SEGA

CodeWarrior®
Debugger
User’s Guide

I\

metrowerks s

Because of last-minute changes to CodeWarrior, some of the information in this manual may be inaccurate.
Please read the Release Notes for the latest up-to-date information.

Revised: 980831-mds

Metrowerks CodeWarrior copyright ©1993-1998 by Metrowerks Inc. and its licensors.

All rights reserved.

Documentation stored on the compact disk(s) may be printed by licensee for personal
use. Except for the foregoing, no part of this documentation may be reproduced or trans-
mitted in any form by any means, electronic or mechanical, including photocopying,
recording, or any information storage and retrieval system, without permission in

writing from Metrowerks Inc.

Metrowerks, the Metrowerks logo, CodeWarrior, and Software at Work are registered
trademarks of Metrowerks Inc. PowerPlant and PowerPlant Constructor are trademarks

of Metrowerks Inc.

All other trademarks and registered trademarks are the property of their respective

owners.

ALL SOFTWARE AND DOCUMENTATION ON THE COMPACT DISK(S) ARE SUB-
JECT TO THE LICENSE AGREEMENT IN THE CD BOOKLET.

How to Contact Metrowerks:

U.S.A. and international

Canada

Ordering

World Wide Web
Registration information
Technical support
Sales, marketing, & licensing

CompuServe

Metrowerks Corporation

9801 Metric Boulevard, Suite 100
Austin, TX 78758

US.A.

Metrowerks Inc.

1500 du College, Suite 300
Ville St-Laurent, QC
Canada HA4L 5G6

Voice: (800) 377-5416
Fax: (512) 8734901

http://www.metrowerks.com
register@metrowerks.com
support@metrowerks.com
sales@metrowerks.com

goto Metrowerks

Table of Contents

1 Introduction 9
Overview of the Debugger Manual 9
Metrowerks Year 2000 Compliance 10
Read the Release Notes! 11
Manual Conventions 11

Typographical conventions 11
Host Conventions 12
Figure Conventions. 12
Keyboard Conventions 13
What'sNewo 14
System Requirements 15
Windows00 0000 15
MacOS.o 16
Solariso 16
Installing MW Debug 16
StartingPoints00 L 18
WheretoLearnMore 19

2 Getting Started 21
Getting Started Overview 21
Preparing for Debugging 21

Setting Up a Target for Debugging 21
Setting Up a File for Debugging 23
Generating Symbolics Information 24
Launching the Debugger 24
Using the Integrated Debugger. 25
Launching MW Debug from the IDE (MacOS) 25
Launching MW Debug Directly 26
Symbolics Files. 27

3 What You See 29
What You See Overview 29
Program Window 30

Stack CrawlPane. 31

Debugger User Guide DBG-3

Table of Contents

VariablesPane00 32
Debugger Toolbar 33
SourcePaneo 34
Browser Window 39
FilePane 41
FunctionPane L. 41
GlobalsPane. 42
Browser SourcePane 000 L 43
Function Pop-upMenu 45
Expression Window. 46
Breakpoint Window.00 47
Watchpoint Window 48
LogWindow. 48
Variable Window 50
Array Window 50
Memory Window. 52
Register Window 54
Process Window 57
ProcessPane. 57
TasksPane 58
Process Window Toolbar 59
4 Basic Debugging 61
Basic Debugging Overview 61
StartingUpo 62
Running, Stepping, and Stopping Code 64
Current-Statement Arrow L. 66
Running Your Code 66
Stepping a SingleLine 68
Stepping Into Routines 68
Stepping Out of Routines 69
Skipping Statements 70
Stopping Execution. 000 L 71
Killing Execution. 72
NavigatingCode 73

DBG-4 Debugger User Guide

Table of Contents

Linear Navigation 73
Call-Chain Navigation 73
Browser Window Navigation 75
Source-Code Navigation 77
Using the Find Dialog. 79
Changing Fontand Color 81
Breakpoints00 00000000 81
Setting Breakpoints.o 82
Clearing Breakpoints 83
Temporary Breakpoints 83
Viewing Breakpoints 83
Conditional Breakpoints 84
Impact of Optimizing Code on Breakpoints 85
Watchpointso 88
Setting Watchpoints 89
Clearing Watchpoints. 90
Viewing Watchpoints 90
Viewing and ChangingData 91
Viewing Local Variables. 92
Viewing Global Variables 93
Putting Dataina New Window 93
Viewing Data Types 94
Viewing Data in a Different Format. 95
Viewing Data as Different Types 96
Changing the Value of a Variable 98
Using the Expression Window 99
Viewing Raw Memory 100
Viewing Memory atan Address 100
Viewing Processor Registers 102
Editing Source Code 103
5 Expressions 105
Expressions Overview. 105
How Expressions are Interpreted 106
Expressions in the Expression Window 106

Debugger User Guide DBG-5

Table of Contents

Expressions in the Breakpoint Window 107
Expressions in the Memory Window 108
Using Expressions 108
Special Expression Features 108
Expression Limitations 109
Example Expressions 110
ExpressionSyntax 0000 112
6 Debugger Preferences 119
Debugger Preferences Overview 119
MW Debug Preference Panels 119
Settings.o 120
Displayo 121
Symbolics.o 0oL 124
Program Control 126
Win32 Settings.o 0oL 129
Windows Java Settings 130
Windows Runtime Settings 131
Integrated Debugger Target Panels 132
Target Settings00 L 132
x86 Exceptions (Windows). 133
7 Debugger Menus 135
Debugger Menus Overview 135
FileMenu 136
EditMenu. 138
ControlMenu 140
DataMenu. 143
WindowMenu00 0000 148
Help menu (Windows) 150
Apple Menu (MacOS). 150
8 Troubleshooting 151
About Troubleshooting 151
General Problems. 00 151
Problems Launching the Debugger 152

DBG-6 Debugger User Guide

Table of Contents

Index

The debugger won’tlaunch 152
Debug doesnothing 153
Errors reported on launch (MacOS) 153
Slow launching (MacOS) 154
Problems Running/Crashing the Debugger 154
Project works in the debugger, crashes without. 154
Problems with Breakpoints. 155
Statements don’t have breakpoints 155
Breakpoints don’trespond. L. 156
Problems with Variables. 157
Avariable doesn’tchange 157
Variables are assigned incorrect values 157
Strange variables.00 0oL 159
Strange datatypeso L. 159
Unrecognized datatypes 160
“undefined identifier” in the expression window 161
Problems with Source Files. 162
No source-code view 162
Outdated sourcefiles 162
Sharing source code between projects. 163
Spurious ANSI C code in Pascal projects. 163
Debugger Error Messages 164
169

Debugger User Guide DBG-7

Table of Contents

DBG-8 Debugger User Guide

metrowerks |8

Introduction

Welcome to the CodeWarrior Debugger manual.

NOTE: On occasion a CodeWarrior product ships with an ear-
lier version of the IDE than reflected in this user guide. In that
case, your IDE will not have the new features described in this
manual. You can identify new features by referring to “What’s
New.”

In some cases a patch may become available to update the tools.
You can point your web browser to the Metrowerks website at
http://www.metrowerks.com for more information.

Overview of the Debugger Manual

A debugger controls program execution so that you can see what's
happening internally as your program runs. You use a debugger to
find problems in your program’s execution. The debugger can exe-
cute your program one statement at a time, suspend execution
when control reaches a specified point, or interrupt the program
when it changes the value of a designated memory location. When
the debugger stops a program, you can view the chain of function
calls, examine and change the values of variables, and inspect the
contents of the processor’s registers.

This manual describes the integrated debugger, the source-level de-
bugger for the Metrowerks CodeWarrior software development en-
vironment. To a great extent the same debugger works for all sup-
ported target chips, operating systems, and languages (C, C++,
Pascal, Java, and assembly language). This manual often refers to
the integrated debugger as “the CodeWarrior debugger,” or simply
as “the debugger.”

Debugger User Guide DBG-9

Introduction
Metrowerks Year 2000 Compliance

This manual describes the common functionality of the debugger
for all platforms. There may be some minor differences, either addi-
tions or unimplemented features, on a per-target basis. You should
read the debugging chapter or chapters of the appropriate Targeting
manual to cover the specific differences for your target.

The other topics in this chapter are:

* Metrowerks Year 2000 Compliance—information about
product compliance with the year 2000

* Read the Release Notes!—important last-minute information

* Manual Conventions—important information on conven-
tions used in this manual

¢ What's New—a short review of new features
¢ System Requirements—hardware and software requirements

e Installing MW Debug—putting it together
e Starting Points—an overview of the chapters in this manual

o Where to Learn More—other sources of information related
to the CodeWarrior debugger

Metrowerks Year 2000 Compliance

The Products provided by Metrowerks under the License agree-
ment process dates only to the extent that the Products use date data
provided by the host or target operating system for date representa-
tions used in internal processes, such as file modifications. Any Year
2000 Compliance issues resulting from the operation of the Products
are therefore necessarily subject to the Year 2000 Compliance of the
relevant host or target operating system. Metrowerks directs you to
the relevant statements of Microsoft Corporation, Sun Microsys-
tems, Inc., Apple Computer, Inc., and other host or target operating
systems relating to the Year 2000 Compliance of their operating sys-
tems. Except as expressly described above, the Products, in them-
selves, do not process date data and therefore do not implicate Year
2000 Compliance issues.

For additional information, visit: http://www.metrowerks.com/
about/y2k.html.

DBG-10 Debugger User Guide

Introduction
Read the Release Notes!

Read the Release Notes!

Before using the debugger, read the release notes. They contain im-
portant information about new features, bug fixes, and any late-
breaking changes.

Manual Conventions

This section describes the different conventions used in this manual.

Typographical conventions

This manual uses some style conventions to make it easier to read
and and find specific information:

Notes, warnings, tips, and beginner’s hints

An advisory statement or NOTE may restate an important fact, or
call your attention to a fact which may not be obvious.

A WARNING given in the text may call attention to something
such as an operation that, if performed, could be irreversible, or flag
a possible error that may occur.

A TIP can help you become more productive with the CodeWarrior
IDE. Impress your friends with your knowledge of little-known
facts that can only be learned by actually reading the fabulous man-
ual!

A For Beginners note may help you better understand the termi-
nology or concepts if you are new to programming,.

Typeface conventions

If you see some text that appears in a different typeface (as the
word different does in this sentence), you are reading file or
folder names, source code, keyboard input, or programming items.

Text formatted like this means that the text refers to an item on the
screen, such as a menu command or control in a dialog box.

Debugger User Guide DBG-11

Introduction
Manual Conventions

If you are using an on-line viewing application that supports hyper-
text navigation, such as Adobe Acrobat, you can click on underlined
and colored text to view another topic or related information. For
example, clicking the text “Overview of the Debugger Manual” in
Adobe Acrobat takes you to a section that gives you an overview of
the entire Debugger User Guide.

Host Conventions

CodeWarrior runs on the host platforms and operating systems
listed below. Throughout this manual, a generic platform identifier
is used to identify the host platform, regardless of operating system.

The specific versions of the operating system that host CodeWarrior
are:

* Windows —desktop versions of the WIndows operating sys-
tem that are Win32 compliant, such as Windows 95 or Win-
dows NT.

* Mac OS —desktop versions of Mac OS, System 7.1 or later.

e Solaris —Solaris version 2.5.1 or later.

Figure Conventions

The visual interface of the hosts listed in “Host Conventions” is
nearly identical in all significant respects. When discussing a partic-
ular interface element such as a dialog box or window, the screen-
shot may come from any of these hosts. You should have no diffi-
culty understanding the picture, even if you are using CodeWarrior
on a different host than the one shown.

However, there are occasions when dialog boxes or windows are
unique to a particular host. For example, a particular dialog box
may appear dramatically different on a Windows host and on a
Mac OS host. In that case, a screenshot from each unique host will
appear and be clearly identified so that you can see how CodeWar-
rior works on your preferred host.

DBG-12 Debugger User Guide

Introduction
Manual Conventions

Keyboard Conventions

The default keyboard shortcuts for CodeWarrior on some platforms
are very similar. However, keyboards and shortcuts do vary across
host platforms. For example, a typical keyboard for a Windows ma-
chine has an Alt key, but that same key is called the Option key on a
typical keyboard for a Mac OS computer.

To handle these kinds of situations, CodeWarrior documentation
identifies and uses the following paired terms in the text:

e Enter/Return—the “carriage return” or “end of line” key.
This is not the numeric keypad Enter key, although in almost
all cases that works the same way.

* Backspace/Delete—the Windows Backspace key and the
Mac OS Delete key. In most cases, CodeWarrior maps these
keys the same way. This is the key that (in text editing)
causes the character before the insertion point to be erased.
(This is not Delete/Del, the “forward delete” key.)

e Ctrl/Command—the Windows Ctrl (control) key and the
Mac OS Command key (3). In most cases, CodeWarrior
maps these keys the same way.)

e Alt/Option—the Windows Alt key and the Mac OS Option
key. In most cases, CodeWarrior maps these keys the same
way.

For example, you may encounter instructions such as “Press Enter/
Return to proceed,” or “Alt/Option click the Function pop-up menu
to see the functions in alphabetical order.” Use the appropriate key
as it is labeled on your keyboard.

Some combinations of key strokes require multiple modifier keys.
In those cases, key combinations are shown connected with hy-
phens. For example, if you read “Shift-Alt/Option-Enter/Return,”
you would press the Shift, Alt, and Enter keys on a Windows host
and the Shift, Option, and Return keys on a Mac OS host.

Sometimes the cross-platform variation in keyboard shortcuts is
more complex. In those cases, you will see more detailed instruc-
tions on how to use a keyboard shortcut for your host platform. In
all cases the host and shortcut will be clearly identified.

Debugger User Guide DBG-13

Introduction
What’s New

Table 1.1

Special Note for Solaris Users

The Solaris-hosted CodeWarrior IDE uses the same modifier key
names as used for Mac OS (Shift, Command, Option, and Control).
Likewise, the Key Bindings preference panel uses Mac OS symbols
to represent modifier keys. Table 1.1 shows the default modifier key
mappings and the symbols used to represent them. On Solaris ma-
chines, modifier keys can be mapped to any key on the keyboard.
To change these default modifier key mappings, choose Keyboard
Preferences from the Info menu. When reading this manual, you
will need to keep in mind your modifier key mappings.

Mac OS and Solaris modifier key legend

Symbol Mac OS Solaris
E Command key Meta key
A Option key Alt key
Shift key Shift key
- Control key Control key

What’s New

There are a few new features that have been added to the debugger.
CodeWarrior IDE and the Integrated Debugger

The CodeWarrior IDE now features an integrated debugger to pro-
vide seamless interaction between the programming and debugging
of your source code. Some of the benefits of this integration include:

¢ Reduced memory requirements. With only one application
running, memory demands are significantly reduced.

¢ Increased productivity. Since you don’t have to switch back
and forth between the IDE and Debugger to step through

DBG-14 Debugger User Guide

Introduction
System Requirements

your code, set breakpoints, etc., a more efficient use of time is
achieved, increasing your productivity.

* The integrated debugger fully supports x86, PowerPC, 68K,
and Java debugging. No longer are separate debuggers re-
quired to debug each platform. The integrated debugger han-
dles them all.

Choose Enable Debugger from the Project menu to enable the de-
bugger. Then, choose Debug from the Project menu to activate and
use the debugger. You can pause the program at any time to set
breakpoints, view variables or memory, step into or out of routines,
as well as perform many other debugging tasks.

NOTE: Some versions of the CodeWarrior IDE do not ship with
the integrated debugger. In those cases, debugging support is
provided by the external MW Debug application or other third-
party debuggers. See your platform’s Targeting manual for addi-
tional information on debugging a specific target.

To make use of the external debugger, ensure that the debugger is
enabled, then choose Debug.

System Requirements

Most versions of the CodeWarrior IDE feature the integrated de-
bugger. If the Project menu in your CodeWarrior IDE has the En-
able Debugger or Disable Debugger commands, then you can
use the integrated debugger. Otherwise, you need to install an ex-
ternal debugger in order to debug your code.

MW Debug is supplied with those versions of the CodeWarrior IDE
that do not have the integrated debugger. The following system re-
quirements apply to using MW Debug.

Windows

MW Debug requires a 486, Pentium™, equivalent, or better proces-
sor with 16 MB RAM and approximately 5 MB of disk space. MW

Debugger User Guide DBG-15

Introduction
Installing MW Debug

Debug requires the Microsoft Windows 95 or Windows NT 4.0 op-
erating system.

For optimum performance, we recommend that you use a computer
with a Pentium™ or equivalent processor with at least 24 MB of
RAM running Microsoft Windows NT 4.0.

Mac OS

MW Debug requires a Motorola 68020 processor or better, or a
PowerPC 601 or better processor. MW Debug needs approximately
2 MB of disk space and 1.5 MB of RAM.

MW Debug requires System 7.1 or later (for 68K Macintosh) or Sys-
tem 7.1.2 or later (for Power Macintosh), and color QuickDraw.
CFM-68K is required on 68K systems.

The watchpoints feature requires a Motorola 68020 or better proces-
sor with Virtual Memory turned on, or a PowerPC 601 processor or
better with Virtual Memory either on or off. The watchpoints fea-
ture also requires System 7.5 or later. See “Watchpoints” on page 88
for more information.

Solaris

MW Debug requires a Sun SparcStation or Sparc-based machine, at
least 32 MB of RAM, a CD-ROM drive to install the software, 40 MB
of free hard disk space, Network Information Service, an X11 server
(Open Windows v3.3 recommended), a window manager that is
vX11r5 or later, and Motif 1.2.2 or later.

Installing MW Debug

You do not need to install MW Debug if your version of the
CodeWarrior IDE features the integrated debugger. MW Debug is a
separate application that provides the same features as the inte-
grated debugger. For more information, see “System Require-
ments”.

DBG-16 Debugger User Guide

Introduction
Installing MW Debug

There is only one version of MW Debug for all CodeWarrior compil-
ers and platforms. MW Debug is a separate application, but it
meshes almost seamlessly with the rest of the CodeWarrior inte-
grated development environment.

The CodeWarrior Installer automatically installs MW Debug and all
necessary components when you install versions of the CodeWar-
rior IDE that do not feature the integrated debugger. MW Debug
and the Debugger Plugins folder must be in the same directory or
the debugger will not work.

We strongly recommended that you use the CodeWarrior Installer
to install MW Debug to make sure you have all the required files.

Mac OS

MW Debug and the Debugger Plugins folder should be located in
the (Helper Apps) folder or you may not be able to launch the de-
bugger directly from a project.

In order to work, MW Debug also requires the presence of a few
system extensions in the Extensions subfolder of your System
folder. The installer automatically places these items in your Exten-
sions folder. If you install or remove any of them, you must restart
your computer for the changes to take effect. Before using the de-
bugger, make sure that the correct extensions are installed for your
current target and platform, as shown in Figure 1.1:

Debugger User Guide DBG-17

Introduction
Starting Points

Figure 1.1 Extra files required by MW Debug (Mac OS)

M Pawsr PC only

A
Ob jectSupportLib

GEK only

CFM-62K Runtime Enabler

PowsrFC only, on 5
D wr:f:-rns eg:lligr?any%tﬁem
FPPCTraceEnablar
* ObjectSupportLib—a shared library needed for debugging
PowerPC object code.

e CFM-68K Runtime Enabler—required to use the debugger
shared library. You can find a version of the debugger on the
Tools CD that does not use the shared library.

¢ PPCTraceEnabler—needed for debugging PowerPC object
code on System versions earlier than 7.5.

Starting Points

This manual contains the following chapters:

e Getting Started Overview—how to install and run the de-
bugger, and what SYM files are

e What You See Overview—the visual components of the de-
bugger, all the windows and displays you encounter

e Basic Debugging Overview—the principal features of the de-
bugger and how to use them

* Expressions Overview—how to use expressions in the de-
bugger

e Debugger Menus Overview—a reference to the menu com-
mands in the debugger

e About Troubleshooting—frequently encountered problems
and how to solve them

DBG-18 Debugger User Guide

Introduction
Where to Learn More

If you are new to the CodeWarrior debugger, have questions about
the installation process, or do not know what a SYM file is, start
reading “Getting Started Overview” on page 21. To become familiar
with the debugger interface, see “What You See Overview” on

page 29.

If you don’t know how to control program execution, set break-

points, or modify variables, read “Basic Debugging Overview” on
page 61, and “Expressions Overview” on page 105.

For reference on menu items in the debugger, see “Debugger Menus
Overview” on page 135.

No matter what your skill level, if you have problems using the de-
bugger, consult “About Troubleshooting” on page 151. Here you’ll
find information about many commonly encountered problems and
how to solve them.

Where to Learn More

If you are already comfortable with basic debugging, but want to
know more about special considerations when debugging certain
kinds of code, you should read the Targeting manual for your target.

Debugger User Guide DBG-19

Introduction
Where to Learn More

DBG-20 Debugger User Guide

A

metrowerks |8

2
Getting Started

This chapter discusses how to prepare a project file for debugging,
Background information on symbolics files is also provided. Other
chapters discuss the various features and functions of the debugger.

Getting Started Overview

This chapter includes the background information you need to use
the debugger effectively. The topics discussed are:

¢ Preparing for Debugging
¢ Launching the Debugger

e Symbolics Files

Preparing for Debugging

To debug the code generated by a particular build target within
your CodeWarrior project file, you must make sure both the build
target and the individual source files within it are set up for debug-
ging. When they are, CodeWarrior generates symbolics information
that is used by the debugger.

This section discusses each of these topics:

¢ Setting Up a Target for Debugging
¢ Setting Up a File for Debugging

e Generating Symbolics Information

Setting Up a Target for Debugging

To prepare a build target for debugging, make sure it is the current
build target. Then choose the Enable Debugger command from
the Project menu in the CodeWarrior IDE. When debugging is en-

Debugger User Guide DBG-21

Getting Started
Preparing for Debugging

abled for a build target, the menu item changes to Disable Debug-
ger. Choosing Disable Debugger turns off debugging for the build
target and changes the menu item back to Enable Debugger .

The Enable Debugger command sets items in the Project window
and the settings panels for the current build target to tell the com-
piler and linker to generate debugging information. In response, the
compiler and linker generate a symbolics file containing informa-
tion for debugging at the source-code level.

See the CodeWarrior IDE User Guide for more information on build
target settings.

NOTE: A symbolics file allows the debugger to keep track of
each function and variable name (the symbols) you use in your
source code. See “Symbolics Files” for more information.

When you choose Enable Debugger, you may see an alert (Figure
2.1). If this alert appears, click Yes to apply the debugging changes
to your target.

Figure 2.1 Accepting changes set by Enable Debugger

Enable debugqger for target
“MWPBDTGetAppl”.

The debugger requires certain target zettings in order to
function correctly. Lo you want Code’'arrior to configure

these settings autornatically for the target
"MW PEDTGet dppl * 7

| Cancel I

DBG-22 Debugger User Guide

Getting Started
Preparing for Debugging

Setting Up a File for Debugging

After you have enabled debugging for the current build target, you
have to set up your individual files for debugging. If you intend to
debug your program, you'll typically turn on debugging for all of
your source files.

In the CodeWarrior IDE’s Project window, there is a debug column,
as shown in Figure 2.2. A mark in this column next to a file means
that debugging is on for that file; no mark means that debugging is
off. For group names, a mark indicates that debugging is on for
every file in the group and no mark means that debugging is off for
one or more files in the group.

Figure 2.2 Setting debugging in the Project window

Debug Column ——

;45 cdtest.mcp
Link Order Target=

¥} cotest LR B e || | Fel| B

B [#] Fie | Code| Data | 4

- [Source 23K 48K + D =
B Cdtest.c 1118 310 » =
B Colors.c 2543 2656 + (=
B Findc 2511 2485 « @
B Fortc 543 5625 + =@
B Titlec 423 53 o« @
B Print.c BOES 5345 « @
Bl Feplace.c 95 382« @
B Resrc 0 23754 « @
B savec 43 1360 - =
B Openc 4306 3955 + =

[[Cj MSL AHSI Libraries 49K 8K =

[[j win32 Libraries 9K 208K (= =)
16 files 2K 265K =

Debugger User Guide DBG-23

Getting Started

Launching the Debugger

To turn debugging on or off for a file, click in the debug column for
that file. Clicking next to a group name turns debugging on or off
for all files in the group. If a file cannot be debugged (because it is
not a source file) you cannot turn debugging on for that file.

Generating Symbolics Information

To generate symbolics information, both the current build target
and source files within that target must be prepared for debugging.
See Setting Up a Target for Debugging and Setting Up a File for De-
bugging for information on how to do this.

Once the current build target and its source files are prepared,
choose the Make command from the CodeWarrior IDE’s Project
menu to compile and link your final code.

For more information on compiling and linking, see the CodeWarrior
IDE User Guide as well as the Targeting manual for your particular
target.

Launching the Debugger

Normally, you launch the debugger directly from the IDE. If your
CodeWarrior product includes MW Debug, you can launch that ex-
ternal debugger as you would any other application on your host
platform. Your are ability to use the integrated debugger, MW De-
bug, or both, depends upon the chip and operating system you are
targeting, and the kind of code you are creating.

When you launch MW Debug, you will typically be asked to locate
a symbolics file.

Some targets and projects also allow MW Debug to be launched di-
rectly from the IDE.

This section discusses the details of launching the debugger using
either technique. The topics are:

¢ Launching MW Debug from the IDE (Mac OS)
e Launching MW Debug Directly

DBG-24 Debugger User Guide

Getting Started
Launching the Debugger

Either process requires a symbolics file. See “Preparing for Debug-
ging” for information on how to create a symbolics file.

Using the Integrated Debugger

Normally, you use the integrated debugger, included with most
versions of CodeWarrior, to debug your code.

To run the integrated debugger from within the IDE, you must have
debugging enabled. If the debugger is currently disabled, you must
choose Enable Debugger from the Project menu before you can
choose the Debug command.

The IDE’s Project menu has a command that toggles between Run
and Debug, depending upon whether the debugger is currently en-
abled. If the Debug command is enabled, then the IDE can launch
the debugger directly for your target and project. The debugger will
open the required symbolics file automatically, or ask you to find it.

The IDE enables the Debug command only for targets that generate
executable code (such as an application).

Launching MW Debug from the IDE (Mac OS)

If your version of the CodeWarrior IDE does not include the inte-
grated debugger, you can use the external MW Debug application
to debug your code.

To launch the external CodeWarrior debugger from the IDE, you
must place MW Debug in the same directory as the CodeWarrior
IDE. Furthermore, MW Debug must already be running in the back-
ground, and you need a source file open.

If the debugger is currently disabled, you must choose Enable De-
bugger from the Project menu before you can choose the Debug
command

When you enable debugging, the Run command on the Project
menu changes to Debug. This command compiles and links your

Debugger User Guide DBG-25

Getting Started

Launching the Debugger

code, then launches it through the debugger. (See “Preparing for
Debugging” for more information on this topic.)

Choose Switch to MW Debugger to begin debugging your appli-
cation in the external debugger.

The IDE enables the Debug command only for targets that generate
executable code (such as an application).

If your current target generates a library or other form of shared
code, you can still debug your source files. However, you must
launch the application that uses your code separately, and launch
the debugger directly. See “Launching MW Debug Directly” for
more information.

Launching MW Debug Directly

If your version of the CodeWarrior IDE does not include the inte-
grated debugger, you can use the external MW Debug application
to debug your code.

Because MW Debug is a separate application, you can launch it di-
rectly just like any other application. As always, you must supply a
symbolics file for the debugger to work with. You can launch MW
Debug in any of three ways:

* Double-click a symbolics file.

¢ Double-click the MW Debug icon. You'll see the standard
Open File dialog box allowing you to choose a symbolics file.

* Drag and drop a symbolics file onto the MW Debug icon.

Launching the debugger directly is frequently required. There are
many targets or kinds of code that the IDE cannot launch. For exam-
ple, if you are writing an application plug-in, the plug-in cannot run
on its own. In addition, the CodeWarrior IDE has no idea what ap-
plication must be running to invoke the plug-in. In such cases, you
would need to launch MW Debug directly.

Using the plug-in example, the steps you would follow to debug the
plug-in would typically be:

DBG-26 Debugger User Guide

Getting Started
Symbolics Files

1. Launch the debugger directly, as described above.
2. Open the symbolics file for your plug-in code.
3. Set a breakpoint in your code.

(For more information, see “Breakpoints” on page 81.)

4. Launch the application that uses the plug-in.

Do whatever is necessary in the application to invoke the code
in the plug-in.

When execution of the plug-in code reaches your breakpoint, the
debugger takes control, and you can debug your plug-in code.

Symbolics Files

A project’s symbolics file contains information the debugger needs
to debug the project, such as the names of routines and variables
(the symbols), their locations within the source code, and their loca-
tions within the object code.

The debugger uses this information to display the source code that
corresponds to your object code. When you stop in the debugger to
examine what’s going on, the debugger shows you the source.

You may also view the corresponding assembly-language
instructions and memory addresses. See “Viewing source code as
assembly” on page 36.

CodeWarrior supports several different symbolics formats appro-
priate for a variety of targets. Among the formats supported are:

Format Principal Target
CodeView Win32

DWARF Embedded systems
SYM Mac OS

See “Preparing for Debugging” for information on how to set up
projects and source files to create symbolics files.

Debugger User Guide DBG-27

Getting Started
Symbolics Files

See the Codewarrior IDE User Guide for more information on gener-
ating symbolic information, including information on compiler and
linker settings.

For more information on target-specific symbolic information, see
the corresponding Targeting manual.

DBG-28 Debugger User Guide

A

metrowerks |8

What You See

This chapter describes the many visual components of the

CodeWarrior Debugger user interface.

What You See Overview

This chapter explains the various windows, panes, and displays you
can use when debugging. The remaining chapters in this manual as-
sume you are familiar with the nature and purpose of the various
parts of the debugger. The topics discussed in this chapter include:

Program Window

Browser Window

Expression Window

Breakpoint Window
Watchpoint Window

Log Window
Variable Window

Array Window

Memory Window

Register Window

Process Window

Debugger User Guide

DBG-29

What You See
Program Window

Program Window

When the debugger opens a symbolics file, it opens the Program
window. This window is shown in Figure 3.1.

The Program window displays debugging information about the
source-code file containing the currently running routine. It has four
primary areas:

e Stack Crawl Pane

e Variables Pane

e Debugger Toolbar

® Source Pane

You can resize panes by clicking and dragging the boundary be-
tween them. The active pane has a heavy border. You can switch be-
tween panes with the Tab key.

Type-ahead selection is available in the Stack Crawl and Variables
panes. You can also use the arrow keys or Tab to navigate the items
in either of these panes when it is the active pane.

There are additional controls along the very bottom of the Source
pane, to the left of the horizontal scroll bar:

e the function pop-up menu

e the current line number

e the source pop-up menu

See also “Browser Window” for details on the contents of the
Browser window.

DBG-30 Debugger User Guide

What You See
Program Window

Figure 3.1 Parts of the Program window

44 cdtest. EXE [Thread Dx8E)

2| = [x|[>]=]=]

N Stack

| B aiables =]
Ox77F1B304] KERMEL32.dIl) A1 |E- hinstance (0=00140FEF 1=
To display a routine | |0x4074C7(cdtest EXE | hPrevinstance | 0x00000000
in the Source Pane, | [B IpCmdLine
click the name of B msg w001 2FF24
the routineinthe — 1 nCmdShow 1
Stack Crawl! Pane.
=l =l
-
N Source: D:\Program Files\Metrowerks\Codew amior\ Codet arrior Examplesiiind2 =]

The Source Pane
displays the —_ [|
currently executing
source code and

int PASCAL WinMain{HINSTAHNCE hlInstance, HINSTAHCE hPre

. -
any breakpoints. {
HSG meg:
0] Line: 93 [Sowce - 4] | LIJJ

To examine local variables
and any referenced global
variables, use the Variables Pane.

Stack Crawl Pane

The stack crawl pane in the Program window shows the current

subroutine calling chain (Figure 3.2). Each subroutine is placed
below the routine that called it.

The highlighted routine is displayed in the source pane at the bot-
tom of the window. Select any routine in the stack crawl pane to dis-
play its code in the source pane.

Debugger User Guide DBG-31

What You See
Program Window

Figure 3.2 Stack crawl pane

NewBall() is on display |E s |E T
in the Source Pane. It —start [[+ ba
was called by main(). main [+ ba
NewBall ne
ne
To view main(), click its I} '-.-.-'1
name in the Stack Crawl
Pane. It will be displayed
in the Source Pane. =
-

Variables Pane

The variables pane (Figure 3.3) shows a list of the currently executing
routine’s local variables.

Mac OS The variables pane also displays any global variables
the routine refers to. Local and global variables are separated by a
dashed line.

The Variables pane lists the variables in outline form. Click the tree
control (Windows) or the disclosure triangle (Mac OS) next to an
entry to show or hide the entries inside it.

For example, in Figure 3.3, clicking the disclosure triangle next to
variable msg hides its members. Click the disclosure triangle again
to redisplay the members. You can dereference multiple levels of
pointers to get directly to the data by pressing the Ctrl/Option key
while expanding an entry; this feature is useful for expanding a
handle to a structured type and viewing the structure’s members.

See also “Expand” on page 143 and “Collapse All” on page 143.

DBG-32 Debugger User Guide

What You See
Program Window

Figure 3.3

T o show this vanable's
infarmation, click, this

triangle.

T o hide thiz variable's
infarmatiarn, click, the

triangle.

Variables pane

__Toresize the columns,
drag thiz zeparatar,

“Wariables

[* hinstance 000400000
[} hFrevinstance Q00000000
[IpCmdLine O:00140F B4
msg O:0012FF23
huwund Q00000000
message
wP aram

IFaram

Click a wariable to zelect it.
Double-click an array or
warable to dizplay it in its
QA aind o,

To change a vanable's
value, double-click in
this column.

dlt-double-chicking a pointer
wariable opens an aray
winidow uging the poinker

wahia

NOTE: If you are viewing assembly code, no register or mem-
ory will be displayed in the Variables pane. Instead, use the regis-
ter and FPU register windows (“Register Window”) to view the
contents of the central-processor and floating-point registers.
(Some targets do not have an FPU, and the FPU register window
is not available.)

Debugger Toolbar

The control buttons (Figure 3.4) are a series of buttons that give ac-
cess to the execution commands in the Control menu: Run, Stop,
Kill, Step Over, Step Into, and Step Out.

Debugger User Guide DBG-33

What You See
Program Window

Figure 3.4 Debugger Process Window Toolbar
Fiun

Stop

| FERE

x
L Stap Cut

Step Ihia

L— Step Over

Mac OS In MW Debug, smaller versions of the control buttons
are available as a separate toolbar (Figure 3.5). Choose Show/Hide
Toolbar (Mac OS) from the Window menu to display or hide the
toolbar.

Figure 3.5 Debugger Toolbar

O M

See also “Basic Debugging Overview” on page 61.

Source Pane

The source pane displays the contents of a source-code file. The de-
bugger takes the source code directly from the current target’s
source code files, including any comments and white space. The
pane shows C/C++, Pascal, Java, and in-line assembly code exactly
as it appears in your program’s source code (Figure 3.6), using the
font and color specified in the CodeWarrior IDE’s Editor prefer-
ences panel.

DBG-34 Debugger User Guide

What You See
Program Window

The source pane lets you step through the program’s source code
line by line. Its progress is shown by the current-statement arrow,
which always points to the next statement to be executed.

Figure 3.6 Source pane (program window)

The curent statement
arnow poinks ko the
hest statement to be
execUted.

Set breakpaint to
sugpend the target
program's execution.

alt-clicking sets a
temporarny breakpoint,

__ Source information, including directony
path and file name being edited.

Sourge: DiGene_prjedtesthCOTEST.C

o o ol e el i el

int PASCAL WinMain (HINSTANCE h

»
M3G msg:

3] Line: 93 W L

| Azsembl
Mixed

The Funchian Use thiz menu to view the program as

BOp-LP MEnLL source code, aszembly language, or
both.

If there are two or more routine calls on a single line, each routine is
executed separately as one step before the current-statement arrow
moves to the next line. When this happens, the arrow is dimmed
whenever the program counter is within, but not at the beginning
of, a source-code line.

Debugger User Guide DBG-35

What You See
Program Window

Figure 3.7 Source and assembly views

|E Source: DGene_prwedtesthWCOTEST.C

int PASCAL WinMain (HINSTANCE hInstance, HIN
L
MaG mag;

UTNEEFERENCED PARAWMETEER | lpCmdLine);

if [('hPrevInzstance)

-

[

w
[] Line:g3 - BeLAee 1 nr|J

L

POP-UP MEL,

the azsembler view.

m — 71— Toview the target program in aszembly
Mixed language, choose Assembler from this

Breakpoints and stepping are allowable in

Eﬁnurce:
» 00401000: push ebhp -

00401001: movw ebp,esp
Q0401003 : push ehx
oo40lond: suhb ezp,0xlc
Q0401007 : mow ebhx , dword ptr [ebp]+0x
00401004: cop dword pte [ebp]+0x0c, 0
0040100E: jne 011
o0401010: push ebhx =

@] | asembler w]4| | r|,ﬁ

Viewing source code as assembly

To view your source code as assembly language, click the source pop-
up menu at the bottom of the Program window. Choosing Assem-

DBG-36 Debugger User Guide

What You See
Program Window

Figure 3.8

Source;

bler displays the contents of the source pane as assembly code (Fig-
ure 3.7). When viewing assembly code, the debugger still lets you
step through the code and set breakpoints.

NOTE: If you are viewing assembly code, no register or mem-
ory will be displayed. Instead, use the register and FPU register
windows (“Register Window”) to view the contents of the central-
processor and floating-point registers. (Some targets do not have
an FPU, and the FPU register window is not available.)

Viewing source with mixed assembly

To view your source code and assembly language at the same time,
click the source pop-up menu at the bottom of the Program window.
Choosing Mixed displays the source code of the current routine in-
termixed with assembly code (Figure 3.8). The source that produced
the assembly instructions appears before the assembly itself. When
viewing code in the mixed view, the debugger makes the assembly
code “live.” This means you can set breakpoints and step through
source code, but only for assembly language instructions. Notice
you cannot set breakpoints on source lines as shown in Figure 3.8.

Viewing mixed code

-

{

0040104F: push ebp
00401050: mow ebp,ezp

00401052: push 0x00409045
ao4o01057: call g+0x00001073

printf [("Greetihgs from CodeWarrior!'\n™):

| Mixed 4] |

If no source is available for the code, then the display reverts to As-
sembly. There is no syntax hilighting for this view, so all the text ap-
pears plain.

Debugger User Guide DBG-37

What You See
Program Window

Viewing source with mixed assembly is not available for Java in
MW Debug. This feature is available in the integrated debugger.

Figure 3.9

Check mark means

Function pop-up menu

|E Source: CAERICACDTESTACDTEST.C

)
Wik ain
Inik&pplication

* Initlnstance

v Manw'ndProc

MainWndProc () is
currently executing.

Choosing a routine
displays it in the
Source Pane.

Alt-Clicking displays
the functions in
alphabetical order.

HandleT heCammand
InitGlobals

AboutProc !g

A TE :
Iten(GetMenu (hilnd)

[PLATT :

=

|E Source: CAERICMCDTESTWCDTEST.C

)
AboutProc ATE :
- HandleTheCommand Iten|GetMenu (hiind
i | nité&pplication
InitGlobals
: [MANT :
Initlnztance
| v MainwndProc
O
Winkd ain

Function Pop-up Menu

The function pop-up menu, at the bottom-left corner of the source
pane, contains a list of the routines defined in the source file se-
lected in the source pane (Figure 3.9). Selecting a routine in the func-
tion menu displays it in the source pane.

DBG-38 Debugger User Guide

What You See
Browser Window

Press the Alt/Option key, then click the Function menu to display
the menu sorted alphabetically.

Browser Window

When MW Debug opens a symbolics file, it opens two windows: the
Program window and the Browser window. The two are similar in
overall appearance, but differ in the details of what they display.

The Browser window (Figure 3.10) somewhat resembles the Program
window in both appearance and functionality, but displays differ-
ent information. The Browser window lets you view any file in the
current build target, whereas the Program window can only display
the file containing a currently executing routine selected from the
stack crawl pane. You can also use the Browser window to view or
edit the values of all of your program’s global variables; the Pro-
gram window lets you change only those globals referenced by rou-
tines currently active in the call chain.

For beginners: Do not get the Browser window confused with
the Class Browser available in the CodeWarrior IDE. Although the
two look similar, the debugger’s Browser window is a source code
browser, not a class browser.

The Browser window has four panes:
e File Pane at the top left
e Function Pane at the top center
* Globals Pane at the top right

o Browser Source Pane on the bottom

Like the Program window, the Browser window has a function pop-
up menu, a line number, and a source pop-up menu at the bottom of
the window. Also like the Program window, the Browser window
lets you resize panes by clicking and dragging the boundary be-
tween them. You can switch between panes with the Tab key.

Mac OS The active pane has a heavy border.

Debugger User Guide DBG-39

What You See
Browser Window

Type-ahead selection is available in the files, functions, and globals
panes. You can also use the arrow keys or Tab to navigate the items
in any of these panes when it is the active pane.

The debugger allows more than one symbolics file to be open at a
time: that is, you can debug more than one program at a time. You
can use this feature, for example, to debug an application and sepa-
rate plug-ins for the application.

See also “Program Window” for details on the contents of the Pro-
gram window.

Figure 3.10 Browser window

Click a file name to display the file's routines in the Function
Pane. Click Global Variables to display all global variables in
the Globals Pane.

b CAXBETES TAFONTYIEW \fontview. exe SYM

EFliIes EFunctinns EGIobaIs

Global Vadzsles ||| |CalcRot = = Click a routine in the

abort.c CircleBlt Function Pane to

abz. Drravdiscii display itin the

asctime.c Crrauuiz lyvph Source Pane

atexit.c FindChar

cristart.c Radian)

DIALOGS. O — Vlew glopal and
- | =| || static variables

in the Globals
ESource: CAXBETESTWOMNTWIEWADIS P L. & Pane.
} i

woid CaleRot (double =, double v, double ang, d
- {

- ahg = Radian(-ang):

- ¥x1 = (x * cos(ang]) - (¥ * sin(ang));
- gl = (% ¥ sinfang)) + (¥ * cos(ang));

- H

B [Line:z1e6] Source « 4| |

woid Drawilyph (HDC hde, BECT *pRect, EYTE glwvp -
PI
4

“

L—The Source Pane displays the source
code of the routine selected in the
Function Pane.

DBG-40 Debugger User Guide

What You See
Browser Window

File Pane

The file pane in the Browser window (Figure 3.11) displays a list of
all source files associated with the current target you are debugging.
When you select a file name in this pane, a list of the routines de-
fined in the file is displayed in the function pane.

The file pane is used in conjunction with the function and source
panes to set breakpoints in your program. Clicking Global Variables
in the file pane displays all the global variables used in your pro-
gram. These global variables are listed in the globals pane.

See also “Globals Pane” and “Breakpoints” on page 81.

Figure 3.11 File pane
E Files |E Functions
Slobsl Yerissies s My Paint
The file pane lists the main

source code files in the
target program. The
Global Variables entry,
when selected, displays
the program's global and
static variables in the
Globals Pane.

iyl nit.c

W

The highlighted file, in
this case SsillyBalls.c,
is displayed in the source
pane.

T

|E5uurce: Cewelop :Debug PManual Code (Tutor

i /4 Main body of progrom SillyB
H

Function Pane

When you select a source-code file in the Browser window’s file
pane, the function pane presents a list of all routines defined in that
file. Clicking a routine name scrolls that routine into view in the
source pane at the bottom of the window.

Debugger User Guide DBG-41

What You See
Browser Window

Figure 3.12 Function pane

Functions
When a routine is
The Function Pane DoFontDialog ls;elect_ed in the .
. . —_— unction Pane, its
I|st§ the _routlnes EnableFontButtons code appears in
defined in the_ EnumFontsProc the source pane.
source cc_)de file . FillFantllg
selected in the File FillFontsB o
Pane. FillLagFontDilg
FontHookProc ﬂ

NOTE: If your code is written in C++ or Object Pascal, the Sort
functions by method name in browser option in the
Preferences dialog (see “Settings” on page 120) alphabetizes
function names of the form className : : methodName by method
name instead of by class name. Since most C++ source files tend
to contain methods all of the same class, this preference makes it
easier to select methods in the function pane by typing from the
keyboard.

Globals Pane

When the Global Variables item is selected in the file pane, the glo-
bals pane displays all global variables used by your program (Figure
3.13). You can also view static variables by selecting a file in the file
pane. The static variables will also appear in the globals pane.

DBG-42 Debugger User Guide

What You See
Browser Window

Figure 3.13 Globals pane

To resize column widths, —
drag this separator.
R elobats
[ceThreadz 0:0040FO0DE &
= of O=00400 BE2
Click a variable to select it. —— I5tructSize 0 _I
Double-click an array or [hwndOwner Q00000000
variable to display it in its 3 hO e O=00000000
own window. > IpLogFont 000000000
Alt-double-click a pointer iFointSize o
variable to open an array Flags 0 ll
window using the pointer
values.

Placing globals in a separate window

To display a global variable in its own window, double-click the
variable’s name in the globals pane; a new variable window will ap-
pear containing the variable’s name and value. You can also open a
variable window by selecting the desired variable in the globals
pane and selecting the View Variable or View Array command
from the Data menu. A global displayed in its own window can be
viewed and edited the same way as in the globals pane. You can
also add global variables to the expression window.

See also “Variable Window,” “Array Window,” and “Expression
Window.”

Windows containing global variables remain open for the duration
of the debugging session. To close a global variable or global array
window, click its close box.

See also “Close All Variable Windows” on page 149.

Browser Source Pane

The browser source pane allows you to browse the contents of the
source-code file selected in the file pane (Figure 3.14). You can use it

Debugger User Guide DBG-43

What You See
Browser Window

Figure 3.14

to set breakpoints in any file listed in the file pane. Notice, however,
that the source browser pane does not show the currently executing
statement; to view the current statement or local variables, use the
Program window instead.

The source pane displays code in the font and colors specified in
CodeWarrior IDE Editor’s preferences panel. If the item selected in
the file pane does not contain source code, the source pane displays
the message “Source text or disassembly not available.”

The Browser window has a source pop-up menu at the bottom like the
one in the Program window (see “Viewing source code as assem-
bly”). Choose Assembler to display the contents of the source pane
as assembly code, as shown earlier in Figure 3.7. You can set break-
points in assembly code, just as you can in source code. Choose
Mixed to display source code intermixed with assembly language,
as shown earlier in Figure 3.8.

See also “Source Pane,” “Changing Font and Color” on page 81,
and “Breakpoints” on page 81.

Browser source pane

The source pane will display the message —
"Source text or disassembly not available"
when a library file is selected.

ESnurce: CHAERICAMCDTESTWFONT.C
woid DoChooseFontStuff (HUND hovmd, LPCHOOSEFONT pof) 2

The breakpoint column

lets you set breakpoints
that suspend the target

program's execution.

Clicking this icon displays
a list of routines defined
in the file selected in the
File Pane.

{
EOOL bRet = FALZE ;

if {IsDlgEuttonChecked(hwmd, ID PRELOADEDFONT) == !

i
pocf-rhInstance = GetFontDlgHandle() » —I

Line: 1392 | Saurce i 4| I

waprintf(seTenp, szlongFilter, pcocf-rhInstance] ; |«
>|
A

&

— Click this menu to switch between
source and assembly language views.

DBG-44 Debugger User Guide

What You See
Browser Window

Function Pop-up Menu

The function pop-up menu, at the bottom-left corner of the source
pane, contains a list of the routines defined in the source file se-
lected in the file pane. Selecting a routine in the function menu dis-
plays it in the source pane, just as if you had clicked the same rou-
tine in the function pane.

Press the Alt/Option key, then click the Function menu to display
the menu sorted alphabetically as shown earlier in Figure 3.9.

NOTE: The function pop-up menu does nothing if there is no
source code displayed in the source pane.

Debugger User Guide DBG-45

What You See
Expression Window

Expression Window

The expression window (Figure 3.15) provides a single place to put
frequently used local and global variables, structure members, and
array elements without opening and manipulating a lot of win-
dows.

To open the expression window, choose Expressions Window
from the Window menu.

Use the Copy to Expression command in the Data menu to add se-
lected items to the expression window. You can also use the mouse
to drag items from other variable panes and windows into the ex-
pression window, or to reorder the items in the expression window
by dragging an item to a new position in the list.

Figure 3.15 Expression window
- Expressions =] B4
Expression Walue
To hide this variable's —-% ¢ 000400022 28
information, click this IStructSiza §|:|
disclosure triangle. + hwndOwner 000000000 =2
To show this variable's ——[* hinstance { 000000000
information, click this rgbResult
disclosure triangle. [lpCustColors { 000000000

Alt-clicking dereferences

To change the value of

multiple levels of pointers a variable, double-click

to display members

in this column.

directly.

To remove an item from the expression window, select the item and
press the Backspace /Delete key or choose Clear from the Edit
menu.

Unlike local variables displayed in an ordinary variable window,
those in the expression window are not removed on exit from the
routines in which they are defined.

DBG-46 Debugger User Guide

What You See
Breakpoint Window

See also “Show/Hide Expressions” on page 149, “Copy to Expres-
sion” on page 144, and “Using the Expression Window” on page 99.

Breakpoint Window

The breakpoint window (Figure 3.16) lists all breakpoints in your cur-
rent target, by source file and line number. To open the breakpoint
window, choose Breakpoints Window from the Window menu.

Figure 3.16 Breakpoint window

i+ Breakpoints =] E3

Location Canditian
@ DramSample, line 504 ;'
& Dravbscii, line 77 :
-
v

There is a breakpoint marker to the left of each listing. A circle indi-
cates that the breakpoint is active, a dash that it is inactive. Clicking
a breakpoint marker toggles the breakpoint on or off while remem-
bering its position in the target program. Double-clicking a break-
point listing activates the Browser window, with its source pane
displaying that line of code.

Each breakpoint can have an attached condition. If the condition is
true and the breakpoint is set, the breakpoint stops program execu-
tion. If the breakpoint is clear or the condition is false, the break-
point has no effect.

See also “Breakpoints” on page 81, “Show/Hide Breakpoints” on
page 149, and “Conditional Breakpoints” on page 84.

Debugger User Guide DBG-47

What You See
Watchpoint Window

Watchpoint Window

The watchpoint window (Figure 3.17) lists all watchpoints in your cur-
rent target by memory address. To open the watchpoint window,
choose Watchpoints Window from the Window menu.

Figure 3.17 Watchpoint window

:« Watchpoints =] E3

Location Length Crescription

O=0040DEZZ 4 bLDaFindDig :l
Q00900 LS 5 s=zLongFilter

Q=0040D05 B3 bl sZzShornFilter

O=-0040CC0OE < nHelpheszage

O=-00400FOZ 4 nFindhi=sg

[
4

You can clear a watchpoint by selecting it with the mouse and doing
any of the following;:

¢ Choose Clear Watchpoint from the Data menu.
e Choose Clear from the Edit menu.

e Press the Backspace/Delete key.

See also “Watchpoints” on page 88 and “Show / Hide Watchpoints”
on page 149.

Log Window

The Log window (Figure 3.18) displays messages as your program
makes calls to system DLL’s or starts new tasks.

You can directly edit the contents of the log window. This allows
you to make notes as your program runs. You can also copy text
from it with the Copy command in the Edit menu, or use the Save
or Save As command in the File menu to save its contents to a text
file for later analysis.

DBG-48 Debugger User Guide

What You See
Log Window

Figure 3.18 Log window

]|
L |

Erntering routine lnitial ize
Leaving routine lhitialize
Entering routine MewBal |
Entering routine MyPaint
Leauing routine MyPaint
Leauing routine HewBal l
Erntering routine MewBal |
Entering routine FMuPaint

o

=l

gl

Debugger User Guide DBG-49

What You See
Variable Window

Variable Window

Figure 3.19

- wParam B =] ES

A variable window (Figure 3.19) displays a single variable and allows
its contents to be edited. A variable window containing a local vari-
able will close on exit from the routine in which the variable is de-
fined.

A variable window

wP aram 1] —To change a variable's
value, double-click in
this column.

B

Array Window

The array window (Figure 3.20) displays a contiguous block of mem-
ory as an array of elements and allows the contents of the array ele-
ments to be edited. To open the array window, select an array vari-
able in a variable pane (either locals or globals) and then choose
View Array from the Data menu. To close the array window, click
its close box.

You can also use the View Memory as command in the Data menu
to open an array window. This command presents a dialog box in
which you can select a data type, then opens an array window inter-
preting memory as an array of that type.

An array window’s title bar describes the base address the array is
bound to. An array’s base address can be bound to an address, a
variable, or a register. Dragging a register name or variable name
from a variable or register pane to an array window sets the array
address. An array bound to a local variable will close when the vari-
able’s routine returns to its caller.

The information pane displays the data type of the array elements,
along with the array’s base address. Clicking the arrow in the infor-

DBG-50 Debugger User Guide

What You See

Array Window

mation pane shows more information about the array. From the ex-
panded information pane, you can select the array’s base address,
its size, and which members to view if the array elements are of a
structured type.

Figure 3.20

Click this triangle
to show an
information pane.

Anatomy of an array window

-l Rect#® @ 0x03E0S7E0

To select the base
address of the array,
click one of these
buttons.

Array size: | 100

- [0] Ox0ZEQSTEN
top &)
left g4
bottarm 26
right 104
B [1] 0x0ZEOSTEE
B [2] Ox03E0S790
B [3] Ox03ENS796
P+ [4] Ox0ZEQSTAD
[rre1 ﬁ..ﬁ'."l'ﬁl__l.l.la
- Rect® @ 0x03E05750 o
Rect* | g
Bind to: (@) Address () . g

Struct Merber |

Show all members * I

= [0]
top
Teft
bottom
right

B [1]

B [2]

- [3]

OxO3E0S7E0
=]

g4

26

104
OxO3E0S7EE
Ox03E0S790
Ox0O3E0S 795

— To select a specific member

to view in each element, use
this pop-up menu.

To see the size of
the array, enter
a limit here.

The array’s contents are listed sequentially, starting at element 0. If
array elements are cast as structured types, an arrow appears to the

Debugger User Guide DBG-51

What You See
Memory Window

left of each array element, allowing you to expand or collapse the el-

ement.

See also “Open Array Window” on page 144 and “View Memory

As” on page 146.

Memory Window

Figure 3.21

A memory window displays the contents of memory in hexadecimal
and corresponding ASCII character values (Figure 3.21). To open a
memory window, select a variable, routine name, or expression rep-
resenting the desired base address in the program, browser, or ex-
pression window and choose View Memory from the Data menu.
To close the memory window, click its close box.

i~ Memory 2

A memory window

I [m] S

The value of —IwF‘aram

thizs expression
determines the
beqinning of the
rmernory dump.

O053FESO:
O0GE3TEG0:;
O053FETOD:
O053FESO:
O053FES0:
0053FE &0 :
00S53FEED:

L,

EFF72662
N0G3TITLO
ETTRESEQ
Err71an?
SEJEZ1TE
Ozac0onn
720000

1T AT T

Qo006 TE
SEIEZL1TT
ZO0DTSECS
0000SEEE
aoooooon
SCEZCo0on
aoooolew

L A

aooooQool
oooooLlzrT
aooozoD?
SEADGO2E
20DTSESE
FClogogon
SECa20D7

e e P

aooo
OOG3TES0
aoooooon
ETrT7T12:E
OO000ESES
16CF00E63
go2z20D7

A AS T Am

g Ml P21
FrarsO ! g T b Ay
F 1 3 F S0V 0
O™ wedtheE 00 . 0" x—
O !y Sweteia 500 | ety
Ry e L I e
T V0 FEN0E S

. S A s

L

Addresses: Each row
lists the next 16
bytes of mernary.

L Hexadecimal rerory
durnp. Click here to
change rnernory by

|— ASCI Character
durnp. Click here to
change rmernory by
entering characters.

entering hexadecimal
walues.

NOTE:

The View Memory as command opens an array win-

dow (“Array Window”) displaying memory as an array of data of a

type you specify.

DBG-52

Debugger User Guide

What You See
Memory Window

The source of the base address (which may be a variable, a routine,
any expression, or a raw address like 0xCAF64C) is displayed at the
top of the window. A memory window is blank if the base address
can’t be accessed.

To change the base address, simply type or drag a new expression
to the expression field. If the expression does not produce an lvalue,
then the value of the expression is used as the base address. For ex-
ample, the memory-window expression

PlayerRecord
will show memory beginning at the address of PlayerRecord.

If the expression’s result is an object in memory (an lvalue), then the
address of the object is used as the base address. For example, the
expression

*myArrayPtr

will show memory beginning at the address of the object pointed to
by myArrayPtr.

You can use a memory window to change the values of individual
bytes in memory. Simply click in the displayed data to select a start-
ing point, and start typing. If you select a byte in the hexadecimal
display, you are restricted to typing hexadecimal digits. If you select
a byte in the ASCII display, you can type any alphanumeric charac-
ter. Certain keys (such as Backspace/Delete, Tab, Enter, and so
forth) do not work. New data you type overwrites what is already
in memory.

Mac OS

If the expression is a pointer-sized register, then the register’s con-
tents are used as the base address. For example,

®AQ0

will show memory beginning at the address contained in the 68K
register A0. Floating-point registers cannot be used.

Debugger User Guide DBG-53

What You See
Register Window

WARNING! Arbitrarily changing the contents of memory can
be very dangerous to your computer’s stability and can resultin a
crash. Make sure you know what you’re doing, and don’t change
anything critical.

Register Window

Figure 3.22

A register window displays CPU registers (Figure 3.22) and allows
their contents to be edited. To open a register window, choose Gen-
eral Registers from the submenu of the Registers Windows com-
mand, located in the Window menu.

NOTE: The appearance of the Register window will change de-
pending upon the target processor. Also, you may not see a sub-
menu for the Register Window command. In such case, simply
choose Register Window to see the window shown in Figure 3.22.

A CPU register window

i+ Registers | x| |

MTGO] exe

ERX 0x00400000 EIP 0x004045F0
EBX 0x00000000 EFL 0x00000302
ECX 0Ox&l540264 €5 0Ox00000137 Double-click a reqgister's
EDX 0x5159DA44 DS 0x0000013F walue to change it

ESI 0x5l159C338 ES 0x00000L3F
EDI 0Ox&1590C40 5§ Ox0000015F
ESP 0x0063FD94 FS 0x0000ZEE?
EBP 0x0063FE3E GS 0x00000000

For some targets, an FPU (floating -point unit) register is also avail-
able. If an FPU is available, you can display its registers as well.
Choose FPU Registers from the submenu of the Registers Win-
dows command, located in the Window menu.

DBG-54 Debugger User Guide

What You See
Register Window

To change a register value, double-click the register value or select
the register and press Enter/Return. You can then type in a new
value.

Figure 3.23 A CPU register window (Mac OS)

== Registers =——31=}— Clicking the Zoom box
= —_— shows or hides the
MWPBDTGetAppl

condition codes.

Do Q00000000
D1 0x03EF9EZ4
D2 000000000
D3 Q00000000
D4 000000000

D5 000000000
D6 Q00000472
D7 Q00000103

Al 0x=03E96:304
A1 0x03E97CEF
A2 000000000
A2 Cx=00000000
A4 000000000
A5 0x03EF9ESS
A6 O:=00000000
A7 0x=03EF9A0Z

Change a register's value
by double-clicking it.

PC 0x03E974F6

ENZYC

Condition codes ——|5K 1 0 100

Mac OS Click a register window’s zoom box to display the full
set of registers. Toggle status and condition registers between 0 and
1 by double-clicking, or by selecting the register and pressing Re-
turn or Enter.

WARNING! Changing the value of a register is a very danger-
ous thing to do. It could corrupt your data, memory, or cause a
crash.

Debugger User Guide DBG-55

What You See
Register Window

Figure 3.24 An FPU register window (Mac OS)

Clicking the zoom box alternates the window
between this full view and a small view.

|]

=0 FPU Registers =———
S5illyBalls FPSCR
-0, 0000000000003 FP 16 0.0 FX o
FP1 0.577215365035246¢FP17 0.0 FEX o
FP2Z -0.00000000000042: FF 18 0.0 ux o
FP3 0.521601729535061:FP19 0.0 0X o
FP4 —MNANCOD4) FP20 0.0 ux o
FPS 1.0=+1d FP21 0.0 ZX o
FPE6 1.02+20 FP22Z 0.0 XX o
FP? 1.02+13 FP23 0.0 UXSHAN O
FPE 1.0e+21 FP24 0.0 Uxislt o
FPO 1000000, 0 FP25 0.0 uxiol o
FP10 10000000, 0 FP26 0.0 UxzZnz 0o
FP11 100000.0 FP27 0.0 UXIHZ O
FP12 1.02+2 FP28 0.0 Uxuc 0o
FP13 100000 FP20 0.0 FR o
FP14 0.0 FP30 0.0 Fli o

FP15 0.0 FP31 0.0 FPRF 0x0
UXcul 0o
VE o
0E o
UE o
ZE o
XE o

RH 000

See also “Show/Hide Registers” on page 149 and “Show /Hide
FPU Registers” on page 149.

DBG-56 Debugger User Guide

What You See
Process Window

Process Window

The Process window (Figure 3.25) lists processes currently running
including some hidden processes. The process window also lists
tasks for the selected process. To open the process window, choose
Processes Window from the Window menu.

Figure 3.25 Process window

:% Processes Hi=] E3

Bl om || BE || B

feg
B

Tagk=
0 tid=0X00217

Processes
System (0X002)
smzs [040014)
carss (040013)
winlagon (0X0022) |
senrices [0X0028)
lzasz [0X002b)
spoolss(0X0044)
AMGRSRVE (0X005:)

The Process window has two panes and a tool bar:
® Process Pane—displays currently running processes
¢ Tasks Pane—displays tasks running in the selected process

® Process Window Toolbar—allows to run, stop, or kill pro-
cesses and tasks under the debugger’s control

See also “Show/Hide Processes” on page 148.

Process Pane

The Process pane lists all active processes. A process under the de-
bugger’s control has a checkmark next to its entry in the window.

Debugger User Guide DBG-57

What You See
Process Window

Figure 3.26

To set debugger control for a process, click the checkmark column.
Double-clicking a process name activates that process.

TIP: If you turn on debugger control for a process, you can un-

target the process without killing it. To untarget the process, simply
click the checkmark column again and click the Resume button

in the subsequent dialog.

Process pane

|E Processes

System (0002) -
=mss ([0X0014 7

cares [040013)

winlogon {OxX0022 7

services [00023)

lzass ({ 00020k 7

spoolss { DX0042 |
AMGRERWE [000) ll

Tasks Pane

The tasks pane lists all the active tasks for a given process. Only
tasks from the program under the debugger’s control will be shown.
Double-clicking a task name activates a Program window with the
code for that task. You can also choose a task and then use the Pro-
gram window button in the top right corner.

There are two columns in the task pane. The first column displays
the task ID. The second columns shows the task state. A task can be
either running, stopped, or crashed.

DBG-58 Debugger User Guide

What You See
Process Window

Figure 3.27 Tasks pane

T ash=

5 tid = 0x002c 7
00 tid = 0xX0041 7
1 (tid = 00044 %
2 ([tid = 00046

3 tid = 0X0047 3
4 tid = 0X0044d 3

Process Window Toolbar

The Process Window Toolbar (Figure 3.28) has controls to Run,
Stop, and Kill a process under the debugger’s control. These con-
trols have no effect on any other active processes or tasks.

The Step Over, Step Into , and Step Out buttons work the same as
they do in the Program window. Clicking any of these three buttons
will activate a Program window showing the current statement ar-
Tow.

Figure 3.28 Process Window Toolbar

— Run
Stop il Stack Crawl —
-
EiY—r————— FE|
SiaEBRE
ol =d=
Step OverJ
Step Into
Step Out

Debugger User Guide DBG-59

What You See
Process Window

The Program window button will show the Program window for
the selected process or task. If a process is selected, the Program
window for that process is brought to the front. If a task is selected,
the Program window for that task is brought to the front. You can
have multiple Program windows open at a time.

See also “Debugger Toolbar.”

DBG-60 Debugger User Guide

4

mz=m. Basic Debugging

This chapter introduces you to the principles of debugging.

Basic Debugging Overview

A debugger is software that controls the execution of a program so
that you can see what's happening internally and identify problems.
This chapter discusses how to use the debugger to locate and solve
problems in your source code by controlling program execution and
viewing your data and variables. The principal topics discussed are:

e Starting Up—things to watch out for when starting the de-
bugger

¢ Running, Stepping, and Stopping Code—controlling pro-

gram execution a line at a time

* Navigating Code—moving around and finding the code you
want in the debugger

* Breakpoints—stopping execution when and where you want

e Watchpoints—stopping execution when the contents of a
memory location are changed

e Viewing and Changing Data—seeing your variables and
modifying them at will

e Editing Source Code—editing source code while in a debug-
ger session.

To learn how to prepare a build target for debugging or launch the
debugger, see “Getting Started Overview” on page 21. This chapter
also assumes you are familiar with the information about the de-
bugger interface found in “What You See Overview” on page 29.
For information on how to set the debugger’s preferences, see “Pref-
erences” on page 140.

Debugger User Guide DBG-61

Basic Debuggin
Starting Up

9

Starting Up

To use the integrated debugger, first open a project. Then, choose
Enable Debugger from the Project menu. Choose the Debug com-
mand from the Project menu to launch the integrated debugger.

When using MW Debug on your code, you should pay careful at-
tention to what happens. The following two problems might occur:

If MW Debug is not running and you launch it from a project or di-
rectly from a symbolics file, when the debugger appears the pro-
gram window is the active window. If that’s the case, all is well.
Your program’s code appears in the program window, stopped at
the first line and ready to run.

If MW Debug is already running and you launch it directly from a
project, when the debugger appears the browser window may be the ac-
tive window. In this case, you must issue a second Run command
from inside the debugger. This launches the target under debugger
control, brings the program window to the foreground, and stops
the program at the first line.

DBG-62 Debugger User Guide

Basic Debugging
Starting Up

Figure 4.1 Where is file?

Where iz “Life_java"?

Lot |EEin I. -] | |‘=j€| b %l

Debugger Plugins

kifDebug
FowerPlant.dll

File narme: [| Open

Files of type: [41l Files [+]

Cancel

Figure 4.2 Where is file? (Mac OS)

Where is “CTut.cp™?

|2 HyperTesting v | (S Develop
[TJarchive

[

Eject

Desktop

Cancel

4

Debugger User Guide DBG-63

Basic Debugging
Running, Stepping, and Stopping Code

Occasionally, the debugger may ask you for the location of a partic-
ular file. The dialog, shown in Figure 4.1, appears.

You may see this dialog either upon startup (the debugger is look-
ing for the file with the main entry point) or by clicking on a specific
file in MW Debug’s Browser Window.

This can happen under the following situations:
e a file has been moved to a different directory

e you’'ve received the project from another person on your
team and the paths are different

¢ you've selected a file belonging to a compiled library and
you do not have the source files

The last case is most common if a library you are using in your tar-
get has been compiled with debug symbols turned on. This is espe-
cially true with some of the libraries distributed with CodeWarrior.

Once you have found the file, the debugger will remember the file
location, even between debug sessions.

See also “Launching MW Debug from the IDE (Mac OS)” on
page 25 and “Launching MW Debug Directly” on page 26.

Running, Stepping, and Stopping Code

This section discusses how to how to run your code, move through
it line by line, and stop or kill the target when you want to stop de-

bugging.

Moving through code line by line is often called “walking” through
your code. It is a linear approach to navigating, where you start at
the beginning and move steadily through the code. This is impor-
tant for understanding how to navigate in your code—but the real
power comes in the next sections, which discuss how to navigate to
any location directly, how to stop your code at specific locations
when certain conditions are met, and how to view and change your
data.

DBG-64 Debugger User Guide

Basic Debugging
Running, Stepping, and Stopping Code

There are a few ways to walk through your code. You can use the
control buttons, keyboard, or choose the appropriate command
from the integrated debugger’s Debug menu or MW Debug’s Con-
trol menu. Table 4.1 lists the control buttons along with their default
menu and keyboard equivalents in the integrated debugger.

Table 4.1 Button and Key commands

Button Menu Windows Mac OS
Command Keyboard Keyboard
Equivalent Equivalent

- Run F5 Command-R

m Stop Control-P

¥ Kill Shift-F5 Control-K

| Step Over F10 Control-S

¥ Step Into F11 Control-T

ry Step Out Shift-F11 Control-U

This section discusses:

e Current-Statement Arrow

e Running Your Code

¢ Stepping a Single Line
¢ Stepping Into Routines

¢ Stepping Out of Routines

¢ Skipping Statements

* Stopping Execution
¢ Killing Execution

Debugger User Guide DBG-65

Basic Debugging
Running, Stepping, and Stopping Code

Figure 4.3 The current-statement arrow

The current-statement | int PASCAL WinMain (HINSTANCE hInstance,
arrow points to the next - | i
statement to execute.
M3k mag;
(] Line: 83 | Source - |1| I

Current-Statement Arrow

The current-statement arrow in the program window (Figure 4.3) in-
dicates the next statement to be executed. It represents the proces-
sor’s program-counter register. If you have just launched the debug-
ger, it will point to the first line of executable code in your program.

Running Your Code

If the target has been launched but execution has been stopped, use
the Run command (Figure 4.4) to restart your program. When you
do, the program resumes execution at the current-statement arrow.

Figure 4.4 The Run command

Project Choose Run from the Project menu or
T click the Run button on the toolbar to

i execute the target program normally .
Dizable Debugger Qet prog W

B e &““‘”
N P T n

e g ~os.

NOTE: (MW Debug) If the target has been launched, you’ll see
source code in the source pane of the program window. If it has

DBG-66 Debugger User Guide

Basic Debugging
Running, Stepping, and Stopping Code

Figure 4.5

When a program is
first launched from
the debugger,
execution
automatically stops
at the program's
main entry point.

not been launched, the program window says “Program name is
not running.” In that case, the Run command launches your target
under control of the debugger and brings the program window for-
ward with execution stopped at the first line of code.

After a breakpoint or a Stop command, the debugger regains con-
trol and the program window appears showing the current-state-
ment arrow and the current values of local and global variables. The
debugger places an implicit breakpoint at the program’s main entry
point and stops there (Figure 4.5). Issuing another Run command
resumes program execution from the point of the interruption. After
a Kill command, Run restarts the program from its beginning.

Starting the execution of the target program

sS[=—————————— TESample EEEI
Stack |E Yariables
__Startup__ Lis e locsl vsrisbles it
] -
S |3 [A [

|E50urce: Cewvelop (Debug Manual Code (% TESample MW TESample .

#pragma segment Main
S added woid return—tupe and argument
void mainfuwoid)
§ "N
- UnloadSegi (Ptr) Datalnitl; S note that [
S 1.81 - zall to ForceEnvirons remowed #f
] Line: 274 | Source |<a]

Debugger User Guide DBG-67

Basic Debugging
Running, Stepping, and Stopping Code

Figure 4.6

[Faa 1}

TIP: You can inhibit the automatic launch of MW Debug by hold-
ing down the Alt/Option key while opening the symbolics file.You
can also change the Automatically launch applications when
SYM file opened preference (see “Program Control” on

page 126). One use for this feature is to debug C++ static con-
structors, which are executed before entering the program’s main
routine.

Stepping a Single Line

To execute one statement, use the Step Over command (Figure 4.6).
If that statement is a routine call, the entire called routine executes
and the current-statement arrow proceeds to the next line of code.
The contents of the called routine are stepped over; the routine runs,
but it does not appear in the debugger’s program window. In other
words, the Step Over command executes a routine call without vis-
iting the code in the called routine. When you are stepping over
code and reach the end of a routine, the current statement arrow re-
turns to the routine’s caller.

The Step Over command

Chooze Step Over from the Debug menu
e ot click the Step Over button on the
toolbar to execute the next statemnt. This

m executes but does not wisit routine calls.
Step Into F11

Step Out

Shift+F11 L B B ¥Yla

| (T -

-
-
¥

Stepping Into Routines

Sometimes you want to follow execution into a called routine (this is
known as fracing code). To execute one statement at a time and fol-
low execution into a routine call, use the Step Into command (Fig-
ure 4.7).

DBG-68 Debugger User Guide

Basic Debugging
Running, Stepping, and Stopping Code

Figure 4.7 The Step Into command

(R}

S e

Step Ower F10

Step Out E Shift+F11

Figure 4.8 The Step Out command

(R}

Choose Step Inta from the Debug menu
or click the Step Into button on the
toolbar to execute the next statement,
following routine calls.

SEEEY Y
Ei“'ll

]

¥

Step Into moves the current-statement arrow down one statement,
unless the current statement contains a routine call. When Step
Into reaches a routine call, it follows execution into the routine

being called.

Stepping Out of Routines

To execute statements until the current routine returns to its caller,
use the Step Out command (Figure 4.8). Step Out executes the rest
of the current routine normally and stops the program when the
routine returns to its caller. You are going one level back up the call-
ing chain. See “Call-Chain Navigation.”

S e

Step Ower
Step Inta
Step Out

Stom

F10
F11

k Shift+F11

Choose Step Out from the Debug menu
or click the Step Out button on the
toolbar to execute the rest of the
currenlty executing routine until it
exits to its caller.

-] - [l -I=JE],
o =

Debugger User Guide DBG-69

Basic Debugging
Running, Stepping, and Stopping Code

Skipping Statements

Sometimes you may want to skip statements altogether: that is, not
execute them at all. To move the current-statement arrow to a differ-
ent part of the currently executing source-code file, simply drag it
with the mouse (Figure 4.9). Note that dragging the current-state-
ment arrow does not execute the statements between the arrow’s orig-
inal location and the new location it is dragged to.

WARNING! Dragging the current-statement arrow is equivalent
to deliberately changing the program counter in the register win-
dow. This is very dangerous, because you might corrupt the stack
by skipping routine calls and returns. The debugger is not able to
prevent you from corrupting your run-time environment.

Figure 4.9 Dragging the current-statement arrow
- gInBackgr:

- i InitGraf(l
i M InitFontsi
- IritHindo
- InitMenusi
- TEInit();
- InithOialog

[Line: 1207 |

To force the current-
statement arrow to another
statement, simply drag it.

To move the current-statement arrow without potentially corrupt-
ing the run-time environment, Alt/Option click a statement in the
breakpoint column (Figure 4.10). Alt/Option clicking the statement
sets a temporary breakpoint: Execution proceeds normally until the
current-statement arrow reaches the temporary breakpoint, then
stops. (See “Breakpoints.”)

DBG-70 Debugger User Guide

Basic Debugging
Running, Stepping, and Stopping Code

Figure 4.10 Setting a temporary breakpoint

|E Source: CAERICACDTESTWCDTEST.C

- if (bHex)
- IMalciplier = 16 :
else
To execute the program ——} IMultiplier = 10 ;
up to this point, Alt-click .DE
in the breakpoint column. .
- p = sz3tring !
E! Line: 452 | Source hd |1| I

Stopping Execution

While your program is running, you may wish to use the Stop com-
mand (Figure 4.11) to suspend execution and explore with the de-
bugger. This stops execution at some point where the operating sys-
tem surrenders control to other processes such as the host debugger.
You can then step through your code from that point, or use the
Run command to resume execution.

Figure 4.11 The Stop command

e N Choase Stop fram the Debug menu ar
click the Stop button on the toolbar to
Step Owver F10 suspend your program and examine it.
Step Into Fi1
Step Out Shift+F11
Er e[=T
SRR g [

Stopping in this fashion is not very precise. Code executes very
quickly, and there is no telling where in your code you're going to
stop when you issue the Stop command. It's usually a better idea to

Debugger User Guide DBG-71

Basic Debugging
Running, Stepping, and Stopping Code

Figure 4.12

use breakpoints, which allow you to stop execution precisely where
you want. (See “Breakpoints.”)

NOTE: The Stop command is not available for some targets be-
cause it is dependent on operating system services. For details on
any particular target, see the corresponding Targeting manual.

TIP: (Mac OS) If your program hangs in an infinite loop, you can
regain control by typing the combination Command-Control-/ from
your keyboard. This will interrupt the program and put you in the
debugger so you can try to figure out what’s going on.

TIP: (Windows) If your program hangs in an infinite loop, you
can regain control by switching to MW Debug and issuing a Stop
command.

Killing Execution

Sometimes you want to terminate your program completely—end
the debugging session. The Kill command (Figure 4.12) ends the
program and returns you to the debugger. The program window
will tell you that the program is not running, and to choose Run
from the integrated debugger’s Project menu or MW Debug’s Con-
trol menu to start it.

The Kill command

Choose Kill from the Debug menu or

slick the Kill button an the toolbar to
w stop your program.
Heset

| - ==
mr_o 4

DBG-72 Debugger User Guide

Basic Debugging
Navigating Code

Killing the program is not the same as stopping. Stopping only sus-
pends execution temporarily: you can resume from the point at
which you stopped. Killing permanently terminates the program.

Navigating Code

This section discusses the various ways you can move around in
your code. This skill is vital when you want to set breakpoints at
particular locations. Methods of moving around in code include:

e Linear Navigation—stepping though code

e Call-Chain Navigation—moving to active routines

¢ Browser Window Navigation—moving to code in the
browser window in MW Debug

¢ Source-Code Navigation—moving to code in your source
files

e Using the Find Dialog—using MW Debug’s Find dialog to
find occurrences of specific definitions, variables, or routine
calls

Linear Navigation

You can “walk” through your code by using the Step Over, Step
Into, and Step Out commands as needed until you reach the place
you want. This is useful for short stretches of code, but not very
helpful when you want to get to a specific location a distance away.

i“ 7”7

See also “Stepping a Single Line,” “Stepping Into Routines,” and
“Stepping Out of Routines.”

Call-Chain Navigation

The chain of routine calls is displayed in the stack crawl pane of the
program window (Figure 4.13). Each routine in the chain appears
below its caller, so the currently executing routine appears at the
bottom of the chain and the first routine to execute in the program is
at the top.

Debugger User Guide DBG-73

Basic Debugging
Navigating Code

Figure 4.13 The stack crawl pane

B stack
This is the first 0:BFFE7E3F] KERNELIZ .41 =
routine executed in 0xBFF22EZ30 KERNELZZ. Il
the program. D=BFFSSFFS] KERNELZZ .41

WinhdainCR T Startup

AddToolSpace

UpdateP ositions This is the currently
ll executing routine.

You can use the stack crawl pane to navigate to the routines that
called the currently executing routine.To find where a routine in the
stack crawl pane is called from, click the name of its caller. This dis-
plays the source code for the caller right at the point of call (Figure
4.14).

Figure 4.14 Finding a routine’s point of call

Fstack [vari
main i [aP
EventLoop er

Clicking DoMenuCommand()'s M l:} EE
caller, DoEvent(), shows Do Me nuCormma nd ke
the point where DoEvent () pa
calls DoMenuCommand().]

= o

|h|rH:¢|H IE

Source : Levelop :Debug Hanual C

- switch [par

cose inf
i Adj
- Dabe
3 bre:
case iné

DBG-74 Debugger User Guide

Basic Debugging
Navigating Code

Browser Window Navigation

You can use MW Debug’s browser window to jump to any location
in your source code. To view a specific routine:

1. Make the browser window active (Figure 4.15).

Figure 4.15 Activating MW Debug’s browser window

Click in the Browser
Window to make it

E*EH'E"LEDTEST"LEDTES[-EHE-S"I"

active. Files
H ™

The Browser Window ::E‘_‘—ZF" E Stack
lets you view any e | |loxBFFETEIF KERNELSZ.dIl)
file in the target bo ||oxBFFeSE23(KERNELS2 41l)
project. o ﬁer’;'i OxBF FESFTS] KERNELS2 Il)

COTES CHTStartup

citest b |kttt

char io

L Program window

2. Inthe browser window’s file pane, select the file where the
routine is defined (Figure 4.16).

Simply click the desired file, or use the arrow keys to scroll through
the list. The source code for that file appears in the source pane. You
can also type the name of the file.

Debugger User Guide DBG-75

Basic Debugging
Navigating Code

Figure 4.16 Selecting a file to view its contents

. - C:AERICACDTESTACDT

[Files BFu
arith.z == Abo
arrcontdest. cp _I Han
bstring.h Inite
buffer_io.c Inite:
m Inith
cdtest.h M ail
char_io.c bty
COLORS.C =

Source: COAERICWCDTESTAC

- if [('hPrevins
- if [(!'Initap
- Eeturn

3. Locate the desired code in the source file.

You can scroll the source pane to find the code you want. A more
useful technique is to use the browser window’s function pane or
function pop-up menu to select the desired routine (Figure 4.17).

The routine appears in the source pane of the browser window.
Once the routine is displayed, you can set and clear breakpoints.
(See “Breakpoints.”)

DBG-76 Debugger User Guide

Basic Debugging

Navigating Code
Figure 4.17 Choosing a routine to view
Aoty atewr ndow
Deactivate'window (ET;
DoMFinder]
Dol lick _— { woid DoActivate(register Euver
MainEvent FCe H
iflevt-rmodifiers & acti.
Activatedindow [Wind:
i alze N
Line: 49 | Source -

—

Source-Code Navigation

You can display the routine you want to view in MW Debug’s
browser window by first using the CodeWarrior integrated devel-
opment environment (either C/C++ or Pascal) to open and search
your source code. Then switch to MW Debug to view the same code
in the browser window. Note that you must have MW Debug in
order to follow the subsequent steps.

To display a specific routine or file while using the CodeWarrior
IDE, and then display that code in MW Debug’s browser window:

1. Within the CodeWarrior environment, open the source-code
file that contains the desired routine. The file must be a
project file.

2. Place the insertion point at the statement you want to appear
in the browser window.

You can use the function pop-up menu to display a specific routine
(Figure 4.18), or use any other technique in the source-code editor to
locate the desired code.

Debugger User Guide DBG-77

Basic Debugging
Navigating Code

Figure 4.18 Selecting a function from C/C++ or Pascal
SI==——
o |H, |, File Pat

l""* DoClosew indow

[oClickInContent R
DD ag'window
DG oo whindow 11
Dodoorn te
[Dab1enu
Dakiey =

S

DrawClippedGrow lcon C

Ghoose a routine i mw :
C/C++ or Pascal to Activatetwindow 1w

set a breakpoint in. Deactivate'window
*f Do dctivate
DokFinder

DaCTick

A MainEwent

#1in0

"2

TIP: You can use the Find and Find Next commands on the
Edit menu to quickly move to the code you want to look at in the
browser window.

3. Choose the Switch To MW Debugger command from the File
menu (Figure 4.19).
MW Debug becomes the active application. The browser window
displays the statement at which you set the editor’s insertion point.
You can return to the Editor at any time by choosing the Edit file-
name command from MW Debug’s File menu (Figure 4.20).

DBG-78 Debugger User Guide

Basic Debugging

Navigating Code
Figure 4.19 Switching to MW Debug
File

Hew Ctrl+M

Mew Project... Ctrl+5 hift+M

Open... Ctrl+0

Open Becent k

Open Selection Clrl+D

Cloge Chrl+ts Choosing

Switch To byw Debugger
Switch Ta Mw Debugger dizplayz the current editar

4% | line in the debugger.

Figure 4.20 Returning to the CodeWarrior development
environment from MW Debug

i+ Metrowerks Debugger v1

[H=8 Edit Control Data Win

Qpen... Chrl+0
Cloze Chrl+as
L2k 1

Using the Find Dialog

MW Debug’s Find dialog box (Figure 4.21) allows you to search for
text in the source pane of the program or browser window. The
search begins at the current location of the selection or insertion
point and proceeds forward toward the end of the file. Choose Find
from the Edit menu.

Debugger User Guide DBG-79

Basic Debugging
Navigating Code

Figure 4.21 MW Debug’s Find dialog

Find:

(< Ignore case
[] Entire word

(<] Wrap

MW Debug’s Find dialog box contains the following items:
e Text: An editable text box for entering the text to search for.

e Ignore case: If selected, makes the search case-insensitive:
that is, corresponding upper- and lowercase letters (such as
A and a) are considered identical. If deselected, the search is
case-sensitive: upper- and lowercase letters are considered
distinct.

e Entire word: If selected, the search will find only complete
words (delimited by punctuation or white-space characters)
matching the specified search string. If deselected, the search
will find occurrences of the search string embedded within
larger words, such as the in other.

* Wrap: If selected, the search will “wrap around” when it
reaches the end of the file and starts from the beginning. If
deselected, the search will end on reaching the end of the file.

e Find: Confirms the contents of the dialog box and begins the
search. The settings in the dialog box are remembered and
will be redisplayed when the Find command is invoked
again.

* Cancel: Dismisses the dialog box without performing a
search. The settings in the dialog box are not remembered

and will revert to their previous values when the Find com-
mand is invoked again.

Use the Find Next command to repeat the last search, starting from
the current location of the selection or insertion point.

DBG-80 Debugger User Guide

Basic Debugging
Breakpoints

Use the Find Selection command to search for the next occurrence
of the text currently selected in the source pane. This command is
disabled if there is no current selection, or only an insertion point.

TIP: You can reverse the direction of the search by using the
shift key with the keyboard shortcuts, Ctrl/Cmd G (find next) or
Ctrl/Cmd H (find selection).

Changing Font and Color

The debugger displays source code in the font and color specified in
the CodeWarrior IDE’s Editor preference panel.

To change the font and syntax coloring of source code in the debug-
ger:

Launch the CodeWarrior IDE.

Make sure no editor window or project is open.

Choose Preferences from the Edit menu.

Choose the Editor preference panel.

Set the font and syntax coloring preferences.

AU o A

Click OK to close the Preferences dialog box.

The debugger will use these font and syntax-coloring settings when
displaying source code.

Breakpoints

A breakpoint suspends execution of the target program and returns
control to the debugger. When the debugger reaches a statement
with a breakpoint, it stops the program before the statement is
about to execute. The debugger then displays the routine containing
the breakpoint in the program window. The current-statement
arrow appears at the breakpoint, ready to execute the statement it
points to.

Debugger User Guide DBG-81

Basic Debugging
Breakpoints

This section discusses:

¢ Setting Breakpoints

¢ (learing Breakpoints

¢ Temporary Breakpoints

Viewing Breakpoints
Conditional Breakpoints

Impact of Optimizing Code on Breakpoints

Setting Breakpoints

From the source pane of the program window or browser window,
you can set a breakpoint on any line with a dash marker—the short
line to the left of a statement in the breakpoint column (see Figure
4.22). The dash becomes a circle (red on a color monitor). This indi-
cates that a breakpoint has been set at this statement. Execution will
stop just before this statement is executed.

Figure 4.22 Setting breakpoints

A Breakpoint is set at this statement. To clear the breakpoint, click this circle.
To execute the target program up to this breakpoint, Option-click this circle.

i storage = MewPtr(zizeof(Doc
& i if [storage != nil 2 {
- window = GetMewlindowr

To set a breakpoint at this - if { window != nil J {
statement, click this dash. aMumbocuments += 1:
Ling: 1061 [Source - [4

TIP: Put one statement on each line of code. Not only is your
code easier to read, it is easier to debug. The debugger allows
only one breakpoint per line of source code, no matter how many
statements a line has.

DBG-82 Debugger User Guide

Basic Debugging
Breakpoints

Clearing Breakpoints

To clear a single breakpoint, click the breakpoint circle next to it in
the source pane. It turns back into a dash, indicating that you have
removed the breakpoint. To clear all breakpoints, choose the Clear
All Breakpoints command from the Debug menu.

Temporary Breakpoints

Sometimes you want to run a program to a particular statement and
stop, and you want to do this just once. To set a temporary break-
point, Alt/Option click the breakpoint dash to the left of the desired
statement. When you resume execution, it will proceed to that state-
ment and stop.

NOTE: |If there is already a regular breakpoint at the statement,
Alt/Option clicking removes the breakpoint, but the temporary
breakpoint still works.

If another breakpoint is encountered before reaching the temporary
breakpoint, the program will stop at the first breakpoint. The tem-
porary breakpoint remains in place, however, and will be triggered
and then removed when execution reaches it.

Viewing Breakpoints

To see a list of all breakpoints currently set in your program, choose
the Breakpoints Window command from the Window menu. A
window appears that lists the source file and line number for each
breakpoint (Figure 4.23). Clicking a breakpoint marker in the break-
point window turns a breakpoint on or off while remembering the
breakpoint’s position in the target program.

Debugger User Guide DBG-83

Basic Debugging
Breakpoints

Figure 4.23 Displaying the breakpoint window in MW Debug

o

Show Procezses

Show Expreszsions
Show Break points k To see a list of breakpoints,

choose Show Breakpoints

Chrw W atehnminks -
from the Window menu.

i+ Breakpoints
Lacation Caonditiaon
@ ProcessWiindProcException, line G511 :'
& OnMotify, line 422 :
@ GetErorddeszage, line 285 _
o

NOTE: Double-clicking on a breakpoint location in the break-
point window will take you to that line of code in the browser win-
dow.

See Also “Breakpoint Window” on page 47.

Conditional Breakpoints

You can set conditional breakpoints that stop your program’s execu-
tion at a given point only when a specified condition is met. A con-
ditional breakpoint is an ordinary breakpoint with a conditional ex-
pression attached. If the expression evaluates to a true (nonzero)
value when control reaches the breakpoint, the program’s execution
stops; if the value of the expression is false (zero), the breakpoint
has no effect and program execution continues.

Conditional breakpoints are created in the breakpoint window. To
make a conditional breakpoint:

DBG-84 Debugger User Guide

Basic Debugging
Breakpoints

1. Seta breakpoint at the desired statement.

2. Display the breakpoint window by choosing Breakpoints
Window from the Window menu.

3. In the breakpoint window, double-click the breakpoint’s con-
dition field and enter an expression, or drag an expression
from a source-code view or from the expression window.

In Figure 4.24, the debugger will stop execution at line 120 in the
NewBall () routine if and only if the variable newTop is greater
than six.

Figure 4.24 Creating a conditional breakpoint

=[[I=——— Breakpoints EEEI
Lacation Condition
& MNewBall,line 120 [newTop = 6 |l

NOTE: Conditional breakpoints are especially useful when you
want to stop inside a loop, but only after it has looped several
times. You can set a conditional breakpoint inside the loop, and
break when the loop index reaches the desired value.

Impact of Optimizing Code on Breakpoints

To enable you to set breakpoints accurately, the debugger relies on a
direct correspondence between source code and object code. Opti-
mizing your code can disrupt this relationship and cause problems
setting breakpoints..

If there is no breakpoint dash to the left of a line of source code in
the debugger, you cannot set a breakpoint at that line. The potential
causes are:

e symbolics information is disabled for that line

e the routine containing the line is unused and was therefore
deadstripped by the linker

Debugger User Guide DBG-85

Basic Debugging
Breakpoints

e the code has been optimized and the final object code no
longer corresponds to the original source code, the subject of
this topic

For example, the PowerPC compiler will let you set a breakpoint
when the start of a source statement corresponds to the start of a
“basic block” (no real need to understand that term) that has at least
one instruction in it.

Normally, when Debug Info is turned on for a source file, the com-
piler will contrive to start a new basic block at each source statement
that actually generates some code. For example:

lines like { will not permit a breakpoint because there isn’t a unique
object code address for that source line, since they generate no in-
structions.

Once you start turning on the optimizer, things break down. For ex-
ample, when Instruction Scheduling is enabled, the compiler no
longer starts a new basic block for each source statement. That al-
lows the scheduler the maximum flexibility for reordering instruc-
tions within the block. The different instructions that correspond to
a source statement will no longer be consecutive, they’ll be inter-
mingled with the instructions from other source statements. In the
example above, you'll get breakpoints like this:

DBG-86 Debugger User Guide

Basic Debugging
Breakpoints

- int i = 1;

if (1)
{
int i;
- int j = 1;
i=73;
}
At optimization level 3 or 4, the source statements you write may
not even appear in the generated code. For example, given a loop
like this:
i 0;
J=0;
while (i < 10)
{
j=31+1
i=1i4+1;
}
The compiler will translate this into the source-equivalent of this:
j =3+ 1; // duplicate 10 times
i=3+1;
i=3+1
or even into this:
j = 10;

and totally eliminate any instructions corresponding to the while
loop.

For best symbolic debugging results, you want to turn optimiza-
tions off or use optimizations that are “debug safe.” Different opti-
mizations are available for different targets. See the Targeting man-

Debugger User Guide DBG-87

Basic Debugging
Watchpoints

ual for details. In a typical situation, you would turn Peephole and
Global Optimizers OFF, Instruction Scheduling OFF, and
Don’t Inline ON. Then you should get a breakpoint marker at
every “meaty” statement. These optimizations are available for
most targets. You can view the current optimizatinos for your
project by choosing the Target Settings command from the Edit
menu. The actual name of the command will include the name of
your build target.

After setting a breakpoint, you can begin executing the program
from the program window by choosing the Step, Step Over, Step
Into, or Run commands from the Debug menu. These commands
are also available in MW Debug’s Control menu.

See also “Running, Stepping, and Stopping Code.”

Watchpoints

A watchpoint is a location or region of memory that you designate
for the debugger to keep an eye on for you. Whenever a new value
is written to that area of memory, the debugger will suspend execu-
tion of the target program and notify you with an alert message on
your screen (Figure 4.25). After dismissing the alert, you can pro-
ceed to examine the call chain, inspect or change variables, step
through your code, or use any of the debugger’s other facilities. (In
particular, from the debugger level, you can change the contents of
the location that triggered the watchpoint without triggering it
again.) Use the Run command (or the Run button on the toolbar) to
continue execution from the watchpoint.

Mac OS Watchpoints require System version 7.5 to run, and will
not work on 68K machines unless virtual memory is enabled. They
are also known to be incompatible with Speed Doubler, and possi-

bly with RAM Doubler as well.

DBG-88 Debugger User Guide

Basic Debugging
Watchpoints

Figure 4.25

Watchpoint alert

Watchpoint at variable "Main¥Yiew™,
address Ox0D0EE1394.

(]

Setting Watchpoints

You can set a watchpoint in any of the following ways:

e Select a variable, in a variable window or in the globals pane
of the browser window, and choose Set Watchpoint from
the Debug menu.

* Drag a variable from another window into the watchpoint
window.

e Select a range of bytes in a memory window and choose Set
Watchpoint from the Debug menu.

Variables or memory locations on which a watchpoint has been set
are underlined in red in the symbolics, variable, or memory win-
dows.

See Also “Use Syntax Coloring in Source Display” on page 123.

WARNING! There are some significant restrictions on where in
memory you can place a watchpoint. You can use them only on
global variables or on objects allocated from your application
heap. You cannot set a watchpoint on a stack-based local variable
or on a variable being held in a register

Debugger User Guide DBG-89

Basic Debugging
Watchpoints

Mac OS You cannot set a watchpoint anywhere in low memory
or the system heap.

NOTE: When debugging small 68K projects, you may see a di-
alog box with the following text when trying to set watchpoints on a
global variable: “Could not set a watchpoint at that location be-
cause it is on the stack.” This is a limitation of the classic 68K runt-
ime architecture, not the debugger.

Clearing Watchpoints

You can clear a watchpoint in any of the following ways:

e After triggering the watchpoint, choose the Clear Watch-
point command from the Debug menu.

e Select a variable, in a variable window or in the globals pane
of MW Debug’s browser window, and choose Clear Watch-
point from the Debug menu.

e Select a range of bytes in a memory window and choose
Clear Watchpoint from the Debug menu.

e Select an existing watchpoint in the watchpoint window and
— Choose Clear Watchpoint from the Debug menu
— Choose Clear from the Edit menu
— Press the Backspace/Delete key

All watchpoints are automatically cleared when the target program
terminates or is killed by the debugger.

Viewing Watchpoints

To see a list of all watchpoints currently set in your program, choose
the Watchpoints Window command from the Window menu. A
window appears that lists the address and length of each watch-

point (Figure 4.26).

DBG-90 Debugger User Guide

Basic Debugging
Viewing and Changing Data

Figure 4.26 Viewing the watchpoint window in MW Debug

Window Wk
St TiaalGar
Show Procezses
Shaow Expressions
Show Breakpoints To zee alist of watchpoints,

—— chooge Show watchpoints
from the YWindow menu.

Show Begisters

ELERRRRANE ;. W atchpoints =] E3

v D5Gene_pr Location Length [Description
App.EXE Q00400 B12 4 bLoOpenlig ﬂ
O=0040CC0E < nHelphleszage
Q0040 DEBR3 L] =S horFiltar
Q00400 DE 5 s=zLongFilter
Q00400073 a0 =ZFontStyle

sl

See Also “Watchpoint Window” on page 48.

Viewing and Changing Data

A critical feature of a debugger is the ability to see the current val-
ues of variables, and to change those values when necessary. This
allows you to understand what is going on, and to experiment with
new possibilities. This section discusses:

e Viewing Local Variables

¢ Viewing Global Variables

Putting Data in a New Window

Viewing Data Types

Viewing Data in a Different Format

Debugger User Guide DBG-91

Basic Debugging
Viewing and Changing Data

Viewing Data as Different Types

Changing the Value of a Variable

Using the Expression Window

Viewing Raw Memory

Viewing Memory at an Address

Viewing Processor Registers

For additional information on viewing and changing data for a par-
ticular target, see the corresponding Targeting manual.

Viewing Local Variables

Local variables appear in the Variables pane of the program win-
dow (Figure 4.27). If the variable is a handle, pointer, or structure,
you can click the arrow to the left of the name to expand the view.
This allows you to see the members of the structure or the data ref-
erenced by the pointer or handle.

In MW Debug, you can also expand or collapse variables by choos-
ing the Expand or Collapse All commands from the Data menu.

See also “Expand” on page 143, “Collapse All” on page 143, and
“Variables Pane” on page 32.

Figure 4.27 Viewing local variables

|E*Jarial:-le5
héecelTable Q=0000012F]

B
B hinst Q00400000 These are local variables
[+ hFrevinst s alalulalulnluln] defined in the currently
[IpCmdLine O: 1593041 executing routine.
2 msg O-0065F D&
nzmdShow 1
[r wndclazs 0065 F DE0 _|
—_—

DBG-92 Debugger User Guide

Basic Debugging
Viewing and Changing Data

Viewing Global Variables

Global variables appear in the program and MW Debug’s browser
windows (Figure 4.28). In the program window, they appear below
a dotted line in the Variables pane. In MW Debug’s browser win-
dow, they appear in the globals pane when you select the Global
Variables item in the file pane.

See also “Variables Pane” on page 32, “Globals Pane” on page 42,
and “Globals Pane” on page 42.

Figure 4.28 Viewing global variables in MW Debug’s browser

window

— Click Global Variables in the browser window
to view all global variables in the program.

- C:\xB6test\scribbleAD ebughSCRIBBLE .exe

H Files ' |EFuncti-:un5 |EG-I-:|I:|3I5 l

Glosz! Varizhles = = CAboutDlg:_... i0x004054F2 [
at=templ.h B CAboutDlg:m.. . 0x003054F0
Appmodul.cpp [+ CChildFrame:...i0x00405680 e
atonexit.c = CChildFrame:...i0x00405620
childfrm.cpp B CChildFrame:...i0x004056 85
criexe o [+ CMainFrame:. Ox00405228
dllargw. = CMainFrame::. (000405208
fpa.c ll ll B ChlainFrame::.. (Ox00405220 ﬂ

Putting Data in a New Window

Sometimes the locals or globals panes are not the most convenient
places to view data. You can place any variable or group of vari-
ables in a separate window or windows of their own.

Debugger User Guide DBG-93

Basic Debugging
Viewing and Changing Data

Figure 4.29 Putting a variable in its own window

== TESample SSacaF———=[1=
|E Yariables
contig i0
0
B oevent * iOxO3AEZBOA
B menuBar :0x00000000
total in
gHawWaithextBweng]
=[I=—— event.message EE
Double-clicking an item —— mgssage i et
in a variable pane places B
it in its own window. —
it
=

To place a variable or memory location in its own window, double-
click its name (Figure 4.29) or select the name and choose the View
Variable command from the Data menu. If the variable is an array,
use the View Array command instead. To view the memory the
variable occupies as a memory dump, use either the View Memory
or View Memory as command.

See also “Variable Window” on page 50, “Array Window” on
page 50, and “Memory Window” on page 52.

Viewing Data Types

If you wish, the debugger will display the data types of variables on
a window-by-window basis. Select the window or pane in which
you want data types displayed and choose Show Types from the
Data menu. Names of variables and memory locations in that win-
dow or pane will be followed by the relevant data type (Figure
4.30).

TIP: To show data types automatically, select the In variable
panes, show variable types by default preference in the De-

DBG-94 Debugger User Guide

Basic Debugging
Viewing and Changing Data

bugger Display Settings preference panel of the IDE Preferences
window. See “Settings” on page 120 for more information.

Figure 4.30 Viewing data types

Drata
from the Data menu. s
Expand [Ekrl+; |
|E “Wariables
[B hFrevinst : woid® Q21591084 (=
B+ IpCmdLine : char Q00000000
B+ msg :taghlss 0:0065F DFd _|
ltems in the pane appear —] nCmdShow : long 1953394502
with their data types. = wndclass : tagWNDCLASSA (00055 FE1D
style : unsigned loang o
3 lpfrindFroc ; waid® Q00000000
| chClzExdra @ long 0 ll

Viewing Data in a Different Format

You can control the format in which a variable’s value is displayed.
The following options are available:

¢ signed decimal

¢ unsigned decimal
¢ hexadecimal

e character

e Cstring

¢ Pascal string

¢ floating-point

® enumeration

e Fixed

Debugger User Guide DBG-95

Basic Debugging
Viewing and Changing Data

® Fract

To view data in a particular format, select either the name or the
value of the variable in any window in which it is displayed, then
choose the format you want from the Data menu (Figure 4.31).

Figure 4.31 Selecting a data format

Data

v Show Tupes

Select a data format, and
the variable value appears

in that format.

C Stiing S hift+Ctrl+5
Faszcal Strina k Shift+Crl+F
|E Wariablez

2 hPrevinst : woid®

[+ IpcmdLine : char

[mzg : taghisG
nCmdShow : lang

chClsExtra : long

021591064
Q00000000

1]
Q00000000
0

Q:0065FDFG I

= wndclass ; tagNDCLASSA (0=:0055FE10
style : unsigned long
[IpfnirndProc ; woid®

~|

Not all formats are available for all data types. For example, if a
variable is an integral value (such as type short or long), you can
view it in signed or unsigned decimal, hexadecimal, or even as a
character or string, but not in floating-point, Fixed, or Fract for-

mat.

Viewing Data as Different Types

The View as command in the Data menu allows you to change the
data type in which a variable, register, or memory is displayed:

1. Select the item in a window or pane.

DBG-96 Debugger User Guide

Basic Debugging
Viewing and Changing Data

2. Choose View as from the Data menu.
A dialog box appears (Figure 4.32).
3. Select the data type by which to view the item.

The type name you select appears in the New Type box near the
bottom of the dialog. If you want to treat the item as a pointer, ap-
pend an asterisk (*) to the type name.

4. Click the OK button.
The display of the item’s value changes to the specified type.

Figure 4.32 Selecting a data type

i+ Select Type...

boolean ;I
BETR

BYTE —I
byte

CALID

. nCmdS how M=l E3

nCcmdShow ; char 'F! ﬂ

CALIMFO_ENUMPROCA
CALIMFO_ENUMPROCH
CALLCOMY

CALTYPE j
CHANGEKIND v
CHAR

|I:LIPFI:IFtru1AT [\!5 |

Mew Type: char

(append one or more ™= for pointer to type)

Cancel]

Debugger User Guide DBG-97

Basic Debugging
Viewing and Changing Data

Figure 4.33

Changing the Value of a Variable

You can change the value of a variable in any window it’s displayed
in: the locals pane of the program window, the globals pane of the
browser window, or any variable, array, or expression window. Just
double-click the old value (or select it and press Enter/Return and

type the new value (Figure 4.33).

Changing a variable value

|E*ufarial:-le5 _
= msg D=0063F DA =
[F hwnd 000002302
message GE18560
wFaram 2149
IParam 319
time 2192242882
= pt D=0054F B2
’
¥ 0 [
nCmdShow

Evariables _
= msq Q=006 9F DA |
[hwnd 00000202
message GG 12560
wiF aram 219
IFaram 219
time 292248888
= pt O=0064F DBE
x 200 |
W)
nCmd Shou i TI

Variable values can be entered in any of the following formats:

e decimal

DBG-98 Debugger User Guide

Basic Debugging
Viewing and Changing Data

hexadecimal

floating-point

C string

Pascal string

o character constant

To enter a string or character constant, you must include C-style
quotation marks (single quotes ' ' for a character constant, double
"" for a string). For Pascal strings, include the escape sequence \p
as the first character in the string.

WARNING! Changing variable values can be dangerous. The
debugger allows you to set a variable to any value of the appropri-
ate data type: for example, you could set a pointer to nil and
crash the machine.

Using the Expression Window

The expression window provides a single place to put frequently
used local and global variables, structure members, array elements,
and even complex expressions without opening and manipulating a
lot of windows. Open the window with the Expressions Window
item in the Window menu. You can add an item to the expression
window by dragging and dropping from another window, or by se-
lecting the item and choosing Copy to Expression from the Data
menu.

The contents of the expression window are updated whenever exe-
cution stops in the debugger. Any variable that is out of scope is left
blank. You can take advantage of the expression window to per-
form a number of useful tricks:

* Move a routine’s local variables to the expression window
before expanding them to observe their contents. When the
routine exits, its variables will remain in the expression win-
dow and will still be expanded when execution returns to the
routine. The expression window does not automatically col-

Debugger User Guide DBG-99

Basic Debugging
Viewing and Changing Data

lapse local variables when execution leaves a routine, like the
locals pane in the program window.

e Keep multiple copies of the same item displayed as different
data types, by using the Copy to Expression and View as
commands in the Data menu.

¢ Keep a sorted list of items. You can reorder items by drag-
ging them within the expression window.

e View local variables from calling routines. You don’t have to
navigate back up the calling chain to display a caller’s local
variables (which hides the local variables of the currently ex-
ecuting routine). Add the caller’s local variables to the ex-
pression window and you can view them without changing
levels in the call-chain pane.

See Also “Expression Window” on page 46.

Viewing Raw Memory

To examine and change the raw contents of memory:

Select an item or expression representing the base address of
the memory you want to view examine.

Choose View Memory from the Data menu.

A new memory window appears, displaying the contents of mem-
ory in hexadecimal and ASCII. You can change memory directly
from the memory window by entering hexadecimal values or char-
acters. You can also change the beginning address of the memory
being displayed by changing the expression in the editable text box
at the top of the window.

Viewing Memory at an Address

The View Memory and View Memory as commands in the Data
menu allow you to follow any pointer—including an address stored
in a register—and view the memory it currently points to. To dis-
play the memory referenced by a pointer:

Select the wvalue of the variable or register in a window in
which it is displayed.

DBG-100

Debugger User Guide

Basic Debugging
Viewing and Changing Data

Figure 4.34

Choose View Memory or View Memory as from the Data
menu.

If you choose View Memory, a memory window opens displaying
a raw memory dump starting at the address referenced by the
pointer. If you choose View Memory As, a dialog box appears for
selecting a data type (Figure 4.34); continue with step 3.

If you chose View Memory as, select a data type in the dialog
box.

The type name you select appears in the New Type box near the
bottom of the dialog. To view the memory a register points to, ap-
pend an asterisk (*) to the type name.

Choosing a data type to view memory

select Type...

Control Becord
char

double
EventRecord
float
GrafPort
Tong

Tong double
Menul nfo
Pattern
Picture
Point

Document Record

Selecting a data type enters
it in the New Type field.

New Type:

(append one or more “*'s for pointer

to type)

GrafPort#*

To make it a pointer, add an
asterisk (*) after the name of
the data type. Use two asterisks
for handles.

Debugger User Guide DBG-101

Basic Debugging
Viewing and Changing Data

4. Click the OK button.

A new window appears (Figure 4.35) displaying the contents of
memory starting at the address referenced by the pointer.

Figure 4.35 Viewing memory as a specified data type

s0=—— GrafPort* =——0
B+ GrafPort @ 0x000094E0
B [0O] Dx000094ED
B [1] Ox0000954C
B [2] O 00009565
B [3] 000009624
B [4] Ox00002690
B [5] O 00009EFC
B [E] 000009768
B [7] Ox0000970 4
b [8] O 00009540
| b [9] Dx000098AC

.. You can use this technique to view the contents of the stack. If
your target processor stores the stack pointer in a particular regis-
ter, select the value of that register. Then follow the steps above.

See Also “Memory Window” on page 52.

Viewing Processor Registers

To view the contents of the processor’s registers, choose Show Reg-
isters or Show FPU Registers from MW Debug’s Window menu
(Figure 4.36). (Some targets do not have an FPU, and the FPU regis-
ter window is not available for them.)

DBG-102 Debugger User Guide

Basic Debugging

Editing Source Code
Figure 4.36 Viewing processor registers in MW Debug
adirdion
Show Proceszzes
Show Expreszions
Show Breakpoints
S haw Wwatchpoints .~ Registers
MTGDI exe
Show Begisters ERxX 0x00400000 EIP 0x004045F0

EBX 0x00000000 EFL 0Ox0000030Z
ECK 0x3lsanzZed C5 Ox00000137
EDX 0x3155D&aad DS Ox0000013F
ESI 0x3159C388 ES Ox00000L13F
EDYI 0x31590C40 S5 0Ox0000013F
ESPF 0x0063FD24 F5 Ox0000ZEEY
EBP 0x0063FE3S G5 Ox00000000

See Also “Register Window” on page 54.

Editing Source Code

You cannot edit code directly in the debugger. However, you can
use the debugger to open the file so that you can modify your code.
In the Files pane of the Browser window you can:

e double-click a file name
o select a file name and choose the Edit filename item in the
debugger’s File menu.
When you do, the IDE opens the file in an Editor window, and you

can edit it.

Windows You can specify which editor opens a the file. See
“Win32 Settings” on page 129.

Debugger User Guide DBG-103

Basic Debugging
Editing Source Code

DBG-104 Debugger User Guide

S

=R, EXpressions

Expressions are used in the CodeWarrior debugger to show the
value of a numerical or logical computation or to make breakpoints
conditional. This chapter describes their use.

Expressions Overview

An expression represents a computation that produces a value. The
debugger displays the value in the expression window or acts upon
the value when it is attached to a breakpoint in the breakpoint win-
dow. The debugger evaluates all expressions each time it executes a
statement.

An expression can combine literal values (numbers and character
strings), variables, registers, pointers, and C++ object members with
operations such as addition, subtraction, logical and, and equality.

An expression may appear in the expression window, the break-
point window, or a memory window.The debugger treats the result
of the expression differently, depending on the window in which
the expression appears.

This chapter discusses how expressions are treated and used in the
debugger. The topics in this chapter are:

e How Expressions are Interpreted

¢ Using Expressions

¢ Example Expressions

¢ Expression Syntax

Debugger User Guide DBG-105

Expressions
How Expressions are Interpreted

How Expressions are Interpreted

This section discusses how the debugger interprets expressions in
each window. The topics are:

e Expressions in the Expression Window

* Expressions in the Breakpoint Window

e Expressions in the Memory Window

Expressions in the Expression Window

The expression window shows expressions and their values. To see
the value of an expression, place it in the expression window. To
create a new expression:

1. Display the expression window.

Choose Expressions Window from the Window menu, or click in
an open expression window to make it active.

2. Choose New Expression from the Data menu.
3. Type a new expression and press Enter or Return.

The expression’s value appears in the value column next to the ex-
pression (Figure 5.1). You can also create a new expression by drag-
ging a variable or expression from another window to the expres-
sion window.

Figure 5.1 An expression in the expression window

== Fupressions —215]
Expreszsion Value
teRect->right -15 (117 7]
teRect- »bottom - 15 .:5513

~r
&

The expression window treats all expressions as arithmetic: the de-
bugger does not interpret the expression’s result as a logical value,
as it does in the breakpoint window.

DBG-106 Debugger User Guide

Expressions
How Expressions are Interpreted

Figure 5.2

See also “Expression Window” on page 46.

Expressions in the Breakpoint Window

You can attach an expression to a breakpoint in the breakpoint win-
dow.The breakpoint window treats expressions as logical rather
than arithmetic. If the result of the expression is zero, it is consid-
ered false and the debugger ignores the breakpoint and continues
execution; if the result is nonzero, it is considered true and the de-
bugger stops at the breakpoint if the breakpoint is active.

To learn how to set a breakpoint, see “Setting Breakpoints” on
page 82. Once you have set a breakpoint, you can attach an expres-
sion to it to make it conditional on that expression:

Display the breakpoint window.

Choose Breakpoints Window from the Window menu, or click in
an open breakpoint window to make it active.

Set a condition.

Double-click the condition field for the desired breakpoint and type
an expression (Figure 5.2). You can also add or change a break-
point’s condition by dragging an expression from another window
and dropping it on the breakpoint’s condition.

An expression in the breakpoint window

i+ Breakpoints H[=] E1

Location Condition
® DrawSample, line S04 r.tn:-|:-+'1IZI-=Z='15
& Drawdscii, line 77
¥
v

A conditional breakpoint stops the program if the expression yields
a true (nonzero) result when execution reaches the breakpoint. If the
expression produces a false (zero) result, execution continues with-
out stopping.

Debugger User Guide DBG-107

Expressions
Using Expressions

See also “Breakpoint Window” on page 47 and “Conditional
Breakpoints” on page 84.

Expressions in the Memory Window

In a memory window, expressions are treated as addresses. The ex-
pression in the text box at the top of the window defines the base
address for the memory displayed in the window. To change a
memory window’s base address:

Display the memory window.

Choose View Memory from the Data menu, or click in an open
memory window to make it active.

Enter a new expression.

Double-click the expression field and type an expression. You can
also drag an expression from another window and drop it in the
memory window’s base-address field.

The window will display the contents of memory beginning at the
address obtained by evaluating the new expression.

See also “Memory Window” on page 52.

Using Expressions

The debugger’s expression syntax is similar to that of C/C++, with
a few additions and limitations. Pascal style expressions are also
supported.

Special Expression Features

Expressions can refer to specific items:

* The debugger considers integer values to be 4 bytes long. Use
the short data type to denote a 2-byte integer value.

e The debugger treats double values as objects 10 bytes (80
bits) in length, rather than 8 bytes (64 bits).

e To compare character strings, use the == (equal) and != (not
equal) operators. Note that the debugger distinguishes be-

DBG-108 Debugger User Guide

Expressions
Using Expressions

tween Pascal- and C-format strings. Use the prefix \p when
comparing Pascal string literals. The expression

"Nov shmoz ka pop" == "\pNov shmoz ka pop"

yields a false result, because it compares a C string and a Pas-
cal string.

e (Mac OS) To refer to register values, use the ® symbol and a
register name. (Type Option-r to get the ® symbol.)

Expression Limitations

Expressions have a few limitations:

* Do not use C/C++ preprocessor definitions and macros (de-
fined with the #define directive). They are not available to
the expression evaluator, even though they are defined in the
source code.

¢ Do not use operations involving side effects. The increment
(1i++) and decrement (i--) operators, as well as assignments
(i = 9j), are not allowed.

* Do not call functions.

* Do not use function names or pointers to functions.
* Do not use expression lists.

* Do not use pointers to C++ class members.

* The debugger cannot distinguish between identical variable
names used in nested blocks to represent different variables

(see Listing 5.1).

Listing 5.1 Identical variable names in nested blocks (C++)

// The debugger can’t distinguish between x the
// int variable and x the double variable. If x
// is used in an expression, the debugger won'’t
// know which one to use.

void f(void)

{
int x = 0;

Debugger User Guide DBG-109

Expressions
Example Expressions

double x

1.0;

* Type definitions that are not available to the debugger can-
not be used in expressions (see Listing 5.2).

Listing 5.2 Type definitions in expressions (C/C++)

// Use long in expressions; Int32 not available
typedef long Int32;

// Use Rect* in expressions; RectPtr not
// available
typedef Rect* RectPtr;

* Nested type information is not available. In Listing 5.3, use
Inner, not Outer: : Inner in a debugger expression.

Listing 5.3 Nested type information (C/C++)

// To refer to the i member, use Inner.i,
// not Outer::Inner.i

struct Outer

{ struct Inner
{
int i;
}i
}i

Example Expressions

The list below gives example expressions that you can use in any
window that uses expressions.

DBG-110 Debugger User Guide

Expressions
Example Expressions

e A literal decimal value:
160

o A literal hexadecimal value:
0xA0

e The value of a variable:
myVariable

o The value of a variable shifted 4 bits to the left:
myVariable << 4

¢ The difference of two variables:
myRect.bottom - myRect.top

e The maximum of two variables:
(foo > bar) ? foo : bar

e The value of the item pointed to by a pointer variable:
*MyTablePtr

* The size of a data structure (determined at compile time):
sizeof (myRect)

¢ The value of a member variable in a structure pointed to by a
variable:
myRectPtr->bottom

or
(*myRectPtr) .bottom

e The value of a class member in an object:
myDrawing: :theRect
Below are examples of logical expressions: the result is considered
true if non-zero, false if zero.

o Is the value of a variable false?
!isDone

or
isDone ==

o Is the value of a variable true?
isReady

or
isReady != 0

e Is one variable greater than or equal to another?

Debugger User Guide DBG-111

Expressions
Expression Syntax

foo >= bar

o Is one variable less than both of two others?
(foo < bar) && (foo < car)

Is the 4th bit in a character value set to 1?
((char)foo >> 3) & 0x01

Is a C string variable equal to a literal string?
cstr == "Nov shmoz ka pop"

Is a Pascal string variable equal to a literal string?
pstr == "\pScram gravy ain't wavy"

Always true:
1

Always false:
0

Expression Syntax

This section defines the debugger’s expression syntax. The first line
in a definition identifies the item being defined. Each indented line
represents a definition for that item. An item with more than one
definition has each definition listed on a new line. Items enclosed in
angle brackets (<>) are defined elsewhere. Items in italic typeface
are to be replaced by a value or symbol. All other items are literals
to be used exactly as they appear.

For example,

<name>
identifier
<qualified-name>

defines the syntax of a name. A name can be either an identifier or a
qualified name; the latter is a syntactic category defined in another
of the definitions listed here.

<name>
identifier
<qualified-name>

DBG-112 Debugger User Guide

Expressions
Expression Syntax

<typedef-name>
identifier

<class-name>
identifier

<qualified-name>
<qualified-class-name>: :<name>

<qualified-class-name>
<class-name>
<class-name>::<qualified-class-name>

<complete-class-name>
<qualified-class-name>
:: <qualified-class-name>

<qualified-type-name>
<typedef-name>
<class-name>::<qualified-type-name>

<simple-type-name>
<complete-class-name>
<qualified-type-name>
char
short
int
long
signed
unsigned
float
double
void
<ptr-operator>
*

&

<type-specifier>

<simple-type-name>
<type-specifier-list>

<type-specifier> <type-specifier-list>(opt)
<abstract-declarator>

<ptr-operator> <abstract-declarator>(opt)

Debugger User Guide DBG-113

Expressions
Expression Syntax

(<abstract-declarator>)

<type-name>
<type-specifier-list> <abstract-
declarator>(opt)

<literal>
integer-constant
character-constant
floating-constant
string-literal

<register-name>
®PC
®SP
®Dnumber
®Anumber

<register-name>
®Rnumber
®FPRnumber
®RTOC

<register-name>
$PC
$SP
SRTOC
SAnumber

NOTE:

NOTE:

<primary-expression>
<literal>
this
s:identifier
::<qualified-name>

DBG-114 Debugger User Guide

Registers not targeted by the processor will not display
random values for unknown register expressions.

For specifying a register, the range for number depends
on the number of registers available on the target processor.

Expressions
Expression Syntax

(<expression>)
<name>
<register-name>

<postfix-expression>
<primary-expression>
<postfix-expression>[<expression>]
<postfix-expression>.<name>
<postfix-expression>-><name>

<unary-operator>
*
&
+

<unary-expression>
<postfix-expression>
<unary-operator> <cast-expression>
sizeof <unary-expression>
sizeof (<type-name>)

<cast-expression>
<unary-expression>
(<type-name>)<cast-expression>

<multiplicative-expression>
<cast-expression>
<multiplicative-expression> * <cast-
expression>
<multiplicative-expression> / <cast-
expression>
<multiplicative-expression> % <cast-
expression>

<additive-expression>
<multiplicative-expression>
<additive-expression> + <multiplicative-
expression>
<additive-expression> - <multiplicative-
expression>

Debugger User Guide DBG-115

Expressions
Expression Syntax

<shift-expression>
<additive-expression>
<shift-expression> << <additive-expression>
<shift-expression> >> <additive-expression>

<relational-expression>
<shift-expression>
<relational-expression> < <shift-expression>
<relational-expression> > <shift-expression>
<relational-expression> <= <shift-
expression>
<relational-expression> >= <shift-
expression>

<equality-expression>
<relational-expression>

<equality-expression> == <relational-
expression>

<equality-expression> != <relational-
expression>

<and-expression>
<equality-expression>
<and-expression> & <equality-expression>

<exclusive-or-expression>
<and-expression>
<exclusive-or-expression> ”~ <and-expression>

<inclusive-or-expression>
<exclusive-or-expression>
<inclusive-or-expression> <exclusive-or-
expression>

<logical-and-expression>
<inclusive-or-expression>
<logical-and-expression> && <inclusive-or-
expression>

<logical-or-expression>
<logical-and-expression>
<logical-or-expression> || <logical-and-
expression>

DBG-116

Debugger User Guide

Expressions
Expression Syntax

<conditional-expression>
<logical-or-expression>
<logical-or-expression> ? <expression> :

<conditional-expression>

<expression>
<conditional-expression>

Debugger User Guide DBG-117

Expressions
Expression Syntax

DBG-118 Debugger User Guide

A

mem. Debugger
Preferences

This chapter discusses the preferences in the MW Debug applica-
tion. It covers every option in each preference panel, and describes
what each option does.

Debugger Preferences Overview

The Preferences dialog box allows you to change various aspects of
the debugger’s behavior. The specific panels that appear are in the
following two catagories:

e MW Debug Preference Panels
¢ Integrated Debugger Target Panels

MW Debug Preference Panels

There are several common debugger panels that are available for all
targets. Additional panels may appear for particular targets. See the
appropriate targeting manual for complete information on target-
specific debugger preferences. The common panels that appear in
MW Debug are:

® Settings

¢ Display

¢ Symbolics

e Program Control
Win32 Settings

Windows Java Settings

Windows Runtime Settings

Debugger User Guide DBG-119

Debugger Preferences
MW Debug Preference Panels

Settings

The Settings panel is shown in Figure 6.1. The Settings panel in-
cludes options related to the saving of debugger settings between
sessions

Figure 6.1 Settings preferences

i+ Preferences Ed

Dizplay Symbalics Program Contral

e Settings

— Settings

E fave settings in local ".dbg” files
E S3ve breakpoints

E Save exprezsions

[Cancel] [0K]

Save settings in local “.dbg” files

Saves window size and position in . dbg files. These files optionally
contain breakpoints and expressions. Selecting this preference cre-
ates a new .dbg file or modifies an existing one for every symbolics

DBG-120 Debugger User Guide

Debugger Preferences
MW Debug Preference Panels

file you open with the debugger. If you deselect this preference, the
.dbg file is still created, but the window and other data are not
saved.

Save breakpoints

Enabled if Save window settings in local “.dbg” files is selected.
Saves breakpoint settings in the symbolics file’s . dbg file. If you de-
select this preference, breakpoint settings are forgotten when saving
the .dbg file.

Save expressions

Enabled if Save window settings in local “.dbg” files is selected.
Saves the contents of the expression window in the symbolics file’s
.dbg file. If you deselect this preference, the expression window’s
contents are forgotten when saving the .dbg file.

See also “Expression Window” on page 46.

Display

The Display panel is shown in Figure 6.2. The Display panel in-
cludes options related to the saving of display of various items in
the debugger’s windows.

In variable panes, show variable types by default

Shows variable types when a new variable window is opened. This
setting is stored in the .dbg file.

Settings in the project’s . dbg file take precedence over this prefer-
ence. Variable windows that were opened before setting the prefer-
ence will use the settings found in the . dbg file.

Sort functions by method name in browser

Changes the way C++, Object Pascal, and Java functions are sorted
in the browser window’s function pane. When this preference is de-
selected, function names of the form className : : methodName are
sorted alphabetically by class name first, then by method name

Debugger User Guide DBG-121

Debugger Preferences
MW Debug Preference Panels

within the class. Selecting this preference causes the functions to be
alphabetized directly by method name. Since most C++, Object Pas-
cal, and Java source-code files tend to contain methods all of the
same class, this preference makes it easier to select methods in the
function pane by typing from the keyboard.

Figure 6.2 Display preferences

Preferences

arn Contral FetroMub Connection

— Display
D In wariable panes, show wariable types by default
D Sort functions by rmethod namme in browser
E atternpt to use dynamic type of C++, Object Fascal and S0M objects
E Show tazks in separate windows
E Show wariable walues in source code
D =ze Syntax Coloring in Source Display
E Uze External Editor

watchpoint Hilite : [
YWat-iable Change Hilite _ Cefault size for unbounded arrays:

Lok |

DBG-122 Debugger User Guide

Debugger Preferences
MW Debug Preference Panels

Attempt to use dynamic type of C++, Object Pascal
objects and SOM objects

Displays the runtime type of C++ or Object Pascal objects; deselect-
ing this preference displays an object’s static type only. The debug-
ger can determine dynamic types only for classes with at least one
virtual function. Virtual base classes are not supported.

Show tasks in separate windows

Allows you to toggle between two ways of displaying tasks. If this
preference is turned on, double-clicking on a task in the Process
window will bring up a separate stack crawl window to display the
code. If this option is turned off, the task popup menu will appear at
the bottom of the stack crawl window. Use this menu to choose a
task to display in the same stack crawl window.

NOTE: The effect of this option does not occur immediately.
The setting that is active for the start of a debugging session stays
active for the duration of that session. If you change this setting in
the middle of a debugging session, you must stop debugging and
then restart debugging to make the new preference take effect.

Use Syntax Coloring in Source Display

Allows you to toggle how to display your source code with respect
to syntax coloring. If this preference is turned on, your source code
text will have different colors with respect to function. (comments
will appear green for example). If this option is turned off, the
source code will appear as the default text color for the specified tar-
get.

Use External Editor

Allows you to choose whether an external editor is to be used to edit
your source code.

Debugger User Guide DBG-123

Debugger Preferences
MW Debug Preference Panels

Watchpoint Hilite

Allows you to set the color that the debugger uses to identify a
watchpoint. Clicking the color swatch displays the standard dialog
for picking a color. The default color is red.

Variable Change Hilite

Allows you to set the color that the debugger uses to identify a
changed variable. Clicking the color swatch displays the standard
dialog for picking a color. The default color is red.

Default size for unbound arrays

Specifies the array size to use when no size information is available.

Symbolics

The Symbolics panel is shown in Figure 6.3. The Symbolics panel in-
cludes options related to opening, closing, and management of sym-
bolics files and Java class and zip files.

Use temporary memory for SYM data

Uses temporary memory to store the symbolics file’s data. This
keeps the debugger’s memory partition small and interferes less
with the target program as it executes. Deselecting this preference
forces the debugger to use more memory, leaving less available for
the target program.

At startup, prompt for SYM file if none specified

Prompts for a symbolics file to open when the debugger is launched
by itself. Deselecting this checkbox allows the debugger to launch
without prompting for a symbolics file.

DBG-124

Debugger User Guide

Debugger Preferences
MW Debug Preference Panels

Figure 6.3 Symbolics preferences

i+ Preferences E3

Min32 Settings

Setting= i=play Frogram Contral

— Bymhbolics

E Usze temporary memony for SYhd data

E A startup, prompt for 5% file if none specified
D Aways prompt for source file location if file not found
D lgnore file modification dates

E Open all class= files in directony hie@nchny

[Cancel] [0K]

Always prompt for source file location if file not
found

Prompts you to locate source-code files for the target program if the
debugger cannot find them. The debugger normally remembers the
locations of these files; selecting this preference causes it to prompt

you for the location of missing source code files, even if it has previ-
ously recorded their locations.

Debugger User Guide DBG-125

Debugger Preferences
MW Debug Preference Panels

Ignore file modification dates

The debugger keeps track of the modification dates of source files
from which a symbolics file is created. If the modification dates
don’t match, the debugger normally displays an alert box warning
you of possible discrepancies between the object code and the
source code. Selecting this preference disables this warning; dese-
lecting the preference enables the warning.

Open all class files in directory hierarchy

If this option is enabled, the debugger opens all the class files in the
directory and all contained directories and merges them all together
in the same Browser window.

See also a Targeting manual for information on target-specific pref-
erences.

Program Control

The Program Control panel is shown in Figure 6.4. The Program
Control panel includes options related to the launching, termina-
tion, and control of the program being debugged.

Automatically launch applications when SYM file
opened

Automatically launches a target program when its symbolics file is
opened, setting an implicit breakpoint at the program’s main entry
point. Deselecting this preference allows you to open a symbolics
file without launching the program, so that you can examine object
code that executes before the main routine, such as C++ static con-
structors.

You can also avoid launching the target program by holding down
the Alt/Option key when opening a symbolics file.

Confirm “Kill Process” when closing or quitting

Prompts for confirmation before aborting a process when a target
program is killed.

DBG-126

Debugger User Guide

Debugger Preferences
MW Debug Preference Panels

Figure 6.4 Program Control preference

i+ Preferences Ed

fettings Dizplay Symbalics
Program Cantrol

— Program Control
E Automatically [aunch applications when 5% file opened
E Confirm “Kill Process" when closing or quitting

E Ztop at beginning of main when launching applications
E Select stack crawl window when task is stopped.

E Don't step into untime support code

[Cancel] [0K]

Stop at program main when launching applications

Usually when you begin debugging an application, the debugger
stops at the first line of main (). You must then choose the Run
command a second time to continue past that point. Turning off this
option means that when you debug your application, it does not
stop at main () and instead runs free. This option is most useful be-
tween debugging sessions after you've set all your breakpoints.

Debugger User Guide DBG-127

Debugger Preferences
MW Debug Preference Panels

Select stack crawl window when task is stopped

Automatically brings Stack Crawl window to the front when a task
is stopped. If this option is turned off, the Stack Crawl window will
remain in its previous position. This is useful if you have variable
windows open and want to see the variables change as you step
through your code. You can control the Stack Crawl window even if
it’s not the currently active window.

Figure 6.5 Program Control preference (Mac OS)

Connection

— Program Control

E Autornatizally launch applications when SYMH file apened
[Confirm “Kill Process * when clasing or quitting

E Stop at beginning of main when launching applications
E Select stack crawl window when tazk is stopped.

E Con't step into runtime support code

E LG Aware

Java Funtirme [Metrowerks Java 5 I

Lok |

DBG-128 Debugger User Guide

Debugger Preferences
MW Debug Preference Panels

Don’t step into runtime support code

Executes constructor code for C++ static objects normally, without
displaying it in the program window.

QC-aware (Mac OS)

Makes MW Debug aware of Onyx Technology’s QC system exten-
sion. When QC reports an error, the debugger stops the target pro-
gram at the point of the error and displays an alert. After reporting a
QC error, the debugger deactivates QC. Use the QC hot-key combi-
nation to reactivate QC before beginning debugging and after each
QC error report.

Deselecting this preference makes the debugger ignore QC error re-
ports and prevents it from deactivating QC.

NOTE: The integrated debugger catches both 68K and Pow-
erPC Debugstr () traps. Hence, the QC-aware option is not avail-
able on the integrated debugger.

Java Runtime (Mac OS)

This option allows you to choose between using Metrowerks Java
runtime or the Apple MR] when debugging Java Applets. See Tar-
geting the Java VM for more details on using this preference.

Win32 Settings

The Win32 Settings panel is shown in Figure 6.6. Use this panel to
set up the default editor you would like to use to edit files. If no de-
fault editor application is specified, the file will be opened by Note-
Pad.

Debugger User Guide DBG-129

Debugger Preferences
MW Debug Preference Panels

Figure 6.6 Win32 Settings

i+ Preferences E3

Siettings Display Symbolics Program Control

Wind2 Prefs

Editar Application |E:'-.GenEJ:|rj".cdtest.exe

Windows Java Settings
The Java Settings panel is shown in Figure 6.7 includes options spe-

cific to debugging Java programs and applets. Edit the fields in this
panel when debugging Java programs and applets.

Figure 6.7 Java Settings

4 ymbaolics Pragram Contral Min32 Settings Runtime Settings

Java Settings

Class for debugging: |I3l:lunt'l.lll'n:urd5 |

Program Arquments: |Sam|:-le.trt |

Judew Argumerts: |-"|:I |

Class for debugging: Edit this field to specify the class file you
want to debug.

Program Arguments: Edit this field to specify command line argu-
ments to be used by your project when a java application is de-

bugged.

DBG-130 Debugger User Guide

Debugger Preferences
MW Debug Preference Panels

JView Arguments: Edit this field to specify any arguments jview
may require while debugging your project.

See Also Targeting Java for more information on debugging Java
programs and applets.

Windows Runtime Settings

The Runtime Settings panel is shown in Figure 6.8 includes options
specific to the configuration of the Windows environment. This
panel consists of two main areas: Environment Settings and General
Settings.

Figure 6.8 Runtime Settings

4 ymbalics Frogram Control Mini32 Settings Java Settings

.. Runtime Settings

— Run Time
— BEnwironment Settings

PASSUNORD=beta A [s
lI | Remowe I

“arable: [JSER “ilue: [tester |

__ General Settings

Wrarking Directory: | |

Program Arguments: | |

The Environment Settings area allows you to specify environment
variables that are set and passed to your program as part of the
envp parameter in the main () or available from the getenv () call
and are only available to the target program. When the your pro-

Debugger User Guide DBG-131

Debugger Preferences
Integrated Debugger Target Panels

gram terminates, the settings are no longer available. For example, if
you are writing a program that logs into a server, you could use
variables for userid and password.

The General Settings area has the following fields:

Working Directory: Use this field to specify the directory in which
debugging occurs. If no directory is specified, debugging occurs in
the same directory the executable is located.

Program Arguments: Use this field to pass command-line argu-
ments to your program at startup. Your program receives these ar-
guments when started with the Run command.

Integrated Debugger Target Panels

Figure 6.9

The following preference panels for targets appear in the debugger
integrated into the CodeWarrior IDE. These panels include:

e Target Settings

* x86 Exceptions (Windows)

Target Settings

The Target Settings panel is shown in Figure 6.9 includes options to
enable log activities and to specify the application where a shared li-
brary, DLL, or code resource are debugged.

Target Settings panel

|E T arget Settings

[T Log System Messages
Fragram to Launch for Debugging Shared Libs, DLLz and Code Resources

Chooze. .. |

DBG-132 Debugger User Guide

Debugger Preferences
Integrated Debugger Target Panels

Log System Messages

Enable this option to log all system messages to a file. When dis-
abled, no log file is created.

Program to Launch for Debugging Shared Libs, DLLs
and Code Resources

Click Choose to select the name of the application to launch when
debugging shared libraries, DLLs, or code resources.

This is not a debugger application but the application for which the
shared library, DLL, or code resource was written to interact with.
For example, if you're writing a Photoshop plug-in, you would use
the Choose control to select Photoshop as the target application.
When Debug is chosen, the IDE builds the plug-in, loads the sym-
bolic information for the plug-in, then launches Photoshop to enable
you to debug the plug-in.

x86 Exceptions (Windows)

Use the x86 Exceptions panel shown in Figure 6.10 to specify which
exceptions the integrated debugger should catch.

Debugger User Guide DBG-133

Debugger Preferences
Integrated Debugger Target Panels

Figure

6.10 x86 Exceptions panel

|E %86 Exceptions

B S I A S NN SR NN N N R

0x40070005 Contral-C

4007 0002 Contral-Break
O=30000002 0 ata Mizaligned
0xCO000005 Access Yiolation
Qxc00000085 [n Fage Error
D=CO000001 7 Ma bMemony
Q=CO000001 0 Megal Instruction
CxCO000025 Moncontinuable
D=CO0000ZE reald Dizposition
D=CO00003C Array Bounds
0xC0000050 Float Denarmal
D=CO00003E Float Dy by Lera

-

B S L R I i S i i i

E xception Handling [place a check on the exceptions to always catch)

0xCO00005F Float Inexact
D=CO0000090 Float [nyvalid Op
0xC00000392 Float Stack.
OxCO000097 Flaot Oyverflow
0xC0000033 Float Underflow
D=CO000034 [kt Dy by Lero
0xC0000035 Int Owerflow
D=CO00009E Frivileged [nzte
0xCO0000FD Stack. Owverflow
0xC00007135 DLL Mot Found
0xC00007 42 DLL Init Failed
0=E0Ed¥363 C++ Exception

DBG-134

Debugger User Guide

7

m==r. Debugger Menus

This reference chapter describes each menu item in MW Debug.

Debugger Menus Overview

There are six menus:

File Menu—open and close symbolic files, open source files,
save log files, and quit

Edit Menu—the standard editing operations, plus debugger
preferences

Control Menu—manage your path through code, or switch
to a low-level debugger

Data Menu—manage the display of data in the debugger

Window Menu—open and close various display windows in
the debugger

Help menu (Windows)—learn about MW Debug
Apple Menu (Mac OS)—learn about MW Debug

NOTE: The actual location of debugger menu commands may
be different in the IDE’s integrated debugger. See the IDE User
Guide for more information.

Debugger User Guide DBG-135

Debugger Menus

File Menu

File Menu

The commands in the File menu allow you to open, close, edit, and
save files.

Open

Opens an existing symbolics file to debug. A Standard File dialog
box appears, prompting you to select a symbolics file. The symbol-
ics file must be in the same folder as its target program (the program
you want to debug).

After you choose the symbolics file, the debugger loads it into mem-
ory, loads the target program, places an implicit breakpoint at the
program’s main entry point, and launches the program. The pro-
gram then pauses at the initial breakpoint, returning control to the
debugger.

The Open command can also be used to open Java class or zip files.
The debugger reads the symbolics from these files and treats them
as if they were symbolics files. SeeTargeting the Java VM for more in-
formation.

’

See also “Preparing for Debugging” on page 21 for information on
generating symbolic information for your target.

NOTE: More than one program can be opened and debugged
at the same time.

Close
Closes the active window.

If the Confirm “Kill Process” when closing or quitting prefer-
ence is not selected, closing the program window kills the running
program (if any); selecting the Run command reopens the program
window and re-executes the program from the beginning. If this
preference is selected, a dialog box appears offering you the choice

DBG-136 Debugger User Guide

Debugger Menus
File Menu

of killing the program, keeping it running even after closing the
program window, or canceling the Close command.

See also “Confirm “Kill Process” when closing or quitting” on

page 126.

Edit filename

Opens the designated source-code file in the CodeWarrior IDE Edi-
tor. The CodeWarrior environment must already be running; the
debugger will not launch it automatically.

Opens the designated source-code file in the default editor chosen
in the Win32 Settings preference panel. If there is no default editor
specified, the file will be opened by NotePad.

See also “Win32 Settings” on page 129.

Save

Saves the contents of the log window to the disk under the current
file name. This command is enabled only when the log window is
active.

Save As

Displays a Standard File dialog box for saving the contents of the
log window under a different name. The new name becomes associ-
ated with the log window; later Save commands will save to the
new file name rather than the old one. This command is enabled
only when the log window is active.

Save A Copy As

Displays a Standard File dialog box for saving the contents of the
log window under a different name. The old name remains associ-
ated with the log window; later Save commands will continue sav-
ing to the old file name rather than switching to the new one. This
command is enabled only when the log window is active.

Debugger User Guide DBG-137

Debugger Menus

Edit Menu

Edit Menu

Save Settings

Saves the current settings of the program and browser windows,
provided that the Save window settings in local “.dbg” files
preference is selected in the Preferences dialog box. This command
also saves breakpoints and expressions if the Save breakpoints
and Save expressions preferences are selected, respectively.

See also “Settings” on page 120.

Quit
Quits the debugger.

If the Confirm “Kill Process” when closing or quitting prefer-
ence is not selected, quitting the debugger kills all running pro-
grams (if any). If this preference is selected, a dialog box appears of-
fering you the choice of killing the programs, keeping them running
even after quitting the debugger, or canceling the Quit command.

See also “Confirm “Kill Process” when closing or quitting” on

page 126.

The commands on the Edit menu apply to variable values and ex-
pressions displayed in the debugger. The debugger does not allow
editing of source code.

See also “Edit filename” for information about how to edit source
code that appears in a Source pane.

Undo
Reverses the effect of the last Cut, Copy, Paste, or Clear operation.
Cut

Deletes selected text and puts it in the Clipboard. You cannot cut
text from a source pane.

DBG-138 Debugger User Guide

Debugger Menus
Edit Menu

Copy

Copies selected text into the Clipboard without deleting it. You can
copy text from a source pane or from the log window.

Paste

Pastes text from the Clipboard into the active window. You cannot
paste text into a source pane.

Clear

Deletes selected text without putting it in the Clipboard. You cannot
clear text from a source pane.

Select All

Selects all text in the active window. You can select text only while
editing a variable value or an expression, or in the log window.

Find

Opens a dialog box allowing you to search for text in the source
pane of the program or browser window. The search begins at the
current location of the selection or insertion point and proceeds for-
ward toward the end of the file.

See Also “Using the Find Dialog” on page 79.

Find Next

Repeats the last search, starting from the current location of the se-
lection or insertion point.

Find Selection

Searches for the next occurrence of the text currently selected in the
source pane. This command is disabled if there is no current selec-
tion, or only an insertion point.

Debugger User Guide DBG-139

Debugger Menus

Control Menu

TIP: You can reverse the direction of the search by using the
Shift key with the keyboard shortcuts, Shift-Ctrl/Shift-Cmd G (find
previous) or Shift-Ctrl/Shift-Cmd H (find previous selection).

See Also “Using the Find Dialog” on page 79.

Preferences

Opens a dialog box that lets you change various aspects of the de-
bugger’s behavior. Information on the preferences dialog box is in-
troduced in “Debugger Preferences Overview” on page 119.

Control Menu

The Control menu contains commands that allow you to manage
program execution.

Run

Executes the target program. Execution starts at the current-state-
ment arrow and continues until encountering a breakpoint, or until
you issue a Stop or Kill command.

See also “Running Your Code” on page 66.

Stop

Temporarily suspends execution of the target program and returns
control to the debugger. When a Stop command is issued to an exe-
cuting program, the program window appears showing the current
values of the local variables. The current-statement arrow is posi-
tioned at the next statement to be executed, the Stop command is
dimmed in the Control menu, and a message appears in the pro-
gram window’s source pane.

To resume executing a stopped program, you may

o select the Run command. Execution will continue at the cur-
rent-statement arrow.

DBG-140

Debugger User Guide

Debugger Menus
Control Menu

e step through the target program one statement at a time with
the Step Over, Step Into, or Step Out commands in the
Control menu.

NOTE: The Stop command is dependent on operating system
services and does not work for all targets. See the appropriate
Targeting manual for more information.

See also “Stopping Execution” on page 71.

Kill

Permanently terminates execution of the target program and re-
turns control to the debugger. Using a breakpoint or the Stop com-
mand allows you to resume program execution from the point of
suspension; the Kill command requires that you use Run to restart
program execution from the main entry point.

See also “Killing Execution” on page 72.
Step Over

Executes a single statement, stepping over function calls. The state-
ment indicated by the current-statement arrow is executed, then
control returns to the debugger. When the debugger reaches a func-
tion call, it executes the entire function without displaying its source
code in the program window. In other words, the Step Over com-
mand does not go deeper into the call chain. Step Over does, how-
ever, follow execution back to a function’s caller when the function
terminates.

See also “Stepping a Single Line” on page 68.

Step Into

Executes a single statement, stepping into function calls. The state-
ment indicated by the current-statement arrow is executed, then
control returns to the debugger. Unlike the Step Over command,
Step Into follows function calls, showing the execution of the called
function in the source pane of the program window. Stepping into a

Debugger User Guide DBG-141

Debugger Menus

Control Menu

function adds its name to the call chain in the program window’s
call-chain pane.

See also “Stepping Into Routines” on page 68.
Step Out

Executes the remainder of the current function until it exits to its
caller. Step Out executes the program from the statement indicated
by the current-statement arrow, then returns control to the debug-
ger when the function containing that statement returns to its caller.

See also “Stepping Out of Routines” on page 69.

TIP: Functions with no debugging information, such as operat-
ing-system routines, are displayed in the program window’s
source pane as assembly language. Use Step Out to execute and
exit from functions that have no debugging information.

Clear All Breakpoints

Clears all breakpoints in all source-code files belonging to the target
program.

Break on C++ exception

Causes the debugger to break at __throw() every time a C++ ex-
ception occurs. See the appropriate Targeting manual for more in-
formation on debugging C++ exceptions.

Switch to Monitor (Mac OS)

Gives control to the Macintosh ROM Monitor program or any low-
level debugger (such as MacsBug) that you may have installed on
your computer.

NOTE: The MacsBug macros file supplied with MW Debug
contains a pair of MacsBug macros for switching in the opposite
direction. If you install these macros in your Debugger Prefs file

DBG-142

Debugger User Guide

Debugger Menus
Data Menu

Data Menu

(using a resource-management tool such as ResEdit), you can
enter the CodeWarrior debugger from MacsBug by typing cw from
68K code or cwp from PowerPC code.

The Data menu lets you control how data values are displayed in
the debugger.

Show Types

Shows the data types of all local and global variables displayed in
the active variable pane or variable window.

Expand

Displays the C members, C++ data members, Pascal fields, or Java
fields inside a selected structured variable, or dereferences a se-
lected pointer or handle.

Collapse All

Hides all C members, C++ data members, Pascal fields, Java fields,
or pointer or handle dereferences.

New Expression

Creates a new entry in the expression window, prompting you to
enter a new expression. You can also drag an expression to the ex-
pression window from source code or from another window or
pane, or select it and choose the Copy to Expression command
from the Data menu.

See also “Expression Window” on page 46.

Open Variable Window

Creates a separate window to display a selected variable. This com-
mand is useful for monitoring the contents of large structured vari-
ables (Pascal records or C/C++ structs).

Debugger User Guide DBG-143

Debugger Menus

Data Menu

See also “Variable Window” on page 50.

Open Array Window

Creates a separate window to display a selected array. This com-
mand is useful for monitoring the contents of arrays.

See also “Array Window” on page 50.

Copy to Expression

Copies the variable selected in the active pane to the expression
window. You can also drag an expression to the expression window
from source code or from another window or pane.

See also “Expression Window” on page 46.

Set/Clear Watchpoint

Sets or clears a watchpoint for the selected variable or range of
memory. You may select a variable or range of memory in the mem-
ory window, or you may select a variable from any variable win-
dow. If a watchpoint already exists, this command changes to Clear
Watchpoint .

See also “Setting Breakpoints” on page 82 and “Clearing Watch-
points” on page 90.

Clear Current Watchpoint
Will clear the watchpoint your program has just hit and stopped at.

See also “Clearing Watchpoints” on page 90.

View As

Displays a selected variable as a value of a specified data type. This
command applies to variables listed in the program window’s locals
pane, the browser window’s globals pane, or a variable window.

Memory variables can be viewed as any data type. If the new data
type is smaller than the variable’s original type, any excess data is

DBG-144

Debugger User Guide

Debugger Menus
Data Menu

ignored; if the new type is larger than the original type, the debug-
ger reads additional data from succeeding memory locations. A reg-
ister variable can be viewed only as a type of the same size as the

register.

When you choose the View as command, a dialog box appears
showing a list of all data types defined in the project (see Figure 7.1).
Choosing a data type enters it in the New Type field. You can ap-
pend an asterisk (*) if you want the variable to be interpreted as a
pointer, or two asterisks (**) to treat it as a handle. Click OK to dis-
play the value of the variable using the specified type.

Figure 7.1 Using View As

i+ Select Type...

CFtpConnection
CFtpFileFind
Czdidbject
CEopherConnection
CGopherFile
CzopherFileFind
C&opherLaocatar
CHandlehap
CHAHGERIMD
CHAR

CHARFORMATZWS

hd

MNew Typa: char®

m— Selecting a data type enters
CHARFORMATZA itinthe New Type field.

(append one or more ™= for pointer to type’

Carcel

Ok

To make it a pointer, add an
asterisk (*) after the name
of the data type. Use two
asterisks for handles.

Debugger User Guide DBG-145

Debugger Menus

Data Menu

See also “Viewing Data as Different Types” on page 96, “Viewing
Raw Memory” on page 100, and “Viewing Memory at an Address”

on page 100.

View Memory As

Displays the memory a selected variable occupies or a selected reg-
ister points to. This command opens an array window interpreting
memory as an array of a type specified using the View As dialog
box.

See also “Array Window” on page 50 and “Viewing Memory at an

Address” on page 100.

View Memory

Displays the contents of memory as a hexadecimal / ASCII character
dump. This command opens a memory window beginning at the
address of the currently selected item or expression.

See also “Memory Window” on page 52.

Default

Displays the selected variable in its default format based on the
variable type.

Signed Decimal
Displays the selected variable as a signed decimal value.

See also “Viewing Data in a Different Format” on page 95.

Unsigned Decimal
Displays the selected variable as an unsigned decimal value.
Hexadecimal

Displays the selected variable as a hexadecimal value.

DBG-146

Debugger User Guide

Debugger Menus
Data Menu

Character
Displays the selected variable as a character value.

The debugger uses ANSI C escape sequences to show non-printable
characters. Such sequences use a backslash (\) followed by an octal
number or a predefined escape sequence. For example, character
code 29 is displayed as '\35" (35 is the octal representation of deci-
mal 29). The tab character is displayed as '\t '.

C String

Displays the selected variable as a C character string: a sequence of
ASCII characters terminated by a null character (' \0"). The termi-
nating null character is not displayed as part of the string.

See also “Character” for information on non-printable characters.
Pascal String

Displays the selected variable as a Pascal character string: an initial
byte containing the number of characters in the string, followed by
the sequence of characters themselves. The initial length byte is not
displayed as part of the string.

Floating Point
Displays the selected variable as a floating-point value.
Enumeration

Displays the selected variable as an enumeration. Enumerated vari-
ables are displayed using their symbolic names, provided by the
compiler for C/C++ enum variables defined with typedef. Sym-
bolic values for char, short, int, or long variables are not dis-
played.

NOTE: When editing enumerated variables, you must enter
their values in decimal.

Debugger User Guide DBG-147

Debugger Menus

Window Menu

Fixed

Displays the selected variable as a numerical value of type Fixed.
Fixed variables are stored as 32-bit integers in the symbolics file,
and are initially displayed in that form. You can use the Fixed com-
mand to reformat these variables to type Fixed. Any 32-bit quantity
can be formatted as a Fixed value.

Fract

Displays the selected variable as a numerical value of type Fract.
Fract variables work the same way as Fixed variables: they are
stored as 32-bit integers in the symbolics file and are initially dis-
played as 32-bit integers. You can use the Fract command to refor-
mat and edit these variables in the same way as Fixed variables.
Any 32-bit quantity can be formatted as a Fract value.

Window Menu

The Window menu contains commands to show or hide many de-
bugger windows. There is also a list of all windows currently open
on the screen.

Show/Hide Toolbar (Mac OS)

Displays or hides the mini toolbar. This command toggles between
Show Toolbar and Hide Toolbar , depending on whether the tool-
bar is currently visible on the screen.

Show/Hide Processes

Displays or hides the process window. This command toggles be-
tween Show Processes and Hide Processes, depending on
whether the process window is currently visible on the screen.

See also “Process Window” on page 57.

DBG-148 Debugger User Guide

Debugger Menus
Window Menu

Show/Hide Expressions

Displays or hides the expression window. This command toggles
between Show Expressions and Hide Expressions, depending on
whether the expression window is currently visible on the screen.

See also “Expression Window” on page 46.

Show/Hide Breakpoints

Displays or hides the breakpoint window. This command toggles
between Show Breakpoints and Hide Breakpoints, depending
on whether the breakpoint window is currently visible on the
screen.

See also “Breakpoint Window” on page 47.

Show/Hide Watchpoints

Displays or hides the watchpoint window. This command toggles
between Show Watchpoints and Hide Watchpoints, depending
on whether the watchpoint window is currently visible on the
screen.

See also “Watchpoint Window” on page 48.

Close All Variable Windows

Closes all open variable and array windows. This command is dis-
abled when there are no open variable or array windows.

Show/Hide Registers

Displays or hides the registers window. This command toggles be-
tween Show Registers and Hide Registers, depending on
whether the registers window is currently visible on the screen.

See also “Register Window” on page 54.

Debugger User Guide DBG-149

Debugger Menus
Help menu (Windows)

Show/Hide FPU Registers

Displays or hides the FPU registers window. This command toggles

between Show FPU Registers and Hide FPU Registers, depend-

ing on whether the FPU registers window is currently visible on the

screen. (Some targets do not have an FPU, and the FPU register win-
dow is not available for them.)

See also “Register Window” on page 54.

Other Window Menu ltems

The remaining items on the Window menu list all windows cur-
rently open on the screen. A checkmark appears beside the active
window. To make a window active, you can:

o click in the window
o choose the window in the Window menu

e use the window’s keyboard equivalent, as shown in the Win-
dow menu

Help menu (Windows)

The Help menu contains commands to access the MW Debug help
file. The fourth command, About Metrowerks Debugger , dis-
plays copyright and author information about the application, as
well as credits.

Apple Menu (Mac OS)

The Apple menu contains one command for the debugger, About
Metrowerks Debugger. This command displays copyright and au-
thor information about the application, as well as credits.

DBG-150 Debugger User Guide

A

metrowerks |8

8

Troubleshooting

This chapter contains frequently asked questions (and answers)
about MW Debug. If you have a problem with the debugger, come
here first. Others may have encountered similar difficulties, and
there may be a simple solution.

About Troubleshooting

If you find that the debugger is causing problems, the first thing you
should try is delete the debugger preferences file. This file is called
MWDebug.prf and is located in the Metrowerks directory in your
Windows directory.

This chapter discusses various problems people have encountered

while debugging their programs. There are suggested solutions for
each problem. If your problem is not in this chapter, please contact
Metrowerks Technical Support for assistance.

The general topics covered include:

e General Problems

Problems Launching the Debugger

Problems Running/Crashing the Debugger

Problems with Breakpoints

Problems with Variables

Problems with Source Files

General Problems

There may come a time when one of the solutions in this section
doesn’t seem to work, or your specific problem isn’t in here. Before

Debugger User Guide DBG-151

Troubleshooting
Problems Launching the Debugger

sending a note to Metrowerks Technical Support, try one or more of
the following:

* Remove easily regenerated files and data, including .(x)sym-
bolics, .dbg file, preferences, binaries in your project (choose
Remove Binaries and Compact in the CodeWarrior IDE.
See the IDE Users Guide for more information).

e Copy new versions of the IDE and Debugger to your hard
drive.

o Check for extension conflicts.

e Try a few sample sessions with all possible extensions off.

Problems Launching the Debugger

This section lists questions and problems with launching the debug-
ger.

The debugger won’t launch
Problem

Even if Enable Debugger is selected, when I run my application
the debugger doesn’t launch.

The Run or Debug command in the CodeWarrior Project menu is
dimmed.

Background

You can launch the debugger automatically from the CodeWarrior
IDE only if the project is an application project, and the debugger is
in the same folder as the CodeWarrior IDE.

Solutions

e Make sure your project generates an application. The Run
command is only available when creating an application.

* Make sure the CodeWarrior debugger application is in the
same folder as the CodeWarrior IDE application.

DBG-152

Debugger User Guide

Troubleshooting
Problems Launching the Debugger

e Launch the debugger directly by double-clicking its icon.

See also “Launching MW Debug Directly” on page 26.

Debug does nothing
Problem

The Run command does nothing.
Background

You must have everything set up properly for the debugger to work
correctly. In addition, make sure your code actually does some-
thing!
Solutions

* Make sure debugging is enabled.

¢ Consult the debugger release notes for the latest information
on incompatibilities with third-party software.

/

See also “Setting Up a Target for Debugging” on page 21.

Errors reported on launch (Mac OS)
Problem

I get error -27 when I start debugging and -619 when I quit.
Background

You may be using an older version of RamDoubler that is not com-
patible with the debugger.

Solution
¢ Upgrade RamDoubler to version 1.5.2 or better.

Debugger User Guide DBG-153

Troubleshooting
Problems Running/Crashing the Debugger

Slow launching (Mac OS)
Problem

I have a big project. When I run with the debugger, it takes a long
time (minutes) before the debugger is up, and I can hear the hard
drive thrashing around like crazy.

Background

The debugger uses temporary memory to store symbolics informa-
tion. If you are using virtual memory, it is better to disable the de-
bugger’s use of temporary memory.

Solution

e In the debugger’s Preferences dialog, turn off the Use tem-
porary memory for SYM data preference. Increase the size
of the debugger partition by about the size of your symbolics
file.

Problems Running/Crashing the Debugger

This section covers problems that occur while you're running the
debugger.

Project works in the debugger, crashes
without

Problem

My project works fine when running under debugger control. When
I run without the debugger, my program crashes.

Background

Running under the debugger changes the operating environment in
which your program runs. This can have the strange effect of mak-
ing an otherwise buggy program work correctly. It is hard to tell
precisely what your particular problem may be, but we can suggest
a couple of factors that may causes this kind of odd behavior.

DBG-154

Debugger User Guide

Troubleshooting
Problems with Breakpoints

For one, the debugger slows things down. If you have code that is
time-sensitive, things may happen too fast when the debugger is not
present. Keep this in mind when tracking down the problem.

The presence of the debugger can also modify how memory is man-
aged in your project. A block of memory may not move if the de-
bugger is running, for example. With the debugger absent, the block
moves and a memory-related bug strikes.

Solutions

¢ Look for time-sensitive problems, race conditions, and so
forth.

¢ Look for memory-related problems, such as accessing null
pointers or handles, improperly disposing of resource han-
dles, or disposing of handles more than once.

¢ Develop your low-level debugging skills.

Problems with Breakpoints

This section covers problems related to setting and clearing break-
points.

Statements don’t have breakpoints
Problem

Some statements don’t have dashes in the breakpoint column, mak-
ing it impossible to set them.

Background

The CodeWarrior linkers are very smart. They do not generate sym-
bolics information for source code that is not linked into the final
product. If a statement is never actually used, the linker does not in-
clude it in the final object code. You cannot set a breakpoint on such
a statement, because the object code does not exist.

Debugger User Guide DBG-155

Troubleshooting
Problems with Breakpoints

Code optimization may also reorganize the object code extensively,
affecting the correspondence between object code and source code
and making it difficult or impossible to set breakpoints accurately.

Solution

* Make sure all your code is used. Change the source code if
necessary.

* Check your source code to see if statements were ignored by
the compiler because of compiler directives.

¢ Turn off all compiler optimizations, set Instruction Sched-
uling off, and set Don’t Inline on, and rebuild your project.
Optimization may be making changes in object code that do
not correspond to your source code. You should get a break-
point marker at every “meaty” statement.

¢ Use a coding style wherein you put only one statement on a
source line—the compiler will output breakpoint informa-
tion for multiple statements on a line, but the debugger only
shows which source line you're on, so you may end up step-
ping multiple times on the same source line.

See also “Impact of Optimizing Code on Breakpoints” on page 85.

Breakpoints don’t respond
Problem

I set a breakpoint, but it doesn’t work.
Background

Breakpoints stop execution only if the breakpoint is reached, it is ac-
tive, and its condition (if it has one) is true.
Solutions

e Step through your code to verify whether you're reaching the
statement at which you placed the breakpoint.

* Look in the breakpoint window to see if the breakpoint is in-
active.

DBG-156

Debugger User Guide

Troubleshooting
Problems with Variables

e If the breakpoint has a condition, make sure it tests true. The
debugger ignores breakpoints with false conditions.

See also “Setting Breakpoints” on page 82 and “Conditional Break-
points” on page 84.

Problems with Variables

This section covers problems related to variables.

A variable doesn’t change
Problem

I have a variable and I assign it a value, but the value doesn’t change
in the debugger.

Background

You aren’t using the variable for anything later on in the code. As a
result, the compiler has optimized it away.
Solutions

* Remove the unused variable from your code.

e Modify your code to use the variable.

Variables are assigned incorrect values
Problem
I notice that values seem to be changing incorrectly. I have encoun-

tered one of these two problems:

e Two or more variables are being set to the same value simul-
taneously.

* One variable is receiving a value that is supposed to be as-
signed to another.

Debugger User Guide DBG-157

Troubleshooting
Problems with Variables

Background

The compiler has recognized that the variables are not used concur-
rently, and has given the variables the same storage location. What
you are seeing is a kind of automatic compiler optimization called
“register coloring.” Register coloring checks to see how variables
are used in a routine. If two or more variables are in the same scope
but are not used at the same time, the compiler may use the same
processor register for both variables. Using registers instead of
memory to store and manipulate variables improves a program’s
performance.

Listing 8.1 is a good example of the kind of code that results in regis-
ter coloring. Because four different variables are set but never used
simultaneously, the compiler has arranged for all four to use the
same register. The debugger, however, has no way of knowing that
all four variables share the same register, so it shows all four vari-
ables changing with each assignment. In fact, the code shown in
Listing 8.1 does nothing at all; serious optimization might eliminate
it entirely.

Listing 8.1 Variables changing with register coloring

void main(void)
{

long a =0, b=0, ¢c =0, d=0;

a=1; /* a is set to 1 */

b 2; /* a is set to 2, b remains unchanged */

c 3; /* a is set to 3, c remains unchanged */

d =4; /* a is set to 4, d remains unchanged */
}

Solutions

* Do nothing. Register coloring is not a problem.

e To prevent register coloring in C/C++, declare your vari-
ables with the volatile keyword. Do this with a preproces-
sor directive so that you can easily remove the volatile
storage class specifiers after debugging.

DBG-158 Debugger User Guide

Troubleshooting
Problems with Variables

See also the C, C++, and Assembly Language Manual for more infor-
mation.

Strange variables
Problem

The debugger shows variables in the local and global variable panes
that are not declared in the source code.

Background

The compiler often creates its own temporary variables in the object
code as it translates source code. These temporary variables appear
in the debugger with a dollar sign ($) in their names. The debugger
also displays C++ virtual base class types with a $ prefix.

The compiler and linker often add variables from libraries and run-
time routines that help initialize and terminate your program.
Solution

e None. This is not a problem that needs correction.

Strange data types
Problem

When Show Types is selected in the Data menu, some enumerated
values are displayed as having type “?anonx,” where x is an arbi-
trary number.

Background

The debugger cannot display the names of enumerated types if the
names are not defined in the source code. At compile time, the com-
piler assigns a generic type name to such enumerated types. It is this
generic name that the debugger displays.

For example, in Listing 8.2, with Show Types selected, variable my-
Marx will be displayed as having the anonymous type ?anonx, be-
cause its enumerated type has no name. On the other hand, variable

Debugger User Guide DBG-159

Troubleshooting
Problems with Variables

myBeat le will be shown with type Beatle, because its enumerated
type is defined with that name.

Listing 8.2 Unnamed enumerated types (C/C++)

// Debugger displays as anonymous type
enum {Groucho,

Harpo,

Chico,

Zeppo } myMarx = Harpo;

// Debugger displays as type Beatle
typedef enum Beatle {John,

Paul,

George,

Ringo} myBeatle = John;

Solution

* None. This is not a problem that needs correction.

Unrecognized data types
Problem

I've declared my own data type. Why can’t I view a variable as that
type?

Background

The symbolics file includes information only about types that are
used in the program. Types defined in typedefs are not stored in
the symbolics file, so you need to view the variable as the type it is
derived from. For example, if you have declared a type MyLong
based on the long data type, you can view it as a long, but not as a
MyLong.

See also “Viewing Data as Different Types” on page 96.

DBG-160 Debugger User Guide

Troubleshooting
Problems with Variables

Solution
e Use the base data type.

e Choose the Show Types item from the Data menu to see
what the debugger thinks the type is.

“undefined identifier” in the expression
window

Problem

Using a user-defined type in an expression in the expression win-
dow gives an “® undefined identifier ®” value.

Background

The debugger does not recognize data types that are simply aliases
of another type, because such alias types are not included in the
symbolics file.
For example, given the Pascal type declaration

TYPE

MYBIGINT = LONGINT;

the expression

MYBIGINT (thePtr)
in the debugger’s expression window will display its value as

“e undefined identifier ».” To get the correct result, use this expres-
sion instead:

LONGINT (thePtr)

Solution
¢ Use the original data type instead of the defined data type.

See also “Expression Limitations” on page 109.

Debugger User Guide DBG-161

Troubleshooting
Problems with Source Files

Problems with Source Files

This section covers problems related to source-code files.

No source-code view
Problem

All T see in the source pane is assembly-language code. The source
popup menu won't let me show source code.

Background

There is no symbolics information available for that code. You may
not have turned on debugging for a file, or you may be stepping

through some ancillary code added by the linker that has no corre-
sponding source code (for example, glue code). Without symbolics
information, the debugger can only show the code in assembly lan-

guage.
Solutions

e If the code is from your own source file, make sure the
CodeWarrior IDE generates symbolics information for the
file.

e If the code is from some other source (such as a compiled li-
brary), step out of the function to return to the caller. There is
no source code to view.

See also “Setting Up a File for Debugging” on page 23.

Outdated source files
Problem

When I run my project, I get a warning that says the modification
dates don’t match. What's going on?

DBG-162

Debugger User Guide

Troubleshooting
Problems with Source Files

Background

The symbolics file keeps track of when the source file on which it is
based was last changed. If the date and time stored in the symbolics
file do not match those of the original file, the debugger warns you
that the symbolics information may no longer be current.

Solution

e Touch the source file (or make a do-nothing change and save
it), then rebuild your project or bring it up to date.

Sharing source code between projects
Problem

The debugger displays an alert when attempting to view the same
source-code file from two different browser windows.

Background

The debugger cannot open the same file from different browser
windows.

Solution

e Create copies of the file so that each project has its own ver-
sion.

Spurious ANSI C code in Pascal projects
Problem

I'm working in Pascal, and when I'm stepping through code I find
ANSI C routines! I haven’t included any ANSI C libraries. What's
going on?

Background

The Pascal runtime library was written in C and uses ANSI C rou-
tines. These are the routines that show up when debugging a Pascal
program.

Debugger User Guide DBG-163

Troubleshooting
Debugger Error Messages

Solution

* None. This is not a problem that needs correction.

Debugger Error Messages

Following is a list of error messages that you may receive from the
debugger, with some hints about the possible causes or circum-
stances of the error. Messages listed without comment are self-
explanatory.

An unknown error occurred while trying to target an
existing process.

Bad type code

Internal error.

Bus Error

Attempt to read or write to an invalid address.

can't display value -- type information not supported

The symbolics file contains a data type that MW Debug does not
support.

Can't use this source file, it was not saved before
running, or was edited after linking.

The debugger doesn’t have access to the same text the compiler saw.
The debugger will just issue a warning unless the debug informa-
tion references nonexistent text, in which case it gives you this error
message.

class name expected

Unexpectedly encountered something other than a class name while
evaluating an expression.

Could not complete your request because the

DBG-164

Debugger User Guide

Troubleshooting
Debugger Error Messages

process is not suspended.

The command you issued cannot be performed while the program
is running.

Could not set a watch point because the page
containing that memory location overlaps low
memory or the system heap.

Watchpoints cannot be set in low memory or in the system heap.

Could not set a watch point because the page
containing that memory location overlaps the stack.

Watchpoints are implemented via the memory write-protection
mechanism, which operates at the page level. You cannot write-pro-
tect a page of memory containing part of the stack.

Couldn't locate the program entry point, program will
not stop on launch.

When launching a program, the debugger normally sets an implicit
breakpoint at the beginning of the function named main() (in C/
C++) or the main program (in Pascal). If it can’t find such a routine,
it just launches the program and lets it run.

identified or qualified name expected

Unexpectedly encountered something other than an indentifier or
qualified name while evaluating an expression.

illegal character constant

Invalid character constant encountered while evaluating an expres-
sion.

illegal string constant

Invalid string constant encountered while evaluating an expression.

Debugger User Guide DBG-165

Troubleshooting
Debugger Error Messages

illegal token

Invalid token encountered while evaluating an expression.

Invalid C or Pascal string.

An ill-formed string was encountered in evaluating an expression.
Invalid character constant.

An invalid character constant was encountered in evaluating an ex-
pression.

Invalid escape sequence inside string or character
constant.

C/C++ escape sequence in a string wasn'’t valid syntax.
invalid pointer or reference expression

Invalid pointer or reference expression encountered while evaluat-
ing an expression.

invalid type declaration
Invalid type encountered while evaluating an expression.
invalid type information in SYM file

MW Debug is unable to display a variable because of bad data in the
symbolics file.

New variable value is too large for the destination
variable.

For example, you have attempted to assign a 20-byte string to a 10-
byte string variable.

No type with that name exists.

MW Debug doesn’t recognize a type name you have entered in the
View As dialog.

DBG-166

Debugger User Guide

Troubleshooting
Debugger Error Messages

Register not available

The debugger is unable to get a valid register value to display a reg-
ister variable. For example, when looking at routines up the stack
from the current routine, the debugger can’t dig out the saved regis-
ter values unless all routines below it on the stack have debug infor-
mation.

string too long
String exceeds maximum permissible length.

The new variable value is the wrong type for the
destination variable.

You have attempted to assign a value of the wrong type to a vari-
able, such as a string to an integer variable.

typedef name expected

Unexpectedly encountered something other than a typedef name
while evaluating an expression.

Unable to step from here.

The debugger cannot step execution from this point.

Unable to step out from here.

The debugger cannot step out from this point.

undefined identifier

Undefined identifier encountered while evaluating an expression.
unexpected token

Unexpected token encountered while evaluating an expression.
unknown error "A0"

An internal error that was not expected to reach the user.

Debugger User Guide DBG-167

Troubleshooting
Debugger Error Messages

unterminated comment

A closing comment bracket is missing.

Variable or expression cannot be used as an address.
For example, if r is a Rect, * (char*)r is invalid.

Warning - this SYM file has some invalid or
inconsistent data. The debugger may show incorrect
information.

Your symbolics file may have been corrupted.
! or '&' expected

Unexpectedly encountered something other than a pointer or refer-
ence operator while evaluating an expression.

DBG-168 Debugger User Guide

Index

Symbols

$ in variable name 159
? in variable name 159

A

active pane 30
ANSI
C code in Pascal project 163
escape sequence 147
Apple menu (debugger) 150
array window 50, 94
setting base address 50
arrays
setting size 124
assembly
memory display 33, 37
register display 33, 37
viewing 27,37,44,162

Break on C++ Exception command (debugger) 142
breakpoint
clearing 47, 83
clearing all 142
conditional 47, 84
conditional expression 107
conditional, and loops 85
conditional, creating 85
defined 81
effect of temporary breakpoint on 83
missing 155
setting 82, 156
setting in breakpoint window 47
setting in browser window 44
temporary 70, 83
viewing 83
breakpoint window 47, 84
Breakpoints Window command (debugger) 47, 83
browser source pane 43
browser window
compared to program window 39
navigating code in 75
setting breakpoint in 44

Cc

Clanguage
entering escape sequences 147
viewing character strings 147
C string
entering data as 99
viewing data as 95
C String command (debugger) 147
C++
debugging 123,126
ignoring object constructors 129
methods, alphabetizing 42,122
call-chain navigation 73
changing
font and color in debugger 81
memory 53
memory, dangers of 54
registers 55
variable values 98
Character command (debugger) 147
Clear All Breakpoints command (debugger) 83,
142
Clear command 90
Clear command (debugger) 46, 48,139
Clear Current Watchpoint command 90, 144
Clear Watchpoint command 48, 144
clearing breakpoint 47, 83
Clipboard
while in the debugger 139
Close All Variable Windows command
(debugger) 43,149
Close command (debugger) 136
Collapse All command 92, 143
conditional breakpoint 47, 84
and loops 85
creating 85
expressions and 107
control buttons 33
Control menu (debugger) 140
conventions 11
figures 12
host terminology 12
keyboard shortcuts 13
Copy command (debugger) 48, 139

Debugger User Guide DBG-169

Index

Copy to Expression command (debugger) 46, 99,

144

creating a conditional breakpoint 85
current-statement arrow 35, 140

at breakpoint 81

defined 66

dragging 70

in browser window 44
Cut command (debugger) 138

D

data formats

availability 96

for variables 98
Data menu (debugger) 143
data type

anon 159

casting 145

enumerated 159

multiple 100

showing 94, 143

viewing structured 32
debug column in project window 24
Debug command 25, 152
debugger

control buttons 33

defined 9, 61

font selection 81

launch problems 152

launching 62

launching from a project 25

low-level 142

running directly 26
Debugger Preferences file 142
Debugger Settings 132
debugger, integrated 14
debugging

C++ 123

preparing a file 23

preparing a project 21

static constructors 126
Default command (Debugger) 146
Default size for unbound arrays 124
default size for unbound arrays 124
deleting expressions 46

dereferencing handles 32
Disable Debugger command 22
dump memory 52, 146

E

Edit command (debugger) 78,137
Edit menu (debugger) 138
Enable Debugger command 21, 22, 152
Enable Debugging command 152
entering data

formats 98
Enumeration command (debugger) 147
error

QC 129
escape sequence

entering 147

viewing characters as 147
Expand command 92,143
expanding variables 32, 52,92, 143
expression

and registers 109

and structure members 111

and variables 111

as source address 108

attaching to breakpoint 107

creating 106

defined 105

deleting 46

dragging 106, 107

examples 111

formal syntax 112

in breakpoint window 107

in expression window 106

in memory window 108

limitations 109

literals 111

logical 111

pointers in 111

reordering 46

special features 108
expression window

adding caller variables 100

adding items 99

and variables 99

changing order of items 100

DBG-170 Debugger User Guide

Index

defined 46
Expressions Window command (debugger) 46, 99

F

figure conventions 12
file
preparing for debugging 23
File menu (debugger) 136
file modification dates, ignoring 125
file pane 39,41, 42
and global variables 41
and Global Variables item 93
navigating code with 75
Find command 78, 79, 139
Find command (debugger) 139
Find Next command 78, 80, 139
Find Next command (debugger) 80
Find Selection command 81, 139
Find Selection command (debugger) 80
Fixed command (debugger) 148
Floating Point command (debugger) 147
font selection in debugger 81
formats
entering data in 98
FPU register window 33, 37
FPU registers 102
FPU Registers command (debugger) 54
Fract command (debugger) 148
function pane 39,45
function pop-up menu 39, 45
sorting alphabetically 39, 45

G

General Registers command (debugger) 54
global variables

in browser window 93

in locals pane 32

in Variables pane 93
globals pane 39, 42,93

H

handles
dereferencing 32

Hexadecimal command (debugger) 146

Hide Breakpoints command (debugger) 149
Hide Expressions command (debugger) 149
Hide FPU Registers command (debugger) 149
Hide Processes command (debugger) 148
Hide Registers command (debugger) 149
Hide Watchpoints command (debugger) 149
host terminology conventions 12

I
infinite loops

escaping from 72
integrated debugger 14

K

keyboard conventions 13
Solaris 14

Kill 65

Kill command (debugger) 67, 72, 141
in toolbar 33

killing execution 72
compared to stopping 73

L

launch application
automatically 126
launching debugger 62
directly 26
from a project 25
problems 152
linear code navigation 73
local variables
viewing in debugger 92
Log System Messages 133
log window 48
logical expression 111
loops and conditional breakpoints 85
loops, infinite
escaping from 72
Ivalue 53

Macintosh

Debugger User Guide DBG-171

Index

ROM Monitor program 142
MacsBug

switching between, and MW Debug 142
manual style 11
memory dump 52, 94, 146
memory window 52, 94

changing address 53

changing contents of 53
memory, changing 53
methods (C++)

alphabetizing 42,122
mixed

viewing 37, 44
modification dates

in debugger 126
multiple data types 100

N

navigating code
by call chain 73
by file pane 75
in browser window 75
linear 73
using source code 77
New Expression command (debugger) 143

o)

ObjectSupportLib 18
Open all class files in directory hierarchy 126

Open Array Window command (debugger) 43,
144

Open command (debugger) 136

Open Variable Window command (debugger) 43,

143
opening
a symbolics file 136

P

pane 41
active 30
resizing 30, 39
selecting items in 30, 40
Pascal string
entering data as 99

viewing data as 95
Pascal String command (debugger) 147
Pascal, spurious C code in 163
Paste command (debugger) 139
pointer types 97
PPCTraceEnabler 18
preferences
Always prompt for source file location if file
not found 125
At startup, prompt for SYM file if none
specified 124
Attempt to use dynamic type of C++ or Object
Pascal objects 123
Automatically launch applications when SYM
file opened 126
Confirm “Kill Process” when closing or
quitting 126,136
Default size for unbound arrays 124
Don’t step into runtime support code 129
Ignore file modification dates 125
In variable panes, show variable types by
default 121
QC-aware 129
Save breakpoints 121
Save expressions 121
Save window settings in local “.dbg” files 120
Select stack crawl window when task is
stopped 128
Set breakpoint at program main when launch-
ing applications 127
Settings & Display 120, 121
Show tasks in separate windows 123
show variable types by default 95
Sort functions by method name in browser 42,
121
Use temporary memory for SYM data 124, 154
Preferences command (Debugger) 140
Preparing 21
Process Pane 57
process window 57
Processes Window command (debugger) 57
processor registers 102
Program Arguments 132
program counter. See current-statement arrow
Program to Launch for Debugging Shared Libs,
DLLs and Code Resources 133

DBG-172 Debugger User Guide

Index

Program window
atlaunch 62
program window 30
compared to browser window 39
contents 30
project
preparing for debugging 21
project window
debug column 24

Q

QC-aware (Mac OS) 129
Quit command (debugger) 138

R

RAM Doubler 88
RamDoubler 153
register coloring 158
register window 33, 37
registers 102
changing values 54,55
FPU 102
in expressions 109
viewing 33, 37, 54, 55
viewing memory pointed to by a 100
reordering expressions 46
ResEdit 143
resizing panes 30, 39
return to project environment 78

routine pop-up menu. See function pop-up menu.

Run 65

Run command 25, 66, 88, 136, 140, 152
in toolbar 33

running debugger
See launching debugger 62

S

Save A Copy As 137

Save As command (debugger) 48, 137
Save command (debugger) 48, 137
Select All command (debugger) 139
selecting items in a pane 30, 40

Set Watchpoint command 89, 144
setting breakpoint 47, 82

sharing files between projects 163
shortcut conventions 13
Solaris 14
Show Breakpoints command (debugger) 149
Show Expressions command (debugger) 149
Show FPU Registers command (debugger) 54,102,
149
Show Processes command (debugger) 57, 148
Show Registers command (debugger) 102, 149
Show Types command (debugger) 143, 159
show variable types by default 95
Show Watchpoints command (debugger) 149
Show /Hide Toolbar 34
Signed Decimal command (debugger) 146
skipping statements 70
Solaris
keyboard conventions 14
Source Browser pane 39
source code
font and color 81
navigation 77
viewing 162
source file location 125
source pane 34
source pop-up menu 39, 44
Speed Doubler 88
stack
viewing routine calls 31
stack contents, viewing 102
stack crawl pane 31,73
static constructors
debugging 126
Step Into 65
Step Into command (debugger) 68, 141
in toolbar 33
Step Out 65
Step Out command (debugger) 69, 141, 142
in toolbar 33
Step Over 65
Step Over command
in toolbar 33
Step Over command (debugger) 68, 141
stepping
into routines 68

Debugger User Guide DBG-173

Index

into runtime code 129 launching debugger 152
out of routines 69 no source code 162
through code 68 outdated source files 162
Stop 65 Run command 153
Stop command (debugger) 67,71, 140 slow launching 154
in toolbar 33 source code view 162
stopping execution 71 strange data types 159
compared to killing 73 strange variable names 159

Strings undefined indentifier 161
Viewing as C String variable doesn’t change 157

See C String command 147 type. See data type.
Viewing as Pascal String typographical conventions 11
See Pascal String command 147 U
Switch to Monitor command (debugger) 142

Switch To MW Debugger command 78 undefined identifier 161

switch to project environment 78 Undo command (debugger) 138

Symbolics file Unsigned Decimal command (debugger) 146
and debugging 22 Use External Editor 123
contents 27
defined 22,27 VvV

multiple open files 40
opening 136
symbolics file
opening 26
syntax coloring 81

Variable Change Hilite 124

variable window 50, 94

variables
automatically closing windows 50
changing value 98
data formats 98

T enumerated 147
Tasks Pane 58 expanding 32, 52,92, 143
temporary breakpoint 70 global 41,42,93
effect on regular breakpoint 83 global in browser window 93
setting 83 in expression window 99
temporary memory in separate windows 94
debugger use of 154 local 32,92,99

temporary variables 159 opening a window for 43
threads placing in separate windows 43

static 42

strange names 159

temporary 159
Variables pane 92

and global variables 93
variables pane 32
View As command (debugger) 144

viewing 57
_ throw() 142
tracing code 68
troubleshooting
breakpoints 155, 156
bus error 156
changing variable values 157

data types 160 View Memory As command 52
Enable Debugging 152 View Memory As command (debugger) 50, 101,
error on launch 153 146

DBG-174 Debugger User Guide

Index

View Memory command 52

View Memory command (debugger) 101, 146

viewing
breakpoints 83
call chain 31

code as assembly 27,37, 44

code as mixed 37,44

data as multiple types 100

global variables 42,93
local variables 92
memory 94

memory at an address 100

pointer types 97

registers 33, 37,55

stack 102

watchpoints 90
virtual memory

and debugger 154

w

watchpoint 149

clearing 48, 90

defined 88

restrictions on 89

setting 89

viewing 90

watchpoint window 48
Watchpoint Hilite 124
watchpoint window 48, 149

opening 48
watchpoints

on 68K machines 88
Watchpoints Window command 90
Watchpoints Window command (debugger) 48
Window menu (debugger) 148
Working Directory 132

Debugger User Guide DBG-175

Index

DBG-176 Debugger User Guide

	CodeWarrior Debugger User’s Guide
	Introduction
	Overview of the Debugger Manual
	Metrowerks Year 2000 Compliance
	Read the Release Notes!
	Manual Conventions
	Typographical conventions
	Host Conventions
	Figure Conventions
	Keyboard Conventions

	What’s New
	System Requirements
	Windows
	Mac�OS
	Solaris

	Installing MW Debug
	Starting Points
	Where to Learn More

	Getting Started
	Getting Started Overview
	Preparing for Debugging
	Setting Up a Target for Debugging
	Setting Up a File for Debugging
	Generating Symbolics Information

	Launching the Debugger
	Using the Integrated Debugger
	Launching MW Debug from the IDE (Mac OS)
	Launching MW Debug Directly

	Symbolics Files

	What You See
	What You See Overview
	Program Window
	Stack Crawl Pane
	Variables Pane
	Debugger Toolbar
	Source Pane

	Browser Window
	File Pane
	Function Pane
	Globals Pane
	Browser Source Pane
	Function Pop-up Menu

	Expression Window
	Breakpoint Window
	Watchpoint Window
	Log Window
	Variable Window
	Array Window
	Memory Window
	Register Window
	Process Window
	Process Pane
	Tasks Pane
	Process Window Toolbar

	Basic Debugging
	Basic Debugging Overview
	Starting Up
	Running, Stepping, and Stopping Code
	Current-Statement Arrow
	Running Your Code
	Stepping a Single Line
	Stepping Into Routines
	Stepping Out of Routines
	Skipping Statements
	Stopping Execution
	Killing Execution

	Navigating Code
	Linear Navigation
	Call-Chain Navigation
	Browser Window Navigation
	Source-Code Navigation
	Using the Find Dialog
	Changing Font and Color

	Breakpoints
	Setting Breakpoints
	Clearing Breakpoints
	Temporary Breakpoints
	Viewing Breakpoints
	Conditional Breakpoints
	Impact of Optimizing Code on Breakpoints

	Watchpoints
	Setting Watchpoints
	Clearing Watchpoints
	Viewing Watchpoints

	Viewing and Changing Data
	Viewing Local Variables
	Viewing Global Variables
	Putting Data in a New Window
	Viewing Data Types
	Viewing Data in a Different Format
	Viewing Data as Different Types
	Changing the Value of a Variable
	Using the Expression Window
	Viewing Raw Memory
	Viewing Memory at an Address
	Viewing Processor Registers

	Editing Source Code

	Expressions
	Expressions Overview
	How Expressions are Interpreted
	Expressions in the Expression Window
	Expressions in the Breakpoint Window
	Expressions in the Memory Window

	Using Expressions
	Special Expression Features
	Expression Limitations

	Example Expressions
	Expression Syntax

	Debugger Preferences
	Debugger Preferences Overview
	MW Debug Preference Panels
	Settings
	Display
	Symbolics
	Program Control
	Win32 Settings
	Windows Java Settings
	Windows Runtime Settings

	Integrated Debugger Target Panels
	Target Settings
	x86 Exceptions (Windows)

	Debugger Menus
	Debugger Menus Overview
	File Menu
	Edit Menu
	Control Menu
	Data Menu
	Window Menu
	Help menu (Windows)
	Apple Menu (Mac OS)

	Troubleshooting
	About Troubleshooting
	General Problems
	Problems Launching the Debugger
	The debugger won’t launch
	Debug does nothing
	Errors reported on launch (Mac OS)
	Slow launching (Mac OS)

	Problems Running/Crashing the Debugger
	Project works in the debugger, crashes without

	Problems with Breakpoints
	Statements don’t have breakpoints
	Breakpoints don’t respond

	Problems with Variables
	A variable doesn’t change
	Variables are assigned incorrect values
	Strange variables
	Strange data types
	Unrecognized data types
	“undefined identifier” in the expression window

	Problems with Source Files
	No source-code view
	Outdated source files
	Sharing source code between projects
	Spurious ANSI C code in Pascal projects

	Debugger Error Messages

	Index

