Sega@'Dreamcast

Dreamcast
CodeScape

for Set 5
User Guide

Legal Notice
IMPORTANT

The information contained in this publication is subject to change without notice. This publication
is supplied "as is" without warranty of any kind, either express or implied, including but not limited
to the implied warranties or conditions of merchantability or fitness for a particular purpose. In no
event shall Cross Products be liable for errors contained herein or for incidental or consequential
damages, including lost profits, in connection with the performance or use of this material whether
based on warranty, contract, or other legal theory.

This publication contains proprietary information which is protected by copyright. No part of this
publication may be reproduced in any form, or stored in a database or retrieval system, or transmitted
or distributed in any form by any means, electronic, mechanical photocopying, recording, or
otherwise, without the prior permission of Cross Products Limited.

CodeScape User Guide
Revision History
Version 2.2.0 build 121, March 1999

Release Candidate 1, 7 October 1996, beta 2, 26 August 1996, beta 1, 26 July 1996 - 97, 2.0.0,
March1998, Version 2.0.5a, May 1998, Version 2.1.0. alpha build 86, July 1998, Version 2.1.2. beta
build 94 , October 1998

© 1999 Cross Products Limited. All rights reserved.

Microsoft, MS-DOS, and Windows are registered trademarks, and Windows NT and JScript are
trademarks of Microsoft Corporation in the United States and other countries. CodeScape and
SNASM are registered trademarks of Cross Products Limited in the United Kingdom and other
countries. Brief is a registered trademark of Borland International. CodeWright is a registered
trademark of Premia Corporation. Multi-Edit is a trademark of American Cybernetics, Inc. All other
trademarks or registered trademarks are the property of their respective owners.

CodeScape User Guide

Contents

Before you begin = . 5
Document conventions . 6

This guide e 7

The CodeScape software e 8

Using and configuring the interface @ ... 9
The commands onthe menubar L 10
Customizing shortcutkeys s 12

The commands on the toolbars e 14
Commands on eachtoolbar . 17

How windows and regions work ... 27
Using Wwindows e 28

USING regions e 30
Configuring regions e 34
Targetwindow ., 36

Target Processor display e 37

Input/Qutput window . 38

The Source and Disassembly regions . 4

The Call Stack region e 51

The Watch and Local Watch regions s 52

The Watchregion e 54

The Local Watchregion e 58

The Memory region s 61

The Registerregion e, 69
Hitachi target processor register region display .74

The Editregion e 77
Opening and saving files 79
Searchandreplace . 80

Cutting and pastingtext 82

Using bookmarks e 83

Interacting with target processors = ... 85
Connecting to a target processor e 86

Add filesto a project 88

Restarting a program . 91

Working with sessions e 3

Contents

Working with projects ...

Setting up a project build environment

Setting up an editor

Setting up the project commands

Debugging .o

Debugging modes .,

Running and stopping programs
Stepping into (tracing) code
Breakpoints = s

Configuring breakpoints ...

Breakpoint expression format

Simulating a target processor
Information generated by the Simulator
Reading the results of simulation

Profiling programfiles @ ...

Using the profiler: an overview

The Profiler's commands

Viewing GD-M log information

Wiriting scripts to automate tasks

Scripting commands .,

Evaluating expressions ...
C/C++ expressions et
Assembler expressions e

Using the command-line @

Appendix A: Frequent operations

97
98
100
102

105
106
107
110
116
121
129

135
139
144

145
146
148

155

157
160

179
182
185

187
191

Before you begin

This release

The CodeScape version 2.2.0 build 121 release includes:

» A CD-ROM that contains the CodeScape debugger, and online documentation including
context-sensitive help.

» A hardware setup guide, and a software reference manual.

NOTE: ContactTechnical Supportifanyoftheseitems are missing.

Before you begin

Document conventions

NOTE: Notes call attention to important features or instructions.

Typographic conventions in this guide

Convention Description

SPACEBAR Capital letters denote the names of keys on the
keyboard, filenames, and extensions.

ALT+F4 Iftwo or more keys must be pressed simultaneously,
they are linked with a plus sign (+).

ALT, F, X If two or more keys must be pressed in succession,
the keys are linked with a comma (,).

select this box Italics denote text boxes and check boxes that are
on CodeScape's interface.
emphasis Bold text denotes emphasis.
input and output This font denotes user input and program output,
including error messages.
command-line This font denotes command-ling options.
Audience

This manual is for programmers that write for targets under Windows® 95, Windows® 98, or
Windows NT™ 3.51/4.0. It will also be of use to technical support and software test engineers.

CodeScape User Guide

This guide

Using and configuring the interfaceintroduces CodeScape’s debugging environment and how to
use it. It describes the commands on the menu bar, toolbars, and shortcut menus. It explains how |
set up and use windows and regions for your project.

Interacting with target processorsexplains how to connect to, initialize and reset a target
processor. This includes: restarting a program, and saving and loading binary parts of a program.

Working with sessionsexplains how to use the commands for working with sessions. This includes
how to: open new and existing sessions, save a session, save a session with a new name, close a
session, view and use the recently used files list, and exit CodeScape.

Working with projects describes how to set up and use your project build environment including
how to set up an MS-DOS or Windows editor. It also tells you how to build your project within
CodeScape and what to do if CodeScape returns errors after a compile.

Debugging project filesexplains the various ways you can debug your project files, including:
stepping source code, setting watch and data breakpoints, and simulating assembly code.

Simulating a target processorescribes how to use the Simulator to obtain data that will help you
to optimize timing critical sections of Assembly code.

Profiling program files explains how to use the Profiler to examine the run-time behavior of
program files written for Hitachi SH series processors.

Viewing GD-M log information describes the GD-Workshop log events you can control within
CodeScape.

Writing scripts to automate tasksexplains how to use CodeScape’s script commands to automate
routine tasks.

Evaluating expressionsexplains how to use the Expression Evaluators and describes all of the C/
C++ and Assembler expressions that are supported.

Using the command-linedescribes all of the command-line commands.

Before you begin

The CodeScape software

CodeScape is a fast, intuitive, Windows-based development environment. CodeScape’s debugging
features let you find, isolate, and fix bugs in your original source, or disassembled code.

Run CodeScape to:

1) Edit your project files.
2) Compile and link your project files.
3) Debug your project and test it for errors.
4) Then do one of the following:
« If debugging returns errors, repeat steps 1 to 3 above.
-OR-
« If debugging does not return errors, Build your project.

To run, CodeScape requires:
* An IBM™ PC or compatible with Pentium™ 90 processor or above.
* Windows 95, Windows! 98, or Windows NT™ 3.51/4.0.
* 32 MB of RAM minimum, 128 MB of RAM recommended for program files with a
debug section that is 24 MB or above.

Using and configuring
the interface

You can control CodeScape using a mouse or keyboard. CodeScape has many useful toolbars th:
can be docked, floating, or hidden. Region specific shortcut menus are available for the most usec

functions.

The user interface consists of:

* The Menu bar.
» Toolbars.
e Windows.
» Regions.

Using and configuring the interface

The commands on the menu bar

File menu ALT+F

The commands in the File menu are for working with sessions, resetting the target, loading program
files, restarting program file execution, and saving and loading binary information. Use Save binary

and Load binary to move large blocks of data in and out of memory. The File menu also displays a
list of recently used session files. You cannot hide this list or change the number of files displayed.

NOTE: When you load a new session, or exit CodeScape, a message
appears prompting you to save any changes to the current session.

Edit menu ALT+E

The commands in the Edit menu are for cutting and pasting in the Edit region, and for performing
searches. The Edit menu becomes available when you open a window, create a region, or load a
session.

View menu ALT+V

The commands in the View menu are for showing and hiding toolbars, and configuring regions.

Project menu ALT+P

The commands in the Project menu are for configuring the current project and building it from
within CodeScape.

Debug menu ALT+D

The commands in the Debug menu are for controlling program execution, stepping code, and using
breakpoints. You can set the cursor to the PC (program counter) and vice-versa. The default origin
is set to the value of the PC. You can also lock the view to an Expression that contains the PC, a
register, or memory.

Tools menu ALT+T

The commands in the Tools menu let you simulate a target's processor operations on your computer
and run the Profiler to examine the run-time behavior of your program file.

Other commands are for running script files and adding script files to run from the Tools menu and
the shortcut menu on the Scripts tab on the Input / Output window. You can also specify custom
shortcut keys, and add programs to run from the Tools menu.

10

CodeScape User Guide

Region menu ALT+R

The commands in the Region menu are for splitting (creating new) regions, changing a region’s type
and updating all regions. The Region menu is available when you open or create a window, region
or session.

Window menu ALT+W

Use the Window menu to open a new window. When you open a new window, the Edit and Region
menus appear on the menu bar, and additional commands appear on the Window menu which are f
arranging multiple windows in CodeScape. You can select and deselect commands for proportionally
resizing a window and its regions, and loading the current session when you next run CodeScape.

The Window menu also displays a list of region types and highlights the currently active region.
When you have more than one region in a window frame, the active region within that frame appear:
in the list. You cannot hide this list or change the number of regions displayed.

NOTE: Ifyouuse a Windows® 95 or a Windows® 98 machine, creating
too many new windows or too many new regions causes CodeScape to
run out of system resources.

Help menu F1

Use the Help menu to get on-line Help and view CodeScape version information.

Region specific shortcut menus
Each region has two shortcut menus:

1) The Region Type menu has commands for changing the region’s type. To see the ment
* Press CTRL+SHIFT+F10.
-OR-
» CTRL+Right-click anywhere in the region.

2) The Region Actions menu has region specific commands, and global commands for
controlling program execution or manipulating breakpoints. To see the menu:

* Press SHIFT+F10.
-OR-
* Right-click anywhere in the region.

11

Using and configuring the interface

Customizing shortcut keys

You can specify shortcut keys for any of the commands on the menu bar or on the shortcut menus.

When you assign a shortcut key to a command CodeScape saves the setting in Keyboard File,
CODESCAPE.MAC. Each time you change a keyboard shortcut CodeScape updates the
information in the Keyboard File. When you run CodeScape it automatically detects and loads the
Keyboard File, CODESCAPE.MAC.

You can save your settings to a Keyboard File with a specific name. This is useful if you use
CodeScape on more than one computer, or if you share a computer with another person.

To save your settings to a Keyboard File with a specific name:

1) Onthe Shortcut Keys dialog box create and remove any shortcut keys you require, then
click Save...

2) Enter a name for the Keyboard File using the extension *.mac, then click OK.

NOTE: Toload a Keyboard File, click Load... and enter the
filename and location of the Keyboard File that you want to use.
When you load a Keyboard File the settings it specifies are
automatically copied to CODESCAPE.MAC.

You can:

 Assign shortcut keys to a command.

« Remove shortcut keys from a command.

» Restore the shortcut keys to their original settings.

» Assign the Microsoft Developer Studio shortcut keys to the commands.

12

CodeScape User Guide

Assigning shortcut keys to commands

1) Click Tools, select Customize then click Keyboard...
The Shortcut Keys dialog box appears.

2) Inthe Select a command tree highlight a menu command to assign a shortcut.
A description of the command appears in the Descriptions box, and any shortcut keys
appear in the Assigned shortcuts box.

3) Click Create Shortcut...
The Select shortcut dialog box appears.

4) Press the key combination you require.
If you press a key or key combination that is currently assigned to another command,
that command appears under Replaces.

5) Click OK.
The new shortcut appears in the Assigned shortcuts text box.

6) Click OK.

Removing shortcut keys from commands

1) Click Tools, select Customize then click Keyboard...
The Shortcut Keys dialog box appears.

2) Inthe Select a command tree highlight a menu command.
A description of the command appears in the Descriptions box, and any shortcut keys
appear in the Assigned shortcuts box.

3) Click Remove.

Restoring shortcut key assignments to their original settings

1) Click Tools, select Customize then click Keyboard...
2) Click CodeScape Defaults.

Assigning Microsoft Developer Studio shortcut keys to commands

1) Click Tools, select Customize then click Keyboard...
2) Click DevStudio compatible.

NOTE: FormenuitemsthatdonothaveaMicrosoftDeveloperStudio
default value, for example Simulate Processor, the CodeScape
default shortcut key is used.

13

Using and configuring the interface

The commands on the toolbars

The toolbars provide access to the main debugging functions. To uEmthar Configuration
check box to show or hide toolbars click View, Toolbar, then select or deselect toolbars from the list.

Toolbars and their uses

Use the: To:

Breakpoint toolbar Access the most common breakpoint actions.
Debug toolbar Access the debugging actions.

Processor Combo toolbar Select a target processor, configure a target

processor, and load program files.

Input/Output window View: the build utility's output when you build a
project; all messages generated by the target; and
all messages generated by an executing script.

Region toolbar Set and change a region’s type.

Region Combo toolbar Set the rate at which a region’s display is updated,
and change a region's type.

Splitter toolbar Split regions using the mouse.

Standard toolbar Open new windows, and create, open, and save
sessions.

Target window View the active processor for the selected target,

load program files and configure the target.

Target Combo toolbar View and configure the active target.

Editor toolbar Use the editing actions.

Workshop toolbar Use the GDWorkshop log options.

Status Bar View contextual information about commands on the

interface and any other information about the
current state of the interface.

NOTE: TheTargetandInput/Outputwindowscanbedockedatthetop
and bottom of the main window, or left free floating.

14

CodeScape User Guide

View, hide, dock, and move toolbars
NOTE: For more information see Toolbars and their uses.

View toolbars

Do one of the following:

 Right-click the status bar.
-OR-

* Right-click on a blank area of any toolbar. Select the toolbar.

OR
* Click View, Toolbar... Select thmolbar check box. Click OK.

Hide toolbars

1) Right-click on a blank area of any toolbar.
2) Clear the toolbar from the list.

If the toolbar is undocked:

* Right-click on the toolbar title bar and click Hide.
-OR-

* On the toolbar title bar, clickzl

If the toolbar is docked:

1) Click View, then point to Toolbar...
2) Clear thetoolbar check box. Click OK.

Dock toolbars

Do one of the following:

< Drag the toolbar to an edge of the main window.
-OR-

« Double-click the title bar. The toolbar will be docked at its last docked position.

15

Using and configuring the interface

Move toolbars

1) Do one of the following:
¢ On the toolbar title bar, right-click and click Move.
-OR-
* Click the toolbar title bar.
2) Drag the toolbar to the required position.

NOTE: Youcannotdockthe Targetwindoworthe Buildwindowifyou
are still pressing CTRL.

16

CodeScape User Guide

Commands on each toolbar

The commands on the toolbars provide access to the main debugging functions. You can also use tl
Keyboard shortcuts for most debugging operations, and Access keys support all operations; see
Appendix A.

Breakpoint toolbar

Breakpaint

AR RS

Commands on the Breakpoint toolbar

To issue this command:

Toggle Breakpoint F5

Enable Breakpoint none available

& | &

Disable Breakpoint none available

]

Configure Breakpoint(s) CTRL+F5

&

Reset All Breakpoints ALT+F5

&

Enable All Breakpoints CTRL+SHIFT+F5

Disable All Breakpoints CTRL+ALT+F5

& | &

Remove All Breakpoints SHIFT+F5

|2

17

Using and configuring the interface

Debug toolbar
=]
UE'E' lEluzfml"I || qél?él'::l(El"El r—-ilg_zll |1? I I*F':l“"ll El
Commands on the Debug toolbar
To issue this command: Click: Press:

Run all Processor(s) CTRL+F9

._
=
linl

Stop all Processor(s) none available

Run |= F9

Run to Address ;I SHIFT+F9
[Em

Run to Cursor _l ALT+F9
=TI

Stop T F9

Single Step (into) =; F7

Forced Step (into) none available

T

F=
Step Over E= F8
Step Out = CTRL+F8
Unstep o= CTRL+F7
Step Run In t= SHIFT+F7
Step Run Qut oz SHIFT+F8
Step Run l_l ALT+F7
Step Run Until ALT+F8

I:

18

CodeScape User Guide

To issue this command:

Set Cursor to PC Jore CTRL+SHIFT+P
Set PC to Cursor o] CTRL+ALT+P
Restart = CTRL+SHIFT+R

Processor Combo toolbar

SH2-MASTER - (T1:P1) j Sinl 13
“SH2-MASTER - (T1:P1)

E-(11P2)

The Processor Combo toolbar shows the current processor for the current target. The toolbar also
provides point and click access for loading program files and configuring the current processor.

Commands on the Processor Combo toolbar

To issue this command:

Load Program File CTRL+SHIFT+C

Configure Processor - = none available

Input/Output window

The Input / Output window appears automatically and displays the:

« Build tab with the specified build utility’s output when you build your project.

 Log tab with all messages generated by the current target.

 Scripts tab with all messages generated by the current script.

« Workshop tab if you are running GDWorkshop. The Workshop tab displays GD-M log
information, and lets you control the log events.

NOTE: Formoreinformationonthe Input/Outputwindowsee page 34.

19

Using and configuring the interface

Region toolbar

| E| 2| eo][%]|

The Region toolbar lets you set or change a region’s type.

Commands on the Region toolbar

To create this region: Click: Or press:

Disassembly EI ALT+1

Local Watch EI ALT+3
3

Memory ALT+4

Register ﬁl ALT+5

Source ALT+6

Watch _I ALT+7
&

Edit 5 ALT+8

Call Stack EI ALT+9

NOTE: To stop the display from updating in all regions press
CTRL+SHIFT+U.

20

CodeScape User Guide

Region Combo toolbar

Region Combo

Mo Type j Elﬁll@l@l
Mo Type '
D sermbly
Log

Local watch
Memory
Register
Source
Yatch

Editor

Call Stack

The Region combo toolbar lets you set the rate at which a region’s display updates, and change a
region’s type.

Commands on the Region Combo toolbar

To set this command: Click:

Region configuration

E]

Window update rate

|61

Stop all window updates

<]

Update all regions

L2}

21

Using and configuring the interface

Splitter toolbar

Splitter

il i I A 4

The Splitter toolbar lets you split existing regions to create new regions.

Commands on the Splitter toolbar

To issue this command: Click: Press:

Split Left ﬂ CTRL+SHIFT+LEFT ARROW
Split Right ﬂ CTRL+SHIFT+RIGHT ARROW
Split Up ﬂ CTRL+SHIFT+UP ARROW
Split Down ﬁ CTRL+SHIFT+DOWN ARROW
Delete Region ﬂ CTRL+D

22

CodeScape User Guide

Standard toolbar

Standard

0O DleE 2= = 7]

The Standard toolbar provides point and click access for opening a new window, and creating,
opening, and saving sessions.

Commands on the Standard toolbar

To issue this command:

New window El CTRL+N

New Session El CTRL+SHIFT+N
Open Session j CTRL+0

(=

Save Session EI CTRL+S

Cut il CTRL+X

Copy CTRL+C

Paste El CTRL+V

Print %I CTRL+P

About Box El none available
Help El F1

23

Using and configuring the interface

Target window

The Target window shows all the targets that CodeScape is connected to and the processors available
in each target. The processor status for each target is shown in the Target processor display.

When you create a new window, CodeScape uses the target information from the selected processor
on the target. The Target window provides point and click access for selecting a target processor.

NOTE: TheTargetwindowcanbedockedatthetop andbottomofthe
main window, or left free floating.

Target Combo toolbar

T arget Comnbo

=
| SEGA KATANA on SCSI Host ID#0 : Device ID#3 = =

The Target Combo toolbar shows the current target and lets you to configure it.

Commands on the Target Combo toolbar

To issue this command:

Target Configure EI

NOTE: The Serial Setup button only appears if you are connected
to a target with a serial port.

24

CodeScape User Guide

Editor toolbar

Editar E

B|eE(@| o] | a6 e %% %

The Edit toolbar provides point and click access to the editing actions.

To issue this command:

Create a new Editor file. none available

=

Open an existing Editor file. none available

&

Save the current Editor file. none available

=

Undo the last action. CTRL+Z

5

Redo the last action. none available

e

Search for a string. CTRL+F

=

Replace the current selection. none available

[

Toggle a Book Mark on or off. none available

LS

Move to the next Book Mark in
the file.

none available

[#2

Move to the previous Book Mark none available

in the file.

[

Delete all Book Marks. none available

[

25

Using and configuring the interface

Workshop toolbar

The Workshop toolbar provides point and click access to the GD Workshop log options.

To issue this command: Click:

Open Door
Close Door EI
Nudge Hﬁl

Switch to GD-ROM

-
olo]

Switch to Emulator ﬁl
Hard Errors EI
Status Bar

The status bar is the horizontal area at the bottom of CodeScape’s main window. It provides
contextual information about commands on the interface and any other information about the current

state of what you are viewing.

To display the status bar:

* Click View then select Status Bar.

26

How windows and regions
work

A Window is a frame that you can configure as a Region and split to create multiple Regions.
A Regionlets you view information about your project.

To view a project’s regions simultaneously you can:

» Open and close, minimize and maximize, cascade, and tile multiple windows.

 Split windows into multiple regions to display different types of information such as
memory contents and source code.

* Resize windows.

* Resize regions by moving the Splitter bars.

 Proportionally resize a window’s regions.

Use the Region configuration dialog box to configure fonts and colors for each region type, each
individual region, and each processor. This lets you to differentiate between processors, show
associated regions, and represent changes in memory.

NOTE: Ifyouuse a Windows® 95 or a Windows® 98 machine, creating
too many new windows or too many new regions causes CodeScape to
run out of system resources.

27

How windows and regions work

Using windows
Open a new window

» Click Window, then click New window.
-OR-

* Click El on the Standard toolbar.
OR
¢ Press CTRL+N.

Minimize a window

» On the window title bar click=l
-OR-
» On the System menu, click Minimize.

Maximize a window

« On the window title bar clickal
-OR-
» On the System menu, click Maximize.

Close a window

* On the window title bar click=
-OR-

* On the System menu, click Close.
-OR-

* Press CTRL+F4.

NOTE: Ifyou delete the only region in a window, the window is
deleted as well.

Close all windows

¢ Click Window, then click Close all Windows.

28

CodeScape User Guide

Move a window

1) Click the window’s title bar.
2) Drag the window to the required position.

Move between windows

¢ Press CTRL+TAB.

Resize a window

1) Point to the window boarder.
2) Click and drag the window outline to the required size.

To proportionally resize a region in a window:

1) Click Window, then select Proportional resizing.
2) Point to the window’s border.
3) Click and drag the window to the required size.

Load the current session when CodeScape restarts

 Click Window, then click to select Load last session on startup.

Cascade all windows

* Click Window, then click Cascade.
Tile all windows

* Click Window, then click Tile.

Arrange Icons

To arrange all minimized region windows at the bottom of the session window:

« Click Window, then click Arrange Icons.

29

How windows and regions work

Using regions

Change a region’s type

To change a region’s type:

 Click Region, then point to Type, then click a region type.

. OCn)The Region Combo box, select a region type from the drop down list.
. C-icli)ci_a Region Type icon on the Region toolbar.

. C-:('?IEI-JRight-cIick, then click a region type.

Navigate a region

To scroll through a region:

» Use the LEFT ARROW and RIGHT ARROW keys to move the cursor a single character
at a time.

* Use the UP ARROW and DOWN ARROW keys to move the cursor up and down a line
at a time.

» Use PAGE UP and PAGE DOWN to move up and down a page at a time.

» Use the HOME and END keys to move to the first visible line and the last visible line of
a file.

To move through a region’s fields:

» To move the cursor to the next field, press TAB.
» To move the cursor to the previous field, press SHIFT+TAB.

NOTE: Atthe end of a field the cursor moves to the next field;
at the end of the last field the cursor moves to the next line.

30

CodeScape User Guide

Move between regions

To move to the region to the left:
« Click anywhere in the region to the left.

-OR-
* Press CTRL+LEFT ARROW.

To move to the region to the right:

* Click anywhere in the region to the right.

-OR-
* Press CTRL+RIGHT ARROW.

To move to the region above:
* Click anywhere in the region above.

-OR-
¢ Press CTRL+UP ARROW.

To move to the region below:
* Click anywhere in the region below.

-OR-
* Press CTRL+DOWN ARROW.

Create new regions

To create a new region:

* Open a new window (CTRL+N).
-OR-
 Split an existing region.

31

How windows and regions work

Split regions
To split a region to the left:

* Click Region, point to Split, then click Left.
-OR-

« Click * on the Splitter toolbar.
-OR-
* Press CTRL+SHIFT+LEFT ARROW.

To split a region to the right:

 Click Region, point to Split, then click Right.
-OR-

. Click = on the Splitter toolbar.
-OR-
Press CTRL+SHIFT+RIGHT ARROW.

To split a region above:

« Click Region, point to Split, then click Up.
-OR-

« Click “t! on the Splitter toolbar.
-OR-
Press CTRL+SHIFT+UP ARROW.

To split a region below:

« Click Region, point to Split, then click Down.
-OR-

. Click * on the Splitter toolbar.
-OR-
Press CTRL+SHIFT+DOWN ARROW.

32

CodeScape User Guide

Delete a region

Make the region active, then do one of the following:

« Click Region, click Delete.
-OR-

Click % on the Splitter toolbar.

-OR-

In the region, press CTRL+Right-click and click Delete Region.
-OR-

Press CTRL+D.

NOTE: Ifthereisonlyoneregioninawindow, deletingitdeletes
the window as well.

Update the display in all open regions

 Click Region, then click Update all regions now.
-OR-
e Press CTRL+U.

33

How windows and regions work

Configuring regions
Region Configuration dialog box
In the Region Configuration dialog box are tab commands for configuring fonts and colors, and

setting the update rate for a single region, a region type, and each processor.
To Configure an active region:
 Right-click, click Properties...
-OR-
« On an active region’s title bar, double-cli=]

The Region Configuration dialog box appears. Do the following:

1) Setthe Mode and specify any commands inftrget processotext box.
2) Specify any options in the Target, Processor, or Region type lists.
3) Then do one of the following:

« Click Apply to view your configuration changes without leaving the dialog
box.

-OR-
« Click OK to set the configuration changes for your project.

Using the Region Configuration dialog box

To configure: Select:

Thecurrentlyactiveregion Apply to active region only.

in a project.

All regions of a selected Apply to all regions of selected type.

type on all processors. Then select a Region type.

A specific Target Apply to all regions of the selected target.

Processor,andRegiontype. Then select a Target Processor, and a Region
type.

34

CodeScape User Guide

Set the color and font

Use the Color and Font tab commands to differentiate between processors, show associated regior
and represent changes in memory.

To set the color attributes for the specified Mode:

1)
2)
3)
4)
5)

Select the Color tab.

Select the attribute whose color you want to change.
Set the region Foreground color.

Set the region Background color.

Click OK.

To set the font type and size for the specified Mode:

1)
2)
3)
4)
5)

Select the Font tab.

Click Change font.

Specify the region Font, Font style, and Size.
Set the Effects you require.

Click OK.

Set the region update rates

Use the Update Rate tab to specify when CodeScape will update information in each region.

If the update rate for a region’s display interrupts the target causing jitter in your program, set the
Foreground and Background sliders to Min.

To specify when CodeScape will update information in a region:

1)
2)

3)

Select the Update tab.

Drag the Foreground slider to set the update rate for when the region has focus. Set the
slider to Max to continually update the display (approximately 14Hz). Set the slider to
Min to update the display at approximately 1/10th of the Max setting.

Drag the Background slider to set the update rate for when the region does not have
focus. Set the slider to Max to continually update the display. Set the slider to Min to
prevent updates to the display.

35

How windows and regions work

Target window

The Target window can be docked at the top and bottom of the main window, or left free floating.

When you run CodeScape it scans for valid targets and displays them in the Target window. The
Target window shows all the targets that CodeScape is connected to and the processors available in
each target. The processor status for each target is shown in the Target processor display.

When you create a new window, CodeScape uses the target information from the selected processor
on the target.

Using the shortcut menu on the Target window

Controlling target processor execution

Right-click, then click: To:

Configure Processor. .. Set the update rate for the current processor.
Simulate Processor Run the Simulator.

Execution Run, stop, and restart your program. Run your

program until it executes a specified address.

Run all of your program files simultaneously.

Stop all of your programs running
simultaneously.Use the single stepping commands,
or run the step commands.

Breakpoints Add, enable, disable, configure, reset, orremove
data breakpoints.

Reset Target Perform a soft reset or a hard reset. If you
reset the target you are prompted to reload the
Program File.

Load Program File Download aprogramfile to the selected processor

on the target.

Allow Docking Toggle docking of the window on or off.

Hide Hide the window.

36

CodeScape User Guide

Target Processor display

To show the processor(s) for a target:

« Double-click on the target status line.
-OR-

* Click = .

To hide the processor(s) for a target:

» Double-click on the target display line.

-OR-
* Click = .

37

How windows and regions work

Input/Output window

The Input / Output window appears automatically and displays the:

 Build tab with the specified build utility’s output when you build your project.
Any standard format errors and warnings are shown in the Build tab. You can scroll
through the information as it is generated, or press F4 to move through any listed errors
one at a time. If you use:

« CodeScape’s Edit region it automatically opens your project file at the line
containing the first error or warning. You can then use the Build tab to
navigate to all subsequent errors. If there is no active Edit region CodeScape
creates one for you.

« An external editor, double-click an entry in the Build tab to invoke the editor
and open the source file at the line containing the error or warning. Some
external editors do not support this option and will open without displaying
the line at which the error occurred.

 Log tab with all messages generated by the current target.
For example, you can use printf () in your code to output a message to the Log region
when a breakpoint triggers.

 Scripts tab with all messages generated by the current script.

» Workshop tab if you are running GDWorkshop. The Workshop tab displays GD-M log
information, and lets you control the log events.

NOTE: Youcandockthe Input/Outputwindow atthetop andbottom
of the main window, or leave it free floating.

NOTE: Ifyou enable high level optimization when you build your
project the compiler output can make source-level tracing
confusing.

NOTE: Textstrings longerthan 132 characters are truncated when
displayed in the Log tab.

38

CodeScape User Guide

Using the shortcut menu on the Build tab

Right-click, then click:

Setup Project. ..

Configure, make, then build a project

To:

current and building it.

Specify file locations for making a project

Setup Editor. ..

your project.

Specify the editor that you want to use for

Make Make your project current by building it.

Next Error Move to the next error in the list.

Clear Clear the contents of the Project Build window.
Allow Docking Toggle docking for the window on or off.

Hide Hide the window.

Using the shortcut menu on the Log tab

Right-click, then click:

Configure Log...

To:

Configure the Log tab.

Print... Print the contents of the Log tab.
Save To File... Save the contents of the Log tab to a file.
Execution Run, stop, and restart your program. Run your

step commands.

program to the cursor position, or until it
executes a specified address. Run all of your
program files simultaneously. Stop all of your
programs running simultaneously.

Use the single stepping commands, or run the

Breakpoints

Toggle abreakpointon or off. Enable, disable,
configure, reset, and remove breakpoints.

Reset Log

Clear the contents of the Log tab.

39

How windows and regions work

Using the shortcut menu on the Scripts tab

Right-click, then click:

To:

Run Script Select and run a script.

Clear Clear the contents of the Script tab.

User Scripts This option appears in gray until you add a
script to the menu. When you add a script its
name appears on the menu.

Allow Docking Toggle docking for the window on or off.

Hide Hide the window.

Using the shortcut menu on the Workshop tab

Right-click, then click:

Disable Updates

To:

Disable Workshop message logging.

Close Door

Close the door.

Switch To Emulator / Switch
To GD-ROM

Toggle between the emulated GD-ROM image and
the actual GD-ROM.

Nudge

Create a soft error on the next operation.

Hard Errors On

Enable hard errors as defined in Workshop. If
you use this command, enable it before
emulating.

Clear Clear the contents of the Workshop tab.
Allow Docking Toggle docking for the window on or off.
Hide Hide the window.

CodeScape User Guide

The Source and Disassembly regions
The Source and Disassembly regions let you debug your program code from different views.

« In a Disassembly region are commands for debugging your program at instruction level
(assembly code).
« In a Source region are commands for debugging your original source code.

When you edit your source code the changes are displayed in the corresponding Source region whe
the display is updated. A * appears in a Source region's title bar if you edit your source code and d
not re-build the program file. Always save any changes that you make to a file edited in an external
editor before using the Make option to compile and build your project in CodeScape.

NOTE: Place the mouse pointer over a variable or expression to
quickly view its' value.

NOTE: Before you edit a program file from a UNIX target, convert
it to a DOS readable format using a utility such as to_dos (use
to_unix to return the file to a UNIX format).

NOTE: Ifnodebuginformationappearsina Source region, compile
all source files for your project with debugging turned on.

If no source is available you can tell CodeScape to show the disassembly instead. To do this:

1) Click Tools, then click Options...

The Options dialog box appears.
2) Select the Automatic Source/Disassembly Switching check box.
3) Click OK.

41

How windows and regions work

Using the shortcut menu in a Source region

The commands on the shortcut menu are for debugging in the region and configuring the source
view. Right-click anywhere in the region to access the shortcut menu.

Copy in the Source region

1) Inthe Source region, select the text you want to copy by highlighting it.
2) Right-click, then click Copy.

The selection is copied, then pasted to the clipboard.

Lock the display origin to an expression

1) On the Source region title bar clil &l
The Goto Address... dialog box appears.

2) Enter an expression for the region origin.
3) Click OK.

Configuring the Source view

Right-click, then click: To show the:

Show Address Corresponding address for the first line of
code generated by the source code line.

-0R-

Show Line Nos. Line numbers for each line of source in the
left-hand column.

Accessing the debugging commands in a Source region

Right-click, then select: To click commands to:

Execution Run, stop, and restart your program. Run your
program to the cursor position, or until it
executes a specified address. Run all of your
program files simultaneously. Stop all of your
programs running simultaneously.Use the single
stepping commands, or run the step commands.

Breakpoints Toggle abreakpainton oroff. Enable, disable,
configure, reset, and remove breakpoints.

42

CodeScape User Guide

Setting the cursor and the display in a Source region

Right-click, then click: To:
Set Cursor to PC Show the source code from the value of the PC.
Set PC to Cursor Change the PC at the current cursor position.
Goto Address. .. tEn‘[eran expression for the region originto go

0.
Goto Source File... Select the required source file.
View As The programfile in the active region as source

code, or assembler code, or both source and
assembler code.

Tools Searchin the Source region. Find the nextitem
in the search.

Tab Width. .. Enter a value to set the tab size in spaces.

Properties Configure fontsandcolors. Setthe update rate
for a single region, a region type, and each
processor. Change the tab settings.

Synchronize the cursors in a Source and Disassembly region

1) Inthe Source region:
* Right-click and click Synchronize Cursor.
-OR-
» On the Source region title bar clicl
2) Inthe Disassembly region:
* Right-click and click Synchronize Cursor.
-OR-
» On the Disassembly region title bar cli%l
The cursors for the Disassembly and Source regions are now synchronized. When you move the

cursor in the region with focus, the cursor in the synchronized region shows the corresponding line
of code.

NOTE: Youcanonlysynchronizeregionsthatareinthe samewindow
and are connected to the same target processor.

43

How windows and regions work

Goto an address

1) Do one of the following:
« Click Edit, then click Go To (CTRL+G).
-OR-
¢ Right-click, click Goto Address.

The Goto Address dialog box appears. (This dialog box works in the same way as the
Expression Evaluator.)

2) Enter an expression for the address to go to.
3) Click OK.

Go to a source file referenced in the program file

1) Right-click and click Goto Source File.
The List Files in Program File dialog box appears.

2) Select the required source file.
3) Click OK.

If the path is incorrect an error message appears in the Source region. Click Project, then click Edit
Source Path and enter the correct path for the source files.

NOTE: Code is not generated for data-only files, or if the -g
command is not set when compiling. If code is not generated an
error message appears.

Evaluate a specific expression

1) Select an expression in the region.
2) Right-click, click Evaluate...

Change the tab settings

1) Right-click, point to Properties then click Tab Width...
The Change Tab Size dialog box appears.

2) Enter a value for the number of spaces used to represent a tab.
3) Click OK.

44

CodeScape User Guide

Search in the Source region

1)
2)
3)

4)
5)

Right-click in the Source region, click Tools, then click Find.

Type the Search string in tRed whattext box.

To search for whole words and not parts of a larger word, selddatich whole word
only check box.

If the search is case sensitive, selecMbéch casecheck box.

Click OK.

The search will start from the current cursor position and continue until the end of the file.

NOTE: Right-click, then click Find nextto continue searching for
the same item.

45

How windows and regions work

Using the shortcut menu in a Disassembly region

The commands on the shortcut menu are for debugging in the region and configuring the
disassembly view. Right-click anywhere in the region to access the shortcut menu.

Copy in the Disassembly region

1) Inthe Disassembly region, select the text you want to copy by highlighting it.
2) Right-click, then click Copy.

The selection is copied, then pasted to the clipboard.

Lock the Disassembly region
You can lock the view origin to the PC, a register, or a memory location.

1) On the Disassembly region title bar cli® . The Goto Address dialog box appears.
2) IntheExpressiortext box, enter a valid expression:
 Value of the PC to lock the view to the PC. Click OK.
-OR-
« Name of the register to lock the view to a register. Click OK.
-OR-
« In theExpressiortext box, enter the address of the memory location to lock
the view to a memory location. Click OK.

NOTE: To unlock the view origin, click & again.

46

CodeScape User Guide

Right-click, then click:

Configuring the disassembly view

To show the:

Show Address Location address of the disassembled code.

Show Labels Symbolic label replacement of the disassembled
code.

Show Opcode Words Op-code in words for the disassembled region.

Show Hexadecimal

Operand values in hexadecimal.

Show Uppercase

Instructions in upper case.

Show Symbols

Operand values as symbols.

Show EAs & Lits

Effective address and literals.

Accessing the debugging commands in a Disassembly region

Right-click, then select:

Execution

To:

Run, stop, and restart your program. Run your
program to the cursor position, or until it
executes a specified address. Run all of your
program files simultaneously. Stop all of your
programs running simultaneously.Use the single
stepping commands, or run the step commands.

Breakpoints

Toggle abreakpointon or off. Enable, disable,
configure, reset, and remove breakpoints.

How windows and regions work

Setting the cursor and the display in a Disassembly region

Right-click, then click: To:
Set Cursor to PC Show the source code from the value of the PC.
Set PC to Cursor Change the PC at the current cursor position.
Goto Address. .. Enteran expression for the region origin to go

to.
Tools Search in the Disassembly region. Repeat the

last search run. Specify an address to
disassemble to a file.

Properties Configure fonts and colors. Setthe update rate
for a single region, a region type, and each
processor. Change the tab settings.

Synchronize the cursors in a Disassembly and Source region

1) Inthe Disassembly region:
 Right-click and click Synchronize Cursor.
-OR-
¢ On the Disassembly region title bar clicsl
2) Inthe Source region:
 Right-click and click Synchronize Cursor.
-OR-
¢ On the Source region title bar clicl
The cursors for the Disassembly and Source regions are now synchronized. When you

move the cursor in the region with focus, the cursor in the synchronized region will show
the corresponding line of code.

NOTE: Youcanonlysynchronizeregionsthatareinthesamewindow
and are connected to the same target processor.

48

CodeScape User Guide

Goto an address

1) Do one of the following:
 Click Edit, then click Go To (CTRL+G).
-OR-
 Right-click, click Goto Address.
The Goto Address dialog box appears.
2) Enter an expression for the address to go to.
3) Click OK.

Evaluate a specific expression

1) Select an expression in the region.
2) Right-click, click Evaluate...

Search in the Disassembly region

1) Right-click in the Disassembly region, point to Tools, then click Find.
2) Type the Search string in thighat am | searching fotext box.
3) Type the Start address in tBearch fromtext box.
4) If the search is case sensitive, selecQhase sensitiveheck box.
5) Select one of the following radio buttons:

* Length (the amount of data).

-OR-

* End Address.

6) Type the search item in the text box below.

7) Select one of the following radio buttons: All fields (default), Words, Opcode, OpSrc,
OpDest, or Label (address).

8) Click OK.

NOTE: Right-click then click Find next to continue searching for
the same item.

49

How windows and regions work

Specify an address to disassemble to a file

This general purpose dialog box is for writing a block of memory or disassembly in hexadecimal to

a file.

1
2)
3)
4)

5)

Right-click in the Source region, point to Tools, then click Disassemble to File.
In theDestination Filenaméext box, enter the name of the file to write to.
In theStart Addressext box, enter the start address in hexadecimal.
Do one of the following:

e Select Length and enter the length in hexadecimal.

-OR-

e Select End Address and enter the end address in hexadecimal.

Click OK.

50

CodeScape User Guide

The Call Stack region

Use the Call Stack region to view a list of active function calls. Viewing the Call Stack can help you
trace the course of function execution. When the target stops, for example if a breakpoint occurs,
CodeScape displays the name, label, or address of the current function at the top of the list in the Ce
Stack region. Execution trace history is shown below the current function with its start point at the
bottom of the list.

To navigate to a specific function call in active Source, Disassembly, Watch, and Local Watch
regions, in the Call Stack region, double click on a function. CodeScape highlights the function as it
occurs in the active regions.

Using the shortcut menu in a Call Stack region

Right-click, then select: To click commands to:

Show Parameter Names Toggle the function parameter names on or off.
Show Parameter Types Toggle function parameter types on or off.
Show Parameter Values Toggle function parameter values on or off.
Show Parameter Registers Toggle function parameter registers on or off.
Show Octal Display function values in octal.

Show Decimal Display function values in decimal.

Show Hexadecimal Display function values in hexadecimal.
Execution Run, stop, and restart your program. Run your

program until it executes a specified address.
Run all of your program files simultaneously.
Stop all of your programs running
simultaneously.Use the single stepping
commands, or run the step commands.

Breakpoints Toggle abreakpointon or off. Enable, disable,
configure, reset, and remove breakpoints.

Properties Configure fonts and colors and set the region
and processor update rates.

NOTE: Use Runto Cursor to return to a specific function outside
of the active one.

51

How windows and regions work

The Watch and Local Watch regions

The Watch and Local Watch regions display variables and expressions, one per row.

Each row has four columns, the expression appears in the third column and its value (if applicable)
appears in the fourth column. If the:

« First column contains a ‘.’ you can place a watch point on the expression.
» Second column contains a ‘+’ you can expand the expression.
» Second column contains a ‘-’ you can collapse the expression.

In a Watch or Local Watch region, you can:

 Highlight changes in data values between execution steps.
 Edit the value of an expression in the Watch region and the Local Watch region.

NOTE: You can only edit the actual expression in a Watch region.

C++ name demangling in a Watch or Local Watch region

C++ name de-mangling is performed on all variable names. This means that you can enter the
symbol for a name as it appears in your original source.

You can browse data to:

» Expand and collapse branches of the hierarchical view of the structure.
» See exactly where the structures are in memory.
« Edit the values of any variables.

All C types are supported including:

* structs

e unions

e arrays

* enumeration (enum)
« floats / double

NOTE: Ifyouplaceawatch(data)breakpointonamemberofaunion
itwilltriggerforallmembers ofthat size, regardless of type.
Thisalso appliestoanonymous unions, exceptthattwo members of
the same size appear astwo variables sharingthe same addressin
memory.

52

CodeScape User Guide

Expanding expressions

When you expand an expression, each child expression is indented and shown directly below the
parent.

For example:

parent
child
child

Expressions are added to expanded:
» Pointers, to show the dereferenced item.

» Arrays. An expression is added for each element of the array.
 Structures. An expression is added for each member.

53

How windows and regions work

The Watch region

In the Watch region you can enter variables and expressions. The scope of variables in a Watch
region is global. If an expression goes out of scope during program execution, a message appears.

« If an expression’s value can be determined, as is the case for a static variable, its value is
shown in the region.

« If an expression’s value cannot be determined, no value is shown.

« If an expression comes back into scope, its value is shown.

Using the shortcut menu in a Watch region

Right-click, then select: To click commands to:

Cut Cut the current selection in the Editor file
and paste it to the clipboard.

Copy Copy the current selection in the Editor file
and paste it to the clipboard.

Paste Insert the contents of the clipboard at the
current cursor position.

Delete Delete part of a structure.

Open Expand a structure or array.

Close Collapse a structure or array.

Insert Insert a new watch expression.

Append Add a variable to the end of the active list.

Show Headers

Toggle the header bar on or off.

Keep in View Keep the cursor in view if it is possible.
Show Octal Display watch expressions in octal.
Show Decimal Display watch expressions in decimal.

Show Hexadecimal

Display watch expressions in hexadecimal.

Edit Watch Value...

Modify the value of a variable or watch
expression.

54

CodeScape User Guide

Right-click, then select: To click commands to:

Execution Run, stop, and restart your program. Run your
program until it executes a specified address.
Run all of your program files simultaneously.
Stop all of your programs running
simultaneously.Use the single stepping
commands, or run the step commands.

Breakpoints Toggle abreakpointon oroff. Enable, disable,
configure, reset, and remave breakpoints.

Highlight Changes See where in memory an expression changed.

Cache Expanded Symbols Save the state of an expanded function to the
session file. The next time that the function
isaccesseditwill automatically expandtoits
saved state.

Properties Configure fontsandcolors. Set the update rate
for a single region, a region type, and each
processor.

55

How windows and regions work

Browsing data in a Watch region

Add a symbol or variable

Right-click, click Insert to add a symbol or variable at the current cursor position.
-OR-

Right-click, click Append to add symbol or a variable at the end of the current list of
variables.

-OR-

Press return to enter a new symbol or variable at the current cursor position.

Expand a structure or array

Select the structure or array you want to expand, then:

Click on ‘+'.

-OR-

Press SPACEBAR.

-OR-

Right-click and click Open/Close.

Collapse a structure or array

Select the structure or array you want to collapse, then:

Click on *-".

-OR-

Press SPACEBAR.

-OR-

Right-click and click Open/Close.

56

CodeScape User Guide

Editing variables in a Watch region

Modify the value of a variable or watch expression

 Select the value to be changed. Press ENTER.
-OR-
* Press CTRL+ALT+E.

The Expression Evaluator dialog box appears. Enter a valid expression. Click OK.
Edit a variable’s data value (structure, array or union)

1) Double-click the value to be edited.
2) Edit the value.
3) Do one of the following:
* Press ENTER.
-OR-
* Press CTRL+ALT+E to display the Expression Evaluator dialog box.

Delete a parent expression and all child expressions

1) Expand the structure or array.
2) Select the component you want to delete, then:
* Right click and click Delete.
-OR-
* Press DELETE.

NOTE: If you delete a parent expression, any children are also
removed from the region.

Delete a parent expression and move all children up one level

1) Expand the structure or array.
2) Select the component you want to delete.
3) Press SHIFT+DELETE.

57

How windows and regions work

The Local Watch region

The Local Watch region automatically displays all local variables in view from the current position
of the PC (program counter). Variables are automatically added to the display as they come into the
scope of a function.

NOTE: Ifthere is more than one variable of the same name in the
current scope, all but the inner most variable of that name are
unavailable and are shown in gray.

NOTE: Ifthere is more than one variable of the same name in the
same scope they are shown in italics.

Using the shortcut menu in a Local Watch region

Right-click, then select:

To click commands to:

Copy Copy the current selection in the Editor file
and paste it to the clipboard.

Delete Delete the current selection.

Open Expand a structure or array.

Close Collapse a structure or array.

Show Headers

Toggle the header bar on or off.

Keep in View Keep the cursor in view if possible.
Show Octal Display local watch expressions in octal.
Show Decimal Display local watch expressions in decimal.

Show Hexadecimal

Display local watch expressions in hexadecimal.

Edit Local Value

Modify the value of a variable or watch
expression.

Execution

Run, stop, and restart your program. Run your
program until it executes a specified address.
Run all of your program files simultaneously.
Stop all of your programs running
simultaneously.Use the single stepping
commands, or run the step commands.

58

CodeScape User Guide

Right-click, then select: To click commands to:

Breakpoints

Toggle abreakpointonoroff. Enable, disable,
configure, reset, and remove breakpoints.

Highlight Changes See where in memory an expression changed.

Cache Expanded Symbols Save the state of an expanded function to the

session file. The next time that the function
isaccessed itwill automatically expand toits
saved state.

Properties

Configure fontsand colors. Set the update rate
for a single region, a region type, and each
processor.

Browsing data in Local Watch region

Expand a structure or array

Select the structure or array you want to expand, then:

Click on *+'.

-OR-

Press SPACEBAR.

-OR-

Right-click and click Open/Close.

Collapse a structure or array

Select the structure or array you want to collapse, then:

Click on *-'.

-OR-

Press SPACEBAR.

-OR-

Right-click and click Open/Close.

59

How windows and regions work

Editing variables in a Local Watch region
Modify the value of a variable or watch expression

1) Do one of the following:
 Select the value to be changed. Press ENTER.
-OR-
e Press CTRL+ALT+E.
The Expression Evaluator dialog box appears.
2) Enter a valid expression.
3) Click OK.

Delete a parent expression and all children

1) Expand the structure or array.
2) Select the component you want to delete, then:
* Right click and click Delete.
-OR-
e Press DELETE.

NOTE: Ifyoudeleteaparentexpression,anychildexpressionsare
also removed from the region.

Delete a parent expression and move all children up one level

1) Expand the structure or array.
2) Select the component you want to delete.
3) Press SHIFT+DELETE.

60

CodeScape User Guide

The Memory region

Use the Memory region to view the targets memory contents from a specific address. In a Memory
region you can view memory as ACSII characters, Bytes, Words, or Longs. Write protect an area of
memory to prevent memory contents changing in the current memory region.

As you scroll through a Memory window the cursor moves a line at a time and the slider speed
increases. The slider automatically returns to the center position when you stop scrolling.
Double-click a variable or expression to quickly view and edit its value.

Using the shortcut menu in a Memory region

Right-click, then select: To click commands to:

Display Bytes

Display memory as bytes.

Display Words

Display memory as words.

Display Longs

Display memory as longs.

Display Quadwords

Display memory as quadwords.

Display ASCII

Display the ASCII value for each byte memory.

Highlight Changes

See where the target’s memory changed.

Set Bytes Per Line. ..

Display a specific number of bytes per line.

Edit ASCII

Change an ASCl! value in the Memory region.

Edit Memory Value

Change a value in the Memory region.

Follow Pointer

Follow a pointer in memory.

Goto Address. ...

Set the origin.

Write Protect

Toggle write protect.

Execution

Run, stop, and restart your program. Run your
program to the cursor position, or until it
executes a specified address. Run all of your
program files simultaneously. Stop all of your
programs running simultaneously.Use the single

stepping commands, or run the step commands.

Breakpoints

Toggle abreakpointonoroff. Enable, disable,
configure, reset, and remove breakpoints.

61

How windows and regions work

Right-click, then select: To click commands to:

Tools Search for a patternin memory. Repeat the last
search. Fill arange of memory with data. Write
a block of memory in hexadecimal to a file.

Properties Configure fontsand colors. Set the update rate
for a single region, a region type, and each
processor.

Viewing Memory
View Memory regions

Do one of the following:

* Click Region, point to Type and click Memory.
-OR-

* On the Region toolbar, clici®

-OR-
* In any region, CTRL+Right-click and click Memory.

Set the origin

1) Right-click and click Goto Address...
The Goto Address... dialog box appears.

2) Enter an address or symbol for the new origin.

3) If you enter an invalid symbol a warning appears with an command to invoke the
Origin dialog box.

4) Click OK.

NOTE: Theoriginisinitially settothe value ofthe PC. You can
also set the origin to an expression.

62

CodeScape User Guide

Always display memory from a specified address

1) Do one of the following:
* Click Edit, then click Go To... (CTRL+G).
-OR-
 Right-click and click Goto Address...
The Goto Address... dialog box appears.
2) Type or select a memory location or expression from the Expression list.
3) Select Lock, click OK.

Follow a pointer in memory

1) Select the memory location holding the value of the pointer.
2) Right-click and click Follow Pointer (CTRL+T).

The Memory region origin changes to display memory from the location specified by the

value of the pointer.

Write a block of memory in hexadecimal to file

1) Inthe Memory region, right click, point to Tools and then click Hex Dump to File. The

Hex Dump to File dialog box appears.

2) IntheDestination Filenaméext box, enter the name of the file to write to. In$itart
Addresgext box, enter the start address in hexadecimal.

3) Then do one of the following:
» Select Length and enter the length of the memory block in hexadecimal.
-OR-
» Select End Address and enter the end address in hexadecimal.
4) Click OK.

The specified block of memory is written to a file.

63

How windows and regions work

Editing memory
Change values in the Memory region

1) Ina Memory region, do one of the following:
* Use the + and - keys to increment or decrement the current value.
-OR-
« Double-click or press ENTER, then type over the existing byte, word, or long
value.
-OR-
¢ Right-click, click Edit memory value...
-OR-
* Press CTRL+ALT+E.
The Expression Evaluator dialog box appears.
2) Enter a valid expression.
3) Click OK.

NOTE: Make sure you enter valid values for the current radix.
CodeScape displays all Memory values in hexadecimal.

Filling memory with specific data
To fill a range of memory with a specific data:

1) Ina Memory region, right-click and select Tools..., click Fill...
2) Enter a value in thEill Expressiontext box.
3) Enter a value in th8tart Addressext box.
4) Select End address, or Length.
5) Enter a value in the text box below.
6) Select the Mode as Text (ASCII), Byte, Word, Long, or Quad.
7) Do one of the following:
» SelectConvert Native Endigrto show the real memory value.
-OR-
« DeselectConvert Native Endigrto store memory as byte sequences.
8) Click OK.

64

CodeScape User Guide

Searching memory
To define and search an area of memory for a specified pattern of data:

1) Ina Memory region, right-click and select Tools...
2) Click Find. The Find In Memory dialog box appears.
3) Enter a search string in thend Patterntext box.
In Binary, Octal, Decimal, and Hex modes the search pattern is delimited by either
commas or semi-colons (optional).
4) Enter a value in th8tart Addressext box.
The default value is the start address of the region. If you have not run a search, the
address at the start of the current memory block is used.
5) Select End Address, or Length.
The default value for the end address is the last displayed byte in the Memory region.
6) Enter a value in the text box below.
7) Select the Width as either Byte, Word, or Long.
8) Select Forward or Reverse to specify the direction of the search.

9) Click OK.

NOTE: If a specified search is not valid, ‘Invalid Address’
appears in the field(s) that require editing.

NOTE: Ifamatchisfounditsaddressappears.Asearchskipsover
any sensitive areas such as invalid memory areas, write-only
memory, and memory reserved for the monitors.

65

How windows and regions work

Width

Width aligns the search pattern with the data in the target’s memory. This specifies how the search
pattern and the memory contents are compared. The allowable width depends on the search mode
selected.

Valid mode and width combinations

For this mode: Valid widths are:

Binary Binary, Word, Long
Decimal Byte
Hex Binary, Word, Long
Text N/A

These patterns are equivalent with Hex and Byte widths set:

FF,FF,FF,FF,34,DC
FF,FF;FF,FF;34,DC
FFFFFFFF34DC

The \ specifier

Use the \ specifier to include special characters in text searches.

NOTE: Always enclose a text search string in quotes.

Example

The pattern "How are you\?" searches for "How are you?"

66

CodeScape User Guide

The ? wildcard

The wild card character *?’ can be used in Binary and Hex modes. Use ‘?’ to specify a nibble in Hex
mode and a bit in Binary mode that always results in a successful match.

Example

In Hex mode:

FF?F matches FFOF,FF1F FF2F,...,FFFF
In Binary mode:
????1111 matches 00001111,00011111,...,11111111

The @ wildcard

The wild card character, ‘@’, can be used in Text modes. Use ‘@’ to specify a double-byte characte

Automatic padding

The search pattern is automatically left-padded for the Binary, Decimal, and Hex modes. The
padding type is either ‘0’ or *?’ depending on the delimiter used.

67

How windows and regions work

Delimit with commas
Delimit a search pattern with commas (the default) to left-pad it with zeros. For example, in Hex
mode with Byte width:

FFFFFFFF34DC and FF,FF,FF,FF,34,DC do the same search.

The comma separator in is implied in the first search pattern. More examples, in Hex mode and Word
width, are:

f,87d,a automatically pads toO00F,087D, 000A
f87da automatically pads toOO0F,87DA
, automatically pads to0000

NOTE: A single comma used on its own produces the pattern 0000.
Usethisfeature carefully. Forexample:,7 automatically padsto
0000,0007

Delimit with semi-colons

Delimit a search pattern with semi-colons to pad it with the ‘?’ wild card. Examples, in Hex mode
and Word width, are:

f;8d;a automatically pads to???F,?87D,???A
f;87da automatically pads to???F,87DA
; automatically pads to??7??

Equivalent search patterns

Use the comma and semi-colon delimiters to do the same search pattern in different ways. The
following patterns are the same when the Hex and Byte widths are set:

FF,FF,FF,FF,34,DC

FF,FF,FF;FF;34,DC

FFFFFFFF34DC
You can mix the comma and semi-colon delimiters to produce precise search patterns. For example,
in Hex mode and Long width: f;fOfOfOfOfffff?,7; pads to:

68

CodeScape User Guide

The Register region

The Register region shows the contents of a processor’s register block and flags. Double-click a
variable or expression to quickly view and edit its value.

Using the shortcut menu in a Register region

Right-click, then select: To click commands to:

Increment Register Apply the current Increment Value (1 is the
default) to the contents of the register.

Decrement Register Apply the current Decrement Value (1 is the
default) to the contents of the register.

Change Inc/Dec Value. .. Change the Increment/Decrement Value.

Highlight Changes See where changes occurred during the last
operation.

Write Protect To prevent data from being written to the

currently active Register region.

Edit Register Change the selected register value.

Column Format Display registers in two, or four columns.
Select Auto to tell CodeScape to choose.

Show Banked Registers Toggle the banked register display on or off.

Show Float Registers Toggle the floating point register display on
or off.

Execution Run, stop, and restart your program. Run your

program to the cursor position, or until it
executes a specified address. Run all of your
program files simultaneously. Stop all of your
programs running simultaneously.Use the single
stepping commands, or run the step commands.

Breakpoints Toggle abreakpointonoroff. Enable, disable,
configure, reset, and remove breakpoints.

Tools Save the current Register Block. Restore the
last saved Register Block.

Properties Configure fontsand colors. Set the update rate
for a single region, a region type, and each
processor.

69

How windows and regions work

View the Registers region

Click Region, point to Type and click Register.

Change the display format

The registers are displayed in the available area by default. You can set the display to two or four
columns.

Display registers in two columns

Do one of the following:

 Right-click, point to Column Format, then click 2 Columns.
-OR-
* Press CTRL+2.

Display registers in four columns

Do one of the following:

 Right-click, point to Column Format, then click 4 Columns.
-OR-
* Press CTRL+4.

Display registers in the available area

Do one of the following:

 Right-click, point to Column Format, then click Auto Format.
-OR-
* Press CTRL+O.

70

CodeScape User Guide

Edit register values
Change the value of a register

1) Move the insertion point to the register value you want to change.
2) Do one of the following:
» Use + or - to increment or decrement the current value.
-OR-
» Type the new value at the insertion point.
-OR-
» Double click a register, type a value or expression, press ENTER. The
Expression Evaluator dialog box appears.
-OR-
» Press CTRL+ALT-E to invoke the Expression Evaluator dialog box.

NOTE: Any alphanumeric characters are shown in upper case.

Change the Increment/Decrement Value

1) Right-click and click Change Inc/Dec Value...
The Register Increment/Decrement dialog box appears.

2) Type a value for the amount by which to increment or decrement a register. Click OK.

Write protect a register

1) Right-click in the region.
2) Then do one of the following:
« If Write protect is not selected, click Write Protect.
-OR-
« If Write protect is selected, exit the shortcut menu.

NOTE: Write protect only stops register values being changed in
the region that is write protected. If you create and edit new
Register regions, the changes appear in the write protected
region.

71

How windows and regions work

Enter an expression for the instruction at the current PC

1) Double-click the register value, then:
< Enter the expression. Press ENTER.
-OR-
¢ Right-click and click Edit Register... (CTRL+ALT+E).
The Register Evaluation dialog box appears.
2) Enter the expression.
3) Click OK.

NOTE: Ifyouenteraninvalidexpression, the Register Evaluation
dialog box appears showing the Invalid Register Expression.

Save the state of the registers

Right-click, point to Tools, then click Save Register.

NOTE: Theregisterstatesforeachtargetprocessorare savedone
at a time and cannot be stacked. The state of the registers is
stored internally to CodeScape, not in a file.

Retrieve the state of the registers

Right-click, point to Tools then click Restore Register.

72

CodeScape User Guide

SH4 floating-point exceptions

The SH4's floating point exception handler needs software assistance when the V, O, U, or | bits ar
enabled in the FPSCR.enable field. An FPU exception is raised for many of the floating point
op-codes including fadd, fsub, and fmul, regardless of whether an exception occurs.

When any of these bits are set, the target processor can stop with an exception on a floating point
instruction, even if you set safe values. For example, fmul r4, r5 where r4=1.5, and r5=1.5.

The Debug Stub (v2.8.0a onwards) analyzes FPU exceptions to find out if they are valid.

« If an Invalid Floating-Point Exception (Invalid FPU) occurs, it is handled by the Debug
Stub and a large loss of processor performance is incurred (several hundred clocks).

« If a Valid Floating-Point Exception (Valid FPU) occurs, it is handled by CodeScape and
an even greater loss of processor performance is incurred.

When a Valid FPU occurs, CodeScape displays a status message describing the type of exception tt
caused it in the Target window. The status messages are:

« FPU error (E)

* Invalid operation (V)
Divide by Zero (2)
Overflow (O)
Underflow (U)
Inexact (1)

NOTE: The Debug Stub passes FPUinstructions executed in slots to
CodeScape. If an unwanted slotted exception occurs, CodeScape
traces around it, then resumes running the program.

NOTE: Itis recommended that the floating-point enable bits are
not used when program performance is required.

NOTE: For more information about SH4 floating-point exceptions,
refer to the SH7091 Programmer’s Manual. The manual is on the
Dreamcast SDK CD in the SHC\DOC\SH7091 directory.

73

How windows and regions work

Hitachi target processor register region display
General registers

The Register region shows the values of Hitachi's 16 general registers (Rn) numbered RO-R15.

RO works as a fixed source register or destination register in some instructions, and as an index
register in:

« Indirect indexed register addressing mode.

« Indirect indexed GBR addressing mode.

R14 works as the frame pointer during debugging.

R15works as a hardware stack pointer (SP) during exception processing.
Control registers

The Register region shows the values of the SR (Status Register), GBR (Global Base Register), and
VBR (Vector Base Register).

System registers

The Register region displays the MACH and MACL (high and low multiply and accumulate
registers), PR (Procedure Register), and PC (Program Counter). The MACH and MACL registers
store the results of multiply and accumulate operations. The PR stores a return address from a
subroutine procedure.

Changing the value of a status register

1) Move the insertion point to the register value you want to change.
2) Do one of the following:
* Use + or - to increment or decrement the current value.
-OR-
< Type the new value at the insertion point.
-OR-
¢ Press CTRL+ALT+E to invoke the Expression Evaluator dialog box.

NOTE: Any alphanumeric characters are shown in upper case.

74

CodeScape User Guide

Setting the status register (SR, SSR, or FPSR) flags

1) Move the insertion point to the flag you want to set.
2) Then:
» Press 1 set the current flag.
The bit’s flag appears in upper-case.
-OR-
» Press 0 to clear the current flag.
The bit’s flag appears in lower-case.

NOTE: Press SPACEBAR to toggle the status registers.

Flags shown in the Registers region after a Target Processor reset

This flag: Represents this value:

T hit The MOVT, CMP/cond, TAS, TST, BT (BT/S), BF (BF/S), SETT
and CLRT instructions use the T bit to show true (1) or

false (0).

The ADDV/C, SUBV/C, DIVOU/S, DIV1, NEGC, SHAR/L, SHLR/L,
ROTR/Land ROTCR/L instructions also use the T hit to show
carry/borrow or overflow/underflow.

S bit Used by the multiply/accumulate instruction.

Bits2,3and10-31 Always reads as 0 and must be written as 0.
(Reserved bits.)

Bits I13-110 Interrupt mask bits.

M and Q bits Used by the DIVOU/S and DIV1 instructions.

75

How windows and regions work

SEA and DEA

The Register region shows the value of the SEA (Source Effective Address) and DEA (Destination
Effective Address). The SEA and DEA show the source effective address (read from) on the
left-hand side and the contents of that address (write to) on the right-hand side.

Highlight recently changed attributes

Recently changed attributes are shown briefly in red (default).

To use another color to highlight a changed attribute, do the following:

1
2)
3)
4)
5)
6)

Click View, then click Properties.

Specify the Mode.

Select the Color tab.

In the Attribute region, select Highlight data changed.
In the Effects region, select a new Foreground color.
Click OK.

NOTE: You cannot highlight changed attributes by setting a
different Background color.

76

CodeScape User Guide

The Edit region

The default editor is CodeScape’s Edit region where you can manage, edit, and print source files.

When you edit your source code the changes are displayed in the corresponding Source region whe
the display is updated. A * appears in a Source region’s title bar if you edit your source code and dc
not re-build the program file. Always save any changes that you make to a file edited in an external
editor before using the Make option to compile and build your project in CodeScape.

Any standard format errors and warnings are shown in the Project Build window. You can scroll
through the information as it is generated, or press F4 to move through any listed errors one at a tim
If you use:

« CodeScape’s Edit region it automatically opens your project file at the line containing the
first error or warning. You can then use the Project Build window to navigate to all
subsequent errors. If there is no active Edit region CodeScape creates one for you.

» An external editor, double-click an entry in the Project Build window to invoke the editor
and open the source file at the line containing the error or warning. Some external editors
do not support this option and will open without displaying the line at which the error
occurred.

NOTE: Before you edit a program file from a UNIX target, convert
it to a DOS readable format using a utility such as to_dos (use
to_unix to return the file to a UNIX format).

77

How windows and regions work

Using the shortcut menu in an Edit region

Right-click, then select: To click commands to:

New Create a new Editor file.

Open... Open an existing Editor file.

Recent View a list of up to ten recently used files.

Save Save the current Editor file.

Save As... Save the current Editor file with a specific
name.

Cut Cut the current selection in the Editor file

and paste it to the clipboard.

Copy Copy the current selection in the Editor file
and paste it to the clipboard.

Paste Insert the contents of the clipboard at the
current cursor position.

Tabs. .. Enter a new tab value.

Undo... Undo the last action.

Redo... Redo the last action.

Find... Search for a string.

Replace... Replace the current selection.

GoTo... Change the line number of the origin address.

Bookmarks Toggle a Book Mark on or off; move to the next,
or previous Book Mark; or delete all Book
Marks.

Properties Configure fonts and colors in the region.

Syntax Highlighting Turn syntax coloring on or off. Turn case

sensitivity on or off. Specify a color for any

or all of the following items in your code:
keywords, quotes, comments, default text, and
the background.

78

CodeScape User Guide

Opening and saving files
Open an existing file

1) Right-click and click Open.
The File Open dialog box appears.

2) Select the required file. Click Open.
Open a new file

« Right-click and click New.
Save a file

* Right-click and click Save.

NOTE: Ifyou use the save command for an un-named file, the File
Save As dialog box appears.

Save a file with a new name

1) Right-click and click Save As.
The File Save As dialog box appears.

2) Enter a new name for the file. Click Save.

79

How windows and regions work

Search and replace

Perform searches

1) Move the insertion point to where you want to start searching from.
2) Do one of the following:
* Click Edit, then click Find...
-OR-
« Right-click, click Find...
The Find dialog box appears.

3) Inthe Find What text box, enter the search string.
4) In the Direction field, select Up, or Down.
5) Select any of the following options:

« Match Case to find only strings that match the case of the characters in your
search string exactly.

* Regular expression if you entered a regular expression in the Find What text
box.

« Wrap around search to continue searching after the end of the document has
been reached.

6) Do one of the following:
« Click Find Next to continue searching without replacing a found item.
-OR-
 Click Mark All to add a bookmark to all lines containing your search string.

80

CodeScape User Guide

Search for and replace a string

1) Move the insertion point to where you want to start replacing from.
2) Do one of the following:
+ Click Edit, then click Replace...
-OR-
* Right-click, click Replace...

The Replace dialog box appears.

3) Inthe Find What text box, enter the search string.
4) In the Replace With text box, enter the new string.
5) In the Direction field, select Up, or Down.

6) Select any of the following options:

Match Case to find only strings that match the case of the characters in your search string
exactly.

» Regular expression if you entered a regular expression in the Find What text
box.

* Wrap around search to continue searching after the end of the document has
been reached.

7) Do one of the following:
* Click Find Next to continue searching without replacing a found item.
-OR-
+ Click Replace to replace the first instance of your search string.
-OR-
* Click Replace All to replace all instances of your search string.

81

How windows and regions work

Cutting and pasting text
Move text

1) Select the text that you want to move by highlighting it.

2) Click Edit, then click Cut (CTRL+X).

3) Putinsertion point where you want to paste the information.
4) Click Edit, then click Paste (CTRL+V).

The text is removed from the original location and appears in its new location.
Copy text

1) Select the text you want to copy by highlighting it.

2) Click Edit, then click Copy (CTRL+C).

3) Putinsertion point where you want to paste the information.
4) Click Edit, then click Paste (CTRL+V).

The information is copied from its original location and appears in its new location.

82

CodeScape User Guide

Using bookmarks

You can set bookmarks to mark frequently accessed lines in your source file. Bookmarks are
removed when the file containing them is closed or reloaded. Bookmarks store only the current line,
not the column offset of the cursor. When a line containing a bookmark is deleted, the bookmark is

also removed.
To set a bookmark:

1) Move the insertion point to the line where you want to set a bookmark.

2) Right-click, then click Toggle Bookmark.
An indicator appears in the margin next to the text.

To set a bookmark at all lines that contain a specific string:

1) Right-click, then click Find.
2) Inthe Find What text box, enter the search string.

3) Click Mark All.
An indicator appears in the margin of each line that contains the specified string.

To remove a bookmark:

1) Move the insertion point to the line containing the bookmark you want to remove.

2) Right-click, then click Toggle Bookmark.
The indicator disappears from the margin next to the text.

83

How windows and regions work

84

Interacting with target
processors

The File menu commands let you: reset target processors, add files to a project, restart programs, a
save projects.

NOTE: Ifyou load a session file on a target that is different
from the type it was created on, CodeScape loads the session
without loading the program file.

NOTE: You cannot add or remove targets during a session.

85

Interacting with target processors

Connecting to a target processor
Initialize a target

When you run CodeScape it automatically connects to all detected targets (and prompts you to load
the monitor if necessary).

Reset a target

You may be prompted to reset the target. If this occurs, do a soft reset. This restores the state of the
target and re-initializes the monitors.

NOTE: You may be prompted to reload the Program File after
resetting the target.

To do a Soft Reset:

« Click File, point to Reset, then click Soft Reset.
-OR-
* In the Target window, right-click and point to Reset Target then click Soft Reset.

If a Soft Reset fails, you will be prompted to do a Hard Reset. This will reset the target and reload
the monitors. You will be prompted to reload your project after a Hard Reset.

To do a hard reset:
* Click File, point to Reset, then click Hard Reset.

-OR-
* In the Target window, point to Reset Target, then click Hard Reset.

NOTE: You will be prompted to reload the monitor after a Hard
Reset.

86

CodeScape User Guide

Set the processor update rate

Set the processor update rate to tell CodeScape when to update information to the target.

If the update rate interrupts the target causing jitter in your program:

1) On the Processor Combo toolbar cl®]
The Processor Update Rate dialog box appears.

2) Select the Target that you want to set the update rate for.
3) Select the Processor on which your program is loaded.
4) Do one of the following:
* Set the slider to Min.
-OR-
 Select Disable updates to this processor, to stop all region displays from
updating.
5) Click OK.

NOTE: When you set this option it automatically overrides the
region update rate set in the Region Configuration dialog box.

87

Interacting with target processors

Add files to a project

Load a program file

1) Do one of the following:

Click File, then click Load Program File (CTRL+SHIFT+C).
-OR-
In the Target window, right click, then click Load Program File...

2) Select the Target from the Target list box.
3) Select the Processor from the Processor list box.
4) In the Program File text box, enter your program file’s path and file name.
5) Inthe Load Options text box, select one of the following radio buttons: Load Binary
Only, Load Symbols/Debug only, or Load Both Binary and Symbols/Debug.
6) Select any of the following options you require:
« Optimize loading of Adjacent Sections to load adjacent binary sections at the
same time. Enabled by default.
< Unlock the Program File (uses a copy) to copy the program file when it is
loaded. Disabled by default.
The copied file is named cpy followed by a number, for example cpy2, and is
placed in your default temporary directory. If your system configuration file
does not specify a default temporary directory, the copied file is placed in the
current working directory. If you build your program using an external build
utility, you must reload the program file to view your changes in CodeScape.
¢ Use the symbol information from the Hitachi link file to get the symbol table
from the Hitachi map file.
The map file must have the extension *.map and be in the same directory as
your program *.exe.
« Enable Reset Options to specify the options you want to use for re-loading the
program file on the target. The default is Reset Enabled, Soft Reset.
¢ Select Enable Run Options (disabled by default). Select: Run, to run the
specified program file when it is loaded, or select Run to and enter an address
or expression to run to, when the program file is loaded.
7) Click OK.

NOTE: Ifyou select Enable Run Options and no debug information
appears in a Source region, compile all source files for your
project with debugging turned on.

88

CodeScape User Guide

Saving and loading binary
Move large blocks of data in and out of memory

Use Save binary and Load binary to move large blocks of data in and out of memory. This is useful
for loading and saving bitmaps, or processor specific code to a selected area of memory.

1) Do one of the following:
* Click File, then click Load binary.
-OR-
* Click File, then click Save binary.
The Write Binary to Memory dialog box appears.
2) Enter the Source file name.
3) Specify the start address.
4) Do one of the following:
» Select End, then in the text box below, specify the end address.
-OR-
» Select Length, then in the text box below, specify the length of the address.
5) Click OK.

NOTE: You cannot write Binary to sensitive areas of memory such
asinvalidmemoryareas,read-onlymemory,andmemoryreservedfor
the monitors. Ifa sensitive area of memory is within a specified
range,amessage appearspromptingyouthattheareaofmemorywas
skipped.

89

Interacting with target processors

Load the binary part of a program file

1

2)
3)
4)
5)
6)

Do one of the following:
« Click File, then click Load Program File... (CTRL+SHIFT+C).
-OR-
« In the Target window, right click and point to Load Program File...
The Load Program File dialog box appears.
Select the Target from tHargetlist box.
Select the Processor from fRAmcessottext box.
Enter the location of the program file in tAReogram Filetext box.
Click Load Binary Only.
Click OK.

Load the symbolic debugging information part of a program file

1

2)
3)

4)
5)

Do one of the following:
« Click File, then click Load Program File (CTRL+SHIFT+C).
-OR-
« In the Target window, right click and point to Load Program File...
The Load Program File dialog box appears.
Select the Target from th@rgetlist box.
Do one of the following:

» Select the Processor from the Processor list box. Type the name and path of
the program file in th€rogram Filetext box.

-OR-
« Click Browse and find the required file.
Click Load Symbolic Debugging information Only.
Click OK.

90

CodeScape User Guide

Restarting a program

Restart loads the binary part of the current program file and resets the PC to the entry point (if
known). If the program file’s last modification time has changed, symbolic information is loaded.

Load the binary part of the current program file

Click Debug, point to Execution then click Restart (CTRL+SHIFT+R).
-OR-

In the Target window, right-click and point to Execution, then click Restart.
-OR-

On the Debug toolbar, clicZ| .
-OR-
Right-click in any region, click Execution, then click Restart.

91

Interacting with target processors

92

Working with sessions

The commands for working with sessions are on the File menu.

CodeScape automatically saves the following debug information when you save a session:

» The configuration of Windows and Regions.

» The Project build information.

» The path for locating source files.

» The directory that contains CodeScape’s source files.

» Which program files to load on each target processor.

» Any breakpoints that have been set.

» Any expanded functions in Watch and Local Watch regions.

NOTE: Whenyounextopenthe session CodeScape will automatically
load this information.

NOTE: Ifyouload a sessionfile on atargetthatis differentto
the type it was created on, it loads without the program file.

NOTE: You cannot add or remove targets during a session.

93

Working with sessions

File menu commands
To open a new session:

1) Click File, Session New.
The New dialog box appears.

2) Enter a file name using the extension. SSN.
3) Click OK.

To open an existing session:

1) Click File, Session Open...
The Open dialog box appears.

2) Select a location in tHeook intext box.
3) Select a file in th&ile nametext box.
4) Click OK.

NOTE: Ifyou open a new session you must load a program file.

To save a session:

* Click File, Session Save.
To save a session with a new name:

1) Click File, Session Save As...
The Save As dialog box appears.

2) Enter a location the in tigave Intext box.
3) Enter a new Session file name in Hile nametext box.
4) Click OK.

To close a session:

* Click File, Session Close.

NOTE: You may be prompted to save the current session before
CodeScape opens a new session.

94

CodeScape User Guide

Recently used files list

The File menu displays a list of recently used session files.

To open a recent session file:

1) Click File.
2) Click the Session that you want to open from the list.

NOTE: You cannot hide this list or change the number of files
displayed.

To exit CodeScape:

* Click File, Exit.

When you exit CodeScape, it prompts you to save the following debug information:

» The configuration of Windows and Regions.

* The Project build information.

» The path for locating source files.

» The directory that contains CodeScape’s source files.
< Which program files to load on each target processor.
* Any breakpoints that have been set.

NOTE: The nexttime that you open the session CodeScape can load
this information for you.

95

Working with sessions

96

Working with projects

Use the Project menu to set up, make, and build your project.

The commands on the Project menu let you set up the following:

* A project build environment.

» An editor.

» The path for locating source files.

» A directory for CodeScape’s source files.

NOTE: CodeScapeusesaprojectfile(forGNU.Cthisisamakefile)
to link compiled source files when you build your project.

97

Working with projects

Setting up a project build environment

To configure a project, specify the project build utility that you want to use, then provide it with a
command line, a filename, and an environment file.

To configure, make, and build a project:

1
2)

3)
4)
5)

6)
7

Click Project, then click Setup Project.
Do one of the following:

« Type the project’s name and path location in the Project File text box. (For
example, makefile.)

-OR-

» Select a recent project from the Project File list. (For example, makefile.)
-OR-

 Click Browse, then search for a project file. (For example, makefile.)

Enter the project build utility's name and path location in the Program Build text box.
(For example, make, or SNASMSH?2.)

Type any command line parameters that should be passed to the make command in the
Command Line Modifiers text box. (For example, -f for GNU make.)

Enter the project environment file’s name and path location in the Environment File
text box. This may be the same directory as the program build file.

Click OK to accept the project build environment.
Make the project current and build it in one of the following ways:
« Click Project, then click Make.
-OR-
¢ On the Project Build window, right-click, click Make.
-OR-
¢ Press CTRL+M.

The Input / Output window Build tab appears and automatically displays the specified build utility’s
output about the build. Any standard format errors and warnings are shown in the Input / Output
window Build tab.

If a build error occurs, double-click an entry to invoke the editor and open the source file at the line
containing the error or warning. To advance to the next error or warning press F4. Some external
editors do not support this option and will open without displaying the line at which the error

occurred.

98

CodeScape User Guide

The environment file
To create an environment file:

1) Start an MS-DOS window and create the environment that you require to run the
project build file that may use, for example, Hitachi C, GNU C, or SNASMSH?2.

2) Create a file that contains the environment strings required by the project build file.

For example, to create a file that contains the environment strings required to run the
Hitachi tools, typeset>hitachi.env

Making and building a projects

Make the project current and build it in one of the following ways:

« Click Project, then click Make.
-OR-

» On the Project Build window, right-click, click Make.
-OR-

* Press CTRL+M.

The Project Build window appears and automatically displays the specified build utility’s output
about the build. Any standard format errors and warnings are shown in the Project Build window. If
a build error occurs, double-click an entry to invoke the editor and open the source file at the line
containing the error or warning.

NOTE: The Target and Project Build windows can be docked at the
top and bottom of the main window, or left free floating.

99

Working with projects

Setting up an editor

The default editor is CodeScape’s Edit region where you can edit existing files and create new ones,
but you can configure CodeScape to use an external editor.

CodeScape supports the following external editors: Notepad, MS-DOS Editor, Multi-Edit for
Windows, Multi-Edit for DOS, Codewright, Brief, and Vi for MS-DOS/UNIX. You can add and
remove editors in this list.

When you select a default external editor, CodeScape displays the following:

» The manufacturer’s default installation path location, followed by the command to
invoke the editor in the Editor Path text box.

» The editor's command line parameter to go to a line. For example, if you select Multi Edit
for Windows, %f /L%l appears in the Editor Arguments text box.

When you open a file in the editor, CodeScape replaces %f with the file’s name, and %l with the first
line to go to in the file. (Older versions of CodeScape use xxxxx instead of %l to represent the first
line of afile.)

If a build error occurs when you make and build your project, CodeScape replaces %l with the line
number containing the error or warning and displays it in the Input / Output window Build tab. You
can scroll through the information as it is generated, or press F4 to move through any listed errors
one at a time.

If the editor you select does not support this option, leave this field blank.

NOTE: Toremove an editor: in Editor Name list select the editor
thatyouwanttoremove, clickRemove. Toeditthe string, without
removing the editor from the list, press Delete.

100

CodeScape User Guide

Setting up an external editor

1) Click Project, then click Setup Editor.
2) Enter the name of the editor in the Editor Name list.

3) Enter the editor’s path location, followed by command followed to invoke the editor in
the Editor Path text box.

4) Enter %f, then the editor's command line parameter to go to a line, then %l in the
Editor Arguments text box.
When you open a file in the editor, CodeScape replaces %f with the file's name, and
%I with the first line to go to in the file. (Older versions of CodeScape use XxXxxx
instead of %l to represent the first line of a file.)
If a build error occurs when you make and build your project, CodeScape replaces %l
with the line number containing the error or warning and displays it in the Input /
Output window Build tab. If the editor you select does not support this option, leave
this field blank.

5) Do one of the following:

* If you selected a Windows based editor, select the Editor Is Windows Based
check box.
-OR-

* If you selected an MS-DOS editor, clear the Editor Is Windows Based check
box.

6) Click OK.

If you have set up a new editor, CodeScape automatically adds it to the Editor Name list when you
click OK.

NOTE: Toremove an editor: in Editor Name list select the editor
thatyouwanttoremove, click Remove. To editthe string, without
removing the editor from the list, press Delete.

NOTE: Always savefiles editedin an external editor before using
CodeScape’s Make option to compile and build your project in
CodeScape.

101

Working with projects

Setting up the project commands

Set the path for locating source files

In the Source File Search Path dialog you can: set, change, or remove a directory path name for
CodeScape to look for your program’s project files.

1) Click Project, then click Edit Source Path...
The Source File Search Path dialog box appears.

2) Do one of the following:
* Type in the Path of the Source files.
-OR-
« Click Browse and select the required directory.
3) Click Add.

Remove a path from the Source File Search Path

1) Click Project, then click Edit Source Path...
The Source File Search Path dialog box appears.

2) Do one of the following:
» Type in the path of the Source files.
-OR-
« Click Browse and select the required directory.
3) Click Remove.

102

CodeScape User Guide

Set a directory for CodeScape’s source files

Set or change relative path name of the default directory for your fileserver based operations in the
Set fileserver directory dialog box. (This can be the same as the directory you set in Source File
Search Paths.)

Do the following:

1) Click Project, then click Set FileServer Root Directory.
2) Enter the Path of the default directory that you wish to use for fileserver operations.
3) Click OK.

NOTE: Ifthe display update rate interruptsthe target when itis
loading information to the fileserver directory on you computer,
click Project then select Enable Fileserver Optimization.

NOTE: Any configuration commands you set are saved in a session
filewhenyouexitincludingsoftwarebreakpointsandwatches,and
program update rates.

103

Working with projects

104

Debugging

Debugging operations are:

 Tracing through your program code.

» Checking variables and structures.

» Adding and configuring breakpoints to control program execution.

+ Simulating a target’s processor operations to optimize tight assembler loops in your
program.

* Profiling to examine the run-time behavior of program files written for Hitachi SH series
target processors.

NOTE: Ifyou enable high level optimization when you build your
project the compiler output can make source-level tracing
confusing.

NOTE: Before you edit a program file from a UNIX target, convert
it to a DOS readable format using a utility such as to_dos (use
to_unix to return the file to a UNIX format).

NOTE: Thetoolbarsprovideaccesstothemaindebuggingfunctions.
Use the Toolbar Configuration check box to show or hide toolbars.

105

Debugging

Debugging modes

You can debug your program in one of two modes:

» Operating system (OS mode). In OS mode program execution resumes back to the
console BIOS after the Debug Stub is loaded. This is achieved with the minimum of
disruption to the processor context prior to loading the Debug Stub. However, the DBR
register is loaded with the default exception handler after resuming.

» Processor (CPU mode). In CPU mode the full debug stub loads, then the context is set up
with default settings allowing a debugging session to start. CPU debugging does not pass
program control back to the Console BIOS, control remains within the Debug Stub
monitor.

The DBR register is loaded with the default Debug Stub exception handler.
« The VBR register is loaded with the default Debug Stub exception handler.
The stack pointer is loaded at 0x0d000000.
e The status register block bit is cleared to 0.

Selecting OS mode or CPU mode

A software mode selection flag in the Debug Adapter (DA) determines the debugging mode. The
flag is stored in EEPROM on the DA and provides power cycling of the DA. The default mode for
either a new DA, or a re-flashed DA is OS mode.

You can change the debugging mode in one of two ways:

» When you run CodeScape, it detects new and re-flashed DAs and asks you if you want
to change the debugging mode.

« If you want to change the debugging mode at any other time you must run DACHECK.
For information using DACHECK refer to the Help supplied with the software.

106

CodeScape User Guide

Running and stopping programs

The run options are:

¢ Run all processors simultaneously

« Stop all processors simultaneously

* Run a program

* Run a program until it executes a specified address
* Run a program to the cursor position

« Stop a program

Run all processors simultaneously

Do one of the following:

* Click Debug, point to Execution then click Run All (CTRL+F9).
-OR-

* Right-click, point to Execution then click Run All.
-OR-

+ On the Debug toolbar, click®]

NOTE: Program execution will stop ata breakpoint, orifan error
occurs.

Stop all processors simultaneously

To stop all programs running simultaneously, do one of the following:

 Right-click in the Target window, point to Execution then, click Stop All.
-OR-

« On the Debug toolbar, clic®l
-OR-
« Click Debug, point to Execution then click Stop All.

NOTE: All processors will stop immediately.

107

Debugging

Run a program

1) Inthe Target region, select the processor where your program is loaded.
2) Do one of the following:
* Click Debug, then click Run (F9).
-OR-
 Right-click, point to Execution then click Run.
-OR-
¢ On the Debug toolbar, cIicEl .

NOTE: Programexecutionwillrununtilyoustopit,orifanerror
occurs.

NOTE: Whenyourprogramis running you can stop itby pressing F9.

Run a program until it executes a specified address

1) Do one of the following:
« Click Debug, point to Execution then click Run to Address (SHIFT+F9).
-OR-
 Right-click, point to Execution then click Run to Address.
-OR-
¢ On the Debug toolbar, clicks]

2) Type an address in tfepressiortext box of the Run to Address/Instructions dialog
box.

3) Click OK.

The address is the name of a function or, an expression that resolves to an address.

You can add breakpoints using Run to Address at any time during program execution, program
execution stops when a breakpoint is encountered. Program execution will stop at the specified
address, or at a breakpoint or if an error occurs.

108

CodeScape User Guide

Run a program to the cursor position

In an active Source or Disassembly region, do one of the following:

* Click Debug, point to Execution then click Run to Cursor (ALT+F9).
-OR-

 Right-click, point to Execution then click Run to Cursor.
-OR-

* On the Debug toolbar, cIicil .

You can add breakpoints using Run to Cursor at any time during program execution, program
execution stops when a breakpoint is encountered. Program execution will stop at the cursor positior
or at a breakpoint, or if an error occurs.

NOTE: Inthe Call Stack region, use Run to Cursorto returnto a
specific function outside of the current one.

Stop a program

To stop a program running, in the Target region, select the processor on which your program is
loaded, then do one of the following:

« Right-click in the Target window, point to Execution then right-click then click Stop.
-OR-

* On the Debug toolbar, clic®l
-OR-

« Click Debug, point to Execution then click Stop.
-OR-

* Press F9.

NOTE: The processor will stop immediately.

109

Debugging

Stepping into (tracing) code

Trace functions are available either on the debug toolbar or on shortcut keys.

You can choose either source level tracing in an active Source region, or instruction level in an active
Disassembly region. If you trace without a Source or Disassembly region open, tracing acts as if a
Disassembly region is open.

NOTE: You cantrace a program at any time while debugging. All
trace operations immediately stop program execution.

NOTE: Alltrace operations can be interrupted by breakpoints.

The trace options are:

* Single step a line of source code

» Force step a line of source code at the disassembly level
» Step over a line of source code

» Step out of a line of source or disassembled code (return from function)
» Undo a step

» Enable Animated Step Run (animate trace)

» Step run into a line of source or disassembled code

» Step run out of a line of source or disassembled code

» Step Run Until

» Restart processor execution

» Stop a program

110

CodeScape User Guide

Single step a line of source code

Do one of the following:

* Click Debug, then click Step (F7).
-OR-

« On the Debug toolbar cIicEl .

In an active Disassembly region (or any non-source region), the target executes the instruction at th
PC.

In an active Source region, the target executes the instruction at the PC. It stops when all low-level
assembly instructions generated by the single source instruction have been executed. This include

« All instructions for a source macro instruction.
» Any C instructions that generate several assembler instructions.

Subsequent source lines (called by the current source line) may be in a different function or file, as
determined by the execution flow.

NOTE: Execution trace history is generated when single stepping.

NOTE: Atrapinstructionistreatedasasubroutine(aBSRorJSR).
Trap 32 is reserved by CodeScape and treated as a single
instruction. Use Forced Step Into to step into the trap 32
routine. Stepping into trap 32 may cause the monitor to fail.

111

Debugging

Force step a line of source code at the disassembly level

Do one of the following:

* Click Debug, then click Forced Step Into (SHIFT+F7).
-OR-

» On the Debug toolbar cIic?_él .
In a Disassembly region, Forced Step Into causes individual assembly instructions to be traced one
at a time where this is normally not allowed, for example stepping into a trap 32.

In a Source region, the target executes the instruction at the PC with the current register values then
stops at each individually generated assembler instruction. Each individual assembler instruction is
traced using the disassembly-level Single Step instead of the source-level Single Step.

Step into mechanism, that is a Trap, Line-A, Line-F, or subroutine is entered and program execution
halted inside. In the case of a single source instruction generating many assembly instructions you
will need to press SHIFT+F7 several times on the source instruction before progressing to the next
source instruction.

Stepping over code
Execution trace history is generated when stepping over. This is useful when you need to undo a step
operation. Step Over performs a single step if Step Over is not relevant in the current context.

To step over a line of source code:

* Click Debug, then click Step Over (F8).
-OR-

* On the Debug toolbar cIicEl .
In disassembled code, the target executes the instruction at the PC then stops. A Trap, JSR or BSR

is treated as a single instruction and program execution halted on the next instruction in memory
when the routine is complete.

In source code, the target executes the instruction at the PC then stops when the source file reference
has changed. When stepping over a function call, the entire function is executed. Execution is halted
on the next source line.

NOTE: You cannot step over conditional branches.

NOTE: Execution trace history is generated when stepping over.

112

CodeScape User Guide

Step out of a line of source or disassembled code

Use Step Out to run to and stop at the end of the current function call.

* Click Debug, then click Step Out.
-OR-

« Right-click in a region, click Execution, then click Step Out.
-OR-

* On the Debug toolbar, cIic.*’E' .
-OR-
* Press CTRL+F8.

Undo a step

* Click Debug, then click Unstep (CTRL+F7).
-OR-

* On the Debug toolbar cIicIfEl .

CodeScape keeps a history of trace actions. Trace history is built-up and discarded automatically.

When you Unstep, only the current state of the processor and memory contents are untraced. You c:
Unstep:

« Instructions that are executed as a series of individual disassembly instructions.
 Traces in Source and Disassembly regions as long as there is a trace history left.

NOTE: You cannot Unstep blocks of instructions.

NOTE: Where codeis stepped over, alltrace history to this point
is lost.

Enable Animated Step Run (animate trace)

Select Enable Animated Step Run (default) to update all regions as each instruction executes.

* Click Debug, then click Enable Animated Step Run.

CodeScape will trace instructions and display updated information in the active window until a
breakpoint occurs, or until another command is issued, for example start/stop.

113

Debugging

Step RunIn
Use Step Run In to run to then stop at the start of each successively nested function calls.

* Click Debug, then click Step Run In (SHIFT+F7).
-OR-

 Right-click in a region, click Execution, then click Step Run In.
-OR-

» On the Debug toolbar clic=l .

CodeScape will run to the start of the next function and then stop.

Step Run Out

Use Step Run Out to run to and stop after each successively nested function call has completed.

* Click Debug, then click Step Run Out (SHIFT+FS8).
-OR-

» Right-click in a region, click Execution, then click Step Run Out.
-OR-

» On the Debug toolbar clices|
CodeScape will run to the end of the current function and then stop.

Step Run Until...

1) Do one of the following:
* Click Debug, then click Step Run Unitil...
-OR-
« On the Debug toolbar clicl_lf_l .
2) Enter an expression to run to in the Expression Evaluator.

CodeScape will trace instructions and display updated information in the active window
until a breakpoint occurs, or until another command is issued, for example start/stop.

NOTE: Ifthe expression evaluates to a zero result, tracing
continues.

114

CodeScape User Guide

Restart processor execution

Restart loads the binary part of the current program file and resets the PC to the entry point (if
known). If the program file’s last modification time has changed, symbolic information is also
loaded.

« Right-click in the Target window, point to Execution then right-click then click Restart.
-OR-

* On the Debug toolbar, cIicEl .
-OR-

« Right-click in any region, click Execution, then click Restart.
-OR-

* Press CTRL+SHIFT+R.

Stop a program running

To stop a program running, in the Target region, select the processor on which your program is
loaded, then do one of the following:

 Right-click in the Target window, point to Execution then right-click then click Stop.

-OR-

* On the Debug toolbar, cIi .
-OR-

« Click, point to Execution then click Stop.
-OR-

e Press F9.

115

Debugging

Breakpoints

CodeScape has extensive software and hardware debugging features including breaking on data
accesses within memory ranges and on external peripheral access. All breakpoint operations can be
performed at any time through the Configure breakpoint(s) dialog box.

Software breakpoints cause exceptions during program execution if encountered in a memory area
other than the one they were defined in. For example, CodeScape reports an unknown exception if
0x0C000000, 0x0D000000 is an image of 0x8C0O00000, 0x8D0O00000 and a software breakpoint is
inserted at address 0xOC00BO0OO, then occurs at 0x8C00B00O.

To avoid this, mark mirrored memory images as shared memory in the configuration file dali.cfg.
The example below defines three areas of shared memory as the same (Tag:B). The mirrored
ASE-breaks are hidden and a breakpoint symbol is shown at their addresses.

[SEGA KATANA MasterSH4EVA_SharedMemory]
SharedMemory = 0x0C000000, OXOCFFFFFF, Tag:B
SharedMemory = 0x8C000000, Ox8CFFFFFF, Tag:B
SharedMemory = 0XxAC000000, OXACFFFFFF, Tag:B

NOTE: Ifyou add a breakpoint that uses a register or variable
name as its address, the expression is only evaluated the first
time it occurs during program execution.

Breakpoint options are:

» Adding breakpoints

» Adding a breakpoint at the current cursor position
* Removing breakpoints

* Removing all breakpoints

» Enabling and disabling breakpoints

* Resetting breakpoints

» Configuring breakpoints

* The breakpoint expression format

116

CodeScape User Guide

Adding breakpoints

You can add a breakpoint in Source, Disassembly, Memory, and Watch regions. You can add
breakpoints at any time during program execution. Program execution stops when a breakpoint
occurs. Add breakpoints using the menus, shortcut menus, or toolbars.

When a breakpoint is set and enabled in a Source or Disassembly region, the breakpoinﬂlat icon,

appears in the first column. When a breakpoint is disabled, the breakpoint disabl;ﬁlicon, , appeat
in the first column. When a watched variable is visible in the Watch region, the watched variable icon
appears. In a Memory region the background color of the specified address changes.

A breakpoint is set with the following default behavior:

» Code breakpoint execution is halted once it has been triggered and no other action, sucl
as logging, is performed. Code breakpoints are implemented in hardware if a ROM
address is encountered or software otherwise.

< Watch breakpoints are triggered by any read or write data access to hardware. A messag
appears when the breakpoint has been triggered and all conditions have been met by
default.

All breakpoint locations are tested to make sure that they are placed and configured correctly. If a
problem is found a message appears prompting you to re-configure the breakpoint.

NOTE: To change the default behavior of a breakpoint see To
Configure a Breakpoint.

NOTE: Youcanaddabreakpointonlytoalinethatgeneratescode.
(Shown by a “."in column one of a Source region or Watch region,
or at any point in the Disassembly region.)

To add and run to a code breakpoint:

1) Right-click, click Goto Address.
2) On the Breakpoint toolbar, cIicﬂl to set a breakpoint.

3) Right-click, click Execution, click Run. Your program will run until the breakpoint
occurs.

NOTE: You can set a maximum of two Hardware breakpoints for each
SH2 processor on a Sega Saturn target.

117

Debugging

Add a breakpoint at the current cursor position

In a Source or Disassembly region you can add code breakpoints. In a Watch or Memory region you
can add data breakpoints.

In any region, place the cursor in the required position then:

* Click Debug, then point to Breakpoints then click Toggle Breakpoint (F5).
-OR-

 Right-click, point to Breakpoints then click Toggle Breakpoint.
-OR-

» On the Breakpoint toolbar, cIicﬂl

Removing breakpoints

In any region, place the cursor on the required breakpoint then:

* Click Debug, point to Breakpoints then click Toggle Breakpoint (F5).
-OR-

* Right-click, point to Breakpoints then click Toggle Breakpoint.
-OR-

» On the Breakpoint toolbar, clic
-OR-

« In the Configure breakpoint(s) dialog box (CTRL+F5), select the breakpoint that you
want to disable then click Remove.

The breakpoint set icoﬂ@_l , will disappear from the code window.

Remove all breakpoints

In any region, place the cursor on the required breakpoint then:

* Click Debug, point to Breakpoints then click Remove all Breakpoints (SHIFT+F5).
-OR-

» On the Breakpoint toolbar, cIicﬁl
-OR-

» Right-click, point to Breakpoints then click Remove all Breakpoints.
-OR-

* In the Configure breakpoint(s) dialog box, click Remove All (CTRL+F5).

118

CodeScape User Guide

Enable a disabled breakpoint
In any region, place the cursor on the required breakpoint then:

Click Debug, point to Breakpoints then click Enable Breakpoint.
-OR-
 Right-click, point to Breakpoints then click Enable Breakpoint.
-OR-

* On the Breakpoint toolbar, clic]
-OR-

* In the Configure breakpoint(s) dialog box (CTRL+F5), click Code Settings and select
Breakpoint Enabled.

The breakpoint set icon will change frcﬁl ﬂl to show that the breakpoint is enabled.

Disable an enabled breakpoint

In any region, place the cursor on the required breakpoint then:

* Click Debug, point to Breakpoints then click Disable Breakpoint.
-OR-

 Right-click, point to Breakpoints then click Disable Breakpoint.
-OR-

* On the Breakpoint toolbar, clicl
-OR-

« In the Configure breakpoint(s) dialog box (CTRL+F5), click Code Settings and clear
Breakpoint is Enabled.

The breakpoint set icon will change frcﬂ' ﬁl to show that the breakpoint is disabled.

Enable all breakpoints

Do one of the following:

* Click Debug, point to Breakpoints then click Enable all Breakpoints
(CTRL+SHIFT+F5).
-OR-

 Right-click, point to Breakpoints then click Enable all Breakpoints.
-OR-

< On the Breakpoint toolbar, cIic@l

119

Debugging

Disable all breakpoints

Do one of the following:

* Click Debug, point to Breakpoints then click Disable all Breakpoints (CTRL+ALT+F5).
-OR-

 Right-click, point to Breakpoints then click Disable all Breakpoints.
-OR-

» On the Breakpoint toolbar, cIicﬁl

Reset all breakpoints

Do one of the following:
* Click Debug, point to Breakpoints then click Reset all Breakpoints (ALT+F5).
-OR-
» Right-click, point to Breakpoints then click Reset all Breakpoints.
-OR-

» On the Breakpoint toolbar, clicl

NOTE: Resetting all breakpoints sets all conditional values,
including the current count, to their starting conditions.

Reset the trigger count for a breakpoint
« In the Configure breakpoint(s) dialog box select the breakpoint, click Reset.
Reset only the current value of the count for a breakpoint

« In the Configure breakpoint(s) dialog box select the breakpoint, click General Conditions
and click Reset Current.

120

CodeScape User Guide

Configuring breakpoints

CodeScape enables breakpoint configuration including data accesses within memory ranges and
breakpoints on external peripheral devices.

To configure a breakpoint:

* Click Debug, point to Breakpoints then click Configure Breakpoint(s)... (CTRL+F5).
-OR-

 Right-click, point to Breakpoints then click Configure Breakpoint(s)...
-OR-

* On the Breakpoint toolbar, cliﬁl .

NOTE: Software breakpoints cause exceptions during program
executionifencounteredina memory area otherthanthe one they
were defined in.

NOTE: Youcanaddabreakpointandconfigureitmanuallyusingthe
Configure breakpoint(s) dialog box.

NOTE: Watch breakpoints trigger on data access, and code
breakpointstriggeronthe fetch-execute phase oftheinstruction
cycle.

The Configure breakpoint(s) dialog box

In the Configure breakpoint(s) dialog box you can:

* Add, remove, and configure code and watch breakpoints.

< Enable or disable a breakpoint, set its location, and the resources it will use.
« Specify when a breakpoint will occur.

» Configure a prompt for when a breakpoint occurs.

121

Debugging

Using the Code Settings tab

Code breakpoints trigger on instruction execution. When a code breakpoint triggers the PC is at the
same instruction in the pipeline. The Code Settings tab becomes available when you add or select a
code breakpoint to configure.

1) Do one of the following:
» Select a code breakpoint to configure from the list.
-OR-
« Click code to add a code breakpoint to configure.

2) Select Breakpoint Enabled (default), to enable a breakpoint.
You may be prompted to re-configure a disabled breakpoint. This can occur during
code execution, restoring sessions, or when attributes could not be validated when
configuring commands within this dialog box. A disabled breakpoint does not affect
code execution or use any hardware resources.

3) Specify the position in memory where the code will stop on execution. llotia¢ion
Expressiortext box:

< Enter the required expression.
-OR-
 Click Define. The Breakpoint Location Expression dialog box appears.
Evaluate the expression to set the location address.
4) Then do one of the following:
e Select C/C++, to use C/C++ expression syntax.
-OR-
e Select Assembly, to use SHx assembly language syntax.
5) In the Implementation mechanism group box:

« Select Automatic and CodeScape will manage breakpoint resources.
Breakpoints are implemented in software by default. If this is not possible
then hardware resources are used.

-OR-
» Select Software to specify a software breakpoint.
-OR-
» Select Hardware to set a hardware breakpoint that is specific to your target
processor.

NOTE: You can seta maximum of two Hardware breakpoints for each
SH2 processor on a Sega Saturn target.

122

CodeScape User Guide

Using the Watch Settings tab

Watch (data) breakpoints trigger on memory data access. When a Watch breakpoint triggers the P
is several instructions ahead of that breakpoint in the pipeline.

The Watch Settings tab becomes available when you select or add a watch breakpoint to configure

1)

2)

3)

4)

5)

6)

Do one of the following:
» Select a watch breakpoint to configure from the list.
-OR-
* Click Watch to add a watch breakpoint to configure.

Select Breakpoint Enabled (default), to enable a breakpoint.

You may be prompted to re-configure a disabled breakpoint. This can occur during
code execution, restoring sessions, or when attributes are not validated during
command configuration in this dialog box. A disabled breakpoint does not affect code
execution or use any hardware resources.

Specify the position in memory where the breakpoint is accessed. In the Location
Expression text box:

» Enter the required expression.
-OR-

 Click Define. The Breakpoint location expression dialog box appears.
Evaluate the expression to set the location address.

Select Include Data Condition to change the Watch Access breakpoint into a Watch
Data breakpoint that uses the features of the UBC (User Break Controller). Enter the
required Data Expression, then click Define. The Breakpoint watch data expression
dialog box appears. Evaluate the expression to set the location address.

Then do one of the following:
* Select C/C++, to use C/C++ expression syntax.
-OR-
» Select Assembly, to use the Assembler’'s expression syntax.
In the Implementation mechanism group box:

» Select Automatic and CodeScape will manage breakpoint resources.
Breakpoints are implemented in software by default. If this is not possible
then hardware resources are used.

-OR-
 Select Software to specify a software breakpoint.
-OR-

123

Debugging

< Select Hardware to set a hardware breakpoint that is specific to your target
processor.
7) Under Access Size, enter the Access Size required (the default is Any). When you use
Toggle to add a watch breakpoint its size, if known, will be used instead of Any.
8) Under Access Type, select the Access Type required. The default is Both read and
write access.

NOTE: Ifyouplaceawatch(data)breakpointonamemberofaunion
itwilltriggerforallmembers ofthat size, regardless of type.
Thisalso appliestoanonymous unions, exceptthattwo members of
the same size appearastwo variables sharingthe same addressin
memory.

124

CodeScape User Guide

Using the General Conditions tab

The General Conditions tab is for defining conditions that must be valid before a breakpoint is
triggered. You can condition a breakpoint by memory access type and data value, and confirm that |
executed on the correct trigger count.

NOTE: Touse a conditional expression select Include Conditional

Expression.

1)

2)

3)
2)
5)
6)

7

Do one of the following:
 Enter a valid expression in the Include Conditional Expression text box.
-OR-
+ Click Define to open the Breakpoint condition expression dialog box, then
define the expression.
Do one of the following:
» Select C/C++, to use C/C++ expression syntax.
-OR-
» Select Assembly, to use the Assembler’s expression syntax.

The expression is evaluated for a logical result where a value of zero represents false
and non-zero values represent true.

Select Include Trigger Count Condition to include the trigger condition. The condition
is true when the Current Count reaches the specified Trigger Count value.

Enter the value for the Current Count to reach to make the Trigger Count Condition
true.

Under Counters, check that the value in the Current box matches the value you set in
the Trigger box. Click Reset Current to return the current count to zero.

Select when to increment the count. The default is to increment the Current Count
whenever the breakpoint occurs or is evaluated.

If both expression and count conditions are included, select when to break in the
expression. The default is OR.

125

Debugging

Using the Trigger Actions tab

Use the commands on the Trigger Actions tab to specify how CodeScape responds when a
breakpoint has triggered.

Select any or all of the following radio buttons:

Select Halt execution when conditions match to stop the program executing when the
breakpoint conditions have been met. Clear this check box to continue execution after all
other requested actions have been performed.

Select Single shot - breakpoint is discarded when conditions match to discard the
breakpoint after it has been triggered and all conditions have been met.

Select Message box prompt when conditions match. CodeScape will display a message
when the breakpoint has been triggered and all conditions have been met.

Select Beep when conditions match. Your computer will beep when the breakpoint has
been triggered and all conditions have been met.

Select Cause processor simulation to and specify whether the Simulator should Start or
Stop when the breakpoint has been triggered.

Select Log Expression and choose either to produce a log when the breakpoint has been
triggered or every time. Enter a valid Log expression.

Run Script and specify a script to execute when the breakpoint conditions have been met.

NOTE: Ifthere is no Log region for the Target Processor,
CodeScape creates one.

NOTE: You can only set one Start breakpoint and one Stop
breakpoint for the Profiler.

126

CodeScape User Guide

Using the Advanced tab to specify options for a code breakpoint

NOTE: The Location Address text box is read-only. To set the
location, click the Code Settings tab.

NOTE: TheASIDMaskSelectorfieldissettoits defaultstate and
cannot be configured. It will be enabled in future releases.

On the Advanced tab are commands for using the Hardware Implementation Mechanism. These
commands apply only to Watch breakpoints and Code breakpoints.

1) Select Location Mask to specify which bits of the Location Address to mask out. Set
Location Mask bits to 1 to ignore the corresponding Location Address bit, 0 otherwise.

2) IntheBreak Modedext box select either:
» Before Execution.
-OR-
 After Execution.

Using the Advanced tab to specify options for a watch breakpoint

NOTE: The Location Address text box is read-only. To set the
location, click the Code Settings tab.

NOTE: TheASIDMask Selectorfieldissettoits defaultstateand
cannot be configured. It will be enabled in future releases.

On the Advanced tab are commands for using the Hardware Implementation Mechanism. These
commands apply only to Watch breakpoints and Code breakpoints.

1) Select Location Mask to specify which bits of the Location Address to mask out. Set
Location Mask bits to 1 to ignore the corresponding Location Address bit, 0 otherwise.

2) IntheData Masktext box, set Data Mask bits to 1 to ignore the corresponding Data
Address bit, 0 otherwise.

3) Inthe Bus cycle field, select the bus cycles to include, either CPU, or Peripheral
(DMA), or both.

127

Debugging

Using the Global tab to specify the debug environment for Hitachi
SH4-EVA processors

On the Global tab are commands for setting the target processor’s debug environment. The Global
tab appears when you connect to an SH4-EVA target processor and you can specify any of the
available options.

1) Inthe Global ASE Break Conditions for SH4-EVA CPU field:

« Select Enable on-chip access detection and CodeScape will generate an
on-chip I/O exception.
The values displayed are the last on-chip address accessed, and the last
on-chip data access when the exception occurred.

» Select Enable break after LDTLB instruction execution and CodeScape will
generate an LDTLB instruction break.
The values displayed are the last PTEH loaded, and the last PTEL loaded into
the MMU.

2) Inthe Global UBC Exception Handler Option field, select Use DBR vector (default).
CodeScape will use the debug stub default exception handler for UBCs. This lets you
define exception handling routines in your program, and to modify the VBR without
affecting the behavior of UBC breakpoints.

128

CodeScape User Guide

Breakpoint expression format

CodeScape has a powerful expression formatting facility for controlling the display of expressions

in the Log

tab on the Input / Output window.

Control formatting with expressions that work in a similar way to the C “printf' function. The
expressions are numbered from 0 and can be any valid debugger expression referencing register
names or memory locations. The syntax for a formatting expression is:

{"FormattingString"|FormattingString}[,C/C++Expression]

Formatting string

A formatting string is a series of alpha numeric characters and three special format specifiers.

Formatting string

A formatting string is a series of alpha numeric characters and three special format specifiers.

In the format %[flags] [width] [.precision] type, use the fields in the following ways:

Use the format: To:

\character

Explicitly define a character. For
example, \$ displays a § character.

$param_num Change the next argument index. For
example, $0 sets the argument index to 0.
9%I[flags] [width] [.precision] type Print a series of formatted characters

and values to the Log tab on the Input /
Output window. Type %% to print a single
percent character.

[flags] is an optional character or characters that control justification of output and
printing of signs, blanks, decimal points, and octal and hexadecimal prefixes. More than
one flag can appear in a format specification.

[width] is an optional number that specifies the minimum number of characters output.
[.precision] is an optional number that specifies the maximum number of characters
printed for all or part of the output field, or the minimum number of digits printed for
integer values.

type is a required character that determines whether the associated argument is
interpreted as a character, a string, or a number.

129

Debugging

Flags specification

A flag directive is a character that justifies output and prints signs, blanks, decimal points, and octal
and hexadecimal prefixes. More than one flag directive may appear in a format specification.

Flag Meaning

Left align the result within the given field width. The default
is right align.

+ Prefix the output value witha sign (+ or -) if the output value
is of a signed type. The sign appears only for negative signed
values by default.

0 If width is prefixed with 0, zeros are added until the minimum
width is reached. If 0 and - appear, the 0 is ignored. If 0 is
specified with a none integer format (e.g. f, g, e) the O is
ignored. The default is no padding.

blank (") Prefix the output value with a blank if the output value is
signed and positive; the blank is ignored if both the blank and
+ flags appear. Default :No blank appears.

When used with the o, x, or X format, the # flag prefixes any
nonzero output value with 0, 0x, or 0X, respectively. Default:
No blank appears.

When used with the e, or f format, the # flag forces the output
value to contain a decimal point in all cases. Default: Decimal
point appears only if digits follow it.

When used with the g or G format, the # flag forces the output
value to contain a decimal point in all cases and prevents the
truncation of trailing zeros. Default: Decimal point appears
only if digits follow it. Trailing zeros are truncated.

Ignored when used with ¢, d, i, u, or s.

130

CodeScape User Guide

Width specification

The second optional field of the format specification is the width specification. The width argument

is a nonnegative decimal integer controlling the minimum number of characters printed. If the output
value has fewer characters than the specified width, blanks are added to the right of the value unle:
the left align flag (-) is set. If width is prefixed with 0, zeros are added instead of blanks (not useful

for left aligned numbers).

The width specification never causes a value to be truncated. If the number of characters in the outpi
value is greater than the specified width, or if width is not given, all characters of the value are printed
to the Log tab (subject to the precision specification).

If the width specification is an asterisk (*), an int argument from the argument list supplies the value.
The width argument must precede the value being formatted in the argument list. A nonexistent or
small field width does not cause the truncation of a field; if the result of a conversion is wider than

the field width, the field expands to contain the conversion result.

Precision specification

The third optional field of the format specification is the precision specification. It specifies a
nonnegative decimal integer, preceded by a period (.), which specifies the number of charactersto b
printed, the number of decimal places, or the number of significant digits. Unlike the width
specification, the precision specification can cause either truncation of the output value or rounding
of a floating-point value. If precision is specified as 0 and the value to be converted is 0, the result i
no characters output, as shown below:

"%.0d", 0 /* No characters output */

If the precision specification is an asterisk (*), an int argument from the argument list supplies the
value. The precision argument must precede the value being formatted in the argument list.

131

Debugging

Type specification

Character Type Output Format

c int Single-byte character.

C int Single-byte character.

d int Signed decimal integer.

int Signed decimal integer.

0 int Unsigned octal integer.

u int Unsigned decimal integer.

X int Unsigned hexadecimal integer, using "abcdef."

X int Unsigned hexadecimal integer, using "ABCDEF."

e double Signed value with the form [-]Jd.dddd e [sign]ddd
where d is a single decimal digit, dddd is one or
more decimal digits, ddd is three decimal digits, and
sign is +or -.

f double Signedvalue with the form [-]dddd.dddd, where dddd
is one or more decimal digits. The number of digits
before the decimal point depends on the magnitude of
the number, and the number of digits after the
decimal point depends on the requested precision.

g double Signed value printed in f or e format, whichever is
more compact for the givenvalue and precision. The e
formatis only used when the exponent of the value is
less than -4 or greater than or equal to the
precision argument. Trailing zeros are truncated,
and the decimal point appears only if one or more
digits follow it.

G double Identical to the g format.

p Pointer to Prints the address pointed to by the argument in the
form similar to %X (i.e. uppercase hexadecimal
digits).

S String Specifies a single-byte-character string. Characters
are printed up to the first null character or until
the precision value is reached.

S String Specifies a single-byte-character string. Characters
are printed up to the first null character or until
the precision value is reached.

132

CodeScape User Guide

Character

Type

Address

Output Format

Displays (by disassembling) the op-code at the
specified address.

Address

Displays (by disassembling) the op-code at the
specified address with qualified symbol names if
available.

Insert timestamp.

Insert timestamp.

Examples

Expression

Description

"9%X", pe

Evaluate and display the expression "pc" (this could
be a variable or register) as an uppercase
hexadecimal number.

Output: 3b0

"0x%08x", $pc

Evaluate and display the expression "$pc" (this must
be a register) as a lowercase hexadecimal number
prepended by "0x" and padded with zeroes to 8
characters.

Output: 0x000003b0

"0x%08x -> $0 %! ", $pc

Evaluate and display the expression "$pc” (this must
be a register) as a lowercase hexadecimal number
prepended by "0x" and padded with zeroes to 8
characters followed by the disassembly of the
op-code at that address with qualified symbol names.
The $0 reset the parameter index back to zero so the
expression "$pc" is used for both formatted options.

Output: 0x000003b0 -> mov.| #BaseClass::i, r3

Evaluate and display the expression "$pc" (this must be a register) as a lowercase hexadecimal
number prepended by "0x" and padded with zeroes to 8 characters followed by the disassembly of
the op-code at that address with qualified symbol names. The $0 reset the parameter index back t

zero so the expression "$pc" is used for both formatted options.

133

Debugging

134

Simulating a target
processor

The Simulator is an optimizing tool for Hitachi SH series processors. It uses real targets for the
Memory and Register regions.

When you single step in a Simulator region the cursor is shown at the instruction currently executing
in the pipeline. During simulation the PC fetches instructions ahead of the current instruction. Some
instructions are not executed because of changes in the program flow. For example, instructions
fetched after a branch. When you single step in any other CodeScape region, the cursor is shown
the PC (program counter).

The Simulator enables you to optimize timing critical sections of Assembly code by simulating a
target’s processor operations. For example, you can set breakpoints to simulate a function that is pa
of a loop in your program.

NOTE: You cannot run the Profiler and the Simulator at the same
time.

NOTE: For details about processor pipeline operations, refer to
therelevantHitachiProgrammingManual. Foracopyofthemanual,
contactyourHitachisupplier,orconnecttothe HitachiJapanese
web site at http.//www.hitachi.co.jp

NOTE: Memory timings do not model SDRAM banks (6000000-607FFFF,
6080000-60FFFFF).

135

Simulating a target processor

Using the Simulator’s shortcut menu

Select:

Highlight Cache Misses

To:

See in which slot a pipeline operation missed the
cache.

Highlight Pipeline Stalls

See in which slot a pipeline operation stalled.

Show Stall Type

Show the type of stall generated.

Show Only Active Stages

Show active / all pipeline stages used.

Show Uppercase

Show instructions in upper case.

Show Symbols

Show operand values as symbols.

Show EAs & Lits.

Show the effective address and literals.

Source/Disassembly
Tracking

Track the Simulator’s cursor in source and
disassembly regions.

Print Print the results of program simulation.
Save to file... Save the results of program simulation to a file.
Execution Run, stop, and restart your program. Run your

program to the cursor position, or until it
executes a specified address. Run all of your
program files simultaneously. Stop all of your
programs running simultaneously.

Use the single stepping options, or run the step
options.

Breakpoints

Toggle a breakpoint on or off. Enable, disable,
configure, reset, and remove breakpoints.

136

CodeScape User Guide

Running the Simulator

When you run the Simulator it generates information about the pipeline operation for each Assembly
instruction. It also highlights any loss of performance in the processor cache and the pipeline. Use
the Simulator’s shortcut menu commands to configure the Simulator and access the debugging
functions.

In the Target region, select the processor that you want to simulate:

» Select Debug, click Simulate Processor.
-OR-

 Right-click in the Target region, then click Simulate Processor.
-OR-

* Press CTRL+ALT+Z.

NOTE: You cannot run the Profiler and the Simulator at the same
time.

Running restrictions

The Simulator does not support the following features:

 DMA.

e Timers.

« Division unit.

» Power down mode.

« Memory mapped registers except for the CCR.
» External interrupts.

The Simulator disables external interrupts when it is running. If you use the sleep instruction you
cannot wake the Simulator from sleep/standby mode.

Internal exceptions and interrupts are:

» Simulate NOP (no operation) and inform CodeScape of the appropriate exception.

« TRAPA 32 which is used for FileServer operation, software breakpoint operation, and
hardware breakpoint operation.

« Address errors, illegal slot, and invoked instructions as reported on the processor status
line.

137

Simulating a target processor

Debugging operations in the Simulator

All of CodeScape’s debugging functions are available when the Simulator is running. The debugging
functions include commands for: controlling program execution, stepping code, using breakpoints,
and setting the cursor to the PC and visa versa.

When you single step in a Simulator region the cursor is shown at the instruction currently executing
in the pipeline. During simulation the PC fetches instructions ahead of the current instruction. Some
instructions are not executed because of changes in the program flow. For example, instructions
fetched after a branch. When you single step in any other CodeScape region, the cursor is shown at
the PC (program counter).

Simulation results

During program simulation the Simulator generates information about pipeline operation for each
Assembly instruction. You can read any loss of processor performance from the simulation results
shown in the Simulator’s regions, or by printing the results.

138

CodeScape User Guide

Information generated by the Simulator

When you simulate your project each instruction is executed in a Simulated slot (time). As the
Simulator steps through time a linear description of pipeline operation is shown in its regions:

» The Address in memory for each line of source code.

» The Op-code for each instruction.

« The CPU time taken to execute each instruction at an address in memory.
» The Disassembly of the op-code for each instruction.

Slot information for each stage of pipeline operation:

1) The vertical cursor indicates the time taken by the processor to execute an
instruction for each slot.

2) The horizontal cursor indicates the instruction that is being allocated time in
the active slot.
 Processor status information.

Execution time

The execution time is the CPU time accumulated from the start of an instruction’s ‘ex’ (execution)
phase to the start of the next instruction’s ‘ex’ phase.

Processor status information
Data displayed on the status bar for an active slot

This status area: Describes:

Diagnosis: The type of stall encountered and what caused it.

Cache: Cache memory operation stalls which occur when there is
a read/write miss.

System clock: The total time taken for processor operations upto the
current cursor position.

NOTE: The information generated by the Simulator can be saved in
a configuration file with the extension *.sim.

139

Simulating a target processor

Pipeline interaction

The Simulator evaluates an instruction’s functionality at the appropriate stage of the pipeline. The
following instruction tells the processor to read 32 bits from the address stored in r0, then put the
results in r3.

mov.L@r0,r3

When the instruction executes in a simulated slot (time) the following instruction stages are shown
in the simulated pipeline:
IF|ID|EX|MA|WB

During the instruction’s execution the following operations take place:

+ At the IF stage the op-code for the instruction is read from memory.

» At the ID stage the instruction is decoded.

At the EX stage instruction execution starts, and the contents of register r0 is read.

At the MA stage memory is accessed at register rO and the value is stored on the data bus.
At the WB stage the value stored on the data bus is written back to memory at register r3.

Instruction execution in the Pipeline region

The mnemonic: Indicates:

IF Instruction fetch.

if Dummy instruction fetch where external memory is not
accessed.

D Instruction decoded / issued (All SH series
processors.)Instruction decoded / issued / register read.
(SH4 processors only.)

D Decode stage locked.

d Register read only. (SH4 processors only.)

EX Instruction execution.

SX Execution phase, the SX stage used.

SX* SX stage locked not used.

NA Memory not accessed / no operation address.

MA Memory accessed / operation address.

MAm Memory accessed / multiplier use. (SH2 processors only.)

140

CodeScape User Guide

The mnemonic: Indicates:

mm Multiplier busy. (SH2 processors only.)

WB Register write back (data stored to registers after
operation).

FO Floating point 0 stage accessed. (Special Stage inner
product / transforms).

F1 Floating point 1 stage accessed.

F1* Floating point 1 stage locked and not accessed.

f1 Floating point 1 stage partial usage (can overlap with other

1's but not F1).

F2 Floating point 2 stage accessed.

F3 Floating point 3 stage accessed. (Special Stage divide /
square root).

FS Floating point store / writeback.

>FPSCR< Floating point status register updated.

NOTE: Inthe *.sim file all of the instructions are represented
bythemnemonicslistedaboveexcept, >FPSCR<whichisrepresented
by FC, and Mam which is represented Mm.

141

Simulating a target processor

Processor operation

The CPU time accumulated by each slot is highlighted to show the state of the processor when an
operation went off. Different colors and mnemonics’ describe pipeline interaction at each phase.

Processor operation in the Pipeline region

An operation colored: Indicates that the processor:

Black Was OK

Red Stalled

Blue Missed the cache

Pink Stalled and missed the cache

Pipeline stalls

Where a stage from one instruction is in contention with a stage of the next or previous instruction
a stall occurs. This slows down the operation of the pipeline. Simulation may show a stall in the
processor’s pipeline.

Remove a stall, in one of the following ways:

» Reorder the instruction sequence to remove an Instruction sequence stall.
-OR-
* Move an instruction address in memory to remove an Instruction alignment stall.

NOTE: For details about contention in instruction stages and
execution states refer to the Hitachi Programming Manual for the
7600 Series.

142

CodeScape User Guide

Pipeline instruction stalls recognized by the Simulator

Shows this type of stall:

If possible, increase the speed

of pipeline execution by:

> A memory access conflicting To align instructions that access
with an instruction fetch. memaory on longword boundaries.
(SH1 and SH2 processors
only.)

W> A write back from the So that instructions that follow
registry when a memory memory loads do not immediately use
access is incomplete. the same destination register.

x> A multiplier usage stall. So that instructions that use the
(SH1 / SH2 processors only.) multiplier execute

non-consecutively.

i> An instruction generated You cannot do anything about this
stall. stall type. TRAP, TAS, RTE always

stall.

R> Two instructions trying to So that instructions using the same
lock the same register. (SH4 register execute sequentially to
processors only.) ensure that they are not dual

issued.

s> The SX stage of the So that the instruction that locks
instruction being in use. the SX stage executes before

instructions that use the SX stage
non-consecutively.

> A floating point pipeline So that it uses instructions in the
stall, caused by multiple FO, or F1, or F3 stages once.
use of the: FO, or F1, or F3
stages.

c> One or mare control group You cannot do anything about this
instructions being dual stall type.
issued.

o> Instructions of the same So that instructions of the same
type occurring together and type (suchas EX+EX, LS+LS, BR+
causing a dispatch failure. BR, FE + FE) do not occur together.

> An unknown stall type.

NOTE: For details about pipeline instruction stalls refer to the

Hitachi Programming Manual for the 7600 Series.

143

Simulating a target processor

Reading the results of simulation

The Simulator generates information about pipeline operation for each Assembly instruction during
program simulation. Any loss of processor performance appears in the results shown in the
Simulator’s regions. You can print the simulation results. (For an example of how to read the
simulation results refer to the Simulator tutorial.)

144

Profiling program files

The Profiler is a powerful analysis tool that lets you examine the run-time behavior of program files
written for Hitachi SH series processors.

You can configure the Profiler to analyze your program with two levels of detail: statistical and trace.
The Profiler can help you to find out where your program spends its time, and how functions are
called when it executes. You can use information generated by the Profiler to identify any inefficient
sections of code.

NOTE: Toensure accurate results, setthe debug stub to run with
the cache off when you trace profile. To do this, run DACHECK.
For more information refer to the Help supplied with DACHECK.

NOTE: You cannot run the Profiler and the Simulator at the same
time.

145

Profiling program files

Using the profiler: an overview
Open the Profiler and load a program file

1) Click Tools, then click Profiler.
The Profiler appears.

2) In the Target window, right-click, click Load Program File.
The Load Program File dialog box appears.

3) Specify the Target, Processor, Program File, and Load Options.
4) Click OK.

Profile the program file on the selected target processor

1) 1 In the Profiler, right-click, click Setup...

 Select Statistical for general profiling.
-OR-
» EVA for detailed information.
2) Click @lto start profiling the selected program file.
3) Inthe Target window, right-click, select Execution, then click Run.

NOTE: You can sort the profile data on the fly.
NOTE: Click O}top profiling the program file.

Display a specific function(s)

1) Double-click on the function that you want to profile to select (tag) it.

2) Right-click and select Trace Tree Profile Display to find out for the selected function:
the functions that called it, and the functions it called.

3) Right-click, select Function Profile Filter, then click Show Tagged to switch the
display from Show All functions to Show All Tagged functions
The selected function will be the only function shown on the display.

4) Analyze the results.

NOTE: You can tag more than one function to profile.

146

CodeScape User Guide

View the source or disassembly of a specific function

1) Double-click on the function that you want to view to tag it.
2) To view the:

» Disassembly of the function, right-click then select Disassembly Display.
 Source of the function, right-click then select Source Display.

Set and use a Profiler breakpoint

1) Insert a Profiler Start breakpoint in one of the following ways:

* Right-click in the Profiler Source Display, select breakpoints, then click
Toggle Breakpoint.

-OR-
 Right-click in the Profiler Disassembly Display, select breakpoints, then click
Toggle Breakpoint.

Profiling starts at the breakpoint insertion point. Profile information is generated only
for the function that contains the breakpoint and the functions it calls.

2) Inthe Target window, right-click, click restart.
3) Click @ to start profiling the selected program file.
4) In the Target window, right-click, select Execution, then click Run.

147

Profiling program files

The Profiler's commands

Using the Profiler’s shortcut menu

Select:

File

To:

Load orsave program profile information. Program
profiles are saved using the extension *.prf.

Enable Profiler

Start or stop profiling your program file.

Enable Pass Between
Breakpoints

Remove All Profiler
Breakpoints

Remove all Profiler breakpoints.

Trace Tree Profile Display

Find out for each function, the functions that
called it, and the functions it called.

Function Profile Display

Find out for each function, the functions that
calledit,and the functionsitcalled. Also, how
much time your program spent in each function,
and how many times each function is called.

Function Profile Filter

Arrange the view to show one of the following:
all functions, all tagged functions, or all
untagged functions.

Untag All

Untag all currently tagged functions.

Sort

Arrange the column view of the active Function
Profile Display.

Source Display

View your program’s original source code.

Disassembly Display

View your program at instruction level (assembly
code).

Rename Function...

Enter a new name for a specific function.

Profiler Display Setup...

Specify the profile display options.

Setup...

Specifyoptionsfor Statistical Profiling, orEVA
Trace Profiling.

NOTE: Tosetatagonaspecificfunction,double-clickit’sentry

in the Profiler.

148

CodeScape User Guide

Options on the Profiler’s toolbar

To issue this command: Click:

Start profiling the current program file.

]

Stop profiling the current program file

@

Toggle the display between a Trace Tree Profile and a
Function Profile.

|5

Switch the display from Show All functions to Show All
Tagged functions.

Switch the display from Show All Tagged functions to
Show All Not Tagged functions.

B

Switch the display from Show All Not Tagged functions to
Show All functions.

Go to the next tagged function in the list.

Caa

Display the program file's original source code.

Display the program file at instruction level (assembly
code).

&

Toggle the sort options.

4

NOTE: If you want to Trace Profile, you must run the Profiler

before you run your program.

NOTE: Tosetatagonaspecific function, double-click its entry

in the Profiler.

149

Profiling program files

Debugging commands in the Profiler

All of CodeScape’s debugging functions are available when the Profiler is running. The debugging
functions include commands for: controlling program execution, stepping code, using breakpoints,
and setting the cursor to the PC and visa versa.

NOTE: Profiler breakpoints are not standard breakpoints.

Profiler breakpoints

* Profiler breakpoints are not standard breakpoints. Note the following information about
Profiler breakpoints:

* You can only set one Start Breakpoint, but you can set multiple Stop Breakpoints.

» Program execution does not stop when a Profiler breakpoint occurs.

A frequently hit breakpoint increases the profile time.

* If you set a Profiler Start Breakpoint at the start of a function then the profiler only
profiles that function and the functions it called. If an interrupt occurs during this
function then it will be profiled.

* You do not have to set a Profiler Stop Breakpoint.

Insert a Profiler Start breakpoint in one of the following ways:

1) Right-click in the Profiler Source Display or the Profiler Disassembly Display.

2) Select breakpoints, then click Toggle Breakpoint.
-OR-

1) Right-click in the Profiler Source Display or the Profiler Disassembly Display.
2) Select breakpoints, then click Configure Breakpoint(s)...

3) Select the Breakpoint that you want to configure.

4) On the Trigger Actions tab select Cause processor profiling to, then:

 Select Start to set a Profiler Start breakpoint.
-OR-
« Select Stop to set a Profiler Stop breakpoint.

150

CodeScape User Guide

Tracing interrupt subroutines

When the Profiler is enabled program files execute more slowly than usual, but timer interrupts
continue to trigger in real time. This can cause interrupts to trigger continuously inhibiting or even
preventing Profiler from generating profile data outside of the exception handlers. If this occurs you
may want to stop the Profiler profiling subroutines handled in interrupt and exception routines.

You can prevent interrupt subroutines from being traced and profiled in one of two ways:

* In the Profiler using the Interrupt Trace Subroutine Filter.
Use this command when an interrupt or exception handler has few subroutine calls.
-OR-

* In your program file using the disable and enable profiling BIOS calls commands.
Use these commands when an interrupt or exception handler has many subroutine calls

Interrupt Trace Subroutine Filter

CAUTION: DonotselectthelnterruptTrace Subroutine TraceFilter
check-box if disable and enable profiling BIOS calls are used in
your program file.

NOTE: If an interrupt permanently triggers, use the disable and
enable profiling BIOS calls commands in your interrupt routine.

Use this command to stop the Profiler profiling subroutines handled in interrupt and exception
routines.

Disable and enable profiling BIOS calls

CAUTION: UsingtheseBIOScallsincorrectlycausesinvalid Profile
data.

NOTE: Only use the disable and enable profiling BIOS calls
commands with DA Firmware 4.4.0a onwards.

The disable and enable profiling BIOS calls commands let you control subroutine profile tracing
within your program file. To speed up the profile time, you can specify sections of your program for
the Profiler to ignore.

151

Profiling program files

Profiler display types

You can view the profile of your program by: function hits, function count (and children), function
clock cycle (and children). Arrange the profile run-time order to view the functions in increasing
order (Incremental), or decreasing order (Decremental).

Setting the display
To specify the display options for the current profile:

1) Right-click in the Profiler, then click Profiler Display Setup.
The Profiler Display Setup dialog box appears.

2) Inthe Column Data text box select one of the following options:
« Display Both.
e -OR-
« Display Counts / Cycles.
¢ -OR-
« Display Percent.
3) Inthe Columns text box, select any of the following options:

« Display Hits.

« Display C1.

« Display C1 + Children.

« Display C2.

« Display C2 + Children.
4) Click OK.

The Trace Tree Profile Display

The Trace Tree Profile Display tells you for each function; the functions that called it, and the
functions it called. A Trace Profile also shows, the total amount of time your program spends
executing each function, and how much time it spends in each function and its children.

NOTE: Toensure accurate results, set the debug stub to run with
the cache off when you trace profile. To do this, run DACHECK.
For more information refer to the Help supplied with DACHECK.

152

CodeScape User Guide

The Function Profile Display

The Function Profile Display lists the functions called. You can use the sort options on the shortcut
menu to view the profile relative to: function hit, function count (and children), function clock cycle
(and children). The Function Profile Filter lets you specify how you view tagged functions.

NOTE: To tag a function, double-click its entry in the Profiler.

Searching for a function
To search for a function:

1) Move the insertion point to where you want to start searching from.

2) Type the Search string in the current profile.
The Profiler automatically finds, and displays the nearest match.

3) To continue the search:
* Press ENTER.
-OR-
* Press F3.

NOTE: You can search for strings, whole words, or parts of words.

NOTE: TheProfilerlooksforexactmatchesfirst,thenthenearest
matches in descending order.

NOTE: Thecalltreeautomaticallyexpandsandcontractstodisplay
search results.

Changing the name of a specific function
To rename a function:

1) Select the function that you want to rename.

2) Right-click, click Rename Function...
The Rename Function dialog box appears.

3) Enter the new name for the selected function.
4) Click OK.

153

Profiling program files

Profiling limitations

NOTE: The ProfilerdoesnotsupportJMPand BRAtypeinstructions.

The Profiler:

Only receives Performance Counter information on the following events: JSR, RTS,
RTE, BSR, BSRF, Interrupt, and Exception. It matches:

* JSR, BSR, and BSRF with RTS.
* Interrupts and exceptions with RTE.
Any difference in the counter information is recorded and added to the totals.

Ignores RTS unless it is preceeded and matched to a JSR.
Cannot detect inline functions.

Assumes RTE is a Context Switch (Task Swap) unless it matches the return address to a
current task.

Does not profile System Areas. The total time spent in the system areas is shown as:
#TOTAL OF SYSTEM CALLS.

Run slowly if your program file is complex and contains many functions.

Large program files force the Profiler to use Virtual Memory. This increases the Profiler's
memory access times from ~ 10 nano (E -09) seconds to ~ 10 mili (E -03) seconds. This
means the memory access times have dropped by an approximate factor of One Million.

To increase the speed of the Profiler, do one of the following:

< Use the Profiler breakpoints to specify a part of your program file to profile.
« Install more memory in your development computer.

154

Viewing GD-M log
information

The Workshop tab on the Input/Output window displays GD-M log information, and lets you control
the log events.

NOTE: Formoreinformation, referto Howto emulate andtesta GD
project in the Help supplied with GDWorkshaop.

155

Viewing GD-M log information

Using the shortcut menu on the Workshop tab

Select: To:

Disable Updates Disable Workshop message logging.

Close Door Close the door and start emulating a virtual CD.
SwitchToEmulator/Switch Toggle between the emulated GD-ROM image and the
To GD-ROM actual GD-ROM.

Nudge Create a soft error on the next operation.

Hard Errors On Enable hard errors as defined in Workshop. If you

use this command, enable it before emulating.

Clear Clear the log contents of the Workshop tab.
Allow Docking Toggle docking for the window on or off.
Hide Hide the window.

NOTE: Formoreinformation, referto Howto emulate andtesta GD
project in the Help supplied with GDWorkshop.

NOTE: Ifyou enable hard errors during emulation you may not see
errors in the log until after the next read command, because the
data being read from the emulation may already be cached. If you
enable hard errors before emulating you will see all the errors

as they occur.

156

Writing scripts to
automate tasks

CodeScape’s script commands let you run Microsoft® JScript™ and VBScript macro scripts to
automate routine tasks. CodeScape’s script commands are demonstrated in example JScript and
VBScript files. You can use the functions available in either script language to add commands of
your own.

For details about using JScript and VBScript connect to the scripting area on the Microsoft
Developer Network at: http://msdn.microsoft.com/scripting

» Using scripts

* Using the shortcut menu on the Script tab

+ Adding a script to the menu

* Running a script

» CodeScape’s scripting commands

» Expressing Numeric values and Numeric addresses
* Example VBScript

» Example JScript

157

Writing scripts to automate tasks

Using scripts

When you run a script the Input / Output window appears automatically and displays the Script tab
with all messages generated by the current script.

To open the Input / Output window without running a script:

* Click View, Toolbar, then select the Input / Output check-box and click OK.

NOTE: Youcandockthe Input/Outputwindowatthetop and bottom
of the main window, or leave it free floating.

The shortcut menu on the Scripts tab

Select: To:

Run Script Select and run a script.

Clear Clear the contents of the Script tab.

User Scripts This option appears in gray until you add a

script to the menu. When you add a script its
name appears on the menu.

Allow Docking Toggle docking for the window on or off.

Hide Hide the window.

158

CodeScape User Guide

Adding a script to the menu

When you add a script its name appears on the menu bar, and on the Script tab shortcut menu. Yc
can add up to ten script files to run from either the menu bar, or the shortcut menu.

1) Click Tools, select Customize, then click Scripts...
The Customize dialog box appears.

2) Click Add.

3) Inthe Menu Text box, enter the script name to display on menu.
To remove an entry highlight the script's name in the Menu Text box and click Remove.

4) In the Menu Contents box, highlight the name of the script.

5) Inthe Script box, enter the path location and script file name.
6) Select either JScript, or VBScript to specify the script file type.
7) Do one of the following:

* In the Arguments text box, enter any arguments to be passed to the script.
Click OK.

-OR-
» Select the Prompt for arguments check-box.

NOTE: Selecta command inthe Menu Contents box, then Use Move Up
and Move Down to set where it appears on the Tools menu.

NOTE: To assign a keyboard shortcut to the script click Tools,
select Customize then click Keyboard...

Running a script

« Click Tools, then select Scripts and click a script in the list.
-OR-
« On the Input / Output window, right-click on the Scripts tab, then click a script in the list.

NOTE: Currently, scripts only support debugging a single target
processor. When you run a script it automatically uses the
selected target processor.

NOTE: Ascriptthatcontains aninfinite loop causes CodeScapeto
lock-up.

159

Writing scripts to automate tasks

Scripting commands

LoadProgramfFile

Loads the specified program file.

Syntax
LoadProgramFile(path and filename)

Remarks
This command uses the file path as a parameter and returns 1 if the file is loaded, else O.

HardReset

Resets the target processor with a hard reset.

Syntax
HardReset()

SoftReset

Resets the target processor with a soft reset.

Syntax
SoftReset()

Run

Runs the target processor.

Syntax
Run()

WriteMessage

Writes a message string to the script window.

Syntax
WriteMessage(string Message)

160

CodeScape User Guide

WriteRegister

Sets the specified register to the given value.

Syntax
WriteRegister(Register value,Numeric value)

RegisterValue ReadRegister

Gets the value held in the specified register.

Syntax
RegisterValue ReadRegister(RegisterName)

LoadBinaryFile

Loads a binary file from the specified location.

Syntax
LoadBinaryFile(Path and filename,Numeric binary location)

SetBreakpoint

Sets a code breakpoint at the specified address.

Syntax

SetBreakpoint(Numeric address)

ClearAllBreakpoints

Clears all breakpoints.

Syntax
ClearAllBreakpoints()

161

Writing scripts to automate tasks

RemoveBreakpoint

Removes the breakpoint from the specified address.

Syntax
RemoveBreakpoint(Numeric address)

CreateBreakpoint

Creates a breakpoint of the given type at the address. Returns a breakpoint identifier on
success, otherwise 0.

Syntax
CreateBreakpoint(Type,Address)

Remarks
Breakpoint type specifiers:

Breakpoint Type

Code 0
Watch 1
Simulator or Start 2
Profiler start 3
Profiler stop 4

EnableBreakpoint

Enables or disables the specified breakpoint.

Syntax
EnableBreakpoint(identifier,boolean enable)

Remarks
identifier: the breakpoint identifier.

enable: 1 to enable; O to disable.

162

CodeScape User Guide

SetBreakpointActions
Enables or disables the specified breakpoint action.

Syntax

SetBreakpointActions(identifier,numeric action,boolean
enable)

Remarks
enable: 1 to enable , 0 otherwise.

identifier: the breakpoint identifier.

Halt breakpoint when hit. 0

Remove breakpoint after being hit. 1

Display a message box prompt when hit. 2

Beep when hit. 3

SetBreakpointLog
Sets a log expression for the breakpoint specified by the breakpoint identifier.

Syntax

SetBreakpointLog(breakpoint identifier,string
expression,boolean logType)

Remarks

breakpoint identifier: the breakpoint identifier.
expression: the log expression.

logType: false to always log or true to log when conditions match.

163

Writing scripts to automate tasks

SetBreakpointScript
Attaches a script to a breakpoint.

Syntax

SetBreakpointScript(
identifer,
string script path,
numeric script type,
string script arguments,

boolean prompt)

Remarks

identifier: the breakpoint identifier.

script path: the file path for the script

script type: 0 for JScript and1 for VBScript

script arguments: string holding the script's arguments

prompt: 1 to request arguments when the breakpoint triggers, 0 otherwise.

164

CodeScape User Guide

SetBreakpointCondition

Sets a conditional expression for the breakpoint.

Syntax

SetBreakpointCondition(
identifier,
string expression,
numeric expression type,
numeric trigger count,
boolean incOnTrue,
boolean breakWhen)

Remarks

identifier: the breakpoint identifier.

expression: a string representing the condition.

expression type: 0 for C; non-zero for assembly

trigger count: the number of hits before breakpoint actions are performed.

incOnTrue: false to always increment the trigger count; true to increment the trigger count
only when conditions are true.

breakWhen: false to break when the trigger reaches 0 or condition is true; true to break
when trigger reaches zero and the condition is true.

165

Writing scripts to automate tasks

BOOL SetWatchBreakpointParameters
Sets the parameters for a watch breakpoint.
Syntax
BOOL SetWatchBreakpointParameters(ldentifier,Boolean

incDataCondition,string dataCondition,numeric
expressionType,numeric accessSize,numeric accessType)

Remarks

identifier: the breakpoint identifier.

incDataCondition: include a data condition.

dataCondition: expression specifying the data condition.
expressionType: the type of the specified expression.
accessSize: the access size. For example, byte, word, or long.

accessType: the type of access (read, write, or both).

Size Value Type Value
Any 0 Read 1

Byte 1 Write 2
Word 2 Read or Write 3

Long 4

Quad 8

166

CodeScape User Guide

SetBreakpointLocationMask

Select a location mask for the breakpoint.

Syntax
SetBreakpointLocationMask(breaklD,maskSelect)

Remarks

Mask Value

No bits masked 1
Lower 10 bits 2
Lower 12 bits 3
Lower 16 bits 4
Lower 20 bits 5
All bits 6

SetBreakpointDataMask
Sets the data mask for a watch breakpoint.
Syntax
SetBreakpointDataMask(identifier,mask)

ReadByte

Reads a byte from the specified area of memory.

Syntax
ReadByte(Numeric address)

167

Writing scripts to automate tasks

ReadWord

Reads a word from the specified area of memory.

Syntax
ReadWord(Numeric address)

ReadlLong
Reads a long from the specified area of memory.

Syntax
ReadLong(Numeric address)

WriteByte

Writes a byte from the specified area of memory.

Syntax
WriteByte(Numeric address,Numeric value)

WriteWord

Writes a word from the specified area of memory.

Syntax
WriteWord(Numeric address,Numeric value)

WriteLong

Writes a long from the specified area of memory.

Syntax
WriteLong(Numeric address,Numeric value)

168

CodeScape User Guide

GetParam

Returns a specific parameter.

Syntax
GetParam(short param)

GetParamCount

Returns the number of parameters passed to the script.

Syntax
GetParamCount()

IsRunning

Returns 1 if running, O if not running.

Syntax
IsRunning()

ConfigureTraceHistory

Specifies the events saved in the Trace history.

Syntax
ConfigureTraceHistory(numeric Setting,boolean Enable)

Remarks

Uses the settings:

Log exceptions, interrupts, and rte 8
Log subroutines, bsr, bsrf, jsr, rts 4
Log branches, bf, bt, bf/s, bt/s, bra, braf,jmp 2

169

Writing scripts to automate tasks

DisplayTraceHistory

Displays the current history in the script's window.

Syntax
DisplayTraceHistory()

Remarks

Uses the format:

Source Destination

0x0c010356 0x0c0103aa rts

0x0c0101e6 0x0c010350 rts

0x0c0100e6 0x0c010128 bra $0c010128

0x0c01034c 0x0c010028 bsr BigTest

0x0c0103a6 0x0c010334 bsr struct_test

0x0c010280 0x0c0103a0 rts

0x0c01039c 0x0c010214 bsr BitFieldTest
ClearDisplay

Clear the script output window.

Syntax
ClearDisplay()

170

CodeScape User Guide

Example VBScript

' This script does not do anything useful other than demonstrate the
functions available

ClearDisplay
HardReset
SoftReset
DisplayParameters
LoadSomeBinary
LoadProgramFile("d:\\projects\\maketest\\hello.elf")
SetBreakpoint("add_fn")
ConfigureTraceHistory TH_LOGEXCEPT + TH_LOGSUB, true
Dim Running
Running =1
Do
Running=IsRunning
Loop Until Running =0
DisplayTraceHistory
ReadSomeRegisters
WriteSomeRegisters
ReadSomeMemory
WriteSomeMemory
ReadSomeMemory
ClearAllBreakpoints
CreateCodeBP
ClearAllBreakpoints
CreateWatchBP
WriteMessage("Script complete. Removing all breakpoints.")
ClearAllBreakpoints

'‘Breakpoint types
BPTYPE_CODE= 0
BPTYPE_WATCH=1
BPTYPE_SIMSTART=2
BPTYPE_PROFSTART=3
BPTYPE_PROFSTOP=4

'‘Breakpoint Actions
BPACTION_HALT=0
BPACTION_ONESHOT=1
BPACTION_PROMPT=2
BPACTION_BEEP=3

'‘Breakpoint Script Types

BPSCRIPT_JSCRIPT=0
BPSCRIPT_VBSCRIPT=1

171

Writing scripts to automate tasks

'‘Breakpoint expression types

BPEXPR_C = 0
BPEXPR_ASSEMBLY=1

'‘Breakpoint address masks

BPLOCMASK_NONE=1
BPLOCMASK_LOW10=2
BPLOCMASK_LOW12=3
BPLOCMASK_LOW16=4
BPLOCMASK_LOW20=5
BPLOCMASK_ALL=6

'‘Breakpoint access sizes

BPACCESSSIZE_ANY=0
BPACCESSSIZE_BYTE=1
BPACCESSSIZE_WORD=2
BPACCESSSIZE_LONG=4
BPACCESSSIZE_QUAD=8

'‘Breakpoint access types

BPACCESSTYPE_READ=1
BPACCESSTYPE_WRITE=2
BPACCESSTYPE_RW=3

"Trace history configuration options

TH_LOGEXCEPT=8
TH_LOGSUB=4
TH_LOGBRANCH=2

'Create a breakpoint on the 1K aligned block of memory that
‘the symbol main resides in.

Sub CreateCodeBP()
Dim breakID
breaklD=CreateBreakpoint(BPTYPE_CODE, "main")
SetBreakpointAction breaklD, BPACTION_HALT, true
SetBreakpointAction breaklD, BPACTION_ONESHOT, false
SetBreakpointAction breaklD, BPACTION_PROMPT, false
SetBreakpointAction breakiD, BPACTION_BEEP, true
SetBreakpointScript breaklID,
"e:\\projects\\codescape\\debugs\\testscript.js",
BPSCRIPT_JSCRIPT, "argl arg2 arg3", false

172

CodeScape User Guide

SetBreakpointLog breakID, "Hello John", BPEXPR_C
SetBreakpointLocationMask breakiD, BPLOCMASK_LOW10
setBreakpointCondition breakID, "index == 375", BPEXPR_C, 37,
true, true
End Sub

Sub CreateWatchBP()
breaklD= CreateBreakpoint(BPTYPE_WATCH, "main")
SetWatchBreakpointParameters breakID, true,"14", BPEXPR_C,
BPACCESSSIZE BYTE, BPACCESSTYPE_WRITE
End Sub

Sub WriteSomeRegisters()
WriteRegister "fr0", 3.14159
WriteRegister "r0", "Oxabcdef"

WriteRegister "pc", "main + 0x30"
End Sub

Sub ReadSomeRegisters()
WriteMessage("Value of pc =" & ReadRegister("pc"))
WriteMessage("Value of rO =" & ReadRegister("r0"))
End Sub

Sub LoadSomeBinary()
LoadBinaryFile "d:\\projects\\codescape\\satmon.bin",
"201392128"
LoadBinaryFile "d:\\projects\\codescape\\satmon.bin", 201392128
LoadBinaryFile "d:\\projects\\codescape\\satmon.bin",
"0xc010000"
LoadBinaryFile "d:\\projects\\codescape\\satmon.bin", "main"
End Sub

Sub DisplayParameters()
NumParams=GetParamCount
WriteMessage("Number of parameters =" & NumParams)
Fori=1 To NumParams
WriteMessage("Parameter " & i & " =" & GetParam(i- 1))
Next
End Sub

Sub ReadSomeMemory()
WriteMessage("Byte at main =" & ReadByte("main"))
WriteMessage("Word at main + 4 =" & ReadWord("main + 4"))
WriteMessage("Long at main + 8 =" & ReadLong("main + 8"))
End Sub

Sub WriteSomeMemory()
WriteByte "main”, 255
WriteWord "main + 4", "Oxabcd"
WriteLong "main + 8", "Oxfedcba"
End Sub

173

Writing scripts to automate tasks

Example JScript

/' Note: this script does not do anything useful. It just
demonstrates the current

/I script commands and how they can be called.

Il

/I Breakpoint types

Il

BPTYPE_CODE= 0;
BPTYPE_WATCH=1;
BPTYPE_SIMSTART=2;
BPTYPE_PROFSTART=3;
BPTYPE_PROFSTOP=4;

1
/I Breakpoint Actions

BPACTION_HALT=0;
BPACTION_ONESHOT=1;
BPACTION_PROMPT=2;
BPACTION_BEEP=3;

1

/I Breakpoint Script Types
Il

BPSCRIPT_JSCRIPT=0;
BPSCRIPT_VBSCRIPT=1;

1

/I Breakpoint expression types
1

BPEXPR_C = 0
BPEXPR_ASSEMBLY=1,

1
/I Breakpoint address masks

BPLOCMASK_NONE=1,
BPLOCMASK_LOW10=2;
BPLOCMASK_LOW12=3;
BPLOCMASK_LOW16=4,
BPLOCMASK_LOW20=5;
BPLOCMASK_ALL=6;

1
/I Breakpoint access sizes
1

BPACCESSSIZE_ANY=0;
BPACCESSSIZE_BYTE=1,
BPACCESSSIZE_WORD=2;
BPACCESSSIZE_LONG=4;
BPACCESSSIZE_QUAD=S,;

1

174

CodeScape User Guide

/I Breakpoint access types
I

BPACCESSTYPE_READ=1,
BPACCESSTYPE_WRITE=2;
BPACCESSTYPE_RW=3;

/i
/I Trace history configuration options
1

TH_LOGEXCEPT=8;
TH_LOGSUB=4;
TH_LOGBRANCH=2;

I

/I Create breakpoint on the 1k aligned block of memory that the
symbol main resides in

i

function CreateCodeBP()

breaklD=CreateBreakpoint(BPTYPE_CODE, "main");
SetBreakpointAction(breakiD, BPACTION_HALT, true);
SetBreakpointAction(breakiD, BPACTION_ONESHOT, false);
SetBreakpointAction(breakiD, BPACTION_PROMPT, false);
SetBreakpointAction(breaklD, BPACTION_BEEP, true);
SetBreakpointScript(breakID,
"e:\\projects\\codescape\\debugs\\testscript.js", BPSCRIPT_JSCRIPT,
"argl arg2 arg3", false);
SetBreakpointLog(breakID, "Hello John", BPEXPR_C);
SetBreakpothocatlonMask(breaklD, BPLOCMASK _LOwW10);
setBreakpointCondition(breaklD, "index == 375", BPEXPR_C, 37,
true, true);

function CreateWatchBP()
breaklD= CreateBreakpoint(BPTYPE_WATCH, "main");

SetWatchBreakpointParameters(breaklD, true,"14", BPEXPR_C,
BPACCESSSIZE_BYTE, BPACCESSTYPE_WRITE);

}

function WriteSomeRegisters()
WriteRegister("fr0", 3.14159);
WriteRegister("r0", "Oxabcdef");
WriteRegister("pc"”, "main + 0x30");
function ReadSomeRegisters()

WriteMessage("Value of pc =" + ReadRegister("pc"))

175

Writing scripts to automate tasks

WriteMessage("Value of rO =" + ReadRegister("r0"))

function LoadSomeBinary()

LoadBinaryFile("d:\\projects\\codescape\\satmon.bin",
"201392128");

LoadBinaryFile("d:\\projects\\codescape\\satmon.hin",
201392128);

LoadBinaryFile("d:\\projects\\codescape\\satmon.bin",
"0xc010000");

LoadBinaryFile("d:\\projects\\codescape\\satmon.bin", "main");
}

function DisplayParameters()

NumParams=GetParamCount()
WriteMessage("Number of parameters =" + NumParams);
for(i=0; i < NumParams; i++)

WriteMessage("Parameter " + i+ " =" + GetParam(i))

}

function ReadSomeMemory()

WriteMessage("Byte at main = " + ReadByte("main™));
WriteMessage("Word at main + 4 =" + ReadWord("main + 4"));
WriteMessage("Long at main + 8 =" + ReadLong("main + 8"));

}

function WriteSomeMemory()

WriteByte("main”, 255);
WriteWord("main + 4", "Oxabcd");
WriteLong("main + 8", "Oxfedcha");

ClearDisplay();
HardReset();
SoftReset();
DisplayParameters();
LoadSomeBinary();
LoadProgramFile("d:\\projects\\maketest\\hello.elf");
SetBreakpoint("add_fn");
ConfigureTraceHistory(TH_LOGEXCEPT + TH_LOGSUB, true);
Run();
while(IsRunning() '=0)
{

}
DisplayTraceHistory();
ReadSomeRegisters();
WriteSomeRegisters();
ReadSomeMemory();
WriteSomeMemory();

176

CodeScape User Guide

ReadSomeMemory();

ClearAllBreakpoints();

CreateCodeBP();

ClearAllBreakpoints();

CreateWatchBP();

WriteMessage("Script complete. Removing all breakpoints.");
ClearAllBreakpoints();

177

Writing scripts to automate tasks

178

Evaluating expressions

The expression evaluator dialog is used for several operations, including: Edit Register, and Goto

Address. In the dialog you can use the C/C++ expression evaluator or the Assembler’s expression
evaluator.

179

Evaluating expressions

Expression evaluator dialog box (ALT+E)

The expression evaluator is a general purpose dialog used for several operations, including: edit
register, edit memory value, edit local value, edit watch value, and goto address.

The options on the Expression Evaluator

Use the: To:

Expression Combo box Edit an existing expressian, or select one from the
history list.

Result field View the results of an expression evaluation

including any error messages.

ExpressionFormatradio Select C/C++, or Assembly as the expression format.
buttons

Default radix radio Select hinary, octal, decimal, or hex, as the radix
buttons to use for the expression, or specify another radix

inthe Other textbox. For C expressions this permits
only control of the output radix.

Evaluate button Evaluate an expression in the Expression Combo text
box.
Symbol button Use the Symbol Completion dialog box to search for a

symbol from those available in the program file.

File button View a list of all the files used to build the
program file inthe List Filesin Program File dialog
box. The dialog box also provides access to the
address for "file:line number" information.

Lock check box Lock the current expression to a file or symbol.

NOTE: When you evaluate assembler expressions in a watch region
the maximum number of characters you can enter is 127.

180

CodeScape User Guide

Symbol Completion dialog box (ALT+S)

Use the Symbol Completion dialog box to search for a symbol in the program file.

Options on the Symbol Completion dialog box

Use the:

Find String text box

To:

Enter the first few characters of the symbol
to search for.

Only Search For Symbols Within
Scope check box

Search for symbols in scope (select the check
box), or to search for symbols in the whole
program (deselect the check box).

Include Linkage Level Symbols
check box

Include low level symbals in the search
(select the check box). The default is
deselected.

Possible Completions text box

View a list of all symbols that match the
current Search String.

Lookup button

Click Lookup to start another search.

0K button

Accept the current search string.

Cancel button

Ignore current search string.

181

Evaluating expressions

C/C++ expressions

The C/C++ expression evaluator accepts expressions in a C-like format.

Operator precedence
Operator Type Usage Description
() Primary Parenthesis
Brackets
[] Primary pointer{expr] Subscripting
Binary object.member Member selection
> Binary pointer->member Member selection
sizeof() Unary sizeof(expr) Size of object.
sizeof{() Unary sizeof(type) Size of type
Unary - expr Unary Minus
+ Unary +expr Unary Plus
~ Unary ~ expr Bitwise NOT
Unary I'expr Logical NOT
* Unary * expr De-reference
& Unary & Ivalue Address of
* Binary expr *expr Multiply
/ Binary expr/expr Divide
% Binary expr % expr Modulo (remainder)
+ Binary expr + expr Add (plus)
Binary expr - expr Subtract (minus)
<< Binary expr << expr Shift Left
>> Binary expr >> expr Shift Right
< Binary expr < expr Less than

182

CodeScape User Guide

Operator Type Usage Description

<= Binary expr <= expr Less than or equal

> Binary expr > expr Greater than

>= Binary expr => expr Greater than or

equal

= Binary expr == expr Equal

= Binary expr != expr Not Equal

& Binary expr & expr Bitwise AND

A Binary expr A expr Bitwise Exclusive
Binary expr | expr Bitwise Inclusive

&& Binary expr && expr Logical AND

Il Binary expr Il expr b%gical Inclusive

Constants (Floating or
Integer)

Operands that the C/C++ operators act on

Operand Definition

Constants can be: hexadecimal numbers prefixed
with ‘Ox". Octal numbers prefixed with ‘0", or
unsigned numbers postfixed with a ‘U".
Characters, for example ‘A", are not accepted.

Registers

The name of a valid register.

Symbols

Symbol names take into account their type. For
example a variable defined as (char chr ="A’)
would return ‘A" when evaluated. To get the
address of the object ‘&chr’ is required.

183

Evaluating expressions

Operator limitations:

» Typecasts. Typecasts of basic type, such as int, float, unsigned int, int *, char *, are valid.
Typecasts to user defined type such as, struct basic *, are not valid.

» Scope operator, ‘. The scope operator is valid as part of a class element name, for
example, c¢_basic::print.

« Assignment operators, such as =, +=, *=, ++, --, are not implemented in this release.

« File/line number format is not implemented in this release.

184

CodeScape User Guide

Assembler expressions

The assembler expression evaluator is fully compatible with SNASM2.

Operator precedence:
Operator Type Usage Description
() Primary (expr) Parenthesis
Brackets
[] Primary [expr] Address of
Unary - expr Negative expr
+ Unary +expr Positive expr
~ Unary ~ expr Bitwise NOT
<< Binary expr << expr Shift left
>> Binary expr >> expr Shift right
& Binary expr & expr Logical AND
Unary Iexpr Logical NOT
| Binary | expr Logical Inclusive
OR
A Binary N expr Logical Exclusive
OR
* Binary expr * expr Multiply
/ Binary expr / expr Divide
% Binary expr % expr Modulo (remainder)
+ Binary expr + expr Add (plus)
Binary expr - expr Subtract (minus)
= Binary expr = expr Equals
<> Binary expr <> expr Not Equals
< Binary expr < expr Less Than

185

Evaluating expressions

Operator Type Usage Description

<= Binary expr <= expr Less Than or
Equals

> Binary expr > expr Greater Than

>= Binary expr >= expr Greater Than or
Equals

Operands that the assembly operators act on

Operand Definition

Constants Constants can be defined in several operators to denote
(Integer) different radix:
Variable X_<number> where X is a
Hex single digit base
Decimal prefix'$ or ‘0x’
Binary postfix 'h’
prefix'# postfix
o
prefix‘%’ postfix
b
Registers The name of a valid register.
Symbols Symbols are evaluated to labels, so a variable of type (char chr
="A"), would return the address of (label to) the variable A
when evaluated. Labels can be qualified by:
b, ".w’, "I for byte, word or long respectively
[symbol]@b, [symbol]@w, [symbol]@I
:<number> for the filename line number

186

Using the command-line

Use the command-line commands to specify how CodeScape will run. For example, CodeScape ca
run from another application such as the Codewright editor, or from a batch file.

To run CodeScape from the command-line, type CodeScape then one or more optional switches.
Always separate switches a space, but do not use spaces within the argument of a switch.

The syntax is:
codescape[Switch]...

Files used by CodeScape

Filename Description

Session This file contains the information needed to
restore a previous debugging session.

Program The object file. This contains binary and
optionally, source level debug and symbol table
information produced by the assembler or
compiler.

187

To change file or folder properties:

1) Click the file or folder whose properties you want to change.
2) On the File menu, click Properties.

NOTE: Youcandrag afile'sicon into a document, or even drag a
shortcut icon.

Command-line switches

Use this switch: To:

[-1/1? Run CodeScape and view Help on using the
command-line.

[-/Inologo Run CodeScape without the splash screen appearing.

[/ View information on the Log tab as each command of

the Cross Products Fileserver library (libcross)
executes. (Crosslib Verbose mode.)

[-1/]i=Session Run CodeScape and open the session file "Session".
The session file specifies: target connections,

object files used by each target, processor update
rates, breakpoints, watch expressions, log
expressions, and window positions and displays. If
memory ranges are not set, CodeScape looks for them
in DEFAULT.SSN. (Use Project Info.)

[-l/]autoload Run CodeScape using the last loaded session file.

[-l/Inoautoload Run CodeScape without opening the last loaded
session file. Use this option to override autoload
specified in a batch file.

-nomake Disable the project make facility. If CodeScape is
running, it ignores this option.

-s=script],param-list] Run a script with the given (optional) parameter
list
-nogui If none of the other options specified require the

gui to be present, exit CodeScape after loading and
starting the program(s). If CodeScape is running, it
ignores this option.

188

CodeScape User Guide

Loading a program file from the command-line

When you load a program file from the command-line, use the switch format:

-t#p#b][n][r+ | r- | r(expression) J[h | s][c+|c-][I+]I
]:Program

You must specify the target (t#) and processor (p#) to use, and the program file to load. The process
is identified by its processor ID # (0-7) where 1=Master and 2=Slave. The program file is specified

by "program"”.

Optional switches for loading a program file

Use this switch: To:
b Download the binary from the object file.
n Suppress debug information. The n option does not

require symbols. If you use the n option without the
b option it has no effect.

r+ Load and run the program file.

r- Load, but don't run the program file.

rlexpression) Load and run the program file, then break at the
address specified. "expression” is usually a symbol
such as "main”.

h Perform a hard reset of the target, then load the
program file.

S Perform a soft reset of the target, then load the
program file.

ct+ Concatenate the sections in the program file.

c- Don't concatenate the sections in the program file.

I+ Lock the program file.

|- Don't lock the program file.

The following options are mutually exclusive:

e The run options: r+, r-, and r(expression).
e The reset options, h and s.
e The load options, c+ and c-.

189

190

Appendix A: Frequent
operations

Keyboard shortcuts are available for frequently used debugging operations. All operations are
supported by Access keys which are shown on each menu item by an underlined letter.

To use the keyboard to access CodeScape’s commands:

* Press F10, select an item with the cursor keys, press ENTER.
-OR-
» Press the menu’s keyboard shortcut, select an item with the cursor keys, press ENTER.

191

Appendix A: Frequent operations

File menu ALT+F

Keyboard shortcuts for the File menu commands

Option Keyboard shortcut

Session New...

CTRL+SHIFT+N

Session Open...

CTRL+0

Session Close

none available

Session Save...

CTRL+S

Session Save As...

none available

Soft Reset

CTRL+F2

Hard Reset

ALT+F2

Load Program File...

CTRL+SHIFT+C

Restart CTRL+SHIFT+R
Save Binary... none available
Load Binary... none available
Print... CTRL+P
Print Setup... none available
Exit ALT+F4

192

CodeScape User Guide

Edit menu ALT+E

Keyboard shortcuts for the Edit menu commands

Option Keyboard shortcut

Undo CTRL+Z

Redo CTRL+Y

Cut CTRL+X

Copy CTRL+C

Paste CTRL+V

Find... CTRL+F

Find Next F3

Replace... none available
Go To... CTRL+G

View menu ALT+V

Keyboard shortcuts for the View menu commands

Option Keyboard shortcut

Toolbar... none available
Status Bar none available
Properties... none available

193

Appendix A: Frequent operations

Project menu ALT+P

Keyboard shortcuts for the Project menu commands

Option Keyboard shortcut

Setup Project...

none available

Setup Editor...

none available

Make

CTRL+M

Stop Make

none available

Edit Source Path...

none available

Set FileServer Root Directory...

none available

Debug menu ALT+D

Keyboard shortcuts for the Debug menu commands

Option Keyboard shortcut

Execution none available
Run All CTRL+F9

Stop All none available
Run/Stop F9

Run to Address... SHIFT+F9

Run to Cursor ALT+F9

Single Step F7

Forced Step Into

none available

Step Over F8
Step Out CTRL+F8
Unstep CTRL+F7

Enable Animated Step Run

none available

194

CodeScape User Guide

Option Keyboard shortcut

Step Run In SHIFT+F7

Step Run Out SHIFT+F8
Step Run ALT+F7

Step Run Until... ALT+F8
Restart CTRL+SHIFT+R

Breakpoints

none available

Toggle Breakpoint

F5

Enable Breakpoint

none available

Disable Breakpoint

none available

Configure Breakpoint(s)... CTRL+F5

Reset all Breakpoints ALT+F5

Enable all Breakpoints CTRL+SHIFT+F5
Disable all Breakpoints CTRL+ALT+F5
Remove all Breakpoints SHIFT+F5

Set Cursor to PC

CTRL+SHIFT+P

Set PC to Cursor

CTRL+ALT+P

Goto Address...

CTRL+G

Configure DA Settings...

none available

195

Appendix A: Frequent operations

Region menu ALT+R

Keyboard shortcuts for the Region menu commands

Option Keyboard shortcut

Split Left CTRL+SHIFT+LEFT ARROW
Split Right CTRL+SHIFT+RIGHT ARROW
Split Up CTRL+SHIFT+UP ARROW
Split Down CTRL+SHIFT+DOWN ARROW
Delete CTRL+D

Type none available

Disassembly ALT+1

Locals ALT+3

Memory ALT+4

Register ALT+5

Source ALT+6

Watch ALT+7

Edit ALT+8

Call Stack ALT+9

Update all regions now CTRL+U

Stop all region updates CTRL+SHIFT+U

196

CodeScape User Guide

Tools menu

Keyboard shortcuts for the Tools menu commands

Option Keyboard shortcut

Simulate Processor CTRL+ALT+Z

Profiler CTRL+ALT+X

Workshop none available
Disable Updates none available
Open Door none available
Close Door none available
Switch to Emulator none available
Switch to GD-ROM none available
Nudge none available
Hard Errors On none available
Scripts none available
Run Script... none available
Customize none available
Keyboard... none available
Tools... none available
Scripts... none available
Options... none available

197

Appendix A: Frequent operations

Window menu ALT+W

Keyboard shortcuts for the Window menu commands

Option Keyboard shortcut

New Window CTRL+N

Cascade none available
Tile none available
Arrange Icons none available
Close All Windows none available

Help menu ALT+H, or F1

Keyboard shortcuts for the Help menu commands

Option Keyboard shortcut

Help Topics... F1
Keyboard none available
About CodeScape... none available

198

CodeScape User Guide

New Windows

Keyboard shortcuts for creating a new window of a specific region type

Option Keyboard shortcut

Disassembly ALT+
Locals ALT+3
Memory ALT+4
Register ALT+5
Source ALT+6
Watch ALT+7
Edit ALT+8
Call Stack ALT+9

miscellaneous commands options

Keyboard shortcuts for miscellany

Option Keyboard shortcut

Toggle Window Headers CTRL+ALT+H
Evaluate Expression CTRL+E
Cycle Radix CTRL+H

199

Appendix A: Frequent operations

Profiler options

Keyboard shortcuts for the Profiler commands

Option Keyboard shortcut

Save Profile none available
Load Profile none available
Enable Profiler none available
One Pass Between Breakpoints none available
Remove All Profiler Breakpoints none available
Trace Tree Profile Display none available
Function Profile Display none available
Function Profile Filter none available
Untag All none available
Sort none available
Source Display none available
Disassembly Display none available
Rename Function... none available
Profiler Display Setup... none available
Setup... none available

200

CodeScape User Guide

Disassembly region

Keyboard shortcuts for the Disassembly region commands

Option Keyboard shortcut

Synchronize Cursor

none available

Source Annotation CTRL+SHIFT+A
Show Address CTRL+A

Show Labels CTRL+B

Show Opcode Words CTRL+W
Show Hexadecimal CTRL+H

Show Uppercase CTRL+L

Show Symbols CTRL+Y

Show EAs & Lits. CTRL+

Goto Source File...

none available

View As (Source, Disassembly, or Both)

none available

Evaluate none available
Tools none available
Find... CTRL+F

Find Next F3

Disassemble to File...

none available

201

Appendix A: Frequent operations

Source region

Keyboard shortcuts for the Source region commands

Option Keyboard shortcut

Show Address CTRL+A

Show Line Nos. CTRL+L

Tools none available
Find... CTRL+F

Find Next F3

Tab Width... CTRL+T
Syntax Highlighting none available

Call Stack region

Keyboard shortcuts for the Call Stack region commands

Option Keyboard shortcut

Show Parameter Names none available
Show Parameter Types none available
Show Parameter Values none available
Show Parameter Registers none available
Show Octal none available
Show Decimal none available
Show Hexadecimal none available

CodeScape User Guide

Editor region

Keyboard shortcuts for the Editor region commands

Option Keyboard shortcut

New none available
Open... none available
Save none available
Save As... none available
Tabs... none available
Find... CTRL+F

Find Next F3

Replace... CTRL+H

GoTo CTRL+G
Bookmarks none available
Toggle CTRL+B

Next F2

Previous none available
Delete All none available

203

Appendix A: Frequent operations

Editor Keys

Keyboard shortcuts for the Editor Keys commands

Option Keyboard shortcut

Select none available

Select All CTRL+A

Select Up SHIFT+UP ARRORW
Select Down SHIFT+DOWN ARROW
Select Start SHIFT+HOME

Select End SHIFT+END

Select To End Of File

CTRL+SHIFT+END

Select To Start Of File

CTRL+SHIFT+HOME

Select Page Down

SHIFT+PAGE DOWN

Select Page Up

SHIFT+PAGE UP

Select Left SHIFT+LEFT ARROW

Select Right SHIFT+RIGHT ARROW
Select Word Left CTRL+SHIFT+LEFT ARROW
Select Word Right CTRL+SHIFT+RIGHT ARROW

Cursor Movement

none available

Move Down DOWN
Move Up uP

Move End END

Move Home HOME

Move Down A Page PAGE DOWN
Move Up A Page PAGE UP

204

CodeScape User Guide

Option Keyboard shortcut

Move To Top CTRL+HOME

Move To Bottom CTRL+END

Move Left LEFT ARROW

Move Right RIGHT ARROW
Move Word Left CTRL+LEFT ARROW
Move Word Right CTRL+RIGHT ARROW
Backspace BACKSPACE

Delete DELETE

Toggle Insert/Overwrite INSERT

Tab TAB

Back Tab SHIFT+TAB

205

Appendix A: Frequent operations

Local Watch region

Keyboard shortcuts for the Local Watch region commands

Option Keyboard shortcut

Delete DELETE

Open RIGHT ARROW
Close LEFT ARROW
Keep in View CTRL+ALT+V
Show Octal none available
Show Decimal none available
Show Hexadecimal none available
Edit Local Value... CTRL+ALT+E
Highlight Changes none available
Cache Expanded Symbols none available

206

CodeScape User Guide

Memory region

Option Keyboard shortcut

Keyboard shortcuts for the Memory region commands

Display Bytes CTRL+B
Display Words CTRL+W
Display Longs CTRL+L
Display Quadwords CTRL+Q
Display ASCII CTRL+A

Highlight Changes

none available

Set Bytes Per Line...

CTRL+SHIFT+L

Edit ASCII CTRL+ALT+A
Edit Memory Value... CTRL+ALT+E
Follow Pointer CTRL+T
Write Protect CTRL+ALT+W

Tools none available
Find... CTRL+F

Find Next F3

Fill... none available

Hex Dump to File...

none available

207

Appendix A: Frequent operations

Register region

Keyboard shortcuts for the Register region commands

Option Keyboard shortcut

Increment Register NUM +
Decrement Register NUM -
Change Inc/Dec Value... none available
Write Protect CTRL+ALT+W
Edit Register... CTRL+ALT+E
Column Format none available
2 Columns CTRL+2

4 Columns CTRL+4

Auto CTRL+0

Show Banked Registers CTRL+B

Show Float Registers CTRL+L

Show Contents at SEA/DEA none available
Show Float Registers As Hexadecimal none available
Tools none available
Save Registers none available
Restore Registers none available

208

CodeScape User Guide

Watch region

Keyboard shortcuts for the Watch region commands

Option Keyboard shortcut

Delete DELETE

Open RIGHT ARROW
Close LEFT ARROW
Insert CTRL+
Append CTRL+A

Show Octal none available
Show Decimal none available
Show Hexadecimal none available
Edit Watch Value... CTRL+ALT+E

Symbols

Keyboard shortcuts for the Symbol Completion dialog box

Option Keyboard shortcut

Symbol Complete

ALT+S

Choose Global/Static

ALT+G

Build

Keyboard shortcuts for the Project Build commands

Option Keyboard shortcut

Next Error

F4

Previous Error

SHIFT+F4

209

Appendix A: Frequent operations

Simulator

Keyboard shortcuts for the Simulator commands

Option Keyboard shortcut

Highlight Cache Misses none available
Highlight Pipeline Stalls none available
Show Stall Type none available
Source/Disassembly Tracking none available
Print... none available
Save to file... none available

Target Settings

Keyboard shortcuts for configuring the target processor

Keyboard shortcut

Configure Processor none available

210

CodeScape User Guide

ToolBars

Keyboard shortcuts for displaying the toolbars

Option Keyboard shortcut

Breakpoint none available
Debug none available
Processor Combo none available
Input / Qutput none available
Region none available
Region Combo none available
Splitter none available
Standard none available
Target none available
Target Combo none available
Editor none available
Workshop none available

211

Appendix A: Frequent operations

212

Cross Products Company Confidential

Script commands in CodeScape Version 2.2.0 Build 111

Write scriptsto automate tasks

CodeScape’s script commands let you run Microsoft® JScript™ and VBScript macro scripts to

automate routine tasks.

CodeScape’s script commands are demonstrated in the example JScript and VBScript files included
in this document. Use the functions available in either script language to add your own commands.

For details about using JScript and VBScript connect to the scripting area on the Microsoft

Developer Network at http://msdn.microsoft.com/scripting

CodeScape’s script commands

Note: Some scripting engines reserve the use of Write, use CodeScape’s
WriteMessage function when you need the Write function.

Description Syntax

Load the specified program file. This command uses the file
path as a parameter and returns 1 if the file is loaded, else 0.

LoadPr ogranti | e(
path and fil enane)

Reset the target processor with a hard reset. Har dReset ()
Reset the target processor with a soft reset. Sof t Reset ()
Run the target processor. Run()

Write a message string to the script window.

WiteMessage(
string Message)

Set the specified register to the given value.

Wit eRegister(
Regi st er val ue,
Nuneric val ue)

Get the value held in the specified register.

Regi st er Val ue ReadRegi st er(
Regi st er Nane)

Load a binary file from the specified location.

LoadBi nar yFi | e(
Path and fil ename,
Nureri c binary | ocation)

Set a code breakpoint at the specified address.

Set Br eakpoi nt (
Nureri ¢ address)

Clear all breakpoints.

Cl ear Al | Breakpoi nts()

Remove the breakpoint from the specified address.

RenmoveBr eakpoi nt (
Nureri ¢ address)

Read a byte from the specified area of memory. ReadByt e(
Nureri ¢ address)
Read a word from the specified area of memory. ReadWor d(

Nureri ¢ address)

Read a long from the specified area of memory.

ReadLong(
Nureri ¢ address)

Write a byte from the specified area of memory.

WiteByte(Nureric address,
Nuneric val ue)

CodeScape Scripting

Page 1 of 12

Cross Products Company Confidential

Description Syntax

Write a word from the specified area of memory.

WiteWrd(Numeric address,
Nuneric val ue)

Write a long from the specified area of memory.

Wi teLong(Nureric address,
Nuneric val ue)

Return a specific parameter.

Get Par am(
short param

Returns the number of parameters passed to the script.

Get Par amCount ()

Return 1 if running, O if not running.

I sRunni ng()

Specify the events saved in the Trace history:

Events Setting
Log exceptions, interrupts, and rte 8
Log subroutines, bsr, bstf, jsr, rts 4

Log branches, bf, bt, bf/s, bt/s, bra, brafjmp 2

Confi gureTraceH st ory(
numeri c Setting,
bool ean Enabl e)

Display the current history in the script’s window in this format:

Sour ce Desti nati on

0x0c010356 0x0c0103aa rts

0x0c0101e6 0x0c010350 rts

0x0c0100e6 0x0c010128 bra $0c010128
0x0c01034c 0x0c010028 bsr Bi gTest
0x0c0103a6 0x0c010334 bsr struct _test
0x0c010280 0x0c0103a0 rts

0x0c01039c 0x0c010214 bsr Bit Fi el dTest

Di spl ayTraceHi story()

Clear the script output window.

Cl earDi spl ay()

Create a breakpoint of the given type at the address. Returns a
breakpoint identifier on success, otherwise 0. The breakpoint
identifier is used in subsequent operations on the breakpoint.

Breakpoint T
Code 0
Watch 1
Simulator or Start 2
Profiler start 3
Profiler stop 4

Cr eat eBr eakpoi nt (

Type,
Addr ess)

Enable or disable the breakpoint:
identifier: the breakpoint identifier.
enable: 1 to enable; O to disable.

Enabl eBr eakpoi nt (
identifier,
bool ean enabl e)

Enable or disable the specified breakpoint action:
enable: 1 to enable , 0 otherwise.
identifier: the breakpoint identifier.

Action Value
Halt breakpoint when hit. 0
Remove breakpoint after being hit. 1
Display a message box prompt when hit 2
Beep when hit 3

Set Br eakpoi nt Acti ons(
identifier,
numeric action,
bool ean enabl e)

Set a log expression for the breakpoint specified by the
breakpoint identifier:
breakpoint identifier: the breakpoint identifier.
expression: the log expression.
logType: false to always log or true to log when
conditions match.

Set Br eakpoi nt Log(
breakpoi nt identifier,
string expression,
bool ean | ogType)

CodeScape Scripting

Page 2 of 12

Cross Products Company Confidential

Description Syntax

Attach a script to a breakpoint:
identifier: the breakpoint identifier.
script path: the file path for the script
script type: 0 for JScript and1 for VBScript
script arguments: string holding the script's arguments
prompt: 1 to request arguments when the breakpoint
triggers, 0 otherwise.

Set Br eakpoi nt Scri pt (
i dentifer,
string script path,
numeric script type,
string script argunents,
bool ean pronpt)

Set the conditional expression for the breakpoint:
identifier: the breakpoint identifier.
expression: a string representing the condition.
expression type: 0 for C; non-zero for assembly
trigger count: the number of hits before breakpoint
actions are performed.
incOnTrue: false to always increment the trigger count;
true to increment the trigger
count only when conditions are true.
breakWhen: false to break when the trigger reaches 0
or condition is true; true to break when trigger reaches
zero and the condition is true.

Set Br eakpoi nt Condi ti on(
identifier,
string expression,
nuneri c expression type,
numeric trigger count,
bool ean i ncOnTr ue,
bool ean br eakWen)

Set the parameters for a watch breakpoint:
identifier: the breakpoint identifier.
incDataCondition: include a data condition.
dataCondition: expression specifying the data condition.
expressionType: the type of the specified expression.
accessSize: the access size e.g. byte, word, or long etc.
accessType: the type of access (read, write, or both).

BOOL Set Wt chBr eakpoi nt Par anet er s(
Identifier,
Bool ean i ncDat aCondi ti on,
string dataCondition,
numeri c expressi onType,
nuneri c accessSi ze,
nunmeri c accessType)

Size Value Type Value
Any O Read 1
Byte 1 Write 2
Word 2 Read or Write 3
Long 4
Quad 8

Select a location mask for the breakpoint:
Mask Value
No bits masked 1
Lower 10 bits 2
Lower 12 bits 3
Lower 16 bits 4
Lower 20 bits 5
All bits 6

Set Br eakpoi nt Locat i onMask(
br eakl D,
maskSel ect)

Set the data mask for a watch breakpoint

Set Br eakpoi nt Dat aMask(
identifier,
mask)

CodeScape Scripting

Page 3 of 12

Cross Products Company Confidential

You can express Numeric values and Numeric addresses as:
A number, for example, 124 or 3.1415926
-OR-
A string, for example, "124"
-OR-
Hexadecimal in a string, for example, "Oxabcdef"
-OR-

A symbol, for example, "main" or "main + Oxabc"

Note: Registers are only passed as strings, for example, "pc", "fr0", "r0".

Note: Currently, scripts only support debugging a single target processor. When you
run a script it automatically uses the selected target processor.

Note: A script that contains an infinite loop will cause CodeScape to lock-up.

CodeScape Scripting Page 4 of 12

Example VBScript

Cross Products Company Confidential

This script does not do anything useful other than denmonstrate the functions avail able

Cl ear Di spl ay
Har dReset
Sof t Reset

Di spl ayPar aneters

LoadSoneBi nary

LoadProgranfil e("d:\\projects\\nmaketest\\hello.elf")

Set Breakpoi nt ("add_fn")

ConfigureTraceH story TH LOGEXCEPT + TH LOGSUB, true

Di m Runni ng
Running = 1
Do

Runni ng

Loop Until Running

0

Di spl ayTraceHi story

ReadSoneRegi st ers

W iteSoneRegisters

ReadSoneMenory
Wit eSoneMenory
ReadSoneMenory

Cl ear Al | Breakpoi nts

Cr eat eCodeBP

Cl ear Al | Breakpoi nts

Cr eat eVat chBP

WiteMessage("Script conplete.

Cl ear Al | Breakpoi nts

Br eakpoi nt

BPTYPE_CODE
BPTYPE_WATCH
BPTYPE_SI MSTART
BPTYPE_PROFSTART
BPTYPE_PROFSTOP

Br eakpoi nt
BPACTI ON_HALT
BPACTI ON_ONESHOT
BPACTI ON_PROVPT
BPACTI ON_BEEP

Br eakpoi nt

BPSCRI PT_JSCRI PT

BPSCRI PT_VBSCRI PT

types
= 1
= 2
= 3
= 4
Acti ons
= 1
= 2
Script Types
= 0
= 1

I sRunni ng

Renoving al |l breakpoints.")

Br eakpoi nt expressi on types

BPEXPR C
BPEXPR_ASSEMBLY

Br eakpoi nt address nasks

BPLOCMASK_NONE
BPLOCMASK_LOWLO
BPLOCMASK_LOWL2
BPLOCMASK_LOWL6
BPLOCMASK_LOW20
BPLOCMASK_ALL

nHos~wnN il

CodeScape Scripting

Page 5 of 12

Cross Products Company Confidential

Br eakpoi nt access sizes

BPACCESSS| ZE_ANY
BPACCESSSI ZE_BYTE
BPACCESSS| ZE_WORD
BPACCESSS| ZE_LONG
BPACCESSS| ZE_QUAD

o mnn
oA NEFRO

Br eakpoi nt access types

BPACCESSTYPE_READ = 1
BPACCESSTYPE_WRI TE = 2
BPACCESSTYPE_RW = 3

Trace history configuration options

TH_LOGEXCEPT
TH_LOGSUB
TH_L OGBRANCH

N Il ©
IN

Create a breakpoint on the 1K aligned bl ock of menory that
the synbol main resides in.

Sub Creat eCodeBP()
Di m br eakl D
breakl D = Cr eat eBr eakpoi nt (BPTYPE_CODE, "main")
Set Br eakpoi nt Acti on breakl D, BPACTI ON_HALT, true
Set Br eakpoi nt Acti on breakl D, BPACTI ON_ONESHOT, fal se

Set Br eakpoi nt Acti on breakl D, BPACTI ON_PROWPT, fal se

Set Br eakpoi nt Acti on breakl D, BPACTI ON_BEEP, true

Set Br eakpoi nt Scri pt breakl D, "e:\\projects\\codescape\\debugs\\testscript.js",
BPSCRI PT_JSCRI PT, "argl arg2 arg3", false

Set Br eakpoi nt Log breakl D, "Hello John", BPEXPR C

Set Br eakpoi nt Locat i onMask breakl D, BPLOCMASK _LOWO

set Breakpoi nt Condi ti on breakl D, "index == 375", BPEXPR C, 37, true, true
End Sub

Sub Creat eWat chBP()

br eakl D = Creat eBreakpoi nt (BPTYPE_WATCH, "main")

Set WAt chBr eakpoi nt Paraneters breakl D, true, "14", BPEXPR_C, BPACCESSSI ZE_BYTE,
BPACCESSTYPE_WRI TE
End Sub

Sub WiteSoneRegi sters()
WiteRegister "fr0", 3.14159
WiteRegister "r0", "Oxabcdef"
WiteRegister "pc", "main + 0x30"
End Sub

Sub ReadSoneRegi sters()
WiteMessage("Value of pc
WiteMessage("Value of r0

End Sub

& ReadRegi ster("pc"))
& ReadRegi ster("r0"))

CodeScape Scripting Page 6 of 12

Sub

End

Sub

End

Sub

End

Sub

End

LoadSoneBi nary()

Cross Products Company Confidential

LoadBi naryFil e "d:\\projects\\codescape\\satnmon. bin", "201392128"
LoadBi naryFil e "d:\\projects\\codescape\\satnon. bin", 201392128
LoadBi naryFil e "d:\\projects\\codescape\\saton. bin", "0xc010000"
LoadBi naryFil e "d:\\projects\\codescape\\satmon. bin", "main"

Sub

Di spl ayPar amet er s()
NumPar anms = Get Par amCount
WiteMessage("Nunber of paraneters =" & NunParans)
For i = 1 To NunPar ans

WiteMessage("Paraneter " & i & " =" & GetParan(1))

Next

Sub

ReadSonmeMenor y()

WiteMessage("B

WiteMessage("Word at main

WiteMessage("L
Sub

WiteSonmeMenory()
WiteByte "main"
WiteWrd "main
WitelLong "nmin

Sub

CodeScape Scri

yte at main = " & ReadByte("mmin"))
+ 4 =" & ReadWord("main
ong at main + 8 = " & ReadLong("main

, 255
+ 4", "Oxabcd"
+ 8", "Oxfedcbha"

pting

+
+

4"
g"

)
)

)
)

Page 7 of 12

Cross Products Company Confidential

Example JScript

/1 Note: this script does not do anything useful. It just denonstrates the current
/1 script commands and how they can be call ed.

/1 Br eakpoi nt types

BPTYPE_CODE
BPTYPE_WATCH
BPTYPE_SI MSTART
BPTYPE_PROFSTART
BPTYPE_PROFSTOP

RONE

/1

/1 Br eakpoi nt Actions
/1

BPACTI ON_HALT
BPACTI ON_ONESHOT
BPACTI ON_PROMPT
BPACTI ON_BEEP

IRNNCT

/1
/1 Br eakpoi nt Script Types
/1

BPSCRI PT_JSCRI PT
BPSCRI PT_VBSCRI PT

= O;

= 1;

I

/1 Br eakpoi nt expressi on types

I

BPEXPR_C = 0;
BPEXPR_ASSEMBLY = 1;

/1
/1 Br eakpoi nt addr ess nmasks
/1

BPLOCMASK_NONE
BPLOCMASK_LOWLO
BPLOCMASK_LOWL2
BPLOCMASK_LOWL6
BPLOCMASK_LOW20
BPLOCMASK_ALL

RS AY ST

/1
/1 Br eakpoi nt access sizes
/1

BPACCESSS| ZE_ANY

BPACCESSSI ZE_BYTE
BPACCESSS| ZE_WORD
BPACCESSS| ZE_LONG
BPACCESSS| ZE_QUAD

(IR TR TR I
OANMRO

/1
/1 Br eakpoi nt access types
/1

BPACCESSTYPE_READ
BPACCESSTYPE_WRI TE =
BPACCESSTYPE_RW

N

/1
/1 Trace history configuration options
/1

TH_LOGEXCEPT
TH_LOGSUB
TH_LOGBRANCH

ST
B

CodeScape Scripting Page 8 of 12

Cross Products Company Confidential

/1

/1 Create breakpoint on the 1k aligned block of nenory that the synbol main resides in
/1

function CreateCodeBP()

{

breakl D = Cr eat eBr eakpoi nt (BPTYPE_CODE, "main");

Set Br eakpoi nt Acti on(breakl D, BPACTI ON_HALT, true);

Set Br eakpoi nt Acti on(breakl D, BPACTI ON_ONESHOT, false);

Set Br eakpoi nt Acti on(breakl D, BPACTI ON_PROWPT, false);

Set Br eakpoi nt Acti on(breakl D, BPACTI ON_BEEP, true);

Set Br eakpoi nt Scri pt (breakl D, "e:\\projects\\codescape\\debugs\\testscript.js",
BPSCRI PT_JSCRI PT, "argl arg2 arg3", false);

Set Br eakpoi nt Log(breakl D, "Hello John", BPEXPR C);

Set Br eakpoi nt Locat i onMask(breakl D, BPLOCVASK _LOMO);

set Breakpoi nt Condi ti on(breakl D, "index == 375", BPEXPR_C, 37, true, true);

function CreateWat chBP()
{

breakl D = Creat eBreakpoi nt (BPTYPE_WATCH, "main");

Set WAt chBr eakpoi nt Paraneters(breakl D, true, "14", BPEXPR C, BPACCESSS| ZE_BYTE,
BPACCESSTYPE_WRI TE) ;

}

function WiteSoneRegi sters()

{
WiteRegister("fr0", 3.14159);
WiteRegister("r0", "Oxabcdef");
WiteRegister("pc", "main + 0x30");
}
functi on ReadSoneRegi sters()
{
WiteMessage("Value of pc = + ReadRegi ster("pc"))
WiteMessage("Value of r0 = + ReadRegi ster("r0"))
}
function LoadSoneBi nary()
{
LoadBi naryFi |l e("d:\\projects\\codescape\\satnon. bin", "201392128");
LoadBi naryFi |l e("d:\\projects\\codescape\\satnon. bin", 201392128);
LoadBi naryFi |l e("d:\\projects\\codescape\\satnon. bin", "0xc010000");
LoadBi naryFi |l e("d:\\projects\\codescape\\satnon. bin", "min");
}
function Displ ayParaneters()
{
NunPar ans = Get Par anCount ()
WiteMessage("Nunber of parameters =" + NunParans);
for(i =0; i < NunmParans; i++)
{
WiteMessage("Pararmeter " +i + " =" + GetParam(i))
}
}
functi on ReadSomeMenory()
{
WiteMessage("Byte at main = + ReadByte("main"));
WiteMessage("Word at main + 4 = + ReadWord("main + 4"));
WiteMessage("Long at main + 8 = + ReadLong("main + 8"));
}
function WiteSomeMenory()
{
WiteByte("main", 255);
Witeword("main + 4", "Oxabcd");
WiteLong("main + 8", "Oxfedcha");
}

CodeScape Scripting Page 9 of 12

Cross Products Company Confidential

ClearDisplay();

Har dReset () ;

Sof t Reset () ;

Di spl ayParaneters();

LoadSoneBi nary();

LoadProgranfile("d:\\projects\\nmaketest\\hello.elf");
Set Br eakpoi nt ("add_fn");

ConfigureTraceHi story(TH LOGEXCEPT + TH LOGSUB, true);

Run() ;

while(IsRunning() !'=0)
{

) ;

Di spl ayTraceHi story();
ReadSoneRegi sters();
W iteSoneRegisters();
ReadSoneMenory() ;
WiteSoneMenory();
ReadSoneMenory() ;

Cl ear Al | Breakpoi nts();
Cr eat eCodeBP() ;

Cl ear Al | Breakpoi nts();
Cr eat eVt chBP() ;

WiteMessage("Script conplete. Renpbving all breakpoints.");

Cl ear Al | Breakpoi nts();

CodeScape Scripting

Page 10 of 12

Cross Products Company Confidential

Using scripts

When you run a script the Input / Output window appears automatically and displays the Script tab
with all messages generated by the current script.

To open the Input / Output window without running a script:

Click View, Toolbar, then select the Input / Output check-box and click OK.

Note:

You can dock the Input / Output window at the top and bottom of the main
window, or leave it free floating.

The shortcut menu on the Script tab

Click: To:
Run Script Select and run a script.
Clear Clear the contents of the Script tab.

User Scripts This option appears in gray until you add a script to the menu.

When you add a script its name appears on the menu.

Allow Docking Toggle docking for the window on or off.

Hide

Hide the window.

Add a script to the menu

When you add a script its name appears on the menu bar, and on the Script tab shortcut menu. You
can add up to ten script files to run from either the menu bar, or the shortcut menu.

1

w

N o o b~

Click Tools, select Customize, then click Scripts...
The Customize dialog box appears.

Click Add.

In the Menu Text box, enter the script name to display on menu.
To remove an entry from the Menu Text box, select the script, then click Remove.

In the Menu Contents box, highlight the name of the script.
In the Script box, enter the path location and script file name.
Select either JScript, or VBScript to specify the script file type.
Do one of the following:
In the Arguments text box, enter any arguments to be passed to the script. Click OK.
—-OR-

Select the Prompt for arguments check-box.

Note:

Select a command in the Menu Contents box, then Use Move Up and Move
Down to set where it appears on the Tools menu.

Note:

To assign a keyboard shortcut to the script click Tools, select Customize then
click Keyboard...

CodeScape Scripting Page 11 of 12

Cross Products Company Confidential

Run a script
Click Tools, then select Scripts and click a script in the list.
-OR-

On the Input / Output window, right-click on the Scripts tab, then click a script in
the list.

Note: Currently, scripts only support debugging a single target processor. When you
run a script it automatically uses the selected target processor.

Note: A script that contains an infinite loop will cause CodeScape to lock-up.

CodeScape Scripting Page 12 of 12

Cross Products Company Confidential

LibCross fileserver

for CodeScape v2.2.0 build 114

LibCross fileserver
O 1999 Cross Products Limited. All rights reserved.

Cross Products Company Confidential

LibCross fileserver

The LibCross fileserver provides low level routines that interface CodeScape with the standard C
run-time library (libc.a). The fileserver supports the following functions:

int debug_open (const char *filename, int flags);
int debug_close (int file);

int debug_read(int file, char *ptr, int len);

int debug_wite (int file, char *ptr, int len);
int debug_lseek(int file, int offset, int origin);

char * debug_getcwd(char *buffer, int maxlen);
int debug_chdir(const char *dirnane);
int debug_nkdir(const char *dirnane);
int debug_rndir(const char *dirnane);

int debug_findfirst(const char *filespec, struct SNASM finddata_t *fileinfo);
int debug_findnext(int handle, struct SNASMfinddata_t *fileinfo);
int debug_findcl ose(int handle);

int _ASSERT(int nFlag);

nt dedug_printf(char *format, .);

Note: The header file usrsnasm.h has information on using the fileserver functions. It
defines all functions and custom data types such as struct SNASM_finddata _t.

Note: If the fileserver returns an error errno describes the problem. For information
about errno refer to your C run-time library documentation.

This release includes:

Alibers - contains source, object files for the transport functions. The source of
wrapper functions for Hitachi system calls.

A\sample - contain a demonstration program 'sample.elf'.

Using the fileserver with the Hitachi SHC compiler

To use the fileserver with the Hitachi SHC compiler you need wrapper functions for the system calls
open(),close(),read(), write(), Iseek(). The source code for these wrapper functions is included in this

release.
Note: Do not transfer more than 32K in any SINGLE read or write command as not all
communications are buffered by the fileserver transport functions.
LibCross fileserver Page 1 of 15

O 1999 Cross Products Limited. All rights reserved.

Cross Products Company Confidential

Fileserver functions

Open afile Required header

int debug_open (const char *filename, int flags); #include <usrsnasm.h>

Return Value

Returns a file handle for an open file. If the return value is —1 an error occurred, refer to errno for
one of the following:

The errno setting: Means that the file cannot be opened because:

SNASM_EACCESS It is read-only; or it is not a shared resource; or the path or
filename are incorrect.

SNASM_EEXIST The filename already exists.

SNASM_EINVAL An invalid flags argument is defined.

SNASM_EMFILE No file _handles are available, close one or more files and
try again.

SNASM_ENOENT File or path not found.

Parameters

filename Name of file to open.

flags Open flags for type of operations desired.

Remarks

The flags parameter can be a combination of the following definitions defined in <sn_fcntl.h>.

SNASM O RDONLY open for read only

SNASM_O VWRONLY open for wite only

SNASM_O_RDVWR open for read and wite
SNASM_O_APPEND wites done at end of file
SNASM_O_CREAT create new file

SNASM_O_TRUNC truncate existing file

SNASM O NO NHERI T file is not inherited by child process
SNASM O TEXT text file

SNASM_O_BI NARY binary file

SNASM O _EXCL excl usi ve open

SNASM_O_ BINARY and SNASM_O_TEXT are essential when opening the file if the host is an IBM
PC or Compatible device.

Note: Within the open wrapper command for Hitachi the flags parameter is translated
from machine specific to a compiler independent format for translation transfer
to the host. For example, O_BINARY will be converted to SNASM_O_BINARY.

LibCross fileserver Page 2 of 15
O 1999 Cross Products Limited. All rights reserved.

Cross Products Company Confidential

Close afile Required header

int debug_close (int file); #include <usrsnasm.h>

Return Value

debug_close returns 0 if the file closed successfully. If the return value is —1 an error occurred, refer
to errno for the following:

The errno setting: Means that the file cannot be closed because:
SNASM_EBADF The file handle is invalid.
Parameters
file Handle returned by debug_open to the file.
Remarks

CodeScape will close all open file handles when either the target is reset or when the CodeScape
application is closed.

LibCross fileserver Page 3 of 15
O 1999 Cross Products Limited. All rights reserved.

Cross Products Company Confidential

Read data from afile Required header

int debug_read(int file, char *ptr, int len) #include <usrsnasm.h>

Return Value

On success debug_read returns the number of bytes read. If the function tries to read at end of file, it
returns 0. If the return value is —1 an error occurred, refer to errno for the following:

The errno setting: Means that the data cannot be read because:

SNASM_EBADF The file handle is invalid; or the file is not open for reading;
or the file is locked.

Parameters
file Handle to the file.
ptr Pointer to buffer where read data is to be stored.
len Maximum number of bytes.

Remarks

The debug_read operation occurs from the position of the file pointer. After a successful
debug_read, the file position is at the return value number of bytes along the file.

Use debug_lIseek to move the file position around.

LibCross fileserver Page 4 of 15
O 1999 Cross Products Limited. All rights reserved.

Cross Products Company Confidential

Write data to a file Required header

int debug_write (int file, char *ptr, int len); #include <usrsnasm.h>

Return Value

debug_write returns the number of bytes written. If the return value is —1 an error occurred, refer to
errno for one of the following:

The errno setting: Means that:
SNASM_EBADF The file handle is invalid; or the file is not open for writing.
SNASM_ENOSPC There is not enough available disk space.
Parameters
file Handle to the file.
ptr Pointer to buffer where write data is stored.
len Number of bytes.
Remarks

Two channels, SNASM_STDOUT and SNASM_STDERR, are used to display information on the Log
tab of CodeScape’s Input / Output window by default.

LibCross fileserver Page 5 of 15
O 1999 Cross Products Limited. All rights reserved.

Cross Products Company Confidential

Move a file to a specific location Required header

int debug_lseek (int file, int offset, int origin) #include <usrsnasm.h>

Return Value

debug_lIseek returns the offset, in bytes, of the new position from the beginning of the file. If the
return value is —1 an error occurred, refer to errno for one of the following:

The errno setting: Means that the:
SNASM_EBADF File handle is invalid.
SNASM_ENIVAL Origin value is invalid; or the specified location is before

the start of the file.

Parameters
file Handle to the file.
offset Number of bytes from origin.
origin Flag indicating the origin.
Remarks

The origin flag can be any of the following predefined values:

SNASM_SEEK_SET Fromstart of file position

SNASM_SEEK_CUR From current position

SNASM_SEEK_END Fromend of file

LibCross fileserver Page 6 of 15

O 1999 Cross Products Limited. All rights reserved.

Cross Products Company Confidential

Get current working directory Required header

char * debug_getcwd (const char *buffer, int maxlen) #include <usrsnasm.h>

Return Value

debug_getcwd returns a pointer to the buffer. If the return value is NULL an error occurred, refer to
errno for the following:

The errno setting: Means that the:
SNASM_ERANGE Path is longer than maxlen characters.
Parameters
buffer Allocated space in which to store the path.
maxlen Number of bytes from in buffer.
Remarks

The working directory is specified in CodeScape’s Set Fileserver Path... dialog box.

LibCross fileserver Page 7 of 15
O 1999 Cross Products Limited. All rights reserved.

Cross Products Company Confidential

Change current working directory Required header

int debug_chdir (const char *dirname) #include <usrsnasm.h>

Return Value

debug_chdir returns a value of 0. If the return value is —1 an error occurred, refer to errno for the
following:

The errno setting: Means that the:
SNASM_ENOENT Specified path could not be found.
Parameters

dirname Path of the new working directory.

Remarks

The directory set in the dirname parameter must exist. The function may be used to change the drive
and working directory. For example, to change the drive to “C” and the working directory to
“\window\temp” enter: debug_chdi r (“c:\\ wi ndows\\tenmp”);

Use “\\" to describe a single “\” in a C string literal.

The working directory is specified in CodeScape’s Set Fileserver Path... dialog box.

LibCross fileserver Page 8 of 15
O 1999 Cross Products Limited. All rights reserved.

Cross Products Company Confidential

Create a new directory Required header

int debug_mkdir (const char *dirname) #include <usrsnasm.h>

Return Value

debug_mkdir returns a value of 0. If the return value is —1 an error occurred, refer to errno for one of
the following:

The errno setting: Means that the directory cannot be created because:
SNASM_EEXISTS It already exists.
SNASM_ENOENT The specified path does not exist.

Parameters

dirname Path of the new directory.

Remarks

The function only creates one directory per call.

LibCross fileserver Page 9 of 15
O 1999 Cross Products Limited. All rights reserved.

Cross Products Company Confidential

Delete a new directory Required header

int debug_rmdir (const char *dirname) #include <usrsnasm.h>

Return Value

debug_rmdir returns a value of 0. If the return value is —1 an error occurred, refer to errno for one of
the following:

The errno setting: Means that the directory cannot be deleted because:
SNASM_EACCESS It does not exist; or it is not empty; or it is the current
working directory; or it is the root directory.
SNASM_ENOENT The specified path was not found.
Parameters

dirname Path of the new directory.

Remarks

The function deletes the specified directory. The directory must be empty and it cannot be the root
directory or the current working directory.

LibCross fileserver Page 10 of 15
O 1999 Cross Products Limited. All rights reserved.

Cross Products Company Confidential

Information about the first instance of a filename Required header
int debug_findfirst (const char *filespec, struct SNASM_finddata_t * #include <usrsnasm.h>
fileinfo)

Return Value

debug_findfirst returns a search handle. If the return value is —1 an error occurred, refer to errno for
one of the following:

The errno setting: Means that the file specification:
SNASM_ENOENT Is invalid.
SNASM_EINVAL Could not be found.
Parameters
filespec Target file specification.
fileinfo Pointer to structure to hold file specification.
Remarks

The function returns information on the first file that matches the file specification. The file
specification can contain wildcards, for example, the following command searches for C files in the
current working directory:

i nt hSearchHandl e = debug findfirst(“*.c”, &FileSpecification);

The file information structure contains 3 parameters:

unsi gned | ong m ul Si ze; /* file size */
unsi gned | ong mul Attri butes; /* file attributes */
char m szFi | enane[260]; /* file nane */

The attributes will be one of the following values:

SNASM_A NORVAL /* Normal. File can be read or witten to wi thout
restriction. */

SNASM A RDONLY /* Read-only. File cannot be opened for witing, and a
file with the same nane cannot be created. */

SNASM_A HI DDEN /* Hidden file. Not normally seen with the DI R conmand,

unless the /AH option is used. Returns information about normal files as well
as files with this attribute.*/

SNASM A SYSTEM /* Systemfile. Not normally seen with the DI R command,
unless the /A or /AS option is used. */

SNASM A SUBDI R /* Subdirectory. */

SNASM A ARCH /* Archive. Set whenever the file is changed, and cl eared

by the BACKUP conmand. */

LibCross fileserver Page 11 of 15
O 1999 Cross Products Limited. All rights reserved.

Cross Products Company Confidential

Information about the next instance of a filename Required header

int debug_findnext (int handle, struct SNASM_finddata _t * fileinfo) #include <usrsnasm.h>

Return Value

debug_findnext returns 0. If the return value is —1 an error occurred, refer to errno for the following:

The errno setting: Means that:
SNASM_ENOENT No more files matched the file specification.
Parameters

handle Search handle supplied by debug_findfirst.

fileinfo Pointer to a structure to hold file specification.

Remarks
The function returns information on the next file that matches the file specification.

The file information structure contains 3 parameters:

unsi gned | ong m ul Si ze; /* file size */
unsi gned | ong mul Attri butes; /* file attributes */
char m szFi | enane[260]; /* file nane */

The attributes field shows one of the following values:

SNASM_A NORVAL /* Normal. File can be read or witten to wi thout
restriction. */

SNASM A RDONLY /* Read-only. File cannot be opened for witing, and a
file with the same nane cannot be created. */

SNASM_A HI DDEN /* Hidden file. Not normally seen with the DI R conmand,

unless the /AH option is used. Returns information about normal files as well
as files with this attribute.*/

SNASM A SYSTEM /* Systemfile. Not normally seen with the DI R conmand,
unless the /A or /AS option is used. */

SNASM A SUBDI R /* Subdirectory. */

SNASM A ARCH /* Archive. Set whenever the file is changed, and cleared

by the BACKUP conmand. */

LibCross fileserver Page 12 of 15
O 1999 Cross Products Limited. All rights reserved.

Cross Products Company Confidential

Close a search handle Required header

int debug_findclose (int handle) #include <usrsnasm.h>

Return Value

debug_findclose returns 0. If the return value is —1 an error occurred and the operation failed to
close the handle.

Parameters

handle Search handle supplied by debug_findfirst.

Remarks

Free up resources allocated to the file search operations.

LibCross fileserver Page 13 of 15
O 1999 Cross Products Limited. All rights reserved.

Cross Products Company Confidential

Halt and inform the user Required header

int _ASSERT (int nFlag) #include <usrsnasm.h>

Return Value

Returns 0.

Parameters

nFlag Test nFlag, if expression evaluates to zero an assert is generated on host.

Remarks

When a _ASSERT occurs and the flag evaluates to zero the host is told. The host prompts for
instruction and the _ ASSERT() encountered dialog box appears, select:

Yes to stop the program and tell CodeScape to put the cursor on the _ ASSERT statement.
No to ignore the assert and continue running the program.
Cancel to ignore this and all further asserts.

You can set and view the status and control of ignore all in CodeScape’s Global Options dialog box.

Some compilers generate code that cause CodeScape to stop on the instruction following a
_ASSERT. The sample program supplied includes a macro that ensures that a _ ASSERT will stop
on the line that generated it. The file also shows how all asserts can be removed with a global
definition.

/
Macro Redefinition of _ASSERT to ASSERT. This is perforned to cause the
conpiler to insert at |east one opcode after the jsr _ASSERT has returned

it also permits the ASSERT code to be included / renpved based on a
conpi |l er define.

* ok k%

*

*/

#i fdef _DEBUG BUILD_
/* Since _ASSERT al ways return zero the expression will only be eval uated once */
#defi ne ASSERT(X) while(_ASSERT(X)) { ; }

#el se
#def i ne ASSERT(X)

#endif /* _DEBUG BUI LD _*/

LibCross fileserver Page 14 of 15
O 1999 Cross Products Limited. All rights reserved.

Cross Products Company Confidential

Prints data to the Log tab Required header

int dedug_printf(char *format, ...); #include <usrsnasm.h>

Return Value

The return value is the number of characters printed to the Log tab. Returns a negative value if an
error occurs.

Parameters
Format Format control

Argument Optional arguments

Remarks

The function formats and prints data to the Log tab on the Input / Output window.

Note: If arguments follow the format string, the format string must contain argument
output format specifications. The format argument consists of ordinary
characters, escape sequences, and (if arguments follow format) format
specifications.

LibCross fileserver Page 15 of 15
O 1999 Cross Products Limited. All rights reserved.

	CodeScape User Guide v2.2..0 build 121
	Legal Notice
	Contents
	Before you begin
	Document conventions
	This guide
	The CodeScape software

	Using and configuring the interface
	The commands on the menu bar
	Customizing shortcut keys
	The commands on the toolbars
	View, hide, dock, and move toolbars

	Commands on each toolbar

	How windows and regions work
	Using windows
	Using regions
	Configuring regions
	Target window
	Target Processor display
	Input/Output window

	The Source and Disassembly regions
	The Call Stack region
	The Watch and Local Watch regions
	The Watch region
	The Local Watch region
	The Memory region
	The Register region
	Hitachi target processor register region display

	The Edit region
	Opening and saving files
	Search and replace
	Cutting and pasting text
	Using bookmarks

	Interacting with target processors
	Connecting to a target processor

	Working with sessions
	Add files to a project
	Restarting a program

	Working with projects
	Setting up a project build environment
	Setting up an editor
	Setting up an external editor

	Setting up the project commands

	Debugging
	Debugging modes
	Running and stopping programs
	Stepping into (tracing) code
	Breakpoints
	Configuring breakpoints
	Breakpoint expression format
	Flags specification
	Width specification
	Precision specification
	Type specification
	Examples

	Simulating a target processor
	Information generated by the Simulator
	Reading the results of simulation

	Profiling program files
	Using the profiler: an overview
	The Profiler’s commands

	Viewing GD-M log information
	Writing scripts to automate tasks
	Scripting commands

	Evaluating expressions
	Expression evaluator dialog box (ALT+E)
	C/C++ expressions
	Assembler expressions

	Using the command-line
	Appendix A: Frequent operations
	Script commands in CodeScape Version 2.2.0 Build 111
	Write scripts to automate tasks
	CodeScape's script commands
	Expressing numeric values and addresses
	Example VBScript
	Example JScript

	Using scripts

	LibCross fileserver
	LibCross fileserver
	The fileserver functions
	Open a file: debug_open
	Close a file: debug_close
	Read data from a file: debug_read
	Write data to a file: debug_write
	Move a file to a specific location: debug_lseek
	Get current working directory: char * _getcwd
	Change current working directory: debug_chdir
	Create a new directory: debug_mkdir
	Delete a new directory: debug_rmdir
	Information about the first instance of a filename: debug_findfirst
	Information about the next instance of a filename: debug_findnext
	Close a search handle: debug_findclose
	Halt and inform the user: _ASSERT
	Prints data to the Log tab: debug_printf

	Add a script to the menu
	Run a script

