

Dreamcast (VMU)
Visual Memory Unit

Table of Contents
Dreamcast VMU Specifications ... i

VMU Specifications ...VMU–1

Overview ..VMUÐ1
VMU Overview ..VMUÐ1
VMU Configuration ..VMUÐ3
VMU Functions ..VMUÐ6

Mode Settings ..VMUÐ8

File Management ...VMUÐ9
Management Area ...VMUÐ10
Data Area ..VMUÐ11
Reserved Area ..VMUÐ11

LCD Display ..VMUÐ11
XRAM ..VMUÐ11
Screen Mode ...VMUÐ11
Icons ...VMUÐ12
Screen Configuration ...VMUÐ12
LCD Characteristics ...VMUÐ12
Miscellaneous ...VMUÐ13

Executable File Initiation ...VMUÐ13
Downloading an Executable File ...VMUÐ13
File Size ..VMUÐ13
Subroutine ...VMUÐ14
Interrupts ..VMUÐ14
RAM ...VMUÐ14
Save Processing During Executable File Operations ..VMUÐ14
Auto Power Off ..VMUÐ14
AUD-iii

The Dreamcast Audio 64 API

Communications Function ...VMUÐ15
Maple Bus Protocol ... VMUÐ15
Synchronous Serial Communications .. VMUÐ15

Clock Function ..VMUÐ15
Settings .. VMUÐ15

Alarm Function ..VMUÐ16

SLEEP Function ...VMUÐ16
SLEEP Operation ... VMUÐ16

Buttons ...VMUÐ16

Batteries ...VMUÐ17
Battery Life ... VMUÐ17
Processing When Battery Power Is Exhausted ... VMUÐ17
Battery Replacement ... VMUÐ17

Postscript ..VMUÐ18

Visual Memory Unit (VMU) Hardware Manual ...VMU–i

1. Overview .. VMD–1

General .. VMDÐ1
Features ... VMDÐ1
System Block Diagram .. VMDÐ5

2. Internal System Configuration ...VMD––7

Memory Space ...VMDÐÐ7

Program Counter (PC) ..VMDÐÐ8

Internal Program ROM ...VMDÐÐ10

Internal Data Memory ..VMDÐÐ10

Flash Memory ..VMDÐÐ15

Accumulator ...VMDÐÐ16

B Register, C Register ...VMDÐÐ16

Program Status Word ..VMDÐÐ17

Stack Pointer ..VMDÐÐ19

The Table Reference Register (TRR) ..VMDÐÐ20

CHANGE Instruction ...VMDÐÐ21
AUD-iv

3. Peripheral System Configuration .. VMD––23

Input/Output Ports ... VMDÐÐ23
Port 1 ..VMDÐÐ25
Port 3 ..VMDÐÐ31
Port 7 ..VMDÐÐ34

Timer/Counter 0 (T0) .. VMDÐÐ35

Timer 1 (T1) ... VMDÐÐ51

Base Timer ... VMDÐÐ67

Serial Interface .. VMDÐÐ73

Dot Matrix LCD Controller/Driver ... VMDÐÐ94

External Interrupt Function ... VMDÐÐ102

Port Interrupt Functions .. VMDÐÐ109

VMU Work RAM .. VMDÐ115

Flash EEPROM .. VMDÐ118

4. Control Functions ... VMD–121

Interrupt Function .. VMDÐ121
Types of Interrupts ...VMDÐ122
Interrupt Function Operation ...VMDÐ123
Circuit Configuration ..VMDÐ124
Related Registers ..VMDÐ124
Interrupt Priority Ranking ..VMDÐ127

System Clock Generation Function .. VMDÐ129
Overview ...VMDÐ129
Functions ...VMDÐ129
Circuit Configuration ..VMDÐ130
Related Registers ..VMDÐ132
System Clock Operation Mode ..VMDÐ135

Standby function .. VMDÐ137
Overview ...VMDÐ137
4.3.2. Related Registers ..VMDÐ137
Operating Statuses When in Standby ..VMDÐ138
HALT Mode ..VMDÐ139
HOLD Mode ...VMDÐ140

Reset Function .. VMDÐ141
Overview ...VMDÐ141
Function ...VMDÐ141
Hardware Status During a Reset ...VMDÐ141
AUD-v

The Dreamcast Audio 64 API

5. Instructions .. VMD–145

Instruction Overview ..VMDÐ145
Arithmetic Operation Instructions .. VMDÐ146
Logical Operation Instructions .. VMDÐ147
Data Transfer Instructions ... VMDÐ147
Jump Instructions .. VMDÐ147
Conditional Branching Instructions ... VMDÐ147
Subroutine Instructions .. VMDÐ147
Bit Manipulation Instructions .. VMDÐ147
Miscellaneous Instruction .. VMDÐ147
Macro Instruction .. VMDÐ148
Addressing ... VMDÐ148
Program Memory (ROM) Addressing ... VMDÐ148
Data Memory (RAM) and Special Function Register (SFR) Addressing .. VMDÐ150

Arithmetic Operation Instructions ...VMDÐ153

Logical Operation Instructions ...VMDÐ171

Data Transfer Instructions ...VMDÐ184

Jump Instructions ...VMDÐ195

Conditional Branching Instructions ...VMDÐ199

Subroutine Instructions ...VMDÐ212

Bit Manipulation Instructions ...VMDÐ217

Miscellaneous Instruction ...VMDÐ220

Macro Instruction ..VMDÐ220

Visual Memory Unit (VMU) Programing Manual ..VMC–i

1. Environment Variables .. VMC–1

Environment Variables for the L86K Series ..VMCÐ1
Setting the Environment Variables (MS-DOS Version) ..VMCÐ2
Setting the Environment Variables (UNIX Version) ...VMCÐ2

2. File Specification for the Assembler .. VMC–3

File Name Specification ...VMCÐ3
MS-DOS Version File Specification ...VMCÐ3
UNIX Version File Specification ...VMCÐ4

Specifying Parameters through the Command Line ...VMC Ð4

Specifying Parameters in Response to Prompts ..VMCÐ5

3. Assembler Option Specification .. VMC–7

Specification for Upper- & Lower-case Letters in Identifiers ...VMCÐ7

Specification for Outputting Debugging Information ...VMCÐ7

Specification for Not Optimizing Branching Instructions ..VMCÐ8

Specification for Suppressing the Copyright Notice ..VMCÐ8
AUD-vi

Reserved Word File Specification .. VMCÐ8

Work Buffer Size Specification .. VMCÐ9

Option List Display .. VMCÐ9

4. Environment Variables and the Reserved Word File ..VMC–11

Environment Variables VMC–11
Setting the Environment Variables (MS-DOS Version) ..VMCÐ12
Setting the Environment Variables (UNIX Version) ...VMCÐ12

Reserved Word File .. VMCÐ12

5. Source File Input Format ..VMC–13

Statements ... VMCÐ13

Label Names and Symbol Names ... VMCÐ14

Comments .. VMCÐ14

Operators ... VMCÐ15

Numeric constants .. VMCÐ16

Character Constants ... VMCÐ17

Character String Constant ... VMCÐ18

Special Symbols ... VMCÐ18

6. Errors ...VMC–19

Warnings ... VMCÐ20

Errors .. VMCÐ22

Fatal Errors .. VMCÐ27

7. Pseudo Instructions ..VMC–31

ORG (Specify origin) ..VMC–33
ORG expression ..VMCÐ33

WORLD (Select ROM for code storage) ..VMC–34
WORLD selection ...VMCÐ34

CSEG (Declare start of code segment) ...VMC–34
CSEG mode ...VMCÐ34

DSEG (Declare start of data segment) ..VMC–35
DESG ..VMCÐ35

END (End program) ..VMC–36
END ...VMCÐ36

PUBLIC (Specify external definition name) ..VMC–37
PUBLIC symbol {, symbol} ...VMCÐ37

EXTERN (Specify external reference name) ..VMC–38
EXTERN [segmanet:]symbol {,[segment:]symbol} ..VMCÐ38

OTHER_SIDE_SYMBOL (Declare CHANGE instruction jump label)VMC–38
OTHER SIDE SYMBOL label {,label} ..VMCÐ38
AUD-vii

The Dreamcast Audio 64 API

EQU (Assign value) ...VMC–39
symbolname EQU expression ..VMCÐ39

SET (Assign temporary value) ...VMC–40
symbolname SET expression ..VMCÐ40

DB (Define byte data) ..VMC–41
labelname DB expression {,expression} ..VMCÐ41

DW (Define word data) ..VMC–42
labelname DW expression {,expression} ...VMCÐ42

DC (Define character string data) ...VMC–43
labelname DC ÒstringÓ ..VMCÐ43

DS (Define byte area) ...VMC–44
labelname DS absolute_expression ...VMCÐ44

MACRO (Define macro) ..VMC–45
name MACRO parameter {, parameter} ...VMCÐ45

REPT (Repeat macro) ...VMC–47
REPT count ...VMCÐ47

IRP (Continuous macro) ..VMC–48
IRP parameter, argument {,argument }... ..VMCÐ48

IRPC (Character string macro) ..VMC–49
IRPC parameter, string ..VMCÐ49

ENDM (End macro definition) ..VMC–50
ENDM ..VMCÐ50

EXITM (Interrupt macro expansion) ...VMC–51
EXITM ..VMCÐ51

LOCAL (Define local label) ...VMC–52
LOCAL name {, name} ..VMCÐ52

IFDEF (Assemble if defined) ..VMC–54
IFDEF symbol ...VMCÐ54

IFNDEF (Assemble if undefined) ..VMC–55
IFNDEF symbol ..VMCÐ55

IFB (Assemble if operand is empty) ...VMC–56
IFB <argument> ...VMCÐ56

IFNB (Assemble if operand is not empty) ..VMC–57
IFNB <argument> ..VMCÐ57

IFE (Assemble if value of expression is "0") ..VMC–58
IFE expression ...VMCÐ58

IFNE (Assemble if value of expression is not "0") ...VMC–59
IFNE expression] ..VMCÐ59

IFIDN (Assemble if two character strings are identical)VMC–60
IFIDN <string1>, <string2> ..VMCÐ60

IFDIF (Assemble if two character strings are not identical)VMC–61
IFDIF <string1>, <string2> ...VMCÐ61

ELSE (Assemble in case of condition opposite of the above IF condition)VMC–61
ELSE ...VMCÐ61
AUD-viii

ENDIF (End conditional assembly) ..VMC–61
ENDIF ..VMCÐ61

PRINTX (Display on VDT during assembly) ..VMC–62
.PRINTX ÒstringÓ ...VMCÐ62

LIST (Output list) ..VMC–63
.LIST ...VMCÐ63

.XLIST (Interrupt list output) ..VMC–64
.XLIST ..VMCÐ64

.MACRO (Output macro expansion) ..VMC–64
.MACRO ..VMCÐ64

.XMACRO (Interrupt macro expansion output) ..VMC–64
.XMACRO ...VMCÐ64

.IF (Output conditional skip) ...VMC–65
.IF ..VMCÐ65

.XIF (Interrupt conditional skip output) ..VMC–66
.XIF ...VMCÐ66

INCLUDE (Load file) ..VMC–66
INCLUDE filename ...VMCÐ66

TITLE (Specify list title) ..VMC–67
TITLE string ..VMCÐ67

PAGE (End of page) ..VMC–68
PAGE ...VMCÐ68

CHIP (Define chip that is target of assembly) ..VMC–69
CHIP chipname ..VMCÐ69

COMMENT (Output comments to object file) ...VMC–69
COMMENT comment_string ...VMCÐ69

WIDTH (Specify number of columns in list file) ..VMC–70
WIDTH number ...VMCÐ70

BANK (Specify RAM area bank) ..VMC–71
BANK expression ...VMCÐ71

CHANGE (Jump between external and internal ROM)VMC–72
CHANGE symbol ..VMCÐ72

RADIX (Specify default base) ..VMC–72
RADIX expression ...VMCÐ72

JMPO (Generate optimal JMP instruction) .. VMC–73

JMPO expression ..VMCÐ73
BRO (Generate optimal BR instruction) ...VMC–74

BRO expression ..VMCÐ74
CALLO (Generate optimal CAL instruction) ...VMC–75

CALLO expression ..VMCÐ75
BZO (Generate BZ instruction that will not generate an address error)VMC–75

BZO expression ..VMCÐ75
BNZO (Generate BNZ instruction that will not generate an address error)VMC–76

BNZO expression ...VMCÐ76
AUD-ix

The Dreamcast Audio 64 API

MC91
BPO (Generate BP instruction that will not generate an address error)VMC–76
BPO expression ...VMCÐ76

BPCO (Generate BPC instruction that will not generate an address error)VMC–77
BPCO expression ..VMCÐ77

BNO (Generate BN instruction that will not generate an address error)VMC–77
BNO expression ..VMCÐ77

DBNZO (Generate DBNZ instruction that will not generate an address error) VMC–78
DBNZO expression ..VMCÐ78

BEO (Generate BE instruction that will not generate an address error)VMC–78
BEO expression ..VMCÐ78

BNEO (Generate BNE instruction that will not generate an address error)VMC–79
BNEO expression ...VMCÐ79

8. List File Format .. VMC–81

9. Specifying Files for Linking .. VMC–85

File Name Specification ...VMCÐ85
MS-DOS Version File Specification ...VMCÐ85
UNIX Version File Specification ...VMCÐ86

Specifying Parameters Through the Command line ...VMCÐ87

Specifying Parameters in Response to Prompts ..VMC Ð88
Default Responses ..VMCÐ89

Files Referenced During Linking ...VMCÐ89

10. Specifying Linkage Loader Options .. VMC–91

Creating a HEX File for LC868000 Series External ROM .. V
CSEG Loading Address Specification Method ...VMCÐ91

DSEG Loading Address Specification Method ...VMCÐ92

Enabling Duplicate Definition of DSEG Addresses ..VMCÐ92

No Distinction Between Upper-Case and Lower-Case ...VMCÐ92

Creating the Loading Map ...VMCÐ92

Creating a Local Symbol List ...VMCÐ93

Specifying Warning Messages Concerning Operand Data .. VMCÐÐ94

CSEG FREE Block Optimized Loading ..VMCÐ94

Specifying Symbol Sort Processing ..VMCÐ95

11. Object Placement ... VMC–97

12. Errors ... VMC–101

Fatal Errors ... VMCÐ101

Non-Fatal Errors .. VMCÐ102
AUD-x

13. Program Startup ...VMC–103

File Name Specification ..VMCÐ103
MS-DOS Version File Specification ...VMCÐ103
UNIX Version File Specification ..VMCÐ104

Specifying Parameters Through the Command line ...VMCÐ104
Option Specification ..VMCÐ106
Command Line Execution Examples ..VMCÐ106

Operation Using the Prompts ..VMCÐ107
Prompt Line Expansion ..VMCÐ107
Default Response ...VMCÐ107

14. Errors ...VMC–109

15. Cross-Reference List ..VMC–111

16. Program Startup ...VMC–113

File Name Specification ..VMCÐ113

Parameter Specification Method ...VMCÐ113

Option Specification ...VMCÐ114

17. Errors .. VMC––115

Fatal Errors ...VMCÐ115

Visual Memory Unit (VMU) VMU-BIOS Specifications .. VMBÐi

1. VMU-BIOS Specifications .. VMB–1

Outline ..VMBÐ1

VMU Outline ...VMBÐ1
System-BIOS Outline ... VMBÐ1

Memory Space ..VMBÐ2

System BIOS Functions ..VMBÐ4

System BIOS Data and Memory Allocation ...VMBÐ5
Program Layout .. VMBÐ5

System programs ... VMBÐ5
OS programs ... VMBÐ6
Header ... VMBÐ6

Subroutine Call Flow ... VMBÐ6
Returning From User Program to Mode Selection Screen ... VMBÐ8
VMU Initialization ... VMBÐ9
AUD-xi

The Dreamcast Audio 64 API
Subroutine Description .. VMBÐ11
Flash Memory Access Functions .. VMBÐ11

Precautions for Using Flash Memory Access Subroutines .. VMBÐ11
Flash Memory Page Data Readout .. VMBÐ13
Writing to Flash Memory .. VMBÐ15
Flash Memory Verify ... VMBÐ17

Clock Function .. VMBÐ19
Clock Countup Timer .. VMBÐ19

Automatic low battery detection function ... VMBÐ20
Automatic low battery detection flag .. VMBÐ20

Visual Memory Unit (VMU) Sound Development Specifications .. VMAÐi

1. VMU Sound Development Specifications ...VMA–1
VMU Sound Output Hardware Outline ...VMAÐ1

Sound Output Principle ...VMAÐ1
Timer 1 Outline .. VMAÐ2

Timer 1 Block Configuration ... VMAÐ2
Related Registers ... VMAÐ3
Mode Setting .. VMAÐ4

8-Bit Counter Mode ... VMAÐ5
Output Waveform and Parameter Settings ... VMAÐ5
8-Bit Counter Mode Setting ... VMAÐ6
Frequency Response Characteristics .. VMAÐ7

Table of Available Output Frequencies ... VMAÐ8
Sample Program ..VMAÐ13

Table of Defined Variables .. VAPÐ1

VMU Mode Selection Operation Flow .. VAPÐ2
AUD-xii

Dreamcast VMU Specifications

1. VMU Specifications
1 Overview
This document describes the VMU, a peripheral device for the next-generation game system KATANA (Dreamcast).

1.1 VMU Overview

The VMU (Visual Memory Unit) is a memory cartridge that not only stores data, but also includes an LCD display
that visually expresses that data.

The VMU connects to KATANA's (preliminary name) special controller, called ÒSEEDÓ (preliminary name), and can
be used to display subscreens during a game and as a memory card that stores game data Þles.

The VMU can be connected or disconnected while the game machine is on.

When not connected to a controller, the data Þles stored in the VMU's memory can be displayed and deleted. Files
can also be copied from one VMU to another by connecting two VMUs to each other.

Furthermore, by downloading special executable Þles (programs) from KATANA, the VMU becomes a compact
portable game player; two-player games are also possible.
VMU-1

VMU Specifications
Figure 1.1 Conceptual Image of the VMU

In the top portion of Fig. 1.1, two VMUs are shown connected to each other as they exchange data.
VMU-2

1.2 VMU Configuration

This section describes the VMU conÞguration.

• Potato Chip (custom IC for the VMU)

Core CPU: 8 bits: Instruction cycle time:

When connected to game machine = 1[micro]s

When operating on standalone basis = 183[micro]s

Note: Operation on a standalone basis is extremely slow in order to minimize battery
power consumption.

Memory:

:

:

:

Mask-ROM:

Flash-EEPROM:

RAM

LCD RAM

16Kbyte

64K

64K

512 bytes

512bytes

Bank 1

Bank 2

Bank 3

System-BIOS IPL

Program code/data area

Data area (of which 28K are reserved for the system)

General purposes (of which 256 bytes are reserved for the system)

I/O mapping (can also be used as a Maple buffer)

96 bytes

96 bytes

6 bytes (for icons; used by the system)

Serial I/F: Uses the following interfaces exclusively:

Maple:

Synchronous SIO:

LM-Bus

Two 8-bit serial interfaces

Timer: 16bit

16bit(or 8bit x2):

For Clock

General purpose; of these, 8 bits are used exclusively for pulse generator output for
alarms

I/O Port: Input/output:

Input:

16 pins (buttons, serial interfaces)

4 pins (control pins)

LCD-Driver Controller: Common:

Segment:

 33 pins

48 pins

• LCD: LCD: 32 (V) x 48 (H) dots: Monochrome binary

Icons: 4 types (File, Game, Time, Attention: used by system)

• Buzzer: Voltage buzzer: For alarms

• Power supply: Button batteries:

External inputs:

External outputs:

CR2032 x 2

+5V +3.3V

+3.3V

• Buttons: 6 buttons: Four-direction key, A button, B button, Mode button, Suspend button, SLEEP button

• Communications connector: 14 pins: Serial interface, power supply, control

Connected to controller, another VMU, etc.
VMU-3

VMU Specifications
Figure 1.2 External View (preliminary)

Figure 1.3 External Appearance and configuration (preliminary)

Front view Keychain hole

A button

RESET

B button

B button

Buzzer

Mode button
Four-direction key

Suspend button

Connectors
(communications)

LCD

Rear view

Cap
VMU-4

Figure 1.4 Block Diagram (preliminary)

DC/DC

Potato

CPU-Core
Reset

8-input

Reset

6MHz

32kHz

I/O

Buzzer

Selector

VMU

+5V

+3.5V

Low voltage

CR2032 x2

LCD DriverLCD
32x48dot

4-icon
XRAM
198B

BIOS-ROM
16KB+4KB

FLASH
64KB+64KB

RAM
512B

Serial x2

Buffer
512B

L-Maple
Logic

ID2
ID1
ID0

Output Enable
Input

3-input

I/O 3.3V2-input
4-input

2Mbps
(max)

Power

Ext.
Terminal
14pin

+5V

Output
Output Enable
Input
Output

.

.

.

VMU-5

VMU Specifications
1.3 VMU Functions

When connected to a game machine, the VMU conforms with the Maple Bus 1.0 Standard SpeciÞcations, and
supports the following function types.

1 FT1 Storage Function

2 FT2 B/W LCD Function

3 FT3 Timer Function

Accordingly, the Function Type (FT) is Ò00h-00h-00h-0EhÓ. (FD1 = FT3, FD2 = FT2, FD3 = FT1)

For details, refer to the speciÞcations for each function. An overview of the System-BIOS functions included in the
VMU is provided below.

1) File management

This function manipulates and manages backup Þles and program Þles.
Files are managed in 1-block units (512 bytes), and reads and writes are also performed in block units.
FAT operations and Þle information processing use subroutines in the System-BIOS. For details on Þle
management methods, refer to section 3, ÒFile Management.Ó

2) LCD display

When the VMU is connected to a game machine, this function only draws graphics (transferring screen
image data).
This function conforms with the data format that is stipulated in the Maple Bus Function Type
speciÞcations, and sends graphics images from the game machine to the VMU in accordance with the
VMU screen conÞguration, and then BIOS transfers the resulting image to the LCD display RAM
(XRAM).
The amount of data required for one screen is 32 dots (V) x 48 dots (H) = 1536 bits = 192 bytes.
When the VMU is operating on a standalone basis, this function handles the drawing of graphics. The
icons display the operation mode of the VMU.

File File management
Game Executable Þle initiation
Time Time display
Attention Memory access in progress

3) Executable Þle initiation

This function initiates execution of an executable Þle (program) that was downloaded from a game
machine.
This function can only be executed while the VMU is operating on a standalone basis. A program can
not be initiated while the VMU is connected to a game machine.
A number of functions that can be provided for executable Þles are System-BIOS subroutines and can be
used by the executable Þle simply by calling the subroutine.

4) Communications

When the VMU is connected to a game machine, communications are handled according to the Maple
Bus protocol.
When the VMU is operating on a standalone basis, the VMU supports 8-bit synchronous serial
communications for exchanging data with another VMU.
This function is also provided as a subroutine for executable Þles. (Not Þnalized)
VMU-6

5) Clock

This function uses a timer to measure time.
This function is always operating, whether the VMU is connected to a game machine or is operating on
a standalone basis.

6) Alarm

This function sounds a buzzer by means of a pulse generator. This function is also provided as a
subroutine for executable Þles. (Not Þnalized)
This function conforms with the data format that is stipulated in the Maple Bus Function Type
speciÞcations, and when the VMU is connected to a game machine, this function allows the game
machine to sound the buzzer.

7) Mode switching

When the VMU is connected to a game machine, the VMU operation mode can be changed by pressing
the mode button.
The mode status is displayed by means of icons.
When the VMU is operating on a standalone basis, the Auto Power Off function can also be used.

8) Character font installation

8 dot (V) x 6 dot (H) alphabet, Katakana, and symbol fonts can be installed in the VMU. These fonts
cannot be called and displayed from an executable Þle for the VMU that was downloaded from a game
machine.
When the VMU is connected to a game machine and graphics are being displayed from the game
machine side, fonts cannot be used.
Instead, transfer the screen image that is to be displayed as is.
Fonts can only be used by the System-BIOS.
VMU-7

VMU Specifications
2 Mode Settings
The operating mode of the VMU is determined by the connection status and the mode button.

Table 1.1 Modes

1) System mode

This mode is controlled by the System-BIOS' external control program.
This mode handles communications according to the Maple Bus protocol, memory management, LCD
display, and timer management.

2) Game mode

In this mode, the System-BIOS initiates executable Þles in ßash memory.
All processing is controlled by the executable Þle, except for the Maple Bus protocol.
Transitions from this mode to another mode are also controlled by the executable Þle.
To execute a mode, transmission, the executable Þle calls a subroutine from the System-BIOS.
At that point, all of the contents of RAM and the registers are saved to ßash memory.

Note: This save operation requires approximately 8 seconds.

3) File mode

This mode is controlled by the System-BIOSÕ Þle control program.
This mode can display, copy, and delete Þles in ßash memory through button operations.
Refer to other documents for details on the conÞguration and operation of the Þle management screen.

4) Time mode

This mode is controlled by the System-BIOSÕ timer program. This mode can display a digital clock
(showing the hours, minutes, and seconds), and can be used to set the time. When the VMU returns from
system mode, it enters this mode.

Transitions among the modes occur in response to changes in the connection status and the Mode button + Enter
button being pressed.

However, Game mode can suppress changes in the connection status and the Mode button + Enter button being
pressed. The mode cannot be changed while data is being written to the ßash memory.

Attention is a warning indicator that lights for Read/Write while ßash memory is being accessed.

Connection Status Mode Button (Icon Display) Operating Mode

Connected to game machine Off System mode

Attention Flash access in progress

Standalone operation Game Executable file initiation

File File operations

Time Clock display

Attention Accessing flash memory
VMU-8

Figure 1.5 Mode Transitions

3 File Management

¥ File management in the VMU conforms with FT1: Storage Function in the Maple Bus 1.0 Function Type
SpeciÞcations.

¥ The size of the VMU ßash memory is 128K.

¥ The minimum read/write unit for a Þle is one block (512 bytes); the entire ßash memory is divided into
256 blocks.

However, because 56 blocks are used as a system management area, the size of the area that can be used
to store data is 200 blocks.
One executable Þle can exist in one partition, with a maximum size of 0080h blocks (64K: block numbers
0000h to 007Fh).

Game

Mode button

Memory save

Mode button Mode button ICON display

Operation mode

Time File

Memory restore

Enter button

Game mode

Yes

Mode
button

No

System mode

Switch modes

Time mode File mode

Connected ConnectedDisconnected

Mode
button

Enter button Enter
button

Mode
button
VMU-9

VMU Specifications
Figure 1.6 Memory Map

3.1 Management Area

¥ The 15 blocks at the top of memory (starting form block number 00FFh) are used for the
management area.

¥ The management area is divided into three areas: the system area, the FAT area, and the Þle
information area.

¥ The system area consists of one block, the FAT area consists of one block, and the Þle information consists
of 13 blocks.

¥ The system area is write-protected, except during formatting.

¥ The FAT area has a chain structure in which every two bytes (16 bits) controls one block.

¥ The Þle information area allocates 32 bytes to each Þle, and can therefore manage a maximum of 200 Þles.

¥ There is only a root directory; no subdirectories are supported.

¥ File names consist of 12 bytes (ASCII codes representing up to 12 normal-width characters).

Executable f i le or data area

Data area

Data area
(200block)

Reserved area
(41block)

Management area
(15block)

Reserved area

System area

Fat area

File information area

Block No.

0000h

007Fh
00C8h

00C7h
00C8h

00F1h

00FDh
00FEh

00FFh

00F0h
VMU-10

3.2 Data Area

¥ The data area, where data Þles can be stored, consists of 200 blocks, from block number 0000h to 00C7h.

¥ Data Þles are stored starting from 00C7h towards 0000h, while an executable Þle starts from 0000h.

¥ The areas from 0000h to 007Fh and from 0080h to 00FFh are controlled through bank switching; switching
is performed by the System-BIOS automatically.

¥ Reading and writing ßash memory must always be done by calling the System-BIOS subroutines.

3.3 Reserved Area

This area is used by the System-BIOS and in system mode.

4 LCD Display

¥ The LCD display in the VMU conforms with FT[2]: B/W LCD Function in the Maple Bus 1.0 Function
Type SpeciÞcations.

¥ The LCD that is built into the VMU consists of a 32-dot (V) × 48-dot (H) dot matrix display, and four icons
that indicate he operating mode f the VMU.

¥ Drawing the LCD is accomplished by storing drawing data in the dedicated drawing RAM.

4.1 XRAM

The LCDÕs dedicated drawing RAM is called ÒXRAM.Ó

XRAM consists of three banks; the Þrst and second banks are open to executable Þles, while the third bank is used
by the System-BIOS.

The Þrst bank of XRAM corresponds to the upper half of the LCD (16 × 48 dots), and the second bank of XRAM
corresponds to the lower half of the LCD (16 × 48 dots).

One dot on the LCD corresponds to one bit in XRAM. One byte of XRAM corresponds to 8 dots in a horizontal row
on the LCD, and 6 bytes consist of one entire horizontal row on the LCD.

4.2 Screen Mode

When the VMU is connected to a game machine, the System-BIOS sends drawing data from the game machine
directly to the XRAM as a graphics screen.

Therefore, when using the VMU's display as a game subscreen, etc., transfer the screen image as is to the VMU.

During standalone operation, the character font in the System-BIOS cannot be used for text display on a graphics
screen.

For a graphics screen, write the screen image data as is to XRAM.
VMU-11

VMU Specifications
4.3 Icons

The System-BIOS uses the icons; use by an executable Þle is prohibited.

4.4 Screen Configuration

4.5 LCD Characteristics

The screen refresh concept for the LCD display differs from that for a TV.

Once data is transferred to XRAM, it is displayed on the LCD, but only after a delay due to the response speed of
the LCD. When the LCD response is delayed, ghosting or ßickering may occur, resulting in a display that is difÞcult
to see. In addition, during standalone operation or when connected to a game machine, differences in the operating
speeds result in different LCD display speeds. During standalone operation, the display speed is slower.

The recommended refresh rate for the VMUÕ LCD is 1Hz for standalone operation and 4Hz when connected to a
game machine.

File management

32dots

48dots

Dot matrix screen

Icons

Writing in progress
Clock display

Executable f i le init iation
VMU-12

4.6 Miscellaneous

¥ There is no contrast adjustment or brightness adjustment for the LCD.

¥ There is no backlight for the LCD.

¥ It is not possible to incorporate a design (such as a picture, etc.) in the polarized panel (the back sheet)
with a reßective panel that reßects the light in the LCD.

5 Executable File Initiation

¥ This function initiates an executable Þle that was downloaded from a game machine.

¥ The VMU can store and initiate only one executable Þle at a time.

¥ The System-BIOS includes subroutines that form that VMU functions. Of these subroutines, several are
provided for executable Þles, and an executable Þle can call these subroutines.

¥ Program development of an executable Þle is performed using a VMU emulator (preliminary) that runs
under Windows 95.

5.1 Downloading an Executable File

Executable Þles are stored in ßash memory in the area consisting of block numbers 0000h to 007Fh, starting from
the 0000h block. When an executable Þle is downloaded from a game machine application, conÞrm that there is
contiguous free space starting from the 0000h block of the VMU. Even if the free space has been conÞrmed, it still
will not be possible to download an executable Þle if there is any other Þle in the area where the executable Þle is
to be stored (the area from block 0000h to the end of the executable Þle).

Game machine application processing is as described below:

Get free space in VMU

↓

Confirm that there is free space

↓

Defragmentation processing (optimization of fragmented file storage)

↓

Reconfirm that there is free space after defragmentation processing (Reconfirmation is necessary because it is possible that a block was damaged during
defragmentation.)

↓

Download

5.2 File Size

¥ The maximum size of an executable Þle is 0080h blocks (64K).
VMU-13

VMU Specifications
5.3 Subroutine

A list of the available subroutines is shown below. (not Þnalized)

Each subroutine uses a RAM area (in the general-purpose RAM area) as a work area.

1) Data communications :Performs synchronized serial communications.

2) Alarm :Sounds the buzzer.

3) Flash memory write :Writes ßash memory.

4) Flash memory read : Reads ßash memory.

5.4 Interrupts

A list of external and internal interrupts is provided below. (planned)

Except for the Mode Change interrupt, these interrupts cannot be masked. (planned)

1) Low voltage interrupt

2) Timer interrupt

3) Mode Change interrupt (maskable)

4) SLEEP interrupt

5.5 RAM

The RAM areas that executable Þles can use are shown below.

General-purpose RAM: 000h to 0FFh (bank 1)

I/O mapping RAM: 000h to 1FFh (Set the address to the speciÞed register and read/write one
byte at a time.)

XRAM: Bank 1, bank 2

5.6 Save Processing During Executable File Operations

Data on the midpoint status of an executable Þle and parameters for an executable Þle (such as a game) are saved
by writing the data to an area within the executable Þle. When creating an executable Þle (such as a game), set aside
an area within the Þle for this purpose. Because FAT processing, etc., is not possible due to the hardware design,
such data cannot be saved in a separate Þle.

In order to link the game machine with an application and then use the saved data from an executable Þle (such as
a game), load the executable Þle from the VMU to the game machine, and then read that portion of the Þle that
contains the saved data.

5.7 Auto Power Off

¥ The Auto Power Off function puts the VMU into the SLEEP state if no buttons are pressed or no
communications are received for two minutes.

This function can be enabled/disabled by executable Þles.
VMU-14

6 Communications Function

¥ The VMU is capable of conducting serial communications with other equipment.

¥ The VMU supports two serial communications protocols: the Maple Bus protocol and full-duplex
synchronous serial communications.

¥ The System-BIOS switches between the Maple Bus protocol in system mode and synchronous serial
communications in standalone operation mode.

6.1 Maple Bus Protocol

¥ When the VMU is connected to a game machine, the communications connector switches to the Maple
Bus protocol side.

¥ The entire I/O mapping RAM becomes a transmission/receive buffer, and the synchronous serial
side stops.

¥ The physical connection with the game machine is made through an LM-Bus connection, and the VMU
becomes an expansion device.

¥ All processing is performed by the System-BIOS; this function is not accessible from an executable Þle.

¥ The transfer speed is 2Mbps.

6.2 Synchronous Serial Communications

¥ When the VMU is operating on a standalone basis, the communications connector switches to
synchronous serial side, and the Maple Bus protocol side stops.

¥ There are two synchronous serial interfaces, allowing full duplex communications with other devices.

¥ Data is transferred one byte at a time, with a maximum transfer speed of 2.4Kbps. (not Þnalized)

This function is available to executable Þles as a subroutine.

7 Clock Function

¥ The clock function in the VMU conforms with FT3: Timer Function in the Maple Bus 1.0 Function Type
SpeciÞcations.

This function can measure time in 500ms units, using a 32KHz crystal resonator and a dedicated counter.

¥ The System-BIOS controls the clock function; an executable Þle can only read the clock function.

7.1 Settings

¥ On the setting screen, set the year, month, day, and time.

¥ When the VMU is connected to a game machine, the date and time can be set by the game machine
through the Maple Bus protocol.
VMU-15

VMU Specifications
8 Alarm Function

¥ The alarm function in the VMU conforms with FT3: Timer Function in the Maple Bus 1.0 Function Type
SpeciÞcations.

This function sounds the built-in voltage buzzer.

¥ Only one alarm can be sounded at one time.

The sound is generated by the pulse generator method; the frequency can be set over a range from 300Hz
to 4KHz, and the duty ratio can be set as desired. (planned)
The volume cannot be adjusted. The sound can be turned on and off.

This function is made available for executable programs as a subroutine. (planned)

¥ When the VMU is connected to a game machine, the alarm function can be set by the game machine
through the Maple Bus protocol.

9 SLEEP Function
In order to reduce power consumption when operating on a standalone basis, the VMU is equipped with a
SLEEP function.

The VMU enters the SLEEP state either because the SLEEP button is pressed or because the Auto power Off
function was triggered. (Refer to section 5.7, ÒAuto Power OffÓ) To return from the SLEEP state, press the
SLEEP button.

9.1 SLEEP Operation

When in Timer mode (clock display) or File mode (Þle management software), the LCD display shuts off and the
VMU enters the idle state.

SLEEP processing in Game mode (after an executable Þle has been initiated is determined by the executable Þle.
(We plan to indicate a recommended processing method.)

The contents of RAM and the registers are retained, except in Time mode. In SLEEP mode, all buttons are disabled
except for the SLEEP button.

10 Buttons
Four-direction key: This key is used to move the cursor up, down, left, or right, and to scroll the screen.

A button: This button is used primarily to Þnalize selections.

B button: This button is used primarily to cancel selections.

Mode button: This button changes the mode during standalone operation. Each time this button is
pressed, the mode changes according to the following cycle: File -> Game -> Time -> File
-> Game ->...

SLEEP button: This button changes the mode to the SLEEP state during standalone operation.

Reset button: This button initiates a Òpower onÓ reset, which initializes the entire VMU unit (including
the clock, etc.), except for the contents of ßash memory.
VMU-16

11 Batteries

11.1 Battery Life

The VMU is equipped with two CR2032 batteries for standalone operation.

Battery life depends on the status of executable Þle operations.

If an executable Þle is continuously executed, with the LCD display on (refresh rate: 1Hz), no alarm outputs, no use
of the communications function, no executable Þle save processing, and no use of the SLEEP function, the batteries
should last for about one week.

The relationship between operational status and battery life is described below. Take battery life into consideration
when creating executable Þles.

Flash memory reads: This is the normal state of program execution.

LCD display updates: Battery power consumption increases by a factor of 5 when overwriting
XRAM as compared to when reading ßash memory.
Frequent screen updates have an effect on battery life.

Alarm output: Consumes an extremely small amount of power.

Flash memory writes: Consumes 25 times more battery power than when reading ßash memory.
Saving the operation status and similar processing should be performed
as infrequently and in as small amounts as possible.

Data exchanges after an executable Þle has been initiated:
Such operations consume a tremendous amount of battery power. Simple
parameter exchange could be used to reßect the development of game
characters, for example.

File exchanges between two VMUs: Copying an entire Þle consumes a tremendous amount of battery power.
Because the receiving side in particular must write the data in ßash
memory, a large amount of battery power is consumed. In addition, the
larger a Þle is, the longer the operation will take and the greater that the
power consumption will be.

11.2 Processing When Battery Power Is Exhausted

The System-BIOS constantly monitors the battery voltage.

If the batteries are nearing the end of their life while in Game mode (while an executable Þle is being executed), the
System-BIOS saves the contents of RAM and the registers. (planned to be implemented through the library,
perhaps)

11.3 Battery Replacement

¥ The clock settings are initialized when the batteries are replaced.

¥ Any Þle that is stored in ßash memory is retained.

¥ When replacing the batteries, always install two brand new CR2032 made by the same manufacturer.

¥ Make sure that the polarity (+/-) of the batteries is correct when you install them.
VMU-17

VMU Specifications
12 Postscript
The functions of the VMU are subject to change in whole or in part until the release of VMU SpeciÞcations
Revision 1.0.
VMU-18

Visual Memory Unit (VMU)
Hardware Manual

1. Overview
1. General
The POTATO custom chip that is the core of the VMU (Visual Memory System), the memory system for our
next-generation game machine, consists of a CPU core that operates with a minimum bus cycle time of 0.5[micro]s,
128K of ßash EEPROM, 20K of ROM, 710 bytes of RAM, a dot-matrix LCD automatic display controller/driver, a
16-bit timer/counter/pulse generator (or a two-channel x 8-bit timer), a 16-bit timer (or a two-channel x 8-bit timer),
a two-channel x 8-bit synchronous serial interface, a dedicated interface for the next-generation game machine, and
an interrupt function with 13 sources and 10 vectors.

1.1 Features

¥ Flash EEPROM
65,536 x 8 bits: Program/data area
65,536 x 8 bits: Data area

¥ ROM
16,384 x 8 bits: Program area
4096 x 8 bits: BIOS program area

¥ RAM
256 x 8 bits�~2 banks: Calculation area
198 x 8 bits: Display area
256 x 8 bits x 2 banks*: Work area

*When connected with the next-generation game machine, this area is used as a TX/RX buffer for the dedicated interface.
VMD-1

1. Overview
¥ Bus cycle time/instruction cycle time

The bus cycle time indicates the ROM read time.

*1¥ OCR7: This is bit 7 of the Oscillation Control Register (OCR); this bit controls the system clock generation circuit and
the cycle time. Refer to Chapter 4, section 4.2.4, "Related Registers," for further details.

OCR7 = 1: The cycle time is the system clock divided by 6.

¥ Ports

Ð Input/output ports: 2 ports (P1, P3)

Ð Input port: 1 port (P7)

Ð Segment output port for driving the LCD: 48 lines

Ð Common output port for driving the LCD: 33 lines

¥ LCD controller

Display duty: 1/33 duty
Display bias: 1/5 bias
Liquid crystal instruction display: On/Off
Clock for external voltage step-up (external step-up circuit)
Graphic display: 1584-dot maximum display

¥ Serial interfaces

8-bit serial interface x 2 channels (synchronous)
Built-in 8-bit baud rate generator (The baud rate generator is shared with a two-channel serial
interface.)
Dedicated next-generation game interface (start pattern/end pattern auto discrimination)

Note: The synchronous serial interface and the dedicated next-generation game interface cannot be
used simultaneously.

Bus cycle time
Instruction
cycle time System clock source Oscillating frequency Supply voltage Miscellaneous

0.5É s 1.0É s CF oscillation 6MHz 3.15_3.8Çu OCR7=1 *1

3.8É s 7.5É s Internal RC oscillation 800KHz 3.15_3.8Çu OCR7=1 *1

91.5É s 183.0É s Crystal (X'tal) oscillation 32KHz 3.15_3.8Çu OCR7=1 *1
VMD-2

1. Overview
¥ Timer
Timer 0: 16-bit timer/counter

Built-in 2-bit prescaler + 8-bit programmable prescaler
Timer 1: 16-bit timer/pulse generator
Base timer: Clock selection function

32.768kHz crystal oscillation, system clock, or timer 0 is selected through the
programmable prescaler output.
500ms overßow signal generation function for clock (when 32.768kHz crystal
oscillation is selected)
Function that generates an overßow signal on every cycle of either 976[micro]s,
3.9ms, 15.6ms, or 62.5ms (when 32.768kHz crystal oscillation is selected)

¥ Interrupts
13 sources, 10 vectors
(1) External interrupt INT0
(2) External interrupt INT1
(3) External interrupt INT2, timer counter T0L (timer 0, lower 8 bits)
(4) External interrupt INT3, base timer
(5) Timer/counter T0H (timer 0, upper 8 bits)
(6) Timer T1L (timer 1, lower 8 bits), timer T1H (timer 1, upper 8 bits)
(7) Serial interface 0 (SIO0)
(8) Serial interface 1 (SIO1)
(9) Dedicated next-generation game machine interface
(10) Port 3

Built-in interrupt priority register
The microcontroller interrupts can be weighted as one of three levels: low level, high level, and highest
level. The 11 interrupts sources from "external interrupt INT2, timer counter T0L (timer 0, lower 8 bits)"
to "Port 3" can be speciÞed as having an interrupt priority level of either "low level" or "high level." In
addition, external interrupts INT0 and INT1 can be speciÞed as having an interrupt priority level of
either "low level" or "highest level.

¥ Subroutine stack level
A maximum of 128 levels (The stack is set in RAM.)

¥ Built-in fast multiplication and division instructions
16 bits x 8 bits (execution time: 7 instruction cycles)
16 bits ÷ 8 bits (execution time: 7 instruction cycles)

¥ Three types of oscillation circuits
RC oscillation circuit (built in): System clock (resistor R and capacitor C built in, no external circuits
required)
CF oscillation circuit: System clock
Crystal oscillation circuit: Clock, system clock, LCD clock
VMD-3

Visual Memory Unit (VMU) Hardware Manual
¥ Standby functions
HALT mode
This mode halts instruction execution, and can be cancelled by either a reset or by the generation of an
interrupt.
HOLD mode
This mode halts CF oscillation, RC oscillation, and crystal oscillation. There are three methods for
canceling HOLD mode:
(1) Input a low level signal to the reset pin.
(2) Input the speciÞed level to either the P70/INT0 pin or the P71/INT1 pin.
(3) Input the port 3 interrupt condition.

¥ Flash EEPROM
Data memory space: 128K bytes
Data memory space overwriting: Used for BIOS program
Overwriting block size: 128K bytes
Erase/program voltage: 3.15 to 3.8V
Number of times overwriting is possible: 50,000 times (writing FF and 00 once each) (Ta = 25¡C,
memory management by program)
Program memory space: 64K bytes
Switching between mask ROM/ßash EEPROM program space
 Use CHANGE instruction; initially: Mask ROM
Switching from ßash EEPROM program space to mask ROM program space can be permitted/
prohibited (EXT register)
VMD-4

1. Overview
1.2 System Block Diagram

Figure 1.1 System Block Diagram

Interrupt controller

Standby controller

Base timer

SIO0

SIO1

Bus interface

Port 1

Port 7

SIO for VMU

RAM for VMU

Timer 0

Timer 1

INT0 to 3 Noise filter

XRAM

LCD display controller

LCD driver

ROM

ACC

EEPROM

EEPROM controller

IR PLA

PC

B register

C register

RAM

Stackpointer

PSW

RAR

Port 3

EXT register

ALU

CF

Cl
oc

k
ge

ne
ra

to
r

RC

X'tal
VMD-5

Visual Memory Unit (VMU) Hardware Manual
VMD-6

2. Internal System
Configuration
1. Memory Space
POTATO has an internal memory space and a ßash memory space.

The internal memory space includes a program memory space (64K) and a data memory space (512 bytes), while
all 64K of program memory space (internal program ROM) can be accessed straight through by incrementing the
pointer sequentially each time that a normal instruction is executed. Addresses 000 to 0FFH in the data memory
space are allocated for 256 bytes of data memory (internal RAM). In addition, the 256 bytes from 100 to 1FFH are
allocated for the Special Function Registers (SFR). Internal RAM consists of two banks, with the bank being speciÞed
by bit 1 (RAMBK0) of the Program Status Word (PSW) in the Special Function Registers (SFR). BANK 0 is also used
as the stack area. The accumulator (ACC), PSW, timer, and input/output ports are allocated by the SFR, for a
complete memory-mapped I/O conÞguration.

The ßash memory space consists of a 128K space. This space consists of two 64K banks. Furthermore, only BANK 0
can be handled as a 64K external program memory, and a special macro instruction (CHANGE) is used to switch
between internal and external programs. Writing data to the ßash memory space must always be performed by
calling a BIOS program subroutine.

The BIOS program memory space contains (as subroutines) a program for writing data to ßash memory and
checking the data that was written, and a preparation program for writing the data. This area is a BIOS-dedicated
program area.
VMD-7

2. Internal System Configuration
VMU game programs must be stored in the external program area (ßash memory BANK 0).

Figure 2.1 Memory Space

2. Program Counter (PC)
The Program Counter (PC) consists of 16 bits, and stores the program memory (ROM) address that contains the
instruction that should be executed next. The processor executes the instructions in a program on the basis of the
value in the PC. Normally, the PC is incremented for each instruction that is executed, but when a branch
instruction or a subroutine instruction is executed, an interrupt is received, or a reset is executed, a value that is
appropriate for that operation is set in the PC.

The data that is set in the PC for each operation is shown in Table on the next page.

Table 2.1 Program Counter Settings

Type of operation Program counter value

Reset 0000H (internal program space)

External interrupt 0 0003H

External interrupt 1 000BH

External interrupt 2, timer counter T0L interrupt 0013H

External interrupt 3, base timer interrupt 001BH

Timer/counter T0H interrupt 0023H

Timer T1L, timer T1H interrupt 002BH

SIO0 interrupt 0033H

SIO1 interrupt 003BH

,Sk *3

16K *2 RAM BANK 0 RAM BANK 1 64K

64K

Bank 0
 *1

Bank 1

SFR

Internal program ROM Internal RAM register Flash memory

*2) User program memory space

*3) BIOS program memory space

*1) Can be used as a game program area
VMD-8

2. Internal System Configuration
Note:
¥ For the sake of convenience, each 4K of ROM space is called a "page."
¥ The "current page" is the page in the ROM space that includes the instruction that follows the
instruction that is currently being executed.
¥ If an interrupt is generated while an internal program is running, a subroutine is called using the
setting indicated in the above Table 2-2-1 in the internal program space. If an interrupt is generated
while an external program is running, a subroutine is called in bank 0 of the external program space,
with the lower 16 bits being the value in the above table. In a game program, some interrupt vectors can
not be set as desired. it is always necessary to incorporate the speciÞed program. Refer to Chapter 4,
section 4.1, "Interrupt Function."

VMU SI0 interrupt 0043H

Port 3 interrupt 004BH

Unconditional branching
instructions

JMP a12 PC15 to 12 = Current page

PC11 to 00 = a12

JMPF a16 PC15 to 00 = a16

BR r8 (PC + 2) + r8[-128_ + 127]

BRF r16 (PC + 2) + r16[0~ + 65535]

Conditional branching instructions BZ, BNZ, BP, BNE BPC, BN, DBNZ, BE (PC + 2 or + 3)

+ r8[-128_ + 127]

CALL instructions CALL a12 PC15 to 12 = Current page

PC11 to 00 = a12

CALLF a16 PC15 to 00 = a16

CALLR r16 (PC + 2) + r16[0~ + 65535]

Macro instructions CHANGE label name (or address) Value specified by label or address from a different program mode

Type of operation Program counter value
VMD-9

Visual Memory Unit (VMU) Hardware Manual
3. Internal Program ROM
The 64K program memory space includes 16K of user program memory and 4K of BIOS program memory (ROM).
In addition, the 256 bytes from FF00H to FFFFH in the same space as the ROM are used as an option speciÞcation
area for creating the mask version.

Figure 2.2 ROM Space

4. Internal Data Memory
POTATO has 1222 bytes of built-in data memory (RAM), which includes 198 bytes of XRAM and 512 bytes of
VTRBF. In addition, the Special Function Registers (SFR) reside at 100H to 1FFH.

Table 2.2 Data Memory by Type (RAM)

The 16 byte area from 00H to 0FH in RAM consists of four banks of indirect address registers: @R0, @R1 (for RAM),
@R2 and @R3 (for SFR), starting from the low address. The indirect address register bank that is used for addressing
is speciÞed by bits 3 and 4 (indirect address register bank ßags: IRBK0, 1) of the Program Status Word (PSW). In
addition, this 16-byte area can also be used as normal RAM.

Type POTATO

RAM size 1222 bytes

XRAM Bank 0 180H to 1FBH (96 bytes)

Bank 1 180H to 1FBH (96 bytes)Åj

Bank 2 180H to 185H (6 bytes)

Main RAM Bank 0 000H to 0FFH (256 bytes)

Bank 1 000H to 0FFH (256 bytes)

VTRBF 166H (256 bytes x 2 banks)

Option specification
area–256 bytes

BIOS program area
(4K)

Program area
(16K)

FFFFH

FF00H

F000H
EFFFH

0000H

4000H
3FFFH

E000H
DFFFH
VMD-10

2. Internal System Configuration
The relationship between the indirect address registers and data memory is shown in Table below.

Figure 2.3 Arrangement of Indirect Address Registers

Table 2.3 Indirect Address Register Map

Indirect address
register name Function

Bank 0
(IRBK1=0)
(IRBK0=0)

Bank 1
(IRBK1=0)
(IRBK0=1)

Bank 2
(IRBK1=1)
(IRBK0=0)

Bank 3
(IRBK1=1)
(IRBK0=1)

@R0 RAM access RAM 00H RAM 04H RAM 08H RAM 0CH

@R1 RAM access RAM 01H RAM 05H RAM 09H RAM 0DH

@R2 SFR access RAM 02H RAM 06H RAM 0AH RAM 0EH

@R3 SFR access RAM 03H RAM 07H RAM 0BH RAM 0FH

@R3
@R2
@R1
@RO
@R3
@R2
@R1
@RO
@R3
@R2
@R1
@RO
@R3
@R2
@R1
@RO

0FH

0CH
0BH

08H
07H

04H
03H

00H

Bank 3
(IRBK1=1)
(IRBK0=1)

Bank 2
(IRBK1=1)
(IRBK0=0)

Bank 1
(IRBK1=0)
(IRBK0=1)

Bank 0
(IRBK1=0)
(IRBK0=0)

• _Indirect address registers for RAM

• @ @RO, @R1

• _Indirectaddress registers for SFR

• @ @R2, @R3
VMD-11

Visual Memory Unit (VMU) Hardware Manual
Table below shows a data memory list. Refer to the respective items for details on the contents of each register.

Table 2.4 Data Memory Map

R=READ X=UndeÞned

W=WRITE H=Does not exist

Symbol Address R/W Name Initial value

RAM(BANK0) 000H-0FFH R/W Data memory XXXXXXXX

(retained after reset)

RAM(BANK1) 000H-0FFH R/W Data memory XXXXXXXX

(retained after reset)

ACC 100H R/W Accumulator 00000000

PSW 101H R/W Program Status Word 00000000

B 102H R/W B register 00000000

C 103H R/W C register 00000000

TRL 104H R/W Table reference register - low byte 00000000

TRH 105H R/W Table reference register - high byte 00000000

SP 106H R/W Stack pointer XXXXXXXX

PCON 107H R/W Power control register HHHHHH00

IE 108H R/W Master interrupt enable control
register

0HHHHH00

IP 109H R/W Interrupt priority control register 00000000

EXT 10DH R/W External memory control register HHHH0000

OCR 10EH R/W Oscillation control register 0H00HH00

T0CNT 110H R/W Timer 0 control register 00000000

T0PRR 111H R/W Timer 0 prescaler data 00000000

T0L 112H R Timer 0 low 00000000

T0LR 113H R/W Timer 0 low reload data 00000000

T0H 114H R Timer 0 high 00000000

T0HR 115H R/W Timer 0 high reload data 00000000

T1CNT 118H R/W Timer 1 control register 00000000

T1LC 11AH R/W Timer 1 low compare data 00000000

T1L 11BH R Timer 1 low 00000000
VMD-12

2. Internal System Configuration
T1LR 11CH W Timer 1 low reload data 00000000

T1HC R/W Timer 1 high compare data 00000000

T1H 11DH R Timer 1 high 00000000

T1HR W Timer 1 high reload data 00000000

MCR 120H W Mode control register 00000000

STAD 122H R/W Start address register 00000000

CNR 123H W Character count register H0000000

TDR 124H W Time interrupt register HH000000

XBNK 125H R/W Bank address register H0000000

VCCR 127H W LCD contrast control register 00000000

SCON0 130H R/W SIO0 control register 00H00000

SBUF0 131H R/W SIO0 buffer 00000000

SBR 132H R/W SIO baud rate generator 00000000

SCON1 134H R/W SIO1 control register H0H00000

SBUF1 135H R/W SIO1 buffer 00000000

Symbol Address R/W Name Initial value

P1 144H R/W Port 1 latch 00000000

P1DDR 145H W Port 1 data direction register 00000000

P1FCR 146H W Port 1 function control register 00000000

P3 14CH R/W Port 3 latch 00000000

P3DDR 14D W Port 3 data direction register 00000000

P3INT 14EH R/W Port 3 interrupt control register HHHHH000

P7 15CH R Port 7 latch HHHHXXXX

I01CR 15DH R/W External interrupt 0, 1 control 00000000

I23CR 15EH R/W External interrupt 2, 3 control 00000000

ISL 15FH R/W Input signal selection HH000000

VSEL 163H R/W Control register HHH0HH00

VRMAD1 164H R/W System address register 1 00000000

VRMAD2 165H R/W System address register 2 HHHHHHH0

Symbol Address R/W Name Initial value
VMD-13

Visual Memory Unit (VMU) Hardware Manual
VTRBF 166H R/W TX/RX buffer XXXXXXXX

BTCR 17FH R/W Base timer control 00000000

RAM(XRAM)

(BANK0)

180H-1FBH R/W LCD memory XXXXXXXX

(retained after reset)

RAM(XRAM)

(BANK1)

180H-1FBH R/W

RAM(XRAM)

(BANK2)

180H-185H R/W

Symbol Address R/W Name Initial value

Bank 1

Bank 0

Bank 1

Bank 0

Bank 1

Bank 0

Bank 1

Bank 0
00 0F

00 0F

(2) Indirect addressing mode
When executing an instruction such as: MOV #i8, @Rj

1 RAM BANK0 (PSW 21=0) 2 RAM BANK1 (PSW 21=1)

(1) Direct addressing mode
When executing an instruction such as: MOV #i8, d9

1 In RAM BANK0 (PSW 21=0) 2 RAM BANK1 (PSW 21=1)

Bank 0 address is selected

Bank 1 address is selected

In RAM Bank 0 (PSW 21=0)

Rj is selected from this area

In RAM Bank 1 (PSW 21=1)
VMD-14

2. Internal System Configuration
5. Flash Memory
POTATO has a 128K ßash memory space.

The ßash memory space consists of two 64K banks, and data can be written to and read from ßash memory by
referencing the BIOS program. In addition, the data in the ROM space in each bank can be referenced by using the
ROM table reference instruction (LDC). Caution is required because the LDC instruction operates differently with
an internal program as compared to with an external program. In addition, Bank 0 (only) can be used as a 64K
external program memory space. The dedicated macro instruction CHANGE is used to switch between internal
and external programs.

Flash memory size: 64K x2 banks

Banks: Bank 0 and Bank 1

Addresses in each bank: 0000H to FFFFH

Writing and reading the ßash memory space 9including external program memory) is accomplished through the
BIOS program. For details, refer to Chapter 3, section 3.10, "Flash EEPROM."

Bank 1
64K

Bank 0
64K

FFFFH

0000H

FFFFH

0000H
*Only Bank 0 can be used as external program memory.
VMD-15

Visual Memory Unit (VMU) Hardware Manual
6. Accumulator
The accumulator is an 8-bit register that is used when performing arithmetic operations on data, transfers, input/
output, and other processing. The accumulator is allocated in address 100H in the data memory space, and is
initialized to 00H when a reset is executed.

¥ Accumulator (ACC)

7. B Register, C Register
The B register and C register are 8-bit registers that are used in combination with the ACC to set data for arithmetic
operations and to store the results of arithmetic operations when executing multiplication/division instructions.

These registers are allocated to addresses 102H and 103H in the data memory space, and are initialized to 00H when
a reset is executed.

¥ B register (B)

¥ C register (C)

When performing multiplication, the multiplicand consists of 16 bits with the upper 8 bits stored in the ACC and
the lower 8 bits stored in the C register, and the multiplier consists of 8 bits, stored in the B register.

The result of the operation (the product) consists of 24 bits, with the highest 8 bits stored in the B register the middle
8 bits stored in the ACC, and the lower 8 bits stored in the C register. In other words, (ACC)(C) ´ (B) = (B)(ACC)(C).

When performing division, the dividend consists of 16 bits with the upper 8 bits stored in the ACC and the lower 8
bits stored in the C register, and the divisor consists of 8 bits, stored in the B register.

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ACC 100H R/W ACC7 ACC6 ACC5 ACC4 ACC3 ACC2 ACC1 ACC0

After reset 0 0 0 0 0 0 0 0

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

B 102H R/W B7 B6 B5 B4 B3 B2 B1 B0

After reset 0 0 0 0 0 0 0 0

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

C 103H R/W C7 C6 C5 C4 C3 C2 C1 C0

After reset 0 0 0 0 0 0 0 0
VMD-16

2. Internal System Configuration
The result of the operation (the quotient) consists of 16 bits, with the highest 8 bits stored in the ACC, the lower
8 bits stored in the C register and the remainder stored in the B register. In other words, (ACC)(C) ∏ (B) = (ACC)(C)
mod (B).

8. Program Status Word
The Program Status Word (PSW) consists of ßags that indicate the results of arithmetic operations, and ßags that
specify banks for data memory (RAM) and indirect address registers. The PSW is allocated to address 101H in the
data memory space, and each bit is initialized to "0" when a reset is executed.

¥ Program Status Word (PSW)

CY (bit 7): Carry ßag

CY is set (1) when there is a carry in the result of an arithmetic operation, or when a borrow
is generated in a subtraction or compare operation; CY is reset (0) when neither of these
events occurs. This bit is affected if a rotate instruction that includes CY is executed, and is
reset (0) when a multiplication or division instruction is executed.

AC (bit 6): Auxiliary carry ßag

AC is set (1) when there is a carry from bit 3 of the ACC in the result of an arithmetic
operation, or when a borrow is generated in a subtraction operation; CY is reset (0) when
neither of these events occurs.

IRBK1 (bit 4): Indirect address register bank ßag 1

IRBK0 (bit 3): Indirect address register bank ßag 0

These bits specify one of the four banks that comprise the register group that is to be used
as the indirect address register for indirect addressing instructions within each bank of data
memory (RAM).

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

PSW 101H R/W CY AC - IRBK1 IRBK0 OV RAMBK0 P

After reset 0 0 0 0 0 0 0 0

Bank IRBK1 IRBK0

0 0 0

1 0 1

ACC C

ACC CB

B

Product

X

ACC C

ACC C

B

Quotient

B

Remainder
VMD-17

Visual Memory Unit (VMU) Hardware Manual
OV (bit 2): Overßow ßag

OV is set (1) if an overßow occurs and is reset (0) if it does not.

This bit is set (1) if the act of adding a negative number to a negative number or of
subtracting a positive number from a negative number generates a positive number, or if
the act of adding a positive number to a positive number or subtracting a negative number
from a positive number results in a negative number. In all other cases, this bit is reset (0).
This bit is also set (1) when the contents of the B register are not "0" after a multiplication
or division operation, and is reset if the contents of the B register are "0."

RAMBK0 (bit 1): Data memory (RAM) bank ßag

This ßag speciÞes the data memory (RAM) bank. When an instruction that accesses RAM
is executed, the RAM address in the speciÞed bank is accessed.

P (bit 0): This bit indicates the accumulator parity (ACC).

This bit is set (1) if the total number of bits that are set in the accumulator is odd, and reset
(0) if the total number of bits that are set in the accumulator is even. This bit is a read-only
bit. This bit cannot be written.

2 1 0

3 1 1

Bank RAMBK0

0 0

1 1

Bank IRBK1 IRBK0
VMD-18

2. Internal System Configuration
9. Stack Pointer
Bank 0 of data RAM is used as stack memory. The Stack Pointer (SP) is an 8-bit register that speciÞes an address in
this stack area.

The SP is allocated in address 106H in the data memory space. The SP is incremented right before a save to the stack
memory, and is decremented after data is returned from the stack memory.

When a reset is executed, the value of the SP is undeÞned, and must be initialized at the beginning of the
BIOS program.

¥ Stack Pointer (SP)

¥ When executing a PUSH instruction, the SP is incremented and the data in data memory speciÞed by the
operand is pushed onto the stack. When executing a POP instruction, after the data is stored in data
memory speciÞed by the operand, the SP is decremented.

¥ Note that if a PUSH or POP instruction is executed after bank 1 is speciÞed, the RAM in bank 0 speciÞed
by the Stack Pointer (SP) is still used as the stack memory. In addition, if the operand is a RAM address,
bank 0 RAM, not bank 1 RAM, is accessed.

¥ When executing a CALL instruction, the SP is incremented, the lower 8 bits of the PC are saved in the
stack, the SP is incremented again, and the upper 8 bits of the PC are saved. When the RET instruction is
executed, the data speciÞed by the SP is stored in the upper 8 bits of the PC, the SP is decremented, the
data speciÞed by the new value of the SP is stored in the lower 8 bits of the PC, and then the SP is
decremented again.

¥ When an interrupt is accepted, the SP is incremented, the lower 8 bits of the PC are saved in the stack, the
SP is incremented again, and the upper 8 bits of the PC are saved. When the RETI instruction is executed
in order to return from the interrupt processing, the data speciÞed by the SP is stored in the upper 8 bits
of the PC, the SP is decremented, the data speciÞed by the new value of the SP is stored in the lower 8
bits of the PC, and then the SP is decremented again.

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

SP 106H R/W SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0

After reset X X X X X X X X
VMD-19

Visual Memory Unit (VMU) Hardware Manual
10. The Table Reference Register (TRR)
The Table Reference Register (TRR) is a 16-bit register that speciÞes addresses for program memory (ROM) and ßash
memory (EEPROM). The low byte (TRL) is allocated to address 104H in the data memory space, and the high byte
(TRH) is allocated to address 105H in the data memory space. This register is initialized to 00H when a reset
is executed.

When executing the table reference instruction (LDC), the data stored in the TRR is added to the data stored in the
ACC, and then the data that is read from the address indicated by the combined value is transferred to the ACC.

When a ßash memory write/read is executed (through the BIOS program), the address indicated by the data stored
in the TRR is referenced in the speciÞed bank.

¥ Table Reference Register (Low) TRL

¥ Table Reference Register (High) TRH

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

TRL 104H R/W TRL7 TRL6 TRL5 TRL4 TRL3 TRL2 TRL1 TRL0

After reset 0 0 0 0 0 0 0 0

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

TRH 105H R/W TRH7 TRH6 TRH5 TRH4 TRH3 TRH2 TRH1 TRH0

After reset 0 0 0 0 0 0 0 0
VMD-20

2. Internal System Configuration
11. CHANGE Instruction
Switching between the internal and external program is accomplished by executing the CHANGE instruction.
When executed while currently running an internal program (game program), the mode changes to game program
(internal program), and the program counter is set to the address that is speciÞed by the label or address.

Format:

Change label name (or address)

Operation:

(1) Execution while in internal program mode

¥ The mode changes from internal program mode to game program mode.

¥ The program counter is set to the address in the game program speciÞed by the label or address.

(2) Execution while in game program mode

¥ The mode changes from game program mode to internal program mode.

However, if bit 1 (LDCEXT) of the external memory control register is set, executing the CHANGE
instruction has no effect; the system remains in game program mode, and does not change to the internal
program.

¥ The program counter is set to the address in the internal program speciÞed by the label or address.

(3) The change in program mode occurs after a dedicated macro instruction is executed.

Example:

PC MNEMONIC
247H NOP
248H CHANGE 100H

600H NOP

OTHER_SIDE_SYMBOL AAA
public BBB
CHANGE AAA

BBB:

Public AAA
OTHER_SIDE_SYMBOL BBB

AAA:

CHANGE BBB

PC MNEMONIC
100H NOP

480H NOP
481H CHANGE 600H

WORLD INTERNAL WORLD EXTERNAL

WORLD INTERNAL WORLD EXTERNAL
Internal program External program
VMD-21

Visual Memory Unit (VMU) Hardware Manual
VMD-22

3. Peripheral System
Configuration
1. Input/Output Ports
POTATO has three I/O ports, each allocated to their own address in the Special Function Registers (SFR); in
addition, the input/output direction of ports 1 and 3 is determined by the corresponding data direction register
(PnDDR). Port 1 is also used as a serial interface/next-generation game machine interface, and as a pulse generator
output, and is controlled by a functional control register (P1FCR). In addition, port 7 is also provided as an
input-only port.

When a reset is executed, all ports are set to input mode, and the port latch bits are set to "0."

The following Special Function Registers must be manipulated in order to use the input/output ports:

Port 1 (P1) ¥P1 ¥P1DDR ¥P1FCR

Port 3 (P3) ¥P3 ¥P3DDR ¥P3INT ¥EXT

Port 7 (P7) ¥P7 (input only)

Note:
¥ Caution is required when reading port data from an I/O port, because some instructions read the port
latch, and some instructions read the data that is being applied to the port. The instructions listed below
read the port latch data. Refer to the diagram below.
BPC, DBNZ, INC, DEC, SET1, CLR1, NOT1
VMD-23

3. Peripheral System Configuration
Figure 3.1 Data Path When Executing BPC, DBNZ, INC, DEC, SET1, CLR1, and NOT1

MPX

MPX

MPX

MPX

MPX

MPX

MPX

MPX

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

B
U
S

7 6 5 4 3 2 1 0
VMD-24

3. Peripheral System Configuration
Figure 3.2 Data Path When Executing an Instruction Other Than BPC, DBNZ, INC, DEC, SET1, CLR1, and NOT1

1.1 Port 1

Port 1 can be used for input/output for the VMU serial interface, and for pulse generator output. Port 1 can also be
used for input/output for the next-generation game machine interface. Only SIO (P10 to P15) and the pulse
generator output (P17) can be used from a game program. Use only bit manipulation instructions to access this
register. For details on the SIO output, refer to Chapter 3, section 3.5, "Serial Interface;" for details on the pulse
generator output, refer to Chapter 3, section 3.3, "Timer 1 (T1)."

¥ Port 1 Latch (P1)

Port 1 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

P17 P16 P15 P14 P13 P12 P11 P10

Function Pulse Output TEST SCK1 SB1 SO1 SK0 SB0 SO0

MPX

MPX

MPX

MPX

MPX

MPX

MPX

MPX

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

B
U
S

7 6 5 4 3 2 1 0
VMD-25

Visual Memory Unit (VMU) Hardware Manual
¥ Port 1 Data Direction Register (P1DDR)

The Port 1 Data Direction Register is a write-only register that corresponds to each data latch bit. It is
essential to note that if a bit manipulation instruction, the INC instruction, the DEC instruction, or the
DBNZ instruction is used on a write-only register, all bits other than the speciÞed bit will be set to "1." The
following instructions are used on P1DDR:

¥ MOV ¥ MOV @

¥ ST ¥ ST @

¥ POP

P17DDR (bit 7): P17 I/O control

 |

P10DDR (bit 0): P10 I/O control

These bits switch the data I/O direction for each bit of port 1 (P17 to P10) between output mode (1) and
input mode (0). When a bit is set to "1," the corresponding bit from P17
to P10 enters output mode; when a bit is set to "0," the corresponding
bit from P17 to P10 enters input mode.

Example: When P17DDR = 1, P17 is in output mode.

¥ ∑ Port 1 Function Control Register (P1FCR)

The Port 1 Function Control Register is a write-only register. It is essential to note that if a bit manipulation
instruction, the INC instruction, the DEC instruction, or the DBNZ
instruction is used on a write-only register, all bits other than the
speciÞed bit will be set to "1." The following instructions are used on
P1FCR:

¥ MOV ¥ MOV @

¥ ST ¥ ST @

¥ POP

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

PIDDR 145H W P17DDR P16DDR P15DDR P14DDR P13DDR P12DDR P11DDR P10DDR

After a reset 0 0 0 0 0 0 0 0

Bit name Function

P17DDR (bit 7)

to

P10DDR (bit 0)

I/O control

0: Input mode

1: Output mode
VMD-26

3. Peripheral System Configuration
Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

PIFCR 146H W P17FCR P16FCR P15FCR P14FCR P13FCR P12FCR P11FCR P10FCR

After a reset 0 0 0 0 0 0 0 0

Bit name Function

P17FCR (bit 7) P17 control function

0: Port data (P17) output

1: PWM output

P16FCR (bit 6) P16 control function

0: Port data (P16) output

1: Buzzer (BUZ) output

P15FCR (bit 5) P15 control function

0: Port data (P15) output

1: Serial interface clock (SCK1) output

P14FCR (bit 4) P14 control function

0: Port data (P14) output

1: Serial interface data (SB1) input/output

P13FCR (bit 3) P13 control function

0: Port data (P13) output

1: Serial interface data (SO1) output

P12FCR (bit 2) P12 control function

0: Port data (P12) output

1: Serial interface clock (SCK0) output

P11FCR (bit 1) P11 control function

0: Port data (P11) output

1: Serial interface data (SB0) input/output

P10FCR (bit 0) P10 control function

0: Port data (P10) output

1: Serial interface data (SO0) output
VMD-27

Visual Memory Unit (VMU) Hardware Manual
P17FCR (bit 7): P17 function selection

This pin selects either PWM (1) or port data (0) for the P17 output. When
this bit is set to "1," P17 outputs the logical sum of the PWM signal and the
port latch data. When this bit is set to "0," P17 outputs the port latch data.

P16FCR (bit 6): P16 function selection

This pin selects either the buzzer (1) or port data (0) for the P16 output.
When this bit is set to "1," P16 outputs the logical sum of the buzzer signal
and the port latch data. When this bit is set to "0," P16 outputs the port
latch data.

P15FCR (bit 5): P15 function selection

This pin selects either the serial clock (1) or port data (0) for the P15 output.
When this bit is set to "1," P15 outputs the logical sum of the serial interface
clock (SCK1) and the port latch data. When this bit is set to "0," P15 outputs
the port latch data.

P14FCR (bit 4): P14 function selection

This pin selects either serial data (1) or port data (0) for the P14 output.
When this bit is set to "1," P14 outputs the logical sum of the serial interface
data (SB1) and the port latch data. When this bit is set to "0," P14 outputs
the port latch data.

Note that serial interface data can always be input.

P13FCR (bit 3): P13 function selection

This pin selects either serial data (1) or port data (0) for the P13 output.
When this bit is set to "1," P13 outputs the logical sum of the serial interface
data (SO1) and the port latch data. When this bit is set to "0," P13 outputs
the port latch data.

P12FCR (bit 2): P12 function selection

This pin selects either the serial clock (1) or port data (0) for the P12 output.
When this bit is set to "1," P12 outputs the logical sum of the serial interface
clock (SCK0) and the port latch data. When this bit is set to "0," P12
outputs the port latch data.

P11FCR (bit 1): P11 function selection

This pin selects either serial data (1) or port data (0) for the P11 input/
output. When this bit is set to "1," P11 outputs the logical sum of the serial
interface data (SB0) and the port latch data. In bus mode, however, this bit
is an input/output (SB0). When this bit is set to "0," P11 outputs the port
latch data.

Note that serial interface data can always be input.

P10FCR (bit 0): P10 function selection

This pin selects either serial data (1) or port data (0) for the P13 output.
When this bit is set to "1," P10 outputs the logical sum of the serial interface
data (SO0) and the port latch data. When this bit is set to "0," P10 outputs
the port latch data.
VMD-28

3. Peripheral System Configuration
Note: on Writing Game Programs for the VMU:
Game programs for the VMU must perform the following processing:

¥ When the VMU is operating on a standalone basis (SIO is not being used)
1. Monitor the 5V detection in port 7.
2. Once the 5V signal has been detected, change bits 2 and 5 of port 1 to port data output mode, and

then output a "0" (zero) from each bits.
Once the above processing is completed, restore the settings that were in effect before the above

processing was performed.

Note:
¥ When using one of Port 1's independent functions, it is necessary to set the port latch that corresponds
to that function to "0." For example, when using PWM, set P17 = 0.
¥ The port latch data is read by the following instructions: BPC, DBNZ, INC, DEC, SET1, CLR1 and
NOT1. Other instructions read the data that is applied to the port.
VMD-29

Visual Memory Unit (VMU) Hardware Manual
Figure 3.3 Port 1 Block Diagram

MPX

MPX

MPX

MPX

MPX

MPX

MPX

MPX

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

B
U
S

7 6 5 4 3 2 1 0 F TYPE 7 6 5 4 3 2 1 0

P1DDR (145H)P1FCR (146H)

VMS serial interface circuit

SDCKB Output Enable

SDCKB Input

SDCKB output

SDCKA Output Enable

SDCKA Input

SDCKA Output

Output buffer

Input
buffer

SIo0

SIo1

PWM

BUZ

SCKO

SO0

SCKO

SO0

P17/PWM

P16/BUZ

P15/SCK1

P14SI1/SB1

P13SO1

P12/SCKO

P11/SI0/SB

P10/PO0
VMD-30

3. Peripheral System Configuration
1.2 Port 3

Port 3 is an input-only port that is used for the VMU direction keys, buttons (A, B, MODE), and VMU SLEEP button.

¥ Port 3 Latch (P3)

Because bits 0 through 7 of port 3 are programmable and can be pulled up through software, it is necessary for the
user program to substitute ones for P3. when a button is pressed, the corresponding bit goes to "0."

Note: Regarding the direction keys, design game programs so that opposing directions (up-down,
left-right) cannot be pressed simultaneously.

¥ Port 3 Data Direction Register (P3DDR)14DH

The above register is set by the internal system program.

This register cannot be accessed from a game program.

¥ Port 3 Interrupt Control Register (P3INT)

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

P3 14CH R/W P37 P36 P35 P34 P33 P32 P31 P30

Function SLEEP MODE Button B Button A RIGHT LEFT DOWN UP

After reset 0 0 0 0 0 0 0 0

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

P3INT 14EH R/W - - - - - P32INT P31INT P30INT

After reset H H H H H 0 0 0

Bit name Function

P32INT (bit 2) Port 3 interrupt control flag

0: Prohibits cancellation of HOLD mode when an interrupt is generated by port 3.
1: Enables cancellation of HOLD mode when an interrupt is generated by port 3.

P31INT (bit 1) Port 3 interrupt source flag

0: No interrupt source
1: Interrupt source

P30INT (bit 0) Port 3 interrupt request flag

0: Interrupt request prohibited

1: Interrupt request enabled
VMD-31

Visual Memory Unit (VMU) Hardware Manual
P32INT (bit 2): Port 3 interrupt selection ßag

This ßag selects whether port 3 is to be used for interrupt source
generation or not.

P32INT = 0: Does not generate interrupts on port 3.

P32INT = 1: Generates interrupts on port 3.

P31INT (bit 1): Port 3 interrupt source ßag

This ßag has meaning only when the P32INT ßag is set. This ßag is
used to monitor the presence/absence of port 3 interrupt sources.

This ßag is set (1) when an interrupt source is generated on port 3, and
does not change if no interrupt source is generated. This ßag must
be reset by software.

P30INT (bit 0): Port 3 interrupt request enable control

This bit enables (1)/disables (0) interrupt requests due to the
generation of an interrupt source on port 3.

P30INT = 0: Disables interrupt requests on port 3.

P30INT = 1: Enables interrupt requests to vector address 004BH
when an interrupt source is generated on port 3 (when P31INT = 1).
VMD-32

3. Peripheral System Configuration
Figure 3.4 Port 3 Block Diagram

MPX

Port 3 interrupt request

Output buffer

P37

P36

P35

P34

P33

P32

P31

P30

E TYPE

Input buffer

MPX

MPX

MPX

MPX

MPX

MPX

MPX

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

B
U
S

7

P3DDR(14DH)

Po
rt

 3
 in

te
rr

up
t c

ur
cu

it

6 5 4 3 2 1 0

MPX
VMD-33

Visual Memory Unit (VMU) Hardware Manual
1.3 Port 7

Port 7 is an input-only port that is used for checking low voltage in the VMU and for checking the connection with
the next-generation game machine. (Refer to Fig. 3-1-8.)

¥ Port 7 (P7)

internal pull-up resistor transistors set the initial input state of bits 7 through 0 of port 7 to "1." When a button is
pressed, the corresponding bit goes to "0."

Figure 3.5 Port 7 Block Diagram

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

P7 15CH R - - - - P73 P72 P71 P70

Function - - - - ID1 ID0 Low
voltage

5V
detection

After reset H H H H 0 0 1 0

B
U
S

C TYPE

D TYPE

Pull-up register

P73/INT3/T0IN

P72/INT2/T0IN

P70/INT0

P71/INT1

Pull-up register
VMD-34

3. Peripheral System Configuration
2. Timer/Counter 0 (T0)

2.1 Overview

POTATO's built-in Timer/Counter 0 (T0) is a 16-bit timer/counter that has the four functions listed below. In
addition, the Timer 0 prescaler is an 8-bit prescaler.

Mode 0: 8-bit reload timer x 2 channels, with programmable prescaler

Mode 1: 8-bit reload timer with programmable prescaler + 8-bit reload counter

Mode 2: 16-bit reload timer with programmable prescaler

Mode 3: 16-bit reload counter

2.2 Functions

¥ 8-bit reload timer x 2 channels, with programmable prescaler (mode 0)

T0 operates as two independent 8-bit reload timers (T0H, T0L) according to the clock from the 10-bit/8-bit
prescaler.

¥ 8-bit reload timer with programmable prescaler + 8-bit reload counter (mode 1)

¥ T0H operates as an 8-bit reload timer according to the clock from the 8-bit prescaler. TOL detects and
counts external input signals from the P72/INT2/T0IN and P73/INT3/T0IN pins.

¥ 16-bit reload timer with programmable prescaler (mode 2)

¥ T0 operates as a 16-bit reload timer (T0H + T0L) according to the clock from the 10-bit/8-bit prescaler.

¥ 16-bit reload counter (mode 3)

¥ T0 operates as a 16-bit reload counter in which the overßow of T0L is used as the clock for T0H. TOL
detects and counts external input signals from the P72/INT2/T0IN and P73/INT3/T0IN pins.

¥ Interrupt generation

¥ When the interrupt request enable bit is set, T0H and T0L interrupt requests are generated when the T0H
and T0L registers overßow.

¥ The following Special Function Registers must be manipulated in order to control Timer/Counter 0 (T0).

¥ T0H ¥ T0HR

¥ T0L ¥ T0LR

¥ T0CNT ¥ T0PRR

¥ ISL ¥ I23CR
VMD-35

Visual Memory Unit (VMU) Hardware Manual
2.3 Circuit Configuration

The conÞguration of Timer/Counter 0 (T0) is shown in Fig. 3-2-1.

¥ Prescaler ááááá Â

The 8-bit prescaler consists of an 8-bit programmable counter, and does not have a cycle clock
divide-by-4 circuit.

The prescaler counts up while the system is running; "00" is set in the divide-by-4 circuit (in the case of the
10-bit prescaler) if the program has changed the prescaler data, and counting begins from the changed data.
The cycle clock is a signal that is generated once per cycle while executing instructions and in HALT mode.

¥ Timer/Counter 0 Low (T0L) ááááá _

This is an 8-bit reload timer/counter that uses the prescaler output or a signal on an external pin as a clock.
The T0LR data is reloaded upon a T0L overßow in modes 0 or 1 and upon a T0H overßow in modes 2 and
3; the TOLR data is also reloaded when TOLRUN (bit 6 of T0CNT) is reset and system operation is stopped.

¥ Timer/Counter 0 High (T0H) ááááá ¨

This is an 8-bit reload timer that uses the prescaler output or T0L overßow as a clock. The Timer 0 High
Reload (T0HR) register data is reloaded upon a T0H overßow; the TOHR data is also reloaded when
TOHRUN (bit 7 of T0CNT) is reset and system operation is stopped.

¥ Timer/Counter 0 Control Register (T0CNT) ááááá ø

This register sets modes 0 through 3 for T0 and controls interrupts.

Figure 3.6 Timer/Counter 0 Block Diagram
VMD-36

3. Peripheral System Configuration
2.4 Related Registers

¥ Timer/Counter 0 Control Register (T0CNT)

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

T0CNT 14EH R/W T0HRUN T0LRUN T0LONG T0LEXT T0HOVF T0HIE T0LOVF T0LIE

After reset 0 0 0 0 0 0 0 0

Bit name Function

T0HRUN (bit 7) T0H count control

0: Count stop/data reload

1: Count start

T0LRUN (bit 6) T0L count control

0: Count stop/data reload

1: Count start

T0LONG (bit 5) Timer/counter 0 bit length selection

0: 8 bits

1: 16 bits

T0LEXT (bit 4) T0L input clock selection

0: Prescaler output

1: External pin input signal

In the case of an external pin, specify the pin through the Input Signal Selection (ISL) register.

T0HOVF (bit 3) T0H overflow flag

0: No overflow flag

1: Overflow flag

T0HIE (bit 2) T0H interrupt request enable

0: Interrupt request disabled

1: Interrupt request enabled

T0LOVF (bit 1) T0L overflow flag

0: No overflow flag

1: Overflow flag

T0LIE (bit 0) T0L interrupt request enable

0: Interrupt request disabled

1: Interrupt request enabled
VMD-37

Visual Memory Unit (VMU) Hardware Manual
T0HRUN (bit 7): T0H count control

This bit starts (1)/stops (0) Timer/Counter 0 High (T0H). When this
bit is set to "1," the clock is input to T0H, which begins counting; when
this bit is set to "0," the clock supplied to T0H is stopped and the reload
data (T0HR) is transferred to T0H simultaneously.

T0LRUN (bit 6): T0L count control

This bit starts (1)/stops (0) Timer/Counter 0 Low (T0L). When this bit
is set to "1," the clock is input to T0L, which begins counting; when this
bit is set to "0," the clock supplied to T0L is stopped and the reload
data (T0LR) is transferred to T0L simultaneously.

 T0LONG (bit 6): Timer/Counter 0 bit length selection

This bit selects the T0 bit length as either 16 bits (1) or 8 bits (0). When
this bit is set to "1," the bit length of Timer/Counter 0 is 16 bits; when
this bit is set to "0," the bit length is set to 8 bits. Set this bit to "0" when
using modes 0 and 1, and to "1" when using modes 2 and 3.

T0LEXT (bit 4): T0L input clock selection

This bit selects the T0L input clock as either external pin input signal
(1) or as prescaler output (0). When this bit is set to "1," the input signal
from the external input pin (either P72/INT2/T0IN or P73/INT3/
T0IN) becomes the clock for T0L; when this bit is set to "0," the
prescaler output becomes the clock. The Input Signal Selection (ISL)
register selects either P72/INT2/T0IN or P73/INT3/T0IN as the
external input pin.

T0HOVF (bit 3): T0H overßow ßag

This ßag is set when an overßow occurs in T0H, and does not change
when no overßow occurs. Therefore, this ßag must be reset by
software.

T0HIE (bit 2): T0H interrupt request enable control

This bit enables (1)/disables (0) interrupt requests due to a T0H
overßow. When this bit is set to "1," an interrupt request is generated
to vector address 0023H in response to a T0H overßow; when this bit
is set to "0," no interrupt request is generated.

Mode T0LONG T0LEXT

0 0 0

1 0 1

2 1 0

3 1 1
VMD-38

3. Peripheral System Configuration
T0LOVF (bit 1): T0L overßow ßag

This ßag is set when an overßow occurs in T0L, and does not change when
no overßow occurs. Therefore, this ßag must be reset by software.

In 16-bit mode, this ßag is not set even if an overßow occurs in T0L; when
an overßow occurs in T0H, this ßag is set at the same time as T0HOVF.

T0LIE (bit 0): T0L interrupt request enable control

This bit enables (1)/disables (0) interrupt requests due to a T0L overßow.
When this bit is set to "1," an interrupt request is generated to vector
address 0013H in response to a T0L overßow; when this bit is set to "0," no
interrupt request is generated.

Note:
¥ T0HOVF and T0LOVF must be set to "0" by software.
¥ When operating in 16-bit mode, set T0HRUN and T0LRUN to "1" simultaneously.
¥ In 16-bit mode, T0HOVF and T0LOVF both go to "1" simultaneously.

¥ Input Signal Selection register (ISL)

This register is used to select the time constant for the noise elimination Þlter connected to the P73/INT3/
T0IN pin, and to select the external signal input pin. This register cannot be accessed by game programs.

Use only bit manipulation instructions to access this register.

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ISL 15FH R/W - - ISL5 ISL4 ISL3 ISL2 ISL1 ISL0

After reset H H 0 0 0 0 0 0
VMD-39

Visual Memory Unit (VMU) Hardware Manual
ISL5 (bit 5): Base timer clock selection

ISL4 (bit 4):

These bits select the base timer input clock.

ISL3 (bit 3): Buzzer output frequency selection

This bit selects the buzzer output frequency as either fBST/8 (1) or as
fBST/16 (0). When "1" is set, the signal that is output from the buzzer
output pin (BUZ) has a frequency that is 1/8 that of the base timer
input frequency; when "0" is set, the signal that is output has a
frequency that is 1/16 that of the base timer input frequency.

ISL2 (bit 2): Noise elimination Þlter time constant selection

ISL1 (bit 1):

These bits select the noise elimination Þlter time constant.

Bit name Function

ISL5 (bit 5)

ISL4 (bit 4)

Base timer clock selection

ISL5 ISL4

1

0

X

1

1

0

Timer/Counter T0 prescaler

Cycle clock

Subclock (crystal oscillator)

ISL3 (bit 3) Buzzer output frequency selection

0: fBST/16

1: fBST/8

ISL2 (bit 2)

ISL1 (bit 1)

Noise elimination filter time constant selection

ISL2 ISL1 Time constant

1

0

X

1

1

0

16Tcyc

64Tcyc

1Tcyc

ISL0 (bit 0) T0 clock input pin selection

0: P72/INT2/T0IN pin

1: P73/INT3/T0IN pin

ISL5 ISL4 Base timer input clock

0 0 Fixed to subclock (crystal oscillator)
VMD-40

3. Peripheral System Configuration
The following table shows the signal and noise ranges for each time constant.

*1¥ A signal that does not meet the indicated time constant is deemed to be noise and is not
accepted by the LSI.

*2¥ A signal that falls within the indicated range for the time constant may be deemed to be noise
and might not be accepted by the LSI.

*3¥ A signal that exceeds the indicated time constant is deemed to be the correct signal and is
accepted by the LSI.

ISL0 (bit 0): T0 clock input pin selection

This bit selects the external signal input pin for the T0 as either P73/INT3/
T0IN (1) or P72/INT2/T0IN (0). If "0" is set, P72/INT2/T0IN is selected as
the external signal input pin.

¥ Timer 0 Prescaler Data Register (T0PRR)

The Timer 0 Prescaler Data Register sets the clock cycle for Timer/Counter 0; the clock cycle can be set to
one of 256 levels through an 8-bit programmable counter.

For the 8-bit prescaler, the cycle clock signal is input directly. The clock cycle TPR for Timer/Counter 0 can
be determined by setting the desired data in T0PRR (111H).

8-bit prescaler :TPR = 1 x Tcyc x (256-[T0PRR])(decimal)

Tcyc: Cycle clock cycle

¥ Timer 0 Low register (T0L)

This is an 8-bit timer/counter. This timer/counter detects and counts either the clock from the prescaler or
an external signal from P72/INT2/T0IN or P73/INT3/T0IN. When this register overßows, the T0L
overßow ßag is set.

ISL2 ISL1 Time constant

0 0 1Tcyc

Time constant Noise *1 Noise/signal *2 Signal *3

1Tcyc < 1Tcyc 1Tcyc - 2Tcyc 2Tcyc <

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

T0PRR 111H R/W T0PRR7 T0PRR6 T0PRR5 TOPRR4 T0PRR3 T0PRR2 T0PRR1 T0PRR0

After reset 0 0 0 0 0 0 0 0
VMD-41

Visual Memory Unit (VMU) Hardware Manual
¥ Timer 0 Low Reload register (T0LR)

This is the reload register for Timer/Counter 0 Low (T0L). In 8-bit mode, the reload data is reloaded into
T0L each time that T0L overßows and when T0LRUN = 0; in 16-bit mode, the reload data is reloaded into
T0L each time that T0H overßows and when T0HRUN = 0.

¥ Timer 0 High register (T0H)�j

This is an 8-bit timer/counter. This timer/counter detects and counts either the clock from the prescaler or
T0L overßows. When this register overßows, the T0H overßow ßag is set.

¥ Timer 0 High Reload register (T0HR)

This is the reload register for Timer/Counter 0 High (T0H). The reload data is reloaded into T0H each time
that T0H overßows and when T0HRUN = 0.

¥ External Interrupt 2, 3 Control Register (I23CR)

This register sets external input signal detection and interrupts.

Regarding ISL0, refer to the "Input Signal Selection Register" (described later) for details.

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

T0L 112H R T0L7 T0L6 T0L5 T0L4 T0L3 T0L2 T0L1 T0L0

After reset 0 0 0 0 0 0 0 0

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

T0LR 113H R/W T0LR7 T0LR6 T0LR5 T0LR4 T0LR3 T0LR2 T0LR1 T0LR0

After reset 0 0 0 0 0 0 0 0

Symbol Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

T0H 114H R T0H7 T0H6 T0H5 T0H4 T0H3 T0H2 T0H1 T0H0

After reset 0 0 0 0 0 0 0 0

Symbol Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

T0HR 115H R/W T0HR 7 T0HR6 T0HR5 T0HR4 T0HR3 T0HR2 T0HR1 T0HR0

After reset 0 0 0 0 0 0 0 0
VMD-42

3. Peripheral System Configuration
ISL0 I23CR7 I23CR6 I23CR3 I23CR2 External Signal Counting Condition

1 0 1 - - Count falling edge of P73/INT3/T0IN

1 1 0 - - Count rising edge of P73/INT3/T0IN

1 1 1 - - Count both edges of P73/INT3/T0IN

0 - - 0 1 Count falling edge of P72/INT2/T0IN

0 - - 1 0 Count rising edge of P72/INT2/T0IN

0 - - 1 1 Count both edges of P72/INT2/T0IN

- 0 0 0 0 Do not count

Symbol Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

I23CR 15EH R/W I23CR7 I23CR6 I23CR5 I23CR4 I23CR3 I23CR2 I23CR1 I23CR0

After reset 0 0 0 0 0 0 0 0

Bit name Function

I23CR7 (bit 7) INT3 rising edge detection control

0: Do not detect
1: Detect

I23CR6 (bit 6) INT3 falling edge detection control

0: Do not detect
1: Detect

I23CR5 (bit 5) INT3 interrupt source

0: No interrupt source
1: Interrupt source

I23CR4 (bit 4) INT3 interrupt request enable control

0: Interrupt request disabled
1: Interrupt request enabled

I23CR3 (bit 3) INT2 rising edge detection control

0: Do not detect
1: Detect

I23CR2 (bit 2) INT2 falling edge detection control

0: Do not detect
1: Detect

I23CR1 (bit 1) INT2 interrupt source

0: No interrupt source
1: Interrupt source

I23CR0 (bit 0) INT2 interrupt request enable control

0: Interrupt request disabled
1:Interrupt request enabled
VMD-43

Visual Memory Unit (VMU) Hardware Manual
I23CR7 (bit 7): INT3 rising edge detection control

This bit selects whether to detect (1) or not detect (0) the rising edge of
the signal input to the P73/INT3/T0IN pin. When this bit is set to "1,"
I23CR5 is set (1) when the rising edge of the input signal is detected;
if the INT3 interrupt request is enabled (I23CR4 = 1), then an interrupt
is generated. When this bit is set to "0," the rising edge of the signal is
not detected.

I23CR6 (bit 6): INT3 falling edge detection control

This bit selects whether to detect (1) or not detect (0) the falling edge
of the signal input to the P73/INT3/T0IN pin. When this bit is set to
"1," I23CR5 is set (1) when the falling edge of the input signal is
detected; if the INT3 interrupt request is enabled (I23CR4 = 1), then an
interrupt is generated. When this bit is set to "0," the falling edge of the
signal is not detected.

I23CR5 (bit 5): INT3 interrupt source

This bit is set if the conditions speciÞed by I23CR7 or I23CR6 are met;
if the INT3 interrupt request is enabled, then control jumps to vector
address 001BH and interrupt processing begins. The value of this bit
does not change even when interrupt processing is completed.
Therefore, this bit must be reset by software.

I23CR4 (bit 4): INT3 interrupt request enable

This bit enables (1) or disables (0) external interrupt 3 (INT3). When
this bit is set to "1," and I23CR5 has been set, then INT3 interrupt
processing is executed. When this bit is set to "0," interrupt processing
is not executed.

I23CR3 (bit 3): INT2 rising edge detection control

This bit selects whether to detect (1) or not detect (0) the rising edge of
the signal input to the P72/INT2/T0IN pin. When this bit is set to "1,"
I23CR1 is set (1) when the rising edge of the input signal is detected;
if the INT2 interrupt request is enabled (I23CR0 = 1), then an interrupt
is generated. When this bit is set to "0," the rising edge of the signal is
not detected.

I23CR2 (bit 2): INT2 falling edge detection control

This bit selects whether to detect (1) or not detect (0) the falling edge
of the signal input to the P72/INT2/T0IN pin. When this bit is set to
"1," I23CR1 is set (1) when the falling edge of the input signal is
detected; if the INT2 interrupt request is enabled (I23CR0 = 1), then an
interrupt is generated. When this bit is set to "0," the falling edge of the
signal is not detected.

I23CR1 (bit 1): INT2 interrupt source

This bit is set if the conditions speciÞed by I23CR3 or I23CR2 are met;
if the INT2 interrupt request is enabled, then control jumps to vector
address 0013H and interrupt processing begins. The value of this bit
does not change even when interrupt processing is completed.
Therefore, this bit must be reset by software.
VMD-44

3. Peripheral System Configuration
I23CR0 (bit 0): INT2 interrupt request enable control

This bit enables (1) or disables (0) external interrupt 2 (INT2). When
this bit is set to "1," and I23CR1 has been set, then INT2 interrupt
processing is executed. When this bit is set to "0," interrupt processing
is not executed.

Note:
¥ Edge detection is not performed if I23CR7 and 6 or I23CR3 and 2 are both "0." If both of either pair are
"1," then both edges are detected.
¥ Input from the P73/INT3/T0IN pin is connected to the noise Þlter.

2.5 Circuit Configuration and Description of Operation

¥ Timer 0 mode settings

¥ Mode 0: 8-bit reload timer x 2 channels, with programmable prescaler

In mode 0, Timer 0 functions as two 8-bit reload timers. The relationship between the timer value and the
reload register (T0LR) setting is as shown below.

Time until T0HOVF is set (1) (decimal) = (256 - T0HR setting) ´ TPR

Time until T0LOVF is set (1) (decimal) = (256 - T0LR setting) ´ TPR

TPR: Clock cycle from prescaler

Once the count control bit (T0HRUN, T0LRUN) is set, the counting operation starts. If the bit is reset, the
counting operation stops, and the contents of the reload register (T0HR, T0LR) are transferred to the
counter (T0H, T0L).

If Timer/Counter 0 (T0H, T0L) overßows, the overßow ßag (T0HOVF, T0LOVF) is set , and the contents of
the reload register (T0HR, T0LR) are transferred to the counter (T0H, T0L).

If both the overßow ßag (T0HOVF, T0LOVF) and the interrupt request enable ßag (T0HIE, T0LIE) are set,
an interrupt request is sent to the interrupt control circuit.

Mode T0LONG T0LEXT

0 0 0

1 0 1

2 1 0

3 1 1
VMD-45

Visual Memory Unit (VMU) Hardware Manual
Figure 3.7 Circuit Configuration for Mode 0: 8-bit Reload Timer x 2 Channels

¥ Mode 0 Program Example
VMD-46

3. Peripheral System Configuration
¥ Mode 1: 8-bit reload timer with programmable prescaler + 8-bit reload counter

¥ 8-bit reload timer

The upper 8 bits of Timer 0 (T0H) operate as an 8-bit reload timer. The relationship between the timer value
and the reload register (T0HR) setting is as shown below.

Time until T0HOVF is set (1) (decimal) = (256 - T0HR setting) x TPR

TPR: Cycle of clock from prescaler

The data in the reload register is loaded into the counter T0H at each interval at which T0HOVF is set. In
addition, the timer operation continues until the T0H count control bit (T0HRUN) is reset. The operation
method is the same as for mode 0.

Figure 3.8 Block Diagram for Mode 1: 8-bit Reload Timer (T0H)

¥ 8-bit reload counter

The lower 8 bits of Timer 0 (T0L) are used to count the signals input through the external pin. The external
signal is Þltered through a noise Þlter. For details, refer to Chapter 3, section 3.2.4, "Related Registers and
Input Signal Selection Register (ISL)."

The relationship between the counted value and the reload register (T0LR) setting is as follows:

Counted value until T0LOVF is set (1) (decimal) = 256 - (T0LR setting)

If the T0L overßow ßag (T0LOVF) is set, the data in the reload register T0LR is transferred to the counter
T0L. In addition, counting continues until the T0L count control bit (T0LRUN) is reset.

Figure 3.9 Block Diagram for Mode 1: 8-bit Reload Counter (T0L)
VMD-47

Visual Memory Unit (VMU) Hardware Manual
¥ Mode 1 Program Example

¥ Mode 2: 16-bit reload timer with programmable prescaler

Mode 2 connects T0H and T0L in series and uses them as a 16-bit timer.

To start the timer, set the counter control bits (T0HRUN and T0LRUN) for both T0H and T0L
simultaneously.

The relationship between the timer value and the reload register (T0HR, T0LR) settings is as follows:

Time until T0HVOF is set (1) (decimal)

= (65,536 - 256 x (T0HR setting) - (T0LR setting)) x TPR

TPR: Cycle of clock from prescaler

T0LOVF is set at the same time as T0HOVF, and each time that T0HOVF is generated, the reload data (T0LR,
T0HR) is transferred to T0L and T0H, respectively. Timer operation continues until the count control bit is
reset. The operation method is the same as for mode 0.
VMD-48

3. Peripheral System Configuration
Read the Timer 0 (T0) data according to the following procedure:

T0L LD T0L ; Read T0L data (1).

â ST 020H

T0H LD T0H ; Read T0H data.

â ST 021H

T0L LD T0L ; Read T0L (2) data again.

â BP T0L,7,DES ; When bit 7 of TOL (2) is "0" and

BN 020H,7,DES ; bit 7 of T0L (1) is "1"...

ST 020H

T0H LD T0H ; Read T0H (2).

ST 021H

DES: _ next program

Figure 3.10 Block Diagram for Mode 2: 16-bit Reload Timer
VMD-49

Visual Memory Unit (VMU) Hardware Manual
¥ Mode 2 Program Example

¥ Mode 3: 16-bit reload counter

Mode 3 connects T0H and T0L in series and uses them as a 16-bit counter. The clock is an external signal
that is input from either P72/INT2/T0IN or P73/INT3/T0IN. The external input pin is selected through the
special function register ISL. A noise elimination Þlter is connected to the P73/INT3/T0IN pin.

To start the counter, set the counter control bits (T0HRUN and T0LRUN) for both T0H and T0L
simultaneously.

The relationship between the counted value and the reload register (T0HR, T0LR) settings is as follows:

Count until T0HVOF is set (1) (decimal)

= 65,536 - 256 x (T0HR setting) - (T0LR setting)

T0LOVF is set at the same time as T0HOVF, and each time that T0HOVF is generated, the reload data (T0LR,
T0HR) is transferred to T0L and T0H, respectively. Timer operation continues until the count control bit is
reset. The operation method is the same as for mode 0.
VMD-50

3. Peripheral System Configuration
Read the Timer 0 (T0) data according to the following procedure:

T0L LD T0L ; Read T0L data (1).

â ST 020H

T0H LD T0H ; Read T0H data.

â ST 021H

T0L LD T0L ; Read T0L (2) data again.

â BP T0L,7,DES ; When bit 7 of TOL (2) is "0" and

BN 020H,7,DES ; bit 7 of T0L (1) is "1"...

ST 020H

T0H LD T0H ; Read T0H (2).

ST 021H

DES: _ next program

¥ Mode 3 Program Example

Figure 3.11 Block Diagram for Mode 3: 16-bit Reload Counter
VMD-51

Visual Memory Unit (VMU) Hardware Manual
3. Timer 1 (T1)

3.1 Overview

POTATO's built-in Timer 1 (T1) is a 16-bit timer that has the four functions listed below.

Mode 0: 8-bit reload timer x 2 channels

Mode 1: 8-bit reload timer + 8-bit reload counter

Mode 2: 16-bit reload timer

Mode 3: Variable bit length pulse generator (9 to 16 bits)

3.2 Functions

¥ 8-bit reload timer x 2 channels (mode 0)

T1 operates as two independent 8-bit reload timers (T1H, T1L), using as the clock the signal that is
generated once each cycle (cycle clock) while executing an instruction.

¥ 8-bit reload timer + 8-bit reload counter (mode 1)

T1H operates as an 8-bit reload timer using the cycle clock. T1L operates as an 8-bit pulse generator. The
pulse signal is output from the P17/pulse signal output pin.

¥ 16-bit reload timer (mode 2)

T0 operates as a 16-bit reload timer using the T1L overßow signal as the clock for T1H. The input clock for
T1L is the cycle clock. Each time that T1L generates an overßow, the T1LR reload data is reloaded in T1L;
the same applies to T1H.

Either the cycle clock or the cycle clock divided by 2 is used as the clock for T1L.

¥ Variable bit length pulse generator (9 to 16 bits) (mode 3)

T1L and T1H are used to generate a pulse signal of 9 to 16 bits. The pulse signal is output from the P17/
pulse signal output pin.

Either the cycle clock or the cycle clock divided by 2 is used as the clock for T1L.

¥ Interrupt generation

When the interrupt request enable bit is set, T1H and T1L interrupt requests are generated when the T1H
and T1L registers overßow.

The following Special Function Registers must be manipulated in order to control Timer 1 (T1).

oET1H oET1HR oET1HC

oET1L oET1LR oET1LC

oET1CNT oEP1DDR oEP1FCR

oEP1
VMD-52

3. Peripheral System Configuration
3.3 Circuit Configuration

The conÞguration of Timer 1 (T1) is shown in Fig. 3-3-1.

¥ Timer 1 Low (T1L) ááááá Â

This is an 8-bit reload timer that uses the cycle clock or the cycle clock divided by 2 as a clock. The T1LR
data is reloaded upon a T1L overßow; the T1LR data is also transferred to T1L when T1LRUN (bit 6 of
T1CNT) is set to "0."

¥ Timer 1 Low Compare Circuit (T1LC) ááááá _

This circuit consists of an 8-bit Timer 1 Low Compare Data register (T1LC) and an 8-bit data compare
circuit. This circuit compares the data in T1L and T1LC.

¥ Timer 1 High (T1H) ááááá ¨

This is an 8-bit reload timer that uses the cycle clock or the T1L overßow signal as a clock. The T1HR data
is reloaded upon a T1H overßow; the T1HR data is reloaded even if T1HRUN (bit 7 of T1CNT) is reset.

¥ Timer 1 High Compare Circuit (T1HC) ááááá ø

This circuit consists of an 8-bit Timer 1 High Compare Data register (T1HC) and an 8-bit data compare
circuit. This circuit compares the data in T1H and T1HC.

¥ Timer 1 Control Register (T1CNT) ááááá ¡

This register sets the modes for T1 and controls interrupts.

Figure 3.12 Timer 1 Block Diagram
VMD-53

Visual Memory Unit (VMU) Hardware Manual
3.4 Related Registers

¥ Timer 1 Control Register (T1CNT)

Symbol Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

T1CNT 118H R/W T1HRUN T1LRUN T1LONG ELDT1C T1HOVF T1HIE T1LOVF T1LIE

After reset 0 0 0 0 0 0 0 0

Bit name Function

T1HRUN (bit 7) T1H count control

0: Count stop/data reload

1: Count start

T1LRUN (bit 6) T1L count control

0 Count stop/data reload

1: Count start

T1LONG (bit 5) Timer 1 bit length selection

0: 8 bits

1: 16 bits

ELDT1C (bit 4) Pulse generator data update enable control

0: Disabled

1: Enabled

T1HOVF (bit 3) T1H overflow flag

0: No overflow flag

1: Overflow flag

T1HIE (bit 2) T1H interrupt request enable control

0: Interrupt request disabled

1: Interrupt request enabled

T1LOVF (bit 1) T1L overflow flag

0: No overflow flag

1: Overflow flag

T1LIE (bit 0) T1L interrupt request enable

0: Interrupt request disabled

1: Interrupt request enabled
VMD-54

3. Peripheral System Configuration
T1HRUN (bit 7): T1H count control

This bit starts (1)/stops (0) Timer 1 High (T1H). When this bit is set to
"1," the clock is input to T1H, which begins counting; when this bit is
set to "0," the clock supplied to T1H is stopped and the reload data
(T1HR) is transferred to T1H simultaneously.

T1LRUN (bit 6): T1L count control

This bit starts (1)/stops (0) Timer 1 Low (T1L). When this bit is set to
"1," the clock is input to T1L, which begins counting; when this bit is
set to "0," the clock supplied to T1L is stopped and the reload data
(T1LR) is transferred to T1L simultaneously.

T1LONG (bit 5): Timer 1 bit length selection

This bit selects the T1 bit length as either 16 bits (1) or 8 bits (0). When
this bit is set to "1," the bit length of Timer 1 is 16 bits; when this bit is
set to "0," the bit length is set to 8 bits. Set this bit to "1" when using
modes 2 and 3, and to "0" when using modes 0 and 1.

ELDT1C (bit 4): Pulse generator data update enable control

This bit enables (1) or disables (0) transfer of the compare data register
(T1HC, T1LC) data that is used to generate the pulse signal to the
compare circuit. When this bit is set to "1," the data is transferred to
the compare circuit, and updated with the new pulse generator data;
if this bit is set to "0," the data is not updated and the same pulse
generator data is output.

To update 16-bit data simultaneously, set this bit to "0," set the data for
each 8 bits, and then set this bit to "1."

T1HOVF (bit 3): T1H overßow ßag

This ßag is set when an overßow occurs in T1H, and does not change
when no overßow occurs. Therefore, this ßag must be reset by
software.

T1HIE (bit 2): T1H interrupt request enable control

This bit enables (1)/disables (0) interrupt requests due to a T1H
overßow. When this bit is set to "1," an interrupt request is generated
to vector address 002BH in response to a T1H overßow; when this bit
is set to "0," no interrupt request is generated.

T1LOVF (bit 1): T1L overßow ßag

This ßag is set when an overßow occurs in T1L, and does not change
when no overßow occurs. Therefore, this ßag must be reset by
software. T1LOVF is set whenever an overßow occurs in T1L,
regardless of the bit length.

T1LIE (bit 0): T1L interrupt request enable control

This bit enables (1)/disables (0) interrupt requests due to a T1L
overßow. When this bit is set to "1," an interrupt request is generated
to vector address 002BH in response to a T1L overßow; when this bit
is set to "0," no interrupt request is generated. In 16-bit mode, no
interrupt request is generated in response to a T1L overßow.
VMD-55

Visual Memory Unit (VMU) Hardware Manual
Note:
¥ T1HOVF and T1LOVF must be set to "0" by software.
¥ When operating in 16-bit mode, select either the cycle clock or the cycle clock divided by 2 as the clock.
("Ttc" is the clock cycle.)

Ttc= Tcyc oF T1HRUN=1oCT1LRUN=1oCT1LONG=1
Ttc= 1/2Tcyc oF T1HRUN=0oCT1LRUN=1oCT1LONG=1

¥ Timer 1 Low Register (T1L)

The Timer 1 Low register is an 8-bit timer. This register uses either the cycle clock or the cycle clock divided
by 2 as its clock.

When T1L overßows, the T1LR data is transferred and the T1L overßow ßag is set. Note that in modes 1
and 3, this register is used to generate pulse signals.

¥ Timer 1 Low Reload Register (T1LR)

The Timer 1 Low Reload register is the reload register for the Timer 1 Low (T1L) register.

Each time that T1L overßows and T1LRUN = 0, the reload data is reloaded into T1L. Note that in modes 1
and 3, this register is used to generate pulse signals.

T1L and T1LR share the same address. T1L is a read-only register, and T1LR is a write-only register. It is
essential to note that if a bit manipulation instruction, the INC instruction, the DEC instruction, or the
DBNZ instruction is used to write data to the write-only register, bits other than the speciÞed bits will be
set. The following instructions are used with T1LR.

¥ MOV ¥ MOV @

¥ ST ¥ ST @

¥ POP

¥ Timer 1 Low Compare Data Register (T1LC)

This is the compare data register for the Timer 1 Low (T1L) register.

If ELDT1C (bit 4 of T1CNT) is set, the data that is set in this register is transferred to the pulse generator
control circuit (compare circuit) the next time that T1L overßows (if T1LONG = 0) or the next time that T1H
overßows (if T1LONG = 1). When T1LRUN = 0, the value of T1LC is always transferred to the pulse
generator control circuit.

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

T1L 11BH R T1L7 T1L6 T1L5 T1L4 T1L3 T1L2 T1L1 T1L0

After reset 0 0 0 0 0 0 0 0

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

T1LR 11BH W T1LR7 T1LR6 T1LR5 T1LR4 T1LR3 T1LR2 T1LR1 T1LR0

After reset 0 0 0 0 0 0 0 0
VMD-56

3. Peripheral System Configuration
¥ Timer 1 High Register (T1H)

The Timer 1 High register is an 8-bit timer. This register operates either according to the cycle clock or
overßows in T1L (T1LOVF).

When T1H overßows, the T1H overßow ßag is set. Note that in mode 3, this register is used to generate
pulse signals.

¥ Timer 1 High Reload Register (T1HR)

The Timer 1 High Reload register is the reload register for the Timer 1 High (T1H) register.

Each time that T1H overßows and T1HRUN = 0, the reload data is reloaded into T1H. Note that in mode
3, this register is used to generate pulse signals.

T1H and T1HR share the same address. T1H is a read-only register, and T1HR is a write-only register. It is
essential to note that if a bit manipulation instruction, the INC instruction, the DEC instruction, or the
DBNZ instruction is used to write data to the write-only register, bits other than the speciÞed bits will be
set. The following instructions are used with T1HR.

¥ MOV ¥ MOV @

¥ ST ¥ ST @

¥ POP

¥ Timer 1 High Compare Data Register (T1HC)

This is the compare data register for the Timer 1 High (T1H) register.

The data that is set in this register is transferred to the pulse generator control circuit (compare circuit)
according to the same timing as T1LC.

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

T1LC 11AH R/W T1LC7 T1LC6 T1LC5 T1LC4 T1LC3 T1LC2 T1LC1 T1LC0

After reset 0 0 0 0 0 0 0 0

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

T1H 11DH R T1H7 T1H6 T1H5 T1H4 T1H3 T1H2 T1H1 T1H0

After reset 0 0 0 0 0 0 0 0

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

T1HR 11DH W T1HR7 T1HR6 T1HR5 T1HR4 T1HR3 T1HR2 T1HR1 T1HR0

After reset 0 0 0 0 0 0 0 0

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

T1HC 11CH R/W T1HC7 T1HC6 T1HC5 T1HC4 T1HC3 T1HC2 T1HC1 T1HC0

After reset 0 0 0 0 0 0 0 0
VMD-57

Visual Memory Unit (VMU) Hardware Manual
3.5 Circuit Configuration and Description of Operation

¥ Timer 1 Mode Settings

¥ Mode 0: 8-bit reload timer x 2 channels

When in mode 0, Timer 1 functions as two 8-bit reload timers. The relationship between the timer values
and the value set in the reload register (T1LR) is as shown below.

ime until T1HOVF is set (1) (decimal) = (256 - T1HR setting) x Tcyc

Time until T1LOVF is set (1) (decimal) = (256 - T1LR setting) x Tcyc

Tcyc: Cycle clock cycle

If the counter control bit (T1HRUN, T1LRUN) is set, the counting operation starts; if the bit is reset, the
counting operation stops and the contents of the reload register (T1HR, T1LR) are transferred to the counter
(T1H, T1L). If Timer 1 (T1H, T1L) overßows, the overßow ßag (T1HOVF, T1LOVF) is set, and the contents
of the reload register (T1HR, T1LR) are transferred to the counter (T1H, T1L).

In addition, if the overßow ßag (T1HOVF, T1LOVF) and the interrupt request enable ßag (T1HIE, T1LIE)
are both set, then an interrupt request is sent to the interrupt control circuit.

Figure 3.13 Circuit Configuration of 8-bit Reload Timer x 2 Channels

Mode Clock Cycle T1LONG P17FCR P17DDR P17

0 Tcyc 0 0 X X

1 Tcyc 0 1 1 0

2 Tcyc,1/2Tcyc 1 0 X X

3 Tcyc,1/2Tcyc 1 1 1 0
VMD-58

3. Peripheral System Configuration
¥ Mode 0 Program Example

¥ Mode 1: 8-bit reload timer + 8-bit pulse generator

¥ 8-bit reload timer

The upper 8 bits of Timer 1 operate as an 8-bit reload timer. The relationship between the timer value and
the reload register (T1HR) setting is as shown below.

Time until T1HOVF is set (1) (decimal) = (256 - T1HR setting) x Tcyc

Tcyc : Cycle clock cycle

The data in the reload register is loaded into the counter T1H at each interval at which T1HOVF is set. In
addition, the timer operation continues until the T1H count control bit (T1HRUN) is reset. The operation
method is the same as for mode 0.

Figure 3.14 Block Diagram for Mode 1: 8-bit Reload Timer (T1H)
VMD-59

Visual Memory Unit (VMU) Hardware Manual
¥ 8-bit pulse generator

The compare circuit compares the value of T1L, which was counting according to the cycle clock starting
from the reloaded value, with the value in the compare data register T1LC. This circuit outputs a "0" until
the values match, at which point it outputs a "1;" this output continues until T1L overßows.

The pulse signal cycle is determined by the reload register T1LR. The relationship between the counter
value and the pulse output waveform is shown in Fig. 3-4.

The pulse output waveform is determined by the value of the compare data register T1LC and the reload
register T1LR. There is a delay in the pulse signal cycle from when the compare data register T1LC is
overwritten until the pulse output according to that data is obtained.

Each time that T1L overßows, the T1L overßow ßag (T1LOVF) is set. the relationship with the pulse output
signal is as shown below.

Pulse output signal low level pulse width (decimal)

= (T1LC setting - T1LR setting) x Tcyc

Pulse output signal cycle (decimal) = (256 - T1LR setting) x Tcyc

Tcyc: Cycle clock cycle

Note:
¥ Programs must be written in such a manner that T1LC >= T1LR is always true.

Figure 3.15 Relationship Between Counter Value and Pulse Generator Output Waveform
VMD-60

3. Peripheral System Configuration
Figure 3.16 Block Diagram for Mode 1: 8-bit Pulse Generator

¥ Mode 1 (Pulse Output) Program Example
VMD-61

Visual Memory Unit (VMU) Hardware Manual
¥ Mode 2: 16-bit reload timer

In this mode, T1 operates as a 16-bit reload timer. To start the timer, set T1LRUN and T1LONG
simultaneously. Use the MOV instruction to set these bits.

Either the cycle clock (Tcyc) or the cycle clock divided by 2 (1/2Tcyc) can be selected for the T1L clock cycle
(Ttc). The settings are as shown below.

Ttc = Tcyc : T1HRUN=1oCT1LRUN=1, T1LONG =1

Ttc = 1/2Tcyc : T1HRUN=0oCT1LRUN=1, T1LONG =1

The relationship between the timer value and the value set in the reload registers (T1HR, T1LR) is as shown
below. It is important to note that these relationships differ from those of Timer/Counter 0 (T0).

Time until T1HOVF is set (1) (decimal)

= (256 - T1HR setting) x (256 - T1LR setting) x Ttc

Time until T1LOVF is set (1) (decimal) = (256 - T1LR setting) x Ttc

Ttc: T1L clock cycle (Tcyc or 1/2 Tcyc)

Each time that T1LOVF is generated, the reload data (T1LR) is transferred to T1L; each time that T1HOVF
is generated, the reload data (T1HR) is transferred to T1H. Counting continues until the count control bit is
reset. The operation method is the same as for mode 0.

Read the Timer 1 (T1) data according to the following procedure:

T1L LD T1L ; Read T1L data (1).

 ¯ ST 020H

T1H LD T1H ; Read T1H data.

 ¯ ST 021H

T1L LD T1L ; Read T1L (2) data again.

 ¯ BP T1L,7,DES ; When bit 7 of T1L (2) is "0" and

BN 020H,7,DES ; bit 7 of T1L (1) is "1"...

ST 020H

T1H LD T1H : Read T1H (2).

ST 021H

 DES: á á next program

Figure 3.17 Block Diagram for Mode 2: 16-bit Reload Timer
VMD-62

3. Peripheral System Configuration
¥ Mode 2 Program Example

¥ Mode 3: Variable bit length pulse generator (9 to 16 bits)

In mode 3, Timer 1 (T1L, T1H) functions as a variable bit length pulse generator. The length can vary from
9 to 16 bits, set by T1HR.

In order to run the pulse generator, select "16 bits" (T1LONG = 1) for the Timer 1 bit length and set the T1L
count control bits (T1LRUN). If the length has been selected as 16 bits, then the control bit T1LRUN controls
starting and stopping for all 16 bits. Use the MOV instruction in order to set the Timer 1 Control Register
(T1CNT) bits simultaneously.

Either the cycle clock (Tcyc) or the cycle clock divided by 2 (1/2Tcyc) can be selected as the clock cycle (Ttc)
for the pulse generator. The settings are as shown below.

Ttc = Tcyc : T1HRUN= 1, T1LRUN = 1, T1LONG =1

Ttc = 1/2Tcyc : T1HRUN= 0, T1LRUN = 1, T1LONG = 1

Each time that T1L overßows, the T1L overßow ßag (T1LOVF) is set; each time that T1H overßows, the
T1H overßow ßag (T1HOVF) is set. Counting continues until the count control bit is reset.

The relationship between the timer value and the value set in the reload registers (T1HR, T1LR) is
as follows.

Time until T1HOVF is set (1) (decimal)

= (256 - T1HR setting) x (256 - T1LR setting) x Ttc

Time until T1LOVF is set (1) (decimal) = (256 - T1LR setting) x Ttc

Ttc: T1L clock cycle (Tcyc or 1/2 Tcyc)
VMD-63

Visual Memory Unit (VMU) Hardware Manual
The Þgure below shows an example of a signal that is output from the P17/pulse signal output pin in mode 3.

Figure 3.18 Mode 3 Pulse Signal Output Waveform

The output signal repeats large interval P, in which small interval T is repeated 256 times.

The number of times that small interval T is repeated is set by T1HR. The "L" level width in small interval
T is set by T1LC in the same manner as in mode 1, with the minimum unit being Ttc. In addition, the total
"L" level width [sigma]TL within the large interval P is set by T1LC and T1HC. In addition, the data that
can be acquired by T1HC is limited by the value of T1HR.

For details on the relationship between the output waveform and T1HC and T1LC, refer to Appendix 1,
"Variable Bit Length Pulse Generator."

The relationship between the pulse generator bit length and the values of T1LR and T1HR, and the values
of T1LC and T1HC are shown in Table below. T1LR is set to 00H.

Table 2.5 Relationship Between Bit Length and T1H/L Register

X: indicates valid bits.

Pulse Pulse bit length setting (binary) (deleted) "L" level pulse width setting (binary)

Bit length Value of T1HR Value of T1LR Value of T1LC (upper bits) Value of T1HC (lower bits)

16 0000 0000 0000 0000 XXXX XXXX XXXX XXXX

15 1000 0000 0000 0000 XXXX XXXX XXXX XXX0

14 1100 0000 0000 0000 XXXX XXXX XXXX XX00

13 1110 0000 0000 0000 XXXX XXXX XXXX X000

12 1111 0000 0000 0000 XXXX XXXX XXXX 0000

11 1111 1000 0000 0000 XXXX XXXX XXX0 0000

10 1111 1100 0000 0000 XXXX XXXX XX00 0000

9 1111 1110 0000 0000 XXXX XXXX X000 0000
VMD-64

3. Peripheral System Configuration
For example, if the bit length is set to 16 bits, large interval P consists of 256 repetitions of small interval T:

TP = 256 x T

Because small interval T is 256 times Ttc (1/2 or 1/1 of cycle clock), the following is true:

TP =256 x 256 x Ttc=65536 x Ttc

The total "L" level cumulative pulse width oTL+ in large interval P is set by T1HC.

oTL + o[T1HC]oTtc

Because the "L" level of small interval T can be set by T1LC, the total "L" level interval width oTL becomes:

oTL = (256 x [T1LC] x [T1HC]) x Ttc

When T1LC = 03H and T1HC = 0B4H, the following is true:

oTL = (256 x 03o{180) x Tcyc=948 x Ttc

The "L" level ratio RL is:

RLooTL /TPo948/65536 @1.447o

Furthermore, when T1LC = 0FFH and T1HC = 0FFH, the "L" level ratio becomes:

RL =oTL /TP =65535/65536 @ 99.998o

The relationship between the pulse bit length and the pulse width that can be set is shown below.

¥ Large interval P cycle TP

 TP o2[BIT]oTtc

¥ Total "L" level pulse width oTL within large interval P

oTL o(2[BIT] x [T1LC]/256 + [T1HC]) x Ttc

* T1HC and T1LC are represented in decimal notation.

* [T1HC] is the valid bit value.

Table 2.6 Relationship Between Bit Length, Pulse Width and Precision

Bit length
[BIT] T1LC T1HC ∑TL TP[Ttc] Precision

min. max. min. max. min. max.

16 0 255 0 255 0 65535 65535 1/65535

15 0 255 0 127 0 32767 32767 1/32767

14 0 255 0 63 0 16383 16383 1/16383

13 0 255 0 31 0 8191 8191 1/ 8191

12 0 255 0 15 0 4095 4095 1/ 4095

11 0 255 0 7 0 2047 2047 1/ 2047

10 0 255 0 3 0 1023 1023 1/ 1023

9 0 255 0 1 0 511 511 1/ 511
VMD-65

Visual Memory Unit (VMU) Hardware Manual
* T1HC indicates the value of the valid bits indicated by Table on previous page. for example, when the length is 11
bits, the bits from bit 7 to bit 5 are valid, so the maximum value is "7."

Example: Settings (in binary) when using the generator as a 14-bit pulse generator

¥ Value of T1HR: 1100 0000 B

¥ Value of T1LR: 0000 0000 B

¥ Values set in the 14 bits of the pulse generator

For details on the relationship between the output waveform and T1HC and T1LC, refer to Appendix 1, "Variable
Bit Length Pulse Generator."

Note:
¥ Follow the procedure described below when setting the "L" level pulse width.
① Set the data update enable ßag ELDT1C to "0."
② Overwrite T1LC and T1HC.
➂ Set the data update enable ßag ELDT1C to "1."
¥ The delay after the values of T1HC and T1LC are overwritten until the waveform based on the new
data is output is the time required for the maximum pulse after ELDTIC = "1" is set.
¥ When using 16-bit mode, select either the cycle clock or the cycle clock divided by 2 for the clock.
Ttco Tcyc : T1HRUN=1oCT1LRUN=1oCT1LONG=1
Ttco 1/2Tcyc : T1HRUN=0oCT1LRUN=1oCT1LONG=1
VMD-66

3. Peripheral System Configuration
Figure 3.19 Block Diagram for Mode 3: Variable Bit Length Pulse Generator

¥ Mode 3 Program Example
VMD-67

Visual Memory Unit (VMU) Hardware Manual
4. Base Timer

4.1 Overview

POTATO's built-in base timer is a 14-bit binary up-counter that has the four functions listed below

¥ Clock timer

¥ 14-bit binary up counter

¥ Fast forward mode (when using a 6-bit base timer)

4.2 Function

¥ Clock timer

When the 32.768Khz sub-clock is used for the count clock for the base timer, time can be measured in
0.5-second intervals. The input signal is used to specify "sub clock" as the count clock for the base timer.

¥ 14-bit binary up counter

The 8-bit binary up counter and the 6-bit binary up counter can be used as a 14-bit binary up counter. These
counters can be cleared by software.

¥ Fast forward mode (when using the 6-bit base timer)

If the 6-bit base timer is used, time can be measured in approximately 2ms intervals when the 32.768KHz
sub-clock is used for the count clock. The bit length can be selected through the Base Timer Control Register
(BTCR).

¥ Interrupt generation

When the interrupt request enable bit is set and an interrupt request is generated from the base timer, an
interrupt request to vector address 001BH is generated. There are two types of interrupt requests from the
base timer: "base timer interrupt 0" and "base timer interrupt 1."

In order to control the base timer, it is necessary to manipulate the following Special Function Registers:

¥ BTCR ¥ ISL

¥ P1DDR ¥ P1

¥ P1FCR

¥ Timer 0-related ¥ Interrupt related
VMD-68

3. Peripheral System Configuration
4.3 Circuit Configuration

The base timer conÞguration is shown in Fig. below.

¥ 8-bit binary up counter ááááá (1)

The input for this up counter is the signal selected by the Input Signal Select register (ISL).

This counter creates the 4KHz/2KHz buzzer output signal, and generates the base timer interrupt 1 source.
The overßow event of this timer serves as a clock for the 6-bit binary counter.

¥ 6-bit binary up counter ááááá(2)

The input for this 6-bit up counter is the signal selected by the ISL Special Function Register, or the overßow
signal from the 8-bit counter. This counter generates the base timer interrupt 0 and 1 sources. Switching the
input clock is handled through the Base Timer Control Register (BTCR).

¥ Base timer input clock source ááááá(3)

The base timer input clock is selected through the Input Signal Select register (ISL) from among " cycle
clock," "timer 0 prescaler," or "sub-clock."

Figure 3.20 Base Timer Block Diagram
VMD-69

Visual Memory Unit (VMU) Hardware Manual
4.4 Related Registers

¥ Base Timer Control register (BTCR)

*In the VMU, game software is prohibited from accessing BTVR7, BTCR6, and BTCR0. Bit manipulation instructions
must always be used when accessing this register.

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

BTCR 17FH R/W BTCR7 BTCR6 BTCR5 BTCR4 BTCR3 BTCR2 BTCR1 BTCR0

After reset 0 0 0 0 0 0 0 0

Bit name Function

BTCR7 (bit 7) Base timer interrupt 0 cycle control

0: 16384/fBST

BTCR6 (bit 6) Base timer operation control

1: Base timer operation start

BTCR5 (bit 5)

BTCR4 (bit 4)

Base timer interrupt 1 cycle control

BTCR7 BTCR5 BTCR4

x

x

0

0

0

0

1

1

0

1

0

1

32/fBST

128/fBST

512/fBST

2048/fBST

BTCR3 (bit 3) Base timer interrupt 1 source

0: No interrupt source

1: Interrupt source

BTCR2 (bit 2) Base timer interrupt 1 request enable control

0: Interrupt request disable

1: Interrupt request enable

BTCR1 (bit 1) Base timer interrupt 0 source

0:No interrupt source

1:Interrupt source

BTCR0 (bit 0) Base timer interrupt 0 request enable control

1:Interrupt source
VMD-70

3. Peripheral System Configuration
BTCR7 (bit 7): Base timer interrupt 0 cycle control Fixed at "0"

This bit selects either 64/fBST (1) or 16384f/BST (0) as the base timer
interrupt 0 source generation cycle. When this bit is set to "0," the
interrupt 0 source is generated by an overßow in the 14-bit counter,
and the interrupt source generation interval is 16384/fBST. When
using fast forward mode, set "1."

BTVR6 (bit 6): Base timer operation control Fixed at "1"

This bit starts (1)/stops (0) the base timer counting operation. When
this bit is set to "1," the 14-bit counter counts up; when this bit is set to
"0," the 14-bit counter is cleared and then stopped.

BTCR5 (bit 5): Base timer interrupt 1 cycle control

BTCR4 (bit 4): These bits select the base timer interrupt 1 source generation cycle.

fBST: Input clock frequency

BTCR3 (bit 3): Base timer interrupt 1 source ßag

This bit is set at each interval when the base timer 1 source is generated according to the settings of BTCR7,
5, and 4, and does not change when the source is not generated.
Therefore, this bit must be reset by software.

BTCR2 (bit 2): Base timer interrupt 1 request enable control

This bit enables (1)/disables (0) interrupt requests through base timer
interrupt 1. If this bit is set to "1," then when the base timer 1 interrupt
source is generated an interrupt request to vector address 001BH is
generated; if this bit is set to "0," then no interrupt requests are
generated.

BTCR1 (bit 1): Base timer interrupt 0 source ßag

This bit is set at each interval when the base timer 0 source is
generated according to the setting of BTCR7, and does not change
when the source is not generated. Therefore, this bit must be reset by
software.

BTCR0 (bit 0): Base timer interrupt 0 request enable control Fixed at "0"

This bit enables (1)/disables (0) interrupt requests through base timer
interrupt 0. If this bit is set to "1," then when the base timer 0 interrupt
source is generated an interrupt request to vector address 001BH is
generated; if this bit is set to "0," then no interrupt requests are
generated.

BTCR7 BTCR5 BTCR4 Base timer interrupt 1 cycle

x 0 0 32/fBST

x 0 1 128/fBST

0 1 0 512/fBST

0 1 1 2048/fBST
VMD-71

Visual Memory Unit (VMU) Hardware Manual
Note:
¥ When BTCR7 and 5 = 1 (fast forward mode), do not select both the system clock and the base time clock
simultaneously.
¥ When overwriting BTCR5 and 4, note that BTCR3 may be set to "1" as a result.
¥ If either the cycle clock or the sub-clock was selected as the base timer clock source, and then
HOLD mode is set while the base timer is still running, then the base timer might miscount due to
the effects of unstable oscillation that initially occurs when the main clock and sub-clock start to oscillate
after HOLD mode is cancelled. When entering HOLD mode, therefore, stopping the base timer is
recommended.

¥ Input Signal Select register (ISL)

For details, refer to Chapter 3, section 3.2.4, "Input Signal Select Register."

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ISL 15FH R/W - - ISL5 ISL4 ISL3 ISL2 ISL1 ISL0

After reset 0 0 0 0 0 0 H H

Bit name Function

ISL5 (bit 5)

ISL4 (bit 4)

Base timer clock selection

ISL5 ISL4

X 0 Sub-clock (quartz oscillation) fixed

ISL3 (bit 3) Buzzer output frequency selection

0: fBST/16 fixed

ISL2 (bit 2)

ISL1 (bit 1)

Noise elimination filter time constant selection

ISL2 ISL1 Time constant

1

0

X

1

1

0

16Tcyc

64Tcyc

1Tcyc

ISL0 (bit 0) T0 clock input pin selection

0: P72/INT2/T0IN pin

1: P73/INT3/T0IN pin
VMD-72

3. Peripheral System Configuration
4.5 Using the Base Timer

¥ Clock timer
VMD-73

Visual Memory Unit (VMU) Hardware Manual
5. Serial Interface

5.1 Overview

POTATO has a built-in 2-channel synchronous serial interface with an 8-bit data length that uses port 1. Because the
next-generation game machine interface also uses port 1, use of the next-generation game machine interface must
be prohibited by software if the synchronous serial interface is being used. The main functions of this interface are
listed below.

¥ 2-channel synchronous serial interface

¥ Transfer clock selection function

¥ Serial interface SIO0 transfer clock polarity switching function

¥ LSB-Þrst/MSB-Þrst switching function

¥ Operation mode switching function

¥ Overrun detection function

¥ Transfer bit length control function

5.2 function

¥ 2-channel synchronous serial interface

Two serial interfaces are provided, with SIO0 using P10 through 12 as I/O pins and SIO1 using P13 through
15 as I/O pins.

Normally, in the VMU SIO0 is uses ad the master and SIO1 is used as the slave.

¥ Transfer clock selection function

One of the following three clocks can be selected. In addition, the polarity of the transfer clock for SIO0 only
can be selected.

¥ Internal clock

¥ External clock

¥ Software clock

¥ Serial interface SIO0 transfer clock polarity switching function (bus can be supported)

The polarity of the transfer clock SCK0 for serial interface SIO0 can be switched.

① When operation is stopped, SCK0 = 1 and data output is maintained

② When operation is stopped, SCK0 = 0 and data output is bit 0 of SBUF0

¥ LSB-Þrst/MSB-Þrst switching function

It is possible to switch between starting transfers from the LSB or the MSB in data communications over the
serial interface. This setting can be made separately for each channel.

¥ Overrun detection function

This function generates an error when a clock that exceeds 8 bits is received.

¥ Transfer bit length control function

This function selects whether to stop operation after 8 bits have been transferred, or to continue transfer
operations after 8 bits have been transferred.
VMD-74

3. Peripheral System Configuration
¥ Interrupt generation

When the interrupt request enable bit is set, the SIO0 and SIO1 interrupt requests are generated by
overßows in an octal counter.

In order to control the serial interfaces, it is necessary to manipulate the following Special Function
Registers:

¥SCON0 ¥ SCON1 ¥ SBR

¥SBUF0 ¥ SBUF1

¥P1 ¥ P1DDR ¥ P1FCR

5.3 Circuit Configuration

The conÞguration of the serial interfaces is shown in Fig. below.

¥ Shift register ááááá ①

This consists of an 8-bit shift register (SBUF0 and 1), and operates according to the speciÞed clock.

¥ Octal counter ááááá ②

This counts the shift clock and detects the end of transfers.

¥ Baud rate generator ááááá ➂

This consists of an 8-bit register (SBR) for setting data and an 8-bit reload counter. If "internal clock" is
selected for the transfer clock, data transfers are executed according to the clock that is generated here. This
baud rate generator is used for both SIO0 and SIO1.

¥ Polarity switching circuit

This circuit controls the polarity of the transfer clock before and after serial transfer.
VMD-75

Visual Memory Unit (VMU) Hardware Manual
Figure 3.21 Serial Interface (SIO0) Block Diagram

Figure 3.22 Serial Interface (SIO1) Block Diagram
VMD-76

3. Peripheral System Configuration
5.4 Related Registers

¥ SIO0 control register (SCON0)

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 ÉrBit 3 Bit 2 Bit 1 Bit 0

SCON0 130H R/W SCON07 SCON06 - SCON04 SCON03 SCON02 SCON01 SCON00

After reset H 0 0 0 0 0 0 0

Bit name Function

SCON07 (bit 7) Polarity control

0: When operation is stopped, SCK0 = 1 and data output is maintained

1: When operation is stopped, SCK0 = 0 and data output is bit 0 of SBUF0

SCON06 (bit 6) Overrun flag

0: No overrun

1: Overrun

SCON04 (bit 4) Transfer bit length control

0: 8-bit transfer

1: Continuous transfer

SCON03 (bit 3) Transfer control

0: 0: LSB-first

1: MSB-first

SCON02 (bit 2) LSB-/MSB-first select

0: LSB-first

1: MSB-first

SCON01 (bit 1) Serial transfer end flag

0: Transfer in progress

1: Transfer completed

SCON00 (bit 0) Interrupt request enable

0: Interrupt request disabled

1: Interrupt request enabled
VMD-77

Visual Memory Unit (VMU) Hardware Manual
SCON07 (bit 7): SCK0 polarity control

This bit controls the polarity of the transfer clock SCK0 that is used by
SIO0. When "1" is set, SCK0 becomes "0" when operation of SIO0 has
stopped, and bit 0 of SBUF0 is output. This mode permits bus support.
When "0" is set, SCK0 becomes "1" when operation of SIO0 has
stopped, and the last data that was transferred is maintained on the
output.

SCON06 (bit 6): Overrun ßag

This ßag is used to detect a serial transfer error on SIO0. If a transfer
clock is received (a falling edge is detected) after the transfer of 8 bits
of data has been completed (SCON01 has been set to "1"), this ßag is
set. In addition, when executing a continuous transfer, the overrun
ßag is set after every eight bits. This bit is not reset automatically; it
must be reset by software.

SCON04 (bit 4): Transfer bit length control

This bit selects the SIO0 transfer data bit length: continuous (1) or 8
bits (0). When this bit is set to "1," two or more 8-bit bytes of data can
be sent consecutively. This ßag does not change after a transfer; it
must be reset by software. When this bit is set to "0," eight bits of data
can be transferred.

SCON03 (bit 3): SIO0 operation control

This bit starts (1)/stops (0) SIO0 transfer. When this bit is set to "1," an
8-bit serial transfer on SIO0 starts; when the transfer is completed, this
bit is reset. When this bit is set to "0," SIO0 operation stops.

SCON02 (bit 2): LSB-/MSB-Þrst select

This bit selects whether to start the transfer of data from the MSB (1)
or the LSB (0). When this bit is set to "1," the MSB is transferred Þrst;
when this bit is set to "0," the LSB is transferred Þrst. This setting
applies to both transmitting and receiving.

SCON01 (bit 1): SIO0 transfer end ßag

This ßag is used to detect the end of a serial transfer. This ßag is set
when an 8-bit serial transfer is completed. This bit is not reset
automatically; it must be reset by software. If the falling edge of
a transfer clock is detected while this bit is set to "1," the overrun
ßag is set.

SCON00 (bit 0): SIO0 interrupt request enable control

This bit enables (1)/disables (0) interrupt requests due to the end of a
transfer on SIO0. When this bit is set to "1," an interrupt request to
vector address 0033H is generated; when this bit is set to "0," no
interrupt request is generated.

Note:
¥ The transfer end ßag is set to "1" when the transfer of 8 bits is completed, without regard for the
transfer bit length setting. The overrun ßag has no effect on the operation of the microcomputer.
VMD-78

3. Peripheral System Configuration
¥ SIO1 control register (SCON1)

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

SCON1 134H R/W - SCON16 - SCON14 SCON13 SCON12 SCON11 SCON10

After reset H 0 H 0 0 0 0 0

Bit name Function

SCON16 (bit 6) Overrun flag

0: No overrun

1: Overrun

SCON14 (bit 4) Transfer bit length control

0: 8-bit transfer

1: Continuous transfer

SCON13 (bit 3) Transfer control

0: Transfer stop

1: Transfer start

SCON12 (bit 2) LSB-/MSB-first select

0: LSB-first

1: MSB-first

SCON11 (bit 1) Serial transfer end flag

0: Transfer in progress

1: Transfer completed

SCON10 (bit 0) Interrupt request enable

0: Interrupt request disabled

1: Interrupt request enabled
VMD-79

Visual Memory Unit (VMU) Hardware Manual
SCON16 (bit 6): Overrun ßag

This ßag is used to detect a serial transfer error on SIO1. If a transfer
clock is received (a falling edge is detected) after the transfer of 8 bits
of data has been completed (SCON11 has been set to "1"), this ßag is
set. In addition, when executing a continuous transfer, the overrun
ßag is set after every eight bits. This bit is not reset automatically; it
must be reset by software.

SCON14 (bit 4): Transfer bit length control

This bit selects the SIO1 transfer data bit length: continuous (1) or 8
bits (0). When this bit is set to "1," two or more 8-bit bytes of data can
be sent consecutively. This ßag does not change after a transfer; it
must be reset by software. When this bit is set to "0," eight bits of data
can be transferred. In this case, the transfer end ßag (SCON11) is set
when the transfer of 8 bits is completed.

SCON13 (bit 3): SIO1 operation control

This bit starts (1)/stops (0) SIO1 transfer. When this bit is set to "1," an
8-bit serial transfer on SIO1 starts; when the transfer is completed, this
bit is reset. When this bit is set to "0," SIO1 operation stops.

SCON12 (bit 2): LSB-/MSB-Þrst select

This bit selects whether to start the transfer of data from the MSB (1)
or the LSB (0). When this bit is set to "1," the MSB is transferred Þrst;
when this bit is set to "0," the LSB is transferred Þrst. This setting
applies to both transmitting and receiving.

SCON11 (bit 1): SIO1 transfer end ßag

This ßag is used to detect the end of a serial transfer. This ßag is set
when an 8-bit serial transfer is completed. This bit is not reset
automatically; it must be reset by software. If the falling edge of a
transfer clock is detected while this bit is set to "1," the overrun ßag
is set.

SCON10 (bit 0): SIO1 interrupt request enable control

This bit enables (1)/disables (0) interrupt requests due to the end of a
transfer on SIO1. When this bit is set to "1," an interrupt request to
vector address 003bH is generated; when this bit is set to "0," no
interrupt request is generated.

Note:
¥ The transfer end ßag is set to "1" when the transfer of 8 bits is completed, without regard for the
transfer bit length setting. The overrun ßag has no effect on the operation of the microcomputer.
VMD-80

3. Peripheral System Configuration
¥ Baud Rate Generator Register (SBR)

This register sets the transfer rate when using the internal clock for the transfer clock. This value is shared by both
SIO0 and SIO1. The transfer rate TSBR is derived according to the following equation:

¥ Serial Buffer 0 (SBUF0)

This register stores each 8 bits of data handled in a serial transfer on SIO0.

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

SBR 132H R/W SBR7 SBR6 SBR5 SBR4 SBR3 SBR2 SBR1 SBR0

After reset 0 0 0 0 0 0 0 0

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

SBUF0 131H R/W SBUF07 SBUF06 SBUF05 SBUF04 SBUF03 SBUF02 SBUF01 SBUF00

After reset 0 0 0 0 0 0 0 0
VMD-81

Visual Memory Unit (VMU) Hardware Manual
¥ Serial Buffer 1 (SBUF1)

This register stores each 8 bits of data handled in a serial transfer on SIO1.

¥ Next-generation game machine dedicated interface circuit

The separate function described above uses port 1 as the I/O port for the next-generation game machine
dedicated interface. The next-generation game machine dedicated interface and the synchronous serial
interface cannot be used simultaneously.

Note:
Note the following points when conducting serial communications through the serial interface:
1 Do not make settings concerning serial communications while the unit is in the reset state.
2 ConÞrm the connection between two VMU units before making settings concerning serial
communications.
The connection between two VMU units can be conÞrmed through the value of port 7. When two VMU
units are connected, the values of certain bits in port 7 are as follows:

PORT7 bit3 = Ô1Õ
PORT7 bit2 = Ô0Õ

3 When serial communications processing is completed, or if two VMU units are not connected, make
the following settings:

SCON0 = 00h
SCON1 = 00h
P1FCR = 0BFh
P1DDR = 0A4h

The unit may not operate correctly if the settings for executing serial communications are made when
two VMU units are not connected.

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

SBUF1 135H R/W SBUF17 SBUF16 SBUF15 SBUF14 SBUF13 SBUF12 SBUF11 SBUF10

After reset 0 0 0 0 0 0 0 0
VMD-82

3. Peripheral System Configuration
5.5 Serial Interface Operation

A serial transfer on a serial interface is initiated by setting the communications control bit (SCON03, SCON13) or
the transfer bit length selection bit (SCON04, SCON14). There are two transfer modes:

¥ Normal mode

Two data lines and one clock line are used for data communications in this mode. SI is the data input line,
and SO is the data output line. This mode is the general-purpose transfer method, and is suited for
communications with a speciÞc partner.

Use normal mode when connecting two VMU units.

¥ Bus mode (deleted)

Figure 3.23 Connection between VMU Units

The transfer mode is set by manipulating the Special Function Registers associated with port 1. (Refer to
Table 3-5-1.) In addition, SIO0 and SIO1 can each be set to either normal mode or bus mode independently.

¥ Serial transfer timing

The data in the shift register is shifted in synchronization with the falling edge of the serial clock SCK0 or
SCK1, and is output on the SO0 or SO1 pin. The data that is input on the SI0 or SI1 pin is loaded into the
shift register at the rising edge of the serial clock.
VMD-83

Visual Memory Unit (VMU) Hardware Manual
5.6 Operation Mode Settings

¥ Normal mode

It is necessary to reset the port latch data corresponding to the output pin or the transfer clock when using
the internal clock. The pins that are used in normal mode are shown in the table below.

Table 2.7 Pins Used in Normal Mode

Note:
Set SCKn high one Tcyc cycle before the start of transfer. If SCKn is set high less than one Tcyc cycle prior
to the start of transfer, the correct data will not be output.

Table 2.8 Settings for Port 1 for SIO0 (Special Function Registers)

*For the software clock, the program writes "0" and "1" in alternation to a port (P12), and that output is used as the transfer clock.

SIO0 SIO1

Input pin P11/SI0/SB0 P14/SI1/SB1

Output pin P10/SO0(P11/SI0/SB0) P13/SO1(P14/SI1/SB1)

Transfer clock P12/SCK0 P15/SCK1

Pin Function Special Function Register Value

P11/SI0/SB0

P10/SO0

RX

TX

P11DDR =0

P10 =0

P10DDR =1

P10FCR =1

P11/SI0/SB0

P10/SO0

RX

General-purpose I/O

P11DDR =0

P10FCR =0

Internal clock P12 =0

P12DDR =1

P12FCR =1
VMD-84

3. Peripheral System Configuration
Table 2.9 Settings for Port 1 for SIO1 (Special Function Registers)

*For the software clock, the program writes "0" and "1" in alternation to a port (P15), and that output is used as the transfer clock.

Figure 3.24 Signal Path in Normal Mode (Example for SIO1)

Note:
When setting Pn to output, set PnFCR to "1" before PnDDR. If PnDDR is set Þrst, "0" might be output on
Pn when PnDDR is set. This applies to both SIO0 and SIO1.

Pin Function Special Function Register Value

P14/SI11/SB1 RX P14DDR =0

P13/SO1 General-purpose I/O P13FCR =0
VMD-85

Visual Memory Unit (VMU) Hardware Manual
5.7 Serial Transfer Clock

The serial transfer clock uses the P12/SCK0 pin for SIO0, and the P15/SCK1 pin for SIO1. One of the following three
types of serial transfer clock can be selected independently for SIO0 and one for SIO1 through the application circuit.
In addition, in the case of SIO0 only, the polarity of the transfer clock can be switched.

¥ Internal clock

¥ External clock

¥ Software clock

¥ Internal clock

The transfer clock is generated by the serial transfer-dedicated baud rate generator (SBR) that is built into
the LSI. This clock is shared by both SIO0 and SIO1. When running either or both of the serial interfaces
according to the internal clock, it is necessary to operate the baud rate generator. In this case, the serial
transfer clock is output from the clock pin (P12/SCK0, P15/SCK1) of the serial interface that is running
according to the internal clock.

The relationship between the transfer rate and the baud rate generator setting is shown below. (The setting
is made with a decimal value.)

TSBR=(256 - [SBR setting]) x 2 x Tcyc (Tcyc: Cycle clock cycle)

Figure 3.25 Baud Rate Generator Configuration Diagram

Note:
When setting Pn to output, set PnFCR to "1" before PnDDR. If PnDDR is set Þrst, "0" might be output on
Pn when PnDDR is set. This applies to both SIO0 and SIO1.
VMD-86

3. Peripheral System Configuration
¥ External clock

Serial transfers are performed according to a clock that is input from outside of the LSI.

¥ Software clock

The program writes "0" and "1" in alternation to the port P12/SCK0 or P15/SCK1 pin, and that output is
used as the serial transfer clock.

Clock generation example

When using these transfer clocks, it is necessary to set the status of the P12/SCK0 or P15/SCK1 pin.

Table 2.10 Transfer Clock Settings

Note:
¥ At least 1/2 of a cycle is needed for the serial data and serial clock pulse width.
When using the sub-clock and external clock, caution is particularly essential. (When using a 32.768kHz
crystal resonator for the sub-clock, the cycle clock cycle is 366[micro]s, so a pulse width of at least
183[micro]s is required.)
¥ When outputting the serial clock from port 1, observe the following sequence when setting the port 1
registers. If this sequence is not observed, serial transfers will not be performed correctly.

(1) Set P1FCR.
(2) Set P1DDR.
(3) Set SCONn. (Set the transfer control bits.)

Pin Function Special Function Register value

P12/SCK0 Internal clock P12 =0
P12DDR =1
P12FCR =1

External clock P12DDR =0

Software clock P12 =0/1
P12DDR =1
P12FCR =0

P15/SCK1 Internal clock P15 =0
P15DDR =1
P15FCR =1

External clock P15DDR =0

Software clock P15 =0/1
P15DDR =1
P15FCR =0
VMD-87

Visual Memory Unit (VMU) Hardware Manual
5.8 Serial Transfer Timing

In a serial transfer, the transfer clock SCK0 is output at high level (SCK0 = 1) before and after an operation is
performed on the SIO0 (when SCON07 = 0) or SIO1 interface. In addition, the last data to be transferred is
maintained on the output pin. (Refer to Fig. 3-5-7.) However, the transfer clock SCK0 is output at low level (SCK0
= 0) before and after an operation is performed on the SIO0 interface when SCON07 = 1. In addition, bit 0 (SBUF00)
of Serial Buffer 0 (SBUF0) is output (and maintained at that level) on the output pin. (Refer to Fig. 3-5-8.) Note that
it is not possible to switch the polarity of the SIO1 interface.

SIO0

SIO1

When operation is stopped, SCK1 = 1 and data output is maintained

Figure 3.26 Transfer Clock and Output Data (1)

Figure 3.27 Transfer Clock and Output Data (2)

SCON07=0 When operation is stopped, SCK0 = 1 and data output is maintained

SCON07=1 When operation is stopped, SCK0 = 0 and data output is bit 0 of SBUF0
VMD-88

3. Peripheral System Configuration
5.9 LSB-/MSB-first Switching Function

When reading or writing the serial transfer buffer, it is possible to reverse the sequence from LSB to MSB. This
function can be used to switch between LSB-Þrst and MSB-Þrst. The switch is made through the Serial Transfer
Control Register (SCON0, SCON1), and is made before reading or writing the serial transfer buffer. In addition, if
the switch is made after reading or writing the serial transfer buffer, the transfer is made in the sequence that was
used when the buffer was read or written.

Figure 3.28 Correspondence Between the Serial Transfer Buffer and the Internal Bus When LSB-first Is Specified

Figure 3.29 Correspondence Between the Serial Transfer Buffer and the Internal Bus When MSB-first Is Specified
VMD-89

Visual Memory Unit (VMU) Hardware Manual
Figs. below show the timing charts for LSB-Þrst and MSB-Þrst serial transfer transmission and reception using SIO0.

Figure 3.30 Correspondence Between the Serial Transfer Buffer and the Internal Bus When LSB-first Is Specified

Figure 3.31 Correspondence Between the Serial Transfer Buffer and the Internal Bus When MSB-first Is Specified
VMD-90

3. Peripheral System Configuration
5.10 Overrun Detection Function

The overrun detection function detects serial communication errors. When the interrupt source ßag has been set
(SCON01, SCON11), the overrun ßag (SCON06, SCON16) is set at the falling edge of the transfer clock.

Fig. below shows the timing for normal communications and the timing when an overrun is generated. The
interrupt source ßag (SCON01, SCON11) is set at the rising edge of the transfer clock for the 8th bit of data. If, while
in this state, the falling edge of the transfer clock is detected, the overrun detection ßag is set. (Refer to the overrun
generation timing chart.)

Note that the overrun ßag has no effect on the operation of the microcomputer.

Note:
¥ Wait at least 1/2 of a transfer clock cycle after the interrupt source ßag has been set to "1" before
checking the overrun ßag.
¥ Even if the transfer mode that is set will exceed 8 bits, the overrun detection function operates
according to the same timing as for an 8-bit transfer.

Figure 3.32 Correspondence Between the Serial Transfer Buffer and the Internal Bus When LSB-first Is Specified
VMD-91

Visual Memory Unit (VMU) Hardware Manual
5.11 Transfer Bit Length Control Function

When transferring more than 8-bits of serial data, set the transfer bit length control bit SCON04 or SCON14
(continuous transfer).

¥ Once SCON04 and SCON14 have been set, the serial transfer begins. These bits are not reset even after 8
bits have been transferred.

¥ The interrupt source ßag is set according to the same timing as for an 8-bit transfer (after the completion
of the transfer of 8 bits).

¥ The overrun detection bits SCON06 and SCON16 are set at the falling edge of the serial clock after the
transfer of eight bits has been completed. (For the timing chart, refer to the section on the overrun
detection function.)

¥ When the transfer bit length has been set to 8 bits, the transfer starts once the transfer control bit SCON03
or SCON13 is set. Once the transfer of 8 bits has been completed, the transfer control bit is reset. This
causes the interrupt source ßag SCON01 or SCON11 to be set. In addition, serial transfer stops
automatically.

¥ When the transfer bit length has been set to "continuous transfer," the transfer starts once the transfer bit
length control bit SCON04 or SCON14 is set, and continues until the bit is reset. The interrupt source ßag
is set after 8 bits have been transferred.

5.12 Program Examples

¥ SIO0 serial transfer (1) (transmission example)

Transfer conditions

¥ 8-bit transfer

¥ Transfer data: 038H (8 bits)

¥ MSB-Þrst

¥ Falling edge output

¥ Normal mode

¥ Internal clock

¥ Baud rate: 25.6ms

¥ System clock: 32KHz crystal oscillating sub-clock

Working from the baud rate formula: T[SBR] = (256 - [SBR]) x 2 x Tcyc
\ [SBR] = 256 - T[SBR]/(2 x Tcyc)

In this case, T[SBR] = 25.6ms, and Tcyc = 366[micro]s, so the value that is to be set in the Baud Rate Generator
register (SBR) is determined as follows:
[SBR] = 256 - 25600/(2 x 366)

@ 221 (decimal) (approx.)

➔0DDH (hexadecimal)
VMD-92

3. Peripheral System Configuration
Figure 3.33 Timing for Serial Transfer (1)

¥ SIO1 serial transfer (2) (reception example)

Transfer conditions

¥ 16-bit transfer

¥ LSB-Þrst

¥ Bus mode

¥ External clock

¥ Same data is output from SO1 as from SB1.

¥ The upper 8 bits of the data that is loaded is stored in RAM at address #031H, and the lower 8 bits are
stored in RAM at address #030H.
VMD-93

Visual Memory Unit (VMU) Hardware Manual
Figure 3.34 Timing for Serial Transfer (2)

Note:
¥ In this example, misoperation will result if there is a rising edge (B) on the transfer clock during the
interval from the execution of the instruction following SELF0 to the execution of the SELF1 instruction.
The transfer rate should allow enough time for the cycle clock cycle.
¥ Set SCKn high one Tcyc cycle before the start of transfer. If SCKn is set high less than one Tcyc cycle
prior to the start of transfer, the correct data will not be output.
¥ When setting Pn to output, set PnFCR to "1" before PnDDR. If PnDDR is set Þrst, "0" might be output
on Pn when PnDDR is set. This applies to both SIO0 and SIO1.
VMD-94

3. Peripheral System Configuration
6. Dot Matrix LCD Controller/Driver

6.1 Overview

The LCD controller/driver automatically reads data that is stored in display RAM and generates the signals to
drive the dot matrix LCD. The display mode is a graphics mode in which one bit of data in display RAM
corresponds to one dot on the LCD.

The dot matrix LCD controller/driver consists of the following circuit blocks:

¥ Display RAM

¥ Display controller register

¥ LCD power supply circuit

6.2 Functions

¥ Display duty:1/33 duty

¥ Display bias:1/5 bias

¥ Graphics display

¥ Liquid crystal instruction:

Display: ON/OFF

¥ Graphics display

1584 dots can be displayed (1 chip)

In order to control the liquid crystal display, it is necessary to manipulate the following Special Function
Control Registers.

¥MCR : LCD on/off control

¥STAD : LCD start address control

¥CNR : Horizontal byte count control

¥TDR : Display duty control

¥VCCR : LCD contrast control

¥XBNK : Display RAM bank address control
VMD-95

Visual Memory Unit (VMU) Hardware Manual
6.3 Display RAM

Display RAM consists of three banks of 96 ́ 8 bits of static RAM. The LCD controller/driver reads data that is stored
in this display RAM and generates the signals to drive the dot matrix LCD. Before writing or reading data in display
RAM, set the system clock to RC oscillation.

6.4 Display Control Registers

¥ Mode Control Register (MCR)

This register controls the start/stop of LCD controller operation, cursor display, and the LCD clock division
ratio. The Mode Control Register is a write-only register. It is important to note that if a bit manipulation
instruction, an INC instruction, a DEC instruction, or a DBNZ instruction is used on a write-only register,
bits other than the speciÞed bits will be set. The following instructions are used with the MCR:

¥ MOV ¥ MOV @

¥ ST ¥ ST @

¥ POP

In addition, when accessing this register, bits 7 through 5 and bit 0 must be set to their Þxed values.

Symbol Address R/W Name Initial value Bank

XRAM 180H - 1FBH R/W Display RAM Undefined Bank

180H - 1FBH Bank

180H - 185H Bank

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

MCR 120H W MCR7 MCR6 MCR5 MCR4 MCR3 - - MCR0

After reset 0 0 0 0 0 0 0 0
VMD-96

3. Peripheral System Configuration
MCR7 (bit 7): LCD clock division selection
MCR6 (bit 6):
MCR5 (bit 5):

Always set MCR7 through MCR5 to "0."
MCR4 (bit 4): This bit controls whether or not to divide by 2 the LCD clock that was

selected by MCR7 through MCR5.

The frame frequency is:
1/2 cycle (MCR4 = 0): 82.7Hz
1/1 cycle (MCR4 = 1): 165.5Hz

 MCR3 (bit 3): LCD controller control
This bit controls LCD controller operation start (1)/stop (0).
When this bit is set to "1," the LCD controller begins to operate. When
this bit is set to "0," the LCD controller stops operating.

MCR0 (bit 0): Display mode selection
Select graphics mode (1) for the display mode.

Graphics display: MCR0 = 1

Bit name Function

MCR7 (bit 7)

MCR6 (bit 6)

MCR5 (bit 5)

LCD clock division selection

MCR7 MCR6 MCR5 Division ratio

0 0 0 1/1 * Always set MCR7 through MCR5 to "0."

MCR4 (bit 4) LCD clock divide-by-2 circuit selection

0: Selects the signal selected by MCR7 through MCR5, divided by 2, as the LCD clock

1: Selects the signal selected by MCR7 through MCR5, as is, as the LCD clock. (Direct
mode)

MCR3 (bit 3) LCD controller control

0: LCD controller stop

1: LCD controller start/continue

MCR0 (bit 0) Display mode selection

1: Graphics mode * Always set MCR4 = 1
VMD-97

Visual Memory Unit (VMU) Hardware Manual
¥ LCD display start address control register (STAD)

This register controls the LCD start address.

STAD7 (bit 7): LCD RAM display start address setting

 ¥

STAD0 (bit 0):

These bits set the starting address of the display data for the LCD. (XRAM 180H is
assumed as STAD = 00H.)

The data changes in two-byte units.

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

STAD 122H R/W STAD7 STAD6 STAD5 STAD4 STAD3 STAD2 STAD1 STAD0

After reset 0 0 0 0 0 0 0 0

Bit name Function

STAD7 (bit 7)

to

STAD0 (bit 0)

LCD RAM display start address setting

STAD7 STAD6 STAD5 STAD4 STAD3 STAD2 STAD1 STAD0 Start address

0

0

ê

1

0

0

ê

1

0

0

1

0

0

1

0

0

1

0

0

1

0

0

1

0

0

1

0

1

ê

255
VMD-98

3. Peripheral System Configuration
Start address XRAM address STAD7 STAD6 STAD5 STAD4 STAD3 STAD2 STAD1 STAD0

0H 180H(Bank 0) 0 0 0 0 0 0 0 0

1H 182H(Bank 0) 0 0 0 0 0 0 0 1

2H 184H(Bank 0) 0 0 0 0 0 0 1 0

3H 186H(Bank 0) 0 0 0 0 0 0 1 1

4H 188H(Bank 0) 0 0 0 0 0 1 0 0

5H 18AH(Bank 0) 0 0 0 0 0 1 0 1

6H Cannot be set 0 0 0 0 0 1 1 0

7H Cannot be set 0 0 0 0 0 1 1 1

8H 190H(Bank 0) 0 0 0 0 1 0 0 0

9H 192H(Bank 0) 0 0 0 0 1 0 0 1

0AH 194H(Bank 0) 0 0 0 0 1 0 1 0

0BH 196H(Bank 0) 0 0 0 0 1 0 1 1

0CH 198H(Bank 0) 0 0 0 0 1 1 0 0

0DH 19AH(Bank 0) 0 0 0 0 1 1 0 1

0EH Cannot be set 0 0 0 0 1 1 1 0

0FH Cannot be set 0 0 0 0 1 1 1 1

10H 1A0H(Bank 0) 0 0 0 1 0 0 0 0

11H 1A2H(Bank 0) 0 0 0 1 0 0 0 1

3DH 1FAH(Bank 0) 0 0 1 1 1 1 0 1

3EH Cannot be set 0 0 1 1 1 1 1 0

3FH Cannot be set 0 0 1 1 1 1 1 1

40H 180H(Bank 1) 0 1 0 0 0 0 0 0

41H 182H(Bank 1) 0 1 0 0 0 0 0 1

7DH 1FAH(Bank 1) 0 1 1 1 1 1 0 1

7EH Cannot be set 0 1 1 1 1 1 1 0

7FH Cannot be set 0 1 1 1 1 1 1 1

80H 180H(Bank 2) 1 0 0 0 0 0 0 0

81H 182H(Bank 2) 1 0 0 0 0 0 0 1

82H 184H(Bank 2) 1 0 0 0 0 0 1 0

83H - FFH Cannot be set
VMD-99

Visual Memory Unit (VMU) Hardware Manual
As indicated above, some settings result in misoperation if they are set as the start address. xx6H, xx7H, xxEH, and
xxFH cannot be set.

¥ Character Number Register (CNR) 123H

This register is set by an internal system program.

Game programs are prohibited from accessing this register.

¥ Time Division Register (TDR) 124H

This register is set by an internal system program.

Game programs are prohibited from accessing this register.

¥ Bank Address Register (XBNK)

This register controls the display RAM bank addresses.

XRBK1 (bit 1):

 to

to XRBK0 (bit 0): Display RAM bank address control

Data can be written to display RAM at the address speciÞed by the Bank Address
Register. Banks 0 and 1 of RAM data are 96 bytes each; game programs are allowed
to access bank 0 and bank 1 RAM. (Only bit 0 can be set.)

Bank 2 contains only 6 bytes, and is used for icon display. The system program
displays icons.

¥ LCD Contrast Control Register (VCCR)

This register turns the LCD display on and off. Note that there is no built-in contrast control circuit. The
LCD Contrast Control Register is a write-only register. It is important to note that if a bit manipulation
instruction, an INC instruction, a DEC instruction, or a DBNZ instruction is used on a write-only register,
bits other than the speciÞed bits will be set. The following instructions are used with the VCCR:

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

XBNK 125H R/W - - - - - - XBNK1 XBNK0

After reset H H H H 0 0 H H

Bit name Function

XRBK1 (bit 1)

To

XRBK0 (bit 0)

 LCD display RAM start address setting

XRBK1 XRBK0 Bank address

0

0

1

0

1

0

0

1

2

1 1 Setting prohibited
VMD-100

3. Peripheral System Configuration
¥ MOV ¥ MOV @

¥ ST ¥ ST @

¥ POP

In addition, when accessing this register, bits 5 through 0 must be set to their Þxed values.

VCCR7 (bit 7): LCD display control

This bit controls the LCD display: ON (1)/OFF (0).

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

VCCR 127H W VCCR7 VCCR6 VCCR5 VCCR4 VCCR3 VCCR2 VCCR1 VCCR0

After reset 0 0 0 0 0 0 0 0

Bit name Function

VCCR7 (bit 7) LCD display control

0: LCD display off

1: LCD display on

VCCR6 (bit 6) LCD display RAM access control

0: Access from CPU to display RAM enabled

1: Access from CPU to display RAM disabled

VCCR (bit 5)

to

VCCR0 (bit 0) * Be certain to set VCCR5 through VCCR0 to "0."
VMD-101

Visual Memory Unit (VMU) Hardware Manual
Set the LCD display to ON (VCCR7 = 1) after initiating LCD controller operation (MCR3 = 1).

¥ Setting sequence

1. MCR3=1

2. VCCR7=1

Be certain to always follows this sequence.

Conversely, when turning the LCD display OFF, make the settings in the following sequence:

1. VCCR7=0

2. MCR3=0

VCCR6 (bit 6): LCD display RAM access control

When the sub-clock (crystal oscillation) has been set for the system
clock and the LCD display is ON, be certain to disable access from the
CPU to the LCD display RAM (VCCR6 = 1) after changing the system
clock. In addition, enable access from the CPU to the LCD display
RAM (VCCR6 = 0) when reading or writing the LCD display RAM, or
when setting the system clock to CF oscillation or RC oscillation while
the LCD is on.

Setting sequence

When changing the system clock from CF oscillation or RC oscillation to crystal oscillation while the LCD
display is on:

VCCR6=1

OCR5=1,OCR4=0

When changing the system clock from crystal oscillation to CF oscillation or RC oscillation while the LCD
display is on:

OCR5 = 0/1, OCR4 = 1 (CF oscillation), OCR5 = 0, OCR4 = 0 (RC oscillation)

VCCR6 = 0

VCCR5 (bit 5) through VCCR0 (bit 0):

 |

Always set these bits to "0."

Note:
¥ When the LCD is on, set the VCCR last.
VMD-102

3. Peripheral System Configuration
7. External Interrupt Function

7.1 Overview

POTATO has a function that detects external input signals on the P70/INT0, P71/INT1, P72/INT2/T0IN, P73/
INT3/T0IN pins and then generates interrupt requests to four vector addresses. The types of signals that are
detected are selected by the program. P70 is used to detect the LM-BUS connection to VMU, and P71 is used to
detect low voltage.

¥ Pins on which signals are detected and their corresponding vector addresses

¥ Signals that can be detected

The priority ranking of the INT0 and INT1 pin interrupts can be set to either "highest level" or "low level"
through the Master Interrupt Enable Control Register (IE). If "highest level" is set, that interrupt processing
can be executed, regardless of the master interrupt enable setting. The priority ranking of interrupts other
than the INT0 and INT1 interrupts can be set to either "high level" or "low level" through the Interrupt
Priority Ranking Control Register (IP). IN addition, a noise elimination Þlter with a switchable time
constant is connected to the P73/INT3/T0IN pin.

Pin Vector address Pin Vector address

P70/INT0 003H P72/INT2/T0IN 013H

P71/INT1 00BH P73/INT3/T0IN 01BH
VMD-103

Visual Memory Unit (VMU) Hardware Manual
¥ Detection of another VMU unit

The statuses of various ports when the unit is connected or not connected to another VMU unit are
shown below.

In order to use the external interrupt function, it is necessary to manipulate the following Special
Function Registers:

¥ I01CR

¥ I23CR

¥ ISL

¥ IE

7.2 Circuit Configuration

Figure 3.35 External Interrupt Circuit Block Diagram

P70 P72 P73

When connected to a VMU unit Çk Çk Çg

When not connected to a VMU unit Çk Çk Çk
VMD-104

3. Peripheral System Configuration
7.3 Related Registers

¥ External Interrupt 0, 1 Control Register (I01CR)

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

I01CR 15DH R/W I01CR7 I01CR6 I01CR5 I01CR4 I01CR3 I01CR2 I01CR1 I01CR0

After reset 0 0 0 0 0 0 0 0

Bit name Function

I01CR7 (bit 7)

I01CR6 (bit 6)

INT1 detection level/edge selection

I01CR7 I01CR6 INT1 interrupt condition

0

0

1

1

0

1

0

1

Falling edge detection

L level detection

Rising edge detection

H level detection

I01CR5 (bit 5) INT1 interrupt source

0: No interrupt source

1: Interrupt source

I01CR4 (bit 4) INT1 interrupt enable control

0: Interrupt disabled

1: Interrupt enabled

I01CR3 (bit 3) INT0 detection level/edge selection

I01CR2 (bit 2) I01CR3 I01CR2 INT0 interrupt condition

0

0

1

1

0

1

0

1

Falling edge detection

L level detection

Rising edge detection

H level detection

I01CR1 (bit 1) INT0 interrupt source

0: No interrupt source

1: Interrupt source

I01CR0 (bit 0) INT0 interrupt enable control

0: Interrupt disabled

1: Interrupt enabled
VMD-105

Visual Memory Unit (VMU) Hardware Manual
I01CR7 (bit 7): INT1 detection level/edge selection

I01CR6 (bit 6):

These bits select the INT1 interrupt condition for signals input on the
P71/INT1 pin.

I01CR5 (bit 5): INT1 interrupt source

This bit is set if the condition speciÞed by bits I01CR7 and 6 is met. If
INT1 interrupts are enabled (I01CR4 = 1), then control jumps to vector
address 000BH and interrupt processing begins. This bit is not reset,
even when interrupt processing is completed. Therefore, it is
necessary for this bit to be reset by software.

I01CR4 (bit 4): INT1 interrupt enable control

This bit enables (1)/disables (0) the acceptance of external interrupt 1
(INT1). When this bit is set to "1," then when I01CR5 is set, INT1
interrupt processing is executed; when this bit is set to "0," interrupt
processing is not executed.

I01CR3 (bit 3): INT0 detection level/edge selection

I01CR2 (bit 2):

These bits select the INT0 interrupt condition for signals input on the
P70/INT0 pin.

I01CR1 (bit 1): INT0 interrupt source

This bit is set if the condition speciÞed by bits I01CR3 and 2 is met. If
INT0 interrupts are enabled (I01CR0 = 1), then control jumps to vector
address 0003H and interrupt processing begins. This bit is not reset,
even when interrupt processing is completed. Therefore, it is
necessary for this bit to be reset by software.

I01CR7 I01CR6 INT1 interrupt condition

0 0 Falling edge detection

0 1 L level detection

1 0 Rising edge detection

1 1 H level detection

I01CR3 I01CR2 INT0 interrupt condition

0 0 Falling edge detection

0 1 L level detection

1 0 Rising edge detection

1 1 H level detection
VMD-106

3. Peripheral System Configuration
I01CR0 (bit 0): INT0 interrupt enable control

This bit enables (1)/disables (0) the acceptance of external interrupt 0
(INT0). When this bit is set to "1," then when I01CR1 is set, INT0
interrupt processing is executed; when this bit is set to "0," interrupt
processing is not executed.

¥ External Interrupt 2, 3 Control Register (I23CR)

For details, refer to Chapter 3, section 3.2.4, "External Interrupt 2, 3 Control Register."

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

I23CR 15EH R/W I23CR7 I23CR6 I23CR5 I23CR4 I23CR3 I23CR2 I23CR1 I23CR0

After reset 0 0 0 0 0 0 0 0

Bit name Function

I23CR7 (bit 7) INT3 rising edge detection control

0: Do not detect

1: Detect

I23CR6 (bit 6) INT3 falling edge detection control

0: Do not detect

1: Detect

I23CR5 (bit 5) INT3 interrupt source

0: No interrupt source

1: Interrupt source

I23CR4 (bit 4) INT3 interrupt enable control

0: Interrupt disabled

1: Interrupt enabled

I23CR3 (bit 3)) INT2 rising edge detection control

0: Do not detect

1: Detect

I23CR2 (bit 2) INT2 falling edge detection control

0: Do not detect

1: Detect

I23CR1 (bit 1) INT2 interrupt source

0: No interrupt source

1: Interrupt source

I23CR0 (bit 0) INT2 interrupt enable control

0: Interrupt disabled

1: Interrupt enabled
VMD-107

Visual Memory Unit (VMU) Hardware Manual
¥ Input Signal Select Register (ISL)

For details, refer to Chapter 3, section 3.2.4, "Input Signal Selection Register."

¥ Master Interrupt Enable Control Register (IE)

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ISL 15FH R/W - - ISL5 ISL4 ISL3 ISL2 ISL1 ISL0

After reset H H 0 0 0 0 0 0

Bit name Function

ISL5 (bit 5)

ISL4 (bit 4)

Base timer clock selection

ISL5 ISL4

1

0

X

1

1

0

Timer/counter T0 prescaler

Cycle clock

Sub-clock (crystal oscillation)

ISL3 (bit 3) Buzzer output frequency selection

0: fBST/16

1: fBST/8

ISL2 (bit 2) Noise elimination filter time constant selection

ISL1 (bit 1) ISL2 ISL1 Time constant

1

0

X

1

1

0

16Tcyc

64Tcyc

1Tcyc

ISL0 (bit 0) T0 clock input pin selection

0: P72/INT2/T0IN pin

1: P73/INT3/T0IN pin

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

IE 108H R/W IE7 - - - - - IE1 IE0

After reset H H 0 0 0 0 0 0
VMD-108

3. Peripheral System Configuration
Ð IE7 (bit 7):Master interrupt enable control

This bit enables (1)/disables (0) the acceptance of all "high level" and
"low level" interrupts. When this bit is set to "1," all interrupts for
which interrupt requests have been generated are enabled; when this
bit is set to "0," "high level" and "low level" interrupts are disabled.

IE1 (bit 1): INT0, 1 interrupt priority control

IE0 (bit 0):

These bits set the priority level for external interrupts INT0 and 1.

Note:
¥ Although "low level" priority for INT0 and 1 is controlled by IE7, "highest level" priority is not.
¥ It is not possible to set just external interrupt INT1 alone to "highest level.

Bit name Function

IE7 (bit 7) Master interrupt enable control (high level, low level)

0: All interrupt requests disabled

1: All interrupt requests enabled

IE1 (bit 1)

IE0 (bit 0)

INT0, INT1 interrupt priority control

IE1 IE0 INT1 priority level INT0 priority level

0

1

X

0

0

1

Highest level

Low level

Low level

Highest level

Highest level

Low level

IE1 IE0 INT1 priority level INT0 priority level

0 0 Highest level Highest level

1 0 Low level Highest level

X 1 Low level Low level
VMD-109

Visual Memory Unit (VMU) Hardware Manual
8. Port Interrupt Functions

8.1 Overview

In addition to its digital I/O function, port 3 can be used to generate interrupts or release HOLD mode. This function
can be used to implement a "key-on wakeup" function that releases HOLD mode when a key switch is pressed.

A port interrupt can be implemented through port 3.

8.2 Function

In addition to its digital I/O function, port 3 also has the following functions:

¥ Generates an interrupt when it detects a low-level signal.

¥ Releases HOLD mode when it detects a low-level signal.

After HOLD mode is released, the internal RC oscillation is adopted for the system clock.

In order to use the port interrupt function, it is necessary to manipulate the Special Function Registers shown below.

For port 3 interrupt:

¥ P3 ¥ P3DDR ¥ P3INT

¥ IE

8.3 Circuit Configuration

Figure 3.36 Port 3 Interrupt Circuit Block Diagram
VMD-110

3. Peripheral System Configuration
8.4 Related Registers

¥ Port 3 Interrupt Control Register (P3INT)

For details, refer to Chapter 3, section 3.1.2, "Port 3 Interrupt Control Register."

¥ Master interrupt enable control register (IE)

For details, refer to chapter 3, section 3.8.3, "Master Interrupt Enable Control Register."

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

P3INT 14EH R/W - - - - - P32INT P31INT P30INT

After reset H H H H H 0 0 0

Bit name Function

P32INT (bit 2) Port 3 interrupt control flag

0: Interrupts through port 3 and HOLD mode release through port 3 disabled.

1: Interrupts through port 3 and HOLD mode release through port 3 enabled.

P31INT (bit 1) Port 3 interrupt source flag

0: No interrupt source

1: Interrupt source

P30INT (bit 0) Port 3 interrupt request enable

0: Interrupt request enabled.

1: Interrupt request disabled.

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

IE 108H R/W IE7 - - - - - IE1 IE0

After reset 0 H H H H H 0 0

Bit name Function

IE7 (bit 7) Master interrupt enable control (high level, low level)

0: All interrupt requests disabled.

1: All interrupt requests enabled.

IE1 (bit 1) INT0, 1 interrupt priority control

IE0 (bit 0) IE1 IE0 INT1 priority level INT0 priority level

0

1

X

0

0

1

Highest level

Low level

Low level

Highest level

Highest level

Low level
VMD-111

Visual Memory Unit (VMU) Hardware Manual
8.5 Description of Operation

¥ Port 3 interrupts

Set bit 2 of the port 3 interrupt control register (P3INT) to "1." This selects the port 3 interrupt.

Through a Special Function Register, select the pin in port 3 (P37 through P30) on which the low-level signal
is to be detected.

The following conditions must be met in order to accept a port 3 interrupt:

¥ The corresponding bit in the Port 3 Control Register (P3DDR) must be set to input mode.

 P3mDDR = 0 (m = 0 to 7)

¥ The corresponding bit in the Port 3 Register (P3) must be set.

 P3n = 1 (n = 0 to 7)

① If a low-level signal is detected, the interrupt source is set to "1." If the interrupt request enable ßag has
been set, an interrupt request is generated, and if the master interrupt enable ßag has been set, control
branches to vector address 004BH.

② If the two conditions described in item 2 above are met while in HALT mode, HALT mode is released and
control branches to vector address 004BH.

➂ If the two conditions described in item 2 above are met while in HOLD mode, HOLD mode is released
and control branches to vector address 004BH. In this case, the internal RC oscillation is selected for the
system clock.
VMD-112

3. Peripheral System Configuration
8.6 State Transitions

¥ State transitions in HOLD mode

This ßowchart applies to port 3 interrupts.

Note:
¥ When releasing HOLD mode through P3, set other individual interrupt request enable ßags to "0."
VMD-113

Visual Memory Unit (VMU) Hardware Manual
¥ HALT mode in state transition
This ßowchart applies to port 3 interrupts.
VMD-114

3. Peripheral System Configuration
8.7 Program Example

This example applies to port 3 interrupts.

¥ Program

This program releases HOLD mode without branching to an interrupt routine when a low-level signal is
detected on P37.

¥ Example application circuit
VMD-115

Visual Memory Unit (VMU) Hardware Manual
Figure 3.37 Application Circuit Example

9. VMU Work RAM

9.1 Overview

There are two banks of 256 bytes provided as communications buffers in the new-generation game machine
dedicated interface. As long as a data transfer is not being performed on the LM-BUS, these buffers can also be
accessed as work RAM.

Whether a data transfer is being conducted with the new generation game machine can be determined by
referencing the ASEL ßag in the VSEL register. (A data transfer is in progress when ASEL = "1.") Note that a normal
data transfer cannot be guaranteed if this work RAM is accessed while a data transfer is being performed with a
new generation game machine.

9.2 Work RAM Control Registers

VMU Control Register (VSEL)

Game programs can access only bit 4. A bit manipulation instruction must be used.

INCE (bit 4): VTRBF address counter automatic increment

This bit controls the automatic incrementing of the address counter
when writing/reading VTRBF from the CPU side.

When this bit is set to "1," the address counter is automatically
incremented by one after VTRBF has been accessed from the CPU
side. When this bit is set to "0," the current address is saved after
access.

SIOSEL (bit 1): P1 port usage selection control

This bit controls the selection of whether the P1 port (P10 to P15) is to
be used as a normal I/O port and as I/O pins for a synchronous serial
interface, or as the new game machine dedicated interface. Always set
this bit to "0" in game program mode.

ASEL (bit 0): VTRBF address input select control

This bit controls the selection of access to VTRBF that is used as a
buffer for the VMU and the new generation game machine dedicated
interface.

Always set this bit to "0" in game program mode. If this bit is set to "1,"
access from the MPU to VTRBF is not possible.

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

VSEL 163H R/W - - - INCE - - SIOSEL ASEL

After reset H H H 0 H H 0 0
VMD-116

3. Peripheral System Configuration
¥ Work RAM access address (VRMAD1, 2)

These registers set the address that is to be accessed from the CPU side in work RAM (VTRBF).

VRMAD1 is the lower 8 bits of the address; VRMAD2 switches the bank.

When the VSEL bit is set to "1," VRMAD is incremented each time that VTRBF is accessed.

¥ Send/receive buffer (VTRBF)

This register is used to access the data in the address speciÞed by VRMAD.

When the CPU writes to this register, the data is written to the address speciÞed by VRMAD. when the CPU reads
this register, it reads the data from the address that was speciÞed by VRMAD.

If the VSEL bit is set to "1," VRMAD is incremented automatically each time that this register is accessed.

9.3 Accessing Work RAM

When accessing VMU work RAM, the address that is to be accessed is stored in the VRMAD1 and 2 registers. An
application accesses work RAM by storing the address value in VRMAD1 and 2 and then reading or writing the
VTRBF register.

It is important to note that the VRMAD1 and 2 registers have an auto-increment function. For details, refer to the
next item.

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

VRMAD1 164H R/W VRMAD7 VRMAD6 VRMAD5 VRMAD4 VRMAD3 VRMAD2 VRMAD1 VRMAD0

After reset 0 0 0 0 0 0 0 0

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

VRMAD2 165H R/W - - - - - - - VRMAD8

After reset H H H H H H H 0

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

VTRBF 166H R/W VTRBF7 VTRBF6 VTRBF5 VTRBF4 VTRBF3 VTRBF2 VTRBF1 VTRBF0

After reset 0 0 0 0 0 0 0 0
VMD-117

Visual Memory Unit (VMU) Hardware Manual
9.4 Notes on Using the Address Register for Work RAM

Figure below illustrates an access to work RAM.

When a game program accesses work RAM, the address value is speciÞed by the VRMAD1 and 2 registers.

It is essential to note that if the INCE ßag in the VSEL register has been set to "1," the value in VRMAD is
automatically incremented each time that game program work RAM is accessed. (No distinction is made between
reads and writes.)

Figure 3.38 VMU Work RAM Access
VMD-118

3. Peripheral System Configuration
10. Flash EEPROM

10.1 Overview

POTATO has an internal 128K ßash EEPROM (Electrically Erasable Programmable ROM) that can operate with a
single power supply.

10.2 Functions

¥ Programming and read operations possible with a single power supply

¥ Capacity: 131072 ´ 8 bits: Data area

¥ Programmable/erasable in block (page) units
block = 128 bytes (= 1 page)

¥ Number of times overwriting is possible
50,000 times/page (Ta = 25¡C) (with memory management by program)

¥ Built-in step-up voltage circuit for writing

¥ Overwriting end detection function (detected within subroutine call in the internal BIOS program)
Toggle bit method
Data polling method

¥ Batch erase of software possible

10.3 Accessing the Data Area EEPROM

The data area can be written by using a PROM writer, and can be read and written by calling a subroutine in the
microcontroller's internal BIOS program.

3.10.3.1 Reading/Writing Data in a Program

Loading the internal BIOS programs makes it possible to easily access the data area EEPROM.

BIOS programs that are used: FM_WRT_EX (writes data to the data area EEPROM)

FM_VRF_EX (VeriÞes writing data in the data area EEPROM)

FM_PRD_EX (reads the data in the data area EEPROM)

Data area EEPROM space: 128 x 8 bits x 1024 pages

When accessing (reading or writing) the data area EEPROM, load and use the target internal BIOS
programs from within the program as subroutine calls ("callr" instruction and "callf" instruction).
VMD-119

Visual Memory Unit (VMU) Hardware Manual
¥ FM_WRT_EX

This subroutine is loaded in order to write data to the data area EEPROM.

Loading this subroutine writes one page (128 x 8 bits). The following settings must be made beforehand in
order to load this subroutine.

(Items that should be set beforehand)

1. SpeciÞcation of the EEPROM write start
address (17-bit speciÞcation)

(1) Lower address (8 bits): Specify in 7FH in RAM (Bank-1).

(2) Upper address (8 bits): Specify in 7EH in RAM (Bank-1).

(3) Bank address (1 bit): Specify in bit 0 of 7DH in RAM (Bank-1).

When setting the lower address, remember that it is not possible to
write data so that it spans two pages.

Because this writing operation is performed one page (128 bytes) at a
time, specify zeroes ("0") for bits 0 through 6 of the lower address.

2. Setting the data that is to be written in EEPROM

¥ Set the data that is to be written in EEPROM in RAM at addresses
80H through 0FFH ahead of time.

3. SpeciÞcation of the method for detecting the end of the EEPROM
writing operation

¥ There are two methods for detecting the end of the EEPROM writing
operation; specify which of those methods is to be used.

(1) Toggle bit method:Bit 0 of 7CH in RAM (Bank-1) = 0

(2) Data polling method:Bit 0 of 7CH in RAM (Bank-1) = 1

¥ Specify which of the above two methods is to be used through bit 0
of 7CH in RAM.

¥ FM_VRF_EX

This subroutine is used to verify that the data that was written in the data area EEPROM was written
correctly.

Loading this subroutine compares one page of data (128 x 8 bits) written in EEPROM with the original data
(the data in addresses 80H through 0FFH in RAM (Bank-1)).

¥ When all 128 bytes are correct: Accumulator (ACC) = 00H

¥ When even one of the 128 bytes is correct: Accumulator (ACC) π 00H

This subroutine must be executed after the data has been completely written to EEPROM, but before the
data in addresses 80H through 0FFH in ROM has been overwritten.

(Necessary data for loading)

1. SpeciÞcation of the EEPROM read start address (17-bit speciÞcation)

(1) Lower address (8 bits): Specify in 7FH in RAM (Bank-1).

(2) Upper address (8 bits): Specify in 7EH in RAM (Bank-1).

(3) Bank address (1 bit): Specify in bit 0 of 7DH in RAM (Bank-1).

When setting the lower address, remember that it is not possible to read data spanning two pages.
VMD-120

3. Peripheral System Configuration
2. EEPROM data and the comparison data

This subroutine veriÞes that the data that was written in EEPROM was written correctly. The data that is
compared to the EEPROM data is the data in addresses 80H through 0FFH in RAM (Bank-1), starting from
the data in address 80H.

3. End of the EEPROM reading operation

(1) When comparison results do not match

(2) When the lower 7 bits of the address are "7FH"

¥ FM_PRD_EX

This subroutine is used to read data from the data area EEPROM.

Loading this subroutine reads one page (128 x 8 bits). The following settings must be made beforehand in
order to load this subroutine.

(Items that should be set beforehand)

1. SpeciÞcation of the EEPROM read start address (17-bit speciÞcation)

(1) Lower address (8 bits): Specify in 7FH in RAM (Bank-1).

(2) Upper address (8 bits): Specify in 7EH in RAM (Bank-1).

(3) Bank address (1 bit): Specify in bit 0 of 7DH in RAM (Bank-1).

When setting the lower address, remember that it is not possible to read data that spans two pages.

Because this reading operation is performed one page (128 bytes) at a time, specify zeroes ("0") for bits
0 through 6 of the lower address.

2. Data that was read from EEPROM

The data that is read from EEPROM is written in addresses 080H through 0FFH in RAM (Bank-1).

Note: When accessing the data area EEPROM, disable all interrupts before making subroutine calls of
the microcomputer's internal OS program. In some cases interrupts cannot be accepted while accessing
the data area EEPROM, which can lead to misoperation.

10.4 Accessing the Program Area EEPROM

The program area is created in the EEPROM. As a rule, when POTATO is shipped, the entire program area is
Þlled with "FFH." The method provided for the user in order to write program data in the program area is
described below.

10.5 Writing with a PROM Writer

A third-party PROM writer and Sega's Conversion Board (W86F8716Q) can be used to easily write the
program area.

(Refer to Chapter 3, section 3.10.3.2, "Writing/Reading with a PROM Writer.")

Note that using this method after the board has been installed does carry a risk of causing problems with other
circuits.
VMD-121

Visual Memory Unit (VMU) Hardware Manual
VMD-122

4. Control Functions
1. Interrupt Function
The interrupt function is used to temporarily interrupt the program that the microcomputer is currently executing
and then execute another program in order to address an urgent need. POTATO includes circuits for generating 12
types of interrupt requests. In the VMU, some types of interrupt processing cannot be set as desired from within a
game program. The interrupts are shown in Table on next page.
VMD-121

4. Control Functions
1.1 Types of Interrupts

Table 4.1 List of interrupts

Note:
¥ The "priority ranking" indicates the order of priority given to interrupts when multiple interrupts are
generated simultaneously. However, the priority ranking changes when speciÞed in the Interrupt
Priority Control Register (IP).

Priority
ranking Interrupt type

Internal/
external

Vector
address

Interrupt
request

Source
flag

Enable
flag

Register
address

Priority
ranking
setting

1 External interrupt
INT0

external 0003H P70/INT0 pin
event detection

I01CR1 I01CR0 15DH Highest/low

2 External interrupt
INT1

external 000BH P71/INT1 pin
event detection

I01CR5 I01CR4 15DH

3 External interrupt
INT2

external 0013H P72/INT2 pin
event detection

I23CR1 I23CR0 15EH High/low

Timer/counter
T0L (lower 8 bits)

Internal Timer/counter T0L
lower 8 bits
overflow

T0CNT1 T0CNT0 110H

4 External interrupt
INT3

external 001BH P73/INT3 pin
event detection

I23CR5 I23CR4 15EH High/low

Base timer Internal Base timer
overflow

BTCR1 BTCR0 17FH

BTCR3 BTCR2

5 Timer/counter
T0H (upper 8 bits)

Internal 0023H Timer/counter T0H
upper 8 bits
overflow

T0CNT3 T0CNT2 110H High/low

6 Timer T1 Internal 002BH Timer T1L overflow T1CNT1 T1CNT0 118H High/low

Timer T1H
overflow

T1CNT3 T1CNT2

7 SIO0 Internal 0033H SIO0 end
detection

SCON01 SCON00 130H High/low

8 SIO1 Internal 003BH SIO1 end
detection

SCON11 SCON10 134H High/low

9 VMU interrupt Internal 0043H VMU
communications
reception end
detection

RFB RFBENA 160H/161H High/low

10 Port 3 interrupt
(P32INT = 1)

external 004BH Port 3 l low level
detection

P31INT P30INT 14EH High/low
VMD-122

4. Control Functions
1.2 Interrupt Function Operation

¥ If an interrupt is generated from an interrupt request source that is shown in Table 4-1-1, the
corresponding interrupt request ßag is set.

If the interrupt request enable ßag that corresponds to the interrupt request source is set, the
microcomputer's interrupt control circuit is notiÞed of the interrupt request.

¥ The interrupt control circuit accepts the interrupt according to the priority ranking rules.

Interrupts can have a priority of either "highest level," "high level," or "low level;" in order to enable a high
level or low level interrupt, it is necessary to set the master interrupt enable ßag (IE7) in addition to the
individual interrupt enable ßags. IE7 controls high level and low level interrupts. In addition, if "highest
level" has been set for INT0 or INT1 by the interrupt priority control ßags (IE1, 0), interrupt processing is
executed regardless of the master interrupt enable ßag.

¥ The interrupt sources with an interrupt priority ranking from 3 to 9 can be speciÞed as having either "high
level" or "low level" interrupt priority according to the Interrupt Priority Control Register (IP).

¥ If an interrupt is generated, then after execution of the instruction that is currently being executed is
completed, the interrupt control circuit automatically stores the contents of the program counter (PC) in
the stack (in RAM), and then the microcomputer executes the interrupt service program. Because the
program counter data uses two bytes of the stack, the stack pointer (SP) is incremented by 2. After control
returns from the interrupt service program, the SP is decremented by 2.

¥ After executing the interrupt service program, the microcomputer executes the RETI instruction in order
to resume execution of the original program.

¥ Up to three interrupts can be nested.

¥ Interrupt request ßag acceptance processing is not performed while executing the RETI instruction, while
executing any instructions (such as MOV or ST) that write to the Special Function Registers listed below,
or while writing to the data area EEPROM:

¥ IE

¥ IP

¥ PCON

¥ EXT

In order to use the interrupt function, it is necessary to manipulate the following Special Function Registers:

¥ IE

¥ IP

¥ SP (because it is undeÞned after a reset)

¥ Special Function Registers in the function block that accepts interrupts
VMD-123

Visual Memory Unit (VMU) Hardware Manual
1.3 Circuit Configuration

Figure 4.1 Interrupt Function Block Diagram

1.4 Related Registers

¥ Master Interrupt Enable Control Register (IE)

For details, refer to Chapter 3, section 3.7.3, "Master Interrupt Enable Control Register."

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

IE 108H R/W IE7 - - - - - IE1 IE0

After reset 0 H H H H H 0 0
VMD-124

4. Control Functions
¥ Interrupt Priority Ranking Control Register (IP)

Bit name Function

IE7 (bit 7) Master interrupt enable control (high level, low level)

0: All interrupt requests disabled

1: All interrupt requests enabled

IE1 (bit 1)

IE0 (bit 0)

INT0, INT1 interrupt priority control

IE1 IE0 INT1 priority level INT0 priority level

0

1

X

0

0

1

Highest level

Low level

Low level

Highest level

Highest level

Low level

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

IP 109H R/W IP7 IP6 IP5 IP4 IP3 IP2 IP1 IP0

After reset 0 - 0 0 0 0 0 0

Bit name

IP7 (bit 7) Port 3 interrupt priority level setting

0: Low level

1: High level

IP5 (bit 5) SIO1 interrupt priority level setting

0: Low level

1: High level

IP4 (bit 4) SIO0 interrupt priority level setting

0: Low level

1: High level

IP3 (bit 3) T1 priority level setting

0: Low level

1: High level

IP2 (bit 2) T0H priority level setting

0: Low level

1: High level

IP1 (bit 1) INT3 and base timer interrupt priority level setting

0: Low level

1: High level

IP0 (bit 0) INT2 and T0L interrupt priority level setting

0: Low level

1: High level
VMD-125

Visual Memory Unit (VMU) Hardware Manual
IP7 (bit 7): Port 3 interrupt priority level setting

This bit selects either "high" (1) or "low" (0) for the port 3 interrupt
priority level. When this bit is set to "1," the priority level for this
interrupt is set to "high level," giving this interrupt higher priority
than low level INT0 and INT1 interrupts (IE0 = 1). When this bit
is set to "0," the priority level for this interrupt is set to "low level."

IP5 (bit 5): SIO1 interrupt priority level setting

This bit selects either "high" (1) or "low" (0) for the SIO1 interrupt
priority level. When this bit is set to "1," the priority level for this
interrupt is set to "high level," giving this interrupt higher priority
than low level INT0 and INT1 interrupts (IE0 = 1). When this bit
is set to "0," the priority level for this interrupt is set to "low level."

IP4 (bit 4): SIO0 interrupt priority level setting

This bit selects either "high" (1) or "low" (0) for the SIO0 interrupt
priority level. When this bit is set to "1," the priority level for this
interrupt is set to "high level," giving this interrupt higher priority
than low level INT0 and INT1 interrupts (IE0 = 1). When this bit
is set to "0," the priority level for this interrupt is set to "low level."

IP3 (bit 3): T1 priority level setting

This bit selects either "high" (1) or "low" (0) for the T1 interrupt
priority level. When this bit is set to "1," the priority level for this
interrupt is set to "high level," giving this interrupt higher priority
than low level INT0 and INT1 interrupts (IE0 = 1). When this bit
is set to "0," the priority level for this interrupt is set to "low level."

IP2 (bit 2): T0H priority level setting

This bit selects either "high" (1) or "low" (0) for the T0H interrupt
priority level. When this bit is set to "1," the priority level for this
interrupt is set to "high level," giving this interrupt higher priority
than low level INT0 and INT1 interrupts (IE0 = 1). When this bit
is set to "0," the priority level for this interrupt is set to "low level."

IP1 (bit 1): INT3 and base timer interrupt priority level setting

This bit selects either "high" (1) or "low" (0) for the INT3/base
timer interrupt priority level. When this bit is set to "1," the
priority level for this interrupt is set to "high level," giving this
interrupt higher priority than low level INT0 and INT1 interrupts
(IE0 = 1). When this bit is set to "0," the priority level for this
interrupt is set to "low level."

IP0 (bit 0): INT2 and T0L interrupt priority level setting

This bit selects either "high" (1) or "low" (0) for the INT2/T0L
interrupt priority level. When this bit is set to "1," the priority level
for this interrupt is set to "high level," giving this interrupt higher
priority than low level INT0 and INT1 interrupts (IE0 = 1). When
this bit is set to "0," the priority level for this interrupt is set to "low
level."
VMD-126

4. Control Functions
1.5 Interrupt Priority Ranking

The priority ranking of the interrupt levels is as follows:

Highest level > high level > low level

The priority ranking of multiple interrupt sources of the same priority ranking level that are generated
simultaneously is as listed in Table 4-1-1. In addition, the overlapping interrupt control circuit controls overlapping
interrupts, permitting nesting of "low level" ® "high level" ® "highest level" interrupt routines.

Highest level: External interrupts INT0 and INT1 (when set to "highest level")

This level is not controlled by the mask interrupt enable ßag (IE7).

High level: Those interrupt sources other than INT0 and INT1 that
correspond to the bits that are set in the interrupt priority control
register (IP).

This level is controlled by the mask interrupt enable ßag (IE7).

Low level: Those interrupt sources INT0 and INT1 for which "low level" is
set in IE0 or IE1, and those interrupt sources other than INT0 and
INT1 that correspond to the bits that are reset (0) in the interrupt
priority control register (IP).

This level is controlled by the mask interrupt enable ßag (IE7).
VMD-127

Visual Memory Unit (VMU) Hardware Manual
¥ To give the SIO1 end interrupt priority between the INT2 interrupt and the INT0 interrupt, set IE0 to "1"
and IP5 and IP0 to "1." (IE0 = 1, IP = 00100001B)

¥ Notes concerning overlapping interrupts

¥ When a low-level interrupt request is generated while executing the service program for a high-level
interrupt, the low-level interrupt is accepted after one instruction is executed after the end of the service
program for the high-level interrupt.

¥ When an interrupt request of the same level as an interrupt request for which a service program is already
being executed is generated, that second interrupt request is not accepted.
VMD-128

4. Control Functions
2. System Clock Generation Function

2.1 Overview

POTATO has three internal oscillation circuits for use as system clock generation circuits: the main clock oscillation
circuit, the sub-clock oscillation circuit, and the RC oscillation circuit. Of these, the RC oscillation circuit has an
internal resistor (R) and capacitor (C), and does not require any external circuitry. The selection of one of these three
clocks as the system clock is made through software.

Note that, in actual practice, battery consumption is high when the main clock oscillation circuit and the RC
oscillation circuit are used, so select the sub-clock as the system clock whenever the other circuits are not needed.

2.2 Functions

¥ This function generates the system clock, which is the foundation of the execution of instructions by the
microcomputer.

¥ One of two clocks (sub-clock oscillation or RC oscillation) can be selected as the system clock through
software. Game programs should not use the main clock ascillation.

¥ This function generates the base timer clock.

¥ Main clock oscillation and RC oscillation can be halted by software instructions.

(This makes it possible to conserve battery power.)

¥ This function generates system clock 1 (S1), which is the foundation for operation of circuit blocks that
still operate in HALT mode, and system clock 2 (S2), which is the foundation for operation of circuit
blocks that stop operating in HALT mode.

¥ In HOLD mode, main clock oscillation, sub-clock oscillation, and RC oscillation are all stopped.

In order to control the system clock, it is necessary to manipulate the following Special Function Registers:

¥ OCR

¥ PCON
VMD-129

Visual Memory Unit (VMU) Hardware Manual
2.3 Circuit Configuration

¥ Main clock oscillation circuitáááááá Â

This circuit is made to oscillate by connecting a ceramic oscillation circuit to the CF1 and CF2 pins. If the
main clock is not to be used, connect CF1 to VDD and leave the CF2 pin open.

¥ Sub-clock oscillation circuitáááááá _

This circuit is made to oscillate by connecting a crystal oscillation circuit (32.768kHz typ.) to the XT1 and
XT2 pins.

If the sub-clock is not to be used, connect XT1 to VDD and leave the XT2 pin open.

¥ Internal RC oscillation circuitáááááá ¨

This circuit is made to oscillate by a resistor (R) and capacitor (C) that are built into the microcomputer. After
a reset or the release of HOLD, the system runs according to this clock.

¥ System clock selectoráááááá ø

Bits 4 and 5 of the Oscillation Control Register (OCR) are used to select either the sub-clock oscillation
circuit or the RC oscillation circuit as the system clock source. Game programs should not use the main
clock ascillation.

¥ System clock generation circuitáááááá ¡

System clocks 1 and 2 are generated from the clock source that was selected by the system clock selector.
System clock 1 (S1) runs when executing instructions and when in HALT mode. System clock 2 (S2) runs
when executing instructions. When in HOLD mode, both S1 and S2 stop.

¥ Oscillation Control Register (OCR)áááááá ±

This register controls the start and stop of oscillation by the main clock oscillation circuit and the RC
oscillation circuit, switches the system clock source, and controls the cycle time.

¥ Power Control Register (PCON)áááááá _

This register sets the standby state (HOLD/HALT mode).
VMD-130

4. Control Functions
Figure 4.2 System Clock Generation Circuit Block Diagram

¥ Status of each block during reset, HALT, and HOLD

Table 4.2 Status of Each Block During Standby

Note:
¥ After a reset or after HOLD is released, the internal RC oscillation clock is automatically selected as
the system clock.

Block State

During reset During HALT During HOLD

Main clock oscillation circuit Oscillates Status when power is suddenly applied Stopped

Internal RC oscillation circuit Oscillates Status when power is suddenly applied Stopped

Sub-clock oscillation circuit Stopped Status when power is suddenly applied Stopped

System clock oscillation circuit Running Running Stopped
VMD-131

Visual Memory Unit (VMU) Hardware Manual
2.4 Related Registers

¥ Oscillation Control Register

OCR7 (bit 7): System clock generation circuit control

This bit controls whether the cycle time is to be 1/12 of the source
oscillation frequency, or 1/6. When this bit is set to "1," the cycle
time is implemented as 1/6 of the source oscillation frequency;
when this bit is set to "0," the cycle time is implemented as 1/12 of
the source oscillation frequency.

In the VMU, this bit should be set as shown below:

* Be sure to set '1' when using the sub-clock.

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

OCR 10EH R/W OCR7 - OCR5 OCR4 - - OCR1 OCR0

After reset 0 H 0- 0 H H 0 0

Bit name Function

OCR7 (bit 7) System clock generation circuit control

0: Cycle time source is 1/12 of the oscillating frequency

1: Cycle time source is 1/6 of the oscillating frequency

OCR5 (bit 5)

OCR4 (bit 4)

System clock selection

OCR5 OCR4 System clock

0

0

1

1

0

1

0

1

Internal RC oscillation

Do not use

Sub-clock (crystal oscillation)

After reset or HOLD release: RC oscillation

OCR1 (bit 1) Internal RC oscillation circuit control

0: Internal RC oscillation circuit operation start/in progress

1: Internal RC oscillation circuit stopped

OCR0 (bit 0) Main clock oscillation circuit control

0: Main clock oscillation circuit operation start/in progress

1: Main clock oscillation circuit stopped
VMD-132

4. Control Functions
OCR5 (bit 5):System clock selection

OCR4 (bit 4):These bits select the system clock. After a reset or after the release of HOLD mode, internal RC
oscillation is selected automatically.

OCR1 (bit 1): Internal RC oscillation circuit control

This bit stops (1)/starts the internal RC oscillation circuit. When
this bit is set to "1," the internal RC oscillation circuit stops; when
this bit is set to "0," the internal RC oscillation circuit starts or
continues to run.

OCR0 (bit 0): Main clock oscillation circuit control

This bit stops (1)/starts the main clock oscillation circuit. The
main clock is not used by the VMU, so always set this bit to '1'.

Note:
¥An adequate amount of time must be provided when starting the oscillation of the main clock. When
the main clock is stopped, the RC clock is running, the RC (or sub-) clock is selected as the system clock,
and you wish to switch the system clock to the main clock, start the main clock Þrst and then wait an
adequate amount of time before actually switching the clock.
¥ An adequate amount of time at least equal to the time required for starting the main clock (200us) must
be provided when starting the oscillation of the sub-clock (200us). When switching the system clock
source from RC oscillation to the sub-clock after releasing a reset or releasing HOLD mode, start
sub-clock oscillation Þrst and then wait an adequate amount of time before actually switching the clock.

¥ Power Control Register (PCON)

System clock OCR7

Main clock (CF oscillation) OCR7=1

Internal RC oscillation OCR7=0/1

Sub-clock (crystal oscillation) OCR7=1

OCR5 OCR4 System clock

0 0 Internal RC oscillation

0 1 Do not use

1 0 Sub-clock (crystal oscillation)

1 1 Do not use

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

PCON 107H R/W - - - - - - PCON1 PCON0

After reset H H H H H H 0 0
VMD-133

Visual Memory Unit (VMU) Hardware Manual
PCON1 (bit 1): HOLD mode control

This bit selects the standby state. When this bit is set to "1," the
microcomputer enters HOLD mode and, once all oscillation
circuits have stopped, the system stops. When HOLD mode is
released, this bit is automatically reset. Note that setting this bit to
"0" does not change the standby state.

There are three methods for releasing HOLD mode:

¥ Reset

¥ Applying the speciÞed level to the P70/INT0 or P71/INT1 pin

¥ Port 3 interrupt source

PCON0 (bit 0): HALT mode control

This bit selects the standby state. When this bit is set to "1," the
microcomputer enters HALT mode, the program stops at the
address where the HALT was executed, and the oscillation
circuits maintain their current state. HALT mode can be released
an interrupt.

When HALT mode is released, this bit is automatically reset. Note
that setting this bit to "0" does not change the standby state.

When HALT mode is in effect, system clock 2 (S2) stops.

Bit name Function

PCON1 (bit 1) HOLD mode control

0:

1: Set HOLD mode

PCON0 (bit 0) HALT mode control

0:

1: Set HALT mode
VMD-134

4. Control Functions
2.5 System Clock Operation Mode

There are three system clocks:

¥ Internal RC oscillation clock

After a reset, when the power is turned on, or when HOLD mode is released, this clock is set as the system
clock. Even if there are no external oscillation circuits, the microcomputer runs using just this clock.

¥ Main clock

The unit enters fast processing mode whenever the main clock is used, but this increases battery
consumption by a factor of ten compared to internal RC oscillation. The main clock should not be used in
game programs.

¥ Sub-clock

This is a slow processing mode that is used in order to reduce current consumption and make backup
power last longer.

When operating in sub-clock mode, the main clock and the internal RC oscillation clock can be stopped in
order to further reduce current consumption.

Fig. below shows the state transition diagram for the microcomputer when it enters HALT or HOLD mode.

It is important to note that if the main clock or the sub-clock is speciÞed as the system clock in an
application circuit that does not have an external main clock oscillation circuit or sub-clock oscillation
circuit, the microcomputer will cease to operate.

RC OSC : Internal RC oscillation circuit MAIN : Main clock oscillating frequency

MAIN OSC : Main clock oscillation circuit SUB : Sub-clock oscillating frequency

SUB OSC : Sub-clock oscillation circuit PCON0 : Power control register bit 0 (HALT control)

Oscillating : Oscillating state PCON1 : Power control register bit 1 (HOLD control)

Stopped : Stopped state OCR0 : Oscillation control register bit 0

S1 : System clock 1 OCR1 : Oscillation control register bit 1

S2 : System clock 2 OCR4 : Oscillation control register bit 4

RC : Internal RC oscillating frequency OCR5 : Oscillation control register bit 5
VMD-135

Visual Memory Unit (VMU) Hardware Manual
Figure 4.3 Clock Operation Mode Transition Diagram

*1) Before switching the system clock to the sub-clock, allow enough time to ensure that the oscillation of the
sub-clock has stabilized. For details on the oscillation stabilization time for the sub-clock (32.768kHz crystal
oscillation), refer to the most recent "Semiconductor News."

*2) Before switching the system clock to the main clock, allow enough time to ensure that the oscillation of the main
clock has stabilized. For details on the oscillation stabilization time for the main clock, refer to the most recent
"Semiconductor News."
VMD-136

4. Control Functions
3. Standby function

3.1 Overview

POTATO has two standby modes (HALT and HOLD) that are designed to reduce current consumption during a
loss of power or while a program is in a standby state.

The microcomputer ceases operations while in the standby state.

3.2 4.3.2. Related Registers

¥ Power Control Register (PCON)

* For details, refer to chapter 4, section 4.2.4, "Related Registers."

Symbol Address R/W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

PCON 107H R/W - - - - - - PCON1 PCON0

After reset H H H H H H 0 0

Bit name Function

PCON1 bit 1) HOLD mode control

0:

1: et HOLD mode

PCON0 bit 0) HALT mode control

0:

1: et HALT mode
VMD-137

Visual Memory Unit (VMU) Hardware Manual
3.3 Operating Statuses When in Standby

Table 4.3 erating Status of Each Block When in Standby

*1) When the sub-clock is the system clock, oscillation can be stopped by a program.

(Internal RC: OCR1 = 1; Main: OCR0 = 1)

Item HALT mode HOLD mode

Setting method PCON0 = 1 PCON1 = 1

Oscillation circuit Main Oscillation continues *1 Oscillation stops

Internal RC

Sub-clock Operation continues

Internal clock S1 Operation continues Operation stops

S2 Operation stops Operation stops

CPU Operation stops Operation stops

I/O port Retains data from directly prior to entering HALT mode Retains data from directly prior to entering HALT mode

RAM Retains data from directly prior to entering HALT mode Retains data from directly prior to entering HALT mode

Base timer Operation continues Operation stops

Timer 0 Operation continues Operation stops

Timer 1 Operation continues Operation stops

Serial communications Operation continues Operation stops

Interrupt circuit Operation continues Operation stops

LCD display controller Operation continues Operation stops

Remote control communications
circuit

Operation continues Operation stops

Watchdog timer Operation continues, or stops Operation stops

Release sources Reset
Acceptance of interrupt request

Reset
P70/INT0 pin, P71/INT1 pin
Port 3 pin
VMD-138

4. Control Functions
3.4 HALT Mode

HALT mode stops program execution while each of the oscillation circuits (main clock, sub-clock and internal RC)
continue to operate.

Power consumption can be reduced through intermittent operation of the system by repeatedly setting HALT mode
and then having it released in response to an interrupt.

¥ Setting HALT mode

HALT mode is set by setting bit 0 (PCON0) of the power control register.

¥ Releasing HALT mode

HALT mode is released in one of two ways: "release by reset" and "release upon acceptance of an interrupt
request."

Release by reset

If a low-level signal is applied to the RES pin, HALT mode is released and the microcomputer enters
the reset state. When the RES pin is returned to the high level, operation is identical to a start after a
normal reset.

Release upon acceptance of an interrupt request

If an interrupt source is generated while the master interrupt enable ßag (IE7) and the interrupt request
enable ßag are both set, an interrupt request is generated and HALT mode is released simultaneously.
Subsequently, the microcomputer enters the interrupt processing routine.

However, if the system is in HALT mode and executing an interrupt service program, and the interrupt
source that was generated has a priority level that is either the same level as the program that is being
executed or lower, then that interrupt is not accepted.

Note:
¥ If external interrupt INT0 or INT1 is set to "highest level," then that interrupt is not affected by the
master interrupt enable ßag.
¥ The interrupt level of a HALT release source should be higher than the interrupt level in effect when
the system entered HALT mode.

Table 4.4 HALT Release Source Interrupt Level

Interrupt level when HALT was entered Interrupt level of HALT release source

Normal level Low level, high level or highest level

Low level High level or highest level

High level Highest level

Highest level (Cannot be released by an interrupt.)

Normal level: State when no interrupt is in effect
VMD-139

Visual Memory Unit (VMU) Hardware Manual
3.5 HOLD Mode

HOLD mode stops each of the oscillation circuits (main clock, sub-clock and internal RC). HOLD mode can be set
in order to maintain data while minimizing current consumption.

¥ Setting HOLD mode

HOLD mode is set by setting bit 1 (PCON1) of the Power Control register (PCON).

¥ Releasing HOLD mode

HOLD mode is released in one of three ways: release by reset; release through P70/INT0 level detection or
P71/INT1 level detection; or port 3 low level detection.

Release by reset

If a low-level signal is applied to the RES pin, HOLD mode is released and the microcomputer enters the
reset state. When the RES pin is returned to the high level, operation is identical to a start after a normal
reset.

Release through P70/INT0 level detection or P71/INT1 level detection
If the set level is detected on the P70/INT0 or P71/INT1 pin, HOLD mode is released, and the system enters
HALT mode. In this case, if the interrupt request ßag for either external interrupt INT0 or external interrupt
INT1 is set, the microcomputer enters the corresponding interrupt processing routine; if the interrupt
enable ßag for the external interrupt has not been set, the system continues in HALT mode. HALT mode is
released in the same fashion as described in Chapter 4, section 4.3.3, "Release upon acceptance of an
interrupt request." In addition, before setting HOLD mode, it is necessary to set the External Interrupt 0 and
1 Control Register (IO1CR) so that the level (whether high level or low level) is set. That level is detected on
the P70/INT0 and P71/INT1 pins.

It is not possible to release HOLD mode with the edge detection setting.

For details on the level detection conditions, refer to Chapter 3, section 3.8, "External Interrupt Function."

Release through port 3 low level detection

¥ P32INT = 1: Port 3 interrupt and HOLD mode release function

* P32INT = 1 must be set.

Release through port 3 low level detection
When the port 3 interrupt request enable ßag is set, and a low-level signal is detected on port 3, the interrupt
request ßag is set, HOLD mode is released, and the system enters HALT mode. In this case, if the master
interrupt enable ßag has been set, HALT mode is released and the microcomputer enters the interrupt
processing routine. If the master interrupt enable ßag is reset (0), the system remains in HALT mode.

Note: When releasing HOLD through port 3, disable any interrupts caused by a source other than port 3.

Figure 4.4 Standby Function State Transition Diagram
VMD-140

4. Control Functions
4. Reset Function

4.1 Overview

The reset function initializes the microcomputer when the power is turned on or while the microcomputer is
running.

4.2 Function

The microcomputer is equipped with the following two functions.

¥ External reset function through RES pin

A reset can deÞnitely be initiated by applying a low-level signal to the RES pin for at least 200[micro]s.
However, it is important to note that applying a low-level signal for a shorter duration may also initiate a
reset.

If a suitable time constant is connected to the RES pin externally, the RES pin can also be used to initiate the
power-on reset.

The reset circuit conÞguration is shown in Fig. above.

Figure 4.5 Reset Circuit Block Diagram

4.3 Hardware Status During a Reset

If a reset is generated through the RES pin, all of the hardware is initialized according to the reset signal, which is
synchronized with the system clock.

Once a reset is initiated, the hardware is initialized immediately, even in the case of a power-on reset, because the
system clock switches to internal RC oscillation. After waiting in order to allow the main clock oscillation to
stabilize, the system clock switches to the main clock.

During a reset, the Program Counter is initialized to 0000H. For the initial values of the Special Function Registers,
refer to Table 4-4-1, "Data Memory/Register Map."

The contents of data RAM, the stack pointer, and LCD RAM are maintained. Caution is required after a power-on
reset, however, because these contents are undeÞned.
VMD-141

Visual Memory Unit (VMU) Hardware Manual
Table 4.5 Initial Values of Each Special Function Register

Symbol Address R/W Name Initial value

RAM(BANK0) 000H-0FFH R/W Data memory XXXXXXXX
(retained after reset)

RAM(BANK1) 000H-0FFH R/W Data memory XXXXXXXX
(retained after reset)

ACC 100H R/W Accumulator 00000000

PSW 101H R/W Program Status Word 00H00000

B 102H R/W B register 00000000

C 103H R/W C register 00000000

TRL 104H R/W Table Reference Register lower byte 00000000

TRH 105H R/W Table Reference Register upper byte 00000000

SP 106H R/W Stack Pointer XXXXXXXX

PCON 107H R/W Power Control Register HHHHHH00

IE 108H R/W Master Interrupt Enable Control Register 0HHHHH00

IP 109H R/W Interrupt Priority Ranking Control Register 00000000

EXT 10DH R/W External Memory Control Register HHHH0000

OCR 10EH R/W Oscillation Control Register 0H00HH00

T0CNT 110H R/W Timer 0 Control Register 00000000

T0PRR 111H R/W Timer 0 Prescaler Data 00000000

T0L 112H R Timer 0 Lower 00000000

T0LR 113H R/W Timer 0 Lower Reload Data 00000000

T0H 114H R Timer 0 Upper 00000000

T0HR 115H R/W Timer 0 Upper Reload Data 00000000

T1CNT 118H R/W Timer 1 Control Register 00000000

T1LC 11AH R/W Timer 1 Lower Compare Data 00000000

T1L 11BH R Timer 1 Lower 00000000

T1LR W Timer 1 Lower Reload Data 00000000

T1HC 11CH R/W Timer 1 Upper Compare Data 00000000

T1H 11DH R Timer 1 Upper 00000000

T1HR W Timer 1 Upper Reload Data 00000000

MCR 120H W Mode Control Register 00000000

STAD 122H R/W Start Address Register 00000000
VMD-142

4. Control Functions
CNR 123H W Character Count Register H0000000

TDR 124H W Time Division Register HH000000

XBNK 125H R/W Bank Address Register HHHHHH00

VCCR 127H W LCD Contrast Control Register 00000000

SCON0 130H R/W SIO0 Control Register 00H00000

SBUF0 131H R/W SIO0 Buffer 00000000

SBR 132H R/W SIO Baud Rate Generator 00000000

SCON1 134H R/W SIO1 Control Register H0H00000

SBUF1 135H R/W SIO1 Buffer 00000000

Deleted Deleted Deleted Deleted Deleted

Deleted Deleted Deleted Deleted Deleted

P1 144H R/W Port 1 latch 00000000

P1DDR 145H W Port 1 Data Direction Register 00000000

P1FCR 146H W Port 1 Function Control Register 00000000

P3 14CH R/W Port 3 latch 00000000

P3DDR 14DH W Port 3 Data Direction Register 00000000

P3INT 14EH R/W Port 3 Interrupt Control Register HHHHH000

P7 15CH R Port 7 latch HHHHXXXX

I01CR 15DH R/W External Interrupt 0, 1 Control 00000000

I23CR 15EH R/W External Interrupt 2, 3 Control 00000000

ISL 15FH R/W Input Signal Select HH000000

VSEL 163H R/W Control Register HHH0HH00

VRMAD1 164H R/W System Address Register 1 00000000

VRMAD2 165H R/W System Address Register 2 HHHHHHH0

VTRBF 166H R/W TX/RX Buffer XXXXXXXX

BTCR 17FH R/W Base Timer Control 00000000

RAM(XRAM)
(BANK0)

180H-1FBH R/W LCD display memory XXXXXXXX
(retained after reset)

RAM(XRAM)
(BANK1)

180H-1FBH R/W

RAM(XRAM)
(BANK2)

180H-185H R/W

Symbol Address R/W Name Initial value
VMD-143

Visual Memory Unit (VMU) Hardware Manual
VMD-144

5. Instructions
1. Instruction Overview
The POTATO instruction set includes 70 instructions.

These encompass 45 opcodes, which are grouped into the following eight types of functions:

¥ Arithmetic operation instructions ADD,ADDC,SUB,SUBC,INC,DEC,MUL,DIV

¥ Boolean operation instructions AND,OR,XOR,ROL,ROLC,ROR,RORC

¥ Data transfer instructions LD,ST,MOV,LDC,PUSH,POP,XCH

¥ Jump instructions JMP,JMPF,BR,BRF

¥ Conditional branching instructions BZ,BNZ,BP,BPC,BN,DBNZ,BE,BNE

¥ Subroutine instructions CALL,CALLF,CALLR,RET,RETI

¥ Bit manipulation instructions CLR1,SET1,NOT1

¥ Miscellaneous instruction NOP

¥ Macro instruction CHANGE
VMD-145

5. Instructions
1.1 Arithmetic Operation Instructions

The arithmetic operation instructions primarily use the accumulator, and include the four basic arithmetic
operations as well as increment and decrement. The results of one of the four basic arithmetic operations are set
in CY, AC, and OV.

¥ CY (Carry Flag)

¥ AC (auxiliary carry ßag)

¥ OV (Overßow ßag)

Operation instruction Operation result CY

When an addition instruction was executed When a carry is generated from bit 7 (MSB) 1

When no carry is generated from bit 7 (MSB) 0

When a subtraction or compare instruction was executed When a borrow is required for bit 7 (MSB) 1

When a borrow is not required for bit 7 (MSB) 0

When a multiplication instruction was executed • 0

Operation instruction Operation result AC

When an addition instruction was executed When a carry is generated from bit 3 1

When no carry is generated from bit 3 0

When a subtraction instruction was executed When a borrow is required for bit 3 1

When a borrow is not required for bit 3 0

Operation instruction Operation result OV

When an addition or multiplication instruction was executed When a carry is generated from bit 7, and no carry is generated from bit 6 1

When a carry is generated from bit 6, and no carry is generated from bit 7 1

When an overflow error was generated while executing an addition or
subtraction instruction involving signed variables

1

All other cases 0

When a multiplication instruction was executed When the product is 256 or higher 1

When the product is 255 or lower 0

When a division instruction was executed When an attempt was made to divide by zero 1

When dividing by any other number 0
VMD-146

5. Instructions
1.2 Logical Operation Instructions

The Boolean operation instructions are used to perform Boolean operations and to rotate bits. CY is also affected
after executing the RORC or ROLC instruction.

1.3 Data Transfer Instructions

The data transfer instructions are used to write, read, save and replace data in data memory (RAM), the Special
Function Registers (SFR), external data ROM, and external RAM.

1.4 Jump Instructions

Jump instructions unconditionally transfer control to the target instruction.

1.5 Conditional Branching Instructions

A conditional branching instruction determines whether a condition that is speciÞed by the instruction is met (true)
or not (false), and then, if the evaluation is "true," branches to the target address. If the evaluation is "false," the
instruction does not branch; instead, execution continues with the next instruction.

The BE and BNE instructions branch on the basis of a comparison of two 8-bit data bytes. CY is set or reset by these
instructions, according to the results of the comparison.

1.6 Subroutine Instructions

Subroutine instructions branch unconditionally and are used to transfer control to the target instruction. The
address of the instruction is stored in the stack so that, after branching a return instruction (RET, RETI) can be used
to return control to the instruction that follows the CALL instruction. The stack is located in data memory (RAM),
and is pointed at by the Stack Pointer (SP). it is necessary to allocate an area in RAM for use by the stack according
to the nesting level of the subroutine.

1.7 Bit Manipulation Instructions

The bit manipulation instructions are used to manipulate individual bits in speciÞed contents of data memory
(RAM) or Special Function Registers (SFR).

1.8 Miscellaneous Instruction

The NOP instruction consumes one machine cycle without doing anything.

Operand Carry flag (CY)

#i8,r8 d9,r8 @Rj,#i8,r8

Relationship #i8>(ACC) (d9)>(ACC) #i8>((Rj)) 1

#i8=(ACC) (d9)=(ACC) #i8=((Rj)) 0

#i8<(ACC) (d9)<(ACC) #i8<((Rj)) 0
VMD-147

Visual Memory Unit (VMU) Hardware Manual
1.9 Macro Instruction

This is POTATO's own standard macro instruction. This macro instruction switches between internal program and
external program execution.

1.10 Addressing

There are several addressing methods that are used for addressing program memory (ROM), data memory (RAM),
and the Special Function Registers (SFR).

1.11 Program Memory (ROM) Addressing

Jump instructions, branching instructions, and subroutine instructions specify the destination address in
program ROM as part of the instruction code. In this case, the address is speciÞed by one of the following
addressing methods:

¥ r8 (8-bit relative addressing)

This form of addressing permits jumps (branching) to an address within -128 to +127 addresses of the
starting address of the next instruction that follows the instruction that is currently being executed. The
jump is expressed through signed 8-bit data.

[80H to 7FH: -128 to +127]

¥ r16 (16-bit relative addressing)

This form of addressing permits jumps anywhere within the 64K program ROM space.

The address is expressed through unsigned 16-bit data.

[0000H to FFFFH: +0 to +65535]

¥ a12 (12-bit relative addressing)

This form of addressing leaves as is the bits PC15 through PC12 (which represent the current page) of the
starting address (represented by PC15 through PC00) of the next instruction that follows the instruction that
is currently being executed, and replaces the bits PC11 through PC00 with 12-bit addressing data [000H
to FFFH].

This form of addressing permits jumps within a page (PC15 to PC12).

Note:
¥ Note that, in the above instance, the "current page" will be different from the page where the JMP
instruction or CALL instruction is located if the JMP instruction or CALL instruction is located at the end
of a page.

¥ a16 (16-bit absolute addressing)

This form of addressing permits jumps anywhere within the 64K program ROM space.

The address is expressed through 16-bit data.

[0000H to FFFFH: 0 to 65535]

¥ Table jumps

It is possible to execute a jump by setting the destination address in the stack, and then forcibly loading that
value into the Program Counter (PC) by means of the RET instruction.
VMD-148

5. Instructions
Refer to example 1. In line 1, the Stack Pointer (SP) is set to 09H.

If the RET instruction is executed at this point, a jump will be executed to the address where address 08H
in RAM is the upper byte and address 07H in RAM is the lower byte. Therefore, the jump destination
address is set in lines 2 and 3.

Because the jump destination in this example is PC = 0C13H, line 2 sets the lower byte, 13H, and line 3 sets
the upper byte, 0CH. When the RET instruction in line 4 is executed, the SP is set to 07H and control jumps
to 0C13H. However, because Example 1 requires the SP value to be known ahead of time, normally a PUSH
instruction is used as shown in Example 2.

Example 1:

MOV #09H,SP

MOV #13H,07H

MOV #0CH,08H

RET

Example 2:

MOV #13H,ACC

PUSH ACC

MOV #0CH,ACC

PUSH ACC

RET

In Example 3, the program branches to one of 128 addresses, ranging from 00H to 7FH, depending on the
data in address 70H in RAM

Lines 1 and 2 set the lower byte of the address, while line 4 sets the upper byte of the address. When the
RET instruction in the line 6 is executed, the program branches to the jump table in lines 7 and 8, and then
jumps to the branching destination indicated in those lines.

This technique is called a "table jump," and is an effective tool for branching to multiple addresses
conditionally.

Example 3:

A0: LD 070H

ROL

ADD #LOW(A1)

PUSH ACC

MOV #HIGH(A1),ACC

PUSH ACC

RET

;

ORG 0C00H

A1: JMP B00 Jump table

¯

JMP B7F

;

B00: XXXXXX
VMD-149

Visual Memory Unit (VMU) Hardware Manual
1.12 Data Memory (RAM) and Special Function Register (SFR) Addressing

¥ d9 (direct addressing)

This form of addressing directly speciÞes an address in RAM or an SFR with 9 bits (d8 through d0).

Addresses 000H through 0FFHááááááááááááSpeciÞes RAM.

Addresses 100H through 1FFHááááááááááááSpeciÞes SFR.

¥ b3 (bit addressing)

This form of addressing uses 3-bit bit addressing data in combination with d9 (direct addressing) to specify
a speciÞc bit in RAM or SFR.

¥ @Rj(indirect addressing)

Indirect addressing speciÞes an address in RAM or SFR by setting in a speciÞc address in RAM (called the
"indirect address register") the address in RAM or SFR that is actually to be accessed, and then accessing the
indirect address register. The indirect address registers are labelled @R0, @R1, @R2, and @R3. A speciÞc
indirect address register (one of the four from @R0 to @R3) is speciÞed through the 2-bit indirect addressing
data (j1 and j0). As shown in the table below, four indirect address banks are allocated in the Þrst 16 bytes
(00H through 0FH) of each RAM bank. The RAM bank is set by RAMBK0 (bit 1 of the PSW). The indirect
address register bank is set by IRBK1, 0 (bits 4 and 3 of the PSW). Note that when executing an indirect
addressing instruction, RAM in the RAM bank that is set by IRBK1 and 0 and by RAMBK0 is used for the
indirect address register and the RAM that is speciÞed by the indirect address register. During a reset, both
IRBK0 and IRBK1 are set to "0" and RAMBK0 is set to "0" as well, so the respective absolute addresses of
@R0, @R1, @R2, and @R3 are 00H, 01H, 02H, and 03H in RAM bank 0.

Indirect address registers áááááááááááááááááááááá @R3, @R2, @R1, and @R0

Indirect addressing data (j1, j0) áááááááááááá (11) (10) (01) (00)

Table 5.6 Indirect Addressing Register Map

Indirect address
register name Function

Bank 0
(IRBK1=0)
(IRBK0=0)

Bank 1
(IRBK1=0)
(IRBK0)

Bank 2
(IRBK1=1)
(IRBK0=0)

Bank 3
(IRBK1=1)
(IRBK0=1)

@R0 RAM access RAM 00H RAM 04H RAM 08H RAM 0CH

@R1 RAM access RAM 01H RAM 05H RAM 09H RAM 0DH

@R2 SFR access RAM 02H RAM 06H RAM 0AH RAM 0EH

@R3 SFR access RAM 03H RAM 07H RAM 0BH RAM 0FH
VMD-150

5. Instructions
¥ Example of using indirect addressing

This example illustrates an operation using the indirect address register.

Refer to Example 1. Line 2 sets the immediate data 68H in RAM 9at address 00H). If RAM (address 00H) is
used as an indirect address register, address 68H in RAM will be accessed. For example, line 3 sets the
immediate data 10H in the address that is speciÞed by the indirect address register (@R0), which is address
68H in RAM.

Line 5 adds the contents of the address that is speciÞed by the indirect address register (@R0), which is
address 68H in RAM, and the Accumulator (ACC).

Example 1:

MOV #055H,ACC

MOV #068H,00H

MOV #010H,@R0

ADD #015H

ADD @R0

In the following example, an SFR is speciÞed through indirect addressing.

Refer to Example 2. Lines 1 and 2 clear bits 4 and 3 of the PSW and set up RAM addresses 00H through 03H
as the indirect address registers. Line 4 sets the immediate data 02H in address 02H in RAM. If address 02H
in RAM is used as the indirect address register, address 02H in RAM is accessed. For example, in line 5 the
immediate data 12H is set in the SFR (address 02H: B register) that is speciÞed by the indirect address
register @R2.

Line 6 increments the B register, which is accessed through indirect addressing again.
VMD-151

Visual Memory Unit (VMU) Hardware Manual
Example 2:

CLR1 PSW,4

CLR1 PSW,3

MOV #0ACH,ACC

MOV #002H,02H

MOV #012H,@R2

INC @R2

The following example changes the bank through the PSW and then speciÞes an SFR through indirect
addressing.

Refer to Example 3. Lines 1 and 2 set the bank to "2" in the PSW and set up RAM addresses 08H through
0BH as the indirect address registers. Line 4 sets the immediate data 02H in address 0BH in RAM. If address
0BH in RAM is used as the indirect address register, address 02H in RAM is accessed. For example, in line
5 the immediate data 12H is set in the SFR (address 02H: B register) that is speciÞed by the indirect address
register @R2.

Line 6 increments the B register, which is accessed through indirect addressing again.

Example 3:

SET1 PSW,4

CLR1 PSW,3

MOV #0ACH,ACC

MOV #002H,0BH

MOV #012H,@R2

INC @R2
VMD-152

5. Instructions
2. Arithmetic Operation Instructions
ADD #i8 (ADD immediate data to accumulator)

Description:

This instruction adds the immediate data (i7 to i0) to the contents of the Accumulator (ACC), and then
sends the result to the ACC.

Example:

ADD d9 (ADD direct byte to accumulator)

Instruction code 1 0 0 0 0 0 0 1 i7i6i5i4i3i2i1i081H

Number of bytes 2

Number of cycles 1

Function (ACC)ç(ACC)+#i8

Affected flags CY•CAC•COV

Interrupt acceptance Permitted

ACC CY AC OV

MOV #055H,ACC 55H - - -

ADD #013H 68H 0 0 0

ADD #00AH 72H 0 1 0

ADD #00FH 81H 0 1 1

ADD #080H 01H 1 0 1

Instruction code 1 0 0 0 0 0 1d8 d7d6d5d4d3d2d1d082H~83H

Number of bytes 2

Number of cycles 1

Function (ACC)•©(ACC)+(d9)

Affected flags CY•CAC•COV

Interrupt acceptance Permitted
VMD-153

Visual Memory Unit (VMU) Hardware Manual
Description:

This instruction adds the contents of data memory (RAM) or a Special Function Register (SFR), as speciÞed
by d8 to d0, to the contents of the Accumulator (ACC), and then sends the result to the ACC.

Example 1:

Example 2:

ACC RAM 23H CY AC OV

MOV #055H,ACC 55H - - - -

MOV #068H,023H 55H 68H - - -

ADD #00CH 61H 68H 0 1 0

ADD 023H C9H 68H 0 0 1

ACC B CY AC OV

MOV #070H,ACC 70H - - - -

MOV #095H,B 70H 95H - - -

ADD #002H 72H 95H 0 0 0

ADD B 07H 95H 1 0 0
VMD-154

5. Instructions
 ADD @Rj (ADD indirect byte to accumulator)

Description:

This instruction adds the contents of data memory (RAM) or a Special Function Register (SFR), as speciÞed
by the indirect address register that is speciÞed by j1 and j0, to the contents of the Accumulator (ACC), and
then sends the result to the ACC.

Example 1:

Example 2:

Instruction code 1 0 0 0 0 1j1j084H~87H

Number of bytes 1

Number of cycles 1

Function (ACC)ç(ACC)+((Rj)) j=0,1,2,3

Affected flags CY•CAC•COV

Interrupt acceptance Permitted

ACC RAM 00H RAM 68H CY AC OV

MOV #055H,ACC 55H - - - - -

MOV #068H,000H 55H 68H - - - -

MOV #010H,@R0 55H 68H 10H - - -

ADD #015H 6AH 68H 10H 0 0 0

ADD @R0 7AH 68H 10H 0 0 0

ACC RAM 02H TRL CY AC OV

MOV #0AAH,ACC AAH - - - - -

MOV #004H,002H AAH 04H - - - -

MOV #055H,@R2 AAH 04H 55H - - -

ADD #001H ABH 04H 55H 0 0 0

ADD @R2 00H 04H 55H 1 1 0
VMD-155

Visual Memory Unit (VMU) Hardware Manual
ADDC #i8 (ADD immediate data and carry ßag to accumulator)

Description:

This instruction adds the carry ßag (CY) and the immediate data (i7 to i0) to the contents of the Accumulator
(ACC), and then sends the result to the ACC.

Example:

Instruction code 1 0 0 1 0 0 0 1 i7i6i5i4i3i2i1i091H

Number of bytes 2

Number of cycles 1

Function (ACC)ç(ACC)+(CY)+#i8

Affected flags CY•CAC•COV

Interrupt acceptance Permitted

ACC CY AC OV

MOV #055H,ACC 55H - - -

ADD #013H 68H 0 0 0

ADDC #00AH 72H 0 1 0

ADDC #00FH 81H 0 1 1

ADDC #080H 01H 1 0 1

ADDC #001H 03H 0 0 0
VMD-156

5. Instructions
 ADDC d9 (ADD direct byte and carry ßag to accumulator)

Description:

This instruction adds the carry ßag (CY) and the contents of data memory (RAM) or a Special Function
Register (SFR), as speciÞed by d8 to d0, to the contents of the Accumulator (ACC), and then sends the result
to the ACC.

Example 1:

Example 2:

Instruction code 1 0 0 1 0 0 1d8 d7d6d5d4d3d2d1d092H~93H

Number of bytes 2

Number of cycles 1

Function (ACC)•©(ACC)+(CY)+(d9)

Affected flags CY•CAC•COV

Interrupt acceptance Permitted

ACC RAM 23H CY AC OV

MOV #055H,ACC 55H - - - -

MOV #068H,023H 55H 68H - - -

ADD #00CH 61H 68H 0 1 0

ADDC 023H C9H 68H 0 0 1

SET1 PSW,7 C9H 68H 1 0 1

ADDC 023H 32H 68H 1 1 0

ACC B CY AC OV

MOV #070H,ACC 70H - - - -

MOV #095H,B 70H 95H - - -

ADD #002H 72H 95H 0 0 0

ADDC B 07H 95H 1 0 0

ADDC B 9DH 95H 0 0 0
VMD-157

Visual Memory Unit (VMU) Hardware Manual
 ADDC @Rj (ADD indirect byte and carry ßag to accumulator)

Description:

This instruction adds the carry ßag (CY) and the contents of data memory (RAM) or a Special Function
Register (SFR), as speciÞed by the indirect address register that is speciÞed by j1 and j0, to the contents of
the Accumulator (ACC), and then sends the result to the ACC.

Example 1:

Example 2:

Instruction code 1 0 0 1 0 1j1j094H~97H

Number of bytes 1

Number of cycles 1

Function (ACC)ç(ACC)+(CY)+((Rj)) j=0,1,2,3

Affected flags CY•CAC•COV

Interrupt acceptance Permitted

ACC RAM 00H RAM 68H CY AC OV

MOV #055H,ACC 55H - - - - -

MOV #068H,000H 55H 68H - - - -

MOV #010H,@R0 55H 68H 10H - - -

ADD #015H 6AH 68H 10H 0 0 0

ADDC @R0 7AH 68H 10H 0 0 0

SET1 PSW,7 7AH 68H 10H 1 0 0

ADDC @R0 8BH 68H 10H 0 0 1

ACC RAM 02H TRL CY AC OV

MOV #0AAH,ACC AAH - - - - -

MOV #004H,002H AAH 04H - - - -

MOV #055H,@R2 AAH 04H 55H - - -

ADD #001H ABH 04H 55H 0 0 0

ADDC @R2 00H 04H 55H 1 1 0

ADDC @R2 56H 04H 55H 0 0 0
VMD-158

5. Instructions
SUB #i8 (Subtract immediate data from accumulator)

Description:

This instruction subtracts the immediate data (i7 to i0) from the contents of the Accumulator (ACC), and
then sends the result to the ACC.

Example:

Instruction code 1 0 1 0 0 0 0 1 i7i6i5i4i3i2i1i0A1H

Number of bytes 2

Number of cycles 1

Function (ACC)ç(ACC) - #i8

Affected flags CY•CAC•COV

Interrupt acceptance Permitted

ACC CY AC OV

MOV #055H,ACC 55H - - -

SUB #013H 42H 0 0 0

SUB #003H 3FH 0 1 0

SUB #03FH 00H 0 0 0

SUB #002H FEH 1 1 0
VMD-159

Visual Memory Unit (VMU) Hardware Manual
SUB d9 (Subtract direct byte from accumulator)

Description:

This instruction subtracts the contents of data memory (RAM) or a Special Function Register (SFR), as
speciÞed by d8 to d0, from the contents of the Accumulator (ACC), and then sends the result to the ACC.

Example 1

Example 2:

Instruction code 1 0 1 0 0 0 1d8 d7d6d5d4d3d2d1d0A2H~A3H

Number of bytes 2

Number of cycles 1

Function (ACC)ç(ACC) - (d9)

Affected flags CY•CAC•COV

Interrupt acceptance Permitted

ACC RAM 23H CY AC OV

MOV #055H,ACC 55H - - - -

MOV #068H,023H 55H 68H - - -

SUB #00CH 49H 68H 0 1 0

SUB 023H E1H 68H 1 0 0

ACC RAM CY AC OV

MOV #080H,ACC 80H - - - -

MOV #095H,B 80H 95H - - -

SUB #002H 7EH 95H 0 1 1

SUB B E9H 95H 1 0 1
VMD-160

5. Instructions
SUB @Rj (Subtract indirect byte from accumulator)

Description:

This instruction subtracts the contents of data memory (RAM) or a Special Function Register (SFR), as
speciÞed by the indirect address register that is speciÞed by j1 and j0, from the contents of the Accumulator
(ACC), and then sends the result to the ACC.

Example 1:

Example 2:

Instruction code 1 0 1 0 0 1j1j0A4H~A7H

Number of bytes 1

Number of cycles 1

Function (ACC)ç(ACC) - ((Rj)) j=0,1,2,3

Affected flags CY•CAC•COV

Interrupt acceptance Permitted

ACC RAM 00H RAM 68H CY AC OV

MOV #055H,ACC 55H - - - - -

MOV #068H,00H 55H 68H - - - -

MOV #010H,@R0 55H 68H 10H - - -

SUB #016H 3FH 68H 10H 0 1 0

SUB @R0 2FH 68H 10H 0 0 0

ACC RAM 02H TRL CY AC OV

MOV #0AAH,ACC AAH - - - - -

MOV #004H,002H AAH 04H - - - -

MOV #0AAH,@R2 AAH 04H AAH - - -

SUB #001H A9H 04H AAH 0 0 0

SUB @R2 FFH 04H AAH 1 1 0
VMD-161

Visual Memory Unit (VMU) Hardware Manual
SUBC #i8 (Subtract immediate data and carry ßag from accumulator)

Description:

This instruction subtracts the carry ßag (CY) and the immediate data (i7 to i0) from the contents of the
Accumulator (ACC), and then sends the result to the ACC.

Example:

Instruction code 1 0 1 1 0 0 0 1 i7i6i5i4i3i2i1i0B1H

Number of bytes 2

Number of cycles 1

Function (ACC)ç(ACC) - (CY) - #i8

Affected flags CY•CAC•COV

Interrupt acceptance Permitted

ACC CY AC OV

MOV #055H,ACC 55H - - -

SUB #013H 42H 0 0 0

SUBC #003H 3FH 0 1 0

SUBC #03FH 00H 0 0 0

SUBC #002H FEH 1 1 0

SUBC #03EH BFH 0 1 0
VMD-162

5. Instructions
SUBC d9 (Subtract direct byte and carry ßag from accumulator)

Description:

This instruction subtracts the carry ßag (CY) and the contents of data memory (RAM) or a Special Function
Register (SFR), as speciÞed by d8 to d0, from the contents of the Accumulator (ACC), and then sends the
result to the ACC.

Example 1:

Example 2:

Instruction code 1 0 1 1 0 0 1d8 d7d6d5d4d3d2d1d0B2H~B3H

Number of bytes 2

Number of cycles 1

Function (ACC)(ACC) - (CY) - (d9)

Affected flags CY•CAC•COV

Interrupt acceptance Permitted

ACC RAM 23H CY AC OV

MOV #055H,ACC 55H _- - - -

MOV #068H,023H 55H 68H - - -

SUB #00CH 49H 68H 0 1 0

SUBC 023H E1H 68H 1 0 0

SUBC 023H 78H 68H 0 1 1

ACC B CY AC OV

MOV #080H,ACC 80H - - - -

MOV #095H,B 80H 95H - - -

SUB #002H 7EH 95H 0 1 1

SUBC B E9H 95H 1 0 1

SUBC B 53H 95H 0 0 1
VMD-163

Visual Memory Unit (VMU) Hardware Manual
SUBC @Rj (Subtract indirect byte and carry ßag from accumulator)

Description:

This instruction subtracts the carry ßag (CY) and the contents of data memory (RAM) or a Special Function
Register (SFR), as speciÞed by the indirect address register that is speciÞed by j1 and j0, from the contents
of the Accumulator (ACC), and then sends the result to the ACC.

Example 1:

Example 2:

Instruction code 1 0 1 1 0 1j1j0B4H~B7H

Number of bytes 1

Number of cycles 1

Function (ACC)ç(ACC) - (CY) - ((Rj)) j=0,1,2,3

Affected flags CY•CAC•COV

Interrupt acceptance Permitted

ACC RAM 00H RAM 68H CY AC OV

MOV #055H,ACC 55H - - - - -

MOV #068H,00H 55H 68H - - - -

MOV #040H,@R0 55H 68H 40H - - -

SUB #016H 3FH 68H 40H 0 1 0

SUBC @R0 FFH 68H 40H 1 0 0

SUBC @R0 BEH 68H 40H 0 0 0

ACC RAM 02H TRL CY AC OV

MOV #0AAH,ACC AAH - - - - -

MOV #004H,002H AAH 04H - - - -

MOV #0AAH,@R2 AAH 04H AAH - - -

SUB #001H A9H 04H AAH 0 0 0

SUBC @R2 FFH 04H AAH 1 1 0

SUBC @R2 54H 04H AAH 0 0 0
VMD-164

5. Instructions
INC d9 (Increment direct byte)

Description:

This instruction increments the contents of data memory (RAM) or a Special Function Register (SFR), as
speciÞed by d8 to d0.

Example 1:

Example 2:

Note:
¥ CY, AC, and OV do not change.
¥ When this instruction is applied to one of the ports P0 through P5, the port latch of that port is selected;
the external signal that is applied to that port is not selected.
Furthermore, applying this instruction to port P7 does not change its status.�B

Instruction code 0 1 1 0 0 0 1d8 d7d6d5d4d3d2d1d062H~63H

Number of bytes 2

Number of cycles 1

Function (d9)ç(d9)+1

Affected flags

Interrupt acceptance Permitted

ACC

MOV #0FDH,ACC FDH

INC ACC FEH

INC ACC FFH

INC ACC 00H

INC ACC 01H

RAM 7FH

MOV #0FDH,07FH FDH

INC 07FH FEH

INC 07FH FFH

INC 07FH 00H

INC 07FH 01H
VMD-165

Visual Memory Unit (VMU) Hardware Manual
INC @Rj (Increment indirect byte)

Description:

This instruction increments the contents of data memory (RAM) or a Special Function Register (SFR), as
speciÞed by the indirect address register that is speciÞed by j1 and j0.

Example 1:

Example 2:

Note:
¥ CY, AC, and OV do not change.
¥ When this instruction is applied to one of the ports P0 through P5, the port latch of that port is selected;
the external signal that is applied to that port is not selected.
Furthermore, applying this instruction to port P7 does not change its status.

Instruction code 0 1 1 0 0 1j1j064H~67H

Number of bytes 1

Number of cycles 1

Function ((Rj))ç((Rj))+1 j=0,1,2,3

Affected flags

Interrupt acceptance Permitted

ACC RAM 03H

MOV #000H,003H - 00H

MOV #0FDH,@R3 FDH 00H

INC @R3 FEH 00H

INC @R3 FFH 00H

INC @R3 00H 00H

RAM 7FH RAM 01H

MOV #07FH,001H - 7FH

MOV #0FDH,@R1 FDH 7FH

INC @R1 FEH 7FH

INC @R1 FFH 7FH

INC @R1 00H 7FH
VMD-166

5. Instructions
DEC d9 (Decrement direct byte)

Description:

This instruction decrements the contents of data memory (RAM) or a Special Function Register (SFR), as
speciÞed by d8 through d0.

Example 1:

Example 2:

Note:
¥ CY, AC, and OV do not change.
¥ When this instruction is applied to one of the ports P0 through P5, the port latch of that port is selected;
the external signal that is applied to that port is not selected.
Furthermore, applying this instruction to port P7 does not change its status.

Instruction code 0 1 1 1 0 0 1d8 d7d6d5d4d3d2d1d072H~73H

Number of bytes 2

Number of cycles 1

Function (d9)ç(d9)_1

Affected flags

Interrupt acceptance Permitted

ACC

MOV #002H,ACC 02H

DEC ACC 01H

DEC ACC 00H

DEC ACC FFH

DEC ACC FEH

RAM 7FH

MOV #002H,07FH 02H

DEC 07FH 01H

DEC 07FH 00H

DEC 07FH FFH

DEC 07FH FEH
VMD-167

Visual Memory Unit (VMU) Hardware Manual
DEC @Rj (Decrement indirect byte)

Description:

This instruction decrements the contents of data memory (RAM) or a Special Function Register (SFR), as
speciÞed by the indirect address register that is speciÞed by j1 and j0.

Example 1:

Example 2:

Note:
¥ CY, AC, and OV do not change.
¥ When this instruction is applied to one of the ports P0 through P5, the port latch of that port is selected;
the external signal that is applied to that port is not selected.
Furthermore, applying this instruction to port P7 does not change its status.

Instruction code 0 1 1 1 0 1j1j074H~77H

Number of bytes 1

Number of cycles 1

Function ((Rj))ç((Rj)) - 1 j=0,1,2,3

Affected flags

Interrupt acceptance Permitted

ACC RAM 02H

MOV #000H,002H - 00H

MOV #002H,@R2 02H 00H

DEC @R2 01H 00H

DEC @R2 00H 00H

DEC @R2 FFH 00H

RAM 7FH RAM 00H

MOV #07FH,000H - 7FH

MOV #002H,@R0 02H 7FH

DEC @R0 01H 7FH

DEC @R0 00H 7FH

DEC @R0 FFH 7FH
VMD-168

5. Instructions
MUL (Multiply accumulator and c register times b register)

Description:

This instruction multiplies the unsigned 16-bit data that is represented by the Accumulator (ACC) and the
C register (C) by the unsigned 8-bit data that is represented by the B register (B). Of the 24-bit result of the
operation, the lower 8 bits are sent to C, the middle 8 bits are sent to the ACC, and the upper 8 bits are sent
to B.

After the operation, if B is "0" then the overßow ßag (OV) is reset, and if B is not "0" then OV is set; the carry
ßag (CY) is always reset.

Example 1:

Example 2:

Instruction code 0 0 1 1 0 0 0 030H

Number of bytes 1

Number of cycles 7

Function (B)(ACC)(C)¨(ACC)(C) x (B)

Affected flags CY•COV

Interrupt acceptance Permitted after 7th cycle

ACC C B CY AC OV

MOV #0C4H,PSW - - - 1 1 1

MOV #011H,ACC 11H - - 1 1 1

MOV #023H,C 11H 23H - 1 1 1

MOV #052H,B 11H 23H 52H 1 1 1

MUL 7DH 36H 05H 0 1 1

ACC C B CY AC OV

MOV #0C4H,PSW - - - 1 1 1

MOV #007H,ACC 07H - - 1 1 1

MOV #005H,C 07H 05H - 1 1 1

MOV #010H,B 07H 05H 10H 1 1 1

MUL 70H 50H 00H 0 1 0
VMD-169

Visual Memory Unit (VMU) Hardware Manual
DIV (Divide accumulator and c register by b register)

Description:

This instruction divides the 16-bit data that is represented by the Accumulator (ACC) (the upper byte) and
the C register (C) (the lower byte) by the contents of the B register (B) (unsigned 8-bit data). The upper byte
of the resulting quotient is sent to the ACC while the lower byte is sent to C; the remainder is sent to B. After
the operation, if B is "0" then the overßow ßag (OV) is set, and if B is not "0" then OV is reset; the carry ßag
(CY) is always reset.

Example 1:

Example 2:

Instruction code 0 1 0 0 0 0 0 040H

Number of bytes 1

Number of cycles 7

Function (ACC)(C),mod(B)¨(ACC)(C) ✛ (B)

Affected flags CY•COV

Interrupt acceptance Permitted after 7th cycle

ACC C B CY AC OV

MOV #0C4H,PSW - - - 1 1 1

MOV #078H,ACC 79H - - 1 1 1

MOV #005H,C 79H 05H - 1 1 1

MOV #007H,B 79H 05H 07H 1 1 1

DIV 11H 49H 06H 0 1 0

ACC C B CY AC OV

MOV #0C0H,PS
W

- - - 1 1 0

MOV #007H,AC
C

07H - - 1 1 0

MOV #010H,C 07H 10H - 1 1 0

MOV #000H,B 07H 10H 00H 1 1 0

DIV FFH 10H 00H 0 1 1 Error
VMD-170

5. Instructions
3. Logical Operation Instructions
AND #i8 (AND immediate data to accumulator)

Description:

This instruction ANDs the immediate data (i7 to i0) with the contents of the Accumulator (ACC), and then
sends the result to the ACC.

Example 1:

Example 2:

Instruction code 1 1 1 0 0 0 0 1 i7i6i5i4i3i2i1i0E1H

Number of bytes 2

Number of cycles 1

Function (ACC)ç(ACC)Ù#i8

Affected flags

Interrupt acceptance Permitted

ACC

MOV #0FFH,ACC FFH

AND #0FAH FAH

AND #0AFH AAH

AND #00FH 0AH

AND #0F0H 00H

ACC

MOV #0FFH,ACC FFH

AND #0FEH FEH

AND #0FDH FCH

AND #0FBH F8H

AND #0F7H F0H

AND #0EFH E0H

AND #0DFH C9H

AND #0BFH 80H

AND #07FH 00H
VMD-171

Visual Memory Unit (VMU) Hardware Manual
AND d9 (AND direct byte to accumulator)

Description:

This instruction ANDs the contents of data memory (RAM) or a Special Function Register (SFR), as
speciÞed by d8 to d0, with the contents of the Accumulator (ACC), and then sends the result to the ACC.

Example 1:

Example 2:

Instruction code 1 1 1 0 0 0 1d8 d7d6d5d4d3d2d1d0E2H~E3H

Number of bytes 2

Number of cycles 1

Function (ACC)ç(ACC)Ù(d9)

Affected flags

Interrupt acceptance Permitted

ACC RAM 23H

MOV #0FFH,ACC FFH -

MOV #055H,023H FFH 55H

AND 023H 55H 55H

MOV #0AAH,023H 55H AAH

AND 023H 00H AAH

ACC B

MOV #0FFH,ACC FFH -

MOV #0FEH,B FFH FEH

AND B FEH FEH

MOV #0FDH,B FEH FDH

AND B FCH FDH

MOV #0FBH,B FCH FBH

AND B F8H FBH

MOV #0F7H,B F8H F7H

AND B F0H F7H
VMD-172

5. Instructions
AND @Rj (AND indirect byte to accumulator)

Description:

This instruction ANDs the contents of data memory (RAM) or a Special Function Register (SFR), as
speciÞed by the indirect address register that is speciÞed by j1 and j0, with the contents of the Accumulator
(ACC), and then sends the result to the ACC.

Example 1:

Example 2:

Instruction code 1 1 1 0 0 1j1j0E4H~E7H

Number of bytes 1

Number of cycles 1

Function (ACC)ç(ACC)Ù((Rj)) j=0,1,2,3

Affected flags

Interrupt acceptance Permitted

ACC RAM 00H RAM 68H

MOV #0FFH,ACC FFH - -

MOV #068H,000H FFH 68H -

MOV #0F0H,@R0 FFH 68H F0H

AND @R0 F0H 68H F0H

MOV #00FH,@R0 F0H 68H 0FH

AND @R0 00H 68H 0FH

ACC RAM 02H TRL

MOV #0FFH,ACC FFH - -

MOV #004H,002H FFH 04H -

MOV #0EFH,@R2 FFH 04H EFH

AND @R2 EFH 04H EFH

MOV #0DFH,@R2 EFH 04H DFH

AND @R2 CFH 04H DFH
VMD-173

Visual Memory Unit (VMU) Hardware Manual
OR #i8 (OR immediate data to accumulator)

Description:

This instruction ORs the immediate data (i7 to i0) with the contents of the Accumulator (ACC), and then
sends the result to the ACC.

Example 1:

Example 2:

Instruction code 1 1 0 1 0 0 0 1 i7i6i5i4i3i2i1i0D1H

Number of bytes 2

Number of cycles 1

Function (ACC)ç(ACC)Ú#i8

Affected flags

Interrupt acceptance Permitted

ACC

MOV #000H,ACC 00H

OR #003H 03H

OR #00CH 0FH

OR #030H 3FH

OR #0C0H FFH

ACC

MOV #000H,ACC 00H

OR #001H 01H

OR #002H 03H

OR #004H 07H

OR #008H 0FH

OR #010H 1FH

OR #020H 3FH

OR #040H 7FH

OR #080H FFH
VMD-174

5. Instructions
OR d9 (OR direct byte to accumulator)

Description:

This instruction ORs the contents of data memory (RAM) or a Special Function Register (SFR), as speciÞed
by d8 to d0, with the contents of the Accumulator (ACC), and then sends the result to the ACC.

Example 1:

Example 2:

Instruction code 1 1 0 1 0 0 1d8 d7d6d5d4d3d2d1d0D2H~D3H

Number of bytes 2

Number of cycles 1

Function (ACC)ç(ACC)Ú(d9)

Affected flags

Interrupt acceptance Permitted

ACC RAM 23H

MOV #000H,ACC 00H -

MOV #055H,023H 00H 55H

OR 023H 55H 55H

MOV #0AAH,023H 55H AAH

OR 023H FFH AAH

ACC B

MOV #000H,ACC 00H -

MOV #001H,B 00H 01H

OR B 01H 01H

MOV #002H,B 01H 02H

OR B 03H 02H

MOV #004H,B 03H 04H

OR B 07H 04H

MOV #008H,B 07H 08H

OR B 0FH 08H
VMD-175

Visual Memory Unit (VMU) Hardware Manual
OR @Rj (OR indirect byte to accumulator)

Description:

This instruction ORs the contents of data memory (RAM) or a Special Function Register (SFR), as speciÞed
by the indirect address register that is speciÞed by j1 and j0, with the contents of the Accumulator (ACC),
and then sends the result to the ACC.

Example 1:

Example 2:

Instruction code 1 1 0 1 0 1j1j0D4H~D7H

Number of bytes 1

Number of cycles 1

Function (ACC)ç(ACC)Ú((Rj)) j=0,1,2,3

Affected flags

Interrupt acceptance Permitted

ACC RAM 00H RAM 68H

MOV #000H,ACC 00H - -

MOV #068H,000H 00H 68H -

MOV #0F0H,@R0 00H 68H F0H

OR @R0 F0H 68H F0H

MOV #000FH,@R0 F0H 68H 0FH

OR @R0 FFH 68H 0FH

ACC 02H RAM TRL

MOV #0AAH,ACC AAH - -

MOV #004H,002H AAH 04H -

MOV #005H,@R2 AAH 04H 05H

OR @R2 AFH 04H 05H

MOV #050H,@R2 AFH 04H 50H

OR @R2 FFH 04H 50H
VMD-176

5. Instructions
XOR #i8 (XOR immediate data to accumulator)

Description:

This instruction XORs the immediate data (i7 to i0) with the contents of the Accumulator (ACC), and then
sends the result to the ACC.

Example 1:

Example 2:

Instruction code 1 1 0 0 0 1j1j0C4H~C7H

Number of bytes 1

Number of cycles 1

Function (ACC)ç(ACC)Ú((Rj)) j=0,1,2,3

Affected flags

Interrupt acceptance Permitted

ACC

MOV #000H,ACC 00H

XOR #00FH 0FH

XOR #0F0H FFH

XOR #00FH F0H

XOR #0F0H 00H

ACC

MOV #000H,ACC 00H

XOR #001H 01H

XOR #002H 03H

XOR #004H 07H

XOR #008H 0FH

XOR #008H 07H

XOR #004H 03H

XOR #002H 01H

XOR #001H 00H
VMD-177

Visual Memory Unit (VMU) Hardware Manual
XOR d9 (XOR direct byte to accumulator)

Description:

This instruction XORs the contents of data memory (RAM) or a Special Function Register (SFR), as speciÞed
by d8 to d0, with the contents of the Accumulator (ACC), and then sends the result to the ACC.

Example 1:

Example 2:

Instruction code 1 1 1 1 0 0 1d8Å@d7d6d5d4d3d2d1d0F2H~F3H

Number of bytes 2

Number of cycles 1

Function (ACC)ç(ACC) (d9)

Affected flags

Interrupt acceptance Permitted

ACC RAM 23H

MOV #000H,ACC 00H -

MOV #055H,023H 00H 55H

XOR 023H 55H 55H

MOV #0FFH,023H 55H FFH

XOR 023H AAH FFH

ACC B

MOV #0FFH,ACC FFH -

MOV #010H,B FFH 10H

XOR B EFH 10H

MOV #020H,B EFH 20H

XOR B CFH 20H

MOV #040H,B CFH 40H

XOR B 8FH 40H

MOV #080H,B 8FH 80H

XOR B 0FH 80H
VMD-178

5. Instructions
XOR @Rj (XOR indirect byte to accumulator)

Description:

This instruction XORs the contents of data memory (RAM) or a Special Function Register (SFR), as speciÞed
by the indirect address register that is speciÞed by j1 and j0, with the contents of the Accumulator (ACC),
and then sends the result to the ACC.

Example 1:

Example 2:

Instruction code 1 1 1 1 0 1j1j0F4H~F7H

Number of bytes 1

Number of cycles 1

Function (ACC)ç(ACC) "((Rj)) j=0,1,2,3

Affected flags

Interrupt acceptance Permitted

ACC RAM 01H RAM 68H

MOV #000H,ACC 00H - -

MOV #068H,001H 00H 68H -

MOV #0F0H,@R1 00H 68H F0H

XOR @R1 F0H 68H F0H

MOV #0FFH,@R1 F0H 68H FFH

XOR @R1 0FH 68H FFH

ACC RAM 03H TRL

MOV #0AAH,ACC AAH - -

MOV #004H,003H AAH 04H -

MOV #0FFH,@R3 AAH 04H FFH

XOR @R3 55H 04H FFH

XOR @R3 AAH 04H FFH

XOR @R3 55H 04H FFH

XOR @R3 AAH 04H FFH
VMD-179

Visual Memory Unit (VMU) Hardware Manual
ROL (Rotate accumulator left)

Description:

This instruction rotates the 8-bit data that is stored in the Accumulator (ACC) one bit to the left. Accordingly,
the data in bit 7 of the ACC moves to bit 0.

Example 1:

Instruction code 1 1 1 0 0 0 0 0E0H

Number of bytes 1

Number of cycles 1

Function A7çA6çA5çA4çA3çA2çA1çA0¨

Affected flags

Interrupt acceptance Permitted

ACC

MOV #01H,ACC 01H 0000 0001B

ROL 02H 0000 0010B

ROL 04H 0000 0100B

ROL 08H 0000 1000B

ROL 10H 0001 0000B

ROL 20H 0010 0000B

ROL 40H 0100 0000B

ROL 80H 1000 0000B

ROL 01H 0000 0001B

MOV #55H,ACC 55H 0101 0101B

ROL AAH 1010 1010B

ROL 55H 0101 0101B

ROL AAH 1010 1010B

ROL 55H 0101 0101B
VMD-180

5. Instructions
ROLC (Rotate accumulator left through the carry ßag)

Description:

This instruction rotates the 8-bit data that is stored in the Accumulator (ACC), including the carry ßag (CY),
one bit to the left. Accordingly, the data in bit 7 of the ACC moves to CY, and the contents in CY move to
bit 0.

Example 1:

Instruction code 1 1 1 1 0 0 0 0F0H

Number of bytes 1

Number of cycles 1

Function A7çA6çA5çA4çA3çA2çA1çA0çCYç

Affected flags CY

Interrupt acceptance Permitted

ACC CY

MOV #01H,ACC 01H 0000 0001B -

SET1 PSW,7 01H 0000 0001B 1

ROLC 03H 0000 0011B 0

ROLC 06H 0000 0110B 0

ROLC 0CH 0000 1100B 0

ROLC 11H 0001 1000B 0

ROLC 30H 0011 0000B 0

ROLC 60H 0110 0000B 0

ROLC C0H 1100 0000B 0

ROLC 80H 1000 0000B 1

ROLC 01H 0000 0001B 1

MOV #55H,ACC 55H 0101 0101B 1

ROLC ABH 1010 1011B 0

ROLC 56H 0101 0110B 1

ROLC ADH 1010 1101B 0
VMD-181

Visual Memory Unit (VMU) Hardware Manual
ROR (Rotate accumulator right)

Description:

This instruction rotates the 8-bit data that is stored in the Accumulator (ACC) one bit to the right.
Accordingly, the data in bit 0 of the ACC moves to bit 7.

Example 1:

Instruction code 1 1 0 0 0 0 0 0C0H

Number of bytes 1

Number of cycles 1

Function ➔A7➔A6➔A5➔A4➔A3➔A2➔A1➔A0

Affected flags

Interrupt acceptance Permitted

ACC

MOV #01H,ACC 01H 0000 0001B

ROR 80H 1000 0000B

ROR 40H 0100 0000B

ROR 20H 0010 0000B

ROR 10H 0001 0000B

ROR 08H 0000 1000B

ROR 04H 0000 0100B

ROR 02H 0000 0010B

ROR 01H 0000 0001B

MOV #51H,ACC 51H 0101 0001B

ROR A8H 1010 1000B

ROR 54H 0101 0100B

ROR 2AH 0010 1010B

ROR 15H 0001 0101B
VMD-182

5. Instructions
RORC (Rotate accumulator right through the carry ßag)

Description:

This instruction rotates the 8-bit data that is stored in the Accumulator (ACC), including the carry ßag (CY),
one bit to the right. Accordingly, the data in bit 0 of the ACC moves to CY, and the contents in CY move
to bit 7.

Example 1:

Instruction code 1 1 0 1 0 0 0 0D0H

Number of bytes 1

Number of cycles 1

Function ➔CY➔A7➔A6➔A5➔A4➔A3➔A2➔A1➔A0

Affected flags CY

Interrupt acceptance Permitted

ACC CY

MOV #01H,ACC 01H 0000 0001B -

SET1 PSW,7 01H 0000 0001B 1

RORC 80H 1000 0000B 1

RORC C0H 1100 0000B 0

RORC 60H 0110 0000B 0

RORC 30H 0011 0000B 0

RORC 18H 0001 1000B 0

RORC 0CH 0000 1100B 0

RORC 06H 0000 0110B 0

RORC 03H 0000 0011B 0

RORC 01H 0000 0001B 1

MOV #55H,ACC 55H 0101 0101B 1

RORC AAH 1010 1010B 1

RORC D5H 1101 0101B 0

RORC 6AH 0110 1010B 1
VMD-183

Visual Memory Unit (VMU) Hardware Manual
4. Data Transfer Instructions
LD d9 (Load direct byte to accumulator)

Description:

This instruction transfers the contents of data memory (RAM) or a Special Function Register (SFR), as
speciÞed by d8 to d0, to the Accumulator (ACC).

Example 1:

Example 2:

Instruction code 0 0 0 0 0 0 1d8 d8d7d6d5d4d3d2d1d0 02H~03H

Number of bytes 2

Number of cycles 1

Function (ACC)ç(d9)

Affected flags

Interrupt acceptance Permitted

ACC RAM 70H RAM 71H

MOV #0FF,ACC FFH - -

MOV #055H,070H FFH 55H -

MOV #0AAH,071H FFH 55H AAH

LD 070H 55H 55H AAH

LD 071H AAH 55H AAH

ACC B SP

MOV #0FF,ACC FFH - -

MOV #0F0H,B FFH F0H -

MOV #00FH,SP FFH F0H 0FH

LD B F0H F0H 0FH

LD SP 0FH F0H 0FH

LD B F0H F0H 0FH
VMD-184

5. Instructions
LD¥@Rj¥(Load indirect byte to accumulator)

Description:

This instruction transfers the contents of data memory (RAM) or a Special Function Register (SFR), as
speciÞed by the indirect address register that is speciÞed by j1 and j0, to the Accumulator (ACC).

Example 1:

Example 2:

Instruction code 0 0 0 0 0 1j1j0 04H~07H

Number of bytes 1

Number of cycles 1

Function (ACC)ç((Rj)) j=0,1,2,3

Affected flags

Interrupt acceptance Permitted

ACC RAM 00H RAM 01H RAM 70H RAM 7FH

MOV #0FFH,ACC FFH - - - -

MOV #070H,000H FFH 70H - - -

MOV #07FH,001H FFH 70H 7FH - -

MOV #0F0H,@R0 FFH 70H 7FH F0H -

MOV #00FH,@R1 FFH 70H 7FH F0H 0FH

LD @R0 F0H 70H 7FH F0H 0FH

LD @R1 0FH 70H 7FH F0H 0FH

ACC RAM 02H RAM 03H B 102H C 103H

MOV #0FF,ACC FFH - - - -

MOV #004H,002H FFH 04H - - -

MOV #005H,003H FFH 04H 05H - -

MOV #0AAH,@R2 FFH 04H 05H AAH -

MOV #055H,@R3 FFH 04H 05H AAH 55H

LD @R2 AAH 04H 05H AAH 55H

LD @R3 55H 04H 05H AAH 55H
VMD-185

Visual Memory Unit (VMU) Hardware Manual
ST d9 (Store direct byte to accumulator)

Description:

This instruction transfers the contents of the Accumulator (ACC) to data memory (RAM) or a Special
Function Register (SFR), as speciÞed by d8 to d0.

Example 1:

Example 2:

Instruction code 0 0 0 1 0 0 1d8 d7d6d5d4d3d2d1d0 12H~13H

Number of bytes 2

Number of cycles 1

Function (d9)ç(ACC)

Affected flags

Interrupt acceptance Permitted

ACC RAM 70H RAM 71H

MOV #0FFH,ACC FFH - -

MOV #055H,070H FFH 55H -

MOV #0AAH,071H FFH 55H AAH

ST 070H FFH FFH AAH

MOV #000H,ACC 00H FFH AAH

ST 071H 00H FFH 00H

ACC B SP

MOV #012H,ACC 12H - -

MOV #0F0H,B 12H F0H -

MOV #00FH,SP 12H F0H 0FH

ST B 12H 12H 0FH

MOV #034H,ACC 34H 12H 0FH

ST SP 34H 12H 34H

ST B 34H 34H 34H
VMD-186

5. Instructions
ST @Rj (Store indirect byte to accumulator)

Description:

This instruction transfers the contents of the Accumulator (ACC) to data memory (RAM) or a Special
Function Register (SFR), as speciÞed by the indirect address register that is speciÞed by j1 and j0.

Example 1:

Example 2:

Instruction code 0 0 0 1 0 1j1j0 14H~17H

Number of bytes 1

Number of cycles 1

Function ((Rj))ç(ACC) j=0,1,2,3

Affected flags

Interrupt acceptance Permitted

ACC RAM 00H RAM 01H RAM 70H RAM 7FH

MOV #0FFH,ACC FFH - - - -

MOV #070H,000H FFH 70H - - -

MOV #07FH,001H FFH 70H 7FH - -

MOV #0F0H,@R0 FFH 70H 7FH F0H -

MOV #00FH,@R1 FFH 70H 7FH F0H 0FH

ST @R0 FFH 70H 7FH FFH 0FH

ST @R1 FFH 70H 7FH FFH FFH

ACC RAM 02H RAM 03H TRL 104H TRH 105H

MOV #000H,ACC 00H - - - -

MOV #004H,002H 00H 04H - - -

MOV #005H,003H 00H 04H 05H - -

MOV #0AAH,@R2 00H 04H 05H AAH -

MOV #055H,@R3 00H 04H 05H AAH 55H

ST @R2 00H 04H 05H 00H 55H

ST @R3 00H 04H 05H 00H 00H
VMD-187

Visual Memory Unit (VMU) Hardware Manual
MOV #i8,d9 (Move immediate data to direct byte)

Description:

This instruction transfers immediate data (i7 to i0) to data memory (RAM) or a Special Function Register
(SFR), as speciÞed by d8 to d0.

Example 1:

Example 2:

Instruction code 0 0 1 0 0 0 1d8 d7d6d5d4d3d2d1d0Å@i7i6i5i4i3i2i1i022H~23H

Number of bytes 3

Number of cycles 2

Function (d9)ç#i8

Affected flags

Interrupt acceptance Permitted at 2nd cycle

RAM 00H RAM 01H RAM 02H RAM 03H

MOV #0FFH,000H FFH - - -

MOV #0FEH,001H FFH FEH - -

MOV #0FDH,002H FFH FEH FDH -

MOV #0FCH,003H FFH FEH FDH FCH

MOV #0FBH,003H FFH FEH FDH FBH

MOV #0FAH,002H FFH FEH FAH FBH

MOV #0F9H,001H FFH F9H FAH FBH

MOV #0F8H,000H F8H F9H FAH FBH

ACC B TRL

MOV #0FFH,100H FFH - -

MOV #0FEH,102H FFH FEH -

MOV #0FDH,104H FFH FEH FDH

MOV #0FAH,104H FFH FEH FAH

MOV #0F9H,102H FFH F9H FAH

MOV #0F8H,100H F8H F9H FAH
VMD-188

5. Instructions
MOV #i8,@Rj (Move immediate data to indirect byte)

Description:

This instruction transfers immediate data (i7 to i0) to data memory (RAM) or a Special Function Register
(SFR), as speciÞed by the indirect address register that is speciÞed by j1 and j0.

Example 1:

Example 2:

Instruction code 0 0 1 0 0 1j1j0 i7i6i5i4i3i2i1i0 24H~27H

Number of bytes 2

Number of cycles 1

Function ((Rj))ç#i8 j=0,1,2,3

Affected flags

Interrupt acceptance Permitted

RAM 00H RAM 01H RAM 7EH RAM 7FH

MOV #07FH,000H 7FH - - -

MOV #07EH,001H 7FH 7EH - -

MOV #0FDH,@R0 7FH 7EH - FDH

MOV #0FCH,@R1 7FH 7EH FCH FDH

MOV #0FBH,@R0 7FH 7EH FCH FBH

MOV #0FAH,@R1 7FH 7EH FAH FBH

MOV #0F9H,@R0 7FH 7EH FAH F9H

MOV #0F8H,@R1 7FH 7EH F8H F9H

RAM 02H RAM 03H ACC 100H B 102H

MOV #000H,002H 00H - - -

MOV #002H,003H 00H 02H - -

MOV #0FDH,@R2 00H 02H FDH -

MOV #0FCH,@R3 00H 02H FDH FCH

MOV #0FBH,@R2 00H 02H FBH FCH

MOV #0FAH,@R3 00H 02H FBH FAH
VMD-189

Visual Memory Unit (VMU) Hardware Manual
LDC (Load code byte relative to TRR to accumulator)

Description:

This instruction transfers contents of the address in program memory (ROM) that is speciÞed by the sum
of the contents of the Table Reference Register (TRR) and the contents of the Accumulator (ACC), to the
ACC. The ROM data that is referenced during internal program operation and external program operation
differs. During internal program operation, internal ROM is referenced; during external program operation,
BANK0 of external ROM is referenced.

The LDC instruction cannot reference BANK1 of external ROM.

Example:

Instruction code 1 1 0 0 0 0 0 1 C1H

Number of bytes 1

Number of cycles 2

Function (ACC)ç(BNK)((TRR)+(ACC)) [ROM]

Affected flags

Interrupt acceptance Permitted at 2nd cycle

ACC TRR TRR +ACC

TRH TRL

MOV #001H,TRH - 01H - -

MOV #023H,TRL - 01H 23H -

MOV #000H,ACC 00H 01H 23H 0123H

LDC 30H 01H 23H 0153H

MOV #001H,ACC 01H 01H 23H 0124H

LDC FFH 01H 23H 0222H

MOV #002H,ACC 02H 01H 23H 0125H

LDC 57H 01H 23H 017AH

MOV #003H,ACC 03H 01H 23H 0126H

LDC EAH 01H 23H 020DH

PC ROM

0123H 30H

0124H FFH

0125H 57H

0126H EAH
VMD-190

5. Instructions
PUSH d9 (Push direct byte to stack)

Description:

This instruction increments the Stack Pointer (SP), and then transfers the contents of data memory (RAM)
or a Special Function Register (SFR), as speciÞed by d8 to d0, to the address in RAM speciÞed by the SP.

Example:

Instruction code 0 1 1 0 0 0 0d8 d7d6d5d4d3d2d1d0 60H~61H

Number of bytes 2

Number of cycles 2

Function (SP)ç(SP)+1,((SP)) ç(d9)

Affected flags

Interrupt acceptance Permitted at 2nd cycle

ACC B RAM 00H SP RAM 20H RAM 21H RAM 22H

MOV #0AAH,ACC AAH - - - - - -

MOV #055H,B AAH 55H - - - - -

MOV #012H,000H AAH 55H 12H - - - -

MOV #01FH,SP AAH 55H 12H 1FH - - -

PUSH ACC AAH 55H 12H 20H AAH - -

PUSH B AAH 55H 12H 21H AAH 55H -

PUSH 000H AAH 55H 12H 22H AAH 55H 12H

POP B AAH 12H 12H 21H AAH 55H 12H

POP ACC 55H 12H 12H 20H AAH 55H 12H

POP 000H 55H 12H AAH 1FH AAH 55H 12H
VMD-191

Visual Memory Unit (VMU) Hardware Manual
POP d9 (Pop direct byte from stack)

Description:

This instruction transfers the contents of the address in RAM speciÞed by the Stack Pointer (SP) to data
memory (RAM) or a Special Function Register (SFR), as speciÞed by d8 to d0, and then decrements the SP.

Example:

Instruction code 0 1 1 1 0 0 0d8 d7d6d5d4d3d2d1d0 70H~71H

Number of bytes 2

Number of cycles 2

Function (d9)ç((SP)),(SP) ç(SP) - 1

Affected flags

Interrupt acceptance Permitted at 2nd cycle

ACC B TRL SP RAM 20H RAM 21H RAM 22H

MOV #0AAH,ACC AAH - - - - - -

MOV #055H,B AAH 55H - - - - -

MOV #012H,TRL AAH 55H 12H - - - -

MOV #01FH,SP AAH 55H 12H 1FH - - -

PUSH ACC AAH 55H 12H 20H AAH - -

PUSH B AAH 55H 12H 21H AAH 55H -

PUSH TRL AAH 55H 12H 22H AAH 55H 12H

POP B AAH 12H 12H 21H AAH 55H 12H

POP ACC 55H 12H 12H 20H AAH 55H 12H

POP TRL 55H 12H AAH 1FH AAH 55H 12H
VMD-192

5. Instructions
XCH d9 (Exchange direct byte with accumulator)

Description:

This instruction exchanges the contents of the Accumulator (ACC) with the contents of data memory
(RAM) or a Special Function Register (SFR), as speciÞed by d8 to d0.

Example 1:

Example 2:

Instruction code 1 1 0 0 0 0 1d8 d7d6d5d4d3d2d1d0 C2H~C3H

Number of bytes 2

Number of cycles 1

Function (ACC)ç➔(d9)

Affected flags

Interrupt acceptance Permitted

ACC RAM 23H

MOV #0FFH,ACC FFH -

MOV #055H,023H FFH 55H

XCH 023H 55H FFH

XCH 023H FFH 55H

XCH 023H 55H FFH

XCH 023H FFH 55H

ACC B

MOV #0FFH,ACC FFH -

MOV #0FEH,B FFH FEH

XCH B FEH FFH

XCH B FFH FEH

XCH B FEH FFH

XCH B FFH FEH
VMD-193

Visual Memory Unit (VMU) Hardware Manual
XCH @Rj (Exchange indirect byte with accumulator)

Description:

This instruction exchanges the contents of the Accumulator (ACC) with the contents of data memory
(RAM) or a Special Function Register (SFR), as speciÞed by the indirect address register that is speciÞed by
j1 and j0.

Example 1:

Example 2:

Instruction code 1 1 0 0 0 1j1j0 C4H~C7H

Number of bytes 1

Number of cycles 1

Function (ACC)ç➔((Rj)) j=0,1,2,3

Affected flags

Interrupt acceptance Permitted

ACC RAM 01H RAM 68H

MOV #0FFH,ACC FFH - -

MOV #068H,001H FFH 68H -

MOV #0F0H,@R1 FFH 68H F0H

XCH @R1 F0H 68H FFH

XCH @R1 FFH 68H F0H

XCH @R1 F0H 68H FFH

XCH @R1 FFH 68H F0H

ACC RAM 03H TRL

MOV #0AAH,ACC AAH - -

MOV #004H,003H AAH 04H -

MOV #055H,@R3 AAH 04H 55H

XCH @R3 55H 04H AAH

XCH @R3 AAH 04H 55H

XCH @R3 55H 04H AAH
VMD-194

5. Instructions
5. Jump Instructions
JMP a12 (Jump near absolute address)

Description:

This instruction increments the Program Counter (PC) twice, and then transfers the data a11 through a0 to
bits 11 through 00 of the PC.

Example 1:

The value of label LA is 0F0EH.

Example 2:

The value of label LA is 1F0EH.

Instruction code 0 0 1a11 1a10a9a8 a7a6a5a4a3a2a1a0 28H~2FH,38H~3FH

Number of bytes 2

Number of cycles 2

Function (PC)ç(PC) + 2, (PC11~00) ça12

Affected flags

Interrupt acceptance Permitted at 2nd cycle

PC Instruction code

NOP 0FFBH 00H

NOP 0FFCH 00H

JMP LA 0FFDH 3F0EH

LA: INC ACC 0F0EH 6300H

ROR 0F10H C0H

PC Instruction code

NOP 0FFCH 00H

NOP 0FFDH 00H

JMP LA 0FFEH 3F0EH

LA: INC ACC 1F0EH 6300H

ROR 1F10H C0H
VMD-195

Visual Memory Unit (VMU) Hardware Manual
JMPF a16 (Jump far absolute address)

Description:

This instruction transfers the data a15 through a0 to the Program Counter (PC).

Example 1:

The value of label LA is 0F0EH.

Example 2:

The value of label LA is 0F0EH.

Instruction code 0 0 1 0 0 0 0 1 a15a14a13a12a11a10a9a8 a7a6a5a4a3a2a1a0 21H

Number of bytes 3

Number of cycles 2

Function (PC)ça16

Affected flags

Interrupt acceptance Permitted at 2nd cycle

PC Instruction code

NOP 0FFAH 00H

NOP 0FFBH 00H

JMPF LA 0FFCH 210F0EH

LA: INC ACC 0F0EH 6300H

ROR 0F10H C0H

PC Instruction code

NOP 0FFCH 00H

NOP 0FFDH 00H

JMPF LA 0FFEH 210F0EH

LA: INC ACC 0F0EH 6300H

ROR 0F10H C0H
VMD-196

5. Instructions
BR r8 (Branch near relative address)

Description:

This instruction increments the Program Counter (PC) twice, adds the data r7 through r0 to the PC, and
then transfers that result to the PC.

Example 1:

The value of label LA is 0F5FH.

Example 2:

The value of label LA is 1F0EH.

Instruction code 0 0 0 0 0 0 0 1 r7r6r5r4r3r2r1r0 01H

Number of bytes 2

Number of cycles 2

Function (PC) ç(PC) + 2,(PC) ç(PC) + r8

Affected flags

Interrupt acceptance Permitted at 2nd cycle

PC Instruction code

NOP 0F1CH 00H

NOP 0F1DH 00H

BR LA 0F1EH 013FH

LA: INC ACC 0F5FH 6300H

ROR 0F61H C0H

PC Instruction code

NOP 1F0CH 00H

NOP 1F0DH 00H

LA: INC ACC 1F0EH 6300H

ROR 1F10H C0H

NOP 1F11H 00H

NOP 1F12H 00H

BR LA 1F13H 01F9H
VMD-197

Visual Memory Unit (VMU) Hardware Manual
BRF r16 (Branch far relative address)

Description:

This instruction increments the Program Counter (PC) three times, then decrements the PC, adds the data
r15 through r0 to the PC, and then transfers that result to the PC.

Example 1:

The value of label LA is 105FH.

Example 2:

The value of label LA is 1F0EH.

Instruction code 0 0 0 1 0 0 0 1 r7r6r5r4r3r2r1r0 r15r14r13r12r11r10r9r811H

Number of bytes 3

Number of cycles 4

Function (PC)ç(PC) + 3,(PC) ç(PC) - 1 + r16

Affected flags

Interrupt acceptance Permitted at 4th cycle

PC Instruction code

NOP 0F1CH 00H

NOP 0F1DH 00H

BRF LA 0F1EH 113F01H

LA: INC ACC 105FH 6300H

ROR 1061H C0H

PC Instruction code

NOP 1FFCH 00H

NOP 1FFDH 00H

LA: INC ACC 1F0EH 6300H

ROR 1F10H C0H

NOP 1F11H 00H

NOP 1F12H 00H

BRF LA 1F13H 11F8FFH
VMD-198

5. Instructions
6. Conditional Branching Instructions
BZ r8 (Branch near relative address if accumulator is zero)

Description:

This instruction increments the Program Counter (PC) twice, and then, if the Accumulator (ACC) is zero,
adds the data r7 through r0 to the PC, and transfers that result to the PC. If the ACC is not zero, the next
instruction is executed.

Example 1:

¥ Because ACC = "0" when the BZ instruction is executed, the program branches to the label LA.

Example 2:

¥ Because ACC π "0" when the BZ instruction is executed, the program simply executes the next instruction.

Instruction code 1 0 0 0 0 0 0 0 r7r6r5r4r3r2r1r080H

Number of bytes 2

Number of cycles 2

Function (PC)ç(PC) + 2, if (ACC) = 0 then (PC)¨(PC) + r8

Affected flags

Interrupt acceptance Permitted at 2nd cycle

PC Instruction code ACC

MOV #000H,ACC 0F1BH 230000H 00H

BZ LA 0F1EH 803FH 00H

LA: INC ACC 0F5FH 6300H 01H

ROR 0F61H C0H 80H

PC Instruction code ACC

MOV #001H,ACC 0F1BH 230001H 01H

BZ LA 0F1EH 803FH 01H

DEC ACC 0F20H 7300H 00H

ROR 0F22H C0H 00H

LA: INC ACC
VMD-199

Visual Memory Unit (VMU) Hardware Manual
BNZ r8 (Branch near relative address if accumulator is not zero)

Description:

This instruction increments the Program Counter (PC) twice, and then, if the Accumulator (ACC) is not
zero, adds the data r7 through r0 to the PC, and transfers that result to the PC. If the ACC is zero, the next
instruction is executed.

Example 1:

¥ Because ACC π "0" when the BNZ instruction is executed, the program branches to the label LA.

Example 2:

¥ Because ACC = "0" when the BNZ instruction is executed, the program simply executes the
next instruction.

Instruction code 1 0 0 1 0 0 0 0 r7r6r5r4r3r2r1r0 90H

Number of bytes 2

Number of cycles 2

Function (PC)ç(PC) + 2, if (ACC) π 0 then (PC) ç(PC) + r8

Affected flags

Interrupt acceptance Permitted at 2nd cycle

PC Instruction code ACC

MOV #001H,ACC 0F1BH 230001H 01H

BNZ LA 0F1EH 903FH 01H

LA: INC ACC 0F5FH 6300H 02H

ROR 0F61H C0H 01H

PC Instruction code ACC

MOV #000H,ACC 0F1BH 230000H 00H

BNZ LA 0F1EH 903FH 00H

DEC ACC 0F20H 7300H FFH

ROR 0F22H C0H FFH

LA: INC ACC
VMD-200

5. Instructions
BP d9,b3,r8 (Branch near relative address if direct bit is positive)

Description:

This instruction increments the Program Counter (PC) three times, and then, if the bit speciÞed by b2 to b0
of the address in data memory (RAM) or the Special Function Register (SFR) that is speciÞed by d8 to d0 is
set (1), this instruction adds the data r7 through r0 to the PC, and transfers that result to the PC. If the bit
speciÞed by b2 to b0 of the address in data memory (RAM) or the Special Function Register that is speciÞed
by d8 to d0 is reset (0), the next instruction is executed.

Example 1:

¥ Because bit 0 of B is "1" when the BP instruction is executed, the program branches to the label LA.

Example 2:

¥ Because bit 0 of the ACC is "0" when the BP instruction is executed, the program simply executes the
next instruction.

Instruction code 0 1 1d8 1b2b1b0 d7d6d5d4d3d2d1d0 r7r6r5r4r3r2r1r068H~6FH,78H~7FH

Number of bytes 3

Number of cycles 2

Function (PC)ç(PC) + 3, if (d9,b3) = 1 then (PC) ç(PC) + r8

Affected flags

Interrupt acceptance Permitted at 2nd cycle

PC Instruction code B

MOV #001H,B 0F1AH 230201H 01H

BP B,0,LA 0F1DH 78023FH 01H

LA: INC B 0F5FH 6302H 02H

NOP 0F61H 00H 02H

PC Instruction code ACC

MOV #080H,ACC 0F1AH 230080H 80H

BP ACC,0,LA 0F1DH 78003FH 80H

DEC ACC 0F20H 7300H 7FH

ROR 0F22H C0H BFH

LA: INC ACC
VMD-201

Visual Memory Unit (VMU) Hardware Manual
BPC d9,b3,r8 (Branch near relative address if direct bit is positive, and clear)

Description:

This instruction increments the Program Counter (PC) three times, and then, if the bit speciÞed by b2 to b0
of the address in data memory (RAM) or the Special Function Register (SFR) that is speciÞed by d8 to d0 is
set (1), this instruction resets that bit, then adds the data r7 through r0 to the PC, and transfers that result to
the PC. If the bit speciÞed by b2 to b0 of the address in data memory (RAM) or the Special Function Register
that is speciÞed by d8 to d0 is reset (0), the next instruction is executed.

Example 1:

¥ Because bit 0 of B is "1" when the BPC instruction is executed, the program branches to the label LA.

Example 2:

¥ Because bit 0 of the ACC is "0" when the BPC instruction is executed, the program simply executes the
next instruction.

Note:
¥ When this instruction is applied to one of the ports P0, P1, P2, P3, P4, or P5, the port latch of that port
is selected; the external signal that is applied to that port is not selected. Furthermore, applying this
instruction to port P7 does not change its status.

Instruction code 0 1 0d8 1b2b1b0 d7d6d5d4d3d2d1d0 r7r6r5r4r3r2r1r048H~4FH,58H~5FH

Number of bytes 3

Number of cycles 2

Function (PC)ç(PC) + 3, if (d9,b3) = 1 then (PC) ç(PC) + r8 , (d9,b3) = 0

Affected flags

Interrupt acceptance Permitted at 2nd cycle

PC Instruction code B

MOV #003H,B 0F1AH 230203H 03H

BPC B,0,LA 0F1DH 58023FH 02H

LA: INC B 0F5FH 6302H 03H

NOP 0F61H 00H 03H

PC Instruction code ACC

MOV #080H,ACC 0F1AH 230080H 80H

BPC ACC,0,LA 0F1DH 58003FH 80H

DEC ACC 0F20H 7300H 7FH

ROR 0F22H C0H BFH

LA: INC ACC
VMD-202

5. Instructions
BN d9,b3,r8 (Branch near relative address if direct bit is negative)

Description:

This instruction increments the Program Counter (PC) three times, and then, if the bit speciÞed by b2 to b0
of the address in data memory (RAM) or the Special Function Register (SFR) that is speciÞed by d8 to d0 is
reset (0), this instruction adds the data r7 through r0 to the PC, and transfers that result to the PC. If the bit
speciÞed by b2 to b0 of the address in data memory (RAM) or the Special Function Register that is speciÞed
by d8 to d0 is set (1), the next instruction is executed.

Example 1:

¥ Because bit 0 of B is "0" when the BN instruction is executed, the program branches to the label LA.

Example 2:

¥ Because bit 0 of the ACC is "1" when the BN instruction is executed, the program simply executes the
next instruction.

Instruction code 1 0 0 d8 1 b2b1b0 d7d6d5d4d3d2d1d0 r7r6r5r4r3r2r1r0 88H~8FH,98H~9FH

Number of bytes 3

Number of cycles 2

Function (PC)ç(PC) + 3, if (d9,b3) = 0 then (PC) ç(PC) + r8

Affected flags

Interrupt acceptance Permitted at 2nd cycle

PC Instruction code B

MOV #0FEH,B 0F1AH 2302FEH FEH

BN B,0,LA 0F1DH 98023FH FEH

LA: INC B 0F5FH 6302H FFH

NOP 0F61H 00H FFH

PC Instruction code ACC

MOV #001H,ACC 0F1AH 230001H 01H

BN ACC,0,LA 0F1DH 98003FH 01H

DEC ACC 0F20H 7300H 00H

ROR 0F22H C0H 00H

LA: INC ACC
VMD-203

Visual Memory Unit (VMU) Hardware Manual
DBNZ d9,r8 (Decrement direct byte and branch near relative address if direct byte is not zero)

Description:

This instruction increments the Program Counter (PC) three times, and then decrements the address in data
memory (RAM) or the Special Function Register (SFR) that is speciÞed by d8 to d0. If the contents of the
decremented RAM address or SFR are not zero, this instruction adds the data r7 through r0 to the PC, and
transfers that result to the PC. If the contents of the decremented RAM address or Special Function Register
are zero, the next instruction is executed.

Example 1:

¥ Because B π "0" after being decremented when the DBNZ instruction is executed, the program branches
to the label LA.

Example 2:

¥ Because ACC = "0" after being decremented when the DBNZ instruction is executed, the program simply
executes the next instruction.

Note:
¥ When this instruction is applied to one of the ports P0, P1, P2, P3, P4, or P5, the port latch of that port
is selected; the external signal that is applied to that port is not selected. Furthermore, applying this
instruction to port P7 does not change its status.

Instruction code 0 1 0 1 0 0 1d8 d7d6d5d4d3d2d1d0 r7r6r5r4r3r2r1r0 52H~53H

Number of bytes 3

Number of cycles 2

Function (PC)ç(PC) + 3, (d9) = (d9) - 1,if (d9) π 0 then (PC) ç(PC) + r8

Affected flags

Interrupt acceptance Permitted at 2nd cycle

PC Instruction code B

MOV #002H,B 0F1AH 230202H 02H

DBNZ B,LA 0F1DH 53023FH 01H

LA: INC B 0F5FH 6302H 02H

NOP 0F61H 00H 02H

PC Instruction code ACC

MOV #001H,ACC 0F1AH 230001H 01H

DBNZ ACC,LA 0F1DH 53003FH 00H

DEC ACC 0F20H 7300H FFH

ROR 0F22H C0H FFH

LA: INC ACC
VMD-204

5. Instructions
DBNZ @Rj,r8 (Decrement indirect byte and branch near relative address if indirect byte is not zero)

Description:

This instruction increments the Program Counter (PC) twice, and then decrements the address in data
memory (RAM) or the Special Function Register (SFR) that is speciÞed by the indirect address register that
is speciÞed by j1 and j0. If the contents of the decremented RAM address or SFR are not zero, this instruction
adds the data r7 through r0 to the PC, and transfers that result to the PC. If the contents of the decremented
RAM address or Special Function Register are zero, the next instruction is executed.

Example 1:

¥ Because B π "0" after being decremented when the DBNZ instruction is executed, the program branches
to the label LA.

Example 2:

¥ Because ACC = "0" after being decremented when the DBNZ instruction is executed, the program simply
executes the next instruction.

Note:
¥ When this instruction is applied to one of the ports P0, P1, P2, P3, P4, or P5, the port latch of that port
is selected; the external signal that is applied to that port is not selected. Furthermore, applying this
instruction to port P7 does not change its status.

Instruction code 0 1 0 1 0 1j1j0 r7r6r5r4r3r2r1r0 54H~57H

Number of bytes 2

Number of cycles 2

Function (PC) ç (PC) + 2, ((Rj)) = ((Rj)) - 1,

if ((Rj)) π 0 then (PC) ¨ (PC) + r8 j = 0,1,2,3

Affected flags

Interrupt acceptance Permitted at 2nd cycle

PC Instruction code B RAM 03H

MOV #002H,B 0F18H 230202H 02H -

MOV #002H,003H 0F1BH 220302H 02H 02H

DBNZ @R3,LA 0F1EH 573FH 01H 02H

LA: INC B 0F5FH 6302H 02H 02H

PC Instruction code ACC RAM 03H

MOV #001H,ACC 0F18H 230001H 01H -

MOV #000H,003H 0F1BH 220300H 01H 00H

DBNZ @R3,LA 0F1EH 573FH 00H 00H

DEC ACC 0F20H 7300H FFH 00H

LA: INC ACC
VMD-205

Visual Memory Unit (VMU) Hardware Manual
BE #i8,r8 (Compare immediate data to accumulator and branch near relative address if equal)

Description:

This instruction increments the Program Counter (PC) three times, and then compares the immediate data
(i7 to i0) with the contents of the Accumulator (ACC). If the compared data are the same, this instruction
adds the data r7 through r0 to the PC, and then transfers that result to the PC. If the data are not the same,
the next instruction is executed.

Furthermore, if the ACC is less than the immediate data, the carry ßag (CY) is set; if the ACC is greater than
or equal to the immediate data, the carry ßag (CY) is reset.

ACC < #i8 ➞ CY=1
ACC > #i8 ➞ CY=0

Example 1:

¥ Because ACC = 02H when the BE instruction is executed, CY is reset and the program branches to the
label LA.

Example 2:

¥ Because ACC < 04H when the BE instruction is executed, CY is set and the program executes the
next instruction.

Instruction code 0 0 1 1 0 0 0 1 i7i6i5i4i3i2i1i0 r7r6r5r4r3r2r1r0 31H

Number of bytes 3

Number of cycles 2

Function (PC) ç(PC) + 3, if (ACC) = #i8 then (PC) ç(PC) + r8

Affected flags CY

Interrupt acceptance Permitted at 2nd cycle

PC Instruction code ACC CY

MOV #002H,ACC 0F1AH 230002H 02H -

BE #002H,LA 0F1DH 31023FH 02H 0

LA: INC ACC 0F5FH 6300H 03H 0

PC Instruction code ACC CY

MOV #003H,ACC 0F1AH 230003H 03H -

BE #004H,LA 0F1DH 31043FH 03H 1

DEC ACC 0F20H 7300H 02H 1

LA: INC ACC
VMD-206

5. Instructions
BE d9,r8 (Compare direct byte to accumulator and branch near relative address if equal)

Description:

This instruction increments the Program Counter (PC) three times, and then compares the contents of data
memory (RAM) or a Special Function Register (SFR), as speciÞed by d8 to d0, with the contents of the
Accumulator (ACC). If the compared data are the same, this instruction adds the data r7 through r0 to the
PC, and then transfers that result to the PC. If the data are not the same, the next instruction is executed.

Furthermore, if the ACC is less than the contents of data memory (RAM) or the Special Function Register
(SFR), the carry ßag (CY) is set; if the ACC is greater than or equal to the contents of data memory (RAM)
or the Special Function Register (SFR), the carry ßag (CY) is reset.

ACC < d9 (RAM or SFR) ➞ CY=1
ACC > d9 (RAM or SFR) ➞ CY=0

Example 1:

¥ Because ACC = B when the BE instruction is executed, CY is reset and the program branches to the
label LA.

Example 2:

¥ Because ACC < B when the BE instruction is executed, CY is set and the program executes the
next instruction.

Instruction code 0 0 1 1 0 0 1d8 d7d6d5d4d3d2d1d0 r7r6r5r4r3r2r1r0 32H~33H

Number of bytes 3

Number of cycles 2

Function (PC) ç(PC) + 3, if (ACC) = (d9) then (PC) ç(PC) + r8

Affected flags CY

Interrupt acceptance Permitted at 2nd cycle

PC Instruction code ACC B CY

MOV #002H,ACC 0F17H 230002H 02H - -

MOV #002H,B 0F1AH 230202H 02H 02H -

BE B,LA 0F1DH 33023FH 02H 02H 0

LA: INC ACC 0F5FH 6300H 03H 02H 0

PC Instruction code ACC B CY

MOV #003H,ACC 0F17H 230003H 03H - -

MOV #0F2H,B 0F1AH 2302F2H 03H F2H -

BE B,LA 0F1DH 33023FH 03H F2H 1

DEC ACC 0F20H 7300H 02H F2H 1

LA: INC ACC
VMD-207

Visual Memory Unit (VMU) Hardware Manual
BE @Rj,#i8,r8 (Compare immediate data to indirect byte and branch near relative address if equal)

Description:

This instruction increments the Program Counter (PC) three times, and then compares the contents of data
memory (RAM) or a Special Function Register (SFR), as speciÞed by the indirect address register that is
speciÞed by j1 and j0, with the immediate data (i7 to i0). If the compared data are the same, this instruction
adds the data r7 through r0 to the PC, and then transfers that result to the PC. If the data are not the same,
the next instruction is executed.

Furthermore, if the contents of data memory (RAM) or the Special Function Register (SFR), as speciÞed by
the indirect address register that is speciÞed by j1 and j0, is less than the immediate data (i7 to i0), the carry
ßag (CY) is set; if the contents of data memory (RAM) or the Special Function Register (SFR) are greater than
or equal to the immediate data (i7 to i0), the carry ßag (CY) is reset.

@Rj < #i8 ➞ CY=1
@Rj > #i8 ➞ CY=�O

Example 1:

¥ Because B = 05H when the BE instruction is executed, CY is reset and the program branches to the
label LA.

Example 2:

¥ Because ACC < 09H when the BE instruction is executed, CY is set and the program executes the
next instruction.

Instruction code 0 0 1 1 0 1j1j0 i7i6i5i4i3i2i1i0 r7r6r5r4r3r2r1r0 34H~37H

Number of bytes 3

Number of cycles 2

Function (PC) ç (PC) + 3, if ((Rj)) = # i8 then (PC) ç(PC) + r8 j = 0,1,2,3

Affected flags CY

Interrupt acceptance Permitted at 2nd cycle

PC Instruction code B RAM 03H CY

MOV #005H,B 0F17H 230205H 05H - -

MOV #002H,003H 0F1AH 220302H 05H 02H -

BE @R3,#5H,LA 0F1DH 37053FH 05H 02H 0

LA: INC B 0F5FH 6302H 06H 02H 0

PC Instruction code ACC RAM 02H CY

MOV #003H,ACC 0F17H 230003H 03H - -

MOV #000H,002H 0F1AH 220200H 03H 00H -

BE @R2,#9H,LA 0F1DH 36093FH 03H 00H 1

DEC ACC 0F20H 7300H 02H 00H 1

LA: INC ACC
VMD-208

5. Instructions
BNE #i8,r8 (Compare immediate data to accumulator and branch near relative address if not equal)

Description:

This instruction increments the Program Counter (PC) three times, and then compares the immediate data
(i7 to i0) with the contents of the Accumulator (ACC). If the compared data are not the same, this instruction
adds the data r7 through r0 to the PC, and then transfers that result to the PC. If the data are the same, the
next instruction is executed. Furthermore, if the ACC is less than the immediate data, the carry ßag (CY) is
set; if the ACC is greater than or equal to the immediate data, the carry ßag (CY) is reset.

ACC < #i8 ➞ CY=1
ACC > #i8 ➞ CY=0

Example 1:

¥ Because ACC > 00H when the BNE instruction is executed, CY is reset and the program branches to the
label LA.

Example 2:

¥ Because ACC = 03H when the BNE instruction is executed, CY is set and the program executes the
next instruction.

Instruction code 0 1 0 0 0 0 0 1 i7i6i5i4i3i2i1i0 r7r6r5r4r3r2r1r0 41H

Number of bytes 3

Number of cycles 2

Function (PC) ç(PC) + 3, if (ACC) π # i8 then (PC) ç(PC) + r8

Affected flags CY

Interrupt acceptance Permitted at 2nd cycle

PC Instruction code ACC CY

MOV #002H,ACC 0F1AH 230002H 02H -

BNE #000H,LA 0F1DH 41003FH 02H 0

LA: INC ACC 0F5FH 6300H 03H 0

PC Instruction code ACC CY

MOV #003H,ACC 0F1AH 230003H 03H -

BNE #003H,LA 0F1DH 41033FH 03H 0

DEC ACC 0F20H 7300H 02H 0

LA: INC ACC
VMD-209

Visual Memory Unit (VMU) Hardware Manual
BNE d9,r8 (Compare direct byte to accumulator and branch near relative address if not equal)

Description:

This instruction increments the Program Counter (PC) three times, and then compares the contents of data
memory (RAM) or a Special Function Register (SFR), as speciÞed by d8 to d0, with the contents of the
Accumulator (ACC). If the compared data are not the same, this instruction adds the data r7 through r0 to
the PC, and then transfers that result to the PC. If the data are the same, the next instruction is executed.

Furthermore, if the ACC is less than the contents of data memory (RAM) or the Special Function Register
(SFR), the carry ßag (CY) is set; if the ACC is greater than or equal to the contents of data memory (RAM)
or the Special Function Register (SFR), the carry ßag (CY) is reset.

ACC < d9(RAM or SFR) ➞ CY=1
ACC > d9(RAM or SFR) ➞ CY=0

Example 1:

¥ Because ACC < B when the BNE instruction is executed, CY is set and the program branches to the
label LA.

Example 2:

¥ Because ACC = B when the BNE instruction is executed, CY is reset and the program executes the
next instruction.

Instruction code 0 1 0 0 0 0 1d8 d7d6d5d4d3d2d1d0 r7r6r5r4r3r2r1r0 42H~43H

Number of bytes 3

Number of cycles 2

Function (PC) ç (PC) + 3, if (ACC) π (d9) then (PC) ç (PC) + r8

Affected flags CY

Interrupt acceptance Permitted at 2nd cycle

PC Instruction code ACC B CY

MOV #002H,ACC 0F17H 230002H 02H - -

MON #003H,B 0F1AH 230203H 02H 03H -

BNE B,LA 0F1DH 43023FH 02H 03H 1

LA: INC ACC 0F5FH 6300H 03H 03H 1

PC Instruction code ACC B CY

MOV #0F2H,ACC 0F17H 2300F2H F2H - -

MOV #0F2H,B 0F1AH 2302F2H F2H F2H -

BNE B,LA 0F1DH 43023FH F2H F2H 0

DEC ACC 0F20H 7300H F1H F2H 0

LA: INC ACC
VMD-210

5. Instructions
BNE @Rj,#i8,r8 (Compare immediate data to indirect byte and branch near relative address if not equal)

Description:

This instruction increments the Program Counter (PC) three times, and then compares the contents of data
memory (RAM) or a Special Function Register (SFR), as speciÞed by the indirect address register that is
speciÞed by j1 and j0, with the immediate data (i7 to i0). If the compared data are not the same, this
instruction adds the data r7 through r0 to the PC, and then transfers that result to the PC. If the data are the
same, the next instruction is executed.

Furthermore, if the contents of data memory (RAM) or the Special Function Register (SFR), as speciÞed by
the indirect address register that is speciÞed by j1 and j0, is less than the immediate data (i7 to i0), the carry
ßag (CY) is set; if the contents of data memory (RAM) or the Special Function Register (SFR) are greater
than or equal to the immediate data (i7 to i0), the carry ßag (CY) is reset.

@Rj < #i8 ➞ CY=1
@Rj > #i8 ➞ CY=�O

Example 1:

¥ Because B < 08H when the BNE instruction is executed, CY is set and the program branches to the
label LA.

Example 2:

¥ Because ACC = 03H when the BNE instruction is executed, CY is reset and the program executes the
next instruction.

Instruction code 0 1 0 0 0 1j1j0 i7i6i5i4i3i2i1i0 r7r6r5r4r3r2r1r0 44H~47H

Number of bytes 3

Number of cycles 2

Function (PC) ç(PC) + 3, if ((Rj)) π # i8 then (PC) ç (PC) + r8 j = 0,1,2,3

Affected flags CY

Interrupt acceptance Permitted at 2nd cycle

PC Instruction code ACC B CY

MOV #002H,ACC 0F17H 230002H 02H - -

MON #003H,B 0F1AH 230203H 02H 03H -

BNE B,LA 0F1DH 43023FH 02H 03H 1

LA: INC ACC 0F5FH 6300H 03H 03H 1

PC Instruction code ACC RAM 02H CY

MOV #003H,ACC 0F17H 230003H 03H - -

MOV #000H,002H 0F1AH 220200H 03H 00H -

BNE @R2,#3H,LA 0F1DH 46033FH 03H 00H 0

DEC ACC 0F20H 7300H 02H 00H 0

LA: INC ACC
VMD-211

Visual Memory Unit (VMU) Hardware Manual
7. Subroutine Instructions
CALL a12 (Near absolute subroutine call)

Description:

This instruction increments the Program Counter (PC) twice, increments the Stack Pointer (SP), and then
stores the lower byte of the PC in the address in data memory (RAM) that is speciÞed by the SP. This
instruction then increments the Stack Pointer (SP) again, and stores the upper byte of the PC in the address
in RAM speciÞed by the SP. Finally, this instruction then transfers the data a11 through a0 to bits 11 through
00 of the PC.

Example 1:

The value of label LA is 0F0EH.

Example 2:

The value of label LA is 1F0EH.

Instruction code 0 0 0a11 1a10a9a8 a7a6a5a4a3a2a1a0 08H~0FH,18H~1FH

Number of bytes 2

Number of cycles 2

Function (PC) ç(PC) + 2,(SP) ¨ (SP) + 1,((SP)) ç(PC7~0),(SP) ç(SP) + 1,
((SP)) ¨ (PC15~8),(PC11~0) ¨ a12

Affected flags

Interrupt acceptance Permitted at 2nd cycle

PC Instruction code SP RAM 20H RAM 21H

MOV #01FH,SP 0FFAH 23061FH 1FH - -

CALL LA 0FFDH 1F0EH 21H FFH 0FH

LA: INC ACC 0FOEH 6300H 21H FFH 0FH

RET 0F10H A0H 1FH FFH 0FH

NOP 0FFFH 00H 1FH FFH 0FH

PC Instruction code SP RAM 20H RAM 21H

MOV #01FH,SP 0FFBH 23061FH 1FH - -

CALL LA 0FFEH 1F0EH 21H 00H 10H

LA: INC ACC 1F0EH 6300H 21H 00H 10H

RET 1F10H A0H 1FH 00H 10H

INC ACC 1000H 6300H 1FH 00H 10H
VMD-212

5. Instructions
CALLF a16 (Far absolute subroutine call)

Description:

This instruction increments the Program Counter (PC) three times, increments the Stack Pointer (SP), and
then stores the lower byte of the PC in the address in data memory (RAM) that is speciÞed by the SP. This
instruction then increments the Stack Pointer (SP) again, and stores the upper byte of the PC in the address
in RAM speciÞed by the SP. Finally, this instruction then transfers the data a15 through a0 to bits 15 through
00 of the PC.

Example 1:

The value of label LA is 0F0EH.

Example 2:

The value of label LA is 0F0EH.

Instruction code 0 0 1 0 0 0 0 0 a15a14a13a12a11a10a9a8Å@a7a6a5a4a3a2a1a0 20H

Number of bytes 3

Number of cycles 2

Function (PC) ç(PC) + 3,(SP)Å©(SP) + 1,((SP)) ç(PC7~0),(SP) ç(SP) + 1,
((SP)) ¨ (PC15~8),(PC) ¨ a16

Affected flags

Interrupt acceptance Permitted at 2nd cycle

PC Instruction code SP RAM 20H RAM 21H

MOV #01FH,SP 0FF9H 23061FH 1FH - -

CALLF LA 0FFCH 200F0EH 21H FFH 0FH

LA: INC ACC 0F0EH 6300H 21H FFH 0FH

RET 0F10H A0H 1FH FFH 0FH

NOP 0FFFH 00H 1FH FFH 0FH

PC Instruction code SP RAM 20H RAM 21H

MOV #01FH,SP 0FFAH 23061FH 1FH - -

CALLF LA 0FFDH 200F0EH 21H 00H 10H

LA: INC ACC 0F0EH 6300H 21H 00H 10H

RET 0F10H A0H 1FH 00H 10H

INC ACC 1000H 6300H 1FH 00H 10H
VMD-213

Visual Memory Unit (VMU) Hardware Manual
CALLR r16 (Far relative subroutine call)

Description:

This instruction increments the Program Counter (PC) three times, increments the Stack Pointer (SP), and
then stores the lower byte of the PC in the address in data memory (RAM) that is speciÞed by the SP. This
instruction then increments the Stack Pointer (SP) again, and stores the upper byte of the PC in the address
in RAM speciÞed by the SP. Finally, this instruction then decrements the PC, adds the data r15 through r0
to the contents of the PC, and transfers the result to the PC.

Example 1:

The value of label LA is 1100H.

Example 2:

The value of label LA is 1100H.

Instruction code 0 0 0 1 0 0 0 0 r7r6r5r4r3r2r1r0 r15r14r13r12r11r10r9r8 10H

Number of bytes 3

Number of cycles 4

Function (PC) ç(PC) + 3,(SP) ç(SP) + 1,((SP)) ç(PC7~0),(SP) ç(SP) + 1,
((SP)) ¨ (PC15~8),(PC) ¨ (PC) - 1 + r16

Affected flags

Interrupt acceptance Permitted at 4th cycle

PC Instruction code SP RAM 20H RAM 21H

MOV #01FH,SP 0FF9H 23061FH 1FH - -

CALLR LA 0FFCH 100201H 21H FFH 0FH

LA: INC ACC 1100H 6300H 21H FFH 0FH

RET 1102H A0H 1FH FFH 0FH

NOP 0FFFH 00H 1FH FFH 0FH

PC Instruction code SP RAM 20H RAM 21H

MOV #01FH,SP 0FFCH 23061FH 1FH - -

CALLR LA 0FFDH 100101H 21H 00H 10H

LA: INC ACC 1100H 6300H 21H 00H 10H

RET 1102H A0H 1FH 00H 10H

INC ACC 1000H 6300H 1FH 00H 10H
VMD-214

5. Instructions
RET (Return for subroutine)

Description:

This instruction transfers the contents of the address in data memory (RAM) that is speciÞed by the Stack
Pointer (SP) to the upper byte of the Program Counter (PC). This instruction then decrements the SP,
transfers the contents of the address in RAM that is speciÞed by the SP to the lower byte of the Program
Counter (PC), and then decrements the SP again.

Example 1:

The value of label LA is 0F0EH.

Example 2:

The value of label LA is 0F0EH.

Instruction code 1 0 1 0 0 0 0 0 A0H

Number of bytes 1

Number of cycles 2

Function (PC15~8) ç ((SP)),(SP) ç(SP) - 1,(PC7~0) ç((SP)),(SP) ç(SP) - 1

Affected flags

Interrupt acceptance Permitted at 2nd cycle

PC Instruction code SP RAM 20H RAM 21H

MOV #01FH,SP 0FF9H 23061FH 1FH - -

CALLF LA 0FFCH 200F0EH 21H FFH 0FH

LA: INC ACC 0F0EH 6300H 21H FFH 0FH

RET 0F10H A0H 1FH FFH 0FH

NOP 0FFFH 00H 1FH FFH 0FH

PC Instruction code SP RAM 20H RAM 21H

MOV #01FH,SP 0FFAH 23061FH 1FH - -

CALLF LA 0FFDH 200F0EH 21H 00H 10H

LA: INC ACC 0F0EH 6300H 21H 00H 10H

RET 0F10H A0H 1FH 00H 10H

INC ACC 1000H 6300H 1FH 00H 10H
VMD-215

Visual Memory Unit (VMU) Hardware Manual
RETI(Return for interrupt)

Description:

This instruction transfers the contents of the address in data memory (RAM) that is speciÞed by the Stack
Pointer (SP) to the upper byte of the Program Counter (PC). This instruction then decrements the SP,
transfers the contents of the address in RAM that is speciÞed by the SP to the lower byte of the Program
Counter (PC), decrements the SP again, and then restarts the interrupt acceptance function that was
disabled when an interrupt was accepted.

Example 1:

Example 2:

Instruction code 1 0 1 1 0 0 0 0 B0H

Number of bytes 1

Number of cycles 2

Function (PC15~8) ç((SP)),(SP) ç(SP) - 1,(PC7~0) ç((SP)),(SP) ç(SP) - 1

Affected flags

Interrupt acceptance Not permitted

PC Instruction code

NOP 0FFAH 00H

NOP 0FFBH 00H

MOV #001H,ACC 0FFCH 230001H çExternal interrupt 0
generated

INC ACC 0003H 6300H

RET1 0005H B0H

NOP 0FFFH 00H

PC Instruction code

NOP 0FFCH 00H

MOV #00EH,B 0FFDH 23020EH çExternal interrupt 1
generated

INC ACC 0013H 6300H

RET1 0015H B0H

INC ACC 1000H 6300H
VMD-216

5. Instructions
8. Bit Manipulation Instructions
CLR1 d9,b3 (Clear direct bit)

Description:

This instruction resets the bit speciÞed by b2 to b0 of the address in data memory (RAM) or the Special
Function Register that is speciÞed by d8 to d0.

Example 1:

Example 2:

Note:
¥ When this instruction is applied to one of the ports P1 or P3, the port latch of that port is selected; the
external signal that is applied to that port is not selected. Furthermore, applying this instruction to port
P7 does not change its status.

Instruction code
1 1 0d8 1b2b1b0 d7d6d5d4d3d2d1d0
C8H~CFH,D8H~DFH

Number of bytes 2

Number of cycles 1

Function (d9,b3) ç0

Affected flags

Interrupt acceptance Permitted

ACC

MOV #001H,ACC 01H 0000 0001B

CLR1 ACC,0 00H 0000 0000B

RAM 7FH

MOV #001H,07FH 01H 0000 0001B

CLR1 07FH,0 00H 0000 0000B
VMD-217

Visual Memory Unit (VMU) Hardware Manual
SET1 d9,b3 (Set direct bit)

Description:

This instruction sets the bit speciÞed by b2 to b0 of the address in data memory (RAM) or the Special
Function Register that is speciÞed by d8 to d0.

Example 1:

Example 2:

Note:
¥ When this instruction is applied to one of the ports P1 or P3, the port latch of that port is selected; the
external signal that is applied to that port is not selected. Furthermore, applying this instruction to port
P7 does not change its status.

Instruction code 1 1 1d8 1b2b1b0 d7d6d5d4d3d2d1d0 E8H~EFH, F8H~FFH

Number of bytes 2

Number of cycles 1

Function (d9,b3) ç1

Affected flags

Interrupt acceptance Permitted

ACC

MOV #000H,ACC 00H 0000 0000B

SET1 ACC,7 80H 1000 0000B

RAM 7FH

MOV #001H,07FH 01H 0000 0001B

SET1 07FH,6 41H 0100 0001B
VMD-218

5. Instructions
NOT1 d9,b3 (Not direct bit)

Description:

This instruction inverts the bit speciÞed by b2 to b0 of the address in data memory (RAM) or the Special
Function Register that is speciÞed by d8 to d0.

Example 1:

Example 2:

Note:
¥ When this instruction is applied to one of the ports P1 or P3, the port latch of that port is selected; the
external signal that is applied to that port is not selected. Furthermore, applying this instruction to port
P7 does not change its status.

Instruction code 1 0 1d8 1b2b1b0 d7d6d5d4d3d2d1d0 A8H~AFH, B8H~BFH

Number of bytes 2

Number of cycles 1

Function (d9,b3) ç(d9,b3)

Affected flags

Interrupt acceptance Permitted

ACC

MOV #000H,ACC 00H 0000 0000B

NOT1 ACC,7 80H 1000 0000B

NOT1 ACC,7 00H 0000 0000B

RAM 7FH

MOV #001H,07FH 01H 0000 0001B

NOT1 07FH,6 41H 0100 0001B

NOT1 07FH,6 01H 0000 0001B
VMD-219

Visual Memory Unit (VMU) Hardware Manual
9. Miscellaneous Instruction
NOP (No operation)

Description:

This instruction consumes one machine cycle.

10. Macro Instruction
CHANGE label name (or address)

Description:

This is POTATO's own macro instruction.

(1) When executed in internal program mode

¥Switches from internal program mode ➔ external program mode

¥The program counter is set to the external program address speciÞed by the label or address.

(2) When executed in external program mode

¥Switches from external program mode ➔ internal program mode (when LDCEXT = 0)

¥The program counter is set to the internal program address speciÞed by the label or address.

(Note:Even if the CHANGE instruction is executed in external program mode when LDCEXT = 1, the
system does not enter internal program mode. In actuality, it jumps to the address that was speciÞed
by the CHANGE instruction in the external program.)

(3) The program mode switch is made after executing any special macro instructions.

(4) Interrupts are not accepted while this macro is executing.

Instruction code 0 0 0 0 0 0 0 0 00H

Number of bytes 1

Number of cycles 1

Function

Affected flags

Interrupt acceptance Permitted
VMD-220

Visual Memory Unit (VMU)
Programing Manual

1. Environment Variables
1. Environment Variables for the L86K Series
The L86K series development support tools use the environment variables described below.

PATH: This variable deÞnes the search path. This is deÞned by a format that is added to the previously
deÞned PATH.

CHIPNAME: This variable deÞnes the name of the chip (or series) that is the target of processing.

When the last two digits in the chip name for each series are "00," that name does not exist as an actual chip. Such
chip names are deÞned for convenience sake as having the largest ROM size in their respective series. Using such a
chip name for assembly is valuable when a user wants to know the size of a user-created program.

Name File that is searched for

M86K Searches for the reserved word file m86krsvd.rwd in the directory defined by PATH.

L86K Searches for the reserved word definition symbol file lc86k.lib in the directory defined by PATH.

CGR86K Searches for the default character generator data file (DEFAULT.CDF for he LC864000 Series,
DEFAULT.GGR in all other cases) in the directory defined by PATH.

Name Description

M86K Defines the name of the chip that is the target of the assembly operation. Any CHIP pseudo
instructions (refer to Part 2, "Assembler," Chapter 6, "Pseudo Instructions," under the item " CHIP
Pseudo Instructions") that are written in the source program are ignored. This environment variable is
referenced when assembling a source program that contains no chip pseudo instructions. If the ROM
size field in the chip name (the last two digits in the chip name) is "00," the ROM size is not checked,
and the assembly operation proceeds on the assumption that there are 64K of ROM.

SU86K Defines the name of the chip for which option data is to be created. The ROM size field in the chip
name (the last two digits in the chip name) is ignored.

CGR86K Defines the name of the chip for which a character generator data file is to be created. The ROM size
field in the chip name (the last two digits in the chip name) is ignored.
VMC-1

M86KRSVDFILE: This variable deÞnes the name of the reserved word Þle.

M86KWORKFILE: This variable deÞnes the work Þle name.

TMP: This variable deÞnes the directory where the work Þle is stored.

1.1 Setting the Environment Variables (MS-DOS Version)

The SET command is used to set the environment variables in MS-DOS. For details on the SET command, refer to
the MS-DOS manual.

Example: Setting the default chip name to LC866200

A> SET CHIPNAME=LC866200ø

1.2 Setting the Environment Variables (UNIX Version)

The setenv command is used to set the environment variables in UNIX. For details on the setenv command, refer
to the UNIX manual.

Example: Setting the default chip name to LC866200 host% setenv CHIPNAME LC866200¿

Note: UNIX versions are provided for the following tools only: M86K (assembler), L86K (linkage loader)
and LIB86K (library manager).

Name File that is searched for

M86K Defines the file name and the directory where the reserved word file is stored. If this
environment variable is not defined, m86krsvd.rwd is used as the default file name, and
m86krsvd.rwd is searched for in the sequence described in PATH.

Name File that is searched for

M86K If the work memory that is dynamically allocated by M86K while the assembly operation is in
progress is too large to fit in main memory, or if there is no EMS memory, or if all of the EMS
memory has been used, this variable specifies the name of a work file that can be used as a
type of extended memory. The name can be specified with a drive name and a path name (for
the MS-DOS version), or a path name (for the UNIX version).

Name File that is searched for

M86K If it is necessary for M86K to create a work file (refer to the item, "M86KWORKFILE") and the
environment variable M86KWORKFILE is not defined, a work file is created in the directory
specified by this environment variable. If this environment variable is not defined, the work
file is created in the current directory. In all of these cases, however, the file name is fixed to
m86kwork.tmp.
VMC-2

2. File Specification for
the Assembler
There are two methods for starting up M86K and passing the necessary data to M86K.

1) Passing all of the information to M86K through the command line

2) Passing all of the information in response to the prompts that are displayed by M86K

Regardless of the method that was used to start up M86K, it can be forcibly terminated by either pressing CTRL+C
(by holding down the CTRL key while pressing the C key) or pressing the STOP key.

1. File Name Specification

1.1 MS-DOS Version File Specification

Upper-case and lower-case letters can be used in any combination in a Þle name that is speciÞed in the command
line when starting up M86K, or in a Þle name that is given in response to the M86K prompts. For example, the
following three Þle names are all equivalent:

sample.asm

SAmple.ASM

SAMPLE.asM

In addition, when a Þle name is speciÞed with no extension, M86K uses the following default Þle name extensions.

File format Default extension

Source file .ASM

Object file .OBJ

List file .LST

Cross-reference file .CRF

Error file .ERR
VMC-3

2. File Specification for the Assembler

1.2 UNIX Version File Specification

A distinction is made between upper-case and lower-case letters used in a Þle name that is speciÞed in the
command line when starting up M86K, or in a Þle name that is given in response to the M86K command prompts.
For example, the following three Þle names are all different:

sample.asm

SAmple.ASM

SAMPLE.asM

In addition, when a Þle name is speciÞed with no extension, M86K uses the following default Þle name extensions.

2. Specifying Parameters through the Command Line

1) option Þeld

Specify the assembler options that are described in Chapter 2. When specifying options, they must be
speciÞed ahead of all of the other Þelds.

2) source Þeld

Specify the name of the source Þle that is to be assembled. If the Þle name extension is omitted from the
speciÞcation, the default extension ".ASM" is assumed when the Þle is searched for. If the Þle name is
speciÞed with an extension, that extension is given priority. In either case, the drive name and path name
(in the case of the MS-DOS version) or the path name (in the case of the UNIX version) can also be speciÞed.

3) object Þeld

Specify the name of the object Þle that is to be produced as a result of the assembly operation. The drive
name and path name (in the case of the MS-DOS version) or the path name (in the case of the UNIX version)
can also be speciÞed. If this entire Þle name is omitted, the source Þle name is used, except that the Þle
extension is changed to ".OBJ". If a Þle with the same Þle name already exists, the existing Þle is overwritten.

4) list Þeld

Specify the name of the Þle to which the assembly results listing is output. The drive name and path name
(in the case of the MS-DOS version) or the path name (in the case of the UNIX version) can also be speciÞed.
If this entire Þle name is omitted, no list Þle is created. If a Þle with the same Þle name already exists, the
existing Þle is overwritten.

File format Default extension

Source file .asm

Object file .obj

List file .lst

Cross-reference file .crf

Error file .err

M86K [option] [source], [object], [list], [cross], [error]
VMC-4

Visual Memory Unit (VMU) Environment Variables

5) cross Þeld

Specify the Þle name of the cross-reference list for symbols in the source Þle that was the target of the
assembly operation. The drive name and path name (in the case of the MS-DOS version) or the path name
(in the case of the UNIX version) can also be speciÞed. If this entire Þle name is omitted, no symbol
cross-reference list Þle is created. If a Þle with the same Þle name already exists, the existing Þle is
overwritten.

6) error Þeld

Specify the name of the Þle in which the error messages that were detected as a result of the assembly
operation are to be stored. The drive name and path name (in the case of the MS-DOS version) or the path
name (in the case of the UNIX version) can also be speciÞed. If this entire Þle name is omitted, no error Þle
is created. If a Þle with the same Þle name already exists, the existing Þle is overwritten.

Example:

A> M86K MAIN.ASM,MAIN,,TEST.CXXø

The assembly operation starts, using the Þle MAIN.ASM (which resides in the current directory) as the source Þle.
The object Þle is written to MAIN.OBJ, no list is generated, and the cross-reference list is written in TEST.CXX.

3. Specifying Parameters in Response to Prompts
When starting up the assembler, input the command without specifying a Þle name. Afterwards, input each of the
Þle names in response to the prompts that are output by the assembler.

prompt M86K [option]ø

SANYO (R) LC86K series Macro Assembler Version X.XX

Copyright (c) SANYO Electric Co., Ltd. 1989-1995. All rights reserved.

Source filename[.ASM]:

Object filename[.OBJ]:

Source listing [NUL.LST]:

Cross reference[NUL.CRF]:

Error messages [NUL.ERR]:
VMC-5

2. File Specification for the Assembler

1) option Þeld

Specify the assembler options described in Chapter 2.

2) Source Þlename

Specify the name of the source Þle that is to be assembled. If the Þle name extension is omitted from the
speciÞcation, the default extension ".ASM" (".asm" for UNIX) is assumed when the Þle is searched for. If the
Þle name is speciÞed with an extension, that extension is given priority. In either case, the drive name and
path name (in the case of the MS-DOS version) or the path name (in the case of the UNIX version) can also
be speciÞed. This Þle name can not be omitted. If only the Return key is pressed, the assembler will prompt
the user to input the name of the source Þle again. In order to interrupt the input operation, either press
CTRL+C (by holding down the CTRL key while pressing the C key) or press the STOP key; doing so will
terminate M86K.

3) Object Filename

Specify the name of the object Þle that is to be produced as a result of the assembly operation. The drive
name and path name (in the case of the MS-DOS version) or the path name (in the case of the UNIX version)
can also be speciÞed. If this Þle name is omitted (i.e., only the Return key is pressed), the source Þle name
is used, except that the Þle extension is changed to ".OBJ" (".obj" in the case of UNIX). If a Þle with the same
Þle name already exists, the existing Þle is overwritten.

4) List Filename

Specify the name of the Þle to which the assembly results listing is output. The drive name and path name
(in the case of the MS-DOS version) or the path name (in the case of the UNIX version) can also be speciÞed.
If this Þle name is omitted (i.e., only the Return key is pressed), no list Þle is created. If a Þle with the same
Þle name already exists, the existing Þle is overwritten.

5) Cross reference

Specify the Þle name of the cross-reference list for symbols in the source Þle that was the target of the
assembly operation. The drive name and path name (in the case of the MS-DOS version) or the path name
(in the case of the UNIX version) can also be speciÞed. If this entire Þle name is omitted (i.e., only the Return
key is pressed), no symbol cross-reference list Þle is created. If a Þle with the same Þle name already exists,
the existing Þle is overwritten.

6) Error messages

Specify the name of the Þle in which the error messages that were detected as a result of the assembly
operation are to be stored. The drive name and path name (in the case of the MS-DOS version) or the path
name (in the case of the UNIX version) can also be speciÞed. If this entire Þle name is omitted (i.e., only the
Return key is pressed), no error Þle is created. If a Þle with the same Þle name already exists, the existing
Þle is overwritten.
VMC-6

3. Assembler Option
Specification
This chapter explains how to use the assembler options to specify and control the operation of M86K. In the MS-DOS
version, all options begin with the assembler option characters "-" or "/", and in the UNIX version all options begin
with the assembler option character "-". In either case, no distinction is made between upper- and lower-case letters
for the option speciÞcation letter. For example, "-I' and "-i" are interpreted as having the same meaning.

1. Specification for Upper- & Lower-case Letters in Identifiers
Option

-I

If this switch is speciÞed, the assembler makes no distinction between upper-case and lower-case letters in
user-deÞned identiÞers (labels, macro names, symbols). If this switch is not speciÞed, a distinction is made between
the upper- and lower-case forms of each letter. the effect of this switch is limited to user-deÞned identiÞers, and does
not apply to mnemonics or SFRs.

2. Specification for Outputting Debugging Information
Option

-D

If this switch is speciÞed, the assembler does not output the symbol information and source line information in
the object Þle. When debugging an object Þle that lacks this information, source line mode cannot be used. If this
switch is not speciÞed, both types of information are output in the object Þle, and source line mode can be used
for debugging.
VMC-7

3. Assembler Option Specification

3. Specification for Not Optimizing Branching Instructions
Option

-J

This switch can be speciÞed when assembling source code that includes pseudo instructions that require
optimization (JMPO, CALLO, BRO); specifying this switch suppresses the optimization operation. As a result,
all pseudo instructions are interpreted as 3-byte instructions regardless of the jump destination. If this switch is
not speciÞed when assembling source code that includes pseudo instructions that require optimization, the
optimization operation is performed. If there are no pseudo instructions that require optimization, the operation
of the assembler is the same, whether this switch is speciÞed or not.

4. Specification for Suppressing the Copyright Notice
Option

-N

If this switch is speciÞed, the copyright notice, etc., is not displayed when the assembler is started up. This switch
is used to keep the display screen "clean" by suppressing all unnecessary display information, aside from error
messages, when starting up the assembler from a utility such as "make".

5. Reserved Word File Specification
Option

-R

The character string that starts with the Þrst character that follows this switch and ends with the last character
before the Þrst subsequent space character that is encountered is indicated to the assembler as the name of the
reserved word Þle. For example, assume that the following speciÞcation is made:

m86k -rm86krsvd.rwd source.asm,,source.lst

In this case, the name of the reserved word Þle is m86krsvd.rwd. This speciÞcation takes priority over the
environment variable M86KRSVDFILE.
VMC-8

Visual Memory Unit (VMU) Environment Variables

6. Work Buffer Size Specification
Option

-P

If a numeric value is speciÞed after this switch, that value is adopted as the size of the assembler's internal work
buffer. The work buffer is an area that is used in order to increase processing speed when the assembler is registering
and expanding macros, and is allocated in main memory when the assembler is started up. The default size is 4096
bytes. This is not likely to prove to be inadequate in the case of a typical source program. However, if the buffer size
is too small, the assembler displays the following error message and interrupts processing:

no more PARAMETER buffer (123) 45

(The two digits at the end of the message are internal information, and may vary.) If this type of message is
displayed, use this switch to specify a larger buffer size and then repeat the assembly process. For example, if the
following is speciÞed:

m86k -p8192 source.asm

Then the work buffer size will be 8192 bytes. Only a decimal value can be speciÞed, and must be speciÞed directly
after the switch character "P" with no intervening space. Furthermore, if only the switch is speciÞed, with no valid
number, the buffer size is unchanged and remains at its default of 4096.

7. Option List Display
Option

-?

If this switch is speciÞed, the assembler displays the following list of options that can be used, and then terminates
execution. Note that if this switch is speciÞed, execution terminates, regardless of what other options were speciÞed.

Usage: m86k [option] source,[object],[list],[xref]

option:

/D do not make local symbol table and source line attributes in object file

/I ignore case for user defined symbol

/J do not try to optimize

/N skip displaying copyright message

/Psize parameter buffer size in decimal

/Rfile read ‘file’ as reserved word file
VMC-9

Visual Memory Unit (VMU) Environment Variables
VMC-10

4. Environment Variables and
the Reserved Word File
1. Environment Variables
M86K references the following environment variables when necessary:

PATH : This variable is used as the search path for the reserved word Þle. for details on the reserved
word Þle and the search algorithm, refer to section 3.2 in this chapter.

CHIPNAME : This variable deÞnes the name of the chip that is the target of the assembly operation. Any
CHIP pseudo instructions that are written in the source program are ignored. (However, if a
chip name that is speciÞed in a CHIP pseudo instruction does not match this variable, a
warning message is generated.) This environment variable is referenced when assembling a
source program that contains no chip pseudo instructions.

M86KRSVDFILE : DeÞnes names of the directory in which the reserved words Þle is stored and the name of that
Þle. The Þle speciÞed by this environment variable does not have a default Þle name
extension. Be sure to specify both Þle name and extension, and if necessary also the drive
name and path name (for the MS-DOS version) or path name (for the UNIX version).

M86KWORKFILE : If the work memory that is dynamically allocated by M86K while the assembly operation is
in progress is too large to Þt in main memory, or if there is no EMS memory, or if all of the EMS
memory has been used, this variable speciÞes the name of a work Þle that can be used as a
type of extended memory. The name can be speciÞed with a drive name and a path name (for
the MS-DOS version), or a path name (for the UNIX version).

TMP : If it is necessary for M86K to create a work Þle (refer to the item, M86KWORKFILE) and the
environment variable M86KWORKFILE is not deÞned, a work Þle is created in the directory
speciÞed by this environment variable. If this environment variable is not deÞned, the work
Þle is created in the current directory. In all of these cases, however, the Þle name is Þxed to
m86kwork.tmp.
VMC-11

4. Environment Variables and the Reserved Word File

1.1 Setting the Environment Variables (MS-DOS Version)

The SET command is used to set the environment variables in MS-DOS. For details on the SET command, refer to
the MS-DOS manual.

Example: Setting the default chip name to LC866200

A> SET CHIPNAME=LC866200ø

1.2 Setting the Environment Variables (UNIX Version)

The setenv command is used to set the environment variables in UNIX. For details on the setenv command, refer
to the UNIX manual.

Example: Setting the default chip name to LC866200

host% setenv CHIPNAME LC866200ø

2. Reserved Word File
The reserved word Þle is a Þle that is always loaded by M86K upon startup, and contains various items of
information concerning the chip that is the target of the assembly operation (size of RAM/ROM, SFR mnemonics,
etc.). M86K will not operate correctly without this Þle. When M86K is started up, it searches for the reserved word
Þle according to the following procedure:

1) If the Þle name is explicitly speciÞed through assembler option -R, that Þle is loaded. If that Þle does
not exist, or if it is not loadable, an error results.

2) If the environment variable M86KRSVDFILE has been deÞned, the Þle speciÞed by that variable is
loaded. If that Þle does not exist, or if it is not loadable, an error results.

3) If there is a Þle named m86krsvd.rwd in the directory where M86K.EXE is located, and that Þle is
loadable, that Þle is loaded.

4) If there is a Þle named m86krsvd.rwd in the current directory, and that Þle is loadable, that Þle is loaded.

5) M86K searches sequentially through the directory speciÞed in the environment variable PATH, and
loads the Þrst loadable Þle named m86krsvd.rwd that it Þnds.

If searching according to the sequence described above still fails to Þnd the reserved word Þle, an error is generated
and M86K stops executing. Normally, the reserved word Þle is stored in the same directory where M86K.EXE
resides. Note that the contents of the reserved word Þle are essential to the normal operation of M86K, and we
cannot bear responsibility for any problems that arise in the operation of M86K resulting from the deletion or
modiÞcation of the contents of the reserved word Þle. Therefore, we strongly recommended that the write-protect
feature for this Þle be enabled.
VMC-12

5. Source File Input Format
A source Þle consists of character strings of up to 511 characters per line (including a CR or LF code at the end of
each line). In addition, no distinction is made between upper- and lower-case letters, except in symbols (such as
labels and macro names) that are deÞned in the source program. For example, both "Nop" and "nop" are recognized
as the mnemonic for the NOP instruction. Furthermore, the distinction made between upper- and lower-case
characters in symbols such as labels can also be disabled by specifying the assembler option "-I".

1. Statements
Statements consist of a combination of mnemonics (which deÞne the object code that is to be produced during the
assembly operation), operands and comments. One line of source code is equivalent to one mnemonic. Multi-line
statements are not supported. Each statement consists of the four Þelds described below.

[label:] [operation] [operand] [;comment]

Note: Data that is enclosed in brackets may be omitted.

Field Purpose

label A label is applied to a statement so that other statements can use that label to
access the statement. Labels must always be delimited with a colon (":").

operation Specifies the operation of the statement.

operand Defines the data that is the target of the operation of the statement.

comment Describes the statement; has no effect on the assembly operation.
VMC-13

5. Source File Input Format

2. Label Names and Symbol Names
Label names and symbol names are character strings of any length (but of at least one character). However, only
the Þrst 32 characters of a label name or symbol name are valid. The following characters may be used in a label or
symbol name:

A~Z, a~z, 0~9

$

?

-

@

.

In addition, the Þrst character in a label or symbol name must be a letter, "_", ".", or "@". If the assembler option "-i"
has not been speciÞed, a distinction is made between upper- and lower-case letters. Furthermore, label names must
be delimited with a colon (":").

3. Comments
Comments begin with a semi-colon (";") and end with a line feed.
VMC-14

Visual Memory Unit (VMU) Environment Variables

4. Operators
The following chart lists the operators that can be used in M86K and their priority. No distinction is made between
upper- and lower-case characters in operators that consist only of letters, such as NOT. NOT and not are recognized
as the same operator.

Operator Description Priority ranking

NOT 1's complement 1

HIGH Upper byte

LOW Lower byte

* Multiplication 2

/ Division

MOD Modulo

+ Addition 3

- Subtraction

SHR Right shift 4

SHL Left shift

LAND Logical product 5

LOR Logical sum

LXOR Exclusive logical sum

EQ Equal to 6

NE Not equal to

LT Less than

LE Less than or equal to

GT Greater than

GE Greater than or equal to
VMC-15

5. Source File Input Format

5. Numeric constants
M86K permits description of numeric constants in four bases: binary, octal, decimal, and hexadecimal. There are
two formats for writing numeric constants: one in which the base is explicitly indicated ("123H"), and one in which
the pseudo instruction RADIX is used to specify the default base beforehand. Values that are written with an
explicitly speciÞed base are converted to the default base. A numeric constant for which no base is explicitly
speciÞed, such as "123," is converted to the base that was speciÞed by the pseudo instruction RADIX. If the pseudo
instruction RADIX has not been used to specify a base, the default base is "decimal."

No matter which method is used to write constants, the assembler processes the values internally in 32-bit format.
In addition, when a numeric constant or the value of an expression that is ultimately returned to a numeric constant
is written as immediate data for an operand, only the bits that are necessary for that operand are stored; the
remaining upper bits are discarded.

Table 6.1 Formats for numeric constants with an explicitly specified base

*No distinction is made between upper- and lower-case characters that are used to specify the base ("B", "O", "D",
and "H"). This is not affected by the assembler option "-i".

*This format is affected by the RADIX setting. For details, refer to the next table.

Base Format Examples

2 Percent sign ("%"), followed by one or more digits 0 and 1 %01111011 %11111111 %0000010000000000

One or more digits 0 and 1, followed by "B" *01111011B 11111111B 0000010000000000B

One or more digits 0 and 1, followed by ".B" 01111011.B 11111111.B 0000010000000000.B

8 One or more digits 0 through 7, followed by ".O" 273.O 377.O 2000.O

10 One or more digits 0 through 9, followed by ".D" 123.D 255.D 1024.D

16 Dollar sign ("$"), followed by one or more digits 0 through 9, "a" through "f", or
"A" through "F"

$7B $FF $0400

An initial digit 0 through 9, which may be followed by digits 0 through 9, "a"
through "f", or "A" through "F", followed by "H"

7BH 0FFH 0400H

An initial digit 0 through 9, which may be followed by digits 0 through 9, "a"
through "f", or "A" through "F", followed by ".H"

7B.H 0FF.H 0400.H
VMC-16

Visual Memory Unit (VMU) Environment Variables

Table 6.2 Interpretation of numeric constants in a format where the base is not explicitly specified

6. Character Constants
Characters enclosed in single quotes (') are handled as character constants. Character constants are a type of constant,
the value of which is the ASCII code of the character that is speciÞed. In addition to being able to write all printable
ASCII characters, other codes may also be written in the following format. Note that when more than one character
is enclosed in quotes, it is handled as a "character string constant" (see section 4.7), not a "character constant."

Table 6.3 Format for inputting codes within character constants and character string constants

 Example 1: ADD#ÔAÕ

 Example 2: DB ÔAÕ,Õ\012Õ,ÕCÕ

 Example 3: DB ¬ Regarded as a character string constant, and generates an error as an operand for DB.

Format Example Value in base specified by RADIX

2 8 10 16

One or more digits 0 and 1 0101 510 6510 10110 25710

One or more digits 0 through 7 123 error 8310 12310 29110

One or more digits 0 through 9 789 error error 789110 192910

One or more digits 0 and 1, followed by "B "101B 510 510 510 412310

An initial digit 0 through 9, which may be
followed by digits 0 through 9, "a" through "f",
or "A" through "F

"0FF error error error 25510

Format Code (hexadecimal) Remarks

\n 0A Line feed

\r 0D Return

\t 09 Horizontal tab

\b 08 Back space

\f 0C Paper feed

\ "22 Double quotes

\ '27 Single quotes

\\ 5C Yen mark or backslash

\ooo "ooo" represents an octal number of up to three digits

\xhh "hh" represents a hexadecimal number of up to two digits
VMC-17

5. Source File Input Format

7. Character String Constant
A character string consisting of one or more characters that is enclosed in double quotes (") or a character string
consisting of two or more characters that is enclosed in single quotes (') is handled as a character string constant.
A character string constant can be written as an operand for the pseudo instruction DC or .PRINTX. In addition to
being able to write all printable ASCII codes in a character string, it is also possible to write other codes using the
format described in section 4.6.

Example: DC ÒThis is a sample string with special codes \007\r\nÓ

8. Special Symbols
When an asterisk is used as an operand, it represents the value of the described location.

Example 1: To indicate the value that was six bytes ahead of the location where the instruction is written:
BR *-

Example 2: To indicate the value that was twelve bytes after the location where the instruction is written:

Example 2: To indicate the value that was twelve bytes after the location where the instruction is written:
BR * +12
VMC-18

6. Errors
M86K detects three levels of errors: fatal errors, errors, and warnings. When a fatal error is detected, M86K
immediately halts execution at that point. This level corresponds to problems such as "the work buffer is too small,
etc." If an error is detected, M86K halts execution once the pass (pass 1 or pass 2) that was being executed at the
moment when the error was detected is completed. This level corresponds to syntax errors, for example. If a
warning is detected, the M86K does not halt execution, because a warning corresponds to minor problems such as
an operand being out of range.

When a fatal error is detected, M86K does not generate all Þles that are indicated for output. If an error is detected
in pass 1, M86K does not generate all Þles that are indicated for output; if an error is detected in pass 2, however,
the list Þle only is generated (if the speciÞcation for generating the list Þle was made). The error display format is
shown below.

filename(linenumber): source line

error message

Example: sample.asm(54): LD xyz

xyz: undeÞne symbol

The symbol "xyz" is undeÞned.
VMC-19

6. Errors
1. Warnings
The meanings of the warning level messages that are generated by M86K are described below. Note that "???" in
these messages indicates a variable portion of the message.

???: bit number exceeds limits

In a bit manipulation instruction, the speciÞed bit was outside of the allowable range.

absolute expression expected

An expression in which the value is Þnalized at the point of assembly is required.

address beyond zero

A negative value was speciÞed for the operand of an ORG instruction.

address exceeds limits

The value that was speciÞed for the operand of an ORG instruction exceeded the size of ROM.

address exceeds ROM size

The address of an assembled instruction exceeded the size of ROM.

chip name is different from one specified by CHIPNAME (???).

The operand of the CHIP instruction differs from that which was speciÞed in the environment variable.

END in included file

The END pseudo instruction was found within a source Þle that was speciÞed by the INCLUDE
pseudo instruction.

ENDF without FUNCTION

ENDF was found even though no function was being deÞned.

ENDM without MACRO

ENDM was found even though no macro was being deÞned.

EXITM outside MACRO

EXITM was found even though no macro was being deÞned.

function code buffer overflow

The contents of the function deÞnition were too large for the buffer.

illegal combination of attributes:???

The attributes (bank and segment) of both elements of a two-element operator do not agree.

illegal style expression

SET or EQU operands had an invalid format.

JMP/CALL placed at the end of memory block (FREE)

A JMP or CALL instruction appeared in which the lower 12-bits of the address were 0FFEH or 0FFFH.
Because the segment placement mode is "FREE," there may be no problem, depending on the results of
the link, but an error will be generated by the linker if the segment in question was placed at the start
of a memory boundary.
VMC-20

Visual Memory Unit (VMU) Environment Variables
Jump address is out of range (FREE)

The jump destination address is outside of the memory boundary. Because the segment placement
mode is "FREE," there may be no problem, depending on the results of the link, but an error will be
generated by the linker if the segment in question was placed at the start of a memory boundary.

LOCAL outside MACRO

LOCAL was found even though no macro was being deÞned.

macro name in expression

A symbol that has been registered as a macro was found in an expression.

macro name required

No macro name was found, even though a macro was being deÞned.

no character in string

No characters were found in a character string constant.

page width must be 72 ~ 132: ???

The operand of the WIDTH instruction must be between 72 and 132 (inclusive).

public ??? not defined

The value of a symbol declared in a PUBLIC pseudo instruction has not been deÞned.

SET conflicts with PUBLIC

An attempt was made to reset a value that was already set (by the SET instruction) for a symbol
declared in a PUBLIC pseudo instruction.

symbol name required

No symbol was found in the operand for PUBLIC, EXTERN, or OTHER_SIDE_SYMBOL.

undefined symbol in expression

An undeÞned symbol was found in an expression. (This warning is detected in pass 2 only.)

value is out of range

The value is outside of the allowable range. (The "allowable range" varies for each operand.)

zero divide: ??? modulo 0

The right side of the MOD operator is "0."

zero divied: ??? / 0

The right side of the "/" operator is "0."
VMC-21

6. Errors
2. Errors
The meanings of the error level messages that are generated by M86K are described below. Note that ??? in these
messages indicates a variable portion of the message.

???: 2, 8, 10 or 16 required

Only "2," "8," "10," or "16" can be speciÞed as the operand for the pseudo instruction RADIX.

???: constant required

No numeric constant was found.

???: duplicated label

A duplicate label was found.

???: duplicated symbol

A duplicate symbol was found.

???: illegal character in numeric constant

An invalid character was found within a numeric constant.

???: no such chip in the table

The symbol that was speciÞed by the CHIP instruction was not found in the reserved word Þle.

???: open error

An error was detected when a Þle was opened.

???: undefined symbol

An undeÞned symbol was referenced.

???: radix violation

Characters that are not valid for the speciÞed base were found in a numeric constant.

???H,???:out of internal RAM area

The data segment address allocation exceeded the allowable range.

‘ not seen

No single quote (') was found on the right end of a character constant.

‘:’ not seen

In the case of a format that explicitly speciÞes the segment in the EXTERN operand, no colon (:) was
found that delimits the segment from the symbol.

0x???: RAM address exceeds limits

The data segment address allocation was outside of the allowable range.

address duplicated

A duplicate address area in RAM was speciÞed in the DS pseudo instruction.

address exceeds absolute limits

The address of an assembled instruction exceeded 65535.
VMC-22

Visual Memory Unit (VMU) Environment Variables
bank number should be 0~15

The bank number must be within the range from 0 to 15.

Branch address beyond zero

A value smaller than address 0 (the start of the code segment in question) was speciÞed as the branch
destination address.

Branch address exceeds limits

The branch destination address exceeded the size of ROM.

CSEG conflicts with WORLD EXTERNAL_DATA

WORLD EXTERNAL_DATA and a pseudo instruction that speciÞes a segment cannot both be written
within the same source Þle.

CSEG isn’t allowed in macro

A pseudo instruction that speciÞes a segment cannot be written within a macro deÞnition.

DS must be in DSEG

The DS pseudo instruction can only specify a data segment.

DSEG conflicts with WORLD EXTERNAL_DATA

WORLD EXTERNAL_DATA and a pseudo instruction that speciÞes a segment cannot both be written
within the same source Þle.

DSEG isn’t allowed in macro

A pseudo instruction that speciÞes a segment cannot be written within a macro deÞnition.

ELSE without IFxxx

IFxxx corresponding to the pseudo instruction ELSE for conditional assembly was not found.

ENDF not seen

The ENDF pseudo instruction that declares the end of a function deÞnition was not found.

ENDIF without IFxxx

IFxxx corresponding to the pseudo instruction ENDIF for conditional assembly was not found.

ENDM not seen

The ENDM pseudo instruction that declares the end of a macro deÞnition was not found.

external symbol can’t be public

An external symbol was declared in a PUBLIC pseudo instruction.

Hardware configuration violation

The instruction (such as the CHANGE instruction) in question has not been implemented for the
speciÞed chip.

identifier expected

Something other than an identiÞer was found in a macro deÞnition parameter list or in an
EXTERN operand.
VMC-23

6. Errors
illegal character in ??? constant

illegal character in binary constant

An invalid character for the speciÞed base was found within a numeric constant.

illegal symbol type

Declared of a symbol of an in valid type was attempted in a PUBLIC pseudo.

illegal word in external list

A syntax error was found in an EXTERN operand.

instructions can’t be in DSEG

An instruction other than DS was found in a data segment.

JMP/CALL placed at the end of memory block (INBLOCK)

A JMP or CALL instruction appeared in which the lower 12-bits of the address were 0FFEH or 0FFFH.
Because the segment placement mode is "INBLOCK," an error resulted.

Jump address beyond zero

A value smaller than address 0 (the start of the code segment in question) was speciÞed as the jump
destination address.

Jump address exceeds limits

The jump destination address exceeded the size of ROM.

Jump address is out of range (INBLOCK)

The jump destination address is outside of the memory boundary. Because the segment placement
mode is "INBLOCK," a linker error resulted.

local symbol can’t be public

A local symbol was declared in a PUBLIC pseudo instruction.

lost SET symbol

A symbol that was deÞned by the SET pseudo instruction was lost from in pass 2. This is possibly due
to an internal error in the assembler.

macro can’t be public

A macro was declared in a PUBLIC pseudo instruction.

maximum nesting of macro is 10

The maximum nesting level for macros is 10.

Multiple WORLD specified

Multiple WORLD pseudo instructions were written in the same source Þle.

name required for macro

No name was found in a macro deÞnition.

no room for source line attribute object

There is insufÞcient memory to store source line attributes (information for debugging).
VMC-24

Visual Memory Unit (VMU) Environment Variables
no value for EXT

Although the CHANGE instruction is being used, the register EXT was not found in the SFRs.

not the symbol defined by SET

An attempt was made to reset (with the SET command) a value for a symbol that was not the one that
was deÞned by SET.

operand exceeds limits

The number of repetitions speciÞed by the REPT macro pseudo instruction was not within the range
from 1 to 65,535.

ORG isn’t allowed in macro

The ORG pseudo instruction cannot be written within a macro.

other-side symbol isn’t allowed

other-side symbol isn’t allowed here

A symbol declared with OTHER_SIDE_SYMBOL cannot be speciÞed here.

other-side symbol or absolute constant is required

A symbol declared with OTHER_SIDE_SYMBOL or a constant is required.

positive value required

A negative value cannot be used.

public ??? not defined

There was no deÞnition of a symbol declared in a PUBLIC pseudo instruction. (This problem generates
a "warning" for a symbol that is only declared in a PUBLIC pseudo instruction and has no deÞnition of
value and is not referenced, and generates an "error" when there is no deÞnition of value but the symbol
is referenced.)

string is too long

The length of a character string constant exceeded the limit (255 characters).

symbol name required

No symbol was found on the left side of SET or EQU.

symbol not defined

No symbol was found speciÞed in the operand for PUBLIC, EXTERN, or OTHER_SIDE_SYMBOL. An
internal assembler error is possible.

syntax error
A syntax error was found.

syntax error near ???

A syntax error was found in the vicinity of ???.

too complexed expression for an operand

An expression that was written for an operand was too complex and could not be interpreted.

too many CHIP pseudo operation

Multiple CHIP pseudo instructions were written in one source Þle.
VMC-25

6. Errors
too nested if-statements

Nesting of pseudo instructions for conditional assembly exceeded the limit (10 levels).

unbalanced conditional assembling controllers

unbalanced IF statement

The end of the source Þle was found while skipping due to conditional assembly.

unexpected end of file in string

The end of the source Þle was found within a character string constant.

unexpected end of line in string

The end of the line was found within a character string constant.

unexpected EOF in conditional assembling

The end of the source Þle was found while skipping due to conditional assembly.

unexpected terminator ??? in conditional assembling

The syntax analysis routine ended abnormally while skipping due to conditional assembly. An internal
assembler error is possible.

unmatched ELSE in skipping

unmatched ENDIF

The end of the source Þle was found while skipping due to conditional assembly.

WORLD conflicts xSEG

WORLD EXTERNAL_DATA and a pseudo instruction that speciÞes a segment cannot both be written
within the same source Þle.
VMC-26

Visual Memory Unit (VMU) Environment Variables
3. Fatal Errors
The meanings of the fatal error level messages that are generated by M86K are described below. Note that ??? in
these messages indicates a variable portion of the message.

???(???): chip name not seen

???(???): chip name not seen.

???(???): decimal value required

???(???): hex-value and reserved-word are required

???(???): no chip name list

A syntax error was found in the reserved word Þle.

???(???): no reserved word seen

???(???): ROM size not seen

???(???): too many chip names

???(???):???: unknown chip name

???(???):???: unknown flag

A syntax error was found in the reserved word Þle.

???: illegal file name

An invalid character was found in the speciÞed Þle name.

???: no such chip in the table

The chip name that was speciÞed by the environment variable CHIPNAME was not found in the
reserved word Þle.

???: no such user

The user name speciÞed by "~user" was not found. (UNIX version only)

???: open error

An attempt to open the speciÞed Þle failed.

???: unknown flag

An invalid assembler option was speciÞed.

???: unreadable

The speciÞed Þle cannot be loaded.

EMM v3.2 or later is required (v???.??? found)

The EMS driver version is old and is no longer supported. Driver version 3.2 or later is required.

EMS allocation (??? pages) was failed

EMS memory allocation failed.

EMS deallocation was failed

An error was detected while opening EMS memory.

flushing error in workfile

An error was detected while ßushing the work Þle. (There is no more free space on disk, etc.)
VMC-27

6. Errors
Getting EMM version was failed

Getting EMS status was failed

Getting free page count on EMS is failed

Getting physical page frame address was failed

During EMS memory initialization, an error was detected, such as during the EMS driver version
check, etc.

making temp. name for ??? failed

An error was detected when a temporary name was given to an output Þle.

Neither CHIP pseudo operation nor CHIPNAME environment variable were defined. Further
execution aborted.

No chip speciÞcation has been made through the CHIP pseudo instruction or the environment variable
CHIPNAME; because no chip can be speciÞed as the target chip for assembly, subsequent operation
is halted.

no more MAIN memory (???) ???

Although there is an area remaining that must be allocated in main memory, there is no more space in
main memory available for allocation.

no more memory (???)

There is no more memory that can be dynamically allocated (main memory, EMS memory, work Þles).

no more NODE buffer (???) ???

There is insufÞcient work area available for analyzing expressions.

no more PARAMETER buffer (???) ???

There is insufÞcient work area available for processing the parameter list for a macro deÞnition or call.

no reserved word file available.

Reading of the reserved word Þle failed.

no room for file: ???

A Þle cannot be written to disk because the disk is full.

Pxxxx must be less than 65536

Specify a parameter buffer size of no more than 65535.

read error in workfile (???)

An error occurred while reading the work Þle.

removing ??? failed

Because an error was detected, an attempt was made to delete the output Þles created up to that point,
but the attempt failed.

renaming ??? ==> ??? failed

An error was generated when an attempt was made to change the name of an output Þle that was
created with a temporary name a regular name.
This error is generated when a Þle with the same name as the post-change name already exists, and
that Þle is write-protected.
VMC-28

6. Errors
too many file names

Five or more Þle names are speciÞed in the command line.

too many nested include files

The number of nested include Þles exceeded the limit (10 levels).

unlinking work file is failed

An error was detected while deleting a work Þle.

workfile ???: already exist

workfile ???: open error

An error was detected while creating a new work Þle.
VMC-29

Visual Memory Unit (VMU) Environment Variables
VMC-30

7. Pseudo Instructions
Unlike normal instructions (instructions that indicate operations of the LC86K itself, such as ADD and MOV),
pseudo instructions are used to issue instructions and make deÞnitions to the assembler, and no machine language
is generated for individual pseudo instructions (except for pseudo instructions that are used for optimization
purposes, such as JMPO, and CHANGE pseudo instructions). In most cases, these pseudo instructions are used in
combination with normal instructions.

Category Pseudo instruction Function

Link control ORG

WORLD

CSEG

DSEG

END

PUBLIC

EXTERN

OTHER_SIDE_SYMBOL

Specify origin

Select ROM for code storage

Specify code segment

Specify data segment

End program

Specify external definition name

Specify external reference name

Declare CHANGE instruction jump label

Symbol definition EQU

SET

Assign value

Assign temporary value

Data definition DB

DW

DC

DS

Define byte

Define word

Define character string

Allocate data area (RAM)

Macro control MACRO

REPT

IRP

IRPC

ENDM

EXITM

LOCAL

Define macro

Repeat macro

Continuous macro

Character string macro

End macro definition

Interrupt macro expansion

Define local label
VMC-31

7. Pseudo Instructions
Conditional assembly IFDEF

IFNDEF

IFB

IFNB

IFE

IFNE

IFIDN

IFDIF

ELSE

ENDIF

.PRINTX

.LIST

.XLIST

.MACRO

.XMACRO

.IF

.XIF

Assemble if defined

Assemble if undefined

Assemble if operand is empty

Assemble if operand is not empty

Assemble if value of expression is "0"

Assemble if value of expression is not "0"

Assemble if two character strings are identical

Assemble if two character strings are not identical

Assemble in the case of the condition that is the opposite of the above IF condition

End conditional assembly

Display on VDT during assembly

Output list

Interrupt list output

Output macro expansion

Interrupt macro expansion output

Output conditional skip

Interrupt conditional skip output

Miscellaneous INCLUDE

TITLE

PAGE

CHIP

COMMENT

WIDTH

BANK

CHANGE

RADIX

Load file

Specify list title

End of page

Define chip that is target of assembly

Output comments to object file

Specify number of columns in list file

Specify RAM area bank

Jump between external and internal ROM

Specify default base

Optimization JMPO

BRO

CALLO

BZO

BNZO

BPO

BPCO

BNO

DBNZO

BEO

BNEO

Generate optimal JMP instruction

Generate optimal BR instruction

Generate optimal CALL instruction

Generate BZ instruction that will not generate an address error

Generate BNZ instruction that will not generate an address error

Generate BP instruction that will not generate an address error

Generate BPC instruction that will not generate an address error

Generate BN instruction that will not generate an address error

Generate DBNZ instruction that will not generate an address error

Generate BE instruction that will not generate an address error

Generate BNE instruction that will not generate an address error

Category Pseudo instruction Function
VMC-32

Visual Memory Unit (VMU) Environment Variables
1. ORG (Specify origin)

ORG expression

The ORG pseudo instruction begins the speciÞcation of addresses in program memory (ROM) and data memory
(RAM) from the value of expression. expression must be either a numeric constant or an expression that has a
deÞnite value at the time of assembly.

Example:

page: 1 <org.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

0001 ;a sample program for ORG

0002 chip lc866032

0003 extern wait1s

0004 dseg

0005 D 0000 min1: ds 1

0006 D 0001 min0: ds 1

0007 cseg

0008 org 0h

0009 C 0000 6201’ label1: inc min0

0010 C 0002 0201’ ld min0

0011 C 0004 A13C sub #60

0012 C 0006 900311 bzo label2

0012 C 0009 F600

0013 C 000B 210200’ jmpf label3

0014 org 100h

0015 C 0100 6200’ label2: inc min1

0016 C 0102 220100’ mov #00,min0

0017 C 0105 210200’ jmpf label3

0018 org 200h

0019 C 0200 100000’ label3: callr wait1s

0020 C 0203 210000’ jmpf label1

0021 end
VMC-33

7. Pseudo Instructions
2. WORLD (Select ROM for code storage)

WORLD selection

This pseudo instruction speciÞes the ROM where the assembled code should be stored. This pseudo
instruction has meaning only when the target chip is of the LC868000 Series. The following three values can
be speciÞed for selection:

INTERNAL :Store the code in the on-chip ROM.

EXTERNAL :Store the code in the ROM that is connected externally for code storage.

EXTERNAL_DATA :Store the code in the ROM that is connected externally for data storage.

If multiple WORLD pseudo instructions are speciÞed in one Þle, an error results. If a chip other than one
of the LC868000 Series is speciÞed, and a value other than INTERNAL is selected in the WORLD pseudo
instruction, an error results.

3. CSEG (Declare start of code segment)

CSEG mode

This pseudo instruction declares to the assembler the start of the segment where the program code is to be
stored. If mode is not speciÞed, or if mode is speciÞed as INBLOCK, the start of the segment is located at a
4K boundary. If mode is speciÞed as FREE, the start of the segment has no relation to a 4K boundary.

Example:

page: 1 <cseg.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

0001 ; a sample program for CSEG

0002 chip lc864024

0003 extern wait1s

0004 dseg

0005 D 0000 min1: ds 1

0006 D 0001 min0: ds 1

0007 cseg inblock

0008 C 0000 6201’ label1: inc min0

0009 C 0002 0201’ ld min0

0010 C 0004 A13C sub #60

0011 C 0006 900311 bzo label2

0011 C 0009 0000

0012 C 000B 210000’ jmpf label3

0013 cseg free

0014 c 0000 6200’ label2: inc min1

0015 c 0002 220100’ mov #00,min0

0016 c 0005 210000’ jmpf label3

0017 cseg

0018 C 0000 100000’ label3: callr wait1s

0019 C 0003 210000’ jmpf label1

0020 end

The local address is
reset to "0" at the start
of each segment

Independent segments
VMC-34

Visual Memory Unit (VMU) Environment Variables
4. DSEG (Declare start of data segment)

DESG

This pseudo instruction declares to the assembler the start of the area in data memory that is to be allocated.

Example:

page: 1 <cseg.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

0001 ; a sample program for CSEG

0002 chip lc864024

0003 extern wait1s

0004 cseg inblock

0005 C 0000 6201’ label1: inc min0

0006 C 0002 0201’ ld min0

0007 C 0004 A13C sub #60

0008 C 0006 900311 bzo label2

0008 C 0009 0000

0009 c 000B 210000' jmpf label3

0010 cseg free

0011 c 0000 6200’ label2: inc min1

0012 c 0002 220100’ mov #00,min0

0013 c 0005 210000’ jmpf label3

0014 cseg

0015 C 0000 100000’ label3: callr wait1s

0016 C 0003 210000’ jmpf label1

0017

0018 dseg

0019 D 0000 min1: ds 1

0020 D 0001 min0: ds 1

0021 end

Data segments

Code segments
VMC-35

7. Pseudo Instructions
5. END (End program)

END

This pseudo instruction declares the end of the source program. Because the assembler ends the assembly
operation for the pass that is being executed at the moment that this instruction is detected, any statements
that follow this instruction are ignored, even if those statements are valid.

Example:

; a sample program for END

chip lc866032

cseg

mov #20h, 01h

mov #10h, 00h

ld 00h

add 0fh

end

inc 00h

inc 01h

ld 01h

Statements that come after the pseudo instruction END are not assembled.

page: 1 <end.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

0001 ; a sample program for END

0002 chip lc866032

0003 cseg

0004 C 0000 220120 mov #20h, 01h

0005 C 0003 220010 mov #10h, 00h

0006 C 0006 0200 ld 00h

0007 C 0008 820F add 0fh

0008 end
VMC-36

Visual Memory Unit (VMU) Environment Variables
6. PUBLIC (Specify external definition name)

PUBLIC symbol {, symbol}

The PUBLIC pseudo instruction permits symbol, which is deÞned in this source program, to be referenced
from other source Þles.

Example:

page: 1 <extern.ASM>
ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

0001 ; a sample program for EXTERN
0002 chip lc866032
0003 extern label1, label2
0004
0005 cseg inblock
0006 C 0000 200000’ callf label1
0007
0008 C 0003 200000’start: callf label2
0009 C 0006 0303 ld c
0010 C 0008 90F9 bnz start
0011
0012 C 000A A300 sub a
0013
0014 end

page: 1 <public.ASM>
ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

0001 ; a sample program for PUBLIC
0002 chip lc866032
0003 public label1, label2
0004
0005 cseg inblock
0006 C 0000 220000’ label1: mov #00, data1
0007 C 0003 23033C mov #60, c
0008 C 0006 A0 ret
0009
0010 C 0007 6200’ label2: inc data1
0011 C 0009 0200’ ld data1
0012 C 000B 410A05 bne #10, label3
0013 C 000E 220000’ mov #00, data1
0014 C 0011 6201’ inc data2
0015
0016 C 0013 7303 label3: dec c
0017 C 0015 A0 ret
0018
0019 dseg
0020 D 0000 data1: ds 1
0021 D 0001 data2: ds 1
0022
0023 end

When referencing a symbol for which the value was defined in
another source file, it is necessary to declare that symbol
beforehand with the EXTERN pseudo instruction.

A symbol that is to be referenced from other source files
must be made visible to those source files by declaring them
with the PUBLIC pseudo instruction.

The PUBLIC and EXTERN pseudo instructions can be used
in combination to permit referencing of symbols that are
defined in other source files.
VMC-37

7. Pseudo Instructions
7. EXTERN (Specify external reference name)

EXTERN [segmanet:]symbol {,[segment:]symbol}

The EXTERN pseudo instruction is used in order to allow the speciÞed symbol to be referenced from other
programs. The segment speciÞcation permits speciÞcation of a segment within either CSEG or DSEG. If
nothing is speciÞed, the code segment CSEG is assumed. For an example of the use of the EXTERN pseudo
instruction, refer to the explanation of the PUBLIC pseudo instruction.

8. OTHER_SIDE_SYMBOL (Declare CHANGE instruction jump label)

OTHER SIDE SYMBOL label {,label}

This pseudo instruction declares an address label that is speciÞed as an operand of the CHANGE
instruction, which is used to switch between internal ROM and external ROM in the LC868000 Series.
Although the label that is declared is a type of external symbol, one difference is that in a source Þle written
with codes that are stored in internal ROM, the label is declared in external ROM (while in the case of a
source Þle written with codes that are stored in external ROM, the label is declared in internal ROM). Note
that this pseudo instruction is used only by the LC868000 Series, and generates an error in all other cases.
For an example of the use of the OTHER_SIDE_SYMBOL pseudo instruction, refer to the description of the
CHANGE pseudo instruction.
VMC-38

Visual Memory Unit (VMU) Environment Variables
9. EQU (Assign value)

symbolname EQU expression

The EQU pseudo instruction assigns the value expression to symbolname. A symbol that has been deÞned
by using the EQU pseudo instruction cannot be deÞned again. Using the EQU pseudo instruction
effectively makes it possible to add visual meaning to constant data, which improves the efÞciency with
which maintenance work can be performed.

Example:

":" is not described between the symbol for which the value is being defined and "EQU".

When the defined value can be calculated,
that value is shown (in hexadecimal).

Any expression can be described.
page: 1 <equ.ASM>
ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

0001 ; a sample program for EQU
0002 chip lc866032
0003
0004 00000064 loop_max equ 100

 0005 00000001 mode_a equ 1
 0006 00000002 mode_b equ 2

0007 00000003 mode_c equ 3
0008
0009 csg inblock

 0010 C 0000 220000’ mov #00, loop_ctr
 0011
 0012 C 0003 230201 label1: mov #mode_a, b
 0013 C 0006 0818’ call sub1
 0014 C 0008 230202 mov #mode_b, b
 0015 C 000B 0818’ call sub1
 0016 C 000D 230303 mov #mode_c, c
 0017 C 0010 6200’ inc loop_ctr
 0018 C 0012 0200’ ld loop_ctr
 0019 C 0014 4164EC bne #loop_max, label1
 0020 C 0017 A0 ret
 0021
 0022 C 0018 0302 sub1: ld b
 0023 C 001A 310107 be #mode_a, suj10
 0024 C 001D 310208 be #mode_b, suj11
 0025 C 0020 310309 be #mode_c, suj12
 0026 C 0023 A0 suj0: ret

0027
0028 C 0024 1201’ suj10: st data_a
0029 C 0026 01FB br suj0
0030 C 0028 1202’ suj11: st data_b
0031 C 002A 01F7 br suj0
0032 C 002C 1203’ suj12: st data_c
0033 C 002E 01F3 br suj0
0034
0035 dseg
0036 D 0000 loop_ctr: ds 1
0037 D 0001 data_a: ds 1
0038 D 0002 data_b: ds 1
0039 D 0003 data_c: ds 1
0040
0041 end
VMC-39

7. Pseudo Instructions
10. SET (Assign temporary value)

symbolname SET expression

The SET pseudo instruction assigns the value expression to symbolname. A symbol that has been deÞned
by using the SET pseudo instruction can be deÞned again with the SET instruction. A symbol that has been
deÞned by this pseudo instruction cannot be declared in a PUBLIC pseudo instruction or deÞned again by
using the EQU instruction.

Example:

When the defined value can be calculated,
that value is shown (in hexadecimal).

":" is not described between the symbol for which
the value is being defined and "SET".

page: 1 <set.ASM>
ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

0001 ; a sample program for SEY
0002 chip lc866032
0003 cseg inblock
0004
0005 00000000 dd set 0
0006
0007 C 0000 220000’ mov #dd,zz+dd
0008
0009 C 0003 6300 inc a
0010 C 0005 6302 inc b
0011
0012 00000001 dd set dd+1
0013
0014 C 0007 220101’ mov #dd,zz+dd
0015
0016 C 000A 7300 dec a
0017 C 000C 7302 dec b
0018
0019 dseg
0020 D 0000 zz: ds 2
0021
0022 end

Any expression can be described, including the symbol for which the value is being defined.
VMC-40

7. Pseudo Instructions
11. DB (Define byte data)

labelname DB expression {,expression}

The DB pseudo instruction stores 8-bit data that corresponds to the operand expression in program
memory (ROM). More than one operand can be described; delimit each operand with a comma (","). When
there are two or more operands, they are evaluated in order from left to right, and are stored in sequence
in ascending addresses. If no operand is described between two commas, that operand is regarded as
being "0".

Example:

page: 1 <db.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

0001 ;a sample program for DB

0002 chip lc864032

0003 00001234 area equ 1234h

0004 cseg

0005 C 0000 414243 db ‘A’,’B’,’C’,0

0005 C 0003 00

V 0006 C 0004 34 db area

** Warning, value is out of range

0007 C 0005 12 db high(area)

0008 C 0006 34 db low(area)

0009 end

0x41

0x42

0x43

0x00

0x34

0x12

0x34

Regarding “db area” in the above example, because the value of

the symbol area has a 16-bit width, a value is out of range error

(warning level) will be generated during the assembly process. However,

the value of the lower 8 bits will be output in the object code.
VMC-41

Visual Memory Unit (VMU) Environment Variables
12. DW (Define word data)

labelname DW expression {,expression}

The DW pseudo instruction is used to store 16-bit data that corresponds to the operand expression in
program memory (ROM). The upper byte is stored Þrst, and the lower byte is stored in the next address (the
higher address). More than one operand can be described; delimit each operand with a comma (","). When
there are two or more operands, they are stored in a continuous area. If no operand is described between
two commas, that operand is regarded as being "0".

Example:

page: 1 <dw.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

0001 ;a sample program for DW

0002 chip lc864032

0003 00001234 area equ 1234h

0004 cseg

0005 C 0000 004100 dw ‘A’,’B’,0

0005 C 0003 420000

0006 C 0006 1234 dw area

0007 C 0008 0012 dw high(area)

0008 C 000A 0034 dw low(area)

0009 end

0x00

0x41

0x00

0x42

0x00

0x00

0x12

0x34

0x00

0x12

0x00

0x34

If an 8-bit value is allocated using the DW pseudo instruction,

the upper 8 bits of the 16 bits are always comprised of zeroes.
VMC-42

7. Pseudo Instructions
13. DC (Define character string data)

labelname DC “string”

The DC pseudo instruction stores the contents of string (a character string constant) as the ASCII code
values of each character in sequence in program memory (ROM). For details on character string constants,
refer to section 4.7.

Example:

cseg inblock

org 1234h

mess0: dc “sample message #00\n”

mess1: dc “sample message #01\0”

table: dw mess0

dw mess1

12

34

12

47

when this segment is allocated

starting from address 0

73

61

6d

70

6c

65

20

6d

65

73

73

61

67

65

20

23

30

30

00

73

61

6d

70

6c

65

20

6d

65

73

73

61

67

65

20

23

30

30

0a
VMC-43

Visual Memory Unit (VMU) Environment Variables
14. DS (Define byte area)

labelname DS absolute_expression

The DS pseudo instruction allocates an area consisting of the number of bytes speciÞed by
absolute_expression in data memory (RAM). The description of absolute_expression must be in absolute
format (in which all of the values are determined). This pseudo instruction cannot be used unless it comes
after the DSEG pseudo instruction.

Example:

page: 1 <ds.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

0001 ; a sample program for DS

0002 chip lc864032

0003 dseg

0004 D 0000 area0: ds 1

0005 D 0001 area1: ds 2

0006 cseg inblock

0007 C 0000 0200’ start: ld area0

0008 C 0002 1201’ st area1

0009 C 0004 1202’ st area1+1

0010 end

 dseg

 area0:

 area1:

In the above example, a one-byte area is allocated under

the name area0, and another two-byte area under the name

area1 immediately after area0.
VMC-44

7. Pseudo Instructions
15. MACRO (Define macro)

name MACRO parameter {, parameter}

The MACRO pseudo instruction deÞnes macros. The main body of the macro deÞnition is formed by all of
the statements that follow the MACRO pseudo instruction until the ENDM pseudo instruction is reached.
name calls the macro that was deÞned. Because name is required so that it can be replaced with the main
body of the macro deÞnition, it must be speciÞed. because parameters is a list of parameters, they should
be speciÞed in accordance with the contents of the macro that was deÞned.

Note that when calling other macros from within a macro, or when using a pseudo instruction, such as IFB,
that requires "<" or ">", sufÞcient "<" and ">" are needed for the nesting level.

Example:

_push macro

push acc

push c

push b

endm

_pop macro

pop b

 pop c

 pop acc

endm

_shl macro count

ifne count

rept count

rolc

endm

else

.printx “logical shift count is zero !!\007”

endif

endm

Generates the code for performing the number of left shifts specified by the parameters.

However, if the parameter is "0," no code for performing shifts is generated.

cseg

start: _push

_shl 0

_shl 2

_shl 1

_pop

The result of assembly of the above source code is shown on the following page.

This is the description in the source program.

Pops the values stored in the stack in the order b, c, and acc.

Stores the registers acc, c, and b in the stack.
VMC-45

Visual Memory Unit (VMU) Environment Variables
0027 start:_push

0027+1 C 0000 6100 push acc

0027+2 C 0002 6103 push c

0027+3 C 0004 6102 push b

0028 _shl 0

0028+1 ifne 0

0028+2 rept 0

0028+3 rolc

0028+4 endm

0028+5 else

0028+6 .printx "logical shift count is ze

0028+7 endif

0029 _shl 2

0029+1 ifne 2

0029+2 rept 2

0029+4 endm

0029+4 endm

0029+1 C 0006 F0 rolc

0029+2 C 0007 F0 rolc

0029+5 else

0029+6 .printx "logical shift count is ze

0029+7 endif

0030 _shl 1

0030+1 infe 1

0030+2 rept 1

0030+4 endm

0030+1 C 0008 F0 rolc

0030+5 else

0030+6 .print "logical shift count is ze ro !\007"

0030+7 endif

0031 _pop

0031+1 C 0009 7102 pop b

0031+2 C 000b 7103 pop c
VMC-46

7. Pseudo Instructions
16. REPT (Repeat macro)

REPT count

The REPT pseudo instruction is used to repeat a series of statements from the REPT pseudo instruction up
to the ENDM pseudo instruction the number of times speciÞed by count. An integer from 1 to 65,535
(inclusive) can be speciÞed for count.

Example: Filing locations where there is no program code with NOP (when the boundary is at 256)

page: 1 <rept.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

0001 ; a sample program for REPT

0002 chip lc864024

0003 cseg inblock

0004 C 0000 230000 start: mov #0,acc

0005 C 0003 1200 st 00h

0006 C 0005 6300 inc acc

0007 C 0007 1201 st 01h

0008 C 0009 6300 inc acc

0009 C 000B 1202 st 02h

0010 C 000D A0 last: ret

0011 rept 255-(last-start)

0013 endm

0013+1 C 000E 00 nop

0013+2 C 000F 00 nop

0013+3 C 0010 00 nop

0013+240 C 00FD 00 nop

0013+241 C 00FE 00 nop

0013+242 C 00FF 00 nop

0014 end

The main body of the

macro definition is

not displayed.

Expanded statement
VMC-47

Visual Memory Unit (VMU) Environment Variables
17. IRP (Continuous macro)

IRP parameter, argument {,argument }...

The IRP pseudo instruction repeats a series of statements from the IRP pseudo instruction up to the ENDM
pseudo instruction the number of times speciÞed by argument. During the repetition, each time that parameter
appears in one of the statements, an item in the argument Þeld is substituted for parameter, in order.

Example:

_push macro
irp reg_name,acc,b,psw,c

push reg_name
endm

endm
_pop macro

irp reg_name,c,psw,b,acc
push reg_name

endm
endm

0016
0017 _push
0017+1 irp reg_name,acc,b,psw,c
0017+3 endm
0017+1 C 0000 6100 push acc
0017+2 C 0002 6102 push b
0017+3 C 0004 6101 push psw
0017+4 C 0006 6103 push c
0018 _pop
0018+1 irp reg_name,c,psw,b,acc
0018+3 endm
0018+1 C 0008 6103 push c
0018+2 C 000A 6101 push psw
0018+3 C 000C 6102 push b
0018+4 C 000E 6100 push acc
VMC-48

7. Pseudo Instructions
18. IRPC (Character string macro)

IRPC parameter, string

The IRPC pseudo instruction repeats a series of statements from the IRPC pseudo instruction up to the
ENDM pseudo instruction a number of times equal to the number of characters in string. Unlike character
string constants, string is not enclosed in quotes, etc. In addition, it is not possible to input a code that begins
with the yen symbol. During the repetition, each occurrence of parameter in one of the statements is
replaced with a character in string; this replacement is repeated until all of the characters in string have been
used.

Example:

; a sample program for IRPC parameter

chip lc866032

dseg

irpc x,01234567 string

buf&x: ds 2

endm

end

Each occurrence of parameter is replaced with a character from string

Delimiter when parameter occurs as part of an identifier

page: 1 <irpc.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

0001 ; a sample program for IRPC

0002 chip lc866032

0003 dseg

0004 irpc x,01234567

0006 endm

0006+1 D 0000 buf0: ds 2

0006+2 D 0002 buf1: ds 2

0006+3 D 0004 buf2: ds 2

0006+4 D 0006 buf3: ds 2

0006+5 D 0008 buf4: ds 2

0006+6 D 000A buf5: ds 2

0006+7 D 000C buf6: ds 2

0006+8 D 000E buf7: ds 2

0007 end

Expansion
Results
VMC-49

Visual Memory Unit (VMU) Environment Variables
19. ENDM (End macro definition)

ENDM

The ENDM pseudo instruction declares the end of a macro deÞnition statement.

Example:

Macro definition start

Macro definition start

_push macro

irp reg_name,<<acc,b,psw,c>>

push reg_name

endm

endm

Macro definition end

 Macro definition end

"macroand "irp" are
each paired with an
"endm" pseudo instruction
VMC-50

7. Pseudo Instructions
20. EXITM (Interrupt macro expansion)

EXITM

The EXITM pseudo instruction interrupts macro expansion. This pseudo instruction is used in combination
with conditional assembly pseudo instructions in order to obtain expansion results that differ according to
the arguments that are given to identical macros.

Example:

Because one
pair of"<>" is
deleted during
macro expansion,
double symbols
("<>") are required

page: 1 <exitm.ASM>
ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

0001 ; a sample program for EXITM
0002 chip LC866032
0003 rpush macro a1,a2,a3,a4
0004 ifb <<a1>>
0005 .printx “not enough argument”
0006 exitm
0007 endif
0008 ifnb <<a2>>
0009 push a1
0010 push a2
0011 push a3
0012 push a4
0013 endif
0014 endm
0015 cseg inblock
0016 rpush acc,b,psw,c
0016+1 ifb <acc>
0016+2 .printx “not enough argument”
0016+3 exitm
0016+4 endif
0016+5 ifnb
0016+6 C 0000 6100 push acc
0016+7 C 0002 6102 push b
0016+8 C 0004 6101 push psw
0016+9 C 0006 6103 push c
0016+10 endif
0017 rpush
0017+1 ifb <>
0017+2 .printx “not enough argument”
0017+3 exitm
0018 end

Because the first argument is
given, this portion is assembled.

Because there is no second argument, this portion is expanded; when
EXITM is recognized, expansion is halted.
VMC-51

Visual Memory Unit (VMU) Environment Variables
21. LOCAL (Define local label)

LOCAL name {, name}

The LOCAL pseudo instruction is used to declare a label that can be used within a macro deÞnition. If the
name declared by the LOCAL pseudo instruction appears within a macro expansion, the macro assembler
substitutes a new name for name that will not conßict with any other names.

Example:
; a sample program for LOCAL

chip lc864008

b_ne macro val,dst

local skip

be val,skip

bro dst

skip:

endm

cseg

b_ne #0, over

org 200h

over: b_ne #0, under

nop

under: nop

end

In the above example, the BRO pseudo instruction is used to deÞne the BNEO macro instruction that
automatically generates an instruction word according to the branching destination. The results of
assembly are shown on the next page.
VMC-52

7. Pseudo Instructions
page: 1 <local.ASM>
ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

0001 ; a sample program for LOCAL
0002 chip lc864008
0003 b_ne macro val,dst
0004 local skip
0005 be val,skip
0006 bro dst
0007 skip:
0008 endm
0009
0010 cseg
0011 b_ne #0, over
0011+1 local _L0000000L_
0011+2 C 0000 310003 be #0,_L0000000L_
0011+3 C 0003 11FB01 bro over
0011+4 _L0000000L_:
0012
0013 org 200h
0014 over: b_ne #0, under
0014+1 local _L0000001L_
0014+2 C 0200 310002 be #0,_L0000001L_
0014+3 C 0203 0101 bro under
0014+4 _L0000001L_:
0015 C 0205 00 nop
0016 C 0206 00 under: nop
0017 end

The identifier declared by LOCAL is replaced by a unique name.

The name generated has the format_L######L_(where###### is a serial number, starting with 000000•
VMC-53

Visual Memory Unit (VMU) Environment Variables
22. IFDEF (Assemble if defined)

IFDEF symbol

The IFDEF pseudo instruction assembles the source program until either ELSE or ENDIF appears
subsequently, but only if symbol has already been deÞned.

Example:

page: 1 <ifdef.ASM>
ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

0001 ; a sample program for IFDEF
0002 chip lc864024
0003 00000001 abc equ 1
0004 dseg
0005 D 0000 count: ds 1
0006
0007 cseg inblock
0008 C 0000 230010 mov #10h, acc
0009 ifdef abc
0010 C 0003 8302 add b
0011 C 0005 1200’ st count
0012 else
0013 inc acc
0014 endif
0015 C 0007 A303 sub c
0016 ifdef efg
0017 add count
0018 endif
0019 end

Because efg is an undefined symbol, this portion is not assembled.

Because abc is a defined symbol, this portion is assembled.
VMC-54

7. Pseudo Instructions
23. IFNDEF (Assemble if undefined)

IFNDEF symbol

The IFNDEF pseudo instruction assembles the source program until either ELSE or ENDIF appears
subsequently, but only if symbol has not been deÞned.

Example:

page: 1 <ifndef.ASM>
ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

0001 ; a sample program for IFDEF
0002 chip lc864024
0003 00000001 abc equ 1
0004 dseg
0005 D 0000 count: ds 1
0006
0007 cseg inblock
0008 C 0000 230010 mov #10h, acc
0009 ifdef abc
0010 add b
0011 st count
0012 else
0013 C 0003 6300 inc acc
0014 endif
0015 C 0005 A303 sub c
0016 ifdef efg
0017 C 007 8200' add count
0018 endif
0019 end

Because efg is an undefined symbol, this portion is not assembled.

Because abc is a defined symbol, this portion is assembled.
VMC-55

Visual Memory Unit (VMU) Environment Variables
24. IFB (Assemble if operand is empty)

IFB <argument>

The IFB pseudo instruction assembles the source program until either ELSE or ENDIF appears
subsequently, but only if argument is empty. If the argument contains any space or tab characters, it is
regarded as not being empty. argument must be enclosed in <>.

Example:

page: 1 <ifb.ASM>
ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

0001 ; a sample program for IFB
0002 chip lc864016
0003 tifb macro arg
0004 ifb <<arg>>
0005 inc a
0006 else
0007 inc b
0008 endif
0009 endm
0010
0011 tifb xxx
0011+1 ifb <xxx>
0011+2 inc a
0011+3 else
0011+4 C 0000 6302 inc b
0011+5 endif
0012 tifb
0012+1 ifb <>
0012+2 C 0002 6300 inc a
0012+3 else
0012+4 inc b
0012+5 endif
0013 end

Because the argument for IFB is empty, this portion is assembled.

Because the argument for IFB is not empty, this portion is not assembled.

Because one pair
of "<>" is deleted
during macro expansion,
double symbols ("<>")
are required.
VMC-56

7. Pseudo Instructions
25. IFNB (Assemble if operand is not empty)

IFNB <argument>

The IFNB pseudo instruction assembles the source program until either ELSE or ENDIF appears
subsequently, but only if argument is not empty. If the argument contains any space or tab characters, it is
regarded as not being empty. argument must be enclosed in <>.

Example:

page: 1 <ifnb.ASM>
ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

0001 ; a sample program for IFNB
0002 chip lc864016
0003 tifb macro arg
0004 ifnb <<arg>>
0005 inc a
0006 else
0007 inc b
0008 endif
0009 endm
0010
0011 tifb xxx
0011+1 ifnb <xxx>
0011+2 C 00006300 inc a
0011+3 else
0011+4 inc b
0011+5 endif
0012 tifb
0012+1 ifnb <>
0012+2 inc a
0012+3 else
0012+4 C 0002 6302 inc b
0012+5 endif
0013 end

Because the argument for IFNB is empty, this portion is not assembled.

Because the argument for IFNB is not empty, this portion is assembled.

Because one pair
of "<>" is deleted
during macro expansion,
double symbols ("<>")
are required.
VMC-57

Visual Memory Unit (VMU) Environment Variables
26. IFE (Assemble if value of expression is "0")

IFE expression

The IFE pseudo instruction assembles the source program until either ELSE or ENDIF appears
subsequently, but only if the value of expression is "0."

Example:

page: 1 <ife.ASM>
ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

0001 ; a sample program for IFE
0002 chip lc866032
0003 cseg
0004 00000003 aa set 3
0005 ife aa-2
0006 inc 70h
0007 else
0008 C 0000 7270 dec 70h
0009 endif
0010 00000002 aa set aa-1
0011 ife aa-2
0012 C 0002 6270 inc 70h
0013 else
0014 dec 70h
0015 endif
0016 end

Because the value of the expression is "0,", this portion is assembled.

Because the value of the expression is not "0,", this portion is not assembled.
VMC-58

7. Pseudo Instructions
27. IFNE (Assemble if value of expression is not "0")

IFNE expression]

The IFNE pseudo instruction assembles the source program until either ELSE or ENDIF appears
subsequently, but only if the value of expression is not 0.

Example:

page: 1 <ifne.ASM>
ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

0001 ; a sample program for IFNE
0002 chip lc866032
0003 cseg
0004 00000003 aa set 3
0005 ifne aa-2
0006 C 0000 6270 inc 70h
0007 else
0008 dec 70h
0009 endif
0010 00000002 aa set aa-1
0011 ifne aa-2
0012 inc 70h
0013 else
0014 C 0002 7270 dec 70h
0015 endif
0016 end

Because the value of the expression is "0,", this portion is not assembled.

Because the value of the expression is not "0,", this portion is assembled.
VMC-59

Visual Memory Unit (VMU) Environment Variables
28. IFIDN (Assemble if two character strings are identical)

IFIDN <string1>, <string2>

The IFIDN pseudo instruction assembles the source program until either ELSE or ENDIF appears
subsequently, but only if string1 and string2 are identical. string1 and string2 must be enclosed in <>. The
comparison includes any space or tab characters within the <>.

Example:

page: 1 <ifidn.ASM>
ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

0001 ; a sample program for IFIDN
0002 chip lc866032
0003 cseg
0004 tifidn macro arg1,arg2
0005 ifidn <<arg1>>,<<arg2>>
0006 inc a
0007 else
0008 dec a
0009 endif
0010 endm
0011
0012 tifidn same, same
0012+1 ifidn <same>,<same>
0012+2 C 0000 6300 inc a
0012+3 else
0012+4 dec a
0012+5 endif
0013 tifidn same, not_same
0013+1 ifidn <same>,<not_same>
0013+2 inc a
0013+3 else
0013+4 C 0002 7300 dec a
0013+5 endif
0014 end

Because the two character strings are different, this portion is not assembled.

Because the two character strings are identical, this portion is assembled.

Because one pair
of "<>" is deleted
during macro expansion,
double symbols ("<>")
are required.
VMC-60

7. Pseudo Instructions
29. IFDIF (Assemble if two character strings are not identical)

IFDIF <string1>, <string2>

The IFDIF pseudo instruction assembles the source program until either ELSE or ENDIF appears
subsequently, but only if string1 and string2 are different. string1 and string2 must be enclosed in <>.
The comparison includes any space or tab characters within the <>.

Example:

30. ELSE (Assemble in case of condition opposite of the above IF condition)

ELSE

The ELSE pseudo instruction assembles the source program if the opposite of the preceding IF condition is
true, until ENDIF appears. For an example, refer to the description of the IFDEF pseudo instruction, etc.

31. ENDIF (End conditional assembly)

ENDIF

The ENDIF pseudo instruction declares the end of conditional assembly. For an example, refer to the
description of the IFDEF pseudo instruction, etc.

page: 1 <ifdif.ASM>
ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

0001 ; a sample program for IFDIF
0002 chip lc866032
0003 cseg
0004 tifidn macro arg1,arg2
0005 ifdif <<arg1>>,<<arg2>>
0006 inc a
0007 else
0008 dec a
0009 endif
0010 endm
0011
0012 tifidn same, same
0012+1 ifdif <same>,<same>
0012+2 inc a
0012+3 else
0012+4 C 0000 7300 dec a
0012+5 endif
0013 tifidn same, not_same
0013+1 ifdif <same>,<not_same>
0013+2 C 0002 6300 inc a
0013+3 else
0013+4 dec a
0013+5 endif
0014 end

Because the two character strings are different, this portion is assembled.

Because the two character strings are identical, this portion is not assembled.

Because one pair
of "<>" is deleted
during macro expansion,
double symbols ("<>")
are required.
VMC-61

Visual Memory Unit (VMU) Environment Variables
32. PRINTX (Display on VDT during assembly)

.PRINTX “string”

The .PRINTX pseudo instruction outputs the contents of string character string constants on the VDT
during the assembly process. For details on character string constants, refer to section 4.7.

Example:

; a sample program for .PRINTX

chip lc866000

switch equ 1

.printx “Start”

cseg inblock

.printx “..CSEG”

ld count

add b

st data1

ifdef switch

.printx “Condition#1”

 inc data1

 else

 .printx “Condition#2”

 dec data1

endif

dseg

.printx “..DSEG”

count: ds 1

data1: ds 1

.printx “End”

end

Because this portion is not assembled due to the IFDEF pseudo instruction,

the corresponding output is also not displayed.

Source program Display on screen

SANYO (R) LC86K series Macro As

Copyright (c) SANYO Electric Co

Pass 1.....

Start

..CSEG

Condition#1

..DSEG

End

Source file: pprintx

Chip name: LC866000

ROM size: 64k bytes

RAM size: 384 bytes

XRAM size: 128 bytes

Pass 2....

Start

..CSEG

Condition#1

..DSEG

End
VMC-62

7. Pseudo Instructions
33. LIST (Output list)

.LIST

The .LIST pseudo instruction releases the status in which list Þle output was halted by the .XLIST
pseudo instruction.

Example:

; a sample program for LIST
chip lc866200
cseg inblock
mov #00, count
ld count
add #10h
st b

.xlist
abc equ 10h

dseg
count: ds 4

.list
cseg inblock
ld b
sub #abc
st count
end

The lines that follow the line where .XLIST appears do not
appear in the list file. Counting of the line continues,
however, so no disagreement in line numbering occurs.

After the .LIST pseudo instruction, output to the list
file resumes.

page: 1 <plist.ASM>
ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

0001 ; a sample program for LIST
0002 chip lc866200
0003 cseg inblock
0004 C 0000 220000’ mov #00, count
0005 C 0003 0200’ ld count
0006 C 0005 8110 add #10h
0007 C 0007 1302 st b
0008
0014 .list
0015 cseg inblock
0016 C 0000 0302 ld b
0017 C 0002 A110’ sub #abc
0018 C 0004 1200’ st count
0019 end
VMC-63

Visual Memory Unit (VMU) Environment Variables
34. .XLIST (Interrupt list output)

.XLIST

The .XLIST pseudo instruction interrupts output to the list Þle. For an example, refer to the description of
the .LIST pseudo instruction.

35. .MACRO (Output macro expansion)

.MACRO

The .MACRO pseudo instruction expands the main body of a macro and outputs it to the list Þle when the
macro is called.

Example:

36. .XMACRO (Interrupt macro expansion output)

.XMACRO

The .XMACRO pseudo instruction temporarily interrupts the output to the list Þle of the results of
expansion of the macro main body when a macro is called. For an example, refer to the explanation of the
.MACRO item.

; a sample program for .MACRO
chip lc866200

t.mac macro
inc a
inc b
endm

cseg inblock
t.mac
.xmacro
t.mac
.macro
t.mac
end

page: 1 <pmacro.ASM>
ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

0001 ; a sample program for .MACRO
0002 chip lc866200
0003 t.mac macro
0004 inc a
0005 inc b
0006 endm
0007
0008 cseg inblock
0009 t.mac
0009+1C 0000 6300 inc a
0009+2C 0002 6302 inc b
0010 .xmacro
0011 t.mac
0012 .macro
0013 t.mac
0013+1C 0008 6300 inc a
0013+2C 000A 6302 inc b
0014 end

.XMACRO disables output of the macro
expansion results to the list file.
Note that the codes that are generated by
the expanded statements are also not output.

.MACRO resumes output of the
expansion results to the list file.
VMC-64

7. Pseudo Instructions
37. .IF (Output conditional skip)

.IF

The .IF pseudo instruction expands source program statements that were skipped during conditional
instruction execution and outputs them to the list Þle.

Example:

; a sample program for .IF
chip lc866200

t.if macro arg1
ifb <<arg1>>
inc a
else
inc b
endif
endm
cseg inblock
t.if
.xif
t.if abc
.if
t.if def
end

page: 1 <pif.ASM>
ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

0001 ; a sample program for .IF
0002 chip lc866200
0003
0004 t.if macro arg1
0005 ifb <<arg1>>
0006 inc a
0007 else
0008 inc b
0009 endif
0010 endm
0011 cseg inblock
0012 t.if
0012+1 ifb <>
0012+2 C 0000 6300 inc a
0012+3 else
0012+4 inc b
0012+5 endif
0013 .xif
0014 t.if abc
0014+1 ifb <abc>
0014+3 else
0014+4 C 0002 6302 inc b
0014+5 endif
0015 .if
0016 t.if def
0016+1 ifb <def>
0016+2 inc a
0016+3 else
0016+4 C 0004 6302 inc b
0016+5 endif
0017 end

.XIF disables the output to the list file of
statements that were skipped by conditional assembly
psuedo instructions. Lines wich were not skipped
because the specified condition was matched are
output to the list file, regardless of the .XIF
psuedo instructio

.IF enables the output to the list file of
statements that were skipped by conditional
assembly psuedo instructions.
VMC-65

Visual Memory Unit (VMU) Environment Variables
38. .XIF (Interrupt conditional skip output)

.XIF

The .XIF pseudo instruction disables the expansion in the list Þle of source program statements that were
skipped during conditional instruction execution. For an example, refer to the explanation of the .IF pseudo
instruction.

39. INCLUDE (Load file)

INCLUDE filename

The INCLUDE pseudo instruction loads and assembles the source Þle speciÞed by Þlename while
assembling the source program. The Þlename speciÞcation must include the extension. The INCLUDE
pseudo instruction can be nested up to nine levels. If the loaded Þle contains the END pseudo instruction,
the assembly process stops there.

Example:

page: 1 <include.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

0001 ; a sample program for INCLUDE

0002 INCLUDE INCLUDE1.ASM

1/0001 INCLUDE INCLUDE2.ASM

2/0001 chip lc866200

2/0002 cseg

2/0003 C 0000 230000 mov #0, acc

0003 end

Indicates the Include nesting level

INCLUDE.ASM

; a sample program for INCLUDE

INCLUDE INCLUDE1.ASM

end

INCLUDE2.ASM

chip lc866200

cseg

mov #0, acc

M86K INCLUDE,,INCLUDE;

INCLUDE1.ASM

INCLUDE INCLUDE2.ASM
VMC-66

7. Pseudo Instructions
40. TITLE (Specify list title)

TITLE string

The parameter string of the TITLE pseudo instruction speciÞes a title for the list Þle. Unlike character string
constants, string is not enclosed in quotes, etc. In addition, it is not possible to input a code that begins with
the yen symbol.

Example:

string is displayed here on all pages.

page: 1 <title.ASM> sample program’s title for the listing

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

0001 ; a sample program for TITLE

0002 TITLE sample program’s title for the listing

0003 chip lc864024

0004 cseg

0005 C 0000 00 nop

0006 end
VMC-67

Visual Memory Unit (VMU) Environment Variables
41. PAGE (End of page)

PAGE

The PAGE pseudo instruction forcibly ends a page during output to a list Þle. The end-of-page character is
inserted directly before this pseudo instruction.

Example:

Source file
; a sample program for PAGE

chip lc866032
page
cseg
page
nop
page
end

List file

page: 1 <page.ASM>
ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

0001 ; a sample program for PAGE
0002 chip lc866032

page: 2 <page.ASM>
ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

0003 page
0004 cseg

page: 3 <page.ASM>
ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

0005 page
0006 C 0000 00 nop

page: 4 <page.ASM>
ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

0007 page
0008 end
VMC-68

7. Pseudo Instructions
42. CHIP (Define chip that is target of assembly)

CHIP chipname

The CHIP pseudo instruction notiÞes the assembler about which chip is the target of the assembly process.
The assembler switches the reserved word list and checks the memory size on the basis of chipname. This
pseudo instruction is written at the top of a source Þle, before any other instructions or pseudo instructions.
If this pseudo instruction is not found, the assembler references the value of the environment variable
CHIPNAME. If the name of the chip that is declared by this pseudo instruction does not match the name
indicated by the environment variable CHIPNAME, a "warning-level" error is generated.

43. COMMENT (Output comments to object file)

COMMENT comment_string

The COMMENT pseudo instruction gives comments that are output to the assembled object Þle. Unlike
character string constants, comment_string is not enclosed in quotes, etc. In addition, it is not possible to
input a code that begins with the yen symbol. comment_string is stored in the object Þle starting from the
680th byte. A comment may consist of up to 255 characters.

Example:

Source file
; a sample program for COMMENT

chip lc866024
comment This is a comment string embedded into OBJ file
cseg
nop
end

Object file dump (showing only the necessary portion)
Number of characters (one byte)

00000260 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
00000270 00 00 00 00 00 60 00 00-80 01 00 00 80 00 00 00 ’..........
00000280 C6 92 40 2B 4D 38 36 4B-20 20 20 20 63 6F 6D 6D **+M86K comm
00000290 65 6E 74 2E 41 53 4D 20-63 6F 6D 6D 65 6E 74 20 ent.ASM comment
000002A0 4C 43 38 36 36 30 32 34-30 54 68 69 73 20 69 73 LC8660240This is
000002B0 20 61 20 63 6F 6D 6D 65-6E 74 20 73 74 72 69 6E a comment strin
000002C0 67 20 65 6D 62 65 64 64-65 64 20 69 6E 74 6F 20 g embedded into
000002D0 4F 42 4A 20 66 69 6C 65-00 00 01 01 00 01 00 05 OBJ file........
000002E0 00 01 00 00 00 00 00 00-00 00 E0 00 00 00 00 C4 *
000002F0 00 00 00 00 C4 00 00 00-00 24 00 00 01 00 04 01 *....$......
00000300 00 00 00 24 ...$
VMC-69

Visual Memory Unit (VMU) Environment Variables
44. WIDTH (Specify number of columns in list file)

WIDTH number

The WIDTH pseudo instruction speciÞes the number of columns in the list Þle (i.e., the number of
characters per line). A number from 72 to 132 can be speciÞed for number, but specifying the value equal to
the number of columns in the source Þle plus at least 28 is recommended whenever possible. Furthermore,
although this pseudo instruction can be described any number of times within one source Þle, normally it
is only described once at the start of Þle. Note that if this pseudo instruction is not found, the default list Þle
width is 132 columns.

Example:

1 2 3 4 5 6 7 8

12345678901234567890123456789012345678901234567890123456789012345678901234567890

page: 1 <width.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

0001 ; a sample program for WIDTH

0002 chip lc866200

0003 cseg ; this is a long line to indicat

0003 e WIDTH’s effect

0004 WIDTH 72

0005 C 0000 00 nop ; this is also a long line

0005 to indicate WIDTH’s effect

0006 WIDTH 78

0007 end

Because a line feed character is inserted at the 72nd character,

the line wraps around at this position.

Although WIDTH is evaluated in both pass 1 and pass 2,
the list file is generated only in pass2. Therefore, the
last evaluated result for WIDTH in pass 1 is reflected
here, so this line wraps around at this position.
VMC-70

7. Pseudo Instructions
45. BANK (Specify RAM area bank)

BANK expression

The BANK pseudo instruction gives the bank number for symbols that were deÞned by the DS pseudo
instruction in the RAM area described subsequent to the DSEG pseudo instruction.

Example:

page: 1 <bank.ASM>
ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

0001 ; a sample program for BANK
0002 chip lc866032
0003 cseg inblock
0004
0005 C 0000 220000’ mov #0,data1
0006
0007 C 0003 6200’ inc data1
0008 C 0005 0200’ ld data1
0009 C 0007 1201’ st data2
0010
0011 C 0009 6200’ inc dataa
0012 C 000B 0200’ ld dataa
0013 C 000D 1202’ st datac
0014
0015 dseg
0016 bank 0
0017 D 0000 data1: ds 1
0018 D 0001 data2: ds 1
0019 D 0002 data3: ds 1
0020
0021 bank 1
0022 D 0000 dataa: ds 1
0023 D 0001 datab: ds 1
0024 D 0002 datac: ds 1
0025
0026 end

These symbols are assigned to bank 1.

These symbols are assigned to bank 0.
VMC-71

Visual Memory Unit (VMU) Environment Variables
46. CHANGE (Jump between external and internal ROM)

CHANGE symbol

CHANGE is a special jump instruction that is used to switch between executing code stored in external
ROM and code stored in internal ROM. The operand symbol is limited to symbols that have been declared
by the pseudo instruction OTHER_SIDE_SYMBOL. Note that this pseudo instruction is a special instruction
for the LC868000 only, and will generate an error if executed by any other type of chip.

Example:

47. RADIX (Specify default base)

RADIX expression

The RADIX pseudo instruction speciÞes the base to which the value of a numeric constant is converted
when the base of that constant is not explicitly indicated. Only certain values can be speciÞed for expression:
2, 8, 10, and 16. Once this pseudo instruction is executed, the speciÞed base remains valid until a different
base is speciÞed by another RADIX pseudo instruction. If this pseudo instruction is not speciÞed, the
default base is 10.

Example:

xxx SET 10 → Interpreted as 10 10, since the default base is 10.

RADIX 16

xxx SET 10 → Interpreted as 16 10, since the base was set to 16.

RADIX 2

xxx SET 10 → Interpreted as 2 10, since the base was set to 2.

page: 1 <change.ASM>
ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

0001 ; a sample program for CHANGE
0002 chip lc868032
0003 other_side_symbol far_away
0004
0005 cseg
0006 C 0000 B80D21’ change far_away
0006 C 0003 0000’
VMC-72

7. Pseudo Instructions
48. JMPO (Generate optimal JMP instruction)

JMPO expression

The JMPO pseudo instruction compares the current location with expression, and generates a JMP if the
two locations are in the same block (i.e., the addresses are identical except for the lower 12 bits). If the two
locations are not within the same block, or if the value of the destination address cannot be speciÞcally
determined because it is an external symbol, then JMP generates a JMPF.

Example:

Generates a JMP instruction when the current location and "expression" are within
the same memory block

page: 1 <jmpo.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

0001 ; a sample program for JMPO

0002 chip lc866032

0003 cseg

0004 C 0000 2803’ jmpo near

0005 C 0002 00 nop

0006 C 0003 00 near: nop

0007 C 0004 211000’ jmpo far

0008

0009 org 1000h

0010 C 1000 00 far: nop

0011 end
Generates a JMPF instruction when the current location and "expression" are
in different memory blocks
VMC-73

Visual Memory Unit (VMU) Environment Variables
49. BRO (Generate optimal BR instruction)

BRO expression

The BRO pseudo instruction compares the current location with expression, and generates a BR if the
branching destination is within a range of +127 and -128. If the branching destination is outside of a range
of +127 and -128, then BRO generates a BRF.

Example:

Generates a BR instruction when the branching destination is within
a range of +127 and -128

page: 1 <bro.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

0001 ; a sample program for BRO

0002 chip lc866032

0003 cseg

0004 C 0000 0101 bro near

0005 C 0002 00 nop

0006 C 0003 00 near: nop

0007 C 0004 11FA00 bro far

0008

0009 org 1000h

0010 C 0100 00 far: nop

0011 end
Generates a BRF instruction when the branching destination is outside of
a range of +127 and -128
VMC-74

7. Pseudo Instructions
50. CALLO (Generate optimal CAL instruction)

CALLO expression

The CALLO pseudo instruction compares the current location with expression, and generates a CALL if
the two locations are in the same block (i.e., the addresses are identical except for the lower 12 bits). If the
two locations are not within the same block, or if the value of the destination address cannot be speciÞcally
determined because it is an external symbol, then CALLO generates a CALLF.

Example:

51. BZO (Generate BZ instruction that will not generate an address error)

BZO expression

The BZO macro generates instruction codes that are equivalent to the BZ instruction, with no restriction on
the difference between the location of the instruction and the branching destination in the same segment
within the same source. The BZO macro uses the BNZ instruction, which is the logical opposite of the BZ
instruction, and the BRO instruction. expression describes the branching destination.

Code generation macro:

; *** Branch near relative address if accumulator is zero ***

bzo macro r8

local _next_

bnz _next_

bro r8

next:

endm

Generates a CALL instruction when the current location and "expression" are
within the same memory block

page: 1 <callo.ASM>

ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

0001 ; a sample program for CALLO

0002 chip lc866032

0003 cseg

0004 C 0000 0805’ callo near

0005 C 0002 201000’ callo far

0006

0007 C 0005 00 near: nop

0008 C 0006 A0 ret

0009

0010 org 1000h

0011 C 1000 00 far: nop

0012 C 1001 A0 ret

0013 end
Generates a CALLF instruction when the current location and expression are in
different memory blocks
VMC-75

Visual Memory Unit (VMU) Environment Variables
52. BNZO (Generate BNZ instruction that will not generate an address error)

BNZO expression

The BNZO macro generates instruction codes that are equivalent to the BNZ instruction, with no restriction
on the difference between the location of the instruction and the branching destination in the same segment
within the same source. The BNZO macro uses the BZ instruction, which is the logical opposite of the BNZ
instruction, and the BRO instruction. expression describes the branching destination.

Code generation macro:

; *** Branch near relative address if accumulator is not zero ***

bnzo macro r8

local _next_

bz _next_

bro r8

next:

endm

53. BPO (Generate BP instruction that will not generate an address error)

BPO expression

The BPO macro generates instruction codes that are equivalent to the BP instruction, with no restriction on
the difference between the location of the instruction and the branching destination in the same segment
within the same source. The BPO macro uses the BZ instruction, the BR instruction, and the BRO
instruction. expression describes the branching destination.

Code generation macro:

; *** Branch near relative address if direct bit is positive ***

bpo macro d9,b3,r8

local _next_

local _true_

bp d9,b3,_true_

br _next_

true: bro r8

next:

endm
VMC-76

7. Pseudo Instructions
54. BPCO (Generate BPC instruction that will not generate an address error)

BPCO expression

The BPCO macro generates instruction codes that are equivalent to the BPC instruction, with no restriction
on the difference between the location of the instruction and the branching destination in the same segment
within the same source. The BPCO macro uses the BPC instruction, the BR instruction, and the BRO
instruction. expression describes the branching destination.

Code generation macro:

; *** Branch near relative address if direct bit is positive,

; and clear ***

bpco macro d9,b3,r8

local _next_

local _true_

bpc d9,b3,_true_

br _next_

true: bro r8

next:

endm

55. BNO (Generate BN instruction that will not generate an address error)

BNO expression

The BNO macro generates instruction codes that are equivalent to the BN instruction, with no restriction
on the difference between the location of the instruction and the branching destination in the same segment
within the same source. The BNO macro uses the BN instruction, the BR instruction, and the BRO
instruction. expression describes the same value as in the BN instruction.

Code generation macro:

; *** Branch near relative address if direct bit is negative ***

bno macro d9,b3,r8

local _next_

local _true_

bn d9,b3,_true_

br _next_

true: bro r8

next:

endm
VMC-77

Visual Memory Unit (VMU) Environment Variables
56. DBNZO (Generate DBNZ instruction that will not generate an address error)

DBNZO expression

The DBNZO macro generates instruction codes that are equivalent to the DBNZ instruction, with no
restriction on the difference between the location of the instruction and the branching destination in the
same segment within the same source. The DBNZO macro uses the DBNZ instruction, the BR instruction,
and the BRO instruction. expression describes the same value as in the DBNZ instruction.

Code generation macro:

; *** Decrement direct byte and branch near relative address

; if direct byte is not zero ***

dbnzo macro d9,r8

local _next_

local _true_

dbnz d9,_true_

br _next_

true: bro r8

next:

endm

57. BEO (Generate BE instruction that will not generate an address error)

BEO expression

The BE macro generates instruction codes that are equivalent to the BE instruction, with no restriction on
the difference between the location of the instruction and the branching destination in the same segment
within the same source. The BE macro uses the BNE instruction and the BRO instruction. expression"
describes the same value as in the BE instruction.

Code generation macro:

; *** Compare immediate data or accumulator and branch

; near relative address if equal ***

beo macro arg0,arg1,arg2

local _next_

local _txen_

ifb <<arg2>>

bne arg0,_next_

bro arg1

next:

else

bne arg0,arg1,_txen_

bro arg2

txen:

endif

endm
VMC-78

7. Pseudo Instructions
58. BNEO (Generate BNE instruction that will not generate an address error)

BNEO expression

The BNEO macro generates instruction codes that are equivalent to the BNE instruction, with no restriction
on the difference between the location of the instruction and the branching destination in the same segment
within the same source. The BNEO macro uses the BE instruction and the BRO instruction. expression
describes the same value as in the BNE instruction.

Code generation macro:

; *** Compare immediate data or accumulator and branch

; near relative address if equal ***

bneo macro arg0,arg1,arg2

local _next_

local _txen_

ifb <<arg2>>

be arg0,_next_

bro arg1

next:

else

be arg0,arg1,_txen_

bro arg2

txen:

endif

endm
VMC-79

Visual Memory Unit (VMU) Environment Variables
VMC-80

8. List File Format
The list Þle generated by M86K has the format shown below. Basically, this format shows the contents of the source
Þle as is, with line numbers and machine language codes listed on the left. The placement of the lines and columns
was designed with the format of the printout in mind. In short, one page consists of 60 lines (including the header),
and one line consists of 132 columns. (If the source line is longer than 132 characters, it wraps around.) On the left
side, the column positions are Þxed so that various types of information can be displayed. Horizontal tabs that are
included in the source lines are converted into spaces so that there is no visible change in positioning.
VMC-81

Visual Memory Unit (VMU) Environment Variables
page: 1 <sample.ASM>
ERR SEQ. S LOC. OBJ. SOURCE STATEMENTS

0001 ; a sample for source listing
0002
0003 chip LC866032
0004
0005 include macros.asm
1/0001 ; a header file that contains shared macro definitions
1/0002
1/0003 clr_reg macro xxx
1/0004 mov #0, xxx
1/0005 endm
0006
0007 cseg
0008 0000007B PARAM1 equ 123
0009
0010 clr_reg acc
0010+1 C 0000 230000 mov #0, acc
0011 C 0003 23407B mov #PARAM1, p0
0012
0013 rept 10
0015 endm
0015+1 C 0006 00 nop
0015+2 C 0007 00 nop
0015+3 C 0008 00 nop
0015+4 C 0009 00 nop
0015+5 C 000A 00 nop
0015+6 C 000B 00 nop
0015+7 C 000C 00 nop
0015+8 C 000D 00 nop
0015+9 C 000E 00 nop
0015+10 C 000F 00 nop
0016
0017 C 0010 73616D mess0: dc “sample message #00?n”
0017 C 0013 706C65
0017 C 0016 206D65
0017 C 0019 737361
0017 C 001C 676520
0017 C 001F 233030
0017 C 0022 0A
0018
0019 end

Header

Line number

Include level

Symbol value

Expanded line number

Code

Address

Segment type

Page number Source file name Statemnet
VMC-82

8. List File Format
Header: The header appears at the start of each page, and consists of a blank line to allow space
for binding, the page number, the source Þle name, and headings for each column
position in the main body of the list.

Page number: Pages are numbered sequentially, starting from "1."

Source Þle name: This indicates the name of the source Þle for which assembly was speciÞed. If the drive
name and path name were also speciÞed when the Þle was speciÞed, they are shown
as well.

Statement: Indicates the contents of the source Þle, the results of expansion of a macro call when
list output was not suppressed, and the results of expansion when include Þles are
loaded.

Line number: These are the line numbers in the source Þle (in decimal format). When a single line in
the source Þle becomes two or more lines in the list Þle (for example, when the code
portion spans several lines), the same line number is repeated.

Include level: This indicates the nesting level of nested include Þles. This does not appear on lines
that show the contents of the source Þle. This level is "1" for lines that show the contents
of a Þle that is included directly from the source Þle. This digit becomes "2" for a Þle
that is included from a level 1 include Þle. This number is separated from the line
number by a slash.

Symbol value: When a value is set in a symbol, if the value is deÞnite at the time of assembly, that
value is shown as an 8-digit hexadecimal number. If the value is not deÞnite, nothing
is shown.

Expanded line number: This number indicates that a given line was not in the original source Þle, but was
generated as a result of a macro call (including repeated macros). A sequential number,
starting from "1," is added to the line number in the sequence of expansion. When one
macro call is completed and a different one appears, the sequential numbers that are
assigned start again from "1."

Segment type: When the corresponding line generates code in CSEG or DSEG, the segment type is
indicated by a single character. An upper-case "C" indicates "CSEG INBLOCK," a
lower-case "c" indicates "CSEG FREE," and "D" indicates DSEG.

Address: When the corresponding line generates code in CSEG or DSEG, the address where the
Þrst byte of the code is located is indicated with a four-digit hexadecimal number. Note
that "address" as used here refers to the offset from the start of the segment in question.

Code: When the code that is generated as a result of assembling the source line should be
written in ROM, that code is depicted as two-digit hexadecimal codes, sufÞcient for the
required number of bytes. A maximum of three bytes of codes are displayed for one
line, with the two digits the farthest to the left representing the bytes corresponding to
the smallest address. If the length of the code exceeds three bytes, the code is displayed
on a newly generated line that has the same line number.
VMC-83

Visual Memory Unit (VMU) Environment Variables
VMC-84

9. Specifying Files for Linking
There are two methods for starting up L86K and passing the necessary information to L86K.

1) Passing all of the information to L86K through the command line

2) Passing all of the information in response to the prompts that are displayed by L86K

Regardless of the method that was used to start up L86K, it can be forcibly terminated by either pressing CTRL+C
(by holding down the CTRL key while pressing the C key) or pressing the STOP key.

1. File Name Specification

1.1 MS-DOS Version File Specification

Upper-case and lower-case letters can be used in any combination in a Þle name that is speciÞed in the command
line when starting up L86K, or in a Þle name that is given in response to the L86K prompts. For example, the
following three Þle names are all equivalent:

sample.obj

SAmplE.OBJ

SAMPLE.OBJ
VMC-85

Visual Memory Unit (VMU) Environment Variables
In addition, when a Þle name is speciÞed with no extension, L86K uses the following default Þle name extensions.

nn is a numeric value that is speciÞed through option -B.

1.2 UNIX Version File Specification

A distinction is made between upper-case and lower-case letters in a Þle name that is speciÞed in the command line
when starting up L86K, or in a Þle name that is given in response to the L86K command prompts. For example, the
following three Þle names are all different:

sample.obj

SAmplE.OBJ

SAMPLE.OBJ

In addition, when a Þle name is speciÞed with no extension, L86K uses the following default Þle name extensions.

nn is a numeric value that is speciÞed through option -B.

File format Default extension

Object file .OBJ

Execution file .EVA

Library file .LIB

Option file .OPT

Font file .CGR

External ROM data file .Hnn

File format Default extension

Object file .obj

Execution file .eva

Library file .lib

Option file .opt

Font file .cgr

External ROM data file .hnn
VMC-86

9. Specifying Files for Linking
2. Specifying Parameters Through the Command line

L86K[option]objectfiles[,[evafile][,[libraryfile]]]][;]ø

1) option Þeld
This Þeld speciÞes the linker loader options that are described in section 2.1. When specifying an
option, specify it in front of any Þeld desired.

2) objectfiles Þeld
This Þeld speciÞes the names of the objects to be linked, the link start address, and the library names.
At least one Þle name is required. When specifying multiple Þle names, separate the Þle names with a
space character. If all of the Þle names do not Þt on one line, place a plus (+) symbol at the end of the
line. If the object Þle extension .OBJ is omitted from a Þle name, the .OBJ extension is automatically
assumed. If Ò.LIBÓ is speciÞed as the extension for a Þle name, the library is linked as well.

3) evafile Þeld
This Þeld speciÞes the name of a Þle that can be executed on (downloaded to) the EVA86K. If this Þle
name is not speciÞed, the Þrst Þle name that was speciÞed in the objectÞles Þeld is assumed, except that
the extension is changed to .EVA.

4) Libraryfile Þeld
This Þeld speciÞes the name of the library. If no library is required, this Þeld does not need to
be speciÞed.
VMC-87

Visual Memory Unit (VMU) Environment Variables
Example:

A> L86K MAIN SUB0 SUB1,TEST,TEST.LIBø

This command line links the object modules MAIN.OBJ, SUB0.OBJ, SUB1.OBJ, MAIN.OPT and
MAIN.CGR. (In models that have internal EEPROM and Þxed data, this line links the special option Þle
described later as the option Þle.) If there are any undeÞned symbols when MAIN.OBJ, SUB0.OBJ and
SUB1.OBJ are linked, a search for the same symbols as the undeÞned symbols is conducted in TEST.LIB, and
the module that includes those symbols is linked.

3. Specifying Parameters in Response to Prompts
When specifying parameters for the linkage loader in response to prompts, input the following command on the
command line.

L86K[option]ø

L86K prompts the necessary input by displaying the following lines one at a time:
SANYO (R) LC86K series Linkage Loader Version 4.00

Copyright (c) SANYO Electric Co., Ltd. 1989-1995. All rights reserved.

Object modules[.OBJ]:

EVA filename[basefilename.EVA]:

Libraries[.LIB]:

Option filename[basefilename.OPT]:

Font filename[basefilename.CGR]:

L86K does not display the next line until a response has been input for the previous prompt. Section 1.1, "Specifying
File Names," explains the rules for specifying Þle names in response to these prompts.

The responses to the prompts correspond to the Þelds in the L86K command line, except for Option Þlename and
Font Þlename. (For details on the L86K command line, refer to section 1.2, "Specifying Parameters Through the
Command Line.") The correspondence between the prompts and the command line Þelds is shown below:

Prompt Command line Þeld

Object modules objectÞles

EVA Þlename evaÞle

Libraries libraryÞles

When using the L86K prompts, after responses have been input for the above four items, input for the following
two items is prompted.

Option Þlename :Input the name of the option Þle corresponding to the evaÞle target chip.

Font Þlename :Input the font Þle name if the evaÞle target chip belongs to the LC86100 Series, the
LC864000 Series, or the LC868000 Series. (This prompt is not displayed if the target
chip belongs to any series other than the LC86100 Series, the LC864000 Series, or the
LC868000 Series.)

If the last character that is typed in the response line is a plus sign (+), the prompt moves to the next line, allowing
you to continue inputting the response to the same prompt. In this situation, the plus sign must come at the very
end of a complete Þle or library name, path name, or drive name.
VMC-88

9. Specifying Files for Linking
Default Responses

To select the default response to the current prompt, simply press Return, without specifying a Þle name
(or inputting anything else). The next prompt is then displayed.

To select the default response for the current prompt and all of the remaining prompts, type a semicolon
(;) followed immediately by Return. Once the semicolon is input, it is not possible to input a response to
any of the remaining prompts for that link session. Use this option in order to use the default responses or
to save time. However, the semicolon cannot be input for the Object modules prompt, because that prompt
has not default response.

The default responses to the L86K prompts are listed below.

Prompt Default

EVA filename: The Þrst object Þle name that is speciÞed for the Object modules prompt. The .OBJ
extension is replaced with the .EVA extension.

Libraries: No library search is conducted.

Option filename: The Þle name speciÞed for the EVA Þlename prompt. The .EVA extension s
replaced with the .OPT extension. However, in models that have internal ßash
EEPROM and Þxed data, the special option Þle described later becomes the default.

Font filename: The Þle name speciÞed for the Option Þlename prompt. The .OPT extension is
replaced with the .CGR extension.

4. Files Referenced During Linking
L86K always references the following Þles during linking.

LC86K.LIB

Information concerning the system that is referenced by EVA86K, and the ßash EEPROM access program are both
stored in LC86K.LIB. L86K gets the system information concerning the link target CPU from LC86K.LIB during the
linking process, and stores it in the EVA Þle.

In addition, if the option Þle name speciÞcation is omitted in the case of an object Þle for which the link target is a
model that has internal ßash EEPROM and Þxed data, the following special option Þle is referenced:

LCnn00.OPT: nn is a two-digit integer that corresponds to the model name in question.

For details concerning models that have internal ßash EEPROM and Þxed data, refer to the users manual.

LC86K.LIB and LIBnn00.OPT must reside in a directory that is equivalent to the directory where L86K.EXE is
stored, or in the directory that is set by the environment variable "PATH".
VMC-89

Visual Memory Unit (VMU) Environment Variables
VMC-90

10. Specifying Linkage
Loader Options
This section explains how to use the linkage loader options in order to specify and control the tasks performed by
L86K. In the MS-DOS version, all options begin with the linkage loader option character, either "/" or "-". In the
UNIX version, all options begin with the linkage loader option character "-".

1. Creating a HEX File for LC868000 Series External ROM
Option

-B=bank number

The -B option speciÞes the bank number of the external ROM data Þle in the LC868000 Series (WORLD
EXTERNAL_DATA). Specify a hexadecimal value (from 1 to FF) for bank number. The bank number that is speciÞed
here becomes the data Þle extension.

Example:

A> L86K /B=1 SAMPLE;

The data file that is created here is SAMPLE.H01.

2. CSEG Loading Address Specification Method
Option

-C=address

The -C option, which is valid for the object module that is described immediately after this option, speciÞes the code
segment loading address. Specify a hexadecimal value for address.

If this option is omitted, L86K loads the code segment of the object module at any suitable position.
VMC-91

Visual Memory Unit (VMU) Environment Variables
3. DSEG Loading Address Specification Method
Option

-D=address

The -D option, which is valid for the object module that is described immediately after this option, speciÞes the data
segment loading address. Specify a hexadecimal value for address.

If this option is omitted, L86K loads the data segment of the object module at any suitable position.

4. Enabling Duplicate Definition of DSEG Addresses
Option

-E

When the -E option is speciÞed, no error is generated if multiple symbols are deÞned in the same address in DSEG.

5. No Distinction Between Upper-Case and Lower-Case
Option

-I

Under the default setting, L86K makes a distinction between upper- and lower-case, but if the -I option is speciÞed,
no distinction is made between upper- and lower-case.

6. Creating the Loading Map
Option

-P

The -P option creates a Þle in which the link results map (a list of the link status of each segment and the placement
of public symbols) is written. The Þle name of this map Þle is the name speciÞed in the EVA Þle Þeld in the command
line or prompt, with the extension changed to .MAP. Note that no map Þle is created if a fatal error that makes it
impossible for the linking process to continue occurs.
VMC-92

10. Specifying Linkage Loader Options
7. Creating a Local Symbol List
Option

-L

The -L option is valid only when combined with the -P option. The -L option adds a list of local symbols to each
module in the map Þle.

LC86K series Linkage map list PAGE 1

Linkage date: Wed Dec 09 13:28:02 1992

sample1.EVA loading map

module segment no. start addreaa size next address

* CSEG

sample1 CSEG-I 0000 0004 0004

sample2 CSEG-F 1 0004 0005 0009

sample2 CSEG-F 2 0009 0003 000C

public symbol list

symbol segment address

ACC DSEG 0:0100 [EQU]

ADCR DSEG 0:0160 [EQU]

ADRR DSEG 0:0161 [EQU]

local symbol list

symbol segment address

** sample1 **

l1 CSEG 0000

** sample2 **

l2 CSEG 0004

Segment block start address

Module name

Segment attributes

In the case of the INBLOCK attribute, CSEG-I;

in the case of the FREE attribute, CSEG-F

Local symbols are output for each module

Segment block size (unit: byte)

Segment block end address +1

In the case of a DSEG symbol,

a bank number and address

are output

In the case of a DSEG symbol,

a bank number and address

are output
VMC-93

Visual Memory Unit (VMU) Environment Variables
8. Specifying Warning Messages Concerning Operand Data
Option

-W

The -W option displays a warning message when the value of an operand described for JMP, etc., is outside of the
valid range. (In the case of JMP, the operand is 12 bits, so the valid range of values for the operand is 0 to 4095.) (The
value that is stored in the instruction code consists only of valid bits; overßow bits are discarded.)

9. CSEG FREE Block Optimized Loading
L86K normally links (allocates) according to the CSEG section described in the object module and the sequence
speciÞed in the command module, but when it does so L86K aligns the executable Þle segment data (code segments)
with 4096-byte boundaries. This results in a number of empty areas within the code segment area.

L86K has four placement functions that allocate each segment block in the optimal position in order to minimize the
occurrence of such empty areas and therefore use memory efÞciently.

Each of these loading methods is described below.

Option:

-A

The -A option loads all code segment blocks that are the target of the linking process in order, based on size. While
doing so, if a segment block that crosses a 4096-byte boundary has the INBLOCK attribute, that block is aligned with
the boundary; if the segment block has the FREE attribute, that block is placed normally without being aligned with
the boundary.

Option:

-F

The -F option is valid only when used in combination with the -A option. After linking code segment blocks that
have the INBLOCK attribute in the sequence speciÞed in the command line, this option allocates code segments that
have the FREE attribute in those empty areas that appear due to the reason described above. (If there is no more
space to allocate code segments that have the FREE attribute, those segments are allocated after the Þnal address in
order, based on size.)

Option:

-O

The -O option is valid only when used in combination with the -A option. After linking code segment blocks that
have the INBLOCK attribute in order, based on their size, this option allocates code segments that have the FREE
attribute in empty areas. (If there is no more space to allocate to code segments that have the FREE attribute, those
segments are allocated after the Þnal address in order, based on size.)

Option:

-R

The -R option is valid only when used in combination with the -A option. After linking code segment blocks that
have the INBLOCK attribute in order, based on their size, this option allocates code segments that have the FREE
attribute in empty areas. If any two consecutive 4096-byte areas each contain empty area, the two empty areas are
brought together by repositioning the second INBLOCK code segment; a code segment with the FREE attribute is
then assigned to the newly formed area. (If there is no more space to allocate to code segments that have the FREE
attribute, those segments are allocated after the Þnal address in order, based on size.)
VMC-94

10. Specifying Linkage Loader Options
10. Specifying Symbol Sort Processing
Option:

-s

If the total number of public symbol deÞnitions in all of the link target object Þles (including the relevant SFR
deÞnitions in LC86K.LIB) exceeds 8192 deÞnitions, or if the total number of local symbol deÞnitions in all of the
link target object Þles exceeds 8192 deÞnitions, symbol sort processing will become slower. A message that indicates
the progress of the sort processing is displayed while processing is in progress:

Public(Local) symbol table: Sorting .. nn / nn blocks

Public(Local) symbol table: Sorting(merge) .. nn %

If the -S option is speciÞed, however, symbol sort processing is not performed in these circumstances; instead, the
following message is displayed and link processing is interrupted:

** Link Error, Public symbol table overßow: nn symbols

The number of symbols display4ed here is the number of symbols in excess of 8192.
VMC-95

Visual Memory Unit (VMU) Environment Variables
VMC-96

11. Object Placement
As explained in section "CSEG FREE Block Optimized Loading," the placement of objects when optimization is
speciÞed for the linking process differs from the placement that results during normal linking processing. There are
four methods of optimization loading. The placement of objects when each of these optimization methods is
speciÞed is described below.

-A

In CSEG, there are two placement speciÞcations: the INBLOCK speciÞcation (which places objects within 4096-byte
boundaries), and the FREE speciÞcation (which places objects with no regard for 4096-byte boundaries). When -A
is speciÞed, blocks are placed in the optimal position in order, based on size, regardless of the INBLOCK/FREE
speciÞcation. (In this case, segments for which INBLOCK is speciÞed are aligned with 4K-byte boundaries, while
segments with the FREE speciÞcation are not aligned with the boundaries.)

For example, assume that the following group of objects exists:

If these are linked with the -A option speciÞed, the INBLOCK/FREE segment blocks are placed in the optimal
positions in order, based on their size. The result is as follows:

L86K -A A B C D;

in
bl

oc
k

in
bl

oc
k

fr
ee

in
bl

oc
k

A

1K
bytes

1.5K
bytes

2K
bytes

2.5K
bytes

B C D

in
bl

oc
k

in
bl

oc
k

fr
ee

in
bl

oc
k

A

4K bytes 4K bytes

BC D
VMC-97

Visual Memory Unit (VMU) Environment Variables
In the case of this example, because the segment (object D) that is placed on top of a 4096-byte boundary has the
FREE attribute speciÞed, object D is not aligned with the boundary. If object D had the INBLOCK attribute, the result
would be as follows:

 -A-F

When -A and -F are speciÞed, the INBLOCK segment blocks are placed in the order described in the command line,
and then the FREE segment blocks are placed in the optimal positions in order, based on their size.

For example, assume that the following group of objects exists:

If these objects are linked with -A-F speciÞed, A, C, and D are placed in the order indicated in the command line (D
is aligned with a 4096-byte boundary), and then E and B are placed in the optimal positions in that order.

L86K -A-F A B C D E;

-A-O

When -A and -O are speciÞed, the INBLOCK segment blocks are placed in the optimal positions in order, based on
their size, and then the FREE segment blocks are placed in the optimal positions in order, based on their size.

For example, assume that the following group of objects exists:

If these objects are linked with -A-O speciÞed, D, A, and C are placed in the optimal positions in that order, and then
B is placed in the optimal position.

-A-R

When -A and -R are speciÞed, the INBLOCK segment blocks are placed in the optimal positions in order, based on
their size, and then, if any two consecutive 4096-byte areas each contain empty area, the two empty areas are
brought together by repositioning the second segment; a segment block with the FREE attribute is then assigned to
the newly formed area.

in
bl

oc
k

in
bl

oc
k

in
bl

oc
k

in
bl

oc
k

A

4K bytes 4K bytes

BC D

in
bl

oc
k

fr
ee

A

1.5K
bytes

in
bl

oc
k

C

1K
bytes

1K
bytes

in
bl

oc
k

3K
bytes

DB

fr
ee

1.5K
bytes

E

in
bl

oc
k

fr
ee

A

in
bl

oc
k

C

in
bl

oc
k

D B

fr
ee

E

4K bytes 4K bytes
VMC-98

11. Object Placement
For example, assume that the following group of objects exists:

If these objects are linked with -A-R speciÞed, D, A, and C are placed in the optimal positions in that order. A and
C are then repositioned at the rear of their 4096-byte area. B is then placed in the empty area between D and A.

In addition, in all optimization methods, if an empty area is created within an object by the ORG pseudo instruction,
that area also becomes available as a target for segment block placement.

For example, assume that the following group of objects exists:

If these objects are linked normally without optimization, the result is as shown below.

If these objects are linked with optimization speciÞed, ORG produces an empty area within segment block A,
as follows:

in
bl

oc
k

in
bl

oc
k

fr
ee

in
bl

oc
k

A

2K
bytes

1K
bytes

3K
bytes

1.5K
bytes

B C D

in
bl

oc
k

fr
ee

A

in
bl

oc
k

C

in
bl

oc
k

D B

4K bytes 4K bytes

fr
ee

in
bl

oc
k

in
bl

oc
k

C

1K
bytes

1.5K
bytes

3K bytes + 1K bytes

A B

1K of empty area created by ORG

CA B

4K bytes 4K bytes
VMC-99

Visual Memory Unit (VMU) Environment Variables
Furthermore, if the optimization speciÞcation and the loading address speciÞcation (-C option) are both made, and
the Þrst segment of that Þle has the FREE speciÞcation, the placement of that segment block (only) follows the
loading address speciÞcation. (Subsequent FREE blocks are subject to optimization.)

CA A B

4K bytes 4K bytes
VMC-100

12. Errors
1. Fatal Errors
If a fatal error is detected while the linking process is in progress, L86K displays a message on the VDT and
interrupts processing. The error messages that are displayed by L86K are listed below.

Chip name unmatched

An attempt was made to link object modules for different chips.

Data file specified

A data Þle was speciÞed for EVA Þle creation.

Data segment size exceeds

An attempt was made to link DSEG objects in excess of the RAM size.

External undefine symbol

External reference symbol not found.

Illegal bank number specifed

There is an error in the external ROM bank number speciÞcation.

Illegal file format

The speciÞed Þle is not intended for the LC86K Series.

Illegal option specified

Illegal option was speciÞed.

Internal module not specified

No internal program Þle was speciÞed in a link.
VMC-101

Visual Memory Unit (VMU) Environment Variables
Loading address multiple assignment

An attempt was made to assign different objects to the same address.

No such file or directory

SpeciÞed Þle not found.

Program file specified

A program Þle was speciÞed for the creation of an external ROM data Þle.

Public symbol multiple define

Duplicate deÞnition of a public symbol.

Segment size exceeds

An attempt was made to link objects that would exceed the segment size.

WORLD attribute unmatched

A program Þle with the WORLD INTERNAL or WORLD EXTERNAL attribute co-exists with a data
Þle that has the WORLD EXTERNAL_DATA attribute.

2. Non-Fatal Errors
If a non-fatal error is detected while the linking process is in progress, L86K displays a message on the VDT and
continues processing. The error messages that are displayed by L86K are listed below.

Cannot access file: LC86K.LIB

The library LC86K.LIB, in which the reserved words are registered, does no exist. LC86K.LIB is a library
in which reserved words for each chip are registered, and must reside in either the current directory, or
in the directory that is pointed to by the environment variable PATH.

Module not in library

Reserved words for the target chip are not registered in LC86K.LIB.

Operand data overflow

The value that was described in an operand Þeld within the prescribed range. (The range differs
according to the statement.)

Operand data type mismatch

An illegal segment symbol was speciÞed in the operand Þeld.
VMC-102

13. Program Startup
There are two methods for starting up LIB86K and passing the necessary information to LIB86K.

1) Passing all of the information to LIB86K through the command line

2) Passing all of the information in response to the prompts that are displayed by LIB86K

Regardless of the method that was used to start up LIB86K, it can be forcibly terminated by either pressing CTRL+C
(by holding down the CTRL key while pressing the C key) or pressing the STOP key.

1. File Name Specification

1.1 MS-DOS Version File Specification

Upper-case and lower-case letters can be used in any combination in a Þle name that is speciÞed in the command
line when starting up LIB86K, or in a Þle name that is given in response to the LIB86K prompts. For example, the
following three Þle names are all equivalent:

sample.obj.

SAmplE.OBJ.

SAMPLE.OBJ

In addition, when a Þle name is speciÞed with no extension, LIB86K uses the following default Þle name extensions.

File format Default extension

Library file .LIB

Object file .OBJ

List file None
VMC-103

Visual Memory Unit (VMU) Environment Variables
1.2 UNIX Version File Specification

A distinction is made between upper-case and lower-case letters in a Þle name that is given in response to the
LIB86K command prompts. For example, the following three Þle names are all different:

sample.obj.

SAmplE.OBJ.

SAMPLE.OBJ

In addition, when a Þle name is speciÞed with no extension, LIB86K uses the following default Þle name extensions.

2. Specifying Parameters Through the Command line
LIB86K[option] oldlibrary[commands] [, [listÞle] [, [newlibrary]]] [;]¿

1) option Þeld

The only option that can be speciÞed in the option Þeld is /?.

2) oldlibrary Þeld

This Þeld speciÞes the library that is the target of processing. This Þeld cannot be omitted. If the extension of the
library Þle is .LIB, the extension may be omitted. However, if the user's library Þle has an extension other than .LIB,
the extension may not be omitted. Because there is no default library Þle, if no library Þle is speciÞed, an error
message is output. Furthermore, if a non-existent Þle name is speciÞed, the following prompt is displayed:

Library file does not exist. Create? (y/n)

If creating a new library Þle, input "Y". If any character other than "Y" is input, processing is interrupted and control
returns to the OS. If a semicolon is appended at the end of the name of an existing library Þle, a library conformity
check is performed. The conformity check determines whether all of the modules in the library can be used. If an
error is detected, an error message is output.

3) commands?????

The commands Þeld is used to specify command symbols such as "+", "-", "-+", "*", and "-*" as instructions for
program operation. Multiple operations can be performed by specifying one object Þle name or module name with
one command. If a command is omitted, changes cannot be made to a library Þle.

File format Default extension

Library file .lib

Object file .obj

List file None
VMC-104

13. Program Startup
Command Meaning

+: This is the module addition command symbol. The module in the object Þle that is
described immediately after the command symbol is added at the end of oldlibrary. It is
not possible to link libraries together.

-: This is the module deletion command symbol. The module that is speciÞed immediately
after the command symbol is deleted from oldlibrary.

 -+: This is the module replacement command symbol. The module in the object Þle that is
described immediately after the command symbol is substituted for a module in oldlibrary.
Module replacement is accomplished by deleting the currently existing module and then
adding the module with the same name at the end of the library.

*: This is the module copy command symbol. The module that is speciÞed immediately after
the command symbol is searched for in oldlibrary, and then the contents are written to an
object Þle with the same name. The copied module remains in oldlibrary.

-*: This is the module move command symbol. The module that is speciÞed immediately after
the command symbol is searched for in oldlibrary, and then the contents are written to an
object Þle with the same name. This is the same operation as the module copy operation,
except that the module that was copied does not remain in oldlibrary.

4) listfile Þeld

The ListÞle Þeld speciÞes the Þle that outputs the public symbol list, external reference symbol list, and the module
name list in the library. If this Þeld is omitted, the data is displayed on the standard output.

5) newlibrary Þeld

The newlibrary Þeld speciÞes the name of the library that is the output target. If this Þeld is not speciÞed, the
extension of oldlibrary is changed to .BAK before beginning processing, and then the data in oldlibrary is saved as
newlibrary.
VMC-105

Visual Memory Unit (VMU) Environment Variables
Option Specification

/ ?

Specifying this option outputs a help message on the screen. In the UNIX version, this option must be
enclosed in double quotation marks.

Command Line Execution Examples

Example 1: LIB86K HOME-+ROM;¿

In this example, a module named ROM is deleted from the library named HOME, and the
object Þle ROM.OBJ is added to the end of the library.

Example 2: LIB86K HOME-ROM+ROM;¿

LIB86K HOME+ROM-ROM;¿

In the top line above, a module named ROM is deleted from the library named HOME, and
then the object Þle ROM.OBJ is added to the library. In the bottom line,
however, the object Þle ROM.OBJ is added to HOME and then the ROM
module is deleted. Therefore, in the case of the top line, a module named ROM
remains in the library, while in the case of the bottom line, there is no module
named ROM remaining in the library. This is because the processing is
performed in the same sequence in which the command symbols are speciÞed.

Example 3: LIB86K HOME,LCROSS.PUB¿

In this example, a conformity check is performed on HOME.LIB and then a cross-reference
Þle named LCROSS.PUB is created.

Example 4: LIB86K FIRST -*STUFF*MORE,,SECOND¿

This example copies the module STUFF from the library FIRST.LIB to a Þle named
STUFF.OBJ and then deletes the module STUFF from the library. The module
MORE is also copied from the library to MORE.OBJ, but also remains in the
library. The new library is SECOND.LIB, and is the same as FIRST.LIB except
that the STUFF module has been deleted.
VMC-106

13. Program Startup
3. Operation Using the Prompts
If only LIB86K is input on the command line, as shown below, then each Þeld can be input one at a time in response
to the prompts that are displayed on the screen.

LIB86K[option]ø

For LIB86K , the following Þelds are displayed one at a time:

Library name:

Operations:

List file:

Output library:

As the prompts are displayed one at a time, LIB86K waits for input form the user. As each item is input, the next
prompt is displayed and then LIB86K waits for input again.

Each of the responses to the prompts correspond to each of the Þelds in the command line. The correspondence
between the prompts and the command line Þelds is shown below.

Prompt Command line Þeld

Library name: This corresponds to the oldlibrary Þeld. If a semicolon (";") is input after the Þle name, a
library conformity check is performed.?

Operations: This corresponds to the command Þeld.

List file: This corresponds to the listÞle Þeld.

Output library: This corresponds to the newlibrary Þeld.

Prompt Line Expansion

If an ampersand (&) is input at the end of the input at the Operations prompt, the Operations prompt is
displayed again, allowing additional processing to be speciÞed.

Default Response

Default values are set for items other than the Library name prompt. The default setting can be selected by
inputting either a semicolon or just pressing the Return key. The defaults for each prompt are shown below.

Prompt Default value

Operations: Makes no changes to the library Þle.

List file: Selects the standard output for the list Þle output destination. No list Þle is generated.

Output library: Sets the original name as the output library Þle name.
VMC-107

Visual Memory Unit (VMU) Environment Variables
VMC-108

14. Errors
The error messages are explained below.

cannot access file
LIB86K cannot open the speciÞed Þle.

cannot create new library
Either the disk or root directory is full, or else the library Þle is a read-only Þle that is write-protected.

cannot rename old library
Because the .BAK version is read-only and is protected, LIB86K cannot rename an old library to a name
with the .BAK extension.

comma or newline missing
In the command line, an expected comma or Return was not found.

error reading from library
LIB86K can not read data from the speciÞed library Þle.

error writing to new library
The disk or root directory is full.

insufficient memory
Could not allocate the memory needed in order to run LIB86K.

interrupted by user
The user halted LIB86K by pressing CTRL+C.

invalid library header
The input library Þle has an invalid format.

module not in library; ignored
The module speciÞed for replacement was not found in the library.

output-library specification ignored
In addition to a new library name, an output library was speciÞed.

syntax error : illegal file specification
A command operator such as the minus sign was speciÞed without a module name.
VMC-109

Visual Memory Unit (VMU) Environment Variables
VMC-110

15. Cross-Reference List
The cross-reference list format is shown below.

LC86K series Library Analysis List PAGE 1

 Tue Feb 18 13:56:12 1992

Number of Module count: 2 Library create date: Wed Oct 16 15:34:53 1991

Library update date: Tue Feb 18 10:55:23 1992

Including Modules: 1 2

Module name: 1 Source name: 1.ASM

Assembler name: SASM 1.0 Assembly date: Tue Oct 22 15:54:43 1991

Target chip name: LC866232

Including Public symbols:

Including External symbols:

 test sample label1

Module name: 2 Source name: 2.ASM

Assembler name: SASM 1.0 Assembly date: Tue Oct 22 15:54:43 1991

Target chip name: LC866232

Including Public symbols:

Including External symbols:

 label1 label2 label3
VMC-111

Visual Memory Unit (VMU) Environment Variables
VMC-112

16. Program Startup
1. File Name Specification
Upper-case and lower-case letters can be used in any combination in a Þle name that is speciÞed in the EVA2HEX
command line. For example, the following three Þle names are all equivalent:

sample.eva

SAmpLE.EVA

SAMPLE.EVA

In addition, when a Þle name is speciÞed with no extension, EVA2HEX uses the following default Þle
name extensions.

2. Parameter Specification Method

EVA2HEX[option] EVA_filename [HEX_filename]ø

1) option Þeld

This Þeld speciÞes the options described in section 1.3. Specify the option Þeld after the command name.

2) EVA_Þlename Þeld

This Þeld speciÞes the name of the Þle after debugging is completed (the Þle with the ".EVA" extension).
(This Þle is known as the EVA Þle.)

3) HEX_Þlename Þeld
This Þeld speciÞes the name of the Intellec HEX format Þle. (This Þle is known as the HEX Þle.) If the
HEX_Þlename is omitted, it is identical to EVA_Þlename. If an external ROM data Þle is converted, the
extension is .H00.

* EVA2HEX does not support prompts for parameter input.

File format Default extension

EVA file .EVA

HEX file .HEX
VMC-113

Visual Memory Unit (VMU) Environment Variables
Startup Example 1: A>EVA2HEX PROG012¿

EVA Þle >> HEX Þle, external ROM HEX Þle

PROG012.EVAPROG012.HEX, PROG012.H00

Startup Example 2: A>EVA2HEX¿

The following message (simple help) is displayed.

SANYO LC86000 Series EVA-Þle to HEX-Þle generator V1.00A

Copyright (C) SANYO Electric Co.,Ltd. 1992

Usage: eva2hex [optiona] EVA Þlename [HEX Þlename]

Optiona: /I ... information on/off (default: on)

3. Option Specification
The option begins with "/". "-" cannot be used.

Option

/I

The /I option disables the display (on the VDT) of information on the progress of the conversion process when
converting an EVA Þle to a HEX Þle. If this option is not speciÞed, information on the progress of the conversion
process is displayed while conversion is in progress.

Monitor Display Example:

SANYO LC86000 Series EVA-Þle to HEX-Þle genetator V1.00A

Copyright (C) SANYO Electric Co.,Ltd. 1992

EVAfile name: A.eva EVA file

ROM data packed: FF (hex) Default data

Chip name: LC868016 Model name

ModuLe name: A Internal CSEG (In) 0000 - 0063 records: 0007

ModuLe name: B Internal CSEG (In) 0064 - 00DB records: 0008

ModuLe name: C Internal CSEG (In) 00DC - 02DD records: 00033

CGROM data bLock records: 00256

Optional data bLock records: 00016

Program name linked
to the above EVA file

Addresses and record length
of specified programs

Record lengths of each type of data

Conversion progress information
VMC-114

17. Errors
1. Fatal Errors
If a fatal error is detected while EVA2HEX is running, EVA2HEX displays a message on the VDT and interrupts
processing. The error messages that are displayed by EVA2HEX are listed below.

Error message: Fatal error :messages.....

‘filename’ File not cLose.

Cannot close Þle Þlename.
‘filename’ File not create.

Cannot create Þle Þlename.
‘filename’ File not open.

File Þlename not found.
‘filename’ not EVA file format.

File Þlename is not an EVA-format Þle.
‘filename’ user disk full.

Disk became full while writing Þlename.
Chipname undefined.

Model name in EVA Þle is incorrect.
ROM size over. (ROM size: XXXX)

The program size exceeded the ROM size.
Tablename allocation error.

Memory allocation for tablename failed due to insufÞcient memory.
VMC-115

Visual Memory Unit (VMU) Environment Variables
VMC-116

Visual Memory Unit (VMU)
VMU-BIOS Specifications

1. VMU-BIOS Specifications
1. Outline
This document describes the System BIOS functions of the backup memory system ÒVMUÓ designed for the
new-generation game machine (preliminary).

2. VMU Outline
ÒVMUÓ stands for ÒVisual Memory UnitÓ. The VMU is a backup memory cartridge equipped with a liquid-crystal
display and operation buttons.

When connected to a dedicated controller in the new-generation game machine (preliminary), the VMU serves as a
Þle backup memory and it can also display game sub screens on its LCD.

When not connected to the new-generation game machine, the VMU can function as a stand alone unit that allows
displaying and deleting stored Þles. Two VMU units can be connected to allow Þle transfer.

Another application of the VMU is as a highly portable miniature game machine, using simple application
programs downloaded from the new-generation game machine to the VMU. (Such application programs are called
Òuser programsÓ.)

2.1 System-BIOS Outline

The functions described above are implemented by several programs that are contained in an internal ROM on the
VMU. These programs are called ÒOS programsÓ. OS programs consist of subroutines which can be called by user
programs. Two program types (system program and header) are used to call up subroutines. The entire system
consisting of OS programs, system programs, and headers is called the ÒSystem-BIOSÓ.

OS program subroutines are divided into subroutines that serve mainly for accessing the ßash memory and
subroutines for calculating time data. Application developers can use the System-BIOS to call these subroutines in
user programs. This makes it easy for application developers to use VMU functions without having to deal with
detailed VMU speciÞcations.
VMB-1

1. VMU-BIOS Specifications
3. Memory Space
VMU uses two types of memory space: internal memory space and external memory space.

Internal memory space consists of the internal program area and internal RAM. The external memory space is made
up of ßash memory.

The internal program area is 64 kilobytes and contains the OS programs and system programs. User programs can
reference this area as needed. The internal program area is allocated as shown in the memory map in Fig. 3.1. (For
information on OS programs and system programs, please refer to section 5.)

The ßash memory space is 128 kilobytes, divided into two banks of 64 kilobytes each. Bank-0 is the program area
and bank-1 the data area. User programs are stored in the program area. A memory map of the ßash memory is
shown in Fig. 3.2. (For information on the internal and external program area and BIOS usage, please refer to section
4 and the following sections.)

The internal RAM has a memory space of 1222 bytes, divided into the following four sections: main RAM, special
register area, LCD video RAM (XRAM), work RAM (VTRBF).

The main RAM is 512 bytes, divided into two banks of 256 bytes each. Because bank-0 is reserved for the System
BIOS, user programs are generally prohibited from writing to bank-0 (except for certain cases listed in appendix 1).

The special register area is allocated to VMU speciÞc registers (timer register, LCD control register, etc.). For
information on registers and corresponding addresses, please refer to the VMU user's manual.

The LCD video RAM (XRAM) consists of three banks which serve for storing LCD image data. (For information on
RAM usage, please refer to the VMU user's manual.)

The work RAM is 512 bytes and serves as a buffer when VMU carries out data transfer according to the Maple Bus
protocol. When the VMU is operating as a standalone unit and data transfer according to the Maple Bus protocol
is therefore not being carried out, user programs can use this area.

A memory map of the internal RAM is shown in Fig. below. (The access procedure for the work RAM differs from
normal RAM access. For information, please refer to the VMU user's manual.)
VMB-2

Visual Memory Unit (VMU) VMU–BIOS Specifications
Figure 1.1 Internal program space

Figure 1.2 Flash memory space

Figure 1.3 Internal RAM space

System programs
16K byte

Reserved area

OS programs
4K byte

Reserved area

00000000h

3FFFh

E000h

EFFFh
FFFFh

Bank 1

Main RAM

Bank 0

XRAM-0
LCD video RAM

Special register area
SFR

Main RAM

Bank 1

XRAM-1
LCD video RAM

XRAM-2
LCD video RAM

000h

0FFh

100h

17Fh

180h

1FFh

Work RAM

VTRBF

000h

1FFh

*Bank 0 of the main RAM is reserved for system programs. Except for special cases, user programs cannot use this area.
VMB-3

1. VMU-BIOS Specifications
4. System BIOS Functions
This section explains the System BIOS functions provided for VMU.

User programs running on the VMU can access System BIOS functions by calling special subroutines. However,
there are certain limitations on which System BIOS functions (subroutines) can be called by user programs.

The following functions are provided by the System BIOS.

¥ System initialization

Ð VMU initialization function

¥ VMU execution mode selection

VMU comes with the following three execution modes:

1) Game data and user program management and editing

2) User program startup and return

3) Time display and adjustment

For details on execution mode selection, please refer to appendix 2.

¥ Subroutines

Ð Flash Memory Access Functions

1) Flash Memory Page Data Readout

2) Writing to Flash Memory

3) Flash Memory Verify

Ð Clock Function

1) Clock Countup Timer

For details on VMU initialization, please refer to section 6. For details on subroutines, please refer to section 7.
VMB-4

Visual Memory Unit (VMU) VMU–BIOS Specifications
5. System BIOS Data and Memory Allocation
VMU comes with certain programs for using the System BIOS functions. These programs can be classiÞed into the
following three types:

1) OS programs

2) System programs

3) Header

5.1 Program Layout

The actual programs are arranged in memory as follows.

Figure 1.4 VMU memory map

Details are explained below.

System programs

System programs are required for using the VMU as a memory device. Major system programs are the Þle
management system, clock functions, and programs for data transfer according to the Maple standard. A
program for calling subroutines from the external memory space (user programs) is also located here. (A
ßow diagram showing the call-up process of speciÞed subroutines is shown in section 5.2.)

The VMU initialization program is located in this area. For details on the initialization program, please refer
to section 6.

System programs Header

Internal memory space External memory space

Reserved area

OS programs

Reserved area

Bank 0

Program/Data area

Bank 1

Data area

0000h

0100h

(preliminary)

FFFFh
VMB-5

1. VMU-BIOS Specifications
OS programs

The VMU program subroutines are located here. For information on subroutines that can be called by user
programs, please refer to section 7.

The method of accessing to this area is also shown in section 5.2.

Header

Contains information about internal memory space processing routines and return procedures from the
internal memory space. Because this area also contains interrupt vectors for internal use by user programs,
its source code is being made available to application developers. It also contains information about return
from user programs to the mode selection screen. User programs must use this information to return to the
Þle management system. (For details on mode selection screen, please refer to Appendix 2.) Within the
given speciÞcations, the area content may be modiÞed by developers.

5.2 Subroutine Call Flow

This section explains the operation ßow that occurs when a user programs calls OS program subroutines and then
returns to the user program. An actual ßow diagram is shown in Fig. below

Figure 1.5 OS program call flow

LABEL MNEMONIC

WORLD EXTERNAL
OTHER SIDE SYSBOL os_call
PUBLIC os_ret

jmp main
os_int:

change os_call
_head_ret:

RET return to main
os_ret:

br_hrad_ret
main:

callf os int start call flow

External memory space
(header, user program)

16

2

5

LABEL MNEMONIC

WORLD INTERNAL
OTHER SIDE SYSBOL os_ret
PUBLIC os_call

os_call:
callf os_main
change os_ret

os_main:
(actual OS program)

ret

Internal memory space
(system program, OS program)

3

4

VMB-6

Visual Memory Unit (VMU) VMU–BIOS Specifications
Label processing description

¥ external memory space
main: Main program in user program
os_int: This subroutine shifts processing to internal memory space.

In the example, processing passes to the internal memory space when the
subroutine is called, and the main program resumes upon return from the internal
memory space. This subroutine is included in the header.

os_ret: Subroutine for returning to external memory space.
The ÒchangeÓ command serves to return to this label from the internal memory
space. After returning, processing moves to the interrupt return routine in
the header.

¥ internal memory space
os_call: Serves to call an OS program and return to the external memory space.

After the OS program subroutine has executed, processing returns to the external
memory space.
os_main: Main OS program which executes the various subroutines.

The sample ßow shown in Fig. 5.2 assumes that a user program is executing in the external memory space.

1) When wishing to use an OS program during execution of an external program, call the Òos_intÓ
subroutine. Interrupt processing routines which need to jump to an OS program contain an Òos_intÓ
subroutine.

2) The ÒchangeÓ command in the os_int subroutine jumps to the OS program call routine (os_call) placed
in the internal program area.

3) The OS program call routine calls the actual OS program subroutine (os_main). From this point on, the
OS program starts to execute.

4) When the OS program execution is Þnished, the RET command jumps to the next address of the call
command in the OS program call routine. In the OS program call routine, the call command is always
followed by a change command which moves processing to the external program area.

5) After returning from the OS program subroutine, the change command passes processing over to the
external program. This program contains a subroutine (os_ret) that is called when returning from an
internal program. The subroutine position is Þxed. These programs are distributed to application
developers as a library. Such programs are called headers. (The sample program contains the headers
Òos_intÓ and Òos_retÓ.)

6) From the above described external program return routine, processing returns to the Òos_intÓ subroutine
and then by the RET command to the main program (main).

Note: Label names in the sample program are all preliminary. Label names will be different in the actual
System-BIOS.

* ÒchangeÓ command

The ÒchangeÓ command serves to move processing from the external memory space to the internal memory
space, or from the internal memory space to external memory. By executing this command, a program that
is currently executing in internal memory space (or external memory space) moves to external memory
space (or internal memory space). The program counter is reset to the speciÞed label (or address).
VMB-7

1. VMU-BIOS Specifications
5.3 Returning From User Program to Mode Selection Screen

When a user program is executing, if the user presses the MODE button on VMU, the user program will terminate
immediately and processing will return to the mode selection screen.

This section explains the operation ßow from user program to the mode selection screen when the MODE button
is pressed while a user program is executing.

Figure 1.6 Operation flow of returning to mode selection

Label processing description

¥ external memory space
main: Main program in a user program.

A user program must contain description to allow for pressing of the MODE button to
jump to the OS program return subroutine.
user_end: Subroutine to terminate a user program in execution and move processing to the OS
program. If data in the executing user program needs to be saved, then be sure to include this
information in the user program so that the subroutine will save it before returning to the OS program.
(The OS program does not keep data.)

¥ internal memory space
int_ret: Return routine to serve as entry to returning to the internal memory space when a user
program terminates. When processing returns to the internal memory area, the mode selection
program will start.
mode_main: Mode selection program.

For details on mode selection speciÞcation, please refer to Appendix 2.

LABEL MNEMONIC

WORLD EXTERNAL
OTHER SIDE SYSBOL int_ret

jmp main

user_end
(Saving of data by user program)
change int_ret

main:
interrupt generated
when MODE button pressed

jmp main

External memory space
(header, user program)

1

2

LABEL MNEMONIC

WORLD INTERNAL
PUBLIC int_ret

int_ret:
jmp mode_main

mode_main:
(mode selection screen program)

ret

Internal memory space
(system program, OS program)

3

VMB-8

Visual Memory Unit (VMU) VMU–BIOS Specifications
The sample program ßow in Fig. 5.3 assumes the user program is executing in the external memory space.

1) While an external program is executing, pressing the MODE button will jump to the user_end
subroutine. In the user_end subroutine, the ÒchangeÓ command will shift processing to the internal
memory space. Therefore, if data in the executing user program needs to be saved, then be sure to save
it before executing the ÒchangeÓ command.

2) When program control jumps from the user program to the user_end subroutine, the ÒchangeÓ
command inside the user_end subroutine will shift processing to the mode_ret subroutine in the
internal memory space.

3) When processing moves from the external memory space to the mode_ret subroutine, the mode
selection program will start.

* ÒchangeÓ command

The ÒchangeÓ command serves to move processing from the external memory space to the internal memory
space, or from the internal memory space to external memory. By executing this command, a program that
is currently executing in the internal memory space (or external memory space) moves to the external
memory space (or internal memory space). The program counter is reset to the speciÞed label (or address).

5.4 VMU Initialization

This section explains the initialization that is performed at VMU startup.

The VMU is automatically initialized in the following cases.

1. VMU is connected to new-generation game machine, and power to new-generation game machine is
turned ON

2. Reset switch on VMU is pressed

3. Battery is inserted in VMU

Initialization comprises the following steps.

1) Clear main RAM

¥ Write Ô00hÕ to entire main RAM area (bank 0, bank 1).

* Initialization does not change XRAM values.

All registers are initialized by a hardware reset Þrst, and then again by software. For information on the
register values after a hardware reset, please refer to the VMU user's manual.

2) Set system clock and cycle time

¥ Switch system clock to sub-clock (crystal quartz oscillator).

¥ Set cycle time to 1/6 system clock.
(The cycle time is used as reference for command execution. For details, please refer to the VMU
user's manual.)

3) Set base timer

¥ Select 14-bit base timer mode.

¥ Switch base timer clock to sub-clock (crystal quartz oscillator).

¥ Enable base timer 0 interrupt and start counting.

For details regarding base timer 0 operation, please refer to the VMU user's manual.
VMB-9

1. VMU-BIOS Specifications
The base timer 0 is used by the clock function. For details regarding the clock function, please refer to section 7.3.

4) Set master interrupt

¥ Enable master interrupt.

(The master interrupt ßag controls enabling/disabling of all interrupts with ÒHigh levelÓ and ÒLow
levelÓ priority.)

5) Set LCD driver

¥ Activate LCD controller.

¥ Set LCD clock to 1/2 of LCD driver input clock.

¥ Set LCD start address toÕ000hÕ of XRAM.

¥ Set character register.

¥ Set time allocation register.

¥ Set LCD to ON.

6) Set port 1

¥ Set port 1 to all-bit input.

¥ Set bit 7 of port 1 to audio output pin.

* After initialization, bit 7 of port 1 is set to input mode. Therefore a user program will need to again select
the output mode.

¥ Set bit 5 Ð bit 0 of port 1 (serial interface for VMU) to synchronous operation. For details regarding the
synchronous serial interface, please refer to the VMU user's manual.

7) Set port 3

¥ Pull up all bits of port 3.

¥ Set port 3 to all-bit input.

¥ Enable interrupt triggering and HOLD mode cancel by port 3.

¥ Enable interrupt trigger request by port 3.

8) Initialize Maple Bus interface circuit

¥ Initialize Maple Bus interface circuit.

9) Set work RAM

¥ Enable use of work RAM.
VMB-10

1. VMU-BIOS Specifications
6. Subroutine Description
This section describes the subroutines available in the System BIOS.

6.1 Flash Memory Access Functions

The following subroutines are available for ßash memory access.

1) Flash Memory Page Data Readout
Read 128 bytes of data from the ßash memory space.

2) Write to Flash Memory
Write 128 bytes of data to the ßash memory space.

3) Flash Memory Verify
Verify data written to the ßash memory.

* When accessing the ßash memory, the main clock in use must be switched to 600 kHz. For details, please
refer to the next section.

Precautions for Using Flash Memory Access Subroutines

When accessing the ßash memory space, the following points must be observed.

VMU uses three types of system clock as reference for command execution (see Fig. 7.1).

When VMU is operating as a standalone unit, the quartz oscillator clock (32 kHz) will normally be used.
However, for accessing the ßash memory, the clock must be switched to the internal (RC) oscillator (600
kHz) before calling a ßash memory access subroutine. After subroutine execution is completed, switch back
to the previously used clock.

For information on the timing for clock switching, see Fig. below.

Figure 1.7 System clock table

Oscillation frequency Command cycle timeSystem clock source

6 MHz 1.0 usCeramic (CF) oscillator

600 kHz 10.0 usInternal (RC) oscillator

32 kHz 183.0 usQuartz (X'TAL) oscillator
VMB-11

Visual Memory Unit (VMU) VMU–BIOS Specifications
Figure 1.8 Flow diagram for clock switching during flash memory access

Subroutine execution starts

Subroutine execution completed

OS programHeader

Internal memory spaceExternal memory

User program

Call OS call routine

Call OS routine starts

Change clock to 600 kHz

Call OS program

Return from OS program

Change clock to 32 Khz

Call OS Routine ends
Return to user program

32 kHz clock
600 kHz clock
VMB-12

1. VMU-BIOS Specifications
Flash Memory Page Data Readout

Subroutine name: fm_prd_ex (org 0120h)

Arguments: High-order start address for ßash memory read: fmadd_h (RAM bank-1 07Eh)

Low-order start address for ßash memory read: fmadd_l (RAM bank-1 07Fh)

Bank address for ßash memory read: fmbank (RAM bank-1 07Dh)

Return value: Read data (128 bytes): 080h - 0FFh of RAM bank-1

Function: Read one continuous page of data (128 bytes) from speciÞed address

Description: By calling this subroutine, a program can read one page of data (128 bytes) from
ßash memory.

Before using this subroutine, the following settings must be made.

¥ Select RAM bank to use

(1) Select RAM bank-1 (Set bit 1 of PSW to Ò1Ó)

 For information on the PSW register, please refer to the VMU user's manual.

¥ Set start address for ßash memory read

(2) High-order address (8 bit): set to fmadd_h (07Eh of RAM bank-1)

(3) Low-order address (8 bit): set to fmadd_l (07Fh of RAM bank-1)

¥ Select ßash memory bank to read

(4) Select ßash memory bank-0

 (Set 07Dh of RAM bank 1 toÕ00hÕ)

 * If another value is set, normal operation is not assured.

 The read data are written to 080h - 0FFh of RAM bank-1.

 When making read settings, observe the following points.

¥ Data extending to 2 pages cannot be read. The read start address must therefore
always be set to the beginning of each page.

The start address of each page can be calculated according to the following equation:

start address value (2 byte) = 080h x page number (0 - 511)

(Because readout is performed in single-page units, bit 0 Ð bit 6 of the lower-level
address must always be set to Ò0Ó. If an address other than the start address of a page
is set, normal operation is not assured.)

¥ The read-out data overwrite any previous content of the RAM.

* Register values after subroutine completion
VMB-13

Visual Memory Unit (VMU) VMU–BIOS Specifications
Note that the following (memory) registers will have different values before the
subroutine is called and after the subroutine has completed:

¥ ACC (accumulator)

¥ TRL (table lookup register lower byte)

¥ TRH (table lookup register higher byte)

¥ r0 (RAM indirect address register)

*About pages

Beginning at the top, the ßash memory space is subdivided into 128-byte units called
pages. Flash memory is managed in page units. Because 1 bank of the ßash memory

space is 64 kilobytes, it has 512 pages.

Òfm_prd_exÓ execution is shown in Fig. 7.3.

Figure 1.9 Execution of fm_prd_ex

MainRAM
000h

*fmadd_h=A0h
When fmadd_I is set to 80h (page no. 321)

FFFh

080h

000h

0FFh

A080h

A100h

FFFh

0000h

128 byte DATA

Flash memory space

Bank 0

Bank 1

128 byte DATA

Bank 0

Bank 1
VMB-14

1. VMU-BIOS Specifications
Writing to Flash Memory

Subroutine name: fm_wrt_ex (org 0100h)

Arguments: High-order start address for ßash memory write: fmadd_h (RAM bank-1 07Eh)

Low-order start address for ßash memory write: fmadd_l (RAM bank-1 07Fh)

Bank address for ßash memory write: fmbank (RAM bank-1 07Dh)

Flash memory write data (128 bytes): RAM bank-1 080h - 0FFh

Data write end detection algorithm:

Bit 0 of RAM bank-1 07Ch

(toggle bit method (0)/data polling method (1))

Return value: result of write: ACC (accumulator)

(Normal termination: 00h. Abnormal termination: FFh)

Function: Write one continuous page of data (128 bytes) to the ßash memory, starting at the
speciÞed address

Description: By calling this subroutine, a program can write a page of data (128 bytes) to a
continuous

area in the ßash memory, starting at the speciÞed address.

Before using this subroutine, the following settings must be made.

¥ Select RAM bank to use

(1) Select RAM bank 1 (Set bit 1 of PSW to Ò1Ó)

¥ Prepare data to be written to ßash memory

(2) Store data to be written to ßash memory in RAM bank 1, 080h - 0FFh

¥ Select ßash memory bank to read

(3) Select ßash memory bank 0

 (Set 07Dh of RAM bank 1 toÕ00hÕ)

 * If another value is set, normal operation is not assured.

¥ Set address for accessing ßash memory

(4) High-order address (8 bit): set to 07Eh of RAM bank-1

 (5) Low-order address (8 bit): set to 07Fh of RAM bank-1

¥ Specify data write end detection algorithm

(6) Set data write end detection algorithm in 07Ch of RAM bank-1, as follows.

(6-1) Use toggle bit method: set 07Ch to 00h

(6-2) Use data polling method: set 07Ch to 01h

* If another value is set, normal operation is not assured.

 When making write settings, observe the following points.

¥ fm_wrt_ex is a subroutine speciÞcally for user programs. This subroutine can
write only to the area where the user program is located. For this reason, be sure
to secure an area within the user program before performing the data write.

¥ Data extending to 2 pages cannot be written. The write start address must
therefore always be set to the beginning of each page.

The start address of each page can be calculated according to the following equation:
start address value (2 byte) = 080h x page number (0 - 511)
VMB-15

Visual Memory Unit (VMU) VMU–BIOS Specifications
(Because writing is performed in single-page units, bit 0 - 6 of the lower-level address must
always be set to Ò0Ó. If an address other than the start address of a page is set, normal
operation is not assured.)

For information on pages, please refer to section 7.1.2.

* Register values after subroutine completion

Note that the following (memory) registers will have different values before the subroutine
is called and after the subroutine has completed:

¥ ACC (accumulator)

¥ B (B register)

¥ C (C register)

¥ TRL (table lookup register lower byte)

¥ TRH (table lookup register higher byte)

¥ r0 (RAM indirect access register)

fm_wrt_ex execution is shown in Fig. 7.4.

Figure 1.10 Execution of fm_wrt_ex

MainRAM
000h

*fmadd_h=A0h
When fmadd_I is set to 80h (page no. 321)

FFFh

080h

000h

0FFh

A080h

A100h

FFFh

0000h

128 byte DATA

Flash memory space

Bank 0

Bank 1

128 byte DATA

Bank 0

Bank 1
VMB-16

1. VMU-BIOS Specifications
Flash Memory Verify

Subroutine name: fm_vrf_ex (org 0110h)

Arguments: High-order address ßash memory address for verify start: fmadd_h (RAM bank 1 07Eh)

Low-order address ßash memory address for verify start: fmadd_l (RAM bank 1 07Fh)

Flash memory bank address for verify operation: fmbank (RAM bank 1 07Dh)

Data (128 bytes) for verify operation: RAM bank 1 080h - 0FFh

Return value: Verify result: accumulator (ACC) (normal end: 00h?error end: other than 00h)

Function: Serves to verify whether data were written correctly to ßash memory. For use after writing
data to ßash memory with fm_wrt_ex (see section 7.1.4).

Description: This subroutine compares the 128 byte data speciÞed when calling fm_wrt_ex with the
data actually written to ßash memory. Therefore the subroutine can only be used
immediately after the fm_wrt_ex subroutine was called.

When calling this subroutine, the same arguments as used for the preceding fm_wrt_ex
must be speciÞed. If different arguments are speciÞed, data verify will not be carried
out properly.

 After calling this subroutine, if all 128 bytes of data were found to match, 00h will be set
in ACC, and the routine returns. If a data mismatch was detected, a value other then 00h
will be set in ACC, and the routine returns.

* Register values after subroutine completion

Note that the following (memory) registers will have different values before the
subroutine is called and after the subroutine has completed.

¥ TRL (table lookup register lower byte)

¥ TRH (table lookup register higher byte)

¥ r0 (RAM indirect access register)

fm_vrf_ex execution is shown in Fig. below.
VMB-17

Visual Memory Unit (VMU) VMU–BIOS Specifications
Figure 1.11 Execution of fm_vrf_ex

Comparedata contents

MainRAM
000h

*fmadd_h=A0
fmadd_I=80 • (page no. 321)
Fmbank= 01

FFFh

080h

000h

0FFh

A080h

A100h

FFFh

0000h

128 byte DATA

Flash memory space

Bank 0

Bank 1

128 byte DATA

Bank 0

Bank 1

Data do not matchData match

00h

ACC

00h set in ACC

Not 00h

ACC

Value other than 00h set in ACC
VMB-18

1. VMU-BIOS Specifications
6.2 Clock Function

The clock functions implemented in VMU are as follows.

Time data automatic update

Clock Countup Timer

Subroutine name: timer_ex

Arguments: None

Return value: Year: year_h (RAM bank 0 017h, 18h)

Month: mon_h (RAM bank 0 019h)

Day: day_h (RAM bank 0 01Ah)

Hour: hour_h (RAM bank 0 01Bh)

Minute: min_h (RAM bank 0 01Ch)

Second: sec_h (RAM bank 0 01Dh)

* The year data are conÞgured as 2 bytes, with the higher-level in byte in 17h and the
lower level byte in 18h. Because Òyear_hÓ is assigned to RAM bank, 017h, address 018h
can be accessed by specifying Òyear_h+1Ó.

Function: When the subroutine is called, it obtains the time data and places them in the speciÞed
location in RAM bank 0. (For information on the speciÞed location, please refer to
Appendix 1.)

Description: This subroutine is a time counter using the base timer interrupt. To enable use of the
subroutine, the following settings for the base timer interrupt must be made.

¥ Base timer interrupt settings

This subroutine uses only the base timer 0 interrupt. The base timer interrupt is to be
set as shown below.

(1) Base timer count stop (BTCR 6 bit ='0Õ)

(2) 14 bit base timer mode selected (BTCR 7 bit =Õ0Õ)

(3) Sub clock used as base timer clock (ISL 4 bit =Õ0Õ)

(4) Base timer interrupt 0 enabled (BTCR 0 bit =Õ1Õ)

(5) Base timer count start (BTCR 6 bit =Õ1Õ)

Because the base timer 0 interrupt is used by the timer_ex subroutine, user programs
may not access this interrupt. Otherwise, normal operation is not assured.

This subroutine should be called after jumping to the interrupt vector of the base timer
interrupt 0 source. Also, be sure to clear the base timer 0 interrupt source (BTCR 1
bit =Õ0Õ).
(If this is not performed, the clock function will not operate properly.)

All time data obtained by this subroutine are in hex format. Conversion into decimal
format must be performed by the user program.
VMB-19

Visual Memory Unit (VMU) VMU–BIOS Specifications
7. Automatic low battery detection function
Visual Memory comes with the ability to automatically detect low battery.

The following explains how this function works.

7.1 Automatic low battery detection flag

Visual Memory can automatically check the battery's power consumption and when necessary display a
low battery warning message on the screen. Gamedevelopers can use the automatic low battery detection
ßag to enable ordisable this function.

The following describes how to use this function.

Register to use: 06Eh (Bank-0)

Register values: 00h (enable the automatic low battery detection function)

FFh (disable the automatic low battery detection function)

(If any value other than the above ones is used, then normal operation
cannot be guaranteed.)

How it work: The automatic low battery detection function constantly monitors the
battery's voltage and if the voltage falls below a certain level it will
stop the current program, wait for 3 seconds, then display the battery
warning message on the screen.

Explanation: The automatic low battery detection function consists of tasks from
detecting low voltage to displaying the low battery warning message.

When the automatic low battery detection ßag is set to 00h,the
automatic low battery detection function is enabled and when the
battery is low it will display the low battery warning message,
regardless of the current task of Visual Memory. If the ßag is set to FFh,
then the automatic low battery detection function is disabled.

When the user program is performing the following tasks, be sure to turn off the automatic low battery
detection function:

1. Communicating with another Visual Memory via the serial interface

2. Writing to the ßash memory space
VMB-20

1. VMU-BIOS Specifications
VMB-21

Visual Memory Unit (VMU) VMU–BIOS Specifications
VMB-22

Visual Memory Unit (VMU)
Sound Development

Specifications

1. VMU Sound
Development Specifications
1. VMU Sound Output Hardware Outline
VMU can use an internal timer (timer 1) to produce sound output.

The following two output methods are possible.

¥ 8-bit pulse generator output

¥ Variable bit length pulse generator output (9 - 16bits)

Both methods use the timer 1 circuit. Normally, the 8-bit pulse generator output method is used.

2. Sound Output Principle
This section describes the VMU sound output method.

VMU sound output uses timer 1.
VMA-1

1. VMU Sound Development Specifications
2.1 Timer 1 Outline

This section describes timer 1 that is used for VMU sound output.

Timer 1 incorporated in the VMU is a 16-bit timer with the following four functions.

Mode 0: 8-bit reload timer x 2 channels
Mode 1: 8-bit reload timer + 8-bit pulse generator
Mode 2: 16-bit reload timer
Mode 3: Variable bit length pulse generator (9 - 16bits)

Among these modes, VMU uses mode 1 for sound output.

For information on using the other modes, please refer to the VMU Hardware manual.

Timer 1 Block Configuration

This section describes the block conÞguration of timer 1.

A conÞguration diagram of timer 1 is shown in Fig. 2.1.

¥ Timer 1 lower level (T1L) áááááá 1

This is an 8-bit reload timer using the cycle clock or cycle clock 1/2 signal as clock signal.

At the overßow of T1L, the T1lR data are reloaded. When T1LRUN (T1CNT, bit6) is set to Ò0Ó, the T1LR
data are transferred to T1L.

¥ Timer 1 lower level comparator (T1LC) áááááá 2

This circuit consists of the 8-bit timer 1 lower level comparison data register (T1LC) and an 8-bit data
comparator circuit. The circuit compares the T1L and T1LC data.

¥ Timer 1 higher level (T1H) áááááá 3

This is an 8-bit reload timer using the cycle clock or the T1L overßow as clock signal.

At the overßow of T1H, the 1HR data are reloaded. Reload also occurs when T1HRUN (T1CNT, bit7)
is reset.

¥ Timer 1 higher level comparator (T1HC) áááááá 4

This circuit consists of the 8-bit timer 1 higher level comparison data register (T1HC) and an 8-bit data
comparator circuit. The circuit compares the T1H and T1HC data.

¥ Timer 1 control register (T1CNT) áááááá 5

Serves for T1 mode setting and interrupt control.
VMA-2

Visual Memory Unit (VMU) Sound Development Specifications
Figure 1.1 VMU Timer 1 Block Diagram

Related Registers

The following registers are required for controlling timer 1.

¥T1L (11Bh) Timer 1 lower level counter register

¥T1LR (11Bh) Timer 1 lower level reload register

¥T1LC (11Ah) Timer 1 lower level comparison data register

¥T1CNT (118h) Timer 1 control register

¥P1 (114h) Port 1 latch register

¥P1DDR (145h) Port 1 data direction register

¥P1FCR (146h) Port 1 control register

¥OCR (10Eh) Resonance control register

For details on the above timer, please refer to section 3.3 of the VMU Hardware manual.

1/2cycle clock

Cycle clock

T1LONG

Selector

Comparison data
register (T1LC)

Comparator

8-bit counter (T1L)
Pulse generator
control circuit Port 1 circuit

Piezo beep

Reload register (T1LR)

Comparison data
register (T1HC)

Comparator

8-bit counter (T1L)

Reload register (TLR)

7 6 5 4 3 2 1 0

T1CNT(118h)

7 6 5 4 3 2 1 0

P1FCR

7 6 5 4 3 2 1 0

P1DDR

5

3

4

1

2

Selector

T1HOVF

T1LOVF

T1LOVF
VMA-3

1. VMU Sound Development Specifications
Mode Setting

This section describes how to set timer 1 to the mode for VMU sound output (mode 1).

The following four registers are required for setting the mode.

T1CNT (bit5: T1LONG)
P1 (bit7: P17)
P1DDR (bit7: P17DDR)
P1FCR (bit7: P17DDR)

The register values for the modes are listed in the table below, along with the cycle clock used for
each mode.

Table 1.1 Time 1 Mode Setting

Tcyc in the table is the cycle clock.

To use the sound output capability of VMU, be sure to set the system clock to the sub-clock (32 KHz).

At other system clock settings, correct sound output may not be obtained.

The cycle clock is deÞned as follows.

System clock 32 KHz (Tcyc = 183.0 us)

For information on setting the system clock, please refer to the VMU Hardware manual.

* Problems when using other system clock settings

Besides the 32 KHz clock, the VMU can use a 600 KHz and 6 MHz system clock, but when the latter two
are selected, the following problems occur.

¥ 600KHz When the 600 KHz clock is selected, the output frequency tolerance will be -50%, +100%,
which will cause a wide ßuctuation in the actual output sound.

¥ 6MHz When the 6 MHz clock is selected, power consumption will increase considerably,
resulting in a shorter battery life.

Mode Clock cycle T1LONG P17FCR P17DDR P17

1 Tcyc 0 1 1 0
VMA-4

Visual Memory Unit (VMU) Sound Development Specifications
2.2 8-Bit Counter Mode

This section describes VMU sound output when using 8-bit counter mode. For information on basic operation,
please refer to the VMU Hardware manual.

Output Waveform and Parameter Settings

This section describes the signal waveform that can be output in 8-bit counter mode, and lists the
parameters that determine the waveform.

The output waveform is shown in Figure below.

Figure 1.2 Output waveform

8-bitcounter value (T1L)

255

[T1LC] setting value

[T1LR] setting value

Output sound signal

T1LC-T1LR

256-T1LR

Time (t)

Beeper output
VMA-5

1. VMU Sound Development Specifications
8-Bit Counter Mode Setting

This section describes the sound signal output procedure in 8-bit counter mode.

To output a sound signal in 8-bit counter mode, make the settings as described below.

1. Set the parameters (T1LR, T1LC) according to the desired output waveform.

Use equations (1) and (2) given below to deÞne the waveform.

Sound output signal L level pulse width (decimal)

= (T1LC setting value - T1LR setting value) X TcycááááááEquation (1)

Sound output signal cycle (decimal)

= (256 - T1LR setting value) X TcycááááááááááááááááááááááááááááááEquation (2)

 Tcyc: cycle clock

 For details on output waveform and parameters, please refer to section 2.2.1.

2. Select the mode for timer 1.

The following four registers are required for setting the mode.

 T1CNT (bit5: T1LONG)

 P1 (bit7: P17)

 P1DDR (bit7: P17DDR)

 P1FCR (bit7: P17FCR)

The register values for the modes are listed in the table below, along with the cycle clock used for
each mode.

Table 1.2 Time 1 Mode Setting

Mode T1LONG P17FCR P17DDR P17

 1 0 1 1 0
VMA-6

1. VMU Sound Development Specifications
3. Start the count for timer 1 (lower 8bits)

To start/stop the timer, make the following settings.

Waveform parameter update Set T1CNT bit4 (ELDT1C) to Ò1Ó. Note that the waveform
parameters set in step 1 do not become effective until this setting
is made.
If the parameters were changed while T1CNT bit4 was Ò1Ó, the
parameter setting value becomes effective immediately after
the change.

Timer 1 count start Set T1CNT bit6 (T1LRUN) to Ò1Ó.

To stop audio output in the 8-bit counter made, make the Following setting.

4. Set the timer1(T1L) count stop ßag (T1CNT bit6)to Ò0Ó.

While timer 1 (lower 8bits) is operating, the waveform parameters can be changed. To output sound of a
different frequency without interruption, change the waveform output parameters without stopping timer
1. (Leave T1CNT bit4 [ELDT 1C]) set to Ò1Ó.)

Frequency Response Characteristics

The frequency response of the beeper in the VMU is shown below.

The T1LR value indicates the frequency range that can be output by the VMU.

For details, please refer to the explanation of the relationship between T1LR value and output frequency in
section 2.3.

Visual Memory frequent responce

T1LR

Vo
lu

m
e(

db
) •

j

74

72

70

68

66

64

62

60

58

56

e0 e2 e4 e6 e8 ea ec ee f0 f2 f4 f6 f8 fa fc fe
VMA-7

Visual Memory Unit (VMU) Sound Development Specifications
2.3 Table of Available Output Frequencies

The output frequencies (theoretical values) available with a system clock of 32 KHz are listed below.

Due to limitations of the beeper, not all frequencies can actually be output. You should use the recommended
frequencies indicated in the table.

The L level pulse width of the output signal is set to 1/2 of the output signal cycle (duty factor = 50%).

Table 1.3 Waveform Parameters and Output Frequencies

T1LR(hex) T1LC(hex)
Frequency
(Hz) T1LR(hex) T1LC(hex)

Frequency
(Hz) T1LR(hex) T1LC(hex)

Frequency
(Hz) T1LR(hex) T1LC(hex)

Frequency
(Hz)

00 80 21.346 40 94 28.461 80 A8 42.691 C0 E0 85.383

01 80 21.429 41 A0 28.610 81 C0 43.027 C1 E0 86.738

02 81 21.514 42 A1 28.760 82 C1 43.369 C2 E1 88.137

03 81 21.599 43 A1 28.913 83 C1 43.716 C3 E1 89.582

04 82 21.684 44 A2 29.066 84 C2 44.068 C4 E2 91.075

05 82 21.771 45 A2 29.222 85 C2 44.427 C5 E2 92.618

06 83 21.858 46 A3 29.379 86 C3 44.791 C6 E3 94.215

07 83 21.946 47 A3 29.538 87 C3 45.161 C7 E3 95.868

08 84 22.034 48 A4 29.698 88 C4 45.537 C8 E4 97.580

09 84 22.123 49 A4 29.861 89 C4 45.920 C9 E4 99.354

0A 85 22.213 4A A5 30.025 8A C5 46.309 CA E5 101.194

0B 85 22.304 4B A5 30.191 8B C5 46.705 CB E5 103.103

0C 86 22.395 4C A6 30.358 8C C6 47.108 CC E6 105.086

0D 86 22.488 4D A6 30.528 8D C6 47.517 CD E6 107.147

0E 87 22.580 4E A7 30.699 8E C7 47.934 CE E7 109.290

0F 87 22.674 4F A7 30.873 8F C7 48.358 CF E7 111.520

10 88 22.769 50 A8 31.048 90 C8 48.790 D0 E8 113.843

11 88 22.864 51 A8 31.226 91 C8 49.230 D1 E8 116.266

12 89 22.960 52 A9 31.405 92 C9 49.677 D2 E9 118.793

13 89 23.057 53 A9 31.587 93 C9 50.133 D3 E9 121.433

14 8A 23.155 54 AA 31.770 94 CA 50.597 D4 EA 124.193

15 8A 23.253 55 AA 31.956 95 CA 51.070 D5 EA 127.081

16 8B 23.352 56 AB 32.144 96 CB 51.552 D6 EB 130.107
VMA-8

1. VMU Sound Development Specifications
17 8B 23.453 57 AB 32.334 97 CB 52.043 D7 EB 133.280

18 8C 23.554 58 AC 32.527 98 CC 52.543 D8 EC 136.612

19 8C 23.656 59 AC 32.721 99 CC 53.053 D9 EC 140.115

1A 8D 23.759 5A AD 32.919 9A CD 53.573 DA ED 143.802

1B 8D 23.862 5B AD 33.118 9B CD 54.104 DB ED 147.689

1C 8E 23.967 5C AE 33.320 9C CE 54.645 DC EE 151.791

1D 8E 24.073 5D AE 33.524 9D CE 55.197 DD EE 156.128

1E 8F 24.179 5E AF 33.731 9E CF 55.760 DE EF 160.720

1F 8F 24.287 5F AF 33.941 9F CF 56.335 DF EF 165.590

20 90 24.395 60 B0 34.153 A0 D0 56.922 E0 F0 170.765

21 90 24.504 61 B0 34.368 A1 D0 57.521 E1 F0 176.274

22 91 24.615 62 B1 34.585 A2 D1 58.133 E2 F1 182.149

23 91 24.726 63 B1 34.806 A3 D1 58.758 E3 F1 188.430

24 92 24.839 64 B2 35.029 A4 D2 59.397 E4 F2 195.160

25 92 24.952 65 B2 35.255 A5 D2 60.049 E5 F2 202.388

26 93 25.066 66 B3 35.484 A6 D3 60.716 E6 F3 210.172

27 93 25.182 67 B3 35.716 A7 D3 61.399 E7 F3 218.579

28 94 25.299 68 B4 35.951 A8 D4 62.096 E8 F4 227.687

29 94 25.416 69 B4 36.189 A9 D4 62.810 E9 F4 237.586

2A 95 25.535 6A B5 36.430 AA D5 63.540 EA F5 248.385

2B 95 25.655 6B B5 36.674 AB D5 64.288 EB F5 260.213

2C 96 25.776 6C B6 36.922 AC D6 65.053 EC F6 273.224

2D 96 25.898 6D B6 37.173 AD D6 65.837 ED F6 287.604

2E 97 26.021 6E B7 37.428 AE D7 66.640 EE F7 303.582

2F 97 26.146 6F B7 37.686 AF D7 67.463 EF F7 321.440

30 98 26.272 70 B8 37.948 B0 D8 68.306 F0 F8 341.530

31 98 26.398 71 B8 38.213 B1 D8 69.171 F1 F8 364.299

32 99 26.527 72 B9 38.482 B2 D9 70.057 F2 F9 390.320

33 99 26.656 73 B9 38.755 B3 D9 70.967 F3 F9 420.345

T1LR(hex) T1LC(hex)
Frequency
(Hz) T1LR(hex) T1LC(hex)

Frequency
(Hz) T1LR(hex) T1LC(hex)

Frequency
(Hz) T1LR(hex) T1LC(hex)

Frequency
(Hz)
VMA-9

Visual Memory Unit (VMU) Sound Development Specifications
34 9A 26.787 74 BA 39.032 B4 DA 71.901 F4 FA 455.373

35 9A 26.919 75 BA 39.313 B5 DA 72.860 F5 FA 496.771

36 9B 27.052 76 BB 39.598 B6 DB 73.844 F6 FB 546.448

37 9B 27.186 77 BB 39.887 B7 DB 74.856 F7 FB 607.165

38 9C 27.322 78 BC 40.180 B8 DC 75.896 F8 FC 683.060

39 9C 27.460 79 BC 40.478 B9 DC 76.965 F9 FC 780.640

3A 9D 27.598 7A BD 40.780 BA DD 78.064 FA FD 910.747

3B 9D 27.738 7B BD 41.086 BB DD 79.195 FB FD 1092.896

3C 9E 27.880 7C BE 41.398 BC DE 80.360 FC FE 1366.120

3D 9E 28.023 7D BE 41.714 BD DE 81.559 FD FE 1821.494

3E 9F 28.167 7E BF 42.034 BE DF 82.795 FE FF 2732.240

3F 9F 28.313 7F BF 42.360 BF DF 84.069 FF FF 5464.481

00 80 21.346 40 94 28.461 80 A8 42.691 C0 E0 85.383

01 80 21.429 41 A0 28.610 81 C0 43.027 C1 E0 86.738

02 81 21.514 42 A1 28.760 82 C1 43.369 C2 E1 88.137

03 81 21.599 43 A1 28.913 83 C1 43.716 C3 E1 89.582

04 82 21.684 44 A2 29.066 84 C2 44.068 C4 E2 91.075

05 82 21.771 45 A2 29.222 85 C2 44.427 C5 E2 92.618

06 83 21.858 46 A3 29.379 86 C3 44.791 C6 E3 94.215

07 83 21.946 47 A3 29.538 87 C3 45.161 C7 E3 95.868

08 84 22.034 48 A4 29.698 88 C4 45.537 C8 E4 97.580

09 84 22.123 49 A4 29.861 89 C4 45.920 C9 E4 99.354

0A 85 22.213 4A A5 30.025 8A C5 46.309 CA E5 101.194

0B 85 22.304 4B A5 30.191 8B C5 46.705 CB E5 103.103

0C 86 22.395 4C A6 30.358 8C C6 47.108 CC E6 105.086

0D 86 22.488 4D A6 30.528 8D C6 47.517 CD E6 107.147

0E 87 22.580 4E A7 30.699 8E C7 47.934 CE E7 109.290

0F 87 22.674 4F A7 30.873 8F C7 48.358 CF E7 111.520

10 88 22.769 50 A8 31.048 90 C8 48.790 D0 E8 113.843

T1LR(hex) T1LC(hex)
Frequency
(Hz) T1LR(hex) T1LC(hex)

Frequency
(Hz) T1LR(hex) T1LC(hex)

Frequency
(Hz) T1LR(hex) T1LC(hex)

Frequency
(Hz)
VMA-10

1. VMU Sound Development Specifications
11 88 22.864 51 A8 31.226 91 C8 49.230 D1 E8 116.266

12 89 22.960 52 A9 31.405 92 C9 49.677 D2 E9 118.793

13 89 23.057 53 A9 31.587 93 C9 50.133 D3 E9 121.433

14 8A 23.155 54 AA 31.770 94 CA 50.597 D4 EA 124.193

15 8A 23.253 55 AA 31.956 95 CA 51.070 D5 EA 127.081

16 8B 23.352 56 AB 32.144 96 CB 51.552 D6 EB 130.107

17 8B 23.453 57 AB 32.334 97 CB 52.043 D7 EB 133.280

18 8C 23.554 58 AC 32.527 98 CC 52.543 D8 EC 136.612

19 8C 23.656 59 AC 32.721 99 CC 53.053 D9 EC 140.115

1A 8D 23.759 5A AD 32.919 9A CD 53.573 DA ED 143.802

1B 8D 23.862 5B AD 33.118 9B CD 54.104 DB ED 147.689

1C 8E 23.967 5C AE 33.320 9C CE 54.645 DC EE 151.791

1D 8E 24.073 5D AE 33.524 9D CE 55.197 DD EE 156.128

1E 8F 24.179 5E AF 33.731 9E CF 55.760 DE EF 160.720

1F 8F 24.287 5F AF 33.941 9F CF 56.335 DF EF 165.590

20 90 24.395 60 B0 34.153 A0 D0 56.922 E0 F0 170.765

21 90 24.504 61 B0 34.368 A1 D0 57.521 E1 F0 176.274

22 91 24.615 62 B1 34.585 A2 D1 58.133 E2 F1 182.149

23 91 24.726 63 B1 34.806 A3 D1 58.758 E3 F1 188.430

24 92 24.839 64 B2 35.029 A4 D2 59.397 E4 F2 195.160

25 92 24.952 65 B2 35.255 A5 D2 60.049 E5 F2 202.388

26 93 25.066 66 B3 35.484 A6 D3 60.716 E6 F3 210.172

27 93 25.182 67 B3 35.716 A7 D3 61.399 E7 F3 218.579

28 94 25.299 68 B4 35.951 A8 D4 62.096 E8 F4 227.687

29 94 25.416 69 B4 36.189 A9 D4 62.810 E9 F4 237.586

2A 95 25.535 6A B5 36.430 AA D5 63.540 EA F5 248.385

2B 95 25.655 6B B5 36.674 AB D5 64.288 EB F5 260.213

2C 96 25.776 6C B6 36.922 AC D6 65.053 EC F6 273.224

2D 96 25.898 6D B6 37.173 AD D6 65.837 ED F6 287.604

T1LR(hex) T1LC(hex)
Frequency
(Hz) T1LR(hex) T1LC(hex)

Frequency
(Hz) T1LR(hex) T1LC(hex)

Frequency
(Hz) T1LR(hex) T1LC(hex)

Frequency
(Hz)
VMA-11

Visual Memory Unit (VMU) Sound Development Specifications
2E 97 26.021 6E B7 37.428 AE D7 66.640 EE F7 303.582

2F 97 26.146 6F B7 37.686 AF D7 67.463 EF F7 321.440

30 98 26.272 70 B8 37.948 B0 D8 68.306 F0 F8 341.530

31 98 26.398 71 B8 38.213 B1 D8 69.171 F1 F8 364.299

32 99 26.527 72 B9 38.482 B2 D9 70.057 F2 F9 390.320

33 99 26.656 73 B9 38.755 B3 D9 70.967 F3 F9 420.345

34 9A 26.787 74 BA 39.032 B4 DA 71.901 F4 FA 455.373

35 9A 26.919 75 BA 39.313 B5 DA 72.860 F5 FA 496.771

36 9B 27.052 76 BB 39.598 B6 DB 73.844 F6 FB 546.448

37 9B 27.186 77 BB 39.887 B7 DB 74.856 F7 FB 607.165

38 9C 27.322 78 BC 40.180 B8 DC 75.896 F8 FC 683.060

39 9C 27.460 79 BC 40.478 B9 DC 76.965 F9 FC 780.640

3A 9D 27.598 7A BD 40.780 BA DD 78.064 FA FD 910.747

3B 9D 27.738 7B BD 41.086 BB DD 79.195 FB FD 1092.896

3C 9E 27.880 7C BE 41.398 BC DE 80.360 FC FE 1366.120

3D 9E 28.023 7D BE 41.714 BD DE 81.559 FD FE 1821.494

3E 9F 28.167 7E BF 42.034 BE DF 82.795 FE FF 2732.240

3F 9F 28.313 7F BF 42.360 BF DF 84.069 FF FF 5464.481

T1LR(hex) T1LC(hex)
Frequency
(Hz) T1LR(hex) T1LC(hex)

Frequency
(Hz) T1LR(hex) T1LC(hex)

Frequency
(Hz) T1LR(hex) T1LC(hex)

Frequency
(Hz)
VMA-12

1. VMU Sound Development Specifications
3. Sample Program

Start

Sound output

Sound output stop

Timer 1 initial setting

Timer 1 setting

Timer 1 start

Sound output signal setting

Signal frequency setting

Sound output signal setting

change

(L level pulse width change)

mov #A3h, ocr ;set system clock to 32 kHz
:set clock division ratio to 1/6

mov #000h, T1LR ;T1LR=0 → 256-0=256
mov #080h, T1LC ;T1LC=128 → 256-128=128

;L level pulse width 128 Tcyc
;sound signal cycle 256 Tcyc

mov #040h, T1LC ;T1LC=64 → 256-64=192
;L level pulse width 192 Tcyc
;sound signal cycle 256 Tcyc

mov #000h, T1CNT ;stop updating waveform parameter
;stop counter (sound output stop)

mov #080h, P1FCR ;set P17 to sound output mode
clr1 P1, 7 ;set sound output port
mov #80h, P1DDR ;set output of P17

mov #0D4h, T1CNT ;update waveform parameter
;start counter (sound output start)

128 x Tcyc

256 x Tcyc

Output waveform

192 x Tcyc

256 x Tcyc

Output waveform
VMA-13

Visual Memory Unit (VMU) Sound Development Specifications
VMA-14

A. Table of Defined Variables
System BIOS requires the following variables.

Time data variables

year 010h (bank-0) Year (BCD 4 digits) * Not generated by timer_ex subroutine

mon 012h (bank-0) Month (BCD 2 digits) * Not generated by timer_ex subroutine

day 013h (bank-0) Day (BCD 2 digits) * Not generated by timer_ex subroutine

hour 014h (bank-0) Hour (BCD 2 digits) * Not generated by timer_ex subroutine

min 015h (bank-0) Minute (BCD 2 digits) * Not generated by timer_ex subroutine

sec 016h (bank-0) Second (BCD 2 digits) * Not generated by timer_ex subroutine

year_h 017h (bank-0) Year (HEX 4 digits)

mon_h 019h (bank-0) Month (HEX 2 digits)

day_h 01Ah (bank-0) Day (HEX 2 digits)

hour_h 01Bh (bank-0) Hour (HEX 2 digits)

min_h 01Ch (bank-0) Minute (HEX 2 digits)

sec_h 01Dh (bank-0) Second (HEX 2 digits)

sec_f 01Eh (bank-0) Work RAM (used by timer, prohibited to user programs)

leaf_f 01Fh (bank-0) Work RAM (used by timer, prohibited to user programs)

Low battery detection function

06Eh (bank-0) Automatic low battery detection ßag

(Register name is not set.)

Flash memory variables

fmbank 07Dh (bank-1) Flash memory bank designation

fmadd_h 07Eh (bank-1) Flash memory address (upper 8 bit)

fmadd_l 07Fh (bank-1) Flash memory address (lower 8 bit)

Note: The automatic low battery detection function cannot work if the user program performs saving data
away when low battery is detected. The user program must monitor the low battery detection ßag (bit
1 of PORT7) and handle it accordingly. For information on low battery detection ßag, please refer to the
VMU hardware manual.
VAP-1

User’s Manual Supplement
VMU Mode Selection Operation Flow

The following explains the various VMU modes and their selection.

The Þgure shows the VMU mode selection ßow diagram.

Fig. Appendix 2-1 Mode selection flow diagram

RESET or power on

Press MODE button

Press A button

Mode selection screen

File mode Game mode Time mode

File mode
selection

Game mode
selection

Time data
Adjustment mode

Time mode
selection
VAP-2

1.
Each of the modes comes with the following functions.

¥ Mode selection screen This screen allows selection and execution of one of the three VMU modes.
Pressing the MODE button each time selects a new mode, and pressing the
A button enters the selected mode. The icon indicates the current mode.
Please refer to Fig. Appendix 2-1 for the modes and their corresponding icon.

¥ File mode This mode handles game data and user program management and editing.
Pressing the MODE button while in this mode will return to the mode
selection screen.

¥ Game mode This mode executes user programs stored on VMU. Pressing the MODE
button while in this mode will return to the mode selection screen.
Because the BIOS does not support return processing from the game mode to
the mode selection screen, be sure to handle the return processing in the user
program. For information on the return processing to the mode selection
screen, please refer to section 5.3.

¥ Time mode This mode handles current time display and adjustment. Pressing the MODE
button while in this mode will return to the mode selection screen. Also, while
in this mode, pressing the left cursor key as well as the A button at the same
time will enter the time setting mode.
VAP–3

User’s Manual Supplement
VAP-4

	Dreamcast (VMU) Visual�Memory Unit
	Table of Contents

	Dreamcast VMU Specifications
	1. VMU Specifications
	1 Overview
	1.1 VMU Overview
	1.2 VMU Configuration
	1.3 VMU Functions

	2 Mode Settings
	3 File Management
	3.1 Management Area
	3.2 Data Area
	3.3 Reserved Area

	4 LCD Display
	4.1 XRAM
	4.2 Screen Mode
	4.3 Icons
	4.4 Screen Configuration
	4.5 LCD Characteristics
	4.6 Miscellaneous

	5 Executable File Initiation
	5.1 Downloading an Executable File
	5.2 File Size
	5.3 Subroutine
	5.4 Interrupts
	5.5 RAM
	5.6 Save Processing During Executable File Operations
	5.7 Auto Power Off

	6 Communications Function
	6.1 Maple Bus Protocol
	6.2 Synchronous Serial Communications

	7 Clock Function
	7.1 Settings

	8 Alarm Function
	9 SLEEP Function
	9.1 SLEEP Operation

	10 Buttons
	11 Batteries
	11.1 Battery Life
	11.2 Processing When Battery Power Is Exhausted
	11.3 Battery Replacement

	12 Postscript

	Visual Memory Unit (VMU) Hardware Manual
	1. Overview
	1. General
	1.1 Features
	1.2 System Block Diagram

	2. Internal System Configuration
	1. Memory Space
	2. Program Counter (PC)
	3. Internal Program ROM
	4. Internal Data Memory
	5. Flash Memory
	6. Accumulator
	7. B Register, C Register
	8. Program Status Word
	9. Stack Pointer
	10. The Table Reference Register (TRR)
	11. CHANGE Instruction

	3. Peripheral System Configuration
	1. Input/Output Ports
	1.1 Port 1
	1.2 Port 3
	1.3 Port 7

	2. Timer/Counter 0 (T0)
	2.1 Overview
	2.2 Functions
	2.3 Circuit Configuration
	2.4 Related Registers
	2.5 Circuit Configuration and Description of Operation

	3. Timer 1 (T1)
	3.1 Overview
	3.2 Functions
	3.3 Circuit Configuration
	3.4 Related Registers
	3.5 Circuit Configuration and Description of Operation

	4. Base Timer
	4.1 Overview
	4.2 Function
	4.3 Circuit Configuration
	4.4 Related Registers
	4.5 Using the Base Timer

	5. Serial Interface
	5.1 Overview
	5.2 function
	5.3 Circuit Configuration
	5.4 Related Registers
	5.5 Serial Interface Operation
	5.6 Operation Mode Settings
	5.7 Serial Transfer Clock
	5.8 Serial Transfer Timing
	5.9 LSB-/MSB-first Switching Function
	5.10 Overrun Detection Function
	5.11 Transfer Bit Length Control Function
	5.12 Program Examples

	6. Dot Matrix LCD Controller/Driver
	6.1 Overview
	6.2 Functions
	6.3 Display RAM
	6.4 Display Control Registers

	7. External Interrupt Function
	7.1 Overview
	7.2 Circuit Configuration
	7.3 Related Registers

	8. Port Interrupt Functions
	8.1 Overview
	8.2 Function
	8.3 Circuit Configuration
	8.4 Related Registers
	8.5 Description of Operation
	8.6 State Transitions
	8.7 Program Example

	9. VMU Work RAM
	9.1 Overview
	9.2 Work RAM Control Registers
	9.3 Accessing Work RAM
	9.4 Notes on Using the Address Register for Work RAM

	10. Flash EEPROM
	10.1 Overview
	10.2 Functions
	10.3 Accessing the Data Area EEPROM
	10.4 Accessing the Program Area EEPROM
	10.5 Writing with a PROM Writer

	4. Control Functions
	1. Interrupt Function
	1.1 Types of Interrupts
	1.2 Interrupt Function Operation
	1.3 Circuit Configuration
	1.4 Related Registers
	1.5 Interrupt Priority Ranking

	2. System Clock Generation Function
	2.1 Overview
	2.2 Functions
	2.3 Circuit Configuration
	2.4 Related Registers
	2.5 System Clock Operation Mode

	3. Standby function
	3.1 Overview
	3.2 4.3.2. Related Registers
	3.3 Operating Statuses When in Standby
	3.4 HALT Mode
	3.5 HOLD Mode

	4. Reset Function
	4.1 Overview
	4.2 Function
	4.3 Hardware Status During a Reset

	5. Instructions
	1. Instruction Overview
	1.1 Arithmetic Operation Instructions
	1.2 Logical Operation Instructions
	1.3 Data Transfer Instructions
	1.4 Jump Instructions
	1.5 Conditional Branching Instructions
	1.6 Subroutine Instructions
	1.7 Bit Manipulation Instructions
	1.8 Miscellaneous Instruction
	1.9 Macro Instruction
	1.10 Addressing
	1.11 Program Memory (ROM) Addressing
	1.12 Data Memory (RAM) and Special Function Register (SFR) Addressing

	2. Arithmetic Operation Instructions
	3. Logical Operation Instructions
	4. Data Transfer Instructions
	5. Jump Instructions
	6. Conditional Branching Instructions
	7. Subroutine Instructions
	8. Bit Manipulation Instructions
	9. Miscellaneous Instruction
	10. Macro Instruction

	Visual Memory Unit (VMU) Programing Manual
	1. Environment Variables
	1. Environment Variables for the L86K Series
	1.1 Setting the Environment Variables (MS-DOS Version)
	1.2 Setting the Environment Variables (UNIX Version)

	2. File Specification for the�Assembler
	1. File Name Specification
	1.1 MS-DOS Version File Specification
	1.2 UNIX Version File Specification

	2. Specifying Parameters through the Command Line
	3. Specifying Parameters in Response to Prompts

	3. Assembler Option Specification
	1. Specification for Upper- & Lower-case Letters in Identifiers
	2. Specification for Outputting Debugging Information
	3. Specification for Not Optimizing Branching Instructions
	4. Specification for Suppressing the Copyright Notice
	5. Reserved Word File Specification
	6. Work Buffer Size Specification
	7. Option List Display

	4. Environment Variables and the Reserved Word File
	1. Environment Variables
	1.1 Setting the Environment Variables (MS-DOS Version)
	1.2 Setting the Environment Variables (UNIX Version)

	2. Reserved Word File

	5. Source File Input Format
	1. Statements
	2. Label Names and Symbol Names
	3. Comments
	4. Operators
	5. Numeric constants
	6. Character Constants
	7. Character String Constant
	8. Special Symbols

	6. Errors
	1. Warnings
	2. Errors
	3. Fatal Errors

	7. Pseudo Instructions
	1. ORG (Specify origin)
	ORG expression

	2. WORLD (Select ROM for code storage)
	WORLD selection

	3. CSEG (Declare start of code segment)
	CSEG mode

	4. DSEG (Declare start of data segment)
	DESG

	5. END (End program)
	END

	6. PUBLIC (Specify external definition name)
	PUBLIC symbol {, symbol}

	7. EXTERN (Specify external reference name)
	EXTERN [segmanet:]symbol {,[segment:]symbol}

	8. OTHER_SIDE_SYMBOL (Declare CHANGE instruction jump label)
	OTHER SIDE SYMBOL label {,label}

	9. EQU (Assign value)
	symbolname EQU expression

	10. SET (Assign temporary value)
	symbolname SET expression

	11. DB (Define byte data)
	labelname DB expression {,expression}

	12. DW (Define word data)
	labelname DW expression {,expression}

	13. DC (Define character string data)
	labelname DC “string”

	14. DS (Define byte area)
	labelname DS absolute_expression

	15. MACRO (Define macro)
	name MACRO parameter {, parameter}

	16. REPT (Repeat macro)
	REPT count

	17. IRP (Continuous macro)
	IRP parameter, argument {,argument }...

	18. IRPC (Character string macro)
	IRPC parameter, string

	19. ENDM (End macro definition)
	ENDM

	20. EXITM (Interrupt macro expansion)
	EXITM

	21. LOCAL (Define local label)
	LOCAL name {, name}

	22. IFDEF (Assemble if defined)
	IFDEF symbol

	23. IFNDEF (Assemble if undefined)
	IFNDEF symbol

	24. IFB (Assemble if operand is empty)
	IFB <argument>

	25. IFNB (Assemble if operand is not empty)
	IFNB <argument>

	26. IFE (Assemble if value of expression is "0")
	IFE expression

	27. IFNE (Assemble if value of expression is not "0")
	IFNE expression]

	28. IFIDN (Assemble if two character strings are identical)
	IFIDN <string1>, <string2>

	29. IFDIF (Assemble if two character strings are not identical)
	IFDIF <string1>, <string2>

	30. ELSE (Assemble in case of condition opposite of the above IF condition)
	ELSE

	31. ENDIF (End conditional assembly)
	ENDIF

	32. PRINTX (Display on VDT during assembly)
	.PRINTX “string”

	33. LIST (Output list)
	.LIST

	34. .XLIST (Interrupt list output)
	.XLIST

	35. .MACRO (Output macro expansion)
	.MACRO

	36. .XMACRO (Interrupt macro expansion output)
	.XMACRO

	37. .IF (Output conditional skip)
	.IF

	38. .XIF (Interrupt conditional skip output)
	.XIF

	39. INCLUDE (Load file)
	INCLUDE filename

	40. TITLE (Specify list title)
	TITLE string

	41. PAGE (End of page)
	PAGE

	42. CHIP (Define chip that is target of assembly)
	CHIP chipname

	43. COMMENT (Output comments to object file)
	COMMENT comment_string

	44. WIDTH (Specify number of columns in list file)
	WIDTH number

	45. BANK (Specify RAM area bank)
	BANK expression

	46. CHANGE (Jump between external and internal ROM)
	CHANGE symbol

	47. RADIX (Specify default base)
	RADIX expression

	48. JMPO (Generate optimal JMP instruction)
	JMPO expression

	49. BRO (Generate optimal BR instruction)
	BRO expression

	50. CALLO (Generate optimal CAL instruction)
	CALLO expression

	51. BZO (Generate BZ instruction that will not generate an address error)
	BZO expression

	52. BNZO (Generate BNZ instruction that will not generate an address error)
	BNZO expression

	53. BPO (Generate BP instruction that will not generate an address error)
	BPO expression

	54. BPCO (Generate BPC instruction that will not generate an address error)
	BPCO expression

	55. BNO (Generate BN instruction that will not generate an address error)
	BNO expression

	56. DBNZO (Generate DBNZ instruction that will not generate an address error)
	DBNZO expression

	57. BEO (Generate BE instruction that will not generate an address error)
	BEO expression

	58. BNEO (Generate BNE instruction that will not generate an address error)
	BNEO expression

	8. List File Format
	9. Specifying Files for Linking
	1. File Name Specification
	1.1 MS-DOS Version File Specification
	1.2 UNIX Version File Specification

	2. Specifying Parameters Through the Command line
	3. Specifying Parameters in Response to Prompts
	Default Responses

	4. Files Referenced During Linking

	10. Specifying Linkage Loader�Options
	1. Creating a HEX File for LC868000 Series External ROM
	2. CSEG Loading Address Specification Method
	3. DSEG Loading Address Specification Method
	4. Enabling Duplicate Definition of DSEG Addresses
	5. No Distinction Between Upper-Case and Lower-Case
	6. Creating the Loading Map
	7. Creating a Local Symbol List
	8. Specifying Warning Messages Concerning Operand Data
	9. CSEG FREE Block Optimized Loading
	10. Specifying Symbol Sort Processing

	11. Object Placement
	12. Errors
	1. Fatal Errors
	2. Non-Fatal Errors

	13. Program Startup
	1. File Name Specification
	1.1 MS-DOS Version File Specification
	1.2 UNIX Version File Specification

	2. Specifying Parameters Through the Command line
	Option Specification
	Command Line Execution Examples

	3. Operation Using the Prompts
	Prompt Line Expansion
	Default Response

	14. Errors
	15. Cross-Reference List
	16. Program Startup
	1. File Name Specification
	2. Parameter Specification Method
	3. Option Specification

	17. Errors
	1. Fatal Errors

	Visual Memory Unit (VMU) VMU-BIOS Specifications
	1. VMU-BIOS Specifications
	1. Outline
	2. VMU Outline
	2.1 System-BIOS Outline

	3. Memory Space
	4. System BIOS Functions
	5. System BIOS Data and Memory Allocation
	5.1 Program Layout
	System programs
	OS programs
	Header

	5.2 Subroutine Call Flow
	5.3 Returning From User Program to Mode Selection Screen
	5.4 VMU Initialization

	6. Subroutine Description
	6.1 Flash Memory Access Functions
	Precautions for Using Flash Memory Access Subroutines
	Flash Memory Page Data Readout
	Writing to Flash Memory
	Flash Memory Verify

	6.2 Clock Function
	Clock Countup Timer

	7. Automatic low battery detection function
	7.1 Automatic low battery detection flag

	Visual Memory Unit (VMU) Sound Development Specifications
	1. VMU Sound Development�Specifications
	1. VMU Sound Output Hardware Outline
	2. Sound Output Principle
	2.1 Timer 1 Outline
	Timer 1 Block Configuration
	Related Registers
	Mode Setting

	2.2 8-Bit Counter Mode
	Output Waveform and Parameter Settings
	8-Bit Counter Mode Setting
	Frequency Response Characteristics

	2.3 Table of Available Output Frequencies

	3. Sample Program

	A. Table of Defined Variables
	VMU Mode Selection Operation Flow

