EGA

CodeWarrior®
Error Reference

metrowerks s

Because of last-minute changes to CodeWarrior, some of the information in this manual may be inaccurate.
Please read the Release Notes for the latest up-to-date information.

Revised: 980302-JDR

Metrowerks CodeWarrior copyright ©1993-1998 by Metrowerks Inc. and its licensors.
All rights reserved.

Documentation stored on the compact disk(s) may be printed by licensee for personal
use. Except for the foregoing, no part of this documentation may be reproduced or trans-
mitted in any form by any means, electronic or mechanical, including photocopying,
recording, or any information storage and retrieval system, without permission in
writing from Metrowerks Inc.

Metrowerks, the Metrowerks logo, CodeWarrior, and Software at Work are registered
trademarks of Metrowerks Inc. PowerPlant and PowerPlant Constructor are trademarks
of Metrowerks Inc.

All other trademarks and registered trademarks are the property of their respective
owners.

ALL SOFTWARE AND DOCUMENTATION ON THE COMPACT DISK(S) ARE SUB-
JECT TO THE LICENSE AGREEMENT IN THE CD BOOKLET.

How to Contact Metrowerks:

U.S.A. and international Metrowerks Corporation
P.O. Box 334
Austin, TX 78758
US.A.

Canada Metrowerks Inc.
1500 du College, Suite 300
Ville St-Laurent, QC
Canada HA4L 5G6

Ordering Voice: (800) 377-5416
Fax: (512) 8734901

World Wide Web http://www.metrowerks.com
Registration information register@metrowerks.com
Technical support support@metrowerks.com
Sales, marketing, & licensing sales@metrowerks.com

CompuServe goto Metrowerks

Table of Contents

Table of Contents 3
1 Introduction 5
Overview of the Error Reference 5
Conventions Used in ThisManual 5
Settings Affect Errorso 6
2 C/C++ Compiler Error Messages 9
C/C++CompilerErrors 9
Symbol Names (C/C++). 9
Punctuation (C/C++)o 11
Ato C(C/CH+). o o s 17
DtoF(C/C++). s 25
GtoI(C/C++) o o 31
JoL(C/C++) o oo 62
MtoO(C/CH++) o o e 63
PtoR(C/CH++).« o o o o o e e 66
StoT(C/C++) o 72
UtoZ (C/CH++). o o o o s s e 80
3 Pascal Compiler Error Messages 85
Pascal Compiler Errors 85
Symbol Names (Pascal) 85
Punctuation (Pascal) 86
AtoC(Pascal)o 89
DtoF(Pascal) 97
GtoI(Pascal) 100
JtoL(Pascal).o 108
MtoO(Pascal). 109
PtoR(Pascal)o 113
StoT(Pascal) 116
UtoZPascal)o 119
4 Java Error Messages 125
Java Compiler Errors 125

Error Reference ERR-3

Table of Contents

Symbol Names (Java) 125
Punctuation Marks (Java) 130
AtoB(Java) oo 130
CJava) o e e e 139
DtoF(Java)o 159
Gtol(Java)o 165
JtoN(Java)o 179
OtoR(Java) 193
StoU(Java)o 198
VtoZJava)o 209
5 Linker Error Messages
Typography Notes for Linker Error Messages 215
Linker Errors. 216
Symbol Names (Linker). 216
AtoC(Linker).o 221
DtoF(Linker) o v o o 230
GtoI(Linker)o 233
JtoL(Linker) 237
Mto O (Linker) o oo 240
PtoT(Linker) 244
UtoZ (Linker). 249

215

ERR-4 Error Reference

metrowerks |8

Introduction

This manual lists the errors you may encounter from the CodeWar-
rior compilers and linkers.

In each chapter, the errors are arranged in sections according to the
first character in the message. Errors that begin with a symbol name
(such as the name of a variable or routine) come first. Errors that
begin with a non-alphabetic character (such as punctuation) come
next. After that, the errors are listed alphabetically.

Overview of the Error Reference

When you compile and link code, CodeWarrior may discover prob-
lems. If there is a problem, the compiler or linker posts an error in
the Message window. This manual discusses each error, what it
means, and in many cases provides you with suggestions for cor-
recting the error.

The chapters in this manual describe the errors you may encounter
from each compiler and linker. They are:

® “C/C++ Compiler Errors” on page 9

¢ “Pascal Compiler Errors” on page 85

¢ “Java Compiler Errors” on page 125

¢ “Linker Error Messages” on page 215

Conventions Used in This Manual

The following list describes the font conventions and structure used
in this reference manual.

Error Reference ERR-5

Introduction
Settings Affect Errors

Listing 1.1

Error Message <variable name>

This section following the error message explains the nature of the
error and its possible causes. A name in italics indicates an un-
known variable name or type that will be filled in by the compiler
when the error is generated.

‘Y expected

The compiler did not find a right parenthesis where it expected to
find one.

NOTE: An example of how an error or warning message would
appear.

sample source code

In some cases, sample source code is provided that demonstrates
the error message.

Fix:

See Also

Some error messages include a suggestion about how the error
could be fixed.

Some error messages include a reference where more information
can be found. This section often points out a Metrowerks CodeWar-
rior feature that can be used to detect or stop the error from being
generated.

Settings Affect Errors

Language options not only affect the way the compiler translates
the source code in your program files,. These settings also affect
which source code is flagged as errors and which source code com-
piles. In many cases, the appearance of errors depends heavily on
the selected language settings. Where applicable, the description of
an error will include the name of the checkbox that, when selected,
screens for a particular error.

ERR-6 Error Reference

Introduction
Settings Affect Errors

NOTE: For more information on the panels which affect error
recognition, consult the CodeWarrior IDE User Guide

To change the language options used by the compiler, first select
(Target) Settings from the Edit menu. Once the Target Settings dia-
log box appears, select the appropriate language settings panel from
the list on the left, and choose the language options.

Error Reference ERR-7

Introduction
Settings Affect Errors

ERR-8 Error Reference

A

metrowerks |8

C/C++ Compiler
Error Messages

This chapter gives an alphabetical list of the compiler errors which
may be encountered while using Metrowerks CodeWarrior compil-
ers for the PowerPC-based, 68K-based Mac OS, Win32 /x86 and
Windows NT application code generators.

C/C++ Compiler Errors

In this list, errors with variable initial text (such as a class or func-
tion name) come first. Errors beginning with a non-alphabetic sym-
bol character come next. After that, errors are listed alphabetically.

NOTE: The description of some C++ errors contains a reference
to Margaret A Ellis and Bjarne Stroustrup’s The Annotated C++
Reference Manual, Addison-Wesley, Reading, MA, 1990. These
page references are indicated by the abbreviation ARM, followed
by the page humber and section. For example: ARM p.202, 10.1.1
Ambiguities.

Symbol Names (C/C++)

Error 10177

These are C/C++ compiler error messages that begin with a symbol
name, the name of a variable or function.

class is not a SOM class

You are using one of the SOM pragmas within the declaration of a
class that isn’t a SOM class. The pragmas SOMReleaseOrder, SOM-

Error Reference ERR-9

C/C++ Compiler Error Messages
Symbol Names (C/C++)

Fix

Error 10164

Error 10051

Listing 2.1

ClassVersion, SOMMetaClass, and SOMCallStyle may appear
only within the declaration of the SOM class they apply to.

Be sure the pragma appears within the declaration of the SOM class
it applies to. Don’t use these pragmas with classes that are not de-
scended from SOMODbject.

variable could not be assigned to a register
Undocumented at this time.
variable is not a struct/union/class member

An item referenced as a member/method of a struct, union, or class
is not defined as being a member/method. For example, in Listing
2.1 below, theColors.color references a member, var, that does
not belong to the struct ColorValues.

Not a struct/union/class member

typedef struct
{

short seq;

// var is not defined in

short group;// this struct

} ColorValues;

ColorValuestheColors;
theColors.color = 1;// error: see above

Fix

Error 10193

Check the structure, union, or class in question. This error may be
caused by a simple spelling mistake. In C++ this error often hap-
pens when a class member function or constructor’s arguments do
not match the prototype. If this is not the case, either change the
item referenced or modify the structure, union, or class.

classname is not an Objective-C class

This error is generated because the class you attempted to use
<classname> is not an Objective-C type class.

ERR-10 Error Reference

C/C++ Compiler Error Messages
Punctuation (C/C++)

Punctuation (C/C++)

These are C/C++ compiler error messages that begin with punctua-
tion marks.

Error 10126 func hides inherited virtual function func2
You declared a non-virtual member function that hides a virtual
function in a superclass. One function hides another if it has the
same name but a different argument types. For example:
Listing 2.2 func hides inherited virtual function func2
class A {
public:

virtual void f(int);
virtual void g(int);

}i

class B: public A {

public:

void f(char);// WARNING: Hides A::f(int)
virtual void g(int); // OK: Overrides A::g(int)

}i

Fix

Listing 2.3

This warning appears only if you turned on the Hidden virtual
functions option in the C/C++ Warnings settings panel.

Turn off the Hidden virtual functions option or choose another
name for one of the functions.

Also, ensure that all derived virtual functions have identical param-
eter lists as the base virtual function.

Function declaration hides inherited virtual function.

class X { virtual void £f(); };
class Y : X { void f(int); }; // Y::£() hides X::£f()

Error Reference ERR-11

C/C++ Compiler
Punctuation (C/C++)

Error Messages

Error 10116

Fix

Error 10144

Fix

Error 10016

Fix

Error 10017

Fix

#if nesting overflow

This error occurs when the number of nested #if processor direc-
tives exceeds the maximum number allowed.

To fix this error, study the logic behind your nested #ifs. There’s
probably a way of dividing the large nested #1 £ into a series of
smaller nests.

#include nesting overflow

This error occurs when the number of nested #includes processor
directives exceeds the maximum number allowed.

To fix this error, study the logic behind your nested #includes.
There’s probably a way of dividing the large nested #includes
into a series of smaller nests.

‘(’ expected

The compiler did not find a left parenthesis where it expected to
find one.

Use the Balance command to balance all left and right parenthesis.
‘)’ expected

The compiler did not find a right parenthesis where it expected to
find one.

Use the Balance command to balance all left and right parenthesis.
This error may be caused by a syntax error in a previous statement.

To prevent this error while typing in source code, select the Balance
While Typing checkbox in the Editor preference panel. When se-
lected, this preference sounds an alert if an un-matching right pa-
renthesis is typed.

ERR-12 Error Reference

C/C++ Compiler Error Messages
Punctuation (C/C++)

See Also

Error 10131

Fix

Error 10132

Listing 2.4

For more on Balance While Typing, consult the CodeWarrior IDE
User’s Guide.

NOTE: This error may be caused by a syntax error or missing
symbol in a previous statement.

‘<’ expected

The compiler did not find a left angle bracket where it expected to
find one.

This error may be caused by a syntax error or missing symbol in a
previous statement.

NOTE: The Balance command does not check for angle brack-
ets, '<’ and >

‘>’ expected

The compiler did not find a right angle bracket where it expected to
find one. For example, Listing 2.4 gives an example of a missing
right angle bracket.

>’ expected

template <class

CA *aClass;

T> class Ca;
// error

Fix

See Also

This error may be caused by a syntax error in a previous statement.

NOTE: The Balance While Typing does not check for angle
brackets, '<’ and >’

For more on Balance While Typing, consult the CodeWarrior User’s
Guide.

Error Reference ERR-13

C/C++ Compiler Error Messages
Punctuation (C/C++)

Error 10017 ¢’ expected

The compiler did not find a comma where it expected to find one.

Fix This error may be caused by a previous syntax error. For example,
the compiler expects to find a comma in the call to GetMenu() in
the Listing 2.5 below. Actually, to fix this error, a parenthesis must
be added to end the function call to GetMenu ().

Listing 2.5 Comma expected

gAppleMenu = GetMenu(APPLE MENU ID);

gFileMenu = GetMenu(FILE_ MENU_ ID;

// the error compiler expected a comma because a right
parenthesis is missing after FILE MENU ID.

Error 10071 ‘.’ expected
The compiler did not find a colon where it expected to find one. For

example, in the switch statement in Listing 2.6, a colon is missing
after APPLE_MENU_ID.

Listing 2.6 Colon expected

switch(theMenu)
{

case APPLE_MENU ID// error: missing ':

switch(theItem)

{
case ABOUT ITEM : // Correct

Fix If the error is not apparent, an error in a previous statement may be
causing the problem. Correct all previous errors first and recompile.

ERR-14 Error Reference

C/C++ Compiler Error Messages
Punctuation (C/C++)

Error 10024

Listing 2.7

‘;’ expected

The compiler did not find a semicolon where it expected to find one.
For example, in Listing 2.7 below, a semicolon is missing after the
function call WindowInit ().

Semicolon expected

ToolBoxInit();
WindowInit()// ';' missing from this line
MenuBarInit();

Fix

Fix

See Also

Error 10026

Fix

If the error is not apparent, it is likely being caused by a previous er-
ror. Correct all previous errors first and recompile.

‘I’ expected

The compiler did not find a left bracket where it expected to find
one.

If the error is not apparent, it is likely being caused by a previous er-
ror. Correct all previous errors first and recompile.

To prevent this error while typing in source code, select the Balance
While Typing checkbox in the Editor preferences panel. When se-
lected, this preference allows you to balance brackets as you type
them.

For more on Balance While Typing, consult the CodeWarrior IDE
User’s Guide.

‘T’ expected

The compiler did not find a right bracket where it expected to find
one.

If the error is not apparent, it is likely being caused by a previous er-
ror. Correct all previous errors first and recompile.

Error Reference ERR-15

C/C++ Compiler Error Messages

Punctuation (C/C++)

See Also

Error 10036

Fix

Error 10031

Fix

Error 10157

Listing 2.8

To prevent this error while typing in source code, select the Balance
While Typing checkbox in the Editor preference panel. When se-
lected, this preference allows you to balance brackets as you type
them.

For more on Balance While Typing, consult the CodeWarrior IDE
User’s Guide.

{’ expected

The compiler did not find a left brace where it expected to find one.

Use the Balance command to balance all left and right braces. This
error may be caused by a syntax error in a previous statement.

‘Y expected

The compiler did not find a right brace where it expected to find
one.

Use the Balance command to balance all left and right braces. This
error may be caused by a syntax error in a previous statement.

To prevent this error while typing in source code, select the Balance
While Typing checkbox in the Editor preference panel. When se-
lected, this preference lets you balance braces as you type them.

‘&’ reference member <var> is not initialized

A reference member was not initialized. All reference types must be
evaluated in the scope of the constructor. For example, Listing 2.8
below shows an un-initialized and a properly initialized reference.

Reference member not initialized

class caClass
private:
int x;
public

const int &ref;
caClass() {} // <-- no initialization

ERR-16 Error Reference

C/C++ Compiler Error Messages
AtoC (C/C++)

}i

// properly initialized reference

class caClass {

private:
int x;
public:

const int &ref;
caClass():ref(x) {} //<-- now reference is initialized

}i

A to C (C/C++)

Error 10089

See Also

Error 10220

Listing 2.9

These are error messages that begin with A, B, or C.
ambiguous access to class/struct/union member

The compiler signals this error when a reference to a class, struct, or
union member is ambiguous.

You may get this message when calling a function that is defined in
both a virtual base class and another base class with the same pa-
rameters. The CodeWarrior C++ compiler is more strict about this
situation. You must use the fully qualified form to define which
function you want to use.

ARM p.202, 10.1.1 Ambiguities.
ambiguous access to name found ‘symbol’ and ‘symbol’
The compiler generates an error when it sees ambiguous access to a

name. This usually occurs when the same name is used in multiple,
legally accessible namespaces, as shown in Listing 2.9.

Ambiguous access to name

namespace A {
int a;
}

long a;

Error Reference ERR-17

C/C++ Compiler Error Messages
Ato C (C/C++)

namespace B {
using namespace ::A;
int x = a; //<<<What is this ‘a’? ERROR.
}

Error 10100 ambiguous access to overloaded function

This error is displayed when an ambiguous reference is made to an
overloaded function. References to overloaded functions must be
unambiguous. InListing 2.10, funcA() is overloaded with a default
argument. When it is called in the main () function, the compiler
does not understand which member function to use.

NOTE: This error is also common using double/float or
short/long arguments to overload a function.

See Also ARM p.307, 13 Overloading.

Listing 2.10 Ambiguous access to overloaded function

class aClass
{
int x;
public:
int funcA() { x = 2; return x; }
int funcA(int y = 3) { x = y; return x; }

}i

main()

{

aClass obij;

obj.funcA();
return 0;

}

ERR-18 Error Reference

C/C++ Compiler Error Messages
AtoC (C/C++)

Error 10206

Error 10217

Error 10186

Error 10059

Listing 2.11

ambiguous message selector used: <msg> also had: <msg>

This error is generated when there is ambiguity of which selector
should be used.

assigning a non-int numeric value to an unprototyped function

(Warning) This warning is activated by #pragma warn_largeargs
on, or by passing -warn largeargs to the command-line compilers.

The compiler will emit a warning when passing a non-integer nu-
meric value such as a float or a long long to an unprototyped func-
tion when the “require prototypes” option is off.

assignment is not supported for SOM classes

You cannot use a class descended from SOMODbject in an assign-
ment operation, since SOM classes do not support copy construc-
tors. For more information on SOM objects, see the Metrowerks
manual C Compilers Guide, or the SOMObjects Developer Toolkit
(IBM).

branch out of range

A branch destination in an assembly function is out of range, as in

the branch call in Listing 2.11.

Branch out of range

bra.s 10000

Error 10062 call of non-function
An attempt was made to call a non-function. For example, Listing
2.12 below attempts to call the variable i as if it were a function.
Listing 2.12 Call of a non-function
main()

{

Error Reference ERR-19

C/C++ Compiler Error Messages

Ato C (C/C++)

int i;

i();// error: “i” is not a function

}

Fix

Error 10228

Listing 2.13

Check the non-function call in question. This error may be caused
by a spelling mistake that attempts to call a similarly named non-
function instead of the desired function.

cannot allocate initialized objects in the scratchpad

(PlayStation only) Static initialization in the scratch pad is not sup-
ported. Call a routine to initialize it, as shown in Listing 2.13.

Cannot allocate initialized objects in the scratchpad

__declspec(scratchpad) int P=1234;// ERROR
__declspec(scratchpad) int P; // OK

void InitScratchPad()

{
P = 1234;
}
Error 10114 cannot construct base class <aClass>
This error appears when the base class aClass has no ctor initializer
or default constructor.
Error 10115 cannot construct direct member <aClass>
This compiler gives this error when the direct member aClass has no
ctor initializer or default constructor.
Error 10145

cannot convert from <Type_A> to <Type_B>

The compiler generates this error message when a type conversion
was attempted without proper conversion constructors, or with in-

ERR-20 Error Reference

C/C++ Compiler Error Messages
AtoC (C/C++)

compatible types. The code in Listing 2.14 attempts to convert a
type long * toan int *.

Listing 2.14 Cannot convert Type_A to Type_B

main()

{
int “*ptr;

ptr = new long; // <-- Error wrong type
return 0;

}

Error 10154 cannot delete pointer to const
The compiler generates this error message when it encounters an at-

tempt to delete a pointer to a const value. For example, in Listing
2.15 below an attempt is made to delete a pointer to a const type.

Listing 2.15 Attempt to delete a pointer to a const

main()

{

const int y = 3;

int const *ptr = &y;

delete ptr; // <-- Error here

return 0;

}

Error 10155 cannot destroy const object

The compiler generates this error when an attempt to destroy a
const object is encountered.

Error 10134 cannot instantiate <obj>

The compiler generates this error when the template _obj cannot be
instantiated because its definition is missing, such as the Listing 2.16
below.

Error Reference ERR-21

C/C++ Compiler Error Messages
Ato C (C/C++)

Listing 2.16 Cannot instantiate

template <class T> class aClass;
template class aClass<int>; // error

Error 10137 cannot pass const/volatile data object to non-const/volatile
member function

This compile error occurs when an attempt is made to pass a data
object declared as a const to a member function that is not declared
as const. The Listing 2.17 below generates this compiler error.

Listing 2.17 Cannot pass const data object to non-const member function

struct stType {

void bar(); // non-const member function
void cbar() const; // const member function

}i
stType f£f;

const stType cf;

f.bar(); // OK
f.cbar(); // OK
cf.bar(); // error

cf.cbar(); // OK

Error 10151 cannot throw class with ambiguous base class <cBase>

The class in the throw point has an ambiguous base class.

Fix Declare a virtual base class or eliminate any ambiguities to resolve
this error message.

Error 10073 case constant defined more than once

A constant used in a switch statement is already in use. For exam-
ple, in Listing 2.18 below, the constant ABOUT ITEM is used more
than once.

ERR-22 Error Reference

C/C++ Compiler Error Messages
AtoC (C/C++)

Fix Remove one of the constant labels.
Listing 2.18 Case constant defined more than once
switch(theItem)

{

case ABOUT_ITEM :
Alert (ABOUT_ALRT, NIL);

break;

case ABOUT_ITEM :
Alert (ABOUT_ALRT, NIL);

break;
Error 10143 ‘catch’ expected
Undocumented at this time.
Error 10156 const member <aVar> is not initialized
This error message is generated when the compiler encounters a
const member that was not initialized correctly.
Fix The const member must be initialized at the time of the object’s con-

Error 10212

Error 10213

Error 10196

struction.
category <Cat> redefined

The compiler generated this error because you attempted to define a
category <Cat> that was previously defined.

category <Cat> is undefined

The compiler generated this error because you attempted to use a
category <Cat> that has not been defined.

class <classname> redeclared

This error is generated because you attempted to declare the class
<classname> but it had previously been declared.

Error Reference ERR-23

C/C++ Compiler Error Messages
Ato C (C/C++)

Error 10197 class <classname> redefined

This error is generated because you attempted to define a class
<classname> but it had previously been defined.

Error 10104 class has no default constructor

This error occurs when the compiler cannot construct a class be-
cause it has no default constructor, as shown in Listing 2.19.

Listing 2.19 Class has no default constructor

struct stType {
stType(int);
}i

stType f; // error: no default constructor

Error 10147 class type expected

The compiler generates this error message when a class type was ex-
pected.

Error 10125 'const' or '&' variable needs initializer

You must initialize const or reference variables when you declare it.
For example:

Listing 2.20 Const and reference variables need initializers

const int a = 1;// OK
const int b; // ERROR: const variable
// needs initializer

int c;
int &rc = c¢; // OK
int &rd; // ERROR: reference variable
// needs initializer

ERR-24 Error Reference

C/C++ Compiler Error Messages
D to F (C/C++)

Error 10159 constness casted away

This error message is generated when an attempt to cast a const to
avolatile type is encountered.

D to F (C/C++)

These are C/C++ compiler error messages that begin with D, E, or
F.

Error 10230 cdata object <object> redefined

The compiler generates an error when a data object is incorrectly
redefined.

Listing 2.21 Data object <object> redefined

int a =

int a

1;
= 2;//<<< ERROR: the variable name is reused incorrectly

Error 10046 data type is incomplete

The data type usually a class or structure is incomplete. “Incomplete
class” errors usually happen when attempts are made to use classes
that have been partially declared usually using “forward declara-
tions”.

See Also “illegal use of incomplete struct/union/class” on page 56

Error 10022 declaration syntax error

The compiler encountered a syntax error while trying to resolve a
declaration.

Fix Examine the declaration in question. If the error is not apparent, it is
likely being caused by a previous error. Correct all previous errors
first and recompile.

Error Reference ERR-25

C/C++ Compiler Error Messages

D to F (C/C++)

Error 10035

Fix

Error 10074

Listing 2.22

declarator expected

The compiler expected to find a declaration, but found something
else instead.

Check the declaration in question. If the error is not apparent, it is
likely being caused by a previous error. Correct all previous errors
tirst and recompile.

default label defined more than once

The compiler found more than one default label in the same
switch statement. For example Listing 2.22 below causes this error.

More than one default:

switch(...)

{
default:;

default:;// only one default in switch !

}

Fix

Error 10128

Listing 2.23

Remove one of the default labels.

derived function differs from virtual base function in return
type only

The compiler generates this error when the return type of the de-
rived function differs from the return type of a virtual base function.
The Listing 2.23 provides an example.

Derived function differs from virtual base in return type only

class aClass { virtual int f(); }
class bar : aClass {

void f();
}

// error

ERR-26 Error Reference

C/C++ Compiler Error Messages
D to F (C/C++)

Error 10040

Error 10014

Listing 2.24

division by 0

When a constant expression tries to divide by zero or use modulo
zero, a division by 0 error is signaled.

end of line expected

This error can occur in many circumstances, and may be the result
of another error on a previous line of code. For example, if you turn
on the ANSI Keywords Only option in C/C++ Language settings
panel, this error occurs when text follows the #endif directive. The
ANSI standard specifies that only a comment can follow an #endif
directive. Listing 2.24 below shows another example where more to-
kens are expected on a line.

More tokens expected on a line

#define// error: compiler expects more tokens

#if //

on both lines.

Fix

Error 10166

Listing 2.25

In the case of text rather than a comment following the #endif di-
rective, deselect the ANSI Keywords Only checkbox in C/C++
Language settings panel, and recompile.

exception specification list mismatch

The exception specification lists for a function declaration and a
function definition don’t match, as shown in Listing 2.25.

exception specification list mismatch

void f() throw(int);
// exception specification list mismatch
void f() throw(long)

{
}

Error Reference ERR-27

C/C++ Compiler Error Messages

D to F (C/C++)

Fix

Error 10153

Error 10042

Fix

Error 10066

Fix

Error 10149

Fix

exception handling does not work with ‘direct destruction’

The compiler generates this error when you use C++’s exception
handling and the Enable C++ Exceptions option in the C/C++ Lan-
guage settings panel is off or the direct destruction pragma is
on.

Turn on the Enable C++ Exceptions option in the C/C++ Language
settings panel or turn off the pragma direct destruction.

exception handling option is disabled

This error occurs when the Enable C++ Excpeptions option in the
C/C++ Language settings panel is disabled, and you try to use EH
(for example, throw;).

expression syntax error

The compiler generates this error when it encounters any kind of il-
legal expression syntax.

If the error is not apparent, it is likely being caused by a previous er-
ror. Correct all previous errors first and recompile.

function already has a stackframe

This error occurs when the compiler finds more than one fralloc
directive in an assembly function.

Remove all but one of the fralloc directives from the assembly
function.

function call <func> does not match

The compiler generates this error when a call to a function does not
match the expected arguments. An attempt to initialize an object
without a proper matching constructor also generates this message.

Add a default constructor for your class. Also, check the previous
defined class or structure, including the header file named prior to
this error message, for a missing object list.

ERR-28 Error Reference

C/C++ Compiler Error Messages
D to F (C/C++)

Listing 2.26 Function ‘func’ does not match

class A {
public:
A() {}

} //<-- no semicolon, object list expected

main()

{

A a; // <-- error reported here
return 0;

}

Error 10063 function call does not match prototype

A function call’s arguments do not correspond to the function’s pro-
totype. Listing 2.27 shows that the call to SetWaggle () passes two
arguments when the function prototype requires one.

Fix Match function call with function prototype. Select the function call

and choose Find Definition from the Search menu to locate the
function prototype definition.

Listing 2.27 Function call does not match prototype

long SetFoo(long foonum)

{
}
MyFoo = SetFoo(size, length);

// error: two variables parameters in call to
// SetFoo, prototype has only one argument

Error 10141 function defined ‘inline’ after being called

This error message is generated when a function is declared inline
after it has already been called. In Listing 2.28 below the function is
used in the class before the function definition where it is declared
inline.

Error Reference ERR-29

C/C++ Compiler Error Messages
D to F (C/C++)

Fix Declare the function prototype to be inline.

Listing 2.28 Function defined inline after being called

int func(int x);

class cA {

int i;

public:

cA() { i = func(3); }
}i

inline int func(int x) { return x + 1; }

Error 10067 function has no initialized stackframe

This error occurs when the compiler encounters an assembly func-
tion whose stack frame as not been allocated using the fralloc di-
rective.

Fix Modify your assembly function so is that it uses fralloc.
Error 10079 function has no prototype

A function is defined without a preceding prototype. This error oc-
curs if the Require Function Prototypes checkbox, in the C/C++
Language settings panel, is selected.

Fix Either define a preceding prototype for the function in question, or
deselect the Require function prototypes checkbox.

See Also For more on the Require Function Prototypes option, consult the C
Compilers Reference

Error 10069 function nesting too complex

This error occurs when the compiler encounters a function that con-
tains too many nested {} blocks.

ERR-30 Error Reference

C/C++ Compiler Error Messages
G toI(C/C++)

Fix To fix this error, study the function in question. There’s probably a
way to divide the function into a series of dependent functions.

Error 10184 functions cannot return SOM classes

A function cannot return a class which is descended from SOM-
Object, since SOM classes do not support copy constructors. For
more information on SOM objects, see the Metrowerks manual
C Compilers Guide, or the SOMObjects Developer Toolkit (IBM).

Error 10185 functions cannot have SOM class arguments

A function cannot contain in its argument list any class which is de-
scended from SOMODbject, since SOM classes do not support copy
constructors. For more information on SOM objects, see the
Metrowerks manual C Compilers Guide, or the SOMObjects Developer
Toolkit (IBM).

Error 10227 function result is a pointer/reference to an automatic variable |

The compiler generates an error when you use an automatic vari-
able and reference it outside of its scope, as shown in Listing 2.29.

Fix Expand the scope or increase the persistence of the variable. For ex-

ample, you could declare the variable as a pointer in the heap in-
stead of declaring it as a local variable on the stack.

Listing 2.29 Function result is a pointer/reference to an automatic variable

char *foo()

{
char c=0;
return &c;

}

G tol (C/C++)

These are C/C++ compiler error messages that begin with G, H, or L.

Error Reference ERR-31

C/C++ Compiler Error Messages
G toI(C/C++)

Error 10189 global SOM class objects are not supported

If an object is a type descended from SOMODbject, you cannot use it
as a global variable. For more information on SOM objects, see the
Metrowerks manual C Compilers Guide, or the SOMObjects Developer
Toolkit (IBM).

Error 10023 jdentifier <name> redeclared
Undocumented at this time.

Error 10150 jdentifier <hame> redeclared was declared as: <a_type’ now
declared as: ‘b_type

The compiler issues this error when the source code attempts to re-
define an identifier. For example, in Listing 2.30 below, the identi-
fier var is declared as both a long and a Point.

NOTE: This error is often the result of re-using the name of a
Macintosh declared variable or function.

Fix Change the name of one of the identifiers.

Listing 2.30 Identifier <var> redeclared

long var;
Double temp;
Point var;
// var has already been declared above

// Using a Macintosh Toolbox function name
// as a class name.

class Random { public: void get(); };

void Random::get() // <-- this produces an error

{//...}

ERR-32 Error Reference

C/C++ Compiler Error Messages
G toI(C/C++)

Error 10030 jllegal array definition

The compiler gives this error when it encounters an array defined
with a negative or zero subscript (also illegal array base type). Mak-
ing the last member of a struct an empty array is a non-ANSI lan-
guage extension that is not supported by Metrowerks CodeWarrior
C/C++ as demonstrated in Listing 2.45.

Fix Asawork around for the source in Listing 2.45 , the code should
change to what’s shown in Listing 2.46.

Listing 2.45 lllegal array definition

typedef struct {

short howMany;

Data *dataBase[];// error: non-ANSI extension
} DataBase

NOTE: Remember to change your allocation routines so that
they allocate the right size for these structs. For example, in List-
ing 2.46 the proper allocation routine would be sizeof (Data-
Base) - (nb elements -1) * sizeof(Data).

Listing 2.46 Fix for illegal array definition

typedef struct {

short howMany;

Data *dataBase[l]; // OK: now ANSI compliant
} DataBase

Error 10080 jllegal assignment to constant

This error is issued by the compiler when an expression attempts to
assign a value to a constant, as in Listing 2.47.

Error Reference ERR-39

C/C++ Compiler Error Messages
G toI(C/C++)

Listing 2.47 lllegal assignment to constant

const int i=5;

i=10; // cannot assign to a const

Fix = Check the assignment in question. This error may be caused by a
spelling mistake that attempts to assign a value to a similarly named
constant instead of the desired variable.

Error 10039 jllegal bitfield declaration

The compiler issues this error when a bitfield of size zero is de-
clared. This error is also issued if too many bits are requested, as in
the example below.

Fix Check the bitfield declaration in question to make sure that a size of
zero is not declared, and that too many bits are not requested.

Listing 2.48 lllegal bitfield declaration

long err:33;

Error 10001 jllegal character constant

This error is signaled when an attempt is made to assign an illegal
character constant. Listing 2.49 contains three examples of illegal
character constants.

Fix Examine the character constant to make sure it is assigned a legal

character.
Listing 2.49 lllegal character constant
char FooCh;
FooCh = ''; // each of these assignments

ERR-40 Error Reference

C/C++ Compiler Error Messages
G toI(C/C++)

FooCh = '\x'; // contain illegal character
FooCh 'ddjdjdj';// constants.

Error 10229 jllegal class member access

This error occurs when you try access a class member that doesn't
exist.

Error 10025 jllegal constant expression

This error is issued when the compiler encounters a constant ex-
pression that contains an illegal value or operator.

Fix Examine and correct the constant expression in question. If this
error is not apparent, it is likely being caused by a previous error.
Correct all previous errors and recompile.

Error 10113 jllegal ctor initializer

This error is signaled when the compiler encounters an illegal ctor
initializer. For example, the ctor initializer in Listing 2.50 is illegal
because there’s no i member of the aClass.

Fix If you are having problems with constructors of a sub-class, you are

probably not naming the parent class explicitly, such as in Listing
2.51.

Listing 2.50 lllegal ctor initializer

class aClass {
aClass(): i(12) {} // error: illegal ctor
// (no i member)

CButton is a subclass of Clickable which takes a type Display-
System* as its argument. In CodeWarrior C++ when making a con-
structor which passes parameters to the parent class, you need to
name the parent class explicitly. You must use the following tem-
plate:

Error Reference ERR-41

C/C++ Compiler Error Messages

G toI(C/C++)
BLAH: :BLAH (parameterl, parameter2)
PARENT OF BLAH(parameter2)
Listing 2.51 lllegal ctor initializer, explicit parent class

CButton::CButton(long resourceBase,
DisplaySystem* displaySystem) : (displaySystem)

Error 10057 jllegal data size

The compiler issues this error when a line in an assembly function
contains an illegal data size, as in Listing 2.52.

Listing 2.52 lllegal data size

move.Z #0,d9

Error 10106 jllegal default argument(s)

This error is given when the compiler finds a function which con-
tains one or more illegal arguments, as in the function prototype of

Listing 2.53.

Listing 2.53 lllegal default argument

int func(int x=1, int z);

Error 10117 jllegal empty declaration

The compiler gives this error when a declaration is missing an iden-
tifier, as in the declaration in Listing 2.54.

Listing 2.54 lllegal empty declaration

int ;

ERR-42 Error Reference

C/C++ Compiler Error Messages
G toI(C/C++)

Error 10139 jllegal explicit template instantiation
The compiler generates this error whenever it encounters an illegal
explicit template instantiation. Listing 2.55 provides an example
where the function £ () was not properly declared as a template
function.
Listing 2.55 lllegal explicit template instantiation
//template <class T>
void f();
template void f<int>(); // error
Error 10236 jllegal explicit template specification

This error occurs when there is something wrong with your explicit
template specialization. For example,

template <> int a;

Error 10028

Fix

Error 10098

See Also

Error 10029

illegal function definition

This error is signaled whenever the compiler encounters an illegally
defined function.

If the error is not apparent, it is likely being caused by a previous er-
ror. Correct all previous errors first and recompile.

illegal function overloading

A common cause for this error is the declaration of functions with
the same name and identical arguments, but different return types.

ARM p.307, 13 Overloading.
illegal function return type

This error is given when the compiler finds a function that returns
an array or function. A function cannot return an array or function.
A function can only return a pointer to an array or function.

Error Reference ERR-43

C/C++ Compiler Error Messages

G to 1 (C/C++)
Fix Modify your code so that the function in question returns a pointer
to the array or function.
Error 10121 jllegal implicit const pointer conversion
(Warning Message) The compiler issues this warning when you
convert a const pointer into a variable, as in Listing 2.56.
Listing 2.56 lllegal implicit const pointer conversion

void func(const char *cptr)

{

char *ptr=cptr;
// illegal implicit const pointer conversion

Error 10110

See Also

Listing 2.57

illegal implicit conversion from <Type_A> to <Type_B>

This error is signaled when the compiler encounters an illegal im-
plicit conversion as in Listing 2.57.

NOTE: ANSI C++ differs from ANSI C in the treatment of voidx*.
ANSI C allows an implicit conversion from a pointer to void to a
pointer to another object type (but not to a pointer to function type-
-see Section 5.4); in C++ a void* cannot be assigned to an object
of any type other than void* without an explicit cast. Thus, Listing
2.57 is legal ANSI C, but is not accepted in C++:

ANSI Draft Standard Section 5.4 “Pointer Conversions,” ANSI C
Standard 3.2.2.3

lllegal implicit conversion

void f(char *cptr, void *vptr)

{

cptr = vptr;

// Illegal in C++, legal in C

ERR-44 Error Reference

C/C++ Compiler Error Messages
G toI(C/C++)

char *ptr=(void *)0;
// Illegal in C, legal in C++

Error 10118 jllegal implicit enum conversion from <Type_A> to <Type_B>

The compiler gives this message when an illegal implicit conver-
sion, involving an enum, is encountered. If the source code is C++,
the compiler gives this message as an error. If the source code is C
and the Extended Error Checking option in the C/C++ Warnings
settings panel is on, the compiler gives this message as a warning.
An example is shown below in Listing 2.58.

Listing 2.58 lllegal implicit enum conversion

enum ff { foo };
enum ff x = 0;
//error:illegal implicit enum conversion

Error 10232 jllegal implicit member pointer conversion

This error occurs when a member function is incorrectly initialized.

Listing 2.59 lllegal implicit member pointer conversion
struct X {
void foo()
{
void (X::*f)() = foo; // ERROR
void (X::*g)() = &X::foo0;// OK
}
}i

Error 10075 jllegal initialization

This error occurs when a variable, or other data type, is illegally ini-
tialized within a function.

Error Reference ERR-45

C/C++ Compiler Error Messages

G to 1 (C/C++)
Error 10053 jllegal instruction for this processor
The compiler issues this error when an assembly-language instruc-
tion is found that does not exist for the 68000 family of microproces-
Sors.
Error 10112 jllegal jump past initializer

This error is signaled when a transfer is made into a block that by-
passes initializers. In certain cases, it is illegal to jump past explicit
or implicit initializers. Generally this error occurs whenever there is
a section of code that can be jumped past in the same scope. Typi-
cally in switch or goto statements as in Listing 2.60.

NOTE: It’s possible for the definition of p to be skipped over
within the scope it’s in (the switch statement). The fix to this is to
either define p outside of the switch, or make a new scope. If you
have any goto statements in your function, you’ll get this error for
any variables that are defined after a goto. The solution is the
same: either define all variables before the goto, or introduce a
new scope.

See Also ARM p. 87, 6.4.2 The Switch Statement and p.91, 6.7 Declaration
Statement.

Listing 2.60 lllegal jump past initializer

switch (i) {
int vl = 2; // error
case 1:
short v2 = 3;
case 2:
if(v2 == 7) {} // error

ERR-46 Error Reference

C/C++ Compiler Error Messages
G toI(C/C++)

Error 10204 jllegal message receiver

This message is given when you try to send a message to a non-
ODbjC object.

Error 10221 jllegal namespace

This error is generated when you use a non-namespace name as a

namespace.
Listing 2.61 lllegal namespace
int a;
namespace a {//<<< ERROR
int b;
}
Error 10223 jllegal name overloading
The compiler generates an error when you attempt to perform an
illegal overload, as shown in Listing 2.62.
Listing 2.62 illegal name overloading
int b;

enum { b };//<<< ERROR

Error 10045 jllegal operand

This error is signaled when an operator is applied to a non-compati-
ble operand.

Fix Try type-casting the operand to a compatible type.
Error 10054 jllegal operands for this processor

This error is issued when the compiler encounters an assembly-lan-
guage instruction that refers to operands that do no exist for the 68K
family of microprocessors.

Error Reference ERR-47

C/C++ Compiler Error Messages

G toI(C/C++)
Error 10044 jllegal operation
An operator, such as == or + was illegally applied to a struct or
union. This error is also signaled when an operator is not defined
for a data type.
Error 10105 jllegal operator

This error is signaled when the compiler encounters an illegal oper-
ator, as in Listing 2.63.

Listing 2.63 lllegal operator

int operator .(int 1i);

Error 10099 jllegal operator overloading

A common cause for this error is trying to overload an operator that
cannot be overloaded, or trying to overload a preprocessor direc-
tive.

See Also ARM p.329, 13.4 Overloaded Operators.
Error 10124 jllegal precompiled header compiler flags or target

The compiler gives this error when a precompiled header file uses
the wrong compiler target. For example, you get this error if you ar
compiling code for a Power Mac OS computer with a precompiled
header that has a first line of #include <MacHeaders68k>.

Fix Check your pre-compiled header or .pch file for flags or data of a
different CPU type than your current target. Also check the prefix
file in the C/C++ Language settings panel.

Error 10123 jllegal precompiled header version

The compiler gives this error when a precompiled header file is old
or defective.

Fix Check all the precompiled header files included with your project. If
the error is not apparent, check the header specified in the Prefix

ERR-48 Error Reference

C/C++ Compiler Error Messages
G toI(C/C++)

Error 10058

Listing 2.64

File field in the C/C++ Language settings panel. For more informa-
tion consult the C Compilers Reference

illegal register list

This error occurs when the compiler encounters an illegal register
list in an assembly function. An example is shown in Listing 2.64.

lllegal register list

movem.1d0-d0,—(sp)

Error 10216

Fix

Listing 2.65

illegal return value in void/constructor/destructor function

This error message is generated if you attempt to return a value
from a void function, or a constructor or destructor which by design
may not return a value.

Remove the illegal return.

Example of illegal return value.

void foo() { return 1; }

Error 10171

Error 10174

Fix

illegal SOM function overload <operator>

You cannot overload member functions in a SOM class. For more in-
formation on SOM objects, see the Metrowerks manual C Compilers
Guide, or the SOMObjects Developer Toolkit (IBM).

illegal SOM function parameters or return type

You cannot use long double parameters or return type in mem-
ber functions for SOM classes. For more information on SOM ob-
jects, see the Metrowerks manual C Compilers Guide, or the SOMObD-
jects Developer Toolkit (IBM).

Rewrite the function using a different parameter or return type.

Error Reference ERR-49

C/C++ Compiler Error Messages

G toI(C/C++)

Error 10078

See Also

Listing 2.66

illegal storage class
The compile issues this error when an illegal storage class is used.

If the compiler points to a static member, it may mean that you have
defined a member as static, ARM (p. 179) says “A data or func-
tion member of a class may be declared static in the class declara-
tion” — but not in the definition.

Likewise, you may not declare variables as auto in global scope as
in Listing 2.66.

ARM, p.179.

lllegal storage class

auto int x;//error: auto is not allowed in global scope

Error 10002

Fix

Error 10032

Fix

Error 10133

illegal string constant

This error is displayed when a string constant is encountered that
does not terminate before the end of a line.

Terminate the string before the end of a line. If this error is not ap-
parent, it is likely being caused by a previous error. Correct all pre-
vious errors and recompile.

illegal struct/union/enum/class definition

The compiler issues this error when an illegal struct, union, enum,
or class definition is encountered.

Examine the illegal struct, union, enum, or class definition to check
for any syntax errors.

illegal template argument(s)

The compiler gives this error when it finds a template which con-
tains one or more illegal arguments, as shown in Listing 2.67.

ERR-50 Error Reference

C/C++ Compiler Error Messages
G toI(C/C++)

Fix This error is often the result of the omission of a space in nested
templates creating a right shift operator.

Listing 2.67 lllegal template argument

map<double, double, less<double>> aMap;
// illegal argument
map<double, double, less<double> > aMap;

template <class T> class aClass;
aClass<int,int> *aClassptr; // illegal argument

Error 10130 jllegal template declaration

The compiler gives this error when a malformed template declara-
tion is encountered, such as the template declaration in Listing 2.68.

Listing 2.68 lllegal template declaration
template <class T> T i; // error
Error 10006 jllegal token

The compiler issues this error when an illegal preprocessor token is |
found. For example, the @ symbol in Listing 2.69 is an illegal token.

Fix Remove the illegal token. If the illegal token is not apparent, the

error may be caused by a previous syntax error. Fix all previous er-
rors and recompile.

Listing 2.69 lllegal token

if(@)

Error 10047 jllegal type

The compiler generates this error message when an illegal type is
encountered as in Listing 2.70.

Error Reference ERR-51

C/C++ Compiler Error Messages
G toI(C/C++)

Listing 2.70 lllegal type

static void func(int i)

{
delete i; // <-- illegal type

}

Error 10065 jllegal type cast

This error occurs when the code attempts to typecast data to an in-
compatible data type.

Error 10077 jllegal type qualifier(s)

The compiler issues this error when an illegal type qualifier, for this
type in this scope, is encountered. For example, the double const
qualifier in Listing 2.71 below will produce an illegal type qualifier
error.

Fix Remove the illegal type qualifier. If this error is not apparent, it may

be caused by a previous error. Correct all previous errors and re-
compile.

Listing 2.71 lllegal type qualifier

const const int x;// double const

Error 10214 jllegal use of <spec>

This error is generated when you use a keyword that is not in the
correct syntax. This error is mostly used for qualifiers and specifers.

Listing 2.72 Example of illegal use of <spec>:

inline int k; // illegal use of 'inline'
const int const cc; // illegal use of 'const'

ERR-52 Error Reference

C/C++ Compiler Error Messages
G toI(C/C++)

Error 10239 jllegal use of asm inline function

This error is generated when you try to use entries or PC-relative
data in inline assembly functions. An example of this error is shown

in Listing 2.73.

Listing 2.73 lllegal use of asm inline function

extern void e();
inline asm int GetD7()
{
move.l d7,d0
entry e

illegal use of C++ feature in EC++

This error is generated when you try to use a C++ feature that is not
available in the EC++ language subset (i.e. templates, multiple in-
heritance, etcetera).

Error 10222 jllegal use of namespace name

This error is generated when you use a namespace name as a non-
namespace.

Listing 2.74 lllegal use of namespace name

namespace a {
int b;
}
int g = a++;//<<< ERROR

Error 10208 jllegal use of Objective-C object

This error is generated when you try to use an ObjC class in an un-
spupported way. For example if you pass the class by value, de-
clare/define a ObjC class object.

Error Reference ERR-53

C/C++ Compiler Error Messages
G toI(C/C++)

Error 10178 jllegal use of #pragma outside of SOM class definition

You can use four SOM pragmas only within the definition of the
SOM class that the apply to: SOMReleaseOrder,SOMClass-
Version, SOMMetaClass, SOMCallStyle. For more information
on SOM objects, see the Metrowerks manualC Compilers Guide, or
the SOMObjects Developer Toolkit (IBM).

Error 10119 jllegal use of #pragma parameter

This message is displayed when a previous #pragma parameter
does not match a function. For example, func () in Listing 2.75
below does not match the function func1.

NOTE: In addition, If the lllegal Pragmas option is selected in the
C/C++ Warnings settings panel, undefined #pragmas are marked
as warnings.

See Also For more on the #pragmas supported by Metrowerks C/C++, con-
sult the C, C++, and Assembler Language Reference, Chapter 5, “Prag-
mas & Predefined Symbols.” For more on the C/C++ Warnings set-
tings panel, C, C++, and Assembler Language Reference, Chapter 2, “C
and C++ Language Notes.”

Listing 2.75 lllegal usage of #pragma parameter

#pragma parameter A0 func
char *funcl()
{

//

}

Error 10092 jllegal use of ‘HandleObject’

The compiler gives this error when an illegal usage of a class that is
derived from the HandleObject class is encountered.

ERR-54 Error Reference

C/C++ Compiler Error Messages
G toI(C/C++)

Error 10202

Error 10203

Error 10090

Error 10027

Listing 2.76

illegal use of 'self'

This error is given when the keyword self is used incorrectly.
illegal use of 'super’

This error is given when the keyword super is used incorrectly.
illegal use of ‘this’

This error is signaled when the compiler encounters C++ code that
uses this in a non-member function.

illegal use of ‘void’

The compiler gives this error when an operator is incorrectly ap-
plied to a void type, or a variable is declared as a void type, as in

Listing 2.76.

lllegal use of ‘void’

int myInt;
long myNumber;
void myFoo;

//error: a variable cannot be declared as void

Error 10095

Fix

illegal use of abstract class (<aClass>)

The compiler gives this error when you attempt to instantiate from
an abstract class. An abstract class is defined with at least one pure
virtual method. A pure virtual method is declared as

// pure virtual method

virtual type MethodName (arquments) = 0;

An abstract class requires you to make a subclass that provides
methods to replace any pure virtual methods.

Abstract classes must be subclassed before being instantiated. De-
fine a non-abstract subclass and derive your object from that sub-
class.

Error Reference ERR-55

C/C++ Compiler Error Messages

G toI(C/C++)

See Also

Error 10084

Error 10037

Fix

Listing 2.77

ARM p. 214, 10.3 Abstract Classes.
illegal use of direct parameters

This error is issued when a function, or another expression, refer-
ences a direct parameter that is not supported. For example, the ex-
ample below attempts to use __X. This is illegal because a direct pa-
rameter must be either DOto D2, A0, Al ,or FPOto

FP3.

illegal use of incomplete struct/union/class

This error is signaled when an incomplete struct, union, or class is
used illegally. For example, in Listing 2.77, an attempt is made to
create an incomplete object.

To avoid the errors, you can try to include bar.h so you get the full
class declaration. Sometimes this does not work because of circular
references in the include files. Another option is to avoid inline (in-
clude file) references to member variables or methods of these par-
tial classes. Don’t inline the offending function. Put it in a separate
implementation file that includes both foo.h and bar.h.

lllegal use of incomplete struct

struct A x;

//cannot create an incomplete object

Listing 2.78

This error often happens when you attempt to use classes that have
been partially declared, usually using forward declarations as fol-
lows:

Using a class that has been partially declared

// foo.h

class Bar; // empty forward declaration

class aClass {

public:

// trouble coming up...
void DoIt(int x) { mBar->DoStuff(x); }

ERR-56 Error Reference

C/C++ Compiler Error Messages
G toI(C/C++)

private:

Bar* mBar;// you declare it

}i

bar.hclass Bar {// actual declaration

public:

// of the class

void DoStuff(int x);

}i

Error 10076

Listing 2.79

illegal use of inline function

This error is signaled when an inline function is used illegally. For
example, in Listing 2.79 an attempt is made to take the address of an
inline function.

lllegal use of inline function

pascal Handle NewHandle(Size byteCount) = 0xAl22;

&NewHandle;// error: cannot take address of

// inline function

Error 10070

Fix

Listing 2.80

illegal use of keyword

This error occurs when a keyword is used illegally. In some cases,
this error is caused by a previous syntax error or missing symbol.
For example, in Listing 2.80, the illegal use of keyword error is
caused by a missing colon.

Fix all previous error messages. If error still persists, verify that you
are using the keyword correctly as in Listing 2.81

lllegal use of keyword

switch(theMenu)

{

Error Reference ERR-57

C/C++ Compiler Error Messages
G toI(C/C++)

[

case APPLE MENU ID// error: missing
switch(theItem)

{
case ABOUT_ITEM :

}

break;// illegal use of keyword error here
// caused by above missing colon

Listing 2.81 lllegal use of direct parameters

int func(int x: X)) {}
// error: direct parameter X not recognized

Error 10122 jllegal use of non-static member

This error is signaled when an attempt is made to access a non-static
member without having an object of that class, as in Listing 2.82.

Listing 2.82 lllegal usage of non-static member function

struct stType {
stTypef();
}i
/] ...
stTypef();
// error: cannot call without a stType object

Error 10081 jllegal use of precompiled header

This error is given when the compiler encounters a precompiled
header file included illegally. A precompiled header file is used ille-
gally when more than one precompiled header file is #included in
the source code file (as in Listing 2.83).

Fix Check all the precompiled header files included with your project. If
the error is not apparent, check the header specified in the Prefix
File field in the C/C++ Language settings panel.

ERR-58 Error Reference

C/C++ Compiler Error Messages
G toI(C/C++)

Listing 2.83 lllegal usage of precompiled header: too many

#include <MacHeaders>

#include <MacHeaders>
// error: only one precompiled header
// file allowed

Fix This error often occurs when the precompiled header file has al-
ready been #included in the Prefix File field in the C/C++ Lan-
guage settings panel. Or, when a precompiled header is #included
after a function, variable, or type declaration, as in Listing 2.84.

Listing 2.84 lllegal usage of precompiled header: declaration

long 1;

#include <MacHeaders>
// error: precompiled header included
// following declaration.

Error 10096 jllegal use of pure function

The compiler generated this message when it encountered an im-
proper usage of a pure virtual function. A pure virtual function has
no definition. For example in Listing 2.85 the constructor attempts
to call the pure function myFun().

See Also ARV, p. 214, 10.3, Abstract Classes.

Listing 2.85 lllegal use of pure function
class pure {
public:
virtual int myFun() = 0;
pure() { myFun(); }
}i

Error Reference ERR-59

C/C++ Compiler Error Messages
G toI(C/C++)

Error 10064 jllegal use of register variable

This error occurs when a register is used illegally. For example, in
Listing 2.86, an attempt is made to take the address of a register
variable.

Listing 2.86 lllegal use of register variable

register int i;
f(&i); // error: cannot take address of i

Error 10241 jllegal use template argument dependent type 'T::%u'

The compiler gives this error when a template dependent type can-
not be resolved. An example of this error is shown in Listing 2.87.

Listing 2.87 lllegal use template argument dependent type 'T::%u’

template <class T> int foo(typename T::x arg);
int i = foo<int>(1l);
// error: illegal use template argument dependent type 'T::x'

Error 10218 jmplicit arithmetic conversion fromType_A to Type_B

This warning occurs when you implicitly convert a big arithmetic
type to a smaller (this has to be enabled in the Warnings prefs

panel). For example,

long 1;
short s;

s=1; // <<<error

ERR-60 Error Reference

C/C++ Compiler Error Messages
G toI(C/C++)

Error 10161 jnconsistent linkage: ‘extern’ object redeclared as ‘static’

The compiler will generate this error message in C++ if you try to
re-declare or define an extern object as static. This is shown in List-

ing 2.88.

Listing 2.88 Inconsistent linkage: ‘extern’ object redeclared as ‘static’

void f();
static void f(); // <<< ERROR

Error 10224 jnstance variable list does not match @interface

The compiler generates an error when the instance variable list de-
clared in the interface does not match what is defined in the imple-
mentation.

Listing 2.89 Instance variable list does not match @interface

@interface A
{
int a;
}
@end
@implementation A

{

long b; //<<< ERROR: inconsistent with declaration

}
@end

Error 10179 jntroduced method <method > is not specified in release order
list

If you use the SOMReleaseOrder pragma for a SOM class, the
pragma must list all the new methods that the class declares (but
not the methods it overrides). For more information on SOM ob-
jects, see the Metrowerks manual C Compilers Guide, or the SOMOb-
jects Developer Toolkit (IBM).

Error Reference ERR-61

C/C++ Compiler Error Messages

J to L (C/C++)

Fix

There are two ways to fix this problem:
* Include the method in the SOMReleaseOrder pragma’s list.

* Remove the SOMReleaseOrder pragma. The compiler as-
sumes the release order is the same as the order in which the
functions appear in the class declaration. However, when
you release a version of the class, use the pragma, since you'll
need to modify its list in later versions of the class.

JtoL (C/C++)

Error 10072

Fix

Error 10111

Fix

Error 10163

Fix

These are C/C++ compiler error messages that begin with J, K, or L.
label <Lgt> redefined

The compiler generates this error when an attempt is made to rede-
fine a label, in this case Lgt, that has already been defined.

Remove or rename one of the labels.
local data >32k

This error is issued when the local data totals exceed 32K. The local
data, usually a declared array, is stored on the stack and has a limit
of 32K.

You can overcome this restriction by defining an array as static or
using dynamic allocation to move the storage from the stack to the

heap.
local data > 224 bytes

(Mac OS PPC) This error is caused in assembly functions which
have no stack frame. In such a function there is a limit of 224 bytes
of local variables.

To resolve this create a stack frame, using the fralloc/frfree di-
rectives.

ERR-62 Error Reference

C/C++ Compiler Error Messages
M to O (C/C++)

Fix

local variable <hame> was not assigned to a register

(Mac OS PPC) The compiler generates this error when a register
variable was named but not assigned as a register. In assembly
functions, any variable declared register is guaranteed to be in a
register and its name may be used anywhere a register is
valid.

This usually is because there are already too many register vari-
ables being used. Remove some previously assigned register
variables to resolve this error.

M to O (C/C++)

Error 10009

Fix

Error 10012

Fix

Error 10235

Error 10200

These are C/C++ compiler error messages that begin with M, N, or
0.

macro <Macro> redefined

The compiler generates this error when an attempt is made to rede-
fine a macro, in this case <Macro>, that has already been defined.

Remove or rename one of the macros.
macro(s) too complex

This error is signaled when a macro cannot be expanded because it
is too complex (or possibly recursive).

You can resolve this error by studying the macro and redesigning it
with less complexity.

‘main’ not defined as external ‘int main()’ function
Undocumented at this time.
method <mthd> not defined

This error is generated you forget to define a method that was de-
clared in the @interface.

Error Reference ERR-63

C/C++ Compiler Error Messages

M to O (C/C++)

Error 10194 method <mthd> redeclared
This error is generated because you attempted to declare the
method <mthd> which had previously been declared.

Error 10201 method <mthd> redefined
This error is generated because you attempted to define a method
<mthd> that was previously defined.

Error 10237 name has not been declared in namespace/class

This error occurs when you define something that has not been de-
clared in it's namespace. For example,

namespace N {}

int N::a; // <<<error

Error 10173

Error 10172

Error 10129

See Also

no parameters allowed in SOM class constructors

The constructor for a SOM class cannot contain constructors. For
more information on SOM objects, see the Metrowerks manualC
Compilers Guide or the SOMObjects Developer Toolkit (IBM).

no static members allowed in SOM classes

A SOM class cannot contain static data members. For more informa-
tion on SOM objects, see the Metrowerks manual C Compilers Guide,
or the SOMObjects Developer Toolkit (IBM).

non-const ‘&’ reference initialized to temporary

The compiler generates this message when the initial value for a ref-
erence type is not an lvalue of that type. The compiler will create a
temporary for the initialization. However, there is no storage for
this temporary, as in Listing 2.90.

“not an lvalue” on page 66

ERR-64 Error Reference

C/C++ Compiler Error Messages
M to O (C/C++)

Listing 2.90

Non-const ‘&’ reference initialized to temporary

long &r = 40000;
// the proper method to use is

long x;
long &y = x;
y = 40000;

Error 10183

Fix

Error 10050

Listing 2.91

new SOM callstyle method <method > must have explicit
‘Environment *’ parameter

If you create a SOM class that uses new IDL callstyle, each of the
class’s methods must contain an Environment pointer as its first ar-
gument. For more information on SOM objects, see the Metrowerks
manual C Compilers Guide , or the SOMObjects Developer Toolkit
(IBM).

There are two solutions:

* Add an Environment pointer to the method’s argument list
as its first argument.

e Use the soMCallStyle pragma to declare that all of the
class’s methods use the older OIDL callstyle. The soMCall-
Style method looks like this:

#pragma SOMCallStyle OIDL

not a struct/union/class

The compiler expected to find a struct, union, or class, but found a
simple type instead, as in Listing 2.91.

Not a struct

long var;

var.myfoo = 10;// error: var is not a struct

Error Reference ERR-65

C/C++ Compiler Error Messages

PtoR (C/C++)

Error 10043 not an lvalue
The compiler expected an expression referring to an item, such as a
variable, to which it can assign a value. Another expression was
found instead.

Error 10055 number is out of range
The compiler signals this error when a numeric value is encoun-
tered that is out of range for its data type.

See Also For a complete list of data types supported by Metrowerks C/C++,
see the Metrowerks C, C++, and Assembler Language Reference.

Error 10234 object <object> redefined
The compiler generates an error when an object is incorrectly
redefined, as shown in Listing 2.92.

Listing 2.92 Object <object> redefined

void foo() {}

void foo() {}//<<< ERROR

Error 10198

Error 10199

Objective-C type <Type> is undefined (should be defined in
objc.h)

This error is generated because you attempted to use an Objective-C
type <Type> that had not been defined in the objc.h header file.

Objective-C type <Type> has unexpected type

This error is generated because you attempted to use a type <Type>
that included an unexpected type for its object type.

P to R (C/C++)

These are C/C++ compiler error messages that begin with P, Q, or
R.

ERR-66 Error Reference

C/C++ Compiler Error Messages
P to R (C/C++)

Error 10127 pascal function cannot be overloaded
CodeWarrior does not let you overload pascal functions. The List-
ing 2.93, when compiled, will issue this error.
Listing 2.93 lllegal pascal function overloading
int f(int);
pascal void f(); // error
Error 10049 pointer/array required

This error is issued when the compiler finds a left bracket, [, follow-
ing a variable which is neither a pointer nor an array. The left
bracket can only follow a pointer or array name.

Error 10107 possible unwanted ‘;’
(Warning Message) A semicolon was found immedjiately following
awhile, if, or for statement. This may cause an unintended logi-
cal error, as in Listing 2.94. This warning is signaled when the Possi-
ble Errors option is selected in the C/C++ Warnings settings panel.
Fix Either remove the unwanted semicolon or deselect the Possible Er-
rors option in the C/C++ Warnings settings panel.
See Also For more on the Possible Errors option, consult the C, C++, and As-
sembler Language Reference, Chapter 2, “C and C++ Language
Notes.”.
Listing 2.94 Possible unwanted *;’
while (x < 10);// possible unwanted ';'
printf(“%d *“, x);
Error 10191 ‘pointer to member’ is not supported for SOM classes

You cannot use take the address of a member of a class that’s de-
scended from SOMODbject. For example, &foo: :bar is not allowed
if foois descended from SOMObject. For more information on SOM

Error Reference ERR-67

C/C++ Compiler Error Messages

P toR (C/C++)

Error 10108

Fix

See Also

Listing 2.95

objects, see the Metrowerks manual C Compilers Guide , or the SO-
MObjects Developer Toolkit (IBM).

possible unwanted assignment

(Warning Message) This warning occurs when an assignment (= op-
erator) occurs within a logical expression in a while, if, or for
statement. This may be meant as an equality operation, as in Listing
2.95. This is signaled as an error when the Possible Errors checkbox
is selected in the C/C++ Warnings settings panel.

Either correct the unwanted assignment or deselect the Possible
Errors checkbox under in the C/C++ Warnings settings panel.

For more on the Possible Errors checkbox, consult C, C++, and As-

sembler Language Reference, Chapter 2, “C and C++ Language
Notes.”.

Possible unwanted assignment

if (x = 20) printf(“OK");
// possible unwanted assignment.

Error 10109

Fix

See Also

possible unwanted compare

(Warning Message) This warning occurs when the compiler be-
lieves it finds an unwanted comparison as in Listing 2.96.

NOTE: The erroris signaled when the Possible Errors checkbox
is selected in the C/C++ Warnings settings panel.

Either correct the unwanted comparison or deselect the Possible Er-
rors checkbox under the C/C++ Warnings settings panel.

For more on the Possible Errors checkbox, consult C, C++, and
Assembler Language Reference, Chapter 2, “C and C++ Language
Notes.”.

ERR-68 Error Reference

C/C++ Compiler Error Messages
P to R (C/C++)

Listing 2.96 Possible unwanted compare
X == 1;// possible unwanted comparison
Error 10019 preceding #if is missing
This error is issued when an #endif directive is found without a
matching #if directive.

Fix Examine the logic behind previous nested #if structures to make

sure you haven’t included an additional #endif directive.
Error 10138 preceding ‘#pragma push’ is missing
The compiler generates this error when it encounters a #pragma
pop encountered that does not have a matching, preceding
#pragma push.
For more on the pragmas available in CodeWarrior, consult the C,
C++, and Assembler Language Reference. |
Error 10219 preprocessor #error directive
The compiler generates an error when it encounters the directive
#error.

Fix NOTE: Before fixing this error, you should check to see why this |
error directive was added. The directive #error is usually used to
prevent the programmer from compiling a section of code in cer-
tain situations.

To fix the error, remove the #error directive.
Error 10238 preprocessor #warning directive

The compiler generates a warning when it encounters the directive
#warning.

NOTE: Before fixing this error, you should check to see why this |
warning directive was added. The directive #warning is usually

Error Reference ERR-69

C/C++ Compiler Error Messages

P toR (C/C++)

Fix

Error 10018

Fix

Listing 2.97

used to tell the programmer that unexpected things could happen
in a section of code.

NOTE: This directive is not available when the option ANSI Strict
is enabled in the C/C++ Language settings panel.

To fix the error, remove the #warning directive.
preprocessor syntax error

The compiler encounters an illegal preprocessor directive, as in List-
ing 2.97.

Check the syntax of the directive in question. If the error is not ap-
parent, it is likely being caused by a previous error.

Preprocessor Syntax Error

#include file

Error 10209

Error 10211

Error 10210

Error 10225

protocol <prtcl> redefined

This error is generated because the protocol <prtcl> was previ-
ously defined.

protocol <prtcl> is already in protocol list

The compiler generated this error because the protocol <prtcl>
was previously listed in the protocol list.

protocol <prtcl> is undefined

This error is generated because the protocol <prtcl> was not de-
fined.

protocol list does not match @interface

The compiler generates an error when the protocol list declared in
the interface does not match what is defined in the implementation.

ERR-70 Error Reference

C/C++ Compiler Error Messages
P to R (C/C++)

Listing 2.98

Protocol list does not match @interface

@protocol a
@end
@protocol b
@end

@interface A <a>

@end
@implementation A //<<< ERROR: inconsistent with declaration
@end
Error 10205 receiver cannot handle this message
This message is generated because the receiver could not properly
handle the message.
Error 10061 reference to label <Ibl> is out of range
This error is given when an assembly function contains a branch
whose destination is out of range, as in Listing 2.99.
Listing 2.99 Reference to label ‘Ibl’ is out of range

bra.s label// error: label too far away

Error 10085

Fix

return value expected

This error is generated when a function declared to return a value,
does not contain a return value. For example, the var () function in
Listing 2.100 should return an int or be declared as void.

Declare the function in question as void, or return a value.

WARNING! In C++ a function declared without a return value is
implied to return an int type as in Listing 2.101.

Error Reference ERR-71

C/C++ Compiler Error Messages

Sto T (C/C++)

Listing 2.100

Return value expected

int var() {}//error: no return value

Listing 2.101 Return value from main() function expected.
main()
{
cout << “working”;
//<-- no return error here.
}
Error 10158 RTTI option is disabled
This compiler error is displayed when run-time type identification
is attempted when the RTTI pragma or the Enable RTTI option in
the C/C++ Language settings panel is off
Fix Turn on the Enable RTTI option in the C/C++ Language settings
panel.
Error 10187 sizeof() is not supported for SOM classes

You cannot use a class or object descended from SOMODbject in a
sizeof () expression. For more information on SOM objects, see
the Metrowerks manual C Compilers Guide , or the SOMObjects De-
veloper Toolkit (IBM).

StoT (C/C++)

Error 10180

These are C/C++ compiler error messages that begin with S or T.

SOM class access qualification only allowed to direct parent or
own class

When you invoke a method with explicit scope (such as
obj->B:: func()), the specified class (B) must be the same class as
the object (ob3j) or a direct parent of the object’s class.

ERR-72 Error Reference

C/C++ Compiler Error Messages
Sto T (C/C++)

Error 10190

Fix

Error 10170

Fix

Error 10188

Fix

Error 10168

For example, if class A is the parent of class B which is the parent of
class C, then
C* obj = new C;

obj->C::func();// OK: C is obj’s class
obj->B::func();// OK: B is a direct parent

// of obj’s class
obj->A::func();// ERROR: A is NOT a direct

// parent of obj’s class

For more information on SOM objects, see the Metrowerks manual
C Compilers Guide , or the SOMObjects Developer Toolkit (IBM).

SOM class arrays are not supported

You cannot create arrays of SOM objects. For more information on
SOM objects, see the Metrowerks manual C Compilers Guide , or the
SOMObjects Developer Toolkit (IBM).

Store the SOM objects some other way (such as a linked list).
SOM class data members must be private

All the data members of a SOM class must have private access. For
more information on SOM objects, see the Metrowerks manual C
Compilers Guide , or the SOMObjects Developer Toolkit (IBM).

Make sure you don’t declare any data members in a protected or
public access area of your class.

SOM classes cannot be class members

You cannot declare a SOM class as a member of another class. For
more information on SOM objects, see the Metrowerks manual C
Compilers Guide , or the SOMObjects Developer Toolkit (IBM).

Declare a pointers to the SOM object as a member, instead
SOM classes can only inherit from other SOM based classes

A SOM class can inherit only from classes that are descendants of
SOMObject. If you use multiple inheritance, you cannot mix SOM

Error Reference ERR-73

C/C++ Compiler Error Messages

Sto T (C/C++)

Fix

Error 10169

Fix

Error 10192

Fix

Error 10181

classes and regular classes together. For more information on SOM
objects, see the Metrowerks manual C Compilers Guide , or the
SOMObjects Developer Toolkit (IBM).

Make sure all the SOM class’s base classes are descended from SO-
MObject. If you don’t want to create a SOM class, make sure none of
the base classes are descended from SOMObject.

SOM classes inheritance must be virtual

When you declare a SOM class, all its base classes must be virtual.
For more information on SOM objects,see the Metrowerks manual C
Compilers Guide , or theSOMObjects Developer Toolkit , published by
IBM.

Make sure the virtual keyword appears before each of the class’s
bases in the class’s declaration.

SOM class has no release order list

(Warning Message) You created a SOM class without a SOMRe-
leaseOrder list, and the Extended Error Checking option is on.
The compiler assumes the release order is the same as the order in
which the functions appear in the class declaration. For more infor-
mation on SOM objects, see the Metrowerks manual C Compilers
Guide, or the SOM Objects Developer Toolkit, published by IBM.

There are two ways to avoid this warning:

e In the C/C++ Warning preferences panel, turn off the Ex-
tended Error Checking option.

¢ Include a SOMReleaseOrder pragma for the class which
gives the release order for all the class’s member functions.

SOM class must have one non-inline member function

A SOM class must have at least one member function that isn’t in-
line. MacSOM uses this class to determine which translation unit
implements the class. For more information on SOM objects,see the
Metrowerks manual C Compilers Guide or the SOMObjects Developer
Toolkit (IBM).

ERR-74 Error Reference

C/C++ Compiler Error Messages
Sto T (C/C++)

Fix

Error 10175

Fix

Error 10176

Fix

Error 10182

Error 10226

Make sure the class contains at least one member function that isn’t
inline. If necessary, create an empty one.

SOM runtime function func not defined (should be defined in
somobj.hh)

The compiler expects to find certain runtime functions in the som-
obj.hh header file, but the compiler can’t find one of them. The
somobj . hh file may have been corrupted, or you may have edited
the file incorrectly. For more information on SOM objects, see the
Metrowerks manual C Compilers Guide, or the SOM Objects Developer
Toolkit IBM).

Replace the somobj . hh header file on your hard disk with a copy
from the CodeWarrior CD. Modify somobj . hh only if you're famil-
iar with MacSOM.

SOM runtime function func has unexpected type

The compiler expects runtime functions in the somobj.hh header
file to be defined in a certain way, but the return type for one of the
functions is wrong. The somob7j . hh file may have been corrupted,
or you may have edited the file incorrectly. For more information on
SOM objects, see the Metrowerks manual C Compilers Guide, or the
SOMObjects Developer Toolkit (IBM).

Replace the somobj.hh header file on your hard disk with a copy
from the CodeWarrior CD. Modify somobj.hh only if you're famil-
iar with MacSOM.

SOM type variable undefined

This error occurs when a SOM specific data type (eg Environment)
cannot be found. This error usually appears because you haven't in-
cluded the right header files.

super class does not match @interface

The compiler generates an error when the super class declared in
the interface does not match what is defined in the implementation.

Error Reference ERR-75

C/C++ Compiler Error Messages
Sto T (C/C++)

Listing 2.102 super class does not match @interface

@interface a

@end

@interface b

@end

@interface c : a

@end

@implementation ¢ : b//<<< ERROR: inconsistent with declaration
@end

Error 10007 string too long

The character string in question is too long.

Fix Normally this error message is displayed because a terminating
quotes mark was omitted from the string. A solution is to turn on
the Color Syntax option in the Editor preference panel.

Error 10034 struct/union/class member <stType> redefined

This error appears when an attempt is made to redefine a struct,
union, enum, or a class member that has already been defined.

Fix Typically this happens when you use a name you have already as-
signed. Remove or rename one of the struct, union, enum, or class
members.

Error 10038 struct/union/class size exceeds 32k

This error appears when the size of a class, union, or struct is greater
than 32k. A struct, class, or union, usually a declared array;, is stored
on the stack and has a limit of 32K.

Fix You can overcome this restriction by defining an array as static or
using dynamic allocation to move the storage from the stack to the
heap.

ERR-76 Error Reference

C/C++ Compiler Error Messages
Sto T (C/C++)

Error 10033 struct/union/enum/class tag <stType> redefined

This error appears when an attempt is made to redefine a struct,
union, enum, or a class tag that has already been defined.

Fix Typically this happens when you use a name you have already as-
signed. Remove or rename one of the struct, union, enum, or class
tags.

Error 10135 template redefined

This error is given when an attempt is made to redefine a template
that has already been defined, as in Listing 2.103.

Fix Remove or rename one of the struct, union, enum, or class tags.

Listing 2.103 Template redefined

template <class T> class aClass { ... };

template <class T> class aClass { ... }; // error

Error 10136 template parameter mismatch

The compiler gives this error when the member function template
parameter list does not match the class parameter list, as in Listing
2.104.

Listing 2.104 template parameter mismatch

template <class T> class aClass { void f() };
template <class T,class U>
void aClass<T>::f() { ... }; // error

Error 10215 template too complex or recursive

The compiler gives this error when there are too many recursive
template expansions.

Fix Decrease the complexity of your algorithm.

Error Reference ERR-77

C/C++ Compiler Error Messages

Sto T (C/C++)

Error 10052

Fix

See Also

Listing 2.105

the file <filename> cannot be opened

The compiler cannot find a file name provided in an #include di-
rective, as in the second #include directive in Listing 2.105.

It is possible that the file name specified in the #include directive
is spelled wrong or is not on a valid access path. Switch to the
Finder and use the Find command to find the file in question.

It is also possible that the #include file is specified as a system in-
clude, <. .>, when it should be specified as a user include, “. . .".If
this is the case, select the Always Search User Paths checkbox in the
Access Path settings panel.

For more on access paths and the option Always Search User Paths,
consult the C Compilers Reference

File cannot be opened

#include "AbstractHeader.h"
#include "Foo.h"// This file doesn’t exist
#include <QDoffscreen.h>

Error 10167

Error 10048

Fix

the parameter(s) of the <functionname> function must be
immediate value(s)

Undocumented at this time.
too many initializers

This error is given when the number of initialization values is
greater than the number of items specified in the declaration of the
initialized structure.

Typically you encounter this error when initializing elements in an
array, structure or class and you attempt to assign more values than
elements declared. Adjust the number of elements in the array, class
or structure or use the correct number of initializers.

ERR-78 Error Reference

C/C++ Compiler Error Messages
Sto T (C/C++)

Error 10011

Listing 2.106

too many macro arguments

The compiler issues this error when an attempt is made to define a
macro with more than 32 arguments, as in Listing 2.106.

Too many macro arguments

#define macro(argl,...,arg33)

Error 10146

Fix

Listing 2.107

type mismatch <A_type> and <B_type>

The compiler issues this error when expects to find one data type,
but finds another instead.

This error may also occur if one of your functions has the same
name as a Metrowerks macro. For example,Listing 2.107 gives a
type mismatch error.

If the data types are involved are castable, typecast the offending
data type to the correct type.

In Listing 2.107, Length is a macro defined in the precompiled
headers MacHeaders68K and MacHeadersPPC:

#define Length(s) (*(unsigned char *)(s))

To fix this error, rename your variable to something other than a
pre-defined macro.

Type mismatch

class MyLine {
public:

MLine(double thelLen);
double Length(void);

Error 10233

typename redefined

The compiler generates an error when a typename is incorrectly
redefined, as shown in Listing 2.108.

Error Reference ERR-79

C/C++ Compiler Error Messages

Uto Z (C/C++)

Listing 2.108

Typename redefined

struct B;

typedef int B;//<<<

Uto Z (C/C++)

Error 10195

Error 10041

Fix

Error 10060

Fix

Error 10005

Fix

These are C/C++ compiler error messages that begin with U, V, W,,
X, Y, orZ.

undefined method <mthd>

This error is given when a method name <mthd> was used but had
not been defined.

undefined identifier <var>

This error occurs when an identifier is used that has not been de-
fined.

This is often caused from a variable not being declared within the
scope it appears in. Also, check for spelling errors.

undefined label <Lbl>

The compiler generates this error when a goto statement specifies a
label that has not been defined within the function.

Remove the goto, or create the necessary label within the scope
where the error occurs.

undefined preprocessor directive

This error is signaled when a preprocessor directive not recognized
by Metrowerks C/C++ is used.

A list of preprocessor directives recognized by Metrowerks C are
listed in the C, C++, and Assembler Language Reference. Consult this
list to make sure the directive you are using exists and is spelled
correctly.

ERR-80 Error Reference

C/C++ Compiler Error Messages
U to Z (C/C++)

Error 10003

Fix

Error 10013

Fix

Error 10021

Fix

Error 10091

Error 10162

Fix

Error 10207

unexpected end of file

The end of a source code file was reached before a language item
was completed.

This error may be caused by a misplaced or unbalanced right brace.
Check the penultimate line of the source code file in question. If the
error is not apparent, fix all previous errors and recompile.

unexpected end of line

The end of a source code line was reached before a language item
was completed.

This error may be caused by anything from a misplaced semicolon
to a missing symbol. Check the source code line in question. If the
error is not apparent, fix all previous errors and recompile.

unexpected token

This error occurs when the compiler finds an unexpected token.

If the error is not apparent, it is likely being caused by a previous
syntax error or missing symbol. Fix all previous errors and recom-
pile.

unimplemented C++ feature

The compiler generates this error when it encounters a C++ feature
that is not yet supported by Metrowerks C++.

unknown assembler instruction mnemonic

This error message is used to report an illegal instruction name.
Correct the mnemonic in the assembler instruct

unknown message selector

This error is generated because the message selector was not de-
clared or defined in any of the object hierarchy.

Error Reference ERR-81

C/C++ Compiler Error Messages

Uto Z (C/C++)

Error 10020

Error 10004

Error 10068

Error 10086

Fix

Listing 2.109

unterminated #if / macro

This error is displayed when an #1 £ directive is found with no
matching #endif directive, or a macro definition is not complete.

unterminated comment

The end of a source code file was reached before a comment was
completed.

value is not stored in register
Undocumented at this time.
variable <var> is not initialized before being used

The compiler encounters an expression using a variable that has nei-
ther been assigned a value nor initialized. For example the code in
Listing 2.109 would cause this error.

Initialize or assign a value to the variable before using it in an ex-
pression.

Variable is not initialized before being used.

static int f()
{
int i;
return 1i;

}

Error 10083

Fix

variable <var> is not used in function

(Warning Message) A variable declared in a function is not used in
the function body. This warning is signaled as an error if the Un-
used Variables checkbox is selected in the C/C++ Warnings set-
tings panel.

Either remove the unused variable, or deselect the Unused Vari-
ables checkbox.

ERR-82 Error Reference

C/C++ Compiler Error Messages
U to Z (C/C++)

See Also For more on the Unused Variables checkbox, see the C Compilers
Reference

Error 10120 vijrtual functions cannot be pascal functions

This error appears when a virtual function is declared as a pascal
function. For example, in Listing 2.110, the class var illegally de-
clares func () as a pascal function.

Listing 2.110 Virtual functions cannot be pascal functions

class aClass {
pascal int func(); // illegal declaration

}i

Error Reference ERR-83

C/C++ Compiler Error Messages
U to Z (C/C++)

ERR-84 Error Reference

metrowerks |8

Pascal Compiler
Error Messages

This chapter gives an alphabetical list of the most common compiler
errors which may be encountered while using Metrowerks
CodeWarrior compilers for both the PowerPC-based and 68K-based
Macintosh when using the Pascal programming language.

Pascal Compiler Errors

In this list, errors with variable initial text (such as a class or func-
tion name) come first. Errors beginning with a non-alphabetic sym-
bol character come next. After that, errors are listed alphabetically.

Symbol Names (Pascal)

Listing 3.1

These are Pascal compiler error messages that begin with a symbol
name, the name of a variable or function.

<param> could not be assigned to a register

The compiler cannot assign this variable or parameter to a register.
This error only occurs in in-line assembler routines.

<var> doesn’t start a variant list

You're initializing a variant record and using an identifier that can-
not start the variant part. For example:

Initializing a variant record

rect = RECORD

foo : integer;

Error Reference ERR-85

Pascal Compiler Error Messages
Punctuation (Pascal)

CASE bar : boolean OF
true : (a,b: char);
false: (i:integer);

END;

recl:

{

rec2:

{

rec3:

{
{

rect = (foo:1, bar:true, a:'a', b:'b');

OK }

rect = (foo:2, a:'a', b:'b');

ERROR: Didn’t initialize bar }

rect = (foo:3, bar:false, a:'a', b:'b');

ERROR: If bar is false, you must}
initialize i, not a and b. }

<ident> must be a type <type>

This is an error because this identifier <ident> was not declared as
atype <type>.

Punctuation (Pascal)

These are Pascal compiler error messages that begin with punctua-
tion marks.

‘.’ expected

A period is missing at the main BEGIN END block of a source file.

Fix Make sure the final END statement is properly spelled. Make sure
the final END statement is followed by a dot (.) instead of a semi-
colon (;).

‘.. expected

The compiler can’t translate an improper array declaration. Pascal
array declarations need beginning and end subscripts separated by

two dots (. .) (Listing 3.2).

ERR-86 Error Reference

Pascal Compiler Error Messages
Punctuation (Pascal)

Listing 3.2 Example array declarations

TYPE
GoodArrayType = ARRAY [1 .. 10] OF REAL; { OK }
BadArrayType = ARRAY [10] OF REAL; { Error }

‘,” expected

The compiler can’t find a comma (,) to separate parameters in a
routine declaration or call.

‘;’ expected

A semi-colon is missing at the end of a statement (Listing 3.3).

Listing 3.3 Example semi-colon error

VAR
b : CHAR; { OK }
c : REAL { Error }
d : INTEGER;
‘.’ expected
The compiler expected a colon (:) to denote the data type of an
identifier (variable, object, parameter, or routine)
‘.=’ expected
You've attempted to assign a value to a variable without the assign-
ment operator (Listing 3.4).
Listing 3.4 Example of an incorrect variable assignment
c = 3; { OK }
c = 3; { Error, “=" is a comparison operator }

Error Reference ERR-87

Pascal Compiler Error Messages
Punctuation (Pascal)

‘=" expected

The compiler expected the equality comparison (=) operator in a
boolean expression.

‘I’ expected

The compiler expected an opening left bracket to specify an ordinal
range.

‘T’ expected

A closing right bracket is missing (Listing 3.5).

Listing 3.5 Example of a missing right bracket

VAR
c : ARRAY [1 .. 10] OF INTEGER;

BEGIN
c[l] = 6; { OK }
c[2 28; { Error }

‘(’ expected

The compiler expects to find an opening left parenthesis to begin an
expression.

‘)’ expected

The compiler expects to find a closing right parenthesis to end an
expression (Listing 3.6).

Listing 3.6 Example of a missing closing parenthesis

b := cos(c); { OK }
:= sin(b; { Error }

V)
|

ERR-88 Error Reference

Pascal Compiler Error Messages
A to C (Pascal)

‘...” can’t be used in this context.
You are using an ellipsis incorrectly.
{$endc} or {$endif} expected

The compiler expected to find the end of a compiler compiler direc-
tive here.

$error

(Warning) Your code contains the $error directive, which prints a
user-defined warning message to the Messages Window.

A to C (Pascal)

These are Pascal compiler error messages that begin with A, B, or C.
a CONST parameter cannot be modified

You tried to modify a parameter declared CONST.

a CONST parameter cannot be passed to a VAR parameter

You cannot pass a CONST parameter to a VAR parameter since the
compiler cannot ensure that the CONST parameter will remain un-
changed.

a standard routine cannot be assigned
You cannot assign a standard routine to a procedure’s parameter. A

standard routine is one of Pascal’s built-in routines, like abs. For ex-
ample:

Listing 3.7 Assigning a standard routine to a procedure’s parameter

procedure foo (function a (i : integer)
integer);

begin

end;

Error Reference ERR-89

Pascal Compiler Error Messages

A to C (Pascal)

foo(abs);{ ERROR: cannot assign the built-in
function abs to a procedure’s
parameter }

Fix

Listing 3.8

actual declaration for 'identifier' missing

An error occurred because an actual declaration for this anonymous
type was not given in the implementation of the unit.

actual parameter’s size is too small, could mangled memory

(Warning) The string you're passing to a routine is smaller than the
routine expects. Since the string parameter is a VAR parameter,
copying the string could mangle memory.

already declared

The underlined symbol is declared more than once in the current
scope (Listing 3.8).

Remove the extra declaration.

Example of the already declared error

program test;

type

t char = char;
t char = "“char; // 't _char' type is already declared

var
c: t char;
c: char;

begin
end.

1

// variable 'c' is already declared

ERR-90 Error Reference

Pascal Compiler Error Messages
A to C (Pascal)

Fix

Listing 3.9

already defined macro
This error is generated when you try to redefine a macro.
array element type cannot be a schema

An error occured because the component type of an array cannot be
a type derived from a schema.

assignment to loop index variable

(Warning) The compiler is warning you that the variable used as an
index ina FOR..DO loop is assigned a value in the loop. Doing so
might prevent the loop from terminating (Listing 3.9).

TIP: To make the compiler warn about this condition, select
Modified For-loop Indexes in the Pascal Warnings preferences
panel.

Remove the assignment to the index variable, or use another vari-
able.

Example of loop index assignment

program test;

var
i: integer;

begin
for i:=1 to
begin
i:=1;
end;
end.

100 do

Error Reference ERR-91

Pascal Compiler Error Messages

A to C (Pascal)

Listing 3.10

bad precompiled unit format

This is an error caused by the compiler in some way. Please remove
binaries and preferences then recompile your project. If the problem
persist please contact Metrowerks Technical Support.

bad symbol

[Obsolete] This error has been replace by bad “bad precompiled
unit format.”

‘BEGIN’ expected

The compiler expects to find the beginning of a compound state-
ment here.

cannot assign to a record with schema array type fields

You cannot perform an assignment to a record type variable that
contains fields which are array types derived from schemata.

cannot be a schema

Only non-packed records and arrays can be used to declare a
schema. You cannot use a variable of a type derived from a schema
as an argument to an open array type parameter. You also cannot
use a schema as a function return type. Object type data members
cannot be types derived from schemata.

cannot be a var parameter

The compiler gives this error became the underlined parameter in
the routine call is not a variable and it should be.

Cannot be a var paramter

program test;

procedure a(var c:char);

begin
end;

ERR-92 Error Reference

Pascal Compiler Error Messages
A to C (Pascal)

begin
a('a');// should be replaced with: c:='a
end.

~e
o))
Q

~

~e

Fix Assign routine call parameter value into a variable and used the
variable to call the routine.

cannot find file

This error is generated when the compiler could not find a file while
compiling or linking a project.

cannot mix different styles of conditional compilation
directives

This error is generated because you tried to mix Borland and MPW
style conditional compilation

cannot mix dynamic arrays and non-local gotos

This error is generated because you tried to have an open array pa-
rameter for a nested routine that uses exit.

cannot mix optimized and unoptimized classes.

This error is generated because you tried to mix optimized and un-
optimized classes.

Fix ‘optimize class hierarchy’ needs to be on or off for all pascal units
(project sources and pascal unit libraries)

cannot mix pointer based and handle based classes.

This error is generated because you tried to mix pointer based and
handle based classes.

Fix ‘pointer based objects’ must be on or off for all pascal units (project |
sources and pascal unit libraries)

Error Reference ERR-93

Pascal Compiler Error Messages
A to C (Pascal)

cannot mix short-circuit and non short-circuit logical
operations

An error was generated because you cannot mix short-circuit opera-
tors (&, |) with non short-circuit operators (and,or) within the same
expression

cannot nest an object method definition

An error occurred because you have attempted to nest the definition
for a method inside a procedure or function, as in Listing 3.11.

Listing 3.11 Cannot Nest an Object Method Definition

type
Widget = object
procedure Run;
end;

procedure Foo;
procedure Widget.Run; //ERROR
begin
end;

begin

end;

cannot override data field <ident>

You already used this identifier <ident> as a data field for this class
or one of its ancestors.

cannot pack this type

An error message was given because this type declaration cannot be
made a packed type

cannot use formal discriminants in enumeration lists

You cannot use the formal discriminants in a schema declaration as
enumerated identifiers.

ERR-94 Error Reference

Pascal Compiler Error Messages
A to C (Pascal)

can't be a routine type

You cannot assign a parameter of a routine type to a variable of a
procedural type. The parameter may represent a nested routine, but
variables of a procedural type cannot represent nested routines.

Listing 3.12 Can’t be a routine type

type intfunc = function (i : integer) : integer;

procedure foo (function a (i : integer) :
integer);

var x : intfunc;

begin
X := a; // ERROR

end;

can’t be an open array base type

You cannot declare an open array (that is, an array with no upper
limit) of this type; for example, an open array of files.

can’t initialize an occurrence of this type
You cannot perform static initialization on an variable of this type.
Can’t override ‘objectMethod’.

The compiler generates this error message because this method can-
not be overridden

can’t use ‘A’ for procedural types

Don’t create a pointer to a procedure with the » operator. Just use
the procedure’s name itself. For example:

Listing 3.13 Can’t use A for procedural types

TYPE fooproc = “procedure;// ERROR
fooproc = procedure; // OK

Error Reference ERR-95

Pascal Compiler Error Messages

A to C (Pascal)
case constant defined more than once
A value in a CASE statement is repeated (Listing 3.14).
Listing 3.14 Case constant defined more than once error

CASE i OF

1

2
3
2

X := Sin(x);
X = Cos(x);
: X = Exp(X);
:y :=0.0;
{ Error: 2 is already defined. }

class 'identifier' already declared external
You declared the class to be external and you cannot redefine it.
class 'identifier' was declared forward or external

An ancestor class was declared forward or external and hasn’t been
fully defined yet. You must fully define a class before inheriting
from it.

compiler restriction

This language feature is not supported by the Metrowerks Pascal
compiler.

constant overflow

An error was encountered when the value represented by this con-
stant exceeds the internal representation available. An example
would be trying to fit 4 000 000 000 into a longint.

constant string too long

The compiler generated this error message because the literal string
contains to many characters. The strings length is greater than or
equal to 256 characters.

ERR-96

Error Reference

Pascal Compiler Error Messages
D to F (Pascal)

D to F (Pascal)

These are Pascal compiler error messages that begin with D, E, or F.
division by 0

You've attempted a division operation with 0 as the divisor. Divi-
sion by zero is illegal.

‘DO’ expected

The DO keyword is missing in a WHILE or FOR statement (Listing
3.15).

Listing 3.15 ‘DO’ expected error
FOR a := 1 TO 10 DO { OK }
b := b + a;

WHILE b > 100

{ Error: no DO keyword }
b := b DIV 2;

Fix

‘END’ expected

An END keyword is missing in a BEGIN—END statement block.

Make sure the END statement is properly spelled or that the END
statement intended to finish a BEGIN—END statement block is not
“used” by another BEGIN—END block.

end of line expected
There is unnecessary text at the end of this line.
error in macro definition

This is generated when you try to use an improperly defined macro.

Error Reference ERR-97

Pascal Compiler Error Messages
D to F (Pascal)

Exit statement needs a routine name

The Exit procedure requires an argument: the name of the routine
to exit or PROGRAM to exit the program.

expression type must be boolean

A non-boolean expression is used where a boolean expression is ex-
pected as in Listing 3.16.

Listing 3.16 Expression type must be boolean error

IF (a + 10) <> 0 THEN { OK }
b := 50;

IF (a + 10) THEN
{ Error: not a boolean expression }
b := 50;

extra ‘,” in parameters declaration

An error was given when the routine call contains an extra comma
(,) in the argument list as in Listing 3.17.

Listing 3.17 Example of extra , in parameters declaration

foo(bar,);

‘FILE’ expected
An error was given because this parameter must of a file type.
file not allowed in this context

This is an error because this component defines a file which is illegal
in this context, as in Listing 3.18.

ERR-98 Error Reference

Pascal Compiler Error Messages
D to F (Pascal)

Listing 3.18

Example of File not allowed error

foo = record phyle : file; end;

Listing 3.19

formal discriminants cannot be used as parameters to function
calls

You cannot use the formal discriminants in a schema declaration as
actual parameters to a procedure or function call.

function already has a stackframe

This assembler error message is given when, a stackframe is already
defined for the routine.

function doesn’t return any value

A function does not have an assignment statement that assigns a
value to the function name identifier (Listing 3.19). To specify the
value a function returns, the function’s identifier must be assigned a
value as if it were an ordinary variable.

Function doesn’t return any value errors

FUNCTION InchesToCms(inches : REAL) : REAL;

VAR
temp : REAL;

BEGIN

{ Error: no assignment to InchesToCms identifier }
temp := inches * 2.54;

END;

FUNCTION ChickenCount (hatchedEggs : INTEGER) :

INTEGER;
BEGIN

{ Error: no assignment if condition is false }
IF hatchedEggs = 0 THEN
ChickenCount := 0;

END;

Error Reference ERR-99

Pascal Compiler Error Messages
G to I (Pascal)

function has no initialized stackframe

This assembler error message is given because a stackframe must be
defined for the routine.

G to | (Pascal)

These are Pascal compiler error messages that begin with G, H, or I.
goto a label enclosed in a ‘FOR’ statement.

This is an error because this label is the target for a goto statement
from outside the FOR loop as in Listing 3.20.

Listing 3.20 Example of goto a label enclosed in FOR statement.

goto 1;
for <var> := <expr> to <expr2> do
1:

goto a label enclosed in a ‘WITH’ statement

This error message is given when the label is the target for a goto
statement from outside the WITH statement. An example of this
error is in Listing 3.21.

Listing 3.21 Example of goto a label enclosed ina WITH statement.

goto 1;
with <expr> do begin

1:

end;

goto between ‘CASE’ legs.

An error is given when the goto's target is inside another CASE la-

bel, as in Listing 3.22.

ERR-100 Error Reference

Pascal Compiler Error Messages
G to I (Pascal)

Listing 3.22 Example of goto between CASE legs.

case <expr> of
labl : begin

goto 1;
end;

lab2 : begin
2:
end;

end

goto between ‘IF’ and ‘ELSE’ parts.

An error is generated when the goto's target is between an IF and
ELSE as in Listing 3.23.

Listing 3.23 Example of goto between IF and ELSE parts.

if <expr> then begin
goto 1;
end

else begin
1:

end

‘identifier’ not visible in this scope

You are attempting to access a protected or private data field out-
side of its restricted scope.

Error Reference ERR-101

Pascal Compiler Error Messages
G to I (Pascal)

identifier expected

The error message is given when the compiler expects to find an
identifier.

illegal addressing mode

This assembler message is generated because this addressing mode
is illegal for the operation

lllegal cast, size mismatch.

You tried to cast a variable of a structured type to another struc-
tured type of a different size. The structured types must be the same
size.

illegal casting

This is an error because of an inappropriate attempt to use a value
of one data type as another data type (Listing 3.24).

Listing 3.24 lllegal casting error

VAR
LONGINT;

ARRAY [1..3] OF CHAR;
REAL;

oo

BEGIN
a := LONGINT(i); { OK };
a := LONGINT(b); { Error }

illegal declaration

This is an error because it is illegal to use this declaration in this con-

text as in Listing 3.25.

ERR-102 Error Reference

Pascal Compiler Error Messages
G to I (Pascal)

Listing 3.25

Example of lllegal declaration.

procedure foo (

««.) ; C; external;

Listing 3.26

illegal format for real constant

An error was given because this number doesn't correspond to the
notation accepted for a floating point number.

illegal function result type

This error is given when a function cannot return an item of this

type, as in Listing 3.26.

Example of illegal function result type.

function foo

FILE;

illegal instruction for this processor
This assembler message is given for an unrecognized instruction.
illegal label

The compiler gives this error when a label is not in the range of
1... 9999.

illegal operand
You cannot use this expression as an operand.
illegal operand type

This is an error because this operator doesn't allow operands of this
type.

illegal operands for this processor

This assembler error message is generated because this kind of op-
erand is not accepted by the processor.

Error Reference ERR-103

Pascal Compiler Error Messages

G to I (Pascal)

Listing 3.27

illegal operation

An error is generated because this operation cannot be performed,

as in Listing 3.27.

Example of illegal operation.

i/0 (division by literal zero)

Listing 3.28

illegal operation on a file

An error is generated because this operation is not allowed for a file
or files of this type.

illegal register list

This assembler error message is given because this instruction
doesn't accept this register list.

illegal routine specification

This error is generated because you declare a routine that was in-
valid.

illegal set element type

An error is given when the type cannot be used as a base to con-
struct a set, as in Listing 3.28.

Example of illegal set element type.

set of real

illegal statement

This is an error because the statement is illegal, as in Listing 3.29.

ERR-104 Error Reference

Pascal Compiler Error Messages
G to I (Pascal)

Listing 3.29 Example of illegal statement.

if <expr> then

procedure
illegal symbol in declaration
You have attempted to declare a variable, but its identifier is incor-
rect or unknown. An example of this error is in Listing 3.30
Listing 3.30 lllegal symbol in declaration error
VAR
X9 : REAL; { OK }

_ripe : CHAR; { OK }
123e : INTEGER;
{ Error: can’t start with number }

illegal symbol in factor

You have included an illegal or unknown symbol in your statement,
as in Listing 3.31

Listing 3.31 illegal symbol in factor

X := +-85
if a==2 then b = 3.0; (* the a==2 is illegal*)

illegal usage in this scope

An error message was given because an illegal operation was per-
formed within the scope, as in Listing 3.32.

Listing 3.32 Example of illegal usage in this scope.

for i : <exprl> to <expr2> do
call(i){ where the parameter is by-var }

Error Reference ERR-105

Pascal Compiler Error Messages

G to I (Pascal)
illegal usage of a selector
This is an error because [, ., * can only occur with the correspond-
ing types, as in Listing 3.33.
Listing 3.33 Example of illegal usage of a selector.
i : integer;
it = 4;
illegal use of inline function
This is an error because this function can not be defined as inline.
illegal use of keyword
This is an error because this keyword is illegal in this context.
incorrect syntax for $$Shell(id) substitution
(MPW only) A warning was issued because the syntax used to spec-
ify a path variable is incorrect. The default search paths are used in-
stead to locate the unit.
‘INHERITED’ must be used in a method definition.
An error is given because the inherited directive can only occur in a
method definition, not in an ordinary routine definition. Listing 3.34
is an example of this error.
Listing 3.34 Example of INHERITED must be used in a method definition.

procedure foo;
begin

inherited bar;

end;

ERR-106 Error Reference

Pascal Compiler Error Messages
G to I (Pascal)

INLINE is not supported in PowerPC

You tried to use inline opcode routines in PowerPC code. The
PowerPC compiler doesn’t support this feature.

‘INTERFACE’ expected
This is an error because the interface part of a unit is missing.
internal compiler error

This error message was generated when the compilation halted. The
compiler is functioning improperly.

WARNING! If this error is generated please contact Technical
Support by sending in a bug report form. Please include as much
information as to when and how the error occurred as possible.

invalid function name or function name expected

This error is generated because the compiler expected a routine
name.

invalid procedure name or procedure name expected

This error is generated because the compiler expected a routine
name.

invalid program name or program name expected

This error is generated because the compiler expected a program
name.

invalid unit name or unit name expected
This error is generated because the compiler expected a unitname.
invalid variant record CASE type

This error is given when the CASE statement label type is not an or-
dinal value.

Error Reference ERR-107

Pascal Compiler Error Messages

J to L (Pascal)

J to L (Pascal)

These are Pascal compiler error messages that begin with J, K, or L.
label error

This is an error because a label has been redefined.

label range error

An error is given when the case label ranges lower bound is larger
than the upper one. Listing 3.35 is an example of this error.

Listing 3.35 Example of label range error.
case <expr> of
5..3
end;
local data > 224 bytes
You must create a stack frame for this routine, since it has more than
224 bytes of local variables. For more information, see “The Built-In
Assembler” in the Pascal Language Manual.
local variables size > 32K
The total amount of memory used to allocate local variables has ex-
ceeded 32Kbytes. This error often occurs when declaring arrays that
are too large (Listing 3.36).
Listing 3.36 Local variables size > 32K error

PROCEDURE BoomArray();

VAR

{ Error: this local array is
greater than 32Kbytes }

wayTooBig :

ARRAY [1 .. 100000] OF INTEGER;

ERR-108 Error Reference

Pascal Compiler Error Messages
M to O (Pascal)

Fix Make some of the variables global instead.

M to O (Pascal)

These are Pascal compiler error messages that begin with M, N, or
0.

method not declared in *.

This error was given because this method wasn't declared in this
class.

missing array initializer
The array initializer doesn’t contain enough elements.
missing ‘$IFC’ directive

The compiler encountered a { SELSEC} or {SENDC} directive with-
out first finding a matching {SIFC} directive.

must be a pointer or an object

This is an error because the actual declaration for an anonymous
type must be either a pointer or an object.

must be an array
This is an error because this variable's type must be an array.
must be an ordinal type

An error because formal discriminants to a schema must be an ordi-
nal type.

must be assignable

The left hand side of an assignment statement can’t be assigned a
value. Listing 3.37 shows an example.

Error Reference ERR-109

Pascal Compiler Error Messages
M to O (Pascal)

Listing 3.37 Must be assignable error

CONST

a = 10;
BEGIN

a = 20;

{ Error: constant values can’'t be reassigned }

e o o

must be a constant

You have attempted using an expression as a constant that is not a
constant expression. Listing 3.38 shows an example.

Listing 3.38 Must be a constant error

CONST
b =10; { OK }
x = func();
{ Error: function call is not allowed }

CASE finalvalue OF
1 f :=10; { OK }
b f := 2;
{ Error: b is not a constant expression }

must be a function

A procedure is called where a function is expected (Listing 3.39).

Listing 3.39 Must be a function error

FUNCTION Func() : INTEGER; FORWARD;
PROCEDURE Func();
{ Error: expected a function definition }

ERR-110 Error Reference

Pascal Compiler Error Messages
M to O (Pascal)

BEGIN
END;

Listing 3.40

must be an object type.
This is an error because this variable's type must be a class.
must be an open array parameter

This error is given because the HIGH function can only be used with
an open array; that is, an array declared with no range. An open
array can only be declared in routine formal parameter list.

must be a pointer
This is an error because this variable's type must be a pointer.
must be a procedure

A function is used where a procedure is expected (Listing 3.40).

Must be a procedure error

PROCEDURE Func() : INTEGER; FORWARD;

e o o

FUNCTION Func();
{ Error: expected a procedure definition }

BEGIN
END;

must be a range
An error was given because this variable's type must be a range.
must be a record

This is an error because this variable's type must be a record.

Error Reference ERR-111

Pascal Compiler Error Messages
M to O (Pascal)

Listing 3.41

must be a scalar

An error was given because this variable's type must be an ordinal
type or an enumeration.

must be a text file.

An error was given because this variable's type must be a file of type
‘text’.

must be a variable

This is an error because this identifier was not declared as a vari-
able,

no parameter list

An error was generated when the parameter list was missing for
this routines call.

not in program parameters

This is an ANS Pascal error message. It is generated when the file
was not declared in the program header.

number is out of range

This is an error because the literal number is out of the range de-
fined for the variable/field / parameter.

number overflow

The compiler is signalling an attempt to assign a numeric constant
value to a variable that’s greater than the maximum allowed for that
data type. Listing 3.41 give an example of this error

Number overflow error

VAR
a

BEGIN

INTEGER;

ERR-112 Error Reference

Pascal Compiler Error Messages
P to R (Pascal)

a := 10000000000000000000000000;
{ Error: too big! }

object cannot contain file component

This is an error because a file cannot be made out of classes.

object not printable

This is an error because it's impossible to print the value of this type.
‘OF’ expected

The compiler generates this message because the code is missing the
keyword OF in a CASE statement

out of range

An error message is given when the value is out of the range de-
fined for the variable, field, or parameter.

P to R (Pascal)

Listing 3.42

These are Pascal compiler error messages that begin with P, Q, or R.
parameter mismatch

The parameters in a routine’s definition and declaration do not

match (Listing 3.42).

Parameter mismatch error

PROCEDURE Func(a : INTEGER); FORWARD;

PROCEDURE Func(a : CHAR); { Error: parameter doesn’t match }

BEGIN

Error Reference ERR-113

Pascal Compiler Error Messages
P to R (Pascal)

e o o

END;

parameter missing

A routine call does have enough parameters to match the routine’s

definition (Listing 3.43).

Listing 3.43 Parameter missing error

FUNCTION Times(i : INTEGER; factor : INTEGER) :
INTEGER;
BEGIN

END;

BEGIN
X := Times(1l2); { Error: need 2 parameters }

e o o

preprocessor nesting too deep

The compiler gives this error when there are too many nested com-
pilation directives.

procedural variable can’t get nested routine.

This is an error because you cannot assign a local routine to a proce-
dural type variable

procedure already FORWARD

The underlined routine is declared as FORWARD more than once in
the current scope. Listing 3.44 gives and example of this error.

Fix There are two suggested fixes to this error:

* Remove the extra declaration.

ERR-114 Error Reference

Pascal Compiler Error Messages
P to R (Pascal)

Listing 3.44

* Remove the FORWARD keyword if your are actually defining
the routine.

Procedure already FORWARD error

program test;

procedure a;
procedure a;

forward;
forward; // procedure 'a' is already
// declared as FORWARD

begin
end.
program parameter redeclaration
This ANS Pascal error message is given when the file was already
declared as in Listing 3.45.
Listing 3.45 Example of program parameter redeclaration.

program (output, output);

Listing 3.46

range base type mismatch

An error was given because it is impossible to construct a range
over this type. Listing 3.46 gives an example of this error.

Example of range base type mismatch.

fprange = 1.0

1.5;

redeclaration of routine <routineName>

A function or procedure, named routineName, is declared more than
once in the same scope.

Error Reference ERR-115

Pascal Compiler Error Messages

S to T (Pascal)

redundant symbol
An error is given because this character is illegal in Pascal.
result type mismatch

The compiler generated this error message because this function's
type doesn't match the declaration's type.

routine ‘identifier’ declared but undefined.

You did not implement a routine that you declared in the interface
or declared forward.

S to T (Pascal)

Listing 3.47

These are Pascal compiler error messages that begin with S, T.
scalar value expected

The compiler expects a scalar value, such as a boolean, enumeration,
range, char, or integer.

Segmentation directive must be placed after
‘IMPLEMENTATION"’.

Segmentation directives, {$S segmentName}, cannot be placed in
the interface part of a unit. Instead, place segmentation directives in
the implementation part.

set base type mismatch

This is an error because the base type of these sets are not compati-
ble, as in Listing 3.47.

Example of set base type mismatch.

set of colors and set of chars

ERR-116 Error Reference

Pascal Compiler Error Messages
S to T (Pascal)

Listing 3.48

size mismatch for universal parameter

This error is given when UNIV parameters are not the same size.
UNIV parameters must match in sizes.

string mismatch, the parameter could be mangled in the called
routine, use a ‘const’ parameter.

(Warning) The string you're passing to a routine is longer than the
routine expects. Since this string parameter is a value parameter,
copying the string could corrupt memory.

string too long for assignment

The string literal assigned to a string variable is longer than the
string variable’s length (Listing 3.48).

String too long for assignment error

VAR
S

BEGIN
{ Error:

S

: STRING[10];

s can only be 10 characters long }
:= 'abcdefghijklmnopgrstuvwxyz';

subrange type expected

You must use an ordinal type subrange in this context.
‘THEN’ expected

The THEN keyword is missing in an IF statement (Listing 3.49).

Listing 3.49 ‘THEN’ expected error
IF a = 'b' THEN b := a; { OK }
IF x = 0 { Error: no THEN keyword }
y :=

Error Reference ERR-117

Pascal Compiler Error Messages
S to T (Pascal)

‘TO’ or ‘DOWNTO’ expected

A TO or DOWNTO keyword is missing in a FOR statement (Listing
3.50).

Listing 3.50 ‘TO’ or ‘DOWNTO’ expected error

FOR 7

=1 TO 10 { OK }
k :=k *

2;

FOR i := 0 DO { Error: no TO or DOWNTO clause }

Too many array initializers
The array initializer contains too many elements.
Too many include files

This error message is displayed when the number of include files
exceeds the capacity of the compiler.

Too many nested directives

This error message is generated when the compiler encounters too
many levels of nesting.

too many nested macros

You exceeded the maximum nesting level for macros. You cannot
nest them more than 32 deep.

Too many opcodes for inline routine

The compiler generates this error message when the inline routine is
too long.

type expected

A data or object type is missing in a variable declaration (Listing
3.51).

ERR-118 Error Reference

Pascal Compiler Error Messages
U to Z (Pascal)

Listing 3.51 Type expected error

VAR
a : CHAR; {OK }
i : ; { Error: missing type }

type <identifier> had a forward declaration, the compiler
cannot change it to <identifier>

You didn’t define the type, and the compiler cannot change a vari-
able of that type to a new type. To allow this type coercion turn on
the Relax pointer compatibility option in the Pascal Language set-
tings panel.

type mismatch

The type of a variable differs from the expression it is being as-
signed. Also, the type of an item in an expression is not compatible
with the other types used in the expression. An example of this

error is in Listing 3.52

Listing 3.52 Type mismatch error

a := 'A';
b := 'a' - 'A';
{ Error: characters aren’t numeric }

U to Z (Pascal)

These are Pascal compiler error messages that begin with U, V, W,
X, Y, orZ.

unclosed comment

A comment has not been terminated (Listing 3.53).

Error Reference ERR-119

Pascal Compiler Error Messages
U to Z (Pascal)

Listing 3.53 Unclosed comment error

{ Error: unclosed comment error }
{$I test.p
VAR

i, j : INTEGER;

undeclared identifier

A variable or constant name is used in source code, but has not been
declared.

undefined identifier
An error occurred when this identifier is undefined.
undefined label ‘label-number’

A label has been declared or referenced in a GOTO statement but is
not used in the source code (Listing 3.54).

Listing 3.54 Undefined label error

LABEL 1000;

VAR
i, j : INTEGER;

BEGIN
i := 10;
IF i > 5 THEN GOTO 1000
{ Error: 1000 never used }
END;

undefined label

An error occurred when a label was referenced by had not been de-
clared.

ERR-120 Error Reference

Pascal Compiler Error Messages
U to Z (Pascal)

Fix

undefined MPW shell variable

(MPW only, warning) A warning was issued because the path vari-
able is undefined. The default search paths are used instead to lo-
cate the unit.

undefined pointer ‘identifier’

An error occurred when this identifier was assumed to be a pointer
but is still undefined.

unexpected end of file

The compiler reached the end of a source code file before it could
read the terminating END statement.

Add the terminating statement to the source code file.
unknown PowerPC instruction mnemonic

This is an unknown assembler instruction for the PowerPC assem-
bler.

‘UNIT’ expected

The UNIT expected error message is issued if neither program or
unit is the first keyword of the file.

unrecognized pragma

This error is generated when you attempt to use a pragma that is not
valid for the platform target.

‘UNTIL’ expected

This REPEAT statement is missing its UNTIL clause. Every REPEAT
statement must end with an UNTIL clause.

unit wasn‘t compiled

The unit being referenced in the project cannot be found within the
project. This error often occurs when a UNIT's name and its file-

Error Reference ERR-121

Pascal Compiler Error Messages
U to Z (Pascal)

name don’t match. By default, Metrowerks Pascal requires that the
name in a unit’s UNIT statement and the unit’s filename (without
the filename extension) be the same.

Fix Add the unit or the library that contains the unit to the project, or
change the unit’s filename to match the name used in the unit’s
UNIT statement.

unresolved forward class reference to ‘identifier’.

An error occurred because this identifier was assumed to be a class
but is still undefined.

unresolved external class reference to <identifier>

The compiler cannot create an instance of an external class since it
doesn't know the class’s size.

unsafe object reference.

An error is generated when the reference to an object's field is un-
safe. The Memory Manager may move the object.

unterminated string

A string literal doesn’t have an ending quote. For example of this

error see Listing 3.55

Listing 3.55 Unterminated string error

CONST
{ Error: no ending quote character }
kDefaultTitle = 'Rabbit Food Accounting Package;

unused variable

The compiler is warning that a variable has been declared, but it is
never used in its scope (Listing 3.56). To make this warning active,
select Unused Variables in the Pascal Warnings settings panel.

ERR-122 Error Reference

Pascal Compiler Error Messages
U to Z (Pascal)

Listing 3.56 Unused variable warning

FUNCTION ChunkCount(a : INTEGER) : INTEGER;

VAR
SockStr : STRING[100]; { Warning: SockStr never used }

BEGIN
ChunkCount := a * 10
END;

value is not stored in register

This assembler error message is given when the value is not in a
register, it must be in a register.

variable “*’ is a loop index

This is an error because you cannot use a for loop index for this pur-
pose.

variable identifiers not allowed in expression

Index range expressions cannot contain references to variable iden-
tifiers.

variable used but not initialized

A variable is used in an expression without first being assigned a

value (Listing 3.57).

Fix Assign a value to the variable before using it in an expression.

Listing 3.57 Variable used but not initialized warning

VAR
i, j, k : INTEGER;

BEGIN
j := i * 10; { Error: i isn’t initialized yet }
IF (Fib(i) > 100 THEN

Error Reference ERR-123

Pascal Compiler Error Messages
U to Z (Pascal)

{ Error: i isn’t initialized yet }
k :=1;
END.

ERR-124 Error Reference

A

metrowerks |8

Java Error
Messages

This chapter gives an alphabetical list of the compiler errors which
may be encountered while using Metrowerks Java compiler.

Java Compiler Errors

In this list, errors with variable initial text (such as a class or func-
tion name) come first. Errors beginning with a non-alphabetic sym-
bol character come next. After that, errors are listed alphabetically.

Symbol Names (Java)

Error 14195

Listing 4.1

These are Java compiler error messages that begin with a symbol
name, such as the name of a method, variable, or class.

class in throws clause must be a subclass of class
java.lang.Throwable.

Any class in the throws clause must be a subclass of Throwable.
Generally, the exception classes you create will be subclasses of
Exception, which is in turn a subclass of Throwable.

Throwing a class that is not a subclass of Throwable

public class FirstException ({
// Not a subclass of anything.

/7.
}

public class SecondException extends Exception {

Error Reference ERR-125

Java Error Messages
Symbol Names (Java)

// A subclass of Exception, which is a subclass of Throwable.
/] . ..

}

public class ThrowTestClass {
public static void c(int x)
throws FirstException, SecondException {
// ERROR: FirstException is not a subclass of
// java.lang.Throwable.

Error 14099 class is an abstract class. It can’t be instantiated.

You tried to create an instance of an abstract class.

Fix Either declare the class not to be abstract, or create a subclass of the
abstract class and then create an instance of the subclass.

Listing 4.2 Instantiating an abstract class

public abstract class Animal { /* . . . */ }
public class Bird extends Animal { /* . . . */ }

public class AbstractExample {

public static void main(String args[]) {
Animal A = new Animal();
// ERROR: Animal is an abstract class.
Bird B = new Bird();
// OK: Bird is not abstract.

ERR-126 Error Reference

Java Error Messages
Symbol Names (Java)

Error 14175

Error 14092

Fix

Listing 4.3

className is defined in fileName. Because it is used outside
of its source file, it should be defined in a file called
className.java.

This error will only occur when the option Strict File Names is en-
abled in the Java Language settings panel, and you have not defined
a classname is defined in fileName. Because it is used outside of its
source file, it should be defined in a file called className.java.

interface is an interface. It can’t be instantiated.

You tried to create an instance of an interface.

Either change the interface to a class, or create a class that imple-
ments the interface and create an instance of the class.

Instantiating an interface

public interface CanFly { /* . . . */ }
public class Plane implements CanFly { /* . . . */}

public class InterfaceExample {
public static void main(String args[]) {

CanFly C new CanFly(); // ERROR: CanFly is an interface.
Plane P = new Plane(); // OK: Plane is a class
}
}
Error 14091 class1 must be declared abstract and not final. It does not
define method from class2.
If a class contains abstract methods, you cannot declare it as final.
Instead, you must declare it abstract.
Fix You may have subclassed the class from an abstract class and for-

gotten to define all the abstract methods. Or you may have declared
abstract methods right in the class and accidentally declared the
class as final instead of abstract. Either declare the class to be
abstract, or define the abstract methods.

Error Reference ERR-127

Java Error Messages
Symbol Names (Java)

Listing 4.4 Declaring an abstract class as final

public abstract class Animal {
abstract void Noise();
abstract int NumLegs();

}

public final class Bird extends Animal {

void Noise() { System.out.println("Tweet!"); }

// ERROR: Bird must define NumLegs() to be a final class
}

public final class Shape {
abstract double Circumference();
abstract double Area();
// ERROR: Shape must be declared abstract
// since it declares abstract methods.

Error 14090 class1 must be declared abstract. It does not define method
from class2.

If a class contains abstract methods, you must declare it abstract.

Fix You may have subclassed the class from an abstract class and for-
gotten to define all the abstract methods. Or you may have declared
abstract methods right in the class and forgotten to declare it as ab-
stract. Fither declare the class to be abstract, or define the ab-
stract methods.

Listing 4.5 Declaring an abstract class as final

public abstract class Animal {
abstract void Noise();
abstract int NumLegs();

}

public class Bird extends Animal {
void Noise() { System.out.println("Tweet!"); }
// ERROR: Bird must define NumLegs() or be declared abstract

ERR-128 Error Reference

Java Error Messages
Symbol Names (Java)

}

public class Shape {
abstract double Circumference();
abstract double Area();
// ERROR: Shape must be declared abstract
// since it declares abstract methods.

Error 14013 symbol expected.

This error will be signaled when the compiler expects to find a cer-
tain keyword or punctuation, as shown in Listing 4.6.

Listing 4.6 symbol expected

if i = 3) // will give "(expected"
return;

Error 14153 symbol must be an interface.

Where the compiler expected to see the name of an interface, you
used the name of another symbol. For example, you may have used
the name of a class instead of an interface in an implements clause.

Listing 4.7 Using a class name where an interface name is expected

public abstract class Animal { /* . . . */ }

public class Bird implements Animal { /* . . . */ }
// ERROR: In an implements clause, you must use the name of an
// interface, not a class.

public class Bear extends Animal { /* . . . */ }
// OK

Error 14114 symbol not supported.

This error is a "convenience" error. It is signaled when certain un-
supported keywords or expressions (const, goto,
placement new) from C++ are seen by the compiler.

Error Reference ERR-129

Java Error Messages
Punctuation Marks (Java)

Punctuation Marks (Java)

These are Java compiler error messages that begin with punctuation
marks.

Error 14028 [] can only be applied to arrays. It can’t be applied to type.

You applied [] to type, which is not an array.

Fix You may have misdeclared the variable, or used too many dimen-
sions in an array reference.

Listing 4.8 Using [] with an integer

int x;
int[] ¥ = new int[3];
int[][] z = new int[3]([3];

x[2] = 1; // ERROR: x is an integer

y[2] = 2; // OK

v[21[2] 3;// ERROR: y is a l-dimensional array
z[2][2] 4;// OK

A to B (Java)

These are error messages that begin with A or B.

Error 14103 g "break" or "continue" must transfer control within the same
method.

Methods in block local classes must not "break" or "continue" to the
enclosing method. An illegal break is shown in Listing 4.9.

Listing 4.9 lllegal break

public class foo {

public void method(int x) {

ERR-130 Error Reference

Java Error Messages
A to B (Java)

switch (x) {

case 1:

{
Object o = new Object() {

public String toString() {

/...

break; //illegal; must not break out of method scope

Error 14133 Abstract and native methods can’t have a body: method

You declared a method to be abstract or native, but you gave the
method a body. Abstract methods are defined in the subclass’s
body. Native methods are defined in a source file written with an-
other language, such as C.

Listing 4.10 Abstract and native methods with bodies

public abstract class Animal {
abstract void Noise();
abstract int NumLegs() { return 0; }
// ERROR: An abstract method can’t have a body.

}

public class Bird extends Animal {
void Noise() { System.out.println("Tweet!"); }
native int NumLegs() { return 2; }
// ERROR: A native method can’t have a body.

Error Reference ERR-131

Java Error Messages

A to B (Java)

Error 14217

Error 14218

Error 14215

Error 14216

Error 14219

Error 14052

Error 14061

Abstract methods can’t be final: method
Undocumented at this time.

Abstract methods can’t be native:method
Undocumented at this time.

Abstract methods can’t be private: method

You cannot declare a method to be both private and abstract. A pri-
vate method cannot be overridden in a subclass. An abstract
method must be overridden in a subclass to be useful.

Abstract methods can’t be static: method
Undocumented at this time.

Abstract methods can’t be synchronized: method
Undocumented at this time.

Access across scopes to the private member
targetMemberName in className is not implemented. The
reference will succeed if the member is given package scope.

The compiler generates an error when you attempt to access across
scopes to the private member.

Ambiguous class: symbol and symbol

If a class could be resolved to two different imported packages, this
error is thrown.

import java.util.*;
import java.sql.*;

class aClass {

Date aDate; //Could be "java.util.Date" or "java.sgl.Date"

ERR-132 Error Reference

Java Error Messages
A to B (Java)

Error 14194

Listing 4.11

Ambiguous name: typeName is both a class and a package.

If a qualifier resolves to both a package and a class, this error is gen-
erated.

Qualifier resolves to both a package and a class

package foo;

class foo {

class feem {

}
}

class feem {

public void aMethod() {

feem aFeem

= new foo.feem(); //ERROR: which feem is intended?

Error 14201

An error has occurred in the compiler; please file a bug report
(support@metrowerks.com) using the e-mail bug report form
in the Release Notes folder.

There is a bug in the compiler that caused it to raise a fatal error that
it could not handle. Please file a bug report to Metrowerks Technical
Support at support@metrowerks.com with the report form on
your CodeWarrior CD. Be sure to include code which triggers this
error.

Error Reference ERR-133

Java Error Messages

A to B (Java)

Error 14202

Error 14155

Fix

Listing 4.12

An exception has occurred in the compiler; please file a bug
report (support@metrowerks.com) using the email bug report
form in the Release Notes folder.

There is a bug in the compiler that caused it to raise an exception it
could not handle. Please file a bug report to Metrowerks Technical
Support at support@metrowerks.com with the report form on
your CodeWarrior CD. Be sure to include code which triggers this
error.

An interface can’t implement anything; it can only extend other
interfaces.

You declared an interface and used the implements keyword
where you should have used the extend keyword.

When you list the superinterfaces of an interface, use the extend
keyword.

Using implements, instead of extends

public interface CanFly { /* . . . */ }

public interface CanFlyInSpace implements CanFly { /* . . . */ }
// ERROR: Use extends, not implements

public interface CanBeSuperSonic extends CanFly { /* . . . */ }

// OK

Error 14168

Listing 4.13

Argument can’t have type void: symbol

You declared a method’s argument to be void. Only methods them-
selves can be void.

Declaring an argument to be void

int X(void a) {
// ERROR: An argument can’t be void.

ERR-134 Error Reference

Java Error Messages
A to B (Java)

//

Error 14172 Arithmetic exception.

You tried to perform an illegal arithmetic operation, such as divid-
ing by zero.

Listing 4.14 Dividing by zero

int i = 1 / 0; // ERROR: Cannot divide by =zero.

Error 14031 Array constants can only be used in initializers.

You can use array constants only in a variable’s declaration to ini-
tialize the array.

Listing 4.15 Using array constants

int x[]1 = {1, 2, 3 };// OK

int y[] = new int[3];
y=4{1, 2, 3} // ERROR

int z[] = new int[3];
z[1] = 1; 2z[2] = 2; z[3] = 3; // OK

Error 14098 Array dimension missing.

You forgot to use a dimension when creating a new array.

Listing 4.16 Forgetting the array dimension

int[] a = new int[]; // ERROR: Need a dimension.
int[] b = new int[3];// OK

Error Reference ERR-135

Java Error Messages
A to B (Java)

Error 14027 Array index required.

You forgot to use an index when referencing an element in an array.

Listing 4.17 Forgetting the array index.

int z[] = new int[3];
z[] = 1; // ERROR: Need an index.
z[2] = 2;// OK

Error 14049 Attempt to assign a blank final variableName variable in a
loop. The initialization must occur exactly once.

Blank finals are final variables which have no initialization expres-
sion in their declaration. These variables must be definitely as-
signed once and only once, and their initialization cannot occur in a
looping construct.

Listing 4.18 Attempting to assign a blank final in a loop

class aClass {

aClass() {
final int i; //blank final

for (int x = 0; x < 3; x++)
i = 3; //blank final is assigned inside the for loop

Error 14050 Attempt to assign to a variable variableName in a different
method. From enclosing blocks, only final local variables are
available.

Methods in block local classes can only assign to blank local vari-
ables from the enclosing method.

ERR-136 Error Reference

Java Error Messages
A to B (Java)

Listing 4.19 Attempt to assign to a variable variableName in a different
method.

public class outerClass {
public void outerMethod (int x) {
final int y;

new Object() ({
public int hashCode() ({

X++; //not allowed; x is not final
y = 3; //OK
}
}
}
}
Error 14039 Attempt to reference field field in a variable.
You tried to access a field in a variable that isn’t a class and has no
fields.
Listing 4.20 Referencing a field in a variable with no fields
int x;

System.out.println (x.length);
// ERROR: x is an int and has no fields.

Error 14046 Attempt to reference method method in variable as an instance
variable.

You tried to access method as though it were an instance variable in
variable.

Fix When you call a method with no arguments, you must always fol-
low the method’s name with an empty pair of parentheses. Either
change the declaration to be a instance variable, or add an argument
list to the method’s call.

Error Reference ERR-137

Java Error Messages
A to B (Java)

Listing 4.21 Using a method as an instance variable

public class Bird {
void Noise() { System.out.println("Tweet!"); }
int NumLegs() { return 2; }

}

public class AbstractExample {
public static void main(String args[]) {

System.out.println (B.NumLegs);
// ERROR: NumLegs is a method, not an instance variable

Error 14051 Attempt to use a non-final variable variableName from a
different method. From enclosing blocks, only final local
variables are available.

Methods in block local classes can access local variables from the en-
closing method, but only if these variables are final.

Listing 4.22 Attempting to use a non-final variable from a different method.

public class outerClass {
public void outerMethod (int x) {
final int copyOfx = x;

new Object() {
public String toString() {
return "x is " + x + " and copyOfx is " + y;
//reference to copyOfx is allowed, reference to x is not.
}
}
}
}

ERR-138 Error Reference

Java Error Messages
C (Java)

Error 14059 Blank final variable variableName may not have been
initialized. It must be assigned a value in an initializer, or in
every constructor.

The compiler must be able to determine that all blank final variables
are definitely assigned.

Error 14101 'break' must be in loop or switch.

A break statement can appear only within a switch, while, do, or
for statement block.

Fix Either make sure your braces are balanced correctly, or rewrite your
code to avoid the break statement.

C (Java)

These are error messages that begin with C.

Error 14144 Can’t access symbol. Class or interface must be public, in
same package, or an accessible member class.

If an attempt is made to use an inaccessible class, this error is sig-
naled.

An example of this error is shown in Listing 4.23.

Listing 4.23 Can’t access symbol. Class or interface must be public, in
same package, or an accessible member class.

import java.util.*;

HashtableEntry[] entry = new HashtableEntry[]; //illegal;
//HashtableEntry is only accessible within the java.util package

Error 14072 Can’t access protected field variable in class. class is not a
subclass of the current class.

You declared a variable to be protected or private protected
and are accessing it from a class that doesn’t have access to it. If you

Error Reference ERR-139

Java Error Messages
C (Java)

declare a class’s variable to be protected, you can access it only in
a subclass of that class or in other classes in the same package. If you
declare a class’s variable to be private protected, you can ac-
cess it only in a subclass of that class.

For example, say you have this class declaration in the package foo:

Listing 4.24 A class with a protected variable.

package foo;

public class A {
protected int m;
public int n;

}

This code won't compile:

Listing 4.25 Accessing a protected variable

package bar;
import foo.*;

public class X extends A {
public int sum(A a) {
return a.m + a.n;
// ERROR: a.m is protected and X is a subclass of A, but you
// aren't using X's copy of m. You're using another
// instance's copy of m.

}

public int sum() {
return m + n;
// OK: Now you'’'re using X'’'s copy of m.

ERR-140 Error Reference

Java Error Messages
C (Java)

Error 14073 Can’t access protected inner type innerClassName in
targetClassName. currentClassName is not a subclass of the
current class.

Inner classes obey the same access rules as other class members.
Listing 4.26 Can’t access protected inner type because the current class
name is not a subclass of the current class
class A {

protected static class B {

}
}

class C {

void method() {
new A.B(); //illegal; B is protected,

//and C is not a subclass of A.

Error 14071

Listing 4.27

Can’t access protected method method in class. class is not a
subclass of the current class.

You declared a method to be protected or private protected
and are accessing it from a class that doesn’t have access to it. If you
declare a class’s method to be protected, you can access it only in
a subclass of that class or in other classes in the same package. If you
declare a class’s method to be private protected, you can ac-
cess it only in a subclass of that class.

For example, say you have this class declaration in the package foo:

A class with a protected variable.

package foo;

Error Reference ERR-141

Java Error Messages
C (Java)

public class A {
protected int m() { return 1; }
public int n { return 2; }

}

This code won’t compile:

Listing 4.28 Accessing a protected variable

package bar;
import foo.*;

public class X extends A {
public int sum(A a) {
return a.m() + a.n();
//ERROR: a.m() is protected and X is a subclass of A, but you

// aren't using X's copy of m(). You're using another
// instance's copy of m().

}

public int sum() {
return m() + n();
// OK: Now you'’re using X's copy of m().

Error 14048 Can’t assign a second value to a blank final variable:
variableName

Blank finals are final variables which have no initialization expres-

sion in their declaration. These variables must be assigned once and
only once.

Listing 4.29 Assigning a blank variable more than once

public class aClass {
public static final int x;

ERR-142 Error Reference

Java Error Messages
C (Java)

static {

X = 3;

x = 4; // error here
}

Error 14047 Can’t assign a value to a final variable: variable

You tried to change the value of the variable variable which was de-
clared final.

Fix Either change the variable’s declaration, or declare a new variable to
hold the value.

Listing 4.30 Assigning a value to a final variable

final int SIZE = 512;

int setSIZE(int x) {
SIZE = x; // ERROR: SIZE is final

return SIZE;
}

Error 14197 Can’t catch class; it must be a subclass of class
java.lang.Throwable.

Any class in the catch clause must be a subclass of Throwable
Generally, the exception classes you create will be subclasses of
Exception, which is in turn a subclass of Throwable.

Listing 4.31 Catching a class that is not a subclass of Throwable

public class E1 { /* . . . */ }
public class E2 extends Exception { /* . . .* }
public class CatchTestClass {
public static void c(int x) {
try {
/. ..
} catch (El1l el) {

Error Reference ERR-143

Java Error Messages
C (Java)

// ERROR: El is not a subclass of Throwable.
/] ..
} catch (E2 e2){
// OK: E2 is a subclass of Exception,
// which in turn is a subclass of Throwable.

/! ..

Error 14093 Can’t directly invoke abstract method method in class.

You tried to directly call a method that was declared to be abstract.

Fix FEither remove the method call or define the method.

public abstract class Animal {
abstract int NumLegs();
}
public class Bird extends Animal {
int NumLegs() { return 2 + super.NumLegs(); }
// ERROR: Can'’'t invoke super.NumlLegs(), since it’s abstract.

}
Error 14067 Can’t invoke a method on a symbol.
You tried to invoke a method on a variable that isn’t a class and has
no methods.
Listing 4.32 Invoking a method on an int
int x;

x.length();// ERROR

Error 14044 Can’t make a static reference to inner class innerClassName.

Inner classes which are not declared static must be referenced
through an instance of the outer class.

ERR-144 Error Reference

Java Error Messages
C (Java)

Listing 4.33 Failure to make a static reference to inner class

public class outerClass {
public class innerClass {

public void aMethod() { }

}
}

public class anotherClass {
public static void anotherMethod() {

outerClass.innerClass.aMethod();
//this fails, because no instance of outerClass present

Error 14043 Can’t make a static reference to nonstatic variable variable in
class.

You accessed variable in class as though it were a static variable, but
it actually is an instance variable.

Fix Either access the variable through an instance of the class, or declare
the variable to be static.

Listing 4.34 Accessing an instance variable as a static variable

public class Bird {
int size;
static int numlegs;

}
public class StaticExample {
public static void main(String args[]) {

Bird b = new Bird();

Bird.size = 12; // ERROR: size is not static.

Error Reference ERR-145

Java Error Messages

C (Java)

Bird.numlegs = 2; // OK

b.size = 12;// OK
}
}
Error 14097 Can’t make forward reference to variable in class.
While initializing a variable, you made a forward reference to a
variable that hasn’t been defined yet.
Fix Either change the order in which you declare the variables, or re-
write the initialization.
Listing 4.35 lllegal forward reference
int a = b; // ERROR: b isn’t defined yet
int b = 1; // OK
int ¢ = b; // OK
int d = d + 1; // ERROR: Cannot refer to d in
// its own initialization
Error 14070 Can’t make static reference to method method in class.
You accessed method in class as though it were a static method, but it
actually is an instance method.
Fix Either access the method through an instance of the class, or declare
the method to be static.
Listing 4.36 Accessing an instance method as a static method

public class Bird {
static void PrintNumBirds() { /* . . . */ }

void Fly()
}

{/* . . . */}

public class StaticExample {
public static void main(String args[]) {
Bird b = new Bird();

ERR-146 Error Reference

Java Error Messages
C (Java)

Bird.Fly(); // ERROR: Fly() is not static.
Bird.PrintNumBirds(); // OK
b.Fly():; // OK
}
}

Error 14199 Can’t read: symbol

If the compiler has problems getting the text for a source from the
IDE, the Java compiler will report this error.

Error 14060 Can’t reference symbol before the superclass constructor has
been called.

In an explicit constructor call, either you referred to one of the ob-
ject’s instance variables or instance methods, or you used this or
super in one of the arguments.

Fix Replace the instance variables or instance methods with other val-
ues.

Listing 4.37 Referring to instance variables in explicit constructor call

class Point {
int x, y;
int oldX = 0, oldy = 0;
static final int DEFAULTX = 0, DEFAULTY = 0;
Point(int x, int y) { this.x = x; this.y = y; }

Point() { this(oldX, oldY); }

// ERROR: o0ldX and oldY are instance variables.
Point() { this(DEFAULTX, DEFAULTY); }

// OK: DEFAULTX and DEFAULTY are static variables.
Point() { this(this.DEFAULTX, this.DEFAULTY); }

// ERROR: Cannot use "this" in explicit constructor call.
Point() { this(0, 0); }

// OK

Error Reference ERR-147

Java Error Messages

C (Java)
Error 14029 Can’t specify array dimension in a declaration.
You specified the array’s dimension in its declaration.

Fix Specify the array’s dimension in the initial value for the array, as
shown in the example below. If you're declaring an argument, leave
out the array dimension altogether.

Listing 4.38 Specifying an array’s dimension in its declaration

int a[3] = new int[];// ERROR

int b[] = new int[3]; // OK

int c[3] = { 1, 2, 3 };// ERROR

int d[] =4{1, 2, 3 };// OK

Error 14030 Can’t specify array dimension in a type expression.
In a type expression for an array type, you included the array’s di-
mension. Type expressions are most commonly used when you
make an explicit cast.
Fix Remove the dimension.
Listing 4.39 Casting arrays
class Animal { /* . . . */ }

class Bird extends Animal { /* . . . */ }

public class ArrayCastTest {
public static void main(String args[]) {

Animal animals[] = new Bird[3];
Bird birdsl[] = (Bird[3])animals;// ERROR
Bird birds2[] = (Bird[])animals; // OK

}
}

ERR-148 Error Reference

Java Error Messages
C (Java)

Error 14147 Can’t subclass final classes: class

You tried to make a subclass of class, which is declared final.

Fix Either make a subclass of a different class, or remove the final
modifier from class’s definition.

Listing 4.40 Subclassing a final class

final class Bird { /* . . . */ }
class Eagle extends Bird { /* . . . */ } // ERROR

Error 14148 Can’t subclass interfaces: symbol

You tried to subclass the interface interface. A class doesn’t extend
an interface, it implements an interface.

Fix Either change the class’s declaration so that it uses the implements

keyword instead of the extends keyword, or change the interface
to a class.

Listing 4.41 Subclassing an interface

interface CanFly { /* . . . */ }
class Bird extends CanFly {/*... */}// ERROR
class Plane implements CanFly {/*...*/} // OK

Error 14196 Can’t throw symbol; it must be a subclass of class
java.lang.Throwable.

Any class in a throw clause must be a subclass of Throwable. Gen-
erally, the exception classes you create will be subclasses of
Exception, which is in turn a subclass of Throwable.

Listing 4.42 Catching a class that is not a subclass of Throwable

public class E1 { /* . . . */ }
public class E2 extends Exception { /* . . .*/ }

Error Reference ERR-149

Java Error Messages
C (Java)

public class CatchTestClass {
public static void c(int x) throws E1l, E2 {
// ERROR: El is not a subclass of Throwable

if (x==0)
throw new E1();// ERROR: E1l is not a subclass of Throwable
else if (x<0)
throw new E2();// OK: E2 is a subclass of Throwable
else {
/] . ..
}
}
}

Error 14111 Case label symbol too large for 'switch' on type

In a switch statement block, the case label symbol is larger than the
maximum allowed value for the switch variable of type type.

short ¢ = 0;
switch (c) {
case 1: // OK
case 100: // OK
case 100000: // ERROR: Maximum value for short is 32767

Error 14024 'case' outside switch statement.

A case statement can appear only within a switch statement
block.

Fix Make sure your braces are balanced correctly.
Error 14170 catch not reached

This catch clause will never be reached, since its exception is a sub-
class of an exception for a previous catch clause.

Fix Either reverse the order of the clauses or remove one.

ERR-150 Error Reference

Java Error Messages
C (Java)

Listing 4.43 Catching an exception that’s already been caught

class MyException extends Exception { /* . . . */ }

public class CatchExample {
public static void main(String args[]) {

try {
//

} catch (Exception el) {
//

} catch (MyException el) {
// ERROR: This will never be reached, since it's a subclass
// of Exception, which is caught above

Error 14021 “catch” without “try”.

A catch clause can appear only right after a try statement block.

Fix Make sure the is right after a try statement, and make sure your
braces are balanced correctly.

Error 14089 className must override methodName with a public method
in order to implement interfaceName.

In order to implement an interface, all methods of that interface
must be declared public.

Listing 4.44 Failure to implement an interface by not declaring all methods
of an interface public

public interface feem ({

public void foo();

}

public class bar implements feem {

Error Reference ERR-151

Java Error Messages
C (Java)

void foo() {} //must be specified public
}

Error 14017 “class” or “interface” keyword expected.

After package and import statements, a Java file can include only
class and interface declarations.

Fix You cannot declare global variables in Java. Make sure your braces
are balanced correctly.

Listing 4.45 Using unexpected keywords

package foo;
package bar; // ERROR: Extra package declaration.

int x; // ERROR: Variable declarations are not allowed here

public class A { /* . . . */ }// OK

Error 14117 Class symbol already defined in symbol.

You defined the class class more than one time in symbol .

Fix Remove or rename one of the class definitions.

Listing 4.46 Defining a class more than once

class RedundantClass { /* . . . */ }
class OKClass { /* . . . */ }
class RedundantClass { /* . . . */ }// ERROR

Error 14167 Class symbol can’t be declared both abstract and final.

You declared class to be both abstract and final. Such a class could
never be used. An abstract class cannot be instantiated and must be
subclassed. A final class cannot be subclassed.

ERR-152 Error Reference

Java Error Messages
C (Java)

Listing 4.47 Declaring a class to be both abstract and final

abstract final class Yuch { /* . . . */ } // ERROR
abstract class OK { /* . . . */ } // OK
final class AlsoOK extends OK { /*...*/ } // OK

Error 14191 Class symbol not found in location.

You used the class class in location without defining or importing it.

Fix Make sure you spelled the name correctly, defined it in the right
place, or imported the class’s package correctly.

Listing 4.48 Spelling a class name wrong

class Fubar { /* . . . */ }

public class StaticExample {
public static void main(String args[]) {
Foobar f = new Foobar();// ERROR: "Foobar" should be "Fubar"

}
}

Error 14118 Class name class1 clashes with imported class class2.

You defined the class class2 that has the same name as the class
class1 that’s in an imported package.

Fix Either rename or remove one of the classes, or don’t import the
package.

For example, say you have this class declaration in the package foo:

Listing 4.49 Declaring class B once

package foo;
public class B { /* . . . */ }

This class declaration would raise an error:

Error Reference ERR-153

Java Error Messages
C (Java)

Listing 4.50 Declaring class B twice

package bar;
import foo.*;

class B { /* . . . */ } // ERROR: There’s a class B in package foo

Error 14018 Class or interface declaration expected.

The compiler expected a class or interface declaration, but found
something else instead. After a file’s package and import state-
ments, a file can contain only class and interface declarations.

Listing 4.51 Not finding a class or interface declaration

package bar;
import foo.*;

class Fubar { /* . . . */ }
int a;// ERROR: A variable definition is not allowed here.

public class StaticExample {
public static void main(String args[]) {
/. ..
}

}
} // ERROR: Extra closing brace

Error 14001 Comment not terminated at end of input.

You left out the final */ for a comment.

Listing 4.52 Forgetting to close off a comment.

public class A {
/. ..
}

/* Commenting out a class

ERR-154 Error Reference

Java Error Messages
C (Java)

class B {

/] . ..
} // ERROR: Forgot to close off the comment

Error 14112 Constant expression required.

In a switch statement block, one of the case labels is not a constant
value.

Fix Either replace the case label with a constant, or change the switch
statement to an if-then-else statement.

Listing 4.53 Using a variable or method call in a case label

public class TrivialApplication {
final static int A = 2;

public static void main(String args[]) {
int b = 0, ¢ = 1;

switch (c) {
case 100: // OK
case A: // OK: Final variable is a constant
case b: // ERROR: b is not a constant.
case foo(A): // ERROR: Method call is not a constant

}
}
}
Error 14160 Constructor constructor requires a method body.
You declared the constructor constructor without giving it a method
body. All constructors must have method bodies, since you cannot
declare a constructor to be either abstract or native
Listing 4.54 Declaring a constructor without a method body
class A {

int x;

Error Reference ERR-155

Java Error Messages
C (Java)

A(); // ERROR
A() { x=1; } // OK
}

Error 14066 Constructor invocation must be the first thing in a method.

If you explicitly call a constructor from another constructor, the ex-
plicit call must be the first statement.

Listing 4.55 Explicitly calling a constructor

class B extends A {
int y;

B() { y = 1; super(); }// ERROR
B() { super(); y = 1; }// OK
}
Error 14085 Constructor is ambiguous: constructor1, constructor2
There is more than one constructor that matches your constructor
call. Neither constructor exactly matches the types of the call’s argu-
ments, but both are equally good matches after necessary conver-
sions are applied to the call’s arguments.
Fix Either explicitly cast one of the constructor call’s arguments so it
more closely matches one of the constructors, or (better yet) define a
new constructor that more closely matches the constructor call’s ar-
guments.
Listing 4.56 Ambiguous constructors
class A {
int x, y;
A(short xx, int yy) { x = xx; y = vy; }
A(int xx, short yy) { x = xx; v = yy; }
}

public class TrivialApplication {
short m = 0, n = 1;

ERR-156 Error Reference

Java Error Messages
C (Java)

A al = new A(m, n);
// ERROR: No matter which constructor is used, one argument
!/ must be converted from a short to an int.

A a2 = new A((int)m, n);
// OK: Second constructor now matches exactly

Error 14126

Error 14102

Fix

Error 14233

Constructors can’t be native, abstract, static, synchronized, or
final: constructor

You declared a constructor to be native, abstract, static,
synchronized, or £inal. You can declare constructors to be only
public, private, or protected. Here are the reasons:

* abstract or final: You cannot override a constructor. De-
claring it final is unnecessary. Declaring it abstract is useless,
since you couldn’t implement it in a subclass.

¢ static: You must invoke a constructor on a particular in-
stance.

e synchronized: This is unnecessary since the object under
construction is not available to other threads until the con-
struction is complete.

* native: Allowing only Java constructors makes it easier for
the Java Virtual Machine to ensure that superclass construc-
tors are correctly invoked.

'continue' must be in loop.

A continue statement can appear only within a while, do, or for
statement block.

Either make sure your braces are balanced correctly, or rewrite your
code to avoid the break statement.

Couldn't find profiling classes; profiling data will not be
generated.

The option Emit Profiling Data was enabled in the Java Language
settings panel, but Profiler.zip wasn't added to the project.

Error Reference ERR-157

Java Error Messages
C (Java)

Error 14149 Cyclic class inheritance.

Your class inheritance includes a circular reference.

Listing 4.57 Cyclic class inheritance

class A extends B { /* . . . */ }
class Bextends C { /* . . . */ }
class C extends A { /* . . . */ }

// ERROR: Cyclic class inheritance

Error 14152 Cyclic class inheritance or scoping.

A general error is signaled when the compiler detects a cycle in an
inheritance graph.

Error 14150 Cyclic class inheritance: A subclass cannot enclose a
superclass.

Your class inheritance includes a circular reference when a subclass
encloses a superclass.

Listing 4.58 Cyclic class inheritance when a subclass encloses a
superclass

public class foo extends feem {

class feem {

Error 14151 Cyclic interface inheritance.

Your interface inheritance includes a circular reference.

Listing 4.59 Cyclic interface inheritance

interface A extends B { /* . . . */ }
interface B extends C { /* . . . */ }

ERR-158 Error Reference

Java Error Messages
D to F (Java)

interface C extends A { /* . . . */ }
// ERROR: Cyclic interface inheritance

D to F (Java)

These are error messages that begin with D, E, or F.
Error 14025 'default' outside switch statement.

A default statement can appear only within a switch statement
block.

Fix Make sure your braces are balanced correctly.

Error 14113 Duplicate 'default’ label.

A switch statement contains more than one default label. Only
one default label is allowed.

Listing 4.60 Using duplicate default labels

int a = 0;
switch (a) {

case 1: // OK
default: // OK
case 2: // OK
default: // ERROR

Error 14110 Duplicate case label: symbol

You used the same case label twice in the same switch statement.

public class TrivialApplication {
final static int B = 1;

public static void main(String args[]) {
int a = 0;

Error Reference ERR-159

Java Error Messages
D to F (Java)

switch (a) {
case 1: // OK

case 2: // OK

case 1: // ERROR

case B: // ERROR: B equals 1

}
}
}

Error 14142 Duplicate inner class declaration: innerClassName is already
defined in this scope.
You cannot declare a duplicate of an inner class. An example of
code which will generate this error is shown in Listing 4.61.

Listing 4.61 lllegally declaring a duplicate inner class

public class outerClass {
class innerClass {

}

class innerClass {

}
}

Error 14139 Duplicate method declaration: symbol

A class has two methods with the same name and the same argu-
ment types.

Fix Either give one of the methods a different name, or use different
types for the arguments.

ERR-160 Error Reference

Java Error Messages
D to F (Java)

Listing 4.62 Using duplicate method names and arguments

class A {
void foo(int x) {/* . . . */}
void foo(short y) { /* . . . */ }
// OK: Java allows overloading:
// this has same name but different argument type
void foo(int z) {/ . . . %/}
// ERROR: Same method name and same argument type

Error 14141 Duplicate variable declaration: symbol was symbol

A class has two variables with the same name.

Fix Give one of the variables a new name.

Listing 4.63 Using duplicate variable names

class A {
int a;

}

class B extends A {

float a; // OK: This shadows A.a

float b; // OK

int b; // ERROR

native int b() ;// OK: But not a good idea. This is a method,
} // not a variable.

Error 14020 “g|se” without “if”.

An else clause can appear only as part of an if-then-else state-
ment block.

Fix Make sure your braces are balanced correctly. If the then clause con-
tains more than one statement, make sure they’re enclosed in
braces.

Error Reference ERR-161

Java Error Messages
D to F (Java)

Listing 4.64 Using an else clause without an if statement

if (a==0)
System.out.println ("Hello");
System.out.println ("How are you?");
else
// ERROR: The then clause is not enclosed in brackets.
System.out.println ("Goodbye");

Error 14198 Exception symbol can’t be thrown in initializer.

While initializing a variable, you used a method that throws an ex-
ception that isn’t caught.

Fix Either rewrite the method to make sure that exception is caught, or
initialize the variable differently.

Listing 4.65 Throwing an exception in an initializer

class El1 extends Exception { /* . . . */ }
class E2 extends Exception { /* . . . */ }
class A {

int a = foo(l);// ERROR: foo() throws an exception that

// is not caught.
int foo(int x) throws E2 {
try {
if (x==0)

throw new E1();// OK: El is caught
else if (x<0)
throw new E2();// ERROR: E2 is NOT caught
} catch (El1 e) {
System.out.println("oops");
} finally {
return x;

ERR-162 Error Reference

Java Error Messages
D to F (Java)

Error 14205 Exception exception is never thrown in the body of the
corresponding try statement.

In a catch clause, you try to catch an exception that is never
thrown.

Fix You may have forgotten to remove this catch clause after remov-

ing the code that throws that exception, or you may have gotten the
name of the exception wrong.

Listing 4.66 Catching an exception that is never thrown

class El1 extends Exception { /* . . . */ }
class E2 extends Exception { /* . . . */ }

class A {
int foo(int x) {
try {
if (x==0)
throw new E1();
} catch (E2 e) {// ERROR: E2 is not thrown.
System.out.println("oops");
} finally {
return x;
}
}
}

Error 14204 Exception symbol must be caught, or it must be declared in
the throws clause of this method.

You throw an exception that is never caught and is not declared in
the method’s throws clause.

Fix Either put the code in a try statement that catches the exception, or
add the exception to the method’s throw clause.

Error Reference ERR-163

Java Error Messages
D to F (Java)

Listing 4.67 Throwing an uncaught, undeclared exception

class El1 extends Exception { /* . . . */ }
class A {
int foo(int x) {
if (x==0)
throw new E1(); // ERROR: Not caught and
else // not in throws clause

return Xx;

Error 14022 “finally” without “try”.

A finally clause can appear only after a try or catch statement
block.

Fix Make sure the clause follows a try or catch statement, and make
sure your braces are balanced correctly.

Error 14189 File fileName does not contain className as expected, but
badClassName.

This will occur if a zip contains an entry for a class of a given name,

but upon loading the class, the compiler determines that it has a dif-
ferent name.

Fix Either remove the final modifier or change the name of one of the
classes.

Listing 4.68 Overriding a final method

class A {
final void x() { /*...*/ }
void y() { /*...*/ }

}

class B extends A {
void x() { /*...*/ } // ERROR: x() is final in A

ERR-164 Error Reference

Java Error Messages
G to I (Java)

void y() { /*...*/ } // OK: y() is not final

}

G to | (Java)

These are error messages that begin with G, H, or .

Error 14213 Hexidecimal numbers must contain at least one hexidecimal
digit.
Undocumented at this time.

Error 14026 |/O error in symbol.
Undocumented at this time.

Error 14016 |dentifier expected.
The compiler could not find an identifier where it expected one.

Fix Maybe you forgot to put in an identifier where one is needed, or
you accidentally used a reserved word to name a variable, method,
class, or interface.
Listing 4.69 Abusing a reserved word
class A {
int ; // ERROR: Forgot to specify names.

void float()
}

{/* . . . */ }// ERROR: float is a reserved word

Error 14036

Impossible for symbol to be instance of symbol.

If the compiler can determine that an instance of test will always
fail, it will issue this error.

Error Reference ERR-165

Java Error Messages
G to I (Java)

Listing 4.70 Impossible for symbol to be instance of symbol.

String i;

if (i instanceof java.awt.Component) //can never be true
return;

Error 14087 Incompatible type for location. Can’t convert type1 to type2.

You are trying to convert a variable of typel to be type2, but the
types are incompatible. You cannot perform the conversion even
with an explicit conversion. The location is where the conversion is
taking place: in a declaration, = statement, etc.

Listing 4.71 Incompatible conversions

class A { /* . . . */ }
class C { /* . . . */ }

public class TrivialApplication {
public static void main(String args[]) {
C cc;
A a = new A(),
A aa = new C();// ERROR
cc = a; // ERROR

}
}
Error 14086 Incompatible type for location. Explicit cast needed to convert
type1 to type2.
You are trying to convert implicitly a variable of typel to be type2,
but you need to perform an explicit conversion. The location is
where the conversion is taking place: in a declaration, = statement,
etc.
Listing 4.72 Incompatible implicit conversions
class A { /* . . . */ }

class B extends A { /* . . . */ }

ERR-166 Error Reference

Java Error Messages
G to I (Java)

public class TrivialApplication {
public static void main(String args[]) {
A a = new A();
B bb;
short x;

bb = a; // ERROR: The conversion is OK,
// but it must be explicit
bb = (B) a;// OK: Now it’s explicit
X = Math.PI; // ERROR
x = (short) Math.PI; // OK

Error 14146 |nconsistent member declaration. At most one of public,
private, or protected may be specified.

The compiler generates an error when an inconsistent member dec-
laration is found.

Error 14220 |nitializer must be able to complete normally.
Undocumented at this time.

Error 14135 |nner classes can’t be volatile, transient, native, or
synchronized: innerClassName

An error occurs when an inner class is volatile, transient, native or
synchronized.

Error 14042 |nner type innerClassName in className not accessible from
className.

Code in one class attempted to reference an inaccesible inner class of
another class.

Error Reference ERR-167

Java Error Messages
G to I (Java)

Listing 4.73 Attempting to reference an inaccessible inner class of another
class

public class bar {
private static class foo {

public static void aMethod() { }
}

}

public class blat {
public void fromHere() {

bar.foo.aMethod(); //foo is not accesible from blat

}
}

Error 14121 |nstance methods can’t be overridden by a static method.
Method method is an instance method in class.

You tried to override the instance method method in class class with
a static method. Only instance methods may override instance
methods.

Fix Change either the name or the declaration of one of the methods.

Listing 4.74 Overriding an instance method with a static method

class A {
void x() { /* . . . */ }
void y() { /* . . . */ }
}

class B extends A {
static void x() { /*...*/ } // ERROR: x() is an instance
// method in A

ERR-168 Error Reference

Java Error Messages
G to I (Java)

void y() { /*...*/ }// OK

}
Error 14161 |nstance variables can’t be void: variable
You declared the instance variable variable to be void. Only methods
may be void.
class A {
void x; // ERROR
void x() { /* . . . */ } // OK
}

Error 14166 |nterface interface of location not found.

You used the class interface in location without defining or importing
it.

Fix Make sure you spelled the name correctly, defined it in the right
place, or imported the interface’s package correctly.

Error 14157 Interface symbol repeated.

In the implements clause of an class definition, you used the same
interface more than once.

Fix Remove one of the occurrences.

Listing 4.75 Listing the same interface twice

interface CanFly { /* . . . */ }
interface CanWalk { /* . . . */ }

class Bird implements CanWalk, CanFly, CanWalk { /* . . . */ }
// ERROR: CanWalk is repeated twice

Error Reference ERR-169

Java Error Messages
G to I (Java)

Error 14129 Interface fields can’t be private or protected: symbol

In an interface declaration, you declared a field to be private or pro-
tected. All interface fields are public. You can explicitly declare a
field with the modifier public, but it is unnecessary and consid-
ered to be bad programming style.

Listing 4.76 Declaring an interface field to be private

interface A {
private int CONST1 1;// ERROR
public int CONST2 = 2;// OK, but unnecessary
int CONST3 = 3;// BETTER

}

Error 14128 Interface methods can’t be native, static, synchronized, final,
private, or protected : symbol

You declared an interface method to be native, static, synchronized,
final, private, or protected. All interface methods are public and
static. You can explicitly use the modifiers public and abstract,
but it is unnecessary and considered to be bad programming style.

Here is why you cannot use the specified modifiers:
e private and protected: All instance methods are public.
e static: All instance methods are abstract.

e final: All instance methods are abstract. However, when
you define a class that implements the interface, you can im-
plement an interface method with a final method.

¢ native and synchronized: These describe how the
method is implemented, which an interface does not specify.
However, when you define a class that implements the inter-
face, you can implement an interface method with a native or
synchronized method.

Listing 4.77 Declaring an interface method to be final

interface A {
final int methl(); // ERROR

ERR-170 Error Reference

Java Error Messages
G to I (Java)

abstract int meth2();// OK, but unnecessary
int meth3(); // BETTER

}

class B implements A {
public final int meth2() { return 0; } // OK
/. ..

Error 14154 |nterfaces can’t be final: symbol

You cannot declare an interface to be final. All interfaces are ab-
stract. You can explicitly use the modifiers abstract, but it is un-
necessary and considered to be bad programming style.

Listing 4.78 Declaring an interface to be final

final interface A { } // ERROR
abstract interface B { } // OK, but unnecessary
interface C { } // BETTER

Error 14125 |nterfaces can’t have constructors.

An interface cannot contain constructors. It can contain only
method and field declarations.

Error 14127 |nterfaces can’t have static initializers.

An interface cannot contain static initializers. It can contain only
method and field declarations.

Error 14063 |nvalid argument type symbol for symbol.

If an operator is passed a bad type, this error will be signaled.

String s = "hi";
s++; //error

Error Reference ERR-171

Java Error Messages
G to I (Java)

Error 14034 |nvalid arguments to symbol.

If an operator is given arguments of a type it cannot handle, this
error will be signaled.

For example:

int i = "hi" << 3; //can only shift ints or longs

Error 14084 |nvalid array dimension.
Undocumented at this time.
Error 14035 |nvalid cast from type1 to type2.

You tried to make an illegal conversion from fypel to type2. This
conversion isn’t allowed even with an explicit cast.

class A { /* . . . */ }
class B { /* . . . */ }

public class TrivialExample {
public static void main(String args[]) {
B b = new B();
A a (A)b;// ERROR: Can’t cast one unrelated
// class to another
= (int)"123";// ERROR: Can’'t cast a string to an int

int

Q

Error 14004 |nvalid character constant.

You created a character constant incorrectly. A character constant
must be a single character or a single escape sequence between two
single quotes.

Listing 4.79 Creating invalid character constants

int a = 'TEXT'; // ERROR: Can only be one char
char b = 'T'; // OK
char ¢ = '\uFFFFF'; // ERROR: This is two chars (\uFFFF and F)

ERR-172 Error Reference

Java Error Messages
G to I (Java)

char d = '\uFFFF';// OK
char e 'a"; // ERROR: Ends in double quote

Error 14009 |nvalid character in input.

You used an invalid character in your code.

Fix Perhaps you intended to use it in a comment, string, or character
constant.

Listing 4.80 Using an invalid character

public class TrivialExample {
public static void main(String args[]) {
char ¢ = '\u000E'; // OK
\uO00E // ERROR: Can'’'t use this character alone in
} // a file

Error 14008 |nvalid character in number.

You used an invalid character in a numeric constant. A decimal
number may contain only the digits 0-9 and cannot begin with 0.
An octal number begins with 0 and may contain only the digits 0-7.
A hexadecimal number begins with 0x or 0X and may contain the
digits 0-9, the letters a—f and the letters A-F.

Listing 4.81 Using invalid characters in numbers

int a = 0x1F2G; // ERROR: G is not a hex digit
int b = 1000; // ERROR: You used letter O, instead of zero (0)

Error 14007 |nvalid character in octal number.

You used an invalid character in an octal integer constant. An octal
number begins with 0 and may contain only the digits 0-7. A deci-
mal number must not begin with 0, since the compiler will assume
it’s an octal constant.

Error Reference ERR-173

Java Error Messages
G to I (Java)

Listing 4.82 Using invalid characters in octal numbers

int a = 079; // ERROR: 9 is not an octal digit.
int b = 077; // OK
int ¢ = 79; // OK

Error 14158 |nvalid class file format: symbol, symbol
Undocumented at this time.
Error 14104 |nvalid declaration.
If a variable is declared in an illegal place, this error is issued.

An example of this error is shown in Listing 4.83.

ERR-174 Error Reference

Java Error Messages
G to I (Java)

Listing 4.83 Invalid declaration

try {

}

catch(Exception e, int i) { //can only have one declaration in
//catch stat

Error 14006 Invalid escape character.

You used an invalid escape character. The valid escape sequences
are \b, \t, \n, \£, \r, \", \', \\, and Unicode escape sequences. A
valid Unicode escape sequence is \u followed by four hexadecimal
digits.

Listing 4.84 Using an invalid escape sequence

String s = "\i"; // ERROR
char cl = '\u000G';// ERROR: G is not a hex digit
char c2 = '\u000A'; // OK

Error 14169 |nvalid expression statement.

There’s a statement that contains only a single expression which
isn’t allowed to be used alone in a statement. The only expressions
you can use alone in a statement are assignment, method call, class
instance creation, pre-increment, pre-decrement, post-increment,
and post-decrement.

Listing 4.85 Using invalid expression statements

public class TrivialExample {
static int twice(int y) { return 2*y; }

public static void main(String args[]) {
int x = 0;

Error Reference ERR-175

Java Error Messages
G to I (Java)

(void) twice(3); // ERROR: (void) isn't allowed

twice(3); // OK
X3 // ERROR: A variable alone is not a statement

X++; // OK: Post-increment is OK

Error 14010 |nvalid floating point format.

You used an invalid character in a floating-point constant.

Listing 4.86 Invalid floating point format

float £ = 1.0e--30;// ERROR

Error 14032 |nvalid initializer for type symbol.

You used an array initializer to initialize something that isn’t an ar-

ray.

Listing 4.87 Using an array initializer incorrectly

int a = {1, 2, 3 }; // ERROR

int[] b= {1, 2, 3, {1, 2, 3} };// ERROR
int[1[] e={ {1, 2, 3}, {1, 2, 3} }; // OK
int[] d=4{1, 2, 3 }; // OK

Error 14108 |nvalid label.

You named a label incorrectly. Labels use the same naming conven-
tions as other identifiers.

Listing 4.88 Using an invalid label

for (int i =1; i<10; i++) {
la: i--; // ERROR
al: i--; // OK

ERR-176 Error Reference

Java Error Messages
G to I (Java)

// .

Error 14033 |nvalid left hand side of assignment.

Only local variable, field, or array access may appear in the left
hand side of an assignment.

Fix Perhaps you intended to use == instead of =.

Listing 4.89 Using an invalid left hand side of an assignment

public class TrivialExample {
static int twice(int x) { return 2*x; }

public static void main(String args[]) {
if (twice(3) = 6) /* . . . */ ;// ERROR
if (twice(3) == 6) /* . . . */ ;// OK

}

}

Error 14163 |nvalid method declaration; method name required.

When you declared a method, you left out the method name.

Listing 4.90 Method has no name

public class A {

public void (int x) { //method has no name

}
}

Error 14162 |nvalid method declaration; return type required.

When you declared a method, you left out the return type. If the
method returns no value, you must declare it to be void.

Error Reference ERR-177

Java Error Messages

G to I (Java)

Listing 4.91

Leaving out the return type

hello(int x) { System.out.println("Hello"); } // ERROR
void bye(int x) { System.out.println("Bye"); }// OK

Error 14164

Listing 4.92

Invalid qualified constructor name.

Your qualified constructor name is invalid. In Listing 4.92, the cont-
structor illegally has a return type.

Constructor has a return type

public class A {

public void A() { //constructor can’t have return type

}
}
Error 14088 |nvalid term.
If a type expression is found where a value should be, this error is
signaled. An example of this error is found in Listing 4.93
Listing 4.93 Invalid term.

int i = int;

Error 14037

Listing 4.94

Invalid type expression.

If the compiler expects to find a type, but instead finds an expres-
sion that cannot represent a type, it will issue this error.

Invalid type expression

String a = "hi";

Class aClass

= a.class; //Should use "String.class"

ERR-178 Error Reference

Java Error Messages
J to N (Java)

J to N (Java)

These are error messages that begin with], K, L, M, or N.
Error 14179 | ocal class innerClassName is already defined in this method.

You declared a local class twice in the same method.

Listing 4.95 Declaring a local class twice in the same method

public class foo {
public void aMethod() {

class x extends y {

}

class x extends z {
}
}
}

Error 14221 Member interfaces can only occur in interfaces and top-level
classes.

Undocumented at this time.

Error 14212 Method methodName can’t be static in innerClassName. Only
members of interfaces and top-level classes can be static.

Non-top-level classes can’t contain static variables.

public class outerClass {
public class innerClass {
static int foo() { }

//illegal; innerClass isn't top level
//(i.e. isn't package level and isn't static)

Error Reference ERR-179

Java Error Messages

J to N (Java)

Error 14130

Error 14131

Error 14183

Listing 4.96

Method method can’t be transient. Only variables can be
transient.

A method cannot be declared transient. A transient variable is one
that isn’t saved permanently (to a file, for example) when the rest of
the object’s variables are saved. Methods are not saved.

Method method can’t be volatile. Only variables can be
volatile.

A method cannot be declared volatile. A volatile variable is one
whose value may change unexpectedly. A method doesn’t have a
value.

Method methodName is inherited in className, and hides a
method of the same name in anscestorClassName. An explicit
“this” qualifier must be used to select the desired instance.

An example of this error and its fix are shown in Listing 4.96.

Failure to invoke a method

public class bar {

public int foo() { }

}

public class feem {

int foo() { }

public void aMethod() {

bar aBarSubclass = new bar() {

public void innerMethod() {

ERR-180 Error Reference

Java Error Messages
J to N (Java)

int x = foo(); //if bar.foo() is meant to be invoked,
//bar.this.foo() should be used

Error 14069 Method symbol in symbol is not accessible from symbol.

If a method cannot be invoked because of it's access, this error is sig-
naled.

class A { private void foo(); }

class B { { foo(); }} //error

Error 14068 Method symbol not found in symbol.
You refer to a method that is not defined in the current class. You

may have spelled the method’s name wrong, forgot to define the
method, or meant to refer to a method in another class.

Listing 4.97 Using a misspelled method

class A {
void bar() { /* . . . */ }
protected void foo() {
baz();// ERROR: Maybe you meant bar()

}
}

Error 14159 Method symbol requires a method body. Otherwise declare it
as abstract.

If a method is not declared to be abstract or native, you must define
it with a method body.

Fix Either declare it to be abstract or native, or define the method.

Error Reference ERR-181

Java Error Messages

J to N (Java)

Listing 4.98

Failing to define a method

class A {

void fool();

// ERROR

void foo2() { /* . . . */ } // OK
abstract void foo3(); // OK
native void foo4(); // OK

}
Error 14119 Method redefined with different return type: method1 was
method2
You tried to overridemethod2 with method1, which has the same
name and argument types as method2 but a different return type.
When you override one method with another, their return types
must match. If you want to overload one method with another, their
argument types must be different.
Listing 4.99 Overloading a method with a different return type
class A {
int y;

int foo(int x) { return x*y; }

}

class B extends A {

float w;

float foo(int x) { return x*w; } // ERROR: Same argument types,

// different return type

int foo(int x) { return x+w; } // OK: This overrides foo()
float foo(float x) {return x*w;} // OK: This overloads foo()

}

Error 14124

Methods can’t be overridden to be more private. Method
method is not private in class.

You tried to override method with another method that is more pri-
vate. The overriding method must be just as private or less private
than the original method.

ERR-182 Error Reference

Java Error Messages
J to N (Java)

Listing 4.100 Overriding a method with a more private method

class A {

}

void methl() { /* . . . */ }
void meth2() { /* . . . */ }
void meth3() { /* . . . */ }
void methd () { /* . . . */ }

class B extends A {

private void methl() { /* . . . */ } // ERROR
void meth2() { /* . . . */ } // OK

protected void meth3() { /* . . . */ } // OK
public void meth4() { /* . . . */ }// OK

}
Error 14123 Methods can’t be overridden to be more private. Method
symbol is protected in symbol.
You tried to override a protected method with another method that
is private. The overriding method must be just as private or less pri-
vate than the original method.
Listing 4.101 Overriding a protected method with a private method
class A {

}

protected void methl() { /* . . . */ }
protected void meth2() { /* . . . */ }
protected void meth3() { /* . . . */ }
protected void meth4() { /* . . . */ }

class B extends A {

private void methl() { /* . . . */ } // ERROR
void meth2() { /* . . . */ } // ERROR
protected void meth3() { /* . . . */ } // OK
public void meth4() { /* . . . */ }// OK

Error Reference ERR-183

Java Error Messages

J to N (Java)
Error 14122 Methods can’t be overridden to be more private. Method
symbol is public in symbol.
You tried to override a public method with another method that is
protected or private. The overriding method must be just as private
or less private than the original method.
Listing 4.102 Overriding a protected method with a private method
class A {

public void methl() { /* . . . */ }
public void meth2() { /* . . . */ }
public void meth3() { /* . . . */ }
public void meth4() { /* . . . */ }

}

class B extends A {
private void methl() { /* . . . */ } // ERROR
void meth2() { /* . . . */ } // ERROR
protected void meth3() { /* . . . */ } // ERROR
public void meth4() { /* . . . */ }// OK

}
Error 14140 Methods can’t be redefined with a different return type:
method1 was method2
You tried to overload method2 with method1, which has the same
name and argument types as method2 but a different return type.
When you overload one method with another, their argument types
must be different.
Listing 4.103 Overloading a method with a different return type
class A {
int y;
float w;

int foo(int x) { return x*y; }

float foo(int x) { return x*w; } // ERROR: Same argument types,

// different return type

ERR-184 Error Reference

Java Error Messages
J to N (Java)

float foo(float x) {return x*w;} // OK: This overloads foo()

}
Error 14019 Missing term.
The compiler didn’t encounter a term (such as an identifier) where it
expected one.
Fix Check for a typing error.
Listing 4.104 Missing terms
int a === 1, b, c¢;// ERROR: Too many equal signs

foo(a,,c); // ERROR: Too many commas

Error 14156 Multiple inheritance is not supported.

Java does not allow multiple inheritance: a class extending more
than one other class.

Fix = Rewrite your code using interfaces instead.

Listing 4.105 Using multiple inheritance

class A { /* . . . */ }
class B { /* . . . */ }
class C extends A, B { /* . . . */ }// ERROR

interface X { /* . . . */ }
interface Y { /* . . . */ }
class Z implements X, Y { /* . . . */ } // OK

Error 14095 No constructor matching constructor found in class.

The compiler couldn’t find a constructor that matches the argu-
ments you used in a new instance creation expression (such as in a
new statement).

Error Reference ERR-185

Java Error Messages
J to N (Java)

Fix Either cast the arguments to match a constructor or create a new
constructor for the argument types.

Listing 4.106 Finding no constructor that matches call

class A {
int x;
A(int xx) { x = xx; }
/. ..

}

public class TrivialApplication {
public static void main(String args[]) {
A al = new A();// ERROR: Since you defined a construc-

// tor, compiler doesn’t create
!/ default constructor.
A a3 = new A(2.0); // ERROR: No constructor for float arg.
A a4 = new A((int)2.0);// OK: Uses constructor for int arg.
A a2 = new A(2); // OK

Error 14207 No enclosing instance of className is in scope; an explicit
one must be provided when creating innerClassName, as in
outer. new Inner() Or outer. super().

If an inner class is created without an implicit instance of the outer
class (i.e. is not created from within an instance method of the outer
class), the new (or super) keyword must be qualified.

Listing 4.107 No enclosing instance of the class is in scope

public class foo {

public class bar {

}

public static bar makeBar(foo outerInstance) {

return new bar(); //illegal, as there is no implicit

ERR-186 Error Reference

Java Error Messages
J to N (Java)

//instance of foo. Instead, use
//"return foo.new bar();"

Error 14209 No enclosing instance of className is in scope; an explicit
one must be provided when accessing memberName, as in
outer .member.

A static inner class is attempting to reference an instance variable of
the outer class without qualifing the enclosing instance.

Listing 4.108 No enclosing instance of a class is in scope

public class foo {
int bar; //instance variable
static class blat {
public void aMethod(foo aFoo) {

bar++; //no enclosing instance of foo.
//Instead, use "aFoo.bar++;"

Error 14208 No enclosing instance of className is in scope; cannot
create a default constructor for className.

In the constructor for a subclass of an inner class, if there is no en-
closing instance of the outer class in scope, and the outer class has
no public paramater-less constructor, this error will be generated.

Listing 4.109 Cannot create a default destructor for the class

public class foo {

Error Reference ERR-187

Java Error Messages
J to N (Java)

public foo(String s) { //Note that foo requires a string to be
//constructed

}

public class bar {

}
}

public class blat extends foo.bar {

}

public class feem {

public static blat createABlat() {
return new blat(); //no enclosing instance of foo, and bar
//needs one, and one can’t be synthesized by the
//compiler because foo has no default constructor

Error 14100 No label definition found for label.

You refer to the label label but do not define it.

Fix Make sure the label name is spelled correctly.

Listing 4.110 Finding no matching label

int i = 0;
while (true) {

System.out.println(" i = " + i);

i++;

if (i>10) break end; // ERROR: No label named end.
}

Error 14094 No method matching method found in class.

You tried to access the method in class, but the compiler cannot find
any method with those argument types in that class.

ERR-188 Error Reference

Java Error Messages
J to N (Java)

Fix Make sure you spelled the name of the class correctly, used the cor-
rect arguments, and are using a method you have access to.

Listing 4.111 Finding no matching method

class B {
private void foo() { /* . . . */ }
void bar() { /* . . . */ }

}

public class TrivialApplication {
public static void main(String args[]) {
B b = new B();

b.foo(); // ERROR: bar() is private
b.bar(3); // ERROR: foo() doesn't have any arguments.
b.bar(); // OK

}
}
Error 14040 No variable symbol defined in symbol.
You tried to access the variable in class, but the compiler cannot find
any variable with that name in that class.
Fix Make sure you spelled the name of the class correctly.
Listing 4.112 Finding no matching variable
class B {
int x;
//
}

public class TrivialApplication {
public static void main(String args[]) {
B b = new B();

b.xx; // ERROR: xx is misspelled
b.x; // OK

int y
int z

Error Reference ERR-189

Java Error Messages

J to N (Java)

Error 14076

Error 14078

Error 14077

Error 14079

Error 14214

Listing 4.113

Note: {0} has been deprecated.

This warning means that the item in question has been deprecated.
You can turn this warning off by disabling the option Emit depreca-
tion warnings in the Java Language settings panel.

Note: The constructor {0} has been deprecated.

This warning means that the item in question has been deprecated.
You can turn this warning off by disabling the option Emit depreca-
tion warnings in the Java Language settings panel.

Note: The method {0} in {1} has been deprecated.

This warning means that the item in question has been deprecated.
You can turn this warning off by disabling the option Emit depreca-
tion warnings in the Java Language settings panel.

Note: The variable {0} in {1} has been deprecated.

This warning means that the item in question has been deprecated.
You can turn this warning off by disabling the option Emit depreca-
tion warnings in the Java Language settings panel.

Note: Method methodName in className does not override
the corresponding method in className, which is private to a
different package.

This lets you know that you may think you are overriding a method
of a superclass, but that the superclass method in question is not
overridable from your package, and you are thus really introducing
a new method of the same name and signature.

Method fails to override the corresponding method

package A;

public class blat {

ERR-190 Error Reference

Java Error Messages
J to N (Java)

void foo() {}
}

//new file
package B;
public class bar {

void foo() {};
//foo is not overridable, as it is package-private.

}

Error Reference ERR-191

Java Error Messages
J to N (Java)

Error 14206 Note: The cloning of an array does not throw any checked
exceptions, and therefore does not require any catch clauses.
Please remove unused catch clauses, or if you wish to retain
compatibility with older compilers, you may insert an artificial
throw as follows: if (false) throw new
CloneNotSupportedException();

In 1.1, clone()-ing an array no longer throws a checked exception.
However, 1.0.2 code requries a clone() invocation to be surrounded
with a try block, as shown in Listing 4.114.

Listing 4.114 Using an artificial throw to retain compatibility with older
compilers

try {
int[] foo = {1,2,3}

int[] fooCopy = foo.clone();

}
catch (CloneNotSupportedException e) {

}

Error 14011 Numeric overflow.

You specified a constant numeric value that is too large or too small
to be represented.

Listing 4.115 Overflowing a variable

int x = 9999999999; // ERROR: maximum is 2147483647
int y -9999999999; // ERROR: minimum is -2147483648
double z= 9e999; // ERROR: maximum is about 1.8e308

Error 14012 Numeric underflow.

A value was specified which was too small to be represented by the
given type.

ERR-192 Error Reference

Java Error Messages
O to R (Java)

Listing 4.116 Numeric underflow

float £ = 10e-980; // too small

O to R (Java)

These are error messages that begin with O, P, Q, or R.
Error 14065 Only constructors can invoke constructors.

You used a constructor call (this () or super()) in a method,
which is not a constructor.

Fix Consider removing the constructor call with a new statement.

Listing 4.117 Calling a constructor from a method

class A {
int x;
A(int xx) { x = xx; }
A() { this(0); } // OK: A() is a constructor
A foo(int xx) { return this(0); }// ERROR: foo() is a method
A bar(int xx) { return new A(xx); }// OK: bar() uses new.

}

Error 14038 Only named classes can have "extends" or "implements"
clauses.

Anonymous block local classes, which are created in new expres-
sions, cannot use the extends or implements keyword in order to
specify their origin. Instead, the superclass or interface must be de-
clared in the new instance expression.

For instance, an anonymous class which is to implement the runna-
ble interface should appear as:

Runnable r = new Runnable() { /*class body*/ }

Error Reference ERR-193

Java Error Messages
O to R (Java)

rather than

Runnable r = new Object extends Runnable { /* class body */ }

Error 14116 Only one package declaration allowed.
If a file has two or more package declarations, this error is signaled.
Error 14192 Package symbol not found in symbol.

If an import statement occurs for a non-existent package, this error
will occur.

Error 14174 Public symbol must be defined in a file called "symbol".

This warning will only be issued when the option Strict Filenames is
enabled in the Java Language settings Panel. It occurs if a public
class does not reside in a file of the same name.

Error 14188 Recursive constructor invocation: symbol.

You have a constructor that calls itself, which would cause infinite
conversion.

Listing 4.118 Defining a recursive constructor

class A {
int x;
A(int xx) { this(xx); }// ERROR: Recursive!
A(byte xx) { this((short) xx); } // OK: Because of cast, it
// calls the constructor
// below
A(short xx) { x = xx; }

}

Error 14075 Reference to method methodName in className as if it were a
variable.

The compiler generates an error when you reference a method in a
certain classname as if it were a variable, as shown in Listing 4.119.

ERR-194 Error Reference

Java Error Messages
O to R (Java)

Listing 4.119 Referencing a method in a classname as if it were a variable

public class foo {

public int feem() {
return 0;

}

public int bar() {

int x = feem; //should be "int x = feem();"

Error 14045 Reference to symbol is ambiguous. It is defined in symbol and
symbol.

If a class implements two interfaces, each of which contain a field of
a given name, any references to that variable must be qualified with
the interface name.

Listing 4.120 Reference to symbol is ambiguous. It is defined in symbol and
symbol.

interface A { String name; }
interface B { String name; }
class C implements A,B {

String aName = name; // error here, should be "A.name" or
"B.name"

Error Reference ERR-195

Java Error Messages
O to R (Java)

Error 14074 Reference to variable symbol in symbol as if it was a method.

If a name resolves to a variable, but it is used as a method, this error
is signaled.

class A {
Object foo;

public Object method() {
return foo(); //error here
}
}

Error 14145 Repeated modifier.

You repeated the same modifier in a declaration. You can use a
modifier only once.

Listing 4.121 Repeating a modifier

public public class A { // ERROR
final public final int X = 1; // ERROR

}

Error 14064 “length” applied to symbol, which is not an array.

If an expression attempts to reference the length of an object that is
not known to be an array, this error is signaled.

Object foo = new int[i];

int i = foo.length; //Static type of foo is Object, although
//dynamic type is int][]

Error 14107 'return' inside static initializer.

A static initializer cannot return a value, so it cannot contain a
return statement.

ERR-196 Error Reference

Java Error Messages
O to R (Java)

Listing 4.122 No return statement allowed in static initializer

public class X{
/. ..
static {
System.out.println ("Class X is loading..");
return;
// ERROR: Static initializer cannot contain a return statement

Error 14109 Return required at end of method.

You declared that a method returns a value, but it doesn’t have a
return statement at each place where the method might exit.

Listing 4.123 Missing a return statement

int foo() { /*...*/ } // ERROR: No return statement

int bar(int x) {
if (x<=0)
return 0;
} // ERROR: No return statement for x > 0.

Error 14105 'return' with value from method.

You declared the method method to be void, but it contains a
return statement with a value.

Fix Either remove the value from the return statement, or declare the
method differently.

Listing 4.124 Returning a value from a void method

void twice (int a) {
return (a*2);
// ERROR: Either declare twice to return an int

Error Reference ERR-197

Java Error Messages
S to U (Java)

// or remove the value from the return statement

Error 14115 'return' with value from constructor: constructor

You cannot return a value from a constructor.

Listing 4.125 Returning a value from a constructor

public class Bird {
/] . ..
int Age;
Bird (int x) {
this.Age = x;
return this; // ERROR
}
}

Error 14106 'return' without value from symbol.
You declared the method method to return a value, but it contains a

return statement with no value. Either add a value to the return
statement, or declare the method to be void.

Listing 4.126 Returning no value from a function

int factorial(int x) {
if (x==1) return; // ERROR
else return (x * factorial(x-1));// OK

}

S to U (Java)

These are error messages that begin with S, T, or U.

Error 14014 Statement expected.

The compiler expected a statement, but didn’t see one.

ERR-198 Error Reference

Java Error Messages
S to U (Java)

Listing 4.127

Not finding a statement where expected.

class A {

void foo(int x) {
class B { } // ERROR: Not a statement

}
}
Error 14171 Statement not reached.
This statement will never be executed because a statement before it
unconditionally transfers control to another statement.
Listing 4.128 Not reaching a statement
int foo(int x) {
return Xx;
X++; // ERROR: This is never reached.
}
Error 14132 Static methods can’t be abstract: method
You cannot declare a method to be both static and abstract. A static
method cannot be overridden. An abstract method must be overrid-
den to be useful.
Error 14120 Static methods can’t be overridden. Method method is static in
class.
You tried to override method, which was declared to be static in class.
Fix Either remove the static modifier, or remove or rename one of the
methods.
Listing 4.129 Overriding a static method.
class A {

static void

}

foo() { /* . . . */ }

Error Reference ERR-199

Java Error Messages
S to U (Java)

class B extends A {
void foo() { /* . . . */ } // ERROR: foo() is static in A.

}

Error 14002 String not terminated at end of input.

You forgot to end a string with a closing quote.

Fix Use Syntax Coloring (described in the CodeWarrior IDE User’s Man-
ual) to find out where the quote is missing.

Listing 4.130 String without end

public class TrivialExample {
public static void main(String args[]) {

String s = "ERROR: This string is not closed.
}
}
Error 14003 String not terminated at end of line.
You didn’t end a string at the end of a line.
Fix If you have a long string that you must continue over two lines, split
it into multiple strings, concatenated with plus signs (+).
Listing 4.131 Extending a string over a couple lines.
String sl = "ERROR: This string is not closed
at the end of the line.";
String s2 = "OK: This is how to handle" +

a long string";

Error 14165 Superclass class1 of class2 not found.

While defining class2, you tried to extend class1 without defining or
importing it. Make sure you spelled the name correctly, defined it in
the right place, or imported the class’s package correctly.

ERR-200 Error Reference

Java Error Messages
S to U (Java)

Listing 4.132 Spelling a superclass name wrong

class Fubar { /* . . . */ }
class X extends Foobar { /* . . . */ }
// ERROR: "Foobar" should be "Fubar"

Error 14143 Superclass of class can’t be an interface: interface

You declared a class class and used the extends keyword where
you should have used the implements keyword.

Fix When you list the interfaces of an class, use the implements key-
word.

Listing 4.133 Using extends, instead of implements

interface CanFly { /* . . . */ }

class Plane extends CanFly { /* . . . */ }
// ERROR: Use implements, not extends

class Bird implements CanFly { /* . . . */ }
// OK

Error 14180 The class name className is already defined in this scope.
An inner class may not have the same simple name as any of
its enclosing classes.

You cannot declare duplicate class names. An example of this error

is shown in Listing 4.134.

Listing 4.134 Class name defined twice in the same scope

public class feem {
class bar {

class feem { //error

}

Error Reference ERR-201

Java Error Messages

S to U (Java)

Error 14173

Error 14230

Error 14222

Error 14225

Error 14224

Error 14226

The compiler failed to compile the field <field name> in class
<class name> due to <internal error message>.

This error means that you have found an internal compiler error.
Please submit a bug report, preferably via email to
<support@metrowerks.com>. Be sure to include code that trig-
gers this error so that our engineers can resolve this compiler bug.

The definitions of method method inherited from location and
location are compatible, but the combination of them is
nontrivial and has not been implemented. As a workaround,
declare method explicitly in this class.

Undocumented at this time.

The instance method method declared in location cannot
override the static method of the same signature declared in
location. It is illegal to override a static method.

Undocumented at this time.

The method method declared in method (which is not
deprecated) overrides a deprecated method of the same
signature declared in method.

Undocumented at this time.

The method method declared in location cannot override the
final method of the same signature declared in location. Final
methods cannot be overridden.

You tried to override the method method but it was declared to be
final in the class class.

The method method declared in location cannot override the
method of the same signature declared in location. The
access modifier is made more restrictive.

Undocumented at this time.

ERR-202 Error Reference

Java Error Messages
S to U (Java)

Error 14227

Error 14228

Error 14229

Error 14223

Error 14185

Listing 4.135

The method method declared in location cannot override the
method of the same signature declared in location. They must
have the same return type.

Undocumented at this time.

The method method declared in location cannot override the
method of the same signature declared in location. Their
throws clauses are incompatible.

Undocumented at this time.

The method method inherited from location is incompatible
with the method of the same signature inherited from location.
They must have the same return type.

Undocumented at this time.

The static method method declared in location cannot hide the
instance method of the same signature declared in location. It
is illegal to hide an instance method.

Undocumented at this time.

The type typeName can’t be private. Package members are al-
ways accessible within the current package.

Top level classes (i.e. non-nested classes and static nested classes)
cannot be private.

Declaring a class to be private

private class A { /* . . . */ } // ERROR

class B { /*

*/ } // OK: Only available to classes
// in this package.

public class C { /* . . . */ }// OK: Available to all classes

// in any package.

Error Reference ERR-203

Java Error Messages
S to U (Java)

Error 14210 The type innerClassName can’t be static. Static members can
only occur in interfaces and top-level classes.

Non-top-level classes can’t contain static inner classes.

public class outerClass {
public class innerClass {

static class innerInnerClass {
//illegal; innerClass isn't top level
//(i.e. isn't package level and isn't static)
}
}
}

Error 14186 The type typeName can’t be declared static. It is already top-
level, since it is a member of a package.

Package-level classes shouldn't be declared static, as they are im-
plicitly static.

public static class topLevel {
//if this class is not nested, remove the static qualifier

}

Error 14187 The type typeName can’t be made protected. Package
members can either be public or local to the current package.

Non-nested classes can either be declared "public" or left unquali-
fied. Protected package-level classes are not allowed.

protected class topLevel {
//if this class is not nested, remove the protected qualifier

}

Error 14232 The variable in an assignment to a blank final must be a simple
name or a simple name qualified by "this”.

Undocumented at this time.

ERR-204 Error Reference

Java Error Messages
S to U (Java)

Error 14231

Error 14234

Error 14138

Error 14136

Error 14023

Fix

Error 14015

Listing 4.136

The variable in an assignment to a static blank final must be a
simple name (it may not follow a dot '.").

Undocumented at this time.
The zip file name is compressed, and cannot be used.

This error is generated because the compiler cannot handle com-
pressed zips or jars.

This final variable must be initialized: symbol
Undocumented at this time.
Transient variables can’t be members of interfaces: symbol

Variables in interfaces are by definition public static final, and there-
fore cannot be transient (because "transient static" would be mean-
ingless, as static variables aren't serialized.)

“try” without “catch” or “finally”.

A try statement must be followed by at least one catch or a
finally clause. This try statement has none.

Make sure your braces are balanced correctly.
Type expected.
This error will be signaled when the compiler expects a class name

or a primitive type, but finds something else. This occurs in various
situations. An example of this error is below in Listing 4.136

type expected

public static final name = "hi"; //should be "public static final

//String name = "hi";

Error Reference ERR-205

Java Error Messages
S to U (Java)

Error 14184 Type typeName is inherited in className, and hides a type of
the same name in an enclosing scope. An explicit qualifier
prefix must be used to name this type.

An example of this error and its fix are shown in Listing 4.137.

Listing 4.137 Failure to name a type

public class bar {
public class foo {
}

}

public class feem {
public class foo {
}
public void aMethod() {
bar aBarSubclass = new bar() {
public void innerMethod() {
foo aFoo = new foo(); //if bar.foo is meant to be

//instantiated,
//"foo afoo = new bar.foo();" should be used

Error 14005 Unbalanced parentheses.

You left out a parenthesis in an expression.

ERR-206 Error Reference

Java Error Messages
S to U (Java)

Fix Use the Balance command (described in the CodeWarrior IDE User’s
Manual) to find out where the parenthesis is missing.

Listing 4.138 Missing a parenthesis.

System.out.println("Hello World!" ;// ERROR

undef.var.or.class

See “Undefined variable or class name: className.typeName” on
page 209.

Error 14053 Undefined variable: variable

You used variable without defining or importing it.

Fix Make sure you spelled the name correctly, defined it in the right
place, or accessed it through a class instance if necessary.

Listing 4.139 Using an undefined variable

class A {
int foobar = 0;

}

public class TrivialExample {
public static void main(String args[]) {
int fubar = 0;
A a = new A();

int x = foobar + 1;// ERROR
int y = a.foobar + 1;// OK
int fubar + 1; // ERROR

N &
|

Error Reference ERR-207

Java Error Messages
S to U (Java)

Error 14054 Undefined variable: variableName. The "super" keyword may
only be used for member access and constructor invocation.

If the super keyword is used to qualify something other than a field
or method of a super class, this error will result.

Listing 4.140 Using the super keyword to qualify something other than a
field or method of a superclass

public class one {

}

public class two {

public two() {
super.blort(); // ERROR
}
}

Error 14056 Undefined variable, class, or package name: a.qualified.Name

If a qualifed name is used, and the qualifier cannot be resolved to a
class or a package, this error will result, as shown in Listing 4.141.

Listing 4.141 Unresolved qualifer

String s = java.util.File.fileSeparator;
//should be "java.io.File.fileSeparator"

Error 14055 Undefined variable or package name: a.qualified.Name

If a qualifed name is used, and the qualifier cannot be resolved to a
package, this error will result.

ERR-208 Error Reference

Java Error Messages
Vto Z (Java)

Error 14057

Listing 4.142

Undefined variable or class name: className.typeName

If a qualifed name is used to reference a member of an object, and
the qualifier cannot be resolved to a class or variable, this error will
result.

Undefined variable or class name

Thred.currentThread(); //Should be "Thread.currentThread();

V to Z (Java)

Error 14211

These are error messages that begin with V, W, X, Y, or Z.

Variable variableName can’t be static in innerClassName. Only
members of interfaces and top-level classes can be static.

Non-top-level classes can’t contain static variables.

public class outerClass {

public class innerClass {

static int x;
//illegal; innerClass isn't top level
//(i.e. isn't package level and isn't static)

Error 14041

Fix

Variable variable in location not accessible from class.

You tried to access variable in location , but its access declared in
class1 won’t allow it.

Either change variable’s access status or rewrite your code so you
don’t need it.

Error Reference ERR-209

Java Error Messages
Vto Z (Java)

class A {
private int x
protected int y
}

1;

class B extends A {
int a = x;// ERROR: x is private.
int b = y;// OK: y is protected.

Error 14181 Variable variableName is inherited in className, and hides a
variable of the same name in anscestorClassName. An explicit
"this" qualifier must be used to select the desired instance.

An example of this error and its fix are shown in Listing 4.143.

Listing 4.143 Failure to increment a variable

public class bar {
public int foo;
}
public class feem {
public int foo;
public void aMethod() {
bar aBarSubclass = new bar() {
public void innerMethod() {

foo++; //if (e.g.) feem.foo is meant to be
//incremented, feem.this.foo++ should be used

ERR-210 Error Reference

Java Error Messages
Vto Z (Java)

Error 14182 Variable variableName is inherited in className, and hides a

local variable of the same name. An explicit “this” qualifier

must be used to select the variable, or the local must be
renamed.

An example of this error and its fix are shown in Listing 4.144.

Listing 4.144 Failure to increment a local variable

public class bar {
public int foo;
}
public class feem {
public void aMethod() {
int foo;
bar aBarSubclass = new bar() {
public void innerMethod() ({

foo++; //if feem.foo is meant to be incremented,
//feem.this.foo++ should be used

Error 14058 Variable variable may not have been initialized.

You're using variable’s value, but you haven’t initialized it yet.

Error Reference ERR-211

Java Error Messages
Vto Z (Java)

Fix Either initialize the variable or rewrite your code so you don’t need
it.

Listing 4.145 Using an uninitialized variable

int x;
int y = x+1; // ERROR

X = 2;
int z = x+1; // OK

Error 14178 Variable symbol is already defined in this method.

You declared variable twice in this method.

Fix Either remove one of the declarations, or rename one of them.

Listing 4.146 Using the same variable name twice

int x;

//

for (int x = 1; x<10; x++) { // ERROR: x already defined
!/
}

Error 14177 Variable variable is used twice in the argument list of this
method.

You declared variable twice in this argument.

Fix Either remove one of the declarations, or rename one of them.

Listing 4.147 Defining an argument twice

int foo(int x, int y, int x) { return x+y+x; }
// ERROR: x defined twice

ERR-212 Error Reference

Java Error Messages
Vto Z (Java)

Error 14134

Error 14137

Listing 4.148

Variables can’t be synchronized, abstract or native: variable

You cannot declare a variable to be synchronized, abstract, or na-
tive. These modifiers describe how a method is implemented and
don’t make sense when applied to variables.

Volatile variables can’t be final or members of interfaces:
variableName

You cannot declare a volatile variable as final, or as a member of a
certain interface.

Declaring a volatile variable as final

public class aClass {

public volatile final int foo; //error

}

Error 14096

Wrong number of arguments in methodName.

When the compiler can determine which method you are trying to
invoke, but also determines that you have used the wrong number
of arguments to that method, this error will be displayed.

Error Reference ERR-213

Java Error Messages
Vto Z (Java)

ERR-214 Error Reference

mzm. Linker Error
Messages

This chapter gives an alphabetical list of the most common linker er-
rors which may be encountered while using Metrowerks CodeWar-
rior compilers.

Typography Notes for Linker Error Messages

In this chapter, errors with variable initial text (such as a class or
function name) come first. Errors beginning with a non-alphabetic
symbol character come next. After that, errors are listed alphabeti-
cally.

Each linker error has a compatibility table that indicates the operat-
ing system(s) and/or chip(s) with which the linker error is compati-
ble. A sample compatibility table appears here.

Compatibility This linker error is found on the following targets:

| BeOS ‘Mac OS‘ Magic ‘Palmos ‘PowerPC‘ PS OS ‘ Win32 ‘ |

¢ Compatible targets are in black text

¢ Incompatible targets appear in grey

e Blank cells appear in the table in support of future targets
* BeOS represents the Be operating system

* Mac OS represents the Mac OS operating system on either
PowerPC or 68K processors

e Magic represents the Magic Cap operating system
e PS OS represents the Sony PlayStation operating system
e PalmOS represents the USR PalmPilot operating system

Error Reference ERR-215

Linker Error Messages

Linker Errors

* Win32 represents Windows95 and WindowsNT operating
systems on x86 processors

¢ PowerPC represents PowerPC embedded processors using
the PPC EABI (Embedded Application Binary Interface)

If you are reading a printed version of this manual as it appears in
the Inside CodeWarrior series, you should be aware that new targets
may become available after this manual goes to print.

Information about your target may not appear in this version of the
printed documentation. In that case, you should consult the Target-
ing manual or release notes for your product to determine whether
a particular linker error is compatible with your target.

Linker Errors

Compatibility

The linker errors are divided into the following sections:
e Symbol Names (Linker)

A to C (Linker)

D to F (Linker)

G toI (Linker)

e Jto L (Linker)

* M to O (Linker)

e Pto T (Linker)
e U to Z (Linker)

Symbol Names (Linker)

These are linker error messages that begin with a symbol name, the
name of a variable or function.

<_foo> 16-bit code reference to <_bar>is out of range.

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

ERR-216 Error Reference

Linker Error Messages
Linker Errors

Description

Fix

Compatibility

Description

Fix

Compatibility

The target symbol of a 16-bit PC-relative jump must be located with
32K of the jump statement.

There are two possible fixes to this error message.

First, rearrange the files in your project to move the target closer to
the source.

If this doesn’t solve the error (and you are targeting Mac68k), set the
code model preference to large. To do this, open the Settings Panel
Dialog from the Edit menu, and choose the panel 68K Processor,
under the heading Code Generation. Choose Large from the Code
Model pop-up menu.

<<_filename: symbol1> 16-bit data reference to <symbol2> is
out of range

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

Symboll, in the file _filename, assumes a data object, symbol2, is
within a 32K range (a near, 16-bit reference), but symbol2 is more
than 32K away from symboll.

Either symbol2 must be made closer to symboll to allow a 16-bit ref-
erence or symboll must use a far, 32-bit reference to symbol2.

Fixing this linker error may require explicitly placing symboll and
symbol2 in the same segment. In the Processor preferences panel, try
setting the Code Model to Large, selecting the Far Data and Far
Strings checkboxes.

<_foo> 8-bit (16-bit) computed reference out of range: <bar>-
<fa>

This linker error is found on the following targets:

|Mac68k| MacPPC CFM68k | Win32 | BeOS | PS OS | Palm | RTOS |

Error Reference ERR-217

Linker Error Messages

Linker Errors

Description

Compatibility

Description

Fix

Compatibility

Description

Fix

Compatibility

A computed reference cannot be resolved because the objects are
too far away from each other. This will most likely come from a con-
verted MPW library.

<func> has 16-bit code reference to non-code symbol:
<s_name>

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

A non Metrowerks assembly code which references a data object
using a 16-bit displacement, and the data object is more than 32K
away.

There are two ways to fix this. First, move the data object closer to
the code which references it (either by using one of the code sorting
options in the PPC PEF panel, or by moving files in the project win-
dow). The second way to fix this is to use an instruction with an ab-
solute address or a bigger displacement.

<func1> 16-bit code reference to <func2> is out of range

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

A non Metrowerks written assembly code which references a sec-
ond function using a 16-bit displacement, and the data object is
more than 32K away.

There are two ways to fix this. First, move the function closer to the
code which references it (either by using one of the code sorting op-
tions in the PPC PEF panel, or by moving files in the project win-
dow). The second way to fix this is to use an instruction with an ab-
solute address or a bigger displacement

<_foo> has 16-bit data reference to non-data symbol <bar>

This linker error is found on the following targets:

ERR-218 Error Reference

Linker Error Messages
Linker Errors

Description

Compatibility

Description

Compatibility

Description

Fix

See Also:

Compatibility

|Mac68k| MacPPC CFM68k | Win32 |BeOS | PS OS |Palm| RTosl

bar is referenced as data but defined as code.

<_foo> has illegal computed reference between segments:
<bar>-<fa>

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

There is an illegal reference type in one of the object files. This will
most likely be caused by a converted MPW library.

<_foo> has illegal single segment 16-bit reference to <bar>

This linker error is found on the following targets:

|Mac68k| MacPPC CFM68k | Win32 |BeOS | PS OS |Palm| RTosl

This error message is given when you try to use more than one seg-
ment in a non-extended resource.

To fix this linker error get rid of the segmentation or to switch to an
extended resource by selecting the Extended Resource checkbox in

the 68K Project preferences.

For information on code models and code resources, see Targeting
Mac OS.

<_foo> has illegal single segment 32-bit reference to <bar>.

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

Error Reference ERR-219

Linker Error Messages

Linker Errors

Description

Fix

See Also

Compatibility

Description

Compatibility

Description

Single segments cannot use multiple segments or jump tables. This
error message is displayed when some code was compiled with
smart or large code model and the project type doesn't support it.

NOTE: Often, the problem is from using an ANSI Library since
the ANSI library was built with smart code model. If you want to
use an ANSI Library, you have to make a multi-segment code re-
source by setting the extended resource option in your 68k project
preference.

Smart or large code can only be used in multi-segment projects, like
applications and multi-segment code resource. It can't be used with
single-segment resources. If you want to make a multi-segment
code resource, turn on the Extended Resource option in the 68K
Project settings panel

For information on code models and code resources, see Targeting
Mac OS.

<_foo> is undefined or is not an exportable object.

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS OS | Palm | RTOS |

This error message is given if the user has an entry in the . exp file,
and the entry cannot be found or cannot be exported (i.e. marked as
#pragma internal).

<_filename> is not a valid library file.

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

The named file had the proper file type for a CodeWarrior library,
but the contents are not valid. The library file in question may be
damaged.

ERR-220 Error Reference

Linker Error Messages
Linker Errors

Compatibility

Description

Compatibility

Description

Compatibility

Description

Fix

<_filename> is not a valid PEF shared library.

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

The named file had the proper file type for a shared library, but the
contents are not valid. The shared library in question may be dam-
aged.

<_filename> is not a valid XCOFF file.

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

The named file had the proper file type for an XCOFF library or
shared library, but the contents are not valid. The XCOFF file in
question may be damaged.

< foo> referenced from <_bar> is undefined.

This linker error is found on the following targets:

|Mac68k| MacPPC CFM68k | Win32 | BeOS | PS OS | Palm | RTOS |

The Linker will generate this error message because a referenced
code or data module is not defined anywhere. This means that the
undefined function does not exist in your code. This could be be-
cause it is a library that you did not include, a source file you did
not include or because you forgot to define the function in your
code.

Locate or create the referenced function and make sure it is in your
project.

A to C (Linker)

These are linker error messages that begin with A, B, or C.

Error Reference ERR-221

Linker Error Messages

Linker Errors

Compatibility

Description

Fix

Compatibility

Description

Compatibility

Description

Compatibility

A <c><num> resource was found. It will override some
project settings

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

(Warning) This linker warning is generated when <c><num> re-
source was found that will override some project settings.

This is common when creating a FAT project. The linker creates
'SIZE' and 'cfrg' resources based on the project preferences. If the
linker finds a user-defined resource of either one of these types and
ID's, then it uses that resource instead of its own. The warning tells
you not to expect certain project preferences to work.

An error occurred while importing the shared library.

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

This general error message is generated by the PEF Importer to flag
a read error.

An error occurred while reading from the .exp file.

This linker error is found on the following targets:

|Mac68k| MacPPC CFM68k | Win32 | BeOS | PS OS | Palm | RTOS |

This general error message is generated PEF Linker is to flag a error
while reading the .exp file.

An error occurred while linking the PEF container.

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

ERR-222 Error Reference

Linker Error Messages
Linker Errors

Description

Compatibility

Description

Compatibility

Description

Compatibility

Description

Compatibility

This is a general purpose error message given by the PEF linker for
CFMB68K. It is used to flag write errors.

An error occurred while trying to open the .exp file.

This linker error is found on the following targets:

|Mac68k| MacPPC CFM68k | Win32 |BeOS | PS OS |Palm| RTOSl

The linker generates this general purpose error message if reading
of the .exp file fails.

An error occurred while trying to write the .exp file.

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

This general error message is generated PEF Linker is to flag a error
while writing the . exp file.

application or code resource has no main entry point.

This linker error is found on the following targets:

|Mac68k| MacPPC CFM68k | Win32 |BeOS | PS OS |Palm| RTOSl

An application or code resource must have a main entry point spec-
ified in the PEF settings panel. If you attempt to link a PowerPC
project that does not have a main entry point, this link error occurs.
For more on entry points and the PEF preferences, consult “Setting
the PEF Preferences (PowerPC Only)” in Targeting Mac OS.

Bad relocation symbol: <ErrNum>

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

Error Reference ERR-223

Linker Error Messages

Linker Errors

Description

Compatibility

Description

Compatibility

Description

Fix

Compatibility

Description

Compatibility

Description

This is an internal linker error indicating a bad object.

Cannot include more than 1 resource file

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

Your project has tried to include more than one resource file.

Cannot load object resource for <bar>

This linker error is found on the following targets:

|Mac68k| MacPPC CFM68k | Win32 |BeOS | PS OS |Palm| RTOSl

An object resource cannot be loaded. This is probably caused by ei-
ther a corrupt project file or a memory problem.

Delete object file and preference file and check your hard drive and
memory for possible errors with a disk utility.

Cannot use CFM68K library.

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

This error message is generated when you try to use a CFM68k li-
brary in a traditional Mac OS application or resource

Cannot use non-CFM68K library.

This linker error is found on the following targets:

|Mac68k| MacPPC CFM68k | Win32 |BeOS | PS OS |Palm| RTOSl

This error message is generated when you try to use a a traditional
Mac OS library in CFM68k application or resource.

ERR-224 Error Reference

Linker Error Messages
Linker Errors

Compatibility

Description

Description

Compatibility

Description

Compatibility

Description

Description

Can’t copy resource file <filename>.

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

An1/0 error occurred while copying one of the resource files into
the final executable file. The specific I/O error is indicated as well.

Can’t find source file ‘foo’ — statement locations will be lost.

(Warning) The linker could not find the file named foo while import-
ing XCOFF object code. When you debug the code, the debugger
may not be able to display the source code for the file, or the debug-
ger may display the source code but won't be able to display dashes
for breakpoints.

Can’t import PEF shared library <filename>.

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

An1/0 error occurred while reading the named shared library file
during Make. The specific I/ O error is indicated as well.

Can’t import XCOFF file <filename>.

This linker error is found on the following targets:

|Mac:68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

An1/0O error occurred while reading the named XCOFF file during
Make. The specific I/ O error is indicated as well.

Can’t parse debug information in ‘string’

(Warning) The linker could not understand a piece of debug infor-
mation while importing XCOFF code. The debugger may not dis-
play the symbol associated with the string correctly.

Error Reference ERR-225

Linker Error Messages
Linker Errors

Can’t read export file <filename>.

Compatibility This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

Description An1/O error occurred while reading the . exp file for this project.
The specific I/O error is indicated as well.

Can’t read library file <filename>.

Compatibility This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

Description AnI/O error occurred while reading the named library file during
linking. The specific I/O error is indicated as well.

Can’t read sort file <filename>.

Compatibility This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

Description The linker was unable to open and read <filename>.

Fix The file may be corrupted or other input/output error. You should
use a disk utility to check your hard drive for possible flaws. If no
flaws are found please contact Metrowerks Technical Support.

Can't read temp file ‘filename’

Compatibility This linker error is found on the following targets:

|Mac68k| MacPPC CFM68k | Win32 | BeOS | PS OS | Palm | RTOS |

Description (MPW) You use the —tmp directive, and the linker cannot read from
or write to one of the temporary files that the linker created in the
folder you specified.

ERR-226 Error Reference

Linker Error Messages
Linker Errors

Fix

Compatibility

Description

Fix

Description

See Also:

Compatibility

Description

Fix

Make sure the name of the folder is correctly spelled, the path is cor-
rect, the folder’s volume is mounted, and that you have access priv-
ileges to it.

Can’t write application <filename>.

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

An error occurred while the linker was writing the executable file,
which might be an application, shared library, or code resource. The
specific error is indicated as well. It can be an I/ O error such as
“Disk Full” or it can be an “Out Of Memory” error.

Memory errors can usually be fixed by increasing the partition size
of CodeWarrior.

Can’t write export file <filename>.

An1/0O error occurred while the linker was writing the . exp file.
The specific error is indicated as well. If you select “Use .exp file”
from the PEF settings panel of the Preferences, but the file project-
name . exp does not exist, the linker will write a default . exp file
containing all global symbols.

“Export Symbols” in Targeting Mac OS.

Can’t write library file <filename>.

This linker error is found on the following targets:

|Mac68k| MacPPC CFM68k | Win32 | BeOS | PS OS | Palm | RTOS |

An error occurred while the linker was writing the library file. The
specific error is indicated as well. This can be an I/O error such as
“Disk Full” or it can be an “Out Of Memory” error.

“Out Of Memory” errors can usually be fixed by increasing the par-
tition size of CodeWarrior.

Error Reference ERR-227

Linker Error Messages

Linker Errors

Compatibility

Description

Fix

Compatibility

Description

Fix

Compatibility

Description

Fix

Can’t write link map <filename>.

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

An error occurred while the linker was writing the link map file.
The specific error is indicated as well. This can be an I/O error such
as “Disk Full” or it can be an “Out Of Memory” error.

“Out Of Memory” errors can usually be fixed by increasing the par-
tition size of CodeWarrior.

Can’t write sort file <filename>.

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

The linker failed to write the sort file <filename>

The file may already be opened or corrupted, or other possible
problems: disk full, file is locked, i/ o error, disk is write-protected.
If other conditions occured please contact Metrowerks Technical
Support.

Can’t write SYM file <filename>.

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

An error occurred while the linker was writing the SYM file. The
specific error is indicated as well. This can be an I/O error such as
“Disk Full” or it can be an “Out Of Memory” error.

“Out Of Memory” errors can usually be fixed by increasing the par-
tition size of CodeWarrior.

ERR-228 Error Reference

Linker Error Messages
Linker Errors

Compatibility

Description

Fix

Compatibility

Description

Compatibility

Description

Compatibility

Description

Class optimization failure for <function>

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

The linker failed to optimize the function <function>.

The unit declaring <function> class wasn'tcompiled using 'optimize
class hierarchy'.

code resource must not have a termination routine

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

A native or fat code resource cannot have a termination entry point,
specified in the PEF settings panel.

COMDAT sections do not match in size: <Func>

This linker error is found on the following targets:

|Mac68k| MacPPC CFM68k | Win32 |BeOS | PS 0OS |Palm| RTOSl

Multiple identical definitions for functions are allowed but these do
not match in size. This is not currently supported.

cross-TOC call from <symbol1> to <symbol2> has no TOC
reload slot

This linker error is found on the following targets:

|Mac68k| MacPPC CFM68k | Win32 |BeOS | PS OS |Palm| RTOSl

The linker requires that a NOP instruction be placed after any call to
an external routine, as a place-holder for a TOC-reload instruction
needed when calling a routine from a shared library. This error can

Error Reference ERR-229

Linker Error Messages

Linker Errors

Compatibility

Description

Compatibility

Description

Compatibility

Description

occur if you import some assembly language code that does not
contain the NOP, but calls a routine which is imported from a shared
library.

D to F (Linker)

These are linker error messages that begin with D, E, or F.

Duplicate COMDAT section: <Func> in files:

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

Invalid multiple definition for functions.

entry-point <symbol> is not a descriptor

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

(Warning) The initialization, main, and termination entry points are
usually external routines, that the linker references through a de-
scriptor (sometimes called a TVector) in the data area. For certain
kinds of code resources (like plugins), you may want to use a vari-
able as the entry-point instead of a function.

Entry Point <_pt> is undefined.

This linker error is found on the following targets:

|Mac68k| MacPPC CFM68k | Win32 | BeOS | PS OS | Palm | RTOS |

In the CFM68K settings panel, the user can specify three entry
points: Initialization, Main, and Termination. This message occurs
when you specify an entry point that doesn't exist.

ERR-230 Error Reference

Linker Error Messages
Linker Errors

Compatibility

Description

Fix

Compatibility

Description

Fix

Compatibility

Description

Error creating output file: <filename> <status>

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

The linker was not able to create an output file <filename> with the
DOS <status>.

Check to see if there already is an open file with the same filename
that is currently in use. Check for free disk space.

Error opening file: <filename> <status>

This linker error is found on the following targets:

|Mac68k| MacPPC CFM68k | Win32 | BeOS | PS OS | Palm | RTOS |

The linker could not open <filename> with the DOS <status> for
linking.

Reset access paths and verify folders in which the file is located.
Error while operation

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

Linker errors in this form occur when the linker encounters file I/ O
problems. Operation may one of the following;:

* saving resources

¢ writing to SYM file

¢ setting SYM file position
¢ getting file info

¢ creating SYM file

* opening SYM file

Error Reference ERR-231

Linker Error Messages

Linker Errors

Compatibility

Description

Fix

Compatibility

Description

Compatibility

Description

Fix

¢ reading or parsing SEG file
¢ creating new file
¢ creating or copying resource fork
* opening file's resource fork
¢ writing file's resource fork
These linker errors can be caused by anything from defective media

to a volume being full. The solution depends on the nature of the er-
ror.

Error writing output file: <filename>

This linker error is found on the following targets:

|Mac68k| MacPPC CFM68k | Win32 | BeOS | PS OS | Palm | RTOS |

The linker was unable to write to the output file <filename.>

This is likely due to lack of Drive space. Also, check to see if the
Drive is corrupted.

export symbol <symbol> is undefined

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

The symbol named in the . exp file does not exist.

File read error

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

The linker could not read the file for some reason.

verify that the file is present and is not corrupted.

ERR-232 Error Reference

Linker Error Messages
Linker Errors

Compatibility

Description

Fix

Compatibility

Description

Compatibility

Description

G to | (Linker)

These are linker error messages that begin with G, H, or I.

Global Object <obj> was already declared in File: <fname>.

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

The linker will generate this error if you define a global data or code
object in more that one file.

Remove all but one declaration, or declare all but one to be external.

HUNK_DEINIT_CODE not yet supported.

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

This error message is generated when an unsupported object type is
encountered.

NOTE: You will not get this error unless your object file has been
corrupted.

ignored duplicate resource <type> (id) in <filename>

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

The named resource was already copied from another resource file
in the project.

Error Reference ERR-233

Linker Error Messages

Linker Errors

Compatibility

Description

Compatibility

Description

Compatibility

Description

Compatibility

Description

ignored: <symbol> class in <filename1> previously defined in
<filename2>

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

(Warning) The linker will permit multiple definitions of a symbol
that is defined in a library. The order of files in the project window
determines which definition of the symbol will be used. Subsequent
definitions are ignored.

lllegal computed reference for <foo>

This linker error is found on the following targets:

|Mac68k| MacPPC CFM68k | Win32 |BeOS | PS OS |Palm| RTOSl

The linker encountered an illegal computed reference for foo.

lllegal relocation for <foo>

This linker error is found on the following targets:

|Mac68k| MacPPC CFM68k | Win32 |BeOS | PS OS |Palm| RTOSl

An illegal relocation information.

lllegal object data

This linker error is found on the following targets:

|Mac68k| MacPPC CFM68k | Win32 |BeOS | PS OS |Palm| RTosl

This error message is generated when the linker encounters illegal
data in a library.

ERR-234 Error Reference

Linker Error Messages
Linker Errors

Compatibility

Description

Fix

Compatibility

Description

Compatibility

Description

Compatibility

lllegal object data in <objectFile>

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

The linker does not recognize the data format in file objectFile. Usu-
ally, this error is issued when you attempt to link a PowerPC library
with a 68K project.

Make sure the file is in a format recognized by the CodeWarrior

project manager. To fix this error, build the library’s source code
with a 68K compiler and linker or find a 68K version of the Pow-
erPC library.

lllegal object file version, an error occurred while writing the
library’s object data.

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

An error occurred during the file I/O.

Internal error <ErrMessage>

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

An internal linker error has occurred with the Metrowerks linker.
Please report this to Metrowerks Technical Support.

Invalid object code.

This linker error is found on the following targets:

|Mac68k| MacPPC CFM68k | Win32 | BeOS | PS OS | Palm | RTOS |

Error Reference ERR-235

Linker Error Messages

Linker Errors

Description

Fix

Compatibility

Description

Compatibility

Description

Compatibility

Description

Compatibility

Description

You tried to link a 68K library with a PowerPC program.

To fix this error, build the library’s source code with a PowerPC
compiler and linker or find a PowerPC version of the 68K library.

Invalid object file: <filename>

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

The object file <filename> was of the wrong object format.

Invalid object library

This linker error is found on the following targets:

|Mac68k| MacPPC CFM68k | Win32 |BeOS | PS OS |Palm| RTOSl

The object Library was an invalid type for the current project type.

Invalid object library: <filename>

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 |BeOS | PS OS |Palm| RTOSl

The object library filename was invalid.

Invalid PEF shared library.

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

The named file had the proper file type for a CodeWarrior library,
but the contents are not valid. The library file in question may be
damaged.

ERR-236 Error Reference

Linker Error Messages
Linker Errors

Compatibility

Description

Compatibility

Description

Compatibility

Description

Compatibility

Invalid relocation type: <ErrNum>

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

This is an internal linker error indicating a bad object.

Invalid subsystem

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

The subsystem id that was set on the linker panel is invalid.

J to L (Linker)

These are linker error messages that begin with J, K, or L.

Library Linker: Cannot have resource files in library.

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

This library linker error message is shown if you have a . rsrc file
in your library project.

NOTE: This error is often generated by including a ResEdit file in
the project.

Library Linker: Cannot load object resource.

This linker error is found on the following targets:

|Mac68k| MacPPC CFM68k | Win32 | BeOS | PS OS | Palm | RTOS |

Error Reference ERR-237

Linker Error Messages

Linker Errors

Description

Compatibility

Description

Compatibility

Description

Compatibility

Description

Compatibility

Description

The library linker generates this message when there is not enough
memory. Alternatively the resource file maybe damaged.

Library Linker: lllegal object data.

This linker error is found on the following targets:

|Mac68k| MacPPC CFM68k | Win32 |BeOS | PS OS |Palm| RTOSl

This error is generated when the linker encounters illegal data in a
library.

Library Linker: Out of memory.

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

This library linker error message is shown when there is not enough
memory.

library must not contain any resource files

This linker error is found on the following targets:

|Mac68k| MacPPC CFM68k | Win32 |BeOS | PS OS |Palm| RTOSl

You can't add any resource files in a project whose type is library. If
the library requires resources, the resource files must be added to
the projects which use the library.

Library resource cannot be read.

This linker error is found on the following targets:

|Mac68k| MacPPC CFM68k | Win32 |BeOS | PS OS |Palm| RTOSl

This error message is displayed whenever you have a library file er-
ror.

ERR-238 Error Reference

Linker Error Messages
Linker Errors

Compatibility

Description

Compatibility

Description

Compatibility

Description

Compatibility

Description

Link aborted - Too many errors.

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

The linker will generate this error message more than 100 linker er-
rors are encountered.

Link Error: Code resource cannot have more than one
segment.

This linker error is found on the following targets:

|Mac68k| MacPPC CFM68k | Win32 |BeOS | PS OS |Palm| RTosl

This error appears if you try to have more that one code segment in
s single segment resource

Link Error: Object resource not found.

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

This linker error occurs when an object resource cannot be loaded.
This could be a corrupt project file or memory problem.

Link Error: Runtime Object resource not found.

This linker error is found on the following targets:

|Mac68k| MacPPC CFM68k | Win32 |BeOS | PS OS |Palm| RTosl

This linker error will not occur unless you have modified the com-
piler’s resources. If you receive this linker error, contact Metrowerks
Technical Support.

Error Reference ERR-239

Linker Error Messages

Linker Errors

Compatibility

Description

Compatibility

Description

Compatibility

Description

Fix

Link failed.

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

A fatal link error such as “Out Of Memory” has occurred. The spe-
cific link error is indicated as well.

Local Object <foo> is redeclared

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 |BeOS | PS OS |Palm| RTOSl

The local object foo is declared more than once within one object file.

M to O (Linker)

These are linker error messages that begin with M, N, or O.

‘main’ is undefined.

This linker error is found on the following targets:

|Mac68k| MacPPC CFM68k | Win32 |BeOS | PS OS |Palm| RTOSl

This Linker error message occurs when there is nomain () function
defined in the program.

You need to fix this error differently, depending on whether your
project is for an application, C code resource or Pascal code re-
source.

Application In an executable application this error is usually the
result of not including the source file that includes the main () func-
tion in your project.

C code resource Inamulti-segment project, your main () must
be in Segment 1. If your main() is not in Segment 1 then the

ERR-240 Error Reference

Linker Error Messages
Linker Errors

Compatibility

Description

Compatibility

Description

CodeWarrior start-up code tries to call your main() via an A4-
based reference. However, A4 is not setup until your main() has a
chance to call SetCurrentAd ().

Pascal code resource Code resources can only be built from
units. In the units INTERFACE section, you have to indicate the code
resources main entry point. This entry point is indicated with the
SMAIN directive. You need to specify the missing main identifier
with the SMAIN directive.

missing vtable: <_vt_foo> Check that all virtual functions and
static members are defined

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

The linker generates this error message because the compiler usu-
ally tries to generate only one instance of a virtual function table.
This table is usually created together with a certain static member or
a virtual function definition. If you forget to define that member you
will get this error message.

NOTE: This message is specific to a C++ project. The error usu-
ally means you are making an instance of a derived class without

declaring the base classes or including the base class’ header file
in your derived class header files.

multiply-defined: <symbol> in <filename1> defined in
<filename2>

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

The linker will not permit multiple definitions of a symbol if neither
symbol comes from a library.

Error Reference ERR-241

Linker Error Messages

Linker Errors

Compatibility

Description

Fix

Compatibility

Description

Compatibility

Description

Fix

Compatibility

NOTE: All multiply-defined symbols are reported in a single mes-
sage.

Multiple definition of symbol: <Var> in files:

This linker error is found on the following targets:

|Mac68k| MacPPC CFM68k | Win32 |BeOS | PS OS |Palm| RTOSl

The linker found two or more definitions of the same symbol.

Rename the variables to remove the conflicts.

Near data section or jump table is greater than 32KB.

This linker error is found on the following targets:

|Mac68k| MacPPC CFM68k | Win32 |BeOS | PS OS |Palm| RTOSl

With CFM68K the near data section uses A5-relative addressing, so
is limited to 32KB below A5. The jump table is above A5 and also
limited to 32KB.

Near data segment is bigger than 64k

This linker error is found on the following targets:

|Mac68k| MacPPC CFM68k | Win32 |BeOS | PS OS |Palm| RTOSl

The project being linked has more than the 64K limit of global data
allowed using near, 16-bit references. To allow more than 64K of
global data, your project needs to use far, 32-bit references.

Select the Far Data and Far Strings checkboxes in the 68K Processor
preferences panel.

No entry point found

This linker error is found on the following targets:

ERR-242 Error Reference

Linker Error Messages
Linker Errors

Description

Fix

Compatibility

Description

Fix

Compatibility

Description

Compatibility

Description

|Mac68k| MacPPC CFM68k | Win32 |BeOS | PS 0OS |Palm| RTOSl

The linker did not find an entry point.
Check to see if your project includes a main or WinMain function.

Check to see if your Project settings x86 Linker options have the
entry point correctly listed.

Not a <CPU_Type> Library

This linker error is found on the following targets:

|Mac68k| MacPPC CFM68k | Win32 |BeOS | PS OS |Palm| RTOSl

This Library importer encountered an incorrect library type for the
project target.

Replace the offending library with the correct CPU version.

Not enough memory for linker.

This linker error is found on the following targets:

|Mac68k| MacPPC CFM68k | Win32 |BeOS | PS OS |Palm| RTosl

This error message is given if there is not enough memory for the
linker.

Out of memory

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

The linker does not have enough Memory to complete the build.

Error Reference ERR-243

Linker Error Messages

Linker Errors

Fix

Compatibility

Description

Compatibility

Description

Fix

Compatibility

Increase the partition for Macintosh hosted compilers, or Increase
the system memory for Macintosh and Windows hosted by closing
other applications, or increasing the memory.

output code size exceeds 64K limit; please contact
sales@metrowerks.com for info on unlimited linker

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

The BeOS ships with a linker that can build applications and shared
libraries that are smaller than 64K in size. If you get this error, check
our release notes or call technical support for the work-arounds to
build several shared libraries, or call Metrowerks sales to purchase
an unlimited linker.

P to T (Linker)

These are linker error messages that begin with P, Q, R, S, or T.

sort symbol <s_sym> is undefined

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

(Warning) A sort symbol <s_sym> was undefined.

The sort file names a symbol that the linker didn't find. Either de-
fine that symbol, or remove it from the sort file.

sort file <FileName> did not list all code symbols

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

ERR-244 Error Reference

Linker Error Messages
Linker Errors

Description

Fix

Compatibility

Description

Compatibility

Description

Compatibility

Description

Compatibility

(Warning) This linker warning is given when the file <FileName>
failed to list all possible code symbols.

It's not really necessary to fix this unless it concerns you. The code
will be in the order specified in the sort file until the sort file runs
out of symbols. The rest of the code symbols follow, in an unde-
fined order.

Sorting <obj_name>

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

This is not an error it is a status message, like "Linking" or "Compil-

ing".
Symbol data error in <bar>

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

The linker found illegal data in the object file bar. This means that
the object data is not compatible with the current CodeWarrior com-
piler. Remove all binary information and recompile your project.

Syntax error in exports file <fname> , line <n>.

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0OS | Palm | RTOS |

The export file must contain only identifiers, comments (indicated
by a # character and terminated by the end of line) and white space
(spaces or tabs)

syntax error on line <n> of export file <filename>

This linker error is found on the following targets:

Error Reference ERR-245

Linker Error Messages

Linker Errors

Description

Compatibility

Description

Fix

Compatibility

Description

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

The export file must contain only identifiers, comments (indicated
by a # character and terminated by the end of line) and white space
(spaces or tabs).

syntax error on line <LineNo> of sort file <FileName>

This linker error is found on the following targets:

|Mac68k| MacPPC CFM68k | Win32 | BeOS | PS OS | Palm | RTOS |

The sort file had a syntax error on line number <LineNo> in file
<FileName>

Fix the syntax error. The syntax of the sort file is the same as the
syntax for an exp file.

The global data module <foo> is undefined

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

Where foo is one of the following internal start-up code variables:
® codereftype
* maincodexnum
® headersize
e TLoadSeg
® codexreftype
e Startup
This linker error will not occur unless you have modified the com-

piler’s resources. If you receive this linker error, contact Metrowerks
Technical Support.

ERR-246 Error Reference

Linker Error Messages
Linker Errors

Compatibility

Description

Compatibility

Description

Compatibility

Description

The main entry point for applications must be an executable
module.

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

The CFM68k linker generates this error if the user puts a non-func-

tion as the main entry point for an application (which is illegal), for
Shared Libraries

NOTE: You can have a data object as the main entry point.

The __segloader routine cannot be found.

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

The _ segloader () routine is used to load segments under
CEMB68K, it is found in the MWCFM68KRuntime.Lib library.

The virtual function table <_vt_foo> is undefined, make sure
that all static members and virtual functions are defined.

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

The linker generates this error message because the compiler usu-
ally tries to generate only one instance of a virtual function table.
This table is usually created together with a certain static member or
a virtual function definition. If you forget to define that member you
will get this error message

NOTE: This message is specific to a C++ project. The error usu-
ally means you are making an instance of a derived class without

Error Reference ERR-247

Linker Error Messages
Linker Errors

declaring the base classes or including the base class’ header file
in your derived class header files.

TOC size of <n> bytes exceeds 64K limit

Compatibility This linker error is found on the following targets:

|Mac68k| MacPPC CFM68k | Win32 |BeOS | PS OS |Palm| RTOSl

Description The TOC is a part of the data area used to indirectly address other
data. The TOC contains one 4-byte entry for each variable, floating-
point constant, or string constant that is referenced in the program.

Fix You can reduce the TOC requirements of your program with a cou-
ple of different option:

* The Pool Strings option in the C/C++ Language settings
panel, or pragma pool_strings, pools the string constants
from each file into a single data object which needs only 1
TOC entry.

e The Store Static Data in TOC option in the PPC Processor
settings panel stores small static integer variables and float-
ing-point constants directly in the TOC, instead of allocating
space for them elsewhere and storing pointers to them in the
TOC. If you have lots of small static variables (under 4 bytes),
turn this option on to save TOC space. If you have lots of
large floating-point constants (4 to 8 bytes), turn this option
off to save TOC space.

too many link errors

Compatibility This linker error is found on the following targets:

|Mac68k| MacPPC CFM68k | Win32 |BeOS | PS OS |Palm| RTOSl

Description The linker stops reporting errors after about 100 errors are encoun-
tered.

ERR-248 Error Reference

Linker Error Messages
Linker Errors

Compatibility

Description

Compatibility

Description

Compatibility

Description

Fix

Compatibility

U to Z (Linker)

These are linker error messages that begin with U, V, W, X, Y, or Z.

Unable to launch the Application.

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

This linker error is given if a file I/ O problem occurs when
CodeWarrior performs a Run.

Unable to load multi-segment driver header

This linker error is found on the following targets:

|Mac68k| MacPPC CFM68k | Win32 | BeOS | PS OS | Palm | RTOS |

This linker error will not occur unless you have modified the com-
pilers resources. If you receive this linker error, contact Metrowerks
Technical Support.

Undefined symbol: <Var> in file:

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

The linker was unable to find the symbol Var.

Usually this is due to a spelling error, missing library or a source
code that was not added to the project.

undefined: <symboli> class> referenced from <symbol2> in
<filename>

This linker error is found on the following targets:

Error Reference ERR-249

Linker Error Messages

Linker Errors

Description

Fix

Compatibility

Description

Fix

Compatibility

Description

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

The named symbol was referenced but never defined. As a special
case, you'll get an undefined message for the symbol _ procinfo
(data) if you make a Native code resource that is not one of the
known resource types: CDEF, MDEF, MBDF, LDEF, WDEF, cdev, XCMD,
or XFCN.

NOTE: Multiple references to the same undefined symbol are re-
ported in a single message.

To avoid this error, you must define a global variable procinfo
of type unsigned long initialized to the proper MixedMode flags
placed in the RoutineDescriptor that becomes part of the Native
code resource. Consult the comments in the MixedMode.h for de-
tails on RoutineDescriptor flags.

unsupported XCOFF relocation (x, y, z) in <filename>

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

The named XCOFF file was valid but contained some relocation in-
formation that is not supported by the CodeWarrior linker.

Make sure that the XCOFF file was assembled without symbolic de-
bugging information. If the error still occurs, contact Metrowerks
Tech Support.

User requested termination

This linker error is found on the following targets:

|Mac68k| MacPPC | CFM68k | Win32 | BeOS | PS 0S | Palm | RTOS |

The build was terminated by the user.

ERR-250 Error Reference

Linker Error Messages
Linker Errors

Error Reference ERR-251

Linker Error Messages
Linker Errors

ERR-252 Error Reference

Index

C

Compiler Errors
C/C++68k 9
C/C++PPC 9
Pascal 68k 85
Pascal PPC 85
Compiler Errors Win32/x86 9

E

Errors
Compiler C/C++ 9
Compiler Pascal 85
Font Explanations 5
Linker C/C++ 215
Explanations
Font Conventions 5

L

Linker Errors
C/C++ Linker Errors 68k 215
C/C++ Linker Errors PPC 215
C/C++ Linker Errors Win32/x86 215

Error Reference

ERR-253

ERR-254 Error Reference

	CodeWarrior Error Reference
	Table of Contents
	Introduction
	Overview of the Error Reference
	Conventions Used in This Manual
	Settings Affect Errors

	C/C++ Compiler Error Messages
	C/C++ Compiler Errors
	Symbol Names (C/C++)
	Punctuation (C/C++)
	A to C (C/C++)
	D to F (C/C++)
	G to I (C/C++)
	J to L (C/C++)
	M to O (C/C++)
	P to R (C/C++)
	S to T (C/C++)
	U to Z (C/C++)

	Pascal Compiler Error Messages
	Pascal Compiler Errors
	Symbol Names (Pascal)
	Punctuation (Pascal)
	A to C (Pascal)
	D to F (Pascal)
	G to I (Pascal)
	J to L (Pascal)
	M to O (Pascal)
	P to R (Pascal)
	S to T (Pascal)
	U to Z (Pascal)

	Java Error Messages
	Java Compiler Errors
	Symbol Names (Java)
	Punctuation Marks (Java)
	A to B (Java)
	C (Java)
	D to F (Java)
	G to I (Java)
	J to N (Java)
	O to R (Java)
	S to U (Java)
	V to Z (Java)

	Linker Error Messages
	Typography Notes for Linker Error Messages
	Linker Errors
	Symbol Names (Linker)
	A to C (Linker)
	D to F (Linker)
	G to I (Linker)
	J to L (Linker)
	M to O (Linker)
	P to T (Linker)
	U to Z (Linker)

