int m,n)
{
return(check_product_infinity(m,n) &&
((data_type_of(m) == PZERO) || (data._type_of(n) == PZERO) ||
(data_type_of(m) == NZERO) || (data_type_of(n) == NZERO)));
}
int check _ product_infinity(int m,n)
{
return((data_type_of(m) == PINF) || (data_type_of(n) == PINF) ||
(data_type_of(m) == NINF) || (data__type_of(n) == NINF));
}
int check _ positive_infinity(int m,n)
{
return(((check_ product_infinity(m,n) && (~sign_of(m)” sign_of(n))) ||
((check_ product_infinity(m+1,n+1) && (~sign_of(m+1)" sign_of(n+1))) ||
((check_ product_infinity(m+2,n+2) && (~sign_of(m+2)" sign_of(n+2))) ||
((check_ product_infinity(m+3,n+3) && (~sign_of(m+3)" sign_of(n+3))));
}
int check _ negative_infinity(int m,n)
{
return(((check_ product_infinity(m,n) && (sign_of(m)" sign_of(n))) ||
((check_ product_infinity(m+1,n+1) && (sign_of(m+1)" sign_of(n+1))) ||
((check_ product_infinity(m+2,n+2) && (sign_of(m+2)" sign_of(n+2))) ||
((check_ product_infinity(m+3,n+3) && (sign_of(m+3)* sign_of(n+3))));
}
void clear_cause () {FPSCR &= ~CAUSE;}
void set_E() {FPSCR |= SET_E;}
void set_ V() {FPSCR |= SET_V;}
void set_Z() {FPSCR |= SET_Z;}
void set_O() {FPSCR |= SET_O;}
void set_U() {FPSCR |=SET_U;}
void set_I() {FPSCR |= SET _lI;}
void invalid(int n)

HPM-165

Dreamcast SH4 Program Manual

{
set_V();
if(FPSCR & ENABLE_V) == 0 gnan(n);
else fpu_exception_trap();

}

void dz(int n,sign)

{
set_Z();
if(FPSCR & ENABLE_Z) == 0 inf(n,sign);
else fpu_exception_trap();

}

void zero(int n,sign)

{
if(sign ==0) FR_HEX[n] =0x00000000;
else FR_HEX[n] =0x80000000;
if FPSCR_PR==1) FR_HEX [n+1] = 0x00000000;

}

void inf(int n,sign) {
if (FPSCR_PR==0) {
if(sign ==0) FR_HEX [n] = 0x7f800000;
else FR_HEX[n] = 0xff800000;
}else {
if(sign == 0) FR_HEX [n] = 0x7{f00000;
else FR_HEX|[n] = 0xfff00000;
FR_HEX [n+1] = 0x00000000;
}
}
void gnan(int n)
{
if (FPSCR_PR==0) FR[n] = Ox7fbfffff;
else { FR[n] = Ox7ffrffff;
FR[n+1] = OXxifffffff;
}
}

HPM-166

10. Instruction Descriptions

Example

An example is shown using assembler mnemonics, indicating the states before and after execution of
the instruction.

Italics (e.g., .align) indicate an assembler control instruction. The meaning of the assembler control instructions is
given below. For details, refer to the Cross-Assembler User’s Manual.

0rg Location counter setting

.data.w Word integer data allocation

.data.l Longword integer data allocation

.sdata String data allocation

.align 2 2-byte boundary alignment

.align 4 4-byte boundary alignment

.align 32 32-byte boundary alignment

.arepeat 16 16-times repeat expansion

.arepea t 32 32-times repeat expansion

.aendr Count-specification repeat expansion end

Note: SH Series cross-assembler version 1.0 does not support conditional assembler functions

ADD binary Arithmetic Instruction
Binary Addition
Summary of Operation Instruction Code
ADD Rm,Rn Rn+Rm - Rn 001 Tnnnnmmmm?1100 1 —
ADD #imm,Rn Rn+imm — Rn 011Tnnnniiiiiiii 1 —
Description

This instruction adds together the contents of general registers Rn and Rm and stores the result in Rn.
8-bit immediate data can also be added to the contents of general register Rn.

8-bit immediate data is sign-extended to 32 bits, allowing use in decrement operations.

HPM-167

Dreamcast SH4 Program Manual

Operation

ADD(long m, long n) /* ADD Rm,Rn */
{

RIn+=R[m];

PC+=2;
}

ADDI(long i, long n) /* ADD #mm,Rn */
{
if ((1&0x80)==0)
R[n]+=(0x000000FF & (long)i);
else R[n]+=(0xFFFFFFOO0 | (long)i);

PC+=2;
}
Example

ADD RO,R1 :Before execution RO = H7FFFFFFF, R1 = H'00000001
:After execution R1 = H'80000000

ADD #H'01,R2 :Before execution R2 = H'00000000
;After execution R2 = H'00000001

ADD #H'FE,R3 :Before execution R3 = H'00000001

;After execution R3 = HFFFFFFFF

10.2 ADDC ADD with Carry Arithmetic Instruction
_ Binary Addition with Carry

Format Summary of Operation Instruction Code Execution States = T Bit

ADDC Rm,Rn Rn+Bm+T - Rn, carry - T 001Tnnnnmmmm1110 1 Carry
Description

This instruction adds together the contents of general registers Rn and Rm and the T bit, and stores the result in Rn.
A carry resulting from the operation is reflected in the T bit. This instruction is used for additions exceeding 32 bits.

HPM-168

10. Instruction Descriptions

Operation

ADDC(long m,longn) /*ADDC Rm,Rn*

{
unsigned long tmp0,tmp1;

tmpl=R[n]+R[m];
tmpO=R[n];
R[n]=tmpl1+T;

if (tmp0>tmp1) T=1,;

else T=0;
if tmp1>R[n]) T=1;
PC+=2;
}
Example
CLRT ;RO:R1(64 bits) + R2:R3(64 bits) = R0:R1(64 bits)
ADDC R3,R1 ;Before execution T =0, R1 = H'00000001, R3 = H'FFFFFFFF
;After execution T =1, R1 = H'00000000
ADDC R2,R0 ;Before execution T =1, RO =H'00000000, R2 = H'00000000
;After execution T =0, RO =H'00000001

103 ADDV ADD with (V flag) overflow check = Arithmetic Instruction

_ Binary Addition with Overflow Check

Format Summary of Operation Instruction Code Execution States T Bit

ADDV Rm,Rn Rn+Rm - Rn, overflow — T 001 Tnnnnmmmm1111 1 Overflow

Description

This instruction adds together the contents of general registers Rn and Rm and stores the result in Rn. If overflow
occurs, the T bit is set.

HPM-169

Dreamcast SH4 Program Manual

Operation

ADDV(long m, long n) /*ADDV Rm,Rn*/
{

long dest,src,ans;

if ((long)R[n]>=0) dest=0;
else dest=1;
if (long)R[m]>=0) src=0;
else src=1;
src+=dest;
R[n+=R[m];
if ((long)R[n]>=0) ans=0;
else ans=1,
ans+=dest;
if (src==0 || src==2) {
if (ans==1) T=1;
else T=0;
}
else T=0;
PC+=2;
}

Example
ADDV RO,R1 :Before execution RO =H'00000001, R1 = H7FFFFFFE, T=0
;After execution R1 = H7FFFFFFF, T=0

ADDV RO,R1 :Before execution RO = H'00000002, R1 = H7FFFFFFE, T=0
;After execution R1 = H'80000000, T=1

10.4 AND AND logical Logical Instruction

Logical AND

Format Summary of Operation Instruction Code Execution States = T Bit

AND Rm,Rn Rm & Rm = Rn 0010nnnnmmmm?1001 1 —

AND #imm,R0 RO & imm - RO 11001007iiiii 1 —

AND.B #imm,@(R0,GBR) (RO+GBR) & imm — 1100110 iiiiii 4 —
(RO+GBR)

Description

This instruction ANDs the contents of general registers Rn and Rm and stores the result in Rn.

This instruction can be used to AND general register RO contents with zero-extended 8-bit immediate data, or, in
indexed GBR indirect addressing mode, to AND 8-bit memory with 8-bit immediate data.

HPM-170

10. Instruction Descriptions

Notes
With AND #imm,RO0, the upper 24 bits of R0 are always cleared as a result of the operation.

Operation

AND(long m, longn) /*AND Rm,Rn */
{

R[n]&=R[m];

PC+=2;
}

ANDI(longi) /* AND #mm,R0 */
{
R[0]&=(0x000000FF & (long)i);
PC+=2;
}

ANDM(ong i) /* AND.B #mm,@(R0,GBR) */
{

long temp;

temp=(long)Read_Byte(GBR+R][0));
temp&=(0x000000FF & (long)i);
Write_Byte(GBR+R[0],temp);

PC+=2,
}
Example
AND RO,R1 ;Before execution RO = HAAAAAAAA, R1=H'55555555
;After execution R1 = H'00000000
AND #H'OF,RO :Before execution RO = HFFFFFFFF

;After execution RO = H0000000F
AND.B #H80,@(R0O,GBR) ;Before execution @(RO,GBR) = HA5
;After execution @(RO,GBR) = H80

Branch if False Branch Instruction

Conditional Branch

Summary of Operation Instruction Code Execution States | T Bit

lfT=0 10001011dddddddd
PC+4+dispx2 - PC

[fT=1,nop

BF label

HPM-171

Dreamcast SH4 Program Manual

Description

This is a conditional branch instruction that references the T bit. The branch is taken if T = 0, and not taken if T = 1.
The branch destination is address (PC + 4 + displacement x 2). The PC source value is the BF instruction address.
As the 8-bit displacement is multiplied by two after sign-extension, the branch destination can be located in the
range from —256 to +254 bytes from the BF instruction.

Notes

If the branch destination cannot be reached, the branch must be handled by using BF in combination with a BRA or
JMP instruction, for example.

Operation

BF(intd) /*BF disp */

{
int disp;

if ((d&0x80)==0)
disp=(0x000000FF & d);
else disp=(0xFFFFFFOO | d);
if (T==0)
PC=PC+4+(disp<<1);
else PC+=2;
}

Example

CLRT ;Normally T=0
BT TRGET_T ;T =0, so branch is not taken.
BF TRGET F ;T=0, so branchto TRGET _F.
NOP ;
NOP ;
TRGET_F: : € BF instruction branch destination

10.6 BF/S Branch if False with delay Slot Branch Instruction

- Conditional Branch with Delay Delayed Branch Instruction

Format Summary of Operation Instruction Code Execution States T Bit

BF/S label If T=0PC+4+dispx2 —PCIfT=1,nop 10001111dddddddd

HPM-172

10. Instruction Descriptions

Description

This is a delayed conditional branch instruction that references the T bit. If T = 1, the next instruction is executed
and the branch is not taken. If T = 0, the branch is taken after execution of the next instruction.

The branch destination is address (PC + 4 + displacement ¥ 2). The PC source value is the BF /S instruction address.
As the 8-bit displacement is multiplied by two after sign-extension, the branch destination can be located in the
range from -256 to +254 bytes from the BF/S instruction.

Notes

As this is a delayed branch instruction, when the branch condition is satisfied, the instruction following this
instruction is executed before the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction.
If the following instruction is a branch instruction, it is identified as a slot illegal instruction.

If this instruction is located in the delay slot immediately following a delayed branch instruction, it is identified as
a slot illegal instruction.

If the branch destination cannot be reached, the branch must be handled by using BF/S in combination with a BF,
BRA, or JMP instruction, for example.

Operation

BFS(intd) /*BFS disp*
{

int disp;

unsigned int temp;

temp=PC;

if ((d&0x80)==0)
disp=(0xO00000FF & d);

else disp=(0xFFFFFFQO | d);

if (T==0)
PC=PC+4+(disp<<1);

else PC+=4;
Delay_Slot(temp+2);

}

Example

CLRT ;Normally T=0
BT/S TRGET_T ;T =0, so branch is not taken.
NOP ;
BF/S TRGET_F ;T =0, so branch to TRGET.
ADD RO,R1 ;Executed before branch.
NOP ;

TRGET_F: ; € BF/S instruction branch destination

HPM-173

Dreamcast SH4 Program Manual

10.7 BRA BRAnch Branch Instruction
- Unconditional Branch Delayed Branch Instruction

Format Summary of Operation Instruction Code Execution States | T Bit

BRA label PC+4+dispx 2 — PC 1010dddddddddddd 1 —
Description

This is an unconditional branch instruction. The branch destination is address (PC + 4 + displacement ¥ 2). The PC
source value is the BRA instruction address. As the 12-bit displacement is multiplied by two after sign-extension,
the branch destination can be located in the range from —4096 to +4094 bytes from the BRA instruction. If the branch
destination cannot be reached, this branch can be performed with a JMP instruction.

Notes

As this is a delayed branch instruction, the instruction following this instruction is executed before the branch
destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the following instruction is a
branch instruction, it is identified as a slot illegal instruction.

Operation

BRA(intd) /*BRAdisp*/
{

int disp;

unsigned int temp;

temp=PC,;

if (d&0x800)==0)
disp=(0x00000FFF & d);

else disp=(0xFFFFFO000 | d);

PC=PC+4+(disp<<1);

Delay_Slot(temp+2);

}
Example
BRA TRGET ;:Branch to TRGET.
ADD RO,R1 ;ADD executed before branch.
NOP ;
TRGET: : € BRA instruction branch destination

HPM-174

10. Instruction Descriptions

10.8 BRAF BRAnch Far Branch Instruction
- Unconditional Branch Delayed Branch Instruction

Format Summary of Operation Instruction Code Execution States T Bit

BRAF Rn PC+4+Rn - PC 0000nnnn00100011 2 —
Description

This is an unconditional branch instruction. The branch destination is address (PC + 4 + Rn). The branch destination
address is the result of adding 4 plus the 32-bit contents of general register Rn to PC.

Notes

As this is a delayed branch instruction, the instruction following this instruction is executed before the branch
destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the following instruction is a
branch instruction, it is identified as a slot illegal instruction.

Operation

BRAF(intn) /*BRAF Rn*/
{

unsigned int temp;

temp=PC;

PC=PC+4+R]n];

Delay_Slot(temp+2);
}

Example

MOV.L #(TRGET-BRAF_PC),R0;Set displacement.

BRAF RO ;:Branch to TRGET.
ADD RO,R1 :DD executed before branch.
BRAF_PC: ;
NOP
TRGET: ;€ BRAF instruction branch destination
10.9 BSR Branch to SubRoutine Branch Instruction
Branch to Subroutine Procedure Delayed Branch Instruction

Format Summary of Operation Instruction Code Execution States = T Bit

BSR label PC+4 — PR, 1011dddddddddddd 1 —
PC+4+dispx2 — PC

HPM-175

Dreamcast SH4 Program Manual

Description

This instruction branches to address (PC + 4 + displacement ¥ 2), and stores address (PC + 4) in PR. The PC source
value is the BSR instruction address. As the 12-bit displacement is multiplied by two after sign-extension, the branch
destination can be located in the range from —4096 to +4094 bytes from the BSR instruction. If the branch destination
cannot be reached, this branch can be performed with a JSR instruction.

Notes

As this is a delayed branch instruction, the instruction following this instruction is executed before the branch
destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the following instruction is a
branch instruction, it is identified as a slot illegal instruction.

Operation

BSR(intd) /*BSR disp*
{

int disp;

unsigned int temp;

temp=PC,;

if (d&0x800)==0)
disp=(0xO0000FFF & d);

else disp=(0xFFFFFO0QO0 | d);

PR=PC+4;

PC=PC+4+(disp<<1);

Delay_Slot(temp+2);

}
Example
BSR TRGET :Branch to TRGET.
MOV R3,R4 ;MOV executed before branch.
ADD RO,R1 ;Subroutine procedure return destination (contents of PR)
TRGET: ; € Entry to procedure
MOV R2,R3 ;
RTS ;Return to above ADD instruction.
MOV #1,R0 :MOV executed before branch.

Branch to SubRoutine Far Branch Instruction

Branch to Subroutine Procedure Delayed Branch Instruction

Format Summary of Operation Instruction Code Execution States T Bit

BSRF Rn PC+4 - PR, 0000nnnn00000011 2 —
PC+4+Rn — PC

HPM-176

10. Instruction Descriptions

Description

This instruction branches to address (PC + 4 + Rn), and stores address (PC + 4) in PR. The PC source value is the
BSREF instruction address. The branch destination address is the result of adding the 32-bit contents of general
register Rn to PC + 4.

Notes

As this is a delayed branch instruction, the instruction following this instruction is executed before the branch
destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the following instruction is a
branch instruction, it is identified as a slot illegal instruction.

Operation

BSRF(intn) /*BSRFRn*
{

unsigned int temp;

temp=PC;

PR=PC+4;

PC=PC+4+R|n];

Delay_Slot(tmp+2);
}

Example

MOV.L #(TRGET-BSRF_PC),R0 ;Set displacement.

BRSF RO :‘Branch to TRGET.
MOV R3,R4 :MOV executed before branch.

BSRF_PC: :
ADD RO,R1 :

TRGET: ; €< Entry to procedure
MOV R2,R3 ;
RTS :Return to above ADD instruction.
MOV #1,R0 MOV executed before branch.

10.11 BT Branch if True Branch Instruction

Conditional Branch

Summary of Operation Instruction Code Execution States T Bit
BT label ifT=1 10001001dddddddd 1 —

PC+4 +dispx2 - PC

If T=0,nop

HPM-177

Dreamcast SH4 Program Manual

Description

This is a conditional branch instruction that references the T bit. The branch is taken if T = 1, and not taken if T = 0.

The branch destination is address (PC + 4 + displacement x 2). The PC source value is the BT instruction address.
As the 8-bit displacement is multiplied by two after sign-extension, the branch destination can be located in the
range from —256 to +254 bytes from the BT instruction.

Notes

If the branch destination cannot be reached, the branch must be handled by using BT in combination with a BRA or
JMP instruction, for example.

Operation

BT(intd) /*BT disp */

{
int disp;

if ((d&0x80)==0)
disp=(0xO000000FF & d);
else disp=(0xFFFFFFOO | d);

if (T==1)
PC=PC+4+(disp<<1);
else PC+=2;
}
Example
SETT :Normally T=1
BF TRGET_F ;T =1, so branch is not taken.
BT TRGET_ T ;T=1,sobranchto TRGET _T.
NOP ;
NOP ;
TRGET_T: : € BT instruction branch destination
10.12 BT/S Branch if True with delay Slot Branch Instruction
Conditional Branch with Delay Delayed Branch Instruction
Summary of Operation Instruction Code Execution States T Bit
BT/S label IfT=1 10001101dddddddd 1 —
PC+4+dispx2 - PC
IfT=0, nop

HPM-178

10. Instruction Descriptions

Description

This is a conditional branch instruction that references the T bit. The branch is taken if T = 1, and not taken if T = 0.

The PC source value is the BT /S instruction address. As the 8-bit displacement is multiplied by two after
sign-extension, the branch destination can be located in the range from -256 to +254 bytes from the BT/S
instruction. If the branch destination cannot be reached, the branch must be handled by using BT /S in combination
with a BRA or JMP instruction, for example.

Notes

As this is a delayed branch instruction, when the branch condition is satisfied, the instruction following this
instruction is executed before the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction.

If the following instruction is a branch instruction, it is identified as a slot illegal instruction.

Operation

BTS(intd) /BTSdisp*
{

int disp;

unsigned temp;

temp=PC;

if ((d&0x80)==0)
disp=(0x000000FF & d);

else disp=(0xFFFFFFOO | d);

if (T==1)
PC=PC+4+(disp<<1);
else PC+=4;
Delay_Slot(temp+2);
}
Example
SETT ;Normally T=1
BF/S TRGET_F ;T =1, so branch is not taken.
NOP ;
BT/S TRGET_T ;T=1, sobranchto TRGET_T.
ADD RO,R1 ;Executed before branch.
NOP ;
TRGET_T: ; € BT/S instruction branch destination

HPM-179

Dreamcast SH4 Program Manual

10.13 CLRMAC CleaR MAC register System Control Instruction
_ MAC Register Clear

Format Summary of Operation Instruction Code Execution States T Bit

CLRMAC 0 — MACH, MACL 0000000000101000 1 —
Description

This instruction clears the MACH and MACL registers.

Operation

CLRMAC() /*CLRMAC*
{

MACH=0;

MACL=0;

PC+=2,
}

Example

CLRMAC ;Clear MAC register to initialize.
MACW @RO+@R1+ ;Multiply-and-accumulate operation
MACW @RO+,@R1+

10.14 CLRS CleaR S hit System Control Instruction

Format Summary of Operation Instruction Code Execution States T Bit

CLRS 0-S 0000000001001000 1 —
Description

This instruction clears the S bit to 0.

Operation

CLRS() /*CLRS*

HPM-180

10. Instruction Descriptions

Example

CLRS ;Before executionS =1
:After execution S=0

10.15 CLRT CleaR T hit System Control Instruction
- TBit Clear

Format Summary of Operation Instruction Code Execution States T Bit

CLRT 0T 0000000000001000 1 —
Description

This instruction clears the T bit.

Operation

CLRT() FCLRT*
{

T=0,

PC+=2;
}

HPM-181

Dreamcast SH4 Program Manual

Example

CLRT ;Before execution =1
:After execution T=0

CMP/cond CoMPare conditionally Arithmetic Instruction
Compare
Execution
Summary of Operation Instruction Code States
CMP/EQ Rm.Rn [fRn=Rm,1 T 0011nnnnmmmm0000 1 Result of
comparison
CMP/GE Rm,Rn If Rn=Rm, signed, 1 > T 0011TnnnnmmmmO0011 1 Result of
comparison
CMP/GT Rm,Rn If Rn >Bm, signed, 1 - T 001 Tnnnnmmmm0111 1 Result of
comparison
CMP/HI Rm,Rn If Rn>Rm, unsigned, 1 - T 0011Tnnnnmmmm0110 1 Result of
comparison
CMP/HS Rm,Rn If Rn = Rm, unsigned, 1 - T 0011TnnnnmmmmQ010 1 Result of
comparison
CMP/PL Rn [fRn>0,1 T 0100nnnn00010101 1 Result of
comparison
CMP/PZ Rn lfRn=0,1 T 0100nnnn00010001 1 Result of
comparison
CMP/STR Rm,Rn If any bytes are equal, 1 - T 0010nnnnmmmm71100 1 Result of
comparison
CMP/EQ #imm,RO [fRO=imm,1 =T 10001000iiiiiii 1 Result of
comparison
Description

This instruction compares general registers Rn and Rm, and sets the T bit if the specified condition (cond) is true. If
the condition is false, the T bit is cleared. The contents of Rn are not changed. Nine conditions can be specified. For
the two conditions PZ and PL, Rn is compared with 0.

HPM-182

10. Instruction Descriptions

With the EQ condition, sign-extended 8-bit immediate data can be compared with R0O. The contents of RO are
not changed.

Mnemonic Description

CMP/EQ Rm,Rn [fRn=Rm, T=1

CMP/GE Rm,Rn If Rn = Rm as signed values, T=1

CMP/GT Rm,Rn If Rn > Bm as signed values, T =1

CMP/HI Rm,Rn If Rn > Bm as unsigned values, T=1

CMP/HS Rm,Rn If Rn = Rm as unsigned values, T=1

CMP/PL Rn [fRn>0,T=1

CMP/PZ Rn [fRn=0,T="1

CMP/STR Rm,Rn If any bytes are equal, T=1

CMP/EQ #imm,R0 If RO =imm, T=1
Operation

CMPEQ(long m, long n) /* CMP_EQ Rm,Rn */
{

if (R[n]==R[m]) T=1;

else T=0;

PC+=2;
}
CMPGE(long m, long n) /* CMP_GE Rm,Rn */
{

if (long)R[n]>=(long)R[m]) T=1,

else T=0;

PC+=2;
}

CMPGT(long m,longn) /*CMP_GT Rm,Rn*/
{

if (long)R[n]>(long)R[m]) T=1;

else T=0;

PC+=2;
}

CMPHI(long m, longn) /*CMP_HI Rm,Rn*/

{
if ((unsigned long)R[n]>(unsigned long)R[m]) T=1;
else T=0;
PC+=2;

}

HPM-183

Dreamcast SH4 Program Manual

CMPHS(long m, long n) /* CMP_HS Rm,Rn*/

{
if ((unsigned long)R[n}>=(unsigned long)R[m]) T=1;
else T=0;
PC+=2,

}

CMPPL(long n) *CMP_PL Rn*/
{

if (long)R[n]>0) T=1,

else T=0;

PC+=2;
}

CMPPZ(longn) /*CMP_PZRn*
{

if (long)R[n]>=0) T=1;

else T=0;

PC+=2;
}

CMPSTR(long m, longn) /*CMP_STR Rm,Rn*/
{

unsigned long temp;

long HH,HL,LH,LL;

temp=R[n}*R[m];
HH=(temp&0OxFF000000)>>24;
HL=(temp&O0x00FF0000)>>16;
LH=(temp&0x0000FF00)>>8;
LL=temp&0x000000FF,;
HH=HH&&HL&&IL H&&LL;
if (HH==0) T=1,
else T=0;
PC+=2;

}

CMPIM(longi) /CMP_EQ #imm,R0 */
{

long imm;

if ((i&0x80)==0) imm=(0x000000FF & (long i));
else imm=(0xFFFFFFOO | (long i));

if (R[O]==imm) T=1,

else T=0;

PC+=2;

HPM-184

10. Instruction Descriptions

Example
CMP/GE RO,R1 ;RO = H7FFFFFFF, R1 = H'80000000
BT TRGET_T T =0, so branch is not taken.
CMP/HS RO,R1 ;RO = H7FFFFFFF, R1 = H'80000000
BT TRGET_T ;T =1, so branch is taken.
CMP/STR R2,R3 ;R2="ABCD", R3="XYCZ"
BT TRGET_T ;T =1, so branch is taken.

DIVide (step 0) as Signed Arithmetic Instruction

Initialization for Signed Division

Format Summary of Operation Instruction Code Execution States T Bit
DIVOS Bm,Rn MSB of Rn - Q, 0010nnnnmmmmO0111 1 Result of calculation
MSB of Rm — M,
MAQ ST
Description

This instruction performs initial settings for signed division. This instruction is followed by a DIV1 instruction that
executes 1-digit division, for example, and repeated divisions are executed to find the quotient. See the description
of the DIV1 instruction for details.

Operation

DIVOS(long m, long n) /* DIVOS Rm,Rn */
{

if (R[n] & 0x80000000)==0) Q=0;

else Q=1,

if (R[m] & 0x80000000)==0) M=0;

else M=1,

T=I(M==Q);

PC+=2;
}

Example

See the examples for the DIV1 instruction.

10.18 DIVoU DIVide (step 0) as Unsigned Arithmetic Instruction

- Initialization for Unsigned Division

Format = Summary of Operation Instruction Code Execution States T Bit

DIVOU 0 - M/Q/T 0000000000011001 1 0

HPM-185

Dreamcast SH4 Program Manual

Description

This instruction performs initial settings for unsigned division. This instruction is followed by a DIV1 instruction
that executes 1-digit division, for example, and repeated divisions are executed to find the quotient. See the
description of the DIV1 instruction for details.

Operation

DIVOU() /DIVOU*

{
M:Q:T:O;
PC+=2;

}

Example

See the examples for the DIV1 instruction.

10.19 DIV1 DIVide 1 step Arithmetic Instruction
Division
Format Summary of Operation Instruction Code Execution States TBit
DIVT Rm,Rn 1-step division 0011Tnnnnmmmm0100 1 Result of calculation
(Rn = Rm)
Description

This instruction performs 1-digit division (1-step division) of the 32-bit contents of general register Rn (dividend)
by the contents of Rm (divisor). The quotient is obtained by repeated execution of this instruction alone or in
combination with other instructions. The specified registers and the M, Q, and T bits must not be modified during
these repeated executions.

In 1-step division, the dividend is shifted 1 bit to the left, the divisor is subtracted from this, and the quotient bit is
reflected in the Q bit according to whether the result is positive or negative.

The remainder can be found as follows after first finding the quotient using the DIV1 instruction:
(Remainder) = (dividend) — (divisor) x (quotient)

Detection of division by zero or overflow is not provided. Check for division by zero and overflow division before
executing the division. A remainder operation is not provided. Find the remainder by finding the product of the
divisor and the obtained quotient, and subtracting this value from the dividend.

Initial settings should first be made with the DIVOS or DIVOU instruction. DIV1 is executed once for each bit of the
divisor. If a quotient of more than 16 bits is required, place an ROTCL instruction before the DIV1 instruction. See
the examples for details of the division sequence.

HPM-186

10. Instruction Descriptions

Operation

DIV1(longm, longn) /*DIV1Rm,Rn*

{
unsigned long tmp0, tmp2;
unsigned char old_g, tmp1,;

old_g=Q;

Q=(unsigned char)((0x80000000 & R[n])!=0);

tmp2= R[m];
R[nj<<=1;
R[n]|=(unsigned long)T;

switch(old_gX
case 0:switch(M){
case 0:tmpO0=R[n];
R[n]-=tmp2;
tmpl1=(R[n]>tmp0);
switch(Q)
case 0:Q=tmp1;
break;

case 1:Q=(unsigned char)(tmp1==0);

break;
}
break;
case 1:tmpO=R[n];
R[n]+=tmp2;
tmp1=(R[n]<tmp0);
switch(Q)

case 0:Q=(unsigned char)(tmp1==0);

break;
case 1.Q=tmpl;
break;
}

break;

}

break;

case l:switch(M){

case 0:tmpO=R[n];
R[nJ+=tmp2;
tmp1=(R[n]<tmpO0);
switch(Q)
case 0:Q=tmp1;

break;

case 1:Q=(unsigned char)(tmp1==0);

break;
}

break;
case 1:tmpO=R[n];

HPM-187

Dreamcast SH4 Program Manual

R[n]-=tmp2;
tmp1=(R[n]>tmp0);
switch(QX
case 0:Q=(unsigned char)(tmp1==0);
break;
case 1.Q=tmp1;
break;
}
break;
}
break;
}
T:(::M);
PC+=2;
}
Example 1
;R1 (32 hits) + RO (16 bits) = R1 (16 bits); unsigned
SHLL16 RO ;Set divisor in upper 16 bits, clear lower 16 bits to O
TST RO,RO ;Check for division by zero
BT ZERO_DIV ;
CMP/HS RO,R1 ;Check for overflow
BT OVER_DIV ;
DIVOU ;Flag initialization
.arepeat 16 ;
DIV1 RO,R1 ;Repeat 16 times
.aendr ;
ROTCL R1 ;
EXTUW R1,R1 ;R1 = quotient
Example 2
; RL:R2 (64 bits) +~ RO (32 hits) = R2 (32 bits); unsigned
TST RO,RO ;Check for division by zero
BT ZERO_DIV ;
CMP/HS RO,R1 ;Check for overflow
BT OVER_DIV ;
DIVOU ;Flag initialization
.arepeat 32 ;
ROTCL R2 ;Repeat 32 times
DIV1 RO,R1 ;
.aendr ;
ROTCL R2 ;R2 = quotient

HPM-188

10. Instruction Descriptions

Example 3

SHLL16
EXTS.W
XOR
MOV
ROTCL
SUBC
DIVOS
.arepeat
DIV1
.aendr
EXTS.W
ROTCL
ADDC
EXTS.W

Example 4

MOV
ROTCL
SUBC
XOR
SUBC

DIVOS
.arepeat
ROTCL
DIV1
.aendr
ROTCL
ADDC

;R1 (16 bits) +~ RO (16 bits) = R1 (16 bits); signed

RO ;Set divisor in upper 16 bits, clear lower 16 bits to O
R1,R1 ;Dividend sign-extended to 32 bits
R2,R2 iR2=0
R1,R3 ;
R3 ;
R2,R1 ;If dividend is negative, subtract 1
RO,R1 ;Flag initialization
RO,R1 ;Repeat 16 times
R1,R1 ;
R1 ;R1 = quotient (one’s complement notation)
R2,R1 ;IIMSB of quotientis 1,add 1 to convertto two’s complement notation
R1,R1 ;R1 = quotient (two’s complement notation)

;R2 (32 bits) + RO (32 hits) = R2 (32 bits); signed

R2,R3 ;
R3 ;
R1,R1 ;Dividend sign-extended to 64 bits (R1:R2)
R3,R3 ;R3=0
R3,R2 ;If dividend is negative, subtract 1 to convert to one’s complement
notation
RO,R1 ;Flag initialization
R2 ;Repeat 32 times
RO,R1 ;
R2 ;R2 = quotient (one’s complement notation)
R3,R2 ;IfMSB of quotientis 1, add 1 to converttotwo’s complement notation

;R2 = quotient (two's complement notation)

Double-length MULtiply

DMULS.L as Signed Arithmetic Instruction

Signed Double-Length Multiplication

Format Summary of Operation Instruction Code Execution States T Bit
DMULS.L Rm,Rn Signed, 0011Tnnnnmmmm1101 2-5 —
Rnx Rm —
MACH, MACL

HPM-189

Dreamcast SH4 Program Manual

Description

This instruction performs 32-bit multiplication of the contents of general register Rn by the contents of Rm, and
stores the 64-bit result in the MACH and MACL registers. The multiplication is performed as a signed arithmetic
operation.

Operation

DMULS(long m, long n) /* DMULS.L Rm,Rn */

{
unsigned long RnL,RnH,RmML,RmH,Res0,Res1,Res2;
unsigned long temp0,templ,temp2,temp3;
long tempm,tempn,fnLmL;

tempn=(long)R[n];
tempm=(long)R[m];

if (tempn<0) tempn=0-tempn;

if (tempm<0) tempm=0-tempm,;

if (long)(R[n]"R[m])<0) fnLmL=-1;
else fnLmL=0;

templ=(unsigned long)tempn;
temp2=(unsigned long)tempm;

RnL=temp1&0x0000FFFF;
RnH=(temp1>>16)&0x0000FFFF;
RmL=temp2&0x0000FFFF;
RmH=(temp2>>16)&0x0000FFFF;

tempO=RmL*RnL,;

templ=RmH*RnL,;
temp2=RmL*RnH;
temp3=RmH*RnH,;

Res2=0;

Resl=templ+temp2;

if (Resl<templ) Res2+=0x00010000;
templ=(Res1<<16)&0xFFFF000O0;
ResO=tempO+temp1,;

if (ResO<tempO) Res2++;

HPM-190

10. Instruction Descriptions

Res2=Res2+((Res1>>16)&0x0000FFFF)+temp3;

if (fNLmL<O0) {
Res2=~Res2;
if (Res0==0)
Res2++;
else
Res0=(~Res0)+1;
}
MACH=Res?2;
MACL=ResO0;
PC+=2;
}
Example
DMULS.LRO,R1;Before execution RO = HFFFFFFFE, R1 = H00005555
;After execution MACH = HFFFFFFFF, MACL = HFFFF5556
STS MACH,R0 ;Get operation result (upper)
STS MACL,R1 ;et operation result (lower)

Double-length MULtiply

DMULU.L as Unsigned Arithmetic Instruction
Unsigned Double-Length Multiplication
Format Summary of Operation Instruction Code Execution States TBit
DMULU.L Rm,Rn Unsigned, 0011Tnnnnmmmm0101 2-5 —
RnxRm -
MACH, MACL
Description

This instruction performs 32-bit multiplication of the contents of general register Rn by the contents of Rm, and
stores the 64-bit result in the MACH and MACL registers. The multiplication is performed as an unsigned
arithmetic operation.

Operation

DMULU(long m, long n) # DMULU.L Rm,Rn */

{
unsigned long RnL,RnH,RmML,RmH,Res0,Res1,Res2;

unsigned long temp0,templ,temp2,temp3;

RNL=R[n]&0X0000FFFF;
RNH=(R[]>>16)&0X0000FFFF,

HPM-191

Dreamcast SH4 Program Manual

RmL=R[m]&0x0000FFFF;
RmMH=(R[m]>>16)&0x0000FFFF;

tempO=RmL*RnL;
templ=RmH*RnL,
temp2=RmL*RnH;
temp3=RmH*RnH,;

Res2=0
Resl=templ+temp2;
if (Res1<templ) Res2+=0x00010000;

templ=(Res1<<16)&0xFFFF000O0;
ResO=tempO+temp1,
if (ResO<tempQ) Res2++;

Res2=Res2+((Res1>>16)&0x0000FFFF)+temp3;

MACH=Res2;
MACL=Res0;
PC+=2;
}
Example
DMULU.L RO,R1 ;Before execution RO = HFFFFFFFE, R1 = H'00005555
;After execution MACH = H'00005554, MACL = H'FFFF5556
STS MACH,RO ;Get operation result (upper)
STS MACL,R1 ;Get operation result (lower)
10.22 DT Decrement and Test Arithmetic Instruction
Decrement and Test
Format Summary of Operation Instruction Code Execution States T Bit
DT Rn Rn—1 - Rn; 0100nnnn00010000 1 Test result
ifRBn=0,1 T
INRn 10,0 - T
Description

This instruction decrements the contents of general register Rn by 1 and compares the result with zero. If the result
is zero, the T bit is set to 1. If the result is nonzero, the T bit is cleared to 0.

HPM-192

10. Instruction Descriptions

Operation

DT(long n) DT Rn*
{

RIn]--

if (R[n]==0) T=1;

else T=0;

PC+=2;
}

Example

MOV #4,R5 ;Set loop count
LOOP:
ADD RO,R1 ;
DT R5 ;Decrement R5 value and check for 0.
BF LOOP ;If T=0, branch to LOORP (in this example, 4 loops are executed).

EXTend as Signed Arithmetic Instruction

Sign Extension
Format Summary of Operation Instruction Code Execution States T Bit
EXTS.B Rm,Rn Rm sign-extended from byte — Rn 0110nnnnmmmm1110 1 —
EXTS.W Rm,Rn Rm sign-extended from word — Rn | 0110nnnnmmmm1111 1 —
Description

This instruction sign-extends the contents of general register Rm and stores the result in Rn.

For a byte specification, the value of Rm bit 7 is transferred to Rn bits 8 to 31. For a word specification, the value of
Rm bit 15 is transferred to Rn bits 16 to 31.

HPM-193

Dreamcast SH4 Program Manual

Operation

EXTSB(long m, long n) *EXTS.BRmM,Rn*
{

RIN=Rm;

if ((R[m]&0x00000080)==0) R[n]&=0x000000FF;

else R[n]|=0xFFFFFFOO;

PC+=2;
}

EXTSW(long m, long n) f* EXTS.W Rm,Rn */
{
RInJ=R[m;
if ((R[m]&0x00008000)==0) R[n]&=0x0000FFFF;
else R[n]|=0xFFFF0000;

PC+=2;
}
Example
EXTS.B RO,R1 ;Before execution RO = H'00000080
;After execution R1 = HFFFFFF80
EXTS.W RO,R1 ;Before execution RO = H'00008000
:After execution R1 = H'FFFF8000
10.24 EXTU EXTend as Unsigned Arithmetic Instruction
Zero Extension
Format Summary of Operation Instruction Code Execution States T Bit
EXTU.B Rm,Rn Rm zero-extended from byte — Rn 0110nnnnmmmm?1100 1 —
EXTU.W Bm,Rn Rm zero-extended from word — Rn 0110nnnnmmmm1101 1 —
Description

This instruction zero-extends the contents of general register Rm and stores the result in Rn.

For a byte specification, 0 is transferred to Rn bits 8 to 31. For a word specification, 0 is transferred to Rn bits 16 to 31.

HPM-194

10. Instruction Descriptions

Operation

EXTUB(long m, long n) /¥ EXTU.B Rm,Rn */

{
RIn=R[m];
R[n]&=0x000000FF;
PC+=2;
}
EXTUW(long m, long n)/* EXTU.W Rm,Rn */
{
RIn=R[m];
R[n]&=0x0000FFFF;
PC+=2;
}
Example
EXTU.B RO,R1 :Before execution RO = HFFFFFF80
;After execution R1 = H'00000080
EXTUW RO,R1 ;Before execution RO = HFFFF8000

;After execution R1 = H'00008000

Floating-point ABSolute value Floating-Point Instruction
Floating-Point Absolute Value
PR Format Summary of Operation Instruction Code Execution States TBit
0 FABS FRn |FRn| - FRn 1111nnnn01011101 1 —
1 FABS DRn |DRn| — DRn 1111nnn001011101 1 —
Description

This instruction clears the most significant bit of the contents of floating-point register FRn/DRn to 0, and stores
the result in FRn/DRn.

The cause and flag fields in FPSCR are not updated.

Operation

void FABS (int nY{
FR[n] = FR[n] & Ox7fffffff,;
pc+=2;

}

f* Same operation is performed regardless of precision. */

HPM-195

Dreamcast SH4 Program Manual

Possible Exceptions:

None

Floating-point ADD Floating-Point Instruction
Floating-Point Addition
PR Format Summary of Operation Instruction Code Execution States T Bit
0 FADD FRm,FRn FRn+FRm — FRn 1111Tnnnnmmmm0000 1 —
1 FADD DRm,DRn DRn+DRm — DRn 1111nnn0mmm00000 6 —
Description

When FPSCR.PR = 0: Arithmetically adds the two single-precision floating-point numbers in FRn and FRm, and
stores the result in FRn.

When FPSCR.PR = 1: Arithmetically adds the two double-precision floating-point numbers in DRn and DRm, and
stores the result in DRn.

When FPSCR.enable.O/U/Iis set, an FPU exception trap is generated regardless of whether or not an exception has
occurred. When an exception occurs, correct exception information is reflected in FPSCR.cause and FPSCR.flag, and
FRn or DRn is not updated. Appropriate processing should therefore be performed by software.

Operation

void FADD (int m,n)
{
pc+=2;
clear_cause();
if((data_type_of(m) ==sNaN) ||
(data_type_of(n) == sNaN)) invalid(n);
else if((data_type_of(m) ==gNaN) ||
(data_type_of(n) == gNaN)) gnan(n);
else if((data_type_of(m) == DENORM) ||
(data_type_of(n) == DENORM)) set_E();
else switch (data_type_of(m)){
case NORM: switch (data_type_of(n)X
case NORM: normal_faddsub(m,n,ADD); break;
case PZERO:
case NZERO:register_copy(m,n); break;
default: break;
} break;
case PZERO: switch (data_type_of(n){
case NZERO: zero(n,0); break;
default: break;
} break;
case NZERO: break;

HPM-196

10. Instruction Descriptions

case PINF: switch (data_type_of(n)){
case NINF: invalid(n); break;
default: inf(n,0); break;

} break;

case NINF: switch (data_type_of(n)){

case PINF: invalid(n); break;
default: inf(n,1); break;
} break;
}
}
FADD Special Cases
FRm,DRm FRn,DRNn
NORM | +0 | —0 +INF —INF DENORM gNaN sNaN

NORM ADD —INF
+0 +0
-0 -0
+INF +INF Invalid
—INF —INF Invalid —INF
DENORM Error
gNaN gNaN
sNaN Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:

e FPU error

e Invalid operation
e Overflow

e Underflow

e Inexact

HPM-197

Dreamcast SH4 Program Manual

Floating-point CoMPare Floating-Point Instruction

Floating-Point Comparison
PR Format Summary of Operation Instruction Code Execution States TBit
0 1. FCMP/EQ FRm,FRn (FRn==FRm)?1.0 - T 111 Tnnnnmmmm0100 1 1/0
1 2. FCMP/EQ DRm,DRn (DRn==DRm)?1:0 - T 11117nnn0OmmmAO0100 1 1/0
0 3. FCMP/GT FRm,FRn (FRn>FRm)?1:0 = T 111 T nnnnmmmm0101 2 1/0
1 4. FCMP/GT DRm,DRn (DRn>DRM)?1:0 - T 1111nnn0mmmQ0101 2 1/0
Description

1) When FPSCR.PR = 0: Arithmetically compares the two single-precision floating-point numbers in FRn
and FRm, and stores 1 in the T bit if they are equal, or 0 otherwise.

2) When FPSCR.PR = 1: Arithmetically compares the two double-precision floating-point numbers in DRn
and DRm, and stores 1 in the T bit if they are equal, or 0 otherwise.

3) When FPSCR.PR = 0: Arithmetically compares the two single-precision floating-point numbers in FRn
and FRm, and stores 1 in the T bit if FRn > FRm, or 0 otherwise.

4) When FPSCR.PR = 1: Arithmetically compares the two double-precision floating-point numbers in DRn
and DRm, and stores 1 in the T bit if DRn > DRm, or 0 otherwise.

Operation

void FCMP_EQ(int m,n) * FCMP/EQ FRm,FRn */
{
pc+=2;
clear_cause();
if(fcmp_chk (m,n) == INVALID) fcmp_invalid();
else if(fcmp_chk (m,n) == EQ) T=1,;

else T=0;
}
void FCMP_GT(int m,n) # FCMP/GT FRm,FRn */
{

pc+=2;

clear_cause();
if ((fcmp_chk (m,n) == INVALID) ||
(fcmp_chk (m,n) == UO)) fcmp_invalid();

else if(fcmp_chk (m,n) ==GT) T=1;

else T=0;
}
int fcmp_chk (int m,n)
{

if((data_type_of(m) ==sNaN) ||

(data_type_of(n) == sNaN)) return(INVALID);

HPM-198

10. Instruction Descriptions

else if((data_type_of(m) == gNaN) ||
(data_type_of(n) ==gNaN)) return(UO);
else switch(data_type_of(m)){
case NORM: switch(data_type_of(n)){
case PINF :return(GT); break;
case NINF :return(LT); break;

default: break;
} break;

case PZERO:

case NZERO: switch(data_type_of(n){
case PZERO :
case NZERO :return(EQ); break;
default: break;
} break;

case PINF : switch(data_type_of(n){
case PINF :return(EQ); break;
defaultreturn(LT); break;
} break;
case NINF: switch(data_type_of(n)){
case NINF :return(EQ); break;
defaultreturn(GT); break;
1} break;
}
if(FPSCR_PR ==0) {
if(FR[N] == FR[m]) return(EQ);
else if(FR[N] > FR[m]) return(GT);
else return(LT);
Jelse {
if(DR[N>>1] == DR[M>>1]) return(EQ);
else if(DR[n>>1] > DR[M>>1]) return(GT);

else return(LT);
}
}
void fcmp_invalid()
{
set V(); if((FPSCR & ENABLE_V)==0) T=0;
}

HPM-199

Dreamcast SH4 Program Manual

FCMP Special Cases

FCMP/EQ

FRn,DRn

FRm,DBm

NORM | DENORM |

+0

+INF

—INF

gNaN

sNaN

NORM
DENORM
+0

-0

CMP

EQ

—INF

+INF

—INF
gNaN

EQ

EQ

'EQ

sNaN

Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

FCMP/EQ

FRn,DRn

FRm,DBm

NORM | DENORM |

+0

—0

+INF

—INF

gNaN

sNaN

NORM
DENORM
+0

-0

CMP

+INF

IGT

IGT

—INF

IGT

~INF

GT

IGT

gNaN

uo

sNaN

Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:

Invalid operation

HPM-200

10. Instruction Descriptions

FCNVDS Floating-point CoNVert Double to Single precision
Double-Precision to Single-Precision Conversion
PR Format Summary of Operation Instruction Code Execution States TBit
0 — — — — —
1 FCNVDS DRm,FPUL (float)DRm — FPUL 1111mmm010111101 2 —
Description

When FPSCR.PR = 1: This instruction converts the double-precision floating-point number in DRm to a
single-precision floating-point number, and stores the result in FPUL.

When FPSCR.enable.O/U/1is set, an FPU exception trap is generated regardless of whether or not an exception
has occurred. When an exception occurs, correct exception information is reflected in FPSCR.cause and FPSCR.flag,
and FPUL is not updated. Appropriate processing should therefore be performed by software.

Operation

void FCNVDS(int m){
case((FPSCR.PRY
0: undefined_operation(); /*reserved */
1: fenvds(m); break; /* FCNVDS */
}
}
void fenvds(int m)
{
pc+=2;
clear_cause();
case(data_type_of(m, *FPUL)X
NORM :
PZERO::
NZERO : normal_fcnvds(m); break;
DENORM : set_E();
PINF : *FPUL = 0x7f800000; break;
NINF : *FPUL = 0xff800000; break;
gNaN : *FPUL = Ox7fbfffff; break;
sNaN : set V();
if((FPSCR & ENABLE_V) == 0) *FPUL = Ox7fbfffff;
else fpu_exception_trap(); break;
}
}
void normal_fenvds(int m, float *FPUL)
{
int sign;
float abs;

HPM-201

Dreamcast SH4 Program Manual

union {
float f;
intl;
} dstf,tmpf;
union {
double d;
int1[2];
} dstd;
dstd.d = DR[m>>1];
if(dstd.[1] & Ox1fffffff)) set_1();
if(FPSCR_RM == 1) dstd.[[1] &= 0xe0000000; /* round toward zero*/
dstf.f = dstd.d;
check_single_exception(FPUL, dstf.f);
}

FCNVDS Special Cases

FRn +NORM -NORM +0 -0 +INF —INF gNaN sNaN

FCNVDS(FRn FPUL) FCNVDS FCNVDS +0 -0 +INF —INF gNaN Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:

¢ FPU error

¢ Invalid operation
e Overflow

e Underflow

¢ Inexact

1029 FCNVSD Floating-point CoNVert Single to Double precision Floating-Point Instruction

Single-Precision to Double-Precision Conversion
PR Format Summary of Operation Instruction Code Execution States TBit
0 — — — — —
1 FCNVSD FPUL, DRn (double) FPUL — DRn 1111nnn010101101 2 —
Description

When FPSCR.PR = 1: This instruction converts the single-precision floating-point number in FPUL to a
double-precision floating-point number, and stores the result in DRn.

HPM-202

10. Instruction Descriptions

Operation

void FCNVSD(int n){
pc+=2;
clear_cause();
case((FPSCR_PRX
0: undefined_operation(); /* reserved */
1: fenvsd (n,FPUL); break; /* FCNVSD */

}
}
void fenvsd(int n, float *FPUL)
{
case(fpul_type(FPUL){
PZERO:
NZERO:
PINF :
NINF : DR[n>>1] = *FPUL;break;
DENORM : set_E(); break;
gNaN : gnan(n); break;
sNaN : invalid(n); break;

}

}
int fpul_type(int *FPUL)
{

int abs;
abs = *FPUL & Ox7fffffff;
if(abs < 0x00800000)

if(FPSCR_DN ==1) || (abs == 0x00000000)){
if(sign_of(src) == 0) return(PZERO);
else return(NZERO);

}
else return(DENORM);

}

else if(abs < 0x7f800000)return(NORM);

else if(abs == 0x7f800000) {
if(sign_of(src) == 0) return(PINF);

else return(NINF);
}
else if(abs < 0x7fc00000) return(gNaN);
else return(sNaN);

}
FCNVSD Special Cases

FRn +NORM -NORM +0 -0 +INF

—INF

gNaN

sNaN

FCNVSD(FPUL FRn) +NORM -NORM +0 -0 +INF

—INF

gNaN

Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

HPM-203

Dreamcast SH4 Program Manual

Possible Exceptions:

e FPU error

¢ Invalid operation

Floating-point DIVide Floating-Point Instruction
Floating-Point Division
PR Format Summary of Operation Instruction Code Execution States TBit
0 FDIV FRm,FRrn FRn/FRm — FRn 111 Tnnnnmmmm0011 10 —
1 FDIV DRm,DRn DRn/DRm — DRn 1111nnn0mmmQ0011 23 —
Description

When FPSCR.PR = 0: Arithmetically divides the single-precision floating-point number in FRn by the
single-precision floating-point number in FRm, and stores the result in FRn.

When FPSCR.PR = 1: Arithmetically divides the double-precision floating-point number in DRn by the
double-precision floating-point number in DRm, and stores the result in DRn.

When FPSCR.enable.O/U/1is set, an FPU exception trap is generated regardless of whether or not an exception has
occurred. When an exception occurs, correct exception information is reflected in FPSCR.cause and FPSCR.flag, and
FRn or DRn is not updated. Appropriate processing should therefore be performed by software.

Operation

void FDIV(intm,n) /* FDIV FRm,FRn */
{
pc+=2;
clear_cause();
if((data_type_of(m) ==sNaN) ||
(data_type_of(n) == sNaN)) invalid(n);
else if((data_type_of(m) == gNaN) ||
(data_type_of(n) == gNaN)) gnan(n);
else switch (data_type_of(m)X{
case NORM: switch (data_type_of(n){

case PINF:

case NINF: inf(n,sign_of(m)"sign_of(n));break;
case PZERO:

case NZERO: zero(n,sign_of(m)"sign_of(n));break;
case DENORM: set_E(); break;

default: normal_fdiv(m,n); break;

} break;

HPM-204

10. Instruction Descriptions

case PZERO: switch (data_type_of(n){
case PZERO:
case NZERO: invalid(n);break;
case PINF:
case NINF: break;
default: dz(n,sign_of(m)"sign_of(n));break;
} break;
case NZERO: switch (data._type_of(n){
case PZERO:
case NZERO: invalid(n); break;
case PINF: inf(n,1); break;
case NINF: inf(n,0); break;
default: dz(FR[n],sign_of(m)"sign_of(n)); break;

} break;
case DENORM: set E(); break;
case PINF :
case NINF : switch (data_type_of(n){
case PINF:

case NINF: invalid(n); break;
default: zero(n,sign_of(m)"sign_of(n));break
} break;
}
}
void normal_fdiv(int m,n)
{
union {
float f;
intl;
} dstf,tmpf;
union {
double d;
int I[2];
} dstd,tmpd;
union {
int double x;
int I[4];
}otmpx
if(FPSCR_PR ==0) {
tmpf.f = FR[n]; /* save destination value */
dstf.f /= FR[m]; /* round toward nearest or even */
tmpd.d = dstf.f; * convert single to double */
tmpd.d *= FR[m];
if(tmpf.f I= tmpd.d) set_I();
if((tmpf.f < tmpd.d) && (SPSCR_RM == 1))
dstf.| -= 1; /* round toward zero */
check_single_exception(&FR[n], dstf.f);
}else {

HPM-205

Dreamcast SH4 Program Manual

tmpd.d = DR[n>>1]; /* save destination value */

dstd.d /= DR[m>>1]; /* round toward nearest or even */

tmpx.x = dstd.d; /* convert double to int double */

tmpx.x *= DR[m>>1];

if(tmpd.d != tmpx.x) set_I();

if(tmpd.d < tmpx.x) && (SPSCR_RM == 1)) {
dstd.[1] -= 1; /* round toward zero */
if(dstd.I[1] == Oxffffffff) dstd.[[0] = 1;

}

check_double_exception(&DR[n>>1], dstd.d);

}
}

FDIV Special Cases

FRm,DRm FRn,DRn
NORM +0 | -0 +NF | —INF DENORM gNaN sNaN
NORM DIV 0 INF Error
+0 DZ Invalid +INF —INF D’/
-0 —INF +INF
+INF 0 +0 -0 Invalid
—INF -0 +0
DENORM Error
gNaN gNaN
sNaN Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:

¢ FPU error

¢ Invalid operation
e Divide by zero

e Overflow

e Underflow

¢ Inexact

HPM-206

10. Instruction Descriptions

Floating-point Inner PRoduct Floating-Point Instruction
Floating-Point Inner Product
PR Format Summary of Operation Instruction Code Execution States T Bit
0 FIPR FVm,FVn FVn e« FVYm = FR[n+3] 11117nnmm11101101 1 —
Note: FRO, FR1, FR2, FR3}

FV0 = {

FV4 = {FR4, FR5, FR6, FR7}

FV8 = {FRS, FRY, FR10, FR11}
FV12 = {FR12, FR13, FR14, FR15}

Description

When FPSCR.PR = 0: This instruction calculates the inner products of the 4-dimensional single-precision
floating-point vector indicated by FVn and FVm, and stores the results in FR[n + 3].

The FIPR instruction is intended for speed rather than accuracy, and therefore the results will differ from those
obtained by using a combination of FADD and FMUL instructions. The FIPR execution sequence is as follows:

1) Multiplies all terms. The results are 28 bits long.
2) Aligns these results, rounding them to fit within 30 bits.
3) Adds the aligned values.

4) Performs normalization and rounding.

Special processing is performed in the following cases:

1) If an input value is an sNaN, an invalid exception is generated.

2) If the input values to be multiplied include a combination of 0 and infinity, an invalid exception is
generated.

3) In cases other than the above, if the input values include a qNaN, the result will be a gNaN.

4) In cases other than the above, if the input values include infinity:

a) If multiplication results in two or more infinities and the signs are different, an invalid exception will
be generated.

b) Otherwise, correct infinities will be stored.
5) If the input values do not include an sNaN, qNaN, or infinity, processing is performed in the
normal way.

When FPSCR.enable.O/U/1is set, an FPU exception trap is generated regardless of whether or not an exception
has occurred. When an exception occurs, correct exception information is reflected in FPSCR.cause and FPSCR.flag,
and FRn or DRn is not updated. Appropriate processing should therefore be performed by software.

HPM-207

Dreamcast SH4 Program Manual

Operation

void FIPR(int m,n) /* FIPR FVm,Fvn*

{
if(FPSCR_PR ==0) {
pc+=2;
clear_cause();
fipr(m,n);
}
else undefined_operation();
}

Possible Exceptions:

¢ Invalid operation

e Overflow
e Underflow

¢ Inexact

FLDIO Floating-point LoaD Immediate 0.0 Floating-Point Instruction
0.0 Load
PR Format Summary of Operation Instruction Code Execution States TBit
0 FLDIO FRn 0x00000000 — FRn 1111nnnn10001101 1 —
1 _ _ — _ _
Description

When FPSCR.PR = 0, this instruction loads floating-point 0.0 (0x00000000) into FRn.

Operation

void FLDIO(int n)

{
FR[n] = 0x00000000;

pc+=2,
}

Possible Exceptions:

None

HPM-208

10. Instruction Descriptions

Floating-point LoaD

Immediate 1.0 Floating-Point Instruction
1.0 Load
Format Summary of Operation Instruction Code Execution States TBit
FLDIT FRn 0x3F800000 — FRn 1111nnnn10011101 1 —
Description

When FPSCR.PR = 0, this instruction loads floating-point 1.0 (0x3F800000) into FRn.

Operation

void FLDIL(int n)

{
FR[n] = 0x3F800000;

pc+=2
}

Possible Exceptions:

None

Floating-point LoaD to System register = Floating-Point Instruction

Transfer to System Register

Format Summary of Operation Instruction Code Execution States TBit
FLDS FRm,FPUL FRm = FPUL 111 1Tmmmm00011101 1 —
Description

This instruction loads the contents of floating-point register FRm into system register FPUL.

Operation

void FLDS(int m, float *FPUL)

{
*FPUL = FR[m];
pc+=2;

}

HPM-209

Dreamcast SH4 Program Manual

Possible Exceptions:

None

FLOAT Floating-point convert from integer Floating-Point Instruction
Integer to Floating-Point Conversion
PR Format Summary of Operation Instruction Code Execution States T Bit
0 FLOAT FPUL,FRn (float)FPUL — FRn 1111nnnn00101101 1 —
1 FLOAT FPUL,DRn (double)FPUL — DRn 1111nnn000101101 2 —
Description

When FPSCR.PR = 0: Taking the contents of FPUL as a 32-bit integer, converts this integer to a single-precision
floating-point number and stores the result in FRn.

When FPSCR.PR = 1: Taking the contents of FPUL as a 32-bit integer, converts this integer to a double-precision
floating-point number and stores the result in DRn.

When FPSCR.enable.I = 1, an FPU exception trap is generated regardless of whether or not an exception has
occurred. When an exception occurs, correct exception information is reflected in FPSCR.cause and FPSCR.flag, and
FRn or DRn is not updated. Appropriate processing should therefore be performed by software.

Operation

void FLOAT(int n, float *FPUL)
{
union {
double d;
int [2];
}otmp;
pc+=2;
clear_cause();
if(FPSCR.PR==0){
FR[n] =*FPUL; /* convert from integer to float */
tmp.d =*FPUL,;
if(tmp.I[1] & OxLfffffff) inexact();
}else {
DR[n>>1] = *FPUL; /* convert from integer to double */
}
}

Possible Exceptions:

Inexact: Not generated when FPSCR.PR = 1.

HPM-210

10. Instruction Descriptions

Floating-point Multiply and ACcumulate Floating-Point Instruction
Floating-Point Multiply and Accumulate
PR Format Summary of Operation Instruction Code Execution States TBit
0 FMAC FRO,FRm,FRn FRO*FRm+FRn — FRn 1111 nnnnmmmm1110 1 —
’| N N N N N
Description

When FPSCR.PR = 0: This instruction arithmetically multiplies the two single-precision floating-point numbers in
FRO and FRm, arithmetically adds the contents of FRn, and stores the result in FRn.

When FPSCR.enable.O/U/1is set, an FPU exception trap is generated regardless of whether or not an exception
has occurred. When an exception occurs, correct exception information is reflected in FPSCR.cause and FPSCR.flag,
and FRn or DRn is not updated. Appropriate processing should therefore be performed by software.

Operation

void FMAC(int m,n)
{
pc+=2;
clear_cause();
if(FPSCR_PR == 1) undefined_operation();
else if((data_type_of(0) == sNaN) ||
(data_type_of(m) ==sNaN) ||
(data_type_of(n) == sNaN)) invalid(n);
else if((data_type_of(0) == gNaN) ||
(data._type_of(m) == gNaN)) gnan(n);
else if((data_type_of(0) == DENORM) ||
(data_type_of(m) == DENORM)) set_E();
else switch (data_type_of(0){
case NORM: switch (data_type_of(m)){
case PZERO:
case NZERO: switch (data._type_of(n){
case DENORM: set_E(); break;
case gNaN: gnan(n); break;
case PZERO:
case NZERO: zero(n,sign_of(0)* sign_of(m)sign_of(n)); break;
default: break;
}

HPM-211

Dreamcast SH4 Program Manual

case PINF:
case NINF: switch (data_type_of(n)){
case DENORM: set_E(); break;
case gNaN: gnan(n); break;
case PINF:
case NINF: if(sign_of(0)* sign_of(m)*sign_of(n)) invalid(n);
else inf(n,sign_of(0)* sign_of(m)); break;
default: inf(n,sign_of(0)" sign_of(m)); break;
}
case NORM: switch (data_type_of(n){
case DENORM: set_E(); break;
case gNaN: gnan(n); break;
case PINF:
case NINF: inf(n,sign_of(n)); break;
case PZERO:
case NZERO:
case NORM: normal_fmac(m,n); break;
} break;
case PZERO:
case NZERO: switch (data._type_of(m){
case PINF:
case NINF: invalid(n); break;
case PZERO:
case NZERO:
case NORM: switch (data_type_of(n)){
case DENORM: set_E(); break;
case gNaN: gnan(n); break;
case PZERO:
case NZERO: zero(n,sign_of(0)" sign_of(m)"sign_of(n)); break;
default: break;

} break;

} break;

case PINF :

case NINF : switch (data_type_of(m)X{
case PZERO:
case NZERO: invalid(n); break;

default: switch (data_type_of(n)){

case DENORM: set_E(); break;

case gNaN: gnan(n); break;
default: inf(n,sign_of(0)"sign_of(m)"sign_of(n));break
} break;

} break;

}
}

HPM-212

10. Instruction Descriptions

void normal_fmac(int m,n)
{
union {
int double x;
int I[4];
} dstx,tmpx;
float dstf,srcf;
if((data_type_of(n) == PZERO)|| (data_type_of(n) == NZERO))
srcf = 0.0; /* flush denormalized value */
else srcf=FR[n];
tmpx.x = FR[0]; /* convert single to int double */
tmpx.x *= FR[m]; /* exact product */
dstx.x = tmpx.x + srcf;
if((dstx.x == srcf) && (tmpx.x '=0.0)) ||
((dstx.x == tmpx.x) && (srcf 1= 0.0))) {
set_1();
if(sign_of(0)™ sign_of(m)" sign_of(n)) {
dstx.I[3] -= 1; /* correct result */
if(dstx.I[3] == Oxffffffff) dstx.I[2] -= 1,
if(dstx.I[2] == Oxffffffff) dstx.I[1] -= 1,
if(dstx.I[1] == Oxffffffff) dstx.[0] -= 1;
}
else dstx.I[3][=1;
}
if(dstx.[1] & OxO1ffffff) || dstx.I[2] || dstx.I[3]) set_I();
if(FPSCR_RM ==1) {
dstx.I[1] &= 0xfe000000; /* round toward zero */
dstx.I[2] =0x00000000;
dstx.I[3] =0x00000000;
}
dstf = dstx.x;
check_single_exception(&FR[n],dstf);

HPM-213

Dreamcast SH4 Program Manual

FMAC Special Cases

FRn FRO FRm
+Norm [-Norm [+0 [-0 +INF |-INF [Denorm [gNaN [sNaN
Norm MAC INF
0 Invalid
INF INF Invalid INF
+0 Norm MAC
0 +0 Invalid
INF INF Invalid INF
-0 +Norm |MAC +0 —0 +INF —INF
—Norm —0 +0 —INF +INF
+0 +0 —0 +0 —0 Invalid
—0 —0 +0 —0 +0
INF INF Invalid INF
+INF +Norm [+INF Invalid
—Norm +INF
0 Invalid
+INF Invalid +INF
—INF [Invalid [+INF | +INF
—INF [+Norm _[-INF | —INF
—Norm
0 |
+INF Invalid [Invalid —INF
—INF —INF [INF Invalid
Denorm | Norm
0 Invalid
INF [Invalid
IsNaN |Denorm Error
gNaN [0 Invalid
INF [Invalid
Norm
IsNaN | gNaN gNaN
All types | sNaN
SNaN__ | all types Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:

e FPU error

¢ Invalid operation

e Overflow

e Underflow

¢ Inexact

HPM-214

10. Instruction Descriptions

FMOV Floating-point MOVe Floating-Point Instruction

Floating-Point Transfer
Sz Format Summary of Operation Instruction Code Execution States T Bit
0 1. FMQV FRm,FRn FRm — FRn 111 Tnnnnmmmm1100 1 —
1 2. FMOV DRm,DRn DRm - DRn 1111nnn0mmm01100 1 —
0 3. FMOV.S FRm,@Rn FRm — (Rn) 111 1Tnnnnmmmm1010 1 —
1 4. FMOV DRm,@Rn DRm - (Rn) 1111nnn0mmm01010 1 —
0 5. FMOV.S @Rm,FRn (Rm) — FRn 1111nnnnmmmm1000 1 —
1 6. FMOV @Rm,DRn (Rm) — DRn 1111nnn0mmm01000 1 —
0 7. FMOV.S @Rm+,FRn (Rm) — FRn,Rm+=4 111 Tnnnnmmmm1001 1 —
1 8. FMOV @Rm+,DRn (Rm) — DRn,Rm+=8 1111nnn0mmm01001 1 —
0 9. FMOV.S FRm,@-Rn Rn-=4,FBm - (Rn) 111 Tnnnnmmmm1011 1 —
1 10. FMOV DRm,@-Rn Rn-=8,DRm — (Rn) 111 17nnn0mmmO01011 1 —
0 11. FMOV.S @(R0,Rm),FRn (RO+Rm) — FRn 1111nnnnmmmm0110 1 —
1 12. FMOV @(R0,Rm),DRn (RO+Rm) — DRn 1111nnn0mmmO00110 1 —
0 13. FMOV.S FRm, @(R0,Rn) FRm — (R0O+Rn) 111 Tnnnnmmmm0111 1 —
1 14. FMOV DRm, @(R0,Rn) DRm — (R0+Rn) 1111nnn0mmm00111 1 —

Description

1) This instruction transfers FRm contents to FRn.

2) This instruction transfers DRm contents to DRn.

3) This instruction transfers FRm contents to memory at address indicated by Rn.

4) This instruction transfers DRm contents to memory at address indicated by Rn.

5) This instruction transfers contents of memory at address indicated by Rm to FRn.

6) This instruction transfers contents of memory at address indicated by Rm to DRn.

7) This instruction transfers contents of memory at address indicated by Rm to FRn, and adds 4 to Rm.
8) This instruction transfers contents of memory at address indicated by Rm to DRn, and adds 8 to Rm.

9) This instruction subtracts 4 from Rn, and transfers FRm contents to memory at address indicated by
resulting Rn value.

10) This instruction subtracts 8 from Rn, and transfers DRm contents to memory at address indicated by
resulting Rn value.

11) This instruction transfers contents of memory at address indicated by (RO + Rm) to FRn.
12) This instruction transfers contents of memory at address indicated by (RO + Rm) to DRn.
13) This instruction transfers FRm contents to memory at address indicated by (RO + Rn).
14) This instruction transfers DRm contents to memory at address indicated by (R0 + Rn).

HPM-215

Dreamcast SH4 Program Manual

Operation

void FMOV(int m,n) f*FMOV FRm,FRn */
{
FR[n] = FR[m];
pc+=2;
}
void FMOV_DR(int m,n) ¥ FMOV DRm,DRn */
{
DR[n>>1] = DR[m>>1];
pc+=2;
}
void FMOV_STORE(intm,n) /*FMOV.S FRm,@Rn */
{
store_int(FR[mM],R[Nn]);
pc+=2;
}
void FMOV_STORE_DR(int m,n) /* FMOV DRm,@Rn */
{
store_quad(DR[m>>1],R[n]);
pc+=2;
}
void FMOV_LOAD(intm,n) /*FMOV.S @Rm,FRn */
{
load_int(R[m],FR[n]);
pc+=2;
}
void FMOV_LOAD_DR(intm,n) /*FMOV @Rm,DRn */
{
load_quad(R[m],DR[n>>1]);
pc+=2;
}
void FMOV_RESTORE(int m,n) * FMOV.S @Rm+,FRn */
{
load_int(R[m],FR[n]);
R[m] +=4;
pc+=2;
}
void FMOV_RESTORE_DR(int m,n) # FMOV @Rm+,DRn */
{
load_quad(R[m],DR[n>>1]) ;
R[mM] +=§;
pc+=2;
}
void FMOV_SAVE(intm,n) /*FMOV.S FRm,@-Rn */
{
store_int(FR[m],R[n]-4);
R[n] =4,
pc+=2;

HPM-216

10. Instruction Descriptions

}
void FMOV_SAVE_DR(intm,n) /*FMOV DRm,@-Rn*/
{
store_quad(DR[m>>1],R[n]-8);
R[n] =8;
pc+=2;
}
void FMOV_INDEX_LOAD(int m,n) /* FMOV.S @(R0,Rm),FRn */
{
load_int(R[0] + R[m],FR[n]);
pc+=2;
}
void FMOV_INDEX_LOAD_DR(int m,n) #FMOV @(RO,Rm),DRn */
{
load_quad(R[0] + R[m],DR[n>>1));
pc+=2;
}
void FMOV_INDEX_STORE(int m,n) AFMOV.S FRm,@(R0,Rn)*/
{
store_int(FR[m], R[O] + R[n]);
pc+=2;
}
void FMOV_INDEX_STORE_DR(int m,n)*FMOV DRm,@(R0,Rn)*/

{
store_quad(DR[m>>1], R[0] + R[n]);
pc+=2,

}

Possible Exceptions:

® Data TLB miss exception
* Data protection violation exception
e Initial write exception

e Address error

HPM-217

Dreamcast SH4 Program Manual

FMOV Floating-point MOVe extension Floating-Point Instruction

Floating-Point Transfer
PR Format Summary of Operation Instruction Code Execution States TBit
1 1. FMOV XDm,@Rn XRm - (Rn) 111Tnnnnmmm711010 1 —
1 2. FMOV @Rm,XDn (Rm) — XDn 1111nnnTmmmm1000 1 —
1 3. FMOV @Rm+,XDn (Rm) — XDn,Rm+=8 1111nnnTmmmm1001 1 —
1 4 FMOV XDm,@-Rn Rn-=8,XDm - (Rn) 1111nnnnmmm11010 1 —
1 5. FMQOV @(R0,Rm),XDn (R0+Rm) — XDn 111 1Tnnnnmmm11011 1 —
1 6. FMOV XDm,@(R0,Rn) XDm - (R0+Rn) 1111Tnnnnmmm10110 1 —
1 7. FMOV XDm,XDn XDm - XDn 1111nnnTmmm11100 1 —
1 8. FMOV XDm,DRn XDm - DRn 1111nnn0mmm11100 1 —
1 9. FMOV DBRm,XDn DBRm — XDn 1111nnnTmmm01100 1 —

Description

1) This instruction transfers XDm contents to memory at address indicated by Rn.
2) This instruction transfers contents of memory at address indicated by Rm to XDn.
3) This instruction transfers contents of memory at address indicated by Rm to XDn, and adds 8 to Rm.

4) This instruction subtracts 8 from Rn, and transfers XDm contents to memory at address indicated by
resulting Rn value.

5) This instruction transfers contents of memory at address indicated by (RO + Rm) to XDn.
6) This instruction transfers XDm contents to memory at address indicated by (R0 + Rn).

7) This instruction transfers XDm contents to XDn.

8) This instruction transfers XDm contents to DRn.

9) This instruction transfers DRm contents to XDn.

HPM-218

10. Instruction Descriptions

Operation

void FMOV_STORE_XD(intm,n) /* FMOV XDm,@Rn */

{
store_quad(XD[m>>1],R[n]);
pc+=2;
}
void FMOV_LOAD_XD(intm,n) * FMOV @Rm,XDn */
{
load_quad(R[m],XD[n>>1]);
pc+=2;
}
void FMOV_RESTORE_XD(int m,n) /#*FMOV @Rm+,DBn */
{
load_quad(R[m],XD[n>>1));
R[m] +=8§;
pc+=2;
}
void FMOV_SAVE_XD(intm,n) /* FMOV XDm,@-Rn */
{
store_quad(XD[m>>1],R[n]-8);
R[n] =8;
pc+=2;
}
void FMOV_INDEX_LOAD_XD(int m,n)* FMOV @(R0,Rm),XDn */
{
load_quad(R[0] + R[m],XD[n>>1));
pc+=2;
}
void FMOV_INDEX_STORE_XD(int m,n)* FMOV XDm,@(RO,Rn) */
{
store_quad(XD[m>>1], R[0] + R[n]);
pc+=2;
}
void FMOV_XDXD(int m,n) f* FMOV XDm,XDn */
{
XD[n>>1] = XD[m>>1],
pc+=2;
}
void FMOV_XDDR(int m,n) ¥ FMOV XDm,DRn */
{
DR[n>>1] = XD[m>>1];
pc+=2;
}
void FMOV_DRXD(int m,n) f* FMOV DRm,XDn */
{
XD[n>>1] = DR[m>>1];
pc+=2;
}

HPM-219

Dreamcast SH4 Program Manual

Possible Exceptions:

* Data TLB miss exception
¢ Data protection violation exception
e Initial write exception

e Address error

FMUL Floating-point MULtiply Floating-Point Instruction

Floating-Point Multiplication
PR Format Summary of Operation Instruction Code Execution States T Bit
0 FMUL FRm,FRn FRn*FRm - FRn 1111nnnnmmmm0010 1 —
1 FMUL DRm,DRn DRn*DRm — DRn 1111Tnnn0mmm00010 6 —
Description

When FPSCR.PR = 0: Arithmetically multiplies the two single-precision floating-point numbers in FRn and FRm,
and stores the result in FRn.

When FPSCR.PR = 1: Arithmetically multiplies the two double-precision floating-point numbers in DRn and DRm,
and stores the result in DRn.

When FPSCR.enable.O/U/1is set, an FPU exception trap is generated regardless of whether or not an exception has
occurred. When an exception occurs, correct exception information is reflected in FPSCR.cause and FPSCR.flag, and
FRn or DRn is not updated. Appropriate processing should therefore be performed by software.

Operation

void FMUL(int m,n)
{
pc+=2;
clear_cause();
if(data_type_of(m) ==sNaN) ||
(data_type_of(n) == sNaN)) invalid(n);
else if((data_type_of(m) ==gNaN) ||
(data_type_of(n) == gNaN)) gnan(n);
else if((data_type_of(m) == DENORM) ||
(data_type_of(n) == DENORM)) set_E();
else switch (data_type_of(m)
case NORM: switch (data_type_of(n){
case PZERO:
case NZERO: zero(n,sign_of(m)"sign_of(n)); break;
case PINF:
case NINF: inf(n,sign_of(m)"sign_of(n)); break;
default; normal_fmul(m,n); break;
} break;

HPM-220

10. Instruction Descriptions

case PZERO:
case NZERO: switch (data._type_of(n){
case PINF:
case NINF: invalid(n); break;
default: zero(n,sign_of(m)*sign_of(n));break;
} break;
case PINF :
case NINF : switch (data_type_of(n){
case PZERO:
case NZERO: invalid(n); break;

default: inf(n,sign_of(m)"sign_of(n));break
} break;
}
}
FMUL Special Cases
FRm,DRm FRn,DRn
NORM +0 | —0 +INF | —INF DENORM gNaN sNaN
NORM DIv 0 INF
+0 0 +0 -0 Invalid
—0 -0 +0
+INF INF Invalid +INF —INF
—INF —INF +INF
DENORM Error
gNaN gNaN
sNaN Invalid

Note:

When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:

¢ FPU error

¢ Invalid operation
e Overflow

e Underflow

e Inexact

HPM-221

Dreamcast SH4 Program Manual

Floating-point NEGate value Floating-Point Instruction
Floating-Point Sign Inversion
PR Format Summary of Operation Instruction Code Execution States TBit
0 FNEG FRn -FRn — FRn 1111nnnn01001101 1 —
1 FNEG DRn -DRn - DRn 1111nnn001001101 1 —
Description

This instruction inverts the most significant bit (sign bit) of the contents of floating-point register FRn/DRn, and
stores the result in FRn/DRn.

The cause and flag fields in FPSCR are not updated.

Operation

void FNEG (int n){
FR[n] = -FR[n];
pc +=2;

/* Same operation is performed regardless of precision. */

Possible Exceptions:

None

FRCHG FR-bit CHanGe Floating-Point Instruction
FR Bit Inversion
PR Format Summary of Operation Instruction Code Execution States T Bit
0 FRCHG FRSCR.FR=~FRSCR.FR 1111101111111101 1 —
1 — — — - -
Description

This instruction inverts the FR bit in floating-point register FPSCR. When the FR bit in FPSCR is changed, FRO to
FR15 in FPPRO to FPPR31 become XR0 to XR15, and XR0 to XR15 become FRO to FR15. When FPSCR.FR = 0, FPPR0O
to FPPR15 correspond to FRO to FR15, and FPPR16 to FPPR31 correspond to XR0 to XR15. When FPSCR.FR =1,
FPPR16 to FPPR31 correspond to FRO to FR15, and FPPRO to FPPR15 correspond to XR0 to XR15.

HPM-222

10. Instruction Descriptions

Operation

void FRCHG() /* FRCHG */
{
if(FPSCR_PR == 0)
FPSCR "= 0x00200000; /* bit 21 */
PC +=2;
}

else undefined_operation();

}

Possible Exceptions:

None

FSCHG Sz-bit CHanGe Floating-Point Instruction
SZ Bit Inversion
PR Format Summary of Operation Instruction Code Execution States TBit
0 FSCHG FRSCR.SZ=~FRSCR.SZ 1111001111111101 1 —
1 R N R R J—
Description

This instruction inverts the SZ bit in floating-point register FPSCR. Changing the SZ bit in FPSCR switches FMOV
instruction data transfer between one single-precision data unit and a data pair. When FPSCR.SZ = 0, the FMOV
instruction transfers one single-precision data unit. When FPSCR.SZ = 1, the FMOV instruction transfers two
single-precision data units as a pair.

Operation

void FSCHG() /*FSCHG */

{
if(FPSCR_PR ==0){
FPSCR "= 0x00100000; /* bit 20 */
PC +=2;
}

else undefined_operation();

}

Possible Exceptions:

None

HPM-223

Dreamcast SH4 Program Manual

FSQRT Floating-point SQuare RooT Floating-Point Instruction
Floating-Point Square Root
PR Format Summary of Operation Instruction Code Execution States TBit
0 FSQRT FRn VFRn - FRn 1111nnnn01101101 9 o
1 FSQRT DRn vDRn - DRn 1111nnnn01101101 22 —
Description

When FPSCR.PR = 0: Finds the arithmetical square root of the single-precision floating-point number in FRn, and
stores the result in FRn.

When FPSCR.PR = 1: Finds the arithmetical square root of the double-precision floating-point number in DRn, and
stores the result in DRn.

When FPSCR.enable.l is set, an FPU exception trap is generated regardless of whether or not an exception has
occurred. When an exception occurs, correct exception information is reflected in FPSCR.cause and FPSCR.flag, and
FRn or DRn is not updated. Appropriate processing should therefore be performed by software.

Operation

void FSQRT(int n{
pc+=2;
clear_cause();
switch(data._type_of(n))}{
case NORM : fif(sign_of(n) == 0) normal_ fsqrt(n);
else invalid(n); break;
case DENORM: if(sign_of(n) == 0) set_E();
else invalid(n); break;
case PZERO:
case NZERO:
case PINF : break;
case NINF : invalid(n); break;
case gNaN : gnan(n); break;
case sNaN : invalid(n); break;
}
}
void normal_fsgrt(int n)
{
union {
float f;
intl;
} dstf,tmpf;
union {
double d;
int 12];

HPM-224

10. Instruction Descriptions

} dstd,tmpd;
union {
int double x;
int I[4];
}otmpx
if(FPSCR_PR ==0) {
tmpf.f = FR[n]; /* save destination value */
dstf.f = sqrt(FR[n]); /* round toward nearest or even */
tmpd.d = dstf.f; /* convert single to double */
tmpd.d *= dstf.f;
if(tmpf.f 1= tmpd.d) set_I();
if(tmpf.f <tmpd.d) && (SPSCR_RM ==1))
dstf.l -= 1; /* round toward zero */
if(FPSCR & ENABLE_) fpu_exception_trap();
else FR[n] = dstf f;
}else {
tmpd.d = DR[n>>1]; /* save destination value */
dstd.d = sgrt(DR[n>>1]); /* round toward nearest or even */
tmpx.x = dstd.d; /* convert double to int double */
tmpx.x *= dstd.d;
if(tmpd.d != tmpx.x) set_I();
if((tmpd.d < tmpx.x) && (SPSCR_RM ==1)) {
dstd.|[1] -= 1; /* round toward zero */
if(dstd.I[1] == Oxffffffff) dstd.I[0] -= 1;

}
if(FPSCR & ENABLE _1) fpu_exception_trap();
else DR[n>>1] = dstd.d};

}
}

FSQRT Special Cases

FRn +NORM —NORM +0 —0 +INF —INF gNaN sNaN

FSQRT(FRn) SQRT Invalid +0 -0 +INF Invalid gNaN Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:

¢ FPU error
e Invalid operation

e Inexact

HPM-225

Dreamcast SH4 Program Manual

Floating-point STore System register Floating-Point Instruction

Transfer from System Register

Format Summary of Operation Instruction Code Execution States T Bit
FSTS FPUL,FRn FPUL - FRn 1111nnnn00001101 1 —
Description

This instruction transfers the contents of system register FPUL to floating-point register FRn.

Operation

void FSTS(int n, float *FPUL)

{
FR[n] =*FPUL;
pc+=2;

}

Possible Exceptions:

None

Floating-point SUBtract Floating-Point Instruction

Floating-Point Subtraction
PR Format Summary of Operation Instruction Code Execution States TBit
0 FSUB FRm,FRn FRn-FRm - FRn 1111 nnnnmmmm0001 1 —
1 FSUB DRm,DRn DRn-DBRm — DRn 1111nnnOmmmO0001 6
Description

When FPSCR.PR = 0: Arithmetically subtracts the single-precision floating-point number in FRm from the
single-precision floating-point number in FRn, and stores the result in FRn.

When FPSCR.PR = 1: Arithmetically subtracts the double-precision floating-point number in DRm from the
double-precision floating-point number in DRn, and stores the result in DRn.

When FPSCR.enable.O/U/Iis set, an FPU exception trap is generated regardless of whether or not an exception has
occurred. When an exception occurs, correct exception information is reflected in FPSCR.cause and FPSCR.flag, and
FRn or DRn is not updated. Appropriate processing should therefore be performed by software.

HPM-226

10. Instruction Descriptions

Operation

void FSUB (int m,n)

{

pc+=2;
clear_cause();
if((data_type_of(m) == sNaN) ||
(data_type_of(n) == sNaN)) invalid(n);
else if((data_type_of(m) ==gNaN) ||
(data_type_of(n) == gNaN)) gnan(n);
else if((data_type_of(m) == DENORM) ||
(data_type_of(n) == DENORM)) set_E();
else switch (data_type_of(m)){
case NORM: switch (data_type_of(n)X
case NORM: normal_faddsub(m,n,SUB); break;
case PZERO:
case NZERO: register_copy(m,h); FR[n] = -FR[n];break;
default: break;
} break;
case PZERO: break;
case NZERO: switch (data_type_of(n){
case NZERO: zero(n,0); break;
default: break;
} break;
case PINF: switch (data_type_of(n){
case PINF: invalid(n); break;
default: inf(n,1); break;
} break;
case NINF: switch (data_type_of(n){
case NINF: invalid(n); break;
default: inf(n,0); break;
} break;

HPM-227

Dreamcast SH4 Program Manual

FSUB Special Cases

FRm,DRm FRn,DRn
NORM | +0 | -0 +INF —INF DENORM | gNaN sNaN

NORM ADD +INF —INF

+0 -0

-0 +0

+INF —INF Invalid

—INF +INF Invalid

DENORM Error

gNaN gNaN

sNaN Invalid
Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:

¢ FPU error
¢ Invalid operation
¢ Overflow

e Underflow

¢ Inexact

1046 | FTRC Floating-point TRuncate and Convert to integer Floating-Point Instruction
Conversion to Integer
PR Format Summary of Operation Instruction Code Execution States TBit
0 FTRC FRm,FPUL (long)FRm - FPUL 111Tmmmm00111101 1 —
1 FTRC DRm,FPUL (long)DRm — FPUL 1111Tmmm000111101 2 —
Description

When FPSCR.PR = 0: Converts the single-precision floating-point number in FRm to a 32-bit integer, and stores the
result in FPUL.

When FPSCR.PR = 1: Converts the double-precision floating-point number in FRm to a 32-bit integer, and stores the
result in FPUL.

The rounding mode is always truncation.

When FPSCR.enable.l is set, an FPU exception is generated before the instruction is executed, so appropriate
processing should be performed by software.

HPM-228

10. Instruction Descriptions

Operation

#define N_INT_SINGLE_RANGE 0xcf000000 /*-1.000000 * 2°31 */

#define P_INT_SINGLE_RANGE Oxdeffffff /* 1 fffffe * 2°30 */

#define N_INT_DOUBLE_RANGE 0xc1e00000 /* higher of -1.0000000000000 * /31 */
#define P_INT_DOUBLE_RANGE Ox41dfffff /* higher of L.fffffffftf * 2130 */

void FTRC(int m, int *FPUL)
{
pc+=2;
clear_cause();
if(FPSCR.PR==0){
case(ftrc_single_ type_of(m)X{

NORM: *FPUL = FR[m]; break;
PINF: ftrc_invalid(0); break;
NINF: ftrc_invalid(1); break;
}
}
else{ f* case FPSCR.PR=1*/
case(ftrc_double_type_of(m))
NORM: *FPUL = DR[m>>1]; break;
PINF: ftrc_invalid(0); break;
NINF: ftrc_invalid(1); break;
}
}
}
int firc_signle_type_of(int m)
{

if(sign_of(m) == 0}
if(FR_HEX[m] > 0x7f800000) return(NINF); /*NaN */
else if(FR_HEX[m] > P_INT_SINGLE_RANGE)
return(PINF); /* out of range,+INF */
else return(NORM); /* +0,+NORM */
}else {
if(FR_HEX[m]< N_INT_SINGLE_RANGE)
return(NINF); /* out of range ,+INF,NaN?*/

else return(NORM); /* -0,-NORM *
}
}
int ftrc_double_type_of(int m)
{

if(sign_of(m) == 0}{
if(FR_HEX[m] > 0x7ff00000) ||
((FR_HEX[m] == 0x7ff00000) &&
(FR_HEX[m+1] I= 0x00000000))) return(NINF); /*NaN */
else if(FR_HEX[m] > P_INT_DOUBLE_RANGE)
return(PINF); /* out of range,+INF */
else retun(NORM); /* +0,+NORM *
}else {

HPM-229

Dreamcast SH4 Program Manual

if(FR_HEX[m] < N_INT_DOUBLE_RANGE)
return(NINF); /* out of range ,+INF,NaN*/

else return(NORM); /* -0,-NORM *
}
}
void ftrc_invalid(int sign, int *FPUL)
{
set_V();
if((FPSCR & ENABLE_V) == 0X
if(sign==0) *FPUL = OXTfffffff;
else *FPUL = 0x80000000;
}
else fpu_exception_trap();
}

FTRC Special Cases

FRn,DRn NORM | +0 | -0 | Positive Out of Negative Out of +INF —INF gNaN sNaN
Range Range

FTRC TRC 0 0 Invalid+MAX Invalid—MAX Invalid+ Invalid— Invalid— Invalid—

(FRn,DRn) MAX MAX MAX MAX

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:

e FPU error

¢ Invalid operation

Floating-point TRansform Vector Floating-Point Instruction
Vector Transformation
PR Format Summary of Operation Instruction Code Execution States T Bit
0 FTRV XMTRX,FVn XMTRX*FVn - FVn 1111nn0111111101 4 —
’| N N N R N
Description

When FPSCR.PR = 0: This instruction takes the contents of floating-point registers XF0 to XF15 indicated by XMTRX
as a 4-row x 4-column matrix, takes the contents of floating-point registers FR[n] to FR[n + 3] indicated by FVn as a
4-dimensional vector, multiplies the array by the vector, and stores the results in FV[n].

HPM-230

10. Instruction Descriptions

XMTRX FVn FVn
XF[0] XF(4] XF[8] XF[12] FRIn] FRIn]
XF[1] XF[5] XF[9] XF[13] X FRIn+1] ' FRIn+1]
XF[2] XF(B] XF[10] XF14] FRIn+2] FRIn+2]
XF[3] XF[7] XF[11] XF([15] FRIn+3] FRIn+3]

The FTRYV instruction is intended for speed rather than accuracy, and therefore the results will differ from those
obtained by using a combination of FADD and FMUL instructions. The FTRV execution sequence is as follows:

1) Multiplies all terms. The results are 30 bits long.
2) Aligns these results, rounding them to fit within 28 bits.
3) Adds the aligned values.

4) Performs normalization and rounding.

Special processing is performed in the following cases:

1) If an input value is an sNaN, an invalid exception is generated.

2) If the input values to be multiplied include a combination of 0 and infinity, an invalid operation
exception is generated.

3) In cases other than the above, if the input values include a qNaN, the result will be a gNaN.

4) In cases other than the above, if the input values include infinity:

a) If multiplication results in two or more infinities and the signs are different, an invalid exception will be
generated.

b) Otherwise, correct infinities will be stored.

5. If the input values do not include an sNaN, gNaN, or infinity, processing is performed in the normal way.

When FPSCR.enable.V/O/U/Iis set, an FPU exception trap is generated regardless of whether or not an exception
has occurred. When an exception occurs, correct exception information is reflected in FPSCR.cause and FPSCR flag,
and FRn or DRn is not updated. Appropriate processing should therefore be performed by software.

Operation

void FTRV (intn) # FTRV FVn */
{
float saved_vecl[4],result_vec[4];
int saved_fpscr;
int dst,i;
if(FPSCR_PR ==0) {
PC+=2;
clear_cause();
saved_fpscr = FPSCR;
FPSCR &= ~ENABLE_VOUI; * mask VOUI enable */
dst =12 - n; /* select other vector than FVn */
for(i=0;i<4;i++) saved_vec [i] = FR[dst+i];
for(i=0;i<4;i++) {

HPM-231

Dreamcast SH4 Program Manual

for(j=0;j<4;j++) FR[dst+j] = XF[i+4];
fipr(n,dst);
saved_fpscr |= FPSCR & (CAUSE|FLAG) ;
result_vec [i] = FR[dst+3];
}
for(i=0;i<4;i++) FR[dst+i] = saved_vec i];
FPSCR = saved_fpscr;
if(FPSCR & ENABLE_VOUI) fpu_exception_trap();
else for(i=0;i<4;i++) FR[n+i] =result_vec [i;
}

else undefined_operation();

}
Possible Exceptions:

¢ Invalid operation

e Overflow

e Underflow

¢ Inexact
10.48 JMP JuMP Branch Instruction

Unconditional Branch Delayed Branch Instruction
Format Summary of Operation Instruction Code Execution States TBit
JMP @Rn Rn - PC 0100nnnn00101011 2 —
Description

Unconditionally makes a delayed branch to the address specified by Rn.

Notes

As this is a delayed branch instruction, the instruction following this instruction is executed before the branch
destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the following instruction is a
branch instruction, it is identified as a slot illegal instruction.

Operation

JMP(int n) /¥ IMP @Rn */
{

unsigned int temp;

temp=PC;
PC=RI[n];
Delay_Slot(temp+2);

HPM-232

10. Instruction Descriptions

Example
MOV.L JMP_TABLE,RO
JMP @RO
MOV RO,R1
.align 4
JMP_TABLE: data.l
TRGET: ADD

;RO =TRGET address
:Branch to TRGET.
:MOV executed before branch.

TRGET ;Jump table

#1,R1 ; < Branch destination

Jump to SubRoutine Branch Instruction

Branch to Subroutine Procedure

Delayed Branch Instruction

Format Summary of Operation

Instruction Code Execution States TBit

JSR @Rn PC+4 - PR, Rn - PC

0100nnnn00001011 2 —

Description

This instruction makes a delayed branch to the subroutine procedure at the specified address after execution of the
following instruction. Return address (PC + 4) is saved in PR, and a branch is made to the address indicated by
general register Rn. JSR is used in combination with RTS for subroutine procedure calls.

Notes

As this is a delayed branch instruction, the instruction following this instruction is executed before the branch

destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the following instruction is a
branch instruction, it is identified as a slot illegal instruction.

Operation

JSR(int n) *JSR @Rn */
{

unsigned int temp;

temp=PC,;
PR=PC+4;
PC=RIn];
Delay_Slot(temp+2);

HPM-233

Dreamcast SH4 Program Manual

Example
MOV.L JSR_TABLE,RO ;RO=TRGET address

JSR @RO :Branch to TRGET.
XOR R1,R1 :XOR executed before branch.
ADD RO,R1 ; € Procedure return destination (PR contents)
align 4

JSR_TABLE: data.l TRGET ;Jump table

TRGET: NOP ;& Entry to procedure
MOV R2,R3 ;
RTS ;Return to above ADD instruction.
MoV #70,R1 ;MOV executed before RTS.

LoaD to Control register

System Control Instruction

Load to Control Register

Format Summary of Operation Instruction Code Execution States | T Bit
LDC Rm, SR Rm - SR 0100mmmm00001110 4 LSB
LDC Rm, GBR Rm - GBR 0100mmmm00011110 3 —
LDC Rm, VBR Rm — VBR 0100mmmm00101110 1 —
LDC Rm, SSR Rm - SSR 0100mmmm00111110 1 .
LDC Rm, SPC Rm — SPC 0100mmmm01001110 1

LDC Rm, DBR Rm - DBR 0100mmmm11111010 1 —
LDC Rm, RO_BANK Rm — RO_BANK 0100mmmm10001110 1 .
LDC Rm, R1_BANK Rm — R1_BANK 0100mmmm10011110 1 —
LDC Rm, R2_BANK Rm — RZ_BANK 0100mmmm10101110 1 —
LDC Rm, R3_BANK Rm — R3_BANK 0100mmmm10111110 1 .
LDC Rm, R4_BANK Rm — R4_BANK 0100mmmm11001110 1 —
LDC Rm, R5_BANK Rm — R5_BANK 0100mmmm11011110 1 —
LDC Rm, R6_BANK Rm — R6_BANK 0100mmmm11101110 1 .
LDC Rm, R7_BANK Rm — R7_BANK 0100mmmm11111110 1 —
LDC.L @Rm+, SR (Rm) — SR, Rm+4 — Rm 0100mmmm00000111 4 LSB
LDC.L @Rm+, GBR (Rm) - GBR, Rm+4 — Rm 0100mmmm00010111 3 .
LDC.L @Rm+, VBR (Rm) — VBR, Rm+4 — Rm 0100mmmm00100111 1 —

HPM-234

10. Instruction Descriptions

LoaD to Control register

System Control Instruction

LDC.L @Rm+, SSR (Rm) = SSR, Rm+4 — Rm 0100mmmm00110111 —
LDC.L @Rm+, SPC (Rm) — SPC, Rm+4 — Rm 0100mmmm01000111 —
LDC.L @Rm+, DBR (Rm) — DBR, Rm+4 — Rm 0100mmmm11110110 —
LDC.L @Rm+, RO_BANK (Rm) = RO_BANK, Rm+4 — Rm 0100mmmm10000111 —
LDC.L @Rm+, R1_BANK (Rm) - R1_BANK, Rm+4 — Rm 0100mmmm10010111 —
LDC.L @Rm+, R2_BANK (Rm) — R2_BANK, Rm+4 — Rm 0100mmmm10100111 —
LDC.L @Rm+, R3_BANK (Rm) — R3_BANK, Rm+4 — Rm 0100mmmm10110111 —
LDC.L @Rm+, R4_BANK (Rm) - R4_BANK, Rm+4 — Rm 0100mmmm11000111 —
LDC.L @Rm+, R5_BANK (Rm) — R5_BANK, Rm+4 — Rm 0100mmmm11010111 —
LDC.L @Rm+, R6_BANK (Rm) — R6_BANK, Rm+4 — Rm 0100mmmm11100111 —
LDC.L @Rm+, R7_BANK (Rm) - R7_BANK, Rm+4 — Rm 0100mmmm11110111 —

Description

These instructions store the source operand in the control register SR, GBR, VBR, SSR, SPC, DBR, or R0O_BANK to
R7_BANK. With the exception of LDC Rm,GBR and LDC.L @-Rn,GBR, the LDC/LDC.L instructions are privileged
instructions and can only be used in privileged mode. Use in user mode will cause an illegal instruction exception.
However, LDC Rm,GBR and LDC.L @-Rm,GBR can also be used in user mode.

With LDC/LDC.L instructions accessing Rn_BANK, Rn_BANKO is accessed when the RB bit in the SR register is 1,
and Rn_BANKI1 is accessed when this bit is 0.

Operation

LDCSR(int m) # LDC Rm,SR : Privileged */

{

SR=R[m]&0x700083F3;

PC+=2;
}

LDCGBR(int m) /* LDC Rm,GBR */

{

GBR=R[m;

PC+=2;
}

HPM-235

Dreamcast SH4 Program Manual

LDCVBR(int m) /# LDC Rm,VBR : Privileged */

{
VBR=R[m];
PC+=2;
}
LDCSSR(int m) /# LDC Rm,SSR : Privileged */
{
SSR=R[m],
PC+=2;
}
LDCSPC(int m) /# LDC Rm,SPC : Privileged */
{
SPC=R[m];
PC+=2;
}
LDCDBR(int m) /* LDC Rm,DBR : Privileged */
{
DBR=R[m];
PC+=2;
}
LDCRn_BANK(int m) # LDC Rm,Rn_BANK : Privileged */
fn=0-7"*
{
Rn_BANK=R[m];
PC+=2;
}
LDCMSR(int m) /* LDC.L @Rm+,SR : Privileged */
{
SR=Read_Long(R[m])&0x700083F3;
RIm]+=4;
PC+=2;
}
LDCMGBR(int m) /* LDC.L @Rm+,GBR */
{
GBR=Read_Long(R[m]);
Rm]+=4;
PC+=2;
}
LDCMVBR(int m) /* LDC.L @Rm+,VBR : Privileged */
{
VBR=Read_Long(R[m]);
RIm]+=4;
PC+=2;
}

HPM-236

10. Instruction Descriptions

LDCMSSR(int m) /* LDC.L @Rm+,SSR : Privileged */
{

SSR=Read_Long(R[m]);

R[m]+=4;

PC+=2;
}

LDCMSPC(int m) /* LDC.L @Rm+,SPC : Privileged */

{
SPC=Read_Long(R[m]);
R[m]+=4;

PC+=2,

}

LDCMDBR(int m) /* LDC.L @Rm+,DBR : Privileged */

{
DBR=Read_Long(R[m]);
R[m]+=4;

PC+=2;

}

LDCMRN_BANK(Long m) /* LDC.L @Rm+,Rn_BANK : Privileged */
fn=0-7*
{
Rn_BANK=Read_Long(R[m]);
RIm]+=4;
PC+=2;
}

Possible Exceptions:

¢ General illegal instruction exception

¢ Illegal slot instruction exception

¢ Data TLB miss exception

e Data TLB protection violation exception

e Address error

HPM-237

Dreamcast SH4 Program Manual

LoaD to FPU System register System Control Instruction
Load to FPU System Register
Format Summary of Operation Instruction Code Execution States | T Bit
LDS Rm,FPUL Rm — FPUL 0100mmmm01011010 1 —
LDS.L @Rm+,FPUL (Rm) — FPUL, Rm+4 — Rm 0100mmmm01010110 1 —
LDS Rm,FPSCR Rm - FPSCR 0100mmmm01101010 1 —
LDS.L @Rm+,FPSCR (Rm) — FPSCR, Rm+4 — Rm | 0100mmmm01100110 1 —
Description

This instruction loads the source operand into FPU system registers FPUL and FPSCR.

Operation

#define FPSCR_MASK 0x003FFFFF

LDSFPUL(int m, int FPUL) /* LDS Rm,FPUL */
{
*FPUL=R[m];
PC+=2,
}
LDSMFPUL(int m, int FPUL) /* LDS.L @Rm+,FPUL */
{
*FPUL=Read_Long(R[m]);
RIm[+=4;
PC+=2;
}
LDSFPSCR(int m) /* LDS Rm,FPSCR */
{
FPSCR=R[m] & FPSCR_MASK;
PC+=2;
}
LDSMFPSCR(int m) /* LDS.L @Rm+,FPSCR */
{
FPSCR=Read_Long(R[m]) & FPSCR_MASK;
RIm]+=4;
PC+=2;

HPM-238

10. Instruction Descriptions

Possible Exceptions:

* Data TLB miss exception

¢ Data access protection exception

e Address error

LoaD to System register System Control Instruction
Load to System Register
Format Summary of Operation Instruction Code Execution States T Bit
LDS Rm,MACH Rm — MACH 0100mmmm00001010 .
LDS Rm,MACL Rm — MACL 0100mmmm00011010 —
LDS Rm,PR Rm - PR 0100mmmm00101010 —
LDS.L @Rm+,MACH (Rm) - MACH, Rm +4 - Rm 0100mmmm00000110 —
LDS.L @Rm+,MACL (Rm) - MACL, Bm +4 - Rm 0100mmmm00010110 —
LDS.L @Rm+,PR (Rm) - PR, RAm+4 — Rm 0100mmmm00100110 —
Description

Stores the source operand into the system registers MACH, MACL, or PR.

Operation

LDSMACH(int m) /< LDS Rm,MACH */
{

MACH=R[m];

PC+=2;
}

LDSMACL(int m) /* LDS Rm,MACL */

{
MACL=R[m];
PC+=2;

}

LDSPR(int m) /* LDS Rm,PR */

{
PR=R[m];
PC+=2;

}

LDSMMACH(int m) /* LDS.L @Rm+,MACH */

HPM-239

Dreamcast SH4 Program Manual

{
MACH=Read_Long(R[m]);
R[m]+=4;
PC+=2;

}

LDSMMACL(int m) /* LDS.L @Rm+,MACL */
{

MACL=Read_Long(R[m]);

RImM]+=4;

PC+=2;
}

LDSMPR(int m) /* LDS.L @Rm+,PR */
{

PR=Read_Long(R[m]);

R[m]+=4;

PC+=2;
}

Example

LDS RO,PR ; Before execution R0 = H'12345678, PR = H00000000
; After execution PR =H'12345678
LDS.L @R15+MACL ; Before execution R15 = H10000000
: After execution R15 = H10000004, MACL = (H'10000000)

Description
System Control Instruction
10.52 LDTLB LoaD PTEH/PTEL/PTEA to TLB (Privileged Instruction)
Load to TLB
Format Summary of Operation Instruction Code Execution States TBit
LDTLB PTEH/PTEL/PTEA - TLB 0000000000111000 1 —

This instruction loads the contents of the PTEH/PTEL / PTEA registers into the TLB (translation lookaside buffer)
specified by MMUCR.URC (random counter field in the MMC control register).

LDTLB is a privileged instruction, and can only be used in privileged mode. Use of this instruction in user mode
will cause an illegal instruction exception.

HPM-240

10. Instruction Descriptions

Notes

As this instruction loads the contents of the PTEH/PTEL /PTEA registers into a TLB, it should be used either with
the MMU disabled, or in the P1 or P2 virtual space with the MMU enabled (see section 3, Memory Management
Unit, for details). After this instruction is issued, there must be at least one instruction between the LDTLB
instruction and issuance of an instruction relating to address to areas P0, U0, and P3 (i.e. BRAFE, BSRE, JMP, JSR, RTS,
or RTE).

Operation

LDTLB() ALDTLB

{
TLB[MMUCR. URC] .ASID=PTEH & 0x000000FF;
TLB[MMUCR. URC] .VPN=(PTEH & OxFFFFFC00)>>10;
TLB[MMUCR. URC] .PPN=(PTEH & Ox1FFFFC00)>>10;
TLB[MMUCR. URC] .SZ=(PTEL & 0x00000080)>>6 |

(PTEL & 0x00000010)>>4;

TLB[MMUCR. URC] .SH=(PTEH & 0x00000002)>>1;
TLB[MMUCR. URC] .PR=(PTEH & 0x00000060)>>5;
TLB[MMUCR. URC] .WT=(PTEH & 0x00000001);
TLB[MMUCR. URC] .C=(PTEH & 0x00000008)>>3;
TLB[MMUCR. URC] .D=(PTEH & 0x00000004)>>2;
TLB[MMUCR. URC] .V=(PTEH & 0x00000100)>>8;
TLB[MMUCR. URC] .SA=(PTEA & 0x00000007);
TLB[MMUCR. URC] .TC=(PTEA & 0x00000008)>>3;

PC+=2,
}
Example
MOV @RO,R1 ;Load page table entry (upper) into R1
MOV R1,@R2 ;Load R1 into PTEH; R2 is PTEH address (H'FFFFFFFO)
LDTLB ;Load PTEH, PTEL, PTEA registers into TLB

Multiply and

ACcumulate Long Arithmetic Instruction

Double-Precision
Multiply-and-Accumulate

Operation
Format Summary of Operation Instruction Code Execution States T Bit
MAC.L Signed, 0000nnnNmmmm1111 2-5 —
@Rm+ @R+ (Rn) x (Rm) + MAC * MAC

Rn+4"Rn,Rm+4"Rm

HPM-241

Dreamcast SH4 Program Manual

Description

This instruction performs signed multiplication of the 32-bit operands whose addresses are the contents of general
registers Rm and Rn, adds the 64-bit result to the MAC register contents, and stores the result in the MAC register.
Operands Rm and Rn are each incremented by 4 each time they are read.

If the S bit is 0, the 64-bit result is stored in the linked MACH and MACL registers.

If the S bit is 1, the addition to the MAC register contents is a saturation operation at the 48th bit from the LSB. In a
saturation operation, only the lower 48 bits of the MAC register are valid, and the result range is limited to
H'FFFF800000000000 (minimum value) to H'00007FFFFFFFFFFF (maximum value).

Operation

MACL(long m, long n) /* MAC.L @Rm+,@Rn+*/

{
unsigned long RnL,RnH,RmML,RmH,Res0,Res1,Res2;
unsigned long temp0,templ,temp2,temp3;
long tempm,tempn,fnLmL;

tempn=(long)Read_Long(R[n]);
R[n]+=4;
tempm=(long)Read_Long(R[m]);
R[mJ+=4;

if ((long)(tempn”tempm)<0) fnLmL=-1;
else fnLmL=0;

if (tempn<0) tempn=0-tempn;

if (tempm<0) tempm=0-tempm,;

templ=(unsigned long)tempn;
temp2=(unsigned long)tempm;

RnL=temp1&0x0000FFFF;
RnH=(temp1>>16)&0x0000FFFF;
RmL=temp2&0x0000FFFF;
RmH=(temp2>>16)&0x0000FFFF;
tempO=RmL*RnL;
templ=RmH*RnL,
temp2=RmL*RnH;
temp3=RmH*RnH,

Res2=0;

Resl=templ+temp2;
if (Resl<templ) Res2+=0x00010000;

templ=(Res1<<16)&0xFFFF0000;
ResO=tempO+temp1;
if (ResO<temp0) Res2++;

HPM-242

10. Instruction Descriptions

Res2=Res2+((Res1>>16)&0x0000FFFF)+temp3;

if(fnLmL<0)X
Res2=~Res2;
if (Res0==0) Res2++;
else ResO=(~Res0)+1;
}
if(S==1)
ResO=MACL+Res0;
if (MACL>Res0) Res2++;
if (MACH&0x00008000);
else Res2+=MACH)|0xFFFF0000;
Res2+=MACH&0x00007FFF;

if(((long)Res2<0)&&(Res2<0xFFFF8000)){
Res2=0xFFFF8000;
Res0=0x00000000;

}

if((long)Res2>0)&&(Res2>0x00007FFF){
Res2=0x00007FFF;
ResO0=0xFFFFFFFF;

h

MACH=(Res2&0x0000FFFF)|(MACH&OxFFFF0000);
MACL=Res0;

else {
ResO=MACL+Res0;
if (MACL>Res0) Res2++;
Res2+=MACH,;

MACH=Res2;
MACL=Res0;

}
PC+=2;

HPM-243

Dreamcast SH4 Program Manual

Example
MOVA TBLM,RO;Get table address
MOV RO,R1 ;
MOVA TBLN,RO ;Get table address
CLRMAC ;MAC register initialization
MAC.L @RO+@R1+ ;
MAC.L @RO+,@R1+ ;
STS MACL,R0 ;Get resultin RO
.align 2 ;
TBLM data.l H'1234ABCD ;
data.l H'5678EFO1 ;
TBLN datall H'0123ABCD ;
data.l H'4567DEFO ;
Multiply and
10.54 MAC.W ACcumulate Word Arithmetic Instruction
Single-Precision
Multiply-and-Accumulate
Operation
Format Summary of Operation Instruction Code Execution States TBit
MAC.W @Bm+,@Rn+ Signed, 0100nnnnmmmm71111 2-5 —
MAC @Rm+,@Rn+ (Rn) x (Rm) + MAC —MAC
Rn+2 - Rn,Rm+2 - Rm
Description

This instruction performs signed multiplication of the 16-bit operands whose addresses are the contents of general
registers Rm and Rn, adds the 32-bit result to the MAC register contents, and stores the result in the MAC register.
Operands Rm and Rn are each incremented by 2 each time they are read.

If the Sbitis 0,a 16 x 16 + 64 — 64-bit multiply-and-accumulate operation is performed, and the 64-bit result is stored
in the linked MACH and MACL registers.

If the Sbitis1,a16 x 16 + 32 — 32-bit multiply-and-accumulate operation is performed, and the addition to the MAC
register contents is a saturation operation. In a saturation operation, only the MACL register is valid, and the result
range is limited to H'80000000 (minimum value) to H'7FFFFFFF (maximum value). If overflow occurs, the LSB of
the MACH register is set to 1. H'80000000 (minimum value) is stored in the MACL register if the result overflows
in the negative direction, and H'7FFFFFFF (maximum value) is stored if the result overflows in the positive direction

Notes

If the Sbitis 0, a 16 x 16 + 64 — 64-bit multiply-and-accumulate operation is performed.

HPM-244

10. Instruction Descriptions

Operation

MACW(long m, long n) * MAC.W @Rm+,@Rn+ */

{

}

long tempm,tempn,dest,src,ans;
unsigned long templ;
tempn=(long)Read_Word(R[n]);
R[n]+=2;
tempm=(long)Read_Word(R[m]);
R[M[+=2;
templ=MACL,
tempm=((long)(short)tempn*(long)(short)tempm);
if (long)MACL>=0) dest=0;
else dest=1,
if ((long)tempm>=0) {

src=0;

tempn=0;
}
else {

src=1,

tempn=0xFFFFFFFF;
}
src+=dest;
MACL+=tempm;
if (long)MACL>=0) ans=0;
else ans=1;
ans+=dest;
if (S==1){

if (ans==1) {

if (src==0) MACL=0x7FFFFFFF;
if (src==2) MACL=0x80000000;

}

}

else {
MACH-+=tempn;
if (templ>MACL) MACH+=1,

}
PC+=2;

HPM-245

Dreamcast SH4 Program Manual

Example
MOVA TBLM,R0 ;Get table address

MOV RO,R1

MOVA TBLN,RO ;Get table address

CLRMAC ;MAC register initialization

MAC.W @RO+,@R1+

MAC.W @RO+,@R1+

STS MACL,RO ;Getresultin RO

align 2 :

TBLM .data.w H'1234
data.w H'5678 ;
TBLN data.w H'0123

data.w H'4567

10.55 MoV MOVe Data Data Transfer Instruction
Data Transfer
Format Summary of Operation Instruction Code Execution States TBit
MOV Rm,Rn Rm = Rn 0110nnnnmmmm0011 1 —
MOV.B Rm,@Rn Rm = (Rn) 0010nnnnmmmmO000 1 —
MOV.W Rm,@Rn Rm - (Rn) 0010nnnnmmmmO001 1 —
MOV.L Rm,@Rn Rm = (Rn) 0010nnnnmmmm0010 1 —
MOV.B @Rm,Rn (Rm) sign extension Rn 0110nnnnmmmmQ000 1 —
MOV.W @Rm,Rn (Rm) sign extension Rn 0110nnnnmmmmQ001 1 —
MOV.L @Rm,Rn (Rm) = Rn 0110nnnnmmmm0010 1 —
MOV.B Rm,@-Rn Rn-1 = Rn, Rm = (Rn) 0010nnnnmmmm0100 1 —
MOV.W Rm,@-Rn Rn-2 — Rn,Rm - (Rn) 0010nnnnmmmmO0101 1 —
MOV.L Rm,@-Rn Rn-4 = Rn, Rm = (Rn) 0010nnnnmmmm0110 1 —
MOV.B @Rm+,Rn (Rm) sign extension Rn, Rm+1 — | 0110nnnnmmmm0100 1 —
Rm
MOV.W @Rm+,Rn (Rm) sign extension Rn,Rm+2 — | 0110nnnnmmmm0101 1 —
Rm

MOV.L @Rm+,Rn (Rm) = Rn, Rm+4 — Rm 0110nnnnmmmm0110 1 —
MOV.B Rm,@(R0,Rn) Rm - (RO+Rn) 0000nnnnmmmmO0100 1 —
MOV.W Rm,@(R0,Rn) Rm = (R0O+Rn) 0000nnNNMmmmO101 1 —

HPM-246

10. Instruction Descriptions

MOVe Data Data Transfer Instruction
MOV.L Rm,@(R0,Rn) Rm — (RO+Rn) 0000nnnnmmmmO0110 1 —
MOV.B @(R0,Rm),Rn (RO+Rm) sign extension Rn 0000nnnnmmmm1100 1 —
MOV.W @(R0,Rm),Rn (RO+Rm) sign extension Rn 0000nnnnmmmm1101 1 —
MOV.L @(R0,Rm),Rn (RO+Rm) — Rn 0000nnnnmmmm1110 1 —
Description

This instruction transfers the source operand to the destination. When an operand is memory, the data size can be
specified as byte, word, or longword. When the source operand is memory, the loaded data is sign-extended to
longword before being stored in the register.

Operation

MOV(long m, long n) /* MOV Rm,Rn */
{

R[n}=Rm];

PC+=2;
}

MOVBS(long m, long n) # MOV.B Rm,@Rn */
{

Write_Byte(R[n],R[m]);

PC+=2;
}

MOVWS(long m, long n) # MOV.W Rm,@Rn */
{

Write_ Word(R[n],R[m]);

PC+=2;
}

MOVLS(long m, long n) # MOV.L Rm,@Rn */
{

Write_Long(R[n],R[m]);

PC+=2;
}

MOVBL(long m, long n) # MOV.B @Rm,Rn */
{
R[n]=(long)Read_Byte(R[m]);
if (R[n]&0x80)==0) R[n]&=0x000000FF;
else R[n]|=0xFFFFFFOO;
PC+=2;

HPM-247

Dreamcast SH4 Program Manual

MOVW.L(long m, long n) # MOV.W @Rm,Rn */
{
R[n]=(long)Read_Word(R[m]);
if (R[N]&0x8000)==0) R[n]&=0x0000FFFF;
else R[n]|=0xFFFF0000;

PC+=2,
}
MOVLL(long m, long n) # MOV.L @Rm,Rn */
}
R[n]=Read_Long(R[m]);
PC+=2;
}
MOVBM(long m, long n) # MOV.B Rm,@-Rn */
{
Write_Byte(R[n]-1,R[m]);
R[n]-=1;
PC+=2;
}
MOVWM(long m, long n) # MOV.W Rm,@-Rn */
{
Write_ Word(R[n]-2,R[m]);
R[n]-=2;
PC+=2;
}
MOVLM(long m, long n) # MOV.L Rm,@-Rn */
{
Write_Long(R[n]-4,R[mY]);
RIn}-=4;
PC+=2;
}

MOVBP(long m, long n) # MOV.B @Rm+,Rn */
{
R[n]=(long)Read_Byte(R[m]);
if (R[N]&0x80)==0) R[n]&=0x000000FF;
else R[n]|=0xFFFFFFQO;
if (n'=m) R[m]+=1,
PC+=2,
}
MOVWP(long m, long n) # MOV.W @Rm+,Rn */
{
R[n]=(long)Read_Word(R[m]);
if (R[N]&0x8000)==0) R[n]&=0x0000FFFF;
else R[n]|=0xFFFF000O0;
if (n'=m) R[m]+=2;

HPM-248

10. Instruction Descriptions

PC+=2;
}

MOVLP(long m, long n) # MOV.L @Rm+,Rn */
{

R[n]=Read_Long(R[m]);

if (n'=m) R[m]+=4;

PC+=2;
}

MOVBSO0(long m, long n) # MOV.B Rm,@(R0,Rn) */
{

Write_Byte(R[n]+R[0],R[m]);

PC+=2;
}

MOVWSO0(long m, long n) / MOV.W Rm,@(RO,Rn) */
{

Write_ Word(R[n]+R[0],R[m]);

PC+=2;
}

MOVLSO0(long m, long n) /* MOV.L Rm,@(RO,Rn) */
{

Write_Long(R[n]+R[0],R[m]);

PC+=2;
}

MOVBLO(long m, long n) * MOV.B @(R0,Rm),Rn */
{

R[n]=(long)Read_Byte(R[m]+R[Q]);

if ((R[n]&0x80)==0) R[n]&=0x000000FF;

else R[n]|=0xFFFFFFOO;

PC+=2;
}

MOVWLO(long m, long n) # MOV.W @(R0,Rm),Rn */
{

R[n]=(long)Read_Word(R[m]+R[0]);

if (R[N)&0x8000)==0) R[N]&=0x0000FFFF;

else R[n]|=0xFFFF000O0;

PC+=2;
}

MOVLLO(long m, long n) # MOV.L @(RO,Rm),Rn */
{

R[n]=Read_Long(R[m]+R[0]);

PC+=2;
}

HPM-249

Dreamcast SH4 Program Manual

Example
MOV RO,R1 ;Before execution RO = H'FFFFFFFF, R1 = H'00000000
:After execution R1 = HFFFFFFFF
MOV.W RO,@R1 :Before execution RO = HFFFF7F80
;After execution(R1) =H7F80
MOV.B @RO,R1 ;Before execution(RO) = H'80, R1 = H'00000000
;After execution R1 =HFFFFFF80
MOV.W RO,@-R1 :Before execution RO = HAAAAAAAA, (R1) = HFFFF7F80
:After execution R1=HFFFF7F7E, (R1) = HAAAA
MOV.L @RO+,R1 :Before execution RO = H12345670
;After execution RO = H'12345674, R1 = (H'12345670)
MOV.B R1,@(RO,R2) ;Before execution R2 = H'00000004, RO = H'10000000
;After execution R1 = (H'20000004)
MOV.W @(RO,R2),R1 ;Before execution R2 = H'00000004, RO = H'10000000
;After execution R1 = (H'20000004)
10.56 MoV MOVe constant value Data Transfer Instruction
Immediate Data Transfer
Format Summary of Operation Instruction Code Execution States T Bit
MOV #imm,Rn imm sign extension Rn 1110nnnniiiiiiii 1 —
MOV.W @(disp,PC),Rn (dispx2+PC+4) - sign 100Tnnnndddddddd 1 —
extension Rn
MOV.L @(disp,PC),Rn (dispx4+PC+4) - Rn 110Tnnnndddddddd 1 —
Description

This instruction stores immediate data, sign-extended to longword, in general register Rn. In the case of word or
longword data, the data is stored from memory address (PC + 4 + displacement x2) or (PC + 4 + displacement ¥ 4).

With word data, the 8-bit displacement is multiplied by two after zero-extension, and so the relative distance from
the table is in the range up to PC + 4 + 510 bytes. The PC value is the address of this instruction.

With longword data, the 8-bit displacement is multiplied by four after zero-extension, and so the relative distance
from the operand is in the range up to PC + 4 + 1020 bytes. The PC value is the address of this instruction. A value
with the lower 2 bits adjusted to B'00 is used in address calculation.

Notes

If a PC-relative load instruction is executed in a delay slot, an illegal slot instruction exception will be generated.

HPM-250

10. Instruction Descriptions

Operation

MOVI(int i, int n) MOV #mm,Rn */

{
if ((i&0x80)==0) R[n]=(0XO00000FF & i);
else R[n]=(0OxFFFFFFOO | i);
PC+=2;

}

MOVWI(d, n) * MOV.W @(disp,PC),Rn */
{

unsigned int disp;

disp=(unsigned int)(0x000000FF & d);
R[n]=(intfRead_Word(PC+4+(disp<<1));

if (R[n]&0x8000)==0) R[n]&=0x0000FFFF;
else R[n]|=0xFFFF000O0;

PC+=2;
}
MOVLI(int d, int n)* MOV.L @(disp,PC),Rn */
{
unsigned int disp;
disp=(unsigned int)(0xO00000FF & (int)d);
R[n]=Read_Long((PC&OXFFFFFFFC)+4+(disp<<2));
PC+=2;
}
Example
Address
1000 MOV #H'80,R1 ;R1 =HFFFFFF80
1002 MOV.W IMM,R2 ;R2=HFFFF9ABC IMM means (PC + 4 + H'08)
1004 ADD #1,R0 ;
1006 TST RO,RO ;
1008 MOV.L @(3,PC),R3 ;R3=H12345678
100A BRA NEXT ;Delayed branch instruction
100C NOP
100E IMM .data.w H'9ABC ;
1010 .data.w H1234 ;
1012 NEXT JMP @R3 :BRA branch instruction
1014 CMP/EQ #0,R0 ;
align 4 :
1018 data.l H'12345678 ;
101C data.l H'9ABCDEFO ;

HPM-251

Dreamcast SH4 Program Manual

MOVe global data Data Transfer Instruction

Global Data Transfer

Format Summary of Operation Instruction Code Execution States TBit

MOV.B @(disp,GBR),R0 (disp+GBR) - sign 11000100dddddddd 1 —
extension RO

MOV.W @(disp,GBR), RO (dispx2+GBR) - sign 11000101dddddddd 1 —
extension RO

MOV.L @(disp,GBR),R0 (dispx4+GBR) — RO 11000110dddddddd 1 —

MOV.B R0,@(disp,GBR) RO — (disp+GBR) 11000000dddddddd 1 —

MOV.W R0,@(disp,GBR) RO — (dispx2+GBR) 11000001dddddddd 1 —

MOV.L R0,@(disp,GBR) RO — (dispx4+GBR) 11000010dddddddd 1 —

Description

This instruction transfers the source operand to the destination. Byte, word, or longword can be specified as the data
size, but the register is always RO. If the transfer data is byte-size, the 8-bit displacement is only zero-extended, so a
range up to +255 bytes can be specified. If the transfer data is word-size, the 8-bit displacement is multiplied by two
after zero-extension, enabling a range up to +510 bytes to be specified. With longword transfer data, the 8-bit
displacement is multiplied by four after zero-extension, enabling a range up to +1020 bytes to be specified.

When the source operand is memory, the loaded data is sign-extended to longword before being stored in the
register.

Notes

When loading, the destination register is always RO.

Operation

MOVBLG(int d) /* MOV.B @(disp,GBR),R0 */
{

unsigned int disp;

disp=(unsigned int)(0x000000FF & d);
R[0O]=(int)Read_Byte(GBR+disp);
if ((R[0]&0x80)==0) R[0]&=0x000000FF;
else R[0]|=0xFFFFFFOO;
PC+=2;

}

MOVWLG(int d) * MOV.W @(disp,GBR),R0 */
{

HPM-252

10. Instruction Descriptions

unsigned int disp;
disp=(unsigned int)(Ox000000FF & d);

R[O]=(intjRead_Word(GBR+(disp<<1));
if ((R[0]&0x8000)==0) R[0]&=0x0000FFFF;
else R[0]|=0xFFFF0000;
PC+=2;
}

MOVLLG(int d) #* MOV.L @(disp,GBR),R0 */
{

unsigned int disp;

disp=(unsigned int)(0x000000FF & d);
R[0]=Read_Long(GBR+(disp<<2));
PC+=2;

}

MOVBSG(int d) # MOV.B RO,@(disp,GBR) */

{

unsigned int disp;

disp=(unsigned int)(0x000000FF & d);
Write_ Byte(GBR+disp,R[0]);
PC+=2;

}

MOVWSG(int d) * MOV.W RO,@(disp,GBR) */
{

unsigned int disp;

disp=(unsigned int)(Ox000000FF & d);
Write_ Word(GBR+(disp<<1),R[0]);
PC+=2;

}

MOVLSG(int d) / MOV.L RO,@(disp,GBR) */
{

unsigned int disp;

disp=(unsigned int)(0x000000FF & (long)d);
Write_Long(GBR+(disp<<2),R[0]);
PC+=2;

HPM-253

Dreamcast SH4 Program Manual

Example
MOV.L @(2,GBR),RO ;Before execution @(GBR+8) = H'12345670
:After execution RO = @H'12345670
MOV.B R0,@(1,GBR); Before execution RO = HFFFF7F80
;After execution @(GBR+1) = HFFFF7F80
10.58 Mov MOVe structure data Data Transfer Instruction
Structure Data Transfer
Format Summary of Operation Instruction Code Execution States TBit
MOV.B RO,@(disp,Rn) RO - (disp+Rn) 10000000nnnndddd 1 —
MOV.W RO, @(disp,Rn) RO — (dispx2+Rn) 10000001nnnndddd 1 —
MOV.L Rm,@(disp,Rn) Rm — (dispx4+Rn) 000Tnnnnmmmmdddd 1 —
MOV.B @(disp,Rm),RO (disp+Rm) - sign 10000100mmmmdddd 1 —
extension RO
MOV.W @(disp,Rm),R0 (dispx2+Rm) - sign 1000010Tmmmmdddd 1 —
extension RO
MOV.L @(disp,Rm),Rn (dispx4+Rm) - Rn 010Tnnnnmmmmdddd 1 —

Description

This instruction transfers the source operand to the destination. It is ideal for accessing data inside a structure or
stack. Byte, word, or longword can be specified as the data size, but with byte or word data the register is always RO.

If the data is byte-size, the 4-bit displacement is only zero-extended, so a range up to +15 bytes can be specified. If
the data is word-size, the 4-bit displacement is multiplied by two after zero-extension, enabling a range up to +30
bytes to be specified. With longword data, the 4-bit displacement is multiplied by four after zero-extension, enabling
arange up to +60 bytes to be specified. If a memory operand cannot be reached, the previously described @(R0,Rn)
mode must be used.

When the source operand is memory, the loaded data is sign-extended to longword before being stored in
the register.

Notes

When loading byte or word data, the destination register is always R0. Therefore, if the following instruction
attempts to reference RO, it is kept waiting until completion of the load instruction. This allows optimization by
changing the order of instructions.

HPM-254

10. Instruction Descriptions

Operation

MOVBS4(long d, long n # MOV.B RO,@(disp,Rn) */
{
long disp;
disp=(0x0000000F & (long)d);
Write_Byte(R[n]+disp,R[0]);
PC+=2;
}

MOVWS4(long d, long n) # MOV.W RO,@(disp,Rn) */

{
long disp;

disp=(0x0000000F & (long)d);
Wirite_ Word(R[n]+(disp<<1),R[0]);
PC+=2;

}

MOVLSA4(long m, long d, long n) FMOV.L Rm,@(disp,Rn) */

{
long disp;

disp=(0x0000000F & (long)d);
Write_Long(R[n]+(disp<<2),R[m]);
PC+=2;

}

MOVBLA4(long m, long d) /* MOV.B @(disp,Rm),R0 */

{
long disp;

disp=(0x0000000F & (long)d);
R[0O]=Read_Byte(R[m]+disp);
if ((R[0]&0x80)==0) R[0]&=0x000000FF;
else R[0]|=0xFFFFFFOO;
PC+=2;

}

MOVWL4(long m, long d) * MOV.W @(disp,Rm),R0 */

{
long disp;

disp=(0x0000000F & (long)d);
R[0]=Read_Word(R[m]+(disp<<1));

if ((R[0]&0x8000)==0) R[0]&=0x0000FFFF;
else R[0]|=0xFFFF0000;

PC+=2;

HPM-255

Dreamcast SH4 Program Manual

MOVLL4(long m, long d, long n) # MOV.L @(disp,Rm),Rn */

{
long disp;

disp=(0x0000000F & (long)d);
R[n]=Read_Long(R[m]+(disp<<2));

PC+=2;
}
Example
MOV.L @(2,R0),R1 ;Before execution @(RO+8) =H'12345670
:After execution R1 = @H12345670
MOV.L RO,@(HF,R1) ;Before execution RO = HFFFF7F80

;After execution @(R1+60) = HFFFF7F80

MOVe effective address Data Transfer Instruction

Effective Address Transfer
Format Summary of Operation Instruction Code Execution States TBit
MOVA @(disp,PC),R0 dispx4+PC+4 - RO 11000111dddddddd 1 —
Description

This instruction stores the source operand effective address in general register RO. The 8-bit displacement is
multiplied by four after zero-extension. The PC value is the address of this instruction, but a value with the lower

2 bits adjusted to B'00 is used in address calculation.

Notes

If this instruction is executed in a delay slot, an illegal slot instruction exception will be generated.
Operation

MOVA(int d) * MOVA @(disp,PC),R0 */

{
unsigned int disp;
disp=(unsigned int)(0x000000FF & d);
R[0]=(PC&OXFFFFFFFC)+4+(disp<<2);
PC+=2,

}

HPM-256

10. Instruction Descriptions

Example

Address.orgH'1006

1006 MOVA STR,RO ;STRaddress < RO

1008 MOV.B @ROR1 ;R="X" < Position after adjustment of lower 2 bits of PC

100A ADD R4,R5 ;€ Original PC position in MOVA instruction address calculation
align 4

100C STR:.sdata "XYZP12"

MOVe with Cache block

MOVCA.L Allocation Data Transfer Instruction

Cache Block Allocation

Format Summary of Operation Instruction Code Execution States TBit
MOVCA.L RO,@Rn RO - (Rn) 0000nnnn11000011 1 —
Description

This instruction stores the contents of general register RO in the memory location indicated by effective address Rn.
This instruction differs from other store instructions as follows.

If write-back is selected for the accessed memory, and a cache miss occurs, the cache block will be allocated but an
RO data write will be performed to that cache block without performing a block read. Other cache block contents
are undefined.

Operation

MOVCAL(int n) "MOVCA.L RO,@Rn*/

{
if ((is_write_back_memory(R[n]))
&& (look_up_in_operand_cache(R[n]) == MISS))
allocate_operand_cache_block(R[n]);
Write_Long(R[n], R[0]);
PC+=2;
}

Possible Exceptions:

* Data TLB miss exception
* Data TLB protection violation exception
e Initial page write exception

e Address error

HPM-257

Dreamcast SH4 Program Manual

MOVe T bit Data Transfer Instruction
T Bit Transfer
Format Summary of Operation Instruction Code Execution States TBit
MOVT Rn T -Rn 0000nnnn00101001 1 —
Description

This instruction stores the T bit in general register Rn. When T=1, Rn=1; when T =0, Rn = 0.

Operation
MOVT(long n) /* MOVT Rn */
{
R[n]=(0x00000001 & SR);
PC+=2;
}
Example
XOR R2,R2 ;R2=0
CMP/PZ R2 T=1
MOVT RO ;RO=1
CLRT T=0
MOVT R1 ;R1=0
10.62 MUL.L MULtiply Long Arithmetic Instruction
Double-Precision Multiplication
Format Summary of Operation Instruction Code Execution States TBit
MUL.L Bm,Rn RnxRm — MACL 0000nnnnmmmmO111 2-5 —
Description

This instruction performs 32-bit multiplication of the contents of general registers Rn and Rm, and stores the lower
32 bits of the result in the MACL register. The contents of MACH are not changed.

HPM-258

10. Instruction Descriptions

Operation

MULL(long m, long n) /* MUL.L Rm,Rn */

{
MACL=R[n]*R[m];

PC+=2;
}
Example
MUL.L RO,R1 ;Before execution RO = HFFFFFFFE, R1 = H00005555
;After execution MACL = HFFFF5556
STS MACL,RO ;Get operation result

10.63 MULS.W MULtiply as Signed Word Arithmetic Instruction

Signed Multiplication

Format Summary of Operation Instruction Code Execution States TBit

MULS.W Rm,Rn

MULS Rm,Rn Signed, Rn - Bm — MACL | 0010nnnnmmmm1111 2-5 —

Description

This instruction performs 16-bit multiplication of the contents of general registers Rn and Rm, and stores the 32-bit
result in the MACL register. The multiplication is performed as a signed arithmetic operation. The contents of
MACH are not changed.

Operation

MULS(long m, long n) /4 MULS Rm,Rn */

{
MACL=((long)(short)R[n]*(long)(short)R[m]);
PC+=2;
}
Example
MULS.W ROR1 :Before execution RO = H'FFFFFFFE, R1 = H'00005555
;After executionM ACL = HFFFF5556
STS MACL,RO ;Get operation result

HPM-259

Dreamcast SH4 Program Manual

MULU.W MULtiply as Unsigned Word Arithmetic Instruction
Unsigned Multiplication
Format Summary of Operation Instruction Code Execution States T Bit
MULU.W Rm,Rn Unsigned, Rn x Rm — MACL 0010nnnnmmmm1110 2-5 —
MULU Rm.Rn
Description

This instruction performs 16-bit multiplication of the contents of general registers Rn and Rm, and stores the 32-bit
result in the MACL register. The multiplication is performed as an unsigned arithmetic operation. The contents of
MACH are not changed.

Operation

MULU(long m, long n) # MULU Rm,Rn */

{
MACL=((unsigned long)(unsigned short)R[n]*
(unsigned long)(unsigned short)R[m];
PC+=2;
}
Example
MULU.W RO,R1 ;Before execution RO = H'00000002, R1 = HFFFFAAAA
;After execution MACL = H'00015554
STS MACL,RO ;Get operation result
10.65 NEG NEGate Arithmetic Instruction
Sign Inversion
Format Summary of Operation Instruction Code Execution States T Bit
NEG Rm,Rn 0-Rm = Rn 0110nnnnmmmm1011 1 —
Description

This instruction finds the two’s complement of the contents of general register Rm and stores the result in Rn. That
is, it subtracts Rm from 0 and stores the result in Rn.

HPM-260

10. Instruction Descriptions

Operation

NEG(long m, long n) /* NEG Rm,Rn */

{
R[n]=0-R[m];
PC+=2;
}
Example
NEG RO,R1 ;Before execution RO = H'00000001
:After execution R1 = HFFFFFFFF
10.66 NEGC NEGate with Carry Arithmetic Instruction
Sign Inversion with Borrow
Format Summary of Operation Instruction Code Execution States T Bit
NEGC Rm,Rn 0-Bm-T - Rn, borrow — T 0110nnnnmmmm1010 1 Borrow
Description

This instruction subtracts the contents of general register and the T bit from 0 and stores the result in Rn. A borrow
resulting from the operation is reflected in the T bit. The NEGC instruction is used for sign inversion of a value

exceeding 32 bits.

Operation

NEGC(long m, long n) A NEGC Rm,Rn */

{

}

unsigned long temp;

temp=0-R[m];
R[n]=temp-T;

if (O<temp) T=1,
else T=0;

if (temp<R[n]) T=1;
PC+=2;

Example

CLRT

NEGC R1,R1

NEGC RO,RO

;Sign inversion of RO:R1 (64 bits)

;Before execution R1 =H'00000001, T=0
;After execution R1=HFFFFFFFF, T=1
;Before execution RO =H'00000000, T=1
;After execution RO =HFFFFFFFF, T=1

HPM-261

Dreamcast SH4 Program Manual

10.67 NOP No OPeration System Control Instruction

No Operation

Format Summary of Operation Instruction Code Execution States T Bit
NOP No operation (0000000000001001 1 —
Description

This instruction simply increments the program counter (PC), advancing the processing flow to execution of the
next instruction.

Operation
NOP() * NOP */
{
PC+=2;
}
Example
NOP ;Time equivalent to one execution state elapses.
10.68 NOT NOT-logical complement Logical Instruction
Bit Inversion
Format Summary of Operation Instruction Code Execution States T Bit
NOT Rm,Rn ~Rm = Rn 0110nnnnmmmmO0111 1 —
Description

This instruction finds the one’s complement of the contents of general register Rm and stores the result in Rn. That
is, it inverts the Rm bits and stores the result in Rn.

Operation

NOT(long m, long n) # NOT Rm,Rn */
{

R[n}=~R[m];

PC+=2;

HPM-262

10. Instruction Descriptions

Example

NOT RO,R1 :Before execution RO =HAAAAAAAA
:After execution R1 = H'55555555

Operand Cache Block Invalidate Data Transfer Instruction

Cache Block Invalidation
Format Summary of Operation Instruction Code Execution States T Bit
OCBI @Rn Operand cache block invalidation 0000nnnn10010011 1 —
Description

This instruction accesses data using the contents indicated by effective address Rn. In the case of a hit in the cache,
the corresponding cache block is invalidated (the V bit is cleared to 0). If there is unwritten information (U bit = 1),
write-back is not performed even if write-back mode is selected. No operation is performed in the case of a cache
miss or