

Dreamcast
GNUPro

™

 Toolkit
Debugging Tool

Debugging with GDB
GDB GUI

GDBtk

Important Information

This documentation has been provided courtesy of CYGNUS. The contents are applicable to GNUProª Toolkit
development, however, all references to development support offered by CYGNUS should be ignored.

Technical support for this product as it applies to the Sega Dreamcastª development environment should be
directed to Sega Third Party Developer Technical Support at 415/701-4060. Future updates and/or additional
information may also be found at SegaÕs DTS Website at,

http//:www.dts.sega.com/NextGen

Frontispiece

ii ■ GNUPro Debugging Tools GNUPro Toolkit

Copyright © 1991-1998 Cygnus.

All rights reserved.

GNUPro™, the GNUPro™ logo and the Cygnus logo are all trademarks of Cygnus.

All other brand and product names are trademarks of their respective owners.

Permission is granted to make and distribute verbatim copies of this documentation,
provided the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this documentation
under the conditions for verbatim copying, provided also that the entire resulting
derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this documentation into
another language, under the above conditions for modified versions.

This documentation has been prepared by Cygnus Technical Publications; contact the
Cygnus Technical Publications staff: doc@cygnus.com .

Part #: 300-400-1010043

CYGNUS GNUPro Debugging Tools ■ iii

Frontispiece

G
N

U
P

ro
D

eb
ug

gi
ng

T
oo

ls

GNUPro warrant y
The GNUPro Toolkit is free software, covered by the GNU General Public License,
and you are welcome to change it and/or distribute copies of it under certain
conditions. This version of GNUPro Toolkit is supported for customers of Cygnus.

For non-customers, GNUPro Toolkit software has NO WARRANTY.

Because this software is licensed free of charge, there are no warranties for it, to the
extent permitted by applicable law. Except when otherwise stated in writing, the
copyright holders and/or other parties provide the software “as is” without warranty of
any kind, either expressed or implied, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. The entire risk as to
the quality and performance of the software is with you. Should the software prove
defective, you assume the cost of all necessary servicing, repair or correction.

In no event, unless required by applicable law or agreed to in writing, will any
copyright holder, or any other party who may modify and/or redistribute the program
as permitted above, be liable to you for damages, including any general, special,
incidental or consequential damages arising out of the use or inability to use the
program (including but not limited to loss of data or data being rendered inaccurate or
losses sustained by you or third parties or a failure of the program to operate with any
other programs), even if such holder or other party has been advised of the possibility
of such damages.

Frontispiece

iv ■ GNUPro Debugging Tools GNUPro Toolkit

How to contact C ygnus
Use the following means to contact Cygnus.

Cygnus Headquarters
1325 Chesapeake Terrace
Sunnyvale, CA 94089 USA
Telephone (toll free): +1 800 CYGNUS-1
Telephone (main line): +1 408 542 9600
Telephone (hotline): +1 408 542 9601
FAX: +1-408 542 9699
(Faxes are answered 8 a.m.–5 p.m., Monday through Friday.)
email: info@cygnus.com
Website: www.cygnus.com .

Cygnus United Kingdom
36 Cambridge Place
Cambridge CB2 1NS
United Kingdom
Telephone: +44 1223 728728
FAX: +44 1223 728728
email: info@cygnus.co.uk/

Cygnus Japan
Nihon Cygnus Solutions
Madre Matsuda Building
4-13 Kioi-cho Chiyoda-ku
Tokyo 102-0094
Telephone: +81 3 3234 3896
FAX: +81 3 3239 3300
email: info@cygnus.co.jp
Website: http://www.cygnus.co.jp/

Use the hotline (+1 408 542 9601) to get help, although the most reliable way to
resolve problems with GNUPro Toolkit is by using email:

bugs@cygnus.com .

CYGNUS GNUPr0 Debugging Tools ■ v

G
N

U
P

r0
D

eb
ug

gi
ng

T
oo

ls

Contents

GNUPro warranty..iii
How to contact Cygnus.. iv

 Debugging with GDB

Summary of the GNU Debugger, GDB...3
GDB as free software..5
Contributors to GDB...6

Installing GDB...9
Compiling GDB in another directory.. 11

Specifying names for hosts and targets..12
configure options..13

Getting In and Out of GDB ...15
Invoking GDB...16
Choosing files..17
Choosing modes..19
Quitting GDB..21
Shell commands..22

GDB Commands ..23
Command syntax...24
Command completion...25
Getting help...27

Contents

vi ■ GNUPr0 Debugging Tools GNUPro Toolkit

Running programs under GDB...31
Compiling for debugging..32
Starting your program...33
Your program’s arguments..35
Your program’s environment..36
Your program’s working directory..38
Your program’s input and output..39
Debugging an already-running process...40
Killing the child process..41
Additional process information...42
Debugging programs with multiple threads..43
Debugging programs with multiple processes..46

Stopping and continuing..47
Breakpoints, watchpoints, and exceptions..49
Setting breakpoints..50
Setting watchpoints...54
Breakpoints and exceptions...55
Deleting breakpoints...56
Disabling breakpoints..57
Break conditions..59
Breakpoint command lists...61
Breakpoint menus..63
Continuing and stepping...64
Signals...67
Stopping and starting multi-thread programs..69

Examining the stack ..71
Stack frames..72
Backtraces...73
Selecting a frame...74
Information about a frame...76

Examining source files ..79
Printing source lines..80
Searching source files...82
Specifying source directories..83
Source and machine code..84

Examining data..87
Expressions...88
Program variables..89
Artificial arrays...91

CYGNUS GNUPr0 Debugging Tools ■ vii

Contents

G
N

U
P

r0
D

eb
ug

gi
ng

T
oo

ls

Output formats..92
Examining memory...93
Automatic display...95
Print settings..97
Value history..102
Convenience variables..103
Registers..105
Floating point hardware..107

Using GDB with different languages ..119
Switching between source languages..120

List of filename extensions and languages..120
Setting the working language..121
Having GDB infer the source language..121

Displaying the language..122
Type and range checking...123

An overview of type checking...123
An overview of range checking..124

Supported languages...126
Examining the symbol table ..141
Altering execution..145

Assignment to variables..146
Continuing at a different address..147
Giving your program a signal...148
Returning from a function...149
Calling program functions...150
Patching programs...151

GDB files ..153
Commands to specify files..154
Errors reading symbol files...159

Specifying a debugging target ...163
Active targets..164
Commands for managing targets..165
Choosing target byte order..168
Remote debugging..169
The GDB remote serial protocol...170

What the stub can do for you...171
What you must do for the stub...172
Putting it all together...174
Communication protocol...175

Contents

viii ■ GNUPr0 Debugging Tools GNUPro Toolkit

Using the gdbserver program..176
Using the gdbserve.nlm program..178
GDB with a remote i960 (Nindy)...179
The UDI protocol for AMD29K...180
GDB with a Tandem ST2000...183
GDB and VxWorks...184
GDB and SPARClet...186
Connecting to SPARClet..187
SPARClet download...187
GDB and Hitachi microprocessors..188
GDB and remote MIPS boards..189

Controlling GDB..193
Prompt...194
Command editing..195
Command history..196
Screen size...198
Numbers..199
Optional warnings and messages..200

Canned sequences of commands...215
User-defined commands..216
User-defined command hooks...218
Command files..219
Commands for controlled output..220

Using GDB under GNU Emacs...223
Reporting Bugs in GDB...227

Have you found a bug?...228
How to report bugs..229

Command Line Editing..233
Introduction to Line Editing..234
Readline Interaction..235

Readline Bare Essentials...235
Readline Movement Commands...236
Readline Killing Commands..236
Readline Arguments...237

Readline Init File...238
Readline Init Syntax...238
Letting Readline Type For You..242
Readline vi Mode..243

CYGNUS GNUPr0 Debugging Tools ■ ix

Contents

G
N

U
P

r0
D

eb
ug

gi
ng

T
oo

ls

Using History Interactively..247
History Interaction..248

Event Designators..248
Word Designators..248
Modifiers..249

Formatting Documentation ...251

 GDBtk

Licensing for GDBtk...257
Introduction to GDBtk...259
Interface for GDBtk...261

Source Window...262
Menu bar for the Source Window..264
Toolbar buttons..267
Special display pane features..271
Using the mouse in the display pane...272
Below the horizontal scroll bar...274

Dialog boxes for the Source Window...276
Load New Executable dialog box for the Source Window.....................................276
Page Setup dialog box for the Source Window..277
Print dialog box for the Source Window...278
Target selection from the Source Window...279
Global Preferences dialog box for the Source window...282
Source Preferences dialog box for the Source window...283

Stack window..284
Registers window..285

Register menu for the Register window...286
Memory window...287

Address menu for the Memory window..287
Watch Expressions window..290

Add Watch button for the Watch Expressions window..292
Watching registers with the Watch Expressions window......................................292
Casting pointers in the Watch Expressions window..292

Local Variables window..293
Breakpoints window..295

Breakpoint menu for the Breakpoints window...295
Global menu for the Breakpoints window...296

Console window..297
Help window...298

Contents

x ■ GNUPr0 Debugging Tools GNUPro Toolkit

File menu for the Help window..299
Topics menu for the Help window...299

Procedures..301
Initializing a target executable file..302
Selecting a source file...304
Setting breakpoints and viewing local variables...306

Index ... 309

D
eb

ug
gi

ng
w

ith
G

D
B

GNUPRO™ TOOLKIT

Debugging with GDB

July, 1998

98r1

CYGNUS

2 ■ Debugging with GDB GNUPro Toolkit

Copyright © 1991-1998 Cygnus.

All rights reserved.

GNUPro™, the GNUPro™ logo and the Cygnus logo are all trademarks of Cygnus.

All other brand and product names are trademarks of their respective owners.

Permission is granted to make and distribute verbatim copies of this documentation,
provided the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this documentation
under the conditions for verbatim copying, provided also that the entire resulting
derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this documentation into
another language, under the above conditions for modified versions.

This documentation has been prepared by Cygnus Technical Publications; contact the
Cygnus Technical Publications staff: doc@cygnus.com .

CYGNUS Debugging with GDB ■ 3

1:
 S

um
m

ar
y

of
 th

e
G

N
U

 D
eb

ug
ge

r,

G
D

B

Summar y of the GNU Debu gger,
GDB

The purpose of a debugger such as the GNU debugger, GDB, is to allow you to see
what is going on inside another program while it executes—or what another program
was doing at the moment it crashed. GDB can do four main kinds of things to help you
catch bugs.

■ Start your program, specifying anything that might affect its behavior.

■ Make your program stop on specified conditions.

■ Examine what has happened, when your program has stopped.

■ Change things in your program, so you can experiment with correcting the effects
of one bug and go on to learn about another problem affecting your program.

The following documentation provides more details about the GNU debugger, GDB.

■ “Installing GDB” on page 9

■ “Getting In and Out of GDB” on page 15

■ “GDB Commands” on page 23

■ “Running programs under GDB” on page 31

■ “Stopping and continuing” on page 47

■ “Examining the stack” on page 71

■ “Examining source files” on page 79

■ “Examining data” on page 87

1

4 ■ Debugging with GDB GNUPro Toolkit

■ “Using GDB with different languages” on page 119

■ “Examining the symbol table” on page 141

■ “Altering execution” on page 145

■ “GDB files” on page 153

■ “Specifying a debugging target” on page 163

■ “Controlling GDB” on page 193

■ “Canned sequences of commands” on page 215

■ “Using GDB under GNU Emacs” on page 223

■ “Reporting Bugs in GDB” on page 227

■ “Command Line Editing” on page 233

■ “Using History Interactively” on page 247

■ “Formatting Documentation” on page 251

See also the documentation for the integrated development environment, GDBtk.

■ “Introduction to GDBtk” on page 259

■ “Interface for GDBtk” on page 261

CYGNUS Debugging with GDB ■ 5

GDB as free software

1:
 S

um
m

ar
y

of
 th

e
G

N
U

 D
eb

ug
ge

r,

G
D

B

GDB as free software
GDB is free software, protected by the GNU General Public License (GPL). The GPL
gives you the freedom to copy or adapt a licensed program—but every person getting
a copy also gets with it the freedom to modify that copy (which means that they must
get access to the source code), and the freedom to distribute further copies. Typical
software companies use copyrights to limit your freedoms; the Free Software
Foundation uses the GPL to preserve these freedoms. Fundamentally, the General
Public License is a license which says that you have these freedoms and that you
cannot take these freedoms away from anyone else. To see the GNU General Public
License, see Legal Notices in GNUPro Advanced Topics.

Contributors to GDB

6 ■ Debugging with GDB GNUPro Toolkit

Contributors to GDB
Richard Stallman was the original author of GDB, and of many other GNU programs.
Many others have contributed to its development. This section attempts to credit
major contributors. One of the virtues of free software is that everyone is free to
contribute to it; with regret, we cannot actually acknowledge everyone here. The file
‘ChangeLog ’ in the GDB distribution approximates a blow-by-blow account. Changes
much prior to version 2.0 are lost in the mists of time.

NOTE: Additions to this section are particularly welcome. If you or your friends (or
enemies, to be evenhanded) have been unfairly omitted from this list, we
would like to add your names!

So that they may not regard their long labor as thankless, we particularly thank those
who shepherded GDB through major releases: Stan Shebs (release 4.14), Fred Fish
(releases 4.13, 4.12, 4.11, 4.10, and 4.9), Stu Grossman and John Gilmore (releases
4.8, 4.7, 4.6, 4.5, and 4.4), John Gilmore (releases 4.3, 4.2, 4.1, 4.0, and 3.9); Jim
Kingdon (releases 3.5, 3.4, and 3.3); and Randy Smith (releases 3.2, 3.1, and 3.0). As
major maintainer of GDB for some period, each contributed significantly to the
structure, stability, and capabilities of the entire debugger.

Richard Stallman, assisted at various times by Peter TerMaat, Chris Hanson, and
Richard Mlynarik, handled releases through 2.8.

Michael Tiemann is the author of most of the GNU C++ support in GDB, with
significant additional contributions from Per Bothner. James Clark wrote the GNU
C++ demangler. Early work on C++ was by Peter TerMaat (who also did much
general update work leading to release 3.0).

GDB 4 uses the BFD subroutine library to examine multiple object-file formats; BFD
was a joint project of David V. Henkel-Wallace, Rich Pixley, Steve Chamberlain, and
John Gilmore.

David Johnson wrote the original COFF support; Pace Willison did the original
support for encapsulated COFF.

Adam de Boor and Bradley Davis contributed the ISI Optimum V support.

Per Bothner, Noboyuki Hikichi, and Alessandro Forin contributed MIPS support.

Jean-Daniel Fekete contributed Sun 386i support.

Chris Hanson improved the HP9000 support.

Noboyuki Hikichi and Tomoyuki Hasei contributed Sony/News OS 3 support.

David Johnson contributed Encore Umax support.

Jyrki Kuoppala contributed Altos 3068 support.

CYGNUS Debugging with GDB ■ 7

Contributors to GDB

1:
 S

um
m

ar
y

of
 th

e
G

N
U

 D
eb

ug
ge

r,

G
D

B

Jeff Law contributed HP PA and SOM support.

Keith Packard contributed NS32K support.

Doug Rabson contributed Acorn Risc Machine support.

Bob Rusk contributed Harris Nighthawk CXUX support.

Chris Smith contributed Convex support (and Fortran debugging).

Jonathan Stone contributed Pyramid support.

Michael Tiemann contributed SPARC support.

Tim Tucker contributed support for the Gould NP1 and Gould Powernode.

Pace Willison contributed Intel 386 support.

Jay Vosburgh contributed Symmetry support.

Rich Schaefer and Peter Schauer helped with support of SunOS shared libraries.

Jay Fenlason and Roland McGrath ensured that GDB and GAS agree about several
machine instruction sets.

Patrick Duval, Ted Goldstein, Vikram Koka and Glenn Engel helped develop remote
debugging.

Intel Corporation and Wind River Systems contributed remote debugging modules for
their products.

Brian Fox is the author of the readline libraries providing command-line editing and
command history.

Andrew Beers of SUNY Buffalo wrote the language-switching code, the Modula-2
support, and contributed the Languages chapter of Debugging with GDB.

Fred Fish wrote most of the support for Unix System Vr4. He also enhanced the
command-completion support to cover C++ overloaded symbols.

Hitachi America, Ltd. sponsored the support for Hitachi microprocessors.

Kung Hsu, Jeff Law, and Rick Sladkey added support for hardware watchpoints.

Stu Grossman wrote gdbserver .

Jim Kingdon, Peter Schauer, Ian Taylor, and Stu Grossman made nearly innumerable
bug fixes and cleanups throughout GDB.

Contributors to GDB

8 ■ Debugging with GDB GNUPro Toolkit

CYGNUS Debugging with GDB ■ 9

2:
 In

st
al

lin
g

G
D

B

Installin g GDB

GDB comes with a configure script that automates the process of preparing GDB for
installation; you can then use make to build the gdb program.

The GDB distribution includes all the source code you need for GDB in a single
directory, whose name is usually composed by appending the version number to
‘gdb ’.

For example, the GDB version 4.17-98r1 distribution is in the ‘gdb-4.17-98r1 ’
directory.

That directory contains the following files.

gdb-4.17-98r1/configure (and supporting files)
Script for configuring GDB and all its supporting libraries

gdb-4.17-98r1/gdb

The source specific to GDB itself
gdb-4.17-98r1/bfd

Source for the Binary File Descriptor library
gdb-4.17-98r1/include

GNU include files
gdb-4.17-98r1/libiberty

Source for the ‘-liberty ’ free software library
gdb-4.17-98r1/opcodes

Source for the library of opcode tables and disassemblers

2

10 ■ Debugging with GDB GNUPro Toolkit

gdb-4.17-98r1/readline

Source for the GNU command-line interface
gdb-4.17-98r1/glob

Source for the GNU filename pattern-matching subroutine
gdb-4.17-98r1/mmalloc

Source for the GNU memory-mapped malloc package

The simplest way to configure and build GDB is to run configure from the
‘gdb- version-number ’ source directory, which in this example is the
‘gdb-4.17-98r1 ’ directory.

First switch to the ‘gdb- version-number ’ source directory if you are not already in it;
then run configure .

Pass the identifier for the platform on which GDB will run as an argument.

Consider the following, for example.
cd gdb-4.17-98r1
./ configure host
make

host is an identifier such as ‘sun4 ’ or ‘decstation ’, that identifies the platform where
GDB will run. (You can often leave off host; configure tries to guess the correct
value by examining your system.)

Running ‘configure host ’ and then running make builds the ‘bfd ’, ‘ readline ’,
‘mmalloc ’, and ‘libiberty ’ libraries, then gdb itself. The configured source files, and
the binaries, are left in the corresponding source directories.

configure is a Bourne-shell (/bin/sh) script; if your system does not recognize this
automatically when you run a different shell, you may need to run sh on it explicitly:
sh configure host

If you run configure from a directory that contains source directories for multiple
libraries or programs, such as the ‘gdb-4.17-98r1 ’ source directory for version 4.17-
98r1, configure creates configuration files for every directory level underneath
(unless you tell it not to, with the --norecursion option). You can run the configure
script from any of the subordinate directories in the GDB distribution if you only want
to configure that subdirectory, but be sure to specify a path to it. For example, with
version 4.17-98r1, type the following to configure only the bfd subdirectory:
cd gdb-4.17-98r1/bfd
../configure host

You can install gdb anywhere; it has no hardwired paths. However, you should make
sure that the shell on your path (named by the ‘SHELL’ environment variable) is
publicly readable. Remember that GDB uses the shell to start your program—some
systems refuse to let GDB debug child processes whose programs are not readable.

CYGNUS Debugging with GDB ■ 11

Compiling GDB in another directory

2:
 In

st
al

lin
g

G
D

B

Compiling GDB in another directory
If you want to run GDB versions for several host or target machines, you need a
different gdb compiled for each combination of host and target. configure is
designed to make this easy by allowing you to generate each configuration in a
separate subdirectory, rather than in the source directory. If your make program
handles the ‘VPATH’ feature (GNU make does; for more on the VPATH option, see GNU
Make in GNUPro Advanced Topics), running make in each of these directories builds
the gdb program specified there.

To build gdb in a separate directory, run configure with the ‘--srcdir ’ option to
specify where to find the source. (You also need to specify a path to find configure
itself from your working directory. If the path to configure would be the same as the
argument to ‘--srcdir ’, you can leave out the ‘--srcdir ’ option; it is assumed.) For
example, with the current version, you can build GDB in a separate directory for your
machine, using the following declaration (where version is the version which you
have installed by default and host is the host machine with which you installed the
tools).
cd gdb- version
mkdir ../gdb- host
cd ../gdb- host
../gdb- version /configure host
make

When configure builds a configuration using a remote source directory, it creates a
tree for the binaries with the same structure (and using the same names) as the tree
under the source directory. In the example, you’d find the host library, libiberty.a ,
in the directory ‘gdb- host /libiberty ’, and GDB itself in ‘gdb- host /gdb ’.

One popular reason to build several GDB configurations in separate directories is to
configure GDB for cross-compiling (where GDB runs on one machine—the host—
while debugging programs that run on another machine—the target).

You specify a cross-debugging target by giving the ‘--target= target ’ option to
configure .

When you run make to build a program or library, you must run it in a configured
directory—whatever directory you were in when you called configure (or one of its
subdirectories).

The Makefile that configure generates in each source directory also runs
recursively.

If you type make in a source directory such as ‘gdb- version ’ (or in a separate
directory configured with ‘--srcdir= dirname /gdb- version ’), you will build all the
required libraries, and then build GDB.

Specifying names for hosts and targets

12 ■ Debugging with GDB GNUPro Toolkit

When you have multiple hosts or targets configured in separate directories, you can
run make on them in parallel (for example, if they are NFS-mounted on each of the
hosts); they will not interfere with each other.

Specifying names for hosts and targets
The specifications used for hosts and targets in the configure script are based on a
three-part naming scheme, but some short predefined aliases are also supported. The
full naming scheme encodes three pieces of information in the following triplet
pattern: architecture-vendor-os .

For example, use the alias, sun4 , as a host argument, or as the value for target in a
--target= target option.

‘sparc-sun-sunos4 ’ is the equivalent full name.

The configure script accompanying GDB does not provide any query facility to list
all supported host and target names or aliases. configure calls the Bourne shell script,
config.sub , to map abbreviations to full names; you can read the script, if you wish,
or you can use it to test your guesses on abbreviations, as in the following example.
% sh config.sub sun4
sparc-sun-sunos4.1.1
% sh config.sub sun3
m68k-sun-sunos4.1.1
% sh config.sub decstation
mips-dec-ultrix4.2
% sh config.sub hp300bsd
m68k-hp-bsd
% sh config.sub i386v
i386-unknown-sysv
% sh config.sub i786v
Invalid configuration ‘i786v’: machine ‘i786v’ not recognized

config.sub is also distributed in the GDB source directory.

CYGNUS Debugging with GDB ■ 13

configure options

2:
 In

st
al

lin
g

G
D

B

configure options
The following example summarizes the configure options and arguments that are
most often useful for building GDB. configure also has several other options not
listed here. See ‘configure.info ’file , node ‘What Configure Does ’, for a full
explanation of configure .
configure [--help]
[--prefix= dir]
[--srcdir= dirname]
[--norecursion][--rm]
[--target= target] host

You may introduce options with a single ‘- ’ rather than ‘-- ’ if you prefer; but you may
abbreviate option names if you use ‘-- ’.
--help

Display a quick summary of how to invoke configure .
-prefix= dir

Configure the source to install programs and files under directory ‘dir ’.
--srcdir= dirname

Use this option to make configurations in directories separate from the GDB
source directories. Among other things, you can use this to build (or maintain)
several configurations simultaneously, in separate directories.

configure writes configuration specific files in the current directory, but arranges
for them to use the source in the directory dirname .

configure creates directories under the working directory in parallel to the source
directories below dirname .

WARNING: Using this option requires GNU make, or another make that implements the
VPATH feature; for more on the VPATH option, see GNU Make in GNUPro
Advanced Topics.

--norecursion

Configure only the directory level where configure is executed; do not propagate
configuration to subdirectories.

--rm

Remove files otherwise built during configuration.
--target= target

Configure GDB for cross-debugging programs running on the specified target .
Without this option, GDB is configured to debug programs that run on the same
machine (host) as GDB itself. There is no convenient way to generate a list of all
available targets.

host ...

Configure GDB to run on the specified host . There is no convenient way to

configure options

14 ■ Debugging with GDB GNUPro Toolkit

generate a list of all available hosts.

configure accepts other options, for compatibility with configuring other GNU tools
recursively; but these are the only options that affect GDB or its supporting libraries.

CYGNUS Debugging with GDB ■ 15

3:
 G

et
tin

g
In

 a
nd

 O
ut

 o
f G

D
B

Gettin g In and Out of GDB

The following documentation discusses invoking the debugger, choosing files,
choosing modes, stopping the debugger and some essential shell commands.

The essentials are starting gdb and quitting gdb .

• Type gdb to start the debugger in a graphical interface mode or use the command,
gdb -nw , to start the debugger in a non-window interface mode.

• Type quit or use the keystroke sequence, Control-d, to exit.

The following documentation discusses the main essentials of working with GDB.

• “Invoking GDB” on page 16

• “Choosing files” on page 17

• “Choosing modes” on page 19

• “Quitting GDB” on page 21

• “Shell commands” on page 22

3

Invoking GDB

16 ■ Debugging with GDB GNUPro Toolkit

Invoking GDB
Invoke GDB by running the program gdb . Once started, GDB reads commands from
the terminal until you tell it to quit.

You can also run gdb with a variety of arguments and options, to specify more of your
debugging environment at the outset.

The command-line options described in the following discussions are designed to
cover a variety of situations; in some environments, effectively, some of these options
may be unavailable.

The most usual way to start GDB is with one argument, specifying an executable
program, program , that you want to debug.
gdb program

You can also start with both an executable program and a core file specified as the
following example’s input and variables show, where the core file is signified as core .
gdb program core

You can, instead, specify a process ID as a second argument, if you want to debug a
running process, for instance, as the following example’s input and variables show.
gdb program 1234

Your machine hereby attaches GDB to process 1234 (unless you also have a file
named ‘1234 ’; GDB does check for a core file first).

Taking advantage of the second command-line argument requires a fairly complete
operating system; when you use GDB as a remote debugger attached to a bare board,
there may not be any notion of process, and there is often no way to get a core dump.

You can run gdb without printing the front material, which describes GDB’s non-
warranty, by specifying -silent :
gdb -silent

You can further control how GDB starts up by using command-line options. GDB
itself can remind you of the options available.

To display all available options and briefly describe their use, use gdb -help as input
(‘gdb -h ’ is a shorter equivalent).

All options and command line arguments you give are processed in sequential order.
The order makes a difference when using the ‘-x ’ option.

CYGNUS Debugging with GDB ■ 17

Choosing files

3:
 G

et
tin

g
In

 a
nd

 O
ut

 o
f G

D
B

Choosing files
When GDB starts, it reads any arguments other than options as specifying an
executable file and core file (or process ID). This is the same as if the arguments were
specified by the ‘-se ’ and ‘-c ’ options respectively. (GDB reads the first argument
that does not have an associated option flag as equivalent to the ‘-se ’ option followed
by that argument; and the second argument that does not have an associated option
flag, if any, as equivalent to the ‘-c ’ option followed by that argument.)

Many options have both long and short forms; both are shown in the following list.
GDB also recognizes the long forms if you truncate them, so long as enough of the
option is present to be unambiguous. (If you prefer, you can flag option arguments
with ‘ -- ’ rather than ‘- ’, though we illustrate the more usual convention.)
-symbols file
-s file

Read symbol table from file, file .

-exec file
-e file

Use file, file , as the executable file to execute when appropriate, and for
examining pure data in conjunction with a core dump.

-se file
Read symbol table from file, file , and use it as the executable file.

-core file
- c file

Use file, file , as a core dump to examine.

- c number

Connect to process ID number, as with the attach command (unless there is a file
in coredump format named number , in which case ‘-c ’ specifies that file as a core
dump to read).

-command file
-x file

Execute GDB commands from file, file . See “Command files” on page 219.

-directory directory

- d directory

Add directory to the path to search for source files.
-m

-mapped
If memory-mapped files are available on your system through the mmap system
call, you can use this option to have GDB write the symbols from your program
into a reusable file in the current directory. If the program you are debugging is

Choosing files

18 ■ Debugging with GDB GNUPro Toolkit

called ‘/tmp/fred ’, the mapped symbol file is ‘./fred.syms ’. Future GDB
debugging sessions notice the presence of this file, and can quickly map in symbol
information from it, rather than reading the symbol table from the executable
program.

The ‘.syms ’ file is specific to the host machine where GDB is run. It
holds an exact image of the internal GDB symbol table. It cannot be
shared across multiple host platforms.

WARNING: This option depends on operating system facilities that are not supported on
all systems.

-r
-readnow

Read each symbol file’s entire symbol table immediately, rather than the default,
which is to read it incrementally as it is needed. This makes startup slower, but
makes future operations faster.

The -mapped and -readnow options are typically combined in order to build a ‘.syms ’
file that contains complete symbol information. (See “Commands to specify files”
on page 154 for information.

A ‘ .syms ’ file for future use is what the following example shows.
gdb -batch -nx -mapped -readnow programname

CYGNUS Debugging with GDB ■ 19

Choosing modes

3:
 G

et
tin

g
In

 a
nd

 O
ut

 o
f G

D
B

Choosing modes
Run GDB in alternative modes—for example, in batch mode or quiet mode.

-nx
-n

Do not execute commands from any initialization files (normally called
‘ .gdbinit ’). Normally, the commands in these files are executed after all the
command options and arguments have been processed. See “Command files”
on page 219.

-quiet
-q

Quiet. Do not print the introductory and copyright messages. These messages are
also suppressed in batch mode.

-batch

Run in batch mode. Exit with status 0 after processing all the command files
specified with ‘-x ’ (and all commands from initialization files, if not inhibited
with ‘ -n ’). Exit with non-zero status if an error occurs in executing the GDB
commands in the command files.

Batch mode may be useful for running GDB as a filter, for example to download
and run a program on another computer; in order to make this more useful, the
following message does not issue when running in batch mode (ordinarily, the
message issues whenever a program running under GDB control terminates).

-cd directory

Run GDB using directory as its working directory, instead of the current
directory.

-fullname

-f
GNU Emacs sets this option when it runs GDB as a subprocess. It tells GDB to
output the full file name and line number in a standard, recognizable fashion each
time a stack frame is displayed (which includes each time your program stops).
This recognizable format looks like two ‘\032 ’ characters, followed by the file
name, line number and character position separated by colons, and a newline. The
Emacs/GDB interface program uses the two ‘\032 ’ characters as a signal to
display the source code for the frame.

-b bps

Set the line speed (baud rate or bits per second) of any serial interface used by
GDB for remote debugging.

Program exited normally.

Choosing modes

20 ■ Debugging with GDB GNUPro Toolkit

-tty device

Run using device for your program’s standard input and output.

CYGNUS Debugging with GDB ■ 21

Quitting GDB

3:
 G

et
tin

g
In

 a
nd

 O
ut

 o
f G

D
B

Quitting GDB
quit

To exit GDB, use the quit command (abbreviated q), or use an end-of-file
character (usually C-d). If you do not supply expression , GDB will terminate
normally; otherwise it will terminate using the result of expression as the error
code.

An interrupt (often, C-c) does not exit from GDB, but rather terminates the action of
any GDB command that is in progress and returns to GDB command level. It is safe to
use the interrupt character at any time because GDB does not allow it to take effect
until a time when it is safe.

If you have been using GDB to control an attached process or device, you can release
it with the detach command (see “Debugging an already-running process”
on page 40).

Shell commands

22 ■ Debugging with GDB GNUPro Toolkit

Shell commands
If you need to execute occasional shell commands during your debugging session,
there is no need to leave or suspend GDB; you can just use the shell command.

shell command string
Invoke a the standard shell to execute command string .If it exists, the
environment variable, SHELL, determines which shell to run.

Otherwise GDB uses /bin/sh .

The make utility is often needed in development environments. You do not have to use
the shell command for this purpose in GDB.

make make-args
Execute the make program with the specified arguments, make-args . This is
equivalent to ‘shell make make-args ’.

CYGNUS Debugging with GDB ■ 23

4:
 G

D
B

 C
om

m
an

ds

GDB Commands

You can abbreviate a GDB command to the first few letters of the command name, if
that abbreviation is unambiguous; and you can repeat certain GDB commands by
using the Return key. You can also use the TAB key to get GDB to fill out the rest of a
word in a command (or to show you the alternatives available, if there is more than
one possibility).

The following documentation discusses more GDB commands.

• “Command syntax” on page 24

• “Command completion” on page 25

• “Getting help” on page 27

4

Command syntax

24 ■ Debugging with GDB GNUPro Toolkit

Command syntax
A GDB command is a single line of input. There is no limit on how long it can be. It
starts with a command name, which is followed by arguments whose meaning
depends on the command name. For example, the command, step , accepts an
argument which is the number of times to step, as in ‘step 5 ’. You can also use the
step command with no arguments. Some command names do not allow any
arguments.

GDB command names may always be truncated if that abbreviation is unambiguous.
Other possible command abbreviations are listed in the documentation for individual
commands. In some cases, even ambiguous abbreviations are allowed; for example, s
is specially defined as equivalent to step even though there are other commands
whose names start with s. You can test abbreviations by using them as arguments to
the help command.

A blank line as input to GDB (using the Return key just once) means to repeat the
previous command. Certain commands (for example, run) will not repeat this way;
such commands have unintentional repetition which might cause trouble and which it
is unlikely you want to repeat.

The list and x commands, when you repeat them with Return key actions, construct
new arguments rather than repeating exactly as generated. This permits easy scanning
of source or memory.

GDB can also use Return in another way: to partition lengthy output, in a way similar
to the common utility, more (see “Screen size” on page 198). Since it is easy to use
Return one too many times in this situation, GDB disables command repetition after
any command that generates this sort of display.

Any text from a # to the end of the line is a comment; it does nothing. This is useful
mainly in command files (see “Command files” on page 219).

CYGNUS Debugging with GDB ■ 25

Command completion

4:
 G

D
B

 C
om

m
an

ds

Command syntax
GDB can fill in the rest of a word in a command for you, if there is only one
possibility; it can also show you, at any time, what the valid possibiliti es are for the
next word in a command. This works for GDB commands, GDB subcommands, and
the names of symbols in your program.

Use the TAB key whenever you want GDB to fill out the rest of a word. If there is only
one possibility, GDB fills in the word, and waits for you to finish the command (or use
Return to enter it). For example, if you type (gdb) info br e, and use the TAB key,
GDB fills in the rest of the word ‘bre akpoints ’ , since that is the only info
subcommand beginning with ‘bre ’.

You can either use Return at this point, to run the inf o break points command, or use
the BACKSPACE key and enter something else, if ‘ br eakpoints ’ does not look like
the command you expected. (If you were sure you wanted info breakpo i nts in the
first place, you might as well just use Return immediately after ‘ info bre ’, to exploit
command abbreviations rather than command completion). If there is more than one
possibility for the next word when you use the TAB key, GDB sounds a bell. You can
either supply more characters and try again, or just use the TAB key a second time;
GDB displays all the possible completions for that word. For example, you might
want to set a breakpoint on a subroutine whose name begins with ‘make_’, but when
you type b make_ and use the TAB key, GDB just sounds the bell. Using the TAB key
again displays all the function names in your program that begin with those characters.
For example, you type (gdb) b make_ and then use the TAB key. GDB sounds the
bell ; you use the TAB key again, to see the following display.
make_a_section_from_f i le make_envi r on
make_abs_section make_func t ion_type
make_blockvector make_poin t er_type
make_cleanup make_refe r ence_type
make_command make_symbol_completion_li st
(gdb) b make_

After displaying the available possibiliti es, GDB copies your partial input (in the
example, ‘b make_ ’) so you can finish the command. If you just want to see the list of
alternatives in the first place, you can get help by using the command key sequence,
M-? rather than using TAB twice.

IMPORTANT: M-? means using the META key (the diamond-marked key, or else, use ESC)
and the ‘?’ key as a command key sequence.

Sometimes the string you need, while logically a word, may contain parentheses or
other characters that GDB normally excludes from its notion of a word. To permit
word completion to work in this situation, you may enclose words in single quote

Command completion

26 ■ Debugging with GDB GNUPro Toolkit

marks in GDB commands.

The most likely situation where you might need this is in typing the name of a C++
function. This is because C++ allows function overloading (multiple definitions of the
same function, distinguished by argument type). For example, when you want to set a
breakpoint you may need to distinguish whether you mean the version of name that
takes an int parameter, name(int) , or the version that takes a float parameter,
name(float) . To use the word-completion facilities in this situation, type a single
quote, ’ , at the beginning of the function name. This alerts GDB that it may need to
consider more information than usual when you use the TAB key or M-? to request
word completion, as in the following example.

(gdb) b ’bubble(

Use the M-? command key sequence this point.
bubble(double,double) bubble(int,int)
(gdb) b ’bubble(

In some cases, GDB can tell that completing a name requires using quotes. When this
happens, GDB inserts the quote for you (while completing as much as it can) if you do
not type the quote in the first place, as in the following example’s declaration.

(gdb) b bub

Use the TAB key at this point. GDB alters your input line then to the following
declaration, and rings a bell.
(gdb) b ’bubble(

In general, GDB can tell that a quote is needed (and inserts it) if you have not yet
started typing the argument list when you ask for completion on an overloaded
symbol.

CYGNUS Debugging with GDB ■ 27

Getting help

4:
 G

D
B

 C
om

m
an

ds

Getting help
You can always ask GDB itself for information on its commands, using the command,
help .
help

h
You can use help (abbreviated ‘h’) with no arguments to display a short list of
named classes of commands like the following output.

(gdb) help List of classes of commands:

running -- Running the program
stack -- Examining the stack
data -- Examining data
breakpoints -- Making program stop at certain points
files -- Specifying and examining files
status -- Status inquiries
support -- Support facilities
user-defined -- User-defined commands
aliases -- Aliases of other commands
obscure -- Obscure features

Type “help” followed by a class name for a list of commands
in that class. Type “help” followed by command name for full
documentation. Command name abbreviations are allowed if
unambiguous. (gdb)

help class
Using one of the general help classes as an argument, you can get a list of the
individual commands in that class. For example, the following output shows the
help display for the class, status .

(gdb) help status Status inquiries.

List of commands:

show -- Generic command for showing things set with “set”
info -- Generic command for printing status

Type “help” followed by command name for full documentation.
Command name abbreviations are allowed if unambiguous.
(gdb)

help command
With a command name as help argument, GDB displays a short paragraph on
how to use that command.

Getting help

28 ■ Debugging with GDB GNUPro Toolkit

complete args
The complete args command lists all the possible completions for the beginning
of a command. With args , specify the beginning of the command you want
completed. For example, complete i results in the following output for info ,
inspect and ignore . This command is intentionally for use by GNU Emacs.

info
inspect
ignore

In addition to help , you can use the GDB commands info and show to inquire about
the state of your program, or the state of GDB itself. Each command supports many
topics of inquiry; this manual introduces each of them in the appropriate context. The
listings under info and under show in the Index point to all the subcommands. See
“Index” on page 309 for specific commands.

info
This command (abbreviated i) is for describing the state of your program. For
example, you can list the arguments given to your program with info args , list
the registers currently in use with info registers , or list the breakpoints you
have set with info breakpoints . You can get a complete list of the info
subcommands with help info .

set
You can assign the result of an expresson to an environment variable with set .
For example, you can set the GDB prompt to a $-sign with set prompt $.

show
In contrast to info , show is for describing the state of GDB itself. You can change
most of the things you can show, by using the related command, set ; for example,
you can control what number system is used for displays with set radix ,or
simply inquire which is currently in use with show radix .

To display all the settable parameters and their current values, you can use show
with no arguments; you may also use info set . Both commands produce the
same display.

The following are three miscellaneous show subcommands, all of which are
exceptional in lacking corresponding set commands.

show version
Show what version of GDB is running. You should include this information in
GDB bug reports. If multiple versions of GDB are in use at your site, you may
occasionally want to determine which version of GDB you are running; as GDB
evolves, new commands are introduced, and old ones may wither away. The
version number is also announced when you start GDB.

CYGNUS Debugging with GDB ■ 29

Getting help

4:
 G

D
B

 C
om

m
an

ds

show copying
Display information about permission for copying GDB.

show warranty
Display the GNU “NO WARRANTY” statement.

Getting help

30 ■ Debugging with GDB GNUPro Toolkit

CYGNUS Debugging with GDB ■ 31

5:
 R

un
ni

ng
 p

ro
gr

am
s

un
de

r
G

D
B

Runnin g pro grams under GDB

When you run a program under GDB, you must first generate debugging information
when you compile it. You may start GDB with its arguments, if any, in an
environment of your choice. You may redirect your program’s input and output,
debug an already running process, or kill a child process.

For more discussion, see the following topics.

• “Compiling for debugging” on page 32

• “Starting your program” on page 33

• “Your program’s arguments” on page 35

• “Your program’s environment” on page 36

• “Your program’s working directory” on page 38

• “Your program’s input and output” on page 39

• “Debugging an already-running process” on page 40

• “Killing the child process” on page 41

• “Additional process information” on page 42

• “Debugging programs with multiple threads” on page 43

• “Debugging programs with multiple processes” on page 46

5

Compiling for debugging

32 ■ Debugging with GDB GNUPro Toolkit

Compiling for debugging
In order to debug a program effectively, you need to generate debugging information
when you compile it. This debugging information is stored in the object file; it
describes the data type of each variable or function and the correspondence between
source line numbers and addresses in the executable code.

To request debugging information, specify the ‘-g ’ option when you run the compiler.

Many C compilers are unable to handle the ‘-g ’ and ‘-O ’ options together. Using those
compilers, you cannot generate optimized executables containing debugging
information.

GCC, the GNU C compiler, supports ‘-g ’ with or without ‘-O ’, making it possible to
debug optimized code. We recommend that you always use ‘-g ’ whenever you
compile a program. You may think your program is correct, but there is no sense in
pushing your luck.

When you debug a program compiled with ‘-g -O ’, remember that the optimizer is
rearranging your code; the debugger shows you what is really there. Do not be too
surprised when the execution path does not exactly match your source file! An
extreme example: if you define a variable, but never use it, GDB never sees that
variable—because the compiler optimizes it out of existence.

Some things do not work as well with ‘-g -O ’ as with just ‘-g ’, particularly on
machines with instruction scheduling. If in doubt, recompile with ‘-g ’ alone, and if
this fixes the problem, please report it to us as a bug (including a test case!).

Older versions of the GNU C compiler permitted a variant option ‘-gg ’ for debugging
information. GDB no longer supports this format; if your GNU C compiler has this
option, do not use it.

CYGNUS Debugging with GDB ■ 33

Starting your program

5:
 R

un
ni

ng
 p

ro
gr

am
s

un
de

r
G

D
B

Starting your program
run

r
Use the run command to start your program under GDB. You must first specify
the program name (except on VxWorks) with an argument to GDB (see “Getting
In and Out of GDB” on page 15), or using the file or exec-file command (see
“Commands to specify files” on page 154).

If you are running your program in an execution environment that supports processes,
run creates an inferior process and makes that process run your program. (In
environments without processes, run jumps to the start of your program.)

The execution of a program is affected by certain information it receives from its
superior. GDB provides ways to specify this information, which you must do before
starting your program. (You can change it after starting your program, but such
changes only affect your program the next time you start it.) This information may be
divided into the following four categories.

❖ Arguments
Specify the arguments to give your program as the arguments of the run
command. If a shell is available on your target, the shell is used to pass the
arguments, so that you may use normal conventions (such as wildcard
expansion or variable substitution) in describing the arguments. In Unix
systems, you can control which shell is used with the SHELL environment
variable. See “Your program’s arguments” on page 35.

❖ Environment
Your program normally inherits its environment from GDB, but you can use
the GDB commands set environment and unset environment to change
parts of the environment that affect your program. See “Your program’s
environment” on page 36.

❖ Working directory
Your program inherits its working directory from GDB. You can set the GDB
working directory with the cd command in GDB. See “Your program’s
working directory” on page 38.

❖ Standard input and output
Your program normally uses the same device for standard input and standard
output as GDB is using. You can redirect input and output in the run
command line, or you can use the tty command to set a different device for
your program. See “Your program’s input and output” on page 39.

WARNING: While input and output redirection work, you cannot use pipes to pass the

Starting your program

34 ■ Debugging with GDB GNUPro Toolkit

output of the program you are debugging to another program; if you attempt
this, GDB is likely to wind up debugging the wrong program.

When you issue the run command, your program begins to execute
immediately. See “Stopping and continuing” on page 47 for discussion of
how to arrange for your program to stop. Once your program has stopped, you
may call functions in your program, using the print or call commands. See
“Examining data” on page 87.

If the modification time of your symbol file has changed since the last time GDB read
its symbols, GDB discards its symbol table, and reads it again. When it does this,
GDB tries to retain your current breakpoints.

CYGNUS Debugging with GDB ■ 35

Your program’s arguments

5:
 R

un
ni

ng
 p

ro
gr

am
s

un
de

r
G

D
B

Your program’s arguments
The arguments to your program can be specified by the arguments of the run
command. They are passed to a shell, which expands wildcard characters and
performs redirection of I/O, and thence to your program. Your SHELL environment
variable (if it exists) specifies what shell GDB uses. If you do not define SHELL, GDB
uses /bin/sh .

run with no arguments uses the same arguments used by the previous run , or those set
by the set args command.

set args
Specify the arguments to be used the next time your program is run. If set args
has no arguments, run executes your program with no arguments. Once you have
run your program with arguments, using set args before the next run is the only
way to run it again without arguments.

show args
Show the arguments to give your program when it is started.

Your program’s environment

36 ■ Debugging with GDB GNUPro Toolkit

Your program’s environment
The environment consists of a set of environment variables and their values.
Environment variables conventionally record such things as user name, home
directory, terminal type, and the search path for programs to run.

Usually you set up environment variables with the shell and they are inherited by all
the other programs you run.

When debugging, it can be useful to try running your program with a modified
environment without having to start GDB over again.

path directory
Add directory to the front of the PATH environment variable (the search path for
executables), for both GDB and your program. You may specify several directory
names, separated by ‘: ’ or a whitespace. If directory is already in the path, it is
moved to the front, so it is searched sooner.

You can use the string ‘$cwd’ to refer to whatever is the current working directory
at the time GDB searches the path. If you use ‘. ’ instead, it refers to the directory
where you executed the path command. GDB replaces ‘. ’ in the directory
argument (with the current path) before adding directory to the search path.

show paths

Display the list of search paths for executables (the PATH environment variable).

show environment [varname]

Print the value of environment variable, varname , to be given to your program
when it starts. If you do not supply varname , print the names and values of all
environment variables to be given to your program. You can abbreviate
environment as env .

set environment varname [=] value

Set environment variable, varname , to value . The value changes for your
program only, not for GDB itself. value may be any string; the values of
environment variables are just strings, and any interpretation is supplied by your
program itself. The value parameter is optional; if it is eliminated, the variable is
set to a null value. For example, the command, set env USER = foo , tells a Unix
program, when run, that its user is named ‘foo ’. (The spaces around ‘=’ are used
for clarity here; they are not actually required.)

unset environment varname

Remove variable, varname , from the environment to be passed to your program.
This is different from ‘set env varname =’; unset environment removes the
variable from the environment, rather than assigning it an empty value.

WARNING: GDB runs your program using the shell indicated by your SHELL environment

CYGNUS Debugging with GDB ■ 37

Your program’s environment

5:
 R

un
ni

ng
 p

ro
gr

am
s

un
de

r
G

D
B

variable if it exists (or /bin/sh if not). If your SHELL variable names a shell
that runs an initialization file—such as ‘.cshrc ’ for C-shell, or ‘.bashrc ’ for
BASH—any variables you set in that file affect your program. You may wish to
move setting of environment variables to files that are only run when you sign
on, such as ‘.login ’ or ‘ .profile ’.

Your program’s working directory

38 ■ Debugging with GDB GNUPro Toolkit

Your program’s working directory
Each time you start your program with run , it inherits its working directory from the
current working directory of GDB. The GDB working directory is initially whatever it
inherited from its parent process (typically the shell), but you can specify a new
working directory in GDB with the cd command.

The GDB working directory also serves as a default for the commands that specify
files for GDB to operate on. See “Commands to specify files” on page 154.

cd directory

Set the GDB working directory to directory .

pwd

Print the GDB working directory.

CYGNUS Debugging with GDB ■ 39

Your program’s input and output

5:
 R

un
ni

ng
 p

ro
gr

am
s

un
de

r
G

D
B

Your program’s input and output
By default, the program you run under GDB does input and output to the same
terminal that GDB uses. GDB switches the terminal to its own terminal modes to
interact with you, but it records the terminal modes your program was using and
switches back to them when you continue running your program.

info terminal
Displays information recorded by GDB about the terminal modes your program is
using.

You can redirect your program’s input and/or output using shell redirection with the
run command. For example, run > outfile starts your program, diverting its output
to the file ‘outfile ’. Another way to specify where your program should do input and
output is with the tty command. This command accepts a file name as argument, and
causes this file to be the default for future run commands.

It also resets the controlling terminal for the child process, for future run commands.
For example, tty /dev/ttyb directs that processes started with subsequent run
commands default to do input and output on the terminal ‘/dev/ttyb ’ and have that as
their controlling terminal.

An explicit redirection in run overrides the tty command’s effect on the input/output
device, but not its effect on the controlling terminal.

When you use the tty command or redirect input in the run command, only the input
for your program is affected. The input for GDB still comes from your terminal.

Debugging an already-running process

40 ■ Debugging with GDB GNUPro Toolkit

Debugging an already-running process
attach process-id

This command attaches to a running process—one that was started outside GDB.
(info files shows your active targets.) The command takes as argument a
process ID. The usual way to find out the process-id of a Unix process is with the
ps utility, or with the ‘jobs -l ’ shell command.

attach does not repeat if you use the Return key a second time after executing the
command.

To use attach , your program must be running in an environment which supports
processes; for example, attach does not work for programs on bareboard targets
that lack an operating system. You must also have permission to send the process
a signal.

When using attach , you should first use the file command to specify the
program running in the process and load its symbol table. See “Commands to
specify files” on page 154.

The first thing GDB does after arranging to debug the specified process is to stop
it. You can examine and modify an attached process with all the GDB commands
that are ordinarily available when you start processes with run . You can insert
breakpoints; you can step and continue ; you can modify storage. If you would
rather the process continue running, you may use the continue command after
attaching GDB to the process.

detach
When you have finished debugging the attached process, you can use the detach
command to release it from GDB control. Detaching the process continues its
execution. After the detach command, that process and GDB become completely
independent once more, and you are ready to attach another process or start one
with run . detach does not repeat if you use the Return key again after executing
the command.

If you exit GDB or use the run command while you have an attached process, you kill
that process. By default, GDB asks for confirmation if you try to do either of these
things; you can control whether or not you need to confirm by using the set confirm

command (see “Optional warnings and messages” on page 200).

CYGNUS Debugging with GDB ■ 41

Killing the child process

5:
 R

un
ni

ng
 p

ro
gr

am
s

un
de

r
G

D
B

Killing the child process
kill

Kill the child process in which your program is running under GDB.

This command is useful if you wish to debug a core dump instead of a running
process. GDB ignores any core dump files while your program is running.

On some operating systems, a program cannot be executed outside GDB while you
have breakpoints set on it inside GDB. You can use the kill command in this
situation to permit running your program outside the debugger.

The kill command is also useful if you wish to recompile and relink your program,
since on many systems it is impossible to modify an executable file while it is running
in a process. In this case, when you next use run , GDB notices that the file has
changed, and reads the symbol table again (while trying to preserve your current
breakpoint settings).

Additional process information

42 ■ Debugging with GDB GNUPro Toolkit

Additional process information
Some operating systems provide a facility called ‘/proc ’ that can be used to examine
the image of a running process using file system subroutines. If GDB is configured for
an operating system with this facility, the command info proc is available to report
on several kinds of information about the process running your program. info proc
works only on SVR4 systems that support procfs .

info proc
Summarize available information about the process.

info proc mappings
Report on the address ranges accessible in the program, with information on
whether your program may read, write, or execute each range.

info proc times
Starting time, user CPU time, and system CPU time for your program and its
children.

info proc id

Report on the process IDs related to your program: its own process ID, the ID of
its parent, the process group ID, and the session ID.

info proc status
General information on the state of the process. If the process is stopped, this
report includes the reason for stopping, and any signal received.

info proc all
Show all the above information about the process.

CYGNUS Debugging with GDB ■ 43

Debugging programs with multiple threads

5:
 R

un
ni

ng
 p

r
og

ra
m

s
un

de
r

G
D

BDebgging programs with multiple threads
In some operating systems, a single program may have more than one thread of
execution.

The precise semantics of threads differ from one operating system to another, but in
general the threads of a single program are akin to multiple processes—except that
they share one address space (that is, they can all examine and modify the same
variables). On the other hand, each thread has its own registers and execution stack,
and perhaps private memory.

GDB provides the following facilities for debugging multi-thread programs.

• automatic notification of new threads

• ‘ thread threadno ’, a command to switch among threads

• ‘ info threads ’, a command to inquire about existing threads

• ‘ thread apply [threadno][all] args ’, a command to apply a command to a
list of threads

• thread-specific breakpoints

The GDB thread debugging facility allows you to observe all threads while your
program runs—but whenever GDB takes control, one thread in particular is always
the focus of debugging. This thread is called the current thread. Debugging
commands show program information from the perspective of the current thread.

WARNING: These facilities are not yet available on every GDB configuration where the
operating system supports threads. If your GDB does not support threads,
these commands have no effect. For instance, a system without thread support
shows no output from ‘info threads ’ and always rejects the thre ad
command, like the following example shows.

 Whenever GDB detects a new thread in your program, it displays the target system’s
identification for the thread with a message in the form ‘[New systag] ’. systag is a
thread identifier whose form varies depending on the particular system. For example,
on LynxOS, you might see the following output when GDB notices a new thread.

[Ne w process 35 threa d 27]

In contrast, on an SGI system, the systag is simply something like ‘process 368 ’,
with no further qualifier.

(gdb) info threads

(gdb) thread 1

Thre ad I D 1 not known . Use th e "in f o t hreads" command to see the IDs
of c urrently known th r eads.

Debugging programs with multiple threads

44 ■ Debugging with GDB GNUPro Toolkit

For debugging purposes, GDB associates its own thread number—always a single
integer—with each thread in your program.

info threads
Display a summary of all threads currently in your program. GDB displays for
each thread (in the following order):

❖ the thread number assigned by GDB.

❖ the target system’s thread identifier (systag).

❖ the current stack frame summary for that thread.

An asterisk ‘* ’ to the left of the GDB thread number indicates the current thread.
Use the following example for clarity.

thread threadno
Make thread number threadno the current thread. The command argument,
threadno , is the internal GDB thread number, as shown in the first field of the
‘ info threads ’ display. GDB responds by displaying the system identifier of the
thread you selected, and its current stack frame summary, as in the following
output.

(gdb) thread 2
[Switching to process 35 thread 23]
0x34e5 in sigpause ()

As with the ‘[New ...] ’ message, the form of the text after ‘Switching

to ’ depends on your system’s conventions for identifying threads.

thread apply [threadno][all] args

The thread apply command allows you to apply a command to one or more
threads. Specify the numbers of the threads that you want affected with the
command argument threadno . threadno is the internal GDB thread number, as
shown in the first field of the ‘info threads ’ display. To apply a command to all
threads, use thread apply all args .

Whenever GDB stops your program, due to a breakpoint or a signal, it automatically
selects the thread where that breakpoint or signal happened. GDB alerts you to the
context switch with a message of the form ‘[Switching to systag] ’ to identify the
thread.

See “Stopping and starting multi-thread programs” on page 69 for more information
about how GDB behaves when you stop and start programs with multiple threads.

(gdb) info threads

3 process 35 thread 27 0x34e5 in sigpause ()

2 process 35 thread 23 0x34e5 in sigpause ()

* 1 process 35 thread 13 main (argc=1, argv=0x7ffffff8)

at threadtest.c:68

CYGNUS Debugging with GDB ■ 45

Debugging programs with multiple threads

5:
 R

un
ni

ng
 p

ro
gr

am
s

un
de

r
G

D
B

See “Setting watchpoints” on page 54 for information about watchpoints in programs
with multiple threads.

Debugging programs with multiple processes

46 ■ Debugging with GDB GNUPro Toolkit

Debugging programs with multiple processes
GDB has no special support for debugging programs which create additional
processes using the fork function. When a program forks, GDB will continue to
debug the parent process and the child process will run unimpeded. If you have set a
breakpoint in any code which the child then executes, the child will get a SIGTRAP
signal which (unless it catches the signal) will cause it to terminate.

However, if you want to debug the child process there is a workaround which isn’t too
painful. Put a call to sleep in the code which the child process executes after the fork.
It may be useful to sleep only if a certain environment variable is set, or a certain file
exists, so that the delay need not occur when you don’t want to run GDB on the child.
While the child is sleeping, use the ps program to get its process ID. Then tell GDB (a
new invocation of GDB if you are also debugging the parent process) to attach to the
child process (see attach with “Debugging an already-running process” on page 40).
From that point on you can debug the child process just like any other process to
which you attached.

CYGNUS Debugging with GDB ■ 47

6:
 S

to
pp

in
g

an
d

co
nt

in
ui

ng

Stoppin g and continuin g

The principal purposes of using a debugger are so that you can stop your program
before it terminates; or so that, if your program runs into trouble, you can investigate
and determine causes.

Inside GDB, your program may stop for any of several reasons, such as a signal, a
breakpoint, or reaching a new line after a GDB command such as step . You may then
examine and change variables, set new breakpoints or remove old ones, and then
continue execution. The following documentation discusses these topics.

• “Breakpoints, watchpoints, and exceptions” on page 49

• “Setting breakpoints” on page 50

• “Setting watchpoints” on page 54

• “Breakpoints and exceptions” on page 55

• “Deleting breakpoints” on page 56

• “Disabling breakpoints” on page 57

• “Break conditions” on page 59

• “Breakpoint command lists” on page 61

• “Breakpoint menus” on page 63

• “Continuing and stepping” on page 64

6

48 ■ Debugging with GDB GNUPro Toolkit

• “Signals” on page 67

• “Stopping and starting multi-thread programs” on page 69

Usually, the messages shown by GDB provide ample explanation of the status of your
program—but you can also explicitly request this information at any time. info

program displays information about the status of your program: whether it is running
or not, what process it is, and why it stopped.

CYGNUS Debugging with GDB ■ 49

Breakpoints, watchpoints, and exceptions

6:
 S

to
pp

in
g

an
d

co
nt

in
ui

ng

Breakpoints, watchpoints, and exceptions
A breakpoint makes your program stop whenever a certain point in the program is
reached. For each breakpoint, you can add conditions to control in finer detail whether
your program stops. You can set breakpoints with the break command and its variants
(see “Setting breakpoints” on page 50) to specify the place where your program
should stop by line number, function name or exact address in the program.

In languages with exception handling (such as GNU C++), you can also set breakpoints
where an exception is raised (see “Breakpoints and exceptions” on page 55).

In SunOS 4.x, SVR4, and Alpha OSF/1 configurations, you can set breakpoints in
shared libraries before the executable is run.

A watchpoint is a special breakpoint that stops your program when the value of an
expression changes. You must use a different command to set watchpoints (see
“Setting watchpoints” on page 54), but aside from that, you can manage a watchpoint
like any other breakpoint: you enable, disable, and delete both breakpoints and
watchpoints using the same commands.

You can arrange to have values from your program displayed automatically whenever
GDB stops at a breakpoint. See “Automatic display” on page 95.

GDB assigns a number to each breakpoint or watchpoint when you create it; these
numbers are successive integers starting with one. In many of the commands for
controlling various features of breakpoints, you use the breakpoint number to say
which breakpoint you want to change. Each breakpoint may be enabled or disabled; if
disabled, it has no effect on your program until you enable it again.

Setting breakpoints

50 ■ Debugging with GDB GNUPro Toolkit

Setting breakpoints
Breakpoints are set with the break command (abbreviated b). The debugger
convenience variable ‘$bpnum’ records the number of the breakpoints you’ve set most
recently; see “Convenience variables” on page 103 for a discussion of what you can
do with convenience variables.

You have several ways to say where the breakpoint should go.
break function

Set a breakpoint at entry to function, function . When using source languages that
permit overloading of symbols, such as C++, function may refer to more than
one possible place to break. See “Breakpoint menus” on page 63 for a discussion
of that situation.

break + offset

break - offset

Set a breakpoint some number of lines forward or back from the position at which
execution stopped in the currently selected frame.

break linenum

Set a breakpoint in the current source file at line, linenum . That file is the last file
whose source text was printed. This breakpoint stops your program just before it
executes any of the code on that line.

break filename : linenum

Set a breakpoint at line, linenum , in source file, filename .
break filename : function

Set a breakpoint at entry to function, function , found in file, filename .
Specifying a file name as well as a function name is superfluous except when
multiple files contain similarly named functions.

break * address
Set a breakpoint at address, address . You can use this to set breakpoints in parts
of your program which do not have debugging information or source files.

break

When called without any arguments, break sets a breakpoint at the next
instruction to be executed in the selected stack frame (see “Examining the stack”
on page 71). In any selected frame but the innermost, this makes your program
stop as soon as control returns to that frame.

CYGNUS Debugging with GDB ■ 51

Setting breakpoints

6:
 S

to
pp

in
g

an
d

co
nt

in
ui

ng

This is similar to the effect of a finish command in the frame inside the selected
frame—except that finish doesn’t leave an active breakpoint. If you use break
without an argument in the innermost frame, GDB stops the next time it reaches
the current location; this may be useful inside loops. GDB normally ignores
breakpoints when it resumes execution, until at least one instruction has been
executed. If it did not do this, you would be unable to proceed past a breakpoint
without first disabling the breakpoint.

This rule applies whether or not the breakpoint already existed when your
program stopped.

break...if cond
Set a breakpoint with condition, cond ; evaluate the expression, cond , each time
the breakpoint is reached, and stop only if the value is nonzero—that is, if cond ,
evaluates as true. ‘... ’ stands for one of the possible arguments described
previously (or no argument) specifying where to break. See “Break conditions”
on page 59 for more information on breakpoint conditions.

tbreak args

Set a breakpoint enabled only for one stop. args are the same as for the break
command, and the breakpoint is set in the same way, but the breakpoint is
automatically deleted after the first time your program stops there. See “Deleting
breakpoints” on page 56.

hbreak args

Set a hardware-assisted breakpoint. args are the same as for the break command
and the breakpoint is set in the same way, but the breakpoint requires hardware
support and some target hardware may not have this support. The main purpose of
this is EPROM/ROM code debugging, so you can set a breakpoint at an
instruction without changing the instruction. This can be used with the new trap-
generation provided by SPARClite DSU. DSU will generate traps when a
program accesses some date or instruction address that is assigned to the debug
registers. However the hardware breakpoint registers can only take two data
breakpoints, and GDB will reject this command if more than two are used. Delete
or disable usused hardware breakpoints before setting new ones. See “Break
conditions” on page 59.

thbreak args
Set a hardware-assisted breakpoint enabled only for one stop. args are the same as
for the hbreak command and the breakpoint is set in the same way. However, like
the tbreak command, the breakpoint is automatically deleted after the first time
your program stops there. Also, like the hbreak command, the breakpoint requires
hardware support and some target hardware may not have this support. See
“Disabling breakpoints” on page 57 and “Break conditions” on page 59.

Setting breakpoints

52 ■ Debugging with GDB GNUPro Toolkit

rbreak regex

Set breakpoints on all functions matching regular expression, regex . Sets an
unconditional breakpoint on all matches, printing a list of all breakpoints it set.
Once these breakpoints are set, they are treated just like the breakpoints set with
the break command. You can delete them, disable them, or make them
conditional the same way as any other breakpoint. When debugging C++
programs, rbreak is useful for setting breakpoints on overloaded functions that
are not members of any special classes.

info breakpoints [n]
info break [n]
info watchpoints [n]

Print a table of all breakpoints and watchpoints set and not deleted, with the
following place-settings for each breakpoint.

Breakpoint Numbers

Type
Breakpoint or watchpoint.

Disposition
Whether the breakpoint is marked to be disabled or deleted when hit.

Enabled or Disabled
Enabled breakpoints are marked with ‘y ’. ‘ n’ marks breakpoints that are not
enabled.

Address
Where the breakpoint is in your program, as a memory address

What
Where the breakpoint is in the source for your program, as a file and line
number.

If a breakpoint is conditional, info break shows the condition on the line
following the affected breakpoint; breakpoint commands, if any, follow.

info break with a breakpoint number n as argument lists only that
breakpoint. The convenience variable $_ and the default examining-address
for the x command are set to the address of the last breakpoint listed (see
“Examining memory” on page 93).

info break now displays a count of the number of times the breakpoint has
been hit. This is especially useful in conjunction with the ignore command.
You can ignore a large number of breakpoint hits, look at the breakpoint info
to see how many times the breakpoint was hit, and then run again, ignoring
one less than that number. This will get you quickly to the last hit of that
breakpoint.

CYGNUS Debugging with GDB ■ 53

Setting breakpoints

6:
 S

to
pp

in
g

an
d

co
nt

in
ui

ng

GDB allows you to set any number of breakpoints at the same place in your program.
There is nothing silly or meaningless about this. When the breakpoints are
conditional, this is even useful (see “Break conditions” on page Break conditions).
GDB itself sometimes sets breakpoints in your program for special purposes, such as
proper handling of longjmp (in C programs). These internal breakpoints are assigned
negative numbers, starting with -1 ; ‘ info breakpoints ’ does not display them. You
can see these breakpoints with the GDB maintenance command ‘maint info

breakpoints ’.

maint info breakpoints
Using the same format as ‘info breakpoints ’, display both the breakpoints
you’ve set explicitly, and those GDB is using for internal purposes. Internal
breakpoints are shown with negative breakpoint numbers. The type column
identifies what kind of breakpoint is shown:
breakpoint

Normal, explicitly set breakpoint.
watchpoint

Normal, explicitly set watchpoint.

longjmp
Internal breakpoint, used to handle correctly stepping through longjmp calls.

longjmp resume

Internal breakpoint at the target of a longjmp .

until
Temporary internal breakpoint used by the GDB until command.

finish

Temporary internal breakpoint used by the GDB finish command.

Setting watchpoints

54 ■ Debugging with GDB GNUPro Toolkit

Setting watchpoints
You can use a watchpoint to stop execution whenever the value of an expression
changes, without having to predict a particular place where this may happen.

Watchpoints currently execute two orders of magnitude more slowly than other
breakpoints, but this can be well worth it to catch errors where you have no clue what
part of your program is the culprit.

watch expr
Set a watchpoint for an expression. GDB will break when expr is written into by
the program and its value changes. This can be used with the new trap-generation
provided by SPARClite DSU. DSU will generate traps when a program accesses
some date or instruction address that is assigned to the debug registers. For the
data addresses, DSU facilitates the watch command. However the hardware
breakpoint registers can only take two data watchpoints, and both watchpoints
must be the same kind. For example, you can set two watchpoints with watch
commands, two with rwatch commands, or two with awatch commands, but you
cannot set one watchpoint with one command and the other with a different
command. {No value for “GBDN”} will reject the command if you try to mix
watchpoints. Delete or disable unused watchpoint commands before setting new
ones.

rwatch expr

Set a watchpoint that will break when watch args is read by the program. If you
use both watchpoints, both must be set with the rwatch command.

awatch expr
Set a watchpoint that will break when args is read and written into by the
program. If you use both watchpoints, both must be set with the awatch
command.

info watchpoints
This command prints a list of watchpoints and breakpoints; it is the same as info

break .

WARNING: In multi-thread programs, watchpoints have only limited usefulness.
With the current watchpoint implementation, GDB can only watch
the value of an expression in a single thread. If you are confident that
the expression can only change due to the current thread’s activity
(and if you are also confident that no other thread can become
current), then you can use watchpoints as usual. However, GDB may
not notice when a non-current thread’s activity changes the
expression.

CYGNUS Debugging with GDB ■ 55

Breakpoints and exceptions

6:
 S

to
pp

in
g

an
d

co
nt

in
ui

ng

Breakpoints and exceptions
Some languages, such as GNU C++, implement exception handling. You can use GDB
to examine what caused your program to raise an exception, and to list the exceptions
your program is prepared to handle at a given point.

catch exceptions
You can set breakpoints at active exception handlers by using the catch
command. exceptions is a list of names of exceptions to catch.

You can use info catch to list active exception handlers. See “Information about a
frame” on page 76. There are currently some limitations to exception handling in
GDB.

• If you call a function interactively, GDB normally returns control to you when the
function has finished executing. If the call raises an exception, however, the call
may bypass the mechanism that returns control to you and cause your program to
simply continue running until it hits a breakpoint, catches a signal that GDB is lis-
tening for, or exits.

• You cannot raise an exception interactively.

• You cannot install an exception handler interactively.

Sometimes catch is not the best way to debug exception handling: if you need to
know exactly where an exception is raised, it is better to stop before the exception
handler is called, since that way you can see the stack before any unwinding takes
place. If you set a breakpoint in an exception handler instead, it may not be easy to
find out where the exception was raised.

To stop just before an exception handler is called, you need some knowledge of the
implementation. In the case of GNU C++, exceptions are raised by calling a library
function named __raise_exception which has the following ANSI C interface:
/* addr is where the exception identifier is stored.

id is the exception identifier. */
void __raise_exception (void ** addr , void * id);

To make the debugger catch all exceptions before any stack unwinding takes place, set
a breakpoint on __raise_exception (see “Breakpoints, watchpoints, and exceptions”
on page 49).

With a conditional breakpoint (see “Break conditions” on page 59) that depends on
the value of id , you can stop your program when a specific exception is raised. You
can use multiple conditional breakpoints to stop your program when any of a number
of exceptions are raised.

Deleting breakpoints

56 ■ Debugging with GDB GNUPro Toolkit

Deleting breakpoints
It is often necessary to eliminate a breakpoint or watchpoint once it has done its job
and you no longer want your program to stop there. This is called deleting the
breakpoint. A breakpoint that has been deleted no longer exists; it is forgotten.

With the clear command you can delete breakpoints according to where they are in
your program. With the delete command you can delete individual breakpoints or
watchpoints by specifying their breakpoint numbers.

It is not necessary to delete a breakpoint to proceed past it. GDB automatically ignores
breakpoints on the first instruction to be executed when you continue execution
without changing the execution address.

clear
Delete any breakpoints at the next instruction to be executed in the selected stack
frame (see “Selecting a frame” on page 74). When the innermost frame is
selected, this is a good way to delete a breakpoint where your program just
stopped.

clear function

clear filename : function
Delete any breakpoints set at entry to the function, function .

clear linenum
clear filename : linenum

Delete any breakpoints set at or within the code of the specified line.
delete [breakpoints][bnums...]

Delete the breakpoints or watchpoints of the numbers specified as arguments. If
no argument is specified, delete all breakpoints (GDB asks confirmation, unless
you have set confirm off). You can abbreviate this command as d.

CYGNUS Debugging with GDB ■ 57

Disabling breakpoints

6:
 S

to
pp

in
g

an
d

co
nt

in
ui

ng

Disabling breakpoints
Rather than deleting a breakpoint or watchpoint, you might prefer to disable it. This
makes the breakpoint inoperative as if it had been deleted, but remembers the
information on the breakpoint so that you can enable it again.

You disable and enable breakpoints and watchpoints with the enable and disable
commands, optionally specifying one or more breakpoint numbers as arguments. Use
info break or info watch to print a list of breakpoints or watchpoints if you do not
know which numbers to use.

A breakpoint or watchpoint can have four different states of enablement.

• Enabled
The breakpoint stops your program. A breakpoint set with the break command
starts out in this state.

• Disabled
The breakpoint has no effect on your program.

• Enabled once
The breakpoint stops your program, but then becomes disabled. A breakpoint set
with the tbreak command starts out in this state.

• Enabled for deletion
The breakpoint stops your program, but immediately after it does so it is deleted
permanently.

You can use the following commands to enable or disable breakpoints and
watchpoints.
disable [breakpoints][bnums ...]

Disable the specified breakpoints—or all breakpoints, if none are listed. A
disabled breakpoint has no effect but is not forgotten. All options such as ignore-
counts, conditions and commands are remembered in case the breakpoint is
enabled again later. You may abbreviate disable as dis .

enable [breakpoints][bnums ...]

Enable the specified breakpoints (or all defined breakpoints). They become
effective once again in stopping your program.

enable [breakpoints] once bnums...

Enable the specified breakpoints temporarily. GDB disables any of these
breakpoints immediately after stopping your program.

enable [breakpoints] delete bnums...

Enable the specified breakpoints to work once, then die. GDB deletes any of these
breakpoints as soon as your program stops there.

Disabling breakpoints

58 ■ Debugging with GDB GNUPro Toolkit

Except for a breakpoint set with tbreak (see “Setting breakpoints” on page Setting
breakpoints), breakpoints that you set are initially enabled; subsequently, they become
disabled or enabled only when you use one of the previously listed commands. (The
command, until , can set and delete a breakpoint of its own, but it doesn’t change the
state of other breakpoints; see “Continuing and stepping” on page “Continuing and
stepping” on page 64.)

CYGNUS Debugging with GDB ■ 59

Break conditions

6:
 S

to
pp

in
g

an
d

co
nt

in
ui

ng

Break conditions
The simplest sort of breakpoint breaks every time your program reaches a specified
place. You can also specify a condition for a breakpoint. A condition is just a Boolean
expression in your programming language (see “Expressions” on page 88). A
breakpoint with a condition evaluates the expression each time your program reaches
it, and your program stops only if the condition is true.

This is the converse of using assertions for program validation; in that situation, you
want to stop when the assertion is violated—that is, when the condition is false. In C,
if you want to test an assertion expressed by a condition, assert , you should set the
condition ‘! assert ’ on the appropriate breakpoint (where assert signifies the
condition to assert).

Conditions are also accepted for watchpoints; you may not need them, since a
watchpoint is inspecting the value of an expression anyhow—but it might be simpler,
say, to just set a watchpoint on a variable name, and specify a condition that tests
whether the new value is an interesting one.

Break conditions can have side effects, and may even call functions in your program.
This can be useful, for example, to activate functions that log program progress, or to
use your own print functions to format special data structures. The effects are
completely predictable unless there is another enabled breakpoint at the same address.
(In that case, GDB might see the other breakpoint first and stop your program without
checking the condition of this one.) Note that breakpoint commands are usually more
convenient and flexible for the purpose of performing side effects when a breakpoint
is reached (see “Breakpoint command lists” on page 61).

Break conditions can be specified when a breakpoint is set, by using ‘if ’ in the
arguments to the break command. See “Setting breakpoints” on page 50 for more
discussion. They can also be changed at any time with the condition command. The
watch command does not recognize the if keyword; condition is the only way to
impose a further condition on a watchpoint.

condition bnum expression
Specify expression as the break condition for breakpoint or watchpoint number,
bnum. After you set a condition, breakpoint bnum stops your program only if the
value of expression is true (nonzero, in C). When you use condition , GDB
checks expression immediately for syntactic correctness, and to determine
whether symbols in it have referents in the context of your breakpoint. GDB does
not actually evaluate expression at the time the condition command is given,
however. See “Expressions” on page 88.

Break conditions

60 ■ Debugging with GDB GNUPro Toolkit

condition bnum
Remove the condition from breakpoint number bnum. It becomes an ordinary
unconditional breakpoint.

A special case of a breakpoint condition is to stop only when the breakpoint has been
reached a certain number of times. This is so useful that there is a special way to do it,
using the ignore count of the breakpoint. Every breakpoint has an ignore count, which
is an integer. Most of the time, the ignore count is zero, and therefore has no effect.
But if your program reaches a breakpoint whose ignore count is positive, then instead
of stopping, it just decrements the ignore count by one and continues. As a result, if
the ignore count value is n, the breakpoint does not stop the next n times your
program reaches it.

ignore bnum count
Set the ignore count of breakpoint number bnum to count . The next count times
the breakpoint is reached, your program’s execution does not stop; other than to
decrement the ignore count, GDB takes no action.

To make the breakpoint stop the next time it is reached, specify a count of zero.

When you use continue to resume execution of your program from a breakpoint,
you can specify an ignore count directly as an argument to continue , rather than
using ignore . See “Continuing and stepping” on page 64.

If a breakpoint has a positive ignore count and a condition, the condition is not
checked. Once the ignore count reaches zero, GDB resumes checking the
condition.

Achieve the effect of the ignore count with a condition such as ‘$foo-- <- 0 ’
that uses a debugger convenience variable that is decremented each time. See
“Convenience variables” on page 103.

CYGNUS Debugging with GDB ■ 61

Breakpoint command lists

6:
 S

to
pp

in
g

an
d

co
nt

in
ui

ng

Breakpoint command lists
You can give any breakpoint (or watchpoint) a series of commands to execute when
your program stops due to that breakpoint. For example, you might want to print the
values of certain expressions, or enable other breakpoints.
commands [bnum]
... command-list ...
end

Specify a list of commands for breakpoint number, bnum. The commands
themselves appear on the following lines. Type a line containing just end to
terminate the commands. To remove all commands from a breakpoint, type
commands and follow it immediately with end ; that is, give no commands. With no
bnum argument, commands refers to the last breakpoint or watchpoint set (not to
the breakpoint most recently encountered).

Using the Return key as a means of repeating the last GDB command is disabled
within a command-list .

You can use breakpoint commands to start your program up again. Simply use the
continue command, or step , or any other command that resumes execution. Any
other commands in the command list are ignored, after a command that resumes
execution. This is because any time you resume execution (even with a simple next or
step), you may encounter another breakpoint—which could have its own command
list, leading to ambiguities about which list to execute.

If the first command you specify in a command list is silent , the usual message about
stopping at a breakpoint is not printed. This may be desirable for breakpoints that are
to print a specific message and then continue. If none of the remaining commands
print anything, you see no sign that the breakpoint was reached. silent is meaningful
only at the beginning of a breakpoint command list.

The commands echo , output , and printf allow you to print precisely controlled
output, and are often useful in silent breakpoints.

See “Commands for controlled output” on page 220.

For example, the following example shows how to use breakpoint commands to print
the value of x at entry to foo whenever x is positive.
break foo if x>0
commands
silent
printf "x is %d\n",x
cont
end

One application for breakpoint commands is to compensate for one bug so you can

Breakpoint command lists

62 ■ Debugging with GDB GNUPro Toolkit

test for another. Put a breakpoint just after the erroneous line of code, give it a
condition to detect the case in which something erroneous has been done, and give it
commands to assign correct values to any variables that need them. End with the
continue command so that your program does not stop, and start with the silent
command so that no output is produced.

The following is an example.
break 403
commands
silent
setx=y +4
cont
end

CYGNUS Debugging with GDB ■ 63

Breakpoint menus

6:
 S

to
pp

in
g

an
d

co
nt

in
ui

ng

Breakpoint menus
Some programming languages (notably C++) permit a single function name to be
defined several times, for application in different contexts. This is called overloading.
When a function name is overloaded, ‘break function ’ is not enough to tell GDB
where you want a breakpoint. If you realize this is a problem, you can use something
like ‘break function(types) ’ to specify which particular version of the function
you want. Otherwise, GDB offers you a menu of numbered choices for different
possible breakpoints, and waits for your selection with the prompt ‘>’. The first two
options are always ‘[0] cancel ’ and ‘[1] all ’. Typing 1 sets a breakpoint at each
definition of function , and typing 0 aborts the break command without setting any
new breakpoints.

For example, the following session excerpt shows an attempt to set a breakpoint at the
overloaded symbol String::after . The following shows three particular definitions
of that function name:
(gdb) b String::after
[0] cancel
[1] all
[2] file:String.cc; line number:867
[3] file:String.cc; line number:860
[4] file:String.cc; line number:875
[5] file:String.cc; line number:853
[6] file:String.cc; line number:846
[7] file:String.cc; line number:735
>2 4 6
Breakpoint 1 at 0xb26c: file String.cc, line 867.
Breakpoint 2 at 0xb344: file String.cc, line 875.
Breakpoint 3 at 0xafcc: file String.cc, line 846.
Multiple breakpoints were set.
Use the “delete” command to delete unwanted breakpoints.
(gdb)

Continuing and stepping

64 ■ Debugging with GDB GNUPro Toolkit

Continuing and stepping
Continuing means resuming program execution until your program completes
normally. In contrast, stepping means executing just one more “step” of your program,
where “step” may mean either one line of source code, or one machine instruction
(depending on what particular command you use). Either when continuing or when
stepping, your program may stop even sooner, due to a breakpoint or a signal. (If due
to a signal, you may want to use handle , or use ‘signal 0 ’ to resume execution. See
“Signals” on page 67.)
continue [ignore-count]

c [ignore-count]

fg [ignore-count]
Resume program execution, at the address where your program last stopped; any
breakpoints set at that address are bypassed. The optional argument, ignore-

count , allows you to specify a further number of times to ignore a breakpoint at
this location; its effect is like that of ignore (see “Break conditions” on page 59).

The argument, ignore-count , is meaningful only when your program stopped
due to a breakpoint. At other times, the argument to continue is ignored.

The synonyms, c and fg , are provided purely for convenience, and have exactly
the same behavior as continue .

To resume execution at a different place, you can use return (see “Returning from a
function” on page 149) to go back to the calling function; or jump (see “Continuing at
a different address” on page 147) to go to an arbitrary location in your program.

A typical technique for using stepping is to set a breakpoint (see “Breakpoints,
watchpoints, and exceptions” on page 49 for more discussion) at the beginning of the
function or the section of your program where a problem is believed to lie, run your
program until it stops at that breakpoint, and then step through the suspect area,
examining the variables that are interesting, until you see the problem happen.

step
Continue running your program until control reaches a different source line, then
stop it and return control to GDB. This command is abbreviated s.

WARNING: If you use the step command while control is within a function that
was compiled without debugging information, execution proceeds
until control reaches a function that does have debugging
information. Likewise, it will not step into a function which is
compiled without debugging information. To step through functions
without debugging information, use the stepi command, described
in the following discussion.

CYGNUS Debugging with GDB ■ 65

Continuing and stepping

6:
 S

to
pp

in
g

an
d

co
nt

in
ui

ng

The step command now only stops at the first instruction of a source line. This
prevents the multiple stops that used to occur in switch statements, for loops, etc.
step continues to stop if a function that has debugging information is called
within the line.

Also, the step command now only enters a subroutine if there is line number
information for the subroutine. Otherwise it acts like the next command. This
avoids problems when using cc -gl on MIPS machines. Previously, step entered
subroutines if there was any debugging information about the routine.

step count

Continue running as in step, but do so count times. If a breakpoint is reached, or a
signal not related to stepping occurs before count steps, stepping stops right
away.

next [count]

Continue to the next source line in the current (innermost) stack frame. This is
similar to step , but function calls that appear within the line of code are executed
without stopping. Execution stops when control reaches a different line of code at
the original stack level that was executing when you gave the next command.
This command is abbreviated n.

An argument, count , is a repeat count, as for step .

The next command now only stops at the first instruction of a source line. This
prevents the multiple stops that used to occur in swtch statements, for loops, etc.

finish
Continue running until just after function in the selected stack frame returns. Print
the returned value (if any). Contrast this with the return command (see
“Returning from a function” on page 149).

u

until
Continue running until a source line past the current line, in the current stack
frame, is reached. This command is used to avoid single stepping through a loop
more than once. It is like the next command, except that when until encounters a
jump, it automatically continues execution until the program counter is greater
than the address of the jump.

This means that when you reach the end of a loop after single stepping though it,
until makes your program continue execution until it exits the loop. In contrast, a
next command at the end of a loop simply steps back to the beginning of the loop,
which forces you to step through the next iteration.

until always stops your program if it attempts to exit the current stack frame.

Continuing and stepping

66 ■ Debugging with GDB GNUPro Toolkit

until may produce somewhat counter-intuitive results if the order of machine
code does not match the order of the source lines. For instance, in the following
example from a debugging session, the f (frame) command shows that
execution is stopped at line 206 ; yet when we use until , we get to line 195 :

(gdb) f
#0 main (argc=4, argv=0xf7fffae8) at m4.c:206
206 expand_input();
(gdb) until
195 for (; argc > 0; NEXTARG) {

This happened because, for execution efficiency, the compiler had generated code
for the loop closure test at the end, rather than the start, of the loop—even though
the test in a C for -loop is written before the body of the loop.

The until command appeared to step back to the beginning of the loop when it
advanced to this expression; however, it has not really gone to an earlier
statement—not in terms of the actual machine code.

until with no argument works by means of single instruction stepping, and hence
is slower than until with an argument.

until location

u location
Continue running your program until either the specified location is reached, or
the current stack frame returns. location is any of the forms of argument
acceptable to break (see “Setting breakpoints” on page 50).

This form of the command uses breakpoints, and hence is quicker than until
without an argument.

stepi
si

Execute one machine instruction, then stop and return to the debugger.

It is often useful to use ‘display/i $pc ’ when stepping by machine instructions.
This makes GDB automatically display the next instruction to be executed, each
time your program stops. See “Automatic display” on page 95.

An argument is a repeat count, as in step .
nexti

ni

Execute one machine instruction, but if it is a function call, proceed until the
function returns.

An argument is a repeat count, as in next .

CYGNUS Debugging with GDB ■ 67

Signals

6:
 S

to
pp

in
g

an
d

co
nt

in
ui

ng

Signals
A signal is an asynchronous event that can happen in a program. The operating system
defines the possible kinds of signals, and gives each kind a name and a number. For
example, in Unix SIGINT is the signal a program gets when you use an interrupt (often
C-c); SIGSEGV is the signal a program gets from referencing a place in memory far
away from all the areas in use; SIGALRM occurs when the alarm clock timer goes off
(which happens only if your program has requested an alarm).

Some signals, including SIGALRM, are a normal part of the functioning of your
program. Others, such as SIGSEGV, indicate errors; these signals are fatal (kill your
program immediately) if the program has not specified in advance some other way to
handle the signal. SIGINT does not indicate an error in your program, but it is normally
fatal so it can carry out the purpose of the interrupt: to kill the program.

GDB has the ability to detect any occurrence of a signal in your program. You can tell
GDB in advance what to do for each kind of signal.

Normally, GDB is set up to ignore non-erroneous signals like SIGALRM (so as not to
interfere with their role in the functioning of your program) but to stop your program
immediately whenever an error signal happens. You can change these settings with
the handle command.

info signals
Print a table of all the kinds of signals and how GDB has been told to handle each
one. You can use this to see the signal numbers of all the defined types of signals.

info handle is the new alias for info signals.

handle signal keywords ...

Change the way GDB handles signal, signal . signal can be the number of a
signal or its name (with or without the ‘SIG ’ at the beginning). The keywords say
what change to make.

The keywords allowed by the handle command can be abbreviated. Their full names
use the following functionality.

nostop
GDB should not stop your program when this signal happens. It may still print a
message telling you that the signal has come in.

stop
GDB should stop your program when this signal happens. This implies the print
keyword as well.

print
GDB should print a message when this signal happens.

Signals

68 ■ Debugging with GDB GNUPro Toolkit

noprint
GDB should not mention the occurrence of the signal at all. This implies the
nostop keyword as well.

pass
GDB should allow your program to see this signal; your program can handle the
signal, or else it may terminate if the signal is fatal and not handled.

nopass
GDB should not allow your program to see this signal.

When a signal stops your program, the signal is not visible until you continue. Your
program sees the signal then, if pass is in effect for the signal in question at that time.
In other words, after GDB reports a signal, you can use the handle command with
pass or nopass to control whether your program sees that signal when you continue.

You can also use the signal command to prevent your program from seeing a signal,
or cause it to see a signal it normally would not see, or to give it any signal at any time.
For example, if your program stopped due to some sort of memory reference error,
you might store correct values into the erroneous variables and continue, hoping to see
more execution; but your program would probably terminate immediately as a result
of the fatal signal once it saw the signal. To prevent this, you can continue with
‘signal 0 ’. See “Giving your program a signal” on page 148.

CYGNUS Debugging with GDB ■ 69

Stopping and starting multi-thread programs

6:
 S

to
pp

in
g

an
d

co
nt

in
ui

ng

Stopping and starting multi-thread programs
When your program has multiple threads (see “Debugging programs with multiple
threads” on page 43), you can choose whether to set breakpoints on all threads, or on a
particular thread.
break linespec thread threadno
break linespec thread threadno if...

linespec specifies source lines; there are several ways of writing them, but the
effect is always to specify some source line.

Use the qualifier ‘thread threadno ’ with a breakpoint command to specify that
you only want GDB to stop the program when a particular thread reaches this
breakpoint. threadno is one of the numeric thread identifiers assigned by GDB,
shown in the first column of the ‘info threads ’ display.

If you do not specify ‘thread threadno ’ when you set a breakpoint, the
breakpoint applies to all threads of your program.

You can use the thread qualifier on conditional breakpoints as well; in this case,
place ‘thread threadno ’ before the breakpoint condition, like the following
example shows.

(gdb) break frik.c:13 thread 28 if bartab > lim

Whenever your program stops under GDB for any reason, all threads of execution
stop, not just the current thread. This allows you to examine the overall state of the
program, including switching between threads, without worrying that things may
change underfoot.

Conversely, whenever you restart the program, all threads start executing. This is true
even when single-stepping with commands like step or next .

In particular, GDB cannot single-step all threads in lockstep. Since thread scheduling
is up to your debugging target’s operating system (not controlled by GDB), other
threads may execute more than one statement while the current thread completes a
single step. Moreover, in general other threads stop in the middle of a statement, rather
than at a clean statement boundary, when the program stops.

You might even find your program stopped in another thread after continuing or even
single-stepping. This happens whenever some other thread runs into a breakpoint, a
signal, or an exception before the first thread completes whatever you requested.

Stopping and starting multi-thread programs

70 ■ Debugging with GDB GNUPro Toolkit

CYGNUS Debugging with GDB ■ 71

7:
 E

xa
m

in
in

g
th

e
st

ac
k

Examinin g the stack

When your program has stopped, the first thing you need to know is where it stopped
and how it got there. The following topics have more discussion on this subject.

• “Stack frames” on page 72
Each time your program performs a function call, information about the call is
generated. That information includes the location of the call in your program, the
arguments of the call, and the local variables of the function being called. The
information is saved in a block of data called a stack frame. The stack frames are
allocated in a region of memory called the call stack. When your program stops,
the GDB commands for examining the stack allow you to see all of this
information. See also “Backtraces” on page 73.

• “Selecting a frame” on page 74
One of the stack frames is selected by GDB and many GDB commands refer
implicitly to the selected frame. In particular, whenever you ask GDB for the
value of a variable in your program, the value is found in the selected frame.
There are special GDB commands to select a particular frame.

• “Information about a frame” on page 76
When your program stops, GDB automatically selects the currently executing
frame and describes it briefly, similar to the frame command

7

Stack frames

72 ■ Debugging with GDB GNUPro Toolkit

Stack frames
The call stack is divided up into contiguous pieces called stack frames, or frames for
short; each frame is the data associated with one call to one function. The frame
contains the arguments given to the function, the function’s local variables, and the
address at which the function is executing.

When your program is started, the stack has only one frame, that of the function main.
This is called the initial frame or the outermost frame. Each time a function is called, a
new frame is made. Each time a function returns, the frame for that function
invocation is eliminated. If a function is recursive, there can be many frames for the
same function. The frame for the function in which execution is actually occurring is
called the innermost frame. This is the most recently created of all the stack frames
that still exist.

Inside your program, stack frames are identified by their addresses. A stack frame
consists of many bytes, each of which has its own address; each kind of computer has
a convention for choosing one byte whose address serves as the address of the frame.
Usually this address is kept in a register called the frame pointer register while
execution is going on in that frame.

GDB assigns numbers to all existing stack frames, starting with zero for the innermost
frame, one for the frame that called it, and so on upward.

These numbers do not really exist in your program; they are assigned by GDB to give
you a way of designating stack frames in GDB commands.

Some compilers provide a way to compile functions so that they operate without stack
frames. (For example, the gcc option, -fomit-frame-pointer , generates functions
without a frame.) This is occasionally done with heavily used library functions to save
the frame setup time. GDB has limited facilities for dealing with these function
invocations. If the innermost function invocation has no stack frame, GDB
nevertheless regards it as though it had a separate frame, which is numbered zero as
usual, allowing correct tracing of the function call chain. However, GDB has no
provision for frameless functions elsewhere in the stack.
frame args

The frame command allows you to move from one stack frame to another, and to
print the stack frame you select. args may be either the address of the frame of
the stack frame number. Without an argument, frame prints the current stack
frame.

select-frame

The select-frame command allows you to move from one stack frame to another
without printing the frame. This is the silent version of frame .

CYGNUS Debugging with GDB ■ 73

Backtraces

7:
 E

xa
m

in
in

g
th

e
st

ac
k

Backtraces
A backtrace is a summary of how your program got where it is. It shows one line per
frame, for many frames, starting with the currently executing frame (frame zero),
followed by its caller (frame one), and on up the stack.
backtrace

bt
Print a backtrace of the entire stack: one line per frame for all frames in the stack.
You can stop the backtrace at any time by using the system interrupt character
sequence, Ctrl-c.

backtrace n

bt n
Similar, but print only the innermost n frames.

backtrace - n

bt - n
Similar, but print only the outermost n frames.

The names where and info stack (abbreviated info s) are additional aliases for
backtrace .

Each line in the backtrace shows the frame number and the function name. The
program counter value is also shown—unless you use set print address off . The
backtrace also shows the source file name and line number, as well as the arguments
to the function. The program counter value is omitted if it is at the beginning of the
code for that line number. The following is an example of a backtrace.

It was made with the command ‘bt 3 ’, showing the innermost three frames.
#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)

at builtin.c:993
#1 0x6e38 in expand_macro (sym=0x2b600) at macro.c:242
#2 0x6840 in expand_token (obs=0x0, t=177664, td=0xf7fffb08)

at macro.c:71
(More stack frames follow...)

The display for frame zero does not begin with a program counter value, indicating
that your program has stopped at the beginning of the code for line 993 of builtin.c .

Selecting a frame

74 ■ Debugging with GDB GNUPro Toolkit

Selecting a frame
Most commands for examining the stack and other data in your program work on
whichever stack frame is selected at the moment. The following commands arefor
selecting a stack frame; all of them finish by printing a brief description of the stack
frame just selected.
frame n
f n

Select frame number n. Recall that frame zero is the innermost (currently
executing) frame, frame one is the frame that called the innermost one, and so on.
The highest-numbered frame is the one for main .

frame addr

f addr
Select the frame at address, addr . This is useful mainly if the chaining of stack
frames has been damaged by a bug, making it impossible for GDB to assign
numbers properly to all frames. In addition, this can be useful when your program
has multiple stacks and switches between them.

On the SPARC architecture, frame needs two addresses to select an arbitrary
frame: a frame pointer and a stack pointer.

On the MIPS and Alpha architecture, it needs two addresses: a stack pointer and a
program counter.

On the 29k architecture, frame needs three addresses: a register stack pointer, a
program counter, and a memory stack pointer.

up n
Move n frames up the stack. For positive numbers, n, this advances toward the
outermost frame, to higher frame numbers, to frames that have existed longer. n

defaults to one.
down n

Move n frames down the stack. For positive numbers, n, this advances toward the
innermost frame, to lower frame numbers, to frames that were created more
recently. n defaults to one. You may abbreviate down as do.

All of these commands end by printing two lines of output describing the frame. The
first line shows the frame number, the function name, the arguments, and the source
file and line number of execution in that frame. The second line shows the text of that
source line. For instance, use the following as an example.
(gdb) up
#1 0x22f0 in main (argc=1, argv=0xf7fffbf4, env=0xf7fffbfc)

 at env.c:10
10 read_input_file (argv[i]);

CYGNUS Debugging with GDB ■ 75

Selecting a frame

7:
 E

xa
m

in
in

g
th

e
st

ac
k

After such a printout, the list command with no arguments prints ten lines centered
on the point of execution in the frame. See “Printing source lines” on page 80.
up-silently n

down-silently n
These two commands are variants of up and down, respectively; they differ in that
they do their work silently, without causing display of the new frame. They are
intended primarily for use in GDB command scripts, where the output might be
unnecessary and distracting.

Information about a frame

76 ■ Debugging with GDB GNUPro Toolkit

Information about a frame
There are several other commands to print information about the selected stack frame.
frame

f
When used without any argument, this command does not change which frame is
selected, but prints a brief description of the currently selected stack frame. It can
be abbreviated f . With an argument, this command is used to select a stack frame.
See “Selecting a frame” on page 74.

info frame
info f

This command prints a verbose description of the selected stack frame, including
the following information.

❖ the address of the frame

❖ the address of the next frame down (called by this frame)

❖ the address of the next frame up (caller of this frame)

❖ the language in which the source code corresponding to this frame is written

❖ the address of the frame’s arguments

❖ the program counter saved in it (the address of execution in the caller frame)

❖ which registers were saved in the frame

The verbose description is useful when something has gone wrong that has made
the stack format fail to fit the usual conventions.

info frame addr

info f addr
Print a verbose description of the frame at address addr , without selecting that
frame. The selected frame remains unchanged by this command. This requires the
same kind of address (more than one for some architectures) that you specify in
the frame command. See “Selecting a frame” on page 74.

info args
Print the arguments of the selected frame, each on a separate line.

info locals
Print the local variables of the selected frame, each on a separate line. These are
all variables (declared either static or automatic) accessible at the point of
execution of the selected frame.

info catch
Print a list of all the exception handlers that are active in the current stack frame at
the current point of execution. To see other exception handlers, visit the

CYGNUS Debugging with GDB ■ 77

Information about a frame

7:
 E

xa
m

in
in

g
th

e
st

ac
k

associated frame (using the up, down, or frame commands); then type:
info catch

See “Breakpoints and exceptions” on page 55.

MIPS machines and the function stack
MIPS based computers use an unusual stack frame, which sometimes requires GDB to
search backward in the object code to find the beginning of a function.

To improve response time (especially for embedded applications, where GDB may be
restricted to a slow serial line for this search) you may want to limit the size of this
search, using one of these commands:

These commands are available only when GDB is configured for debugging programs
on MIPS processors.
set heuristic-fence-post limit

Restrict GDB to examining at most limit bytes in its search for the beginning of
a function.

A value of 0 (the default) means there is no limit. However, except for 0, the
larger the limit the more bytes heuristic-fence-post must search and therefore
the longer it takes to run.

show heuristic-fence-post

Display the current limit.

Information about a frame

78 ■ Debugging with GDB GNUPro Toolkit

CYGNUS Debugging with GDB ■ 79

8:
 E

xa
m

in
in

g
so

ur
ce

 fi
le

s

Examinin g source files

GDB can print parts of your program’s source, since the debugging information
recorded in the program tells GDB what source files were used to build it. See the
following documentation for more discussion on these subjects.

• “Printing source lines” on page 80

• “Searching source files” on page 82

• “Specifying source directories” on page 83

• “Source and machine code” on page 84

When your program stops, GDB spontaneously prints the line where it stopped.
Likewise, when you select a stack frame (see “Selecting a frame” on page 74), GDB
prints the line where execution in that frame has stopped. You can print other portions
of source files by explicit command.

If you use GDB through its GNU Emacs interface, you may prefer to use Emacs
facilities to view source; see “Using GDB under GNU Emacs” on page 223 for details
of using Emacs with GDB.

8

Printing source lines

80 ■ Debugging with GDB GNUPro Toolkit

Printing source lines
To print lines from a source file, use the list command (abbreviated l). By default,
ten lines are printed. There are several ways to specify what part of the file you want
to print. The following are the forms of the list command most commonly used:
list linenum

Print lines centered around line number, linenum , in the current source file.
list function

Print lines centered around the beginning of function, function .
list

Print more lines. If the last lines printed were printed with a list command, this
prints lines following the last lines printed; however, if the last line printed was a
solitary line printed as part of displaying a stack frame (see “Examining the stack”
on page 71), this prints lines centered around that line.

list -

Print lines just before the lines last printed.

By default, GDB prints ten source lines with any of these forms of the list command.
You can change this functionality by using set listsize as the following
discussions describe.
set listsize count

Make the list command display count source lines (unless the list argument
explicitly specifies some other number).

show listsize

Display the number of lines that list prints.

Repeating a list command using the Return key discards the argument, so it is
equivalent to typing list . This is more useful than listing the same lines again. An
exception is made for an argument of ‘- ’; that argument is preserved in repetition so
that each repetition moves up in the source file.

In general, the list command expects you to supply zero, one or two linespecs.
Linespecs specify source lines; there are several ways of writing them but the effect is
always to specify some source line. The following is a complete description of the
possible arguments for list .
list linespec

Print lines centered around the line specified by linespec.
list first , last

Print lines from first to last . Both arguments specify source lines.
list , last

Print lines ending with last .

CYGNUS Debugging with GDB ■ 81

Printing source lines

8:
 E

xa
m

in
in

g
so

ur
ce

 fi
le

s

list first ,

Print lines starting with first .
list +

Print lines just after the lines last printed.
list -

Print lines just before the lines last printed.
list

As described for list on page list Print more lines. If the last lines printed were
printed with a list command, this prints lines following the last lines printed;
however, if the last line printed was a solitary line printed as part of displaying a
stack frame (see “Examining the stack” on page 71), this prints lines centered
around that line..

The following are the ways of specifying a single source line—all the kinds of
linespec .
number

Specifies line number of the current source file. When a list command has two
linespecs, this refers to the same source file as the first linespec.

+offset
Specifies the line offset lines after the last line printed. When used as the second
linespec in a list command that has two, this specifies the line offset lines down
from the first linespec.

- offset
Specifies the line offset lines before the last line printed.

filename : number

Specifies line number in the source file, filename .
function

Specifies the line that begins the body of the function, function . For instance, in
C, this is the line with the open brace.

filename : function

Specifies the line of the open-brace that begins the body of the function function

in the file, filename . You only need the file name with a function name to avoid
ambiguity when there are identically named functions in different source files.

* address
Specifies the line containing the program address, address . address may be any
expression.

Searching source files

82 ■ Debugging with GDB GNUPro Toolkit

Searching source files
There are two commands for searching through the current source file for a regular
expression.
forward-search regexp

search regexp
The command, ‘forward-search regexp ’, checks each line, starting with the one
following the last line listed, for a match for regexp . It lists the line that is found.
You can use the synonym, ‘search regexp ’, or abbreviate the command name as
fo .

reverse-search regexp
The command, ‘reverse-search regexp ’, checks each line, starting with the one
before the last line listed and going backward, for a match for regexp . It lists the
line that is found. You can abbreviate this command as rev .

CYGNUS Debugging with GDB ■ 83

Specifying source directories

8:
 E

xa
m

in
in

g
so

ur
ce

 fi
le

s

Specifying source directories
Executable programs sometimes do not record the directories of the source files from
which they were compiled, just the names. Even when they do, the directories could
be moved between the compilation and your debugging session. GDB has a list of
directories to search for source files; this is called the source path. Each time GDB
wants a source file, it tries all the directories in the list, in the order they are present in
the list, until it finds a file with the desired name.

NOTE: The executable search path is not used for this purpose. Neither is the
current working directory, unless it happens to be in the source path.

If GDB cannot find a source file in the source path, and the object program records a
directory, GDB tries that directory too. If the source path is empty, and there is no
record of the compilation directory, GDB looks in the current directory as a last resort.

Whenever you reset or rearrange the source path, GDB clears out any information it
has cached about where source files are found and where each line is in the file.

When you start GDB, its source path is empty. To add other directories, use the
directory command.
directory dirname ...

dir dirname ...

Add directory, dirname , to the front of the source path. Several directory names
may be given to this command, separated by ‘: ’ or whitespace. You may specify a
directory that is already in the source path; this moves it forward, so GDB
searches it sooner. You can use the string, ‘$cdir ’, to refer to the compilation
directory (if one is recorded), and ‘$cwd’ to refer to the current working directory.
‘$cwd’ is not the same as ‘. ’—the former tracks the current working directory as it
changes during your GDB session, while the latter is immediately expanded to the
current directory at the time you add an entry to the source path.

directory
Reset the source path to empty again. This requires confirmation.

show directories
Print the source path; show which directories it contains.

If your source path is cluttered with directories that are no longer of interest, GDB
may sometimes cause confusion by finding the wrong versions of source. You can
correct the situation with the following method.

1. Use directory with no argument to reset the source path to empty.

2. Use directory with suitable arguments to reinstall the directories you want in the
source path. You can add all the directories in one command.

Source and machine code

84 ■ Debugging with GDB GNUPro Toolkit

Source and machine code
You can use the command, info line , to map source lines to program addresses (and
vice versa), and the command, disassemble , to display a range of addresses as
machine instructions. When run under GNU Emacs mode, the info line command
now causes the arrow to point to the line specified. Also, info line prints addresses
in symbolic form as well as hex.
info line linespec

Print the starting and ending addresses of the compiled code for source line
linespec. Specify source lines in any of the ways understood by the list
command (see “Printing source lines” on page 80).

For instance, we can use info line to discover the location of the object code for the
first line of function, m4_changequote , as in the following example.
(gdb) info line m4_changecom
Line 895 of “builtin.c” starts at pc 0x634c and ends at 0x6350.

We can also inquire (using * addras , the form for linespec) what source line covers a
particular address, as in the following example.
(gdb) info line *0x63ff
Line 926 of “builtin.c” starts at pc 0x63e4 and ends at 0x6404.

After info line , the default address for the x command is changed to the starting
address of the line, so that ‘x/i ’ is sufficient to begin examining the machine code
(see “Examining memory” on page 93). Also, this address is saved as the value of the
convenience variable, $_ (see “Convenience variables” on page 103).
disassemble

This specialized command dumps a range of memory as machine instructions.
The default memory range is the function surrounding the program counter of the
selected frame. A single argument to this command is a program counter value;
GDB dumps the function surrounding this value. Two arguments specify a range
of addresses (first inclusive, second exclusive) to dump.

We can use disassemble to inspect the object code range shown in the last info line
example (the example shows SPARC machine instructions):
(gdb) disas 0x63e4 0x6404
Dump of assembler code from 0x63e4 to 0x6404:
0x63e4 <builtin_init+5340>: ble 0x63f8 <builtin_init+5360>
0x63e8 <builtin_init+5344>: sethi %hi(0x4c00), %o0
0x63ec <builtin_init+5348>: ld [%i1+4], %o0
0x63f0 <builtin_init+5352>: 0x63fc <builtin_init+5364>
0x63f4 <builtin_init+5356>: ld [%o0+4], %o0
0x63f8 <builtin_init+5360>: or %o0, 0x1a4, %o0
0x63fc <builtin_init+5364>: call 0x9288 <path_search>

CYGNUS Debugging with GDB ■ 85

Source and machine code

8:
 E

xa
m

in
in

g
so

ur
ce

 fi
le

s

0x6400 <builtin_init+5368>: nop
End of assembler dump.

set assembly-language instruction-set
This command selects the instruction set to use when disassembling
the program via the disassemble or x/i com-mands. It is useful for architectures
that have more than one native instruction set. Currently, it is only defined for the
Intel x86 family. You can set instruction-set to either i386 or i8086. The
default is i386 .

Source and machine code

86 ■ Debugging with GDB GNUPro Toolkit

CYGNUS Debugging with GDB ■ 87

9:
 E

xa
m

in
in

g
da

ta

Examinin g data

The usual way to examine data in your program is with the print command
(abbreviated p), or its synonym, inspect . It evaluates and prints the value of an
expression of the language your program is written in (see “Using GDB with different
languages” on page 119).
print exp
print / f exp

exp is an expression (in the source language). By default the value of exp is
printed in a format appropriate to its data type; you can choose a different format
by specifying ‘/ f ’, where f is a letter specifying the format; see “Output formats”
on page 92.

print
print / f

If you omit exp , GDB displays the last value again (from the value history; see
“Value history” on page 102). This allows you to conveniently inspect the same
value in an alternative format.

A more low-level way of examining data is with the x command. It examines data in
memory at a specified address and prints it in a specified format. See “Examining
memory” on page 93.

If you are interested in information about types, or about how the fields of a struct or
class are declared, use the ptype exp command rather than print . See “Examining
the symbol table” on page 141.

9

Expressions

88 ■ Debugging with GDB GNUPro Toolkit

Expressions
print and many other GDB commands accept an expression and compute its value.
Any kind of constant, variable or operator defined by the programming language you
are using is valid in an expression in GDB. This includes conditional expressions,
function calls, casts and string constants. It unfortunately does not include symbols
defined by preprocessor #define commands. GDB now supports array constants in
expressions input by the user. element , element ... is the syntax to use. For
example, you can now use the command, print {1 2 3} to build up an array in
memory that is memory allocated in the target program.

NOTE: Because C is so widespread, most of the expressions shown in
examples in this documentation are in C. See “Using GDB with
different languages” on page 119 for information on how to use
expressions in other languages.

In the following documentation, we discuss operators that you can use in GDB
expressions regardless of your programming language. See also the introduction to
“Examining data” on page 87.

Casts are supported in all languages, not just in C, because it is so useful to cast a
number into a pointer in order to examine a structure at that address in memory.

GDB supports the following operators, in addition to those common to programming
languages.
@

‘@’ is a binary operator for treating parts of memory as arrays. See “Artificial
arrays” on page 91 for more information.

::
‘ :: ’ allows you to specify a variable in terms of the file or function where it is
defined. See “Program variables” on page 89 for more information.

{ type } addr

Refers to an object of type, type , stored at address, addr , in memory. addr may
be any expression whose value is an integer or pointer (but parentheses are
required around binary operators, just as in a cast). This construct is allowed
regardless of what kind of data is normally supposed to reside at addr .

CYGNUS Debugging with GDB ■ 89

Program variables

9:
 E

xa
m

in
in

g
da

ta

Program variables
The most common kind of expression to use is the name of a variable in your program.
Variables in expressions are understood in the selected stack frame (see “Selecting a
frame” on page “Selecting a frame” on page 74); they must be either global
(sometimes referred to as static) or they must be visible (according to the scope rules
of the programming language from the point of execution in that frame). Consider the
following function example.
foo (a)
 int a;
{
 bar (a);
 {
 int b = test ();
 bar (b);
 }

}

This means that you can examine and use the variable, a, whenever your program is
executing within the function, foo ; however, you can only use or examine the
variable, b, while your program is executing inside the block where b is declared.
There is an exception: you can refer to a variable or function whose scope is a single
source file even if the current execution point is not in this file. But it is possible to
have more than one such variable or function with the same name (in different source
files). If that happens, referring to that name has unpredictable effects. If you wish,
you can specify a static variable in a particular function or file, using the colon-colon
notation (::) as in the following example.
file::variable
function::variable

In the previous example, file or function refer to the name of the context for the
static input, variable . In the case of file names, you can use quotes to make sure
GDB parses the file name as a single word—for example, to print a global value of x
defined in ‘f2.c ’, use (gdb) p ’f2.c’::x .

This use of ‘:: ’ is very rarely in conflict with the very similar use of the same notation
in C++. GDB also supports use of the C++ scope resolution operator in GDB
expressions.

WARNING: Occasionally, a local variable may appear to have the wrong value at
certain points in a function—just after entry to a new scope, and just
before exit.

You may see this problem when you are stepping by machine

Program variables

90 ■ Debugging with GDB GNUPro Toolkit

instructions. This is because, on most machines, it takes more than
one instruction to set up a stack frame (including local variable
definitions); if you are stepping by machine instructions, variables
may appear to have the wrong values until the stack frame is
completely built. On exit, it usually also takes more than one machine
instruction to destroy a stack frame; after you begin stepping through
that group of instructions, local variable definitions may be gone.

CYGNUS Debugging with GDB ■ 91

Artificial arrays

9:
 E

xa
m

in
in

g
da

ta

Artificial arrays
It is often useful to print out several successive objects of the same type in memory; a
section of an array, or an array of dynamically determined size for which only a
pointer exists in the program.

You can do this by referring to a contiguous span of memory as an artificial array,
using the binary operator, ‘@’. The left operand of ‘@’ should be the first element of the
desired array and be an individual object. The right operand should be the desired
length of the array. The result is an array value whose elements are all of the type of
the left argument. The first element is actually the left argument; the second element
comes from bytes of memory immediately following those holding the first element,
and so on.

If a program says int *array = (int *) malloc (len * sizeof (int)); , you can
print the contents of array with p *array@len .

The left operand of ‘@’ must reside in memory. Array values made with ‘@’ in this way
behave just like other arrays in terms of subscripting, and are coerced to pointers when
used in expressions. Artificial arrays most often appear in expressions via the value
history (see “Value history” on page Value history), after printing one out.

Another way to create an artificial array is to use a cast. This re-interprets a value as if
it were an array. The value need not be in memory:
(gdb) p/x (short[2])0x12345678
$1 = {0x1234, 0x5678}

As a convenience, if you leave the array length out, as in ‘(type)[]) value ’, GDB
calculates the size to fill the value, as ‘sizeof(value)/sizeof(type) ’ as the
following example shows.
(gdb) p/x (short[])0x12345678
$2 = {0x1234, 0x5678}

Sometimes the artificial array mechanism is not quite enough; in moderately complex
data structures, the elements of interest may not actually be adjacent—for example, if
you are interested in the values of pointers in an array. One useful work-around in this
situation is to use a convenience variable (see “Convenience variables” on page 103)
as a counter in an expression that prints the first interesting value, and then repeat that
expression using Return. For instance, suppose you have an array, dtab , of pointers to
structures, and you are interested in the values of a field, fv , in each structure. The
following is an example of what you might type, after which use the Return key twice.
set $i = 0
p dtab[$i++]->fv

Output formats

92 ■ Debugging with GDB GNUPro Toolkit

Output formats
By default, GDB prints a value according to its data type. Sometimes this is not what
you want. For example, you might want to print a number in hex, or a pointer in
decimal. Or you might want to view data in memory at a certain address as a character
string or as an instruction. To do these things, specify an output format when you print
a value.

The simplest use of output formats is to say how to print a value already computed.
This is done by starting the arguments of the print command with a slash and a format
letter. The format letters supported are:
x

Regard the bits of the value as an integer, and print the integer in hexadecimal.
d

Print as integer in signed decimal.
u

Print as integer in unsigned decimal.
o

Print as integer in octal.
t

Print as integer in binary. The letter ‘t ’ stands for “two”.1

a

Print as an address, both absolute in hexadecimal and as an offset from the nearest
preceding symbol. You can use this format used to discover where (in what
function) an unknown address is located:

(gdb) p/a 0x54320
$3 = 0x54320 <_initialize_vx+396>

c

Regard as an integer and print it as a character constant.
f

Regard the bits of the value as a floating point number and print using typical
floating point syntax.

For example, to print the program counter in hex (see “Registers” on page 105), type
p/x $pc. No space is required before the slash because command names in GDB
cannot contain a slash. To reprint the last value in the value history with a different
format, you can use the print command with just a format and no expression. For
example, ‘p/x ’ reprints the last value in hex.

1 ‘b’ cannot be used because these format letters are also used with the x command, where ‘b’ stands for “byte”; see
“Examining memory” on page 93.

CYGNUS Debugging with GDB ■ 93

Examining memory

9:
 E

xa
m

in
in

g
da

ta

Examining memory
You can use the x command (for “examine”) to examine memory in any of several
formats, independently of your program’s data types.
x/ nfu addr
x addr
x

Use the x command to examine memory.

n, f , and u are all optional parameters that specify how much memory to display and
how to format it; addr is an expression giving the address where you want to start
displaying memory. If you use defaults for nfu , you need not type the slash, ‘/ ’.
Several commands set convenient defaults for addr .

n, the repeat count
The repeat count is a decimal integer; the default is 1. It specifies how much
memory (counting by units, u) to display.

f , the display format
The display format is one of the formats used by print ,‘s ’ (null-terminated
string), or ‘i ’ (machine instruction). The default is ‘x ’ (hexadecimal) initially. The
default changes each time you use either x or print .

u, the unit size
The unit size uses any of the following variables.
b

Bytes.
h

Halfwords (two bytes).
w

Words (four bytes). This is the initial default.
g

Giant words (eight bytes).

Each time you specify a unit size with x, that size becomes the default unit the next
time you use x. (For the ‘s ’ and ‘i ’ formats, the unit size is ignored and is normally
not written.)

addr , starting display address
addr is the address where you want GDB to begin displaying memory. The
expression need not have a pointer value (though it may); it is always interpreted
as an integer address of a byte of memory. See “Expressions” on page 88 for more
information on expressions. The default for addr is usually just after the last
address examined—but several other commands also set the default address: info

breakpoints (to the address of the last breakpoint listed), info line (to the

Examining memory

94 ■ Debugging with GDB GNUPro Toolkit

starting address of a line), and print (if you use it to display a value from
memory).

For example, ‘x/3uh 0x54320 ’ is a request to display three halfwords (h) of memory,
formatted as unsigned decimal integers (u), starting at address 0x54320 .‘x/4xw $sp ’
prints the four words (w) of memory above the stack pointer (here, ‘$sp ’; see
“Registers” on page 105) in hexadecimal (x).

Since the letters indicating unit sizes are all distinct from the letters specifying output
formats, you do not have to remember whether unit size or format comes first; either
order works. The output specifications ‘4xw’ and ‘4wx’ mean exactly the same thing.
(However, the count n must come first; ‘wx4’ does not work.)

Even though the unit size u is ignored for the formats ‘s ’ and ‘i ’, you might still want
to use a count n; for example, ‘3i ’ specifies that you want to see three machine
instructions, including any operands. The command disassemble gives an alternative
way of inspecting machine instructions; see “Source and machine code” on page 84.

All the defaults for the arguments to x are designed to make it easy to continue
scanning memory with minimal specifications each time you use x. For example, after
you have inspected three machine instructions with ‘x/3i addr ’, you can inspect the
next seven with just ‘x/7 ’. If you use Return to repeat the x command, the repeat
count n is used again; the other arguments default as for successive uses of x.

The addresses and contents printed by the x command are not saved in the value
history because there is often too much of them and they would get in the way.
Instead, GDB makes these values available for subsequent use in expressions as
values of the convenience variables $_ and $__ . After an x command, the last address
examined is available for use in expressions in the convenience variable $_. The
contents of that address, as examined, are available in the convenience variable, $__ .

If the x command has a repeat count, the address and contents saved are from the last
memory unit printed; this is not the same as the last address printed if several units
were printed on the last line of output.

CYGNUS Debugging with GDB ■ 95

Automatic display

9:
 E

xa
m

in
in

g
da

ta

Automatic display
If you find that you want to print the value of an expression frequently (to see how it
changes), you might want to add it to the automatic display list so that GDB prints its
value each time your program stops. Each expression added to the list is given a
number to identify it; to remove an expression from the list, you specify that number.
The automatic display looks like the following.
2: foo = 38
3: bar[5] = (struct hack *) 0x3804

This display shows item numbers, expressions and their current values. As with
displays you request manually, using x or print , you can specify the output format
you prefer; in fact, display decides whether to use print or x depending on how
elaborate your format specification is—it uses x if you specify a unit size, or one of
the two formats (‘i ’ and ‘s ’) that are only supported by x; otherwise it uses print .
display exp

Add the expression, exp , to the list of expressions to display each time your
program stops. See “Expressions” on page 88.

display does not repeat if you press Return again after using it.
display/ fmt exp

For fmt specifying only a display format and not a size or count, add the
expression exp to the auto-display list but arrange to display it each time in the
specified format, fmt . See “Output formats” on page 92.

display/ fmt addr
For fmt ‘ i ’ or ‘s ’, or including a unit-size or a number of units, add the
expression, addr , as a memory address to be examined each time your program
stops. Examining means in effect doing ‘x/ fmt addr ’. See “Examining memory”
on page 93.

For example, ‘display/i $pc ’ can be helpful, to see the machine instruction about to
be executed each time execution stops (‘$pc ’ isa common name for the program
counter; see “Registers” on page 105).
undisplay dnums ...
delete display dnums ...

Remove item numbers dnums from the list of expressions to display .

undisplay does not repeat if you use Return after using it. (Otherwise you would
just get the error, ‘No display number... ’.)

disable display dnums ...
Disable the display of item numbers, dnums. A disabled display item is not printed
automatically, but is not forgotten. It may be enabled again later.

Automatic display

96 ■ Debugging with GDB GNUPro Toolkit

enable display dnums ...
Enable display of item numbers, dnums. It becomes effective once again in auto
display of its expression, until you specify otherwise.

display

Display the current values of the expressions on the list, just as is done when your
program stops.

info display
Print the list of expressions previously set up to display automatically, each one
with its item number, but without showing the values. This includes disabled
expressions, which are marked as such. It also includes expressions which would
not be displayed right now because they refer to automatic variables not currently
available.

If a display expression refers to local variables, then it does not make sense outside the
lexical context for which it was set up. Such an expression is disabled when execution
enters a context where one of its variables is not defined. For example, if you give the
command, display last_char , while inside a function with an argument,
last_char , GDB displays this argument while your program continues to stop inside
that function. When it stops elsewhere—where there is no variable, last_ char , the
display is disabled automatically. The next time your program stops where last_char
is meaningful, you can enable the display expression once again.

CYGNUS Debugging with GDB ■ 97

Print settings

9:
 E

xa
m

in
in

g
da

ta

Print settings
GDB provides the following ways to control how arrays, structures, and symbols are
printed. These settings are useful for debugging programs in any language:
set print address

set print address on
GDB prints memory addresses showing the location of stack traces, structure
values, pointer values, breakpoints, and so forth, even when it also displays the
contents of those addresses. The default is on.

For example, the following is what a stack frame display looks like with set

print address on :
(gdb) f
#0 set_quotes (lq=0x34c78 "<<", rq=0x34c88 ">>")

at input.c:530
530 if (lquote != def_lquote)

set print address off
Do not print addresses when displaying their contents. For example, the following
is the same stack frame displayed with set print address off :

(gdb) set print addr off
(gdb) f
#0 set_quotes (lq="<<", rq=">>") at input.c:530
530 if (lquote != def_lquote)

You can use ‘set print address off ’ to eliminate all machine dependent displays
from the GDB interface. For example, with print address off , you should get the
same text for backtraces on all machines—whether or not they involve pointer
arguments.
show print address

Show whether or not addresses are to be printed.

When GDB prints a symbolic address, it normally prints the closest earlier symbol
plus an offset.

If that symbol does not uniquely identify the address (for example, it is a name whose
scope is a single source file), you may need to clarify.

One way to do this is with info line , for example ‘info line *0x4537 ’.

Alternately, you can set GDB to print the source file and line number when it prints a
symbolic address:
set print symbol-filename on

Tell GDB to print the source file name and line number of a symbol in the
symbolic form of an address.

Print settings

98 ■ Debugging with GDB GNUPro Toolkit

set print symbol-filename off
Do not print source file name and line number of a symbol. This is the default.

show print symbol-filename
Show whether or not GDB will print the source file name and line number of a
symbol in the symbolic form of an address.

Another situation where it is helpful to show symbol filenames and line numbers is
when disassembling code; GDB shows you the line number and source file that
corresponds to each instruction.

Also, you may wish to see the symbolic form only if the address being printed is
reasonably close to the closest earlier symbol:
set print max-symbolic-offset max-offset

Display the symbolic form of an address if the offset between the closest earlier
symbol and the address is less than max-offset . The default is 0, which tells
GDB to always print the symbolic form of an address if any symbol precedes it.

show print max-symbolic-offset
Ask how large the maximum offset is that GDB prints in a symbolic address.

If you have a pointer and you are not sure where it points, try ‘set print symbol-

filename on ’. Then you can determine the name and source file location of the
variable where it points, using ‘p/a pointer ’. This interprets the address in symbolic
form. For instance, the following shows that a variable, ptt , points at another
variable, t , defined in ‘hi2.c ’:

(gdb) set print symbol-filename on
(gdb) p/a ptt
$4 = 0xe008 <t in hi2.c>

WARNING: For pointers that point to a local variable, ‘p/a ’ does not show the
symbol name and filename of the referent, even with the appropriate
set print options turned on.

Other settings control how different kinds of objects are printed:
set print array

set print array on
Pretty print arrays. This format is more convenient to read, but uses more space.
The default is off.

set print array off
Return to compressed format for arrays.

show print array
Show whether compressed or pretty format is selected for displaying arrays.

set print elements number-of-elements
Set a limit on how many elements of an array GDB will print. If GDB is printing a

CYGNUS Debugging with GDB ■ 99

Print settings

9:
 E

xa
m

in
in

g
da

ta

large array, it stops printing after it has printed the number of elements set by the
set print elements command. This limit also applies to the display of strings.
Setting number-of-elements to zero means that the printing is unlimited.

show print elements
Display the number of elements of a large array that GDB will print. If the number
is 0, then the printing is unlimited.

set print null-stop
Cause GDB to stop printing the characters of an array when the first NULL is
encountered. This is useful when large arrays actually contain only short strings.

set print pretty on
Cause GDB to print structures in an indented format with one member per line,
like the following example.

$1 = {
next = 0x0,
flags = {

sweet = 1,
sour = 1

},
meat = 0x54 "Pork"

}

set print pretty off
Cause GDB to print structures in a compact format, like the following example.

$1 = {next = 0x0, flags = {sweet = 1, sour = 1}, \
meat = 0x54 "Pork"}

This is the default format.
show print pretty

Show which format GDB is using to print structures.
set print sevenbit-strings on

Print using only seven-bit characters; if this option is set, GDB displays any
eight-bit characters (in strings or character values) using the notation, \ nnn . This
setting is best if you are working in English (ASCII) and you use the high-order
bit of characters as a marker or “meta” bit.

set print sevenbit-strings off

Print full eight-bit characters. This allows the use of more international character
sets, and is the default.

show print sevenbit-strings

Show whether or not GDB is printing only seven-bit characters.
set print union on

Tell GDB to print unions which are contained in structures. This is the default
setting.

Print settings

100 ■ Debugging with GDB GNUPro Toolkit

set print union off

Tell GDB not to print unions which are contained in structures.
show print union

Ask GDB whether or not it will print unions which are contained in structures. For
instance, consider the following example’s declarations.

typedef enum {Tree, Bug} Species;
typedef enum {Big_tree, Acorn, Seedling} Tree_forms;
typedef enum {Caterpillar, Cocoon, Butterfly} Bug_forms;

struct thing {
 Species it;
 union {
 Tree_forms tree;
 Bug_forms bug;
 } form;

};

struct thing foo = {Tree, {Acorn}};

The example has set print union on having, in effect, ‘p foo ’ printing the
following result.

$1 = {it = Tree, form = {tree = Acorn, bug = Cocoon}}

With set print union off in effect, it would print the following result.
$1 = {it = Tree, form = {...}}

The following settings are of interest when debugging C++ programs.
set print demangle

set print demangle on
Print C++ names in their source form rather than in the encoded (“mangled”) form
passed to the assembler and linker for type-safe linkage. The default is ‘on ’.

show print demangle
Show whether C++ names are printed in mangled or demangled form.

set print asm-demangle

set print asm-demangle on
Print C++ names in their source form rather than their mangled form, even in
assembler code printouts such as instruction disassemblies. The default is off.

show print asm-demangle
Show whether C++ names in assembly listings are printed in mangled or
demangled form.

set demangle-style style
Choose among several encoding schemes used by different compilers to represent
C++ names. The choices for style are currently:

CYGNUS Debugging with GDB ■ 101

Print settings

9:
 E

xa
m

in
in

g
da

ta

auto

Allow GDB to choose a decoding style by inspecting your program.
gnu

Decode based on the GNU C++ compiler (g++) encoding algorithm. This is
the default.

lucid

Decode based on the Lucid C++ compiler (lcc) encoding algorithm.
arm

Decode using the algorithm in the Annotated C++ Reference Manual
(Margaret A. Ellis & Bjarne Stroustrup, Addison Wesley, 1990).

WARNING: This setting alone is not sufficient to allow debugging cfront -
generated executables. GDB would require further enhancement to
permit that functionality.

foo

Show the list of formats.
show demangle-style

Display the encoding style currently in use for decoding C++ symbols.
set print object

set print object on
When displaying a pointer to an object, identify the actual (derived) type of the
object rather than the declared type, using the virtual function table.

set print object off

Display only the declared type of objects, without reference to the virtual function
table. This is the default setting.

show print object

Show whether actual, or declared, object types are displayed.
set print static-members
set print static-members on

Print static members when displaying a C++ object. The default is on.
set print static-members off

Do not print static members when displaying a C++ object.
show print static-members

Show whether C++ static members are printed, or not.
set print vtbl
set print vtbl on

Pretty print C++ virtual function tables. The default is off.
set print vtbl off

Do not pretty print C++ virtual function tables.
show print vtbl

Show whether C++ virtual function tables are pretty printed, or not.

Value history

102 ■ Debugging with GDB GNUPro Toolkit

Value history
Values printed by the print command are saved in the GDB value history, allowing
you to refer to them in other expressions. Values are kept until the symbol table is re-
read or discarded (for example with the file or symbol-file commands). When the
symbol table changes, the value history is discarded, since the values may contain
pointers back to the types defined in the symbol table.

The values printed are given history numbers by which you can refer to them. These
are successive integers starting with one. print shows you the history number
assigned to a value by printing ‘$num=’ before the value; num is the history number.

To refer to any previous value, use ‘$’ followed by the value’s history number. The
way print labels its output is designed to remind you of this. Just $ refers to the most
recent value in the history, and $$ refers to the value before that. $$ n refers to the nth
value from the end; $$2 is the value just prior to $$, $$1 is equivalent to $$, and $$0
is equivalent to $.

For example, suppose you have just printed a pointer to a structure and want to see the
contents of the structure. It suffices to type p *$.

If you have a chain of structures where the component next points to the next one, you
can print the contents of the next one with p *$.next .

You can print successive links in the chain by repeating this command, using the
Return key.

NOTE: The history records values, not expressions. Consider, for instance, if
the value of x is 4 and you type the following example’s commands.

print x

set x=5

Then the value recorded in the value history by the print command
remains 4 even though the value of x has changed.

show values
Print the last ten values in the value history, with their item numbers. This is like
‘p $$9 ’ repeated ten times, except that show values does not change the history.

show values n
Print ten history values centered on history item number, n.

show values +
Print ten history values just after the values last printed. If no more values are
available, show values + produces no display.

Using the Return key to repeat show values n has exactly the same effect as
‘show values + ’.

CYGNUS Debugging with GDB ■ 103

Convenience variables

9:
 E

xa
m

in
in

g
da

ta

Convenience variables
GDB provides convenience variables that you can use within GDB to hold on to a
value and refer to it later. These variables exist entirely within GDB; they are not part
of your program, and setting a convenience variable has no direct effect on further
execution of your program. That is why you can use them freely.

Convenience variables are prefixed with ‘$’. Any name preceded by ‘$’ can be used
for a convenience variable, unless it is one of the predefined machine-specific register
names (see “Registers” on page 105). Value history references, in contrast, are
numbers preceded by ‘$’. See “Value history” on page 102.

You can save a value in a convenience variable with an assignment expression, just as
you would set a variable in your program. For example, set $foo = *object_ptr
would save in $foo the value contained in the object pointed to by object_ptr .

Using a convenience variable for the first time creates it, but its value is void until you
assign a new value. You can alter the value with another assignment at any time.
Convenience variables have no fixed types. You can assign a convenience variable
any type of value, including structures and arrays, even if that variable already has a
value of a different type. The convenience variable, when used as an expression, has
the type of its current value.
show convenience

Print a list of convenience variables used so far, and their values. Abbreviated
show con .

One of the ways to use a convenience variable is as a counter to be incremented or a
pointer to be advanced. For instance, to print a field from successive elements of an
array of structures, use the following as an example.
set $i = 0
print bar[$i++]->contents

Repeat that command by using the Return key.

The following convenience variables are created automatically by GDB and given
values likely to be useful.
$_

The variable, $_, is automatically set by the x command to the last address
examined (see “Examining memory” on page 93). Other commands which
provide a default address for x to examine also set $_ to that address; these
commands include info line and info breakpoint . The type of $_ is void * ,
except when set by the x command, in which case it is a pointer to the type of $__ .

$__

The variable, $__ , is automatically set by the x command to the value found in the

Convenience variables

104 ■ Debugging with GDB GNUPro Toolkit

last address examined. Its type is chosen to match the format in which the data
was printed.

$_exitcode

The variable, $_exitcode , is automatically set to the exit code when the program
being debugged terminates.

CYGNUS Debugging with GDB ■ 105

Registers

9:
 E

xa
m

in
in

g
da

ta

Registers
You can refer to machine register contents, in expressions, as variables with names
starting with ‘$’. The names of registers are different for each machine; use info

registers to see the names used on your machine.
info registers

Print the names and values of all registers except floating-point registers (in the
selected stack frame).

info all-registers
Print the names and values of all registers, including floating-point registers.

info registers regname ...

Print the relativized value of each specified register, regname . As discussed in the
following, register values are normally relative to the selected stack frame.
regname may be any register name valid on the machine you are using, with or
without the initial ‘$’.

GDB has four “standard” register names that are available (in expressions) on most
machines—whenever they do not conflict with an architecture’s canonical mnemonics
for registers. The register names, $pc and $sp , are used for the program counter
register and the stack pointer. $fp is used for a register that contains a pointer to the
current stack frame, and $ps is used for a register that contains the processor status.
For example, you could print the program counter in hex with p/x $pc , or print the

instruction to be executed next with x/i $pc , or add four to the stack pointer2 with
set $sp += 4 .

Whenever possible, these four standard register names are available on your machine
even though the machine has different canonical mnemonics, so long as there is no
conflict. The info registers command shows the canonical names. For example, on
the SPARC, info registers displays the processor status register as $psr but you
can also refer to it as $ps .

GDB always considers the contents of an ordinary register as an integer when the
register is examined in this way. Some machines have special registers which can hold
nothing but floating point; these registers are considered to have floating point values.
There is no way to refer to the contents of an ordinary register as floating point value
(although you can print it as a floating point value with ‘print/f $ regname ’).

Some registers have distinct “raw” and “virtual” data formats. This means that the

2 This is a way of removing one word from the stack, on machines where stacks grow downward in memory (most
machines, nowadays). This assumes that the innermost stack frame is selected; setting $sp is not allowed when other
stack frames are selected. To pop entire frames off the stack, regardless of machine architecture, use the Return key;
see “Returning from a function” on page 149.

Registers

106 ■ Debugging with GDB GNUPro Toolkit

data format in which the register contents are saved by the operating system is not the
same one that your program normally sees. For example, the registers of the 68881
floating point coprocessor are always saved in “extended” (raw) format, but all C
programs expect to work with “double” (virtual) format. In such cases, GDB normally
works with the virtual format only (the format that makes sense for your program), but
the info registers command prints the data in both formats.

Normally, register values are relative to the selected stack frame (see “Selecting a
frame” on page 74). This means that you get the value that the register would contain
if all stack frames farther in were exited and their saved registers restored. In order to
see the true contents of hardware registers, you must select the innermost frame (with
‘ frame 0 ’).

However, GDB must deduce where registers are saved, from the machine code
generated by your compiler. If some registers are not saved, or if GDB is unable to
locate the saved registers, the selected stack frame makes no difference.
set rstack_high_address address

On AMD 29K family processors, registers are saved in a separate register stack.
There is no way for GDB to determine the extent of this stack. Normally, GDB
just assumes that the stack is large enough to result in GDB referencing memory
locations that do not exist. If necessary, you can get around this problem by
specifying the ending address of the register stack with the
set rstack_high_address command. The argument should be an address,
which you probably want to precede with ‘0x ’ to specify in hexadecimal.

show rstack_high_address
Display the current limit of the register stack, on AMD 29000 family processors.

CYGNUS Debugging with GDB ■ 107

Floating point hardware

9:
 E

xa
m

in
in

g
da

ta

Floating point hardware
Depending on the configuration, GDB may be able to give you more information
about the status of the floating point hardware.
info float

Display hardware-dependent information about the floating point unit. The exact
contents and layout vary depending on the floating point chip. Currently, ‘info

float ’ is supported on the ARM and x86 machines.

Floating point hardware

108 ■ Debugging with GDB GNUPro Toolkit

CYGNUS Debugging with GDB ■ 109

Floating point hardware

9:
 E

xa
m

in
in

g
da

ta

Floating point hardware

110 ■ Debugging with GDB GNUPro Toolkit

CYGNUS Debugging with GDB ■ 111

Floating point hardware

9:
 E

xa
m

in
in

g
da

ta

Floating point hardware

112 ■ Debugging with GDB GNUPro Toolkit

CYGNUS Debugging with GDB ■ 113

Floating point hardware

9:
 E

xa
m

in
in

g
da

ta

Floating point hardware

114 ■ Debugging with GDB GNUPro Toolkit

CYGNUS Debugging with GDB ■ 115

Floating point hardware

9:
 E

xa
m

in
in

g
da

ta

Floating point hardware

116 ■ Debugging with GDB GNUPro Toolkit

CYGNUS Debugging with GDB ■ 117

Floating point hardware

9:
 E

xa
m

in
in

g
da

ta

Floating point hardware

118 ■ Debugging with GDB GNUPro Toolkit

CYGNUS Debugging with GDB ■ 119

10
: U

si
ng

 G
D

B
 w

ith
 d

iff
er

en
t

la
ng

ua
ge

s

Usin g GDB
with different lan guages

Although programming languages generally have common aspects, they are rarely
expressed in the same manner. For instance, in ANSI C, dereferencing a pointer p is
accomplished by *p , but in Modula-2, it is accomplished by pˆ . Values can also be
represented (and displayed) differently. Hex numbers in C appear as ‘0x1ae ’, while in
Modula-2 they appear as ‘1AEH’.

Language-specific information is built into GDB for some languages, allowing you to
express operations like the previous in your program’s native language, and allowing
GDB to output values in a manner consistent with the syntax of your program’s native
language. The language you use to build expressions is called the working language.

The following documentation provides more discussion on language-specific issues.

• “Switching between source languages” on page 120

• “Displaying the language” on page 122

• “Type and range checking” on page 123

• “Supported languages” on page 126

10

Switching between source languages

120 ■ Debugging with GDB GNUPro Toolkit

Switching between source languages
There are two ways to control the working language—either have GDB set it
automatically, or select it manually yourself. You can use the set language
command for either purpose. On startup, GDB defaults to setting the language
automatically. The working language is used to determine how expressions you type
are interpreted, how values are printed, and so forth. The following discussions
address the source language usage.

• “List of filename extensions and languages” on page 120

• “Setting the working language” on page 121

• “Having GDB infer the source language” on page 121

In addition to the working language, every source file that GDB knows about has its
own working language. For some object file formats, the compiler might indicate
which language a particular source file is in. However, most of the time GDB infers
the language from the name of the file. The language of a source file controls whether
C++ names are demangled—this way backtrace can show each frame appropriately
for its own language. There is no way to set the language of a source file from within
GDB. This is most commonly a problem when you use a program, such as cfront or
f2c , that generates C but is written in another language. In that case, make the
program use #line directives in its C output; that way GDB will know the correct
language of the source code of the original program, and will display that source code,
not the generated C code.

List of filename extensions and languages
If a source file name ends in one of the following extensions, then GDB infers that its
language is the one indicated.
.mod

Modula-2 source file
.c

C source file
.C
.cc
.cxx
.cpp
.cp
.c++

C++ source file

CYGNUS Debugging with GDB ■ 121

Setting the working language

10
: U

si
ng

 G
D

B
 w

ith
 d

iff
er

en
t

la
ng

ua
ge

s

.ch

.c186

.c286

CHILL source file.
.s
.S

Assembler source file. This actually behaves almost like C, but GDB does not
skip over function prologues when stepping.

Setting the working language
If you allow GDB to set the language automatically, expressions are interpreted the
same way in your debugging session and your program. If you wish, you may set the
language manually. To do this, issue the command ‘set language lang ’, where lang
is the name of a language, such as c or modula-2 . For a list of the supported
languages, type ‘set language ’.

Setting the language manually prevents GDB from updating the working language
automatically. This can lead to confusion if you try to debug a program when the
working language is not the same as the source language, when an expression is
acceptable to both languages—but means different things. For instance, if the current
source file were written in C, and GDB was parsing Modula-2, a command such as
print a =b +c might not have the effect you intended. In C, this means to add b and
c and place the result in a. The result printed would be the value of a. In Modula-2,
this means to compare a to the result of b+c , yielding a BOOLEAN value.

Having GDB infer the source language
To have GDB set the working language automatically, use ‘set language local ’ or
‘set language auto ’. GDB then infers the working language. That is, when your
program stops in a frame (usually by encountering a breakpoint), GDB sets the
working language to the language recorded for the function in that frame. If the
language for a frame is unknown (that is, if the function or block corresponding to the
frame was defined in a source file that does not have a recognized extension), the
current working language is not changed, and GDB issues a warning.

This may not seem necessary for most programs, which are written entirely in one
source language. However, program modules and libraries written in one source
language can be used by a main program written in a different source language. Using
‘set language auto ’ in this case frees you from having to set the working language
manually.

Displaying the language

122 ■ Debugging with GDB GNUPro Toolkit

Displaying the language
The following commands help you find out which language is the working language,
and also what language in which source files were written.
show language

Display the current working language. This is the language you can use with
commands such as print to build and compute expressions that may involve
variables in your program.

info frame

Display the source language for this frame. This language becomes the working
language if you use an identifier from this frame. See “Information about a frame”
on page 76 to identify the other information about the language in the source files.

info source

Display the source language of this source file. See “Examining the symbol table”
on page 141 to identify the other information about the language in the source
files.

CYGNUS Debugging with GDB ■ 123

Type and range checking

10
: U

si
ng

 G
D

B
 w

ith
 d

iff
er

en
t

la
ng

ua
ge

s

Type and range checking
Some languages are designed to guard against you making seemingly common errors
through a series of compile- and run-time checks. These include checking the type of
arguments to functions and operators, and making sure mathematical overflows are
caught at run time. Checks such as these help to ensure a program’s correctness once it
has been compiled by eliminating type mismatches, and providing active checks for
range errors when your program is running. For more details, see “An overview of
type checking” on page 123 and “An overview of range checking” on page 124.L

GDB can check for conditions. Although GDB does not check the statements in your
program, it can check expressions entered directly into GDB for evaluation, using the
print command, for example. As Lwith the working language, GDB can also decide
whether or not to check automatically based on your program’s source language. See
“Supported languages” on page 126 for the default settings of supported languages.

WARNING: In some cases, the GDB commands for type and range checking are
included and do not yet have any effect. The following discussion
documents the intent of such commands.

An overview of type checking
Some languages, such as Modula-2, are strongly typed, meaning that the arguments to
operators and functions have to be of the correct type, otherwise an error occurs.
These checks prevent type mismatch errors from ever causing any run-time problems.
Consider the following examples.

1 +2 == > 3

Compare with the following example.

ERROR 1 + 2.3

The second example fails because the CARDINAL 1 is not type-compatible with the
REAL 2.3.

For the expressions you use in GDB commands, you can tell the GDB type checker to
skip checking; to treat any mismatches as errors and abandon the expression; or to
only issue warnings when type mismatches occur, but evaluate the expression
anyway. When you choose the last of these, GDB evaluates expressions like the
second example, but also issues a warning.

Even if you turn type checking off, there may be other reasons related to type that
prevent GDB from evaluating an expression. For instance, GDB does not know how
to add an int and a struct foo . These particular type errors have nothing to do with

An overview of range checking

124 ■ Debugging with GDB GNUPro Toolkit

the language in use, and usually arise from expressions, such as the one described
which make little sense to evaluate anyway.

Each language defines to what degree it is strict about type. For instance, both
Modula-2 and C require the arguments to arithmetical operators to be numbers. In C,
enumerated types and pointers can be represented as numbers, so that they are valid
arguments to mathematical operators. See “Supported languages” on page Supported
languages for further details on specific languages.

GDB provides the following additional commands for controlling the type checker.
set check type auto

Set type checking on or off based on the current working language. See
“Supported languages” on pageSupported languages, for the default settings for
each language.

set check type on

set check type off
Set type checking on or off, overriding the default setting for the current working
language. Issue a warning if the setting does not match the language default. If
any type mismatches occur in evaluating an expression while typechecking is on,
GDB prints a message and aborts evaluation of the expression.

set check type warn
Cause the type checker to issue warnings, but to always attempt to evaluate the
expression. Evaluating the expression may still be impossible for other reasons.
For example, GDB cannot add numbers and structures.

show type
Show the current setting of the type checker, and whether or not GDB is setting it
automatically.

An overview of range checking
In some languages (such as Modula-2), it is an error to exceed the bounds of a type;
this is enforced with run-time checks. Such range checking is meant to ensure
program correctness by making sure computations do not overflow, or indices on an
array element access do not exceed the bounds of the array. For expressions you use in
GDB commands, you can tell GDB to treat range errors in one of three ways: ignore
them, always treat them as errors and abandon the expression, or issue warnings but
evaluate the expression anyway. A range error can result from numerical overflow,
from exceeding an array index bound, or when you type a constant that is not a
member of any type. Some languages, however, do not treat overflows as an error. In
many implementations of C, mathematical overflow causes the result to “wrap
around” to lower values—for example, if m is the largest integer value, and s is the
smallest, then the following input is congruent.

CYGNUS Debugging with GDB ■ 125

An overview of range checking

10
: U

si
ng

 G
D

B
 w

ith
 d

iff
er

en
t

la
ng

ua
ge

s

m +1 ==> s

This, too, is specific to individual languages, and in some cases specific to individual
compilers or machines. See “Supported languages” on page Supported languages, for
further details on specific languages. GDB provides the following additional
commands for controlling the range checker.
set check range auto

Set range checking on or off based on the current working language. See
“Supported languages” on page Supported languages for the default settings for
each language.

set check range on

set check range off
Set range checking on or off, overriding the default setting for the current working
language. A warning is issued if the setting does not match the language default. If
a range error occurs, then a message is printed and evaluation of the expression is
aborted.

set check range warn
Output messages when the GDB range checker detects a range error, but attempt
to evaluate the expression anyway. Evaluating the expression may still be
impossible for other reasons, such as accessing memory that the process does not
own (a typical example from many Unix systems).

show range
Show the current setting of the range checker, and whether or not it is being set
automatically by GDB.

Supported languages

126 ■ Debugging with GDB GNUPro Toolkit

Supported languages
GDB 4 supports C, C++, and Modula-2. Some GDB features may be used in
expressions regardless of the language you use: the GDB @ and :: operators, and the
‘ {type} addr ’ construct (see “Expressions” on page 88) can be used with the
constructs of any supported language. The following documentation details to what
degree each source language is supported by GDB. These sections are not meant to be
language tutorials or references, but serve only as a reference guide to what the GDB
expression parser accepts, and what input and output formats should look like for
different languages. There are many good books written on each of these languages;
feel free to use them as a language reference or tutorial in addition to these
discussions.

C and C++
Since C and C++ are so closely related, many features of GDB apply to both
languages. Whenever this is the case, we discuss those languages together.

The C++ debugging facilities are jointly implemented by the GNU C++ compiler and
GDB. Therefore, to debug your C++ code effectively, you must compile your C++
programs with the GNU C++ compiler, g++.

For best results when debugging C++ programs, use the stabs debugging format. You
can select that format explicitly with the G++ command-line options ‘-gstabs ’ or
‘ -gstabs+ ’. See “Options for Debugging Your Program or GNU CC” in Using GNU
CC in GNUPro Compiler Tools for more information.

C and C++ operators
Operators must be defined on values of specific types. For instance, + is defined on
numbers and not on structures. Operators are often defined on groups of types. For the
purposes of C and C++, the following definitions hold.

• Integral types include int with any of its storage-class specifiers; char ; and enum.

• Floating-point types include float and double .

• Pointer types include all types defined as (type *) .

• Scalar types include all of the previous types.

The following operators are supported. They are listed in order of increasing
precedence.
,

The comma or sequencing operator. Expressions in a comma-separated list are

CYGNUS Debugging with GDB ■ 127

Supported languages

10
: U

si
ng

 G
D

B
 w

ith
 d

iff
er

en
t

la
ng

ua
ge

s

evaluated from left to right, with the result of the entire expression being the last
expression evaluated.

=

Assignment. The value of an assignment expression is the value assigned. Defined
on scalar types.

op=
Used in an expression of the form a op=b , and translated to a= a opb. op= and =
have the same precendence. op is any one of the operators | , ̂ , &, <<, >>, +, - , * , / ,
%.

?:

The ternary operator. a ? b: c can be thought of as: if a, then b, else, c. a should
be of an integral type.

||

Logical OR. Defined on integral types.
&&

Logical AND. Defined on integral types.
|

Bitwise OR. Defined on integral types.
ˆ

Bitwise exclusive-OR. Defined on integral types.
&

Bitwise AND. Defined on integral types.
==
!=

Equality and inequality. Defined on scalar types. The value of these expressions is
0 for false and non-zero for true.

<
>
<=
>=

Less than, greater than, less than or equal, greater than or equal. Defined on scalar
types. The value of these expressions is 0 for false and non-zero for true.

<<

>>
Left shift, and right shift. Defined on integral types.

@
The GDB “artificial array” operator (see “Expressions” on page 88).

+

-
Addition and subtraction. Defined on integral types, floating-point types and
pointer types.

Supported languages

128 ■ Debugging with GDB GNUPro Toolkit

*
/

%
Multiplication, division, and modulus. Multiplication and division are defined on
integral and floating-point types. Modulus is defined on integral types.

++

--
Increment and decrement. When appearing before a variable, the operation is
performed before the variable is used in an expression; when appearing after it,
the variable’s value is used before the operation takes place.

*
Pointer dereferencing. Defined on pointer types. Same precedence as ++.

&
Address operator. Defined on variables. Same precedence as ++.

For debugging C++, GDB implements a use of ‘&’ beyond what is allowed in the
C++ language itself: you can use ‘&(&ref) ’ (or, if you prefer, ‘&&ref ’) to examine
the address where a C++ reference variable (declared with ‘&ref ’) is stored.

-
Negative. Defined on integral and floating-point types. Same precedence as ++.

!
Logical negation. Defined on integral types. Same precedence as ++.

˜
Bitwise complement operator. Defined on integral types. Same precedence as ++.

.

->
Structure member, and pointer-to-structure member. For convenience, GDB
regards the two as equivalent, choosing whether to dereference a pointer based on
the stored type information. Defined on struct and union data.

[]
Array indexing. a[i] is defined as *(a+i) . Same precedence as -> .

()
Function parameter list. Same precedence as -> .

::
C++ scope resolution operator. Defined on struct, union, and class types.
Doubled colons also represent the GDB scope operator (see “Expressions”
on page 88) with the same precedence as the C++ scope resolution operator
functionality.

CYGNUS Debugging with GDB ■ 129

Supported languages

10
: U

si
ng

 G
D

B
 w

ith
 d

iff
er

en
t

la
ng

ua
ge

s

C and C++ constants
GDB allows you to express the constants of C and C++ in the following ways.

• Integer constants are a sequence of digits. Octal constants are specified by a
leading ‘0’ (i.e., zero), and hexadecimal constants by a leading ‘0x ’ or ‘0X’.
Constants may also end with a letter, ‘l ’, specifying that the constant should be
treated as a long value.

• Floating point constants are a sequence of digits, followed by a decimal point,
followed by a sequence of digits, and optionally followed by an exponent. An
exponent is of the form: ‘e[[+]|-] nnn ’, where nnn is another sequence of digits.
The ‘+’ is optional for positive exponents.

• Enumerated constants consist of enumerated identifiers, or their integral
equivalents.

• Character constants are a single character surrounded by single quotes (’), or a
number—the ordinal value of the corresponding character (usually its ASCII
value). Within quotes, the single character may be represented by a letter or by
escape sequences, which are of the form ‘\ nnn ’, where nnn is the octal
representation of the character’s ordinal value; or of the form ‘\ x ’, where ‘x ’ is a
predefined special character—for example, ‘\ n’ for newline.

• String constants are a sequence of character constants surrounded by double
quotes (" ").

• Pointer constants are an integral value. You can also write pointers to constants
using the C operator, ‘&’.

• Array constants are comma-separated lists surrounded by braces ‘{ ’ and ‘} ’; for
example, ‘{“1,2,3} ’ is a three-element array of integers, ‘{{1,2} , {3,4} ,
{5,6}} ’ is a three-by-two array, and ‘{&“hi”, &“there”, &“fred”} ’ is a three-
element array of pointers.

C++ expressions
GDB expression handling has a number of extensions to interpret a significant subset
of C++ expressions.

WARNING: GDB can only debug C++ code if you compile with the GNU C++
compiler. Moreover, C++ debugging depends on the use of additional
debugging information in the symbol table, and thus requires special
support. GDB has this support only with the stabs debug format.

In particular, if your compiler generates a.out, MIPS ECOFF,

Supported languages

130 ■ Debugging with GDB GNUPro Toolkit

RS/6000 XCOFF, or ELF with stabs extensions to the symbol table,
these facilities are all available. (With GNU CC, you can use the
‘ -gstabs ’ option to request stabs debugging extensions explicitly.)
Where the object code format is standard COFF or DWARF in ELF , on
the other hand, most of the C++ support in GDB does not work.

• Member function calls are allowed; you can use expressions like

count = aml->GetOriginal(x, y)

• While a member function is active (in the selected stack frame), your expressions
have the same namespace available as the member function; that is, GDB allows
implicit references to the class instance pointer, this , following the same rules as
C++.

• You can call overloaded functions; GDB resolves the function call to the right
definition, with one restriction—you must use arguments of the type required by
the function that you want to call. GDB does not perform conversions requiring
constructors or user-defined type operators.

• GDB understands variables declared as C++ references; you can use them in
expressions just as you do in C++ source—they are automatically dereferenced.

In the parameter list shown when GDB displays a frame, the values of reference
variables are not displayed (unlike other variables); this avoids clutter, since
references are often used for large structures. The address of a reference variable
is always shown, unless you have specified ‘set print address off ’.

• GDB supports the C++ name resolution operator ::— your expressions can use it
just as expressions in your program do. Since one scope may be defined in
another, you can use :: repeatedly if necessary, for example in an expression like
‘scope1 :: scope2 :: name’. GDB also allows resolving name scope by reference to
source files, in both C and C++ debugging (see “Program variables” on page 89).

C and C++ defaults
If you allow GDB to set type and range checking automatically, they both default to
off whenever the working language changes to C or C++. This happens regardless of
whether you or GDB selects the working language.

If you allow GDB to set the language automatically, it recognizes source files whose
names end with ‘.c ’, ‘ .C ’, or ‘ .cc ’, and when GDB enters code compiled from one of
these files, it sets the working language to C or C++. See “Having GDB infer the
source language” on page Having GDB infer the source language for further details.

CYGNUS Debugging with GDB ■ 131

Supported languages

10
: U

si
ng

 G
D

B
 w

ith
 d

iff
er

en
t

la
ng

ua
ge

s

C and C++ type and range checks
By default, when GDB parses C or C++ expressions, type checking is not used.
However, if you turn type checking on, GDB considers two variables type equivalent
if:

• The two variables are structured and have the same structure, union, or
enumerated tag.

• The two variables have the same type name, or types that have been declared
equivalent through typedef .

Range checking, if turned on, is done on mathematical operations. Array indices are
not checked, since they are often used to index a pointer that is not itself an array.

GDB and C
The set print union and show print union commands apply to the union type.
When set to ‘on ’, any union that is inside a struct or class is also printed.
Otherwise, it appears as ‘{...} ’.

The @ operator aids in the debugging of dynamic arrays, formed with pointers and a
memory allocation function. See “Expressions” on page 88.

GDB features for C++
Some GDB commands are particularly useful with C++, and some are designed
specifically for use with C++. The following is a summary of the commands.
breakpoint menus

When you want a breakpoint in a function whose name is overloaded, GDB
breakpoint menus help you specify which function definition you want. See
“Breakpoint menus” on page 63.

rbreak regex
Setting breakpoints using regular expressions is helpful for setting breakpoints on
overloaded functions that are not members of any special classes. See “Setting
breakpoints” on page 50.

catch exceptions
info catch

Debug C++ exception handling using these commands. See “Breakpoints and
exceptions” on page 55.

ptype typename
Print inheritance relationships as well as other information for type typename. See
“Examining the symbol table” on page 141.

Supported languages

132 ■ Debugging with GDB GNUPro Toolkit

set print demangle
show print demangle
set print asm-demangle

show print asm-demangle
Control whether C++ symbols display in their source form, both when displaying
code as C++ source and when displaying disassemblies. See “Print settings”
on page 97.

set print object

show print object
Choose whether to print derived (actual) or declared types of objects. See “Print
settings” on page 97.

set print vtbl

show print vtbl
Control the format for printing virtual function tables. See “Print settings”
on page 97.

Overloaded symbol names
You can specify a particular definition of an overloaded symbol, using the same
notation that is used to declare such symbols in C++: type ‘symbol (types) ’ rather
than just symbol . You can also use the GDB command-line word completion
facilities to list the available choices, or to finish the type list for you. See
“Command completion” on page 25 for details.

Modula-2
The extensions made to GDB to support Modula-2 only support output from the GNU
Modula-2 compiler (which is currently in development). Other Modula-2 compilers
are not currently supported, and attempting to debug executables produced by them is
most likely to give an error as GDB reads in the executable’s symbol table.

Modula 2 Operators
Operators must be defined on values of specific types. For instance, + is defined on
numbers and not on structures. Operators are often defined on groups of types. For the
purposes of Modula-2, the following definitions hold.

• Integral types consist of INTEGER, CARDINAL, and their subranges.

• Character types consist of CHAR and its subranges.

• Floating-point types consist of REAL.

• Pointer types consist of anything declared as POINTER TO type .

• Scalar types consist of all of the previous types.

• Set types consist of SET and BITSET types.

CYGNUS Debugging with GDB ■ 133

Supported languages

10
: U

si
ng

 G
D

B
 w

ith
 d

iff
er

en
t

la
ng

ua
ge

s

• Boolean types consist of BOOLEAN.

The following operators are supported, and appear in order of increasing precedence.
,

Function argument or array index separator.
:=

Assignment. The value of var := value is value .
<

>
Less than, greater than on integral, floating-point, or enumerated types.

<=

>=
Less than, greater than, less than or equal to, greater than or equal to on integral,
floating-point and enumerated types, or set inclusion on set types. Same
precedence as <.

=
<>

Equality and two ways of expressing inequality, valid on scalar types. Same
precedence as <. In GDB scripts, only <> is available for inequality, since #
conflicts with the script comment character.

IN
Set membership. Defined on set types and the types of their members. Same
precedence as <.

OR
Boolean disjunction. Defined on boolean types.

AND

&
Boolean conjuction. Defined on boolean types.

@

The GDB “artificial array” operator (see “Expressions” on page 88).
+

-
Addition and subtraction on integral and floating-point types, or union and
difference on set types.

*
Multiplication on integral and floating-point types, or set intersection on set types.

/
Division on floating-point types, or symmetric set difference on set types. Same
precedence as * .

DIV

Supported languages

134 ■ Debugging with GDB GNUPro Toolkit

MOD
Integer division and remainder. Defined on integral types. Same precedence as *.

-
Negative. Defined on INTEGER and REAL data.

ˆ
Pointer dereferencing. Defined on pointer types.

NOT
Boolean negation. Defined on boolean types. Same precedence as ˆ.

.

RECORD field selector. Defined on RECORD data. Same precedence as ˆ.
[]

Array indexing. Defined on ARRAY data. Same precedence as ˆ.
()

Procedure argument list. Defined on PROCEDURE objects. Same precedence as ˆ .
::

.

GDB and Modula-2 scope operators.

WARNING: Sets and their operations are not yet supported, so GDB treats the use
of the operator, IN , or the use of operators, +, - , * , / , =,<>, #, <=, and
>= on sets as an error.

Modula-2 built-in functions and procedures
Modula-2 also makes available several built-in procedures and functions. In
describing these, the following meta-variables are used:
a

Represents an ARRAY variable.
c

Represents a CHAR constant or variable.
i

Represents a variable or constant of integral type.
m

Represents an identifier that belongs to a set. Generally used in the same function
with the metavariable, s. The type of s should be SET OF mtype (where mtype is
the type of m).

n

Represents a variable or constant of integral or floating-point type.
r

Represents a variable or constant of floating-point type.

CYGNUS Debugging with GDB ■ 135

Supported languages

10
: U

si
ng

 G
D

B
 w

ith
 d

iff
er

en
t

la
ng

ua
ge

s

t

“Represents a type.
v

Represents a variable.
x

Represents a variable or constant of one of many types. See the explanation of the
function for details.

All Modula-2 built-in procedures also return a result, discussed by the following
descriptions.
ABS(n)

Returns the absolute value of n.
CAP(c)

If c is a lower case letter, it returns its upper case equivalent, otherwise it returns
its argument

CHR(i)

Returns the character whose ordinal value is i .
DEC(v)

Decrements the value in the variable v. Returns the new value.
DEC(v, i)

Decrements the value in the variable v by i . Returns the new value.
EXCL(m, s)

Removes the element m from the set s. Returns the new set.
FLOAT(i)

Returns the floating point equivalent of the integer i .
HIGH(a)

Returns the index of the last member of a.
INC(v)

Increments the value in the variable v. Returns the new value.
INC(v, i)

Increments the value in the variable v by i . Returns the new value.
INCL(m, s)

Adds the element m to the set s if it is not already there. Returns the new set.
MAX(t)

Returns the maximum value of the type t .
MIN(t)

Returns the minimum value of the type t .
ODD(i)

Returns boolean TRUE if i is an odd number.
ORD(x)

Returns the ordinal value of its argument. For example, the ordinal value of a

Supported languages

136 ■ Debugging with GDB GNUPro Toolkit

character is its ASCII value (on machines supporting the ASCII character set). x
must be of an ordered type, which include integral, character and enumerated
types.

SIZE(x)

Returns the size of its argument. x can be a variable or a type.
TRUNC(r)

Returns the integral part of r .
VAL(t , i)

Returns the member of the type t whose ordinal value is i .

WARNING: Sets and their operations are not yet supported, so GDB treats the use
of procedures INCL and EXCL as an error.

Modula-2 Constants
GDB allows you to express the constants of Modula-2 in the following ways.

• Integer constants are simply a sequence of digits. When used in an expression, a
constant is interpreted to be type-compatible with the rest of the expression.
Hexadecimal integers are specified by a trailing ‘H’, and octal integers by a
trailing ‘B’.

• Floating point constants appear as a sequence of digits, followed by a decimal
point and another sequence of digits. An optional exponent can then be specified,
in the form ‘E[+|-] nnn ’, where ‘[+|-] nnn ’ is the desired exponent. All of the
digits of the floating point constant must be valid decimal (base 10) digits.

• Character constants consist of a single character enclosed by a pair of like quotes,
either single (’) or double (”). They may also be expressed by their ordinal value
(their ASCII value, usually) followed by a ‘C’.

• String constants consist of a sequence of characters enclosed by a pair of like
quotes, either single (’) or double (”). Escape sequences in the style of C are also
allowed. See “C and C++ constants” on page C and C++ constantsfor a brief
explanation of escape sequences.

• Enumerated constants consist of an enumerated identifier.

• Boolean constants consist of the identifiers TRUE and FALSE.

• Pointer constants consist of integral values only.

• Set constants are not yet supported.

Modula-2 defaults
If type and range checking are set automatically by GDB, they both default to on

CYGNUS Debugging with GDB ■ 137

Supported languages

10
: U

si
ng

 G
D

B
 w

ith
 d

iff
er

en
t

la
ng

ua
ge

s

whenever the working language changes to Modula-2. This happens regardless of
whether you, or GDB, selected the working language.

If you allow GDB to set the language automatically, then entering code compiled from
a file whose name ends with ‘.mod ’ sets the working language to Modula-2. See
“Setting the working language” on page 121 for further details.

Deviations from standard Modula-2
A few changes have been made to make Modula-2 programs easier to debug. This is
done primarily by loosening its type strictness.

• Unlike in standard Modula-2, pointer constants can be formed by integers. This
allows you to modify pointer variables during debugging. (In standard Modula-2,
the actual address contained in a pointer variable is hidden from you; it can only
be modified through direct assignment to another pointer variable or expression
that returned a pointer.)

• C escape sequences can be used in strings and characters to represent non-
printable characters. GDB prints out strings with these escape sequences
embedded. Single non-printable characters are printed using the ‘CHR(nnn) ’
format.

• The assignment operator (:=) returns the value of its right-hand argument.

• All built-in procedures both modify and return their argument.

Modula-2 type and range checks

WARNING: In this release, GDB does not yet perform type or range checking.

GDB considers two Modula-2 variables type equivalent if the following conditions
apply.

• They are of types that have been declared equivalent, using a TYPE t1 - t2
statement.

• They have been declared on the same line.

NOTE: This is true of the GNU Modula-2 compiler, but it may not be true of
other compilers.)

As long as type checking is enabled, any attempt to combine variables whose types are
not equivalent is an error. Range checking is done on all mathematical operations,
assignment, array index bounds, and all built-in functions and procedures.

Supported languages

138 ■ Debugging with GDB GNUPro Toolkit

Modula-2 scope operator (.), the GDB scope operator (::)
There are a few subtle differences between the Modula-2 scope operator (.) and the
GDB scope operator (::). The two have similar syntax, as in the following example.

module . id
scope :: id

scope is the name of a module or a procedure. module is the name of a module. id is
any declared identifier within your program, except another module. Using the ::
operator makes GDB search the scope specified by scope , for the identifier, id .. If it
is not found in the specified scope , then GDB searches all scope occurrences,
enclosing the one specified by scope .

Using the Modula-2 operator, . , makes GDB search the current scope for the
identifier specified by id that was imported from the definition module specified by
module . With this operator, it is an error if the identifier, id , was not imported from
definition module, module , or if id is not an identifier in module .

GDB and Modula-2
Some GDB commands have little use when debugging Modula-2 programs. Five
subcommands of set print and show print apply specifically to C and C++:‘vtbl ’,
‘demangle ’, ‘ asm-demangle ’, ‘ object ’, and ‘union ’. The first four apply to C++, and
the last to the C union type, which has no direct analogue in Modula-2.

The @ operator (see “Expressions” on page 88), while available while using any
language, is not useful with Modula-2. Its intent is to aid the debugging of dynamic
arrays, which cannot be created in Modula-2 as they can in C or C++. However,
because an address can be specified by an integral constant, the construct
‘ { type } adrexp ’ is still useful. (see “Expressions” on page 88)

In GDB scripts, the Modula-2 inequality operator, #, is interpreted as the beginning of
a comment. Use ‘<>’ instead.

CYGNUS Debugging with GDB ■ 139

Supported languages

10
: U

si
ng

 G
D

B
 w

ith
 d

iff
er

en
t

la
ng

ua
ge

s

Supported languages

140 ■ Debugging with GDB GNUPro Toolkit

CYGNUS Debugging with GDB ■ 141

11
: E

xa
m

in
in

g
th

e
sy

m
bo

l t
ab

le

Examinin g the s ymbol table

The commands described in this section allow you to inquire about the symbols
(names of variables, functions and types) defined in your program. This information is
inherent in the text of your program and does not change as your program executes.
GDB finds it in your program’s symbol table, in the file indicated when you started
GDB (see “Choosing files” on page 17), or by one of the file-management commands
(see “Commands to specify files” on page 13GDBfiles).

Occasionally, you may need to refer to symbols that contain unusual characters, which
GDB ordinarily treats as word delimiters. The most frequent case is in referring to
static variables in other source files (see “Program variables” on page 89). File names
are recorded in object files as debugging symbols, but GDB would ordinarily parse a
typical file name, like ‘foo.c ’, as the three words ‘foo’ ‘ . ’ ‘ c ’. To allow GDB to
recognize ‘foo.c ’ as a single symbol, enclose it in single quotes; for example,
p ‘ foo.c’ ::x looks up the value of x in the scope of the file, foo.c.
info address symbol

Describe where the data for symbol is stored. For a register variable, this says
which register it is kept in. For a non-register local variable, this prints the stack-
frame offset at which the variable is always stored.

NOTE: The contrast with ‘print & symbol ’ does not work at all for a register
variable, and for a stack local variable prints the exact address of the
current instantiation of the variable.

11

142 ■ Debugging with GDB GNUPro Toolkit

whatis exp

Print the data type of expression, exp . exp is not actually evaluated, and any side-
effecting operations (such as assignments or function calls) inside it do not take
place. See “Expressions” on page 88.

whatis
Print the data type of $, the last value in the value history.

ptype typename
Print a description of data type typename . typename may be the name of a type, or
for C code it may have the form ‘class class-name ’, ‘ struct struct-tag ’,
‘union union-tag ’ or ‘enum enum-tag ’.

ptype exp
ptype

Print a description of the type of expression, exp . ptype differs from whatis by
printing a detailed description, instead of just the name of the type. For instance,
consider the following variable declaration example.

struct complex {double real; double imag;} v;

The declaration’s two commands give the following output.
(gdb) whatis v
type = struct complex
(gdb) ptype v
type = struct complex {

double real;
double imag;

}

As with whatis , using ptype without an argument refers to the type of $, the last
value in the value history.

info types regexp
info types

Print a brief description of all types whose name matches regexp (or all types in
your program, if you supply no argument). Each complete typename is matched as
though it were a complete line; thus, ‘i type value ’ gives information on all
types in your program whose name includes the string value , but ‘i type

ˆvalue$ ’ gives information only on types whose complete name is value.

This command differs from ptype in two ways: first, like whatis , it does not print
a detailed description; second, it lists all source files where a type is defined.

info source
Show the name of the current source file—that is, the source file for the function
containing the current point of execution—and the language it was written in.

info sources
Print the names of all source files in your program for which there is debugging

CYGNUS Debugging with GDB ■ 143

11
: E

xa
m

in
in

g
th

e
sy

m
bo

l t
ab

le

information, organized into two lists: files whose symbols have already been read,
and files whose symbols will be read when needed.

info functions
Print the names and data types of all defined functions.

info functions regexp
Print the names and data types of all defined functions whose names contain a
match for regular expression, regexp . Thus, ‘info fun step ’ finds all functions
whose names include step ; ‘ info fun ̂ step ’ finds those whose names start with
step .

info variables
Print the names and data types of all variables that are declared outside of
functions (i.e., excluding local variables).

info variables regexp
Print the names and data types of all variables (except for local variables) whose
names contain a match for regular expression regexp .

Some systems allow individual object files that make up your program to be
replaced without stopping and restarting your program. For example, in VxWorks
you can simply recompile a defective object file and keep on running. If you are
running on one of these systems, you can allow GDB to reload the symbols for the
following automatically relinked modules:

set symbol-reloading on
Replace symbol definitions for the corresponding source file when an object file
with a particular name is seen again.

set symbol-reloading off
Do not replace symbol definitions when re-encountering object files of the same
name. This is the default state; if you are not running on a system that permits
automatically relinking modules, you should leave symbol-reloading off, since
otherwise GDB may discard symbols when linking large programs, that may
contain several modules (from different directories or libraries) with the same
name.

show symbol-reloading
Show the current on or off setting.

maint print symbols filename
maint print psymbols filename
maint print msymbols filename

Write a dump of debugging symbol data into the file, filename . These commands
are used to debug the GDB symbol-reading code. Only symbols with debugging
data are included.

144 ■ Debugging with GDB GNUPro Toolkit

If you use ‘maint print symbols ’, GDB includes all the symbols for which it has
already collected full details: that is, filename reflects symbols for only those
files whose symbols GDB has read.

You can use the command, info sources , to find out which files these are. If you
use ‘maint print psymbols ’ instead, the dump shows information about symbols
that GDB only knows partially—that is, symbols defined in files that GDB has
skimmed, but not yet read completely.

Finally, ‘maint print msymbols ’ dumps just the minimal symbol information
required for each object file from which GDB has read some symbols. See
“Commands to specify files” on page 154 for a discussion of how GDB reads
symbols (in the description of symbol-file).

CYGNUS Debugging with GDB ■ 145

12
: A

lte
rin

g
ex

ec
ut

io
n

Alterin g execution

Once you think you have found an error in your program, you might want to find out
for certain whether correcting the apparent error would lead to correct results in the
rest of the run. You can find the answer by experiment, using the GDB features for
altering execution of the program. For example, you can store new values into
variables or memory locations, give your program a signal, restart it at a different
address, or even return prematurely from a function.

For more information, see the following documentation.

• “Assignment to variables” on page 146

• “Continuing at a different address” on page 147

• “Giving your program a signal” on page 148

• “Returning from a function” on page 149

• “Calling program functions” on page 150

• “Patching programs” on page 151

12

Assignment to variables

146 ■ Debugging with GDB GNUPro Toolkit

Assignment to variables
 To alter the value of a variable, evaluate an assignment expression. See
“Expressions” on page 88. For example, print x=4 stores the value 4 into the
variable, x, and then prints the value of the assignment expression (which is 4). See
“Using GDB with different languages” on page 119 for more information on
operators in supported languages.

If you are not interested in seeing the value of the assignment, use the set command
instead of the print command. set is really the same as print except that the
expression’s value is not printed and is not put in the value history (see “Value
history” on page 102). The expression is evaluated only for its effects.

If the beginning of the argument string of the set command appears identical to a set
subcommand, use the set variable command instead of only set . This command is
identical to set except for its lack of subcommands. For example, if your program has
a variable, width , you get an error if you try to set a new value with just ‘set

width=13 ’, because GDB has the command set width :
(gdb) whatis width
type = double
(gdb) p width
$4 = 13
(gdb) set width=47
Invalid syntax in expression.

The invalid expression, of course, is ‘=47 ’. In order to actually set the program’s
variable, width , use (gdb) set var width=47 .

GDB allows more implicit conversions in assignments than C; you can freely store an
integer value into a pointer variable or vice versa, and you can convert any structure to
any other structure that is the same length or shorter.

To store values into arbitrary places in memory, use the ‘{...} ’ construct to generate
a value of specified type at a specified address (see “Expressions” on page 88). For
example, {int}0x83040 refers to memory location 0x83040 as an integer (which
implies a certain size and representation in memory), and set {int}0x83040 = 4
stores the value 4 into that memory location.

CYGNUS Debugging with GDB ■ 147

Continuing at a different address

12
: A

lte
rin

g
ex

ec
ut

io
n

Continuing at a different address
Ordinarily, when you continue your program, you do so at the place where it stopped,
with the continue command. You can instead continue at an address of your own
choosing, with the following commands.
jump linespec

Resume execution at a specified line, linespec . Execution stops again
immediately if there is a breakpoint there. See “Printing source lines” on page 80
for a description of the different forms of linespec .

The jump command does not change the current stack frame, or the stack pointer,
or the contents of any memory location or any register other than the program
counter. If line, linespec , is in a different function from the one currently
executing, the results may be bizarre if the two functions expect different patterns
of arguments or of local variables. For this reason, the jump command requests
confirmation if the specified line is not in the function currently executing.
However, even bizarre results are predictable if you are well acquainted with the
machine-language code of your program.

jump * address

Resume execution at the instruction at address, address .

You can get much the same effect as the jump command by storing a new value into
the register, $pc . The difference is that this does not start your program running; it
only changes the address of where it will run when you continue. For example, set

$pc = 0x485 makes the next continue command or stepping command execute at
address, 0x485 , rather than at the address where your program stopped. See
“Continuing and stepping” on page 64.

The most common occasion to use the jump command is to back up, perhaps with
more breakpoints set, over a portion of a program that has already executed, in order
to examine its execution in more detail.

Giving your program a signal

148 ■ Debugging with GDB GNUPro Toolkit

Giving your program a signal
signal signal

Resume execution where your program stopped, but immediately give it the
signal signal . signal can be the name or the number of a signal. For example, on
many systems signal 2 and signal SIGINT are both ways of sending an interrupt
signal.

Alternatively, if signal is zero, continue execution without giving a signal. This
is useful when your program stopped on account of a signal and would ordinary
see the signal when resumed with the continue command; ‘signal 0 ’ causes it
to resume without a signal.

signal does not repeat when you use Return a second time after executing the
command.

Invoking the signal command is not the same as invoking the kill utility from the
shell. Sending a signal with kill causes GDB to decide what to do with the signal
depending on the signal handling tables (see “Signals” on page 67). The signal
command passes the signal directly to your program.

CYGNUS Debugging with GDB ■ 149

Returning from a function

12
: A

lte
rin

g
ex

ec
ut

io
n

Returning from a function
return

return expression
You can cancel execution of a function call with the return command. If you
give an expression argument, its value is used as the function’s return value.

When you use return , GDB discards the selected stack frame (and all frames within
it). You can think of this as making the discarded frame return prematurely. If you
wish to specify a value to be returned, give that value as the argument to return .

This pops the selected stack frame (see “Selecting a frame” on page 74), and any other
frames inside of it, leaving its caller as the innermost remaining frame. That frame
becomes selected. The specified value is stored in the registers used for returning
values of functions.

The return command does not resume execution; it leaves the program stopped in the
state that would exist if the function had just returned.

In contrast, the finish command (see “Continuing and stepping” on page 64)
resumes execution until the selected stack frame returns naturally.

Calling program functions

150 ■ Debugging with GDB GNUPro Toolkit

Calling program functions
You can use this variant of the print command if you want to execute a function from
your program, but without cluttering the output with void returned values. If the result
is not void , it is printed and saved in the value history.
call expr

Evaluate the expression, expr , without displaying void returned values.

The user-controlled variable, call_scratch_address , specifies the location of a
scratch area to be used when GDB calls a function in the target. This is necessary
because the usual method of putting the scratch area on the stack does not work in
systems that have separate instruction and data spaces.

CYGNUS Debugging with GDB ■ 151

Patching programs

12
: A

lte
rin

g
ex

ec
ut

io
n

Patching programs
By default, GDB opens the file containing your program’s executable code (or the
corefile) read-only. This prevents accidental alterations to machine code; but it also
prevents you from intentionally patching your program’s binary.

If you’d like to be able to patch the binary, you can specify that explicitly with the set

write command. For example, you might want to turn on internal debugging flags, or
even to make emergency repairs.
set write on

set write off
If you specify ‘set write on ’, GDB opens executable and core files for both
reading and writing; if you specify ‘set write off ’ (the default), GDB opens
them read-only. If you have already loaded a file, you must load it again (using the
exec-file or core-file commands) after changing set write , for your new
setting to take effect.

show write
Display whether executable files and core files are opened for writing as well as
reading.

Patching programs

152 ■ Debugging with GDB GNUPro Toolkit

CYGNUS Debugging with GDB ■ 153

13
: G

D
B

 fi
le

s

GDB files

GDB needs to know the file name of the program to be debugged, both in order to read
its symbol table and in order to start your program. To debug a core dump of a
previous run, you must also tell GDB the name of the core dump file.

The following documentation discusses more of GDB files.

• “Commands to specify files” on page 154

• “Errors reading symbol files” on page 159

13

Commands to specify files

154 ■ Debugging with GDB GNUPro Toolkit

Commands to specify files
You may want to specify executable and core dump file names. The usual way to do
this is at start-up time, using the arguments to GDB’s start-up commands (see
“Getting In and Out of GDB” on page 15).

Occasionally it is necessary to change to a different file during a GDB session. Or you
may run GDB and forget to specify a file you want to use. In these situations the GDB
commands to specify new files are useful.
file filename

Use filename as the program to be debugged. It is read for its symbols and for the
contents of pure memory. It is also the program executed when you use the run
command. If you do not specify a directory and the file is not found in the GDB
working directory, GDB uses the environment variable, PATH, as a list of
directories to search, just as the shell does when looking for a program to run. You
can change the value of this variable, for both GDB and your program, using the
path command.

On systems with memory-mapped files, an auxiliary file, filename .syms , may
hold symbol table information for filename . If so, GDB maps in the symbol table
from ‘filename .syms ’, starting up more quickly. See the descriptions of the file
options, -mapped and -readnow (available on the command line, and with the
commands, file , symbol-file , or add-symbol-file , described in the
following), for more information.

file
file with no argument makes GDB discard any information it has on both
executable file and the symbol table.

exec-file [filename]

Specify that the program to be run (but not the symbol table) is found in
filename . GDB searches the environment variable, PATH, if necessary to locate
your program. Omitting filename means to discard information on the executable
file.

symbol-file [filename]

Read symbol table information from file, filename . PATH is searched when
necessary. Use the file command to get both symbol table and program to run
from the same file.

symbol-file with no argument clears out GDB information on your program’s
symbol table. The symbol-file command causes GDB to forget the contents of
its convenience variables, the value history, and all breakpoints and auto-display
expressions. This is because they may contain pointers to the internal data
recording symbols and data types, which are part of the old symbol table data

CYGNUS Debugging with GDB ■ 155

Commands to specify files

13
: G

D
B

 fi
le

s

being discarded inside GDB.

symbol-file does not repeat if you use Return again after executing it once.

When GDB is configured for a particular environment, it understands debugging
information in whatever format is the standard generated for that environment;
you may use either a GNU compiler, or other compilers that adhere to the local
conventions. Best results are usually obtained from GNU compilers; for example,
using gcc you can generate debugging information for optimized code.

On some kinds of object files, the symbol-file command does not normally read
the symbol table in full right away. Instead, it scans the symbol table quickly to
find which source files and which symbols are present. The details are read later,
one source file at a time, as they are needed.

The purpose of this two-stage reading strategy is to make GDB start up faster. For
the most part, it is invisible except for occasional pauses while the symbol table
details for a particular source file are being read. (The set verbose command can
turn these pauses into messages if desired. See “Optional warnings and messages”
on page 200.)

We have not implemented the two-stage strategy for COFF yet. When the symbol
table is stored in COFF format, symbol-file reads the symbol table data in full
right away.

symbol-file filename [-readnow][-mapped]
file filename [-readnow][-mapped]

You can override the GDB two-stage strategy for reading symbol tables by using
the ‘-readnow ’ option with any of the commands that load symbol table
information, if you want to be sure GDB has the entire symbol table available.

If memory-mapped files are available on your system through the mmap system
call, you can use another option, ‘-mapped ’, to cause GDB to write the symbols
for your program into a reusable file. Future GDB debugging sessions map in
symbol information from this auxiliary symbol file (if the program has not
changed), rather than spending time reading the symbol table from the executable
program.

Using the ‘-mapped ’ option has the same effect as starting GDB with the
‘ -mapped ’ command-line option.

You can use both options together, to make sure the auxiliary symbol file has all
the symbol information for your program. The auxiliary symbol file for a program
called myprog is called ‘myprog .syms ’. Once this file exists (so long as it is newer
than the corresponding executable), GDB always attempts to use it when you
debug myprog ; no special options or commands are needed.

The ‘.syms ’ file is specific to the host machine where you run GDB. It holds an

Commands to specify files

156 ■ Debugging with GDB GNUPro Toolkit

exact image of the internal GDB symbol table. It cannot be shared across multiple
host platforms.

core-file [filename]

Specify the whereabouts of a core dump file to be used as the “contents of
memory”. Traditionally, core files contain only some parts of the address space of
the process that generated them; GDB can access the executable file itself for
other parts.

core-file with no argument specifies that no core file is to be used.

NOTE: The core file is ignored when your program is actually running under
GDB. So, if you have been running your program and you wish to
debug a core file instead, you must kill the subprocess in which the
program is running. To do this, use the kill command (see “Killing the
child process” on page 41).

load filename
Depending on what remote debugging facilities are configured into GDB, the
load command may be available. Where it exists, it is meant to make filename

(an executable) available for debugging on the remote system—by downloading,
or dynamic linking, for example. load also records the filename symbol table in
GDB, like the add-symbol-file command.

If your GDB does not have a load command, attempting to execute it gets the
error message, You can’t do that when your target is

The file is loaded at whatever address is specified in the executable. For some
object file formats, you can specify the load address when you link the program;
for other formats, like a.out, the object file format specifies a fixed address.

On VxWorks, load links filename dynamically on the current target system as
well as adding its symbols in GDB.

With the Nindy interface to an Intel 960 board, load downloads filename to the
960 as well as adding its symbols in GDB.

When you select remote debugging to a Hitachi SH, H8/300, or H8/500 board (see
“GDB and Hitachi microprocessors” on page 188), the load command downloads
your program to the Hitachi board and also opens it as the current executable
target for GDB on your host (like the file command).

load does not repeat if you use Return again after using it.
add-symbol-file filename address
add-symbol-file filename address [-readnow][-mapped]

The add-symbol-file command reads additional symbol table information from
the file, filename . You would use this command when filename has been

CYGNUS Debugging with GDB ■ 157

Commands to specify files

13
: G

D
B

 fi
le

s

dynamically loaded (by some other means) into the program that is running.
address should be the memory address at which the file has been loaded; GDB
cannot figure this out for itself. You can specify address as an expression.

The symbol table of the file, filename , is added to the symbol table originally
read with the symbol-file command. You can use the command, add-symbol-

file , any number of times; the new symbol data thus read keeps adding to the
old. To discard all old symbol data instead, use the symbol-file command.

add-symbol-file does not repeat if, after using it, you use Return.

You can use the ‘-mapped ’ and ‘-readnow ’ options, just as with the symbol-file
command, to change how GDB manages the symbol table information for
filename .

add-shared-symbol-file

The add-shared-symbol-file command can be used only under Harris’ CXUX
operating system for the Motorola 88k. GDB automatically looks for shared
libraries, however if GDB does not find yours, you can run add-shared-symbol-

file . It takes no arguments.
section

The section command changes the base address of section, SECTION, of the exec
file to ADDR. This can be used if the exec file does not contain section addresses
(such as in the a.out format), or when the addresses specified in the file itself are
wrong. Each section must be changed separately. The info files command lists
all the sections and their addresses.

info files
info target

info files and info target are synonymous; both print the current target (see
“Specifying a debugging target” on page 163), including the names of the
executable and core dump files currently in use by GDB, and the files from which
symbols were loaded. The help target command lists all possible targets rather
than current ones.

All file-specifying commands allow both absolute and relative file names as
arguments. GDB always converts the file name to an absolute file name and
remembers it that way.

GDB supports SunOS, SVr4, Irix 5, and IBM RS/6000 shared libraries. GDB
automatically loads symbol definitions from shared libraries when you use the run
command, or when you examine a core file. (Before you issue the run command,
remember that GDB does not understand references to a function in a shared library,
unless you are debugging a core file).
info share

Commands to specify files

158 ■ Debugging with GDB GNUPro Toolkit

info sharedlibrary
Print the names of the shared libraries which are currently loaded.

sharedlibrary regex
share regex

Load shared object library symbols for files matching a Unix regular expression.
As with files loaded automatically, it only loads shared libraries required by your
program for a core file or after using run . If regex is omitted, all shared libraries
required by your program are loaded.

CYGNUS Debugging with GDB ■ 159

Errors reading symbol files

13
: G

D
B

 fi
le

s

Errors reading symbol files
While reading a symbol file, GDB occasionally encounters problems, such as symbol
types it does not recognize, or known bugs in compiler output. By default, GDB does
not notify you of such problems, since they are relatively common and primarily of
interest to people debugging compilers.

If you are interested in seeing information about ill-constructed symbol tables, you
can either ask GDB to print only one message about each such type of problem, no
matter how many times the problem occurs; or you can ask GDB to print more
messages, to see how many times the problems occur, with the set complaints
command (see “Optional warnings and messages” on page 200).

The messages currently printed, and their meanings, include the folowing.
inner block not inside outer block in symbol

The symbol information shows where symbol scopes begin and end (such as at the
start of a function or a block of statements). This error indicates that an inner
scope block is not fully contained in its outer scope blocks.

GDB circumvents the problem by treating the inner block as if it had the same
scope as the outer block. In the error message, symbol may be shown as “(don’t

know) ” if the outer block is not a function.
block at address out of order

The symbol information for symbol scope blocks should occur in order of
increasing addresses. This error indicates that it does not do so.

GDB does not circumvent this problem, and has trouble locating symbols in the
source file whose symbols it is reading. You can often determine what source file
is affected by specifying set verbose on. See “Optional warnings and messages”
on page 200.

bad block start address patched

The symbol information for a symbol scope block has a start address smaller than
the address of the preceding source line. This is known to occur in the SunOS
4.1.1 (and earlier) C compiler.

GDB circumvents the problem by treating the symbol scope block as starting on
the previous source line.

bad string table offset in symbol n

Symbol number n contains a pointer into the string table which is larger than the
size of the string table. GDB circumvents the problem by considering the symbol
to have the name, foo , which may cause other problems if many symbols end up
with this name.

unknown symbol type 0x nn

The symbol information contains new data types that GDB does not yet know

Errors reading symbol files

160 ■ Debugging with GDB GNUPro Toolkit

how to read. 0x nn is the symbol type of the misunderstood information, in
hexadecimal.

GDB circumvents the error by ignoring this symbol information. This usually
allows you to debug your program, though certain symbols are not accessible. If
you encounter such a problem and feel like debugging it, you can debug gdb with
itself, breakpoint on complain , then go up to the function, read_dbx_symtab , and
examine *bufp to see the symbol.

stub type has NULL name

GDB could not find the full definition for a struct or class.
const/volatile indicator missing (ok if using g++ v1.x), got ...

The symbol information for a C++ member function is missing some information
that recent versions of the compiler should have output for it.

info mismatch between compiler and debugger

GDB could not parse a type specification output by the compiler.

CYGNUS Debugging with GDB ■ 161

Errors reading symbol files

13
: G

D
B

 fi
le

s

Errors reading symbol files

162 ■ Debugging with GDB GNUPro Toolkit

CYGNUS Debugging with GDB ■ 163

14
: S

pe
ci

fy
in

g
a

de
bu

gg
in

g
ta

rg
et

Specif ying a debu gging target

A target is the execution environment occupied by your program. Often, GDB runs in
the same host environment as your program; in that case, the debugging target is
specified as a side effect when you use the file or core commands. When you need
more flexibility—for example, running GDB on a physically separate host, or
controlling a standalone system over a serial port or a realtime system over a TCP/IP
connection—you can use the target command to specify one of the target types
configured for GDB

See the following documentation for more discussion of debugging targets.

• “Active targets” on page 164

• “Commands for managing targets” on page 165

• “Choosing target byte order” on page 168

• “Remote debugging” on page 169

• “The GDB remote serial protocol” on page 170

14

Active targets

164 ■ Debugging with GDB GNUPro Toolkit

Active targets
There are three classes of targets: processes, core files, and executable files.

GDB can work concurrently on up to three active targets, one in each class. This
allows you to (for example) start a process and inspect its activity without abandoning
your work on a core file.

For example, if you execute ‘gdb a.out ’, then the executable file, a.out , is the only
active target. If you designate a core file as well—presumably from a prior run that
crashed and coredumped—then GDB has two active targets and uses them in tandem,
looking first in the corefile target, then in the executable file, to satisfy requests for
memory addresses. (Typically, these two classes of target are complementary, since
core files contain only a program’s read-write memory—variables and so on—plus
machine status, while executable files contain only the program text and initialized
data.)

When you type run , your executable file becomes an active process target as well.
When a process target is active, all GDB commands requesting memory addresses
refer to that target; addresses in an active core file or executable file target are
obscured while the process target is active.

Use the core-file and exec-file commands to select a new core file or executable
target (see “Commands to specify files” on page 154). To specify as a target a process
that is already running, use the attach command (see “Debugging an already-running
process” on page 40).

CYGNUS Debugging with GDB ■ 165

Commands for managing targets

14
: S

pe
ci

fy
in

g
a

de
bu

gg
in

g
ta

rg
et

Commands for managing targets
The following are some commands for targets.
target type parameters

Connects the GDB host environment to a target machine or process. A target is
typically a protocol for talking to debugging facilities. You use the argument,
type , to specify the type or protocol of the target machine.

Further parameters are interpreted by the target protocol, but typically include
things like device names or host names to connect with, process numbers, and
baud rates.

The target command does not repeat if you use Return again after executing the
command.

help target

Displays the names of all targets available. To display targets currently selected,
use either info target or info files (see “Commands to specify files”
on page 154).

help target name

Describe a particular target, including any parameters (using name for the specific
target) necessary to select it.

set gnutarget args
GDB uses its own library, BFD, to read your files. GDB knows whether it is
reading an executable, a core, or a .o file; however you can specify the file format
with the set gnutarget command.

Unlike most target commands, with gnutarget , the target refers to a program,
not a machine.

WARNING: To specify a file format with set gnutarget , you must know the
actual BFD name.

See “Commands to specify files” on page 154.
show gnutarget

Use the show gnutarget command to display what file format gnutarget is set
to read. If you have not set gnutarget , GDB will determine the file format for
each file automatically and show gnutarget displays the following output.

The current BDF target is “auto”.

The following are some common targets (available, or not, depending on the GDB
configuration). Different targets are available on different configurations of GDB;
your configuration may have more or fewer targets.

Commands for managing targets

166 ■ Debugging with GDB GNUPro Toolkit

target exec program
An executable file. ‘target exec program ’ is like ‘exec-file program ’.

target core filename
A core dump file. ‘target core filename ’ is like ‘core-file filename ’.

target remote dev
Remote serial target in GDB-specific protocol. The argument, dev , specifies what
serial device to use for the connection (e.g., ‘/dev/ttya ’). See “Remote
debugging” on page 169. target remote now supports the load command. This
is only useful if you have some other way of getting the stub to the target system,
and you can put it somewhere in memory where it won’t get clobbered by the
download.

target sim
CPU simulator. See “Simulated CPU target” on page 191.

target udi keyword
Remote AMD29K target, using the AMD UDI protocol. The keyword argument
specifies which 29K board or simulator to use. See “The UDI protocol for
AMD29K” on page 180.

target amd-eb dev speed PROG
Remote PC-resident AMD EB29K board, attached over serial lines. dev is the
serial device, as for target remote ; speed allows you to specify the linespeed;
and PROG is the name of the program to be debugged, as it appears to DOS on the
PC. See “The EBMON protocol for AMD29K” on page 180.

target hms dev
A Hitachi SH, H8/300, or H8/500 board, attached using a serial line to a host. Use
special commands, device and speed , to control the serial line and the
communications speed used. See “GDB and Hitachi microprocessors”
on page 188.

target nindy devicename
An Intel 960 board controlled by a Nindy Monitor. device-name is the name of the
serial device to use for the connection, e.g. ‘/dev/ttya ’. See “GDB with a remote
i960 (Nindy)” on page 179.

target st2000 dev speed
A Tandem ST2000 phone switch, running Tandem’s STD-BUG protocol. dev is
the name of the device attached to the ST2000 serial line; speed is the
communication line speed. The arguments are not used if GDB is configured to
connect to the ST2000, using TCP or Telnet. See “GDB with a Tandem ST2000”
on page 183.

target vxworks machinename
A VxWorks system, attached using TCP/IP. The argument, machinename , is the

CYGNUS Debugging with GDB ■ 167

Commands for managing targets

14
: S

pe
ci

fy
in

g
a

de
bu

gg
in

g
ta

rg
et

target system’s machine name or IP address. See “GDB and VxWorks”
on page 184.

target cpu32bug dev
CPU32BUG monitor, running on a CPU32 (M68K) board.

target op50n dev
OP50N monitor, running on an OKI HPPA board.

target w89k dev
W89K monitor, running on a Winbond HPPA board.

target est dev
EST-300 ICE monitor, running on a CPU32 (M68K) board.

target rom68k dev
ROM 68K monitor, running on an IDP board.

target array dev
Array Tech LSI33K RAID controller board.

target sparclite dev
Fujitsu SPARClite boards, used only for the purpose of loading. You must use an
additional command to debug the program like, for example, target remote dev ,
using GDB standard remote protocol.

Choosing target byte order

168 ■ Debugging with GDB GNUPro Toolkit

Choosing target byte order
You can now choose which byte order to use with a target system. Use the set

endian big and set endian little commands. Use the set endian auto
command to instruct GDB to use the byte order associated with the executable. You
can see the current setting for byte order with the show endian command .

WARNING: Currently, only embedded MIPS configurations support dynamic
selection of target byte order.

CYGNUS Debugging with GDB ■ 169

Remote debugging

14
: S

pe
ci

fy
in

g
a

de
bu

gg
in

g
ta

rg
et

Remote debugging
If you are trying to debug a program running on a machine that cannot run GDB in the
usual way, it is often useful to use remote debugging. For example, you might use
remote debugging on an operating system kernel, or on a small system which does not
have a general purpose operating system powerful enough to run a full-featured
debugger.

Some configurations of GDB have special serial or TCP/IP interfaces to make this
work with particular debugging targets. In addition, GDB comes with a generic serial
protocol (specific to GDB, but not specific to any particular target system) which you
can use if you write the remote stubs—the code that runs on the remote system to
communicate with GDB.

Other remote targets may be available in your configuration of GDB; use help

target to list them.

The GDB remote serial protocol

170 ■ Debugging with GDB GNUPro Toolkit

The GDB remote serial protocol
The following documentation discusses the GDB remote serial protocol.You must
link with your program using a few special-purpose subroutines called stubs that
implement the GDB remote serial protocol.

• “What the stub can do for you” on page 171

• “What you must do for the stub” on page 172

• “Putting it all together” on page 174

• “Communication protocol” on page 175

• “Using the gdbserver program” on page 176

• “Using the gdbserve.nlm program” on page 178

• “GDB with a remote i960 (Nindy)” on page 179

• “The UDI protocol for AMD29K” on page 180

• “GDB with a Tandem ST2000” on page 183

• “GDB and VxWorks” on page 184

• “GDB and SPARClet” on page 186

• “Connecting to SPARClet” on page 187

• “SPARClet download” on page 187

• “GDB and Hitachi microprocessors” on page 188

• “GDB and remote MIPS boards” on page 189

To debug a program running on another machine (the debugging target machine), you
must use the following directions.

1. Arrange for all the usual prerequisites for the program to run by itself.
For example, for a C program, you need the following three prerequisites.

❖ A startup routine to set up the C runtime environment; these usually have a
name like ‘crt0 ’. The startup routine may be supplied by a hardware supplier,
so you may have to write your own.

❖ You probably need a C subroutine library to support your program’s
subroutine calls, notably managing input and output.

❖ A way of getting your program to the other machine—for example, a
download program. These are often supplied by manufacturers, so you may
have to write your own from hardware documentation.

2. Arrange for your program to use a serial port to communicate with the machine

CYGNUS Debugging with GDB ■ 171

What the stub can do for you

14
: S

pe
ci

fy
in

g
a

de
bu

gg
in

g
ta

rg
et

where GDB is running (the host machine). In general terms, the scheme follows a
standard protocol.

❖ On the host
GDB already understands how to use this protocol; when everything else is
set up, you can simply use the ‘target remote ’ command (see “Commands
for managing targets” on page 165).

❖ On the target
You must link with your program using a few special-purpose subroutines
that implement the GDB remote serial protocol. The file containing these
subroutines is called a debugging stub.

 On certain remote targets, you can use an auxiliary program, gdbserver ,
instead of linking a stub into your program. See “Using the gdbserver
program” on page 176 for details.

The debugging stub is specific to the architecture of the remote machine; for
example, use ‘sparc-stub.c ’ to debug programs on SPARC boards. The
following working remote stubs are distributed with GDB.

sparc-stub.c
For SPARC architectures.

m68k-stub.c
For Motorola 680x0 architectures.

i386-stub.c
For Intel 386 and compatible architectures.

The ‘README’ file in the GDB distribution may list other recently added stubs.

What the stub can do for you
The debugging stub for your architecture is what supplies the following three
subroutines.
set_debug_traps

This routine arranges for handle_exception to run when your program stops.
You must call this subroutine explicitly near the beginning of your program.

handle_exception
This is the central workhorse, but your program never calls it explicitly—the
setup code arranges for handle_exception to run when a trap is triggered.

What you must do for the stub

172 ■ Debugging with GDB GNUPro Toolkit

handle_exception takes control when your program stops during execution (for
example, on a breakpoint), and mediates communications with GDB on the host
machine. This is where the communications protocol is implemented; handle_

exception acts as the GDB representative on the target machine; it begins by
sending summary information on the state of your program, then continues to
execute, retrieving and transmitting any information GDB needs, until you
execute a GDB command that makes your program resume; at that point,
handle_exception returns control to your own code on the target machine.

breakpoint
Use this auxiliary subroutine to make your program contain a breakpoint.
Depending on the particular situation, this may be the only way for GDB to get
control. For instance, if your target machine has some sort of interrupt button, you
won’t need to call this; pressing the interrupt button transfers control to
handle_exception— in effect, to GDB. On some machines, simply receiving
characters on the serial port may also trigger a trap; again, in that situation, you
don’t need to call breakpoint from your own program—simply running ‘target

remote ’ from the host GDB session gets control.

Call breakpoint if none of these is true, or if you simply want to make certain
your program stops at a predetermined point for the start of your debugging
session.

What you must do for the stub
The debugging stubs that come with GDB are set up for a particular chip architecture,
having no information about the rest of the target machine being debugged.

First of all, you need to tell the stub how to communicate with the serial port with the
following subroutines.
int getDebugChar()

Write this subroutine to read a single character from the serial port. It may be
identical to getchar for your target system; a different name is used to allow you
to distinguish the two if you wish.

void putDebugChar(int)

Write this subroutine to write a single character to the serial port. It may be
identical to putchar for your target system; a different name is used to allow you
to distinguish the two if you wish.

If you want GDB to be able to stop your program while it is running, you need to use
an interrupt-driven serial driver, and arrange for it to stop when it receives a ˆC
(‘ \003 ’, the Control-C character). That is the character which GDB uses to tell the
remote system to stop.

CYGNUS Debugging with GDB ■ 173

What you must do for the stub

14
: S

pe
ci

fy
in

g
a

de
bu

gg
in

g
ta

rg
et

Getting the debugging target to return the proper status to GDB probably requires
changes to the standard stub; one quick and dirty way is to just execute a breakpoint
instruction (the “dirty” part is that GDB reports a SIGTRAP instead of a SIGINT).

Other routines you need to supply are the following.
void exceptionHandler (int exception_number , void * exception_address)

Write this function to install exception_address in the exception handling tables.

You need to do this because the stub does not have any way of knowing what the
exception handling tables on your target system are like (for example, the
processor’s table might be in ROM, containing entries which point to a table in
RAM). exception_number is the exception number which should be changed; its
meaning is architecture-dependent (for example, different numbers might
represent divide by zero, misaligned access, etc). When this exception occurs,
control should be transferred directly to exception_address , and the processor
state (stack, registers, and so on) should be just as it is when a processor exception
occurs. So if you want to use a jump instruction to reach exception_address , it
should be a simple jump, not a jump to subroutine.

For the 386, exception_address should be installed as an interrupt gate so that
interrupts are masked while the handler runs. The gate should be at privilege level
0 (the most privileged level). The SPARC and 68k stubs are able to mask interrup
themselves without help from exceptionHandler .

void flush_i_cache()
(sparc and sparclite only) Write this subroutine to flush the instruction cache, if
any, on your target machine. If there is no instruction cache, this subroutine may
be a no-op.

On target machines that have instruction caches, GDB requires this function to
make certain that the state of your program is stable.

You must also make sure the following library routine is available.
void *memset(void *, int, int)

This is the standard library function, memset, which sets an area of memory to a
known value. If you have one of the free versions of libc.a , memset can be found
there; otherwise, you must either obtain it from your hardware manufacturer, or
write your own.

If you do not use the GNU C compiler, you may need other standard library
subroutines as well; this varies from one stub to another, but in general the stubs are
likely to use any of the common library subroutines which gcc generates as inline
code.

Putting it all together

174 ■ Debugging with GDB GNUPro Toolkit

Putting it all together
In summary, when your program is ready to debug, you must use the following steps.

1. Make sure you have the supporting low-level routines (see Section “What you
must do for the stub” on page What you must do for the stub): getDebugChar ,
putDebugChar , flush_i_cache , memset, exceptionHandler .

2. Insert these lines near the top of your program:
set_debug_traps();
breakpoint();

3. For the 680x0 stub only, you need to provide a variable called exceptionHook .
Normally you just use void (*exceptionHook)() = 0; , but if before calling
set_debug_traps , you set it to point to a function in your program, that function
is called when GDB continues after stopping on a trap (for example, bus error).
The function indicated by exceptionHook is called with one parameter: an int
which is the exception number.

4. Compile and link together: your program, the GDB debugging stub for your target
architecture, and the supporting subroutines.

5. Make sure you have a serial connection between your target machine and the
GDB host, and identify the serial port on the host.

6. Download your program to your target machine (or get it there by whatever means
the manufacturer provides), and start it.

7. To start remote debugging, run GDB on the host machine, and specify as an
executable file the program that is running in the remote machine. This tells GDB
how to find your program’s symbols and the contents of its pure text.

Then establish communication using the target remote command. Its argument
specifies how to communicate with the target machine—either via a devicename
attached to a direct serial line, or a TCP port (usually to a terminal server which in
turn has a serial line to the target). For example, to use a serial line connected to
the device named ‘/dev/ttyb ’, use target remote /dev/ttyb .

To use a TCP connection, use an argument of the form host :port . For example,
to connect to port 2828 on a terminal server named manyfarms , use the following
command.

target remote manyfarms:2828.

Now you can use all the usual commands to examine and change data and to step and
continue the remote program.

To resume the remote program and stop debugging it, use the detach command.

Whenever GDB is waiting for the remote program, if you use the interrupt character
sequence (often, Ctrl-C), GDB attempts to stop the program. This may or may not

CYGNUS Debugging with GDB ■ 175

Communication protocol

14
: S

pe
ci

fy
in

g
a

de
bu

gg
in

g
ta

rg
et

succeed, depending in part on the hardware and the serial drivers the remote system
uses. If you type the interrupt character once again, GDB displays the following
prompt:

Interrupted while waiting for the program.

Give up (and stop debugging it)? (y or n)

If you press the y key, GDB abandons the remote debugging session. (If you decide
you want to try again later, you can use target remote again to connect once more.)
If you press the n key, GDB goes back to waiting.

Communication protocol
The stub files provided with GDB implement the target side of the communication
protocol, and the GDB side is implemented in the GDB source file ‘remote.c ’.
Normally, you can simply allow these subroutines to communicate, and ignore the
details. (If you’re implementing your own stub file, you can still ignore the details:
start with one of the existing stub files. ‘sparc-stub.c ’ is the best organized, and
therefore the easiest to read.)

However, there may be occasions when you need to know something about the
protocol—for example, if there is only one serial port to your target machine, you
might want your program to do something special if it recognizes a packet meant for
GDB.

All GDB commands and responses (other than acknowledgements, which are single
characters) are sent as a packet which includes a check-sum. A packet is introduced
with the character, ‘$’, and ends with the character, ‘#’, followed by a two-digit
checksum: $packet info #checksum .

checksum is computed as the modulo 256 sum of the packet info characters.

When either the host or the target machine receives a packet, the first response
expected is an acknowledgement: a single character, either ‘+’ (to indicate the package
was received correctly) or ‘- ’ (to request retransmission). The host (GDB) sends
commands, and the target (the debugging stub incorporated in your program) sends
data in response. The target also sends data when your program stops.

Command packets are distinguished by their first character, which identifies the kind
of command. The following are some of the commands currently supported (for a
complete list of commands, look in ‘gdb/remote.c. ’):
g

Requests the values of CPU registers.
G

Sets the values of CPU registers.

Using the gdbserver program

176 ■ Debugging with GDB GNUPro Toolkit

maddr , count
Read countbytes at location addr.

Maddr , count :...

Write count bytes at location, addr .
c c addr

Resume execution at the current address (or at addr , if supplied).
s s addr

Step the target program for one instruction, from either the current program
counter or from addr , if supplied.

k
Kill the target program.

?
Report the most recent signal. To allow you to take advantage of the GDB signal
handling commands, one of the functions of the debugging stub is to report CPU
traps as the corresponding POSIX signal values.

T
Allows the remote stub to send only the registers that GDB needs to make a quick
decision about single-stepping or conditional breakpoints. This eliminates the
need to fetch the entire register set for each instruction being stepped through.

The GDB remote serial protocol now implements a write-through cache for
registers. GDB only re-reads the registers if the target has run.

If you have trouble with the serial connection, you can use the command, set

remotedebug . This makes GDB report on all packets sent back and forth across the
serial line to the remote machine. The packet-debugging information is printed on the
GDB standard output stream. set remotedebug off turns it off, and show

remotedebug shows you its current state.

Using the gdbserver program
gdbserver is a control program for Unix-like systems, allowing you to connect your
program with a remote GDB using target remote , without linking in the usual
debugging stub.

gdbserver is not a complete replacement for the debugging stubs, because it requires
essentially the same operating-system facilities that GDB itself does. In fact, a system
that can run gdbserver to connect to a remote GDB could also run GDB locally!
gdbserver is sometimes useful nevertheless, because it is a much smaller program
than GDB itself. It is also easier to port than all of GDB, so you may be able to get
started more quickly on a new system by using gdbserver . Finally, if you develop
code for real-time systems, you may find that the tradeoffs involved in real-time

CYGNUS Debugging with GDB ■ 177

Using the gdbserver program

14
: S

pe
ci

fy
in

g
a

de
bu

gg
in

g
ta

rg
et

operation make it more convenient to do as much development work as possible on
another system, for example by cross-compiling. You can use gdbserver to make a
similar choice for debugging.

GDB and gdbserver communicate using either a serial line or a TCP connection,
using the standard GDB remote serial protocol.The following discussions detail the
connections of the target machine and the host machine.
On the target machine

You need to have a copy of the program you want to debug. gdbserver does not
need your program’s symbol table, so you can strip the program if necessary to
save space. GDB on the host system does all the symbol handling. To use the
server, you must tell it how to communicate with GDB; the name of your
program; and the arguments for your program. The syntax is: target>

gdbserver comm program [args ...] .

comm is either a device name (to use a serial line) or a TCP hostname and
portnumber. For example, to debug Emacs with the argument, foo.txt , and
communicate with GDB over the serial port, /dev/com1 , use the following.

target> gdbserver /dev/com1 emacs foo.txt.

gdbserver waits passively for the host GDB to communicate with it. To use a
TCP connection instead of a serial line, use the following.

target> gdbserver host:2345 emacs foo.txt.

The only difference from the previous example is the first argument, specifying
that you are communicating with the host GDB via TCP. The ‘host:2345 ’
argument means that gdbserver is to expect a TCP connection from machine
‘host ’ to local TCP port 2345. (Currently, the ‘host ’ part is ignored.) You can
choose any number you want for the port number as long as it does not conflict
with any TCP ports already in use on the target system (for example, 23 is

reserved for telnet).1

You must use the same port number with the host GDB target remote
command.

On the GDB host machine
You need an unstripped copy of your program, since GDB needs symbols and
debugging information.

Start up GDB as usual, using the name of the local copy of your program as the
first argument. (You may also need the ‘--baud ’ option if the serial line is running
at anything other than 9600 bps.)

After that, use target remote to establish communications with gdbserver .

1 If you choose a port number that conflicts with another service, gdbserver prints an error message and exits.

Using the gdbserve.nlm program

178 ■ Debugging with GDB GNUPro Toolkit

Its argument is either a device name (usually a serial device like /dev/ttyb) or a
TCP port descriptor in the form, host : PORT. For example, (gdb) target remote

/dev/ttyb communicates with the server via serial line, /dev/ttyb .

(gdb) target remote the-target:2345 communicates via a TCP connection
to port 2345 on host, the-target . For TCP connections, you must start up
gdbserver prior to using the target remote command. Otherwise you may get
an error whose text depends on the host system, but which usually looks
something like ‘Connection refused ’ in the declaration.

Using the gdbserve.nlm program
gdbserve.nlm is a control program for NetWare systems, allowing you to connect
your program with a remote GDB via target remote .

GDB and gdbserve.nlm communicate using a serial line, with the standard GDB
remote serial protocol. The following discussions detail the connections of the target
machine and the host machine.
On the target machine

You need to have a copy of the program you want to debug. gdbserve.nlm does
not need your program’s symbol table, so you can strip the program if necessary
to save space. GDB on the host system does all the symbol handling. To use the
server, you must tell it: how to communicate with GDB, the name of your
program, and the arguments for your program. The syntax is the following.

load gdbserve [BOARD= board] [PORT=port]
[BAUD=baud] program [args ...]

board and port specify the serial line; baud specifies the baud rate used by the
connection. port and node default to 0, baud defaults to 9600 bps. For example, to
debug Emacs with the argument, foo.txt , in orfer to communicate with GDB
over serial port number 2 or board 1 using a 19200 bps connection, use the
following declaration.

load gdbserve BOARD=1 PORT=2 BAUD=19200 emacs foo.txt

On the GDB host machine, you need an unstripped copy of your program, since
GDB needs symbols and debugging information. Start up GDB as usual, using the
name of the local copy of your program as the first argument. (You may also need
the ‘--baud ’ option if the serial line is running at anything other than 9600 bps.

After that, use target remote to establish communications with gdbserve.nlm .
Its argument is a device name (usually a serial device, like /dev/ttyb). For
example, (gdb) target remote /dev/ttyb communicates with the server via
serial line, /dev/ttyb .

CYGNUS Debugging with GDB ■ 179

GDB with a remote i960 (Nindy)

14
: S

pe
ci

fy
in

g
a

de
bu

gg
in

g
ta

rg
et

GDB with a remote i960 (Nindy)
Nindy is a ROM Monitor program for Intel 960 target systems. When GDB is
configured to control a remote Intel 960 using Nindy, you can tell GDB how to
connect to the 960 in the following ways.

• Through command line options specifying serial port, version of the Nindy
protocol, and communications speed;

• By responding to a prompt on startup;

• By using the target command at any point during your GDB session. See
“Commands for managing targets” on page Commands for managing targets.

Startup with Nindy
If you simply start gdb without using any command-line options, you are prompted for
what serial port to use, before you reach the ordinary GDB prompt:

attach /dev/ttyNN -- specify NN, or "quit" to quit:

Respond to the prompt with whatever suffix (after /dev/tty) to identify the serial port
that you want to use. You can, if you choose, simply start up with no Nindy
connection by responding to the prompt with an empty line. If you do this and later
wish to attach to Nindy, use target (see “Commands for managing targets”
on page 165).

Nindy reset command
reset

For a Nindy target, this command sends a “break” to the remote target system; this
is only useful if the target has been equipped with a circuit to perform a hard reset
(or some other interesting action) when a break is detected.

Options for Nindy
The following are the startup options for beginning your GDB session with a Nindy-
960 board attached.
-r port

Specify the serial port name of a serial interface to be used to connect to the target
system. This option is only available when GDB is configured for the Intel 960
target architecture. You may specify port as any of: a full pathname (e.g., -r

/dev/ttya), a device name in ‘/dev ’ (e.g., -r ttya), or simply the unique suffix
for a specific tty (e.g., -r a).

-O

(An uppercase letter “O”, not a zero.) Specify that GDB should use the “old”

The UDI protocol for AMD29K

180 ■ Debugging with GDB GNUPro Toolkit

Nindy monitor protocol to connect to the target system. This option is only
available when GDB is configured for the Intel 960 target architecture.

WARNING: If you specify ‘ -O ’, but are actually trying to connect to a target
system that expects the newer protocol, the connection fails,
appearing to be a speed mismatch. GDB repeatedly attempts to
reconnect at several different line speeds. You can abort this process
with an interrupt.

-brk
Specify that GDB should first send a BREAK signal to the target system, in an
attempt to reset it, before connecting to a Nindy target.

WARNING: Many target systems do not have the hardware that this requires; it
only works with a few boards.

The standard ‘-b ’ option controls the line speed used on the serial port.

The UDI protocol for AMD29K
GDB supports AMD’s UDI (“Uni versal Debugger Interface”) protocol for debugging
the A29K processor family. To use this configuration with AMD targets running the
MiniMON monitor, you need the program, MONTIP, available from AMD at no charge.
You can also use GDB with the UDI-conformant A29K simulator program, ISST I P,
also available from AMD.
targ et udi keyword

Select the UDI interface to a remote 29K board or simulator, where keyword is an
entry in the AMD configuration file ‘udi_soc ’. This file contains keyword entries
which specify parameters used to connect to A29K targets. If the ‘udi_soc ’ f ile is
not in your working directory, you must set the environment variable ‘UDICONF’ to
its pathname.

The EBMON protocol for AMD29K
AMD distributes a 29K development board meant to fit in a PC, together with a
DOS-hosted monitor program called EBMON. As a shorthand term, we use “EB29K” as
a name for this development system.

To use GDB from a Unix system to run programs on the EB29K board, you must first
connect a serial cable between the PC (which hosts the EB29K board) and a serial port
on the Unix system.

In the following, we assume you’ve hooked the cable between the PC’s ‘COM1’ port
and ‘/dev/tty a’ on the Unix system.

CYGNUS Debugging with GDB ■ 181

The UDI protocol for AMD29K

14
: S

pe
ci

fy
in

g
a

de
bu

gg
in

g
ta

rg
et

Communications setup
The next step is to set up the PC’s port, using something like the following in DOS on
the PC:

C:\> MODE com1:9600,n,8,1,none

This example—run on an MS DOS 4.0 system—sets the PC port to 9600 bps, no
parity, eight data bits, one stop bit, and no “retry” action; you must match the
communications parameters when establishing the Unix end of the connection as well.

To give control of the PC to the Unix side of the serial line, at the C:\> prompt, type:
CTTY com1.

(Later, if you wish to return control to the DOS console, you can use the command
CTTY con—but you must send it over the device that had control, in the example, over
the ‘COM1’ serial line). From the Unix host, use a communications program such as
tip or cu to communicate with the PC; for example, cu -s 9600 -l /dev/ttya .

The cu options shown specify, respectively, the linespeed and the serial port to use. If
you use tip instead, your command line may look something like: tip -9600

/dev/ttya .

Your system may require a different name where we show /dev/ttya as the argument
to tip . The communications parameters, including which port to use, are associated
with the tip argument in the “remote” descriptions file—normally the system table,
/etc/remote .

Using the tip or cu connection, change the DOS working directory to the directory
containing a copy of your 29K program, then start the PC program, EBMON (an EB29K
control program supplied with your board by AMD).

You should see an initial display from EBMON similar to the one that follows, ending
with the EBMON prompt, #.

Example 1: PC program, EBMON (an EB29K control program
C:\> G:

G:\> CD \usr\joe\work29k

G:\USR\JOE\WORK29K> EBMON Am29000 PC Coprocessor Board Monitor,
version 3.0-18 Copyright 1990 Advanced Micro Devices, Inc. Written
by Gibbons and Associates, Inc.

Enter ’?’ or ’H’ for help

PC Coprocessor Type = EB29K

I/O Base = 0x208

The UDI protocol for AMD29K

182 ■ Debugging with GDB GNUPro Toolkit

Then exit the cu or tip program (the previous example shows the use of ˜. at the
EBMON prompt, #). EBMON keeps running, ready for GDB to take over.

For this example, we’ve assumed what is probably the most convenient way to make
sure the same 29K program is on both the PC and the Unix system: a PC/NFS
connection that establishes “drive G: ”on the PC as a file system on the Unix host. If
you do not have PC/NFS or something similar connecting the two systems, you must
arrange some other way—perhaps floppy-disk transfer—of getting the 29K program
from the Unix system to the PC; GDB does not download it over the serial line.

EB29K cross-debugging
Finally, cd to the directory containing an image of your 29K program on the Unix
system, and start GDB—specifying as argument the name of your 29K program, as in
the following example.

cd /usr/joe/work29k

gdb myfoo

Now, use the target command, as in the following declaration.

target amd-eb /dev/ttya 9600 MYFOO

In this example, we’ve assumed your program is in a file called ‘myfoo ’.

NOTE: The filename given as the last argument to target amd-eb should be
the name of the program as it appears to DOS. In our example this is
simply MYFOO, but in general it can include a DOS path, and,
depending on your transfer mechanism, may not resemble the name
on the Unix side. At this point, you can set any breakpoints you wish;

Memory Base = 0xd0000

Data Memory Size = 2048KB

Available I-RAM Range = 0x8000 to 0x1fffff

Available D-RAM Range = 0x80002000 to 0x801fffff

PageSize = 0x400

Register Stack Size = 0x800

Memory Stack Size = 0x1800

CPU PRL = 0x3

Am29027 Available = No

Byte Write Available = Yes

˜.

CYGNUS Debugging with GDB ■ 183

GDB with a Tandem ST2000

14
: S

pe
ci

fy
in

g
a

de
bu

gg
in

g
ta

rg
et

when you are ready to see your program run on the 29K board, use
the GDB command, run .

To stop debugging the remote program, use the GDB detach command.

To return control of the PC to its console, use tip or cu once again, after your GDB
session has concluded, to attach to EBMON. You can then type the command q to shut
down EBMON, returning control to the DOS command-line interpreter. Type CTTY con
to return command input to the main DOS console, and type ˜. to leave tip or cu . See
Example 1:“PC program, EBMON (an EB29K control program” on page 181.

Remote log
The target amd-eb command creates a file, ‘eb.log ’, in the current working
directory, to help debug problems with the connection. ‘eb.log ’ records all the output
from EBMON, including echoes of the commands sent to it. Running ‘tail -f ’ on this
file in another window often helps to understand trouble with EBMON, or unexpected
events on the PC side of the connection.

GDB with a Tandem ST2000
To connect your ST2000 to the host system, see the manufacturer’s manual. Once
ST2000 is physically attached, you can run target st2000 dev speed to establish it
as your debugging environment.

dev is normally the name of a serial device, such as /dev/ttya , connected to the
ST2000 via a serial line. You can instead specify dev as a TCP connection (for
example, to a serial line attached via a terminal concentrator) using the syntax,
hostname : portnumber .

The load and attach commands are not defined for this target; you must load your
program into the ST2000 as you normally would for standalone operation. GDB reads
debugging information (such as symbols) from a separate, debugging version of the
program available on your host computer.

The following auxiliary GDB commands are available to help you with the ST2000
environment:
st2000 command

Send a command to the STDBUG monitor. See the manufacturer’s manual for
available commands.

connect
Connect the controlling terminal to the STDBUG command monitor. When you are
done interacting with STDBUG, typing either of two keystroke sequences gets you
back to the GDB command prompt: using the Return key, then the tilde key

GDB and VxWorks

184 ■ Debugging with GDB GNUPro Toolkit

(˜),and then the period (.) key; or the Return key, the tilde key, and then,
simultaneously, the Control and uppercase D keys).

GDB and VxWorks
GDB enables developers to spawn and debug tasks running on networked VxWorks
targets from a Unix host. Already-running tasks spawned from the VxWorks shell can
also be debugged. GDB uses code that runs on both the Unix host and on the
VxWorks target. The gdb program is installed and executed on the Unix host. (It may
be installed with the name, vxgdb , to distinguish it from gdb for debugging programs
on the host itself.)
VxWorks-timeout args

All VxWorks-based targets now support the option vxworks-timeout . This
option is set by the user, and args represents the number of seconds GDB waits
for responses to rpc’s. You might use this if your VxWorks target is a slow
software simulator or is on the far side of a thin network line.

The following information on connecting to VxWorks was current when this manual
was produced; newer releases of VxWorks may use revised procedures. To use GDB
with VxWorks, you must rebuild your VxWorks kernel to include the remote
debugging interface routines in the VxWorks library ‘rdb.a ’. To do this, define
INCLUDE_RDB in the VxWorks configuration file ‘configAll.h ’ and rebuild your
VxWorks kernel. The resulting kernel contains ‘rdb.a ’, and spawns the source
debugging task, tRdbTask , when VxWorks is booted. For more information on
configuring and remaking VxWorks, see the manufacturer’s manual. Once you have
included ‘rdb.a ’ in your VxWorks system image and set your Unix execution search
path to find GDB, you are ready to run GDB. From your Unix host, run gdb (or vxgdb ,
depending on your installation). GDB comes up showing the prompt, (vxgdb) .

Connecting to VxWorks
The GDB command target lets you connect to a VxWorks target on the network. To
connect to a target whose host name is “tt ”, use something like the following
example’s declaration.

(vxgdb) target vxworks tt

GDB then displays messages like the following declarations.

Attaching remote machine across net...

Connected to tt.

GDB then attempts to read the symbol tables of any object modules loaded into the
VxWorks target since it was last booted. GDB locates these files by searching the

CYGNUS Debugging with GDB ■ 185

GDB and VxWorks

14
: S

pe
ci

fy
in

g
a

de
bu

gg
in

g
ta

rg
et

directories listed in the command search path (see “Your program’s environment”
on page 36); if it fails to find an object file, it displays a message such as:

prog.o: No such file or directory.

When this happens, add the appropriate directory to the search path with the GDB
command path, and execute the target command again.

VxWorks download
If you have connected to the VxWorks target and you want to debug an object that has
not yet been loaded, you can use the GDB load command to download a file from
Unix to VxWorks incrementally.

The object file given as an argument to the load command is actually opened twice:
first by the VxWorks target in order to download the code, then by GDB in order to
read the symbol table. This can lead to problems if the current working directories on
the two systems differ.

If both systems have had NFS mount the same filesystems, you can avoid these
problems by using absolute paths. Otherwise, it is simplest to set the working
directory on both systems to the directory in which the object file resides, and then to
reference the file by its name, without any path.

For instance, a program ‘prog.o ’ may reside in ‘vxpath /vw/demo/rdb ’ in VxWorks
and in ‘hostpath /vw/demo/rdb ’ on the host.

To load this program on VxWorks, type: -> cd “ vxpath /vw/demo/rdb”

Then, in GDB, type:

(vxgdb) cd hostpath /vw/demo/rdb

(vxgdb) load prog.o

GDB displays a response similar to this:

Reading symbol data from wherever/vw/demo/rdb/prog.o... done.

You can also use the load command to reload an object module after editing and
recompiling the corresponding source file.

NOTE: This makes GDB delete all currently-defined breakpoints, auto-
displays, and convenience variables, and clears the value history.
(This is necessary in order to preserve the integrity of debugger data
structures that reference the target system’s symbol table.)

Running tasks
You can also attach to an existing task using the attach command as follows:

GDB and SPARClet

186 ■ Debugging with GDB GNUPro Toolkit

(vxgdb) attach task

task is the VxWorks hexadecimal task ID. The task can be running or suspended
when you attach to it. Running tasks are suspended at the time of attachment.

GDB and SPARClet
GDB enables developers to debug tasks running on SPARClet targets from a Unix
host. GDB uses code that runs on both the Unix host and on the SPARClet target. The
program, gdb , is installed and executed on the Unix host.
timeout args

GDB now supports the option, remotetimeout . This option is set by the user;
args represents the number of seconds GDB waits for responses.

When compiling for debugging, include the option, -g , to get debug information and
the option, -Ttext , to relocate the program to where you wish to load it on the target.
You may also want to add the option, -n , or the option, -N , in order to reduce the size
of the sections. Use the following command input as an example.

sparclet-aout-gcc prog.c -Ttext 0x12010000 -g -o prog -N

You can use objdump to verify that the addresses are what you intended.

sparclet-aout-objdump --headers --syms prog

Once you have set your Unix execution search path to find GDB, you are ready to run
GDB. From your Unix host, run gdb (or sparclet-aout- gdb , depending on your
installation). GDB shows its prompt (gdbslet)

Setting file to debug
The GDB command, file , lets you choose which program to debug as the following
example shows. GDB then attempts to read the symbol table of prog .

(gdbslet) file prog

GDB locates the file by searching the directories listed in the command search path. If
the file was compiled with debug information (using the option, -g), source files will
be searched as well. GDB locates the source files by searching the directories listed in
the directory search path (see “Your program’s environment” on page 36). If it fails to
find a file, it displays a message such as: prog: No such file or directory .

When this happens, add the appropriate directories to the search paths with the GDB
commands, path and dir , and execute the target command again.

CYGNUS Debugging with GDB ■ 187

Connecting to SPARClet

14
: S

pe
ci

fy
in

g
a

de
bu

gg
in

g
ta

rg
et

Connecting to SPARClet
The GDB command, target , lets you connect to a SPARClet target. To connect to a
target on serial port called ttya , use the following command at the SPARClet GDB
prompt, gdbslet .

target sparclet /dev/ttya

GDB displays messages like the following output.

Remote target sparclet connected to /dev/ttya

main () at ../prog.c:3

Connected to ttya.

SPARClet download
Once connected to the SPARClet target, you can use the GDB load command to
download the file from the host to the target. The file name and load offset should be
given as arguments to the load command. Since the file format is a.out , the program
must be loaded to the starting address. You can use the binary utility, objdump , to find
out what this value is. The load offset is an offset which is added to the vma (virtual
memory address) of each of the file’s sections. For instance, if the program, prog , was
linked to text address, 0x1201000 , with data at 0x12010160 and bss at 0x12010170 , in
GDB, use the command, load prog 0x12010000 , at the prompt, (gdbslet) .

You’ll then see the following output.

Loading section .text, size 0xdb0 vma 0x12010000

If the code is loaded at a different address than that to which the program was linked,
you may need to use the section and add-symbol-file commands to tell GDB
where to map the symbol table.

Running and debugging
Now begin debugging the task using any of GDB’s commands: b, step , run , and so
on (for help with GDB commands, use the command, help). The following example
shows what you’d do and see for execution control.

(gdbslet) b main

Breakpoint 1 at 0x12010000: file prog.c, line 3.

The previous insturction sets a breakpoint at line 3 for the file. Then you use the
command, run . The following is an example of what you’d then see.

(gdbslet) run

GDB and Hitachi microprocessors

188 ■ Debugging with GDB GNUPro Toolkit

The following is an example of the output from GDB you’d then see.

Starting program: prog

Breakpoint 1, main (argc=1, argv=0xeffff21c) at prog.c:3

3 char *symarg = 0;

Then, at your prompt, use the command, step , and set the next breakpoint at 4. The
following is an example of what you’d then see.

(gdbslet) step

4 char *execarg = "hello!";

(gdbslet)

GDB and Hitachi microprocessors
GDB needs to know the following things to talk to your Hitachi SH, H8/300, or
H8/500.

• That you want to use ‘target hms ’, the remote debugging interface for Hitachi
microprocessors, or ‘target e7000 ’, the in-circuit emulator for the Hitachi SH
and the Hitachi 300H. (‘target hms ’ is the default when GDB is configured
specifically for the Hitachi SH, H8/300, or H8/500.)

• What serial device connects your host to your Hitachi board (the first serial device
available on your host is the default).

• What speed to use over the serial device.

Connecting to Hitachi boards
Use the special gdb command ‘device port ’ if you need to explicitly set the serial
device. The default, port , is the first available port on your host. This is only necessary
on Unix hosts, where it is typically something like /dev/ttya .

gdb has another special command to set the communications speed: ‘speed bps ’. This
command also is only used from Unix hosts; on DOS hosts, set the line speed as usual
from outside GDB with the DOS mode command (for instance, ‘mode

com2:9600,n,8,1,p ’ for a 9600 bps connection).

The ‘device ’ and ‘speed ’ commands are available only when you use a Unix host to
debug your Hitachi microprocessor programs. If you use a DOS host, GDB depends
on an auxiliary terminate-and-stay-resident program called asynctsr to communicate
with the development board through a PC serial port. You must also use the DOS
mode command to set up the serial port on the DOS side.

CYGNUS Debugging with GDB ■ 189

GDB and remote MIPS boards

14
: S

pe
ci

fy
in

g
a

de
bu

gg
in

g
ta

rg
et

Using the e7000 in-circuit emulator
You can use the e7000 in-circuit emulator to develop code for either the Hitachi SH or
the H8/300H. Use one of these forms of the ‘target e7000 ’ command to connect
GDB to your H7000:

target e7000 port speed

Use this form if your e7000 is connected to a serial port. The port argument identifies
what serial port to use (for example, ‘com2’). The third argument is the line speed in
bits per second (for example, ‘9600 ’).

target e7000 hostname

If your e7000 is installed as a host on a TCP/IP network, you can just specify its
hostname; GDB uses telnet to connect.

Special GDB commands for Hitachi micros
Some GDB commands are available only on the H8/300 or the H8/500 configurations:
set machine h8300

set machine h8300h
Condition GDB for one of the two variants of the H8/300 architecture with ‘set

machine ’. You can use ‘show machine ’ to check which variant is currently in
effect.

set memory mod

show memory
Specify which H8/500 memory model (mod) you are using with ‘set memory ’;
check which memory model is in effect with ‘show memory ’. The accepted values
for mod are small , big , medium, and compact .

GDB and remote MIPS boards
GDB can use the MIPS remote debugging protocol to talk to a MIPS board attached to
a serial line.

This is available when you configure GDB with --target=mips-idt-ecoff .

Use the following GDB commands to specify the connection to your target board.
target mips port

To run a program on the board, start up gdb with the name of your program as the
argument. To connect to the board, use the command ‘target mips port ’, where
port is the name of the serial port connected to the board. If the program has not
already been downloaded to the board, you may use the load command to
download it. You can then use all the usual GDB commands.

For example, the following sequence connects to the target board through a serial
port, and loads and runs a program called prog through the debugger.

GDB and remote MIPS boards

190 ■ Debugging with GDB GNUPro Toolkit

host$ gdb prog
GDB is free software and ...
(gdb) target mips /dev/ttyb
(gdb) load prog
(gdb) run

target mips hostname:portnumber

On some GDB host configurations, you can specify a TCP connection (for
instance, to a serial line managed by a terminal concentrator) instead of a serial
port, using the syntax ‘hostname : portnumber ’.

GDB also supports the following special commands for MIPS targets.
set processor args

show processor
Use the set processor command to set the type of MIPS processor when you
want to access processor-type-specific registers. For example, set processor
r3041 tells GDB to use the CPO registers appropriate for the 3041 chip. Use the
show processor command to see what MIPS processor GDB is using. Use the
info reg command to see what registers GDB is using.

set mipsfpu double
set mipsfpu single
set mipsfpu none

show mipsfpu
If your target board does not support the MIPS floating point coprocessor, you
should use the command ‘set mipsfpu none ’ (if you need this, you may wish to
put the command in your .gdbinit file). This tells GDB how to find the return
value of functions which return floating point values. It also allows GDB to avoid
saving the floating point registers when calling functions on the board. If you are
using a floating point coprocessor with only single precision floating point
support, as on the R4650 processor, use the command ‘set mipsfpu single ’.
The default double precision floating point coprocessor may be selected using
‘set mipsfpu double ’.

In previous versions the only choices were double precision or no floating point,
so ‘set mipsfpu on ’ will select double precision and ‘set mipsfpu off ’ will
select no floating point. As usual, you can inquire about the mipsfpu variable with
‘show mipsfpu ’.

set remotedebug n

show remotedebug

You can see some debugging information about communications with the board
by setting the remotedebug variable. If you set it to 1 using ‘set remotedebug 1’,
every packet is displayed. If you set it to 2, every character is displayed. You can
check the current value at any time with the command, show remotedebug .

CYGNUS Debugging with GDB ■ 191

GDB and remote MIPS boards

14
: S

pe
ci

fy
in

g
a

de
bu

gg
in

g
ta

rg
et

set timeout seconds

set retransmit-timeout seconds

show timeout

show retransmit-timeout
You can control the timeout used while waiting for a packet, in the MIPS remote
protocol, with the set timeout seconds command. The default is 5 seconds.
Similarly, you can control the timeout used while waiting for an
acknowledgement of a packet with the set retransmit-timeout seconds

command. The default is 3 seconds. You can inspect both values with show

timeout and show retransmit-timeout .

NOTE: These commands are available only when GDB is configured for ‘--

target=mips-idt-ecoff ’.

The timeout set by set timeout does not apply when GDB is waiting for your
program to stop. In that case, GDB waits forever because it has no way of knowing
how long the program is going to run before stopping.

Simulated CPU target
For some configurations, GDB includes a CPU simulator that you can use instead of a
hardware CPU to debug your programs. Currently, a simulator is available when GDB
is configured to debug Zilog Z8000 or Hitachi microprocessor targets. For the Z8000
family, ‘target sim ’ simulates either the Z8002 (the unsegmented variant of the
Z8000 architecture) or the Z8001 (the segmented variant). The simulator recognizes
which architecture is appropriate by inspecting the object code.
target sim

Debug programs on a simulated CPU (which CPU depends on the GDB
configuration)

After specifying this target, you can debug programs for the simulated CPU in the
same style as programs for your host computer; use the file command to load a
new program image, the run command to run your program, and so on.

As well as making available all the usual machine registers (see info reg), this
debugging target provides three additional items of information as specially
named registers:

cycles
Counts clock-ticks in the simulator.

insts
Counts instructions run in the simulator.

time
Execution time in 60ths of a second.

GDB and remote MIPS boards

192 ■ Debugging with GDB GNUPro Toolkit

You can refer to these values in GDB expressions with the usual conventions; for
example, ‘b fputc if $cycles>5000 ’ sets a conditional breakpoint that
suspends only after at least 5000 simulated clock ticks.

CYGNUS Debugging with GDB ■ 193

15
: C

on
tr

ol
lin

g
G

D
B

Controllin g GDB

You can alter the way GDB interacts with you by using the set command. For
commands controlling how GDB displays data, see “Print settings” on page 97; other
settings are described in the following documentation.

• “Prompt” on page 194

• “Command editing” on page 195

• “Command history” on page 196

• “Screen size” on page 198

• “Numbers” on page 199

• “Optional warnings and messages” on page 200

15

Prompt

194 ■ Debugging with GDB GNUPro Toolkit

Prompt
GDB indicates its readiness to read a command by printing a string called the prompt.
This string is normally ‘(gdb) ’. You can change the prompt string with the set

prompt command. For instance, when debugging GDB with GDB, it is useful to
change the prompt in one of the GDB sessions so that you can always tell which one
you are talking to.

NOTE: set prompt no longer adds a space for you after the prompt you set.
This allows you to set a prompt which ends in a space or a prompt
that does not.

set prompt newprompt
Directs GDB to use newprompt as its prompt string henceforth.

show prompt
Prints a line of the form: ‘Gdb’s prompt is: your-prompt ’.

CYGNUS Debugging with GDB ■ 195

Command editing

15
: C

on
tr

ol
lin

g
G

D
B

Command editing
GDB reads its input commands via the readline interface. This GNU library provides
consistent behavior for programs which provide a command line interface to the user.
Advantages are GNU Emacs-style or vi-style inline editing of commands, csh -like
history substitution, and a storage and recall of command history across debugging
sessions. You may control the behavior of command line editing in GDB with the
command, set .
set editing

set editing on
Enable command line editing (enabled by default).

set editing off
Disable command line editing.

show editing
Show whether command line editing is enabled.

Command history

196 ■ Debugging with GDB GNUPro Toolkit

Command history
GDB can keep track of the commands you type during your debugging sessions, so
that you can be certain of precisely what happened. Use the following commands to
manage the GDB command history facility.
set history filename fname

Set the name of the GDB command history file to fname . This is the file where
GDB reads an initial command history list, and where it writes the command
history from this session when it exits. You can access this list through history
expansion or through the history command editing characters listed in the
following. This file defaults to the value of the environment variable
GDBHISTFILE, or to ‘./.gdb_history ’ if this variable is not set.

set history save
set history save on

Record command history in a file, whose name may be specified with the set

history filename command. By default, this option is disabled.
set history save off

Stop recording command history in a file.
set history size size

Set the number of commands which GDB keeps in its history list. This defaults to
the value of the environment variable HISTSIZE , or to 256 if this variable is not
set.

History expansion assigns special meaning to the character, ! .

Since ! is also the logical not operator in C, history expansion is off by default. If you
decide to enable history expansion with the set history expansion on command,
you may sometimes need to follow ! (when it is used as logical not, in an expression)
with a space or a tab to prevent it from being expanded. The readline history facilities
do not attempt substitution on the strings != and !(, even when history expansion is
enabled.

The commands to control history expansion are the following.
set history expansion on

set history expansion
Enable history expansion. History expansion is off by default.

set history expansion off
Disable history expansion.

The readline code comes with more complete documentation of editing and
history expansion features. Users unfamiliar with GNU Emacs or vi may wish to
read it.

CYGNUS Debugging with GDB ■ 197

Command history

15
: C

on
tr

ol
lin

g
G

D
B

show history
show history filename
show history save
show history size

show history expansion
These commands display the state of the GDB history parameters. show history
by itself displays all four states.

show commands
Display the last ten commands in the command history.

show commands n
Print ten commands centered on command number, n.

show commands +
Print ten commands just after the commands last printed.

Screen size

198 ■ Debugging with GDB GNUPro Toolkit

Screen size
Certain commands to GDB may produce large amounts of information output to the
screen. To help you read all of it, GDB pauses and asks you for input at the end of
each page of output. Use the Return key when you want to continue the output, or type
q to discard the remaining output. Also, the screen width setting determines when to
wrap lines of output. Depending on what is being printed, GDB tries to break the line
at a readable place, rather than simply letting it overflow onto the following line.

Normally, GDB knows the size of the screen from the termcap data base together with
the value of the TERM environment variable and the stty rows and stty cols
settings. If this is not correct, you can override it with the set height and set width
commands:
set height lpp
show height

set width cpl
show width

These set commands specify a screen height of lpp lines and a screen width of
cpl characters. The associated show commands display the current settings. If you
specify a height of zero lines, GDB does not pause during output no matter how
long the output is. This is useful if output is to a file or to an editor buffer.

Likewise, you can specify ‘set width 0’ to prevent GDB from wrapping its
output.

CYGNUS Debugging with GDB ■ 199

Numbers

15
: C

on
tr

ol
lin

g
G

D
B

Numbers
You can always enter numbers in octal, decimal, or hexadecimal in GDB by the usual
conventions: octal numbers begin with ‘0’, decimal numbers end with ‘. ’, and
hexadecimal numbers begin with ‘0x ’. Numbers that begin with none of these are, by
default, entered in base 10; likewise, the default display for numbers—when no
particular format is specified—is base 10. You can change the default base for both
input and output with the set radix command.
set input-radix base

Set the default base for numeric input. Supported choices for base are decimal 8,
10, or 16. base must itself be specified either unambiguously or using the current
default radix; for example, any of set radix 012 , set radix 10. , or set radix

0xa set the base to decimal. On the other hand, ‘set radix 10 ’ leaves the radix
unchanged no matter what it was.

set output-radix base
Set the default base for numeric display. Supported choices for base are decimal
8, 10, or 16. base must itself be specified either unambiguously or using the
current default radix.

show input-radix
Display the current default base for numeric input.

show output-radix
Display the current default base for numeric display.

Optional warnings and messages

200 ■ Debugging with GDB GNUPro Toolkit

Optional warnings and messages
By default, GDB is silent about its inner workings. If you are running on a slow
machine, you may want to use the set verbose command. This makes GDB tell you
when it does a lengthy internal operation, so you will not think it has crashed.

Currently, the messages controlled by set verbose are those announcing that the
symbol table for a source file is being read; see symbol-file in “Commands to
specify files” on page 154.
set verbose on

Enables GDB output of certain informational messages.
set verbose off

Disables GDB output of certain informational messages.
show verbose

Displays whether set verbose is on or off.

By default, if GDB encounters bugs in the symbol table of an object file, it is silent;
but if you are debugging a compiler, you may find this information useful (see “Errors
reading symbol files” on page 159).
set complaints limit

Permits GDB to output limit complaints about each type of unusual symbols
before becoming silent about the problem. Set limit to zero to suppress all
complaints; set it to a large number to prevent complaints from being suppressed.

show complaints
Displays how many symbol complaints GDB is permitted to produce.

By default, GDB is cautious, and asks what sometimes seems to be a lot of stupid
questions to confirm certain commands. For example, if you try to run a program
which is already running:

(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n)

If you are willing to unflinchingly face the consequences of your own commands, you
can disable this “feature” with the following commands.
set confirm off

Disables confirmation requests.
set confirm on

Enables confirmation requests (the default).
show confirm

Displays state of confirmation requests.

CYGNUS Debugging with GDB ■ 201

Optional warnings and messages

15
: C

on
tr

ol
lin

g
G

D
B

Optional warnings and messages

202 ■ Debugging with GDB GNUPro Toolkit

CYGNUS Debugging with GDB ■ 203

Optional warnings and messages

15
: C

on
tr

ol
lin

g
G

D
B

Optional warnings and messages

204 ■ Debugging with GDB GNUPro Toolkit

CYGNUS Debugging with GDB ■ 205

Optional warnings and messages

15
: C

on
tr

ol
lin

g
G

D
B

Optional warnings and messages

206 ■ Debugging with GDB GNUPro Toolkit

CYGNUS Debugging with GDB ■ 207

Optional warnings and messages

15
: C

on
tr

ol
lin

g
G

D
B

Optional warnings and messages

208 ■ Debugging with GDB GNUPro Toolkit

CYGNUS Debugging with GDB ■ 209

Optional warnings and messages

15
: C

on
tr

ol
lin

g
G

D
B

Optional warnings and messages

210 ■ Debugging with GDB GNUPro Toolkit

CYGNUS Debugging with GDB ■ 211

Optional warnings and messages

15
: C

on
tr

ol
lin

g
G

D
B

Optional warnings and messages

212 ■ Debugging with GDB GNUPro Toolkit

CYGNUS Debugging with GDB ■ 213

Optional warnings and messages

15
: C

on
tr

ol
lin

g
G

D
B

Optional warnings and messages

214 ■ Debugging with GDB GNUPro Toolkit

CYGNUS Debugging with GDB ■ 215

16
: C

an
ne

d
se

qu
en

ce
s

of
 c

om
m

an
ds

Canned sequences
of commands

Aside from breakpoint commands (see “Breakpoint command lists” on page 61),
GDB provides two ways to store sequences of commands for execution as a unit:
user-defined commands and command files. The following documentation provides
these discussions for this subject.

• “User-defined commands” on page 216

• “User-defined command hooks” on page 218

• “Command files” on page 219

• “Commands for controlled output” on page 220

16

User-defined commands

216 ■ Debugging with GDB GNUPro Toolkit

User-defined commands
A user-defined command is a sequence of GDB commands to which you assign a new
name as a command. This is done with the define command. User commands may
accept up to 10 arguments separated by whitespace. Arguments are accessed within
the user command with $arg 0 ...$arg 9. A trivial example is the following.
define adder

print $ arg 0 + $ arg 1 + $ arg 2

To execute the command use the following declaration.
adder 1 2 3

This defines the command, adder , printing the sum of its three arguments.

NOTE: The arguments are text substitutions, so they may reference variables,
use complex expressions, or even perform inferior functions calls.

define commandname

Define a command named commandname. If there is already a command by that
name, you are asked to confirm that you want to redefine it.

The definition of the command is made up of other GDB command lines, which
are given following the define command. The end of these commands is marked
by a line containing end .

if
Takes a single argument, which is an expression to evaluate. It is followed by a
series of commands that are executed only if the expression is true (nonzero).
There can then optionally be a line else , followed by a series of commands that
are only executed if the expression was false. The end of the list is marked by a
line containing end .

while
The syntax is similar to if : the command takes a single argument, which is an
expression to evaluate, and must be followed by the commands to execute, one
per line, terminated by an end . The commands are executed repeatedly as long as
the expression evaluates to true.

document commandname
Document the user-defined command, commandname, so that it can be accessed by
help . The command, commandname, must already be defined. This command
reads lines of documentation just as define reads the lines of the command
definition, ending with end . After the document command is finished, help on
command, commandname, displays the documentation you have written. You may
use the document command again to change the documentation of a command.
Redefining the command with define does not change the documentation.

CYGNUS Debugging with GDB ■ 217

User-defined commands

16
: C

an
ne

d
se

qu
en

ce
s

of
 c

om
m

an
ds

help user-defined
List all user-defined commands, with the first line of the documentation (if any)
for each.

show user
show user commandname

Display the GDB commands used to define commandname (but not its
documentation). If no commandname is given, display the definitions for all user-
defined commands.

When user-defined commands are executed, the commands of the definition are not
printed. An error in any command stops execution of the user-defined command. If
used interactively, commands that would ask for confirmation proceed without asking
when used inside a user-defined command. Many GDB commands that normally print
messages to say what they are doing omit the messages when used in a user-defined
command.

User-defined command hooks

218 ■ Debugging with GDB GNUPro Toolkit

User-defined command hooks
You may define hooks, which are a special kind of user-defined command. Whenever
you run the command ‘foo ’, if the user-defined command ‘hook-foo ’ exists, it is
executed (with no arguments) before that command. In addition, a pseudo-command,
‘stop ’ exists. Defining ‘hook-stop ’ makes the associated commands execute every
time execution stops in your program: before breakpoint commands are run, displays
are printed, or the stack frame is printed. For example, to ignore SIGALRM signals
while single-stepping, but treat them normally during normal execution, you could
define the following debugging input.
define hook-stop
handle SIGALRM nopass
end

define hook-run
handle SIGALRM pass
end

define hook-continue
handle SIGLARM pass
end

You can define a hook for any single-word command in GDB, but not for command
aliases; you should define a hook for the basic command name, e.g., backtrace rather
than bt . If an error occurs during the execution of your hook, execution of GDB
commands stops and GDB issues a prompt (before the command that you actually
used had a chance to run).

If you try to define a hook which does not match any known command, you get a
warning from the define command.

CYGNUS Debugging with GDB ■ 219

Command files

16
: C

an
ne

d
se

qu
en

ce
s

of
 c

om
m

an
dsCommand files

A command file for GDB is a file of lines that are GDB commands.

Comments (lines starting with #) may also be included. An empty line in a command
file does nothing; it does not mean to repeat the last command, as it would from the
terminal. When you start GDB, it automatically executes commands from its init files.
These are files named ‘.gdbinit ’. GDB reads the init file (if any) in your home
directory, then processes command line options and operands, and then reads the init
file (if any) in the current working directory. This is so the init file in your home
directory can set options (such as set complaints) which affect the processing of the
command line options and operands. The init files are not executed if you use the
‘ -nx ’ option; see “Choosing modes” on page 19. On some configurations of GDB, the
init file is known by a different name (these are typically environments where a
specialized form of GDB may need to coexist with other forms, hence a different
name for the specialized version’s init file). These are the environments with special
init file names:

• VxWorks (Wind River Systems real-time OS): ‘.vxgdbinit ’

• OS68K (Enea Data Systems real-time OS): ‘.os68gdbinit ’

• ES-1800 (Ericsson Telecom AB M68000 emulator): ‘.esgdbinit ’

You can also request the execution of a command file with the source command.
source filename

Execute the command file filename .

The lines in a command file are executed sequentially. They are not printed as they are
executed. An error in any command terminates execution of the command file.

Commands that would ask for confirmation if used interactively proceed without
asking when used in a command file. Many GDB commands that normally print
messages to say what they are doing omit the messages when called from command
files.

Commands for controlled output

220 ■ Debugging with GDB GNUPro Toolkit

Commands for controlled output
During the execution of a command file or a user-defined command, normal GDB
output is suppressed; the only output that appears is what is explicitly printed by the
commands in the definition.

The following documentation describes three commands that are useful for generating
exactly the output that you want.
echo text

Print text . Nonprinting characters can be included in text using C escape
sequences, such as ‘\n ’ to print a newline.

NOTE: No newline is printed unless you specify one.

In addition to the standard C escape sequences, a backslash followed by a space
stands for a space. This is useful for displaying a string with spaces at the
beginning or the end, since leading and trailing spaces are otherwise trimmed
from all arguments.

To print a ‘and foo - ’ fragment statement, use ‘echo \ and foo - \ ’ as a
command with a backslash at the end of the declaration. As in C, this command
continues the declaration onto subsequent lines.

gdb -batch -nx -mapped -readnow programname

Consider the following example.
echo This is some text\n\
which is continued\n\
onto several lines.\n

The previous example shows output that produces the same output as the
following declaration.

echo This is some text\n
echo which is continued\n
echo onto several lines.\n

output expression
Print the value of expression and nothing but that value: no newlines, no ‘$

nn- ’. The value is not entered in the value history either. See “Expressions”
on page 88 for more information on expressions .

output/ fmt expression
Print the value of expression in format, fmt . You can use the same formats as
for print . See “Output formats” on page 92 for more information.

printf string , expressions ...

Print the values of the expressions under the control of string . The expressions
are separated by commas and may be either numbers or pointers. Their values are

CYGNUS Debugging with GDB ■ 221

Commands for controlled output

16
: C

an
ne

d
se

qu
en

ce
s

of
 c

om
m

an
ds

printed as specified by string , exactly as if your program were to execute the C
subroutine, as in the following example.

printf (string, expressions...);

For example, you can print two values in hex like the following declaration.
printf "foo, bar-foo = 0x%x, 0x%x\n", foo, bar-foo

The only backslash-escape sequences that you can use in the format string are the
simple ones that consist of backslash followed by a letter.

Commands for controlled output

222 ■ Debugging with GDB GNUPro Toolkit

CYGNUS Debugging with GDB ■ 223

17
: U

si
ng

 G
D

B
 u

nd
er

 G
N

U
 E

m
ac

s

Usin g GDB under GNU Emacs

A special interface, GNU Emacs, allows you to use, to view and to edit the source files
for the program you are debugging with GDB.

Using GDB under Emacs is just like using GDB normally except for the following
considerations.

• All “terminal” input and output goes through the Emacs buffer.This applies both
to GDB commands and their output, and to the input and output done by the
program you are debugging. This is useful because it means that you can copy the
text of previous commands and input them again; you can even use parts of the
output in this way.

Some of the following material uses the convention laid out in GNU Emacs
Manual, the documentation from the Free Software Foundation. Meta- signifies
using the Meta key (or the diamond ‘�’ key) on a Unix keyboard and the Alt key
on a Windows keyboard in sequence followed by the specified letter. Ctrl-
signifies using the Ctrl key in sequence followed by a specified letter. Any other
input will be signified by code (as in something typed onscreen like a “gdb ”
command.

To use the Emacs interface, use the command Meta-x gdb . Give the executable file
you want to debug as an argument. This command starts GDB as a subprocess of
Emacs, with input and output through a newly created Emacs buffer.

17

224 ■ Debugging with GDB GNUPro Toolkit

All the facilities of Emacs’ Shell mode are available for interacting with your
program. In particular, you can send signals the usual way—for example, Ctrl-c,
Ctrl-c for an interrupt, Ctrl-c, Ctrl-z for a stop.

• GDB displays source code through Emacs.

Each time GDB displays a stack frame, Emacs automatically finds the source file
for that frame and puts an arrow (‘ =>’) at the left margin of the current line.
Emacs uses a separate buffer for source display, and splits the screen to show both
your GDB session and the source.

Explicit GDB list or search commands still produce output as usual, but you
probably have no reason to use them from Emacs.

WARNING: If the directory where your program resides is not your current
directory, it can be easy to confuse Emacs about the location of the
source files, in which case the auxiliary display buffer does not
appear to show your source.

GDB can find programs by searching your environment’s PATH
variable, so the GDB input and output session proceeds normally; but
Emacs does not get enough information back from GDB to locate the
source files in this situation.

To avoid this problem, either start GDB mode from the directory
where your program resides, or specify an absolute file name when
prompted for the Meta-x gdb argument.

Asimilar confusion can result if you use the GDB file command to
switch to debugging a program in some other location, from an
existing GDB buffer in Emacs.

By default, using the keystroke sequence, Meta-x gdb calls the program, gdb . If you
need to call GDB by a different name (for example, if you keep several configurations
with different names) you can set the Emacs variable, gdb-command-name .

For example, make Emacs instead call the “mygdb”program,
setq gdb-command-name “mygdb” (preceded by the keystroke sequence of using the Esc
key twice cosecutively, or by typing in the *scratch* buffer, or in your ‘.emacs ’ file) .

In the GDB I/O buffer, you can use the following keystroke sequences of Emacs
commands in addition to the standard Shell mode commands.
Ctrl-h, m

Describe the features of Emacs’ GDB Mode.
Meta-s

Execute to another source line, like the GDB step command; also update the
display window to show the current file and location.

CYGNUS Debugging with GDB ■ 225

17
: U

si
ng

 G
D

B
 u

nd
er

 G
N

U
 E

m
ac

s

Meta-n
Execute to next source line in this function, skipping all function calls, like the
GDB next command. Then update the display window to show the current file and
location.

Meta-i
Execute one instruction, like the GDB stepi command; update display window
accordingly.

Meta-x, gdb-nexti

Execute to next instruction, using the GDB nexti command; update display
window accordingly.

Ctrl-c, Ctrl-f
Execute until exit from the selected stack frame, like the GDB finish command.

Meta-c
Continue execution of your program, like the GDB continue command.

WARNING: In Emacs version 19, this command uses the keystroke sequence,
Ctrl-c, Ctrl-p.

Meta-u
Go up the number of frames indicated by the numeric argument (see “Numeric
Arguments” in GNU Emacs Manual), like the GDB up command.

WARNING: In Emacs version 19, this command uses the keystroke sequence,
Ctrl-c, Ctrl-u.

Meta-d
Go down the number of frames indicated by the numeric argument, like the GDB
down command.

WARNING: In Emacs version 19, this command uses the keystroke sequence,
Ctrl-c, Ctrl-d.

Ctrl-x, &
Read the number where the cursor is positioned, and insert it at the end of the
GDB I/O buffer. For example, if you wish to disassemble code around an address
that was displayed earlier, type disassemble ; then move the cursor to the address
display, and pick up the argument for disassemble by using the keystroke
sequence, Ctrl-x, &.

You can customize this further by defining elements of the list gdb-print-
command; once it is defined, you can format or otherwise process numbers picked
up by using the keystroke sequence, Ctrl-x, & before they are inserted. A numeric
argument to Ctrl-x, & indicates that you wish special formatting, and also acts as
an index to pick an element of the list. If the list element is a string, the number to

226 ■ Debugging with GDB GNUPro Toolkit

be inserted is formatted using the Emacs function format; otherwise the number is
passed as an argument to the corresponding list element.

In any source file, the Emacs command using the keystroke sequence, Ctrl-x,
SPACEBAR, and typing (gdb-break) , which tells GDB to set a breakpoint on the
source line point.

If you accidentally delete the source-display buffer, an easy way to get it back is to
type the command, f , in the GDB buffer, to request a frame display; when you run
under Emacs, this recreates the source buffer if necessary to show you the context of
the current frame.

The source files displayed in Emacs are in ordinary Emacs buffers which are visiting
the source files in the usual way. You can edit the files with these buffers if you wish;
but keep in mind that GDB communicates with Emacs in terms of line numbers.

If you add or delete lines from the text, the line numbers that GDB knows cease to
correspond properly with the code.

CYGNUS Debugging with GDB ■ 227

18
: R

ep
or

tin
g

B
ug

s
in

 G
D

B

Reportin g Bugs in GDB

Your bug reports play an essential role in making GDB reliable.

Reporting a bug may help you by bringing a solution to your problem, or it may not.
In any case, the principal function of a bug report is to help the entire community by
making the next version of GDB work better. Bug reports are your contribution to the
maintenance of GDB.

In order for a bug report to serve its purpose, you must include the information that
enables us to fix the bug.

18

Have you found a bug?

228 ■ Debugging with GDB GNUPro Toolkit

Have you found a bug?
If you are not sure whether you have found a bug, here are some guidelines:

• If the debugger gets a fatal signal, for any input whatever, that is a GDB bug.
Reliable debuggers never crash.

• If GDB produces an error message for valid input, that is a bug.

• If GDB does not produce an error message for invalid input, that is a bug.
However, you should note that your idea of “invalid input” might be our idea of
“an extension” or “support for traditional practice”.

• If you are an experienced user of debugging tools, your suggestions for
improvement of GDB are welcome in any case.

CYGNUS Debugging with GDB ■ 229

How to report bugs

18
: R

ep
or

tin
g

B
ug

s
in

 G
D

B

How to report bugs
A number of companies and individuals offer support for GNU products. If you
obtained GDB from a support organization, we recommend you contact that
organization first.

You can find contact information for many support companies and individuals in the
file ‘ etc/SERVICE ’ in the GNU Emacs distribution.

In any event, we also recommend that you send bug reports for GDB to one of these
addresses:
bug-gdb@prep.ai.mit.edu

{ucbvax|mit-eddie|uunet}!prep.ai.mit.edu!bug-gdb

Do not send bug reports to ‘ info-gdb ’ or to ‘help-gdb ’ or to any newsgroups. Most
users of GDB do not want to receive bug reports. Those who do have arranged to
receive ‘bug-gdb ’.

The mailing list ‘bug-gdb ’ has a newsgroup ‘gnu.gdb.bug ’ which serves as a repeater.
The mailing list and the newsgroup carry exactly the same messages. Often people
think of posting bug reports to the newsgroup instead of mailing them. This appears to
work, but it has one problem which can be crucial: a newsgroup posting often lacks a
mail path back to the sender. Thus, if we need to ask for more information, we may be
unable to reach you. For this reason, it is better to send bug reports to the mailing list.
As a last resort, send bug reports on paper to:

GNU Debugger Bugs

Free Software Foundation Inc.

59 Temple Place Suite 330

Boston, MA 02111-1307 USA

The fundamental principle of reporting bugs usefully is this: report all the facts. If
you are not sure whether to state a fact or leave it out, state it!

Often people omit facts because they think they know what causes the problem and
assume that some details do not matter. Thus, you might assume that the name of the
variable you use in an example does not matter. Well, probably it does not, but one
cannot be sure. Perhaps the bug is a stray memory reference which happens to fetch
from the location where that name is stored in memory; perhaps, if the name were
different, the contents of that location would fool the debugger into doing the right
thing despite the bug. Play it safe and give a specific, complete example. That is the
easiest thing for you to do, and the most helpful.

Keep in mind that the purpose of a bug report is to enable us to fix the bug if it is new
to us. Therefore, always write your bug reports on the assumption that the bug has not

How to report bugs

230 ■ Debugging with GDB GNUPro Toolkit

been reported previously.

Sometimes people give a few sketchy facts and ask, “Does this ring a bell?” Those
bug reports are useless, and we urge everyone to refuse to respond to them except to
chide the sender to report bugs properly.

To enable us to fix the bug, you should include all the following things.

• The version of GDB. GDB announces it if you start with no arguments; you can
also print it at any time using show version .

Without this, we will not know whether there is any point in looking for the bug in
the current version of GDB.

• The type of machine you are using, and the operating system name and version
number.

• What compiler (and its version) was used to compile GDB—such as “gcc–2.8”.

• What compiler (and its version) was used to compile the program you are
debugging—such as “gcc–2.8”.

• The command arguments you gave the compiler to compile your example and
observe the bug. For example, did you use ‘-O ’? To guarantee you will not omit
something important, list them all. A copy of the Makefile (or the output from
make) is sufficient.

If we were to try to guess the arguments, we would probably guess wrong and
then we might not encounter the bug.

• A complete input script, and all necessary source files, that will reproduce the
bug.

• A description of what behavior you observe that you believe is incorrect. For
example, “It gets a fatal signal.” Of course, if the bug is that GDB gets a fatal
signal, then we will certainly notice it. But if the bug is incorrect output, we might
not notice unless it is glaringly wrong. You might as well not give us a chance to
make a mistake.

Even if the problem you experience is a fatal signal, you should still say so
explicitly. Suppose something strange is going on, such as, your copy of GDB is
out of synch, or you have encountered a bug in the C library on your system. (This
has happened!) Your copy might crash and ours would not. If you told us to
expect a crash, then when ours fails to crash, we would know that the bug was not
happening for us. If you had not told us to expect a crash, then we would not be
able to draw any conclusion from our observations.

• If you wish to suggest changes to the GDB source, send us context diffs. If you

CYGNUS Debugging with GDB ■ 231

How to report bugs

18
: R

ep
or

tin
g

B
ug

s
in

 G
D

B

even discuss something in the GDB source, refer to it by context, not by line
number.

The line numbers in our development sources will not match those in your
sources. Your line numbers would convey no useful information to us.

The following are some things that are not necessary.

• A description of the envelope of the bug.

Often people who encounter a bug spend a lot of time investigating which changes
to the input file will make the bug go away and which changes will not affect it.

This is often time consuming and not very useful, because the way we will find
the bug is by running a single example under the debugger with breakpoints, not
by pure deduction from a series of examples. We recommend that you save your
time for something else. Of course, if you can find a simpler example to report
instead of the original one, that is a convenience for us. Errors in the output will
be easier to spot, running under the debugger will take less time, and so on.

However, simplification is not vital; if you do not want to do this, report the bug
anyway and send us the entire test case you used.

• A patch for the bug.

A patch for the bug does help us if it is a good one. But do not omit the necessary
information, such as the test case, on the assumption that a patch is all we need.
We might see problems with your patch and decide to fix the problem another
way, or we might not understand it at all.

Sometimes with a program as complicated as GDB it is very hard to construct an
example that will make the program follow a certain path through the code.

If you do not send us the example, we will not be able to construct one, so we will
not be able to verify that the bug is fixed.

And if we cannot understand what bug you are trying to fix, or why your patch
should be an improvement, we will not install it. A test case will help us to
understand.

• A guess about what the bug is or what it depends on.

Such guesses are usually wrong.

Even we cannot guess right about such things without first using the debugger to
find the facts.

How to report bugs

232 ■ Debugging with GDB GNUPro Toolkit

CYGNUS Debugging with GDB ■ 233

19
: C

om
m

an
d

Li
ne

 E
di

tin
g

Command Line Editin g

The following text describes GNU’s command line editing interface.

• “Introduction to Line Editing” on page 234

• “Readline Interaction” on page 235

• “Readline Init File” on page 238

19

Introduction to Line Editing

234 ■ Debugging with GDB GNUPro Toolkit

Introduction to Line Editing
The following paragraphs describe the notation we use to represent keystrokes.

The text, C-K, is read as “Control K” and describes the command to produce when
using the Control and the K keys together. The text, M-K, is read as “Meta K” and
describes the command to produce when using the Meta key (the key with a diamond),
and the K key. If you do not have a meta key, the identical keystroke can be generated
by using the Esc key, and then, K. Either process is known as “meta-fying the K key.”
The text, M-C-K, is read as ‘Meta Control K’ and describes the command to produce
when asked to “meta-fy C K.”

IMPORTANT: The hyphen characters and the comma characters are not a part of the
keystroke sequence to type.

All uppercase letters require using the shift key, of course, since all
commands are specific.

In addition, several keys have their own names. Specifically, Delete, Esc, LFD
(linefeed), SPACEBAR, Return, and TAB all stand for themselves when seen in this
text, or in an init file (see “Readline Init File” on page Readline Init File for more
information).

CYGNUS Debugging with GDB ■ 235

Readline Interaction

19
: C

om
m

an
d

Li
ne

 E
di

tin
g

Readline Interaction
Often during an interactive session you type in a long line of text, only to notice that
the first word on the line is misspelled. The Readline library gives you a set of
commands for manipulating the text as you type it in, allowing you to just fix your
typo, and not forcing you to retype the majority of the line. Using these editing
commands, you move the cursor to the place that needs correction, and delete or insert
the text of the corrections. Then, when you are satisfied with the line, you simply use
Return. You do not have to be at the end of the line to use Return; the entire line is
accepted regardless of the location of the cursor within the line.

See the following documentation for more details.

• “Readline Bare Essentials” on this page

• “Readline Movement Commands” on page 236

• “Readline Killing Commands” on page 236

• “Readline Arguments” on page 237

• “Readline Init Syntax” on page 238

• “Letting Readline Type For You” on page 242

• “Readline vi Mode” on page 243

Readline Bare Essentials
In order to enter characters into the line, simply type them. The typed character
appears where the cursor was, and then the cursor moves one space to the right. If you
mistype a character, you can use Delete to back up, and delete the mistyped character.

Sometimes you may miss typing a character that you wanted to type, and not notice
your error until you have typed several other characters. In that case, you can use C-B
to move the cursor to the left, and then correct your mistake. Aftwerwards, you can
move the cursor to the right with C-F.

When you add text in the middle of a line, you will notice that characters to the right
of the cursor get ‘pushed over’ to make room for the text that you have inserted.
Likewise, when you delete text behind the cursor, characters to the right of the cursor
get ‘pulled back’ to fill in the blank space created by the removal of the text. A list of
the basic bare essentials for editing the text of an input line follows.
C-B

Move back one character.
C-F

Move forward one character.

Readline Movement Commands

236 ■ Debugging with GDB GNUPro Toolkit

Delete
Delete the character to the left of the cursor.

C-D
Delete the character underneath the cursor.

Printing characters
Insert itself into the line at the cursor.

C-_
Undo the last thing that you did. You can undo all the way back to an empty line.

Readline Movement Commands
The previous commands are the most basic possible keystrokes that you need in order
to do editing of the input line. For your convenience, many other commands have
been added in addition to C-B, C-F, C-D, and Delete.

Here are some commands for moving more rapidly about the line.
C-A

Move to the start of the line.
C-E

Move to the end of the line.
M-F

Move forward a word.
M-B

Move backward a word.
C-L

Clear the screen, reprinting the current line at the top.

Notice how C-F moves forward a character, while M-F moves forward a word. It is a
loose convention that control keystrokes operate on characters while meta keystrokes
operate on words.

Readline Killing Commands
Killing text means to delete the text from the line, but to save it away for later use,
usually by yanking it back into the line. If the description for a command says that it
‘kills’ text, then you can be sure that you can get the text back in a different (or the
same) place later. Thefollowing is the list of commands for killing text.
C-K

Kill the text from the current cursor position to the end of the line.
M-D

Kill from the cursor to the end of the current word, or if between words, to the end
of the next word.

CYGNUS Debugging with GDB ■ 237

Readline Arguments

19
: C

om
m

an
d

Li
ne

 E
di

tin
g

M-Delete
Kill from the cursor to the start of the previous word, or if between words, to the
start of the previous word.

C-W
Kill from the cursor to the previous whitespace.

This is different than M-Delete because the word boundaries differ.

And, here is how to yank the text back into the line.
C-Y

Yank the most recently killed text back into the buffer at the cursor.
M-Y

Rotate the kill-ring, and yank the new top. You can only do this if the prior
command is C-Y or M-Y.

When you use a kill command, the text is saved in a kill-ring . Any number of
consecutive kills save all of the killed text together, so that when you yank it back, you
get it in one clean sweep. The kill ring is not line specific; the text that you killed on a
previously typed line is available to be yanked back later, when you are typing another
line.

Readline Arguments
You can pass numeric arguments to Readline commands. Sometimes the argument
acts as a repeat count, other times it is the sign of the argument that is significant. If
you pass a negative argument to a command which normally acts in a forward
direction, that command will act in a backward direction. For example, to kill text
back to the start of the line, you might use M-- C-K.

The general way to pass numeric arguments to a command is to type meta digits
before the command. If the first ‘digit’ you type is a minus sign (-), then the sign of the
argument will be negative. Once you have typed one meta digit to get the argument
started, you can type the remainder of the digits, and then the command. For example,
to give the C-D command an argument of 10, you could use the keystroke sequence,
M-1, 0, C-D.

Readline Init File

238 ■ Debugging with GDB GNUPro Toolkit

Readline Init File
Although the Readline library comes with a set of GNU Emacs-like keybindings, it is
possible that you would like to use a different set of keybindings. You can customize
programs that use Readline by putting commands in an init file in your home
directory. The name of this file is ‘˜/.inputrc ’.

When a program which uses the Readline library starts up, the ‘˜/.inputrc ’ file is
read, and the keybindings are set.

In addition, the C-X, C-R command re-reads this init file, thus incorporating any
changes that you might have made to it.

Readline Init Syntax
There are only four constructs allowed in the ‘˜/.inputrc ’ file.

Variable Settings
You can change the state of a few variables in Readline. You do this by using the set
command within the init file. Here is how you would specify that you wish to use vi
line editing commands:
set editing-mode vi

Right now, there are only a few variables which can be set; so few, in fact, that we just
iterate them here:
editing-mode

The editing-mode variable controls which editing mode you are using. By
default, GNU Readline starts up in Emacs editing mode, where the keystrokes are
most similar to Emacs. This variable can either be set to emacs or vi .

horizontal-scroll-mode
This variable can either be set to On or Off . Setting it to On means that the text of
the lines that you edit will scroll horizontally on a single screen line when they are
larger than the width of the screen, instead of wrapping onto a new screen line. By
default, this variable is set to Off .

mark-modified-lines

This variable when set to On, says to display an asterisk, ‘* ’, at the starts of history
lines which have been modified. This variable is off by default.

prefer-visible-bell
If this variable is set to On it means to use a visible bell if one is available, rather
than simply ringing the terminal bell. By default, the value is Off .

CYGNUS Debugging with GDB ■ 239

Readline Init Syntax

19
: C

om
m

an
d

Li
ne

 E
di

tin
g

Key Bindings
The syntax for controlling keybindings in the ‘˜/.inputrc ’ file is simple. First you
have to know the name of the command that you want to change. The following pages
contain tables of the command name, the default keybinding, and a short description
of what the command does.

Once you know the name of the command, simply place the name of the key you wish
to bind the command to, a colon, and then the name of the command on a line in the
‘ ˜/.inputrc ’ file. The name of the key can be expressed in different ways, depending
on which is most comfortable for you.

keyname: function-name or macro

keyname is the name of a key spelled out in English. For example:
Control-u: universal-argument
Meta-Rubout: backward-kill-word
Control-o: ">&output"

In the example, C-U is bound to the function, universal-argument , and C-O is
bound to run the macro expressed on the right hand side (that is, to insert the text
‘>&output ’ into the line).

“keyseq”: function-name or macro

keyseq differs from keyname in that strings denoting an entire key sequence can
be specified. Simply place the key sequence in double quotes.

GNU Emacs style key escapes can be used, as in the following example:
“\C-u”: universal-argument
“\C-x\C-r”: re-read-init-file
“\e[11˜”: “Function Key 1”

In the example, C-U is bound to the function universal-argument (just as it was
in the first example), C-X, C-R is bound to the function reread-init-file , and
Esc-[, 1, 1, ̃ is bound to insert the text ‘Function Key 1 ’.

Commands For Moving
beginning-of-line (C-A)

Move to the start of the current line.
end-of-line (C-E)

Move to the end of the line.
forward-char (C-F)

Move forward a character.
backward-char (C-B)

Move back a character.

Readline Init Syntax

240 ■ Debugging with GDB GNUPro Toolkit

forward-word (M-F)
Move forward to the end of the next word.

backward-word (M-B)
Move back to the start of this, or the previous, word.

clear-screen (C-L)
Clear the screen leaving the current line at the top of the screen.

Commands For Manipulating The History
accept-line (Newline, Return)

Accept the line regardless of where the cursor is. If this line is non-empty, add it to
the history list. If this line was a history line, then restore the history line to its
original state.

previous-history (C-P)
Move ‘up’ through the history list.

next-history (C-N)
Move ‘down’ through the history list.

beginning-of-history (M-<)
Move to the first line in the history.

end-of-history (M->)
Move to the end of the input history, i.e., the line you are entering.

reverse-search-history (C-R)
Search backward starting at the current line and moving ‘up’ through the history
as necessary. This is an incremental search.

forward-search-history (C-S)
Search forward starting at the current line and moving ‘down’ through the the
history as necessary.

Commands For Changing Text
delete-char (C-D)

Delete the character under the cursor. If the cursor is at the beginning of the line,
and there are no characters in the line, and the last character typed was not C-D,
then return EOF.

backward-delete-char (Rubout)

Delete the character behind the cursor. A numeric argument says to kill the
characters instead of deleting them.

quoted-insert (C-Q, C-V)
Add the next character that you type to the line verbatim. This is how to insert
things like C-Q for example.

CYGNUS Debugging with GDB ■ 241

Readline Init Syntax

19
: C

om
m

an
d

Li
ne

 E
di

tin
g

tab-insert (M-TAB)
Insert a tab character.

self-insert (a, b, A, 1, !, ...)
Insert yourself.

transpose-chars (C-T)
Drag the character before point forward over the character at point. Point moves
forward as well. If point is at the end of the line, then transpose the two characters
before point. Negative arguments don’t work.

transpose-words (M-T)
Drag the word behind the cursor past the word in front of the cursor moving the
cursor over that word as well.

upcase-word (M-U)
Uppercase all letters in the current (or following) word. With a negative argument,
do the previous word, but do not move point.

downcase-word (M-L)
Lowercase all letters in the current (or following) word. With a negative
argument, do the previous word, but do not move point.

capitalize-word (M-C)
Uppercase the first letter in the current (or following) word. With a negative
argument, do the previous word, but do not move point.

Killing And Yanking
kill-line (C-K)

Kill the text from the current cursor position to the end of the line.
backward-kill-line ()

Kill backward to the beginning of the line. This is normally unbound.
kill-word (M-D)

Kill from the cursor to the end of the current word, or if between words, to the end
of the next word.

backward-kill-word (M-Delete)
Kill the word behind the cursor.

unix-line-discard (C-U)
Kill the whole line the way C-U used to in Unix line input. The killed text is saved
on the kill-ring.

unix-word-rubout (C-W)
Kill the word the way C-W used to in Unix line input. The killed text is saved on
the kill-ring. This is different than backward-kill-word because the word
boundaries differ.

Letting Readline Type For You

242 ■ Debugging with GDB GNUPro Toolkit

yank (C-Y)
Yank the top of the kill ring into the buffer at point.

yank-pop (M-Y)
Rotate the kill-ring, and yank the new top. You can only do this if the prior
command is yank or yank-pop.

Specifying Numeric Arguments
digit-argument (M-0, M-1, ... M--)

Add this digit to the argument already accumulating, or start a new argument. M--
starts a negative argument.

universal-argument ()

Do what C-U does in GNU Emacs. By default, this is not bound.

Letting Readline Type For You
complete (TAB)

Attempt to do completion on the text before point. This is implementation
defined. Generally, if you are typing a filename argument, you can do filename
completion; if you are typing a command, you can do command completion, if
you are typing in a symbol to GDB, you can do symbol name completion, if you
are typing in a variable to Bash, you can do variable name completion.

possible-completions (M-?)
List the possible completions of the text before point.

Some Miscellaneous Commands
reread-init-file (C-X, C-R)

Read in the contents of your ‘˜/.inputrc ’ file, and incorporate any bindings
found there.

abort (C-G)
Stop running the current editing command.

prefix-meta (Esc)
Make the next character that you type be metafied. This is for people without a
meta key. Typing ESC F is equivalent to typing M-F.

undo (C-_)
Incremental undo, separately remembered for each line.

revert-line (M-R)
Undo all changes made to this line. This is like typing the ‘undo’ command
enough times to get back to the beginning.

CYGNUS Debugging with GDB ■ 243

Readline vi Mode

19
: C

om
m

an
d

Li
ne

 E
di

tin
g

Readline vi Mode
While the Readline library does not have a full set of vi editing functions, it does
contain enough to allow simple editing of the line.

In order to switch interactively between GNU Emacs and vi editing modes, use the
command M-C-J (toggle-editing-mode). When you enter a line in vi mode, you are
already placed in ‘insertion ’ mode, as if you had typed an ‘i ’. Using Esc switches
you into ‘edit ’ mode, where you can edit the text of the line with the standard vi
movement keys, move to previous history lines with ‘k ’, and following lines with ‘j ’,
and so forth.

Readline vi Mode

244 ■ Debugging with GDB GNUPro Toolkit

CYGNUS Debugging with GDB ■ 245

Readline vi Mode

19
: C

om
m

an
d

Li
ne

 E
di

tin
g

Readline vi Mode

246 ■ Debugging with GDB GNUPro Toolkit

CYGNUS Debugging with GDB ■ 247

20
: U

si
ng

 H
is

to
ry

 In
te

ra
ct

iv
el

y

Usin g Histor y Interactivel y

The following documentation describes how to use the GNU History Library
interactively, from a user’s standpoint.

• “History Interaction” on page 248

• “Event Designators” on page 248

• “Word Designators” on page 248

• “Modifiers” on page 249

20

History Interaction

248 ■ Debugging with GDB GNUPro Toolkit

History Interaction
The History library provides a history expansion feature similar to the history
expansion in csh . The following text describes the syntax you use to manipulate
history information.

History expansion takes two parts. In the first part, determine which line from the
previous history will be used for substitution. This line is called the event. In the
second part, select portions of that line for inclusion into the current line. These
portions are called words. GDB breaks the line into words in the same way that the
Bash shell does, so that several English (or Unix) words surrounded by quotes are
considered one word.

Event Designators
An event designator is a reference to a command line entry in the history list.
!

Start a history subsititution, except when followed by a space, tab, or the end of
the line... = or (.

!!

Refer to the previous command. This is a synonym for !-1 .
!n

Refer to command line n.
!-n

Refer to the command line n lines back.
!string

Refer to the most recent command starting with string .
!?string[?]

Refer to the most recent command containing string .

Word Designators
A : separates the event designator from the word designator. It can be omitted if the
word designator begins with a ˆ , $, * or %. Words are numbered from the beginning of
the line, with the first word being denoted by a 0 (zero).
0 (zero)

The zero’th word. For many applications, this is the command word.
n

The n’th word.
ˆ

The first argument. that is, word 1.

CYGNUS Debugging with GDB ■ 249

Modifiers

20
: U

si
ng

 H
is

to
ry

 In
te

ra
ct

iv
el

y

$

The last argument.
%

The word matched by the most recent ?string? search.
x-y

A range of words; -y abbreviates 0-y .
*

All of the words, excepting the zero’th. This is a synonym for 1-$. It is not an
error to use * if there is just one word in the event. The empty string is returned in
that case.

Modifiers
After the optional word designator, you can add a sequence of one or more of the
following modifiers, each preceded by a : .
#

The entire command line typed so far. This means the current command, not the
previous command.

h

Remove a trailing pathname component, leaving only the head.
r

Remove a trailing suffix of the form ‘. ’ suffix , leaving the basename.
e

Remove all but the suffix.
t

Remove all leading pathname components, leaving the tail.
P

Print the new command but do not execute it.

Modifiers

250 ■ Debugging with GDB GNUPro Toolkit

CYGNUS Debugging with GDB ■ 251

21
: F

or
m

at
tin

g
D

oc
um

en
ta

tio
n

Formattin g Documentation

The GDB 4 release includes an already-formatted reference card, ready for printing
with PostScript or Ghostscript, in the ‘gdb ’ subdirectory of the main source directory.
If you can use PostScript or Ghostscript with your printer, you can print the reference
card immediately with ‘refcard.ps ’.

The release also includes the source for the reference card. You can format it, using
TEX, by typing: make refcard.dvi .

The GDB reference card is designed to print in landscape mode on US “letter” size
paper; that is, on a sheet 11 inches wide by 8.5 inches high. You will need to specify
this form of printing as an option to your DVI output program. All the documentation
for GDB comes as part of the machine-readable distribution. The documentation is
written in Texinfo format, which is a documentation system that uses a single source
file to produce both online information and a printed manual. You can use one of the
Info formatting commands to create the online version of the documentation and TEX
(or texi2roff) to typeset the printed version. GDB includes an already formatted
copy of the online Info version of this manual in the ‘gdb ’ subdirectory. The main Info
file is ‘gdb-version-number/gdb/gdb.info ’, and it refers to subordinate files
matching ‘gdb.info* ’ in the same directory. If necessary, you can print out these
files, or read them with any editor; but they are easier to read using the info
subsystem in GNU Emacs or the standalone info program, available as part of the GNU
Texinfo distribution. If you want to format these Info files yourself, you need one of
the Info formatting programs, such as texinfo-format-buffer or makeinfo .

21

252 ■ Debugging with GDB GNUPro Toolkit

If you have makeinfo installed, and are in the top level GDB source directory, you can
make the Info file by typing:
cd gdb
make gdb.info

If you want to typeset and print copies of this manual, you need TEX, a program to
print its DVI output files, and ‘texinfo.tex ’, the Texinfo definitions file. TEX is a
typesetting program; it does not print files directly, but produces output files called dvi
files. To print a typeset document, you need a program to print dvi files. If your
system has TEX installed, chances are it has such a program. The precise command to
use depends on your system; lpr -d is common; another (for PostScript devices) is
dvips . The DVI print command may require a file name without any extension or a
‘ .dvi ’ extension. TEX also requires a macro definitions file called ‘texinfo.tex ’.
This file tells TEX how to typeset a document written in Texinfo format. On its own,
TEX cannot either read or typeset a Texinfo file. ‘texinfo.tex ’ is distributed with
GDB and is located in the ‘gdb- version-number/texinfo ’ directory. If you have
TEX and a dvi printer program installed, you can typeset and print this manual. First
switch to the the ‘gdb ’ subdirectory of the main source directory and then type: make

gdb.dvi .

CYGNUS Debugging with GDB ■ 253

21
: F

or
m

at
tin

g
D

oc
um

en
ta

tio
n

254 ■ Debugging with GDB GNUPro Toolkit

G
D

B
tk

GNUPRO™ TOOLKIT

GDBtk

98r1
July, 1998

CYGNUS

Frontispiece

256 ■ GDBtk GNUPro Toolkit

Copyright © 1991-1998 Cygnus.

All rights reserved.

GNUPro™, the GNUPro™ logo and the Cygnus logo are all trademarks of Cygnus.

All other brand and product names are trademarks of their respective owners.

Permission is granted to make and distribute verbatim copies of this documentation,
provided the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this documentation
under the conditions for verbatim copying, provided also that the entire resulting
derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this documentation into
another language, under the above conditions for modified versions.

This documentation has been prepared by Cygnus Technical Publications; contact the
Cygnus Technical Publications staff: doc@cygnus.com .

CYGNUS GDBtk ■ 257

Frontispiece

G
D

B
tk

Licensin g for GDBtk
The Tcl/Tk software, used in building the graphical user interface for the debugging
tools, is copyrighted by the Regents of the University of California, Sun
Microsystems, Inc., and other parties. The following terms apply to all files associated
with the software unless explicitly disclaimed in individual files.

The authors hereby grant permission to use, copy, modify, distribute, and license this
software and its documentation for any purpose, provided that existing copyright
notices are retained in all copies and that this notice is included verbatim in any
distributions. No written agreement, license, or royalty fee is required for any of the
authorized uses. Modifications to this software may be copyrighted by their authors
and need not follow the licensing terms described here, provided that the new terms
are clearly indicated on the first page of each file where they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO
ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF THIS
SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF,
EVEN IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE IS PROVIDED ON
AN "AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO
OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
ENHANCEMENTS, OR MODIFICATIONS.

RESTRICTED RIGHTS: Use, duplication or disclosure by the government is subject
to the restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in Technical
Data and Computer Software Clause as DFARS 252.227-7013 and FAR 52.227-19.

Frontispiece

258 ■ GDBtk GNUPro Toolkit

CYGNUS GDBtk ■ 259

In
tr

od
uc

tio
n

to
 G

D
B

tk

Introduction to GDBtk

GDBTk is a graphical user interface for GDB, the GNUPro Debugger. GDBTk has
the same look and feel on both Windows and Unix operating systems. GDBTk offers
the ease of a GUI and access to all the power of the GDB’s command-line interface.

See the descriptions for the basic user interface with the documentation with
“Interface for GDBtk” on page 261. See “Procedures” on page 301 for step by step
procedures to specify an executable, to indicate a source file, to set break points within
a function and to view the changing values of local variables.

260 ■ GDBtk GNUPro Toolkit

CYGNUS GDBtk ■ 261

1:
 In

te
rf

ac
e

fo
r

G
D

B
tk

Interface for GDBtk

This documentation outlines the functions of the GDBTk user interface.

■ “Source Window” on page 262

■ “Dialog boxes for the Source Window” on page 276

■ “Stack window” on page 284

■ “Registers window” on page 285

■ “Memory window” on page 287

■ “Watch Expressions window” on page 290

■ “Local Variables window” on page 293

■ “Breakpoints window” on page 295

■ “Console window” on page 297

■ “Help window” on page 298

When GDBTk first opens, it displays the Source Window. The other windows that are
invoked from the Source Window, through View menu selections or tool bar buttons
have documentation in the order that they appear in the Source Window’s View menu.
The Help window, for instance, is invoked from the Source Window’s Help menu.

The documentation discusses what occurs during an actual debugging session, after
running the executable up to a single breakpoint set in ‘main.c ’ of our example
executable program.

1

Source Window

262 ■ GDBtk GNUPro Toolkit

Source Window
When GDBTk first opens, it displays the Source Window, as shown in
Figure 1: “Source Window” on page 263.

The following documentation describes the Source Window attributes and its
correlating functionality.

■ “Menu bar for the Source Window” on page 264

■ “Toolbar buttons” on page 267

■ “Special display pane features” on page 271

■ “Using the mouse in the display pane” on page 272

■ “Below the horizontal scroll bar” on page 274

■ “Load New Executable dialog box for the Source Window” on page 276

■ “Page Setup dialog box for the Source Window” on page 277

■ “Print dialog box for the Source Window” on page 278

■ “Target selection from the Source Window” on page 279

■ “Global Preferences dialog box for the Source window” on page 282

■ “Source Preferences dialog box for the Source window” on page 283

CYGNUS GDBtk ■ 263

Source Window

1:
 In

te
rf

ac
e

fo
r

G
D

B
tk

Figure 1: Source Window

Menu bar for the Source Window

264 ■ GDBtk GNUPro Toolkit

Menu bar for the Source Window
There are six menu item selections: File, Run, View, Control, Preferences and Help.

The following documentation discusses the Source Window menus.

■ “File” on page 264

■ “Run” on page 265

■ “View” on page 265

■ “Control” on page 266

■ “Preferences” on page 266

■ “Help” on page 267

File
Figure 2: File menu

Open
Brings up the Load New Executable dialog box. See “Load New Executable
dialog box for the Source Window” on page 276.

Page Setup
Brings up the Page Setup dialog box. See “Page Setup dialog box for the Source
Window” on page 277. This option is not currently available on the Unix version.

Print Source
Brings up the Print dialog box. See “Print dialog box for the Source Window”
on page 278. This option is not currently available on the Unix version.

Target Settings
Brings up the Target Settings dialog box. See “Target selection from the Source
Window” on page 279.

Exit
Closes the GDBTk program.

CYGNUS GDBtk ■ 265

Menu bar for the Source Window

1:
 In

te
rf

ac
e

fo
r

G
D

B
tk

Run
Figure 3: Run menu

Download
Downloads a program to a board (if connected).

Run
Runs the executable program.

View
Figure 4: View menu

Stack
Displays Stack window. See “Stack window” on page 284.

Registers
Displays Registers window. See “Registers window” on page 285.

Memory
Displays Memory window. See “Memory window” on page 287.

Watch Expressions
Displays Watch Expressions window. See “Watch Expressions window”
on page 290.

Local Variables
Displays Local Variables window. See “Local Variables window” on page 293.

Breakpoints
Displays Breakpoints window. See “Breakpoints window” on page 295.

Console
Displays Console window. See “Console window” on page 297.

Menu bar for the Source Window

266 ■ GDBtk GNUPro Toolkit

Control
Figure 5: Control menu

Step
Steps to next executable line of source code. Steps into called functions.

Next
Steps to next executable line of source code in current file. Steps over called
functions.

Finish
Finishes execution of the current frame. If clicked while in a function, it finishes
the function and returns to the line that called the function.

Continue
Continues execution until a breakpoint, watchpoint or other exception is
encountered; or execution is complete.

Step Asm Inst
Steps to next assembler instruction. Steps into subroutines.

Next Asm Inst
Steps to next assembler instruction. Executes subroutines and steps to the
subsequent instruction.

Preferences
Figure 6: Preferences menu

Global
Displays Global Preferences dialog box. See “Global Preferences dialog box for
the Source window” on page 282.

Source
Displays Source Preferences dialog box. See “Source Preferences dialog box for
the Source window” on page 283.

CYGNUS GDBtk ■ 267

Toolbar buttons

1:
 In

te
rf

ac
e

fo
r

G
D

B
tk

Help
Figure 7: Help menu

Help Topics
Displays Help Window. See “Help window” on page 298.

Cygnus on the Web
Links to the “GNUPro Tools” web page.

About GDB
Displays About GDBTk window, containing product version number, copyright
and Cygnus contact information.

Toolbar buttons

Run / Stop
Figure 8: Run button

The Run button runs the executable. During execution the button turns into the Stop
button. If you click on the Run button with no executable loaded, you invoke the
Target Selection dialog box. See “Target selection from the Source Window”
on page 279.

Figure 9: Stop button

The Stop button will interrupt the program, provided that the underlying hardware and
protocol support such interruptions. Many monitors that are connected to boards
cannot interrupt programs on those boards, so the Stop button has no functionality.

Step
Figure 10: Step button

Steps to next executable line of source code. Steps into called functions.

Toolbar buttons

268 ■ GDBtk GNUPro Toolkit

Next
Figure 11: Next button

Steps to next executable line of source code in the current file. Steps over called
functions.

Finish
Figure 12: Finish button

Finishes execution of the current frame.

If clicked while in a function, it finishes the function and returns to the line that called
the function.

Continue
Figure 13: Continue button

Continues execution until a breakpoint, watchpoint or other exception is encountered;
or execution is complete.

Step Assembler instruction
Figure 14: Step assembler instruction button

Invokes Step assembler instruction. Steps into subroutines.

Next Assembler instruction
Figure 15: Next assembler instruction button

Steps to Next assembler instruction. Executes subroutines and steps to the following
instruction.

CYGNUS GDBtk ■ 269

Toolbar buttons

1:
 In

te
rf

ac
e

fo
r

G
D

B
tk

Registers
Figure 16: Registers button

The Registers button brings up the Registers window. See “Registers window”
on page 285.

Memory
Figure 17: Memory button

The Memory button brings up the Memory window. See “Memory window”
on page 287.

Stack
Figure 18: Stack button

The Stack button brings up the Stack window. See “Stack window” on page 284.

Watch Expressions
Figure 19: Watch Expressions button

The Watch Expressions button brings up the Watch Expressions Window. See “Watch
Expressions window” on page 290.

Local Variables
Figure 20: Local Variables button

The Local Variables button brings up the Local Variables Window. See “Local
Variables window” on page 293.

Toolbar buttons

270 ■ GDBtk GNUPro Toolkit

Breakpoints
Figure 21: Breakpoints button

The Breakpoints button brings up the Breakpoints window. See “Breakpoints
window” on page 295.

Console
Figure 22: Console button

The Console button brings up the Console window. The Console window features a
command line interface to GDB, the GNUPro debugger. See “Console window”
on page 297.

Line address / Line number display
Figure 23: Program counter display frame and line number display frame

The left-hand read-only frame displays the program counter (pc) of the current frame,
while the program is running.

The right-hand read-only frame displays the line number, which contains the pc, while
the program is running.

Down stack frame
Figure 24: Down stack frame button

Moves down the stack frame one level.

CYGNUS GDBtk ■ 271

Special display pane features

1:
 In

te
rf

ac
e

fo
r

G
D

B
tk

Up stack frame
Figure 25: Up stack frame button

Moves up the stack frame one level.

Go to bottom of stack
Figure 26: Go to bottom of stack frame button

Moves to the bottom of the stack frame.

Special display pane features
The following discussion details some special features to the display panes.

■ When the executable is running, the location of the current program counter is
displayed as a line with a green background

■ When the executable has finished running, the background color changes to violet
(browsing mode).

■ When looking at a stack backtrace, the background color changes to golden
yellow

Using the mouse in the display pane

272 ■ GDBtk GNUPro Toolkit

Using the mouse in the display pane
There are various uses of the mouse within the main display pane of the Source
Window. The display pane is divided into two columns, as shown in Figure 27. The
left column extends from the left edge of the display pane to the last character of the
line number. The right column extends from the last character of the line number to
the right edge of the display pane. Within each column, the mouse has a different set
of effects.

Figure 27: Using the mouse in the window

Right display column
■ By holding the cursor over a global or local variable, the current value of that

variable is displayed.

■ By holding the cursor over a pointer to a structure or class, the type of structure or
class is displayed and the address of the structure or class is displayed.

■ By double clicking an expression, it is selected.

■ By right clicking while an expression is selected, a pop-up menu appears. The
selected expression appears in both menu selections. In Figure 28, the selected
variable was the ‘lis ’ expression.

Figure 28: Pop-up window for expressions

Add lis to Watch
Brings up the Watch Expressions window and adds a variable expression (the
‘ lis ’ variable, in this instance) to the list of expressions in the window.

Dump Memory at lis
Brings up the Memory window, which displays a memory dump at an expression,
in this instance, the ‘lis ’expression.

Left column Right column

CYGNUS GDBtk ■ 273

Using the mouse in the display pane

1:
 In

te
rf

ac
e

fo
r

G
D

B
tk

Left display column
When the cursor is in the left column and it is over an executable line (marked on the
far left by a minus sign), it changes into a circle. When the cursor is in this state:

■ A left click sets a breakpoint at the current line. The breakpoint appears as a red
square in place of the minus sign.

■ A left click on any existing breakpoint or temporary breakpoint removes that
breakpoint.

■ A right click brings up another pop-up menu, as shown in Figure 29.

Figure 29: Pop-up menu for setting breakpoints

Continue to here
This causes the program to run up to this location, ignoring any breakpoints. Like
the temporary breakpoint, this menu selection is displayed as an orange square.
This selection disables all other breakpoints. When a breakpoint has been
disabled, it turns from red or orange to black.

WARNING: The debugger might be expected to execute to a given location, stopping at all
encountered breakpoints. This menu item currently forces execution to this
location without stopping at any encountered breakpoints.

Set breakpoint here
This sets a breakpoint on the current executable line. This has the same action as
left clicking on the minus sign.

Set temporary breakpoint here
This sets a temporary breakpoint on the current executable line. A temporary
breakpoint is displayed as an orange square. The temporary breakpoint is
automatically removed when it is hit.

Figure 30: Pop-up menu for deleting breakpoints

Delete Breakpoint
This deletes the breakpoint on the current executable line. This has the same
action as left clicking on the red square.

Continue to Here
See the description for Continue to Here for Figure 29.

Below the horizontal scroll bar

274 ■ GDBtk GNUPro Toolkit

Below the horizontal scroll bar
There are four display and selection fields below the horizontal scroll bar: the status
text box, the file drop-down combo box, the function drop-down combo box and the
code display drop-down list box.

Figure 31: Status text box

In Figure 31, in the area immediately below the scroll bar, a text box displays the
current status of the debugger.

Figure 32: Drop-down list box

The drop-down list box, as shown in Figure 32, displays all the source and header
files associated with the executable. Files may be selected by clicking in the list box,
or by typing into the text field above the list.

CYGNUS GDBtk ■ 275

Below the horizontal scroll bar

1:
 In

te
rf

ac
e

fo
r

G
D

B
tk

Figure 33: Function drop-down combo box

The drop-down list box displays all the functions in the currently selected source or
header file. A function may be selected by clicking in the list box, or by typing into the
text field above. In Figure 33, the ‘main.c ’ file only contains the one ‘main ’ function.

Figure 34: Code display drop-down list box

Select how the code in the Source Window is displayed, as shown with the selectable
formats in Figure 34.

SOURCE
The source code is displayed in the Source Window.

ASSEMBLY
The assembly code is displayed in the Source Window.

MIXED
The source code and the assembly code are both displayed, interspersed in the
Source Window.

SRC+ASM
The source code and the assembly code are both displayed in a double paned
window. The source code is displayed in the Source Window and, in a pane below
the source code pane, the assembly code is displayed.

Dialog boxes for the Source Window

276 ■ GDBtk GNUPro Toolkit

Dialo g boxes for the Source Window
The following documentation describes the dialog boxes that are invoked from the
Source Window, through the File and Preferences menu selections.

Load New Executable dialog box for the Source
Window

The Load New Executable dialog box, as shown in Figure 35, is invoked by clicking
the Open menu item in the File drop-down menu of the Source Window. This dialog
box allows you to navigate through directories and select an executable file to be
opened in the Source Window.

Figure 35: Load New Executable dialog box window

CYGNUS GDBtk ■ 277

Page Setup dialog box for the Source Window

1:
 In

te
rf

ac
e

fo
r

G
D

B
tk

Page Setup dialog box for the Source Window
The Page Setup dialog box, as shown in Figure 36, is invoked by clicking the Page
Setup menu item in the File drop-down menu of the Source Window. This standard
dialog box allows you to make page layout selections before printing a source file.

Figure 36: Page Setup dialog box window

Print dialog box for the Source Window

278 ■ GDBtk GNUPro Toolkit

Print dialog box for the Source Window
The Print dialog box, as shown in Figure 37, is invoked by clicking the Print Source
menu item in the File drop-down menu of the Source Window. This dialog box allows
you to select a printer and make other print specific selections, before printing a
source file.

Figure 37: Print dialog box window

CYGNUS GDBtk ■ 279

Target selection from the Source Window

1:
 In

te
rf

ac
e

fo
r

G
D

B
tk

Target selection from the Source Window
The Target Selection dialog box is invoked by clicking the Target Settings menu item
in the File drop-down menu of the Source Window. This dialog box allows you to
select the target you wish to run the executable on, and make other run-specific
selections.

Figure 38: Target selection dialog box window

Connection
The Connection group contains the Target drop-down list box for target selection
and two other fields for setting target-specific parameters.

Target
The contents of this list box depend upon the specific GDB debugger
configuration you have received. For a native configuration, the list contains Exec
(for native execution), Remote/Serial (serial connection to a remote target) and
Remote/TCP (TCP connection to a remote target).

If GDB has been configured to include a specific hardware simulator, the target
Exec will be replaced by target sim. The names of specific hardware targets may
also be included in the list, with serial, TCP or both methods of connection,
depending upon the hardware.

Baud Rate/Hostname
When a serial connection to a remote target is selected the baud rate may be set.
When a TCP connection to a remote target is selected, this list box turns into a text
edit field, renamed “Hostname,” allowing for specifying of a host name.

Port
For both serial and TCP connections to remote targets, the port must be
designated. For serial connection, port specifies the serial port on the host

Target selection from the Source Window

280 ■ GDBtk GNUPro Toolkit

machine. For TCP connections, port specifies the port number on the remote
target.

Run until 'main'
Set a breakpoint at 'main' and run until that breakpoint is reached. This is checked
by default.

Set breakpoint at 'exit'
Set a breakpoint at the call to the 'exit' routine. This is checked by default.

Display Download Dialog
In addition to using the status-bar, display more extensive download status
information in a dialog box. This is particularly useful when doing a serial
download to a remote target. This is unchecked by default.

More Options/Fewer Options
Toggles to display or hide the Run Options at the bottom of the dialog box, as
contrasted and shown in Figure 39.

Figure 39: Target Selection window’s Run Options features

Run Options
The four check boxes in this group set-up the actions taken, when the Run button
is clicked.

Attach to Target
Connects to a remote target.

CYGNUS GDBtk ■ 281

Target selection from the Source Window

1:
 In

te
rf

ac
e

fo
r

G
D

B
tk

Download Program
Downloads an executable to a remote target.

Continue from Last Stop
Continues execution from wherever the executable, on a remote target, left
off.

Run Program
Begins execution of an executable.

Global Preferences dialog box for the Source window

282 ■ GDBtk GNUPro Toolkit

Global Preferences dialog box for the Source window
The Global Preferences dialog box, as shown in Figure 40, is invoked by clicking the
Global menu item in the Preferences drop-down menu of the Source Window. This
dialog box allows you to select the font and the type size, for displaying text.

Figure 40: Global Preferences dialog box window

Icons
This drop-down list box allows for choosing between the default Windows-style
icon set as shown in Figure 41 and the basic icon set as shown in Figure 42.

Figure 41: Windows-style icon set

Figure 42: Basic icon set

Fonts
The fields in this group allow for custom selection of font family and size.

Fixed Font
This drop-down list box allows you to select the font for the source code
display panes

Default Font
This drop-down list box allows you to select the font for use in list boxes,
buttons and other controls.

CYGNUS GDBtk ■ 283

Source Preferences dialog box for the Source window

1:
 In

te
rf

ac
e

fo
r

G
D

B
tk

Status bar Font
This drop-down list box allows you to select the font for the statusbar.

Source Preferences dialog box for the Source window
The Source Preferences dialog box, as shown in Figure 43, is invoked by clicking the
Source menu item in the Preferences drop-down menu of the Source Window.

Figure 43: Source Preferences dialog box

Colors
Single left-clicking any of the colored squares opens the Choose color dialog
box. The Choose color dialog box allows the display colors to be modified by
the user.

Debug Mode
Unless GDB has been configured to enable the setting of tracepoints, this
radio button has no effect.

Variable Balloons
If Variable Balloons is on, a balloon appears displaying the value of a
variable, when the mouse is placed over the variable in the Source Window.
The default is on.

Stack window

284 ■ GDBtk GNUPro Toolkit

Stack window
The Stack window displays the current state of the call Stack, as shown by Figure 44,
where each line represents a stack frame.

Figure 44: Stack window

Clicking a frame selects that frame, which is indicated by the background of the frame
turning yellow, as shown in Figure 45. The Source Window automatically updates to
display the line, corresponding to the selected frame. If the frame points to an
assembly instruction, the Source Window changes to display assembly code. The
background of the corresponding line in the Source Window also changes to yellow.

Figure 45: Clicking a stack frame

CYGNUS GDBtk ■ 285

Registers window

1:
 In

te
rf

ac
e

fo
r

G
D

B
tk

Registers window
The Registers window, as shown in Figure 46, dynamically displays the registers and
their content. The documentation for “Register menu for the Register window”
on page 286 discusses changing the properties of registers.

Figure 46: Registers window

■ A single left click on a register will select it.

■ A double click on a register allows the content of the register to be edited.

Hitting the Escape Key (Esc) will abort the editing.

Register menu for the Register window

286 ■ GDBtk GNUPro Toolkit

Register menu for the Register window
Figure 47: Register menu

Edit
This menu item has the same effect as double clicking a register. The content of
the selected register may be changed. This menu item is only active when a
register has been selected.

Format
This menu item calls another pop-up menu, as shown in Figure 48, allowing the
content of the selected register to be displayed in Hexadecimal, Decimal, Natural,
Binary, Octal, and Raw formats.

Figure 48: Register format menu

Hexadecimal is the default display format.

Remove from Display
This menu item removes the selected register from the window. All registers are
displayed if the window is closed and reopened. This menu item is only active
when a register has been selected.

Display All Registers
This menu item displays all the registers. This menu item is only active when one
or more registers have been removed from display.

CYGNUS GDBtk ■ 287

Memory window

1:
 In

te
rf

ac
e

fo
r

G
D

B
tk

Memor y window
The Memory window, as shown in Figure 49, dynamically displays the state of
memory.

Figure 49: Memory window

A memory location can be selected by double clicking the left mouse button with the
cursor in the window. The contents of a selected memory location can be edited.

Figure 50 shows the Address menu.

Address menu for the Memory window
Figure 50: Address menu for the Memory window

Auto Update
The contents of the Memory window are automatically updated whenever the
target’s state changes. This is the default setting.

Update Now
Forces the immediate update of the Memory window’s view of the target’s
memory.

Preferences
This menu item brings up the Memory Preferences dialog box.

Address menu for the Memory window

288 ■ GDBtk GNUPro Toolkit

Memory Preferences dialog box for the Memory window
The Memory Preferences dialog box, as shown in Figure 51, makes it possible to set
memory options.

Figure 51: Memory Preferences dialog box for the Memory window

Size
Selection of the size of the individual cells displayed.

Format
Selection of the format of the memory display.

Number of Bytes
Sets the number of bytes displayed in the Memory window.

Bytes Per Row
Sets the number of bytes displayed per row.

Display ASCII
Choose to display a string representation of the memory.

CYGNUS GDBtk ■ 289

Address menu for the Memory window

1:
 In

te
rf

ac
e

fo
r

G
D

B
tk

Control Char
Choose the character used to display non-ASCII characters. The default character
is the period.

Watch Expressions window

290 ■ GDBtk GNUPro Toolkit

Watch Expressions window
The Watch Expressions window, as shown in Figure 52, displays the name and
current value of user-specified expressions.

Figure 52: Watch Expressions window

■ Single clicking on an expression selects that expression.

■ Right clicking in the display pane, while an expression is selected, calls an
expression-specific Watch menu, as shown and described with
Figure 53: “Watch menu in the Watch Expressions window” on page 291.

CYGNUS GDBtk ■ 291

Watch Expressions window

1:
 In

te
rf

ac
e

fo
r

G
D

B
tk

Figure 53: Watch menu in the Watch Expressions window

Figure 54: Watch menu for the Watch Expressions window

Edit
Allows the value in the expression to be edited.

Hitting the Escape key (Esc) will abort the editing.

Format
This menu item brings up another pop-up menu, as shown in Figure 55, allowing
the value of the selected expression to be displayed in Hexadecimal, Decimal,
Binary, and Octal formats.

Figure 55: Value formats for the Watch Expressions window

By default, pointers are displayed in hexadecimal and all other expressions are
displayed as decimal.

Remove
Removes the selected expression from the watch list.

Add Watch button for the Watch Expressions window

292 ■ GDBtk GNUPro Toolkit

Add Watch button for the Watch Expressions window
An expression can be typed into the text edit field at the bottom of the dialog box, as
shown in the screen on the left in Figure 56. By pressing the Add Watch button or
hitting the Enter key, the expression is added to the list, as shown in the resulting
addition to the window on the right in Figure 56. Invalid expressions are ignored.

Figure 56: Using the Add Watch button for the Watch Expressions window

Watching registers with the Watch Expressions
window

GDB allows registers to be added to the Watch Expressions window, by typing
register “convenience variables” into the text edit field. Every register has a
corresponding convenience variable. The register convenience variables consist of a
dollar sign followed by the register name. The convenience variable for the program
counter is ‘$pc ’, for example. The convenience variable for the frame pointer is ‘$fp ’.

Casting pointers in the Watch Expressions window
Pointer values may be cast to other types and watched, represented as the type to
which the pointer was cast. For example, by typing ‘(struct _foo *) bar ’ in the
text edit field, the ‘bar ’ pointer is cast as a ‘struct _foo ’ pointer.

CYGNUS GDBtk ■ 293

Local Variables window

1:
 In

te
rf

ac
e

fo
r

G
D

B
tk

Local Variables window
The Local Variables window displays the current value of all local variables.

Figure 57: Local Variables window

■ Single clicking the mouse with the cursor over a variable selects the variable.

■ Double clicking the mouse with the cursor in the Local Variables window puts the
variable into edit mode.

■ Single clicking the mouse with the cursor on the plus sign to the left of a structure
variable displays the elements of that structure. Compare the variable structure in
the window in Figure 57 with the results in Figure 58.

■ Single clicking the mouse with the cursor on the minus sign to the left of an open
structure closes the display of the structure elements.

Figure 58: Displaying the elements of a variable structure

Local Variables window

294 ■ GDBtk GNUPro Toolkit

Variable menu for the Local Variables window
Figure 59: Variable menu for the Local Variables window

Edit
Allows the value of a selected variable to be edited.

Hitting the Escape key (Esc) will abort the editing.

Format
This menu item brings up another pop-up menu, as shown in Figure 60, allowing
the value of the selected variable to be displayed in the Hexadecimal, Decimal,
Binary and Octal formats.

Figure 60: Variable format menu

By default, pointers are displayed in hexadecimal and all other expressions are
displayed as decimal.

CYGNUS GDBtk ■ 295

Breakpoints window

1:
 In

te
rf

ac
e

fo
r

G
D

B
tk

Breakpoints window
The Breakpoints window, as shown in Figure 61, displays all breakpoints that are
currently set.

Figure 61: Breakpoints window

■ Single clicking with the mouse with the cursor over a check-box for the
information displayed for a breakpoint selects that breakpoint.

■ Single clicking with the mouse with the cursor over a checked check box of a
breakpoint disables the breakpoint. The check disappears and the red square in the
Source Window turns black.

■ Single clicking with the mouse with the cursor over an empty check box of a
disabled breakpoint re-enables the breakpoint. The check reappears and the black
square in the Source Window turns red.

Breakpoint menu for the Breakpoints window
Figure 62: Breakpoint menu for the Breakpoints window

Normal
Temporary

This pair of menu items toggles between the normal and temporary setting of the
selected breakpoint. A normal breakpoint remains valid no matter how many
times it is hit. A temporary breakpoint is removed automatically the first time it is

Global menu for the Breakpoints window

296 ■ GDBtk GNUPro Toolkit

hit. A single check mark for either setting shows the state of the selected
breakpoint.

When a breakpoint is set to temporary the red check mark in the check box and the
red square in the Source Window turn orange, as shown by comparing
Figure 61: “Breakpoints window” on page 295 with Figure 63.

Figure 63: Results of setting breakpoints

Enabled
Disabled

This pair of menu items toggles the enabled or disabled state of the selected
breakpoint. The single check mark between them shows the state of the selected
breakpoint.

Remove
This menu item removes the selected breakpoint.

Global menu for the Breakpoints window
Figure 64: Global menu for the Breakpoints window

Disable All
Disables all breakpoints.

Enable All
Enables all breakpoints.

Remove All
Removes all breakpoints.

CYGNUS GDBtk ■ 297

Console window

1:
 In

te
rf

ac
e

fo
r

G
D

B
tk

Console window
The Console window contains the command prompt for GDB, the GNUPro debugger.
This window, as shown in Figure 65, allows access to the debugger through the
command-line interface. (gdb) is the prompt for the debugger.

Figure 65: Console window

Help window

298 ■ GDBtk GNUPro Toolkit

Help window
The Help window, as shown in Figure 66, is invoked by clicking the Help Topics
menu selection in the Help drop-down menu of the Source Window. The Help
windowoffers HTML based navigable help by topic.

Figure 66: Help window

See also the discussions for Figure 67: “File menu for the Help window”
on page 299 and Figure 68: “Topics menu for the Help window” on page 299.

CYGNUS GDBtk ■ 299

File menu for the Help window

1:
 In

te
rf

ac
e

fo
r

G
D

B
tk

File menu for the Help window
Figure 67: File menu for the Help window

Back
Moves back one HTML help page, relative to previous forward page movements.

Forward
Moves forward one HTML help page, relative to previous back page movement.

Home
Returns to the HTML help “Table of Contents” home page.

Close
Closes the Help Window.

Topics menu for the Help window
Selecting a menu item invokes the Help topic’s contents, as shown in Figure 68.

Figure 68: Topics menu for the Help window

Each menu item represents a help topic. When a menu item is selected, the content of
the Help window changes to reflect the listed topic.

Topics menu for the Help window

300 ■ GDBtk GNUPro Toolkit

CYGNUS GDBtk ■ 301

2:
 P

ro
ce

du
re

s

Procedures

The following documentation contains an example debugging session with step by
step procedures for using GDBTk.

■ “Initializing a target executable file” on page 302

■ “Selecting a source file” on page 304

■ “Setting breakpoints and viewing local variables” on page 306

2

Initializing a target executable file

302 ■ GDBtk GNUPro Toolkit

Initializin g a target executable file
Initializing a target executable file with GDBTk means opening a specific executable
file.

There are two ways to open an executable file in GDBTk.

The first means using the Open menu item in the File drop-down menu from the
Source Window.

The second means using the following initialization procedure, entering commands at
the ‘(gdb) ’ prompt in the Console window.

1. Open the Console window; either from the View menu, or with the Console button
(see Figure 22: “Console button” on page 270).

2. With the Console window active, determine if the target file is in the same
directory as GDBTk. If not, change to the target directory, using the ‘cd ’
command.

In our example procedures, the syntax uses the forward slash as the path delimiter
on all platforms. Windows, though, requires using two forward slashes after the
drive designation.

NOTE: If the source files are not in the same directory as the executable file, use the
GDB ‘dir ’ command to add a path to them, using the same syntax as in Step
2 of initializing a target file. This was not needed in our example.

3. Use the command ‘file example ’, to specify the target executable file.

See Figure 69: “Console window with initial commands ” on page 303 for the
results of these procedures.

CYGNUS GDBtk ■ 303

Initializing a target executable file

2:
 P

ro
ce

du
re

s

Figure 69: Console window with initial commands

Selecting a source file

304 ■ GDBtk GNUPro Toolkit

Selectin g a source file
To select a source file and specify a function within that file, use the following
procedure.

1. Select the ‘foo.c’ source file in the file drop-down combo box, at the bottom of the
Source Window.

Figure 70 represents the lower left corner of the Source Window, showing the
Source window file menu drop-down combo box on the left and the function
drop-down combo box on the right of the window. See also “Below the horizontal
scroll bar” on page 274.

Figure 70: Source file and function selection

2. Select the function ‘foo’ in the function drop-down combo box, at the bottom of
the Source Window.

Now the ‘foo.c’ source file is displayed in the Source Window with a colored bar,
indicating the current position, as shown in Figure 71, on the first executable line
(line 6) in the ‘foo ’ function. Once again, the colored bar is violet, indicating
graphically that the program is not running.

CYGNUS GDBtk ■ 305

Selecting a source file

2:
 P

ro
ce

du
re

s

Figure 71: Source Window with ‘ foo.c’ source file

Setting breakpoints and viewing local variables

306 ■ GDBtk GNUPro Toolkit

Settin g breakpoints and viewin g
local variables

A breakpoint can be set at any executable line. Executable lines are marked by a
minus sign in the left margin of the Source Window. When the cursor is in the left
column and it is over an executable line, it changes into a circle. When the cursor is in
this state, a breakpoint can be set.

The following exercise steps you through setting four breakpoints in a function, as
well as running the program and viewing the changing values in the local variables.

1. With the Source Window active, having opened the ‘foo.c’ source file, place the
cursor over the minus sign on line 6.

2. When the minus sign changes into a circle, click the left mouse button; this sets
the breakpoint, signified as a red square.

NOTE: A second single click on a breakpont will remove the breakpoint.

3. Repeat the process to set breakpoints at lines 8, 9 and 10. See Figure 72: “Results
of setting breakpoints at lines 6, 7, 8, and 9” on page 307.

4. Open the Breakpoints window, by clicking the Breakpoints button on the tool bar
(see Figure 21: “Breakpoints button” on page 270 and
Figure 73: “Breakpoints window” on page 307).

5. Click the check box for line 6. The red checkmark disappears and the red square
in the Source Window changes to black. This color change indicates that the
breakpoint has been disabled. Re-enable the breakpoint at line 6 by clicking the
check box.

6. Click the Run button on the tool bar to start the executable (see “Run button”
on page 267). The program runs until it hits the first breakpoint on line 6. The
color bar on line 6 is green, indicating that the program is running (see
Figure 72: “Results of setting breakpoints at lines 6, 7, 8, and 9” on page 307
and Figure 73: “Breakpoints window” on page 307).

CYGNUS GDBtk ■ 307

Setting breakpoints and viewing local variables

2:
 P

ro
ce

du
re

s

Figure 72: Results of setting breakpoints at lines 6, 7, 8, and 9

Figure 73: Breakpoints window

Setting breakpoints and viewing local variables

308 ■ GDBtk GNUPro Toolkit

7. Open the Local Variables window, by clicking the Local Variables button in the
tool bar (see Figure 20: “Local Variables button” on page 269 and
Figure 57: “Local Variables window” on page 293). The window displays the
initial values of the variables.

8. Click the Continue button in the tool bar (see Figure 13: “Continue
button” on page 268), to move to the next breakpoint. The variables that have
changed value turn blue in the Local Variables window (see Figure 74).

Figure 74: Local Variables window after setting breakpoints

9. Click the Continue button two more times, to step through the next two
breakpoints and notice the changing values of the local variables.

CYGNUS GNUPro Debugging Tools ■ 309

In
de

x

Index

Symbols
! , as not operator196
! , as operator for integral types128
#, in GDB command files219
#, in Modula-2133
#define commands88
$ 102, 103
$, as variable for registers105
$_, variable103
$__, variable103
$_exitcode, variable104
$cdir 83
$cwd 36
&&, as logical AND operator127
&, address operator128
&, bitwise AND operator127
(), as operators128
(), Modula-2 operator for PROCEDURE

objects134
(gdb) prompt string194
(gdb-break)226

*, /, %, as operators128
*, as dereferencing operator128
*, current thread44
*, Modula-2 operator133
scratch buffer in Emacs224
++, --, as increment and decrement operators128
+, -, as operators127
+, -, Modula-2 operators133
, , Modula-2 operator133
, , sequencing operator126
, =, as operators127
, as array indexing operators128
-, as operator, for integral and floating-point

types 128
-, in options17
--, in options17
, Modula-2 array indexing operator134
-, Modula-2 operator134
, Modula-2 operators133
, print a newline220
. , Modula-2 scope operator138

Index

310 ■ GNUPro Debugging Tools GNUPro Toolkit

., ->, as operators128

.C 120

.c 120

.c++ 120

.c186 121

.c286 121

.cc 120

.ch 121

.cp 120

.cpp 120

.cxx 120

.esgdbinit219

.gdb_history196

.gdbinit 219

.mod 120, 137

.o file 165

.os68gdbinit219

.S 121

.s 121

.syms18

.vxgdbinit 219
/, Modula-2 operator133
/proc 42
: , word designator248
::, ., GDB and Modula-2 scope operators134
::, as C++ scope resolution operator128
::, GDB scope operator138
::, operator88
:=, Modula-2 assignment operator137
:=, Modula-2 operator133
=, , #, Modula-2 operators133
=, as operator127
=, Modula-2 operators133
==, != , as equality and inequality operator127
>, as operators127
?: , ternary operator127
@, a binary operator88
@, artificial array operator127
@, Modula-2 artificial array operator133
__raise_exception55

{type}, operator88
|, bitwise OR operator127
||, as logical OR operator127
ˆ, bitwise exclusive-OR operator127
ˆ, Modula-2 dereferencing operator134
˜, as bitwise complement operator128
˜/.inputrc 238

A
a, Modula-2 variable134
a.out, with stabs extensions129
ABS, Modula-2135
active targets, classes164
addr 93
address ranges42
address, locating92
add-shared-symbol-file157
add-symbol-file156
AMD EB29K boards166
AMD UDI protocol 166
AND, &, Modula-2 operators133
argument, ignore-count64
arithmetical operators124
array constants129
Array Tech LSI33K RAID controller board167
array, arificial 91
arrays97
artificial array 91
assembler instruction266
Assembler source file121
attach40
attach command164
automatic display list95
awatch54

B
-b 19
backslash-escape sequences221
BACKSPACE key25
backtrace73, 271

CYGNUS GNUPro Debugging Tools ■ 311

Index

In
de

x

-batch 19
batch mode19
--baud option177
BFD 165
57

Boolean types133
bottom of stack frame button271
break 69
break command50
break...if 51
breakpoint49, 53, 172, 266, 273, 296

deleting 56
menus63

breakpoint condition59
breakpoint menus131
breakpoint with condition, cond51
breakpoint, enabled or disabled49
breakpoints43, 295

printing a table52
enable57
Breakpoints button270
bt 73
bug reports227

C
-c 17
c 64
C and C++126
C source file120
C++ expressions129
C++ source file120
c, Modula-2 variable134
call stack71
call_scratch_address150
called functions266
calling overloaded functions130
CAP, Modula-2135
catch 55, 131
cc -gl on MIPS machines65
C-d 15

-cd 19
cd 38
Character types132
checksum175
child process31, 46
child process, killing41
CHILL source file 121
CHR, Modula-2135
clear command56
-command17
command history file196
command syntax24
commands61
comments (lines starting with #)219
compilation directory83
compile- and run-time checks123
complete28
condition 59
confirmation requests200
connect183
Console button270
continue64
Continue button268
continuing 64
convenience variables103
-core 17
core dump files166
core-file 156
core-file commands164
cpl 198
CPU simulator166
CPU time42
CPU32 (M68K) boards167
CPU32BUG monitor167
current thread43

D
-d 17
d, for deleting breakpoints, watchpoints56
data type92

Index

312 ■ GNUPro Debugging Tools GNUPro Toolkit

data types93
debugger

GUI (GDBTk) 261
debugging

a29k family 180
in a running process40
remote169
remote serial protocol170
specifying a target163
stub 171
symbol file errors159
VxWorks targets184
with C++ 126
with GNU C++ compiler, g++126

debugging stub176
debugging, when compiling32
DEC, Modula-2135
declared type101
define 216
delete56
delete bnums...57
delete display95
derived type101
detach40
detach command183
dialog boxes276–??, 276
dir 83
directories, specifying83
-directory 17
directory 83
disable commands57
disable display, with expressions95
disassemble84
disassemblies132
display 95
display panes271
display/ 95
DIV, MOD, Modula-2 operator134
document216
double quotes129
Down stack frame button270

down, frame74
down-silently, frame75
drop-down list box275
drop-down lists274
dynamic arrays138

E
-e 17
echo 61, 220
Emacs

buffer 223
shell mode224

Emacs interface223
enable and disable commands57
enable commands57
enable display96
end 61
end-of-file character, C-d21
Enea Data Systems real-time OS219
environment36
EPROM/ROM code debugging51
Ericsson Telecom AB M68000 emulator219
ESC, and the ‘?’ key25
EST-300 ICE monitor167
event designator248
examining memory93
examining the stack74
exception handling55
exception handling tables173
exceptionHandler174
EXCL, Modula-2 135
-exec 17
exec-file 154
exec-file commands164
executable165
executable files166
expression272
expression, regex52
expressions88

CYGNUS GNUPro Debugging Tools ■ 313

Index

In
de

x

F
-f 19
f 74, 76
fatal signals67
fg 64
file 154, 186
file-specifying commands157
finish 53, 65
Finish button268
finish command149
FLOAT, Modula-2 135
floating-point registers105
Floating-point types132
flush_i_cache174
-fomit-frame-pointer72
fork 46
forward-search82
frame 74, 76, 270

Alpha architecture74
MIPS architecture74
SPARC architecture74

frame commands77
frame pointer register72
frames72, 266
Fujitsu SPARClite boards167
-fullname 19
functions 266

G
-g option 32
GDB

altering execution145
AMD’s 180
assignment146
automatic display95
Bash shell248
batch mode19
C, C++ constants129
changing to a different file154
checksum175

command completion with TAB25
command file219
command history facility196
command line editing interface234
command names, truncated24
commands175
commands for a selected frame71
controlled output220
convenience variables103
converting file names to absolute file names157
core dump16
core dump files41
CPU simulator191
debugging Modula-2138
decimal numbers199
delimiters 141
EBMON protocol180
environment33
executable files, core files17
exiting 21
expression handling129
formatting documentation251
gdbserver177
GNU Emacs223
GUI 297
hexadecimal numbers199
Hitachi SH, H8/300, or H8/500188
Hitachi SH, H8/300, or H8/500 board156
input and output39
Intel 960 156
Intel 960 using Nindy179
keystroke sequences of Emacs commands224
language-specific information119
limit complaints200
list or search commands224
MIPS remote debugging protocol189
Motorola 88k157
octal numbers199
operator warning134
operators88

Index

314 ■ GNUPro Debugging Tools GNUPro Toolkit

output formats92
parentheses25
patch the binary151
path searches36
print source file and line number97
quotes26
readline interface195
read-only151
remote serial protocol170
reporting bugs227
scope operator, differences with Modula-2138
searches36
sequences for command files215
setting language automatically121
shared libraries157

IBM RS/6000157
Irix 5 157
SunOS157
SVr4 157

specify a file154
ST2000 environment183
standard input and output33
starting 17
starting with run33
start-up commands154
stop and continue a process47
stopping a running program172
symbol file errors159
terminal modes39
type and range checking123
user-defined commands215
value history102
variables130
variables, assignment expressions146
VxWorks 219
VxWorks targets184
warnings and messages200
with C 126
with C++ 126
with Modula-2 126
with TCPconnection177

working directory33, 38
your program’s symbol table141
Z8000 family 191

GDB as a subprocess19
GDB commands, command-line options16
gdb -help16
GDB remote serial protocol177
GDB, as a filter19
GDB, invoking 16
gdb, starting15
gdb/remote.c175
gdbserve.nlm178
gdbserver176
GDBTk

assembler instruction266
assembly code, displaying275
Bottom of stack frame button271
breakpoint266, 273
Breakpoints button270
Breakpoints window295
called functions266
Console button270
Console window297
Continue button268
Control menu266
dialog boxes276
display panes271
Down stack frame button270
expressions272
file drop-down combo box274
File drop-down menu276, 277
File menu264, 276
File menu for the Help window299
Finish button268
frame 266, 270
frame button271
function drop-down combo box274
Help menu267
Help topics299
Help window 298
line address270

CYGNUS GNUPro Debugging Tools ■ 315

Index

In
de

x

line number display270
line number display frame270
lists 274
Local Variables button269
Memory button269
menus264
mouse, using272
navigating276
Next assembler instruction button268
Next button268
Open menu276
Page Setup menu277
Preferences menu266, 276
Print dialog box278
printing 278
program counter270
Registers button269
Run button267
Run menu265
scroll bar 274
source code, displaying275
Source window262
stack backtrace271
Stack button269
stack frame271
status text box274
Step assembler instruction268
Step assembler instruction button268
Step button267
stepping266
Stop button267
subroutines266
toolbar buttons267
Up stack frame button271
Variable format menu294
variables272
View menu 265
Watch Expressions button269
watchpoint266

getDebugChar174

-gg, for debugging32
global or local variable272
-gstabs130
GUI 261

H
h 27
handle command67
handle_exception171
hbreak51
help 27
help target165
help user-defined217
HIGH, Modula-2 135
history expansion in csh248
history numbers102
history references103
Hitachi SH, h8/300, or h8/500 boards166
hooks, user-defined218

I
i, Modula-2 variable134
i386-stub.c171
id 138
identifier 138
IDP board167
if 216
IN, Modula-2 operator133
INC, Modula-2 135
INCL, Modula-2 135
info 28
info address141
info all-registers105
info args76
info break52
info breakpoints25, 52
info catch55, 76, 131
info display 96
info f 76
info files 157

Index

316 ■ GNUPro Debugging Tools GNUPro Toolkit

info float, on ARM and x86 machines107
info frame 76, 122
info functions143
info line 84
info locals 76
info proc 42
info proc all 42
info proc id 42
info proc mappings42
info proc status42
info proc times42
info program48
info registers105
info share157
info sharedlibrary158
info signals67
info source122, 142
info sources142
info terminal 39
info threads43
info variables143
info watchpoints52, 54
init files 219
initial frame 72
initialization files, ‘.gdbinit’ 19
int getDebugChar()172
Integral types132
Intel 960 boards166
internal breakpoints53
interrupt, C-c21

J
jobs -l shell command40
jump command147

K
keybindings238
kill 41, 148
killing 236

L
language, displaying source122
line address270
line number270
line number display frame270
linespecs80
list 80
list - 81
list + 81
list box 274
list commands24
list function 80
load 156
Load New Executable dialog box276
load using Return156
load, Nindy to Intel 960156
load, VxWorks156
local variable272
local variables89
Local Variables button269
longjmp 53
longjmp resume53
lpp 198

M
-m 17
m, Modula-2 variable134
m68k-stub.c171
machine instructions84
machine registers105
main function275
main.c file 275
maint info breakpoints53
maint print msymbols143
maint print psymbols143
maint print symbols143
make 22
make refcard.dvi251
-mapped17
MAX, Modula-2 135

CYGNUS GNUPro Debugging Tools ■ 317

Index

In
de

x

member function calls130
Memory button269
memory, examining93
memory, examining with x command93
memory-mapped files17
memset173, 174
META key 25
MIN, Modula-2 135
MIPS

function stack77
mmap 17
mode command188
Modula-2 119, 132

built-in procedures and functions134
C escape sequences137
changes137
constants136
range and type checking137
variables137

Modula-2 operators, definitions of types132
Modula-2, pointer constants137
module 138
multiple processes43
multi-thread programs43

N
-n 19
n, Modula-2 variable134
newline 220
next 65
Next assembler instruction268
Next assembler instruction button268
Next button268
nopass68
noprint 68
nostop67
NOT, Modula-2 boolean type operator134
numbers199
-nx 19

O
-O option 32
object_ptr103
ODD, Modula-2135
OKI HPPA board167
once bnums...57
op=, as operator127
OP50N monitor167
operators88
operators for C and C++126
OR, Modula-2 operator133
ORD, Modula-2135
outermost frame72
output 61
output format92
output, controlled220
overloaded symbol132
overloading63

P
Page Setup dialog box277
parent process46
pass68
path 36
pointer constants129
Pointer types132
print 67
print commands87
print settings97
print structures99
printf 61, 220
printing with Ghostscript251
printing with PostScript251
procedure138
PROCEDURE objects134
process31
process group ID42
process information42
process, stopped42
process-id40

Index

318 ■ GNUPro Debugging Tools GNUPro Toolkit

Program counter270
program counter74
prompt 194
ps utility 40
ptype 131, 142
putDebugChar174
pwd 38

Q
-q 19
-quiet 19
quit 21

R
-r 18
r 33
r, Modula-2 variable134
range checking124
rbreak 52, 131
readline235
readline init file 238
-readnow18
register

relativized value105
register names105
register stack106
Registers button269
remote debugging169
remotedebug variable190
reporting a bug227
return command149
Return key23
reverse-search82
ROM 68K monitor167
RS/6000 xcoff, or elf with stabs extensions130
run 33
Run button267
run gdb16
running process40
rwatch 54

S
-s 17
Scalar types132
scope130, 138
screen size198
scroll bar 274
-se 17
search82
searching through a source file82
section157
session ID42
set 28
set args35
set check range auto125
set check range off125
set check range on125
set check range warn125
set check type auto124
set check type off124
set check type on124
set check type warn124
set complaints200
set confirm200
set demangle-style100
set editing195
set gnutarget165
set height198
set heuristic-fence-post, on MIPS processors77
set history196
set history filename196
set input-radix199
set language121
set language auto121
set language command120
set language local121
set listsize80
set machine h8300189
set machine h8300h189
set memory189
set mipsfpu190

CYGNUS GNUPro Debugging Tools ■ 319

Index

In
de

x

set print address97
set print address off97
set print address on97
set print array98
set print array off98
set print array on98
set print asm-demangle100, 132
set print asm-demangle on100
set print demangle100, 132
set print demangle on100
set print elements, printing arrays98
set print null-stop99
set print object101, 132
set print object off101
set print object on101
set print pretty off99
set print pretty on99
set print sevenbit-strings off99
set print sevenbit-strings on99
set print symbol-filename off98
set print symbol-filename on97
set print union131
set print union off100
set print union on99
set print vtbl101, 132
set print vtbl off101
set print vtbl on101
set processor190
set prompt command194
set remotedebug190
set retransmit-timeout191
set symbol-reloading off143
set symbol-reloading on143
set timeout191
Set types132
set variable command146
set verbose200
set width198
set write off 151
set write on151

set_debug_traps171
share158
shared libraries157
sharedlibrary158
shell 22
shell commands22
SHELL environment variable37
show 28
show args35
show complaints200
show convenience103
show copying29
show directories83
show editing195
show gnutarget165
show height198
show history197
show language122
show listsize80
show memory189
show mipsfpu190
show print address97
show print array98
show print asm-demangle100, 132
show print demangle100, 132
show print max-symbolic-offset98
show print object101, 132
show print pretty99
show print sevenbit-strings99
show print symbol-filename98
show print union100, 131
show print vtbl101, 132
show processor190
show prompt194
show range125
show remotedebug190
show retransmit-timeout191
show symbol-reloading143
show timeout191
show type124

Index

320 ■ GNUPro Debugging Tools GNUPro Toolkit

show user217
show values102
show verbose200
show version28
show warranty29
show width198
show write151
SIGALRM 67
SIGINT 67
signal 068
signal command148
signal, an asynchronous event67
signals

fatal 67
SIGSEGV 67
SIGTRAP signal46
-silent 16
silent 61
single-stepping69
SIZE, Modula-2136
source filename219
source files79
source line81
source path83
SPARClet

connecting to187
loading from a host to debug187
running and debugging187
running on186

SPARClite DSU51
sparc-stub.c171
st2000183
Stack button269
stack frame71, 271
stack frame, selecting74
stack pointer74
step 24, 64
Step assembler instruction button268
Step button267
stepi 66
stepping64

stop 67
Stop button267
string constants129
structures97
stubs

SPARC, M68K, Intel171
style 100
subroutines266
symbol definitions157
symbol file errors159
symbol filenames98
symbol table18, 141
symbol-file 154, 155
-symbols17
symbols97
systag, thread identifier43

T
t, Modula-2 variable135
TAB key 23
Tandem ST2000 phone switch166
Tandem’s STD-BUG protocol166
target 163, 166
target amd-eb166
target array167
target core166
target e7000189
target est167
target exec166
target hms166
target mips189, 190
target nindy166
target protocol165
target remote166
target remote command174
target rom68k167
target sim191
target sparclite167
target st2000166
target udi166, 180

CYGNUS GNUPro Debugging Tools ■ 321

Index

In
de

x

target vxworks166
target w89k167
target, byte order (MIPS)168
targets, active classes164
tbreak 51, 58
TCP port descriptor178
Texinfo 251
thbreak51
thread43, 69
thread apply43
thread command, rejected43
thread identifier, systag44
threads43
timeout 186
toolbar buttons for GDBTk267
TRUNC, Modula-2136
-tty 20
type

actual (derived)101
declared101

type checking, as for Modula-2123
types

Modula-2 132

U
u 65
UDI (Universal Debugger Interface) protocol180
undisplay95
union type131
unset environment36
until 53, 65
Up stack frame button271
up, frame74
up-silently, frame75
user-defined command216
user-defined hooks218
using the Return key23

V
v, Modula-2 variable135

VAL, Modula-2 136
value history92, 102
values, history numbers102
variable, $bpnum50
variable, varname36
variables130, 272
variables in expressions89
virtual function table101
virtual function tables132
void *memset(void *, int, int)173
void exceptionHandler173
void flush_i_cache()173
void putDebugChar(int)172
VxWorks system166
VxWorks-timeout184

W
W89K monitor 167
warnings and messages159
Watch Expressions button269
watchpoint49, 53, 266

deleting 56
setting 54

watchpoints
printing a table52

whatis 142
while 216
Winbond HPPA board167
Wind River Systems real-time OS219

X
-x 17
x command, examine93
x commands24
x, Modula-2 variable135

Y
yanking 236

Index

322 ■ GNUPro Debugging Tools GNUPro Toolkit

	Dreamcast GNUPro Toolkit Debugging Tools
	Contents
	Summary of the GNU Debugger, GDB
	GDB as free software
	Contributors to GDB

	Installing GDB
	Compiling GDB in another directory
	Specifying names for hosts and targets

	configure options

	Getting In and Out of GDB
	Invoking GDB
	Choosing files
	Choosing modes
	Quitting GDB
	Shell commands

	GDB Commands
	Command syntax
	Command syntax
	Getting help

	Running programs under GDB
	Compiling for debugging
	Starting your program
	Your program’s arguments
	Your program’s environment
	Your program’s working directory
	Your program’s input and output
	Debugging an already-running process
	Killing the child process
	Additional process information
	Debugging programs with multiple threads
	Debugging programs with multiple processes

	Stopping and continuing
	Breakpoints, watchpoints, and exceptions
	Setting breakpoints
	Setting watchpoints
	Breakpoints and exceptions
	Deleting breakpoints
	Disabling breakpoints
	Break conditions
	Breakpoint command lists
	Breakpoint menus
	Continuing and stepping
	Signals
	Stopping and starting multi-thread programs

	Examining the stack
	Stack frames
	Backtraces
	Selecting a frame
	Information about a frame
	MIPS machines and the function stack

	Examining source files
	Printing source lines
	Searching source files
	Specifying source directories
	Source and machine code

	Examining data
	Expressions
	Program variables
	Artificial arrays
	Output formats
	Examining memory
	Automatic display
	Print settings
	Value history
	Convenience variables
	Registers
	Floating point hardware

	Using GDB with different languages
	Switching between source languages
	List of filename extensions and languages
	Setting the working language
	Having GDB infer the source language

	Displaying the language
	Type and range checking
	An overview of type checking
	An overview of range checking

	Supported languages

	Examining the symbol table
	Altering execution
	Assignment to variables
	Continuing at a different address
	Giving your program a signal
	Returning from a function
	Calling program functions
	Patching programs

	GDB files
	Commands to specify files
	Errors reading symbol files

	Specifying a debugging target
	Active targets
	Commands for managing targets
	Choosing target byte order
	Remote debugging
	The GDB remote serial protocol
	What the stub can do for you
	What you must do for the stub
	Putting it all together
	Communication protocol
	Using the gdbserver program
	Using the gdbserve.nlm program
	GDB with a remote i960 (Nindy)
	The UDI protocol for AMD29K
	GDB with a Tandem ST2000
	GDB and VxWorks
	GDB and SPARClet
	Connecting to SPARClet
	SPARClet download
	GDB and Hitachi microprocessors
	GDB and remote MIPS boards

	Controlling GDB
	Prompt
	Command editing
	Command history
	Screen size
	Numbers
	Optional warnings and messages

	Canned sequencesof commands
	User-defined commands
	User-defined command hooks
	Command files
	Commands for controlled output

	Using GDB under GNU Emacs
	Reporting Bugs in GDB
	Have you found a bug?
	How to report bugs

	Command Line Editing
	Introduction to Line Editing
	Readline Interaction
	Readline Bare Essentials
	Readline Movement Commands
	Readline Killing Commands
	Readline Arguments

	Readline Init File
	Readline Init Syntax
	Letting Readline Type For You
	Readline vi Mode

	Using History Interactively
	History Interaction
	Event Designators
	Word Designators
	Modifiers

	Formatting Documentation
	Interface for GDBtk
	Source Window
	Menu bar for the Source Window
	Toolbar buttons
	Special display pane features
	Using the mouse in the display pane
	Below the horizontal scroll bar

	Dialog boxes for the Source Window
	Load New Executable dialog box for the Source Window
	Page Setup dialog box for the Source Window
	Print dialog box for the Source Window
	Target selection from the Source Window
	Global Preferences dialog box for the Source window
	Source Preferences dialog box for the Source window

	Stack window
	Registers window
	Register menu for the Register window

	Memory window
	Address menu for the Memory window

	Watch Expressions window
	Add Watch button for the Watch Expressions window
	Watching registers with the Watch Expressions window
	Casting pointers in the Watch Expressions window

	Local Variables window
	Breakpoints window
	Breakpoint menu for the Breakpoints window
	Global menu for the Breakpoints window

	Console window
	Help window
	File menu for the Help window
	Topics menu for the Help window

	Procedures
	Initializing a target executable file
	Selecting a source file
	Setting breakpoints and viewing local variables

	Index

