

Dreamcast SH4
Program Manual

Table of Contents
1. Overview ..HPM–1

SH7091 Features .. HPMÐ1
Block Diagram ...HPMÐ5

2. Programming Model ..HPM–7

Data Formats .. HPMÐ7

Register Configuration ... HPMÐ7
Privileged Mode and Banks ..HPMÐ7
General Registers ..HPMÐ10
Floating-Point Registers ...HPMÐ11
Control Registers ...HPMÐ12
System Registers ...HPMÐ14

Memory-Mapped Registers ... HPMÐ15

Data Format in Registers .. HPMÐ15

Data Formats in Memory .. HPMÐ16

Processor States ... HPMÐ16

Processor Modes .. HPMÐ18
HPM-iii

Dreamcast SH4 Program Manual

3. Memory Management Unit (MMU) ... HPM–19

Overview .. HPMÐ19
Features .. HPMÐ19
Role of the MMU .. HPMÐ19
Register Configuration .. HPMÐ21
Caution ... HPMÐ21

Register Descriptions ... HPMÐ21

Memory Space ... HPMÐ25
Physical Memory Space ... HPMÐ25
External Memory Space ... HPMÐ27
Virtual Memory Space ... HPMÐ27
On-Chip RAM Space .. HPMÐ28
Address Translation ... HPMÐ29
Single Virtual Memory Mode and Multiple Virtual Memory Mode .. HPMÐ29
Address Space Identifier (ASID) .. HPMÐ29

TLB Functions ... HPMÐ30
Unified TLB (UTLB) Configuration ... HPMÐ30
Instruction TLB (ITLB) Configuration ... HPMÐ32
Address Translation Method .. HPMÐ33

MMU Functions .. HPMÐ35
MMU Hardware Management ... HPMÐ35
MMU Software Management ... HPMÐ35
MMU Instruction (LDTLB) ... HPMÐ35
Hardware ITLB Miss Handling .. HPMÐ36
Avoiding Synonym Problems .. HPMÐ36

MMU Exceptions ... HPMÐ37
Instruction TLB Multiple Hit Exception ... HPMÐ37
Instruction TLB Miss Exception ... HPMÐ38
Instruction TLB Protection Violation Exception .. HPMÐ39
Data TLB Multiple Hit Exception .. HPMÐ39
Data TLB Miss Exception .. HPMÐ40
Data TLB Protection Violation Exception ... HPMÐ40
Initial Page Write Exception ... HPMÐ41

Memory-Mapped TLB Configuration ... HPMÐ42
ITLB Address Array ... HPMÐ42
ITLB Data Array 1 .. HPMÐ43
ITLB Data Array 2 .. HPMÐ44
UTLB Address Array ... HPMÐ44
UTLB Data Array 1 ... HPMÐ45
UTLB Data Array 2 ... HPMÐ46
HPM-iv

Table of Contents

4. Caches ... HPM–47

Overview .. HPMÐ47
Features .. HPMÐ47
Register Configuration .. HPMÐ48

Register Descriptions .. HPMÐ48

Operand Cache (OC) ... HPMÐ50
Configuration .. HPMÐ50
Read Operation ... HPMÐ52
Write Operation .. HPMÐ52
Write-Back Buffer ... HPMÐ53
Write-Through Buffer .. HPMÐ53
RAM Mode .. HPMÐ54
OC Index Mode .. HPMÐ54
Coherency between Cache and External Memory .. HPMÐ55
Prefetch Operation ... HPMÐ55

Instruction Cache (IC) ... HPMÐ55
Configuration .. HPMÐ55
Read Operation ... HPMÐ57
IC Index Mode .. HPMÐ57

Memory-Mapped Cache Configuration .. HPMÐ57
IC Address Array ... HPMÐ58
IC Data Array .. HPMÐ59
OC Address Array ... HPMÐ59
OC Data Array .. HPMÐ60

Store Queues .. HPMÐ61
SQ Configuration ... HPMÐ61
SQ Writes ... HPMÐ62
Transfer to External Memory ... HPMÐ62
SQ Protection .. HPMÐ63

5. Exceptions ... HPM–65

Overview .. HPMÐ65
Features .. HPMÐ65
Register Configuration .. HPMÐ65

Register Descriptions .. HPMÐ66

Exception Handling Functions ... HPMÐ67
Exception Handling Flow ... HPMÐ67
Exception Handling Vector Addresses ... HPMÐ67

Exception Types and Priorities .. HPMÐ68

Exception Flow ... HPMÐ71
Exception Flow ... HPMÐ71
Exception Source Acceptance ... HPMÐ72
Exception Requests and BL Bit ... HPMÐ73
Return from Exception Handling .. HPMÐ74
HMP-v

Dreamcast SH4 Program Manual

Description of Exceptions .. HPMÐ74
Resets .. HPMÐ74

Power-On Reset .. HPMÐ74
Manual Reset .. HPMÐ75
Hitachi-UDI Reset .. HPMÐ76
Instruction TLB Multiple-Hit Exception ... HPMÐ76
Operand TLB Multiple-Hit Exception .. HPMÐ77

General Exceptions ... HPMÐ78
Data TLB Miss Exception .. HPMÐ78
Instruction TLB Miss Exception ... HPMÐ78
Initial Page Write Exception ... HPMÐ79
Data TLB Protection Violation Exception ... HPMÐ79
Instruction TLB Protection Violation Exception .. HPMÐ80
Data Address Error .. HPMÐ81
Instruction Address Error ... HPMÐ82
Unconditional Trap .. HPMÐ82
General Illegal Instruction Exception .. HPMÐ83
Slot Illegal Instruction Exception ... HPMÐ83
General FPU Disable Exception ... HPMÐ84
Slot FPU Disable Exception .. HPMÐ84
User Breakpoint Trap .. HPMÐ85
FPU Exception .. HPMÐ86

Interrupts ... HPMÐ86
NMI .. HPMÐ86
IRL Interrupts ... HPMÐ86
Peripheral Module Interrupts .. HPMÐ87

Priority Order with Multiple Exceptions .. HPMÐ88
Usage Notes ... HPMÐ89

6. Floating-Point Unit ... HPM–91

Overview .. HPMÐ91

Data Formats .. HPMÐ91
Floating-Point Format .. HPMÐ91
Non-Numbers (NaN) ... HPMÐ93
Denormalized Numbers .. HPMÐ94

Registers ... HPMÐ94
Floating-Point Registers .. HPMÐ94
Floating-Point Status/Control Register (FPSCR) .. HPMÐ96
Floating-Point Communication Register (FPUL) .. HPMÐ97

Rounding ... HPMÐ98

Floating-Point Exceptions .. HPMÐ98

Graphics Support Functions .. HPMÐ99
Geometric Operation Instructions ... HPMÐ99
Pair Single-Precision Data Transfer ... HPMÐ100
HPM-vi

Table of Contents

7. Instruction Set .. HPM–101

Execution Environment .. HPMÐ101

Addressing Modes ... HPMÐ102

Instruction Set ... HPMÐ106

8. Pipelining .. HPM–119

Pipelines ... HPMÐ119

Parallel-Executability .. HPMÐ126

Execution Cycles and Pipeline Stalling .. HPMÐ130

9. Power-Down Modes ... HPM–147

Overview .. HPMÐ147
Types of Power-Down Modes .. HPMÐ147
Register Configuration .. HPMÐ148

Register Descriptions .. HPMÐ149
Standby Control Register (STBCR) .. HPMÐ149
Peripheral Module Pin High Impedance Control ... HPMÐ151
Peripheral Module Pin Pull-Up Control ... HPMÐ151
Standby Control Register 2 (STBCR2) ... HPMÐ152

Sleep Mode ... HPMÐ152
Transition to Sleep Mode .. HPMÐ152
Exit from Sleep Mode .. HPMÐ153

Deep Sleep Mode .. HPMÐ153
Transition to Deep Sleep Mode .. HPMÐ153
Exit from Deep Sleep Mode .. HPMÐ153

Standby Mode .. HPMÐ153
Transition to Standby Mode ... HPMÐ153
Exit from Standby Mode ... HPMÐ155
Clock Pause Function .. HPMÐ155

Module Standby Function .. HPMÐ156
Transition to Module Standby Function ... HPMÐ156
Exit from Module Standby Function ... HPMÐ156

10. Instruction Descriptions ... HPM–157
HMP-vii

Dreamcast SH4 Program Manual

11. Realtime Clock (RTC) ... HPM–299

Overview ...HPMÐ299
Features .. HPMÐ299
Block Diagram .. HPMÐ300
Pin Configuration ... HPMÐ301
Register Configuration .. HPMÐ302

Register Descriptions ..HPMÐ303
64 Hz Counter (R64CNT) .. HPMÐ303
Second Counter (RSECCNT) .. HPMÐ303
Minute Counter (RMINCNT) ... HPMÐ304
Hour Counter (RHRCNT) ... HPMÐ304
Day-of-Week Counter (RWKCNT) .. HPMÐ305
Day Counter (RDAYCNT) .. HPMÐ305
Month Counter (RMONCNT) .. HPMÐ306
Year Counter (RYRCNT) ... HPMÐ306
Second Alarm Register (RSECAR) ... HPMÐ307
Minute Alarm Register (RMINAR) .. HPMÐ307
Hour Alarm Register (RHRAR) ... HPMÐ308
Day-of-Week Alarm Register (RWKAR) .. HPMÐ308
Day Alarm Register (RDAYAR) ... HPMÐ309
Month Alarm Register (RMONAR) ... HPMÐ309
RTC Control Register 1 (RCR1) .. HPMÐ310
RTC Control Register 2 (RCR2) .. HPMÐ311

Operation ..HPMÐ313
Time Setting Procedures .. HPMÐ313
Time Reading Procedures ... HPMÐ314
Alarm Function ... HPMÐ315

Interrupts ..HPMÐ315

12. Timer Unit (TMU) .. HPM–317

Overview ...HPMÐ317
Features .. HPMÐ317
Block Diagram .. HPMÐ318
Pin Configuration ... HPMÐ318
Register Configuration .. HPMÐ319

Register Descriptions ..HPMÐ320
Timer Output Control Register (TOCR) ... HPMÐ320
Timer Start Register (TSTR) .. HPMÐ320
Timer Constant Registers (TCOR) ... HPMÐ321
Timer Counters (TCNT) .. HPMÐ322
Timer Control Registers (TCR) ... HPMÐ322
Input Capture Register (TCPR2) .. HPMÐ326
HPM-viii

Table of Contents

Operation .. HPMÐ326
Counter Operation ... HPMÐ326

TCNT Count Timing: .. HPMÐ328
Input Capture Function ... HPMÐ329

Interrupts .. HPMÐ330

Usage Notes .. HPMÐ331
Register Writes .. HPMÐ331
TCNT Register Reads .. HPMÐ331
Resetting the RTC Frequency Divider .. HPMÐ331
External Clock Frequency ... HPMÐ331

A. User’s Manual Supplement HPM–333
Address List ... HPMÐ333

B. Instruction Prefetch Side Effects HPM–341
Instruction Prefetch Side Effects .. HPMÐ341
Remedies ... HPMÐ341
HMP-ix

Dreamcast SH4 Program Manual
HPM-x

1. Overview
1.1 SH7091 Features
The SH7091 is a 32-bit RISC (reduced instruction set computer) microprocessor, featuring object code
upward-compatibility with SH-1, SH-2, SH-3, and SH-3E microcomputers. It includes an 8-kbyte instruction cache,
a 16-kbyte operand cache with a choice of copy-back or write-through mode, and an MMU (memory management
unit) with a 64-entry fully-associative uniÞed TLB (translation lookaside buffer).

The SH7091 has an on-chip bus state controller (BSC) that allows direct connection to DRAM and synchronous
DRAM without external circuitry. Its 16-bit Þxed-length instruction set enables program code size to be reduced by
almost 50% compared with 32-bit instructions.

The features of the SH7091 are summarized in table 1.
HPM-1

Dreamcast SH4 Program Manual

Table 1.1 SH7091 Features

Item Features

LSI • Operating frequency: 200 MHz
• Performance:

—360 MIPS (200 MHz)
—1.4 GFLOPS (200 MHz)

• Superscalar architecture: Parallel execution of two instructions
• Voltage: 1.8 V (internal), 3.3 V (I/O)
• Packages: 256-pin BGA, 208-pin QFP
• External buses

—Separate 26-bit address and 64-bit data buses
—External bus frequency of 1/2, 1/3, 1/4, 1/6, or 1/8 times internal bus frequency

CPU • Original Hitachi SH architecture
• 32-bit internal data bus
• General register file:

—Sixteen 32-bit general registers (and eight 32-bit shadow registers)
—Seven 32-bit control registers
—Four 32-bit system registers

• RISC-type instruction set (upward-compatible with SH Series)
—Fixed 16-bit instruction length for improved code efficiency
—Load-store architecture
—Delayed branch instructions
—Conditional execution
—C-based instruction set

• Superscalar architecture (providing simultaneous execution of two instructions) including FPU
• Instruction execution time: Maximum 2 instructions/cycle
• Virtual address space: 4 Gbytes (448-Mbyte external memory space)
• Space identifier ASIDs: 8 bits, 256 virtual address spaces
• On-chip multiplier
• Five-stage pipeline

FPU • On-chip floating-point coprocessor
• Supports single-precision (32 bits) and double-precision (64 bits)
• Supports IEEE754-compliant data types and exceptions
• Two rounding modes: Round to Nearest and Round to Zero
• Handling of denormalized numbers: Truncation to zero or interrupt generation for compliance with IEEE754
• Floating-point registers: 32 bits x 16 words x 2 banks (single-precision x 16 words or double-precision x 8 words) x 2

banks
• 32-bit CPU-FPU floating-point communication register (FPUL)
• Supports FMAC (multiply-and-accumulate) instruction
• Supports FDIV (divide) and FSQRT (square root) instructions
• Supports FLDI0/FLDI1 (load constant 0/1) instructions
• Instruction execution times

—Latency (FMAC/FADD/FSUB/FMUL): 3 cycles (single-precision), 8 cycles (double-precision)
—Pitch (FMAC/FADD/FSUB/FMUL): 1 cycle (single-precision), 6 cycles (double-precision)

Note: FMAC is supported for single-precision only.
• 3-D graphics instructions (single-precision only):

—4-dimensional vector conversion and matrix operations (FTRV): 4 cycles (pitch), 7 cycles (latency)
—4-dimensional vector (FIPR) inner product: 1 cycle (pitch), 4 cycles (latency)

• Five-stage pipeline
HPM-2

1. Overview

Clock pulse generator
(CPG)

• Choice of main clock: 1/2, 1, 3, or 6 times EXTAL
• Clock modes:

—CPU frequency: 1, 1/2, 1/3, 1/4, 1/6, or 1/8 times main clock: maximum 200 MHz
—Bus frequency: 1/2, 1/3, 1/4, 1/6, or 1/8 times main clock: maximum 100 MHz
—Peripheral frequency: 1/2, 1/3, 1/4, 1/6, or 1/8 times main clock: maximum 50 MHz

• Power-down modes
—Sleep mode
—Standby mode
—Module standby function

• Single-channel watchdog timer

Memory management
unit (MMU)

• 4-Gbyte address space, 256 address space identifiers (8-bit ASIDs
• Single virtual mode and multiple virtual memory mode
• Supports multiple page sizes: 1 kbyte, 4 kbytes, 64 kbytes, 1 Mbyte
• 4-entry fully-associative TLB for instructions
• 64-entry fully-associative TLB for instructions and operands
• Supports software-controlled replacement and random-counter replacement algorithm
• TLB contents can be accessed directly by address mapping

Cache memory • Instruction cache (IC)
—8 kbytes, direct mapping
—256 entries, 32-byte block length
—Normal mode (8-kbyte cache)
—Index mode

• Operand cache (OC)
—16 kbytes, direct mapping
—512 entries, 32-byte block length
—Normal mode (16-kbyte cache)
—Index mode
—RAM mode (8-kbyte cache + 8-kbyte RAM)
—Choice of write method (copy-back or write-through)

• Single-stage copy-back buffer, single-stage write-through buffer
• Cache memory contents can be accessed directly by address mapping

(usable as on-chip memory)
• Store queue (32 bytes x 2 entries)

Interrupt controller
(INTC)

• Five independent external interrupts (NMI, IRL3 to IRL0)
• 15-level signed external interrupts: IRL3 to IRL0
• On-chip peripheral module interrupts: Priority level can be set for each module

User break controller
(UBC)

• Supports debugging by means of user break interrupts
• Two break channels
• Address, data value, access type, and data size can all be set as break conditions
• Supports sequential break function

Bus state controller (BSC) • Supports external memory access
—64/32/16/8-bit external data bus

• External memory space divided into seven areas, each of up to 64 Mbytes, with the following parameters settable for
each area:
—Bus size (8, 16, 32, or 64 bits)
—Number of wait cycles (hardware wait function also supported)
—Direct connection of DRAM, synchronous DRAM, and burst ROM possible by setting space type
—Supports fast page mode and DRAM EDO
—Supports PCMCIA interface
—Chip select signals (CS0 to CS6) output for relevant areas

• DRAM/synchronous DRAM refresh functions
—Programmable refresh interval
—Supports CAS-before-RAS refresh mode and self-refresh mode

• DRAM/synchronous DRAM burst access function
• Big endian or little endian mode can be set

Item Features
HPM-3

Dreamcast SH4 Program Manual

Direct memory access
controller (DMAC)

• 4-channel physical address DMA controller
• Transfer data size: 8, 16, 32, or 64 bits, or 32 bytes
• Address modes:

—1-bus-cycle single address mode
—2-bus-cycle dual address mode

• Transfer requests: External, on-chip module, or auto-requests
• Bus modes: Cycle-steal or burst mode
• Supports on-demand data transfer

Timer unit (TMU) • 3-channel auto-reload 32-bit timer
• Input capture function
• Choice of seven counter input clocks

Realtime clock (RTC) • On-chip clock and calendar functions
• Built-in 32 kHz crystal oscillator with maximum 1/256 second resolution (cycle interrupts)

Serial communication
interface (SCI, SCIF)

• Two full-duplex communication channels (SCI, SCIF)
• Channel 1 (SCI):

—Choice of asynchronous mode or synchronous mode
—Supports smart card interface

• Channel 2 (SCIF):_ Supports asynchronous mode
—Separate 16-byte FIFOs provided for transmitter and receiver

Packages • 256-pin BGA, 208-pin QFP

Item Features
HPM-4

1. Overview

1.1.1 Block Diagram

Figure 1.1 shows an internal block diagram of the SH7091.

Figure 1.1 Block Diagram of SH7091 Functions

CPG

INTC

SCI
(SCIF)

RTC

TMU

External
bus interface

BSC DMAC

A
dd

re
ss

29
-b

it
ad

dr
es

s

64
-b

it
da

ta

64
-b

it
da

ta

32
-b

it
da

ta

32
-b

it
da

ta

U
pp

er
 3

2-
bi

t d
at

a

32
-b

it
ad

dr
es

s
(in

st
ru

ct
io

ns
)

32
-b

it
da

ta
 (

in
st

ru
ct

io
ns

)

32
-b

it
ad

dr
es

s
(d

at
a)

P
er

ip
he

ra
l a

dd
re

ss
 b

us

26-bit
address 64-bit

data

16
-b

it
pe

rip
he

ra
l d

at
a

bu
s

UBC

Lower 32-bit data

Lower 32-bit data

32
-b

it
da

ta
 (

lo
ad

)

32
-b

it
da

ta
 (

st
or

e)

CPU

I cache
(8 kB)

O cache
(16 kB)ITLB UTLBCCN

FPU

64
-b

it
da

ta
 (

st
or

e)

CCN: Cache and TLB controller
BSC: Bus state controller
CPG: Clock pulse generator
DMAC: Direct memory access controller
FPU: Floating-point unit
INTC: Interrupt controller
ITLB: Instruction TLB (translation lookaside buffer)

UTLB: Unified TLB (translation lookaside buffer)
RTC: Realtime clock
SCI: Serial communication interface
SCIF: Serial communication interface with FIFO
TMU: Timer unit
UBC: User break controller
HPM-5

Dreamcast SH4 Program Manual
HPM-6

2. Programming Model
2.1 Data Formats
The data formats handled by the SH7091 are shown in Þgure 1.

Figure 2.1 Data Formats

2.2 Register Configuration

2.2.1 Privileged Mode and Banks

Processor Modes: The SH7091 has two processor modes, user mode and privileged mode. The SH7091 normally
operates in user mode, and switches to privileged mode when an exception occurs or an interrupt is accepted. There
are four kinds of registersÑgeneral registers, system registers, control registers, and ßoating-point registersÑand
the registers that can be accessed differ in the two processor modes.

Byte (8 bits)

Word (16 bits)

Longword (32 bits)

Single-precision floating-point (32 bits)

Double-precision floating-point (64 bits)

07

015

031

031 30 22

fractionexps

063 62 51

exps fraction
HPM-7

Dreamcast SH4 Program Manual

General Registers: There are 16 general registers, designated R0 to R15. General registers R0 to R7 are banked
registers which are switched by a processor mode change.

In privileged mode, the register bank bit (RB) in the status register (SR) deÞnes which banked register set is accessed
as general registers, and which set is accessed only through the load control register (LDC) and store control register
(STC) instructions.

When the RB bit is 1 (that is, when bank 1 is selected), the 16 registers comprising bank 1 general registers
R0_BANK1 to R7_BANK1 and non-banked general registers R8 to R15 can be accessed as general registers R0 to
R15. In this case, the eight registers comprising bank 0 general registers R0_BANK0 to R7_BANK0 are accessed by
the LDC/STC instructions. When the RB bit is 0 (that is, when bank 0 is selected), the 16 registers comprising bank
0 general registers R0_BANK0 to R7_BANK0 and non-banked general registers R8 to R15 can be accessed as general
registers R0 to R15. In this case, the eight registers comprising bank 1 general registers R0_BANK1 to R7_BANK1
are accessed by the LDC/STC instructions.

In user mode, the 16 registers comprising bank 0 general registers R0_BANK0 to R7_BANK0 and non-banked
general registers R8 to R15 can be accessed as general registers R0 to R15. The eight registers comprising bank 1
general registers R0_BANK1 to R7_BANK1 cannot be accessed.

Control Registers: Control registers comprise the global base register (GBR) and status register (SR), which can be
accessed in both processor modes, and the saved status register (SSR), saved program counter (SPC), vector base
register (VBR), saved general register 15 (SGR), and debug base register (DBR), which can only be accessed in
privileged mode. Some bits of the status register (such as the RB bit) can only be accessed in privileged mode.

System Registers: System registers comprise the multiply-and-accumulate registers (MACH/MACL), the
procedure register (PR), the program counter (PC), the ßoating-point status/control register (FPSCR), and the
ßoating-point communication register (FPUL). Access to these registers does not depend on the processor mode.

Floating-Point Registers: There are thirty-two ßoating-point registers, FR0ÐFR15 and XF0ÐXF15. FR0ÐFR15 and
XF0ÐXF15 can be assigned to either of two banks (FPR0_BANK0ÐFPR15_BANK0 or FPR0_BANK1ÐFPR15_BANK1).

FR0ÐFR15 can be used as the eight registers DR0/2/4/6/8/10/12/14 (double-precision ßoating-point registers, or
pair registers) or the four registers FV0/4/8/12 (register vectors), while XF0ÐXF15 can be used as the eight registers
XD0/2/4/6/8/10/12/14 (register pairs) or register matrix XMTRX.

Register values after a reset are shown in table 2.1.

Table 2.1 Initial Register Values

Note: *Initialized by a power-on reset and manual reset.

Type Registers Initial Value*

General registers R0_BANK0–R7_BANK0,
R0_BANK1–R7_BANK1, R8–R15

Undefined

Control registers SR MD bit = 1, RB bit = 1, BL bit = 1, FD bit = 0, I3–I0 = 1111
(H'F), reserved bits = 0, others undefined

GBR, SSR, SPC, SGR, DBR Undefined

VBR H'00000000

System registers MACH, MACL, PR, FPUL Undefined

PC H'A0000000

FPSCR H'00040001

Floating-point registers FR0–FR15, XF0–XF15 Undefined
HPM-8

2. Programming Model

The register conÞguration in each processor is shown in Þgure 2.2.

Switching between user mode and privileged mode is controlled by the processor mode bit (MD) in the
status register.

Figure 2.2 CPU Register Configuration in Each Processor Mode
31 0

R0_BANK0*1,*2

R1_BANK0*2

R2_BANK0*2

R3_BANK0*2

R4_BANK0*2

R5_BANK0*2

R6_BANK0*2

R7_BANK0*2

R8
R9

R10
R11
R12
R13
R14
R15

SR

GBR
MACH
MACL

PR

PC

(a) Register configuration
in user mode

31 0
R0_BANK1*1,*3

R1_BANK1*3

R2_BANK1*3

R3_BANK1*3

R4_BANK1*3

R5_BANK1*3

R6_BANK1*3

R7_BANK1*3

R8
R9

R10
R11
R12
R13
R14
R15

R0_BANK0*1,*4

R1_BANK0*4

R2_BANK0*4

R3_BANK0*4

R4_BANK0*4

R5_BANK0*4

R6_BANK0*4

R7_BANK0*4

(b) Register configuration in
 privileged mode (RB = 1)

GBR
MACH
MACL

VBR
PR

SR
SSR

PC
SPC

31 0

R0_BANK1*1,*3

R1_BANK1*3

R2_BANK1*3

R3_BANK1*3

R4_BANK1*3

R5_BANK1*3

R6_BANK1*3

R7_BANK1*3

R8
R9
R10
R11
R12
R13
R14
R15

R0_BANK0*1,*4

R1_BANK0*4

R2_BANK0*4

R3_BANK0*4

R4_BANK0*4

R5_BANK0*4

R6_BANK0*4

R7_BANK0*4

(c) Register configuration in
privileged mode (RB = 0)

GBR
MACH
MACL

VBR
PR

SR
SSR

PC
SPC

SGR

DBR

SGR

DBR

Notes: 1. The R0 register is used as the index register in indexed register-indirect addressing mode and
indexed GBR indirect addressing mode.

 2. Banked registers
 3. Banked registers

Accessed as general registers when the RB bit is set to 1 in the SR register. Accessed only by
LDC/STC instructions when the RB bit is cleared to 0.

4. Banked registers
Accessed as general registers when the RB bit is cleared to 0 in the SR register. Accessed only by
LDC/STC instructions when the RB bit is set to 1.
HPM-9

Dreamcast SH4 Program Manual

2.2.2 General Registers

Figure 2.3 shows the relationship between the processor modes and general registers. The SH7091 has twenty-four
32-bit general registers (R0_BANK0ÐR7_BANK0, R0_BANK1ÐR7_BANK1, and R8ÐR15). However, only 16 of these
can be accessed as general registers R0ÐR15 in one processor mode. The SH7091 has two processor modes, user
mode and privileged mode, in which R0ÐR7 are assigned as shown below.

¥ R0_BANK0ÐR7_BANK0

In user mode (SR.MD = 0), R0ÐR7 are always assigned to R0_BANK0ÐR7_BANK0.

In privileged mode (SR.MD = 1), R0ÐR7 are assigned to R0_BANK0ÐR7_BANK0 only when SR.RB = 0.

¥ R0_BANK1ÐR7_BANK1

In user mode, R0_BANK1ÐR7_BANK1 cannot be accessed.

In privileged mode, R0ÐR7 are assigned to R0_BANK1ÐR7_BANK1 only when SR.RB = 1.

Figure 2.3 General Registers

Programming Note: As the userÕs R0ÐR7 are assigned to R0_BANK0ÐR7_BANK0, and after an exception or
interrupt R0ÐR7 are assigned to R0_BANK1ÐR7_BANK1, it is not necessary for the interrupt handler to save and
restore the userÕs R0ÐR7 (R0_BANK0ÐR7_BANK0).

After a reset, the values of R0_BANK0ÐR7_BANK0, R0_BANK1ÐR7_BANK1, and R8ÐR15 are undeÞned.

SR.MD = 0 or
(SR.MD = 1, SR.RB = 0)

R0_BANK0
R1_BANK0
R2_BANK0
R3_BANK0
R4_BANK0
R5_BANK0
R6_BANK0
R7_BANK0

R0_BANK0
R1_BANK0
R2_BANK0
R3_BANK0
R4_BANK0
R5_BANK0
R6_BANK0
R7_BANK0

R0_BANK1
R1_BANK1
R2_BANK1
R3_BANK1
R4_BANK1
R5_BANK1
R6_BANK1
R7_BANK1

R0_BANK1
R1_BANK1
R2_BANK1
R3_BANK1
R4_BANK1
R5_BANK1
R6_BANK1
R7_BANK1

R0
R1
R2
R3
R4
R5
R6
R7

R0
R1
R2
R3
R4
R5
R6
R7

R8
R9

R10
R11
R12
R13
R14
R15

R8
R9
R10
R11
R12
R13
R14
R15

R8
R9

R10
R11
R12
R13
R14
R15

(SR.MD = 1, SR.RB = 1)
HPM-10

2. Programming Model

2.2.3 Floating-Point Registers

Figure 2.4 shows the ßoating-point registers. There are thirty-two 32-bit ßoating-point registers, divided into two
banks (FPR0_BANK0ÐFPR15_BANK0 and FPR0_BANK1ÐFPR15_BANK1). These 32 registers are referenced as
FR0ÐFR15, DR0/2/4/6/8/10/12/14, FV0/4/8/12, XF0ÐXF15, XD0/2/4/6/8/10/12/14, or XMTRX. The
correspondence between FPRn_BANKi and the reference name is determined by the FR bit in FPSCR (see Þgure 2.4).

¥ Floating-point registers, FPRn_BANKi (32 registers)

FPR0_BANK0, FPR1_BANK0, FPR2_BANK0, FPR3_BANK0, FPR4_BANK0, FPR5_BANK0,
FPR6_BANK0, FPR7_BANK0, FPR8_BANK0, FPR9_BANK0, FPR10_BANK0, FPR11_BANK0,
FPR12_BANK0, FPR13_BANK0, FPR14_BANK0, FPR15_BANK0

FPR0_BANK1, FPR1_BANK1, FPR2_BANK1, FPR3_BANK1, FPR4_BANK1, FPR5_BANK1,
FPR6_BANK1, FPR7_BANK1, FPR8_BANK1, FPR9_BANK1, FPR10_BANK1, FPR11_BANK1,
FPR12_BANK1, FPR13_BANK1, FPR14_BANK1, FPR15_BANK1

¥ Single-precision ßoating-point registers, FRi (16 registers)

When FPSCR.FR = 0, FR0ÐFR15 are assigned to FPR0_BANK0ÐFPR15_BANK0.

When FPSCR.FR = 1, FR0ÐFR15 are assigned to FPR0_BANK1ÐFPR15_BANK1.

¥ Double-precision ßoating-point registers or single-precision ßoating-point register pairs, DRi (8
registers): A DR register comprises two FR registers.

DR0 = {FR0, FR1}, DR2 = {FR2, FR3}, DR4 = {FR4, FR5}, DR6 = {FR6, FR7},

DR8 = {FR8, FR9}, DR10 = {FR10, FR11}, DR12 = {FR12, FR13}, DR14 = {FR14, FR15}

¥ Single-precision ßoating-point vector registers, FVi (4 registers): An FV register comprises four FR
registers

FV0 = {FR0, FR1, FR2, FR3}, FV4 = {FR4, FR5, FR6, FR7},

FV8 = {FR8, FR9, FR10, FR11}, FV12 = {FR12, FR13, FR14, FR15}

¥ Single-precision ßoating-point extended registers, XFi (16 registers)

When FPSCR.FR = 0, XF0ÐXF15 are assigned to FPR0_BANK1ÐFPR15_BANK1.

When FPSCR.FR = 1, XF0ÐXF15 are assigned to FPR0_BANK0ÐFPR15_BANK0.

¥ Single-precision ßoating-point extended register pairs, XDi (8 registers): An XD register comprises two
XF registers

XD0 = {XF0, XF1}, XD2 = {XF2, XF3}, XD4 = {XF4, XF5}, XD6 = {XF6, XF7},

XD8 = {XF8, XF9}, XD10 = {XF10, XF11}, XD12 = {XF12, XF13}, XD14 = {XF14, XF15}

¥ Single-precision ßoating-point extended register matrix, XMTRX: XMTRX comprises all 16 XF registers

XMTRX = XF0 XF4 XF8 XF12

 XF1 XF5 XF9 XF13

 XF2 XF6 XF10 XF14

 XF3 XF7 XF11 XF15
HPM-11

Dreamcast SH4 Program Manual

Figure 2.4 Floating-Point Registers

Programming Note: After a reset, the values of FPR0_BANK0ÐFPR15_BANK0 and FPR0_BANK1ÐFPR15_BANK1
are undeÞned.

2.2.4 Control Registers

Status register, SR (32 bits, privilege protection, initial value = 0111 0000 0000 0000 0000 00XX 1111 00XX)

Note: Reserved. These bits are always read as 0, and should only be written with 0.
X:UndeÞned

FPR0_BANK0
FPR1_BANK0
FPR2_BANK0
FPR3_BANK0
FPR4_BANK0
FPR5_BANK0
FPR6_BANK0
FPR7_BANK0
FPR8_BANK0
FPR9_BANK0
FPR10_BANK0
FPR11_BANK0
FPR12_BANK0
FPR13_BANK0
FPR14_BANK0
FPR15_BANK0

XF0
XF1
XF2
XF3
XF4
XF5
XF6
XF7
XF8
XF9
XF10
XF11
XF12
XF13
XF14
XF15

FR0
FR1
FR2
FR3
FR4
FR5
FR6
FR7
FR8
FR9
FR10
FR11
FR12
FR13
FR14
FR15

DR0

DR2

DR4

DR6

DR8

DR10

DR12

DR14

FV0

FV4

FV8

FV12

XD0 XMTRX

XD2

XD4

XD6

XD8

XD10

XD12

XD14

FPR0_BANK1
FPR1_BANK1
FPR2_BANK1
FPR3_BANK1
FPR4_BANK1
FPR5_BANK1
FPR6_BANK1
FPR7_BANK1
FPR8_BANK1
FPR9_BANK1
FPR10_BANK1
FPR11_BANK1
FPR12_BANK1
FPR13_BANK1
FPR14_BANK1
FPR15_BANK1

XF0
XF1
XF2
XF3
XF4
XF5
XF6
XF7
XF8
XF9
XF10
XF11
XF12
XF13
XF14
XF15

FR0
FR1
FR2
FR3
FR4
FR5
FR6
FR7
FR8
FR9
FR10
FR11
FR12
FR13
FR14
FR15

DR0

DR2

DR4

DR6

DR8

DR10

DR12

DR14

FV0

FV4

FV8

FV12

XD0XMTRX

XD2

XD4

XD6

XD8

XD10

XD12

XD14

FPSCR.FR = 0 FPSCR.FR = 1

31 30 29 28 27 16 15 14 10 9 8 7 4 3 2 1 0

— FD M Q IMASKRB BLMD— — — S T
HPM-12

2. Programming Model
¥ MD: Processor mode

MD = 0: User mode (some instructions cannot be executed, and some resources cannot be accessed)

MD = 1: Privileged mode

¥ RB: General register bank speciÞer in privileged mode (set to 1 by a reset, exception, or interrupt)

RB = 0: R0_BANK0ÐR7_BANK0 are accessed as general registers R0ÐR7. (R0_BANK1ÐR7_BANK1 can be
accessed using LDC/STC R0_BANKÐR7_BANK instructions.)

RB = 1: R0_BANK1ÐR7_BANK1 are accessed as general registers R0ÐR7. (R0_BANK0ÐR7_BANK0 can be
accessed using LDC/STC R0_BANKÐR7_BANK instructions.)

¥ BL: Exception/interrupt block bit (set to 1 by a reset, exception, or interrupt)

BL = 1: Interrupt requests are masked. If a general exception other than a user break occurs while BL = 1,
the processor switches to the reset state.

¥ FD: FPU disable bit (cleared to 0 by a reset)

FD = 1: An FPU instruction causes a general FPU disable exception, and if the FPU instruction is in a delay
slot, a slot FPU disable exception is generated. (FPU instructions: H'F*** instructions, LDC(.L)/STS(.L)
instructions for FPUL/FPSCR)

¥ M, Q: Used by the DIV0S, DIV0U, and DIV1 instructions.

¥ IMASK: Interrupt mask level

External interrupts of a lower level than IMASK are masked.

¥ S: SpeciÞes a saturation operation for a MAC instruction.

¥ T: True/false condition or carry/borrow bit

Saved status register, SSR (32 bits, privilege protection, initial value undeÞned): The current contents of SR are
saved to SSR in the event of an exception or interrupt.

Saved program counter, SPC (32 bits, privilege protection, initial value undeÞned): The address of an instruction
at which an interrupt or exception occurs is saved to SPC.

Global base register, GBR (32 bits, initial value undeÞned): GBR is referenced as the base address in a
GBR-referencing MOV instruction.

Vector base register, VBR (32 bits, privilege protection, initial value = H'0000 0000): VBR is referenced as the
branch destination base address in the event of an exception or interrupt. For details, see section 5, Exceptions.

Saved general register 15, SGR (32 bits, privilege protection, initial value undeÞned): The contents of R15 are
saved to SGR in the event of an exception or interrupt.

Debug base register, DBR (32 bits, privilege protection, initial value undeÞned): When the user break debug
function is enabled (BRCR.UBDE = 1), DBR is referenced as the user break handler branch destination address
instead of VBR.
HPM-13

Dreamcast SH4 Program Manual
2.2.5 System Registers

Multiply-and-accumulate register high, MACH (32 bits, initial value undeÞned)

Multiply-and-accumulate register low, MACL (32 bits, initial value undeÞned)

MACH/MACL is used for the added value in a MAC instruction, and to store a MAC instruction or MUL
operation result.

Procedure register, PR (32 bits, initial value undeÞned): The return address is stored in PR in a subroutine call
using a BSR, BSRF, or JSR instruction, and PR is referenced by the subroutine return instruction (RTS).

Program counter, PC (32 bits, initial value = H'A000 0000): PC indicates the instruction fetch address.

Floating-point status/control register, FPSCR (32 bits, initial value = H'0004 0001)

Note: Reserved. These bits are always read as 0, and should only be written with 0.

¥ FR: Floating-point register bank

FR = 0: FPR0_BANK0ÐFPR15_BANK0 are assigned to FR0ÐFR15; FPR0_BANK1ÐFPR15_BANK1 are
assigned to XF0ÐXF15.

FR = 1: FPR0_BANK0ÐFPR15_BANK0 are assigned to XF0ÐXF15; FPR0_BANK1ÐFPR15_BANK1 are
assigned to FR0ÐFR15.

¥ SZ: Transfer size mode

SZ = 0: The data size of the FMOV instruction is 32 bits.

SZ = 1: The data size of the FMOV instruction is a 32-bit register pair (64 bits).

¥ PR: Precision mode

PR = 0: Floating-point instructions are executed as single-precision operations.

PR = 1: Floating-point instructions are executed as double-precision operations (the result of instructions
for which double-precision is not supported is undeÞned).

Mode setting [SZ = 1, PR = 1] is reserved. FPU operation results are undeÞned in this mode.

¥ DN: Denormalization mode

DN = 0: A denormalized number is treated as such.

DN = 1: A denormalized number is treated as zero.

 FPU Error (E)
Invalid
Operation (V)

Division by
Zero (Z) Overflow (O) Underflow (U) Inexact (I)

Cause FPU exception
cause field

Bit 17 Bit 16 Bit 15 Bit 14 Bit 13 Bit 12

Enable FPU exception
enable field

None Bit 11 Bit 10 Bit 9 Bit 8 Bit 7

Flag FPU exception
flag field

None Bit 6 Bit 5 Bit 4 Bit 3 Bit 2

31 22 21 20 19 18 17 12 11 7 6 2 1 0

— Cause Enable FlagFR SZ PR DN RM
HPM-14

2. Programming Model
When an FPU operation instruction is executed, the cause Þeld is cleared to zero Þrst. When the next FPU exception
is requested, the corresponding bits in the cause Þeld and ßag Þeld are set to 1. The ßag Þeld holds the status of the
exception generated after the Þeld was last cleared.

¥ RM: Rounding mode

 RM = 00: Round to Nearest

 RM = 01: Round to Zero

 RM = 10: Reserved

 RM = 11: Reserved

¥ Bits 22 to 31: Reserved

Floating-point communication register, FPUL (32 bits, initial value undeÞned): Data transfer between FPU
registers and CPU registers is carried out via the FPUL register.

Programming Note: When SZ = 1 and big endian mode is selected, FMOV can be used for double-precision
ßoating-point load or store operations. In little endian mode, two 32-bit data size moves must be executed, with SZ
= 0, to load or store a double-precision ßoating-point number.

2.3 Memory-Mapped Registers
Appendix A shows the control registers mapped to memory. The control registers are double-mapped to the
following two memory areas. All registers have two addresses.

H'1F00 0000ÐH'1FFF FFFF

H'FF00 0000ÐH'FFFF FFFF

These two areas are used as follows.

¥ H'1F00 0000ÐH'1FFF FFFF

This area must be accessed in address translation mode using the TLB. Since external memory is deÞned
as a 29-bit address space in the SH7091 architecture, the TLBÕs physical page numbers do not cover a 32-bit
address space. In address translation, the page numbers of this area can be set in the corresponding Þeld of
the TLB by accessing a memory-mapped register. The page numbers of this area should be used as the
actual page numbers set in the TLB. When address translation is not performed, the operation of accesses
to this area is undeÞned.

¥ H'FF00 0000ÐH'FFFF FFFF

This area must be accessed without address translation.

Do not access undeÞned locations in either area The operation of an access to an undeÞned location is
undeÞned. Also, memory-mapped registers must be accessed using a Þxed data size. The operation of an
access using an invalid data size is undeÞned.

Programming Note: Access to area H'FF00 0000ÐH'FFFF FFFF in user mode will cause an address error.
Memory-mapped registers can be referenced in user mode by means of access that involves address translation.

2.4 Data Format in Registers
Register operands are always longwords (32 bits). When a memory operand is only a byte (8 bits) or a word (16
bits), it is sign-extended into a longword when loaded into a register.

31 0
Longword
HPM-15

Dreamcast SH4 Program Manual
2.5 Data Formats in Memory
Memory data formats are classiÞed into bytes, words, and longwords. Memory can be accessed in 8-bit byte, 16-bit
word, or 32-bit longword form. A memory operand less than 32 bits in length is sign-extended before being loaded
into a register.

A word operand must be accessed starting from a word boundary (even address of a 2-byte unit: address 2n), and
a longword operand starting from a longword boundary (even address of a 4-byte unit: address 4n). An address
error will result if this rule is not observed. A byte operand can be accessed from any address.

Big endian or little endian byte order can be selected for the data format. The endian should be set with the MD5
external pin in a power-on reset. Big endian is selected when the MD5 pin is low, and little endian when high. The
endian cannot be changed dynamically. Bit positions are numbered left to right from most-signiÞcant to
least-signiÞcant. Thus, in a 32-bit longword, the leftmost bit, bit 31, is the most signiÞcant bit and the rightmost bit,
bit 0, is the least signiÞcant bit.

The data format in memory is shown in Þgure 2.5. In little endian mode, data written as byte-size (8 bits) should be
read as byte size, and data written as word-size (16 bits) should be read as word size.

Figure 2.5 Data Formats In Memory

Note: The SH7091 does not support endian conversion for the 64-bit data format. Therefore, if double-precision
ßoating-point format (64-bit) access is performed in little endian mode, the upper and lower 32 bits will
be reversed.

2.6 Processor States
The SH7091 has Þve processor states: the reset state, exception-handling state, bus-released state, program
execution state, and power-down state.

Reset State: In this state the CPU is reset. The reset state is entered when the RESET pin goes low. The CPU enters
the power-on reset state if the MRESET pin is high, and the manual reset state if the MRESET pin is low. For more
information on resets, see section 5, Exceptions.

In the power-on reset state, the internal state of the CPU and the on-chip peripheral module registers are initialized.
In the manual reset state, the internal state of the CPU and registers of on-chip peripheral modules other than the
bus state controller (BSC) are initialized. Since the bus state controller (BSC) is not initialized in the manual reset
state, refreshing operations continue. Refer to the register conÞgurations in the relevant sections for further details.

Exception-Handling State: This is a transient state during which the CPUÕs processor state ßow is altered by a reset,
general exception, or interrupt exception handling source.

In the case of a reset, the CPU branches to address H'A000 0000 and starts executing the user-coded exception
handling program.

Address A

A

7 0 7 0 7 0 7 0

31

15 0 15 0

31 0

15 0

31 0

23 15 7 0

A + 1 A + 2 A + 3

Byte 0

Word 0

Longword

Word 1

Byte 1 Byte 2 Byte 3

A + 11

7 0 7 0 7 0 7 0

31

15 0

23 15 7 0

A + 10 A + 9 A + 8

Byte 3

Word 1

Longword

Word 0

Byte 2 Byte 1 Byte 0

Address A + 4

Address A + 8

Address A + 8

Address A + 4

Address A

Big endian Little endian
HPM-16

2. Programming Model
In the case of a general exception or interrupt, the program counter (PC) contents are saved in the saved program
counter (SPC), the status register (SR) contents are saved in the saved status register (SSR), and the R15 contents are
saved in saved general register 15 (SGR). The CPU branches to the start address of the user-coded exception service
routine found from the sum of the contents of the vector base address and the vector offset. See section 5,
Exceptions, for more information on resets, general exceptions, and interrupts.

Program Execution State: In this state the CPU executes program instructions in sequence.

Power-Down State: In the power-down state, CPU operation halts and power consumption is reduced. The
power-down state is entered by executing a SLEEP instruction. There are two modes in the power-down state: sleep
mode and standby mode. For details, see section 9, Power-Down Modes.

Bus-Released State: In this state the CPU has released the bus to a device that requested it.

Transitions between the states are shown in Þgure 2.6.

Figure 2.6 Processor State Transitions

 = 0,
 = 1

 = 1,
 = 0

 = 1,
 = 1

Power-on reset state Manual reset state

Program execution state

Bus-released state

Exception-handling state

Interrupt Interrupt
End of exception
transition
processing

Bus request
clearance

Exception
interrupt

Bus request
 clearanceBus

request

Bus request
clearance

SLEEP instruction
with STBY bit
cleared

SLEEP instruction
with STBY bit set

From any state when
 = 0 and = 1

From any state when
 = 0 and = 0

Reset state

Power-down state

Bus request

Bus request

Standby modeSleep mode
HPM-17

Dreamcast SH4 Program Manual
2.7 Processor Modes
There are two processor modes: user mode and privileged mode. The processor mode is determined by the
processor mode bit (MD) in the status register (SR). User mode is selected when the MD bit is cleared to 0, and
privileged mode when the MD bit is set to 1. When the reset state or exception state is entered, the MD bit is set to
1. When exception handling ends, the MD bit is cleared to 0 and user mode is entered. There are certain registers
and bits which can only be accessed in privileged mode.
HPM-18

3. Memory Management Unit
(MMU)
3.1 Overview

3.1.1 Features

The SH7091 can handle 29-bit external memory space from an 8-bit address space identiÞer and 32-bit logical
(virtual) address space. Address translation from virtual address to physical address is performed using the
memory management unit (MMU) built into the SH7091. The MMU performs high-speed address translation by
caching user-created address translation table information in an address translation buffer (translation lookaside
buffer: TLB). The SH7091 has four instruction TLB (ITLB) entries and 64 uniÞed TLB (UTLB) entries. UTLB copies
are stored in the ITLB by hardware. A paging system is used for address translation, with support for four page sizes
(1, 4, and 64 kbytes, and 1 Mbyte). It is possible to set the virtual address space access right and implement storage
protection independently for privileged mode and user mode.

3.1.2 Role of the MMU

The MMU was conceived as a means of making efÞcient use of physical memory. As shown in Þgure 3.1, when a
process is smaller in size than the physical memory, the entire process can be mapped onto physical memory, but if
the process increases in size to the point where it does not Þt into physical memory, it becomes necessary to divide
the process into smaller parts, and map the parts requiring execution onto physical memory on an ad hoc basis ((1)).
Having this mapping onto physical memory executed consciously by the process itself imposes a heavy burden on
the process. The virtual memory system was devised as a means of handling all physical memory mapping to
reduce this burden ((2)). With a virtual memory system, the size of the available virtual memory is much larger than
the actual physical memory, and processes are mapped onto this virtual memory. Thus processes only have to
consider their operation in virtual memory, and mapping from virtual memory to physical memory is handled by
the MMU. The MMU is normally managed by the OS, and physical memory switching is carried out so as to enable
the virtual memory required by a task to be mapped smoothly onto physical memory. Physical memory switching
is performed via secondary storage, etc.

The virtual memory system that came into being in this way works to best effect in a time sharing system (TSS) that
allows a number of processes to run simultaneously ((3)). Running a number of processes in a TSS did not increase
efÞciency since each process had to take account of physical memory mapping. EfÞciency is improved and the load
on each process reduced by the use of a virtual memory system ((4)). In this system, virtual memory is allocated to
HPM-19

Dreamcast SH4 Program Manual
each process. The task of the MMU is to map a number of virtual memory areas onto physical memory in an efÞcient
manner. It is also provided with memory protection functions to prevent a process from inadvertently accessing
another processÕs physical memory.

When address translation from virtual memory to physical memory is performed using the MMU, it may happen
that the translation information has not been recorded in the MMU, or the virtual memory of a different process is
accessed by mistake. In such cases, the MMU will generate an exception, change the physical memory mapping,
and record the new address translation information.

Although the functions of the MMU could be implemented by software alone, having address translation
performed by software each time a process accessed physical memory would be very inefÞcient. For this reason, a
buffer for address translation (the translation lookaside buffer: TLB) is provided in hardware, and frequently used
address translation information is placed here. The TLB can be described as a cache for address translation
information. However, unlike a cache, if address translation failsÑthat is, if an exception occursÑswitching of the
address translation information is normally performed by software. Thus memory management can be performed
in a ßexible manner by software.

There are two methods by which the MMU can perform mapping from virtual memory to physical memory: the
paging method, using Þxed-length address translation, and the segment method, using variable-length address
translation. With the paging method, the unit of translation is a Þxed-size address space called a page (usually from
1 to 64 kbytes in size).

In the following descriptions, the address space in virtual memory in the SH7091 is referred to as virtual address
space, and the address space in physical memory as physical address space.

Figure 3.1 Role of the MMU

��
��
��

��
�

��
�
�

��
����

(2)

Process 1

Process 1Physical
memory

Process 1

Process 2

Process 3

Virtual
memory

Process 1

Process 1

Process 2

Process 3

MMU

MMU

(4)(3)

(1)

Physical
memory

Physical
memory

Physical
memory

Physical
memory

Virtual
memory
HPM-20

3. Memory Management Unit (MMU)
3.1.3 Register Configuration

The MMU registers are shown in table below 3.1.

Table 3.1 MMU Registers

Note: The initial value is the value after a power-on reset or manual reset.
This is the address when using the virtual/physical address space P4 area. When making an access from
physical address space area 7 using the TLB, the upper 3 bits of the address are ignored.

3.1.4 Caution

Operation is not guaranteed if an area designated as a reserved area in this manual is accessed.

3.2 Register Descriptions
There are six MMU-related registers.

Name Abbreviation R/W Initial Value*1 P4 Address*2 Area 7 Address*2 Access Size

Page table entry high register PTEH R/W Undefined H'FF00 0000 H'1F00 0000 32

Page table entry low register PTEL R/W Undefined H'FF00 0004 H'1F00 0004 32

Page table entry assistance
register

PTEA R/W Undefined H'FF00 0034 H'1F00 0034 32

Translation table base register TTB R/W Undefined H'FF00 0008 H'1F00 0008 32

TLB exception address register TEA R/W Undefined H'FF00 000C H'1F00 000C 32

MMU control register MMUCR R/W H'0000 0000 H'FF00 0010 H'1F00 0010 32
HPM-21

Dreamcast SH4 Program Manual
Figure 3.2 MMU-Related Registers

Page table entry high register (PTEH): Longword access to PTEH can be performed from H'FF00 0000 in the P4
area and H'1F00 0000 in area 7. PTEH consists of the virtual page number (VPN) and address space identiÞer
(ASID). When an MMU exception or address error exception occurs, the VPN of the virtual address at which the
exception occurred is set in the VPN Þeld by hardware. VPN varies according to the page size, but the VPN set by
hardware when an exception occurs consists of the upper 22 bits of the virtual address which caused the exception.
VPN setting can also be carried out by software. The number of the currently executing process is set in the ASID
Þeld by software. ASID is not updated by hardware. VPN and ASID are recorded in the UTLB by means of the
LDLTB instruction.

Page table entry low register (PTEL): Longword access to PTEL can be performed from H'FF00 0004 in the P4 area
and H'1F00 0004 in area 7. PTEL is used to hold the physical page number and page management information to be
recorded in the UTLB by means of the LDTLB instruction. The contents of this register are not changed unless a
software directive is issued.

Page table entry assistance register (PTEA): Longword access to PTEA can be performed from H'FF00 0034 in the
P4 area and H'1F00 0034 in area 7. PTEL is used to store assistance bits for PCMCIA access to the UTLB by means
of the LDTLB instruction. The contents of this register are not changed unless a software directive is issued.

Translation table base register (TTB): Longword access to TTB can be performed from H'FF00 0008 in the P4 area
and H'1F00 0008 in area 7. TTB is used, for example, to hold the base address of the currently used page table. The
contents of TTB are not changed unless a software directive is issued. This register can be freely used by software.

31 10 9 8 7 0

VPN

PPN

— — ASID

1. PTEH

31 30 29 28 10 9 8 7 6 5 4 3 2 1 0

— — — — V SZ PR SZ C D SH WT

2. PTEL

31 4 3 2 0

TC SA

3. PTEA

31 0

TTB

4. TTB

31

Virtual address at which MMU exception or address error occurred

5. TEA

31 26 24 23 18 17 16 15 10 9 8 7 6 5 4 3 2 1 0

LRUI — — — — URC

SQMD

SV — — — — — TI — AT

6. MMUCR

— indicates a reserved bit: the write value must be 0, and a read will return an undefined value.

URB

25
HPM-22

3. Memory Management Unit (MMU)
TLB exception address register (TEA): Longword access to TEA can be performed from H'FF00 000C in the P4 area
and H'1F00 000C in area 7. After an MMU exception or address error exception occurs, the virtual address at which
the exception occurred is set in TEA by hardware. The contents of this register can be changed by software.

MMU control register (MMUCR): MMUCR contains the following bits:

LRUI: Least recently used ITLB

URB: UTLB replace boundary

URC: UTLB replace counter

SQMD: Store queue mode bit

SV: Single virtual mode bit

TI: TLB invalidate

AT: Address translation bit

Longword access to MMUCR can be performed from H'FF00 0010 in the P4 area and H'1F00 0010 in area 7. The
individual bits perform MMU settings as shown below. Therefore, MMUCR rewriting should be performed by a
program in the P1 or P2 area. After MMUCR is updated, an instruction that performs data access to the P0, P3, U0,
or store queue area should be located at least four instructions after the MMUCR update instruction. Also, a branch
instruction to the P0, P3, or U0 area should be located at least eight instructions after the MMUCR update
instruction. MMUCR contents can be changed by software. The LRUI bits and URC bits may also be updated
by hardware.

¥ LRUI: The LRU (least recently used) method is used to decide the ITLB entry to be replaced in the event
of an ITLB miss. The entry to be purged from the ITLB can be conÞrmed using the LRUI bits. LRUI
is updated by means of the algorithm shown below. A dash in this table means that updating is
not performed.

 LRUI

 [5] [4] [3] [2] [1] [0]

 When ITLB entry 0 is used 0 0 0 — — —

 When ITLB entry 1 is used 1 — — 0 0 —

 When ITLB entry 2 is used — 1 — 1 — 0

 When ITLB entry 3 is used — — 1 — 1 1

 Other than the above — — — — — —
HPM-23

Dreamcast SH4 Program Manual
When the LRUI bit settings are as shown below, the corresponding ITLB entry is updated by an ITLB miss. An
asterisk in this table means ÒdonÕt careÓ.

Ensure that values for which ÒSetting prohibitedÓ is indicated in the above table are not set at the discretion of
software. After a power-on or manual reset the LRUI bits are initialized to 0, and therefore a prohibited setting is
never made by a hardware update.

¥ URB: Bits that indicate the UTLB entry boundary at which replacement is to be performed. Valid only
when URB > 0.

¥ URC: Random counter for indicating the UTLB entry for which replacement is to be performed with an
LDTLB instruction. URC is incremented each time the UTLB is accessed. When URB > 0, URC is reset to
0 when the condition URC = URB occurs. Also note that, if a value is written to URC by software which
results in the condition URC > URB, incrementing is Þrst performed in excess of URB until URC = H'3F.
URC is not incremented by an LDTLB instruction.

¥ SQMD: Store queue mode bit. SpeciÞes the right of access to the store queues.

0: User/privileged access possible

1: Privileged access possible (address error exception in case of user access)

¥ SV: Bit that switches between single virtual memory mode and multiple virtual memory mode.

0: Multiple virtual memory mode

1: Single virtual memory mode

When this bit is changed, ensure that 1 is also written to the TI bit.

¥ TI: Writing 1 to this bit invalidates (clears to 0) all valid UTLB/ITLB bits. This bit always returns 0
when read.

¥ AT: SpeciÞes MMU enabling or disabling.

0: MMU disabled

1: MMU enabled

MMU exceptions are not generated when the AT bit is 0. In the case of software that does not use the MMU,
therefore, the AT bit should be cleared to 0.

 LRUI

 [5] [4] [3] [2] [1] [0]

 ITLB entry 0 is updated 1 1 1 * * *

 ITLB entry 1 is updated 0 * * 1 1 *

 ITLB entry 2 is updated * 0 * 0 * 1

 ITLB entry 3 is updated * * 0 * 0 0

 Other than the above Setting prohibited
HPM-24

3. Memory Management Unit (MMU)
3.3 Memory Space

3.3.1 Physical Memory Space

The SH7091 supports a 32-bit physical memory space, and can access a 4-Gbyte address space. When the
MMUCR.AT bit is cleared to 0 and the MMU is disabled, the address space is this physical memory space. The
physical memory space is divided into a number of areas, as shown in Þgure 3.3. The physical memory space is
permanently mapped onto 29-bit external memory space; this correspondence can be implemented by ignoring the
upper 3 bits of the physical memory space addresses. In privileged mode, the 4-Gbyte space from the P0 area to the
P4 area can be accessed. In user mode, a 2-Gbyte space in the U0 area can be accessed. Accessing the P1 to P4 areas
(except the store queue area) in user mode will cause an address error.

Figure 3.3 Physical Memory Space (MMUCR.AT = 0)

P0, P1, P3, U0 Areas: The P0, P1, P3, and U0 areas can be accessed using the cache. Whether or not the cache is used
is determined by the cache control register (CCR). When the cache is used, with the exception of the P1 area,
switching between the copy-back method and the write-through method for write accesses is speciÞed by the
CCR.WT bit. For the P1 area, switching is speciÞed by the CCR.CB bit. Zeroizing the upper 3 bits of an address in
these areas gives the corresponding external memory space address. However, since area 7 in the external memory
space is a reserved area, a reserved area also appears in these areas.

P2 Area: The P2 area cannot be accessed using the cache. In the P2 area, zeroizing the upper 3 bits of an address
gives the corresponding external memory space address. However, since area 7 in the external memory space is a
reserved area, a reserved area also appears in this area.

P4 Area: The P4 area is mapped onto SH7091 on-chip I/O channels. This area cannot be accessed using the cache.
The P4 area is shown in detail in Þgure 3.4.

Area 0
Area 1
Area 2
Area 3
Area 4
Area 5
Area 6
Area 7

External
memory space

Address error

Address error

Store queue area

User modePrivileged mode

P1 area
Cacheable

P0 area
Cacheable

P2 area
Non-cacheable

P3 area
Cacheable

P4 area
Non-cacheable

U0 area
Cacheable

H'0000 0000

H'8000 0000

H'E000 0000
H'E400 0000

H'FFFF FFFF

H'0000 0000

H'8000 0000

H'FFFF FFFF

H'A000 0000

H'C000 0000

H'E000 0000
HPM-25

Dreamcast SH4 Program Manual
Figure 3.4 P4 Area

The area from H'E000 0000 to H'E3FF FFFF comprises addresses for accessing the store queues (SQs). When the
MMU is disabled (MMUCR.AT = 0), the SQ access right is speciÞed by the MMUCR.SQMD bit. For details, see
section 4.6, Store Queues.

The area from H'F000 0000 to H'F0FF FFFF is used for direct access to the instruction cache address array. For details,
see section 4.5.1, IC Address Array.

The area from H'F100 0000 to H'F1FF FFFF is used for direct access to the instruction cache data array. For details,
see section 4.5.2, IC Data Array.

The area from H'F200 0000 to H'F2FF FFFF is used for direct access to the instruction TLB address array. For details,
see section 3.7.1, ITLB Address Array.

The area from H'F300 0000 to H'F3FF FFFF is used for direct access to instruction TLB data arrays 1 and 2. For details,
see sections 3.7.2, ITLB Data Array 1, and 3.7.3, ITLB Data Array 2.

The area from H'F400 0000 to H'F4FF FFFF is used for direct access to the operand cache address array. For details,
see section 4.5.3, OC Address Array.

The area from H'F500 0000 to H'F5FF FFFF is used for direct access to the operand cache data array. For details, see
section 4.5.4, OC Data Array.

The area from H'F600 0000 to H'F6FF FFFF is used for direct access to the uniÞed TLB address array. For details, see
section 3.7.4, UTLB Address Array.

The area from H'F700 0000 to H'F7FF FFFF is used for direct access to uniÞed TLB data arrays 1 and 2. For details,
see sections 3.7.5, UTLB Data Array 1, and 3.7.6, UTLB Data Array 2.

The area from H'FF00 0000 to H'FFFF FFFF is the on-chip peripheral module control register area.

H'E000 0000

H'E400 0000

H'F000 0000

H'F100 0000

H'F200 0000

H'F300 0000

H'F400 0000

H'F500 0000

H'F600 0000

H'F700 0000

H'F800 0000

H'FF00 0000

Store queue

Reserved area

Instruction cache address array

Instruction cache data array

Instruction TLB address array

Instruction TLB data arrays 1 and 2

Operand cache address array

Operand cache data array

Unified TLB address array

Unified TLB data arrays 1 and 2

Reserved area

Control register area
HPM-26

3. Memory Management Unit (MMU)
3.3.2 External Memory Space

The SH7091 supports a 29-bit external memory space. The external memory space is divided into eight areas as
shown in Þgure 3.5. Areas 0 to 6 relate to memory, such as SRAM, synchronous DRAM, DRAM, and PCMCIA. Area
7 is a reserved area. For details, see section 13, Bus State Controller (BSC), in the Hardware Manual.

Figure 3.5 External Memory Space

3.3.3 Virtual Memory Space

Setting the MMUCR.AT bit to 1 enables the P0, P3, and U0 areas of the physical memory space in the SH7091 to be
mapped onto any external memory space in 1-, 4-, or 64-kbyte, or 1-Mbyte, page units. By using an 8-bit address
space identiÞer, the P0, U0, P3, and store queue areas can be increased to a maximum of 256. This is called the virtual
memory space. Mapping from virtual memory space to 29-bit external memory space is carried out using the TLB.
Only when area 7 in external memory space is accessed using virtual memory space, addresses H'1F00 0000 to
H'1FFF FFFF of area 7 are not designated as a reserved area, but are equivalent to the P4 area control register area
in the physical memory space. Virtual memory space is illustrated in Þgure 3.6.

H'0000 0000

H'0400 0000

H'0800 0000

H'0C00 0000

H'1000 0000

H'1400 0000

H'1800 0000

H'1C00 0000
H'1FFF FFFF

Area 0

Area 1

Area 2

Area 3

Area 4

Area 5

Area 6

Area 7 (reserved area)
HPM-27

Dreamcast SH4 Program Manual
Figure 3.6 Virtual Memory Space (MMUCR.AT = 1)

P0, P3, U0 Areas: The P0 area (excluding addresses H'7C00 0000 to H'7FFF FFFF), P3 area, and U0 area allow access
using the cache and address translation using the TLB. These areas can be mapped onto any external memory space
in 1-, 4-, or 64-kbyte, or 1-Mbyte, page units. When CCR is in the cache-enabled state and the TLB enable bit (C bit) is
1, accesses can be performed using the cache. In write accesses to the cache, switching between the copy-back method
and the write-through method is indicated by the TLB write-through bit (WT bit), and is speciÞed in page units.

Only when the P0, P3, and U0 areas are mapped onto external memory space by means of the TLB, addresses H'1F00
0000 to H'1FFF FFFF of area 7 in external memory space are allocated to the control register area. This enables
on-chip peripheral module control registers to be accessed from the U0 area in user mode. In this case, the C bit for
the corresponding page must be cleared to 0.

P1, P2, P4 Areas: Address translation using the TLB cannot be performed for the P1, P2, or P4 area (except for the
store queue area). Accesses to these areas are the same as for physical memory space. The store queue area can be
mapped onto any external memory space by the MMU. However, operation in the case of an exception differs from
that for normal P0, U0, and P3 spaces. For details, see section 4.6, Store Queues.

3.3.4 On-Chip RAM Space

In the SH7091, half (8 kbytes) of the instruction cache (16 kbytes) can be used as on-chip RAM. This can be done by
changing the CCR settings.

When the operand cache is used as on-chip RAM (CCR.ORA = 1), P0 area addresses H'7C00 0000 to H'7FFF FFFF
are an on-chip RAM area. Data accesses (byte/word/longword/quadword) can be used in this area. This area can
only be used in RAM mode.

Area 0

Area 1

 Area 2

 Area 3

 Area 4

 Area 5

 Area 6

 Area 7

External
memory space

256256

U0 area
Cacheable

Address translation possible

Address error

Address error

Store queue area

P0 area
Cacheable

Address translation possible

User modePrivileged mode

P1 area
Cacheable

Address translation not possible

P2 area
Non-cacheable

Address translation not possible

P3 area
Cacheable

Address translation possible

P4 area
Non-cacheable

Address translation not possible
HPM-28

3. Memory Management Unit (MMU)
3.3.5 Address Translation

When the MMU is used, the virtual address space is divided into units called pages, and translation to physical
addresses is carried out in these page units. The address translation table in external memory contains the physical
addresses corresponding to virtual addresses and additional information such as memory protection codes. Fast
address translation is achieved by caching the contents of the address translation table located in external memory
into the TLB. In the SH7091, basically, the ITLB is used for instruction accesses and the UTLB for data accesses. In
the event of an access to an area other than the P4 area, the accessed virtual address is translated to a physical
address. If the virtual address belongs to the P1 or P2 area, the physical address is uniquely determined without
accessing the TLB. If the virtual address belongs to the P0, U0, or P3 area, the TLB is searched using the virtual
address, and if the virtual address is recorded in the TLB, a TLB hit is made and the corresponding physical address
is read from the TLB. If the accessed virtual address is not recorded in the TLB, a TLB miss exception is generated
and processing switches to the TLB miss exception routine. In the TLB miss exception routine, the address
translation table in external memory is searched, and the corresponding physical address and page management
information are recorded in the TLB. After the return from the exception handling routine, the instruction which
caused the TLB miss exception is re-executed.

3.3.6 Single Virtual Memory Mode and Multiple Virtual Memory Mode

There are two virtual memory systems, single virtual memory and multiple virtual memory, either of which can be
selected with the MMUCR.SV bit. In the single virtual memory system, a number of processes run simultaneously,
using virtual address space on an exclusive basis, and the physical address corresponding to a particular virtual
address is uniquely determined. In the multiple virtual memory system, a number of processes run while sharing
the virtual address space, and a particular virtual address may be translated into different physical addresses
depending on the process. The only difference between the single virtual memory and multiple virtual memory
systems in terms of operation is in the TLB address comparison method (see section 3.4.3, Address
Translation Method).

3.3.7 Address Space Identifier (ASID)

In multiple virtual memory mode, the 8-bit address space identiÞer (ASID) is used to distinguish between processes
running simultaneously while sharing the virtual address space. Software can set the ASID of the currently
executing process in PTEH in the MMU. The TLB does not have to be purged when processes are switched by
means of ASID.

In single virtual memory mode, ASID is used to provide memory protection for processes running simultaneously
while using the virtual memory space on an exclusive basis.
HPM-29

Dreamcast SH4 Program Manual
3.4 TLB Functions

3.4.1 Unified TLB (UTLB) Configuration

The uniÞed TLB (UTLB) is so called because of its use for the following two purposes:

1) To translate a virtual address to a physical address in a data access

2) As a table of address translation information to be recorded in the instruction TLB in the event of an
ITLB miss

Information in the address translation table located in external memory is cached into the UTLB. The address
translation table contains virtual page numbers and address space identiÞers, and corresponding physical page
numbers and page management information. Figure 3.7 shows the overall conÞguration of the UTLB. The UTLB
consists of 64 fully-associative type entries. Figure 3.8 shows the relationship between the address format and
page size.

Figure 3.7 UTLB Configuration

Figure 3.8 Relationship between Page Size and Address Format

PPN [28:10]

PPN [28:10]

PPN [28:10]

SZ [1:0]

SZ [1:0]

SZ [1:0]

SH

SH

SH

C

C

C

PR [1:0]

PR [1:0]

PR [1:0]

ASID [7:0]

ASID [7:0]

ASID [7:0]

VPN [31:10]

VPN [31:10]

VPN [31:10]

V

V

V

Entry 0

Entry 1

Entry 2

D

D

D

WT

WT

WT

PPN [28:10] SZ [1:0] SH C PR [1:0]

SA [2:0]

SA [2:0]

SA [2:0]

TC

TC

TC

SA [2:0] TCASID [7:0] VPN [31:10] VEntry 63 D WT

31

• 1-kbyte page

10 9 0
Virtual address

31

• 4-kbyte page

12 11 0
Virtual address

31

• 64-kbyte page

16 15 0
Virtual address

31

• 1-Mbyte page

20 19 0
Virtual address

VPN Offset

VPN Offset

VPN Offset

VPN Offset

28 10 9 0
Physical address

28 12 11 0
Physical address

28 16 15 0
Physical address

28 20 19 0
Physical address

PPN Offset

PPN Offset

PPN Offset

PPN Offset
HPM-30

3. Memory Management Unit (MMU)
¥ VPN: Virtual page number

For 1-kbyte page: upper 22 bits of virtual address

For 4-kbyte page: upper 20 bits of virtual address

For 64-kbyte page: upper 16 bits of virtual address

For 1-Mbyte page: upper 12 bits of virtual address

¥ ASID: Address space identiÞer

Indicates the process that can access a virtual page.

In single virtual memory mode and user mode, or in multiple virtual memory mode, if the SH bit is 0, this
identiÞer is compared with the ASID in PTEH when address comparison is performed.

¥ SH: Share status bit

When 0, pages are not shared by processes.

When 1, pages are shared by processes.

¥ SZ: Page size bits

Specify the page size.

00: 1-kbyte page

01: 4-kbyte page

10: 64-kbyte page

11: 1-Mbyte page

¥ V: Validity bit

Indicates whether the entry is valid.

0: Invalid

1: Valid

Cleared to 0 by a power-on reset.

Not affected by a manual reset.

¥ PPN: Physical page number

Upper 22 bits of the physical address.

With a 1-kbyte page, PPN bits [28:10] are valid.

With a 4-kbyte page, PPN bits [28:12] are valid.

With a 64-kbyte page, PPN bits [28:16] are valid.

With a 1-Mbyte page, PPN bits [28:20] are valid.

The synonym problem must be taken into account when setting the PPN (see section 3.5.5, Avoiding
Synonym Problems).

¥ PR: Protection key data

2-bit data expressing the page access right as a code.

00: Can be read only, in privileged mode

01: Can be read and written in privileged mode

10: Can be read only, in privileged or user mode

11: Can be read and written in privileged mode or user mode

¥ C: Cacheability bit

Indicates whether a page is cacheable.

0: Not cacheable

1: Cacheable
HPM-31

Dreamcast SH4 Program Manual
When control register space is mapped, this bit must be cleared to 0.

¥ D: Dirty bit

Indicates whether a write has been performed to a page.

0: Write has not been performed

1: Write has been performed

¥ WT: Write-through bit

SpeciÞes the cache write mode.

0: Copy-back mode

1: Write-through mode

¥ SA: Space attribute bits

Valid only when the page is mapped onto PCMCIA connected to area 5 or 6.

000: UndeÞned

001: Variable-size I/O space (base size according to IOIS16 signal)

010: 8-bit I/O space

011: 16-bit I/O space

100: 8-bit common memory space

101: 16-bit common memory space

110: 8-bit attribute memory space

111: 16-bit attribute memory space

¥ TC: Timing control bit

Used to select wait control register bits in the bus control unit for areas 5 and 6.

0: WCR2 (A5W2ÐA5W0) and PCR (A5PCW1ÐA5PCW0, A5TED2ÐA5TED0, A5TEH2ÐA5TEH0) are used

1: WCR2 (A6W2ÐA6W0) and PCR (A6PCW1ÐA6PCW0, A6TED2ÐA6TED0, A6TEH2ÐA6TEH0) are used

3.4.2 Instruction TLB (ITLB) Configuration

The ITLB is used to translate a virtual address to a physical address in an instruction access. Information in the
address translation table located in the UTLB is cached into the ITLB. Figure 3.9 shows the overall conÞguration of
the ITLB. The ITLB consists of 4 fully-associative type entries. The address translation information is almost the
same as that in the UTLB, but with the following differences:

1) D and WT bits are not supported.

2) There is only one PR bit, corresponding to the upper of the PR bits in the UTLB.

Figure 3.9 ITLB Configuration

PPN [28:10]

PPN [28:10]

PPN [28:10]

PPN [28:10]

SZ [1:0]

SZ [1:0]

SZ [1:0]

SZ [1:0]

SH

SH

SH

SH

C

C

C

C

PR

PR

PR

PR

ASID [7:0]

ASID [7:0]

ASID [7:0]

ASID [7:0]

VPN [31:10]

VPN [31:10]

VPN [31:10]

VPN [31:10]

V

V

V

V

Entry 0

Entry 1

Entry 2

Entry 3

SA [2:0]

SA [2:0]

SA [2:0]

SA [2:0]

TC

TC

TC

TC
HPM-32

3. Memory Management Unit (MMU)
3.4.3 Address Translation Method

Figures 3.10 and 3.11 show ßowcharts of memory accesses using the UTLB and ITLB.

Figure 3.10 Flowchart of Memory Access Using UTLB

MMUCR.AT = 1

SH = 0
and (MMUCR.SV = 0 or

SR.MD = 0)

VPNs match
and ASIDs match and

V = 1

Only one
entry matches

SR.MD?

CCR.OCE?

CCR.CB? CCR.WT?

VPNs match
and V = 1

Cache access
in write-through mode

Memory access

Memory access

Data TLB multiple
hit exception

Data TLB protection
violation exception

Data TLB miss
exception

Initial page write
exception

Data TLB protection
violation exception

Cache access
in copy-back mode

Data access to virtual address (VA)

On-chip I/O access

R/W?R/W?

VA is
in P4 area

VA is
in P2 area

VA is
in P1 area

VA is in P0, U0,
or P3 area

Yes

No

1

0

Yes

Yes

NoNo

Yes

Yes

Yes

No

No

1 (Privileged)

1

0

0

PR?

0 (User)

D?

R/W? WWW

RRR R

WR/W?

(Non-cacheable)

WT?

C = 1
 and CCR.OCE = 1

No

1

1

0

0

00 or
01

10 11 01 or 11 00 or 10
HPM-33

Dreamcast SH4 Program Manual
Figure 3.11 Flowchart of Memory Access Using ITLB

MMUCR.AT = 1

SH = 0
and (MMUCR.SV = 0 or

SR.MD = 0)

VPNs match
and ASIDs match and

V = 1

Only one
entry matches

SR.MD?

CCR.ICE?

VPNs match
and V = 1

Memory access

Instruction TLB
multiple hit exception

Instruction TLB
miss exception

Instruction access to virtual address (VA)

VA is
in P4 area

VA is
in P2 area

VA is
in P1 area

VA is in P0, U0,
or P3 area

Yes

No

1

0

Yes

Yes

NoNo

Yes

Yes

No

(Non-cacheable)

C = 1
and CCR.ICE = 1

No

PR?

 Instruction TLB protection
violation exception

Match? Record in ITLB

Access prohibited

0

1

No

Yes

Yes

No

Hardware ITLB
miss handling

0 (User)
1 (Privileged)

Search UTLB

Cache access
HPM-34

3. Memory Management Unit (MMU)
3.5 MMU Functions

3.5.1 MMU Hardware Management

The SH7091 supports the following MMU functions.

1) The MMU decodes the virtual address to be accessed by software, and performs address translation by
controlling the UTLB/ITLB in accordance with the MMUCR settings.

2) The MMU determines the cache access status on the basis of the page management information read
during address translation (C, WT, SA, and TC bits).

3) If address translation cannot be performed normally in a data access or instruction access, the MMU
notiÞes software by means of an MMU exception.

4) If address translation information is not recorded in the ITLB in an instruction access, the MMU searches
the UTLB, and if the necessary address translation information is recorded in the UTLB, the MMU
copies this information into the ITLB in accordance with MMUCR.LRUI.

3.5.2 MMU Software Management

Software processing for the MMU consists of the following:

1) Setting of MMU-related registers. Some registers are also partially updated by hardware automatically.

2) Recording, deletion, and reading of TLB entries. There are two methods of recording UTLB entries: by
using the LDTLB instruction, or by writing directly to the memory-mapped UTLB. ITLB entries can only
be recorded by writing directly to the memory-mapped ITLB. For deleting or reading UTLB/ITLB
entries, it is possible to access the memory-mapped UTLB/ITLB.

3) MMU exception handling. When an MMU exception occurs, processing is performed based on
information set by hardware.

3.5.3 MMU Instruction (LDTLB)

A TLB load instruction (LDTLB) is provided for recording UTLB entries. When an LDTLB instruction is issued, the
SH7091 copies the contents of PTEH, PTEL, and PTEA to the UTLB entry indicated by MMUCR.URC. ITLB entries
are not updated by the LDTLB instruction, and therefore address translation information purged from the UTLB
entry may still remain in the ITLB entry. As the LDTLB instruction changes address translation information, ensure
that it is issued by a program in the P1 or P2 area. The operation of the LDTLB instruction is shown in Þgure 3.12.
HPM-35

Dreamcast SH4 Program Manual
Figure 3.12 Operation of LDTLB Instruction

3.5.4 Hardware ITLB Miss Handling

In an instruction access, the SH7091 searches the ITLB. If it cannot Þnd the necessary address translation
information (i.e. in the event of an ITLB miss), the UTLB is searched by hardware, and if the necessary address
translation information is present, it is recorded in the ITLB. This procedure is known as hardware ITLB miss
handling. If the necessary address translation information is not found in the UTLB search, an instruction TLB miss
exception is generated and processing passes to software.

3.5.5 Avoiding Synonym Problems

When 1- or 4-kbyte pages are recorded in TLB entries, a synonym problem may arise. The problem is that, when a
number of virtual addresses are mapped onto a single physical address, the same physical address data is recorded
in a number of cache entries, and it becomes impossible to guarantee data integrity. This problem does not occur
with the instruction TLB or instruction cache . In the SH7091, entry speciÞcation is performed using bits [13:5] of the
virtual address in order to achieve fast operand cache operation. However, bits [13:10] of the virtual address in the
case of a 1-kbyte page, and bits [13:12] of the virtual address in the case of a 4-kbyte page, are subject to address
translation. As a result, bits [13:10] of the physical address after translation may differ from bits [13:10] of the
virtual address.

Consequently, the following restrictions apply to the recording of address translation information in UTLB entries.

PPN [28:10]

PPN [28:10]

PPN [28:10]

SZ [1:0]

SZ [1:0]

SZ [1:0]

SH

SH

SH

C

C

C

PR [1:0]

PR [1:0]

PR [1:0]

ASID [7:0]

ASID [7:0]

ASID [7:0]

VPN [31:10]

VPN [31:10]

VPN [31:10]

V

V

V

Entry 0

Entry 1

Entry 2

D

D

D

WT

WT

WT

PPN [28:10] SZ [1:0] SH C PR [1:0]

SA [2:0]

SA [2:0]

SA [2:0]

TC

TC

TC

SA [2:0] TCASID [7:0] VPN [31:10] VEntry 63 D WT

31 29 28 9 8 7 6 5 4 3 2 1 0

— — V SZ PR SZ C D SHWT

PTEL

Write

UTLB

31 10 9 8 7 0

— ASID

PTEH

31 26 25 24 23 18 17 16 15 10 9 8 7 3 2 1 0

LRUI — URB — URC SV

SQMD

— TI — AT

MMUCR

VPN

10

PPN

31 4 3 2 0

— SATC

PTEA

Entry specification
HPM-36

3. Memory Management Unit (MMU)
1) When address translation information whereby a number of 1-kbyte page UTLB entries are translated
into the same physical address is recorded in the UTLB, ensure that the VPN [13:10] values are the same.

2) When address translation information whereby a number of 4-kbyte page UTLB entries are translated
into the same physical address is recorded in the UTLB, ensure that the VPN [13:12] values are the same.

3) Do not use 1-kbyte page UTLB entry physical addresses with UTLB entries of a different page size.

4) Do not use 4-kbyte page UTLB entry physical addresses with UTLB entries of a different page size.

The above restrictions apply only when performing accesses using the cache. When cache index mode is used, VPN
[25] is used for the entry address instead of VPN [13], and therefore the above restrictions apply to VPN [25].

Note: When multiple items of address translation information use the same physical memory to provide for
future SH Series expansion, ensure that the VPN [20:10] values are the same. Also, do not use the same
physical address for address translation information of different page sizes.

3.6 MMU Exceptions
There are seven MMU exceptions: the instruction TLB multiple hit exception, instruction TLB miss exception,
instruction TLB protection violation exception, data TLB multiple hit exception, data TLB miss exception, data TLB
protection violation exception, and initial page write exception. Refer to Þgures 3.10 and 3.11 for the conditions
under which each of these exceptions occurs.

3.6.1 Instruction TLB Multiple Hit Exception

An instruction TLB multiple hit exception occurs when more than one ITLB entry matches the virtual address to
which an instruction access has been made. If multiple hits occur when the UTLB is searched by hardware in
hardware ITLB miss handling, a data TLB multiple hit exception will result.

When an instruction TLB multiple hit exception occurs a reset is executed, and cache coherency is not guaranteed.

Hardware Processing: In the event of an instruction TLB multiple hit exception, hardware carries out the
following processing:

1) Sets the virtual address at which the exception occurred in TEA.

2) Sets exception code H'140 in EXPEVT.

3) Branches to the reset handling routine (H'A000 0000).

Software Processing (Reset Routine): The ITLB entries which caused the multiple hit exception are checked in
the reset handling routine. This exception is intended for use in program debugging, and should not normally
be generated.
HPM-37

Dreamcast SH4 Program Manual
3.6.2 Instruction TLB Miss Exception

An instruction TLB miss exception occurs when address translation information for the virtual address to which an
instruction access is made is not found in the UTLB entries by the hardware ITLB miss handling procedure. The
instruction TLB miss exception processing carried out by hardware and software is shown below. This is the same
as the processing for a data TLB miss exception.

Hardware Processing: In the event of an instruction TLB miss exception, hardware carries out the
following processing:

1) Sets the VPN of the virtual address at which the exception occurred in PTEH.

2) Sets the virtual address at which the exception occurred in TEA.

3) Sets exception code H'040 in EXPEVT.

4) Sets the PC value indicating the address of the instruction at which the exception occurred in SPC. If the
exception occurred at a delay slot, sets the PC value indicating the address of the delayed branch
instruction in SPC.

5) Sets the SR contents at the time of the exception in SSR.

6) Sets the MD bit in SR to 1, and switches to privileged mode.

7) Sets the BL bit in SR to 1, and masks subsequent exception requests.

8) Sets the RB bit in SR to 1.

9) Branches to the address obtained by adding offset H'0000 0400 to the contents of VBR, and starts the
instruction TLB miss exception handling routine.

Software Processing (Instruction TLB Miss Exception Handling Routine): Software is responsible for searching
the external memory page table and assigning the necessary page table entry. Software should carry out the
following processing in order to Þnd and assign the necessary page table entry.

1) Write to PTEL the values of the PPN, PR, SZ, C, D, SH, V, and WT bits in the page table entry recorded
in the external memory address translation table. If necessary, the values of the SA and TC bits should
be written to PTEA.

2) When the entry to be replaced in entry replacement is speciÞed by software, write that value to URC in
the MMUCR register. If URC is greater than URB at this time, the value should be changed to an
appropriate value after issuing an LDTLB instruction.

3) Execute the LDTLB instruction and write the contents of PTEH, PTEL, and PTEA to the TLB.

4) Finally, execute the exception handling return instruction (RTE), terminate the exception handling
routine, and return control to the normal ßow. The RTE instruction should be issued at least one
instruction after the LDTLB instruction.
HPM-38

3. Memory Management Unit (MMU)
3.6.3 Instruction TLB Protection Violation Exception

An instruction TLB protection violation exception occurs when, even though an ITLB entry contains address
translation information matching the virtual address to which an instruction access is made, the actual access type
is not permitted by the access right speciÞed by the PR bit. The instruction TLB protection violation exception
processing carried out by hardware and software is shown below.

Hardware Processing: In the event of an instruction TLB protection violation exception, hardware carries out the
following processing:

1) Sets the VPN of the virtual address at which the exception occurred in PTEH.

2) Sets the virtual address at which the exception occurred in TEA.

3) Sets exception code H'0A0 in EXPEVT.

4) Sets the PC value indicating the address of the instruction at which the exception occurred in SPC. If the
exception occurred at a delay slot, sets the PC value indicating the address of the delayed branch
instruction in SPC.

5) Sets the SR contents at the time of the exception in SSR.

6) Sets the MD bit in SR to 1, and switches to privileged mode.

7) Sets the BL bit in SR to 1, and masks subsequent exception requests.

8) Sets the RB bit in SR to 1.

9) Branches to the address obtained by adding offset H'0000 0100 to the contents of VBR, and starts the
instruction TLB protection violation exception handling routine.

Software Processing (Instruction TLB Protection Violation Exception Handling Routine): Resolve the instruction
TLB protection violation, execute the exception handling return instruction (RTE), terminate the exception handling
routine, and return control to the normal ßow. The RTE instruction should be issued at least one instruction after
the LDTLB instruction.

3.6.4 Data TLB Multiple Hit Exception

A data TLB multiple hit exception occurs when more than one UTLB entry matches the virtual address to which a
data access has been made. A data TLB multiple hit exception is also generated if multiple hits occur when the
UTLB is searched in hardware ITLB miss handling.

When a data TLB multiple hit exception occurs a reset is executed, and cache coherency is not guaranteed. The
contents of PPN in the UTLB prior to the exception may also be corrupted.

Hardware Processing: In the event of a data TLB multiple hit exception, hardware carries out the
following processing:

1) Sets the virtual address at which the exception occurred in TEA.

2) Sets exception code H'140 in EXPEVT.

3) Branches to the reset handling routine (H'A000 0000).

Software Processing (Reset Routine): The UTLB entries which caused the multiple hit exception are checked in
the reset handling routine. This exception is intended for use in program debugging, and should not normally
be generated.
HPM-39

Dreamcast SH4 Program Manual
3.6.5 Data TLB Miss Exception

A data TLB miss exception occurs when address translation information for the virtual address to which a data
access is made is not found in the UTLB entries. The data TLB miss exception processing carried out by hardware
and software is shown below.

Hardware Processing: In the event of a data TLB miss exception, hardware carries out the following processing:

1) Sets the VPN of the virtual address at which the exception occurred in PTEH.

2) Sets the virtual address at which the exception occurred in TEA.

3) Sets exception code H'040 in the case of a read, or H'060 in the case of a write, in EXPEVT (OCBP,
OCBWB: read; OCBI, MOVCA.L: write).

4) Sets the PC value indicating the address of the instruction at which the exception occurred in SPC. If the
exception occurred at a delay slot, sets the PC value indicating the address of the delayed branch
instruction in SPC.

5) Sets the SR contents at the time of the exception in SSR.

6) Sets the MD bit in SR to 1, and switches to privileged mode.

7) Sets the BL bit in SR to 1, and masks subsequent exception requests.

8) Sets the RB bit in SR to 1.

9) Branches to the address obtained by adding offset H'0000 0400 to the contents of VBR, and starts the data
TLB miss exception handling routine.

Software Processing (Data TLB Miss Exception Handling Routine): Software is responsible for searching the
external memory page table and assigning the necessary page table entry. Software should carry out the following
processing in order to Þnd and assign the necessary page table entry.

1) Write to PTEL the values of the PPN, PR, SZ, C, D, SH, V, and WT bits in the page table entry recorded
in the external memory address translation table. If necessary, the values of the SA and TC bits should
be written to PTEA.

2) When the entry to be replaced in entry replacement is speciÞed by software, write that value to URC in
the MMUCR register. If URC is greater than URB at this time, the value should be changed to an
appropriate value after issuing an LDTLB instruction.

3) Execute the LDTLB instruction and write the contents of PTEH, PTEL, and PTEA to the UTLB.

4) Finally, execute the exception handling return instruction (RTE), terminate the exception handling
routine, and return control to the normal ßow. The RTE instruction should be issued at least one
instruction after the LDTLB instruction.

3.6.6 Data TLB Protection Violation Exception

A data TLB protection violation exception occurs when, even though a UTLB entry contains address translation
information matching the virtual address to which a data access is made, the actual access type is not permitted by
the access right speciÞed by the PR bit. The data TLB protection violation exception processing carried out by
hardware and software is shown below.
HPM-40

3. Memory Management Unit (MMU)
Hardware Processing: In the event of a data TLB protection violation exception, hardware carries out the
following processing:

1) Sets the VPN of the virtual address at which the exception occurred in PTEH.

2) Sets the virtual address at which the exception occurred in TEA.

3) Sets exception code H'0A0 in the case of a read, or H'0C0 in the case of a write, in EXPEVT (OCBP,
OCBWB: read; OCBI, MOVCA.L: write).

4) Sets the PC value indicating the address of the instruction at which the exception occurred in SPC. If the
exception occurred at a delay slot, sets the PC value indicating the address of the delayed branch
instruction in SPC.

5) Sets the SR contents at the time of the exception in SSR.

6) Sets the MD bit in SR to 1, and switches to privileged mode.

7) Sets the BL bit in SR to 1, and masks subsequent exception requests.

8) Sets the RB bit in SR to 1.

9) Branches to the address obtained by adding offset H'0000 0100 to the contents of VBR, and starts the data
TLB protection violation exception handling routine.

Software Processing (Data TLB Protection Violation Exception Handling Routine): Resolve the data TLB
protection violation, execute the exception handling return instruction (RTE), terminate the exception handling
routine, and return control to the normal ßow. The RTE instruction should be issued at least one instruction after
the LDTLB instruction.

3.6.7 Initial Page Write Exception

An initial page write exception occurs when the D bit is 0 even though a UTLB entry contains address translation
information matching the virtual address to which a data access (write) is made, and the access is permitted. The
initial page write exception processing carried out by hardware and software is shown below.

Hardware Processing: In the event of an initial page write exception, hardware carries out the
following processing:

1) Sets the VPN of the virtual address at which the exception occurred in PTEH.

2) Sets the virtual address at which the exception occurred in TEA.

3) Sets exception code H'080 in EXPEVT.

4) Sets the PC value indicating the address of the instruction at which the exception occurred in SPC. If the
exception occurred at a delay slot, sets the PC value indicating the address of the delayed branch
instruction in SPC.

5) Sets the SR contents at the time of the exception in SSR.

6) Sets the MD bit in SR to 1, and switches to privileged mode.

7) Sets the BL bit in SR to 1, and masks subsequent exception requests.

8) Sets the RB bit in SR to 1.

9) Branches to the address obtained by adding offset H'0000 0100 to the contents of VBR, and starts the
initial page write exception handling routine.
HPM-41

Dreamcast SH4 Program Manual
Software Processing (Initial Page Write Exception Handling Routine): The following processing should be carried
out as the responsibility of software:

1) Retrieve the necessary page table entry from external memory.

2) Write 1 to the D bit in the external memory page table entry.

3) Write to PTEL the values of the PPN, PR, SZ, C, D, WT, SH, and V bits in the page table entry recorded
in external memory. If necessary, the values of the SA and TC bits should be written to PTEA.

4) When the entry to be replaced in entry replacement is speciÞed by software, write that value to URC in
the MMUCR register. If URC is greater than URB at this time, the value should be changed to an
appropriate value after issuing an LDTLB instruction.

5) Execute the LDTLB instruction and write the contents of PTEH, PTEL, and PTEA to the UTLB.

6) Finally, execute the exception handling return instruction (RTE), terminate the exception handling
routine, and return control to the normal ßow. The RTE instruction should be issued at least one
instruction after the LDTLB instruction.

3.7 Memory-Mapped TLB Configuration
To enable the ITLB and UTLB to be managed by software, their contents can be read and written by a P2 area
program with a MOV instruction in privileged mode. Operation is not guaranteed if access is made from a program
in another area. A branch to an area other than the P2 area should be made at least 8 instructions after this MOV
instruction. The ITLB and UTLB are allocated to the P4 area in physical memory space. VPN, V, and ASID in the
ITLB can be accessed as an address array, PPN, V, SZ, PR, C, and SH as data array 1, and SA and TC as data array
2. VPN, D, V, and ASID in the UTLB can be accessed as an address array, PPN, V, SZ, PR, C, D, WT, and SH as data
array 1, and SA and TC as data array 2. V and D can be accessed from both the address array side and the data array
side. Only longword access is possible. Instruction fetches cannot be performed in these areas. For reserved bits, a
write value of 0 should be speciÞed; their read value is undeÞned.

3.7.1 ITLB Address Array

The ITLB address array is allocated to addresses H'F200 0000 to H'F2FF FFFF in the P4 area. An address array access
requires a 32-bit address Þeld speciÞcation (when reading or writing) and a 32-bit data Þeld speciÞcation (when
writing). Information for selecting the entry to be accessed is speciÞed in the address Þeld, and VPN, V, and ASID
to be written to the address array are speciÞed in the data Þeld.

In the address Þeld, bits [31:24] have the value H'F2 indicating the ITLB address array, and the entry is selected by
bits [9:8]. As longword access is used, 0 should be speciÞed for address Þeld bits [1:0].

In the data Þeld, VPN is indicated by bits [31:10], V by bit [8], and ASID by bits [7:0].

The following two kinds of operation can be used on the ITLB address array:

1) ITLB address array read VPN, V, and ASID are read into the data Þeld from the ITLB entry corresponding
to the entry set in the address Þeld.

2) ITLB address array write VPN, V, and ASID speciÞed in the data Þeld are written to the ITLB entry
corresponding to the entry set in the address Þeld.
HPM-42

3. Memory Management Unit (MMU)
Figure 3.13 Memory-Mapped ITLB Address Array

3.7.2 ITLB Data Array 1

ITLB data array 1 is allocated to addresses H'F300 0000 to H'F37F FFFF in the P4 area. A data array access requires
a 32-bit address Þeld speciÞcation (when reading or writing) and a 32-bit data Þeld speciÞcation (when writing).
Information for selecting the entry to be accessed is speciÞed in the address Þeld, and PPN, V, SZ, PR, C, and SH to
be written to the data array are speciÞed in the data Þeld.

In the address Þeld, bits [31:23] have the value H'F30 indicating ITLB data array 1, and the entry is selected by bits
[9:8].

In the data Þeld, PPN is indicated by bits [28:10], V by bit [8], SZ by bits [7] and [4], PR by bit [6], C by bit [3], and
SH by bit [1].

The following two kinds of operation can be used on ITLB data array 1:

1) ITLB data array 1 read PPN, V, SZ, PR, C, and SH are read into the data Þeld from the ITLB entry
corresponding to the entry set in the address Þeld.

2) ITLB data array 1 write PPN, V, SZ, PR, C, and SH speciÞed in the data Þeld are written to the ITLB entry
corresponding to the entry set in the address Þeld.

Figure 3.14 Memory-Mapped ITLB Data Array 1

Address field
31 23 0

1 1 1 1 0 0 1 0 E

Data field
31 10 9 0

VVPN

VPN:
V:
 E:

24

Virtual page number
Validity bit
Entry

10 9 8 7

9 8 7

ASID

ASID:
:

Address space identifier
Reserved bits (0 write value, undefined
read value)

Address field
31 23 0

1 1 1 1 0 0 01 1 E

Data field

PPN:
V:
E:

SZ:

24

Physical page number
Validity bit
Entry
Page size bits

10 9 8 7

PR:
C:

SH:
:

Protection key data
Cacheability bit
Share status bit
Reserved bits (0 write value, undefined
read value)

31 2 1 0

V

10 9 8 730 2928 4 36 5

SZ SHPR

CPPN
HPM-43

Dreamcast SH4 Program Manual
3.7.3 ITLB Data Array 2

ITLB data array 2 is allocated to addresses H'F380 0000 to H'F3FF FFFF in the P4 area. A data array access requires
a 32-bit address Þeld speciÞcation (when reading or writing) and a 32-bit data Þeld speciÞcation (when writing).
Information for selecting the entry to be accessed is speciÞed in the address Þeld, and SA and TC to be written to
data array 2 are speciÞed in the data Þeld.

In the address Þeld, bits [31:23] have the value H'F38 indicating ITLB data array 2, and the entry is selected by bits [9:8].

In the data Þeld, SA is indicated by bits [2:0], and TC by bit [3].

The following two kinds of operation can be used on ITLB data array 2:

1) ITLB data array 2 read SA and TC are read into the data Þeld from the ITLB entry corresponding to the
entry set in the address Þeld.

2) ITLB data array 2 write SA and TC speciÞed in the data Þeld are written to the ITLB entry corresponding
to the entry set in the address Þeld.

Figure 3.15 Memory-Mapped ITLB Data Array 2

3.7.4 UTLB Address Array

The UTLB address array is allocated to addresses H'F600 0000 to H'F6FF FFFF in the P4 area. An address array access
requires a 32-bit address Þeld speciÞcation (when reading or writing) and a 32-bit data Þeld speciÞcation (when
writing). Information for selecting the entry to be accessed is speciÞed in the address Þeld, and VPN, D, V, and ASID
to be written to the address array are speciÞed in the data Þeld.

In the address Þeld, bits [31:24] have the value H'F6 indicating the UTLB address array, and the entry is selected by
bits [13:8]. The address array bit [7] association bit (A bit) speciÞes whether or not address comparison is performed
when writing to the UTLB address array.

In the data Þeld, VPN is indicated by bits [31:10], D by bit [9], V by bit [8], and ASID by bits [7:0].

The following three kinds of operation can be used on the UTLB address array:

1) UTLB address array read VPN, D, V, and ASID are read into the data Þeld from the UTLB entry
corresponding to the entry set in the address Þeld. In a read, associative operation is not performed
regardless of whether the association bit speciÞed in the address Þeld is 1 or 0.

2) UTLB address array write (non-associative) VPN, D, V, and ASID speciÞed in the data Þeld are written
to the UTLB entry corresponding to the entry set in the address Þeld. The A bit in the address Þeld
should be cleared to 0.

3) UTLB address array write (associative)

Address field
31 23 0

1 1 1 1 0 0 1 1 1 E

Data field
31 4 0

TC:
 E:

24

Timing control bit
Entry

89 7

3 2

SA:
:

Space attribute bits
Reserved bits (0 write value, undefined read
value)

10

SA

TC
HPM-44

3. Memory Management Unit (MMU)
When a write is performed with the A bit in the address Þeld set to 1, comparison of all the UTLB entries is carried
out using the VPN speciÞed in the data Þeld and PTEH.ASID. The usual address comparison rules are followed,
but the occurrence of a TLB miss exception results in no operation. If the comparison identiÞes a UTLB entry
corresponding to the VPN speciÞed in the data Þeld, D and V speciÞed in the data Þeld are written to that entry. If
there is more than one matching entry, a data TLB multiple hit exception results. This associative operation is
simultaneously carried out on the ITLB, and if a matching entry is found in the ITLB, V is written to that entry. Even
if the UTLB comparison results in no operation, a write to the ITLB side only is performed as long as there is an
ITLB match. If there is a match in both the UTLB and ITLB, the UTLB information is also written to the ITLB.

Figure 3.16 Memory-Mapped UTLB Address Array

3.7.5 UTLB Data Array 1

UTLB data array 1 is allocated to addresses H'F700 0000 to H'F77F FFFF in the P4 area. A data array access requires
a 32-bit address Þeld speciÞcation (when reading or writing) and a 32-bit data Þeld speciÞcation (when writing).
Information for selecting the entry to be accessed is speciÞed in the address Þeld, and PPN, V, SZ, PR, C, D, SH, and
WT to be written to the data array are speciÞed in the data Þeld.

In the address Þeld, bits [31:23] have the value H'F70 indicating UTLB data array 1, and the entry is selected by
bits [13:8].

In the data Þeld, PPN is indicated by bits [28:10], V by bit [8], SZ by bits [7] and [4], PR by bits [6:5], C by bit [3], D
by bit [2], SH by bit [1], and WT by bit [0].

The following two kinds of operation can be used on UTLB data array 1:

1) UTLB data array 1 read PPN, V, SZ, PR, C, D, SH, and WT are read into the data Þeld from the UTLB
entry corresponding to the entry set in the address Þeld.

2) UTLB data array 1 write PPN, V, SZ, PR, C, D, SH, and WT speciÞed in the data Þeld are written to the
UTLB entry corresponding to the entry set in the address Þeld.

Address field

Data field

VPN:
V:
E:
D:

Virtual page number
Validity bit
Entry
Dirty bit

ASID:
A:

:

Address space identifier
Association bit
Reserved bits (0 write value, undefined
read value)

31 0

VD

10 9 8 730 2928

A

8 7

ASIDVPN

31 23 2 1 0

1 1 1 1 0 1 1 0 E

24 14 13
HPM-45

Dreamcast SH4 Program Manual
Figure 3.17 Memory-Mapped UTLB Data Array 1

3.7.6 UTLB Data Array 2

UTLB data array 2 is allocated to addresses H'F780 0000 to H'F7FF FFFF in the P4 area. A data array access requires
a 32-bit address Þeld speciÞcation (when reading or writing) and a 32-bit data Þeld speciÞcation (when writing).
Information for selecting the entry to be accessed is speciÞed in the address Þeld, and SA and TC to be written to
data array 2 are speciÞed in the data Þeld.

In the address Þeld, bits [31:23] have the value H'F78 indicating UTLB data array 2, and the entry is selected by
bits [13:8].

In the data Þeld, TC is indicated by bit [3], and SA by bits [2:0].

The following two kinds of operation can be used on UTLB data array 2:

1) UTLB data array 2 read SA and TC are read into the data Þeld from the UTLB entry corresponding to the
entry set in the address Þeld.

2) UTLB data array 2 write SA and TC speciÞed in the data Þeld are written to the UTLB entry
corresponding to the entry set in the address Þeld.

Figure 3.18 Memory-Mapped UTLB Data Array 2

Address field

Data field

PPN:
V:
E:

SZ:
D:

Physical page number
Validity bit
Entry
Page size bits
Dirty bit

PR:
C:

SH:
WT:

:

Protection key data
Cacheability bit
Share status bit
Write-through bit
Reserved bits (0 write value, undefined
read value)

31 2 1 0

V

10 9 8 730 2928 4 36 5

PR CPPN

31 23 0

1 1 1 1 0 1 1 1 0 E

24 8 714 13

D

SZ SH WT

Address field
31 23 0

1 1 1 1 0 1 1 1 1 E

Data field
31 4 0

TC

24 813 7

3 2

14

SA

TC:
 E:

Timing control bit
Entry

SA:
:

Space attribute bits
Reserved bits (0 write value, undefined read
value)
HPM-46

4. Caches
4.1 Overview

4.1.1 Features

The SH7091 has an on-chip 8-kbyte instruction cache (IC) for instructions and 16-kbyte operand cache (OC) for data.
Half of the memory of the operand cache (8 kbytes) can also be used as on-chip RAM. The features of these caches
are summarized in table 4.1.

Table 4.1 Cache Features

Item Instruction Cache Operand Cache

Capacity 8-kbyte cache 16-kbyte cache or 8-kbyte cache + 8-kbyte RAM

Type Direct mapping Direct mapping

Line size 32 bytes 32 bytes

Entries 256 512

Write method Copy-back/write-through selectable

Item Store Queues

Capacity 2 x 32 bytes

Addresses H'E000 0000 to H'E3FF FFFF

Write Store instruction (1-cycle write)

Write-back Prefetch instruction

Access right MMU off: according to MMUCR.SQMD
MMU on: according to individual page PR
HPM-47

Dreamcast SH4 Program Manual
4.1.2 Register Configuration

Table 4.2 shows the cache control registers.

Table 4.2 Cache Control Registers

Note: The initial value is the value after a power-on or manual reset.
This is the address when using the virtual/physical address space P4 area. When making an access from
physical address space area 7 using the TLB, the upper 3 bits of the address are ignored.

4.2 Register Descriptions
There are three cache and store queue related control registers, as shown in Þgure 4.1.

Figure 4.1 Cache and Store Queue Control Registers

Name Abbreviation R/W Initial Value*1 P4 Address*2
Area 7
Address*2 Access Size

Cache control register CCR R/W H'0000 0000 H'FF00 001C H'1F00 001C 32

Queue address control
register 0

QACR0 R/Ws Undefined H'FF00 0038 H'1F00 0038 32

Queue address control
register 1

QACR1 R/W Undefined H'FF00 003C H'1F00 003C 32

CCR

31 1416 15 12 11 10 9 8 7 6 5 4 3 2

CB

1 0

ICI ICE ORAOIX OCI

AREA

indicates reserved bits: 0 must be specified in a write; the read value is undefined.

WT OCEIIX

QACR0

31 5 4 2 1 0

AREA

QACR1

31 5 4 2 1 0
HPM-48

4. Caches
(1) Cache Control Register (CCR): CCR contains the following bits:

IIX: IC index enable

ICI: IC invalidation

ICE: IC enable

OIX: OC index enable

ORA: OC RAM enable

OCI: OC invalidation

CB: Copy-back enable

WT: Write-through enable

OCE: OC enable

Longword access to CCR can be performed from H'FF00 001C in the P4 area and H'1F00 001C in area 7. The CCR
bits are used for the cache settings described below. Consequently, CCR modiÞcations must only be made by a
program in the non-cached P2 area. After CCR is updated, an instruction that performs data access to the P0, P1,
P3, or U0 area should be located at least four instructions after the CCR update instruction. Also, a branch
instruction to the P0, P1, P3, or U0 area should be located at least eight instructions after the CCR update instruction.

¥ IIX: IC index enable bit

0: Address bits [12:5] used for IC entry selection

1: Address bits [25] and [11:5] used for IC entry selection

¥ ICI: IC invalidation bit

When 1 is written to this bit, the V bits of all IC entries are cleared to 0. This bit always returns 0 when read.

¥ ICE: IC enable bit

Indicates whether or not the IC is to be used. When address translation is performed, the IC cannot be used
unless the C bit in the page management information is also 1.

0: IC not used

1: IC used

¥ OIX: OC index enable bit

0: Address bits [13:5] used for OC entry selection

1: Address bits [25] and [12:5] used for OC entry selection

¥ ORA: OC RAM enable bit

When the OC is enabled (OCE = 1), the ORA bit speciÞes whether the 8 kbytes from entry 128 to entry 255
and from entry 384 to entry 511 of the OC are to be used as RAM. When the OC is not enabled (OCE = 0),
the ORA bit should be cleared to 0.

0: 16 kbytes used as cache

1: 8 kbytes used as cache, and 8 kbytes as RAM

¥ OCI: OC invalidation bit

When 1 is written to this bit, the V and U bits of all OC entries are cleared to 0. This bit always returns 0
when read.

¥ CB: Copy-back bit

Indicates the P1 area cache write mode.

0: Write-through mode

1: Copy-back mode
HPM-49

Dreamcast SH4 Program Manual
¥ WT: Write-through bit

Indicates the P0, U0, and P3 area cache write mode. When address translation is performed, the value of the
WT bit in the page management information has priority.

0: Copy-back mode

1: Write-through mode

¥ OCE: OC enable bit

Indicates whether or not the OC is to be used. When address translation is performed, the OC cannot be
used unless the C bit in the page management information is also 1.

0: OC not used

1: OC used

Queue Address Control Register 0 (QACR0): Longword access to QACR0 can be performed from H'FF00 0038 in
the P4 area and H'1F00 0038 in area 7. QACR0 speciÞes the area onto which store queue 0 (SQ0) is mapped when
the MMU is off.

Queue Address Control Register 1 (QACR1): Longword access to QACR1 can be performed from H'FF00 003C in
the P4 area and H'1F00 003C in area 7. QACR1 speciÞes the area onto which store queue 1 (SQ1) is mapped when
the MMU is off.

4.3 Operand Cache (OC)

4.3.1 Configuration

Figure 4.2 shows the conÞguration of the operand cache.
HPM-50

4. Caches
Figure 4.2 Configuration of Operand Cache

The operand cache consists of 512 cache lines, each composed of a 19-bit tag, V bit, U bit, and 32-byte data.

¥ Tag

Stores the upper 19 bits of the 29-bit external memory address of the data line to be cached. The tag is not
initialized by a power-on or manual reset.

¥ V bit (validity bit)

Indicates that valid data is stored in the cache line. When this bit is 1, the cache line data is valid. The V bit
is initialized to 0 by a power-on reset, but retains its value in a manual reset.

¥ U bit (dirty bit)

The U bit is set to 1 if data is written to the cache line while the cache is being used in copy-back mode. That
is, the U bit indicates a mismatch between the data in the cache line and the data in external memory. The
U bit is never set to 1 while the cache is being used in write-through mode, unless it is modiÞed by accessing
the memory-mapped cache (see section 4.5, Memory-Mapped Cache ConÞguration). The U bit is initialized
to 0 by a power-on reset, but retains its value in a manual reset.

¥ Data Þeld

The data Þeld holds 32 bytes (256 bits) of data per cache line. The data array is not initialized by a power-on
or manual reset.

31 26 25 5 4 3 2 1

LW0

32 bits

LW1

32 bits

LW2

32 bits

LW3

32 bits

LW4

32 bits

LW5

32 bits

LW6

32 bits

LW7

32 bits

MMU

RAM area
determination

ORAOIX
[13] [12]

[11:5]

511 19 bits 1 bit 1 bit

Tag address U V

Address array Data array

E
nt

ry
 s

el
ec

tio
n

Longword (LW) selection

Effective address

3
9

22

19

0

Write dataRead data

Hit signal

Compare

13 12 11 10 9 0
HPM-51

Dreamcast SH4 Program Manual
4.3.2 Read Operation

When the OC is enabled (CCR.OCE = 1) and data is read by means of an effective address from a cacheable area,
the cache operates as follows:

1) The tag, V bit, and U bit are read from the cache line indexed by effective address bits [13:5].

2) The tag is compared with bits [28:10] of the address resulting from effective address translation by the
MMU:

¥ If the tag matches and the V bit is 1 → (3a)

¥ If the tag matches and the V bit is 0 → (3b)

¥ If the tag does not match and the V bit is 0 → (3b)

¥ If the tag does not match, the V bit is 1, and the U bit is 0 → (3b)

¥ If the tag does not match, the V bit is 1, and the U bit is 1 → (3c)

3a. Cache hit

The data indexed by effective address bits [4:0] is read from the data Þeld of the cache line indexed by effective
address bits [13:5] in accordance with the access size (quadword/longword/word/byte).

3b. Cache miss (no write-back)

Data is read into the cache line from the external memory space corresponding to the effective address. Data reading
is performed, using the wraparound method, in order from the longword data corresponding to the effective address,
and when the corresponding data arrives in the cache, the read data is returned to the CPU. While the remaining one
cache line of data is being read, the CPU can execute the next processing. When reading of one line of data is
completed, the tag corresponding to the effective address is recorded in the cache, and 1 is written to the V bit.

3c. Cache miss (with write-back)

The tag and data Þeld of the cache line indexed by effective address bits [13:5] are saved in the write-back buffer.
Then data is read into the cache line from the external memory space corresponding to the effective address. Data
reading is performed, using the wraparound method, in order from the longword data corresponding to the
effective address, and when the corresponding data arrives in the cache, the read data is returned to the CPU. While
the remaining one cache line of data is being read, the CPU can execute the next processing. When reading of one
line of data is completed, the tag corresponding to the effective address is recorded in the cache, 1 is written to the
V bit, and 0 to the U bit. The data in the write-back buffer is then written back to external memory.

4.3.3 Write Operation

When the OC is enabled (CCR.OCE = 1) and data is written by means of an effective address to a cacheable area,
the cache operates as follows:

1) The tag, V bit, and U bit are read from the cache line indexed by effective address bits [13:5].

2) The tag is compared with bits [28:10] of the address resulting from effective address translation by the MMU:

Copy-back Write-through

¥ If the tag matches and the V bit is 1 → (3a) → (3b)

¥ If the tag matches and the V bit is 0 → (3c) → (3d)

¥ If the tag does not match and the V bit is 0 → (3c) → (3d)

¥ If the tag does not match, the V bit is 1, and the U bit is 0 → (3c) → (3d)

¥ If the tag does not match, the V bit is 1, and the U bit is 1 → (3e) → (3d)

3a. Cache hit (copy-back)
HPM-52

4. Caches
A data write in accordance with the access size (quadword/longword/word/byte) is performed for the data
indexed by bits [4:0] of the effective address of the data Þeld of the cache line indexed by effective address bits [13:5].
Then 1 is set in the U bit.

3b. Cache hit (write-through)

A data write in accordance with the access size (quadword/longword/word/byte) is performed for the data
indexed by bits [4:0] of the effective address of the data Þeld of the cache line indexed by effective address bits [13:5].
A write is also performed to the corresponding external memory using the speciÞed access size.

3c. Cache miss (no copy-back/write-back)

A data write in accordance with the access size (quadword/longword/word/byte) is performed for the data
indexed by bits [4:0] of the effective address of the data Þeld of the cache line indexed by effective address bits [13:5].
Then, data is read into the cache line from the external memory space corresponding to the effective address. Data
reading is performed, using the wraparound method, in order from the longword data corresponding to the
effective address, and one cache line of data is read excluding the written data. During this time, the CPU can
execute the next processing. When reading of one line of data is completed, the tag corresponding to the effective
address is recorded in the cache, and 1 is written to the V bit and U bit.

3d. Cache miss (write-through)

A write of the speciÞed access size is performed to the external memory corresponding to the effective address. In
this case, a write to cache is not performed.

3e. Cache miss (with copy-back/write-back)

The tag and data Þeld of the cache line indexed by effective address bits [13:5] are Þrst saved in the write-back
buffer, and then a data write in accordance with the access size (quadword/longword/word/byte) is performed
for the data indexed by bits [4:0] of the effective address of the data Þeld of the cache line indexed by effective
address bits [13:5]. Then, data is read into the cache line from the external memory space corresponding to the
effective address. Data reading is performed, using the wraparound method, in order from the longword data
corresponding to the effective address, and one cache line of data is read excluding the written data. During this
time, the CPU can execute the next processing. When reading of one line of data is completed, the tag corresponding
to the effective address is recorded in the cache, and 1 is written to the V bit and U bit. The data in the write-back
buffer is then written back to external memory.

4.3.4 Write-Back Buffer

In order to give priority to data reads to the cache and improve performance, the SH7091 has a write-back buffer
which holds the relevant cache entry when it becomes necessary to purge a dirty cache entry into external memory
as the result of a cache miss. The write-back buffer contains one cache line of data and the physical address of the
purge destination.

Figure 4.3 Configuration of Write-Back Buffer

4.3.5 Write-Through Buffer

The SH7091 has a 64-bit buffer for holding write data when writing data in write-through mode or writing to a
non-cacheable area. This allows the CPU to proceed to the next operation as soon as the write to the write-through
buffer is completed, without waiting for completion of the write to external memory.

Figure 4.4 Configuration of Write-Through Buffer

LW7Physical address bits [28:5] LW6LW5LW4LW3LW2LW1LW0

Physical address bits [28:0] LW1LW0
HPM-53

Dreamcast SH4 Program Manual
4.3.6 RAM Mode

Setting CCR.ORA to 1 enables 8 kbytes of the operand cache to be used as RAM. The operand cache entries used as
RAM are entries 128 to 255 and 384 to 511 . Other entries can still be used as cache. RAM can be accessed using
addresses H'7C00 0000 to H'7FFF FFFF. Byte-, word-, longword-, and quadword-size data reads and writes can be
performed in the operand cache RAM area. Instruction fetches cannot be performed in this area.

An example of RAM use is shown below. Here, the 4 kbytes comprising OC entries 128 to 256 are designated as
RAM area 1, and the 4 kbytes comprising OC entries 384 to 511 as RAM area 2.

¥ When OC index mode is off (CCR.OIX = 0)

H'7C00 0000 to H'7C00 0FFF (4 kB): Corresponds to RAM area 1

H'7C00 1000 to H'7C00 1FFF (4 kB): Corresponds to RAM area 1

H'7C00 2000 to H'7C00 2FFF (4 kB): Corresponds to RAM area 2

H'7C00 3000 to H'7C00 3FFF (4 kB): Corresponds to RAM area 2

H'7C00 4000 to H'7C00 4FFF (4 kB): Corresponds to RAM area 1

 : : :

RAM areas 1 and 2 then repeat every 8 kbytes up to H'7FFF FFFF.

Thus, to secure a continuous 8-kbyte RAM area, the area from H'7C00 1000 to H'7C00 2FFF can be used, for example.

¥ When OC index mode is on (CCR.OIX = 1)

H'7C00 0000 to H'7C00 0FFF (4 kB): Corresponds to RAM area 1

H'7C00 1000 to H'7C00 1FFF (4 kB): Corresponds to RAM area 1

H'7C00 2000 to H'7C00 2FFF (4 kB): Corresponds to RAM area 1

 : : :

H'7DFF F000 to H'7DFF FFFF (4 kB): Corresponds to RAM area 1

H'7E00 0000 to H'7E00 0FFF (4 kB): Corresponds to RAM area 2

H'7E00 1000 to H'7E00 1FFF (4 kB): Corresponds to RAM area 2

 : : :

H'7FFF F000 to H'7FFF FFFF (4 kB): Corresponds to RAM area 2

As the distinction between RAM areas 1 and 2 is indicated by address bit [25], the area from H'7DFF F000 to H'7E00
0FFF should be used to secure a continuous 8-kbyte RAM area.

4.3.7 OC Index Mode

Setting CCR.OIX to 1 enables OC indexing to be performed using bit [25] of the effective address. This is called OC
index mode. In normal mode, with CCR.OIX cleared to 0, OC indexing is performed using bits [13:5] of the effective
address; therefore, when 16 kbytes or more of consecutive data is handled, the OC is fully used by this data. This
results in frequent cache misses. Using index mode allows the OC to be handled as two 8-kbyte areas by means of
effective address bit [25], providing efÞcient use of the cache.
HPM-54

4. Caches
4.3.8 Coherency between Cache and External Memory

Coherency between cache and external memory should be assured by software. In the SH7091, the following four
new instructions are supported for cache operations. For details of these instructions, see section 10, Instruction
Descriptions.

Invalidate instruction: OCBI @Rn Cache invalidation (no write-back)

Purge instruction: OCBP @Rn Cache invalidation (with write-back)

Write-back instruction: OCBWB @Rn Cache write-back

Allocate instruction: MOVCA.L R0,@Rn Cache allocation

4.3.9 Prefetch Operation

The SH7091 supports a prefetch instruction to reduce the cache Þll penalty incurred as the result of a cache miss. If
it is known that a cache miss will result from a read or write operation, it is possible to Þll the cache with data
beforehand by means of the prefetch instruction to prevent a cache miss due to the read or write operation, and so
improve software performance. If a prefetch instruction is executed for data already held in the cache, or if an MMU
exception occurs at the intended prefetch address, the result is no operation, and an exception is not generated. For
details of the prefetch instruction, see section 10.73, PREF.

Prefetch instruction: PREF @Rn

4.4 Instruction Cache (IC)

4.4.1 Configuration

Figure 4.5 shows the conÞguration of the instruction cache.
HPM-55

Dreamcast SH4 Program Manual
Figure 4.5 Configuration of Instruction Cache

The instruction cache consists of 256 cache lines, each composed of a 19-bit tag, V bit, and 32-byte data
(16 instructions).

¥ Tag

Stores the upper 19 bits of the 29-bit external memory address of the data line to be cached. The tag is not
initialized by a power-on or manual reset.

¥ V bit (validity bit)

Indicates that valid data is stored in the cache line. When this bit is 1, the cache line data is valid. The V bit
is initialized to 0 by a power-on reset, but retains its value in a manual reset.

¥ Data array

The data Þeld holds 32 bytes (256 bits) of data per cache line. The data array is not initialized by a power-on
or manual reset.

LW0

32 bits

LW1

32 bits

LW2

32 bits

LW3

32 bits

LW4

32 bits

LW5

32 bits

LW6

32 bits

LW7

32 bits255 19 bits 1 bit

Tag address V

Address array

Longword (LW) selection

Data array

0

Read data

Hit signal

Compare

31 26 25 5 4 3 2 1

MMU

IIX
[12]

[11:5]
E

nt
ry

 s
el

ec
tio

n

Effective address

8 3

22

19

13 12 11 10 9 0
HPM-56

4. Caches
4.4.2 Read Operation

When the IC is enabled (CCR.ICE = 1) and instruction fetches are performed by means of an effective address from
a cacheable area, the instruction cache operates as follows:

1) The tag and V bit are read from the cache line indexed by effective address bits [12:5].

2) The tag is compared with bits [28:10] of the address resulting from effective address translation by the
MMU:

¥ If the tag matches and the V bit is 1 → (3a)

¥ If the tag matches and the V bit is 0 → (3b)

¥ If the tag does not match and the V bit is 0 → (3b)

¥ If the tag does not match and the V bit is 1 → (3b)

3a. Cache hit

The data indexed by effective address bits [4:2] is read as an instruction from the data Þeld of the cache line
indexed by effective address bits [12:5].

3b. Cache miss

Data is read into the cache line from the external memory space corresponding to the effective address. Data
reading is performed, using the wraparound method, in order from the longword data corresponding to the
effective address, and when the corresponding data arrives in the cache, the read data is returned to the CPU as an
instruction. When reading of one line of data is completed, the tag corresponding to the effective address is
recorded in the cache, and 1 is written to the V bit.

4.4.3 IC Index Mode

Setting CCR.IIX to 1 enables IC indexing to be performed using bit [25] of the effective address. This is called IC
index mode. In normal mode, with CCR.IIX cleared to 0, IC indexing is performed using bits [12:5] of the effective
address; therefore, when 8 kbytes or more of consecutive program instructions are handled, the IC is fully used by
this program. This results in frequent cache misses. Using index mode allows the IC to be handled as two 4-kbyte
areas by means of effective address bit [25], providing efÞcient use of the cache.

4.5 Memory-Mapped Cache Configuration
To enable the IC and OC to be managed by software, their contents can be read and written by a P2 area program
with a MOV instruction in privileged mode. Operation is not guaranteed if access is made from a program in
another area. In this case, a branch to the P0, U0, P1, or P3 area should be made at least 8 instructions after this MOV
instruction. The IC and OC are allocated to the P4 area in physical memory space. Only data accesses can be used
on both the IC address array and data array and the OC address array and data array, and accesses are always
longword-size. Instruction fetches cannot be performed in these areas. For reserved bits, a write value of 0 should
be speciÞed; their read value is undeÞned.
HPM-57

Dreamcast SH4 Program Manual
4.5.1 IC Address Array

The IC address array is allocated to addresses H'F000 0000 to H'F0FF FFFF in the P4 area. An address array access
requires a 32-bit address Þeld speciÞcation (when reading or writing) and a 32-bit data Þeld speciÞcation. The entry
to be accessed is speciÞed in the address Þeld, and the write tag and V bit are speciÞed in the data Þeld.

In the address Þeld, bits [31:24] have the value H'F0 indicating the IC address array, and the entry is speciÞed by
bits [12:5]. CCR.IIX has no effect on this entry speciÞcation. The address array bit [3] association bit (A bit) speciÞes
whether or not association is performed when writing to the IC address array. As only longword access is used, 0
should be speciÞed for address Þeld bits [1:0].

In the data Þeld, the tag is indicated by bits [31:10], and the V bit by bit [0]. As the IC address array tag is 19 bits in
length, data Þeld bits [31:29] are not used in the case of a write in which association is not performed. Data Þeld bits
[31:29] are used for the virtual address speciÞcation only in the case of a write in which association is performed.

The following three kinds of operation can be used on the IC address array:

1) IC address array read

The tag and V bit are read into the data Þeld from the IC entry corresponding to the entry set in the address
Þeld. In a read, associative operation is not performed regardless of whether the association bit speciÞed in
the address Þeld is 1 or 0.

2) IC address array write (non-associative)

The tag and V bit speciÞed in the data Þeld are written to the IC entry corresponding to the entry set in the
address Þeld. The A bit in the address Þeld should be cleared to 0.

3) IC address array write (associative)

When a write is performed with the A bit in the address Þeld set to 1, the tag stored in the entry speciÞed
in the address Þeld is compared with the tag speciÞed in the data Þeld. If the MMU is enabled at this time,
comparison is performed after the virtual address speciÞed by data Þeld bits [31:10] has been translated to
a physical address using the ITLB. If the addresses match and the V bit is 1, the V bit speciÞed in the data
Þeld is written into the IC entry. This operation is used to invalidate a speciÞc IC entry. If an instruction TLB
miss exception or protection violation exception occurs during address translation, or the comparison
shows a mismatch, no operation results and the write is not performed. If an instruction TLB multiple hit
exception occurs during address translation, processing switches to the instruction TLB multiple hit
exception handling routine.

Figure 4.6 Memory-Mapped IC Address Array

Address field
31 23 12 5 4 3 2 1 0

1 1 1 1 0 0 0 0 Entry A

Data field
31 10 9 1 0

VTag address

V
A

24 13

: Validity bit
: Association bit
: Reserved bits (0 write value, undefined read value)
HPM-58

4. Caches
4.5.2 IC Data Array

The IC data array is allocated to addresses H'F100 0000 to H'F1FF FFFF in the P4 area. A data array access requires
a 32-bit address Þeld speciÞcation (when reading or writing) and a 32-bit data Þeld speciÞcation. The entry to be
accessed is speciÞed in the address Þeld, and the longword data to be written is speciÞed in the data Þeld.

In the address Þeld, bits [31:24] have the value H'F1 indicating the IC data array, and the entry is speciÞed by bits
[12:5]. CCR.IIX has no effect on this entry speciÞcation. Address Þeld bits [4:2] are used for the longword data
speciÞcation in the entry. As only longword access is used, 0 should be speciÞed for address Þeld bits [1:0].

The data Þeld is used for the longword data speciÞcation.

The following two kinds of operation can be used on the IC data array:

1) IC data array read

Longword data is read into the data Þeld from the data speciÞed by the longword speciÞcation bits in the
address Þeld in the IC entry corresponding to the entry set in the address Þeld.

2) IC data array write

The longword data speciÞed in the data Þeld is written for the data speciÞed by the longword speciÞcation
bits in the address Þeld in the IC entry corresponding to the entry set in the address Þeld.

Figure 4.7 Memory-Mapped IC Data Array

4.5.3 OC Address Array

The OC address array is allocated to addresses H'F400 0000 to H'F4FF FFFF in the P4 area. An address array access
requires a 32-bit address Þeld speciÞcation (when reading or writing) and a 32-bit data Þeld speciÞcation. The entry
to be accessed is speciÞed in the address Þeld, and the write tag, U bit, and V bit are speciÞed in the data Þeld.

In the address Þeld, bits [31:24] have the value H'F4 indicating the OC address array, and the entry is speciÞed by
bits [13:5]. CCR.OIX and CCR.ORA have no effect on this entry speciÞcation. The address array bit [3] association
bit (A bit) speciÞes whether or not association is performed when writing to the OC address array. As only
longword access is used, 0 should be speciÞed for address Þeld bits [1:0].

In the data Þeld, the tag is indicated by bits [31:10], the U bit by bit [1], and the V bit by bit [0]. As the OC address
array tag is 19 bits in length, data Þeld bits [31:29] are not used in the case of a write in which association is not
performed. Data Þeld bits [31:29] are used for the virtual address speciÞcation only in the case of a write in which
association is performed.

Address field
31 23 12 5 4 2 1 0

1 1 1 1 0 0 0 1 Entry L

Data field
31 0

Longword data

L

24 13

: Longword specification bits
: Reserved bits (0 write value, undefined read value)
HPM-59

Dreamcast SH4 Program Manual
The following three kinds of operation can be used on the OC address array:

1) OC address array read

The tag, U bit, and V bit are read into the data Þeld from the OC entry corresponding to the entry set in the
address Þeld. In a read, associative operation is not performed regardless of whether the association bit
speciÞed in the address Þeld is 1 or 0.

2) OC address array write (non-associative)

The tag, U bit, and V bit speciÞed in the data Þeld are written to the OC entry corresponding to the entry
set in the address Þeld. The A bit in the address Þeld should be cleared to 0.

When a write is performed to a cache line for which the U bit and V bit are both 1, after write-back of that
cache line, the tag, U bit, and V bit speciÞed in the data Þeld are written.

3) OC address array write (associative)

When a write is performed with the A bit in the address Þeld set to 1, the tag stored in the entry speciÞed
in the address Þeld is compared with the tag speciÞed in the data Þeld. If the MMU is enabled at this time,
comparison is performed after the virtual address speciÞed by data Þeld bits [31:10] has been translated to
a physical address using the UTLB. If the addresses match and the V bit is 1, the U bit and V bit speciÞed in
the data Þeld are written into the OC entry. This operation is used to invalidate a speciÞc OC entry. If the
OC entry U bit is 1, and 0 is written to the V bit or to the U bit, write-back is performed. If a data TLB miss
exception occurs during address translation, or the comparison shows a mismatch, no operation results and
the write is not performed. If a data TLB multiple hit exception occurs during address translation,
processing switches to the data TLB multiple hit exception handling routine.

Figure 4.8 Memory-Mapped OC Address Array

4.5.4 OC Data Array

The OC data array is allocated to addresses H'F500 0000 to H'F5FF FFFF in the P4 area. A data array access requires
a 32-bit address Þeld speciÞcation (when reading or writing) and a 32-bit data Þeld speciÞcation. The entry to be
accessed is speciÞed in the address Þeld, and the longword data to be written is speciÞed in the data Þeld.

In the address Þeld, bits [31:24] have the value H'F5 indicating the OC data array, and the entry is speciÞed by bits
[13:5]. CCR.OIX and CCR.ORA have no effect on this entry speciÞcation. Address Þeld bits [4:2] are used for the
longword data speciÞcation in the entry. As only longword access is used, 0 should be speciÞed for address Þeld
bits [1:0].

Address field
31 23 5 4 3 2 1 0

1 1 1 1 0 1 0 0 Entry A

Data field
31 10 9 1 0

VTag address

24 1314

2

U

V
U
A

: Validity bit
: Dirty bit
: Association bit
: Reserved bits (0 write value, undefined read value)
HPM-60

4. Caches
The data Þeld is used for the longword data speciÞcation.

The following two kinds of operation can be used on the OC data array:

1) OC data array read

Longword data is read into the data Þeld from the data speciÞed by the longword speciÞcation bits in the
address Þeld in the OC entry corresponding to the entry set in the address Þeld.

2) OC data array write

The longword data speciÞed in the data Þeld is written for the data speciÞed by the longword speciÞcation
bits in the address Þeld in the OC entry corresponding the entry set in the address Þeld. This write does not
set the U bit to 1 on the address array side.

Figure 4.9 Memory-Mapped OC Data Array

4.6 Store Queues
Two 32-byte store queues (SQs) are supported to perform high-speed writes to external memory.

4.6.1 SQ Configuration

There are two 32-byte store queues, SQ0 and SQ1, as shown in Þgure 4.10. These two store queues can be
set independently.

Figure 4.10 Store Queue Configuration

Address field
31 23 5 4 2 1 0

1 1 1 1 0 1 0 1 Entry L

Data field
31 0

Longword data

24 1314

L : Longword specification bits
: Reserved bits (0 write value, undefined read value)

SQ0 SQ0[0] SQ0[1] SQ0[2] SQ0[3] SQ0[4] SQ0[5] SQ0[6] SQ0[7]

SQ1 SQ1[0] SQ1[1] SQ1[2] SQ1[3] SQ1[4] SQ1[5] SQ1[6] SQ1[7]

4B 4B 4B 4B 4B 4B 4B 4B
HPM-61

Dreamcast SH4 Program Manual
4.6.2 SQ Writes

A write to the SQs can be performed using a store instruction (MOV) on P4 area H'E000 0000 to H'E3FF FFFC. A
longword or quadword access size can be used. The meaning of the address bits is as follows:

[31:26]: 111000 Store queue speciÞcation

[25:6]: DonÕt care Used for external memory transfer/access right

[5]: 0/1 0: SQ0 speciÞcation 1: SQ1 speciÞcation

[4:2]: LW speciÞcation SpeciÞes longword position in SQ0/SQ1

[1:0] 00 Fixed at 0

4.6.3 Transfer to External Memory

Transfer from the SQs to external memory can be performed with a prefetch instruction (PREF). Issuing a PREF
instruction for P4 area H'E000 0000 to H'E3FF FFFC starts a burst transfer from the SQs to external memory. The
burst transfer length is Þxed at 32 bytes, and the start address is always at a 32-byte boundary. While the contents
of one SQ are being transferred to external memory, the other SQ can be written to without a penalty cycle, but
writing to the SQ involved in the transfer to external memory is deferred until the transfer is completed.

The SQ transfer destination external memory address bit [28:0] speciÞcation is as shown below, according to
whether the MMU is on or off.

¥ When MMU is on

The SQ area (H'E000 0000 to H'E3FF FFFF) is set in VPN of the UTLB, and the transfer destination external
memory address in PPN. The ASID, V, SZ, SH, PR, and D bits have the same meaning as for normal address
translation, but the C and WT bits have no meaning with regard to this page. Since burst transfer is
prohibited for PCMCIA areas, the SA and TC bits also have no meaning.

When a prefetch instruction is issued for the SQ area, address translation is performed and external
memory address bits [28:10] are generated in accordance with the SZ bit speciÞcation. For external memory
address bits [9:5], the address prior to address translation is generated in the same way as when the MMU
is off. External memory address bits [4:0] are Þxed at 0. Transfer from the SQs to external memory is
performed to this address.

¥ When MMU is off

The SQ area (H'E000 0000 to H'E3FF FFFF) is speciÞed as the address at which a prefetch is performed. The
meaning of address bits [31:0] is as follows:

[31:26]: 111000 Store queue specification

[25:6]: Address External memory address bits [25:6]

[5]: 0/1 0: SQ0 specification

1: SQ1 specification and external memory address bit [5]

[4:2]: Don’t care No meaning in a prefetch

[1:0] 00 Fixed at 0

External memory address bits [28:26], which cannot be generated from the above address, are generated
from the QACR0/1 registers.

QACR0 [4:2]: External memory address bits [28:26] corresponding to SQ0

QACR1 [4:2]: External memory address bits [28:26] corresponding to SQ1

External memory address bits [4:0] are always Þxed at 0 since burst transfer starts at a 32-byte boundary.
HPM-62

4. Caches
4.6.4 SQ Protection

It is possible to set protection against SQ writes and transfers to external memory. If an SQ write violates the
protection setting, an exception will be generated but the SQ contents will be corrupted. If a transfer from the SQs
to external memory (prefetch instruction) violates the protection setting, the transfer to external memory will be
inhibited and an exception will be generated.

¥ When MMU is on

Operation is in accordance with the address translation information recorded in the UTLB, and MMUCR.SQMD.
Write type exception judgment is performed for writes to the SQs, and read type for transfer from the SQs to
external memory (PREF instruction), and a TLB miss exception, protection violation exception, or initial page write
exception is generated. However, if SQ access is enabled, in privileged mode only, by MMUCR.SQMD, an address
error will be ßagged in user mode even if address translation is successful.

¥ When MMU is off

Operation is in accordance with MMUCR.SQMD.

0: Privileged/user access possible

1: Privileged access possible

If the SQ area is accessed in user mode when MMUCR.SQMD is set to 1, an address error will be ßagged.
HPM-63

Dreamcast SH4 Program Manual
HPM-64

5. Exceptions
5.1 Overview

5.1.1 Features

Exception handling is processing handled by a special routine, separate from normal program processing, that is
executed by the CPU in case of abnormal events. For example, if the executing instruction ends abnormally,
appropriate action must be taken in order to return to the original program sequence, or report the abnormality
before terminating the processing. The process of generating an exception handling request in response to abnormal
termination, and passing control to a user-written exception handling routine, in order to support such functions,
is given the generic name of exception handling.

SH7091 exception handling is of three kinds: for resets, general exceptions, and interrupts.

5.1.2 Register Configuration

The registers used in exception handling are shown in table 5.1.

Table 5.1 Exception-Related Registers

Note: H'0000 0000 is set in a power-on reset, and H'0000 0020 in a manual reset.
This is the address when using the virtual/physical address space P4 area. When making an access from
physical address space area 7 using the TLB, the upper 3 bits of the address are ignored.

Name Abbreviation R/W Initial Value*1 P4 Address*2 Area 7 Address*2 Access Size

TRAPA exception
register

TRA R/W Undefined H'FF00 0020 H'1F00 0020 32

Exception event
register

EXPEVT R/W H'0000 0000/
H'0000 0020*1

H'FF00 0024 H'1F00 0024 32

Interrupt event
register

INTEVT R/W Undefined H'FF00 0028 H'1F00 0028 32
HPM-65

Dreamcast SH4 Program Manual
5.2 Register Descriptions
There are three registers related to exception handling. These are allocated to memory, and can be accessed by
specifying the P4 address or area 7 address.

1) The exception event register (EXPEVT) resides at P4 address H'FF00 0024, and contains a 12-bit exception
code. The exception code set in EXPEVT is that for a reset or general exception event. The exception code
is set automatically by hardware when an exception occurs. EXPEVT can also be modiÞed by software.

2) The interrupt event register (INTEVT) resides at P4 address H'FF00 0028, and contains a 12-bit exception
code. The exception code set in INTEVT is that for an interrupt request. The exception code is set
automatically by hardware when an exception occurs. INTEVT can also be modiÞed by software.

3) The TRAPA exception register (TRA) resides at P4 address H'FF00 0020, and contains 8-bit immediate
data (imm) for the TRAPA instruction. TRA is set automatically by hardware when a TRAPA instruction
is executed. TRA can also be modiÞed by software.

The bit conÞgurations of EXPEVT, INTEVT, and TRA are shown in Þgure 5.1.

Figure 5.1 Register Bit Configurations

31 0

0

0 0 0 0

0

31 10 9 1 0

0:

 imm:

Reserved bits. These bits are always read as 0, and should only be written
with 0.
8-bit immediate data of the TRAPA instruction

12 11

2

EXPEVT and INTEVT

TRA

imm

Exception code
HPM-66

5. Exceptions
5.3 Exception Handling Functions

5.3.1 Exception Handling Flow

In exception handling, the contents of the program counter (PC) and status register (SR) are saved in the saved
program counter (SPC) and saved status register (SSR), and the CPU starts execution of the appropriate exception
handling routine according to the vector address. An exception handling routine is a program written by the user
to handle a speciÞc exception. The exception handling routine is terminated and control returned to the original
program by executing a return-from-exception instruction (RTE). This instruction restores the PC and SR contents
and returns control to the normal processing routine at the point at which the exception occurred.

The basic processing ßow is as follows. See section 2, Data Formats and Registers, for the meaning of the individual
SR bits.

1) The PC and SR contents are saved in SPC and SSR.

2) The block bit (BL) in SR is set to 1.

3) The mode bit (MD) in SR is set to 1.

4) The register bank bit (RB) in SR is set to 1.

5) In a reset, the FPU disable bit (FD) in SR is cleared to 0.

6) The exception code is written to bits 11Ð0 of the exception event register (EXPEVT) or interrupt event
register (INTEVT).

7) The CPU branches to the determined exception handling vector address, and the exception handling
routine begins.

5.3.2 Exception Handling Vector Addresses

The reset vector address is Þxed at H'A000 0000. Exception and interrupt vector addresses are determined by
adding the offset for the speciÞc event to the vector base address, which is set by software in the vector base register
(VBR). In the case of the TLB miss exception, for example, the offset is H'0000 0400, so if H'9C08 0000 is set in VBR,
the exception handling vector address will be H'9C08 0400. If a further exception occurs at the exception handling
vector address, a duplicate exception will result, and recovery will be difÞcult; therefore, Þxed physical addresses
(P1, P2) should be speciÞed for vector addresses.
HPM-67

Dreamcast SH4 Program Manual
5.4 Exception Types and Priorities
Table 5.2 shows the types of exceptions, with their relative priorities, vector addresses, and exception/interrupt codes.

Table 5.2 Exceptions

Exception
Category

Execution
Mode Exception

Priority
Level

Priority
Order Vector Address Offset

Exception
Code

Reset Abort type Power-on reset 1 1 H'A000 0000 — H’000

Manual reset 1 2 H'A000 0000 — H’020

Hitachi-UDI reset 1 1 H'A000 0000 — H’000

Instruction TLB multiple-hit
exception

1 3 H'A000 0000 — H’140

Data TLB multiple-hit exception 1 4 H'A000 0000 — H’140
HPM-68

5. Exceptions
General
exception

Re-executio
n type

User break before instruction
execution*1

2 0 (VBR/DBR) H'100/
—

H'1E0

Instruction address error 2 1 (VBR) H'100 H'0E0

Instruction TLB miss exception 2 2 (VBR) H'400 H'040

Instruction TLB protection
violation exception

2 3 (VBR) H'100 H'0A0

General illegal instruction
exception

2 4 (VBR) H'100 H'180

Slot illegal instruction exception 2 4 (VBR) H'100 H'1A0

General FPU disable exception 2 4 (VBR) H'100 H'800

Slot FPU disable exception 2 4 (VBR) H'100 H'820

Data address error (read) 2 5 (VBR) H'100 H'0E0

Data address error (write) 2 5 (VBR) H'100 H'100

Data TLB miss exception (read) 2 6 (VBR) H'400 H'040

Data TLB miss exception (write) 2 6 (VBR) H'400 H'060

Data TLB protection violation
exception (read)

2 7 (VBR) H'100 H'0A0

Data TLB protection violation
exception (write)

2 7 (VBR) H'100 H'0C0

FPU exception 2 8 (VBR) H'100 H'120

Initial page write exception 2 9 (VBR) H'100 H'080

Completion
type

Unconditional trap (TRAPA) 2 4 (VBR) H'100 H'160

User break after instruction
execution*1

2 10 (VBR/DBR) H'100/
—

H'1E0

Interrupt Completion
type

Nonmaskable interrupt 3 — (VBR) H'600 H'1C0

Exception
Category

Execution
Mode Exception

Priority
Level

Priority
Order Vector Address Offset

Exception
Code
HPM-69

Dreamcast SH4 Program Manual
External
interrupts

IRL3–I
RL0

0 4 *2 (VBR) H'600 H'200

1 H'220

2 H'240

3 H'260

4 H'280

5 H'2A0

6 H'2C0

7 H'2E0

8 H'300

9 H'320

A H'340

B H'360

C H'380

D H'3A0

E H'3C0

Peri-
pheral
module
interrupt
(module/
source)

TMU0 TUNI0 4 *2 (VBR) H'600 H'400

TMU1 TUNI1 H'420

TMU2 TUNI2 H'440

TICPI2 H'460

RTC ATI H'480

PRI H'4A0

CUI H'4C0

SCI ERI H'4E0

SCI RXI H'500

TXI H'520

TEI H'540

WDT ITI H'560

Exception
Category

Execution
Mode Exception

Priority
Level

Priority
Order Vector Address Offset

Exception
Code
HPM-70

5. Exceptions
Priority: Priority is Þrst assigned by priority level, then by priority order within each level (the lowest number
represents the highest priority).

Exception transition destination: Control passes to H'A000 0000 in a reset, and to [VBR + offset] in other cases.

Exception code: Stored in EXPEVT for a reset or general exception, and in INTEVT for an interrupt.

IRL: Interrupt request level (pins IRL3ÐIRL0).

Module/source: See the sections on the relevant peripheral modules.

Note: When BRCR.UBDE = 1, PC = DBR. In other cases, PC = VBR + H'100.
The priority order of external interrupts and peripheral module interrupts can be set by software.

5.5 Exception Flow

5.5.1 Exception Flow

Figure 5.2 shows an outline ßowchart of the basic operations in instruction execution and exception handling. For
the sake of clarity, the following description assumes that instructions are executed sequentially, one by one. Figure
5.2 shows the relative priority order of the different kinds of exceptions (reset/general exception/interrupt).
Register settings in the event of an exception are shown only for SSR, SPC, EXPEVT/INTEVT, SR, and PC, but other
registers may be set automatically by hardware, depending on the exception. For details, see section 5.6,
Description of Exceptions. Also, see section 5.6.4, Priority Order with Multiple Exceptions, for exception handling
during execution of a delayed branch instruction and a delay slot instruction, and in the case of instructions in
which two data accesses are performed.

REF RCMI H'580

ROVI H'5A0

Hitach
i- UDI

Hitachi-
UDI

H'600

Interrupt Completion
type

Peripheral
module
interrupt
(module/
source)

DMAC DMTE0 4 *2 (VBR) H'600 H'640

DMTE1 H'660

DMTE2 H'680

DMTE3 H'6A0

DMAE H'6C0

SCIF ERI H'700

RXI H'720

BRI H'740

TXI H'760

Exception
Category

Execution
Mode Exception

Priority
Level

Priority
Order Vector Address Offset

Exception
Code
HPM-71

Dreamcast SH4 Program Manual
Figure 5.2 Instruction Execution and Exception Handling

5.5.2 Exception Source Acceptance

A priority ranking is provided for all exceptions for use in determining which of two or more simultaneously
generated exceptions should be accepted. Five of the general exceptionsÑthe general illegal instruction exception,
slot illegal instruction exception, general FPU disable exception, slot FPU disable exception, and unconditional trap
exceptionÑare detected in the process of instruction decoding, and do not occur simultaneously in the instruction
pipeline. These exceptions therefore all have the same priority. General exceptions are detected in the order of
instruction execution. However, exception handling is performed in the order of instruction ßow (program order).
Thus, an exception for an earlier instruction is accepted before that for a later instruction. An example of the order
of acceptance for general exceptions is shown in Þgure 5.3.

Execute next instruction

Is highest-
priority exception

re-exception
type?

Cancel instruction execution
result

Yes

Yes

Yes

No

No

No

No

Yes

SSR ← SR
SPC ← PC
SGR ← R15
EXPEVT/INTEVT ← exception code
SR.{MD,RB,BL} ← 111
PC ← (BRCR.UBDE=1 && User_Break?

DBR: (VBR + Offset))

EXPEVT ← exception code
SR. {MD, RB, BL, FD, IMASK} ← 11101111
PC ← H'A000 0000

Interrupt
requested?

General
exception requested?

Reset
requested?
HPM-72

5. Exceptions
Figure 5.3 Example of General Exception Acceptance Order

5.5.3 Exception Requests and BL Bit

When the BL bit in SR is 0, exceptions and interrupts are accepted.

When the BL bit in SR is 1 and an exception other than a user break is generated, the CPUÕs internal registers are
set to their post-reset state, the registers of the other modules retain their contents prior to the exception, and the
CPU branches to the same address as in a reset (H'A000 0000). For the operation in the event of a user break, see
section 20, User Break Controller. If an ordinary interrupt occurs, the interrupt request is held pending and is
accepted after the BL bit has been cleared to 0 by software. If a nonmaskable interrupt (NMI) occurs, it can be held
pending or accepted according to the setting made by software.

Thus, normally, SPC and SSR are saved and then the BL bit in SR is cleared to 0, to enable multiple exception state
acceptance.

IF

IF

ID

ID

EX

EX

MA

MA

WB

WB

TLB miss (data access)Pipeline flow:

Order of detection:

Instruction n
Instruction n+1

General illegal instruction exception (instruction n+1) and
TLB miss (instruction n+2) are detected simultaneously

Order of exception handling:

TLB miss (instruction n)

Program order

1

Instruction n+2

General illegal instruction exception

IF ID EX MA WB

IF ID EX MA WB

TLB miss (instruction access)

2

3

4

IF: Instruction fetch
ID: Instruction decode
EX: Instruction execution
MA: Memory access
WB: Write-back

Instruction n+3

TLB miss (instruction n)

Re-execution of instruction n

General illegal instruction exception
(instruction n+1)

Re-execution of instruction n+1

TLB miss (instruction n+2)

Re-execution of instruction n+2

Execution of instruction n+3
HPM-73

Dreamcast SH4 Program Manual
5.5.4 Return from Exception Handling

The RTE instruction is used to return from exception handling. When the RTE instruction is executed, the SPC
contents are restored to PC and the SSR contents to SR, and the CPU returns from the exception handling routine
by branching to the SPC address. If SPC and SSR were saved to external memory, set the BL bit in SR to 1 before
restoring the SPC and SSR contents and issuing the RTE instruction.

5.6 Description of Exceptions
The various exception handling operations are described here, covering exception sources, transition addresses, and
processor operation when a transition is made.

5.6.1 Resets

Power-On Reset

¥ á Sources:

ÑSCK2 pin high level and RESET pin low level

ÑWhen the watchdog timer overßows while the WT/IT bit is set to 1 and the RSTS bit is cleared to 0 in
WTCSR. For details, see section 10, Clock Oscillation Circuits.

¥ Transition address: H'A000 0000

¥ Transition operations:

Exception code H'000 is set in EXPEVT, initialization of VBR and SR is performed, and a branch is made to
PC = H'A000 0000.

In the initialization processing, the VBR register is set to H'0000 0000, and in SR, the MD, RB, and BL bits
are set to 1, the FD bit is cleared to 0, and the interrupt mask bits (I3ÐI0) are set to BÕ1111.

CPU and on-chip peripheral module initialization is performed. For details, see the register descriptions in
the relevant sections. For some CPU functions, the TRST pin and RESET pin must be driven low. It is
therefore essential to execute a power-on reset and drive the TRST pin low when powering on.

Power_on_reset()

{

EXPEVT = H'00000000;

VBR = H'00000000;

SR.MD = 1;

SR.RB = 1;

SR.BL = 1;

SR.(I0-I3) = B'1111;

SR.FD=0;

Initialize_CPU();

Initialize_Module(PowerOn);

PC = H'A0000000;

}

HPM-74

5. Exceptions
Manual Reset

¥ Sources:

ÑSCK2 pin low level and RESET pin low level

ÑWhen a general exception other than a user break occurs while the BL bit is set to 1 in SR

ÑWhen the watchdog timer overßows while the RSTS bit is set to 1 in WTCSR. For details, see section 10,
Clock Oscillation Circuits.

¥ Transition address: H'A000 0000

¥ Transition operations:

Exception code H'020 is set in EXPEVT, initialization of VBR and SR is performed, and a branch is made to
PC = H'A000 0000.

In the initialization processing, the VBR register is set to H'0000 0000, and in SR, the MD, RB, and BL bits
are set to 1, the FD bit is cleared to 0, and the interrupt mask bits (I3ÐI0) are set to BÕ1111.

CPU and on-chip peripheral module initialization is performed. For details, see the register descriptions in
the relevant sections.

Manual_reset()

{

EXPEVT = H'00000020;

VBR = H'00000000;

SR.MD = 1;

SR.RB = 1;

SR.BL = 1;

SR.(I0-I3) = B'1111;

SR.FD = 0;

Initialize_CPU();

Initialize_Module(Manual);

PC = H'A0000000;

}

Table 5.3 Types of Reset

 Reset State Transition Conditions Internal States

Type SCK2 RESET CPU On-Chip Peripheral
Modules

Power-on reset High Low Initialized See Register
Configuration in each
sectionManual reset Low Low Initialized
HPM-75

Dreamcast SH4 Program Manual
Hitachi-UDI Reset

¥ Source: SDIR.TI3ÐTI0 = BÕ0110 (negation) or BÕ0111 (assertion)

¥ Transition address: H'A000 0000

¥ Transition operations:

Exception code H'000 is set in EXPEVT, initialization of VBR and SR is performed, and a branch is made to
PC = H'A000 0000.

In the initialization processing, the VBR register is set to H'0000 0000, and in SR, the MD, RB, and BL bits
are set to 1, the FD bit is cleared to 0, and the interrupt mask bits (I3ÐI0) are set to BÕ1111.

CPU and on-chip peripheral module initialization is performed. For details, see the register descriptions in
the relevant sections.

Hitachi-UDI_reset()

{

EXPEVT = H'00000000;

VBR = H'00000000;

SR.MD = 1;

SR.RB = 1;

SR.BL = 1;

SR.(I0-I3) = B'1111;

SR.FD = 0;

Initialize_CPU();

Initialize_Module(PowerOn);

PC = H'A0000000;

}

Instruction TLB Multiple-Hit Exception

¥ Source: Multiple ITLB address matches

¥ Transition address: H'A000 0000

¥ Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the corresponding virtual
page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates the ASID when this exception
occurred.

Exception code H'140 is set in EXPEVT, initialization of VBR and SR is performed, and a branch is made to
PC = H'A000 0000.

In the initialization processing, the VBR register is set to H'0000 0000, and in SR, the MD, RB, and BL bits
are set to 1, the FD bit is cleared to 0, and the interrupt mask bits (I3ÐI0) are set to BÕ1111.

CPU and on-chip peripheral module initialization is performed in the same way as in a manual reset. For
details, see the register descriptions in the relevant sections.
HPM-76

5. Exceptions
TLB_multi_hit()

{

TEA = EXCEPTION_ADDRESS;

PTEH.VPN = PAGE_NUMBER;

EXPEVT = H'00000140;

VBR = H'00000000;

SR.MD = 1;

SR.RB = 1;

SR.BL = 1;

SR.(I0-I3) = B'1111;

SR.FD = 0;

Initialize_CPU();

Initialize_Module(Manual);

PC = H'A0000000;

}

Operand TLB Multiple-Hit Exception

¥ Source: Multiple UTLB address matches

¥ Transition address: H'A000 0000

¥ Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the corresponding virtual
page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates the ASID when this exception
occurred.

Exception code H'140 is set in EXPEVT, initialization of VBR and SR is performed, and a branch is made to
PC = H'A000 0000.

In the initialization processing, the VBR register is set to H'0000 0000, and in SR, the MD, RB, and BL bits
are set to 1, the FD bit is cleared to 0, and the interrupt mask bits (I3ÐI0) are set to BÕ1111.

CPU and on-chip peripheral module initialization is performed in the same way as in a manual reset. For
details, see the register descriptions in the relevant sections.

TLB_multi_hit()

{

TEA = EXCEPTION_ADDRESS;

PTEH.VPN = PAGE_NUMBER;

EXPEVT = H'00000140;

VBR = H'00000000;

SR.MD = 1;

SR.RB = 1;

SR.BL = 1;

SR.(I0-I3) = B'1111;

SR.FD = 0;

Initialize_CPU();

Initialize_Module(PowerOn);

PC = H'A0000000;

}

HPM-77

Dreamcast SH4 Program Manual
5.6.2 General Exceptions

Data TLB Miss Exception

¥ Source: Address mismatch in UTLB address comparison

¥ Transition address: VBR + H'0000 0400

¥ Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the corresponding virtual
page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates the ASID when this exception
occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in SPC and SSR.

Exception code H'040 (for a read access) or H'060 (for a write access) is set in EXPEVT. The BL, MD, and RB
bits are set to 1 in SR, and a branch is made to PC = VBR + H'0400.

To speed up TLB miss processing, the offset is separate from that of other exceptions.

Data_TLB_miss_exception()

{

TEA = EXCEPTION_ADDRESS;

PTEH.VPN = PAGE_NUMBER;

SPC = PC;

SSR = SR;

EXPEVT = read_access ? H'00000040 : H'00000060;

SR.MD = 1;

SR.RB = 1;

SR.BL = 1;

PC = VBR + H'00000400;

}

Instruction TLB Miss Exception

¥ Source: Address mismatch in ITLB address comparison

¥ Transition address: VBR + H'0000 0400

¥ Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the corresponding virtual
page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates the ASID when this exception
occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in SPC and SSR.

Exception code H'040 is set in EXPEVT. The BL, MD, and RB bits are set to 1 in SR, and a branch is made to
PC = VBR + H'0400.

To speed up TLB miss processing, the offset is separate from that of other exceptions.
HPM-78

5. Exceptions
ITLB_miss_exception()

{

TEA = EXCEPTION_ADDRESS;

PTEH.VPN = PAGE_NUMBER;

SPC = PC;

SSR = SR;

EXPEVT = H'00000040;

SR.MD = 1;

SR.RB = 1;

SR.BL = 1;

PC = VBR + H'00000400;

}

Initial Page Write Exception

¥ Source: TLB is hit in a store access, but dirty bit D = 0

¥ Transition address: VBR + H'0000 0100

¥ Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the corresponding virtual
page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates the ASID when this exception
occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in SPC and SSR.

Exception code H'080 is set in EXPEVT. The BL, MD, and RB bits are set to 1 in SR, and a branch is made to
PC = VBR + H'0100.

Initial_write_exception()

{

TEA = EXCEPTION_ADDRESS;

PTEH.VPN = PAGE_NUMBER;

SPC = PC;

SSR = SR;

EXPEVT = H'00000080;

SR.MD = 1;

SR.RB = 1;

SR.BL = 1;

PC = VBR + H'00000100;

}

Data TLB Protection Violation Exception

¥ Source: The access does not accord with the UTLB protection information (PR bits) shown below.

PR Privileged Mode User Mode

00 Only read access possible Access not possible

01 Read/write access possible Access not possible

10 Only read access possible Only read access possible

11 Read/write access possible Read/write access possible
HPM-79

Dreamcast SH4 Program Manual
¥ Transition address: VBR + H'0000 0100

¥ Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the corresponding virtual
page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates the ASID when this exception
occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in SPC and SSR.

Exception code H'0A0 (for a read access) or H'0C0 (for a write access) is set in EXPEVT. The BL, MD, and
RB bits are set to 1 in SR, and a branch is made to PC = VBR + H'0100.

Data_TLB_protection_violation_exception()

{

TEA = EXCEPTION_ADDRESS;

PTEH.VPN = PAGE_NUMBER;

SPC = PC;

SSR = SR;

EXPEVT = read_access ? H'000000A0 : H'000000C0;

SR.MD = 1;

SR.RB = 1;

SR.BL = 1;

PC = VBR + H'00000100;

}

Instruction TLB Protection Violation Exception

¥ Source: The access does not accord with the ITLB protection information (PR bits) shown below.

¥ Transition address: VBR + H'0000 0100

¥ Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the corresponding virtual page
number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in SPC and SSR.

Exception code H'0A0 is set in EXPEVT. The BL, MD, and RB bits are set to 1 in SR, and a branch is made to PC =
VBR + H'0100.

PR Privileged Mode User Mode

0 Access possible Access not possible

1 Access possible Access possible
HPM-80

5. Exceptions
ITLB_protection_violation_exception()

{

TEA = EXCEPTION_ADDRESS;

PTEH.VPN = PAGE_NUMBER;

SPC = PC;

SSR = SR;

EXPEVT = H'000000A0;

SR.MD = 1;

SR.RB = 1;

SR.BL = 1;

PC = VBR + H'00000100;

}

Data Address Error

¥ Sources:

ÑWord data access from other than a word boundary (2n +1)

ÑLongword data access from other than a longword data boundary (4n +1, 4n + 2, or 4n +3)

ÑQuadword data access from other than a quadword data boundary (8n +1, 8n + 2, 8n +3, 8n + 4, 8n + 5,
8n + 6, or 8n + 7)

ÑAccess to area H'8000 0000ÐH'FFFF FFFF in user mode

¥ Transition address: VBR + H'0000 0100

¥ Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the corresponding virtual
page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates the ASID when this exception
occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in SPC and SSR.

Exception code H'0E0 (for a read access) or H'100 (for a write access) is set in EXPEVT. The BL, MD, and RB
bits are set to 1 in SR, and a branch is made to PC = VBR + H'0100. For details, see section 3, Memory
Management Unit (MMU).

Data_address_error()

{

TEA = EXCEPTION_ADDRESS;

PTEN.VPN = PAGE_NUMBER;

SPC = PC;

SSR = SR;

EXPEVT = read_access? H'000000E0: H'00000100;

SR.MD = 1;

SR.RB = 1;

SR.BL = 1;

PC = VBR + H'00000100;

}

HPM-81

Dreamcast SH4 Program Manual
Instruction Address Error

¥ á Sources:

ÑInstruction fetch from other than a word boundary (2n +1)

ÑInstruction fetch from area H'8000 0000ÐH'FFFF FFFF in user mode

¥ Transition address: VBR + H'0000 0100

¥ Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the corresponding virtual
page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates the ASID when this exception
occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in the SPC and SSR.

Exception code H'0E0 is set in EXPEVT. The BL, MD, and RB bits are set to 1 in SR, and a branch is made to
PC = VBR + H'0100. For details, see section 3, Memory Management Unit (MMU).

Instruction_address_error()

{

TEA = EXCEPTION_ADDRESS;

PTEN.VPN = PAGE_NUMBER;

SPC = PC;

SSR = SR;

EXPEVT = H'000000E0;

SR.MD = 1;

SR.RB = 1;

SR.BL = 1;

PC = VBR + H'00000100;

}

Unconditional Trap

¥ Source: Execution of TRAPA instruction

¥ Transition address: VBR + H'0000 0100

¥ Transition operations:

As this is a processing-completion-type exception, the PC contents for the instruction following the TRAPA
instruction are saved in SPC. The value of SR when the TRAPA instruction is executed are saved in SSR. The
8-bit immediate value in the TRAPA instruction is multiplied by 4, and the result is set in TRA [9:0].
Exception code H'160 is set in EXPEVT. The BL, MD, and RB bits are set to 1 in SR, and a branch is made to
PC = VBR + H'0100.

TRAPA_exception()

{

SPC = PC + 2;

SSR = SR;

TRA = imm << 2;

EXPEVT = H'00000160;

SR.MD = 1;

SR.RB = 1;

SR.BL = 1;

PC = VBR + H'00000100;

}

HPM-82

5. Exceptions
General Illegal Instruction Exception

¥ Sources:

ÑDecoding of an undeÞned instruction not in a delay slot

Delayed branch instructions: JMP, JSR, BRA, BRAF, BSR, BSRF, RTS, RTE, BT/S, BF/S

UndeÞned instruction: H'FFFD

ÑDecoding in user mode of a privileged instruction not in a delay slot

Privileged instructions: LDC, STC, RTE, LDTLB, SLEEP, but excluding LDC/STC instructions that access
GBR

¥ Transition address: VBR + H'0000 0100

¥ Transition operations:

The PC and SR contents for the instruction at which this exception occurred are saved in SPC and SSR.

Exception code H'180 is set in EXPEVT. The BL, MD, and RB bits are set to 1 in SR, and a branch is made to
PC = VBR + H'0100. Operation is not guaranteed if an undeÞned code other than H'FFFD is decoded.

General_illegal_instruction_exception()

{

SPC = PC;

SSR = SR;

EXPEVT = H'00000180;

SR.MD = 1;

SR.RB = 1;

SR.BL = 1;

PC = VBR + H'00000100;

}

Slot Illegal Instruction Exception

¥ Sources:

ÑDecoding of an undeÞned instruction in a delay slot

Delayed branch instructions: JMP, JSR, BRA, BRAF, BSR, BSRF, RTS, RTE, BT/S, BF/S

UndeÞned instruction: H'FFFD

ÑDecoding of an instruction that modiÞes PC in a delay slot

Instructions that modify PC: JMP, JSR, BRA, BRAF, BSR, BSRF, RTS, RTE, BT, BF, BT/S, BF/S, TRAPA, LDC
Rm, SR, LDC.L @Rm+, SR

ÑDecoding in user mode of a privileged instruction in a delay slot

Privileged instructions: LDC, STC, RTE, LDTLB, SLEEP, but excluding LDC/STC instructions that access
GBR

ÑDecoding of a PC-relative MOV instruction or MOVA instruction in a delay slot

¥ Transition address: VBR + H'0000 0100

¥ Transition operations:

The PC contents for the preceding delayed branch instruction are saved in SPC. The SR contents when this
exception occurred are saved in SSR.

Exception code H'1A0 is set in EXPEVT. The BL, MD, and RB bits are set to 1 in SR, and a branch is made
to PC = VBR + H'0100. Operation is not guaranteed if an undeÞned code other than H'FFFD is decoded.
HPM-83

Dreamcast SH4 Program Manual
Slot_illegal_instruction_exception()

{

SPC = PC - 2;

SSR = SR;

EXPEVT = H'000001A0;

SR.MD = 1;

SR.RB = 1;

SR.BL = 1;

PC = VBR + H'00000100;

}

General FPU Disable Exception

¥ Source: Decoding of an FPU instruction* not in a delay slot with SR.FD =1

¥ Transition address: VBR + H'0000 0100

¥ Transition operations:

The PC and SR contents for the instruction at which this exception occurred are saved in SPC and SSR.

Exception code H'800 is set in EXPEVT. The BL, MD, and RB bits are set to 1 in SR, and a branch is made to
PC = VBR + H'0100.

Note: *FPU instructions are instructions in which the Þrst 4 bits of the instruction code are F (but excluding
undeÞned instruction H'FFFD), and the LDS, STS, LDS.L, and STS.L instructions corresponding to FPUL
and FPSCR.

General_fpu_disable_exception()

{

SPC = PC;

SSR = SR;

EXPEVT = H'00000800;

SR.MD = 1;

SR.RB = 1;

SR.BL = 1;

PC = VBR + H'00000100;

}

Slot FPU Disable Exception

¥ Source: Decoding of an FPU instruction in a delay slot with SR.FD =1

¥ Transition address: VBR + H'0000 0100

¥ Transition operations:

The PC contents for the preceding delayed branch instruction are saved in SPC. The SR contents when this
exception occurred are saved in SSR.

Exception code H'820 is set in EXPEVT. The BL, MD, and RB bits are set to 1 in SR, and a branch is made to
PC = VBR + H'0100.
HPM-84

5. Exceptions
Slot_fpu_disable_exception()

{

SPC = PC - 2;

SSR = SR;

EXPEVT = H'00000820;

SR.MD = 1;

SR.RB = 1;

SR.BL = 1;

PC = VBR + H'00000100;

}

User Breakpoint Trap

¥ Source: FulÞlling of a break condition set in the user break controller

¥ Transition address: VBR + H'0000 0100, or DBR

¥ Transition operations:

In the case of a post-execution break, the PC contents for the instruction following the instruction at which
the breakpoint is set are set in SPC. In the case of a pre-execution break, the PC contents for the instruction
at which the breakpoint is set are set in SPC.

The SR contents when the break occurred are saved in SSR. Exception code H'1E0 is set in EXPEVT.

The BL, MD, and RB bits are set to 1 in SR, and a branch is made to PC = VBR + H'0100. It is also possible
to branch to PC = DBR.

For details of PC, etc., when a data break is set, see section 20, User Break Controller.

User_break_exception()

{

SPC = (pre_execution break? PC : PC + 2);

SSR = SR;

EXPEVT = H'000001E0;

SR.MD = 1;

SR.RB = 1;

SR.BL = 1;

PC = (BRCR.UBDE==1 ? DBR : VBR + H’00000100);

}

HPM-85

Dreamcast SH4 Program Manual
FPU Exception

¥ Source: Exception due to execution of a ßoating-point operation

¥ Transition address: VBR + H'0000 0100

¥ Transition operations:

The PC and SR contents for the instruction at which this exception occurred are saved in SPC and SSR. Exception
code H'120 is set in EXPEVT. The BL, MD, and RB bits are set to 1 in SR, and a branch is made to PC = VBR + H'0100.

FPU_exception()

{

SPC = PC;

SSR = SR;

EXPEVT = H'00000120;

SR.MD = 1;

SR.RB = 1;

SR.BL = 1;

PC = VBR + H'00000100;

}

5.6.3 Interrupts

NMI

¥ Source: NMI pin edge detection

¥ Transition address: VBR + H'0000 0600

¥ Transition operations:

The PC and SR contents for the instruction at which this exception is accepted are saved in SPC and SSR.

Exception code H'1C0 is set in INTEVT. The BL, MD, and RB bits are set to 1 in SR, and a branch is made to
PC = VBR + H'0600. When the BL bit in SR is 0, this interrupt is not masked by the interrupt mask bits in
SR, and is accepted at the highest priority level. When the BL bit in SR is 1, a software setting can specify
whether this interrupt is to be masked or accepted. For details, see section 19, Interrupt Controller.

NMI()

{

SPC = PC;

SSR = SR;

INTEVT = H'000001C0;

SR.MD = 1;

SR.RB = 1;

SR.BL = 1;

PC = VBR + H'00000600;

}

IRL Interrupts

¥ Source: The interrupt mask bit setting in SR is smaller than the IRL (3Ð0) level, and the BL bit in SR is 0
(accepted at instruction boundary).

¥ Transition address: VBR + H'0000 0600

¥ Transition operations:
HPM-86

5. Exceptions
The PC contents immediately after the instruction at which the interrupt is accepted are set in SPC. The SR
contents at the time of acceptance are set in SSR.

The code corresponding to the IRL (3Ð0) level is set in INTEVT. See table 19.5, Interrupt Exception Handling
Sources and Priority Order, for the corresponding codes. The BL, MD, and RB bits are set to 1 in SR, and a
branch is made to VBR + H'0600. The acceptance level is not set in the interrupt mask bits in SR. When the
BL bit in SR is 1, the interrupt is masked. For details, see section 19, Interrupt Controller.

IRL()

{

SPC = PC;

SSR = SR;

INTEVT = H'00000200 ~ H'000003C0;

SR.MD = 1;

SR.RB = 1;

SR.BL = 1;

PC = VBR + H'00000600;

}

Peripheral Module Interrupts

¥ á Source: The interrupt mask bit setting in SR is smaller than the peripheral module (Hitachi-UDI, DMAC,
TMU, RTC, SCI, SCIF, WDT, or REF) interrupt level, and the BL bit in SR is 0 (accepted at instruction
boundary).

¥ á Transition address: VBR + H'0000 0600

¥ á Transition operations:

The PC contents immediately after the instruction at which the interrupt is accepted are set in SPC. The SR
contents at the time of acceptance are set in SSR.

The code corresponding to the interrupt source is set in INTEVT. The BL, MD, and RB bits are set to 1 in
SR, and a branch is made to VBR + H'0600. The module interrupt levels should be set as values between
BÕ0000 and BÕ1111 in the interrupt priority registers (IPRAÐIPRC) in the interrupt controller. For details, see
section 19, Interrupt Controller.

Module_interruption()

{

SPC = PC;

SSR = SR;

INTEVT = H'00000400 ~ H'00000760;

SR.MD = 1;

SR.RB = 1;

SR.BL = 1;

PC = VBR + H'00000600;

}

HPM-87

Dreamcast SH4 Program Manual
5.6.4 Priority Order with Multiple Exceptions

With some instructions, such as instructions that make two accesses to memory, and the indivisible pair comprising
a delayed branch instruction and delay slot instruction, multiple exceptions occur. Care is required in these cases,
as the exception priority order differs from the normal order.

1) Instructions that make two accesses to memory

With MAC instructions, memory-to-memory arithmetic/logic instructions, and TAS instructions, two data
transfers are performed by a single instruction, and an exception will be detected for each of these data
transfers. In these cases, therefore, the following order is used to determine priority.

a) Data address error in Þrst data transfer

b) TLB miss in Þrst data transfer

c) TLB protection violation in Þrst data transfer

d) Initial page write exception in Þrst data transfer

e) Data address error in second data transfer

f) TLB miss in second data transfer

g) TLB protection violation in second data transfer

h) Initial page write exception in second data transfer

2) Indivisible delayed branch instruction and delay slot instruction

As a delayed branch instruction and its associated delay slot instruction are indivisible, they are treated as
a single instruction. Consequently, the priority order for exceptions that occur in these instructions differs
from the usual priority order. The priority order shown below is for the case where the delay slot instruction
has only one data transfer.

a) The delayed branch instruction is checked for priority levels 1 and 2.

b) The delay slot instruction is checked for priority levels 1 and 2.

c) A check is performed for priority level 3 in the delayed branch instruction and priority level 3 in the
delay slot instruction. (There is no priority ranking between these two.)

d) A check is performed for priority level 4 in the delayed branch instruction and priority level 4 in the
delay slot instruction. (There is no priority ranking between these two.)

If the delay slot instruction has a second data transfer, two checks are performed in step b, as in 1 above.

If the accepted exception (the highest-priority exception) is a delay slot instruction re-execution type
exception, the branch instruction PR register write operation (PC ® PR operation performed in BSR, BSRF,
JSR) is inhibited.
HPM-88

5. Exceptions
5.7 Usage Notes
1) Return from exception handling

a) Check the BL bit in SR with software. If SPC and SSR have been saved to external memory, set the BL
bit in SR to 1 before restoring them.

b) Issue an RTE instruction. When RTE is executed, the SPC contents are set in PC, the SSR contents are set
in SR, and branch is made to the SPC address to return from the exception handling routine.

2) If an exception or interrupt occurs when SR.BL = 1

a) Exception

When an exception other than a user break occurs, the CPUÕs internal registers are set to their post-reset
state, the registers of the other modules retain their contents prior to the exception, and the CPU branches
to the same address as in a reset (H'A000 0000). The value in EXPEVT at this time is H'0000 0020; the value
of the SPC and SSR registers is undeÞned.

b) Interrupt

If an ordinary interrupt occurs, the interrupt request is held pending and is accepted after the BL bit in SR
has been cleared to 0 by software. If a nonmaskable interrupt (NMI) occurs, it can be held pending or
accepted according to the setting made by software. In the sleep or standby state, however, an interrupt is
accepted even if the BL bit in SR is set to 1.

3) SPC when an exception occurs

a) Re-execution type exception

The PC value for the instruction in which the exception occurred is set in SPC, and the instruction is
re-executed after returning from exception handling. If an exception occurs in a delay slot instruction,
however, the PC value for the delay slot instruction is saved in SPC regardless of whether or not the
preceding delay slot instruction condition is satisÞed.

b) Completion type exception or interrupt

The PC value for the instruction following that in which the exception occurred is set in SPC. If an exception
occurs in a branch instruction with delay slot, however, the PC value for the branch destination is saved in
SPC.

4) An exception must not be generated in an RTE instruction delay slot, as the operation will be undeÞned in
this case.
HPM-89

Dreamcast SH4 Program Manual
HPM-90

6. Floating-Point Unit
6.1 Overview
The ßoating-point unit (FPU) has the following features:

¥ Conforms to IEEE754 standard

¥ 32 single-precision ßoating-point registers (can also be referenced as 16 double-precision registers)

¥ Two rounding modes: Round to Nearest and Round to Zero

¥ Two denormalization modes: Flush to Zero and Treat Denormalized Number

¥ Six exception sources: FPU Error, Invalid Operation, Divide By Zero, Overßow, Underßow, and Inexact

¥ Comprehensive instructions: Single-precision, double-precision, graphics support, system control

When the FD bit in SR is set to 1, the FPU cannot be used, and an attempt to execute an FPU instruction will cause
an FPU disable exception.

6.2 Data Formats

6.2.1 Floating-Point Format

A ßoating-point number consists of the following three Þelds:

¥ Sign (s)

¥ Exponent (e)

¥ Fraction (f)

The SH7091 can handle single-precision and double-precision ßoating-point numbers, using the formats shown in
Þgures 6.1 and 6.2.

Figure 6.1 Format of Single-Precision Floating-Point Number

31

s e f

30 23 22 0
HPM-91

Dreamcast SH4 Program Manual
Figure 6.2 Format of Double-Precision Floating-Point Number

The exponent is expressed in biased form, as follows:

e = E + bias

The range of unbiased exponent E is Emin Ð 1 to Emax + 1. The two values Emin Ð 1 and Emax + 1 are distinguished
as follows. Emin Ð 1 indicates zero (both positive and negative sign) and a denormalized number, and Emax + 1
indicates positive or negative inÞnity or a non-number (NaN). Table 1 shows bias, Emin, and Emax values.

Table 6.1 Floating-Point Number Formats and Parameters

Floating-point number value v is determined as follows:

If E = Emax + 1 and f π 0, v is a non-number (NaN) irrespective of sign s

If E = Emax + 1 and f = 0, v = (–1)s (infinity) [positive or negative infinity]

If Emin £ E £ Emax , v = (–1)s2E (1.f) [normalized number]

If E = Emin – 1 and f π 0, v = (–1)s2Emin (0.f) [denormalized number]

If E = Emin – 1 and f = 0, v = (–1)s0 [positive or negative zero]

Parameter Single-Precision Double-Precision

Total bit width 32 bits 64 bits

Sign bit 1 bit 1 bit

Exponent field 8 bits 11 bits

Fraction field 23 bits 52 bits

Precision 24 bits 53 bits

Bias +127 +1023

Emax +127 +1023

Emin –126 –1022

63

s e f

62 52 51 0
HPM-92

6. Floating-Point Unit
Table 6.2 shows the ranges of the various numbers in hexadecimal notation.

Table 6.2 Floating-Point Ranges

6.2.2 Non-Numbers (NaN)

Figure 6.3 shows the bit pattern of a non-number (NaN). A value is NaN in the following case:

¥ Sign bit: DonÕt care

¥ Exponent Þeld: All bits are 1

¥ Fraction Þeld: At least one bit is 1

The NaN is a signaling NaN (sNaN) if the MSB of the fraction Þeld is 1, and a quiet NaN (qNaN) if the MSB is 0.

Figure 6.3 Single-Precision NaN Bit Pattern

Type Single-Precision Double-Precision

Signaling non-number H'7FFFFFFF to H'7FC00000 H'7FFFFFFF H'FFFFFFFF to H'7FF80000 H'00000000

Quiet non-number H'7FBFFFFF to H'7F800001 H'7FF7FFFF H'FFFFFFFF to H'7FF00000 H'00000001

Positive infinity H'7F800000 H'7FF00000 H'00000

Positive normalized number H'7F7FFFFF to H'00800000 H'7FEFFFFF H'FFFFFFFF to H'00100000 H'00000000

Positive denormalized number H'007FFFFF to H'00000001 H'000FFFFF H'FFFFFFFF to H'00000000 H'00000001

Positive zero H'00000000 H'00000000 H'00000000

Negative zero H'80000000 H'80000000 H'00000000

Negative denormalized number H'80000001 to H'807FFFFF H'80000000 H'00000001 to H'800FFFFF H'FFFFFFFF

Negative normalized number H'80800000 to H'FF7FFFFF H'80100000 H'00000000 to H'FFEFFFFF H'FFFFFFFF

Negative infinity H'FF800000 H'FFF00000 H'00000000

Quiet non-number H'FF800001 to H'FFBFFFFF H'FFF00000 H'00000001 to H'FFF7FFFF H'FFFFFFFF

Signaling non-number H'FFC00000 to H'FFFFFFFF H'FFF80000 H'00000000 to H'FFFFFFFF H'FFFFFFFF

31

x 11111111 Nxxxxxxxxxxxxxxxxxxxxxx

30 23 22 0

N = 1: sNaN
N = 0: qNaN
HPM-93

Dreamcast SH4 Program Manual
An sNAN is input in an operation, except copy, FABS, and FNEG, that generates a ßoating-point value.

¥ When the EN.V bit in the FPSCR register is 0, the operation result (output) is a qNaN.

¥ When the EN.V bit in the FPSCR register is 1, an invalid operation exception will be generated. In this
case, the contents of the operation destination register are unchanged.

If a qNaN is input in an operation that generates a ßoating-point value, and an sNaN has not been input in
that operation, the output will always be a qNaN irrespective of the setting of the EN.V bit in the FPSCR
register. An exception will not be generated in this case.

The qNAN values generated by the SH7091 as operation results are as follows:

¥ Single-precision qNaN: H'7FBFFFFF

¥ Double-precision qNaN: H'7FF7FFFF FFFFFFFF

See section 10, Instruction Descriptions, for details of ßoating-point operations when a non-number (NaN) is input.

6.2.3 Denormalized Numbers

For a denormalized number ßoating-point value, the exponent Þeld is expressed as 0, and the fraction Þeld as a
non-zero value.

When the DN bit in the FPUÕs status register FPSCR is 1, a denormalized number (source operand or operation
result) is always ßushed to 0 in a ßoating-point operation that generates a value (an operation other than copy,
FNEG, or FABS).

When the DN bit in FPSCR is 0, a denormalized number (source operand or operation result) is processed as it is.
See the individual instruction descriptions for details of ßoating-point operations when a denormalized number
is input.

6.3 Registers

6.3.1 Floating-Point Registers

Figure 4 shows the ßoating-point register conÞguration. There are thirty-two 32-bit ßoating-point registers,
referenced by specifying FR0ÐFR15, DR0/2/4/6/8/10/12/14, FV0/4/8/12, XF0ÐXF15, XD0/2/4/6/8/10/12/14,
or XMTRX.

1) Floating-point registers, FPRi_BANKj (32 registers)
FPR0_BANK0ÐFPR15_BANK0
FPR0_BANK1ÐFPR15_BANK1

2) Single-precision ßoating-point registers, FRi (16 registers)
When FPSCR.FR = 0, FR0ÐFR15 indicate FPR0_BANK0ÐFPR15_BANK0;
when FPSCR.FR = 1, FR0ÐFR15 indicate FPR0_BANK1ÐFPR15_BANK1.

3) Double-precision ßoating-point registers, DRi (8 registers): A DR register comprises two FR registers

DR0 = {FR0, FR1}, DR2 = {FR2, FR3}, DR4 = {FR4, FR5}, DR6 = {FR6, FR7},
DR8 = {FR8, FR9}, DR10 = {FR10, FR11}, DR12 = {FR12, FR13}, DR14 = {FR14, FR15}
HPM-94

6. Floating-Point Unit
4) Single-precision ßoating-point vector registers, FVi (4 registers): An FV register comprises four
FR registers
FV0 = {FR0, FR1, FR2, FR3}, FV4 = {FR4, FR5, FR6, FR7},
FV8 = {FR8, FR9, FR10, FR11}, FV12 = {FR12, FR13, FR14, FR15}

5) Single-precision ßoating-point extended registers, XFi (16 registers)
When FPSCR.FR = 0, XF0ÐXF15 indicate FPR0_BANK1ÐFPR15_BANK1;
when FPSCR.FR = 1, XF0ÐXF15 indicate FPR0_BANK0ÐFPR15_BANK0.

6) Double-precision ßoating-point extended registers, XDi (8 registers): An XD register comprises two
XF registers
XD0 = {XF0, XF1}, XD2 = {XF2, XF3}, XD4 = {XF4, XF5}, XD6 = {XF6, XF7},
XD8 = {XF8, XF9}, XD10 = {XF10, XF11}, XD12 = {XF12, XF13}, XD14 = {XF14, XF15}

7) Single-precision ßoating-point extended register matrix, XMTRX: XMTRX comprises all 16 XF registers

XMTRX = XF0 XF4 XF8 XF12

 XF1 XF5 XF9 XF13

 XF2 XF6 XF10 XF14

 XF3 XF7 XF11 XF15
HPM-95

Dreamcast SH4 Program Manual
Figure 6.4 Floating-Point Registers

6.3.2 Floating-Point Status/Control Register (FPSCR)

¥ Floating-point status/control register, FPSCR (32 bits, initial value = H'0004 0001)

¥ FR: Floating-point register bank

FR = 0: FPR0_BANK0ÐFPR15_BANK0 are assigned to FR0ÐFR15; FPR0_BANK1ÐFPR15_BANK1 are
assigned to XF0ÐXF15.

FR = 1: FPR0_BANK0ÐFPR15_BANK0 are assigned to XF0ÐXF15; FPR0_BANK1ÐFPR15_BANK1 are
assigned to FR0ÐFR15.

¥ SZ: Transfer size mode

SZ = 0: The data size of the FMOV instruction is 32 bits.

SZ = 1: The data size of the FMOV instruction is a 32-bit register pair (64 bits).

FPR0_BANK0
FPR1_BANK0
FPR2_BANK0
FPR3_BANK0
FPR4_BANK0
FPR5_BANK0
FPR6_BANK0
FPR7_BANK0
FPR8_BANK0
FPR9_BANK0
FPR10_BANK0
FPR11_BANK0
FPR12_BANK0
FPR13_BANK0
FPR14_BANK0
FPR15_BANK0

XF0
XF1
XF2
XF3
XF4
XF5
XF6
XF7
XF8
XF9
XF10
XF11
XF12
XF13
XF14
XF15

FR0
FR1
FR2
FR3
FR4
FR5
FR6
FR7
FR8
FR9
FR10
FR11
FR12
FR13
FR14
FR15

DR0

DR2

DR4

DR6

DR8

DR10

DR12

DR14

FV0

FV4

FV8

FV12

XD0 XMTRX

XD2

XD4

XD6

XD8

XD10

XD12

XD14

FPR0_BANK1
FPR1_BANK1
FPR2_BANK1
FPR3_BANK1
FPR4_BANK1
FPR5_BANK1
FPR6_BANK1
FPR7_BANK1
FPR8_BANK1
FPR9_BANK1
FPR10_BANK1
FPR11_BANK1
FPR12_BANK1
FPR13_BANK1
FPR14_BANK1
FPR15_BANK1

XF0
XF1
XF2
XF3
XF4
XF5
XF6
XF7
XF8
XF9
XF10
XF11
XF12
XF13
XF14
XF15

FR0
FR1
FR2
FR3
FR4
FR5
FR6
FR7
FR8
FR9
FR10
FR11
FR12
FR13
FR14
FR15

DR0

DR2

DR4

DR6

DR8

DR10

DR12

DR14

FV0

FV4

FV8

FV12

XD0XMTRX

XD2

XD4

XD6

XD8

XD10

XD12

XD14

FPSCR.FR = 0 FPSCR.FR = 1

31

Reserved FR Cause

22 21 20 19 18 17 12 11 7 6 2 1 0

SZ PR DN RMEnable Flag
HPM-96

6. Floating-Point Unit
¥ PR: Precision mode

PR = 0: Floating-point instructions are executed as single-precision operations.

PR = 1: Floating-point instructions are executed as double-precision operations (graphics support
instructions are undeÞned).

Do not set SZ and PR to 1 simultaneously; this setting is reserved.

[SZ, PR = 11]: Reserved (FPU operation instruction is undeÞned.)

¥ DN: Denormalization mode

DN = 0: A denormalized number is treated as such.

DN = 1: A denormalized number is treated as zero.

When an FPU exception is requested, the corresponding bits in the cause and ßag Þelds are set to 1. Each time an
FPU operation instruction is executed, the cause Þeld is cleared to 0 Þrst. The ßag Þeld retains the value of 1 until
cleared to 0 by software.

¥ RM: Rounding mode

RM = 00: Round to Nearest

RM = 01: Round to Zero

RM = 10: Reserved

RM = 11: Reserved

¥ Bits 22 to 31: Reserved

Note: The following functions have been added to the FPU of the SH7091 (not provided in the FPU of
the SH7718):
The FR, SZ, and PR bits have been added.
Exception O (overßow), U (underßow), and I (inexact) bits have been added to the cause, enable, and ßag
Þelds.
An exception E (FPU error) bit has been added to the cause Þeld.

6.3.3 Floating-Point Communication Register (FPUL)

Information is transferred between the FPU and CPU via the FPUL register. The 32-bit FPUL register is a system
register, and is accessed from the CPU side by means of LDS and STS instructions. For example, to convert the
integer stored in general register R1 to a single-precision ßoating-point number, the processing ßow is as follows:

 R1 → (LDS instruction) → FPUL → (single-precision FLOAT instruction) → FR1

 FPU Error (E)
Invalid
Operation (V)

Division
by Zero (Z) Overflow (O) Underflow (U) Inexact (I)

Cause FPU exception
cause field

Bit 17 Bit 16 Bit 15 Bit 14 Bit 13 Bit 12

Enable FPU exception
enable field

None Bit 11 Bit 10 Bit 9 Bit 8 Bit 7

Flag FPU exception
flag field

None Bit 6 Bit 5 Bit 4 Bit 3 Bit 2
HPM-97

Dreamcast SH4 Program Manual
6.4 Rounding
In a ßoating-point instruction, rounding is performed when generating the Þnal operation result from the
intermediate result. Therefore, the result of combination instructions such as FMAC, FTRV, and FIPR will differ
from the result when using a basic instruction such as FADD, FSUB, or FMUL. Rounding is performed once in
FMAC, but twice in FADD, FSUB, and FMUL.

There are two rounding methods, the method to be used being determined by the RM Þeld in FPSCR.

¥ RM = 00: Round to Nearest

¥ RM = 01: Round to Zero

Round to Nearest: The value is rounded to the nearest expressible value. If there are two nearest expressible values,
the one with an LSB of 0 is selected.

If the unrounded value is 2Emax (2 Ð 2ÐP) or more, the result will be inÞnity with the same sign as the unrounded
value. The values of Emax and P, respectively, are 127 and 24 for single-precision, and 1023 and 53 for
double-precision.

Round to Zero: The digits below the round bit of the unrounded value are discarded.

If the unrounded value is larger than the maximum expressible absolute value, the value will be the maximum
expressible absolute value.

6.5 Floating-Point Exceptions
FPU-related exceptions are as follows:

¥ General illegal instruction/slot illegal instruction exception

The exception occurs if an FPU instruction is executed when SR.FD = 1.

¥ FPU exceptions

The exception sources are as follows:

ÑFPU error (E): When FPSCR.DN = 0 and a denormalized number is input

ÑInvalid operation (V): In case of an invalid operation, such as NaN input

ÑDivision by zero (Z): Division with a zero divisor

ÑOverßow (O): When the operation result overßows

ÑUnderßow (U): When the operation result underßows

ÑInexact exception (I): When overßow, underßow, or rounding occurs

The FPSCR cause Þeld contains bits corresponding to all of above sources E, V, Z, O, U, and I, and the FPSCR ßag
and enable Þelds contain bits corresponding to sources V, Z, O, U, and I, but not E. Thus, FPU errors cannot
be disabled.

When an exception source occurs, the corresponding bit in the cause Þeld is set to 1, and 1 is added to the
corresponding bit in the ßag Þeld. When an exception source does not occur, the corresponding bit in the cause Þeld
is cleared to 0, but the corresponding bit in the ßag Þeld remains unchanged.

¥ Enable/disable exception handling

 The SH7091 supports enable exception handling and disable exception handling.

 Enable exception handling is initiated in the following cases:

ÑFPU error (E): FPSCR.DN = 0 and a denormalized number is input

ÑInvalid operation (V): FPSCR.EN.V = 1 and (instruction = FTRV or invalid operation)
HPM-98

6. Floating-Point Unit
ÑDivision by zero (Z): FPSCR.EN.Z = 1 and division with a zero divisor

ÑOverßow (O): FPSCR.EN.O = 1 and instruction with possibility of operation result overßow

ÑUnderßow (U): FPSCR.EN.U = 1 and instruction with possibility of operation result underßow

ÑInexact exception (I): FPSCR.EN.I = 1 and instruction with possibility of inexact operation result

These possibilities are shown in the individual instruction descriptions. All exception events that originate in the FPU
are assigned as the same exception event. The meaning of an exception is determined by software by reading system
register FPSCR and interpreting the information it contains. If no bits are set in the cause Þeld of FPSCR when one or
more of bits O, U, I, and V (in case of FTRV only) are set in the enable Þeld, this indicates that an actual exception source
is not generated. Also, the destination register is not changed by any enable exception handling operation.

Except for the above, the FPU disables exception handling. In all processing, the bit corresponding to source V, Z,
O, U, or I is set to 1, and disable exception handling is provided for each exception.

ÑInvalid operation (V): qNAN is generated as the result.

ÑDivision by zero (Z): InÞnity with the same sign as the unrounded value is generated.

ÑOverßow (O):

When rounding mode = RZ, the maximum normalized number, with the same sign as the unrounded value,
is generated.

When rounding mode = RN, inÞnity with the same sign as the unrounded value is generated.

ÑUnderßow (U):

When FPSCR.DN = 0, a denormalized number with the same sign as the unrounded value, or zero with the same
sign as the unrounded value, is generated.

When FPSCR.DN = 1, zero with the same sign as the unrounded value, is generated.

ÑInexact exception (I): An inexact result is generated.

6.6 Graphics Support Functions
The SH7091 supports two kinds of graphics functions: new instructions for geometric operations, and pair
single-precision transfer instructions that enable high-speed data transfer.

6.6.1 Geometric Operation Instructions

Geometric operation instructions perform approximate-value computations. To enable high-speed computation
with a minimum of hardware, the SH7091 ignores comparatively small values in the partial computation results of
four multiplications. Consequently, the error shown below is produced in the result of the computation:

Maximum error = MAX (individual multiplication result x

2ÐMIN (number of multiplier signiÞcant digitsÐ1, number of multiplicand signiÞcant digitsÐ1)) + MAX (result value x 2Ð23, 2Ð149)

The number of signiÞcant digits is 24 for a normalized number and 23 for a denormalized number (number of
leading zeros in the fractional part).
HPM-99

Dreamcast SH4 Program Manual
FIPR FVm, FVn (m, n: 0, 4, 8, 12): This instruction is basically used for the following purposes:

¥ Inner product (m π n):
This operation is generally used for surface/rear surface determination for polygon surfaces.

¥ Sum of square of elements (m = n):
This operation is generally used to Þnd the length of a vector.

Since approximate-value computations are performed to enable high-speed computation, the inexact exception (I)
bit in the cause Þeld and ßag Þeld is always set to 1 when an FIPR instruction is executed. Therefore, if the
corresponding bit is set in the enable Þeld, enable exception handling will be executed.

FTRV XMTRX, FVn (n: 0, 4, 8, 12): This instruction is basically used for the following purposes:

¥ Matrix (4 x 4) ◊ vector (4):

This operation is generally used for viewpoint changes, angle changes, or movements called vector transformations
(4-dimensional). Since afÞne transformation processing for angle + parallel movement basically requires a 4 x 4
matrix, the SH7091 supports 4-dimensional operations.

¥ Matrix (4 x 4) x matrix (4 x 4):
This operation requires the execution of four FTRV instructions.

Since approximate-value computations are performed to enable high-speed computation, the inexact exception (I)
bit in the cause Þeld and ßag Þeld is always set to 1 when an FTRV instruction is executed. Therefore, if the
corresponding bit is set in the enable Þeld, enable exception handling will be executed. For the same reason, it is not
possible to check all data types in the registers beforehand when executing an FTRV instruction. If the V bit is set in
the enable Þeld, enable exception handling will be executed.

FRCHG: This instruction modiÞes banked registers. For example, when the FTRV instruction is executed, matrix
elements must be set in an array in the background bank. However, to create the actual elements of a translation
matrix, it is easier to use registers in the foreground bank. When the LDC instruction is used on FPSCR, this
instruction expends 4 to 5 cycles in order to maintain the FPU state. With the FRCHG instruction, an FPSCR.FR bit
modiÞcation can be performed in one cycle.

6.6.2 Pair Single-Precision Data Transfer

In addition to the powerful new geometric operation instructions, the SH7091 also supports high-speed data
transfer instructions.

When FPSCR.SZ = 1, the SH7091 can perform data transfer by means of pair single-precision data
transfer instructions.

¥ FMOV DRm/XDm, DRn/XDRn (m, n: 0, 2, 4, 6, 8, 10, 12, 14)

¥ FMOV DRm/XDm, @Rn (m: 0, 2, 4, 6, 8, 10, 12, 14; n: 0 to 15)

These instructions enable two single-precision (2 x 32-bit) data items to be transferred; that is, the transfer
performance of these instructions is doubled.

¥ FSCHG

This instruction changes the value of the SZ bit in FPSCR, enabling fast switching between use and non-use
of pair single-precision data transfer.
HPM-100

7. Instruction Set
7.1 Execution Environment
PC: At the start of instruction execution, PC indicates the address of the instruction itself.

Data sizes and data types: The SH7091Õs instruction set is implemented with 16-bit Þxed-length instructions. The
SH7091 can use byte (8-bit), word (16-bit), longword (32-bit), and quadword (64-bit) data sizes for memory access.
Single-precision ßoating-point data (32 bits) can be moved to and from memory using longword or quadword size.
Double-precision ßoating-point data (64 bits) can be moved to and from memory using longword size. When a
double-precision ßoating-point operation is speciÞed (FPSCR.PR = 1), the result of an operation using quadword
access will be undeÞned. When the SH7091 moves byte-size or word-size data from memory to a register, the data
is sign-extended.

Load-Store Architecture: The SH7091 features a load-store architecture in which operations are basically executed
using registers. Except for bit-manipulation operations such as logical AND that are executed directly in memory,
operands in an operation that requires memory access are loaded into registers and the operation is executed
between the registers.

Delayed Branches: Except for the two branch instructions BF and BT, the SH7091Õs branch instructions and RTE are
delayed branches. In a delayed branch, the instruction following the branch is executed before the branch
destination instruction. This execution slot following a delayed branch is called a delay slot. For example, the BRA
execution sequence is as follows:

Delay Slot: An illegal instruction exception may occur when a speciÞc instruction is executed in a delay slot. See
section 5, Exceptions. The instruction following BF/S or BT/S for which the branch is not taken is also a delay
slot instruction.

Static Sequence Dynamic Sequence

BRA TARGET BRA TARGET

ADD R1, R0
next_2

ADD R1, R0 target_instr • ADD in delay slot is executed before branching to TARGET
HPM-101

Dreamcast SH4 Program Manual

T Bit: The T bit in the status register (SR) is used to show the result of a compare operation, and is referenced by
a conditional branch instruction. An example of the use of a conditional branch instruction is shown below.

ADD #1, R0 ; T bit is not changed by ADD operation

CMP/EQ R1, R0 ; If R0 = R1, T bit is set to 1

BT TARGET ; Branches to TARGET if T bit = 1 (R0 = R1)

In an RTE delay slot, status register (SR) bits are referenced as follows. In instruction access, the MD bit is used
before modiÞcation, and in data access, the MD bit is accessed after modiÞcation. The other bitsÑS, T, M, Q, FD,
BL, and RBÑafter modiÞcation are used for delay slot instruction execution. The STC and STC.L SR instructions
access all SR bits after modiÞcation.

Constant Values: An 8-bit constant value can be speciÞed by the instruction code and an immediate value. 16-bit
and 32-bit constant values can be deÞned as literal constant values in memory, and can be referenced by a
PC-relative load instruction.

MOV.W @(disp, PC), Rn

MOV.L @(disp, PC), Rn

There are no PC-relative load instructions for ßoating-point operations. However, it is possible to set 0.0 or 1.0 by
using the FLDI0 or FLDI1 instruction on a single-precision ßoating-point register.

7.2 Addressing Modes
Addressing modes and effective address calculation methods are shown in table 7.1. When a location in virtual
memory space is accessed (MMUCR.AT = 1), the effective address is translated into a physical memory address. If
multiple virtual memory space systems are selected (MMUCR.SV = 0), the least signiÞcant bit of PTEH is also
referenced as the access ASID. See section 3, Memory Management Unit (MMU).

Table 7.1 Addressing Modes and Effective Addresses

Addressing Mode Instruction Format Effective Address Calculation Method Calculation Formula

Register direct Rn Effective address is register Rn.(Operand is register Rn
contents.)

—

Register indirect @Rn Effective address is register Rn contents. Rn → EA (EA: effective
address)

 Register indirect
with post-increment

@Rn+ Effective address is register Rn contents. A constant is
added to Rn after instruction execution: 1 for a byte
operand, 2 for a word operand, 4 for a longword
operand, 8 for a quadword operand.

Rn → EAAfter instruction
execution
Byte: Rn + 1 → Rn
Word: Rn + 2 → Rn
Longword: Rn + 4 → Rn
Quadword: Rn + 8 → Rn

Rn Rn

Rn Rn

1/2/4/8

+Rn + 1/2/4/8
HPM-102

7. Instruction Set

Register indirect
with pre-decrement

@–Rn Effective address is register Rn contents, decremented
by a constant beforehand: 1 for a byte operand, 2 for a
word operand, 4 for a longword operand, 8 for a
quadword operand.

Byte: Rn – 1 → Rn
Word: Rn – 2 → Rn
Longword: Rn – 4 → Rn
Quadword: Rn – 8 → Rn
Rn → EA (Instruction executed
with Rn after calculation)

Register indirect
with displacement

@(disp:4, Rn) Effective address is register Rn contents with 4-bit
displacement disp added. After disp is zero-extended,
it is multiplied by 1 (byte), 2 (word), or 4 (longword),
according to the operand size.

Byte: Rn + disp → EA
Word: Rn + disp x 2 → EA
Longword: Rn + disp x 4 → EA

Indexed register
indirect

@(R0, Rn) Effective address is sum of register Rn and R0
contents.

Rn + R0 → EA

GBR indirect with
displacement

@(disp:8, GBR) Effective address is register GBR contents with 8-bit
displacement disp added. After disp is zero-extended,
it is multiplied by 1 (byte), 2 (word), or 4 (longword),
according to the operand size.

Byte: GBR + disp → EA
Word: GBR + disp x 2 → EA
Longword: GBR + disp x 4 → EA
Indexed GBR indirect

Addressing Mode Instruction Format Effective Address Calculation Method Calculation Formula

Rn

1/2/4/8

Rn – 1/2/4/8–Rn – 1/2/4/8

Rn

Rn + disp × 1/2/4+

×

1/2/4

disp
(zero-extended)

Rn

R0

Rn + R0+

GBR

1/2/4

GBR
+ disp × 1/2/4

+

×

disp
(zero-extended)
HPM-103

Dreamcast SH4 Program Manual

@(R0, GBR) Effective address is sum of register GBR and R0
contents.

GBR + R0 → EA

PC-relative with
displacement

@(disp:8, PC) Effective address is PC+4 with 8-bit displacement disp
added. After disp is zero-extended, it is multiplied by 2
(word), or 4 (longword), according to the operand size.
With a longword operand, the lower 2 bits of PC are
masked.

Word: PC + 4 + disp x 2 → EA
Longword: PC & H'FFFFFFFC +
4 + disp x 4 → EA

PC-relative disp:8 Effective address is PC+4 with 8-bit displacement disp
added after being sign-extended and multiplied by 2.

PC + 4 + disp x 2 →
Branch-Target

GBR

R0

GBR + R0+

PC

H'FFFFFFFC

PC + 4 + disp
× 2

or PC &
 H'FFFFFFFC
+ 4 + disp × 4

+
4

2/4

×

+

& *

disp
(zero-extended)

* With longword operand

2

+

×

disp
(sign-extended)

4

+

PC

PC + 4 + disp × 2
HPM-104

7. Instruction Set

Note: For the addressing modes below that use a displacement (disp), the assembler descriptions in this manual
show the value before scaling (x1, x2, or x4) is performed according to the operand size. This is done to
clarify the operation of the chip. Refer to the relevant assembler notation rules for the actual assembler
descriptions.
@ (disp:4, Rn) ; Register indirect with displacement
@ (disp:8, GBR) ; GBR indirect with displacement
@ (disp:8, PC) ; PC-relative with displacement
disp:8, disp:12 ; PC-relative

PC-relative disp:12 Effective address is PC+4 with 12-bit displacement disp
added after being sign-extended and multiplied by 2.

PC + 4 + disp x 2 →
Branch-Target

Rn Effective address is sum of PC+4 and Rn. PC + 4 + Rn → Branch-Target

Immediate #imm:8 8-bit immediate data imm of TST, AND, OR, or XOR
instruction is zero-extended.

—

#imm:8 8-bit immediate data imm of MOV, ADD, or CMP/EQ
instruction is sign-extended.

—

#imm:8 8-bit immediate data imm of TRAPA instruction is
zero-extended and multiplied by 4.

—

2

+

×

disp
(sign-extended)

4

+

PC

PC + 4 + disp × 2

PC

4

Rn

+

+ PC + 4 + Rn
HPM-105

Dreamcast SH4 Program Manual

7.3 Instruction Set
Table 7.2 shows the notation used in the following SH instruction list.

Table 7.2 Notation Used in Instruction List

Note: Scaling (x1, x2, x4, or x8) is executed according to the size of the instruction operand(s).

Item Format Description

Instruction
mnemonic

OP.Sz SRC, DEST OP:
Sz:
SRC:
DEST:

Operation code
Size
Source
Source and/or destination operand

Summary of
operation

‡, fl
(xx)
M/Q/T
&
|
^
~
<<n, >>n

Transfer direction
Memory operand
SR flag bits
Logical AND of individual bits
Logical OR of individual bits
Logical exclusive-OR of individual bits
Logical NOT of individual bits
n-bit shift

Instruction code MSB ↔ LSB mmmm:
nnnn:
0000:
0001:
:
1111:
mmm:
nnn:
000:
001:
:
111:
mm:
nn:
00:
01:
10:
11:
iiii:
dddd:

Register number (Rm, FRm)
Register number (Rn, FRn)
R0, FR0
R1, FR1

R15, FR15
Register number (DRm, XDm, Rm_BANK)
Register number (DRm, XDm, Rn_BANK)
DR0, XD0, R0_BANK
DR2, XD2, R1_BANK

DR14, XD14, R7_BANK
Register number (FVm)
Register number (FVn)
FV0
FV4
FV8
FV12
Immediate data
Displacement

Privileged mode “Privileged” means the instruction can only be executed in privileged mode.

T bit Value of T bit after
instruction execution

—: No change
HPM-106

7. Instruction Set

Table 7.3 Fixed-Point Transfer Instructions

Instruction Operation Instruction Code Privileged T Bit

MOV #imm,Rn imm → sign extension → Rn 1110nnnniiiiiiii — —

MOV.W @(disp,PC),Rn (disp x 2 + PC + 4) → sign extension → Rn 1001nnnndddddddd — —

MOV.L @(disp,PC),Rn (disp x 4 + PC & H'FFFFFFFC + 4) → Rn 1101nnnndddddddd — —

MOV Rm,Rn Rm → Rn 0110nnnnmmmm0011 — —

MOV.B Rm,@Rn Rm → (Rn) 0010nnnnmmmm0000 — —

MOV.W Rm,@Rn Rm → (Rn) 0010nnnnmmmm0001 — —

MOV.L Rm,@Rn Rm → (Rn) 0010nnnnmmmm0010 — —

MOV.B @Rm,Rn (Rm) → sign extension → Rn 0110nnnnmmmm0000 — —

MOV.W @Rm,Rn (Rm) → sign extension → Rn 0110nnnnmmmm0001 — —

MOV.L @Rm,Rn (Rm) → Rn 0110nnnnmmmm0010 — —

MOV.B Rm,@-Rn Rn-1 → Rn, Rm → (Rn) 0010nnnnmmmm0100 — —

MOV.W Rm,@-Rn Rn-2 → Rn, Rm → (Rn) 0010nnnnmmmm0101 — —

MOV.L Rm,@-Rn Rn-4 → Rn, Rm → (Rn) 0010nnnnmmmm0110 — —

MOV.B @Rm+,Rn (Rm) → sign extension → Rn, Rm + 1 → Rm 0110nnnnmmmm0100 — —

MOV.W @Rm+,Rn (Rm) → sign extension → Rn, Rm + 2 → Rm 0110nnnnmmmm0101 — —

MOV.L @Rm+,Rn (Rm) → Rn, Rm + 4 → Rm 0110nnnnmmmm0110 — —

MOV.B R0,@(disp,Rn) R0 → (disp + Rn) 10000000nnnndddd — —

MOV.W R0,@(disp,Rn) R0 → (disp x 2 + Rn) 10000001nnnndddd — —

MOV.L Rm,@(disp,Rn) Rm → (disp x 4 + Rn) 0001nnnnmmmmdddd — —

MOV.B @(disp,Rm),R0 (disp + Rm) → sign extension → R0 10000100mmmmdddd — —

MOV.W @(disp,Rm),R0 (disp x 2 + Rm) → sign extension → R0 10000101mmmmdddd — —

MOV.L @(disp,Rm),Rn (disp x 4 + Rm) → Rn 0101nnnnmmmmdddd — —

MOV.B Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0100 — —

MOV.W Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0101 — —

MOV.L Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0110 — —

MOV.B @(R0,Rm),Rn (R0 + Rm) → sign extension → Rn 0000nnnnmmmm1100 — —

MOV.W @(R0,Rm),Rn (R0 + Rm) → sign extension → Rn 0000nnnnmmmm1101 — —
HPM-107

Dreamcast SH4 Program Manual

MOV.L @(R0,Rm),Rn (R0 + Rm) → Rn 0000nnnnmmmm1110 — —

MOV.B R0,@(disp,GBR) R0 → (disp + GBR) 11000000dddddddd — —

MOV.W R0,@(disp,GBR) R0 → (disp x 2 + GBR) 11000001dddddddd — —

MOV.L R0,@(disp,GBR) R0 → (disp x 4 + GBR) 11000010dddddddd — —

MOV.B @(disp,GBR),R0 (disp + GBR) → sign extension → R0 11000100dddddddd — —

MOV.W @(disp,GBR),R0 (disp x 2 + GBR) → sign extension → R0 11000101dddddddd — —

MOV.L @(disp,GBR),R0 (disp x 4 + GBR) → R0 11000110dddddddd — —

MOVA @(disp,PC),R0 disp x 4 + PC & H'FFFFFFFC + 4 → R0 11000111dddddddd — —

MOVT Rn T → Rn 0000nnnn00101001 — —

SWAP.B Rm,Rn Rm → swap lower 2 bytes → REG 0110nnnnmmmm1000 — —

SWAP.W Rm,Rn Rm → swap upper/lower words → Rn 0110nnnnmmmm1001 — —

XTRCT Rm,Rn Rm:Rn middle 32 bits → Rn 0010nnnnmmmm1101 — —

Instruction Operation Instruction Code Privileged T Bit
HPM-108

7. Instruction Set
Table 7.4 Arithmetic Operation Instructions

Instruction Operation Instruction Code Privileged T Bit

ADD Rm,Rn Rn + Rm → Rn 0011nnnnmmmm1100 — —

ADD #imm,Rn Rn + imm → Rn 0111nnnniiiiiiii — —

ADDC Rm,Rn Rn + Rm + T → Rn, carry → T 0011nnnnmmmm1110 — Carry

ADDV Rm,Rn Rn + Rm → Rn, overflow → T 0011nnnnmmmm1111 — Overflow

CMP/EQ #imm,R0 When R0 = imm, 1 → TOtherwise, 0 → T 10001000iiiiiiii — Comparison
result

CMP/EQ Rm,Rn When Rn = Rm, 1 → TOtherwise, 0 → T 0011nnnnmmmm0000 — Comparison
result

CMP/HS Rm,Rn When Rn ≥ Rm (unsigned), 1 →
TOtherwise, 0 → T

0011nnnnmmmm0010 — Comparison
result

CMP/GE Rm,Rn When Rn ≥ Rm (signed), 1 →
TOtherwise, 0 → T

0011nnnnmmmm0011 — Comparison
result

CMP/HI Rm,Rn When Rn > Rm (unsigned), 1 →
TOtherwise, 0 → T

0011nnnnmmmm0110 — Comparison
result

CMP/GT Rm,Rn When Rn > Rm (signed), 1 →
TOtherwise, 0 → T

0011nnnnmmmm0111 — Comparison
result

CMP/PZ Rn When Rn ≥ 0, 1 → TOtherwise, 0 → T 0100nnnn00010001 — Comparison
result

CMP/PL Rn When Rn > 0, 1 → TOtherwise, 0 → T 0100nnnn00010101 — Comparison
result

CMP/STR Rm,Rn When any bytes are equal, 1 →
TOtherwise, 0 → T

0010nnnnmmmm1100 — Comparison
result

DIV1 Rm,Rn 1-step division (Rn ∏ Rm) 0011nnnnmmmm0100 — Calculation
result

DIV0S Rm,Rn MSB of Rn → Q, MSB of Rm → M, M^Q
→ T

0010nnnnmmmm0111 — Calculation
result

DIV0U 0 → M/Q/T 0000000000011001 — 0

DMULS.L Rm,Rn Signed, Rn x Rm → MAC, 32 x 32 → 64
bits

0011nnnnmmmm1101 — —

DMULU.L Rm,Rn Unsigned, Rn x Rm → MAC, 32 x 32 →
64 bits

0011nnnnmmmm0101 — —

DT Rn Rn – 1 → Rn; when Rn = 0, 1 → TWhen
Rn π 0, 0 → T

0100nnnn00010000 — Comparison
result

EXTS.B Rm,Rn Rm sign-extended from byte → Rn 0110nnnnmmmm1110 — —

EXTS.W Rm,Rn Rm sign-extended from word → Rn 0110nnnnmmmm1111 — —
HPM-109

Dreamcast SH4 Program Manual
EXTU.B Rm,Rn Rm zero-extended from byte → Rn 0110nnnnmmmm1100 — —

EXTU.W Rm,Rn Rm zero-extended from word → Rn 0110nnnnmmmm1101 — —

MAC.L @Rm+,@Rn+ Signed, (Rn) x (Rm) + MAC → MACRn +
4 → Rn, Rm + 4 → Rm32 x 32 + 64 → 64
bits

0000nnnnmmmm1111 — —

MAC.W @Rm+,@Rn+ Signed, (Rn) x (Rm) + MAC → MACRn +
2 → Rn, Rm + 2 → Rm16 x 16 + 64 → 64
bits

0100nnnnmmmm1111 — —

MUL.L Rm,Rn Rn x Rm → MACL 32 x 32 → 32 bits 0000nnnnmmmm0111 — —

MULS.W Rm,Rn Signed, Rn x Rm → MACL16 x 16 → 32
bits

0010nnnnmmmm1111 — —

MULU.W Rm,Rn Unsigned, Rn x Rm → MACL16 x 16 →
32 bits

0010nnnnmmmm1110 — —

NEG Rm,Rn 0 – Rm → Rn 0110nnnnmmmm1011 — —

NEGC Rm,Rn 0 – Rm – T → Rn, borrow → T 0110nnnnmmmm1010 — Borrow

SUB Rm,Rn Rn – Rm → Rn 0011nnnnmmmm1000 — —

SUBC Rm,Rn Rn – Rm – T → Rn, borrow → T 0011nnnnmmmm1010 — Borrow

SUBV Rm,Rn Rn – Rm → Rn, underflow → T 0011nnnnmmmm1011 — Underflow

Instruction Operation Instruction Code Privileged T Bit
HPM-110

7. Instruction Set
Table 7.5 Logic Operation Instructions

Instruction Operation Instruction Code Privileged T Bit

AND Rm,Rn Rn & Rm → Rn 0010nnnnmmmm1001 — —

AND #imm,R0 R0 & imm → R0 11001001iiiiiiii — —

AND.B #imm,@(R0,GBR) (R0 + GBR) & imm → (R0 + GBR) 11001101iiiiiiii — —

NOT Rm,Rn ~Rm → Rn 0110nnnnmmmm0111 — —

OR Rm,Rn Rn | Rm → Rn 0010nnnnmmmm1011 — —

OR #imm,R0 R0 | imm → R0 11001011iiiiiiii — —

OR.B #imm,@(R0,GBR) (R0 + GBR) | imm → (R0 + GBR) 11001111iiiiiiii —

TAS.B @Rn When (Rn) = 0, 1 → TOtherwise, 0
→ TIn both cases, 1 → MSB of (Rn)

0100nnnn00011011 — Test result

TST Rm,Rn Rn & Rm; when result = 0, 1 →
TOtherwise, 0 → T

0010nnnnmmmm1000 — Test result

TST #imm,R0 R0 & imm; when result = 0, 1 →
TOtherwise, 0 → T

11001000iiiiiiii — Test result

TST.B #imm,@(R0,GBR) (R0 + GBR) & imm; when result = 0,
1 → TOtherwise, 0 → T

11001100iiiiiiii — Test result

XOR Rm,Rn Rn x Rm → Rn 0010nnnnmmmm1010 — —

XOR #imm,R0 R0 x imm → R0 11001010iiiiiiii — —

XOR.B #imm,@(R0,GBR) (R0 + GBR) x imm → (R0 + GBR) 11001110iiiiiiii — —
HPM-111

Dreamcast SH4 Program Manual
Table 7.6 Shift Instructions

Instruction Operation Instruction Code Privileged T Bit

ROTL Rn T ß Rn ß MSB 0100nnnn00000100 — MSB

ROTR Rn LSB → Rn → T 0100nnnn00000101 — LSB

ROTCL Rn T ß Rn ß T 0100nnnn00100100 — MSB

ROTCR Rn T → Rn → T 0100nnnn00100101 — LSB

SHAD Rm,Rn When Rn ≥ 0, Rn << Rm → RnWhen
Rn < 0, Rn >> Rm → [MSB → Rn]

0100nnnnmmmm1100 — —

SHAL Rn T ß Rn ß 0 0100nnnn00100000 — MSB

SHAR Rn MSB → Rn → T 0100nnnn00100001 — LSB

SHLD Rm,Rn When Rn ≥ 0, Rn << Rm → RnWhen
Rn < 0, Rn >> Rm → [0 → Rn]

0100nnnnmmmm1101 — —

SHLL Rn T ß Rn ß 0 0100nnnn00000000 — MSB

SHLR Rn 0 → Rn → T 0100nnnn00000001 — LSB

SHLL2 Rn Rn << 2 → Rn 0100nnnn00001000 — —

SHLR2 Rn Rn >> 2 → Rn 0100nnnn00001001 — —

SHLL8 Rn Rn << 8 → Rn 0100nnnn00011000 — —

SHLR8 Rn Rn >> 8 → Rn 0100nnnn00011001 — —

SHLL16 Rn Rn << 16 → Rn 0100nnnn00101000 — —

SHLR16 Rn Rn >> 16 → Rn 0100nnnn00101001 — —
HPM-112

7. Instruction Set
Table 7.7 Branch Instructions

Instruction Operation Instruction Code Privileged T Bit

BF label When T = 0, disp x 2 + PC + 4 → PCWhen T = 1,
nop

10001011dddddddd — —

BF/S label Delayed branch; when T = 0, disp x 2 + PC + 4 →
PCWhen T = 1, nop

10001111dddddddd — —

BT label When T = 1, disp x 2 + PC + 4 → PCWhen T = 0,
nop

10001001dddddddd — —

BT/S label Delayed branch; when T = 1, disp x 2 + PC + 4 →
PCWhen T = 0, nop

10001101dddddddd — —

BRA label Delayed branch, disp x 2 + PC + 4 → PC 1010dddddddddddd — —

BRAF Rn Rn + PC + 4 → PC 0000nnnn00100011 — —

BSR label Delayed branch, PC + 4 → PR, disp x 2 + PC + 4
→ PC

1011dddddddddddd — —

BSRF Rn Delayed branch, PC + 4 → PR, Rn + PC + 4 → PC 0000nnnn00000011 — —

JMP @Rn Delayed branch, Rn → PC 0100nnnn00101011 — —

JSR @Rn Delayed branch, PC + 4 → PR, Rn → PC 0100nnnn00001011 — —

RTS Delayed branch, PR → PC 0000000000001011 — —
HPM-113

Dreamcast SH4 Program Manual
Table 7.8 System Control Instructions

Instruction Operation Instruction Code Privileged T Bit

CLRMAC 0 → MACH, MACL 0000000000101000 — —

CLRS 0 → S 0000000001001000 — —

CLRT 0 → T 0000000000001000 — 0

LDC Rm,SR Rm → SR 0100mmmm00001110 Privileged LSB

LDC Rm,GBR Rm → GBR 0100mmmm00011110 — —

LDC Rm,VBR Rm → VBR 0100mmmm00101110 Privileged —

LDC Rm,SSR Rm → SSR 0100mmmm00111110 Privileged —

LDC Rm,SPC Rm → SPC 0100mmmm01001110 Privileged —

LDC Rm,DBR Rm → DBR 0100mmmm11111010 Privileged —

LDC Rm,Rn_BANK Rm → Rn_BANK (n = 0 to 7) 0100mmmm1nnn1110 Privileged —

LDC.L @Rm+,SR (Rm) → SR, Rm + 4 → Rm 0100mmmm00000111 Privileged LSB

LDC.L @Rm+,GBR (Rm) → GBR, Rm + 4 → Rm 0100mmmm00010111 — —

LDC.L @Rm+,VBR (Rm) → VBR, Rm + 4 → Rm 0100mmmm00100111 Privileged —

LDC.L @Rm+,SSR (Rm) → SSR, Rm + 4 → Rm 0100mmmm00110111 Privileged —

LDC.L @Rm+,SPC (Rm) → SPC, Rm + 4 → Rm 0100mmmm01000111 Privileged —

LDC.L @Rm+,DBR (Rm) → DBR, Rm + 4 → Rm 0100mmmm11110110 Privileged —

LDC.L @Rm+,Rn_BANK (Rm) → Rn_BANK, Rm + 4 → Rm 0100mmmm1nnn0111 Privileged —

LDS Rm,MACH Rm → MACH 0100mmmm00001010 — —

LDS Rm,MACL Rm → MACL 0100mmmm00011010 — —

LDS Rm,PR Rm → PR 0100mmmm00101010 — —

LDS.L @Rm+,MACH (Rm) → MACH, Rm + 4 → Rm 0100mmmm00000110 — —

LDS.L @Rm+,MACL (Rm) → MACL, Rm + 4 → Rm 0100mmmm00010110 — —

LDS.L @Rm+,PR (Rm) → PR, Rm + 4 → Rm 0100mmmm00100110 — —

LDTLB PTEH/PTEL → TLB 0000000000111000 Privileged —

MOVCA.L R0,@Rn R0 → (Rn) (without fetching cache
block)

0000nnnn11000011 — —

NOP No operation 0000000000001001 — —

OCBI @Rn Invalidates operand cache block 0000nnnn10010011 — —
HPM-114

7. Instruction Set
OCBP @Rn Writes back and invalidates
operand cache block

0000nnnn10100011 — —

OCBWB @Rn Writes back operand cache block 0000nnnn10110011 — —

PREF @Rn (Rn) → operand cache 0000nnnn10000011 — —

RTE Delayed branch, SSR/SPC → SR/
PC

0000000000101011 Privileged —

SETS 1 → S 0000000001011000 — —

SETT 1 → T 0000000000011000 — 1

SLEEP Sleep or standby 0000000000011011 Privileged —

STC SR,Rn SR → Rn 0000nnnn00000010 Privileged —

STC GBR,Rn GBR → Rn 0000nnnn00010010 — —

STC VBR,Rn VBR → Rn 0000nnnn00100010 Privileged —

STC SSR,Rn SSR → Rn 0000nnnn00110010 Privileged —

STC SPC,Rn SPC → Rn 0000nnnn01000010 Privileged —

STC SGR,Rn SGR → Rn 0000nnnn00111010 Privileged —

STC DBR,Rn DBR → Rn 0000nnnn11111010 Privileged —

STC Rm_BANK,Rn Rm_BANK → Rn (m = 0 to 7) 0000nnnn1mmm0010 Privileged —

STC.L SR,@-Rn Rn – 4 → Rn, SR → (Rn) 0100nnnn00000011 Privileged —

STC.L GBR,@-Rn Rn – 4 → Rn, GBR → (Rn) 0100nnnn00010011 — —

STC.L VBR,@-Rn Rn – 4 → Rn, VBR → (Rn) 0100nnnn00100011 Privileged —

STC.L SSR,@-Rn Rn – 4 → Rn, SSR → (Rn) 0100nnnn00110011 Privileged —

STC.L SPC,@-Rn Rn – 4 → Rn, SPC → (Rn) 0100nnnn01000011 Privileged —

STC.L SGR,@-Rn Rn – 4 → Rn, SGR → (Rn) 0100nnnn00110010 Privileged —

STC.L DBR,@-Rn Rn – 4 → Rn, DBR → (Rn) 0100nnnn11110010 Privileged —

STC.L Rm_BANK,@-Rn Rn – 4 → Rn, Rm_BANK → (Rn) (m
= 0 to 7)

0100nnnn1mmm0011 Privileged —

STS MACH,Rn MACH → Rn 0000nnnn00001010 — —

STS MACL,Rn MACL → Rn 0000nnnn00011010 — —

STS PR,Rn PR → Rn 0000nnnn00101010 — —

Instruction Operation Instruction Code Privileged T Bit
HPM-115

Dreamcast SH4 Program Manual
Table 7.9 Floating-Point Single-Precision Instructions

STS.L MACH,@-Rn Rn – 4 → Rn, MACH → (Rn) 0100nnnn00000010 — —

STS.L MACL,@-Rn Rn – 4 → Rn, MACL → (Rn) 0100nnnn00010010 — —

STS.L PR,@-Rn Rn – 4 → Rn, PR → (Rn) 0100nnnn00100010 — —

TRAPA #imm PC + 2 → SPC, SR → SSR, #imm <<
2 → TRA, H'160 → EXPEVT, VBR +
H'0100 → PC

11000011iiiiiiii — —

Instruction Operation Instruction Code Privileged T Bit

FLDI0 FRn H'00000000 → FRn 1111nnnn10001101 — —

FLDI1 FRn H'3F800000 → FRn 1111nnnn10011101 — —

FMOV FRm,FRn FRm → FRn 1111nnnnmmmm1100 — —

FMOV.S @Rm,FRn (Rm) → FRn 1111nnnnmmmm1000 — —

FMOV.S @(R0,Rm),FRn (R0 + Rm) → FRn 1111nnnnmmmm0110 — —

FMOV.S @Rm+,FRn (Rm) → FRn, Rm + 4 → Rm 1111nnnnmmmm1001 — —

FMOV.S FRm,@Rn FRm → (Rn) 1111nnnnmmmm1010 — —

FMOV.S FRm,@-Rn Rn-4 → Rn, FRm → (Rn) 1111nnnnmmmm1011 — —

FMOV.S FRm,@(R0,Rn) FRm → (R0 + Rn) 1111nnnnmmmm0111 — —

FMOV DRm,DRn DRm → DRn 1111nnn0mmm01100 — —

FMOV @Rm,DRn (Rm) → DRn 1111nnn0mmmm1000 — —

FMOV @(R0,Rm),DRn (R0 + Rm) → DRn 1111nnn0mmmm0110 — —

FMOV @Rm+,DRn (Rm) → DRn, Rm + 8 → Rm 1111nnn0mmmm1001 — —

FMOV DRm,@Rn DRm → (Rn) 1111nnnnmmm01010 — —

FMOV DRm,@-Rn Rn-8 → Rn, DRm → (Rn) 1111nnnnmmm01011 — —

FMOV DRm,@(R0,Rn) DRm → (R0 + Rn) 1111nnnnmmm00111 — —

FLDS FRm,FPUL FRm → FPUL 1111mmmm00011101 — —

FSTS FPUL,FRn FPUL → FRn 1111nnnn00001101 — —

FABS FRn FRn & H'7FFF FFFF → FRn 1111nnnn01011101 — —

FADD FRm,FRn FRn + FRm → FRn 1111nnnnmmmm0000 — —

Instruction Operation Instruction Code Privileged T Bit
HPM-116

7. Instruction Set
Table 7.10 Floating-Point Double-Precision Instructions

FCMP/EQ FRm,FRn When FRn = FRm, 1 →
TOtherwise, 0 → T

1111nnnnmmmm0100 — Comparison
result

FCMP/GT FRm,FRn When FRn > FRm, 1 →
TOtherwise, 0 → T

1111nnnnmmmm0101 — Comparison
result

FDIV FRm,FRn FRn/FRm → FRn 1111nnnnmmmm0011 — —

FLOAT FPUL,FRn (float) FPUL → FRn 1111nnnn00101101 — —

FMAC FR0,FRm,FRn FR0*FRm + FRn → FRn 1111nnnnmmmm1110 — —

FMUL FRm,FRn FRn*FRm → FRn 1111nnnnmmmm0010 — —

FNEG FRn FRn ^ H'80000000 → FRn 1111nnnn01001101 — —

FSQRT FRn FRn → FRn 1111nnnn01101101 — —

FSUB FRm,FRn √FRn – FRm → FRn 1111nnnnmmmm0001 — —

FTRC FRm,FPUL (long) FRm → FPUL 1111mmmm00111101 — —

Instruction Operation Instruction Code Privileged T Bit

FABS DRn DRn & H'7FFF FFFF FFFF FFFF →
DRn

1111nnn001011101 — —

FADD DRm,DRn DRn + DRm → DRn 1111nnn0mmm00000 — —

FCMP/EQ DRm,DRn When DRn = DRm, 1 →
TOtherwise, 0 → T

1111nnn0mmm00100 — Comparison
result

FCMP/GT DRm,DRn When DRn > DRm, 1 →
TOtherwise, 0 → T

1111nnn0mmm00101 — Comparison
result

FDIV DRm,DRn DRn /DRm → DRn 1111nnn0mmm00011 — —

FCNVDS DRm,FPUL double_to_ float[DRm] → FPUL 1111mmm010111101 — —

FCNVSD FPUL,DRn float_to_ double [FPUL] → DRn 1111nnn010101101 — —

FLOAT FPUL,DRn (float)FPUL → DRn 1111nnn000101101 — —

FMUL DRm,DRn DRn *DRm → DRn 1111nnn0mmm00010 — —

FNEG DRn DRn ^ H'8000 0000 0000 0000 →
DRn

1111nnn001001101 — —

FSQRT DRn √DRn → DRn 1111nnn001101101 — —

FSUB DRm,DRn DRn – DRm → DRn 1111nnn0mmm00001 — —

FTRC DRm,FPUL (long) DRm → FPUL 1111mmm000111101 — —

Instruction Operation Instruction Code Privileged T Bit
HPM-117

Dreamcast SH4 Program Manual
Table 7.11 Floating-Point Control Instructions

Table 7.12 Floating-Point Graphics Acceleration Instructions

Instruction Operation Instruction Code Privileged T Bit

LDS Rm,FPSCR Rm → FPSCR 0100mmmm01101010 — —

LDS Rm,FPUL Rm → FPUL 0100mmmm01011010 — —

LDS.L @Rm+,FPSCR (Rm) → FPSCR, Rm+4 → Rm 0100mmmm01100110 — —

LDS.L @Rm+,FPUL (Rm) → FPUL, Rm+4 → Rm 0100mmmm01010110 — —

STS FPSCR,Rn FPSCR → Rn 0000nnnn01101010 — —

STS FPUL,Rn FPUL → Rn 0000nnnn01011010 — —

STS.L FPSCR,@-Rn Rn – 4 → Rn, FPSCR → (Rn) 0100nnnn01100010 — —

STS.L FPUL,@-Rn Rn – 4 → Rn, FPUL → (Rn) 0100nnnn01010010 — —

Instruction Operation Instruction Code Privileged T Bit

FMOV DRm,XDn DRm → XDn 1111nnn1mmm01100 — —

FMOV XDm,DRn XDm → DRn 1111nnn0mmm11100 — —

FMOV XDm,XDn XDm → XDn 1111nnn1mmm11100 — —

FMOV @Rm,XDn (Rm) → XDn 1111nnn1mmmm1000 — —

FMOV @Rm+,XDn (Rm) → XDn, Rm + 8 → Rm 1111nnn1mmmm1001 — —

FMOV @(R0,Rm),DRn (R0 + Rm) → DRn 1111nnn1mmmm0110 — —

FMOV XDm,@Rn XDm → (Rn) 1111nnnnmmm11010 — —

FMOV XDm,@-Rn Rn – 8 → Rn, XDm → (Rn) 1111nnnnmmm11011 — —

FMOV XDm,@(R0,Rn) XDm → (R0+Rn) 1111nnnnmmm10111 — —

FIPR FVm,FVn inner_product [FVm, FVn] →
FR[n+3]

1111nnmm11101101 — —

FTRV XMTRX,FVn transform_vector [XMTRX, FVn] →
FVn

1111nn0111111101 — —

FRCHG ~FPSCR.FR → SPFCR.FR 1111101111111101 — —

FSCHG ~FPSCR.SZ → SPFCR.SZ 1111001111111101 — —
HPM-118

8. Pipelining
The SH7091 is a 2-ILP (instruction-level-parallelism) superscalar pipelining microprocessor. Instruction execution
is pipelined, and two instructions can be executed in parallel. The execution cycles depend on the implementation
of a processor. DeÞnitions in this section may not be applicable to SH-4 Series models other than the SH7091.

8.1 Pipelines
Figure 8.1 shows the basic pipelines. Normally, a pipeline consists of Þve or six stages: instruction fetch (I), decode
and register read (D), execution (EX/SX/F0/F1/F2/F3), data access (NA/MA), and write-back (S/FS). An
instruction is executed as a combination of basic pipelines. Figure 8.2 shows the instruction execution patterns.
HPM-119

Dreamcast SH4 Program Manual
Figure 8.1 Basic Pipelines

1. General Pipeline

• Instruction fetch • Instruction
decode

• Issue
• Register read
• Destination address calculation

for PC-relative branch

• Non-memory
 data access

• Write-back

I D EX

• Operation

NA S

2. General Load/Store Pipeline

• Instruction fetch • Instruction
decode

• Issue
• Register read

• Memory
 data access

• Write-back

I D EX

• Address
 calculation

MA S

3. Special Pipeline

• Instruction fetch • Instruction
decode

• Issue
• Register read

• Non-memory
 data access

• Write-back

I D SX

• Operation

NA S

4. Special Load/Store Pipeline

• Instruction fetch • Instruction
decode

• Issue
• Register read

• Memory
 data access

• Write-back

I D SX

• Address
 calculation

MA S

5. Floating-Point Pipeline

• Instruction fetch • Instruction
decode

• Issue
• Register read

• Computation 2 • Computation 3
• Write-back

I D F1

• Computation 1

F2 FS

6. Floating-Point Extended Pipeline

• Instruction fetch • Instruction
decode

• Issue
• Register read

• Computation 1 • Computation 3
• Write-back

I D F0

• Computation 0

F1 F2 FS

• Computation 2

F3

Computation: Takes several cycles

7. FDIV/FSQRT Pipeline
HPM-120

8. Pipelining

Figure 8.2 Instruction Execution Patterns

1. 1-step operation: 1 issue cycle
EXT[SU].[BW], MOV, MOV#, MOVA, MOVT, SWAP.[BW], XTRCT, ADD*, CMP*,
DIV*, DT, NEG*, SUB*, AND, AND#, NOT, OR, OR#, TST, TST#, XOR, XOR#,
ROT*, SHA*, SHL*, BF*, BT*, BRA, NOP, CLRS, CLRT, SETS, SETT,
LDS to FPUL, STS from FPUL/FPSCR, FLDI0, FLDI1, FMOV, FLDS, FSTS,
single-/double-precision FABS/FNEG

I D EX NA S

2. Load/store: 1 issue cycle
MOV.[BWL]. FMOV*@, LDS.L to FPUL, LDTLB, PREF, STS.L from FPUL/FPSCR

I D EX MA S

3. GBR-based load/store: 1 issue cycle
MOV.[BWL]@(d,GBR)

I D SX MA S

4. JMP, RTS, BRAF: 2 issue cycles
I D EX NA S

D EX NA S

5. TST.B: 3 issue cycles

I D SX MA S
D SX NA S

D SX NA S

6. AND.B, OR.B, XOR.B: 4 issue cycles
I D SX MA S

D SX NA S
D SX NA S

D SX MA S

7. TAS.B: 5 issue cycles

I D EX MA S
D EX MA S

D EX NA S
D EX NA S

D EX MA S

8. RTE: 5 issue cycles
I D EX NA S

D EX NA S
D EX NA S

D EX NA S
D EX NA S

9. SLEEP: 4 issue cycles

I D EX NA S
D EX NA S

D EX NA S
D EX NA S
HPM-121

Dreamcast SH4 Program Manual

Figure 8.2 Instruction Execution Patterns (cont)

10. OCBI: 1 issue cycle
I D EX MA S

MA

11. OCBP, OCBWB: 1 issue cycle
I D EX MA S

MA
MA

MA
MA

12. MOVCA.L: 1 issue cycle
I D EX MA S

MA
MA

MA
MA

MA
MA

13. TRAPA: 7 issue cycles
I D EX NA S

D EX NA S
D EX NA S

D EX NA S
D EX NA S

D EX NA S
D EX NA S

14. CR definition: 1 issue cycle
LDC to DBR/Rp_BANK/SSR/SPC/VBR, BSR

I D EX NA S
SX

SX

15. LDC to GBR: 3 issue cycles
I D EX NA S

D
D
SX

SX

16. LDC to SR: 4 issue cycles
I D EX NA S

D
D

D

SX
SX

SX

I D EX MA S

17. LDC.L to DBR/Rp_BANK/SSR/SPC/VBR: 1 issue cycle

SX
SX

18. LDC.L to GBR: 3 issue cycles

I D EX MA S
D

D
SX

SX
HPM-122

8. Pipelining

Figure 8.2 Instruction Execution Patterns (cont)

19. LDC.L to SR: 4 issue cycles
I D EX MA S

D
D

D

SX
SX

SX

20. STC from DBR/GBR/Rp_BANK/SR/SSR/SPC/VBR: 2 issue cycles
I D SX NA S

D SX NA S

21. STC.L from SGR: 3 issue cycles
I D SX NA S

D SX NA S
D SX NA S

22. STC.L from DBR/GBR/Rp_BANK/SR/SSR/SPC/VBR: 2 issue cycles

I D SX NA S
D SX MA S

23. STC.L from SGR: 3 issue cycles
I D SX NA S

D SX NA S
D SX MA S

24. LDS to PR, JSR, BSRF: 2 issue cycles
I D EX NA S

D SX
SX

25. LDS.L to PR: 2 issue cycles
I D EX MA S

D SX
SX

26. STS from PR: 2 issue cycles
I D SX NA S

D SX NA S

27. STS.L from PR: 2 issue cycles

I D SX NA S
D SX MA S

28. MACH/L definition: 1 issue cycle
CLRMAC, LDS to MACH/L

I D EX NA S
F1

F1 F2 FS

29. LDS.L to MACH/L: 1 issue cycle
I D EX MA S

F1
F1 F2 FS

30. STS from MACH/L: 1 issue cycle

I D EX NA S
HPM-123

Dreamcast SH4 Program Manual

Figure 8.2 Instruction Execution Patterns (cont)

31. STS.L from MACH/L: 1 issue cycle
I D EX MA S

32. LDS to FPSCR: 1 issue cycle

I D EX NA S
F1

F1
F1

F1
F1

F1

33. LDS.L to FPSCR: 1 issue cycle
I D EX MA S

34. Fixed-point multiplication: 2 issue cycles
DMULS.L, DMULU.L, MUL.L, MULS.W, MULU.W

I D EX NA S (CPU)
D EX NA S

f1 (FPU)
f1

f1
f1 F2 FS

35. MAC.W, MAC.L: 2 issue cycles
I D EX MA S (CPU)

D EX MA S

f1 (FPU)
f1

f1
f1 F2 FS

36. Single-precision floating-point computation: 1 issue cycle
FCMP/EQ,FCMP/GT, FADD,FLOAT,FMAC,FMUL,FSUB,FTRC,FRCHG,FSCHG

I D F1 F2 FS

37. Single-precision FDIV/SQRT: 1 issue cycle

I D F1 F2 FS
F3

F1 F2 FS

38. Double-precision floating-point computation 1: 1 issue cycle
 FCNVDS, FCNVSD, FLOAT, FTRC

I D F1 F2 FS
d F1 F2 FS

39. Double-precision floating-point computation 2: 1 issue cycle
 FADD, FMUL, FSUB

I D F1 F2 FS
d F1 F2 FS

d F1 F2 FS
d F1 F2 FS

d F1 F2 FS

F1 F2 FS
HPM-124

8. Pipelining

Figure 8.2 Instruction Execution Patterns (cont)

I D F1 F2 FS
D F1 F2 FS

40. Double-precision FCMP: 2 issue cycles
FCMP/EQ,FCMP/GT

I D F1 F2 FS

F3
F1 F2 F3

41. Double-precision FDIV/SQRT: 1 issue cycle
 FDIV, FSQRT

F1 F2d

F1 F2 F3
F1 F2 F3

42. FIPR: 1 issue cycle
I D F0 F1 F2 FS

43. FTRV: 1 issue cycle
F1 F2 FSD F0I

F1 F2 FSd F0
F1 F2 FSd F0

F1 F2 FSd F0

Notes: ??

: Locks D-stage

: Register read only

: Locks, but no operation is executed.

: Can overlap another f1, but not another F1.

d

D

??

f1

: Cannot overlap a stage of the same kind, except when two instructions are
executed in parallel.
HPM-125

Dreamcast SH4 Program Manual
8.2 Parallel-Executability
Instructions are categorized into six groups according to the internal function blocks used, as shown in table 8.1.
Table 8.2 shows the parallel-executability of pairs of instructions in terms of groups. For example, ADD in the EX
group and BRA in the BR group can be executed in parallel.

Table 8.1 Instruction Groups

1. MT Group

CLRT CMP/HI Rm,Rn MOV Rm,Rn

CMP/EQ #imm,R0 CMP/HS Rm,Rn NOP

CMP/EQ Rm,Rn CMP/PL Rn SETT

CMP/GE Rm,Rn CMP/PZ Rn TST #imm,R0

CMP/GT Rm,Rn CMP/STR Rm,Rn TST Rm,Rn

2. EX Group

ADD #imm,Rn MOVT Rn SHLL
2

Rn

ADD Rm,Rn NEG Rm,Rn SHLL
8

Rn

ADDC Rm,Rn NEGC Rm,Rn SHL
R

Rn

ADDV Rm,Rn NOT Rm,Rn SHL
R16

Rn

AND #imm,R0 OR #imm,
R0

SHL
R2

Rn

AND Rm,Rn OR Rm,Rn SHL
R8

Rn

DIV0S Rm,Rn ROTCL Rn SUB Rm,Rn

DIV0U ROTCR Rn SUB
C

Rm,Rn

DIV1 Rm,Rn ROTL Rn SUB
V

Rm,Rn

DT Rn ROTR Rn SWA
P.B

Rm,Rn

EXTS.B Rm,Rn SHAD Rm,Rn SWA
P.W

Rm,Rn

EXTS.W Rm,Rn SHAL Rn XOR #imm,R0

EXTU.B Rm,Rn SHAR Rn XOR Rm,Rn
HPM-126

8. Pipelining
EXTU.W Rm,Rn SHLD Rm,Rn XTR
CT

Rm,Rn

MOV #imm,Rn SHLL Rn

MOVA @(disp,P
C),R0

SHLL16 Rn

3. BR Group

BF disp BRA disp BT disp

BF/S disp BSR disp BT/S disp

4. LS Group

FABS DRn FMOV.S @Rm+,FRn MOV.L R0,@(disp,GBR)

FABS FRn FMOV.S FRm,@(R0,Rn) MOV.L Rm,@(disp,Rn)

FLDI0 FRn FMOV.S FRm,@-Rn MOV.L Rm,@(R0,Rn)

FLDI1 FRn FMOV.S FRm,@Rn MOV.L Rm,@-Rn

FLDS FRm,FPUL FNEG DRn MOV.L Rm,@Rn

FMOV @(R0,Rm),DRn FNEG FRn MOV.W @(disp,GBR),R0

FMOV @(R0,Rm),XDn FSTS FPUL,FRn MOV.W @(disp,PC),Rn

FMOV @Rm,DRn LDS Rm,FPUL MOV.W @(disp,Rm),R0

FMOV @Rm,XDn MOV.B @(disp,GBR),R0 MOV.W @(R0,Rm),Rn

FMOV @Rm+,DRn MOV.B @(disp,Rm),R0 MOV.W @Rm,Rn

FMOV @Rm+,XDn MOV.B @(R0,Rm),Rn MOV.W @Rm+,Rn

FMOV DRm,@(R0,Rn) MOV.B @Rm,Rn MOV.W R0,@(disp,GBR)

FMOV DRm,@-Rn MOV.B @Rm+,Rn MOV.W R0,@(disp,Rn)

FMOV DRm,@Rn MOV.B R0,@(disp,GBR) MOV.W Rm,@(R0,Rn)

FMOV DRm,DRn MOV.B R0,@(disp,Rn) MOV.W Rm,@-Rn

FMOV DRm,XDn MOV.B Rm,@(R0,Rn) MOV.W Rm,@Rn

FMOV FRm,FRn MOV.B Rm,@-Rn MOVCA.L R0,@Rn

FMOV XDm,@(R0,Rn) MOV.B Rm,@Rn OCBI @Rn

FMOV XDm,@-Rn MOV.L @(disp,GBR),R0 OCBP @Rn

2. EX Group
HPM-127

Dreamcast SH4 Program Manual
FMOV XDm,@Rn MOV.L @(disp,PC),Rn OCBWB @Rn

FMOV XDm,DRn MOV.L @(disp,Rm),Rn PREF @Rn

FMOV XDm,XDn MOV.L @(R0,Rm),Rn STS FPUL,Rn

FMOV.S @(R0,Rm),FRn MOV.L @Rm,Rn

FMOV.S @Rm,FRn MOV.L @Rm+,Rn

5. FE Group

FADD DRm,DRn FIPR FVm,FVn FSQRT DRn

FADD FRm,FRn FLOAT FPUL,DRn FSQRT FRn

FCMP/EQ FRm,FRn FLOAT FPUL,FRn FSUB DRm,DRn

FCMP/GT FRm,FRn FMAC FR0,FRm,FRn FSUB FRm,FRn

FCNVDS DRm,FPUL FMUL DRm,DRn FTRC DRm,FPUL

FCNVSD FPUL,DRn FMUL FRm,FRn FTRC FRm,FPUL

FDIV DRm,DRn FRCHG FTRV XMTRX,FVn

FDIV FRm,FRn FSCHG

6. CO Group

AND.B #imm,@(R0,GBR) LDS Rm,FPSCR STC SR,Rn

BRAF Rm LDS Rm,MACH STC SSR,Rn

BSRF Rm LDS Rm,MACL STC VBR,Rn

CLRMAC LDS Rm,PR STC.L DBR,@-Rn

CLRS LDS.L @Rm+,FPSCR STC.L GBR,@-Rn

DMULS.L Rm,Rn LDS.L @Rm+,FPUL STC.L Rp_BANK,@-Rn

DMULU.L Rm,Rn LDS.L @Rm+,MACH STC.L SGR,@-Rn

FCMP/EQ DRm,DRn LDS.L @Rm+,MACL STC.L SPC,@-Rn

FCMP/GT DRm,DRn LDS.L @Rm+,PR STC.L SR,@-Rn

JMP @Rn LDTLB STC.L SSR,@-Rn

JSR @Rn MAC.L @Rm+,@Rn+ STC.L VBR,@-Rn

LDC Rm,DBR MAC.W @Rm+,@Rn+ STS FPSCR,Rn

4. LS Group
HPM-128

8. Pipelining
Table 8.2 Parallel-Executability

LDC Rm,GBR MUL.L Rm,Rn STS MACH,Rn

LDC Rm,Rp_BANK MULS.W Rm,Rn STS MACL,Rn

LDC Rm,SPC MULU.W Rm,Rn STS PR,Rn

LDC Rm,SR OR.B #imm,@(R0,GBR) STS.L FPSCR,@-Rn

LDC Rm,SSR RTE STS.L FPUL,@-Rn

LDC Rm,VBR RTS STS.L MACH,@-Rn

LDC.L @Rm+,DBR SETS STS.L MACL,@-Rn

LDC.L @Rm+,GBR SLEEP STS.L PR,@-Rn

LDC.L @Rm+,Rp_BANK STC DBR,Rn TAS.B @Rn

LDC.L @Rm+,SPC STC GBR,Rn TRAPA #imm

LDC.L @Rm+,SR STC Rp_BANK,Rn TST.B #imm,@(R0,GBR)

LDC.L @Rm+,SSR STC SGR,Rn XOR.B #imm,@(R0,GBR)

LDC.L @Rm+,VBR STC SPC,Rn

2nd Instruction

MT EX BR LS FE CO

1st
Instruction

MT O O O O O X

EX O X O O O X

BR O O X O O X

LS O O O X O X

FE O O O O X X

CO X X X X X X

O: Can be executed in parallel
X: Cannot be executed in parallel

6. CO Group
HPM-129

Dreamcast SH4 Program Manual
8.3 Execution Cycles and Pipeline Stalling
There are three basic clocks in this processor: the I-clock, B-clock, and P-clock. Each hardware unit operates on one
of these clocks, as follows:

¥ I-clock: CPU, FPU, MMU, caches

¥ B-clock: External bus controller

¥ P-clock: Peripheral units

The frequency ratios of the three clocks are determined with the frequency control register (FRQCR). In this section,
machine cycles are based on the I-clock unless otherwise speciÞed. For details of FRQCR, see section 10, Clock
Oscillation Circuits.

Instruction execution cycles are summarized in table 8.3. Penalty cycles due to a pipeline stall or freeze are not
considered in this table.

¥ Issue rate: Interval between the issue of an instruction and that of the next instruction

¥ Latency: Interval between the issue of an instruction and the generation of its result (completion)

¥ Instruction execution pattern (see Þgure 8.2)

¥ Locked pipeline stages

¥ Interval between the issue of an instruction and the start of locking

¥ Lock time: Period of locking in machine cycle units

The instruction execution sequence is expressed as a combination of the execution patterns shown in Þgure 8.2. One
instruction is separated from the next by the number of machine cycles for its issue rate. Normally, execution, data
access, and write-back stages cannot be overlapped onto the same stages of another instruction; the only exception
is when two instructions are executed in parallel under parallel-executability conditions. Refer to (a) through (d) in
Þgure 8.3 for some simple examples.

Latency is the interval between issue and completion of an instruction, and is also the interval between the
execution of two instructions with an interdependent relationship. When there is interdependency between two
instructions fetched simultaneously, the latter of the two is stalled for the following number of cycles:

¥ (Latency) cycles when there is ßow dependency (read-after-write)

¥ (Latency - 2) cycles when there is output dependency (write-after-write)

¥ 1 or 2 cycles when there is anti-ßow dependency (write-after-read), as in the following cases:

Ð FTRV is the preceding instruction (1 cycle)

Ð A double-precision FADD, FSUB, or FMUL is the preceding instruction (2 cycles)

In the case of ßow dependency, latency may be exceptionally increased or decreased, depending on the combination
of sequential instructions (Þgure 8.3 (e)).

¥ When a ßoating-point (FP) computation is followed by an FP register store, the latency of the FP
computation may be decreased by 1 cycle.

¥ If there is a load of the shift amount immediately before an SHAD/SHLD instruction, the latency of the
load is increased by 1 cycle.

¥ If an instruction with a latency of less than 2 cycles, including write-back to an FP register, is followed by
a double-precision FP instruction, FIPR, or FTRV, the latency of the Þrst instruction is increased to 2 cycles.

HPM-130

8. Pipelining
The number of cycles in a pipeline stall due to ßow dependency will vary depending on the combination of
interdependent instructions or the fetch timing (see Þgure 8.3. (e)).

For the stall cycles of an instruction with output dependency, the longest latency to the last write-back among all
the destination operands must be applied instead of Òlatency-2Ó (see Þgure 8.3 (f)). A stall due to output
dependency with respect to FPSCR, which reßects the result of an FP operation, never occurs. For example, when
FADD follows FDIV with no dependency between FP registers, FADD is not stalled even if both instructions update
the cause Þeld of FPSCR.

Anti-ßow dependency can occur only between a preceding double-precision FADD, FMUL, FSUB, or FTRV and a
following FMOV, FLDI0, FLDI1, FABS, or FNEG. See Þgure 8.3 (g).

If an executing instruction locks any resourceÑi.e. a function block that performs a basic operationÑa following
instruction that happens to attempt to use the locked resource must be stalled (Þgure 8.3 (h)). This kind of stall can
be compensated by inserting one or more instructions independent of the locked resource to separate the interfering
instructions. For example, when a load instruction and an ADD instruction that references the loaded value are
consecutive, the 2-cycle stall of the ADD is eliminated by inserting three instructions without dependency. Software
performance can be improved by such instruction scheduling.

Other penalties arise in the event of exceptions or external data accesses, as follows.

¥ Instruction TLB miss: a penalty of 7 CPU clocks

¥ Instruction access to external memory (instruction cache miss, etc.)

¥ Data access to external memory (operand cache miss, etc.): a penalty of 2 CPU clocks + 3 bus clocks

¥ Data access to a memory-mapped control register. The penalty differs from register to register, and
depends on the kind of operation (read or write), the clock mode, and the bus use conditions when the
access is made.

During the penalty cycles of an instruction TLB miss or external instruction access, no instruction is issued, but
execution of instructions that have already been issued continues. The penalty for a data access is a pipeline freeze:
that is, the execution of uncompleted instructions is interrupted until the arrival of the requested data. The number
of penalty cycles for instruction and data accesses is largely dependent on the userÕs memory subsystems.
HPM-131

Dreamcast SH4 Program Manual

Figure 8.3 Examples of Pipelined Execution

(a) Serial execution: non-parallel-executable instructions

ADD R2,R1
MOV.L @R4,R5

MOV R1,R2
next

SHAD R0,R1
ADD R2,R3
next

I D EX NA S
I D EX NA S

I D ...

1 stall cycle

(b) Parallel execution: parallel-executable and no dependency

I D EX NA S
I D EX MA S

(c) Issue rate: multi-step instruction

AND.B#1,@(R0,GBR) I D SX MA S

D SX MA S
D SX NA S

D SX NA S

I
I

(d) Branch

1 issue cycle

1 issue cycle

4 issue cycles

...

I D EX NA S
I D EX NA S

2-cycle latency for I-stage of branch destination

1 stall cycle
I D

I D EX NA S
I D EX NA S

I D EX NA S

BT/S L_far
ADD R0,R1
SUB R2,R3

BT/S L_far
ADD R0,R1

L_far

I D EX NA S
I D

I D

— — —
...

No stall

BT L_skip
ADD #1,R0
L_skip:

...

i D E A S

4 stall cycles

EX-group SHAD and EX-group ADD
cannot be executed in parallel. Therefore,
SHAD is issued first, and the following
ADD is recombined with the next
instruction.

EX-group ADD and LS-group MOV.L can
be executed in parallel. Overlapping of
stages in the 2nd instruction is possible.

AND.B and MOV are fetched
simultaneously, but MOV is stalled due to
resource locking. After the lock is released,
MOV is refetched together with the next
instruction.

No stall occurs if the branch is not taken.

If the branch is taken, the I-stage of the
branch destination is stalled for the period
of latency. This stall can be covered with a
delay slot instruction which is not parallel-
executable with the branch instruction.

Even if the BT/BF branch is taken, the I-
stage of the branch destination is not
stalled if the displacement is zero.
HPM-132

8. Pipelining

Figure 8.3 Examples of Pipelined Execution (cont)

(e) Flow dependency

I D EX NA S
I D EX NA S

MOV R0,R1
ADD R2,R1

ADD R2,R1
MOV.L @R1,R1
next

I D EX NA S
I D EX MA Si

I ...

...

...

Zero-cycle latency

1-cycle latency

1 stall cycle

MOV.L @R1,R1
ADD R0,R1
next

I D EX MA S
I D
I

EX NA SD

EX NA S

2-cycle latency

1 stall cycle

MOV.L @R1,R1
SHAD R1,R2
next

FADD FR1,FR2
STS FPUL,R1
STS FPSCR,R2

I D EX NA S
I

4-cycle latency for FPSCR

2 stall cycles

I D F1 F2 FS

I D EX MA S
I D
I

2-cycle latency

2 stall cycles

EX NA Sd

1-cycle increase

I
I

I D F1 F2 FS
d F1 F2 FS

d F1 F2 FS
d F1 F2 FS

F1 F2 FS
d F1 F2 FS

EX NA SD
EX NA SD

FADD DR0,DR2

7-cycle latency for lower FR
8-cycle latency for upper FR

FMOV FR3,FR5
FMOV FR2,FR4

FLOAT FPUL,DR0
FMOV.S FR1,@-R15

FR3 write
FR2 write

I D F1 F2 FS
d F1 F2 FS

I D EX MA S

3-cycle latency for lower FR
4-cycle latency for upper FR

FR1 write
FR0 write

FLDI1 FR3
FIPR FV0,FV4

FMOV @R1,XD14
FTRV XMTRX,FV0

I D EX NA S
I D d F0 F1 F2 FS

Zero-cycle latency
3-cycle increase

3 stall cycles

I D EX MA S
I D d F0 F1 F2 FS

d F0 F1 FSF2
d F0 F2F1 FS

d F1F0 F2 FS

2-cycle latency
1-cycle increase

3 stall cycles

The following instruction, ADD, is not
stalled when executed after an instruction
with zero-cycle latency, even if there is
dependency.

ADD and MOV.L are not executed in
parallel, since MOV.L references the result
of ADD as its destination address.

Because MOV.L and ADD are not fetched
simultaneously in this example, ADD is
stalled for only 1 cycle even though the
latency of MOV.L is 2 cycles.

Due to the flow dependency between the
load and the SHAD/SHLD shift amount,
the latency of the load is increased to 3
cycles.

The latency of FLOAT is decreased by 1
cycle, only if followed by a lower FR store.
This decrease does not apply to an upper
FR store.
HPM-133

Dreamcast SH4 Program Manual

Figure 8.3 Examples of Pipelined Execution (cont)

I D EX NA S

I D EX NA S
D F1 F2 FS

D F1 F2 FS

(e) Flow dependency (cont)

I

I

LDS R0,FPUL
FLOAT FPUL,FR0
LDS R1,FPUL
FLOAT FPUL,R1

Effectively 1-cycle latency for consecutive LDS/FLOAT instructions

I D EX NA S
D F1 F2 FSI

D F1 F2 FSI
I D EX NA S

Effectively 1-cycle latency for consecutive
FTRC/STS instructions

FTRC FR0,FPUL
STS FPUL,R0
FTRC FR1,FPUL
STS FPUL,R1

(f) Output dependency

D F1 F2 FSI

I D
F1 F2 FS

F1 F2 FS

11-cycle latency

9 stall cycles = latency (11) - 2
The registers are written-back
in program order.

D F1 F2 FSI
d F1 F2 FS

d F1 F2 FS
d F1 F2 FS

d F1 F2 FS

F1 F2 FS
EX NA SI D

7-cycle latency for lower FR
8-cycle latency for upper FR

6 stall cycles = longest latency (8) - 2

FR2 write
FR3 write

D F1 F2 FSI
d F1 F2 FS

d F1 F2 FS
d F1

F0
F0

F0
F0 F2 FS

(g) Anti-flow dependency

EX MA SI D
1 stall cycle

D F1 F2 FSI
d F1 F2 FS

d F1 F2 FS
d F1 F2 FS

EX NA SI D
2 stall cycles

d F1 F2 FS
F1 F2 FS

FSQRT FR4

FMOV FR0,FR4

FADD DR0,DR2

FMOV FR0,FR3

FTRV XMTRX,FV0

FMOV @R1,XD0

FADD DR0,DR2

FMOV FR4,FR1

F3
HPM-134

8. Pipelining

Figure 8.3 Examples of Pipelined Execution (cont)

(h) Resource conflict

I D F1 F2 FS
F3

F1 F2 FS

D F1 F2 FSI
D F1 F2 FSI

D F1 F2 FSI

I D F1 F2 FS

F1 stage locked for 1 cycle

Latency
1 cycle/issue

1 stall cycle (F1 stage resource conflict)

FDIV FR7

FMAC FR0,FR8,FR9
FMAC FR0,FR10,FR11
FMAC FR0,FR12,FR13
FMAC FR0,FR14,FR15

FIPR FV8,FV0
FADD FR15,FR4

I D F1F0 F2 FS
I D F1 F2 FS

1 stall cycle

LDS.L @R15+,PR I D EX MA FS
D SX

SX
SX NA S

SX NA SD
I

3 stall cycles

STC GBR,R2

FADD DR0,DR2 I D F1 F2 FS
d F1 F2 FS

d F1 F2 FS
d F1 F2 FS

d F1 F2 FS

F1 F2 FS
EX MA S
f1

EX MA SD
f1

f1 F2 FS
f1 F2 FS

I D
5 stall cycles

MAC.W @R1+,@R2+

I D EX MA S
f1

f1
f1 F2 FS

f1 F2 FS
I

f1
D EX MA S
f1

D EX MA S

f1 F2 FS
f1 F2 FS

F1 F2 FS
d F1 F2 FS

d F1 F2 FS
d F1 F2 FS

d F1 F2 FS

F1 ...

I D
3 stall cycles

1 stall
cycle

2 stall cycles

MAC.W @R1+,@R2+

MAC.W @R1+,@R2+

FADD DR4,DR6

f1 stage can overlap preceding f1,
but F1 cannot overlap f1.

D EX MA S

#1 #2 #3 ... #10 #11 #12

D

HPM-135

Dreamcast SH4 Program Manual
Table 8.3 Execution Cycles

Lock

Functional
Category No. Instruction

Instruction
Group

Issue
Rate Latency

Execution
Pattern Stage Start Cycles

Data transfer
instructions

1 EXTS.B Rm,Rn EX 1 1 #1 — — —

2 EXTS.W Rm,Rn EX 1 1 #1 — — —

3 EXTU.B Rm,Rn EX 1 1 #1 — — —

4 EXTU.W Rm,Rn EX 1 1 #1 — — —

5 MOV Rm,Rn MT 1 0 #1 — — —

6 MOV #imm,Rn EX 1 1 #1 — — —

7 MOVA @(disp,PC),R0 EX 1 1 #1 — — —

8 MOV.W @(disp,PC),Rn LS 1 2 #2 — — —

9 MOV.L @(disp,PC),Rn LS 1 2 #2 — — —

10 MOV.B @Rm,Rn LS 1 2 #2 — — —

11 MOV.W @Rm,Rn LS 1 2 #2 — — —

12 MOV.L @Rm,Rn LS 1 2 #2 — — —

13 MOV.B @Rm+,Rn LS 1 1/2 #2 — — —

14 MOV.W @Rm+,Rn LS 1 1/2 #2 — — —

15 MOV.L @Rm+,Rn LS 1 1/2 #2 — — —

16 MOV.B @(disp,Rm),R0 LS 1 2 #2 — — —

17 MOV.W @(disp,Rm),R0 LS 1 2 #2 — — —

18 MOV.L @(disp,Rm),Rn LS 1 2 #2 — — —

19 MOV.B @(R0,Rm),Rn LS 1 2 #2 — — —

20 MOV.W @(R0,Rm),Rn LS 1 2 #2 — — —

21 MOV.L @(R0,Rm),Rn LS 1 2 #2 — — —

22 MOV.B @(disp,GBR),R0 LS 1 2 #3 — — —

23 MOV.W @(disp,GBR),R0 LS 1 2 #3 — — —

24 MOV.L @(disp,GBR),R0 LS 1 2 #3 — — —

25 MOV.B Rm,@Rn LS 1 1 #2 — — —

26 MOV.W Rm,@Rn LS 1 1 #2 — — —

27 MOV.L Rm,@Rn LS 1 1 #2 — — —

28 MOV.B Rm,@-Rn LS 1 1/1 #2 — — —
HPM-136

8. Pipelining
29 MOV.W Rm,@-Rn LS 1 1/1 #2 — — —

30 MOV.L Rm,@-Rn LS 1 1/1 #2 — — —

31 MOV.B R0,@(disp,Rn) LS 1 1 #2 — — —

32 MOV.W R0,@(disp,Rn) LS 1 1 #2 — — —

33 MOV.L Rm,@(disp,Rn) LS 1 1 #2 — — —

34 MOV.B Rm,@(R0,Rn) LS 1 1 #2 — — —

35 MOV.W Rm,@(R0,Rn) LS 1 1 #2 — — —

36 MOV.L Rm,@(R0,Rn) LS 1 1 #2 — — —

37 MOV.B R0,@(disp,GBR) LS 1 1 #3 — — —

38 MOV.W R0,@(disp,GBR) LS 1 1 #3 — — —

39 MOV.L R0,@(disp,GBR) LS 1 1 #3 — — —

40 MOVCA.L R0,@Rn LS 1 3–7 #12 MA 4 3–7

41 MOVT Rn EX 1 1 #1 — — —

42 OCBI @Rn LS 1 1–2 #10 MA 4 1–2

43 OCBP @Rn LS 1 1–5 #11 MA 4 1–5

44 OCBWB @Rn LS 1 1–5 #11 MA 4 1–5

45 PREF @Rn LS 1 1 #2 — — —

46 SWAP.B Rm,Rn EX 1 1 #1 — — —

47 SWAP.W Rm,Rn EX 1 1 #1 — — —

48 XTRCT Rm,Rn EX 1 1 #1 — — —

Fixed-point
arithmetic
instructions

49 ADD Rm,Rn EX 1 1 #1 — — —

50 ADD #imm,Rn EX 1 1 #1 — — —

51 ADDC Rm,Rn EX 1 1 #1 — — —

52 ADDV Rm,Rn EX 1 1 #1 — — —

53 CMP/EQ #imm,R0 MT 1 1 #1 — — —

54 CMP/EQ Rm,Rn MT 1 1 #1 — — —

55 CMP/GE Rm,Rn MT 1 1 #1 — — —

56 CMP/GT Rm,Rn MT 1 1 #1 — — —

57 CMP/HI Rm,Rn MT 1 1 #1 — — —

Lock

Functional
Category No. Instruction

Instruction
Group

Issue
Rate Latency

Execution
Pattern Stage Start Cycles
HPM-137

Dreamcast SH4 Program Manual
58 CMP/HS Rm,Rn MT 1 1 #1 — — —

59 CMP/PL Rn MT 1 1 #1 — — —

60 CMP/PZ Rn MT 1 1 #1 — — —

61 CMP/STR Rm,Rn MT 1 1 #1 — — —

62 DIV0S Rm,Rn EX 1 1 #1 — — —

63 DIV0U EX 1 1 #1 — — —

64 DIV1 Rm,Rn EX 1 1 #1 — — —

65 DMULS.L Rm,Rn CO 2 4/4 #34 F1 4 2

66 DMULU.L Rm,Rn CO 2 4/4 #34 F1 4 2

67 DT Rn EX 1 1 #1 — — —

68 MAC.L @Rm+,@Rn+ CO 2 2/2/4/4 #35 F1 4 2

69 MAC.W @Rm+,@Rn+ CO 2 2/2/4/4 #35 F1 4 2

70 MUL.L Rm,Rn CO 2 4/4 #34 F1 4 2

71 MULS.W Rm,Rn CO 2 4/4 #34 F1 4 2

72 MULU.W Rm,Rn CO 2 4/4 #34 F1 4 2

73 NEG Rm,Rn EX 1 1 #1 — — —

74 NEGC Rm,Rn EX 1 1 #1 — — —

75 SUB Rm,Rn EX 1 1 #1 — — —

76 SUBC Rm,Rn EX 1 1 #1 — — —

77 SUBV Rm,Rn EX 1 1 #1 — — —

Logical
instructions

78 AND Rm,Rn EX 1 1 #1 — — —

79 AND #imm,R0 EX 1 1 #1 — — —

80 AND.B #imm,@(R0,GBR) CO 4 4 #6 — — —

81 NOT Rm,Rn EX 1 1 #1 — — —

82 OR Rm,Rn EX 1 1 #1 — — —

83 OR #imm,R0 EX 1 1 #1 — — —

84 OR.B #imm,@(R0,GBR) CO 4 4 #6 — — —

85 TAS.B @Rn CO 5 5 #7 — — —

86 TST Rm,Rn MT 1 1 #1 — — —

87 TST #imm,R0 MT 1 1 #1 — — —

Lock

Functional
Category No. Instruction

Instruction
Group

Issue
Rate Latency

Execution
Pattern Stage Start Cycles
HPM-138

8. Pipelining
88 TST.B #imm,@(R0,GBR) CO 3 3 #5 — — —

89 XOR Rm,Rn EX 1 1 #1 — — —

90 XOR #imm,R0 EX 1 1 #1 — — —

91 XOR.B #imm,@(R0,GBR) CO 4 4 #6 — — —

Shift
instructions

92 ROTL Rn EX 1 1 #1 — — —

93 ROTR Rn EX 1 1 #1 — — —

94 ROTCL Rn EX 1 1 #1 — — —

95 ROTCR Rn EX 1 1 #1 — — —

96 SHAD Rm,Rn EX 1 1 #1 — — —

97 SHAL Rn EX 1 1 #1 — — —

98 SHAR Rn EX 1 1 #1 — — —

99 SHLD Rm,Rn EX 1 1 #1 — — —

100 SHLL Rn EX 1 1 #1 — — —

101 SHLL2 Rn EX 1 1 #1 — — —

102 SHLL8 Rn EX 1 1 #1 — — —

103 SHLL16 Rn EX 1 1 #1 — — —

104 SHLR Rn EX 1 1 #1 — — —

105 SHLR2 Rn EX 1 1 #1 — — —

106 SHLR8 Rn EX 1 1 #1 — — —

107 SHLR16 Rn EX 1 1 #1 — — —

Branch
instructions

108 BF disp BR 1 2 (or 1) #1 — — —

109 BF/S disp BR 1 2 (or 1) #1 — — —

110 BT disp BR 1 2 (or 1) #1 — — —

111 BT/S disp BR 1 2 (or 1) #1 — — —

112 BRA disp BR 1 2 #1 — — —

113 BRAF Rn CO 2 3 #4 — — —

114 BSR disp BR 1 2 #14 SX 3 2

115 BSRF Rn CO 2 3 #24 SX 3 2

116 JMP @Rn CO 2 3 #4 — — —

Lock

Functional
Category No. Instruction

Instruction
Group

Issue
Rate Latency

Execution
Pattern Stage Start Cycles
HPM-139

Dreamcast SH4 Program Manual
117 JSR @Rn CO 2 3 #24 SX 3 2

118 RTS CO 2 3 #4 — — —

System control
instructions

119 NOP MT 1 0 #1 — — —

120 CLRMAC CO 1 3 #28 F1 3 2

121 CLRS CO 1 1 #1 — — —

122 CLRT MT 1 1 #1 — — —

123 SETS CO 1 1 #1 — — —

124 SETT MT 1 1 #1 — — —

125 TRAPA #imm CO 7 7 #13 — — —

126 RTE CO 5 5 #8 — — —

127 SLEEP CO 4 4 #9 — — —

128 LDTLB CO 1 1 #2 — — —

129 LDC Rm,DBR CO 1 3 #14 SX 3 2

130 LDC Rm,GBR CO 3 3 #15 SX 3 2

131 LDC Rm,Rp_BANK CO 1 3 #14 SX 3 2

132 LDC Rm,SR CO 4 4 #16 SX 3 2

133 LDC Rm,SSR CO 1 3 #14 SX 3 2

134 LDC Rm,SPC CO 1 3 #14 SX 3 2

135 LDC Rm,VBR CO 1 3 #14 SX 3 2

136 LDC.L @Rm+,DBR CO 1 1/3 #17 SX 3 2

137 LDC.L @Rm+,GBR CO 3 3/3 #18 SX 3 2

138 LDC.L @Rm+,Rp_BANK CO 1 1/3 #17 SX 3 2

139 LDC.L @Rm+,SR CO 4 4/4 #19 SX 3 2

140 LDC.L @Rm+,SSR CO 1 1/3 #17 SX 3 2

141 LDC.L @Rm+,SPC CO 1 1/3 #17 SX 3 2

142 LDC.L @Rm+,VBR CO 1 1/3 #17 SX 3 2

143 LDS Rm,MACH CO 1 3 #28 F1 3 2

144 LDS Rm,MACL CO 1 3 #28 F1 3 2

145 LDS Rm,PR CO 2 3 #24 SX 3 2

146 LDS.L @Rm+,MACH CO 1 1/3 #29 F1 3 2

Lock

Functional
Category No. Instruction

Instruction
Group

Issue
Rate Latency

Execution
Pattern Stage Start Cycles
HPM-140

8. Pipelining
147 LDS.L @Rm+,MACL CO 1 1/3 #29 F1 3 2

148 LDS.L @Rm+,PR CO 2 2/3 #25 SX 3 2

149 STC DBR,Rn CO 2 2 #20 — — —

150 STC SGR,Rn CO 3 3 #21 — — —

151 STC GBR,Rn CO 2 2 #20 — — —

152 STC Rp_BANK,Rn CO 2 2 #20 — — —

153 STC SR,Rn CO 2 2 #20 — — —

154 STC SSR,Rn CO 2 2 #20 — — —

155 STC SPC,Rn CO 2 2 #20 — — —

156 STC VBR,Rn CO 2 2 #20 — — —

157 STC.L DBR,@-Rn CO 2 2/2 #22 — — —

158 STC.L SGR,@-Rn CO 3 3/3 #23 — — —

159 STC.L GBR,@-Rn CO 2 2/2 #22 — — —

160 STC.L Rp_BANK,@-Rn CO 2 2/2 #22 — — —

161 STC.L SR,@-Rn CO 2 2/2 #22 — — —

162 STC.L SSR,@-Rn CO 2 2/2 #22 — — —

163 STC.L SPC,@-Rn CO 2 2/2 #22 — — —

164 STC.L VBR,@-Rn CO 2 2/2 #22 — — —

165 STS MACH,Rn CO 1 3 #30 — — —

166 STS MACL,Rn CO 1 3 #30 — — —

167 STS PR,Rn CO 2 2 #26 — — —

168 STS.L MACH,@-Rn CO 1 1/1 #31 — — —

169 STS.L MACL,@-Rn CO 1 1/1 #31 — — —

170 STS.L PR,@-Rn CO 2 2/2 #27 — — —

Single-precision
floating-point
instructions

171 FLDI0 FRn LS 1 0 #1 — — —

172 FLDI1 FRn LS 1 0 #1 — — —

173 FMOV FRm,FRn LS 1 0 #1 — — —

174 FMOV.S @Rm,FRn LS 1 2 #2 — — —

175 FMOV.S @Rm+,FRn LS 1 1/2 #2 — — —

Lock

Functional
Category No. Instruction

Instruction
Group

Issue
Rate Latency

Execution
Pattern Stage Start Cycles
HPM-141

Dreamcast SH4 Program Manual
176 FMOV.S @(R0,Rm),FRn LS 1 2 #2 — — —

177 FMOV.S FRm,@Rn LS 1 1 #2 — — —

178 FMOV.S FRm,@-Rn LS 1 1/1 #2 — — —

179 FMOV.S FRm,@(R0,Rn) LS 1 1 #2 — — —

180 FLDS FRm,FPUL LS 1 0 #1 — — —

181 FSTS FPUL,FRn LS 1 0 #1 — — —

182 FABS FRn LS 1 0 #1 — — —

183 FADD FRm,FRn FE 1 3/4 #36 — — —

184 FCMP/EQ FRm,FRn FE 1 2/4 #36 — — —

185 FCMP/GT FRm,FRn FE 1 2/4 #36 — — —

186 FDIV FRm,FRn FE 1 12/13 #37 F3 2 10

F1 11 1

187 FLOAT FPUL,FRn FE 1 3/4 #36 F1 2 2

188 FMAC FR0,FRm,FRn FE 1 3/4 #36 — — —

189 FMUL FRm,FRn FE 1 3/4 #36 — — —

190 FNEG FRn LS 1 0 #1 — — —

191 FSQRT FRn FE 1 11/12 #37 F3 2 9

F1 10 1

192 FSUB FRm,FRn FE 1 3/4 #36 — — —

193 FTRC FRm,FPUL FE 1 3/4 #36 — — —

194 FMOV DRm,DRn LS 1 0 #1 — — —

195 FMOV @Rm,DRn LS 1 2 #2 — — —

196 FMOV @Rm+,DRn LS 1 1/2 #2 — — —

197 FMOV @(R0,Rm),DRn LS 1 2 #2 — — —

198 FMOV DRm,@Rn LS 1 1 #2 — — —

199 FMOV DRm,@-Rn LS 1 1/1 #2 — — —

200 FMOV DRm,@(R0,Rn) LS 1 1 #2 — — —

Double-precision
floating-point
instructions

201 FABS DRn LS 1 0 #1 — — —

202 FADD DRm,DRn FE 1 (7, 8)/9 #39 F1 2 6

203 FCMP/EQ DRm,DRn CO 2 3/5 #40 F1 2 2

Lock

Functional
Category No. Instruction

Instruction
Group

Issue
Rate Latency

Execution
Pattern Stage Start Cycles
HPM-142

8. Pipelining
204 FCMP/GT DRm,DRn CO 2 3/5 #40 F1 2 2

205 FCNVDS DRm,FPUL FE 1 4/5 #38 F1 2 2

206 FCNVSD FPUL,DRn FE 1 (3, 4)/5 #38 F1 2 2

207 FDIV DRm,DRn FE 1 (24, 25)/26 #41 F3 2 21

F1 20 3

208 FLOAT FPUL,DRn FE 1 (3, 4)/5 #38 F1 2 2

209 FMUL DRm,DRn FE 1 (7, 8)/9 #39 F1 2 6

210 FNEG DRn LS 1 0 #1 — — —

211 FSQRT DRn FE 1 (23, 24)/25 #41 F3 2 20

F1 19 3

212 FSUB DRm,DRn FE 1 (7, 8)/9 #39 F1 2 6

213 FTRC DRm,FPUL FE 1 4/5 #38 F1 2 2

FPU system
control
instructions

214 LDS Rm,FPUL LS 1 1 #1 — — —

215 LDS Rm,FPSCR CO 1 4 #32 F1 3 3

216 LDS.L @Rm+,FPUL CO 1 1/2 #2 — — —

217 LDS.L @Rm+,FPSCR CO 1 1/4 #33 F1 3 3

218 STS FPUL,Rn LS 1 3 #1 — — —

219 STS FPSCR,Rn CO 1 3 #1 — — —

220 STS.L FPUL,@-Rn CO 1 1/1 #2 — — —

221 STS.L FPSCR,@-Rn CO 1 1/1 #2 — — —

Graphics
acceleration
instructions

222 FMOV DRm,XDn LS 1 0 #1 — — —

223 FMOV XDm,DRn LS 1 0 #1 — — —

224 FMOV XDm,XDn LS 1 0 #1 — — —

225 FMOV @Rm,XDn LS 1 2 #2 — — —

226 FMOV @Rm+,XDn LS 1 1/2 #2 — — —

227 FMOV @(R0,Rm),XDn LS 1 2 #2 — — —

228 FMOV XDm,@Rn LS 1 1 #2 — — —

229 FMOV XDm,@-Rm LS 1 1/1 #2 — — —

230 FMOV XDm,@(R0,Rn) LS 1 1 #2 — — —

Lock

Functional
Category No. Instruction

Instruction
Group

Issue
Rate Latency

Execution
Pattern Stage Start Cycles
HPM-143

Dreamcast SH4 Program Manual
231 FIPR FVm,FVn FE 1 4/5 #42 F1 3 1

232 FRCHG FE 1 1/4 #36 — — —

233 FSCHG FE 1 1/4 #36 — — —

234 FTRV XMTRX,FVn FE 1 (5, 5, 6, 7)/8 #43 F0 2 4

Lock

Functional
Category No. Instruction

Instruction
Group

Issue
Rate Latency

Execution
Pattern Stage Start Cycles
HPM-144

8. Pipelining
Notes: 1. See table 8.1 for the instruction groups.
2. Latency “L1/L2...”: Latency corresponding to a write to

each register, including MACH/MACL/FPSCR.
Example: MOV.B @Rm+, Rn “1/2”: The latency for Rm is
1 cycle, and the latency for Rn is 2 cycles.

3. Branch latency: Interval until the branch destination
instruction is fetched

4. Conditional branch latency “2 (or 1)”: The latency is 2
for a nonzero displacement, and 1 for a zero
displacement.

5. Double-precision floating-point instruction latency “(L1,
L2)/L3”: L1 is the latency for FR [n+1], L2 that for FR [n],
and L3 that for FPSCR.

6. FTRV latency “(L1, L2, L3, L4)/L5”: L1 is the latency for
FR [n], L2 that for FR [n+1], L3 that for FR [n+2], L4 that
for FR [n+3], and L5 that for FPSCR.

7. Latency “L1/L2/L3/L4” of MAC.L and MAC.W
instructions: L1 is the latency for Rm, L2 that for Rn, L3
that for MACH, and L4 that for MACL.

8. Latency “L1/L2” of MUL.L, MULS.W, MULU.W,
DMULS.L, and DMULU.L instructions: L1 is the latency
for MACH, and L2 that for MACL.

9. Execution pattern: The instruction execution pattern
number (see figure 8.2)

10. Lock/stage: Stage locked by the instruction
11. Lock/start: Locking start cycle; 1 is the first D-stage of

the instruction.
12. Lock/cycles: Number of cycles locked

Exceptions:

1. When a floating-point operation instruction is followed
by a floating-point store, the latency of the
floating-point operation is decreased by 1 cycle.

2. When the preceding instruction loads the shift amount
of the following SHAD/SHLD, the latency of the load is
increased by 1 cycle.

3. When an LS group instruction with a latency of less
than 3 cycles is followed by a double-precision
floating-point instruction, FIPR, or FTRV, the latency of
the first instruction is increased to 3 cycles.
Example: In the case of FMOV FR4,FR0 and FIPR
FV0,FV4, FIPR is stalled for 2 cycles.

4. When MAC*/MUL* is followed by an STS.L MAC*,
@-Rn instruction, the latency of MAC*/MUL* is 5
cycles.

5. In the case of consecutive executions of MAC.W/
MAC.L, the latency is decreased to 2 cycles.

6. When an LDS to MAC* is followed by an STS.L MAC*,
@-Rn instruction, the latency of the LDS to MAC* is 4
cycles.

7. When an LDS to MAC* is followed by MAC.W/MAC.L,
the latency of the LDS to MAC* is 1 cycle.

8. When an FSCHG or FRCHG instruction is followed by an
LS group instruction that reads or writes to a
floating-point register, the aforementioned LS group
instruction[s] cannot be executed in parallel.

9. When a single-precision FTRC instruction is followed by
an STS FPUL, Rn instruction, the latency of the
single-precision FTRC instruction is 1 cycle.

F1 3 4

Lock

Functional
Category No. Instruction

Instruction
Group

Issue
Rate Latency

Execution
Pattern Stage Start Cycles
HPM-145

Dreamcast SH4 Program Manual
HPM-146

9. Power-Down Modes
9.1 Overview
In the power-down modes, some of the on-chip peripheral modules and the CPU functions are halted, enabling
power consumption to be reduced.

9.1.1 Types of Power-Down Modes

The following power-down modes and functions are provided:

¥ Sleep mode

¥ Deep sleep mode

¥ Standby mode

¥ Module standby function (TMU, RTC, SCI/SCIF, and DMAC on-chip peripheral modules)

Table 9.1 shows the conditions for entering these modes from the program execution state, the status of the CPU and
peripheral modules in each mode, and the method of exiting each mode.
HPM-147

Dreamcast SH4 Program Manual
Table 9.1 Status of CPU and Peripheral Modules in Power-Down Modes

Note: The RTC operates when the START bit in RCR2 is 1 (see section 11, Realtime Clock (RTC), in the Hardware
Manual).

9.1.2 Register Configuration

Table 9.2 shows the registers used for power-down mode control.

Table 9.2 Power-Down Mode Registers

Power-
Down Mode

Entering
Conditions CPG CPU

On-Chip
Memory

On-chip
Peripheral
Modules Pins

External
Memory

Exiting
Method

Sleep SLEEP
instruction
executed
while STBY
bit is 0 in
STBCR

Operati
ng

Halted
(registers
held)

Held Operating Held Refreshing • Interrupt
• Reset

Deep sleep SLEEP
instruction
executed
while STBY
bit is 0 in
STBCR, and
DSLP bit is 1
in STBCR2

Operati
ng

Halted
(registers
held)

Held Operating
(DMA
halted)

Held Self-refreshing • Interrupt
• Reset

Standby SLEEP
instruction
executed
while STBY
bit is 1 in
STBCR

Halted Halted
(registers
held)

Held Halted* Held Self-refreshing • Interrupt
• Reset

Module
standby

Setting MSTP
bit to 1 in
STBCR

Operati
ng

Operating Held Specified
modules
halted*

Held Refreshing • Clearing
MSTP bit
to 0

• Reset

Name Abbreviation R/W Initial Value P4 Address
 Area 7
Address Access Size

Standby control
register

 STBCR R/W H'00 H'FFC00004 H'1FC00004 8

Standby control
register 2

 STBCR2 R/W H'00 H'FFC00010 H'1FC00010 8
HPM-148

9. Power-Down Modes
9.2 Register Descriptions

9.2.1 Standby Control Register (STBCR)

The standby control register (STBCR) is an 8-bit readable/writable register that speciÞes the power-down mode
status. It is initialized to H'00 by a power-on reset via the RESET pin or due to watchdog timer overßow.

Bit 7ÑStandby (STBY): SpeciÞes a transition to standby mode.

Bit 6ÑPeripheral Module Pin High Impedance Control (PHZ): Controls the state of peripheral module related
pins in standby mode. When the PHZ bit is set to 1, peripheral module related pins go to the high-impedance state
in standby mode.

For the relevant pins, see section 9.2.2, Peripheral Module Pin High Impedance Control.

Bit 5ÑPeripheral Module Pin Pull-Up Control (PPU): Controls the state of peripheral module related pins. When
the PPU bit is cleared to 0, the pull-up resistor is turned on for peripheral module related pins in the input or
high-impedance state.

For the relevant pins, see section 9.2.3, Peripheral Module Pin Pull-Up Control.

Bit 7: STBY Description

0 Transition to sleep mode on execution of SLEEP instruction (Initial value)

1 Transition to standby mode on execution of SLEEP instruction

Bit 6: PHZ Description

0 Peripheral module related pins are in normal state (Initial value)

1 Peripheral module related pins go to high-impedance state

Bit 5: PPU Description

0 Peripheral module related pin pull-up resistors are on (Initial value)

1 Peripheral module related pin pull-up resistors are off

7 6 5 4 3 2 1 0

STBY MSTP4PHZ MSTP3PPU MSTP2 MSTP1 MSTP0

Bit:

Initial value: 0 0 0 0 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/WR/W:
HPM-149

Dreamcast SH4 Program Manual
Bit 4ÑModule Stop 4 (MSTP4): SpeciÞes stopping of the clock supply to the DMAC among the on-chip peripheral
modules. The clock supply to the DMAC is stopped when the MSTP4 bit is set to 1. When DMA transfer is used,
stop the transfer before setting the MSTP4 bit to 1. When DMA transfer is performed after clearing the MSTP4 bit
to 0, DMAC settings must be made again.

Bit 3ÑModule Stop 3 (MSTP3): SpeciÞes stopping of the clock supply to serial communication interface channel 2
(SCIF) among the on-chip peripheral modules. The clock supply to the SCIF is stopped when the MSTP3 bit is set
to 1.

Bit 2ÑModule Stop 2 (MSTP2): SpeciÞes stopping of the clock supply to the timer unit (TMU) among the on-chip
peripheral modules. The clock supply to the TMU is stopped when the MSTP2 bit is set to 1.

Bit 1ÑModule Stop 1 (MSTP1): SpeciÞes stopping of the clock supply to the realtime clock (RTC) among the
on-chip peripheral modules. The clock supply to the RTC is stopped when the MSTP1 bit is set to 1. When the clock
supply is stopped, RTC registers cannot be accessed but the counters continue to operate.

Bit 0ÑModule Stop 0 (MSTP0): SpeciÞes stopping of the clock supply to serial communication interface channel 1
(SCI) among the on-chip peripheral modules. The clock supply to the SCI is stopped when the MSTP0 bit is set to 1.

Bit 4: MSTP4 Description

0 DMAC operates (Initial value)

1 DMAC clock supply is stopped

Bit 3: MSTP3 Description

0 SCIF operates (Initial value)

1 SCIF clock supply is stopped

Bit 2: MSTP2 Description

0 TMU operates (Initial value)

1 TMU clock supply is stopped

Bit 1: MSTP1 Description

0 RTC operates (Initial value)

1 RTC clock supply is stopped

Bit 0: MSTP0 Description

0 SCI operates (Initial value)

1 SCI clock supply is stopped
HPM-150

9. Power-Down Modes
9.2.2 Peripheral Module Pin High Impedance Control

When bit 6 in the standby control register (STBCR) is set to 1, peripheral module related pins go to the
high-impedance state in standby mode.

¥ Relevant Pins

¥ Other Information

High impedance control is not performed when the above pins are used as port output pins.

9.2.3 Peripheral Module Pin Pull-Up Control

When bit 5 in the standby control register (STBCR) is cleared to 0, peripheral module related pins are pulled up
when in the input or high-impedance state.

¥ Relevant Pins

SCI related pins MD0/SCK MD1/TXD2

MD7/TXD MD8/RTS2

CTS2

DMA related pins DACK0 DRAK0

DACK1 DRAK1

SCI related pins MD0/SCK MD1/TXD2 MD2/RXD2

MD7/TXD MD8/RTS2 SCK2/MRESET

RXD CTS2

DMA related pins DREQ0 DACK0 DRAK0

DREQ1 DACK1 DRAK1

TMU related pin TCLK
HPM-151

Dreamcast SH4 Program Manual
9.2.4 Standby Control Register 2 (STBCR2)

Standby control register 2 (STBCR2) is an 8-bit readable/writable register that speciÞes the sleep mode and deep
sleep mode transition conditions. It is initialized to H'00 by a power-on reset via the RESET pin or due to watchdog
timer overßow.

Bit 7ÑDeep Sleep (DSLP): SpeciÞes a transition to deep sleep mode

Note: *When the STBY bit in the STBCR register is 0

Bits 6 to 0ÑReserved: Only 0 should only be written to these bits; operation cannot be guaranteed if 1 is written.
These bits are always read as 0.

9.3 Sleep Mode

9.3.1 Transition to Sleep Mode

If a SLEEP instruction is executed when the STBY bit in STBCR is cleared to 0, the chip switches from the program
execution state to sleep mode. After execution of the SLEEP instruction, the CPU halts but its register contents are
retained. The on-chip peripheral modules continue to operate, and the clock continues to be output from the
CKIO pin.

In sleep mode, a high-level signal is output at the STATUS1 pin, and a low-level signal at the STATUS0 pin.

Bit 7: DSLP Description

0 Transition to sleep mode or standby mode on execution of SLEEP instruction, according to setting
of STBY bit in STBCR register

(Initial value)

1 Transition to deep sleep mode on execution of SLEEP instruction*

7 6 5 4 3 2 1 0

DSLP —— —— — — —

Bit:

Initial value: 0 0 0 0 0 0 0 0

R/W R R R R R R RR/W:
HPM-152

9. Power-Down Modes
9.3.2 Exit from Sleep Mode

Sleep mode is exited by means of an interrupt (NMI, IRL, or on-chip peripheral module) or a reset. In sleep mode,
interrupts are accepted even if the BL bit in the SR register is 1. If necessary, SPC and SSR should be saved to the
stack before executing the SLEEP instruction.

Exit by Interrupt: When an NMI, IRL, or on-chip peripheral module interrupt is generated, sleep mode is exited
and interrupt exception handling is executed. The code corresponding to the interrupt source is set in the INTEVT
register.

Exit by Reset: Sleep mode is exited by means of a power-on or manual reset via the RESET pin, or a power-on or
manual reset executed when the watchdog timer overßows.

9.4 Deep Sleep Mode

9.4.1 Transition to Deep Sleep Mode

If a SLEEP instruction is executed when the STBY bit in STBCR is cleared to 0 and the DSLP bit in STBCR2 is set to
1, the chip switches from the program execution state to deep sleep mode. After execution of the SLEEP instruction,
the CPU halts but its register contents are retained. Except for the DMAC, on-chip peripheral modules continue to
operate, and the clock continues to be output from the CKIO pin.

In deep sleep mode, a high-level signal is output at the STATUS1 pin, and a low-level signal at the STATUS0 pin.

9.4.2 Exit from Deep Sleep Mode

As with sleep mode, deep sleep mode is exited by means of an interrupt (NMI, IRL, or on-chip peripheral module)
or a reset.

9.5 Standby Mode

9.5.1 Transition to Standby Mode

If a SLEEP instruction is executed when the STBY bit in STBCR is set to 1, the chip switches from the program
execution state to standby mode. In standby mode, the on-chip peripheral modules halt as well as the CPU. Clock
output from the CKIO pin is also stopped.

The CPU and cache register contents are retained. Some on-chip peripheral module registers are initialized. The
state of the peripheral module registers in standby mode is shown in table 9.3.
HPM-153

Dreamcast SH4 Program Manual
Table 9.3 State of Registers in Standby Mode

Note: *Not initialized when the realtime clock (RTC) is in use (see section 12, Timer Unit (TMU), in the Hardware
Manual).

Note: DMA transfer should be terminated before making a transition to standby mode. Transfer results are not
guaranteed if standby mode is entered during transfer.

The procedure for a transition to standby mode is shown below.

1) Clear the TME bit in the WDT timer control register (WTCSR) to 0, and stop the WDT. Set the initial value
for the up-count in the WDT timer counter (WTCNT), and set the clock to be used for the up-count in
bits CKS2ÐCKS0 in the WTCSR register.

2) Set the STBY bit in the STBCR register to 1, then execute a SLEEP instruction.

3) When standby mode is entered and the chipÕs internal clock stops, a low-level signal is output at the
STATUS1 pin, and a high-level signal at the STATUS0 pin.

Module Initialized Registers Registers That Retain Their Contents

Interrupt controller — All registers

User break controller — All registers

Bus state controller — All registers

On-chip oscillation circuits — All registers

Timer unit TSTR register* All registers except TSTR

Realtime clock — All registers

Direct memory access controller — All registers

Serial communication interface See Appendix A, Address List See Appendix A, Address List
HPM-154

9. Power-Down Modes
9.5.2 Exit from Standby Mode

Standby mode is exited by means of an interrupt (NMI, IRL, or on-chip peripheral module) or a reset via the
RESET pin.

Exit by Interrupt: A hot start can be performed by means of the on-chip WDT. When an NMI, IRL*1, or on-chip
peripheral module (except interval timer)*2 interrupt is detected, the WDT starts counting. After the count
overßows, clocks are supplied to the entire chip, standby mode is exited, and the STATUS1 and STATUS0 pins both
go low. Interrupt exception handling is then executed, and the code corresponding to the interrupt source is set in
the INTEVT register. In standby mode, interrupts are accepted even if the BL bit in the SR register is 1, and so, if
necessary, SPC and SSR should be saved to the stack before executing the SLEEP instruction.

The phase of the CKIO pin clock output may be unstable immediately after an interrupt is detected, until standby
mode is exited.

Note: Only when the RTC clock (32.768 kHz) is operating (see section 19.2.2, IRL Interrupts, in the Hardware
Manual), standby mode can be exited by means of IRL3ÐIRL0 (when the IRL3ÐIRL0 level is higher than the
SR register I3ÐI0 mask level).
Standby mode can be exited by means of an RTC interrupt.

Exit by Reset: Standby mode is exited by means of a reset (power-on or manual) via the RESET pin. The RESET pin
should be held low until clock oscillation stabilizes. The internal clock continues to be output at the CKIO pin.

9.5.3 Clock Pause Function

In standby mode, it is possible to stop or change the frequency of the clock input from the EXTAL pin. This function
is used as follows.

1) Enter standby mode following the transition procedure described above.

2) When standby mode is entered and the chipÕs internal clock stops, a low-level signal is output at the
STATUS1 pin, and a high-level signal at the STATUS0 pin.

3) The input clock is stopped, or its frequency changed, after the STATUS1 pin goes low and the STATUS0
pin high.

4) When the frequency is changed, input an NMI or IRL interrupt after the change. When the clock is
stopped, input an NMI or IRL interrupt after applying the clock.

5) After the time set in the WDT, clock supply begins inside the chip, the STATUS1 and STATUS0 pins both
go low, and operation is resumed from interrupt exception handling.
HPM-155

Dreamcast SH4 Program Manual
9.6 Module Standby Function

9.6.1 Transition to Module Standby Function

Setting the MSTP4ÐMSTP0 bits in the standby control register to 1 enables the clock supply to the corresponding
on-chip peripheral modules to be halted. Use of this function allows power consumption in sleep mode to be further
reduced.

In the module standby state, the on-chip peripheral module external pins retain their states prior to halting of the
modules, and most registers retain their states prior to halting of the modules.

Note: The register initialized is the same as in standby mode, but initialization is not performed if the RTC clock
is not in use (see section 12, Timer Unit (TMU), in the Hardware Manual).
The counter operates when the START bit in RCR2 is 1 (see section 11, Realtime Clock (RTC), in the
Hardware Manual).

9.6.2 Exit from Module Standby Function

The module standby function is exited by clearing the MSTP4ÐMSTP0 bits to 0, or by a power-on reset via the RESET
pin or a power-on reset caused by watchdog timer overßow.

Bit Description

MSTP4 0 DMAC operates

1 Clock supplied to DMAC is stopped

MSTP3 0 SCIF operates

1 Clock supplied to SCIF is stopped

MSTP2 0 TMU operates

1 Clock supplied to TMU is stopped, and register is initialized*1

MSTP1 0 RTC operates

1 Clock supplied to RTC is stopped*2

MSTP0 0 SCI operates

1 Clock supplied to SCI is stopped
HPM-156

10. Instruction Descriptions
Instructions are listed in this section in alphabetical order. The following format is used for the
instruction descriptions.

Description

Describes the operation of the instruction.

Notes

IdentiÞes points to be noted when using the instruction.

Instruction Name Full Name Instruction Type

Function (Indication of delayed branch instruction or
interrupt-disabling instruction)

Format Summary of Operation Instruction Code Execution States T Bit

– The assembler input format
is shown. imm and disp are
numeric values, expressions,
or symbols.

– Summarizes the
operation of the
instruction.

– Shown in MSB
↔ LSB order.

– The no-wait value is
shown.

– Shows the T bit
value after
execution of the
instruction.
HPM-157

Dreamcast SH4 Program Manual
Operation

Shows the operation in C. This is given as reference material to help understand the operation of the instruction.
Use of the following resources is assumed.

char 8-bit integer

short 16-bit integer

int 32-bit integer

long 64-bit integer

float single-precision floating point number(32 bits)

double double-precision floating point number(64 bits)

These are data types.

unsigned char Read_Byte(unsigned long Addr);

unsigned short Read_Word(unsigned long Addr);

unsigned long Read_Long(unsigned long Addr);

These reßect the respective sizes of address Addr. A word read from other than a 2n address, or a
longword read from other than a 4n address, will be detected as an address error.

unsigned char Write_Byte(unsigned long Addr, unsigned long Data);

unsigned short Write_Word(unsigned long Addr, unsigned long Data);

unsigned long Write_Long(unsigned long Addr, unsigned long Data);

These write data Data to address Addr, using the respective sizes. A word write to other than a 2n
address, or a longword write to other than a 4n address, will be detected as an address error.

Delay_Slot(unsigned long Addr);

Shifts to execution of the slot instruction at address (Addr).

unsigned long R[16];

unsigned long SR,GBR,VBR;

unsigned long MACH,MACL,PR;

unsigned long PC;

Registers

struct SR0 {

 unsigned long dummy0:22;
 unsigned long M0:1;
 unsigned long Q0:1;
 unsigned long I0:4;
 unsigned long dummy1:2;
 unsigned long S0:1;
 unsigned long T0:1;
};

SR structure deÞnitions

define M ((*(struct SR0 *)(&SR)).M0)

#define Q ((*(struct SR0 *)(&SR)).Q0)

#define S ((*(struct SR0 *)(&SR)).S0)

#define T ((*(struct SR0 *)(&SR)).T0)

DeÞnitions of bits in SR

Error(char *er);

Error display function
HPM-158

10. Instruction Descriptions
These are ßoating-point number deÞnition statements.

#define PZERO 0

#define NZERO 1

#define DENORM 2

#define NORM 3

#define PINF 4

#define NINF 5

#define qNaN 6

#define sNaN 7

#define EQ 0

#define GT 1

#define LT 2

#define UO 3

#define INVALID 4

#define FADD 0

#define FSUB 1

#define CAUSE 0x0003f000 /* FPSCR(bit17-12) */

#define SET_E 0x00020000 /* FPSCR(bit17) */

#define SET_V 0x00010040 /* FPSCR(bit16,6) */

#define SET_Z 0x00008020 /* FPSCR(bit15,5) */

#define SET_O 0x00004010 /* FPSCR(bit14,4) */

#define SET_U 0x00002008 /* FPSCR(bit13,3) */

#define SET_I 0x00001004 /* FPSCR(bit12,2) */

#define ENABLE_VOUI 0x00000b80 /* FPSCR(bit11,9-7) */

#define ENABLE_V 0x00000800 /* FPSCR(bit11) */

#define ENABLE_Z 0x00000400 /* FPSCR(bit10) */

#define ENABLE_OUI 0x00000380 /* FPSCR(bit9-7) */

#define ENABLE_I 0x00000080 /* FPSCR(bit7) */

#define FLAG 0x0000007C /* FPSCR(bit6-2) */

#define FPSCR_FR FPSCR>>21&1

#define FPSCR_PR FPSCR>>19&1

#define FPSCR_DN FPSCR>>18&1

#define FPSCR_I FPSCR>>12&1

#define FPSCR_RM FPSCR&1

#define FR_HEX frf.l[FPSCR_FR]

#define FR frf.f[FPSCR_FR]

#define DR frf.d[FPSCR_FR]

#define XF_HEX frf.l[~FPSCR_FR]

#define XF frf.f[~FPSCR_FR]

#define XD frf.d[~FPSCR_FR]

union {

 int l[2][16];

 float f[2][16];

 double d[2][8];

} frf;

int FPSCR;
HPM-159

Dreamcast SH4 Program Manual
int sign_of(int n)

{

 return(FR_HEX[n]>>31);

}

int data_type_of(int n)

int abs;

 abs = FR_HEX[n] & 0x7fffffff;

 if(FPSCR_PR == 0) { /* Single-precision */

 if(abs < 0x00800000){

 if((FPSCR_DN == 1) || (abs == 0x00000000)){

 if(sign_of(n) == 0) return(PZERO);

 else return(NZERO);

 }

 else return(DENORM);

 }

 else if(abs < 0x7f800000) return(NORM);

 else if(abs == 0x7f800000) {

 if(sign_of(n) == 0) return(PINF);

 else return(NINF);

 }

 else if(abs < 0x7fc00000) return(qNaN);

 else return(sNaN);

 }

 else { /* Double-precision */

 if(abs < 0x00100000){

 if((FPSCR_DN == 1) || (abs == 0x00000000)){

 if(sign_of(n) == 0) return(PZERO);

 else return(NZERO);

 }

 else return(DENORM);

 }

 else if(abs < 0x7ff00000) return(NORM);

 else if((abs == 0x7ff00000) &&

 (FR_HEX[n+1] == 0x00000000)) {

 if(sign_of(n) == 0) return(PINF);

 else return(NINF);

 }

 else if(abs < 0x7ff80000) return(qNaN);

 else return(sNaN);

 }

}

void register_copy(int m,n)

{

 FR[n] = FR[m];

 if(FPSCR_PR == 1) FR[n+1] = FR[m+1];

}

HPM-160

10. Instruction Descriptions
void normal_faddsub(int m,n,type)

{

union {

 float f;

 int l;

} dstf,srcf;

union {

 double d;

 int l[2];

} dstd,srcd;

union { /* “long double” format: */

 int double x; /* 1-bit sign */

 int l[4]; /* 15-bit exponent */

} dstx; /* 112-bit mantissa */

 if(FPSCR_PR == 0) {

 if(type == FADD) srcf.f = FR[m];

 else srcf.f = -FR[m];

 dstd.d = FR[n]; /* Conversion from single-precision to double-precision */

 dstd.d += srcf.f;

 if(((dstd.d == FR[n]) && (srcf.f != 0.0)) ||

 ((dstd.d == srcf.f) && (FR[n] != 0.0))) {

 if(sign_of(m) ̂sign_of(n)) {

 dstd.l[1] -= 1;

 if(dstd.l[1] == 0xffffffff) dstd.l[0] -= 1;

 }

 }

 if(dstd.l[1] & 0x1fffffff) set_I();

 dstf.f += srcf.f; /* Round to nearest */

 if(FPSCR_RM == 1) {

 dstd.l[1] &= 0xe0000000; /* Round to zero */

 dstf.f = dstd.d;

 }

 check_single_exception(&FR[n],dstf.f);

 } else {

 if(type == FADD) srcd.d = DR[m>>1];

 else srcd.d = -DR[m>>1];

 dstx.x = DR[n>>1];

 /* Conversion from double-precision to extended double-precision */

 dstx.x += srcd.d;

 if(((dstx.x == DR[n>>1]) && (srcd.d != 0.0)) ||

 ((dstx.x == srcd.d) && (DR[n>>1] != 0.0))) {

 set_I();

 if(sign_of(m) ̂sign_of(n)) {

 dstx.l[3] -= 1;

 if(dstx.l[3] == 0xffffffff) dstx.l[2] -= 1;

 if(dstx.l[2] == 0xffffffff) dstx.l[1] -= 1;

 if(dstx.l[1] == 0xffffffff) dstx.l[0] -= 1;

 }

 }
HPM-161

Dreamcast SH4 Program Manual
 if((dstx.l[2] & 0x0fffffff) || dstx.l[3]) set_I();

 dst.d += srcd.d; /* Round to nearest */

 if(FPSCR_RM == 1) {

 dstx.l[2] &= 0xf0000000; /* Round to zero */

 dstx.l[3] = 0x00000000;

 dst.d = dstx.x;

 }

 check_double_exception(&DR[n>>1] ,dst.d);

 }

}

void normal_fmul(int m,n)

{

union {

 float f;

 int l;

} tmpf;

union {

 double d;

 int l[2];

} tmpd;

union {

 int double x;

 int l[4];

} tmpx;

 if(FPSCR_PR == 0) {

 tmpd.d = FR[n]; /* Single-precision to double-precision */

 tmpd.d *= FR[m]; /* Precise creation */

 tmpf.f *= FR[m]; /* Round to nearest */

 if(tmpf.f != tmpd.d) set_I();

 if((tmpf.f > tmpd.d) && (SPSCR_RM == 1)) {

 tmpf.l -= 1; /* Round to zero */

 }

 check_single_exception(&FR[n],tmpf.f);

 } else {

 tmpx.x = DR[n>>1]; /* Single-precision to double-precision */

 tmpx.x *= DR[m>>1]; /* Precise creation */

 tmpd.d *= DR[m>>1]; /* Round to nearest */

 if(tmpd.d != tmpx.x) set_I();

 if(tmpd.d > tmpx.x) && (SPSCR_RM == 1)) {

 tmpd.l[1] -= 1; /* Round to zero */

 if(tmpd.l[1] == 0xffffffff) tmpd.l[0] -= 1;

 }

 check_double_exception(&DR[n>>1], tmpd.d);

 }

}

HPM-162

10. Instruction Descriptions
void fipr(int m,n)

{

union {

 double d;

 int l[2];

} mlt[4];

float dstf;

 if((data_type_of(m) == sNaN) || (data_type_of(n) == sNaN) ||

 (data_type_of(m+1) == sNaN) || (data_type_of(n+1) == sNaN) ||

 (data_type_of(m+2) == sNaN) || (data_type_of(n+2) == sNaN) ||

 (data_type_of(m+3) == sNaN) || (data_type_of(n+3) == sNaN) ||

 (check_product_invalid(m,n)) ||

 (check_product_invalid(m+1,n+1)) ||

 (check_product_invalid(m+2,n+2)) ||

 (check_product_invalid(m+3,n+3))) invalid(n+3);

 else if((data_type_of(m) == qNaN)|| (data_type_of(n) == qNaN)||

 (data_type_of(m+1) == qNaN) || (data_type_of(n+1) == qNaN) ||

 (data_type_of(m+2) == qNaN) || (data_type_of(n+2) == qNaN) ||

 (data_type_of(m+3) == qNaN) || (data_type_of(n+3) == qNaN)) qnan(n+3);

 else if (check_ positive_infinity() &&

 (check_ negative_infinity()) invalid(n+3);

 else if (check_ positive_infinity()) inf(n+3,0);

 else if (check_ negative_infinity()) inf(n+3,1);

 else {

 for(i=0;i<4;i++) {

 /* If FPSCR_DN == 1, zeroize */

 if (data_type_of(m+i) == PZERO) FR[m+i] = +0.0;

 else if(data_type_of(m+i) == NZERO) FR[m+i] = -0.0;

 if (data_type_of(n+i) == PZERO) FR[n+i] = +0.0;

 else if(data_type_of(n+i) == NZERO) FR[n+i] = -0.0;

 mlt[i].d = FR[m+i];

 mlt[i].d *= FR[n+i];

 /* To be precise, with FIPR, the lower 18 bits are discarded; therefore, this
description

 is simplified, and differs from the hardware. */

 mlt[i].l[1] &= 0xff000000;

 mlt[i].l[1] |= 0x00800000;

 }

 mlt[0].d += mlt[1].d + mlt[2].d + mlt[3].d;

 mlt[0].l[1] &= 0xff800000;

 dstf = mlt[0].d;

 set_I();

 check_single_exception(&FR[n+3],dstf);

 }

}

HPM-163

Dreamcast SH4 Program Manual
void check_single_exception(float *dst,result)

{

union {

 float f;

 int l;

} tmp;

float abs;

 if(result < 0.0) tmp.l = 0xff800000; /* – infinity */

 else tmp.l = 0x7f800000; /* + infinity */

 if(result == tmp.f) {

 set_O();

 if(FPSCR_RM == 1) {

 tmp.l -= 1; /* Maximum value of normalized number */

 result = tmp.f;

 }

 }

 if(result < 0.0) abs = -result;

 else abs = result;

 tmp.l = 0x00800000; /* Minimum value of normalized number */

 if(abs < tmp.f) {

 if((FPSCR_DN == 1) && (abs != 0.0)) {

 set_I();

 if(result < 0.0) result = -0.0; /* Zeroize denormalized number */

 else result = 0.0;

 }

 if(FPSCR_I == 1) set_U();

 }

 if(FPSCR & ENABLE_OUI) fpu_exception_trap();

 else *dst = result;

}

void check_double_exception(double *dst,result)

{

union {

 double d;

 int l[2];

} tmp;

double abs;

 if(result < 0.0) tmp.l[0] = 0xfff00000; /* – infinity */

 else tmp.l[0] = 0x7ff00000; /* + infinity */

 tmp.l[1] = 0x00000000;

 if(result == tmp.d)

 set_O();

 if(FPSCR_RM == 1) {

 tmp.l[0] -= 1;

 tmp.l[1] = 0xffffffff;

 result = tmp.d; /* Maximum value of normalized number */

 }

 }
HPM-164

10. Instruction Descriptions
 if(result < 0.0) abs = -result;

 else abs = result;

 tmp.l[0] = 0x00100000; /* Minimum value of normalized number */

 tmp.l[1] = 0x00000000;

 if(abs < tmp.d) {

 if((FPSCR_DN == 1) && (abs != 0.0)) {

 set_I();

 if(result < 0.0) result = -0.0;

 /* Zeroize denormalized number */

 else result = 0.0;

 }

 if(FPSCR_I == 1) set_U();

 }

 if(FPSCR & ENABLE_OUI) fpu_exception_trap();

 else *dst = result;

}

int check_product_invalid(int m,n)

{

 return(check_product_infinity(m,n) &&

 ((data_type_of(m) == PZERO) || (data_type_of(n) == PZERO) ||

 (data_type_of(m) == NZERO) || (data_type_of(n) == NZERO)));

}

int check_ product_infinity(int m,n)

{

 return((data_type_of(m) == PINF) || (data_type_of(n) == PINF) ||

 (data_type_of(m) == NINF) || (data_type_of(n) == NINF));

}

int check_ positive_infinity(int m,n)

{

 return(((check_ product_infinity(m,n) && (~sign_of(m) ̂sign_of(n))) ||

 ((check_ product_infinity(m+1,n+1) && (~sign_of(m+1) ̂sign_of(n+1))) ||

 ((check_ product_infinity(m+2,n+2) && (~sign_of(m+2) ̂sign_of(n+2))) ||

 ((check_ product_infinity(m+3,n+3) && (~sign_of(m+3) ̂sign_of(n+3))));

}

int check_ negative_infinity(int m,n)

{

 return(((check_ product_infinity(m,n) && (sign_of(m) ̂sign_of(n))) ||

 ((check_ product_infinity(m+1,n+1) && (sign_of(m+1) ̂sign_of(n+1))) ||

 ((check_ product_infinity(m+2,n+2) && (sign_of(m+2) ̂sign_of(n+2))) ||

 ((check_ product_infinity(m+3,n+3) && (sign_of(m+3) ̂sign_of(n+3))));

}

void clear_cause () {FPSCR &= ~CAUSE;}

void set_E() {FPSCR |= SET_E;}

void set_V() {FPSCR |= SET_V;}

void set_Z() {FPSCR |= SET_Z;}

void set_O() {FPSCR |= SET_O;}

void set_U() {FPSCR |= SET_U;}

void set_I() {FPSCR |= SET_I;}

void invalid(int n)
HPM-165

Dreamcast SH4 Program Manual
{

 set_V();

 if((FPSCR & ENABLE_V) == 0 qnan(n);

 else fpu_exception_trap();

}

void dz(int n,sign)

{

 set_Z();

 if((FPSCR & ENABLE_Z) == 0 inf(n,sign);

 else fpu_exception_trap();

}

void zero(int n,sign)

{

 if(sign == 0) FR_HEX [n] = 0x00000000;

 else FR_HEX [n] = 0x80000000;

 if (FPSCR_PR==1) FR_HEX [n+1] = 0x00000000;

}

void inf(int n,sign) {

 if (FPSCR_PR==0) {

 if(sign == 0) FR_HEX [n] = 0x7f800000;

 else FR_HEX [n] = 0xff800000;

 } else {

 if(sign == 0) FR_HEX [n] = 0x7ff00000;

 else FR_HEX [n] = 0xfff00000;

 FR_HEX [n+1] = 0x00000000;

 }

}

void qnan(int n)

{

 if (FPSCR_PR==0) FR[n] = 0x7fbfffff;

 else { FR[n] = 0x7ff7ffff;

 FR[n+1] = 0xffffffff;

 }

}

HPM-166

10. Instruction Descriptions
Example

An example is shown using assembler mnemonics, indicating the states before and after execution of
the instruction.

Italics (e.g., .align) indicate an assembler control instruction. The meaning of the assembler control instructions is
given below. For details, refer to the Cross-Assembler UserÕs Manual.

.org Location counter setting

.data.w Word integer data allocation

.data.l Longword integer data allocation

.sdata String data allocation

.align 2 2-byte boundary alignment

.align 4 4-byte boundary alignment

.align 32 32-byte boundary alignment

.arepeat 16 16-times repeat expansion

.arepea t 32 32-times repeat expansion

.aendr Count-speciÞcation repeat expansion end

Note: SH Series cross-assembler version 1.0 does not support conditional assembler functions

Description

This instruction adds together the contents of general registers Rn and Rm and stores the result in Rn.

8-bit immediate data can also be added to the contents of general register Rn.

8-bit immediate data is sign-extended to 32 bits, allowing use in decrement operations.

10.1 ADD ADD binary Arithmetic Instruction

Binary Addition

Format Summary of Operation Instruction Code Execution States T Bit

ADD Rm,Rn Rn+Rm → Rn 0011nnnnmmmm1100 1 —

ADD #imm,Rn Rn+imm → Rn 0111nnnniiiiiiii 1 —
HPM-167

Dreamcast SH4 Program Manual
Operation

ADD(long m, long n) /* ADD Rm,Rn */

{

 R[n]+=R[m];

 PC+=2;

}

ADDI(long i, long n) /* ADD #imm,Rn */

{

 if ((i&0x80)==0)

 R[n]+=(0x000000FF & (long)i);

 else R[n]+=(0xFFFFFF00 | (long)i);

 PC+=2;

}

Example

ADD R0,R1 ;Before execution R0 = H'7FFFFFFF, R1 = H'00000001

;After execution R1 = H'80000000

ADD #H'01,R2 ;Before execution R2 = H'00000000

;After execution R2 = H'00000001

ADD #H'FE,R3 ;Before execution R3 = H'00000001

;After execution R3 = H'FFFFFFFF

Description

This instruction adds together the contents of general registers Rn and Rm and the T bit, and stores the result in Rn.
A carry resulting from the operation is reßected in the T bit. This instruction is used for additions exceeding 32 bits.

10.2 ADDC ADD with Carry Arithmetic Instruction

 Binary Addition with Carry

Format Summary of Operation Instruction Code Execution States T Bit

ADDC Rm,Rn Rn+Rm+T → Rn, carry → T 0011nnnnmmmm1110 1 Carry
HPM-168

10. Instruction Descriptions
Operation

ADDC(long m, long n) /* ADDC Rm,Rn */

{

 unsigned long tmp0,tmp1;

 tmp1=R[n]+R[m];

 tmp0=R[n];

 R[n]=tmp1+T;

 if (tmp0>tmp1) T=1;

 else T=0;

 if (tmp1>R[n]) T=1;

 PC+=2;

}

Example

CLRT ;R0:R1(64 bits) + R2:R3(64 bits) = R0:R1(64 bits)

ADDC R3,R1 ;Before execution T = 0, R1 = H'00000001, R3 = H'FFFFFFFF

;After execution T = 1, R1 = H'00000000

ADDC R2,R0 ;Before execution T = 1, R0 = H'00000000, R2 = H'00000000

;After execution T = 0, R0 = H'00000001

Description

This instruction adds together the contents of general registers Rn and Rm and stores the result in Rn. If overßow
occurs, the T bit is set.

10.3 ADDV ADD with (V flag) overflow check Arithmetic Instruction

Binary Addition with Overflow Check

Format Summary of Operation Instruction Code Execution States T Bit

ADDV Rm,Rn Rn+Rm → Rn, overflow → T 0011nnnnmmmm1111 1 Overflow
HPM-169

Dreamcast SH4 Program Manual
Operation

ADDV(long m, long n) /* ADDV Rm,Rn */

{

 long dest,src,ans;

 if ((long)R[n]>=0) dest=0;

 else dest=1;

 if ((long)R[m]>=0) src=0;

 else src=1;

 src+=dest;

 R[n]+=R[m];

 if ((long)R[n]>=0) ans=0;

 else ans=1;

 ans+=dest;

 if (src==0 || src==2) {

 if (ans==1) T=1;

 else T=0;

 }

 else T=0;

 PC+=2;

}

Example

ADDV R0,R1 ;Before execution R0 = H'00000001, R1 = H'7FFFFFFE, T=0

;After execution R1 = H'7FFFFFFF, T=0

ADDV R0,R1 ;Before execution R0 = H'00000002, R1 = H'7FFFFFFE, T=0

;After execution R1 = H'80000000, T=1

Description

This instruction ANDs the contents of general registers Rn and Rm and stores the result in Rn.

This instruction can be used to AND general register R0 contents with zero-extended 8-bit immediate data, or, in
indexed GBR indirect addressing mode, to AND 8-bit memory with 8-bit immediate data.

10.4 AND AND logical Logical Instruction

Logical AND

Format Summary of Operation Instruction Code Execution States T Bit

AND Rm,Rn Rm & Rm → Rn 0010nnnnmmmm1001 1 —

AND #imm,R0 R0 & imm → R0 11001001iiiiiiii 1 —

AND.B #imm,@(R0,GBR) (R0+GBR) & imm →
(R0+GBR)

11001101iiiiiiii 4 —
HPM-170

10. Instruction Descriptions
Notes

With AND #imm,R0, the upper 24 bits of R0 are always cleared as a result of the operation.

Operation

AND(long m, long n) /* AND Rm,Rn */

{

 R[n]&=R[m];

 PC+=2;

}

ANDI(long i) /* AND #imm,R0 */

{

 R[0]&=(0x000000FF & (long)i);

 PC+=2;

}

ANDM(long i) /* AND.B #imm,@(R0,GBR) */

{

 long temp;

 temp=(long)Read_Byte(GBR+R[0]);

 temp&=(0x000000FF & (long)i);

 Write_Byte(GBR+R[0],temp);

 PC+=2;

}

Example

 AND R0,R1 ;Before execution R0 = H'AAAAAAAA, R1=H'55555555

 ;After execution R1 = H'00000000

 AND #H'0F,R0 ;Before execution R0 = H'FFFFFFFF

 ;After execution R0 = H'0000000F

 AND.B #H'80,@(R0,GBR) ;Before execution @(R0,GBR) = H'A5

 ;After execution @(R0,GBR) = H'80

10.5 BF Branch if False Branch Instruction

Conditional Branch

Format Summary of Operation Instruction Code Execution States T Bit

BF label If T = 0
PC + 4 + disp x 2 → PC
If T = 1, nop

10001011dddddddd 1 —
HPM-171

Dreamcast SH4 Program Manual
Description

This is a conditional branch instruction that references the T bit. The branch is taken if T = 0, and not taken if T = 1.
The branch destination is address (PC + 4 + displacement x 2). The PC source value is the BF instruction address.
As the 8-bit displacement is multiplied by two after sign-extension, the branch destination can be located in the
range from Ð256 to +254 bytes from the BF instruction.

Notes

If the branch destination cannot be reached, the branch must be handled by using BF in combination with a BRA or
JMP instruction, for example.

Operation

BF(int d) /* BF disp */

{

 int disp;

 if ((d&0x80)==0)

 disp=(0x000000FF & d);

 else disp=(0xFFFFFF00 | d);

 if (T==0)

 PC=PC+4+(disp<<1);

 else PC+=2;

}

Example

 CLRT ;Normally T = 0

 BT TRGET_T ;T = 0, so branch is not taken.

 BF TRGET_F ;T = 0, so branch to TRGET_F.

 NOP ;

 NOP ;

TRGET_F: ;ß BF instruction branch destination

10.6 BF/S Branch if False with delay Slot Branch Instruction

Conditional Branch with Delay Delayed Branch Instruction

Format Summary of Operation Instruction Code Execution States T Bit

BF/S label If T = 0PC + 4 + disp x 2 → PCIf T = 1, nop 10001111dddddddd 1 —
HPM-172

10. Instruction Descriptions
Description

This is a delayed conditional branch instruction that references the T bit. If T = 1, the next instruction is executed
and the branch is not taken. If T = 0, the branch is taken after execution of the next instruction.

The branch destination is address (PC + 4 + displacement ́ 2). The PC source value is the BF/S instruction address.
As the 8-bit displacement is multiplied by two after sign-extension, the branch destination can be located in the
range from Ð256 to +254 bytes from the BF/S instruction.

Notes

As this is a delayed branch instruction, when the branch condition is satisÞed, the instruction following this
instruction is executed before the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction.

If the following instruction is a branch instruction, it is identiÞed as a slot illegal instruction.

If this instruction is located in the delay slot immediately following a delayed branch instruction, it is identiÞed as
a slot illegal instruction.

If the branch destination cannot be reached, the branch must be handled by using BF/S in combination with a BF,
BRA, or JMP instruction, for example.

Operation

BFS(int d) /* BFS disp */

{

 int disp;

 unsigned int temp;

 temp=PC;

 if ((d&0x80)==0)

 disp=(0x000000FF & d);

 else disp=(0xFFFFFF00 | d);

 if (T==0)

 PC=PC+4+(disp<<1);

 else PC+=4;

 Delay_Slot(temp+2);

}

Example

 CLRT ;Normally T = 0

 BT/S TRGET_T ;T = 0, so branch is not taken.

 NOP ;

 BF/S TRGET_F ;T = 0, so branch to TRGET.

 ADD R0,R1 ;Executed before branch.

 NOP ;

TRGET_F: ;ß BF/S instruction branch destination
HPM-173

Dreamcast SH4 Program Manual
Description

This is an unconditional branch instruction. The branch destination is address (PC + 4 + displacement ´ 2). The PC
source value is the BRA instruction address. As the 12-bit displacement is multiplied by two after sign-extension,
the branch destination can be located in the range from Ð4096 to +4094 bytes from the BRA instruction. If the branch
destination cannot be reached, this branch can be performed with a JMP instruction.

Notes

As this is a delayed branch instruction, the instruction following this instruction is executed before the branch
destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the following instruction is a
branch instruction, it is identiÞed as a slot illegal instruction.

Operation

BRA(int d) /* BRA disp */

{

 int disp;

 unsigned int temp;

 temp=PC;

 if ((d&0x800)==0)

 disp=(0x00000FFF & d);

 else disp=(0xFFFFF000 | d);

 PC=PC+4+(disp<<1);

 Delay_Slot(temp+2);

}

Example

 BRA TRGET ;Branch to TRGET.

 ADD R0,R1 ;ADD executed before branch.

 NOP ;

TRGET: ;ß BRA instruction branch destination

10.7 BRA BRAnch Branch Instruction

Unconditional Branch Delayed Branch Instruction

Format Summary of Operation Instruction Code Execution States T Bit

BRA label PC+4+disp x 2 → PC 1010dddddddddddd 1 —
HPM-174

10. Instruction Descriptions
Description

This is an unconditional branch instruction. The branch destination is address (PC + 4 + Rn). The branch destination
address is the result of adding 4 plus the 32-bit contents of general register Rn to PC.

Notes

As this is a delayed branch instruction, the instruction following this instruction is executed before the branch
destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the following instruction is a
branch instruction, it is identiÞed as a slot illegal instruction.

Operation

BRAF(int n) /* BRAF Rn */

{

 unsigned int temp;

 temp=PC;

 PC=PC+4+R[n];

 Delay_Slot(temp+2);

}

Example

 MOV.L #(TRGET-BRAF_PC),R0;Set displacement.

 BRAF R0 ;Branch to TRGET.

 ADD R0,R1 ;DD executed before branch.

 BRAF_PC: ;

 NOP

 TRGET: ; ß BRAF instruction branch destination

10.8 BRAF BRAnch Far Branch Instruction

Unconditional Branch Delayed Branch Instruction

Format Summary of Operation Instruction Code Execution States T Bit

BRAF Rn PC+4+Rn → PC 0000nnnn00100011 2 —

10.9 BSR Branch to SubRoutine Branch Instruction

Branch to Subroutine Procedure Delayed Branch Instruction

Format Summary of Operation Instruction Code Execution States T Bit

BSR label PC+4 → PR,
PC+4+dispx2 → PC

1011dddddddddddd 1 —
HPM-175

Dreamcast SH4 Program Manual
Description

This instruction branches to address (PC + 4 + displacement ´ 2), and stores address (PC + 4) in PR. The PC source
value is the BSR instruction address. As the 12-bit displacement is multiplied by two after sign-extension, the branch
destination can be located in the range from Ð4096 to +4094 bytes from the BSR instruction. If the branch destination
cannot be reached, this branch can be performed with a JSR instruction.

Notes

As this is a delayed branch instruction, the instruction following this instruction is executed before the branch
destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the following instruction is a
branch instruction, it is identiÞed as a slot illegal instruction.

Operation

BSR(int d) /* BSR disp */

{

 int disp;

 unsigned int temp;

 temp=PC;

 if ((d&0x800)==0)

 disp=(0x00000FFF & d);

 else disp=(0xFFFFF000 | d);

 PR=PC+4;

 PC=PC+4+(disp<<1);

 Delay_Slot(temp+2);

}

Example

 BSR TRGET ;Branch to TRGET.
 MOV R3,R4 ;MOV executed before branch.
 ADD R0,R1 ;Subroutine procedure return destination (contents of PR)

TRGET: ;ß Entry to procedure

 MOV R2,R3 ;

 RTS ;Return to above ADD instruction.

 MOV #1,R0 ;MOV executed before branch.

10.10 BSRF Branch to SubRoutine Far Branch Instruction

Branch to Subroutine Procedure Delayed Branch Instruction

Format Summary of Operation Instruction Code Execution States T Bit

BSRF Rn PC+4 → PR,
PC+4+Rn → PC

0000nnnn00000011 2 —
HPM-176

10. Instruction Descriptions
Description

This instruction branches to address (PC + 4 + Rn), and stores address (PC + 4) in PR. The PC source value is the
BSRF instruction address. The branch destination address is the result of adding the 32-bit contents of general
register Rn to PC + 4.

Notes

As this is a delayed branch instruction, the instruction following this instruction is executed before the branch
destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the following instruction is a
branch instruction, it is identiÞed as a slot illegal instruction.

Operation

BSRF(int n) /* BSRF Rn */

{

 unsigned int temp;

 temp=PC;

 PR=PC+4;

 PC=PC+4+R[n];

 Delay_Slot(tmp+2);

}

Example

 MOV.L #(TRGET-BSRF_PC),R0 ;Set displacement.

 BRSF R0 ;Branch to TRGET.

 MOV R3,R4 ;MOV executed before branch.

 BSRF_PC: ;

 ADD R0,R1 ;

 TRGET: ; ß Entry to procedure

 MOV R2,R3 ;

 RTS ;Return to above ADD instruction.

 MOV #1,R0 ;MOV executed before branch.

10.11 BT Branch if True Branch Instruction

Conditional Branch

Format Summary of Operation Instruction Code Execution States T Bit

BT label If T = 1
PC + 4 + disp x 2 → PC
If T = 0, nop

10001001dddddddd 1 —
HPM-177

Dreamcast SH4 Program Manual
Description

This is a conditional branch instruction that references the T bit. The branch is taken if T = 1, and not taken if T = 0.

The branch destination is address (PC + 4 + displacement x 2). The PC source value is the BT instruction address.
As the 8-bit displacement is multiplied by two after sign-extension, the branch destination can be located in the
range from Ð256 to +254 bytes from the BT instruction.

Notes

If the branch destination cannot be reached, the branch must be handled by using BT in combination with a BRA or
JMP instruction, for example.

Operation

BT(int d) /* BT disp */

{

 int disp;

 if ((d&0x80)==0)

 disp=(0x000000FF & d);

 else disp=(0xFFFFFF00 | d);

 if (T==1)

 PC=PC+4+(disp<<1);

 else PC+=2;

}

Example

 SETT ;Normally T = 1

 BF TRGET_F ;T = 1, so branch is not taken.

 BT TRGET_T ;T = 1, so branch to TRGET_T.

 NOP ;

 NOP ;

TRGET_T: ;ß BT instruction branch destination

10.12 BT/S Branch if True with delay Slot Branch Instruction

Conditional Branch with Delay Delayed Branch Instruction

Format Summary of Operation Instruction Code Execution States T Bit

BT/S label If T = 1
PC + 4 + disp x 2 → PC
If T = 0, nop

10001101dddddddd 1 —
HPM-178

10. Instruction Descriptions
Description

This is a conditional branch instruction that references the T bit. The branch is taken if T = 1, and not taken if T = 0.

The PC source value is the BT/S instruction address. As the 8-bit displacement is multiplied by two after
sign-extension, the branch destination can be located in the range from Ð256 to +254 bytes from the BT/S
instruction. If the branch destination cannot be reached, the branch must be handled by using BT/S in combination
with a BRA or JMP instruction, for example.

Notes

As this is a delayed branch instruction, when the branch condition is satisÞed, the instruction following this
instruction is executed before the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction.

If the following instruction is a branch instruction, it is identiÞed as a slot illegal instruction.

Operation

BTS(int d) /* BTS disp */

{

 int disp;

 unsigned temp;

 temp=PC;

 if ((d&0x80)==0)

 disp=(0x000000FF & d);

 else disp=(0xFFFFFF00 | d);

 if (T==1)

 PC=PC+4+(disp<<1);

 else PC+=4;

 Delay_Slot(temp+2);

}

Example

 SETT ;Normally T = 1

 BF/S TRGET_F ;T = 1, so branch is not taken.

 NOP ;

 BT/S TRGET_T ;T = 1, so branch to TRGET_T.

 ADD R0,R1 ;Executed before branch.

 NOP ;

TRGET_T: ;ß BT/S instruction branch destination
HPM-179

Dreamcast SH4 Program Manual
Description

This instruction clears the MACH and MACL registers.

Operation

CLRMAC() /* CLRMAC */

{

 MACH=0;

 MACL=0;

 PC+=2;

}

Example

 CLRMAC ;Clear MAC register to initialize.

 MAC.W @R0+,@R1+ ;Multiply-and-accumulate operation

 MAC.W @R0+,@R1+ ;

Description

This instruction clears the S bit to 0.

Operation

CLRS() /* CLRS */

{

 S=0;

 PC+=2;

}

10.13 CLRMAC CleaR MAC register System Control Instruction

MAC Register Clear

Format Summary of Operation Instruction Code Execution States T Bit

CLRMAC 0 → MACH, MACL 0000000000101000 1 —

10.14 CLRS CleaR S bit System Control Instruction

S Bit Clear

Format Summary of Operation Instruction Code Execution States T Bit

CLRS 0 → S 0000000001001000 1 —
HPM-180

10. Instruction Descriptions
Example

CLRS ;Before executionS = 1

;After execution S = 0

Description

This instruction clears the T bit.

Operation

CLRT() /* CLRT */

{

 T=0;

 PC+=2;

}

10.15 CLRT CleaR T bit System Control Instruction

T Bit Clear

Format Summary of Operation Instruction Code Execution States T Bit

CLRT 0 → T 0000000000001000 1 —
HPM-181

Dreamcast SH4 Program Manual
Example

CLRT ;Before execution T = 1

;After execution T = 0

Description

This instruction compares general registers Rn and Rm, and sets the T bit if the speciÞed condition (cond) is true. If
the condition is false, the T bit is cleared. The contents of Rn are not changed. Nine conditions can be speciÞed. For
the two conditions PZ and PL, Rn is compared with 0.

10.16 CMP/cond CoMPare conditionally Arithmetic Instruction

Compare

Format Summary of Operation Instruction Code
Execution
States T Bit

CMP/EQ Rm,Rn If Rn = Rm, 1 → T 0011nnnnmmmm0000 1 Result of
comparison

CMP/GE Rm,Rn If Rn ≥ Rm, signed, 1 → T 0011nnnnmmmm0011 1 Result of
comparison

CMP/GT Rm,Rn If Rn > Rm, signed, 1 → T 0011nnnnmmmm0111 1 Result of
comparison

CMP/HI Rm,Rn If Rn > Rm, unsigned, 1 → T 0011nnnnmmmm0110 1 Result of
comparison

CMP/HS Rm,Rn If Rn ≥ Rm, unsigned, 1 → T 0011nnnnmmmm0010 1 Result of
comparison

CMP/PL Rn If Rn > 0, 1 → T 0100nnnn00010101 1 Result of
comparison

CMP/PZ Rn If Rn ≥ 0, 1 → T 0100nnnn00010001 1 Result of
comparison

CMP/STR Rm,Rn If any bytes are equal, 1 → T 0010nnnnmmmm1100 1 Result of
comparison

CMP/EQ #imm,R0 If R0 = imm, 1 → T 10001000iiiiiiii 1 Result of
comparison
HPM-182

10. Instruction Descriptions
With the EQ condition, sign-extended 8-bit immediate data can be compared with R0. The contents of R0 are
not changed.

Operation

CMPEQ(long m, long n) /* CMP_EQ Rm,Rn */

{

 if (R[n]==R[m]) T=1;

 else T=0;

 PC+=2;

}

CMPGE(long m, long n) /* CMP_GE Rm,Rn */

{

 if ((long)R[n]>=(long)R[m]) T=1;

 else T=0;

 PC+=2;

}

CMPGT(long m, long n) /* CMP_GT Rm,Rn */

{

 if ((long)R[n]>(long)R[m]) T=1;

 else T=0;

 PC+=2;

}

CMPHI(long m, long n) /* CMP_HI Rm,Rn */

{

 if ((unsigned long)R[n]>(unsigned long)R[m]) T=1;

 else T=0;

 PC+=2;

}

Mnemonic Description

CMP/EQ Rm,Rn If Rn = Rm, T = 1

CMP/GE Rm,Rn If Rn ≥ Rm as signed values, T = 1

CMP/GT Rm,Rn If Rn > Rm as signed values, T = 1

CMP/HI Rm,Rn If Rn > Rm as unsigned values, T = 1

CMP/HS Rm,Rn If Rn ≥ Rm as unsigned values, T = 1

CMP/PL Rn If Rn > 0, T = 1

CMP/PZ Rn If Rn ≥ 0, T = 1

CMP/STR Rm,Rn If any bytes are equal, T = 1

CMP/EQ #imm,R0 If R0 = imm, T = 1
HPM-183

Dreamcast SH4 Program Manual
CMPHS(long m, long n) /* CMP_HS Rm,Rn */

{

 if ((unsigned long)R[n]>=(unsigned long)R[m]) T=1;

 else T=0;

 PC+=2;

}

CMPPL(long n) /* CMP_PL Rn */

{

 if ((long)R[n]>0) T=1;

 else T=0;

 PC+=2;

}

CMPPZ(long n) /* CMP_PZ Rn */

{

 if ((long)R[n]>=0) T=1;

 else T=0;

 PC+=2;

}

CMPSTR(long m, long n) /* CMP_STR Rm,Rn */

{

 unsigned long temp;

 long HH,HL,LH,LL;

 temp=R[n]̂ R[m];

 HH=(temp&0xFF000000)>>24;

 HL=(temp&0x00FF0000)>>16;

 LH=(temp&0x0000FF00)>>8;

 LL=temp&0x000000FF;

 HH=HH&&HL&&LH&&LL;

 if (HH==0) T=1;

 else T=0;

 PC+=2;

}

CMPIM(long i) /* CMP_EQ #imm,R0 */

{

 long imm;

 if ((i&0x80)==0) imm=(0x000000FF & (long i));

 else imm=(0xFFFFFF00 | (long i));

 if (R[0]==imm) T=1;

 else T=0;

 PC+=2;

}

HPM-184

10. Instruction Descriptions
Example

CMP/GE R0,R1 ;R0 = H'7FFFFFFF, R1 = H'80000000

BT TRGET_T ;T = 0, so branch is not taken.

CMP/HS R0,R1 ;R0 = H'7FFFFFFF, R1 = H'80000000

BT TRGET_T ;T = 1, so branch is taken.

CMP/STR R2,R3 ;R2 = "ABCD", R3 = "XYCZ"

BT TRGET_T ;T = 1, so branch is taken.

Description

This instruction performs initial settings for signed division. This instruction is followed by a DIV1 instruction that
executes 1-digit division, for example, and repeated divisions are executed to Þnd the quotient. See the description
of the DIV1 instruction for details.

Operation

DIV0S(long m, long n) /* DIV0S Rm,Rn */

{

 if ((R[n] & 0x80000000)==0) Q=0;

 else Q=1;

 if ((R[m] & 0x80000000)==0) M=0;

 else M=1;

 T=!(M==Q);

 PC+=2;

}

Example

See the examples for the DIV1 instruction.

10.17 DIV0S DIVide (step 0) as Signed Arithmetic Instruction

Initialization for Signed Division

Format Summary of Operation Instruction Code Execution States T Bit

DIV0S Rm,Rn MSB of Rn → Q,
MSB of Rm → M,
M^Q → T

0010nnnnmmmm0111 1 Result of calculation

10.18 DIV0U DIVide (step 0) as Unsigned Arithmetic Instruction

Initialization for Unsigned Division

Format Summary of Operation Instruction Code Execution States T Bit

DIV0U 0 → M/Q/T 0000000000011001 1 0
HPM-185

Dreamcast SH4 Program Manual
Description

This instruction performs initial settings for unsigned division. This instruction is followed by a DIV1 instruction
that executes 1-digit division, for example, and repeated divisions are executed to Þnd the quotient. See the
description of the DIV1 instruction for details.

Operation

DIV0U() /* DIV0U */

{

 M=Q=T=0;

 PC+=2;

}

Example

See the examples for the DIV1 instruction.

Description

This instruction performs 1-digit division (1-step division) of the 32-bit contents of general register Rn (dividend)
by the contents of Rm (divisor). The quotient is obtained by repeated execution of this instruction alone or in
combination with other instructions. The speciÞed registers and the M, Q, and T bits must not be modiÞed during
these repeated executions.

In 1-step division, the dividend is shifted 1 bit to the left, the divisor is subtracted from this, and the quotient bit is
reßected in the Q bit according to whether the result is positive or negative.

The remainder can be found as follows after Þrst Þnding the quotient using the DIV1 instruction:

(Remainder) = (dividend) Ð (divisor) x (quotient)

Detection of division by zero or overßow is not provided. Check for division by zero and overßow division before
executing the division. A remainder operation is not provided. Find the remainder by Þnding the product of the
divisor and the obtained quotient, and subtracting this value from the dividend.

Initial settings should Þrst be made with the DIV0S or DIV0U instruction. DIV1 is executed once for each bit of the
divisor. If a quotient of more than 16 bits is required, place an ROTCL instruction before the DIV1 instruction. See
the examples for details of the division sequence.

10.19 DIV1 DIVide 1 step Arithmetic Instruction

Division

Format Summary of Operation Instruction Code Execution States T Bit

DIV1 Rm,Rn 1-step division
(Rn ÷ Rm)

0011nnnnmmmm0100 1 Result of calculation
HPM-186

10. Instruction Descriptions
Operation

DIV1(long m, long n) /* DIV1 Rm,Rn */

{

 unsigned long tmp0, tmp2;

 unsigned char old_q, tmp1;

 old_q=Q;

 Q=(unsigned char)((0x80000000 & R[n])!=0);

 tmp2= R[m];

 R[n]<<=1;

 R[n]|=(unsigned long)T;

 switch(old_q){

 case 0:switch(M){

 case 0:tmp0=R[n];

 R[n]-=tmp2;

 tmp1=(R[n]>tmp0);

 switch(Q){

 case 0:Q=tmp1;

 break;

 case 1:Q=(unsigned char)(tmp1==0);

 break;

 }

 break;

 case 1:tmp0=R[n];

 R[n]+=tmp2;

 tmp1=(R[n]<tmp0);

 switch(Q){

 case 0:Q=(unsigned char)(tmp1==0);

 break;

 case 1:Q=tmp1;

 break;

 }

 break;

 }

 break;

 case 1:switch(M){

 case 0:tmp0=R[n];

 R[n]+=tmp2;

 tmp1=(R[n]<tmp0);

 switch(Q){

 case 0:Q=tmp1;

 break;

 case 1:Q=(unsigned char)(tmp1==0);

 break;

 }

 break;

 case 1:tmp0=R[n];
HPM-187

Dreamcast SH4 Program Manual
 R[n]-=tmp2;

 tmp1=(R[n]>tmp0);

 switch(Q){

 case 0:Q=(unsigned char)(tmp1==0);

 break;

 case 1:Q=tmp1;

 break;

 }

 break;

 }

 break;

 }

 T=(Q==M);

 PC+=2;

}

Example 1

;R1 (32 bits) ÷ R0 (16 bits) = R1 (16 bits); unsigned

SHLL16 R0 ;Set divisor in upper 16 bits, clear lower 16 bits to 0

TST R0,R0 ;Check for division by zero

BT ZERO_DIV ;

CMP/HS R0,R1 ;Check for overflow

BT OVER_DIV ;

DIV0U ;Flag initialization

.arepeat 16 ;

DIV1 R0,R1 ;Repeat 16 times

.aendr ;

ROTCL R1 ;

EXTU.W R1,R1 ;R1 = quotient

Example 2

; R1:R2 (64 bits) ÷ R0 (32 bits) = R2 (32 bits); unsigned

TST R0,R0 ;Check for division by zero

BT ZERO_DIV ;

CMP/HS R0,R1 ;Check for overßow

BT OVER_DIV ;

DIV0U ;Flag initialization

.arepeat 32 ;

ROTCL R2 ;Repeat 32 times

DIV1 R0,R1 ;

.aendr ;

ROTCL R2 ;R2 = quotient
HPM-188

10. Instruction Descriptions
Example 3

;R1 (16 bits) ÷ R0 (16 bits) = R1 (16 bits); signed

SHLL16 R0 ;Set divisor in upper 16 bits, clear lower 16 bits to 0

EXTS.W R1,R1 ;Dividend sign-extended to 32 bits

XOR R2,R2 ;R2 = 0

MOV R1,R3 ;

ROTCL R3 ;

SUBC R2,R1 ;If dividend is negative, subtract 1

DIV0S R0,R1 ;Flag initialization

.arepeat 16 ;

DIV1 R0,R1 ;Repeat 16 times

.aendr ;

EXTS.W R1,R1 ;

ROTCL R1 ;R1 = quotient (one’s complement notation)

ADDC R2,R1 ;If MSB of quotient is 1, add 1 to convert to two’s complement notation

EXTS.W R1,R1 ;R1 = quotient (two’s complement notation)

Example 4

;R2 (32 bits) ÷ R0 (32 bits) = R2 (32 bits); signed

MOV R2,R3 ;

ROTCL R3 ;

SUBC R1,R1 ;Dividend sign-extended to 64 bits (R1:R2)

XOR R3,R3 ;R3 = 0

SUBC R3,R2 ;If dividend is negative, subtract 1 to convert to one’s complement
notation

DIV0S R0,R1 ;Flag initialization

.arepeat 32 ;

ROTCL R2 ;Repeat 32 times

DIV1 R0,R1 ;

.aendr ;

ROTCL R2 ;R2 = quotient (one’s complement notation)

ADDC R3,R2 ;If MSB of quotient is 1, add 1 to convert to two’s complement notation

;R2 = quotient (two’s complement notation)

10.20 DMULS.L
Double-length MULtiply
as Signed Arithmetic Instruction

 Signed Double-Length Multiplication

Format Summary of Operation Instruction Code Execution States T Bit

DMULS.L Rm,Rn Signed,
Rn x Rm →
MACH, MACL

0011nnnnmmmm1101 2–5 —
HPM-189

Dreamcast SH4 Program Manual
Description

This instruction performs 32-bit multiplication of the contents of general register Rn by the contents of Rm, and
stores the 64-bit result in the MACH and MACL registers. The multiplication is performed as a signed arithmetic
operation.

Operation

DMULS(long m, long n) /* DMULS.L Rm,Rn */

{

 unsigned long RnL,RnH,RmL,RmH,Res0,Res1,Res2;

 unsigned long temp0,temp1,temp2,temp3;

 long tempm,tempn,fnLmL;

 tempn=(long)R[n];

 tempm=(long)R[m];

 if (tempn<0) tempn=0-tempn;

 if (tempm<0) tempm=0-tempm;

 if ((long)(R[n]̂ R[m])<0) fnLmL=-1;

 else fnLmL=0;

 temp1=(unsigned long)tempn;

 temp2=(unsigned long)tempm;

 RnL=temp1&0x0000FFFF;

 RnH=(temp1>>16)&0x0000FFFF;

 RmL=temp2&0x0000FFFF;

 RmH=(temp2>>16)&0x0000FFFF;

 temp0=RmL*RnL;

 temp1=RmH*RnL;

 temp2=RmL*RnH;

 temp3=RmH*RnH;

 Res2=0;

 Res1=temp1+temp2;

 if (Res1<temp1) Res2+=0x00010000;

 temp1=(Res1<<16)&0xFFFF0000;

 Res0=temp0+temp1;

 if (Res0<temp0) Res2++;
HPM-190

10. Instruction Descriptions
Res2=Res2+((Res1>>16)&0x0000FFFF)+temp3;

if (fnLmL<0) {

Res2=~Res2;

 if (Res0==0)

 Res2++;

 else

Res0=(~Res0)+1;

}

MACH=Res2;

MACL=Res0;

PC+=2;

}

Example

DMULS.LR0,R1;Before execution R0 = H'FFFFFFFE, R1 = H'00005555

;After execution MACH = H'FFFFFFFF, MACL = H'FFFF5556

STS MACH,R0 ;Get operation result (upper)

STS MACL,R1 ;et operation result (lower)

Description

This instruction performs 32-bit multiplication of the contents of general register Rn by the contents of Rm, and
stores the 64-bit result in the MACH and MACL registers. The multiplication is performed as an unsigned
arithmetic operation.

Operation

DMULU(long m, long n) /* DMULU.L Rm,Rn */

{

 unsigned long RnL,RnH,RmL,RmH,Res0,Res1,Res2;

 unsigned long temp0,temp1,temp2,temp3;

 RnL=R[n]&0x0000FFFF;

 RnH=(R[n]>>16)&0x0000FFFF;

10.21 DMULU.L
Double-length MULtiply
as Unsigned Arithmetic Instruction

Unsigned Double-Length Multiplication

Format Summary of Operation Instruction Code Execution States T Bit

DMULU.L Rm,Rn Unsigned,
Rn x Rm →
MACH, MACL

0011nnnnmmmm0101 2–5 —
HPM-191

Dreamcast SH4 Program Manual
 RmL=R[m]&0x0000FFFF;

 RmH=(R[m]>>16)&0x0000FFFF;

 temp0=RmL*RnL;

 temp1=RmH*RnL;

 temp2=RmL*RnH;

 temp3=RmH*RnH;

 Res2=0

 Res1=temp1+temp2;

 if (Res1<temp1) Res2+=0x00010000;

 temp1=(Res1<<16)&0xFFFF0000;

 Res0=temp0+temp1;

 if (Res0<temp0) Res2++;

 Res2=Res2+((Res1>>16)&0x0000FFFF)+temp3;

 MACH=Res2;

 MACL=Res0;

 PC+=2;

}

Example

DMULU.L R0,R1 ;Before execution R0 = H'FFFFFFFE, R1 = H'00005555

;After execution MACH = H'00005554, MACL = H'FFFF5556

STS MACH,R0 ;Get operation result (upper)

STS MACL,R1 ;Get operation result (lower)

Description

This instruction decrements the contents of general register Rn by 1 and compares the result with zero. If the result
is zero, the T bit is set to 1. If the result is nonzero, the T bit is cleared to 0.

10.22 DT Decrement and Test Arithmetic Instruction

Decrement and Test

Format Summary of Operation Instruction Code Execution States T Bit

DT Rn Rn – 1 → Rn;
if Rn = 0, 1 → T
In Rn π 0, 0 → T

0100nnnn00010000 1 Test result
HPM-192

10. Instruction Descriptions
Operation

DT(long n) /* DT Rn */

{

 R[n]--;

 if (R[n]==0) T=1;

 else T=0;

 PC+=2;

}

Example

 MOV #4,R5 ;Set loop count

LOOP:

 ADD R0,R1 ;

 DT R5 ;Decrement R5 value and check for 0.

 BF LOOP ;If T = 0, branch to LOOP (in this example, 4 loops are executed).

Description

This instruction sign-extends the contents of general register Rm and stores the result in Rn.

For a byte speciÞcation, the value of Rm bit 7 is transferred to Rn bits 8 to 31. For a word speciÞcation, the value of
Rm bit 15 is transferred to Rn bits 16 to 31.

10.23 EXTS EXTend as Signed Arithmetic Instruction

Sign Extension

Format Summary of Operation Instruction Code Execution States T Bit

EXTS.B Rm,Rn Rm sign-extended from byte → Rn 0110nnnnmmmm1110 1 —

EXTS.W Rm,Rn Rm sign-extended from word → Rn 0110nnnnmmmm1111 1 —
HPM-193

Dreamcast SH4 Program Manual
Operation

EXTSB(long m, long n) /* EXTS.B Rm,Rn */

{

 R[n]=R[m];

 if ((R[m]&0x00000080)==0) R[n]&=0x000000FF;

 else R[n]|=0xFFFFFF00;

 PC+=2;

}

EXTSW(long m, long n) /* EXTS.W Rm,Rn */

{

 R[n]=R[m];

 if ((R[m]&0x00008000)==0) R[n]&=0x0000FFFF;

 else R[n]|=0xFFFF0000;

 PC+=2;

}

Example

EXTS.B R0,R1 ;Before execution R0 = H'00000080

;After execution R1 = H'FFFFFF80

EXTS.W R0,R1 ;Before execution R0 = H'00008000

;After execution R1 = H'FFFF8000

Description

This instruction zero-extends the contents of general register Rm and stores the result in Rn.

For a byte speciÞcation, 0 is transferred to Rn bits 8 to 31. For a word speciÞcation, 0 is transferred to Rn bits 16 to 31.

10.24 EXTU EXTend as Unsigned Arithmetic Instruction

Zero Extension

Format Summary of Operation Instruction Code Execution States T Bit

EXTU.B Rm,Rn Rm zero-extended from byte → Rn 0110nnnnmmmm1100 1 —

EXTU.W Rm,Rn Rm zero-extended from word → Rn 0110nnnnmmmm1101 1 —
HPM-194

10. Instruction Descriptions
Operation

EXTUB(long m, long n) /* EXTU.B Rm,Rn */

{

 R[n]=R[m];

 R[n]&=0x000000FF;

 PC+=2;

}

EXTUW(long m, long n)/* EXTU.W Rm,Rn */

{

 R[n]=R[m];

 R[n]&=0x0000FFFF;

 PC+=2;

}

Example

EXTU.B R0,R1 ;Before execution R0 = H'FFFFFF80

;After execution R1 = H'00000080

EXTU.W R0,R1 ;Before execution R0 = H'FFFF8000

;After execution R1 = H'00008000

Description

This instruction clears the most signiÞcant bit of the contents of ßoating-point register FRn/DRn to 0, and stores
the result in FRn/DRn.

The cause and ßag Þelds in FPSCR are not updated.

Operation

void FABS (int n){

 FR[n] = FR[n] & 0x7fffffff;

 pc += 2;

}

/* Same operation is performed regardless of precision. */

10.25 FABS Floating-point ABSolute value Floating-Point Instruction

Floating-Point Absolute Value

PR Format Summary of Operation Instruction Code Execution States T Bit

0 FABS FRn |FRn| → FRn 1111nnnn01011101 1 —

1 FABS DRn |DRn| → DRn 1111nnn001011101 1 —
HPM-195

Dreamcast SH4 Program Manual
Possible Exceptions:

None

Description

When FPSCR.PR = 0: Arithmetically adds the two single-precision ßoating-point numbers in FRn and FRm, and
stores the result in FRn.

When FPSCR.PR = 1: Arithmetically adds the two double-precision ßoating-point numbers in DRn and DRm, and
stores the result in DRn.

When FPSCR.enable.O/U/I is set, an FPU exception trap is generated regardless of whether or not an exception has
occurred. When an exception occurs, correct exception information is reßected in FPSCR.cause and FPSCR.ßag, and
FRn or DRn is not updated. Appropriate processing should therefore be performed by software.

Operation

void FADD (int m,n)

{

 pc += 2;

 clear_cause();

 if((data_type_of(m) == sNaN) ||

 (data_type_of(n) == sNaN)) invalid(n);

 else if((data_type_of(m) == qNaN) ||

 (data_type_of(n) == qNaN)) qnan(n);

 else if((data_type_of(m) == DENORM) ||

 (data_type_of(n) == DENORM)) set_E();

 else switch (data_type_of(m)){

 case NORM: switch (data_type_of(n)){

 case NORM: normal_faddsub(m,n,ADD); break;

 case PZERO:

 case NZERO:register_copy(m,n); break;

 default: break;

 } break;

 case PZERO: switch (data_type_of(n)){

 case NZERO: zero(n,0); break;

 default: break;

 } break;

 case NZERO: break;

10.26 FADD Floating-point ADD Floating-Point Instruction

Floating-Point Addition

PR Format Summary of Operation Instruction Code Execution States T Bit

0 FADD FRm,FRn FRn+FRm → FRn 1111nnnnmmmm0000 1 —

1 FADD DRm,DRn DRn+DRm → DRn 1111nnn0mmm00000 6 —
HPM-196

10. Instruction Descriptions
 case PINF: switch (data_type_of(n)){

 case NINF: invalid(n); break;

 default: inf(n,0); break;

 } break;

 case NINF: switch (data_type_of(n)){

 case PINF: invalid(n); break;

 default: inf(n,1); break;

 } break;

 }

}

FADD Special Cases

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:

¥ FPU error

¥ Invalid operation

¥ Overßow

¥ Underßow

¥ Inexact

FRm,DRm FRn,DRn

NORM ADD

+0

–0 –0

+INF +INF

–INF Invalid

Invalid

–INF–INF

DENORM Error

qNaN qNaN

sNaN Invalid

NORM +0

+0

–0 +INF
–INF
–INF DENORM qNaN sNaN
HPM-197

Dreamcast SH4 Program Manual
Description

1) When FPSCR.PR = 0: Arithmetically compares the two single-precision ßoating-point numbers in FRn
and FRm, and stores 1 in the T bit if they are equal, or 0 otherwise.

2) When FPSCR.PR = 1: Arithmetically compares the two double-precision ßoating-point numbers in DRn
and DRm, and stores 1 in the T bit if they are equal, or 0 otherwise.

3) When FPSCR.PR = 0: Arithmetically compares the two single-precision ßoating-point numbers in FRn
and FRm, and stores 1 in the T bit if FRn > FRm, or 0 otherwise.

4) When FPSCR.PR = 1: Arithmetically compares the two double-precision ßoating-point numbers in DRn
and DRm, and stores 1 in the T bit if DRn > DRm, or 0 otherwise.

Operation

void FCMP_EQ(int m,n) /* FCMP/EQ FRm,FRn */

 {

 pc += 2;

 clear_cause();

 if(fcmp_chk (m,n) == INVALID) fcmp_invalid();

 else if(fcmp_chk (m,n) == EQ) T = 1;

 else T = 0;

 }

 void FCMP_GT(int m,n) /* FCMP/GT FRm,FRn */

 {

 pc += 2;

 clear_cause();

 if ((fcmp_chk (m,n) == INVALID) ||

 (fcmp_chk (m,n) == UO)) fcmp_invalid();

 else if(fcmp_chk (m,n) == GT) T = 1;

 else T = 0;

 }

 int fcmp_chk (int m,n)

 {

 if((data_type_of(m) == sNaN) ||

 (data_type_of(n) == sNaN)) return(INVALID);

10.27 FCMP Floating-point CoMPare Floating-Point Instruction

Floating-Point Comparison

PR Format Summary of Operation Instruction Code Execution States T Bit

0 1. FCMP/EQ FRm,FRn (FRn==FRm)?1:0 → T 1111nnnnmmmm0100 1 1/0

1 2. FCMP/EQ DRm,DRn (DRn==DRm)?1:0 → T 1111nnn0mmm00100 1 1/0

0 3. FCMP/GT FRm,FRn (FRn>FRm)?1:0 → T 1111nnnnmmmm0101 2 1/0

1 4. FCMP/GT DRm,DRn (DRn>DRm)?1:0 → T 1111nnn0mmm00101 2 1/0
HPM-198

10. Instruction Descriptions
 else if((data_type_of(m) == qNaN) ||

 (data_type_of(n) == qNaN)) return(UO);

 else switch(data_type_of(m)){

 case NORM: switch(data_type_of(n)){

 case PINF :return(GT); break;

 case NINF :return(LT); break;

 default: break;

 } break;

 case PZERO:

 case NZERO: switch(data_type_of(n)){

 case PZERO :

 case NZERO :return(EQ); break;

 default: break;

 } break;

 case PINF : switch(data_type_of(n)){

 case PINF :return(EQ); break;

 default:return(LT); break;

 } break;

 case NINF : switch(data_type_of(n)){

 case NINF :return(EQ); break;

 default:return(GT); break;

 } break;

 }

 if(FPSCR_PR == 0) {

 if(FR[n] == FR[m]) return(EQ);

 else if(FR[n] > FR[m]) return(GT);

 else return(LT);

 }else {

 if(DR[n>>1] == DR[m>>1]) return(EQ);

 else if(DR[n>>1] > DR[m>>1]) return(GT);

 else return(LT);

 }

 }

 void fcmp_invalid()

 {

 set_V(); if((FPSCR & ENABLE_V) == 0) T = 0;

 }
HPM-199

Dreamcast SH4 Program Manual
FCMP Special Cases

Note: When DN = 1, the value of a denormalized number is treated as 0.

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:

Invalid operation

FCMP/EQ FRn,DRn

NORM CMP

+0

–0

+INF EQ

–INF

DENORM

EQ

qNaN !EQ

sNaN Invalid

NORM +0

EQ

–0 +INF
–INF

–INFDENORM qNaN sNaNFRm,DRm

FCMP/EQ FRn,DRn

NORM CMP

+0

–0

+INF !GT

–INF

DENORM

!GT

qNaN UO

sNaN Invalid

NORM +0

!GT

!GT

GT

–0 +INF
–INF

–INFDENORM qNaN sNaNFRm,DRm
HPM-200

10. Instruction Descriptions
Description

When FPSCR.PR = 1: This instruction converts the double-precision ßoating-point number in DRm to a
single-precision ßoating-point number, and stores the result in FPUL.

When FPSCR.enable.O/U/I is set, an FPU exception trap is generated regardless of whether or not an exception
has occurred. When an exception occurs, correct exception information is reßected in FPSCR.cause and FPSCR.ßag,
and FPUL is not updated. Appropriate processing should therefore be performed by software.

Operation

void FCNVDS(int m){

 case((FPSCR.PR){

 0: undefined_operation(); /* reserved */

 1: fcnvds(m); break; /* FCNVDS */

 }

 }

void fcnvds(int m)

 {

 pc += 2;

 clear_cause();

 case(data_type_of(m, *FPUL)){

 NORM :

 PZERO :

 NZERO : normal_ fcnvds(m); break;

 DENORM : set_E();

 PINF : *FPUL = 0x7f800000; break;

 NINF : *FPUL = 0xff800000; break;

 qNaN : *FPUL = 0x7fbfffff; break;

 sNaN : set_V();

 if((FPSCR & ENABLE_V) == 0) *FPUL = 0x7fbfffff;

 else fpu_exception_trap(); break;

 }

}

void normal_fcnvds(int m, float *FPUL)

{

int sign;

float abs;

10.28 FCNVDS Floating-point CoNVert Double to Single precision Floating-Point Instruction

 Double-Precision to Single-Precision Conversion

PR Format Summary of Operation Instruction Code Execution States T Bit

0 — — — — —

1 FCNVDS DRm,FPUL (float)DRm → FPUL 1111mmm010111101 2 —
HPM-201

Dreamcast SH4 Program Manual
union {

 float f;

 int l;

} dstf,tmpf;

union {

 double d;

 int l[2];

} dstd;

 dstd.d = DR[m>>1];

 if(dstd.l[1] & 0x1fffffff)) set_I();

 if(FPSCR_RM == 1) dstd.l[1] &= 0xe0000000; /* round toward zero*/

 dstf.f = dstd.d;

 check_single_exception(FPUL, dstf.f);

}

FCNVDS Special Cases

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:

¥ FPU error

¥ Invalid operation

¥ Overßow

¥ Underßow

¥ Inexact

Description

When FPSCR.PR = 1: This instruction converts the single-precision ßoating-point number in FPUL to a
double-precision ßoating-point number, and stores the result in DRn.

FRn +NORM –NORM +0 –0 +INF –INF qNaN sNaN

FCNVDS(FRn FPUL) FCNVDS FCNVDS +0 –0 +INF –INF qNaN Invalid

10.29 FCNVSD Floating-point CoNVert Single to Double precision Floating-Point Instruction

Single-Precision to Double-Precision Conversion

PR Format Summary of Operation Instruction Code Execution States T Bit

0 — — — — —

1 FCNVSD FPUL, DRn (double) FPUL → DRn 1111nnn010101101 2 —
HPM-202

10. Instruction Descriptions
Operation

void FCNVSD(int n){
 pc += 2;

 clear_cause();

 case((FPSCR_PR){

 0: undefined_operation(); /* reserved */

 1: fcnvsd (n,FPUL); break; /* FCNVSD */

 }

 }

 void fcnvsd(int n, float *FPUL)

 {

 case(fpul_type(FPUL)){

 PZERO :

 NZERO :

 PINF :

 NINF : DR[n>>1] = *FPUL;break;

 DENORM : set_E(); break;

 qNaN : qnan(n); break;

 sNaN : invalid(n); break;

 }

 }
 int fpul_type(int *FPUL)
 {
 int abs;
 abs = *FPUL & 0x7fffffff;
 if(abs < 0x00800000){

 if((FPSCR_DN == 1) || (abs == 0x00000000)){

 if(sign_of(src) == 0) return(PZERO);

 else return(NZERO);

 }

 else return(DENORM);

 }

 else if(abs < 0x7f800000)return(NORM);
 else if(abs == 0x7f800000) {
 if(sign_of(src) == 0) return(PINF);
 else return(NINF);
 }
 else if(abs < 0x7fc00000) return(qNaN);
 else return(sNaN);
 }

FCNVSD Special Cases

Note: When DN = 1, the value of a denormalized number is treated as 0.

FRn +NORM –NORM +0 –0 +INF –INF qNaN sNaN

FCNVSD(FPUL FRn) +NORM –NORM +0 –0 +INF –INF qNaN Invalid
HPM-203

Dreamcast SH4 Program Manual
Possible Exceptions:

¥ FPU error

¥ Invalid operation

Description

When FPSCR.PR = 0: Arithmetically divides the single-precision ßoating-point number in FRn by the
single-precision ßoating-point number in FRm, and stores the result in FRn.

When FPSCR.PR = 1: Arithmetically divides the double-precision ßoating-point number in DRn by the
double-precision ßoating-point number in DRm, and stores the result in DRn.

When FPSCR.enable.O/U/I is set, an FPU exception trap is generated regardless of whether or not an exception has
occurred. When an exception occurs, correct exception information is reßected in FPSCR.cause and FPSCR.ßag, and
FRn or DRn is not updated. Appropriate processing should therefore be performed by software.

Operation

void FDIV(int m,n) /* FDIV FRm,FRn */

 {

 pc += 2;

 clear_cause();

 if((data_type_of(m) == sNaN) ||

 (data_type_of(n) == sNaN)) invalid(n);

 else if((data_type_of(m) == qNaN) ||

 (data_type_of(n) == qNaN)) qnan(n);

 else switch (data_type_of(m)){

 case NORM: switch (data_type_of(n)){

 case PINF:

 case NINF: inf(n,sign_of(m)^sign_of(n));break;

 case PZERO:

 case NZERO: zero(n,sign_of(m)^sign_of(n));break;

 case DENORM: set_E(); break;

 default: normal_fdiv(m,n); break;

 } break;

10.30 FDIV Floating-point DIVide Floating-Point Instruction

Floating-Point Division

PR Format Summary of Operation Instruction Code Execution States T Bit

0 FDIV FRm,FRrn FRn/FRm → FRn 1111nnnnmmmm0011 10 —

1 FDIV DRm,DRn DRn/DRm → DRn 1111nnn0mmm00011 23 —
HPM-204

10. Instruction Descriptions
 case PZERO: switch (data_type_of(n)){

 case PZERO:

 case NZERO: invalid(n);break;

 case PINF:

 case NINF: break;

 default: dz(n,sign_of(m)^sign_of(n));break;

 } break;

 case NZERO: switch (data_type_of(n)){

 case PZERO:

 case NZERO: invalid(n); break;

 case PINF: inf(n,1); break;

 case NINF: inf(n,0); break;

 default: dz(FR[n],sign_of(m)^sign_of(n)); break;

 } break;

 case DENORM: set_E(); break;

 case PINF :

 case NINF : switch (data_type_of(n)){

 case PINF:

 case NINF: invalid(n); break;

 default: zero(n,sign_of(m)^sign_of(n));break

 } break;

 }

}

void normal_fdiv(int m,n)

{

 union {

 float f;

 int l;

 } dstf,tmpf;

 union {

 double d;

 int l[2];

 } dstd,tmpd;

 union {

 int double x;

 int l[4];

 } tmpx;

 if(FPSCR_PR == 0) {

 tmpf.f = FR[n]; /* save destination value */

 dstf.f /= FR[m]; /* round toward nearest or even */

 tmpd.d = dstf.f; /* convert single to double */

 tmpd.d *= FR[m];

 if(tmpf.f != tmpd.d) set_I();

 if((tmpf.f < tmpd.d) && (SPSCR_RM == 1))

 dstf.l -= 1; /* round toward zero */

 check_single_exception(&FR[n], dstf.f);

 } else {
HPM-205

Dreamcast SH4 Program Manual
 tmpd.d = DR[n>>1]; /* save destination value */

 dstd.d /= DR[m>>1]; /* round toward nearest or even */

 tmpx.x = dstd.d; /* convert double to int double */

 tmpx.x *= DR[m>>1];

 if(tmpd.d != tmpx.x) set_I();

 if((tmpd.d < tmpx.x) && (SPSCR_RM == 1)) {

 dstd.l[1] -= 1; /* round toward zero */

 if(dstd.l[1] == 0xffffffff) dstd.l[0] -= 1;

 }

 check_double_exception(&DR[n>>1], dstd.d);

 }

 }

FDIV Special Cases

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:

¥ FPU error

¥ Invalid operation

¥ Divide by zero

¥ Overßow

¥ Underßow

¥ Inexact

FRm,DRm FRn,DRn

NORM

DZ

DIV

+0

–0

+INF 0

+INF

+INF

INF

–INF

Invalid

–INF DZ

–INF

DENORM Error

Error

qNaN qNaN

sNaN Invalid

NORM +0

0

Invalid

–0

+0 –0

–0 +0

+INF –INF DENORM qNaN sNaN
HPM-206

10. Instruction Descriptions
Note: FV0 = {FR0, FR1, FR2, FR3}
FV4 = {FR4, FR5, FR6, FR7}
FV8 = {FR8, FR9, FR10, FR11}
FV12 = {FR12, FR13, FR14, FR15}

Description

When FPSCR.PR = 0: This instruction calculates the inner products of the 4-dimensional single-precision
ßoating-point vector indicated by FVn and FVm, and stores the results in FR[n + 3].

The FIPR instruction is intended for speed rather than accuracy, and therefore the results will differ from those
obtained by using a combination of FADD and FMUL instructions. The FIPR execution sequence is as follows:

1) Multiplies all terms. The results are 28 bits long.

2) Aligns these results, rounding them to Þt within 30 bits.

3) Adds the aligned values.

4) Performs normalization and rounding.

Special processing is performed in the following cases:

1) If an input value is an sNaN, an invalid exception is generated.

2) If the input values to be multiplied include a combination of 0 and inÞnity, an invalid exception is
generated.

3) In cases other than the above, if the input values include a qNaN, the result will be a qNaN.

4) In cases other than the above, if the input values include inÞnity:

a) If multiplication results in two or more inÞnities and the signs are different, an invalid exception will
be generated.

b) Otherwise, correct inÞnities will be stored.

5) If the input values do not include an sNaN, qNaN, or inÞnity, processing is performed in the
normal way.

When FPSCR.enable.O/U/I is set, an FPU exception trap is generated regardless of whether or not an exception
has occurred. When an exception occurs, correct exception information is reßected in FPSCR.cause and FPSCR.ßag,
and FRn or DRn is not updated. Appropriate processing should therefore be performed by software.

10.31 FIPR Floating-point Inner PRoduct Floating-Point Instruction

Floating-Point Inner Product

PR Format Summary of Operation Instruction Code Execution States T Bit

0 FIPR FVm,FVn FVn • FVm → FR[n+3] 1111nnmm11101101 1 —

— — — — — —
HPM-207

Dreamcast SH4 Program Manual
Operation

void FIPR(int m,n) /* FIPR FVm,FVn */

 {

 if(FPSCR_PR == 0) {

 pc += 2;

 clear_cause();

 fipr(m,n);

 }

 else undefined_operation();

 }

Possible Exceptions:

¥ Invalid operation

¥ Overßow

¥ Underßow

¥ Inexact

Description

When FPSCR.PR = 0, this instruction loads ßoating-point 0.0 (0x00000000) into FRn.

Operation

void FLDI0(int n)

 {

 FR[n] = 0x00000000;

 pc += 2;

 }

Possible Exceptions:

None

10.32 FLDI0 Floating-point LoaD Immediate 0.0 Floating-Point Instruction

0.0 Load

PR Format Summary of Operation Instruction Code Execution States T Bit

0 FLDI0 FRn 0x00000000 → FRn 1111nnnn10001101 1 —

1 — — — — —
HPM-208

10. Instruction Descriptions
Description

When FPSCR.PR = 0, this instruction loads ßoating-point 1.0 (0x3F800000) into FRn.

Operation

void FLDI1(int n)

 {

 FR[n] = 0x3F800000;

 pc += 2;

 }

Possible Exceptions:

None

Description

This instruction loads the contents of ßoating-point register FRm into system register FPUL.

Operation

void FLDS(int m, float *FPUL)

 {

 *FPUL = FR[m];

 pc += 2;

 }

10.33 FLDI1
Floating-point LoaD
Immediate 1.0 Floating-Point Instruction

1.0 Load

Format Summary of Operation Instruction Code Execution States T Bit

FLDI1 FRn 0x3F800000 → FRn 1111nnnn10011101 1 —

— — — — —

10.34 FLDS Floating-point LoaD to System register Floating-Point Instruction

Transfer to System Register

Format Summary of Operation Instruction Code Execution States T Bit

FLDS FRm,FPUL FRm → FPUL 1111mmmm00011101 1 —
HPM-209

Dreamcast SH4 Program Manual
Possible Exceptions:

None

Description

When FPSCR.PR = 0: Taking the contents of FPUL as a 32-bit integer, converts this integer to a single-precision
ßoating-point number and stores the result in FRn.

When FPSCR.PR = 1: Taking the contents of FPUL as a 32-bit integer, converts this integer to a double-precision
ßoating-point number and stores the result in DRn.

When FPSCR.enable.I = 1, an FPU exception trap is generated regardless of whether or not an exception has
occurred. When an exception occurs, correct exception information is reßected in FPSCR.cause and FPSCR.ßag, and
FRn or DRn is not updated. Appropriate processing should therefore be performed by software.

Operation

void FLOAT(int n, float *FPUL)

 {

 union {

 double d;

 int l[2];

 } tmp;

 pc += 2;

 clear_cause();

 if(FPSCR.PR==0){

 FR[n] = *FPUL; /* convert from integer to float */

 tmp.d = *FPUL;

 if(tmp.l[1] & 0x1fffffff) inexact();

 } else {

 DR[n>>1] = *FPUL; /* convert from integer to double */

 }

 }

Possible Exceptions:

Inexact: Not generated when FPSCR.PR = 1.

10.35 FLOAT Floating-point convert from integer Floating-Point Instruction

Integer to Floating-Point Conversion

PR Format Summary of Operation Instruction Code Execution States T Bit

0 FLOAT FPUL,FRn (float)FPUL → FRn 1111nnnn00101101 1 —

1 FLOAT FPUL,DRn (double)FPUL → DRn 1111nnn000101101 2 —
HPM-210

10. Instruction Descriptions
Description

When FPSCR.PR = 0: This instruction arithmetically multiplies the two single-precision ßoating-point numbers in
FR0 and FRm, arithmetically adds the contents of FRn, and stores the result in FRn.

When FPSCR.enable.O/U/I is set, an FPU exception trap is generated regardless of whether or not an exception
has occurred. When an exception occurs, correct exception information is reßected in FPSCR.cause and FPSCR.ßag,
and FRn or DRn is not updated. Appropriate processing should therefore be performed by software.

Operation

void FMAC(int m,n)

 {

 pc += 2;

 clear_cause();

 if(FPSCR_PR == 1) undefined_operation();

 else if((data_type_of(0) == sNaN) ||

 (data_type_of(m) == sNaN) ||

 (data_type_of(n) == sNaN)) invalid(n);

 else if((data_type_of(0) == qNaN) ||

 (data_type_of(m) == qNaN)) qnan(n);

 else if((data_type_of(0) == DENORM) ||

 (data_type_of(m) == DENORM)) set_E();

 else switch (data_type_of(0){

 case NORM: switch (data_type_of(m)){

 case PZERO:

 case NZERO: switch (data_type_of(n)){

 case DENORM: set_E(); break;

 case qNaN: qnan(n); break;

 case PZERO:

 case NZERO: zero(n,sign_of(0) ̂sign_of(m)^sign_of(n)); break;

 default: break;

 }

10.36 FMAC Floating-point Multiply and ACcumulate Floating-Point Instruction

Floating-Point Multiply and Accumulate

PR Format Summary of Operation Instruction Code Execution States T Bit

0 FMAC FR0,FRm,FRn FR0*FRm+FRn → FRn 1111nnnnmmmm1110 1 —

1 — — — — —
HPM-211

Dreamcast SH4 Program Manual
 case PINF:

 case NINF: switch (data_type_of(n)){

 case DENORM: set_E(); break;

 case qNaN: qnan(n); break;

 case PINF:

 case NINF: if(sign_of(0) ̂sign_of(m)^sign_of(n)) invalid(n);

 else inf(n,sign_of(0) ̂sign_of(m)); break;

 default: inf(n,sign_of(0) ̂sign_of(m)); break;

 }

 case NORM: switch (data_type_of(n)){

 case DENORM: set_E(); break;

 case qNaN: qnan(n); break;

 case PINF:

 case NINF: inf(n,sign_of(n)); break;

 case PZERO:

 case NZERO:

 case NORM: normal_fmac(m,n); break;

 } break;

 case PZERO:

 case NZERO: switch (data_type_of(m)){

 case PINF:

 case NINF: invalid(n); break;

 case PZERO:

 case NZERO:

 case NORM: switch (data_type_of(n)){
 case DENORM: set_E(); break;
 case qNaN: qnan(n); break;
 case PZERO:
 case NZERO: zero(n,sign_of(0) ̂sign_of(m)^sign_of(n)); break;
 default: break;
 } break;
 } break;
 case PINF :
 case NINF : switch (data_type_of(m)){
 case PZERO:
 case NZERO: invalid(n); break;
 default: switch (data_type_of(n)){
 case DENORM: set_E(); break;
 case qNaN: qnan(n); break;
 default: inf(n,sign_of(0)^sign_of(m)^sign_of(n));break
 } break;
 } break;
 }
 }
HPM-212

10. Instruction Descriptions
 void normal_fmac(int m,n)
 {
 union {
 int double x;
 int l[4];
 } dstx,tmpx;
 float dstf,srcf;
 if((data_type_of(n) == PZERO)|| (data_type_of(n) == NZERO))
 srcf = 0.0; /* flush denormalized value */
 else srcf = FR[n];
 tmpx.x = FR[0]; /* convert single to int double */
 tmpx.x *= FR[m]; /* exact product */
 dstx.x = tmpx.x + srcf;
 if(((dstx.x == srcf) && (tmpx.x != 0.0)) ||
 ((dstx.x == tmpx.x) && (srcf != 0.0))) {
 set_I();
 if(sign_of(0) ̂sign_of(m) ̂sign_of(n)) {
 dstx.l[3] -= 1; /* correct result */
 if(dstx.l[3] == 0xffffffff) dstx.l[2] -= 1;
 if(dstx.l[2] == 0xffffffff) dstx.l[1] -= 1;
 if(dstx.l[1] == 0xffffffff) dstx.l[0] -= 1;
 }
 else dstx.l[3] |= 1;
 }
 if((dstx.l[1] & 0x01ffffff) || dstx.l[2] || dstx.l[3]) set_I();
 if(FPSCR_RM == 1) {
 dstx.l[1] &= 0xfe000000; /* round toward zero */
 dstx.l[2] = 0x00000000;
 dstx.l[3] = 0x00000000;
 }
 dstf = dstx.x;
 check_single_exception(&FR[n],dstf);

 }
HPM-213

Dreamcast SH4 Program Manual
FMAC Special Cases

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:

¥ FPU error

¥ Invalid operation

¥ Overßow

¥ Underßow

¥ Inexact

FRn FRO FRm

Norm
0

Norm MAC

MAC

+0

–0

– INF

+INF

+INF

+INF

INF Invalid

Invalid

Invalid

Invalid

Invalid

+INF
Invalid

Invalid

–INF

+INF
–INF

–INF

+INF

Denorm

!sNaN Error
qNaN

qNaN qNaN!sNaN
sNaN

SNaN
All types

all types Invalid

+Norm –Norm +0

INF

INF

INF

INF

INF

MAC

–0 –INF+INF
INF

INF

Denorm qNaN sNaN

0
INF
Norm

0
INF

Norm

Denorm

+Norm
–Norm
0
+INF
–INF –INF

–INF

+Norm
–Norm
0
+INF
–INF

+Norm
–Norm
+0
–0

+0
–0

–0
+0

+0
–0

–0
+0

+0
–0

–0
+0

INF

0
INF Invalid

+0

Invalid
+INF

Invalid
Invalid

Invalid Invalid

Invalid

–INF
–INF
Invalid

+INF

Invalid
Invalid
HPM-214

10. Instruction Descriptions
Description

1) This instruction transfers FRm contents to FRn.
2) This instruction transfers DRm contents to DRn.
3) This instruction transfers FRm contents to memory at address indicated by Rn.
4) This instruction transfers DRm contents to memory at address indicated by Rn.
5) This instruction transfers contents of memory at address indicated by Rm to FRn.
6) This instruction transfers contents of memory at address indicated by Rm to DRn.
7) This instruction transfers contents of memory at address indicated by Rm to FRn, and adds 4 to Rm.
8) This instruction transfers contents of memory at address indicated by Rm to DRn, and adds 8 to Rm.
9) This instruction subtracts 4 from Rn, and transfers FRm contents to memory at address indicated by

resulting Rn value.
10) This instruction subtracts 8 from Rn, and transfers DRm contents to memory at address indicated by

resulting Rn value.
11) This instruction transfers contents of memory at address indicated by (R0 + Rm) to FRn.
12) This instruction transfers contents of memory at address indicated by (R0 + Rm) to DRn.
13) This instruction transfers FRm contents to memory at address indicated by (R0 + Rn).
14) This instruction transfers DRm contents to memory at address indicated by (R0 + Rn).

10.37 FMOV Floating-point MOVe Floating-Point Instruction

 Floating-Point Transfer

SZ Format Summary of Operation Instruction Code Execution States T Bit

0 1. FMOV FRm,FRn FRm → FRn 1111nnnnmmmm1100 1 —

1 2. FMOV DRm,DRn DRm → DRn 1111nnn0mmm01100 1 —

0 3. FMOV.S FRm,@Rn FRm → (Rn) 1111nnnnmmmm1010 1 —

1 4. FMOV DRm,@Rn DRm → (Rn) 1111nnn0mmm01010 1 —

0 5. FMOV.S @Rm,FRn (Rm) → FRn 1111nnnnmmmm1000 1 —

1 6. FMOV @Rm,DRn (Rm) → DRn 1111nnn0mmm01000 1 —

0 7. FMOV.S @Rm+,FRn (Rm) → FRn,Rm+=4 1111nnnnmmmm1001 1 —

1 8. FMOV @Rm+,DRn (Rm) → DRn,Rm+=8 1111nnn0mmm01001 1 —

0 9. FMOV.S FRm,@-Rn Rn-=4,FRm → (Rn) 1111nnnnmmmm1011 1 —

1 10. FMOV DRm,@-Rn Rn-=8,DRm → (Rn) 1111nnn0mmm01011 1 —

0 11. FMOV.S @(R0,Rm),FRn (R0+Rm) → FRn 1111nnnnmmmm0110 1 —

1 12. FMOV @(R0,Rm),DRn (R0+Rm) → DRn 1111nnn0mmm00110 1 —

0 13. FMOV.S FRm, @(R0,Rn) FRm → (R0+Rn) 1111nnnnmmmm0111 1 —

1 14. FMOV DRm, @(R0,Rn) DRm → (R0+Rn) 1111nnn0mmm00111 1 —
HPM-215

Dreamcast SH4 Program Manual
Operation

void FMOV(int m,n) /* FMOV FRm,FRn */

 {

 FR[n] = FR[m];

 pc += 2;

 }

 void FMOV_DR(int m,n) /* FMOV DRm,DRn */

 {

 DR[n>>1] = DR[m>>1];

 pc += 2;

 }

 void FMOV_STORE(int m,n) /* FMOV.S FRm,@Rn */

 {

 store_int(FR[m],R[n]);

 pc += 2;

 }

 void FMOV_STORE_DR(int m,n) /* FMOV DRm,@Rn */

 {

 store_quad(DR[m>>1],R[n]);

 pc += 2;

 }

 void FMOV_LOAD(int m,n) /* FMOV.S @Rm,FRn */

 {

 load_int(R[m],FR[n]);

 pc += 2;

 }

 void FMOV_LOAD_DR(int m,n) /* FMOV @Rm,DRn */

 {

 load_quad(R[m],DR[n>>1]);

 pc += 2;

 }

 void FMOV_RESTORE(int m,n) /* FMOV.S @Rm+,FRn */

 {

 load_int(R[m],FR[n]);

 R[m] += 4;

 pc += 2;

 }

 void FMOV_RESTORE_DR(int m,n) /* FMOV @Rm+,DRn */

 {

 load_quad(R[m],DR[n>>1]) ;

 R[m] += 8;

 pc += 2;

 }

 void FMOV_SAVE(int m,n) /* FMOV.S FRm,@–Rn */

 {

 store_int(FR[m],R[n]-4);

 R[n] -= 4;

 pc += 2;
HPM-216

10. Instruction Descriptions
 }

 void FMOV_SAVE_DR(int m,n) /* FMOV DRm,@–Rn */

 {

 store_quad(DR[m>>1],R[n]-8);

 R[n] -= 8;

 pc += 2;

 }

 void FMOV_INDEX_LOAD(int m,n) /* FMOV.S @(R0,Rm),FRn */

 {

 load_int(R[0] + R[m],FR[n]);

 pc += 2;

 }

 void FMOV_INDEX_LOAD_DR(int m,n) /*FMOV @(R0,Rm),DRn */

 {

 load_quad(R[0] + R[m],DR[n>>1]);

 pc += 2;

 }

 void FMOV_INDEX_STORE(int m,n) /*FMOV.S FRm,@(R0,Rn)*/

 {

 store_int(FR[m], R[0] + R[n]);

 pc += 2;

 }

 void FMOV_INDEX_STORE_DR(int m,n)/*FMOV DRm,@(R0,Rn)*/

 {

 store_quad(DR[m>>1], R[0] + R[n]);

 pc += 2;

 }

Possible Exceptions:

¥ Data TLB miss exception

¥ Data protection violation exception

¥ Initial write exception

¥ Address error
HPM-217

Dreamcast SH4 Program Manual
Description

1) This instruction transfers XDm contents to memory at address indicated by Rn.

2) This instruction transfers contents of memory at address indicated by Rm to XDn.

3) This instruction transfers contents of memory at address indicated by Rm to XDn, and adds 8 to Rm.

4) This instruction subtracts 8 from Rn, and transfers XDm contents to memory at address indicated by
resulting Rn value.

5) This instruction transfers contents of memory at address indicated by (R0 + Rm) to XDn.

6) This instruction transfers XDm contents to memory at address indicated by (R0 + Rn).

7) This instruction transfers XDm contents to XDn.

8) This instruction transfers XDm contents to DRn.

9) This instruction transfers DRm contents to XDn.

10.38 FMOV Floating-point MOVe extension Floating-Point Instruction

Floating-Point Transfer

PR Format Summary of Operation Instruction Code Execution States T Bit

1 1. FMOV XDm,@Rn XRm → (Rn) 1111nnnnmmm11010 1 —

1 2. FMOV @Rm,XDn (Rm) → XDn 1111nnn1mmmm1000 1 —

1 3. FMOV @Rm+,XDn (Rm) → XDn,Rm+=8 1111nnn1mmmm1001 1 —

1 4. FMOV XDm,@-Rn Rn-=8,XDm → (Rn) 1111nnnnmmm11010 1 —

1 5. FMOV @(R0,Rm),XDn (R0+Rm) → XDn 1111nnnnmmm11011 1 —

1 6. FMOV XDm,@(R0,Rn) XDm → (R0+Rn) 1111nnnnmmm10110 1 —

1 7. FMOV XDm,XDn XDm → XDn 1111nnn1mmm11100 1 —

1 8. FMOV XDm,DRn XDm → DRn 1111nnn0mmm11100 1 —

1 9. FMOV DRm,XDn DRm → XDn 1111nnn1mmm01100 1 —
HPM-218

10. Instruction Descriptions
Operation

void FMOV_STORE_XD(int m,n) /* FMOV XDm,@Rn */

 {

 store_quad(XD[m>>1],R[n]);

 pc += 2;

 }

 void FMOV_LOAD_XD(int m,n) /* FMOV @Rm,XDn */

 {

 load_quad(R[m],XD[n>>1]);

 pc += 2;

 }

 void FMOV_RESTORE_XD(int m,n) /* FMOV @Rm+,DBn */

 {

 load_quad(R[m],XD[n>>1]);

 R[m] += 8;

 pc += 2;

 }

 void FMOV_SAVE_XD(int m,n) /* FMOV XDm,@–Rn */

 {

 store_quad(XD[m>>1],R[n]-8);

 R[n] -= 8;

 pc += 2;

 }

 void FMOV_INDEX_LOAD_XD(int m,n)/* FMOV @(R0,Rm),XDn */

 {

 load_quad(R[0] + R[m],XD[n>>1]);

 pc += 2;

 }

 void FMOV_INDEX_STORE_XD(int m,n)/* FMOV XDm,@(R0,Rn) */

 {

 store_quad(XD[m>>1], R[0] + R[n]);

 pc += 2;

 }

 void FMOV_XDXD(int m,n) /* FMOV XDm,XDn */

 {

 XD[n>>1] = XD[m>>1];

 pc += 2;

 }

 void FMOV_XDDR(int m,n) /* FMOV XDm,DRn */

 {

 DR[n>>1] = XD[m>>1];

 pc += 2;

 }

 void FMOV_DRXD(int m,n) /* FMOV DRm,XDn */

 {

 XD[n>>1] = DR[m>>1];

 pc += 2;

 }
HPM-219

Dreamcast SH4 Program Manual
Possible Exceptions:

¥ Data TLB miss exception

¥ Data protection violation exception

¥ Initial write exception

¥ Address error

Description

When FPSCR.PR = 0: Arithmetically multiplies the two single-precision ßoating-point numbers in FRn and FRm,
and stores the result in FRn.

When FPSCR.PR = 1: Arithmetically multiplies the two double-precision ßoating-point numbers in DRn and DRm,
and stores the result in DRn.

When FPSCR.enable.O/U/I is set, an FPU exception trap is generated regardless of whether or not an exception has
occurred. When an exception occurs, correct exception information is reßected in FPSCR.cause and FPSCR.ßag, and
FRn or DRn is not updated. Appropriate processing should therefore be performed by software.

Operation

void FMUL(int m,n)

 {

 pc += 2;

 clear_cause();

 if((data_type_of(m) == sNaN) ||

 (data_type_of(n) == sNaN)) invalid(n);

 else if((data_type_of(m) == qNaN) ||

 (data_type_of(n) == qNaN)) qnan(n);

 else if((data_type_of(m) == DENORM) ||

 (data_type_of(n) == DENORM)) set_E();

 else switch (data_type_of(m){

 case NORM: switch (data_type_of(n)){

 case PZERO:

 case NZERO: zero(n,sign_of(m)^sign_of(n)); break;

 case PINF:

 case NINF: inf(n,sign_of(m)^sign_of(n)); break;

 default: normal_fmul(m,n); break;

 } break;

10.39 FMUL Floating-point MULtiply Floating-Point Instruction

 Floating-Point Multiplication

PR Format Summary of Operation Instruction Code Execution States T Bit

0 FMUL FRm,FRn FRn*FRm → FRn 1111nnnnmmmm0010 1 —

1 FMUL DRm,DRn DRn*DRm → DRn 1111nnn0mmm00010 6 —
HPM-220

10. Instruction Descriptions
 case PZERO:

 case NZERO: switch (data_type_of(n)){

 case PINF:

 case NINF: invalid(n); break;

 default: zero(n,sign_of(m)^sign_of(n));break;

 } break;

 case PINF :

 case NINF : switch (data_type_of(n)){

 case PZERO:

 case NZERO: invalid(n); break;

 default: inf(n,sign_of(m)^sign_of(n));break

 } break;

 }

 }

FMUL Special Cases

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:

¥ FPU error

¥ Invalid operation

¥ Overßow

¥ Underßow

¥ Inexact

FRm,DRm FRn,DRn

NORM

0

DIV

+0

–0

+INF INF +INF

+INF

INF

–INF

Invalid

–INF

–INF

DENORM Error

qNaN qNaN

sNaN Invalid

NORM +0

0

Invalid

–0

+0 –0

–0 +0

+INF –INF DENORM qNaN sNaN
HPM-221

Dreamcast SH4 Program Manual
Description

This instruction inverts the most signiÞcant bit (sign bit) of the contents of ßoating-point register FRn/DRn, and
stores the result in FRn/DRn.

The cause and ßag Þelds in FPSCR are not updated.

Operation

void FNEG (int n){

 FR[n] = -FR[n];

 pc += 2;

 }

 /* Same operation is performed regardless of precision. */

Possible Exceptions:

None

Description

This instruction inverts the FR bit in ßoating-point register FPSCR. When the FR bit in FPSCR is changed, FR0 to
FR15 in FPPR0 to FPPR31 become XR0 to XR15, and XR0 to XR15 become FR0 to FR15. When FPSCR.FR = 0, FPPR0
to FPPR15 correspond to FR0 to FR15, and FPPR16 to FPPR31 correspond to XR0 to XR15. When FPSCR.FR = 1,
FPPR16 to FPPR31 correspond to FR0 to FR15, and FPPR0 to FPPR15 correspond to XR0 to XR15.

10.40 FNEG Floating-point NEGate value Floating-Point Instruction

 Floating-Point Sign Inversion

PR Format Summary of Operation Instruction Code Execution States T Bit

0 FNEG FRn -FRn → FRn 1111nnnn01001101 1 —

1 FNEG DRn -DRn → DRn 1111nnn001001101 1 —

10.41 FRCHG FR-bit CHanGe Floating-Point Instruction

 FR Bit Inversion

PR Format Summary of Operation Instruction Code Execution States T Bit

0 FRCHG FRSCR.FR=~FRSCR.FR 1111101111111101 1 —

1 — — — — —
HPM-222

10. Instruction Descriptions
Operation

void FRCHG() /* FRCHG */

 {

 if(FPSCR_PR == 0){

 FPSCR ̂ = 0x00200000; /* bit 21 */

 PC += 2;

 }

 else undefined_operation();

 }

Possible Exceptions:

None

Description

This instruction inverts the SZ bit in ßoating-point register FPSCR. Changing the SZ bit in FPSCR switches FMOV
instruction data transfer between one single-precision data unit and a data pair. When FPSCR.SZ = 0, the FMOV
instruction transfers one single-precision data unit. When FPSCR.SZ = 1, the FMOV instruction transfers two
single-precision data units as a pair.

Operation

void FSCHG() /* FSCHG */

 {

 if(FPSCR_PR == 0){

 FPSCR ̂ = 0x00100000; /* bit 20 */

 PC += 2;

 }

 else undefined_operation();

 }

Possible Exceptions:

None

10.42 FSCHG Sz-bit CHanGe Floating-Point Instruction

 SZ Bit Inversion

PR Format Summary of Operation Instruction Code Execution States T Bit

0 FSCHG FRSCR.SZ=~FRSCR.SZ 1111001111111101 1 —

1 — — — — —
HPM-223

Dreamcast SH4 Program Manual
Description

When FPSCR.PR = 0: Finds the arithmetical square root of the single-precision ßoating-point number in FRn, and
stores the result in FRn.

When FPSCR.PR = 1: Finds the arithmetical square root of the double-precision ßoating-point number in DRn, and
stores the result in DRn.

When FPSCR.enable.I is set, an FPU exception trap is generated regardless of whether or not an exception has
occurred. When an exception occurs, correct exception information is reßected in FPSCR.cause and FPSCR.ßag, and
FRn or DRn is not updated. Appropriate processing should therefore be performed by software.

Operation

void FSQRT(int n){

 pc += 2;

 clear_cause();

 switch(data_type_of(n)){

 case NORM : if(sign_of(n) == 0) normal_ fsqrt(n);

 else invalid(n); break;

 case DENORM: if(sign_of(n) == 0) set_E();

 else invalid(n); break;

 case PZERO :

 case NZERO :

 case PINF : break;

 case NINF : invalid(n); break;

 case qNaN : qnan(n); break;

 case sNaN : invalid(n); break;

 }

 }

 void normal_fsqrt(int n)

 {

 union {

 float f;

 int l;

 } dstf,tmpf;

 union {

 double d;

 int l[2];

10.43 FSQRT Floating-point SQuare RooT Floating-Point Instruction

 Floating-Point Square Root

PR Format Summary of Operation Instruction Code Execution States T Bit

0 FSQRT FRn √FRn → FRn 1111nnnn01101101 9 —

1 FSQRT DRn √DRn → DRn 1111nnnn01101101 22 —
HPM-224

10. Instruction Descriptions
 } dstd,tmpd;

 union {

 int double x;

 int l[4];

 } tmpx;

 if(FPSCR_PR == 0) {

 tmpf.f = FR[n]; /* save destination value */

 dstf.f = sqrt(FR[n]); /* round toward nearest or even */

 tmpd.d = dstf.f; /* convert single to double */

 tmpd.d *= dstf.f;

 if(tmpf.f != tmpd.d) set_I();

 if((tmpf.f < tmpd.d) && (SPSCR_RM == 1))

 dstf.l -= 1; /* round toward zero */

 if(FPSCR & ENABLE_I) fpu_exception_trap();

 else FR[n] = dstf.f;

 } else {

 tmpd.d = DR[n>>1]; /* save destination value */

 dstd.d = sqrt(DR[n>>1]); /* round toward nearest or even */

 tmpx.x = dstd.d; /* convert double to int double */

 tmpx.x *= dstd.d;

 if(tmpd.d != tmpx.x) set_I();

 if((tmpd.d < tmpx.x) && (SPSCR_RM == 1)) {

 dstd.l[1] -= 1; /* round toward zero */

 if(dstd.l[1] == 0xffffffff) dstd.l[0] -= 1;

 }

 if(FPSCR & ENABLE_I) fpu_exception_trap();

 else DR[n>>1] = dstd.d;

 }

 }

FSQRT Special Cases

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:

¥ FPU error

¥ Invalid operation

¥ Inexact

FRn +NORM –NORM +0 –0 +INF –INF qNaN sNaN

FSQRT(FRn) SQRT Invalid +0 –0 +INF Invalid qNaN Invalid
HPM-225

Dreamcast SH4 Program Manual
Description

This instruction transfers the contents of system register FPUL to ßoating-point register FRn.

Operation

void FSTS(int n, float *FPUL)

 {

 FR[n] = *FPUL;

 pc += 2;

 }

Possible Exceptions:

None

Description

When FPSCR.PR = 0: Arithmetically subtracts the single-precision ßoating-point number in FRm from the
single-precision ßoating-point number in FRn, and stores the result in FRn.

When FPSCR.PR = 1: Arithmetically subtracts the double-precision ßoating-point number in DRm from the
double-precision ßoating-point number in DRn, and stores the result in DRn.

When FPSCR.enable.O/U/I is set, an FPU exception trap is generated regardless of whether or not an exception has
occurred. When an exception occurs, correct exception information is reßected in FPSCR.cause and FPSCR.ßag, and
FRn or DRn is not updated. Appropriate processing should therefore be performed by software.

10.44 FSTS Floating-point STore System register Floating-Point Instruction

Transfer from System Register

Format Summary of Operation Instruction Code Execution States T Bit

FSTS FPUL,FRn FPUL → FRn 1111nnnn00001101 1 —

10.45 FSUB Floating-point SUBtract Floating-Point Instruction

 Floating-Point Subtraction

PR Format Summary of Operation Instruction Code Execution States T Bit

0 FSUB FRm,FRn FRn-FRm → FRn 1111nnnnmmmm0001 1 —

1 FSUB DRm,DRn DRn-DRm → DRn 1111nnn0mmm00001 6
HPM-226

10. Instruction Descriptions
Operation

void FSUB (int m,n)

 {

 pc += 2;

 clear_cause();

 if((data_type_of(m) == sNaN) ||

 (data_type_of(n) == sNaN)) invalid(n);

 else if((data_type_of(m) == qNaN) ||

 (data_type_of(n) == qNaN)) qnan(n);

 else if((data_type_of(m) == DENORM) ||

 (data_type_of(n) == DENORM)) set_E();

 else switch (data_type_of(m)){

 case NORM: switch (data_type_of(n)){

 case NORM: normal_faddsub(m,n,SUB); break;

 case PZERO:

 case NZERO: register_copy(m,n); FR[n] = -FR[n];break;

 default: break;

 } break;

 case PZERO: break;

 case NZERO: switch (data_type_of(n)){

 case NZERO: zero(n,0); break;

 default: break;

 } break;

 case PINF: switch (data_type_of(n)){

 case PINF: invalid(n); break;

 default: inf(n,1); break;

 } break;

 case NINF: switch (data_type_of(n)){

 case NINF: invalid(n); break;

 default: inf(n,0); break;

 } break;

 }

 }
HPM-227

Dreamcast SH4 Program Manual
FSUB Special Cases

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:

¥ FPU error

¥ Invalid operation

¥ Overßow

¥ Underßow

¥ Inexact

Description

When FPSCR.PR = 0: Converts the single-precision ßoating-point number in FRm to a 32-bit integer, and stores the
result in FPUL.

When FPSCR.PR = 1: Converts the double-precision ßoating-point number in FRm to a 32-bit integer, and stores the
result in FPUL.

The rounding mode is always truncation.

When FPSCR.enable.I is set, an FPU exception is generated before the instruction is executed, so appropriate
processing should be performed by software.

10.46 FTRC Floating-point TRuncate and Convert to integer Floating-Point Instruction

 Conversion to Integer

PR Format Summary of Operation Instruction Code Execution States T Bit

0 FTRC FRm,FPUL (long)FRm → FPUL 1111mmmm00111101 1 —

1 FTRC DRm,FPUL (long)DRm → FPUL 1111mmm000111101 2 —

FRm,DRm FRn,DRn

NORM ADD

+0

–0

–0

+INF

+INF

+INF

–INF Invalid

Invalid–INF

DENORM Error

qNaN qNaN

sNaN Invalid

NORM +0

+0

–0 +INF
–INF
–INF DENORM qNaN sNaN
HPM-228

10. Instruction Descriptions
Operation

#define N_INT_SINGLE_RANGE 0xcf000000 /* -1.000000 * 2^31 */

#define P_INT_SINGLE_RANGE 0x4effffff /* 1.fffffe * 2^30 */

#define N_INT_DOUBLE_RANGE 0xc1e00000 /* higher of -1.0000000000000 * 2^31 */

#define P_INT_DOUBLE_RANGE 0x41dfffff /* higher of 1.fffffffffffff * 2^30 */

 void FTRC(int m, int *FPUL)

 {

 pc += 2;

 clear_cause();

 if(FPSCR.PR==0){

 case(ftrc_single_ type_of(m)){

 NORM: *FPUL = FR[m]; break;

 PINF: ftrc_invalid(0); break;

 NINF: ftrc_invalid(1); break;

 }

 }

 else{ /* case FPSCR.PR=1 */

 case(ftrc_double_type_of(m)){

 NORM: *FPUL = DR[m>>1]; break;

 PINF: ftrc_invalid(0); break;

 NINF: ftrc_invalid(1); break;

 }

 }

 }

 int ftrc_signle_type_of(int m)

 {

 if(sign_of(m) == 0){

 if(FR_HEX[m] > 0x7f800000) return(NINF); /* NaN */

 else if(FR_HEX[m] > P_INT_SINGLE_RANGE)

 return(PINF); /* out of range,+INF */

 else return(NORM); /* +0,+NORM */

 } else {

 if(FR_HEX[m]< N_INT_SINGLE_RANGE)

 return(NINF); /* out of range ,+INF,NaN*/

 else return(NORM); /* -0,-NORM */

 }

 }

 int ftrc_double_type_of(int m)

 {

 if(sign_of(m) == 0){

 if((FR_HEX[m] > 0x7ff00000) ||

 ((FR_HEX[m] == 0x7ff00000) &&

 (FR_HEX[m+1] != 0x00000000))) return(NINF); /* NaN */

 else if(FR_HEX[m] > P_INT_DOUBLE_RANGE)

 return(PINF); /* out of range,+INF */

 else return(NORM); /* +0,+NORM */

 } else {
HPM-229

Dreamcast SH4 Program Manual
 if(FR_HEX[m] < N_INT_DOUBLE_RANGE)

 return(NINF); /* out of range ,+INF,NaN*/

 else return(NORM); /* -0,-NORM */

 }

 }

 void ftrc_invalid(int sign, int *FPUL)

 {

 set_V();

 if((FPSCR & ENABLE_V) == 0){

 if(sign == 0) *FPUL = 0x7fffffff;

 else *FPUL = 0x80000000;

 }

 else fpu_exception_trap();

 }

FTRC Special Cases

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:

¥ FPU error

¥ Invalid operation

Description

When FPSCR.PR = 0: This instruction takes the contents of ßoating-point registers XF0 to XF15 indicated by XMTRX
as a 4-row x 4-column matrix, takes the contents of ßoating-point registers FR[n] to FR[n + 3] indicated by FVn as a
4-dimensional vector, multiplies the array by the vector, and stores the results in FV[n].

FRn,DRn NORM +0 –0 Positive Out of
Range

Negative Out of
Range

+INF –INF qNaN sNaN

FTRC
(FRn,DRn)

TRC 0 0 Invalid+MAX Invalid–MAX Invalid+
MAX

Invalid–
MAX

Invalid–
MAX

Invalid–
MAX

10.47 FTRV Floating-point TRansform Vector Floating-Point Instruction

 Vector Transformation

PR Format Summary of Operation Instruction Code Execution States T Bit

0 FTRV XMTRX,FVn XMTRX*FVn → FVn 1111nn0111111101 4 —

1 — — — — —
HPM-230

10. Instruction Descriptions
The FTRV instruction is intended for speed rather than accuracy, and therefore the results will differ from those
obtained by using a combination of FADD and FMUL instructions. The FTRV execution sequence is as follows:

1) Multiplies all terms. The results are 30 bits long.

2) Aligns these results, rounding them to Þt within 28 bits.

3) Adds the aligned values.

4) Performs normalization and rounding.

Special processing is performed in the following cases:

1) If an input value is an sNaN, an invalid exception is generated.

2) If the input values to be multiplied include a combination of 0 and inÞnity, an invalid operation
exception is generated.

3) In cases other than the above, if the input values include a qNaN, the result will be a qNaN.

4) In cases other than the above, if the input values include inÞnity:

a) If multiplication results in two or more inÞnities and the signs are different, an invalid exception will be
generated.

b) Otherwise, correct inÞnities will be stored.

 5. If the input values do not include an sNaN, qNaN, or inÞnity, processing is performed in the normal way.

When FPSCR.enable.V/O/U/I is set, an FPU exception trap is generated regardless of whether or not an exception
has occurred. When an exception occurs, correct exception information is reßected in FPSCR.cause and FPSCR.ßag,
and FRn or DRn is not updated. Appropriate processing should therefore be performed by software.

Operation

void FTRV (int n) /* FTRV FVn */

 {

 float saved_vec[4],result_vec[4];

 int saved_fpscr;

 int dst,i;

 if(FPSCR_PR == 0) {

 PC += 2;

 clear_cause();

 saved_fpscr = FPSCR;

 FPSCR &= ~ENABLE_VOUI; /* mask VOUI enable */

 dst = 12 - n; /* select other vector than FVn */

 for(i=0;i<4;i++) saved_vec [i] = FR[dst+i];

 for(i=0;i<4;i++) {

XMTRX

 x

FVn

’

FVn

 XF[0] XF[4] XF[8] XF[12] FR[n] FR[n]

 XF[1] XF[5] XF[9] XF[13] FR[n+1] FR[n+1]

 XF[2] XF[6] XF[10] XF[14] FR[n+2] FR[n+2]

 XF[3] XF[7] XF[11] XF[15] FR[n+3] FR[n+3]
HPM-231

Dreamcast SH4 Program Manual
 for(j=0;j<4;j++) FR[dst+j] = XF[i+4j];

 fipr(n,dst);

 saved_fpscr |= FPSCR & (CAUSE|FLAG) ;

 result_vec [i] = FR[dst+3];

 }

 for(i=0;i<4;i++) FR[dst+i] = saved_vec [i];

 FPSCR = saved_fpscr;

 if(FPSCR & ENABLE_VOUI) fpu_exception_trap();

 else for(i=0;i<4;i++) FR[n+i] = result_vec [i];

 }
 else undefined_operation();
 }

Possible Exceptions:

¥ Invalid operation

¥ Overßow

¥ Underßow

¥ Inexact

Description

Unconditionally makes a delayed branch to the address speciÞed by Rn.

Notes

As this is a delayed branch instruction, the instruction following this instruction is executed before the branch
destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the following instruction is a
branch instruction, it is identiÞed as a slot illegal instruction.

Operation

JMP(int n) /* JMP @Rn */
 {
 unsigned int temp;

 temp=PC;
 PC=R[n];
 Delay_Slot(temp+2);
 }

10.48 JMP JuMP Branch Instruction

Unconditional Branch Delayed Branch Instruction

Format Summary of Operation Instruction Code Execution States T Bit

JMP @Rn Rn → PC 0100nnnn00101011 2 —
HPM-232

10. Instruction Descriptions
Example

 MOV.L JMP_TABLE,R0 ;R0 = TRGET address

JMP @R0 ;Branch to TRGET.

MOV R0,R1 ;MOV executed before branch.

.align 4

 JMP_TABLE: .data.l TRGET ;Jump table

 TRGET: ADD #1,R1 ; ß Branch destination

Description

This instruction makes a delayed branch to the subroutine procedure at the speciÞed address after execution of the
following instruction. Return address (PC + 4) is saved in PR, and a branch is made to the address indicated by
general register Rn. JSR is used in combination with RTS for subroutine procedure calls.

Notes

As this is a delayed branch instruction, the instruction following this instruction is executed before the branch
destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the following instruction is a
branch instruction, it is identiÞed as a slot illegal instruction.

Operation

JSR(int n) /* JSR @Rn */

 {

 unsigned int temp;

 temp=PC;

 PR=PC+4;

 PC=R[n];

 Delay_Slot(temp+2);

 }

10.49 JSR Jump to SubRoutine Branch Instruction

Branch to Subroutine Procedure

Delayed Branch Instruction

Format Summary of Operation Instruction Code Execution States T Bit

JSR @Rn PC+4 → PR, Rn → PC 0100nnnn00001011 2 —
HPM-233

Dreamcast SH4 Program Manual
Example

MOV.L JSR_TABLE,R0 ;R0 = TRGET address

JSR @R0 ;Branch to TRGET.

XOR R1,R1 ;XOR executed before branch.

ADD R0,R1 ;ß Procedure return destination (PR contents)

.......

.align 4

JSR_TABLE: .data.l TRGET ;Jump table

TRGET: NOP ;ß Entry to procedure

MOV R2,R3 ;

RTS ;Return to above ADD instruction.

MOV #70,R1 ;MOV executed before RTS.

10.50 LDC LoaD to Control register System Control Instruction

 Load to Control Register

Format Summary of Operation Instruction Code Execution States T Bit

LDC Rm, SR Rm → SR 0100mmmm00001110 4 LSB

LDC Rm, GBR Rm → GBR 0100mmmm00011110 3 —

LDC Rm, VBR Rm → VBR 0100mmmm00101110 1 —

LDC Rm, SSR Rm → SSR 0100mmmm00111110 1 —

LDC Rm, SPC Rm → SPC 0100mmmm01001110 1

LDC Rm, DBR Rm → DBR 0100mmmm11111010 1 —

LDC Rm, R0_BANK Rm → R0_BANK 0100mmmm10001110 1 —

LDC Rm, R1_BANK Rm → R1_BANK 0100mmmm10011110 1 —

LDC Rm, R2_BANK Rm → R2_BANK 0100mmmm10101110 1 —

LDC Rm, R3_BANK Rm → R3_BANK 0100mmmm10111110 1 —

LDC Rm, R4_BANK Rm → R4_BANK 0100mmmm11001110 1 —

LDC Rm, R5_BANK Rm → R5_BANK 0100mmmm11011110 1 —

LDC Rm, R6_BANK Rm → R6_BANK 0100mmmm11101110 1 —

LDC Rm, R7_BANK Rm → R7_BANK 0100mmmm11111110 1 —

LDC.L @Rm+, SR (Rm) → SR, Rm+4 → Rm 0100mmmm00000111 4 LSB

LDC.L @Rm+, GBR (Rm) → GBR, Rm+4 → Rm 0100mmmm00010111 3 —

LDC.L @Rm+, VBR (Rm) → VBR, Rm+4 → Rm 0100mmmm00100111 1 —
HPM-234

10. Instruction Descriptions
Description

These instructions store the source operand in the control register SR, GBR, VBR, SSR, SPC, DBR, or R0_BANK to
R7_BANK. With the exception of LDC Rm,GBR and LDC.L @ÐRn,GBR, the LDC/LDC.L instructions are privileged
instructions and can only be used in privileged mode. Use in user mode will cause an illegal instruction exception.
However, LDC Rm,GBR and LDC.L @ÐRm,GBR can also be used in user mode.

With LDC/LDC.L instructions accessing Rn_BANK, Rn_BANK0 is accessed when the RB bit in the SR register is 1,
and Rn_BANK1 is accessed when this bit is 0.

Operation

 LDCSR(int m) /* LDC Rm,SR : Privileged */

 {

 SR=R[m]&0x700083F3;

 PC+=2;

 }

 LDCGBR(int m) /* LDC Rm,GBR */

 {

 GBR=R[m];

 PC+=2;

 }

LDC.L @Rm+, SSR (Rm) → SSR, Rm+4 → Rm 0100mmmm00110111 1 —

LDC.L @Rm+, SPC (Rm) → SPC, Rm+4 → Rm 0100mmmm01000111 1 —

LDC.L @Rm+, DBR (Rm) → DBR, Rm+4 → Rm 0100mmmm11110110 1 —

LDC.L @Rm+, R0_BANK (Rm) → R0_BANK, Rm+4 → Rm 0100mmmm10000111 1 —

LDC.L @Rm+, R1_BANK (Rm) → R1_BANK, Rm+4 → Rm 0100mmmm10010111 1 —

LDC.L @Rm+, R2_BANK (Rm) → R2_BANK, Rm+4 → Rm 0100mmmm10100111 1 —

LDC.L @Rm+, R3_BANK (Rm) → R3_BANK, Rm+4 → Rm 0100mmmm10110111 1 —

LDC.L @Rm+, R4_BANK (Rm) → R4_BANK, Rm+4 → Rm 0100mmmm11000111 1 —

LDC.L @Rm+, R5_BANK (Rm) → R5_BANK, Rm+4 → Rm 0100mmmm11010111 1 —

LDC.L @Rm+, R6_BANK (Rm) → R6_BANK, Rm+4 → Rm 0100mmmm11100111 1 —

LDC.L @Rm+, R7_BANK (Rm) → R7_BANK, Rm+4 → Rm 0100mmmm11110111 1 —

10.50 LDC LoaD to Control register System Control Instruction
HPM-235

Dreamcast SH4 Program Manual
 LDCVBR(int m) /* LDC Rm,VBR : Privileged */

 {

 VBR=R[m];

 PC+=2;

 }

 LDCSSR(int m) /* LDC Rm,SSR : Privileged */

 {

 SSR=R[m],

 PC+=2;

 }

 LDCSPC(int m) /* LDC Rm,SPC : Privileged */

 {

 SPC=R[m];

 PC+=2;

 }

 LDCDBR(int m) /* LDC Rm,DBR : Privileged */
 {
 DBR=R[m];
 PC+=2;
 }

 LDCRn_BANK(int m) /* LDC Rm,Rn_BANK : Privileged */
 /* n=0–7 */
 {
 Rn_BANK=R[m];
 PC+=2;
 }

 LDCMSR(int m) /* LDC.L @Rm+,SR : Privileged */
 {
 SR=Read_Long(R[m])&0x700083F3;
 R[m]+=4;
 PC+=2;
 }

 LDCMGBR(int m) /* LDC.L @Rm+,GBR */
 {
 GBR=Read_Long(R[m]);
 R[m]+=4;
 PC+=2;
 }

 LDCMVBR(int m) /* LDC.L @Rm+,VBR : Privileged */
 {
 VBR=Read_Long(R[m]);
 R[m]+=4;
 PC+=2;
 }
HPM-236

10. Instruction Descriptions
 LDCMSSR(int m) /* LDC.L @Rm+,SSR : Privileged */

 {

 SSR=Read_Long(R[m]);

 R[m]+=4;

 PC+=2;

 }

 LDCMSPC(int m) /* LDC.L @Rm+,SPC : Privileged */

 {

 SPC=Read_Long(R[m]);

 R[m]+=4;

 PC+=2;

 }

 LDCMDBR(int m) /* LDC.L @Rm+,DBR : Privileged */

 {

 DBR=Read_Long(R[m]);

 R[m]+=4;

 PC+=2;

 }

 LDCMRn_BANK(Long m) /* LDC.L @Rm+,Rn_BANK : Privileged */

/* n=0–7 */

 {

 Rn_BANK=Read_Long(R[m]);

 R[m]+=4;

 PC+=2;

 }

Possible Exceptions:

¥ General illegal instruction exception

¥ Illegal slot instruction exception

¥ Data TLB miss exception

¥ Data TLB protection violation exception

¥ Address error
HPM-237

Dreamcast SH4 Program Manual
Description

This instruction loads the source operand into FPU system registers FPUL and FPSCR.

Operation

#define FPSCR_MASK 0x003FFFFF

 LDSFPUL(int m, int FPUL) /* LDS Rm,FPUL */

 {

 *FPUL=R[m];

 PC+=2;

 }

 LDSMFPUL(int m, int FPUL) /* LDS.L @Rm+,FPUL */

 {

 *FPUL=Read_Long(R[m]);

 R[m]+=4;

 PC+=2;

 }

 LDSFPSCR(int m) /* LDS Rm,FPSCR */

 {

 FPSCR=R[m] & FPSCR_MASK;

 PC+=2;

 }

 LDSMFPSCR(int m) /* LDS.L @Rm+,FPSCR */

 {

 FPSCR=Read_Long(R[m]) & FPSCR_MASK;

 R[m]+=4;

 PC+=2;

 }

10.51.1 LDS LoaD to FPU System register System Control Instruction

 Load to FPU System Register

Format Summary of Operation Instruction Code Execution States T Bit

LDS Rm,FPUL Rm → FPUL 0100mmmm01011010 1 —

LDS.L @Rm+,FPUL (Rm) → FPUL, Rm+4 → Rm 0100mmmm01010110 1 —

LDS Rm,FPSCR Rm → FPSCR 0100mmmm01101010 1 —

LDS.L @Rm+,FPSCR (Rm) → FPSCR, Rm+4 → Rm 0100mmmm01100110 1 —
HPM-238

10. Instruction Descriptions
Possible Exceptions:

¥ Data TLB miss exception

¥ Data access protection exception

¥ Address error

Description

Stores the source operand into the system registers MACH, MACL, or PR.

Operation

LDSMACH(int m) /* LDS Rm,MACH */

 {

 MACH=R[m];

 PC+=2;

 }

 LDSMACL(int m) /* LDS Rm,MACL */

 {

 MACL=R[m];

 PC+=2;

 }

 LDSPR(int m) /* LDS Rm,PR */

 {

 PR=R[m];

 PC+=2;

 }

 LDSMMACH(int m) /* LDS.L @Rm+,MACH */

10.51.2 LDS LoaD to System register System Control Instruction

 Load to System Register

Format Summary of Operation Instruction Code Execution States T Bit

LDS Rm,MACH Rm → MACH 0100mmmm00001010 —

LDS Rm,MACL Rm → MACL 0100mmmm00011010 —

LDS Rm,PR Rm→ PR 0100mmmm00101010 —

LDS.L @Rm+,MACH (Rm) → MACH, Rm + 4 → Rm 0100mmmm00000110 —

LDS.L @Rm+,MACL (Rm) → MACL, Rm + 4 → Rm 0100mmmm00010110 —

LDS.L @Rm+,PR (Rm) → PR, Rm + 4 → Rm 0100mmmm00100110 —
HPM-239

Dreamcast SH4 Program Manual
 {

 MACH=Read_Long(R[m]);

 R[m]+=4;

 PC+=2;

 }

 LDSMMACL(int m) /* LDS.L @Rm+,MACL */

 {

 MACL=Read_Long(R[m]);

 R[m]+=4;

 PC+=2;

 }

 LDSMPR(int m) /* LDS.L @Rm+,PR */

 {

 PR=Read_Long(R[m]);

 R[m]+=4;

 PC+=2;

 }

Example

LDS R0,PR ; Before execution R0 = H'12345678, PR = H'00000000

 ; After execution PR = H'12345678

 LDS.L @R15+,MACL ; Before execution R15 = H'10000000

 ; After execution R15 = H'10000004, MACL = (H'10000000)

Description

This instruction loads the contents of the PTEH/PTEL/PTEA registers into the TLB (translation lookaside buffer)
speciÞed by MMUCR.URC (random counter Þeld in the MMC control register).

LDTLB is a privileged instruction, and can only be used in privileged mode. Use of this instruction in user mode
will cause an illegal instruction exception.

10.52 LDTLB LoaD PTEH/PTEL/PTEA to TLB
System Control Instruction
(Privileged Instruction)

 Load to TLB

 Format Summary of Operation Instruction Code Execution States T Bit

 LDTLB PTEH/PTEL/PTEA → TLB 0000000000111000 1 —
HPM-240

10. Instruction Descriptions
Notes

As this instruction loads the contents of the PTEH/PTEL/PTEA registers into a TLB, it should be used either with
the MMU disabled, or in the P1 or P2 virtual space with the MMU enabled (see section 3, Memory Management
Unit, for details). After this instruction is issued, there must be at least one instruction between the LDTLB
instruction and issuance of an instruction relating to address to areas P0, U0, and P3 (i.e. BRAF, BSRF, JMP, JSR, RTS,
or RTE).

Operation

 LDTLB() /*LDTLB */

 {

 TLB[MMUCR. URC] .ASID=PTEH & 0x000000FF;

 TLB[MMUCR. URC] .VPN=(PTEH & 0xFFFFFC00)>>10;

 TLB[MMUCR. URC] .PPN=(PTEH & 0x1FFFFC00)>>10;

 TLB[MMUCR. URC] .SZ=(PTEL & 0x00000080)>>6 |

 (PTEL & 0x00000010)>>4;

 TLB[MMUCR. URC] .SH=(PTEH & 0x00000002)>>1;

 TLB[MMUCR. URC] .PR=(PTEH & 0x00000060)>>5;

 TLB[MMUCR. URC] .WT=(PTEH & 0x00000001);

 TLB[MMUCR. URC] .C=(PTEH & 0x00000008)>>3;

 TLB[MMUCR. URC] .D=(PTEH & 0x00000004)>>2;

 TLB[MMUCR. URC] .V=(PTEH & 0x00000100)>>8;

 TLB[MMUCR. URC] .SA=(PTEA & 0x00000007);

 TLB[MMUCR. URC] .TC=(PTEA & 0x00000008)>>3;

 PC+=2;

 }

Example

MOV @R0,R1 ;Load page table entry (upper) into R1

MOV R1,@R2 ;Load R1 into PTEH; R2 is PTEH address (H'FFFFFFF0)

LDTLB ;Load PTEH, PTEL, PTEA registers into TLB

10.53 MAC.L
Multiply and
ACcumulate Long Arithmetic Instruction

Double-Precision
Multiply-and-Accumulate

Operation

Format Summary of Operation Instruction Code Execution States T Bit

MAC.L
@Rm+,@Rn+

Signed,
(Rn) x (Rm) + MAC ’ MAC
Rn + 4 ’ Rn, Rm + 4 ’ Rm

0000nnnnmmmm1111 2–5 —
HPM-241

Dreamcast SH4 Program Manual
Description

This instruction performs signed multiplication of the 32-bit operands whose addresses are the contents of general
registers Rm and Rn, adds the 64-bit result to the MAC register contents, and stores the result in the MAC register.
Operands Rm and Rn are each incremented by 4 each time they are read.

If the S bit is 0, the 64-bit result is stored in the linked MACH and MACL registers.

If the S bit is 1, the addition to the MAC register contents is a saturation operation at the 48th bit from the LSB. In a
saturation operation, only the lower 48 bits of the MAC register are valid, and the result range is limited to
H'FFFF800000000000 (minimum value) to H'00007FFFFFFFFFFF (maximum value).

Operation

MACL(long m, long n) /* MAC.L @Rm+,@Rn+ */

 {

 unsigned long RnL,RnH,RmL,RmH,Res0,Res1,Res2;

 unsigned long temp0,temp1,temp2,temp3;

 long tempm,tempn,fnLmL;

 tempn=(long)Read_Long(R[n]);

 R[n]+=4;

 tempm=(long)Read_Long(R[m]);

 R[m]+=4;

 if ((long)(tempn t̂empm)<0) fnLmL=-1;

 else fnLmL=0;

 if (tempn<0) tempn=0-tempn;

 if (tempm<0) tempm=0-tempm;

 temp1=(unsigned long)tempn;

 temp2=(unsigned long)tempm;

 RnL=temp1&0x0000FFFF;

 RnH=(temp1>>16)&0x0000FFFF;

 RmL=temp2&0x0000FFFF;

 RmH=(temp2>>16)&0x0000FFFF;

 temp0=RmL*RnL;

 temp1=RmH*RnL;

 temp2=RmL*RnH;

 temp3=RmH*RnH;

 Res2=0;

 Res1=temp1+temp2;

 if (Res1<temp1) Res2+=0x00010000;

 temp1=(Res1<<16)&0xFFFF0000;

 Res0=temp0+temp1;

 if (Res0<temp0) Res2++;
HPM-242

10. Instruction Descriptions

 Res2=Res2+((Res1>>16)&0x0000FFFF)+temp3;

 if(fnLmL<0){

 Res2=~Res2;

 if (Res0==0) Res2++;

 else Res0=(~Res0)+1;

 }

 if(S==1){

 Res0=MACL+Res0;

 if (MACL>Res0) Res2++;

 if (MACH&0x00008000);

 else Res2+=MACH|0xFFFF0000;

 Res2+=MACH&0x00007FFF;

 if(((long)Res2<0)&&(Res2<0xFFFF8000)){

 Res2=0xFFFF8000;

 Res0=0x00000000;

 }

 if(((long)Res2>0)&&(Res2>0x00007FFF)){

 Res2=0x00007FFF;

 Res0=0xFFFFFFFF;

 };

 MACH=(Res2&0x0000FFFF)|(MACH&0xFFFF0000);

 MACL=Res0;

 }

 else {

 Res0=MACL+Res0;

 if (MACL>Res0) Res2++;

 Res2+=MACH;

 MACH=Res2;

 MACL=Res0;

 }

 PC+=2;

 }
HPM-243

Dreamcast SH4 Program Manual
Example

MOVA TBLM,R0;Get table address

MOV R0,R1 ;

 MOVA TBLN,R0 ;Get table address

 CLRMAC ;MAC register initialization

 MAC.L @R0+,@R1+ ;

 MAC.L @R0+,@R1+ ;

 STS MACL,R0 ;Get result in R0

 .align 2 ;

 TBLM .data.l H'1234ABCD ;

 .data.l H'5678EF01 ;

 TBLN .data.l H'0123ABCD ;

 .data.l H'4567DEF0 ;

Description

This instruction performs signed multiplication of the 16-bit operands whose addresses are the contents of general
registers Rm and Rn, adds the 32-bit result to the MAC register contents, and stores the result in the MAC register.
Operands Rm and Rn are each incremented by 2 each time they are read.

If the S bit is 0, a 16 x 16 + 64 → 64-bit multiply-and-accumulate operation is performed, and the 64-bit result is stored
in the linked MACH and MACL registers.

If the S bit is 1, a 16 x 16 + 32 → 32-bit multiply-and-accumulate operation is performed, and the addition to the MAC
register contents is a saturation operation. In a saturation operation, only the MACL register is valid, and the result
range is limited to H'80000000 (minimum value) to H'7FFFFFFF (maximum value). If overßow occurs, the LSB of
the MACH register is set to 1. H'80000000 (minimum value) is stored in the MACL register if the result overßows
in the negative direction, and H'7FFFFFFF (maximum value) is stored if the result overßows in the positive direction

Notes

If the S bit is 0, a 16 x 16 + 64 → 64-bit multiply-and-accumulate operation is performed.

10.54 MAC.W
Multiply and
ACcumulate Word Arithmetic Instruction

 Single-Precision
Multiply-and-Accumulate

Operation

Format Summary of Operation Instruction Code Execution States T Bit

MAC.W
MAC

@Rm+,@Rn+
@Rm+,@Rn+

Signed,
(Rn) x (Rm) + MAC →MAC
Rn + 2 → Rn, Rm + 2 → Rm

0100nnnnmmmm1111 2–5 —
HPM-244

10. Instruction Descriptions
Operation

MACW(long m, long n) /* MAC.W @Rm+,@Rn+ */

 {

 long tempm,tempn,dest,src,ans;

 unsigned long templ;

 tempn=(long)Read_Word(R[n]);

 R[n]+=2;

 tempm=(long)Read_Word(R[m]);

 R[m]+=2;

 templ=MACL;

 tempm=((long)(short)tempn*(long)(short)tempm);

 if ((long)MACL>=0) dest=0;

 else dest=1;

 if ((long)tempm>=0) {

 src=0;

 tempn=0;

 }

 else {

 src=1;

 tempn=0xFFFFFFFF;

 }

 src+=dest;

 MACL+=tempm;

 if ((long)MACL>=0) ans=0;

 else ans=1;

 ans+=dest;

 if (S==1) {

 if (ans==1) {

 if (src==0) MACL=0x7FFFFFFF;

 if (src==2) MACL=0x80000000;

 }

 }

 else {

 MACH+=tempn;

 if (templ>MACL) MACH+=1;

 }

 PC+=2;

 }
HPM-245

Dreamcast SH4 Program Manual
Example

 MOVA TBLM,R0 ;Get table address

 MOV R0,R1 ;

 MOVA TBLN,R0 ;Get table address

 CLRMAC ;MAC register initialization

 MAC.W @R0+,@R1+ ;

 MAC.W @R0+,@R1+ ;

 STS MACL,R0 ;Get result in R0

 .align 2 ;

TBLM .data.w H'1234 ;

 .data.w H'5678 ;

TBLN .data.w H'0123 ;

 .data.w H'4567 ;

10.55 MOV MOVe Data Data Transfer Instruction

Data Transfer

Format Summary of Operation Instruction Code Execution States T Bit

MOV Rm,Rn Rm → Rn 0110nnnnmmmm0011 1 —

MOV.B Rm,@Rn Rm → (Rn) 0010nnnnmmmm0000 1 —

MOV.W Rm,@Rn Rm → (Rn) 0010nnnnmmmm0001 1 —

MOV.L Rm,@Rn Rm → (Rn) 0010nnnnmmmm0010 1 —

MOV.B @Rm,Rn (Rm) sign extension Rn 0110nnnnmmmm0000 1 —

MOV.W @Rm,Rn (Rm) sign extension Rn 0110nnnnmmmm0001 1 —

MOV.L @Rm,Rn (Rm) → Rn 0110nnnnmmmm0010 1 —

MOV.B Rm,@-Rn Rn-1 → Rn, Rm → (Rn) 0010nnnnmmmm0100 1 —

MOV.W Rm,@-Rn Rn-2 → Rn, Rm → (Rn) 0010nnnnmmmm0101 1 —

MOV.L Rm,@-Rn Rn-4 → Rn, Rm → (Rn) 0010nnnnmmmm0110 1 —

MOV.B @Rm+,Rn (Rm) sign extension Rn, Rm+1 →
Rm

0110nnnnmmmm0100 1 —

MOV.W @Rm+,Rn (Rm) sign extension Rn,Rm+2 →
Rm

0110nnnnmmmm0101 1 —

 MOV.L @Rm+,Rn (Rm) → Rn, Rm+4 → Rm 0110nnnnmmmm0110 1 —

MOV.B Rm,@(R0,Rn) Rm → (R0+Rn) 0000nnnnmmmm0100 1 —

MOV.W Rm,@(R0,Rn) Rm → (R0+Rn) 0000nnnnmmmm0101 1 —
HPM-246

10. Instruction Descriptions
Description

This instruction transfers the source operand to the destination. When an operand is memory, the data size can be
speciÞed as byte, word, or longword. When the source operand is memory, the loaded data is sign-extended to
longword before being stored in the register.

Operation

 MOV(long m, long n) /* MOV Rm,Rn */

 {

 R[n]=R[m];

 PC+=2;

 }

 MOVBS(long m, long n) /* MOV.B Rm,@Rn */

 {

 Write_Byte(R[n],R[m]);

 PC+=2;

 }

 MOVWS(long m, long n) /* MOV.W Rm,@Rn */

 {

 Write_Word(R[n],R[m]);

 PC+=2;

 }

 MOVLS(long m, long n) /* MOV.L Rm,@Rn */

 {

 Write_Long(R[n],R[m]);

 PC+=2;

 }

 MOVBL(long m, long n) /* MOV.B @Rm,Rn */

 {

 R[n]=(long)Read_Byte(R[m]);

 if ((R[n]&0x80)==0) R[n]&=0x000000FF;

 else R[n]|=0xFFFFFF00;

 PC+=2;

 }

MOV.L Rm,@(R0,Rn) Rm → (R0+Rn) 0000nnnnmmmm0110 1 —

MOV.B @(R0,Rm),Rn (R0+Rm) sign extension Rn 0000nnnnmmmm1100 1 —

MOV.W @(R0,Rm),Rn (R0+Rm) sign extension Rn 0000nnnnmmmm1101 1 —

MOV.L @(R0,Rm),Rn (R0+Rm) → Rn 0000nnnnmmmm1110 1 —

10.55 MOV MOVe Data Data Transfer Instruction
HPM-247

Dreamcast SH4 Program Manual

 MOVWL(long m, long n) /* MOV.W @Rm,Rn */

 {

 R[n]=(long)Read_Word(R[m]);

 if ((R[n]&0x8000)==0) R[n]&=0x0000FFFF;

 else R[n]|=0xFFFF0000;

 PC+=2;

 }

 MOVLL(long m, long n) /* MOV.L @Rm,Rn */

 }

 R[n]=Read_Long(R[m]);

 PC+=2;

 }

 MOVBM(long m, long n) /* MOV.B Rm,@-Rn */

 {

 Write_Byte(R[n]-1,R[m]);

 R[n]-=1;

 PC+=2;

 }

 MOVWM(long m, long n) /* MOV.W Rm,@-Rn */

 {

 Write_Word(R[n]-2,R[m]);

 R[n]-=2;

 PC+=2;

 }

 MOVLM(long m, long n) /* MOV.L Rm,@-Rn */

 {

 Write_Long(R[n]-4,R[m]);

 R[n]-=4;

 PC+=2;

 }

 MOVBP(long m, long n) /* MOV.B @Rm+,Rn */

 {

 R[n]=(long)Read_Byte(R[m]);

 if ((R[n]&0x80)==0) R[n]&=0x000000FF;

 else R[n]|=0xFFFFFF00;

 if (n!=m) R[m]+=1;

 PC+=2;

 }

 MOVWP(long m, long n) /* MOV.W @Rm+,Rn */

 {

 R[n]=(long)Read_Word(R[m]);

 if ((R[n]&0x8000)==0) R[n]&=0x0000FFFF;

 else R[n]|=0xFFFF0000;

 if (n!=m) R[m]+=2;
HPM-248

10. Instruction Descriptions
 PC+=2;

 }

 MOVLP(long m, long n) /* MOV.L @Rm+,Rn */

 {

 R[n]=Read_Long(R[m]);

 if (n!=m) R[m]+=4;

 PC+=2;

 }

 MOVBS0(long m, long n) /* MOV.B Rm,@(R0,Rn) */

 {

 Write_Byte(R[n]+R[0],R[m]);

 PC+=2;

 }

 MOVWS0(long m, long n) /* MOV.W Rm,@(R0,Rn) */

 {

 Write_Word(R[n]+R[0],R[m]);

 PC+=2;

 }

 MOVLS0(long m, long n) /* MOV.L Rm,@(R0,Rn) */

 {

 Write_Long(R[n]+R[0],R[m]);

 PC+=2;

 }

 MOVBL0(long m, long n) /* MOV.B @(R0,Rm),Rn */

 {

 R[n]=(long)Read_Byte(R[m]+R[0]);

 if ((R[n]&0x80)==0) R[n]&=0x000000FF;

 else R[n]|=0xFFFFFF00;

 PC+=2;

 }

 MOVWL0(long m, long n) /* MOV.W @(R0,Rm),Rn */

 {

 R[n]=(long)Read_Word(R[m]+R[0]);

 if ((R[n]&0x8000)==0) R[n]&=0x0000FFFF;

 else R[n]|=0xFFFF0000;

 PC+=2;

 }

 MOVLL0(long m, long n) /* MOV.L @(R0,Rm),Rn */

 {

 R[n]=Read_Long(R[m]+R[0]);

 PC+=2;

 }
HPM-249

Dreamcast SH4 Program Manual
Example

MOV R0,R1 ;Before execution R0 = H'FFFFFFFF, R1 = H'00000000

 ;After execution R1 = H'FFFFFFFF

MOV.W R0,@R1 ;Before execution R0 = H'FFFF7F80

 ;After execution(R1) = H'7F80

MOV.B @R0,R1 ;Before execution(R0) = H'80, R1 = H'00000000

 ;After execution R1 = H'FFFFFF80

MOV.W R0,@-R1 ;Before execution R0 = H'AAAAAAAA, (R1) = H'FFFF7F80

 ;After execution R1 = H'FFFF7F7E, (R1) = H'AAAA

MOV.L @R0+,R1 ;Before execution R0 = H'12345670

 ;After execution R0 = H'12345674, R1 = (H'12345670)

MOV.B R1,@(R0,R2) ;Before execution R2 = H'00000004, R0 = H'10000000

 ;After execution R1 = (H'10000004)

MOV.W @(R0,R2),R1 ;Before execution R2 = H'00000004, R0 = H'10000000

 ;After execution R1 = (H'10000004)

Description

This instruction stores immediate data, sign-extended to longword, in general register Rn. In the case of word or
longword data, the data is stored from memory address (PC + 4 + displacement x2) or (PC + 4 + displacement ´ 4).

With word data, the 8-bit displacement is multiplied by two after zero-extension, and so the relative distance from
the table is in the range up to PC + 4 + 510 bytes. The PC value is the address of this instruction.

With longword data, the 8-bit displacement is multiplied by four after zero-extension, and so the relative distance
from the operand is in the range up to PC + 4 + 1020 bytes. The PC value is the address of this instruction. A value
with the lower 2 bits adjusted to B'00 is used in address calculation.

Notes

If a PC-relative load instruction is executed in a delay slot, an illegal slot instruction exception will be generated.

10.56 MOV MOVe constant value Data Transfer Instruction

 Immediate Data Transfer

Format Summary of Operation Instruction Code Execution States T Bit

MOV #imm,Rn imm sign extension Rn 1110nnnniiiiiiii 1 —

MOV.W @(disp,PC),Rn (dispx2+PC+4) → sign
extension Rn

1001nnnndddddddd 1 —

MOV.L @(disp,PC),Rn (dispx4+PC+4) → Rn 1101nnnndddddddd 1 —
HPM-250

10. Instruction Descriptions
Operation

 MOVI(int i, int n) /* MOV #imm,Rn */

 {

 if ((i&0x80)==0) R[n]=(0x000000FF & i);

 else R[n]=(0xFFFFFF00 | i);

 PC+=2;

 }

 MOVWI(d, n) /* MOV.W @(disp,PC),Rn */

 {

 unsigned int disp;

 disp=(unsigned int)(0x000000FF & d);

 R[n]=(int)Read_Word(PC+4+(disp<<1));

 if ((R[n]&0x8000)==0) R[n]&=0x0000FFFF;

 else R[n]|=0xFFFF0000;

 PC+=2;

 }

 MOVLI(int d, int n)/* MOV.L @(disp,PC),Rn */

 {

 unsigned int disp;

 disp=(unsigned int)(0x000000FF & (int)d);

 R[n]=Read_Long((PC&0xFFFFFFFC)+4+(disp<<2));

 PC+=2;

 }

Example

Address

1000 MOV #H'80,R1 ;R1 = H'FFFFFF80

1002 MOV.W IMM,R2 ;R2 = H'FFFF9ABC IMM means (PC + 4 + H'08)

1004 ADD #-1,R0 ;

1006 TST R0,R0 ;

1008 MOV.L @(3,PC),R3 ;R3 = H'12345678

100A BRA NEXT ;Delayed branch instruction

100C NOP

100E IMM .data.w H'9ABC ;

1010 .data.w H'1234 ;

1012 NEXT JMP @R3 ;BRA branch instruction

1014 CMP/EQ #0,R0 ;

.align 4 ;

1018 .data.l H'12345678 ;

101C .data.l H'9ABCDEF0 ;
HPM-251

Dreamcast SH4 Program Manual
Description

This instruction transfers the source operand to the destination. Byte, word, or longword can be speciÞed as the data
size, but the register is always R0. If the transfer data is byte-size, the 8-bit displacement is only zero-extended, so a
range up to +255 bytes can be speciÞed. If the transfer data is word-size, the 8-bit displacement is multiplied by two
after zero-extension, enabling a range up to +510 bytes to be speciÞed. With longword transfer data, the 8-bit
displacement is multiplied by four after zero-extension, enabling a range up to +1020 bytes to be speciÞed.

When the source operand is memory, the loaded data is sign-extended to longword before being stored in the
register.

Notes

When loading, the destination register is always R0.

Operation

MOVBLG(int d) /* MOV.B @(disp,GBR),R0 */

 {

 unsigned int disp;

 disp=(unsigned int)(0x000000FF & d);

 R[0]=(int)Read_Byte(GBR+disp);

 if ((R[0]&0x80)==0) R[0]&=0x000000FF;

 else R[0]|=0xFFFFFF00;

 PC+=2;

 }

 MOVWLG(int d) /* MOV.W @(disp,GBR),R0 */

 {

10.57 MOV MOVe global data Data Transfer Instruction

 Global Data Transfer

Format Summary of Operation Instruction Code Execution States T Bit

MOV.B @(disp,GBR),R0 (disp+GBR) → sign
extension R0

11000100dddddddd 1 —

MOV.W @(disp,GBR), R0 (dispx2+GBR) → sign
extension R0

11000101dddddddd 1 —

MOV.L @(disp,GBR),R0 (dispx4+GBR) → R0 11000110dddddddd 1 —

MOV.B R0,@(disp,GBR) R0 → (disp+GBR) 11000000dddddddd 1 —

MOV.W R0,@(disp,GBR) R0 → (dispx2+GBR) 11000001dddddddd 1 —

MOV.L R0,@(disp,GBR) R0 → (dispx4+GBR) 11000010dddddddd 1 —
HPM-252

10. Instruction Descriptions
 unsigned int disp;

 disp=(unsigned int)(0x000000FF & d);

 R[0]=(int)Read_Word(GBR+(disp<<1));

 if ((R[0]&0x8000)==0) R[0]&=0x0000FFFF;

 else R[0]|=0xFFFF0000;

 PC+=2;

 }

 MOVLLG(int d) /* MOV.L @(disp,GBR),R0 */

 {

 unsigned int disp;

 disp=(unsigned int)(0x000000FF & d);

 R[0]=Read_Long(GBR+(disp<<2));

 PC+=2;

 }

 MOVBSG(int d) /* MOV.B R0,@(disp,GBR) */

 {

 unsigned int disp;

 disp=(unsigned int)(0x000000FF & d);

 Write_Byte(GBR+disp,R[0]);

 PC+=2;

 }

 MOVWSG(int d) /* MOV.W R0,@(disp,GBR) */

 {

 unsigned int disp;

 disp=(unsigned int)(0x000000FF & d);

 Write_Word(GBR+(disp<<1),R[0]);

 PC+=2;

 }

 MOVLSG(int d) /* MOV.L R0,@(disp,GBR) */

 {

 unsigned int disp;

 disp=(unsigned int)(0x000000FF & (long)d);

 Write_Long(GBR+(disp<<2),R[0]);

 PC+=2;

 }
HPM-253

Dreamcast SH4 Program Manual
Example

 MOV.L @(2,GBR),R0 ;Before execution @(GBR+8) = H'12345670

 ;After execution R0 = @H'12345670

 MOV.B R0,@(1,GBR); Before execution R0 = H'FFFF7F80

 ;After execution @(GBR+1) = H'FFFF7F80

Description

This instruction transfers the source operand to the destination. It is ideal for accessing data inside a structure or
stack. Byte, word, or longword can be speciÞed as the data size, but with byte or word data the register is always R0.

If the data is byte-size, the 4-bit displacement is only zero-extended, so a range up to +15 bytes can be speciÞed. If
the data is word-size, the 4-bit displacement is multiplied by two after zero-extension, enabling a range up to +30
bytes to be speciÞed. With longword data, the 4-bit displacement is multiplied by four after zero-extension, enabling
a range up to +60 bytes to be speciÞed. If a memory operand cannot be reached, the previously described @(R0,Rn)
mode must be used.

When the source operand is memory, the loaded data is sign-extended to longword before being stored in
the register.

Notes

When loading byte or word data, the destination register is always R0. Therefore, if the following instruction
attempts to reference R0, it is kept waiting until completion of the load instruction. This allows optimization by
changing the order of instructions.

10.58 MOV MOVe structure data Data Transfer Instruction

Structure Data Transfer

Format Summary of Operation Instruction Code Execution States T Bit

MOV.B R0,@(disp,Rn) R0 → (disp+Rn) 10000000nnnndddd 1 —

MOV.W R0,@(disp,Rn) R0 → (dispx2+Rn) 10000001nnnndddd 1 —

MOV.L Rm,@(disp,Rn) Rm → (dispx4+Rn) 0001nnnnmmmmdddd 1 —

MOV.B @(disp,Rm),R0 (disp+Rm) → sign
extension R0

10000100mmmmdddd 1 —

MOV.W @(disp,Rm),R0 (dispx2+Rm) → sign
extension R0

10000101mmmmdddd 1 —

MOV.L @(disp,Rm),Rn (dispx4+Rm) → Rn 0101nnnnmmmmdddd 1 —
HPM-254

10. Instruction Descriptions
Operation

MOVBS4(long d, long n /* MOV.B R0,@(disp,Rn) */

 {

 long disp;

 disp=(0x0000000F & (long)d);

 Write_Byte(R[n]+disp,R[0]);

 PC+=2;

 }

 MOVWS4(long d, long n) /* MOV.W R0,@(disp,Rn) */

 {

 long disp;

 disp=(0x0000000F & (long)d);

 Write_Word(R[n]+(disp<<1),R[0]);

 PC+=2;

 }

 MOVLS4(long m, long d, long n) /* MOV.L Rm,@(disp,Rn) */

 {

 long disp;

 disp=(0x0000000F & (long)d);

 Write_Long(R[n]+(disp<<2),R[m]);

 PC+=2;

 }

 MOVBL4(long m, long d) /* MOV.B @(disp,Rm),R0 */

 {

 long disp;

 disp=(0x0000000F & (long)d);

 R[0]=Read_Byte(R[m]+disp);

 if ((R[0]&0x80)==0) R[0]&=0x000000FF;

 else R[0]|=0xFFFFFF00;

 PC+=2;

 }

 MOVWL4(long m, long d) /* MOV.W @(disp,Rm),R0 */

 {

 long disp;

 disp=(0x0000000F & (long)d);

 R[0]=Read_Word(R[m]+(disp<<1));

 if ((R[0]&0x8000)==0) R[0]&=0x0000FFFF;

 else R[0]|=0xFFFF0000;

 PC+=2;

 }
HPM-255

Dreamcast SH4 Program Manual

 MOVLL4(long m, long d, long n) /* MOV.L @(disp,Rm),Rn */

 {

 long disp;

 disp=(0x0000000F & (long)d);

 R[n]=Read_Long(R[m]+(disp<<2));

 PC+=2;

 }

Example

MOV.L @(2,R0),R1 ;Before execution @(R0+8) = H'12345670

;After execution R1 = @H'12345670

MOV.L R0,@(H'F,R1) ;Before execution R0 = H'FFFF7F80

;After execution @(R1+60) = H'FFFF7F80

Description

This instruction stores the source operand effective address in general register R0. The 8-bit displacement is
multiplied by four after zero-extension. The PC value is the address of this instruction, but a value with the lower
2 bits adjusted to B'00 is used in address calculation.

Notes

If this instruction is executed in a delay slot, an illegal slot instruction exception will be generated.

Operation

MOVA(int d) /* MOVA @(disp,PC),R0 */

 {

 unsigned int disp;

 disp=(unsigned int)(0x000000FF & d);

 R[0]=(PC&0xFFFFFFFC)+4+(disp<<2);

 PC+=2;

 }

10.59 MOVA MOVe effective address Data Transfer Instruction

 Effective Address Transfer

Format Summary of Operation Instruction Code Execution States T Bit

MOVA @(disp,PC),R0 dispx4+PC+4 → R0 11000111dddddddd 1 —
HPM-256

10. Instruction Descriptions
Example

Address.orgH'1006

1006 MOVA STR,R0 ;STR address ß R0

1008 MOV.B @R0,R1 ;R = “X” ß Position after adjustment of lower 2 bits of PC

100A ADD R4,R5 ;ß Original PC position in MOVA instruction address calculation

.align 4

100C STR:.sdata "XYZP12"

Description

This instruction stores the contents of general register R0 in the memory location indicated by effective address Rn.
This instruction differs from other store instructions as follows.

If write-back is selected for the accessed memory, and a cache miss occurs, the cache block will be allocated but an
R0 data write will be performed to that cache block without performing a block read. Other cache block contents
are undeÞned.

Operation

 MOVCAL(int n) /*MOVCA.L R0,@Rn */

 {

 if ((is_write_back_memory(R[n]))

 && (look_up_in_operand_cache(R[n]) == MISS))

 allocate_operand_cache_block(R[n]);

 Write_Long(R[n], R[0]);

 PC+=2;

 }

Possible Exceptions:

¥ Data TLB miss exception

¥ Data TLB protection violation exception

¥ Initial page write exception

¥ Address error

10.60 MOVCA.L
MOVe with Cache block
Allocation Data Transfer Instruction

Cache Block Allocation

Format Summary of Operation Instruction Code Execution States T Bit

MOVCA.L R0,@Rn R0 → (Rn) 0000nnnn11000011 1 —
HPM-257

Dreamcast SH4 Program Manual

Description

This instruction stores the T bit in general register Rn. When T = 1, Rn = 1; when T = 0, Rn = 0.

Operation

MOVT(long n) /* MOVT Rn */

 {

 R[n]=(0x00000001 & SR);

 PC+=2;

 }

Example

 XOR R2,R2 ;R2 = 0

 CMP/PZ R2 ;T = 1

 MOVT R0 ;R0 = 1

 CLRT ;T = 0

 MOVT R1 ;R1 = 0

Description

This instruction performs 32-bit multiplication of the contents of general registers Rn and Rm, and stores the lower
32 bits of the result in the MACL register. The contents of MACH are not changed.

10.61 MOVT MOVe T bit Data Transfer Instruction

T Bit Transfer

Format Summary of Operation Instruction Code Execution States T Bit

MOVT Rn T → Rn 0000nnnn00101001 1 —

10.62 MUL.L MULtiply Long Arithmetic Instruction

 Double-Precision Multiplication

Format Summary of Operation Instruction Code Execution States T Bit

MUL.L Rm,Rn RnxRm → MACL 0000nnnnmmmm0111 2–5 —
HPM-258

10. Instruction Descriptions
Operation

MULL(long m, long n) /* MUL.L Rm,Rn */

 {

 MACL=R[n]*R[m];

 PC+=2;

 }

Example

MUL.L R0,R1 ;Before execution R0 = H'FFFFFFFE, R1 = H'00005555

;After execution MACL = H'FFFF5556

STS MACL,R0 ;Get operation result

Description

This instruction performs 16-bit multiplication of the contents of general registers Rn and Rm, and stores the 32-bit
result in the MACL register. The multiplication is performed as a signed arithmetic operation. The contents of
MACH are not changed.

Operation

MULS(long m, long n) /* MULS Rm,Rn */

 {

 MACL=((long)(short)R[n]*(long)(short)R[m]);

 PC+=2;

 }

Example

MULS.W R0,R 1 ;Before execution R0 = H'FFFFFFFE, R1 = H'00005555

;After executionM ACL = H'FFFF5556

STS MACL,R0 ;Get operation result

10.63 MULS.W MULtiply as Signed Word Arithmetic Instruction

Signed Multiplication

Format Summary of Operation Instruction Code Execution States T Bit

MULS.W Rm,Rn

MULS Rm,Rn Signed, Rn → Rm → MACL 0010nnnnmmmm1111 2–5 —
HPM-259

Dreamcast SH4 Program Manual

Description

This instruction performs 16-bit multiplication of the contents of general registers Rn and Rm, and stores the 32-bit
result in the MACL register. The multiplication is performed as an unsigned arithmetic operation. The contents of
MACH are not changed.

Operation

MULU(long m, long n) /* MULU Rm,Rn */

 {

 MACL=((unsigned long)(unsigned short)R[n]*

 (unsigned long)(unsigned short)R[m];

 PC+=2;

 }

Example

 MULU.W R0,R1 ;Before execution R0 = H'00000002, R1 = H'FFFFAAAA

 ;After execution MACL = H'00015554

 STS MACL,R0 ;Get operation result

Description

This instruction Þnds the twoÕs complement of the contents of general register Rm and stores the result in Rn. That
is, it subtracts Rm from 0 and stores the result in Rn.

10.64 MULU.W MULtiply as Unsigned Word Arithmetic Instruction

Unsigned Multiplication

Format Summary of Operation Instruction Code Execution States T Bit

MULU.W
MULU

Rm,Rn
Rm,Rn

Unsigned, Rn x Rm → MACL 0010nnnnmmmm1110 2–5 —

10.65 NEG NEGate Arithmetic Instruction

Sign Inversion

Format Summary of Operation Instruction Code Execution States T Bit

NEG Rm,Rn 0-Rm → Rn 0110nnnnmmmm1011 1 —
HPM-260

10. Instruction Descriptions
Operation

 NEG(long m, long n) /* NEG Rm,Rn */

 {

 R[n]=0-R[m];

 PC+=2;

 }

Example

 NEG R0,R1 ;Before execution R0 = H'00000001

 ;After execution R1 = H'FFFFFFFF

Description

This instruction subtracts the contents of general register and the T bit from 0 and stores the result in Rn. A borrow
resulting from the operation is reßected in the T bit. The NEGC instruction is used for sign inversion of a value
exceeding 32 bits.

Operation

NEGC(long m, long n) /* NEGC Rm,Rn */

 {

 unsigned long temp;

 temp=0-R[m];

 R[n]=temp-T;

 if (0<temp) T=1;

 else T=0;

 if (temp<R[n]) T=1;

 PC+=2;

 }

Example

CLRT ;Sign inversion of R0:R1 (64 bits)

NEGC R1,R1 ;Before execution R1 = H'00000001, T = 0

;After execution R1 = H'FFFFFFFF, T = 1

NEGC R0,R0 ;Before execution R0 = H'00000000, T = 1

;After execution R0 = H'FFFFFFFF, T = 1

10.66 NEGC NEGate with Carry Arithmetic Instruction

Sign Inversion with Borrow

Format Summary of Operation Instruction Code Execution States T Bit

NEGC Rm,Rn 0 – Rm – T → Rn, borrow → T 0110nnnnmmmm1010 1 Borrow
HPM-261

Dreamcast SH4 Program Manual
Description

This instruction simply increments the program counter (PC), advancing the processing ßow to execution of the
next instruction.

Operation

NOP() /* NOP */

 {

 PC+=2;

 }

Example

NOP ;Time equivalent to one execution state elapses.

Description

This instruction Þnds the oneÕs complement of the contents of general register Rm and stores the result in Rn. That
is, it inverts the Rm bits and stores the result in Rn.

Operation

NOT(long m, long n) /* NOT Rm,Rn */

 {

 R[n]=~R[m];

 PC+=2;

 }

10.67 NOP No OPeration System Control Instruction

No Operation

Format Summary of Operation Instruction Code Execution States T Bit

NOP No operation 0000000000001001 1 —

10.68 NOT NOT-logical complement Logical Instruction

Bit Inversion

Format Summary of Operation Instruction Code Execution States T Bit

NOT Rm,Rn ~Rm → Rn 0110nnnnmmmm0111 1 —
HPM-262

10. Instruction Descriptions
Example

 NOT R0,R1 ;Before execution R0 = H'AAAAAAAA

 ;After execution R1 = H'55555555

Description

This instruction accesses data using the contents indicated by effective address Rn. In the case of a hit in the cache,
the corresponding cache block is invalidated (the V bit is cleared to 0). If there is unwritten information (U bit = 1),
write-back is not performed even if write-back mode is selected. No operation is performed in the case of a cache
miss or an access to a non-cache area.

Operation

OCBI(int n) /* OCBI @Rn */

 {

 invalidate_operand_cache_block(R[n]);

 PC+=2;

 }

Possible Exceptions:

¥ Data TLB miss exception

¥ Data TLB protection violation exception

¥ Initial page write exception

¥ Address error

Note that the above exceptions are generated even if OCBI does not operate.

10.69 OCBI Operand Cache Block Invalidate Data Transfer Instruction

Cache Block Invalidation

Format Summary of Operation Instruction Code Execution States T Bit

OCBI @Rn Operand cache block invalidation 0000nnnn10010011 1 —

10.70 OCBP Operand Cache Block Purge Data Transfer Instruction

Cache Block Purge

Format Summary of Operation Instruction Code Execution States T Bit

OCBP @Rn Operand cache block purge 0000nnnn10100011 1 —
HPM-263

Dreamcast SH4 Program Manual
Description

This instruction accesses data using the contents indicated by effective address Rn. If the cache is hit and there is
unwritten information (U bit = 1), the corresponding cache block is written back to external memory and that block
is invalidated (the V bit is cleared to 0). If there is no unwritten information (U bit = 0), the block is simply
invalidated. No operation is performed in the case of a cache miss or an access to a non-cache area.

Operation

OCBP(int n) /* OCBP @Rn */

 {

 if(is_dirty_block(R[n])) write_back(R[n])

 invalidate_operand_cache_block(R[n]);

 PC+=2;

 }

Possible Exceptions:

¥ Data TLB miss exception

¥ Data TLB protection violation exception

¥ Address error

Note that the above exceptions are generated even if OCBP does not operate.

Description

This instruction accesses data using the contents indicated by effective address Rn. If the cache is hit and there is
unwritten information (U bit = 1), the corresponding cache block is written back to external memory and that block
is cleaned (the U bit is cleared to 0). In other cases (i.e. in the case of a cache miss or an access to a non-cache area,
or if the block is already clean), no operation is performed.

Operation

OCBWB(int n) /* OCBWB @Rn */

 {

 if(is_dirty_block(R[n])) write_back(R[n]);

 PC+=2;

 }

10.71 OCBWB Operand Cache Block Write Back Data Transfer Instruction

Cache Block Write-Back

Format Summary of Operation Instruction Code Execution States T Bit

OCBWB @Rn Operand cache block
write-back

0000nnnn11010011 1 —
HPM-264

10. Instruction Descriptions
Possible Exceptions:

¥ Data TLB miss exception

¥ Data TLB protection violation exception

¥ Address error

Note that the above exceptions are generated even if OCBWB does not operate.

Description

This instruction ORs the contents of general registers Rn and Rm and stores the result in Rn.

This instruction can be used to OR general register R0 contents with zero-extended 8-bit immediate data, or, in
indexed GBR indirect addressing mode, to OR 8-bit memory with 8-bit immediate data.

Operation

OR(long m, long n) /* OR Rm,Rn */

 {

 R[n]|=R[m];

 PC+=2;

 }

ORI(long i) /* OR #imm,R0 */

 {

 R[0]|=(0x000000FF & (long)i);

 PC+=2;

 }

ORM(long i) /* OR.B #imm,@(R0,GBR) */

 {

 long temp;

10.72 OR OR logical Logical Instruction

Logical OR

Format Summary of Operation Instruction Code Execution States T Bit

OR Rm,Rn Rn | Rm → Rn 0010nnnnmmmm1011 1 —

OR #imm,R0 R0 | imm → R0 11001011iiiiiiii 1 —

OR.B #imm,@(R0,GBR) (R0+GBR) | imm → (R0+GBR) 11001111iiiiiiii 4 —
HPM-265

Dreamcast SH4 Program Manual

 temp=(long)Read_Byte(GBR+R[0]);

 temp|=(0x000000FF & (long)i);

 Write_Byte(GBR+R[0],temp);

 PC+=2;

 }

Example

OR R0,R1 ;Before execution R0 = H'AAAA5555, R1 = H'55550000

;After execution R1 = H'FFFF5555

OR #H'F0,R0 ;Before execution R0 = H'00000008

 ;After execution R0 = H'000000F8

OR.B #H'50,@(R0,GBR) ;Before execution @(R0,GBR) = H'A5

 ;After execution @(R0,GBR) = H'F5

Description

This instruction reads a 32-byte data block starting at a 32-byte boundary into the operand cache. The lower 5 bits
of the address speciÞed by Rn are masked to zero.

This instruction does not generate address-related errors. In the event of an error, the PREF instruction is treated as
an NOP (no operation) instruction.

Operation

PREF(int n) /* PREF */

 {

 PC+=2;

 }

10.73 PREF PREFetch data to cache Data Transfer Instruction

 Prefetch to Data Cache

Format Summary of Operation Instruction Code Execution States T Bit

PREF @Rn Prefetch cache block 0000nnnn10000011 1 —
HPM-266

10. Instruction Descriptions
Example

MOV.LSOFT_PF,R1 ;R1 address is SOFT_PF

PREF @R1 ;Load SOFT_PF data into on-chip cache

.align 32

SOFT_PF: .data.l H'12345678

.data.l H'9ABCDEF0

.data.l H'AAAA5555

.data.l H'5555AAAA

.data.l H'11111111

.data.l H'22222222

.data.l H'33333333

.data.l H'44444444

Description

This instruction rotates the contents of general register Rn one bit to the left through the T bit, and stores the result
in Rn. The bit rotated out of the operand is transferred to the T bit.

Operation

ROTCL(long n) /* ROTCL Rn */

 {

 long temp;

 if ((R[n]&0x80000000)==0) temp=0;

 else temp=1;

 R[n]<<=1;

 if (T==1) R[n]|=0x00000001;

 else R[n]&=0xFFFFFFFE;

 if (temp==1) T=1;

 else T=0;

 PC+=2;

 }

10.74 ROTCL ROTate with Carry Left Shift Instruction

 One-Bit Left Rotation through T Bit

Format Summary of Operation Instruction Code Execution States T Bit

ROTCL Rn T ß Rn ß T 0100nnnn00100100 1 MSB

MSB LSB

ROTCL T
HPM-267

Dreamcast SH4 Program Manual
Example

 ROTCL R0 ;Before execution R0 = H'80000000, T = 0

;After executionR0 = H'00000000, T = 1

Description

This instruction rotates the contents of general register Rn one bit to the right through the T bit, and stores the result
in Rn. The bit rotated out of the operand is transferred to the T bit.

Operation

ROTCR(long n) /* ROTCR Rn */

 {

 long temp;

 if ((R[n]&0x00000001)==0) temp=0;

 else temp=1;

 R[n]>>=1;

 if (T==1) R[n]|=0x80000000;

 else R[n]&=0x7FFFFFFF;

 if (temp==1) T=1;

 else T=0;

 PC+=2;

 }

10.75 ROTCR ROTate with Carry Right Shift Instruction

 One-Bit Right Rotation through T Bit

Format Summary of Operation Instruction Code Execution States T Bit

ROTCR Rn T → Rn → T 0100nnnn00100101 1 LSB

T

MSB LSB

ROTCR
HPM-268

10. Instruction Descriptions
Example

ROTCRR0 ;Before execution R0 = H'00000001, T = 1

;After execution R0 = H'80000000, T = 1

Description

This instruction rotates the contents of general register Rn one bit to the left, and stores the result in Rn. The bit
rotated out of the operand is transferred to the T bit.

Operation

ROTL(long n) /* ROTL Rn */

 {

 if ((R[n]&0x80000000)==0) T=0;

 else T=1;

 R[n]<<=1;

 if (T==1) R[n]|=0x00000001;

 else R[n]&=0xFFFFFFFE;

 PC+=2;

 }

Example

ROTL R0;Before executionR0 = H'80000000, T = 0

 ;After execution R0 = H'00000001, T = 1

10.76 ROTL ROTate Left Shift Instruction

One-Bit Left Rotation

Format Summary of Operation Instruction Code Execution States T Bit

ROTL Rn T ß Rn ß MSB 0100nnnn00000100 1 MSB

10.77 ROTR ROTate Right Shift Instruction

One-Bit Right Rotation

 Format Summary of Operation Instruction Code Execution States T Bit

 ROTR Rn LSB → Rn → T 0100nnnn00000101 1 LSB

MSB LSB

ROTL T
HPM-269

Dreamcast SH4 Program Manual
Description

This instruction rotates the contents of general register Rn one bit to the right, and stores the result in Rn. The bit
rotated out of the operand is transferred to the T bit.

Operation

ROTR(long n) /* ROTR Rn */

 {

 if ((R[n]&0x00000001)==0) T=0;

 else T=1;

 R[n]>>=1;

 if (T==1) R[n]|=0x80000000;

 else R[n]&=0x7FFFFFFF;

 PC+=2;

 }

Example

ROTR R0 ;Before execution R0 = H'00000001, T = 0

 ;After execution R0 = H'80000000, T = 1

Description

This instruction returns from an exception or interrupt handling routine by restoring the PC and SR values from
SPC and SSR. Program execution continues from the address speciÞed by the restored PC value.

RTE is a privileged instruction, and can only be used in privileged mode. Use of this instruction in user mode will
cause an illegal instruction exception.

10.78 RTE ReTurn from Exception System Control Instruction

Return from Exception Handling (Privileged Instruction)
Delayed Branch Instruction

Format Summary of Operation Instruction Code Execution States T Bit

RTE SSR → SR, SPC→ PC 0000000000101011 5 —
HPM-270

10. Instruction Descriptions
Notes

As this is a delayed branch instruction, the instruction following the RTE instruction is executed before the branch
destination instruction.

Interrupts are not accepted between this instruction and the following instruction. An exception must not be
generated by the instruction in this instructionÕs delay slot. If the following instruction is a branch instruction, it is
identiÞed as a slot illegal instruction.

If this instruction is located in the delay slot immediately following a delayed branch instruction, it is identiÞed as
a slot illegal instruction.

The SR value accessed by the instruction in the RTE delay slot is the value restored from SSR by the RTE instruction.
The SR and MD values deÞned prior to RTE execution are used to fetch the instruction in the RTE delay slot.

Operation

RTE() /* RTE */

 {

 unsigned int temp;

 temp=PC;

 SR=SSR;

 PC=SPC;

 Delay_Slot(temp+2);

 }

Example

 RTE ;Return to original routine.

 ADD #8,R14 ;Executed before branch.

Note: In a delayed branch, the actual branch operation occurs after execution of the slot instruction, but
instruction execution (register updating, etc.) is in fact performed in delayed branch instruction → delay slot
instruction order. For example, even if the register holding the branch destination address is modiÞed in
the delay slot, the branch destination address will still be the register contents prior to the modiÞcation.

Description

This instruction returns from a subroutine procedure by restoring the PC from PR. Processing continues from the
address indicated by the restored PC value. This instruction can be used to return from a subroutine procedure
called by a BSR or JSR instruction to the source of the call.

10.79 RTS ReTurn from Subroutine Branch Instruction

Return from Subroutine Procedure Delayed Branch Instruction

Format Summary of Operation Instruction Code Execution States T Bit

RTS PR → PC 0000000000001011 2 —
HPM-271

Dreamcast SH4 Program Manual
Notes

As this is a delayed branch instruction, the instruction following this instruction is executed before the branch
destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the following instruction is a
branch instruction, it is identiÞed as a slot illegal instruction.

The instruction that restores PR must be executed before the RTS instruction. This restore instruction cannot be in
the RTS delay slot.

Operation

RTS() /* RTS */

 {

 unsigned int temp;

 temp=PC;

 PC=PR;

 Delay_Slot(temp+2);

 }

Example

MOV.LTABLE,R3 ;R3 = TRGET address

JSR @R3 ; Branch to TRGET.

NOP ;NOP executed before branch.

ADD R0,R1 ;ß Subroutine procedure return destination (PR contents)

........

TABLE: .data.l TRGET ;Jump table

........

TRGET: MOV R1,R0 ;ß Entry to procedure

RTS ;PR contents → PC

MOV #12,R0 ;MOV executed before branch.

Description

This instruction sets the S bit to 1.

10.80 SETS SET S bit System Control Instruction

 S Bit Setting

 Format Summary of Operation Instruction Code Execution States T Bit

 SETS 1 → S 0000000001011000 1 1
HPM-272

10. Instruction Descriptions
Operation

SETS() /* SETS */

 {

 S=1;

 PC+=2;

 }

Example

SETS ;Before execution S = 0

;After execution S = 1

Description

This instruction sets the T bit to 1.

Operation

SETT() /* SETT */

 {

 T=1;

 PC+=2;

 }

Example

 SETT;Before execution T = 0

 ;After execution T = 1

10.81 SETT SET T bit System Control Instruction

T Bit Setting

 Format Summary of Operation Instruction Code Execution States T Bit

SETT 1 → T 0000000000011000 1 1

10.82 SHAD SHift Arithmetic Dynamically Shift Instruction

Dynamic Arithmetic Shift

Format Summary of Operation Instruction Code Execution States T Bit

SHAD Rm, Rn When Rm ≥ 0, Rn << Rm → Rn
When Rm < 0, Rn >> Rm →
[MSB → Rn]

0100nnnnmmmm1100 1 —
HPM-273

Dreamcast SH4 Program Manual
Description

This instruction arithmetically shifts the contents of general register Rn. General register Rm speciÞes the shift
direction and the number of bits to be shifted.

Rn register contents are shifted to the left if the Rm register value is positive, and to the right if negative. In a shift
to the right, the MSB is added at the upper end.

The number of bits to be shifted is speciÞed by the lower 5 bits (bits 4 to 0) of the Rm register. If the value is negative
(MSB = 1), the Rm register is represented as a twoÕs complement. The left shift range is 0 to 31, and the right shift
range, 1 to 32.

Operation

SHAD(int m,n) /*SHAD Rm,Rn */

 {

 int sgn=R[m] & 0x80000000;

 if (sgn==0)

 R[n] <<= (R[m] & 0x1F);

 else if ((R[m] & 0x1F) == 0) {

 if ((R[n] & 0x80000000) == 0)

 R[n] = 0;

 else

 R[n] = 0xFFFFFFFF;

 }

 else

 R[n]=(long)R[n] >> ((~R[m] & 0x1F)+1);

 PC+=2;

 }

Example

SHADR1,R2 ;Before execution R1 = H'FFFFFFEC, R2 = H'80180000

;After execution R1 = H'FFFFFFEC, R2 = H'FFFFF801

SHAD R3,R4 ;Before execution R3 = H'00000014, R4 = H'FFFFF801

;After execution R3 = H'00000014, R4 = H'80100000

MSB LSB

MSB LSB

0

Rm 0

Rm 0
HPM-274

10. Instruction Descriptions
Description

This instruction arithmetically shifts the contents of general register Rn one bit to the left, and stores the result in
Rn. The bit shifted out of the operand is transferred to the T bit.

Operation

SHAL(long n) /* SHAL Rn (Same as SHLL) */

 {

 if ((R[n]&0x80000000)==0) T=0;

 else T=1;

 R[n]<<=1;

 PC+=2;

 }

Example

SHAL R0 ;Before executionR0 = H'80000001, T = 0

;After executionR0 = H'00000002, T = 1

10.83 SHAL SHift Arithmetic Left Shift Instruction

One-Bit Left Arithmetic Shift

Format Summary of Operation Instruction Code Execution States T Bit

SHAL Rn T ß Rn ß 0 0100nnnn00100000 1 MSB

10.84 SHAR SHift Arithmetic Right Shift Instruction

One-Bit Right Arithmetic Shift

Format Summary of Operation Instruction Code Execution States T Bit

SHAR Rn MSB → Rn → T 0100nnnn00100001 1 LSB

MSB LSB
SHAL

T 0
HPM-275

Dreamcast SH4 Program Manual
Description

This instruction arithmetically shifts the contents of general register Rn one bit to the right, and stores the result in
Rn. The bit shifted out of the operand is transferred to the T bit.

Operation

SHAR(long n) /* SHAR Rn */

 {

 long temp;

 if ((R[n]&0x00000001)==0) T=0;

 else T=1;

 if ((R[n]&0x80000000)==0) temp=0;

 else temp=1;

 R[n]>>=1;

 if (temp==1) R[n]|=0x80000000;

 else R[n]&=0x7FFFFFFF;

 PC+=2;

 }

Example

SHAR R0;Before execution R0 = H'80000001, T = 0

\ ;After execution R0 = H'C0000000, T = 1

Description

This instruction logically shifts the contents of general register Rn. General register Rm speciÞes the shift direction
and the number of bits to be shifted.

Rn register contents are shifted to the left if the Rm register value is positive, and to the right if negative. In a shift
to the right, 0s are added at the upper end.

10.85 SHLD SHift Logical Dynamically Shift Instruction

Dynamic Logical Shift

Format Summary of Operation Instruction Code Execution States T Bit

SHLD Rm, Rn When Rm ≥ 0, Rn << Rm → Rn
When Rm < 0, Rn >> Rm → [0 → Rn]

0100nnnnmmmm1101 1 —

MSB LSB

SHAR T
HPM-276

10. Instruction Descriptions
The number of bits to be shifted is speciÞed by the lower 5 bits (bits 4 to 0) of the Rm register. If the value is negative
(MSB = 1), the Rm register is represented as a twoÕs complement. The left shift range is 0 to 31, and the right shift
range, 1 to 32.

Operation

SHLD(int m,n)/*SHLD Rm,Rn */

 {

 int sgn = R[m] & 0x80000000;

 if (sgn == 0)

 R[n] <<= (R[m] & 0x1F);

 else if ((R[m] & 0x1F) == 0)

 R[n] = 0;

 else

 R[n]=(unsigned)R[n] >> ((~R[m] & 0x1F)+1);

 PC+=2;

 }

Example

SHLD R1, R2;Before execution R1 = H'FFFFFFEC, R2 = H'80180000

;After execution R1 = H'FFFFFFEC, R2 = H'00000801

SHLD R3, R4 ;Before execution R3 = H'00000014, R4 = H'FFFFF801

 ;After execution R3 = H'00000014, R4 = H'80100000

10.86 SHLL SHift Logical Left Shift Instruction

One-Bit Left Logical Shift

Format Summary of Operation Instruction Code Execution States T Bit

SHLL Rn T ß Rn ß 0 0100nnnn00000000 1 MSB

MSB LSB

MSB

0

LSB

0

Rm 0

Rm 0
HPM-277

Dreamcast SH4 Program Manual
Description

This instruction logically shifts the contents of general register Rn one bit to the left, and stores the result in Rn. The
bit shifted out of the operand is transferred to the T bit.

Operation

SHLL(long n) /* SHLL Rn (Same as SHAL) */

 {

 if ((R[n]&0x80000000)==0) T=0;

 else T=1;

 R[n]<<=1;

 PC+=2;

 }

Example

SHLL R0;Before execution R0 = H'80000001, T = 0

;After execution R0 = H'00000002, T = 1

10.87 SHLLn n bits SHift Logical Left Shift Instruction

 n-Bit Left Logical Shift

Format Summary of Operation Instruction Code Execution States T Bit

SHLL2 Rn Rn<<2 → Rn 0100nnnn00001000 1 —

SHLL8 Rn Rn<<8 → Rn 0100nnnn00011000 1 —

SHLL16 Rn Rn<<16 → Rn 0100nnnn00101000 1 —

MSB LSB

0
SHLL

T

HPM-278

10. Instruction Descriptions
Description

This instruction logically shifts the contents of general register Rn 2, 8, or 16 bits to the left, and stores the result in
Rn. The bits shifted out of the operand are discarded.

Operation

SHLL2(long n) /* SHLL2 Rn */

 {

 R[n]<<=2;

 PC+=2;

 }

SHLL8(long n) /* SHLL8 Rn */

 {

 R[n]<<=8;

 PC+=2;

 }

SHLL16(long n) /* SHLL16 Rn */

 {

 R[n]<<=16;

 PC+=2;

 }

MSB LSB

0

SHLL8

SHLL16 MSB LSB

0

MSB LSB

0

SHLL2
HPM-279

Dreamcast SH4 Program Manual
Example

SHLL2 R0 ;Before executionR0 = H'12345678

;After execution R0 = H'48D159E0

SHLL8 R0 ;Before execution R0 = H'12345678

;After execution R0 = H'34567800

SHLL16 R0 ;Before execution R0 = H'12345678

;After execution R0 = H'56780000

Description

This instruction logically shifts the contents of general register Rn one bit to the right, and stores the result in Rn.
The bit shifted out of the operand is transferred to the T bit.

Operation

SHLR(long n) /* SHLR Rn */

 {

 if ((R[n]&0x00000001)==0) T=0;

 else T=1;

 R[n]>>=1;

 R[n]&=0x7FFFFFFF;

 PC+=2;

 }

10.88 SHLR SHift Logical Right Shift Instruction

 One-Bit Right Logical Shift

 Format Summary of Operation Instruction Code Execution States T Bit

 SHLR Rn 0 → Rn → T 0100nnnn00000001 1 LSB

MSB LSB
SHLR

T0
HPM-280

10. Instruction Descriptions
Example

SHLRR0 ;Before execution R0 = H'80000001, T = 0

 ;After execution R0 = H'40000000, T = 1

Description

This instruction logically shifts the contents of general register Rn 2, 8, or 16 bits to the right, and stores the result
in Rn. The bits shifted out of the operand are discarded.

10.89 SHLRn n bits SHift Logical Right Shift Instruction

 n-Bit Right Logical Shift

Format Summary of Operation Instruction Code Execution States T Bit

SHLR2 Rn Rn>>2 → Rn 0100nnnn00001001 1 —

SHLR8 Rn Rn>>8 → Rn 0100nnnn00011001 1 —

SHLR16 Rn Rn>>16 → Rn 0100nnnn00101001 1 —

MSB LSB

0

SHLR8

SHLR16 MSB LSB

0

MSB LSB

0

SHLR2
HPM-281

Dreamcast SH4 Program Manual
Operation

SHLR2(long n) /* SHLR2 Rn */

 {

 R[n]>>=2;

 R[n]&=0x3FFFFFFF;

 PC+=2;

 }

 SHLR8(long n) /* SHLR8 Rn */

 {

 R[n]>>=8;

 R[n]&=0x00FFFFFF;

 PC+=2;

 }

 SHLR16(long n) /* SHLR16 Rn */

 {

 R[n]>>=16;

 R[n]&=0x0000FFFF;

 PC+=2;

 }

Example

SHLR2 R0 ;Before executionR0 = H'12345678

;After execution R0 = H'048D159E

SHLR8 R0 ;Before execution R0 = H'12345678

;After execution R0 = H'00123456

SHLR16 R0 ;Before execution R0 = H'12345678

;After execution R0 = H'00001234

Description

This instruction places the CPU in the power-down state.

In power-down mode, the CPU retains its internal state, but immediately stops executing instructions and waits for
an interrupt request. When it receives an interrupt request, the CPU exits the power-down state.

SLEEP is a privileged instruction, and can only be used in privileged mode. Use of this instruction in user mode will
cause an illegal instruction exception.

10.90 SLEEP SLEEP System Control Instruction

Transition to Power-Down Mode (Privileged Instruction)

Format Summary of Operation Instruction Code Execution States T Bit

SLEEP Sleep 0000000000011011 4 —
HPM-282

10. Instruction Descriptions
Notes

SLEEP performance depends on the standby control register (STBCR). See section 9, Power-Down Modes, for
details.

Operation

SLEEP() /* SLEEP */

 {

 Sleep_standby();

 }

Example

SLEEP ;Transition to power-down mode

10.91 STC STore Control register System Control Instruction

Store from Control Register (Privileged Instruction)

Format Summary of Operation Instruction Code Execution States T Bit

STC SR, Rn SR → Rn 0000nnnn00000010 2 —

STC GBR, Rn GBR → Rn 0000nnnn00010010 2 —

STC VBR, Rn VBR → Rn 0000nnnn00100010 2 —

STC SSR , Rn SSR → Rn 0000nnnn00110010 2 —

STC SPC, Rn SPC → Rn 0000nnnn01000010 2 —

STC SGR, Rn SGR → Rn 0000nnnn00111010 3 —

STC DBR , Rn DBR → Rn 0000nnnn11111010 2 —

STC R0_BANK, Rn R0_BANK → Rn 0000nnnn10000010 2 —

STC R1_BANK, Rn R1_BANK → Rn 0000nnnn10010010 2 —

STC R2_BANK, Rn R2_BANK → Rn 0000nnnn10100010 2 —

STC R3_BANK, Rn R3_BANK → Rn 0000nnnn10110010 2 —

STC R4_BANK, Rn R4_BANK → Rn 0000nnnn11000010 2 —

STC R5_BANK, Rn R5_BANK → Rn 0000nnnn11010010 2 —

STC R6_BANK, Rn R6_BANK → Rn 0000nnnn11100010 2 —

STC R7_BANK, Rn R7_BANK → Rn 0000nnnn11110010 2 —

STC.L SR, @-Rn Rn-4 → Rn, SR → (Rn) 0100nnnn00000011 2 —
HPM-283

Dreamcast SH4 Program Manual
Description

This instruction stores control register SR, GBR, VBR, SSR, SPC, S6R, DBR or Rm_BANK (m = 0Ð7) in the destination.

Rm_BANK operands are speciÞed by the RB bit of the SR register:

when the RB bit is 1 Rm_BANK0 is accessed,

when the RB bit is 0 Rm_BANK1 is accessed.

Notes

STC/STC.L can only be used in privileged mode excepting STC GBR, Rn, STC.L GBR, @-Rn. Use of these
instructions in user mode will cause illegal instruction exceptions.

STC.L GBR, @-Rn Rn-4 → Rn, GBR → (Rn) 0100nnnn00010011 2 —

STC.L VBR, @-Rn Rn-4 → Rn, VBR → (Rn) 0100nnnn00100011 2 —

STC.L SSR, @-Rn Rn-4 → Rn, SSR → (Rn) 0100nnnn00110011 2 —

STC.L SPC, @-Rn Rn-4 → Rn, SPC → (Rn) 0100nnnn01000011 2 —

STC.L SGR, @-Rn Rn-4 → Rn, SGR → (Rn) 0100nnnn00110010 3 —

STC.L DBR, @-Rn Rn-4 → Rn, DBR → (Rn) 0100nnnn11110010 2 —

STC.L R0_BANK, @-Rn Rn-4 → Rn, R0_BANK → (Rn) 0100nnnn10000011 2 —

STC.L R1_BANK, @-Rn Rn-4 → Rn, R1_BANK → (Rn) 0100nnnn10010011 2 —

STC.L
R2_BAN
K, @-Rn

Rn-4 → Rn, R2_BANK → (Rn) 0100nnnn10100011 2 —

STC.L
R3_BAN
K, @-Rn

Rn-4 → Rn, R3_BANK → (Rn) 0100nnnn10110011 2 —

STC.L
R4_BAN
K, @-Rn

Rn-4 → Rn, R4_BANK → (Rn) 0100nnnn11000011 2 —

STC.L
R5_BAN
K, @-Rn

Rn-4 → Rn, R5_BANK → (Rn) 0100nnnn11010011 2 —

STC.L
R6_BAN
K, @-Rn

Rn-4 → Rn, R6_BANK → (Rn) 0100nnnn11100011 2 —

STC.L
R7_BANK
, @-Rn

Rn-4 → Rn, R7_BANK → (Rn) 0100nnnn11110011 2 —

10.91 STC STore Control register System Control Instruction
HPM-284

10. Instruction Descriptions
Operation

STCSR(int n) /* STC SR,Rn : Privileged */

 {

 R[n]=SR;

 PC+=2;

 }

 STCGBR(int n) /* STC GBR,Rn */

 {

 R[n]=SGR;

 PC+=2;

 }

 STCVBR(int n) /* STC VBR,Rn : Privileged */

 {

 R[n]=VBR;

 PC+=2;

 }

 STCSSR(int n) /* STC SSR,Rn : Privileged */

 {

 R[n]=SSR;

 PC+=2;

 }

 STCSPC(int n) /* STC SPC,Rn : Privileged */

 {

 R[n]=SPC;

 PC+=2;

 }

 STCSGR(int n) /* STC SGR,Rn : Privileged */

 {

 R[n]=SGR;

 PC+=2;

 }

 STCDBR(int n) /* STC DBR,Rn : Privileged */

 {

 R[n]=DBR;

 PC+=2;

 }

 STCRm_BANK(int n) /* STC Rm_BANK,Rn : Privileged */

 /* m=0–7 */

 {

 R[n]=Rm_BANK;

 PC+=2;
HPM-285

Dreamcast SH4 Program Manual
 }

 STCMSR(int n) /* STC.L SR,@-Rn : Privileged */

 {

 R[n]–=4;

 Write_Long(R[n],SR);

 PC+=2;

 }

 STCMGBR(int n) /* STC.L GBR,@–Rn */

 {

 R[n]–=4;

 Write_Long(R[n],GBR);

 PC+=2;

 }

 STCMVBR(int n) /* STC.L VBR,@-Rn : Privileged */

 {

 R[n]–=4;

 Write_Long(R[n],VBR);

 PC+=2;

 }

 STCMSSR(int n) /* STC.L SSR,@-Rn : Privileged */

 {

 R[n]–=4;

 Write_Long(R[n],SSR);

 PC+=2;

 }

 STCMSPC(int n) /* STC.L SPC,@-Rn : Privileged */

 {

 R[n]–=4;

 Write_Long(R[n],SPC);

 PC+=2;

 }

 STCMSGR(int n) /* STC.L SGR,@-Rn : Privileged */

 {

 R[n]–=4;

 Write_Long(R[n],SGR);

 PC+=2;

 }

 STCMDBR(int n) /* STC.L DBR,@-Rn : Privileged */

 {

 R[n]–=4;

 Write_Long(R[n],DBR);

 PC+=2;

 }
HPM-286

10. Instruction Descriptions

 STCMRm_BANK(int n) /* STC.L Rm_BANK,@-Rn : Privileged */

/* m=0–7 */

 {

 R[n]–=4;

 Write_Long(R[n],Rm_BANK);

 PC+=2;

 }

Possible Exceptions:

¥ General illegal instruction exception

¥ Slot illegal instruction exception

¥ Data TLB miss exception

¥ Data TLB protection violation exception

¥ Address error

Description

This instruction stores system register MACH, MACL, or PR in the destination.

10.92.1 STS STore System register System Control Instruction

Store from System Register

Format Summary of Operation Instruction Code Execution States T Bit

STS MACH,Rn MACH → Rn 0000nnnn00001010 1 —

STS MACL,Rn MACL → Rn 0000nnnn00011010 1 —

STS PR,Rn PR → Rn 0000nnnn00101010 1 —

STS.L MACH,@-Rn Rn-4 → Rn, MACH → (Rn) 0100nnnn00000010 1 —

STS.L MACL,@-Rn Rn-4 → Rn, MACL → (Rn) 0100nnnn00010010 1 —

STS.L PR,@-Rn Rn-4 → Rn, PR → (Rn) 0100nnnn00100010 1 —
HPM-287

Dreamcast SH4 Program Manual
Operation

STSMACH(int n) /* STS MACH,Rn */

 {

 R[n]=MACH;

 PC+=2;

 }

 STSMACL(int n) /* STS MACL,Rn */

 {

 R[n]=MACL;

 PC+=2;

 }

 STSPR(int n) /* STS PR,Rn */

 {

 R[n]=PR;

 PC+=2;

 }

 STSMMACH(int n) /* STS.L MACH,@-Rn */

 {

 R[n]–=4;

 Write_Long(R[n],MACH);

 PC+=2;

 }

 STSMMACL(int n) /* STS.L MACL,@-Rn */

 {

 R[n]–=4;

 Write_Long(R[n],MACL);

 PC+=2;

 }

 STSMPR(int n) /* STS.L PR,@-Rn */

 {

 R[n]–=4;

 Write_Long(R[n],PR);

 PC+=2;

 }

Possible Exceptions:

¥ Data TLB miss exception

¥ Data TLB protection violation exception

¥ Address error
HPM-288

10. Instruction Descriptions
Example

STS MACH,R0 ; Before executionR0 = H'FFFFFFFF, MACH = H'00000000

; After execution R0 = H'00000000

STS.L PR,@-R15 ; Before execution R15 = H'10000004

; After execution R15 = H'10000000, (R15) = PR

Description

This instruction stores FPU system register FPUL or FPSCR in the destination.

Operation

STS(int n, int FPUL) /* STS FPUL,Rn */
 {
 R[n]= *FPUL;
 PC+=2;
 }
 STS_SAVE(int n, int FPUL) /* STS.L FPUL,@-Rn */
 {
 R[n]-=4;
 Write_Long(R[n],*FPUL) ;
 PC+=2;
 }
 STS(int n) /* STS FPSCR,Rn */
 {
 R[n]=FPSCR&0x003FFFFF;
 PC+=2;
 }
 STS_RESTORE(int n) /* STS.L FPSCR,@-Rn */
 {
 R[n]-=4;
 Write_Long(R[n],FPSCR&0x003FFFFF)
 PC+=2;
 }

10.92.2 STS STore from FPU System register System Control Instruction

 Store from FPU System Register

Format Summary of Operation Instruction Code Execution States T Bit

STS FPUL,Rn FPUL → Rn 0000nnnn01011010 1 —

STS FPSCR,Rn FPSCR → Rn 0000nnnn01101010 1 —

STS.L FPUL,@-Rn Rn-4 → Rn, FPUL → (Rn) 0100nnnn01010010 1 —

STS.L FPSCR,@-Rn Rn-4 → Rn, FPSCR → (Rn) 0100nnnn01100010 1 —
HPM-289

Dreamcast SH4 Program Manual
Possible Exceptions:

¥ Data TLB miss exception

¥ Data TLB protection violation exception

¥ Address error

Examples

¥ STS

Example 1:
MOV.L #H'12ABCDEF, R12

LDS R12, FPUL

STS FPUL, R13

 ; After executing the STS instruction:

 ; R13 = 12ABCDEF

Example 2:
STS FPSCR, R2

 ; After executing the STS instruction:

 ; The current content of FPSCR is stored in register R2

STS.L

Example 1:
MOV.L #H'0C700148, R7

STS.L FPUL, @-R7

 ; Before executing the STS.L instruction:

 ; R7 = 0C700148

 ; After executing the STS.L instruction:

 ; R7 = 0C700144, and the content of FPUL is saved at memory

 ; locatio\n 0C700144.

Example 2:
MOV.L #H'0C700154, R8

STS.L FPSCR, @-R8

 ; After executing the STS.L instruction:

 ; The content of FPSCR is saved at memory location 0C700150

10.93 SUB SUBtract binary Arithmetic Instruction

Binary Subtraction

Format Summary of Operation Instruction Code Execution States T Bit

SUB Rm,Rn Rn-Rm → Rn 0011nnnnmmmm1000 1 —
HPM-290

10. Instruction Descriptions
Description

This instruction subtracts the contents of general register Rm from the contents of general register Rn and stores the
result in Rn. For immediate data subtraction, ADD #imm,Rn should be used.

Operation

SUB(long m, long n) /* SUB Rm,Rn */

 {

 R[n]-=R[m];

 PC+=2;

 }

Example

SUB R0,R1 ;Before executionR0 = H'00000001, R1 = H'80000000

 ;After execution R1 = H'7FFFFFFF

Description

This instruction subtracts the contents of general register Rm and the T bit from the contents of general register Rn,
and stores the result in Rn. A borrow resulting from the operation is reßected in the T bit. This instruction is used
for subtractions exceeding 32 bits.

Operation

SUBC(long m, long n) /* SUBC Rm,Rn */
 {
 unsigned long tmp0,tmp1;

 tmp1=R[n]-R[m];
 tmp0=R[n];
 R[n]=tmp1-T;
 if (tmp0<tmp1) T=1;
 else T=0;
 if (tmp1<R[n]) T=1;
 PC+=2;

 }

10.94 SUBC SUBtract with Carry Arithmetic Instruction

Binary Subtraction with Borrow

Format Summary of Operation Instruction Code Execution States T Bit

SUBC Rm,Rn Rn-Rm-T → Rn, borrow → T 0011nnnnmmmm1010 1 Borrow
HPM-291

Dreamcast SH4 Program Manual
Example

CLRT ;R0:R1(64 bits) – R2:R3(64 bits) = R0:R1(64 bits)

SUBC R3,R1 ;Before execution T = 0, R1 = H'00000000, R3 = H'00000001

;After execution T = 1, R1 = H'FFFFFFFF

SUBC R2,R0 ;Before execution T = 1, R0 = H'00000000, R2 = H'00000000

;After execution T = 1, R0 = H'FFFFFFFF

Description

This instruction subtracts the contents of general register Rm from the contents of general register Rn, and stores
the result in Rn. If underßow occurs, the T bit is set.

Operation

SUBV(long m, long n) /* SUBV Rm,Rn */

 {

 long dest,src,ans;

 if ((long)R[n]>=0) dest=0;

 else dest=1;

 if ((long)R[m]>=0) src=0;

 else src=1;

 src+=dest;

 R[n]-=R[m];

 if ((long)R[n]>=0) ans=0;

 else ans=1;

 ans+=dest;

 if (src==1) {

 if (ans==1) T=1;

 else T=0;

 }

 else T=0;

 PC+=2;

 }

10.95 SUBV
SUBtract with (V flag)
underflow check Arithmetic Instruction

Binary Subtraction with Underflow Check

Format Summary of Operation Instruction Code Execution States T Bit

SUBV Rm,Rn Rn-Rm → Rn, underflow → T 0011nnnnmmmm1011 1 Underflow
HPM-292

10. Instruction Descriptions
Example

SUBVR0,R1 ;Before execution R0 = H'00000002, R1 = H'80000001

;After execution R1 = H'7FFFFFFF, T = 1

SUBV R2,R3 ;Before execution R2 = H'FFFFFFFE, R3 = H'7FFFFFFE

;After execution R3 = H'80000000, T = 1

Description

This instruction swaps the upper and lower parts of the contents of general register Rm, and stores the result in Rn.

In the case of a byte speciÞcation, the 8 bits from bit 15 to bit 8 of Rm are swapped with the 8 bits from bit 7 to bit
0. The upper 16 bits of Rm are transferred directly to the upper 16 bits of Rn.

In the case of a word speciÞcation, the 16 bits from bit 31 to bit 16 of Rm are swapped with the 16 bits from bit 15
to bit 0.

Operation

SWAPB(long m, long n) /* SWAP.B Rm,Rn */

 {

 unsigned long temp0,temp1;

 temp0=R[m]&0xFFFF0000;

 temp1=(R[m]&0x000000FF)<<8;

 R[n]=(R[m]&0x0000FF00)>>8;

 R[n]=R[n]|temp1|temp0;

 PC+=2;

 }

 SWAPW(long m, long n) /* SWAP.W Rm,Rn */

 {

 unsigned long temp;

 temp=(R[m]>>16)&0x0000FFFF;

 R[n]=R[m]<<16;

 R[n]|=temp;

 PC+=2;

 }

10.96 SWAP SWAP register halves Data Transfer Instruction

Upper-/Lower-Half Swap

Format Summary of Operation Instruction Code Execution States T Bit

SWAP.B Rm,Rn Rm → lower-2-byte upper-/lower-byte swap → Rn 0110nnnnmmmm1000 1 —

SWAP.W Rm,Rn Rm → upper-/lower-word swap → Rn 0110nnnnmmmm1001 1
HPM-293

Dreamcast SH4 Program Manual
Example

SWAP.BR0,R1;Before executionR0 = H'12345678

;After execution R1 = H'12347856

SWAP.W R0,R1 ;Before execution R0 = H'12345678

;After execution R1 = H'56781234

Description

This instruction purges the cache block corresponding to the memory area speciÞed by the contents of general
register Rn, reads the byte data indicated by that address, and sets the T bit to 1 if that data is zero, or clears the T
bit to 0 if the data is nonzero. The instruction then sets bit 7 to 1 and writes to the same address. The bus is not
released during this period.

The purge operation is executed as follows.

In a purge operation, data is accessed using the contents of general register Rn as the effective address. If there is a
cache hit and the corresponding cache block is dirty (U bit = 1), the contents of that cache block are written back to
external memory, and the cache block is then invalidated (by clearing the V bit to 0). If there is a cache hit and the
corresponding cache block is clean (U bit = 0), the cache block is simply invalidated (by clearing the V bit to 0). A
purge is not executed in the event of a cache miss, or if the accessed memory location is non-cacheable.

The two TAS.B memory accesses are executed automatically. Another memory access is not executed between the
two TAS.B accesses.

Operation

 TAS(int n) /* TAS.B @Rn */

 {

 int temp;

 temp=(int)Read_Byte(R[n]); /* Bus Lock */

 if (temp==0) T=1;

 else T=0;

 temp|=0x00000080;

 Write_Byte(R[n],temp); /* Bus unlock */

 PC+=2;

 }

10.97 TAS Test And Set Logical Instruction

 Memory Test and Bit Setting

Format Summary of Operation Instruction Code Execution States T Bit

TAS.B @Rn If (Rn) = 0, 1 → T, else 0 → T 1 → MSB of (Rn) 0100nnnn00011011 5 Test result
HPM-294

10. Instruction Descriptions
Possible Exceptions:

¥ Data TLB miss exception

¥ Data protection violation exception

¥ Initial page write exception

¥ Address error

Exceptions are checked taking a data access by this instruction as a byte store.

Description

This instruction starts trap exception handling. The values of (PC + 2) and SR are saved to SPC and SSR, and 8-bit
immediate data is stored in the TRA register (bits 9 to 2). The processor mode is switched to privileged mode (the
MD bit in SR is set to 1), and the BL bit and RB bit in SR are set to 1. As a result, exception and interrupt requests
are masked (not accepted), and the BANK1 registers (R0_BANK1 to R7_BANK1) are selected. Exception code 0x160
is written to the EXPEVT register (bits 11 to 0). The program branches to address (VBR + H'00000100), indicated by
the sum of the VBR register contents and offset H'00000100.

Operation

TRAPA(int i) /* TRAPA #imm */

 {

 int imm;

 imm=(0x000000FF & i);

 TRA=imm<<2;

 SSR=SR;

 SPC=PC+2;

 SR.MD=1;

 SR.BL=1;

 SR.RB=1;

 EXPEVT=0x00000160;

 PC=VBR+H'00000100;

}

10.98 TRAPA TRAP Always System Control Instruction

 Trap Exception Handling

Format Summary of Operation Instruction Code Execution States T Bit

TRAPA #imm imm → TRA, PC+2 → SPC, SR →
SSR, 1 → SR.MD/
BL/RB, 0x160 → EXPEVT,
VBR+H'00000100 → PC

11000011iiiiiiii 7 —
HPM-295

Dreamcast SH4 Program Manual
Description

This instruction ANDs the contents of general registers Rn and Rm, and sets the T bit if the result is zero. If the result
is nonzero, the T bit is cleared. The contents of Rn are not changed.

This instruction can be used to AND general register R0 contents with zero-extended 8-bit immediate data, or, in
indexed GBR indirect addressing mode, to AND 8-bit memory with 8-bit immediate data. The contents of R0 or the
memory are not changed.

Operation

TST(long m, long n) /* TST Rm,Rn */
{
 if ((R[n]&R[m])==0) T=1;
 else T=0;
 PC+=2;
}

TSTI(long i) /* TST #imm,R0 */
{
 long temp;

temp=R[0]&(0x000000FF & (long)i);
 if (temp==0) T=1;
 else T=0;
 PC+=2;
}

TSTM(long i) /* TST.B #imm,@(R0,GBR) */
{
 long temp;

temp=(long)Read_Byte(GBR+R[0]);
 temp&=(0x000000FF & (long)i);
 if (temp==0) T=1;
 else T=0;
 PC+=2;
}

10.99 TST TeST logical Logical Instruction

 AND Operation T Bit Setting

Format Summary of Operation Instruction Code Execution States T Bit

TST Rm,Rn Rn & Rm; if result is 0,
1 → T, else 0 → T

0010nnnnmmmm1000 1 Test result

TST #imm,R0 R0 & imm; if result is 0,
1 → T, else 0 → T

11001000iiiiiiii 1 Test result

TST.B #imm,@(R0,GBR) (R0 + GBR) & imm;
if result is 0, 1 → T,
else 0 → T

11001100iiiiiiii 3 Test result
HPM-296

10. Instruction Descriptions
Example

TSTR0,R0 ;Before execution R0 = H'00000000

;After execution T = 1

TST #H'80,R0 ;Before execution R0 = H'FFFFFF7F

;After execution T = 1

TST.B #H'A5,@(R0,GBR) ;Before execution @(R0,GBR) = H'A5

;After execution T = 0

Description

This instruction exclusively ORs the contents of general registers Rn and Rm, and stores the result in Rn.

This instruction can be used to exclusively OR register R0 contents with zero-extended 8-bit immediate data, or, in
indexed GBR indirect addressing mode, to exclusively OR 8-bit memory with 8-bit immediate data.

Operation

XOR(long m, long n) /* XOR Rm,Rn */
{
 R[n]̂ =R[m];
 PC+=2;
}

XORI(long i) /* XOR #imm,R0 */
{
 R[0]̂ =(0x000000FF & (long)i);
 PC+=2;
}

XORM(long i) /* XOR.B #imm,@(R0,GBR) */
{
 int temp;

temp=(long)Read_Byte(GBR+R[0]);
 temp^=(0x000000FF &(long)i);
 Write_Byte(GBR+R[0],temp);
 PC+=2;
}

10.100 XOR eXclusive OR logical Logical Instruction

 Exclusive Logical OR

Format Summary of Operation Instruction Code Execution States T Bit

XOR Rm,Rn Rn ^ Rm → Rn 0010nnnnmmmm1010 1 —

XOR #imm,R0 R0 ^ imm → R0 11001010iiiiiiii 1 —

XOR.B #imm,@(R0,GBR) (R0+GBR)^imm →
(R0+GBR)

11001110iiiiiiii 4 —
HPM-297

Dreamcast SH4 Program Manual
Example

XOR R0,R1;Before executionR0 = H'AAAAAAAA, R1 = H'55555555

;After execution R1 = H'FFFFFFFF

XOR #H'F0,R0 ;Before executionR0 = H'FFFFFFFF

;After execution R0 = H'FFFFFF0F

XOR.B #H'A5,@(R0,GBR);Before execution@(R0,GBR) = H'A5

;After execution @(R0,GBR) = H'00

Description

This instruction extracts the middle 32 bits from the 64-bit contents of linked general registers Rm and Rn, and stores
the result in Rn.

Operation

XTRCT(long m, long n) /* XTRCT Rm,Rn */

{

 unsigned long temp;

 temp=(R[m]<<16)&0xFFFF0000;

 R[n]=(R[n]>>16)&0x0000FFFF;

 R[n]|=temp;

 PC+=2;

}

Example

XTRCTR0,R1 ;Before executionR0 = H'01234567, R1 = H'89ABCDEF

;After execution R1 = H'456789AB

10.101 XTRCT eXTRact Data Transfer Instruction

 Middle Extraction from Linked Registers

Format Summary of Operation Instruction Code Execution States T Bit

XTRCT Rm,Rn Middle 32 bits of Rm:Rn → Rn 0010nnnnmmmm1101 1 —

MSB

RnRm

Rn

LSBMSB LSB
HPM-298

11. Realtime Clock (RTC)
11.1 Overview
The SH7091 includes an on-chip realtime clock (RTC) and a 32.768 kHz crystal oscillator for use by the RTC.

11.1.1 Features

The RTC has the following features.

¥ Clock and calendar functions (BCD display)

Counts seconds, minutes, hours, day-of-week, days, months, and years.

¥ 1 to 64 Hz timer (binary display)

The 64 Hz counter register indicates a state of 64 Hz to 1 Hz within the RTC frequency divider

¥ Start/stop function

¥ 0-second adjustment function

¥ Alarm interrupts

Comparison with second, minute, hour, day-of-week, day, or month can be selected as the alarm interrupt
condition

¥ Periodic interrupts

An interrupt period of 1/256 second, 1/64 second, 1/16 second, 1/4 second, 1/2 second, 1 second, or 2
seconds can be selected

¥ Carry interrupt

Carry interrupt function indicating a second counter carry, or a 64 Hz counter carry when the 64 Hz
counter is read

¥ Automatic leap year adjustment
HPM-299

Dreamcast SH4 Program Manual
11.1.2 Block Diagram

Figure 11.1 shows a block diagram of the RTC.

Figure 11.1 Block Diagram of RTC

R64CNT

RTCCLK

16.384 kHz

32.768 kHz

128 Hz

ATI
PRI

CUI

RCR1

RCR2

RYRCNTRMONCNTRWKCNTRDAYCNTRHRCNTRMINCNTRSECCNT

RSECAR RMINAR RHRAR RDAYAR RWKAR RMONAR

Prescaler
RTC crystal

oscillator
RTC operation

control unit

RESET, STBY, etc

Counter unit
Interrupt

control unit

To registers

Bus interface

Internal peripheral module bus
HPM-300

11. Realtime Clock (RTC)
11.1.3 Pin Configuration

Table 11.1 shows the RTC pins.

Table 11.1 RTC Pins

Pin Name Abbreviation I/O Function

RTC oscillator crystal pin EXTAL2 Input Connects crystal to RTC oscillator

RTC oscillator crystal pin XTAL2 Output Connects crystal to RTC oscillator

Clock input/clock output TCLK I/O External clock input pin/input capture control input pin/RTC output pin
(shared with TMU)

Dedicated RTC power supply VCC (RTC) — RTC oscillator power supply pin*

Dedicated RTC GND pin VSS (RTC) — RTC oscillator GND pin*

Note: Power must be supplied to the RTC power supply pins even when the RTC is not used. When the RTC is used,
power should be supplied to all power supply pins including these pins. In standby mode, also, power should be
supplied to all power supply pins including these pins.
HPM-301

Dreamcast SH4 Program Manual
11.1.4 Register Configuration

Table 11.2 summarizes the RTC registers.

Table 11.2 RTC Registers

 Initialization

Name Abbreviation R/W
Power-On
Reset

Manual
Reset

Standby
Mode

Initial
Value

P4
Address

Area 7
Address

Access
Size

64 Hz
counter

R64CNT R Counts Counts Counts Undefined H'FFC80000 H'1FC80000 8

Second
counter

RSECCNT R/W Counts Counts Counts Undefined H'FFC80004 H'1FC80004 8

Minute
counter

RMINCNT R/W Counts Counts Counts Undefined H'FFC80008 H'1FC80008 8

Hour
counter

RHRCNT R/W Counts Counts Counts Undefined H'FFC8000C H'1FC8000C 8

Day-of-week
counter

RWKCNT R/W Counts Counts Counts Undefined H'FFC80010 H'1FC80010 8

Day
counter

RDAYCNT R/W Counts Counts Counts Undefined H'FFC80014 H'1FC80014 8

Month
counter

RMONCNT R/W Counts Counts Counts Undefined H'FFC80018 H'1FC80018 8

Year counter RYRCNT R/W Counts Counts Counts Undefined H'FFC8001C H'1FC8001C 16

Second alarm
register

RSECAR R/W Initialized*1 Held Held Undefined*1 H'FFC80020 H'1FC80020 8

Minute alarm
register

RMINAR R/W Initialized*1 Held Held Undefined*1 H'FFC80024 H'1FC80024 8

Hour alarm
register

RHRAR R/W Initialized*1 Held Held Undefined*1 H'FFC80028 H'1FC80028 8

Day-of-week
alarm register

RWKAR R/W Initialized*1 Held Held Undefined*1 H'FFC8002C H'1FC8002C 8

Day alarm
register

RDAYAR R/W Initialized*1 Held Held Undefined*1 H'FFC80030 H'1FC80030 8

Month alarm
register

RMONAR R/W Initialized*1 Held Held Undefined*1 H'FFC80034 H'1FC80034 8

RTC control
register 1

RCR1 R/W Initialized Initialized Held H'00*3 H'FFC80038 H'1FC80038 8

RTC control
register 2

RCR2 R/W Initialized Initialized*2 Held H'09*4 H'FFC8003C H'1FC8003C 8

Notes: 1. The ENB bit in each register is initialized.
2. Bits other than the RTCEN bit and START bit are initialized.
3. The value of the CF bit and AF bit is undefined.
4. The value of the PEF bit is undefined.
HPM-302

11. Realtime Clock (RTC)
11.2 Register Descriptions

11.2.1 64 Hz Counter (R64CNT)

R64CNT is an 8-bit read-only register that indicates a state of 64 Hz to 1 Hz within the RTC frequency divider.

If this register is read when a carry is generated from the 128 kHz frequency division stage, bit 7 (CF) in RTC control
register 1 (RCR1) is set to 1, indicating the simultaneous occurrence of the carry and the 64 Hz counter read. In this
case, the read value is not valid, and so R64CNT must be read again after Þrst writing 0 to the CF bit in RCR1 to
clear it.

When the RESET bit or ADJ bit in RTC control register 2 (RCR2) is set to 1, the RTC frequency divider is initialized
and R64CNT is initialized to H'00.

R64CNT is not initialized by a power-on or manual reset, or in standby mode.

Bit 7 is always read as 0 and cannot be modiÞed.

11.2.2 Second Counter (RSECCNT)

RSECCNT is an 8-bit readable/writable register used as a counter for setting and counting the BCD-coded second
value in the RTC. It counts on the carry generated once per second by the 64 Hz counter.

The setting range is decimal 00 to 59. The RTC will not operate normally if any other value is set. Write processing
should be performed after stopping the count with the START bit in RCR2, or by using the carry ßag.

RSECCNT is not initialized by a power-on or manual reset, or in standby mode.

Bit 7 is always read as 0. A write to this bit is invalid, but the write value should always be 0.

Bit: 7 6 5 4 3 2 1 0

 — 1 Hz 2 Hz 4 Hz 8 Hz 16 Hz 32 Hz 64 Hz

Initial value: 0 Undefined Undefined Undefined Undefined Undefined Undefined Undefined

R/W: R R R R R R R R

Bit: 7 6 5 4 3 2 1 0

 — 10-second units 1-second units

Initial value: 0 Undefined Undefined Undefined Undefined Undefined Undefined Undefined

R/W: R R/W R/W R/W R/W R/W R/W R/W
HPM-303

Dreamcast SH4 Program Manual
11.2.3 Minute Counter (RMINCNT)

RMINCNT is an 8-bit readable/writable register used as a counter for setting and counting the BCD-coded minute
value in the RTC. It counts on the carry generated once per minute by the second counter.

The setting range is decimal 00 to 59. The RTC will not operate normally if any other value is set. Write processing
should be performed after stopping the count with the START bit in RCR2, or by using the carry ßag.

RMINCNT is not initialized by a power-on or manual reset, or in standby mode.

Bit 7 is always read as 0. A write to this bit is invalid, but the write value should always be 0.

11.2.4 Hour Counter (RHRCNT)

RHRCNT is an 8-bit readable/writable register used as a counter for setting and counting the BCD-coded hour
value in the RTC. It counts on the carry generated once per hour by the minute counter.

The setting range is decimal 00 to 23. The RTC will not operate normally if any other value is set. Write processing
should be performed after stopping the count with the START bit in RCR2, or by using the carry ßag.

RHRCNT is not initialized by a power-on or manual reset, or in standby mode.

Bits 7 and 6 are always read as 0. A write to these bits is invalid, but the write value should always be 0.

Bit: 7 6 5 4 3 2 1 0

 — 10-minute units 1-minute units

Initial value: 0 Undefined Undefined Undefined Undefined Undefined Undefined Undefined

R/W: R R/W R/W R/W R/W R/W R/W R/W

Bit: 7 6 5 4 3 2 1 0

 — — 10-hour units 1-hour units

Initial value: 0 0 Undefined Undefined Undefined Undefined Undefined Undefined

R/W: R R R/W R/W R/W R/W R/W R/W
HPM-304

11. Realtime Clock (RTC)
11.2.5 Day-of-Week Counter (RWKCNT)

RWKCNT is an 8-bit readable/writable register used as a counter for setting and counting the BCD-coded
day-of-week value in the RTC. It counts on the carry generated once per day by the hour counter.

The setting range is decimal 0 to 6. The RTC will not operate normally if any other value is set. Write processing
should be performed after stopping the count with the START bit in RCR2, or by using the carry ßag.

RWKCNT is not initialized by a power-on or manual reset, or in standby mode.

Bits 7 to 3 are always read as 0. A write to these bits is invalid, but the write value should always be 0.

11.2.6 Day Counter (RDAYCNT)

RDAYCNT is an 8-bit readable/writable register used as a counter for setting and counting the BCD-coded day
value in the RTC. It counts on the carry generated once per day by the hour counter.

The setting range is decimal 01 to 31. The RTC will not operate normally if any other value is set. Write processing
should be performed after stopping the count with the START bit in RCR2, or by using the carry ßag.

RDAYCNT is not initialized by a power-on or manual reset, or in standby mode.

The setting range for RDAYCNT depends on the month and whether the year is a leap year, so care is required when
making the setting.

Bits 7 and 6 are always read as 0. A write to these bits is invalid, but the write value should always be 0.

Bit: 7 6 5 4 3 2 1 0

— — — — — Day of week

Initial value: 0 0 0 0 0 Undefined Undefined Undefined

R/W: R R R R R R/W R/W R/W

Day-of-week code 0 1 2 3 4 5 6

Day of week Sun Mon Tue Wed Thu Fri Sat

Bit: 7 6 5 4 3 2 1 0

 — — 10-day units 1-day units

Initial value: 0 0 Undefined Undefined Undefined Undefined Undefined Undefined

R/W: R R R/W R/W R/W R/W R/W R/W
HPM-305

Dreamcast SH4 Program Manual
11.2.7 Month Counter (RMONCNT)

RMONCNT is an 8-bit readable/writable register used as a counter for setting and counting the BCD-coded month
value in the RTC. It counts on the carry generated once per month by the day counter.

The setting range is decimal 01 to 12. The RTC will not operate normally if any other value is set. Write processing
should be performed after stopping the count with the START bit in RCR2, or by using the carry ßag.

RMONCNT is not initialized by a power-on or manual reset, or in standby mode.

Bits 7 to 5 are always read as 0. A write to these bits is invalid, but the write value should always be 0.

11.2.8 Year Counter (RYRCNT)

RYRCNT is a 16-bit readable/writable register used as a counter for setting and counting the BCD-coded year value
in the RTC. It counts on the carry generated once per year by the month counter.

The setting range is decimal 0000 to 9999. The RTC will not operate normally if any other value is set. Write
processing should be performed after stopping the count with the START bit in RCR2, or by using the carry ßag.

RYRCNT is not initialized by a power-on or manual reset, or in standby mode.

Bit: 7 6 5 4 3 2 1 0

— — — 10-month unit 1-month units

Initial value: 0 0 0 Undefined Undefined Undefined Undefined Undefined

R/W: R R R R/W R/W R/W R/W R/W

Bit: 15 14 13 12 11 10 9 8

1000-year units 100-year units

Initial value: Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined

R/W: R/W R/W R/W R/W R/W R/W R/W R/W

Bit: 7 6 5 4 3 2 1 0

10-year units 1-year units

Initial value: Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined

R/W: R/W R/W R/W R/W R/W R/W R/W R/W
HPM-306

11. Realtime Clock (RTC)
11.2.9 Second Alarm Register (RSECAR)

RSECAR is an 8-bit readable/writable register used as an alarm register for the RTCÕs BCD-coded second value
counter, RSECCNT. When the ENB bit is set to 1, the RSECAR value is compared with the RSECCNT value.
Comparison between the counter and the alarm register is performed for those registers among RSECAR,
RMINAR, RHRAR, RWKAR, RDAYAR, and RMONAR in which the ENB bit is set to 1, and the RCR1 alarm ßag is
set when the respective values all match.

The setting range is decimal 00 to 59 + ENB bit. The RTC will not operate normally if any other value is set.

The ENB bit in RSECAR is initialized to 0 by a power-on reset. The other Þelds in RSECAR are not initialized by a
power-on or manual reset, or in standby mode.

11.2.10 Minute Alarm Register (RMINAR)

RMINAR is an 8-bit readable/writable register used as an alarm register for the RTCÕs BCD-coded minute value
counter, RMINCNT. When the ENB bit is set to 1, the RMINAR value is compared with the RMINCNT value.
Comparison between the counter and the alarm register is performed for those registers among RSECAR,
RMINAR, RHRAR, RWKAR, RDAYAR, and RMONAR in which the ENB bit is set to 1, and the RCR1 alarm ßag is
set when the respective values all match.

The setting range is decimal 00 to 59 + ENB bit. The RTC will not operate normally if any other value is set.

The ENB bit in RMINAR is initialized by a power-on reset. The other Þelds in RMINAR are not initialized by a
power-on or manual reset, or in standby mode.

Bit: 7 6 5 4 3 2 1 0

ENB 10-second units 1-second units

Initial value: 0 Undefined Undefined Undefined Undefined Undefined Undefined Undefined

R/W: R/W R/W R/W R/W R/W R/W R/W R/W

Bit: 7 6 5 4 3 2 1 0

ENB 10-minute units 1-minute units

Initial value: 0 Undefined Undefined Undefined Undefined Undefined Undefined Undefined

R/W: R/W R/W R/W R/W R/W R/W R/W R/W
HPM-307

Dreamcast SH4 Program Manual
11.2.11 Hour Alarm Register (RHRAR)

RHRAR is an 8-bit readable/writable register used as an alarm register for the RTCÕs BCD-coded hour value
counter, RHRCNT. When the ENB bit is set to 1, the RHRAR value is compared with the RHRCNT value.
Comparison between the counter and the alarm register is performed for those registers among RSECAR, RMINAR,
RHRAR, RWKAR, RDAYAR, and RMONAR in which the ENB bit is set to 1, and the RCR1 alarm ßag is set when
the respective values all match.

The setting range is decimal 00 to 23 + ENB bit. The RTC will not operate normally if any other value is set.

The ENB bit in RHRAR is initialized by a power-on reset. The other Þelds in RHRAR are not initialized by a
power-on or manual reset, or in standby mode.

Bit 6 is always read as 0. A write to this bit is invalid, but the write value should always be 0.

11.2.12 Day-of-Week Alarm Register (RWKAR)

RWKAR is an 8-bit readable/writable register used as an alarm register for the RTCÕs BCD-coded day-of-week
value counter, RWKCNT. When the ENB bit is set to 1, the RWKAR value is compared with the RWKCNT value.
Comparison between the counter and the alarm register is performed for those registers among RSECAR, RMINAR,
RHRAR, RWKAR, RDAYAR, and RMONAR in which the ENB bit is set to 1, and the RCR1 alarm ßag is set when
the respective values all match.

The setting range is decimal 0 to 6 + ENB bit. The RTC will not operate normally if any other value is set.

The ENB bit in RWKAR is initialized by a power-on reset. The other Þelds in RWKAR are not initialized by a
power-on or manual reset, or in standby mode.

Bits 6 to 3 are always read as 0. A write to these bits is invalid, but the write value should always be 0.

Bit: 7 6 5 4 3 2 1 0

ENB — 10-hour units 1-hour units

Initial
value:

0 0 Unde
fined

Undefine
d

Undefine
d

Undefine
d

Undefine
d

Undefine
d

R/W: R/W R R/W R/W R/W R/W R/W R/W

Bit: 7 6 5 4 3 2 1 0

ENB — — — — Day of week

Initial value: 0 0 0 0 0 Undefined Undefined Undefined

R/W: R/W R R R R R/W R/W R/W

Day-of-week code 0 1 2 3 4 5 6

Day of week Sun Mon Tue Wed Thu Fri Sat
HPM-308

11. Realtime Clock (RTC)
11.2.13 Day Alarm Register (RDAYAR)

RDAYAR is an 8-bit readable/writable register used as an alarm register for the RTCÕs BCD-coded day value
counter, RDAYCNT. When the ENB bit is set to 1, the RDAYAR value is compared with the RDAYCNT value.
Comparison between the counter and the alarm register is performed for those registers among RSECAR,
RMINAR, RHRAR, RWKAR, RDAYAR, and RMONAR in which the ENB bit is set to 1, and the RCR1 alarm ßag is
set when the respective values all match.

The setting range is decimal 01 to 31 + ENB bit. The RTC will not operate normally if any other value is set. The
setting range for RDAYAR depends on the month and whether the year is a leap year, so care is required when
making the setting.

The ENB bit in RDAYAR is initialized by a power-on reset. The other Þelds in RDAYAR are not initialized by a
power-on or manual reset, or in standby mode.

Bit 6 is always read as 0. A write to this bit is invalid, but the write value should always be 0.

11.2.14 Month Alarm Register (RMONAR)

RMONAR is an 8-bit readable/writable register used as an alarm register for the RTCÕs BCD-coded month value
counter, RMONCNT. When the ENB bit is set to 1, the RMONAR value is compared with the RMONCNT value.
Comparison between the counter and the alarm register is performed for those registers among RSECAR,
RMINAR, RHRAR, RWKAR, RDAYAR, and RMONAR in which the ENB bit is set to 1, and the RCR1 alarm ßag is
set when the respective values all match.

The setting range is decimal 01 to 12 + ENB bit. The RTC will not operate normally if any other value is set.

The ENB bit in RMONAR is initialized by a power-on reset. The other Þelds in RMONAR are not initialized by a
power-on or manual reset, or in standby mode.

Bits 6 and 5 are always read as 0. A write to these bits is invalid, but the write value should always be 0.

Bit: 7 6 5 4 3 2 1 0

ENB — 10-day units 1-day units

Initial value: 0 0 Undefined Undefined Undefined Undefined Undefined Undefined

R/W: R/W R R/W R/W R/W R/W R/W R/W

Bit: 7 6 5 4 3 2 1 0

ENB — — 10-month unit 1-month units

Initial value: 0 0 0 Undefined Undefined Undefined Undefined Undefined

R/W: R/W R R R/W R/W R/W R/W R/W
HPM-309

Dreamcast SH4 Program Manual
11.2.15 RTC Control Register 1 (RCR1)

RCR1 is an 8-bit readable/writable register containing a carry ßag and alarm ßag, plus ßags to enable or disable
interrupts for these ßags.

The CIE and AIE bits are initialized to 0 by a power-on or manual reset; the value of bits other than CIE and AIE is
undeÞned. In standby mode RCR1 is not initialized, and retains its current value.

Bit 7ÑCarry Flag (CF): This ßag is set to 1 on generation of a second counter carry, or a 64 Hz counter carry when
the 64 Hz counter is read. The count register value read at this time is not guaranteed, and so the count register must
be read again.

Bit 4ÑCarry Interrupt Enable Flag (CIE): Enables or disables interrupt generation when the carry ßag (CF) is set
to 1.

Bit 3ÑAlarm Interrupt Enable Flag (AIE): Enables or disables interrupt generation when the alarm ßag (AF) is set
to 1.

Bit: 7 6 5 4 3 2 1 0

CF — — CIE AIE — — AF

Initial value: Undefined Undefined Undefined 0 0 Undefined Undefined Undefined

R/W: R/W R R R/W R/W R R R/W

Bit 7: CF Description

0 No second counter carry, or 64 Hz counter carry when 64 Hz counter is read

[Clearing condition]

When 0 is written to CF

1 Second counter carry, or 64 Hz counter carry when 64 Hz counter is read

[Setting conditions]

• Generation of a second counter carry, or a 64 Hz counter carry when the 64 Hz counter is read
• When 1 is written to CF

Bit 4: CIE Description

0 Carry interrupt is not generated when CF flag is set to 1 (Initial value)

1 Carry interrupt is generated when CF flag is set to 1

Bit 3: AIE Description

0 Alarm interrupt is not generated when AF flag is set to 1 (Initial value)

1 Alarm interrupt is generated when AF flag is set to 1
HPM-310

11. Realtime Clock (RTC)
Bit 0ÑAlarm Flag (AF): Set to 1 when the alarm time set in those registers among RSECAR, RMINAR, RHRAR,
RWKAR, RDAYAR, and RMONAR in which the ENB bit is set to 1 matches the respective counter values.

Bits 6, 5, 2, and 1ÑReserved. The initial value of these bits is undeÞned. A write to these bits is invalid, but the
write value should always be 0.

11.2.16 RTC Control Register 2 (RCR2)

RCR2 is an 8-bit readable/writable register used for periodic interrupt control, 30-second adjustment, and
frequency divider RESET and RTC count control.

RCR2 is basically initialized to H'09 by a power-on reset, except that the value of the PEF bit is undeÞned. In a
manual reset, bits other than RTCEN and START are initialized, while the value of the PEF bit is undeÞned. In
standby mode RCR2 is not initialized, and retains its current value.

Bit 7ÑPeriodic Interrupt Flag (PEF): Indicates interrupt generation at the interval speciÞed by bits PES2ÐPES0.
When this ßag is set to 1, a periodic interrupt is generated.

Bit 0: AF Description

 0 Alarm registers and counter values do not match

[Clearing condition]

When 0 is written to AF

(Initial value)

 1 Alarm registers and counter values match*

[Setting condition]

When alarm registers in which the ENB bit is set to 1 and counter values match*

 Note: *Writing 1 does not change the value.

Bit: 7 6 5 4 3 2 1 0

PEF PES2 PES1 PES0 RTCEN ADJ RESET START

Initial value: Undefined 0 0 0 1 0 0 1

R/W: R/W R/W R/W R/W R/W R/W R/W R/W

Bit 7: PEF Description

0 Interrupt is not generated at interval specified by bits PES2–PES0

[Clearing condition]

When 0 is written to PEF

1 Interrupt is generated at interval specified by bits PES2–PES0

[Setting conditions]

• Generation of interrupt at interval specified by bits PES2–PES0
• When 1 is written to PEF
HPM-311

Dreamcast SH4 Program Manual
Bits 6 to 4ÑPeriodic Interrupt Enable (PES2ÐPES0): These bits specify the period for periodic interrupts.

Bit 3ÑOscillator Enable (RTCEN): Controls the operation of the RTCÕs crystal oscillator.

Bit 2Ñ30-Second Adjustment (ADJ): Used for 30-second adjustment. When 1 is written to this bit, a value up to 29
seconds is rounded down to 00 seconds, and a value of 30 seconds or more is rounded up to 1 minute. The frequency
divider circuits (RTC prescaler and R64CNT) are also reset at this time. This bit always returns 0 if read.

Bit 1ÑReset (RESET): The frequency divider circuits are initialized by writing 1 to this bit. When 1 is written to the
RESET bit, the frequency divider circuits (RTC prescaler and R64CNT) are reset and the RESET bit is automatically
cleared to 0 (i.e. does not need to be written with 0).

Bit 6: PES2 Bit 5: PES1 Bit 4: PES0 Description

0 0 0 No periodic interrupt generation (Initial value)

1 Periodic interrupt generated at 1/256-second intervals

1 0 Periodic interrupt generated at 1/64-second intervals

1 Periodic interrupt generated at 1/16-second intervals

1 0 0 Periodic interrupt generated at 1/4-second intervals

1 Periodic interrupt generated at 1/2-second intervals

1 0 Periodic interrupt generated at 1-second intervals

1 Periodic interrupt generated at 2-second intervals

Bit 3: RTCEN Description

0 RTC crystal oscillator is halted

1 RTC crystal oscillator is operated (Initial value)

Bit 2: ADJ Description

0 Normal clock operation (Initial value)

1 30-second adjustment performed

Bit 1: RESET Description

0 Normal clock operation (Initial value)

1 Frequency divider circuits are reset
HPM-312

11. Realtime Clock (RTC)
Bit 0ÑStart Bit (START): Stops and restarts counter (clock) operation.

11.3 Operation
Examples of the use of the RTC are shown below.

11.3.1 Time Setting Procedures

Figure 11.2 shows examples of the time setting procedures.

Figure 11.2 Examples of Time Setting Procedures

The procedure for setting the time after stopping the clock is shown in (a). The programming for this method is
simple, and it is useful for setting all the counters, from second to year.

Bit 0: START Description

0 Second, minute, hour, day, day-of-week, month, and year counters are stopped*

1 Second, minute, hour, day, day-of-week, month, and year counters operate normally* (Initial value)

Note: *The 64 Hz counter continues to operate unless stopped by means of the RTCEN bit.

Stop clock
Reset frequency divider

Set second/minute/hour/day/
day-of-week/month/year

Start clock operation

Set RCR2.RESET to 1
Clear RCR2.START to 0

In any order

Set RCR2.START to 1

(a) Setting time after stopping clock

Clear carry flag

Write to counter register

Carry flag = 1?

No

Yes

Clear RCR1.CF to 0
(Write 1 to RCR1.AF so that alarm flag
is not cleared)

Set RYRCNT first and RSECCNT last

Read RCR1 register and check CF bit

(b) Setting time while clock is running
HPM-313

Dreamcast SH4 Program Manual
The procedure for setting the time while the clock is running is shown in (b). This method is useful for modifying
only certain counter values (for example, only the second data or hour data). If a carry occurs during the write
operation, the write data is automatically updated and there will be an error in the set data. The carry ßag should
therefore be used to check the write status. If the carry ßag (RCR1.CF) is set to 1, the write must be repeated.

The interrupt function can also be used to determine the carry ßag status.

11.3.2 Time Reading Procedures

Figure 11.3 shows examples of the time reading procedures.

Figure 11.3 Examples of Time Reading Procedures

If a carry occurs while the time is being read, the correct time will not be obtained and the read must be repeated.
The procedure for reading the time without using interrupts is shown in (a), and the procedure using carry
interrupts in (b). The method without using interrupts is normally used to keep the program simple.

Disable carry interrupts

Clear carry flag

Read counter register

Carry flag = 1?

Clear RCR1.CIE to 0

Clear RCR1.CF to 0
(Write 1 to RCR1.AF so that alarm flag
is not cleared)

Read RCR1 register and check CF bit

(a) Reading time without using interrupts

No

Yes

Clear carry flag

Enable carry interrupts

Clear carry flag

Read counter register

Interrupt generated?
Yes

Disable carry interrupts

No

(b) Reading time using interrupts

Set RCR1.CIE to 1

Clear RCR1.CF to 0
(Write 1 to RCR1.AF so that alarm flag
is not cleared)

Clear RCR1.CIE to 0
HPM-314

11. Realtime Clock (RTC)
11.3.3 Alarm Function

The use of the alarm function is illustrated in Figure 11.4.

Figure 11.4 Example of Use of Alarm Function

An alarm can be generated by the second, minute, hour, day-of-week, day, or month value, or a combination of
these. Write 1 to the ENB bit in the alarm registers involved in the alarm setting, and set the alarm time in the lower
bits. Write 0 to the ENB bit in registers not involved in the alarm setting.

When the counter and the alarm time match, RCR1.AF is set to 1. Alarm detection can be conÞrmed by reading this
bit, but normally an interrupt is used. If 1 has been written to RCR1.AIE, an alarm interrupt is generated in the event
of alarm, enabling the alarm to be detected.

The alarm ßag remains set while the counter and alarm time match. If the alarm ßag is cleared by writing 0 during
this period, it will therefore be set again immediately afterward. This needs to be taken into consideration when
writing the program.

11.4 Interrupts
There are three kinds of RTC interrupt: alarm interrupts, periodic interrupts, and carry interrupts.

An alarm interrupt request (ATI) is generated when the alarm ßag (AF) in RCR1 is set to 1 while the alarm interrupt
enable bit (AIE) is also set to 1.

A periodic interrupt request (PRI) is generated when the periodic interrupt enable bits (PES2ÐPES0) in RCR2 are set
to a value other than 000 and the periodic interrupt ßag (PEF) is set to 1.

A carry interrupt request (CUI) is generated when the carry ßag (CF) in RCR1 is set to 1 while the carry interrupt
enable bit (CIE) is also set to 1.

Clock running

Disable alarm interrupts

Set alarm time

Clear alarm flag

 Enable alarm interrupts

Monitor alarm time
(Wait for interrupt or check

alarm flag)

Clear RCR1.AIE to prevent erroneous interrupts

Be sure to reset the flag as it may have been
set during alarm time setting

Set RCR1.AIE to 1
HPM-315

Dreamcast SH4 Program Manual
HPM-316

12. Timer Unit (TMU)
12.1 Overview
The SH7091 includes an on-chip 32-bit timer unit (TMU) comprising three 32-bit timer channels (channels 0 to 2).

12.1.1 Features

The TMU has the following features.

¥ Auto-reload type 32-bit down-counter provided for each channel

¥ Input capture function provided in channel 2

¥ Selection of rising edge or falling edge as external clock input edge when external clock is selected or
input capture function is used

¥ 32-bit timer constant register for auto-reload use, readable/writable at any time, and 32-bit down-counter
provided for each channel

¥ Selection of seven counter input clocks for each channel

External clock (TCLK), on-chip RTC output clock, Þve internal clocks (Pφ/4, Pφ/16, Pφ/64, Pφ/256,
Pφ/1024) (Pφ is the peripheral module clock)

¥ Each channel can also operate in module standby mode when the on-chip RTC output clock is selected as
the counter input clock; that is, timer operation continues even when the clock has been stopped for
the TMU.

Timer count operations using an external or internal clock are only possible when a clock is supplied to
the timer unit.

¥ Synchronous read operation

As the timer counters (TCNT) are serially modiÞed 32-bit registers and the internal peripheral module
bus is 16 bits wide, there is a time difference when reading the upper 16 bits and lower 16 bits of TCNT.
To prevent counter read value drift due to this time difference, a synchronization circuit is provided that
allows simultaneous reading of all 32 bits of the TCNT data.
HPM-317

Dreamcast SH4 Program Manual
¥ Two interrupt sources

One underßow source (channels 0 to 2) and one input capture source (channel 2)

¥ DMAC data transfer request capability

On channel 2, a data transfer request is sent to the DMAC when an input capture interrupt is generated.

12.1.2 Block Diagram

Figure 12.1 shows a block diagram of the TMU.

Figure 12.1 Block Diagram of TMU

12.1.3 Pin Configuration

Table 12.1 shows the TMU pins.

Table 12.1 TMU Pins

Pin Name Abbreviation I/O Function

Clock input/clock output TCLK I/O External clock input pin/input capture control input pin/RTC output pin (shared with RTC)

TUNI1 TCLK RTCCLK TUNI2 TICPI2PCLK/4, 16, 64*TUNI0

TOCR

TSTR

TCPR2TCNT2TCOR2TCR2TCNT1TCOR1TCR1TCNT0TCOR0TCR0

RESET, STBY,
etc.

TMU
control unit

Prescaler
TCLK

control unit

To each
channel

Counter unit

To each
channel

Interrupt
control unit Counter unit

Interrupt
control unit Counter unit

Interrupt
control unit

Ch 2

Bus interface

Ch 1Ch 0

Note: * Signals with 1/4, 1/16, and 1/64 the Pφ frequency, supplied to the on-chip peripheral functions.

Internal peripheral module bus
HPM-318

12. Timer Unit (TMU)
12.1.4 Register Configuration

Table 12.2 summarizes the TMU registers.

Table 12.2 TMU Registers

Initialization

Channel Name Abbreviation R/W
Power-On
Reset

Manual
Reset

Stand-by
Mode

Initial
Value

P4
Address

Area 7
Address

Access
Size

Common Timer output
control register

TOCR R/W Initialized Initialized Held H'00 H’FFD8000
0

H'1FD8000
0

8

Timer start
register

TSTR R/W Initialized Initialized Initialized*1 H'00 H’FFD8000
4

H'1FD8000
4

8

0 Timer constant
register 0

TCOR0 R/W Initialized Initialized Held H'FFFFFFFF H’FFD8000
8

H'1FD8000
8

32

Timer counter 0 TCNT0 R/W Initialized Initialized Held*2 H'FFFFFFFF H’FFD8000
C

H'1FD8000
C

32

Timer control
register 0

TCR0 R/W Initialized Initialized Held H'0000 H’FFD8001
0

H'1FD8001
0

16

1 Timer constant
register 1

TCOR1 R/W Initialized Initialized Held H'FFFFFFFF H’FFD8001
4

H'1FD8001
4

32

Timer counter 1 TCNT1 R/W Initialized Initialized Held*2 H'FFFFFFFF H’FFD8001
8

H'1FD8001
8

32

Timer control
register 1

TCR1 R/W Initialized Initialized Held H'0000 H’FFD8001
C

H'1FD8001
C

16

2 Timer constant
register 2

TCOR2 R/W Initialized Initialized Held H'FFFFFFFF H’FFD8002
0

H'1FD8002
0

32

Timer counter 2 TCNT2 R/W Initialized Initialized Held*2 H'FFFFFFFF H’FFD8002
4

H'1FD8002
4

32

Timer control
register 2

TCR2 R/W Initialized Initialized Held H'0000 H’FFD8002
8

H'1FD8002
8

16

Input capture
register

TCPR2 R Held Held Held Undefined H’FFD8002
C

H'1FD8002
C

32

Notes: 1. Not initialized in module standby mode when the input clock is the on-chip RTC output clock.
2. Counts in module standby mode when the input clock is the on-chip RTC output clock.
HPM-319

Dreamcast SH4 Program Manual
12.2 Register Descriptions

12.2.1 Timer Output Control Register (TOCR)

TOCR is an 8-bit readable/writable register that speciÞes whether external pin TCLK is used as the external clock
or input capture control input pin, or as the on-chip RTC output clock output pin.

TOCR is initialized to H'00 by a power-on or manual reset, but is not initialized in standby mode.

Bits 7 to 1ÑReserved: These bits are always read as 0. A write to these bits is invalid, but the write value should
always be 0.

Bit 0ÑTimer Clock Pin Control (TCOE): SpeciÞes whether timer clock pin TCLK is used as the external clock or
input capture control input pin, or as the on-chip RTC output clock output pin.

12.2.2 Timer Start Register (TSTR)

TSTR is an 8-bit readable/writable register that speciÞes whether the channel 0Ð2 timer counters (TCNT) are
operated or stopped.

TSTR is initialized to H'00 by a power-on or manual reset. In module standby mode, TSTR is not initialized when
the input clock selected by each channel is the on-chip RTC output clock (RTCCLK), and is initialized only when
the input clock is the external clock (TCLK) or internal clock (Pφ).

Bits 7 to 3ÑReserved: These bits are always read as 0. A write to these bits is invalid, but the write value should
always be 0.

Bit 2ÑCounter Start 2 (STR2): SpeciÞes whether timer counter 2 (TCNT2) is operated or stopped.

Bit: 7 6 5 4 3 2 1 0

— — — — — — — TCOE

Initial value: 0 0 0 0 0 0 0 0

R/W: R R R R R R R R/W

Bit 0: TCOE Description

0 Timer clock pin (TCLK) is used as external clock input or input capture control input pin (Initial value)

1 Timer clock pin (TCLK) is used as on-chip RTC output clock output pin

Bit: 7 6 5 4 3 2 1 0

— — — — — STR2 STR1 STR0

Initial value: 0 0 0 0 0 0 0 0

R/W: R R R R R R/W R/W R/W
HPM-320

12. Timer Unit (TMU)
Bit 1ÑCounter Start 1 (STR1): SpeciÞes whether timer counter 1 (TCNT1) is operated or stopped.

Bit 0ÑCounter Start 0 (STR0): SpeciÞes whether timer counter 0 (TCNT0) is operated or stopped.

12.2.3 Timer Constant Registers (TCOR)

The TCOR registers are 32-bit readable/writable registers. There are three TCOR registers, one for each channel.

When a TCNT counter underßows while counting down, the TCOR value is set in that TCNT, which continues
counting down from the set value.

The TCOR registers are initialized to H'FFFFFFFF by a power-on or manual reset, but are not initialized and retain
their contents in standby mode.

Bit 2: STR2 Description

0 TCNT2 count operation is stopped (Initial value)

1 TCNT2 performs count operation

Bit 1: STR1 Description

0 TCNT1 count operation is stopped (Initial value)

1 TCNT1 performs count operation

Bit 0: STR0 Description

0 TCNT0 count operation is stopped (Initial value)

1 TCNT0 performs count operation

Bit: 31 30 29 2 1 0

· · · · · · · · · · · · ·

Initial value: 1 1 1 1 1 1

R/W: R/W R/W R/W R/W R/W R/W
HPM-321

Dreamcast SH4 Program Manual
12.2.4 Timer Counters (TCNT)

The TCNT registers are 32-bit readable/writable registers. There are three TCNT registers, one for each channel.

Each TCNT counts down on the input clock selected by TPSC2ÐTPSC0 in the timer control register (TCR).

When a TCNT counter underßows while counting down, the underßow ßag (UNF) is set in the corresponding timer
control register (TCR). At the same time, the timer constant register (TCOR) value is set in TCNT, and the
count-down operation continues from the set value.

As the TCNT registers are serially modiÞed 32-bit registers and the internal peripheral module bus is 16 bits wide,
there is a time difference when reading the upper 16 bits and lower 16 bits of TCNT. To prevent counter read value
drift due to this time difference, a synchronization circuit is provided. When the upper 16 bits are read, the lower 16
bits are simultaneously stored in a buffer register. After the upper 16 bits are read, the lower 16 bits are read from
the buffer register.

The TCNT registers are initialized to H'FFFFFFFF by a power-on or manual reset, but are not initialized and retain
their contents in standby mode.

When the input clock is the on-chip RTC output clock (RTCCLK), TCNT counts even in module standby mode (that
is, when the clock for the TMU is stopped). When the input clock is the external clock (TCLK) or internal clock (Pf),
TCNT contents are retained in standby mode.

12.2.5 Timer Control Registers (TCR)

The TCR registers are 16-bit readable/writable registers. There are three TCR registers, one for each channel.

Each TCR selects the count clock, speciÞes the edge when an external clock is selected, and controls interrupt
generation when the ßag indicating timer counter (TCNT) underßow is set to 1. TCR2 is also used for channel 2
input capture control, and control of interrupt generation in the event of input capture.

Bit: 31 30 29 2 1 0

· · · · · · · · · · · · ·

Initial value: 1 1 1 1 1 1

R/W: R/W R/W R/W R/W R/W R/W
HPM-322

12. Timer Unit (TMU)
The TCR registers are initialized to H'0000 by a power-on or manual reset, but are not initialized in standby mode.

1) Channel 0 and 1 TCR bit conÞguration

2) Channel 2 TCR bit conÞguration

Bits 15 to 9, 7, and 6 (Channels 0 and 1); Bits 15 to 10 (Channel 2)ÑReserved: These bits are always read as 0. A
write to these bits is invalid, but the write value should always be 0.

Bit 9ÑInput Capture Interrupt Flag (ICPF) (Channel 2 Only): Status ßag, provided in channel 2 only, that indicates
the occurrence of input capture.

Bit: 15 14 13 12 11 10 9 8

— — — — — — — UNF

Initial value: 0 0 0 0 0 0 0 0

R/W: R R R R R R R R/W

Bit: 7 6 5 4 3 2 1 0

— — UNIE CKEG1 CKEG0 TPSC2 TPSC1 TPSC0

Initial value: 0 0 0 0 0 0 0 0

R/W: R R R/W R/W R/W R/W R/W R/W

Bit: 15 14 13 12 11 10 9 8

— — — — — — ICPF UNF

Initial value: 0 0 0 0 0 0 0 0

R/W: R R R R R R/W R/W R/W

Bit: 7 6 5 4 3 2 1 0

ICPE1 ICPE0 UNIE CKEG1 CKEG0 TPSC2 TPSC1 TPSC0

Initial value: 0 0 0 0 0 0 0 0

R/W: R/W R/W R/W R/W R/W R/W R/W R/W
HPM-323

Dreamcast SH4 Program Manual
Bit 8ÑUnderßow Flag (UNF): Status ßag that indicates the occurrence of underßow.

Bits 7 and 6ÑInput Capture Control (ICPE1, ICPE0) (Channel 2 Only): These bits, provided in channel 2 only,
specify whether the input capture function is used, and control enabling or disabling of interrupt generation when
the function is used.

When the input capture function is used, a data transfer request is sent to the DMAC in the event of input capture.

When using the input capture function, the TCLK pin must be designated as an input pin with the TCOE bit in the
TOCR register. The CKEG bits specify whether the rising edge or falling edge of the TCLK signal is used to set the
TCNT2 value in the input capture register (TCPR2).

The TCNT2 value is set in TCPR2 only when the TCR2.ICPF bit is 0. When the TCR2.ICPF bit is 1, TCPR2 is not set
in the event of input capture. When input capture occurs, a DMAC transfer request is generated regardless of the
value of the TCR2.ICPF bit. However, a new DMAC transfer request is not generated until processing of the
previous request is Þnished.

Bit 9: ICPF Description

0 Input capture has not occurred

[Clearing condition]

When 0 is written to ICPF

(Initial value)

1 Input capture has occurred

[Setting condition]

When input capture occurs*

Note: *Writing 1 does not change the value.

Bit 8: UNF Description

0 TCNT has not underflowed

[Clearing condition]

When 0 is written to UNF

(Initial value)

1 TCNT has underflowed

[Setting condition]

When TCNT underflows*

 Note: *Writing 1 does not change the value.
HPM-324

12. Timer Unit (TMU)
Bit 5ÑUnderßow Interrupt Control (UNIE): Controls enabling or disabling of interrupt generation when the UNF
status ßag is set to 1, indicating TCNT underßow.

Bits 4 and 3ÑClock Edge 1 and 0 (CKEG1, CKEG0): These bits select the external clock input edge when an
external clock is selected or the input capture function is used.

Bits 2 to 0ÑTimer Prescaler 2 to 0 (TPSC2ÐTPSC0): These bits select the TCNT count clock.

When the on-chip RTC output clock is selected as the count clock for a channel, that channel can operate even in
module standby mode. When another clock is selected, the channel does not operate in standby mode.

Bit 7: ICPE1 Bit 6: ICPE0 Description

 0

0 Input capture function is not used (Initial value)

1 Reserved (Do not set)

 1

0 Input capture function is used, but interrupt due to input capture (TICPI2) is not enabled

Data transfer request is sent to DMAC in the event of input capture

1 Input capture function is used, and interrupt due to input capture (TICPI2) is enabled

Data transfer request is sent to DMAC in the event of input capture

Bit 5: UNIE Description

0 Interrupt due to underflow (TUNI) is not enabled (Initial value)

1 Interrupt due to underflow (TUNI) is enabled

Bit 4: CKEG1 Bit 3: CKEG0 Description

0 0 Count/input capture register set on rising edge (Initial value)

 1 Count/input capture register set on falling edge

1 X Count/input capture register set on both rising and falling edges

Note: X: 0 or 1 (don’t care)
HPM-325

Dreamcast SH4 Program Manual
12.2.6 Input Capture Register (TCPR2)

TCPR2 is a 32-bit read-only register for use with the input capture function, provided only in channel 2.

The input capture function is controlled by means of the input capture control bits (ICPE1, ICPE0) and clock edge
bits (CKEG1, CKEG0) in TCR2. When input capture occurs, the TCNT2 value is copied into TCPR2. The value is set
in TCPR2 only when the ICPF bit in TCR2 is 0.

TCPR2 is not initialized by a power-on or manual reset, or in standby mode.

12.3 Operation
Each channel has a 32-bit timer counter (TCNT) that performs count-down operations, and a 32-bit timer constant
register (TCOR). The channels have an auto-reload function that allows cyclic count operations, and can also
perform external event counting. Channel 2 also has an input capture function.

12.3.1 Counter Operation

When one of bits STR0ÐSTR2 is set to 1 in the timer start register (TSTR), the timer counter (TCNT) for the
corresponding channel starts counting. When TCNT underßows, the UNF ßag is set in the corresponding timer
control register (TCR). If the UNIE bit in TCR is set to 1 at this time, an interrupt request is sent to the CPU. At the
same time, the value is copied from TCOR into TCNT, and the count-down continues (auto-reload function).

Example of Count Operation Setting Procedure: Figure 12.2 shows an example of the count operation
setting procedure.

Bit 2: TPSC2 Bit 1: TPSC1 Bit 0: TPSC0 Description

0 0 0 Counts on Pφ/4 (Initial value)

1 Counts on Pφ/16

1 0 Counts on Pφ/64

1 Counts on Pφ/256

1 0 0 Counts on Pφ/1024

1 Reserved (Do not set)

1 0 Counts on on-chip RTC output clock

1 Counts on external clock

Bit: 31 30 29 2 1 0

· · · · · · · · · · · · ·

Initial value: Undefined

R/W: R R R R R R
HPM-326

12. Timer Unit (TMU)
1) Select the count clock with bits TPSC2ÐTPSC0 in the timer control register (TCR). When an external clock
is selected, set the TCLK pin to input mode with the TCOE bit in TOCR, and select the external clock
edge with bits CKEG1 and CKEG0 in TCR.

2) Specify whether an interrupt is to be generated on TCNT underßow with the UNIE bit in TCR.

3) When the input capture function is used, set the ICPE bits in TCR, including speciÞcation of whether the
interrupt function is to be used.

4) Set a value in the timer constant register (TCOR).

5) Set the initial value in the timer counter (TCNT).

6) Set the STR bit to 1 in the timer start register (TSTR) to start the count.

Figure 12.2 Example of Count Operation Setting Procedure

1

2

Operation selection

Select count clock

Underflow interrupt
generation setting

When input capture
function is used

3

4

5

6

Input capture interrupt
generation setting

Timer constant
register setting

Set initial timer
counter value

Start count

Note: When an interrupt is generated, clear the source flag in the interrupt handler. If the interrupt
enabled state is set without clearing the flag, another interrupt will be generated.
HPM-327

Dreamcast SH4 Program Manual
Auto-Reload Count Operation: Figure 12.3 shows the TCNT auto-reload operation.

Figure 12.3 TCNT Auto-Reload Operation

TCNT Count Timing:

¥ Operating on internal clock

Any of Þve count clocks (Pf/4, Pf/16, Pf/64, Pf/256, or Pf/1024) scaled from the peripheral module clock
can be selected as the count clock by means of the TPSC2ÐTPSC0 bits in TCR.

Figure 12.4 shows the timing in this case.

Figure 12.4 Count Timing when Operating on Internal Clock

¥ Operating on external clock

External clock pin (TCLK) input can be selected as the timer clock by means of the TPSC2ÐTPSC0 bits in
TCR. The detected edge (rising, falling, or both edges) can be selected with the CKEG1 and CKEG0 bits
in TCR.

TCOR

H'00000000

STR0–STR2

UNF

TCNT value TCOR value set in TCNT
on underflow

Time

Pφ

Internal clock

TCNT N + 1 N N – 1
HPM-328

12. Timer Unit (TMU)
Figure 12.5 shows the timing for both-edge detection.

Figure 12.5 Count Timing when Operating on External Clock

¥ Operating on on-chip RTC output clock

The on-chip RTC output clock can be selected as the timer clock by means of the TPSC2ÐTPSC0 bits in
TCR. Figure 12.6 shows the timing in this case.

Figure 12.6 Count Timing when Operating on On-Chip RTC Output Clock

12.3.2 Input Capture Function

Channel 2 has an input capture function.

The procedure for using the input capture function is as follows:

1) Use the TCOE bit in the timer output control register (TOCR) to set the TCLK pin to input mode.

2) Use bits TPSC2ÐTPSC0 in the timer control register (TCR) to set an internal clock or the on-chip RTC
output clock as the timer operating clock.

3) Use bits IPCE1 and IPCE0 in TCR to specify use of the input capture function, and whether interrupts
are to generated when this function is used.

4) Use bits CKEG1 and CKEG0 in TCR to specify whether the rising or falling edge of the TCLK signal is
to be used to set the timer counter (TCNT) value in the input capture register (TCPR2).

This function cannot be used in standby mode.

When input capture occurs, the TCNT2 value is set in TCPR2 only when the ICPF bit in TCR2 is 0. Also, a new
DMAC transfer request is not generated until processing of the previous request is Þnished.

N + 1 N – 1N

Pφ

External clock
input pin

TCNT

N + 1 N N – 1

RTC output clock

TCNT
HPM-329

Dreamcast SH4 Program Manual
Figure 12.7 shows the operation timing when the input capture function is used (with TCLK rising edge detection).

Figure 12.7 Operation Timing when Using Input Capture Function

12.4 Interrupts
There are four TMU interrupt sources, comprising underßow interrupts and the input capture interrupt (when the
input capture function is used). Underßow interrupts are generated on channels 0 to 2, and input capture interrupts
on channel 2 only.

An underßow interrupt request is generated (for each channel) according to the AND of UNF and the interrupt
enable bit (UNIE) in TCR.

When the input capture function is used and an input capture request is generated, an interrupt is requested if the
input capture input ßag (ICPF) in TCR2 is 1 and the input capture control bits (ICPE1, ICPE0) in TCR2 are 11.

The TMU interrupt sources are summarized in Table 12.3.

Table 12.3 TMU Interrupt Sources

Channel Interrupt Source Description Priority

0 TUNI0 Underflow interrupt 0 High

1 TUNI1 Underflow interrupt 1 ↑

2 TUNI2 Underflow interrupt 2 ↓

TICPI2 Input capture interrupt 2 Low

TCOR

H'00000000

TCLK

TCPR2

TICPI2

TCNT value
TCOR value set in TCNT
on underflow

TCNT value set

Time
HPM-330

12. Timer Unit (TMU)
12.5 Usage Notes

12.5.1 Register Writes

When performing a register write, timer count operation must be stopped by clearing the start bit (STR0ÐSTR2) for
the relevant channel in the timer start register (TSTR).

12.5.2 TCNT Register Reads

When performing a TCNT register read, processing for synchronization with the timer count operation is
performed. If a timer count operation and register read processing are performed simultaneously, the TCNT
counter value prior to the count-down operation is read by means of the synchronization processing.

12.5.3 Resetting the RTC Frequency Divider

When the on-chip RTC output clock is selected as the count clock, the RTC frequency divider should be reset.

12.5.4 External Clock Frequency

Ensure that the external clock frequency for any channel does not exceed Pf/4.
HPM-331

Dreamcast SH4 Program Manual
HPM-332

A. User’s Manual Supplement
Appendix A Address List

Table 1: Address List

Module Register P4 Address
Area 7
Address*1 Size

Power-On
Reset

Manual
Reset Sleep Standby

Synchro-
nization
Clock

CCN PTEH H'FF00 0000 H'1F00
0000

32 Undefined Undefined Held Held Iclk

CCN PTEL H'FF00 0004 H'1F00
0004

32 Undefined Undefined Held Held Iclk

CCN TTB H'FF00 0008 H'1F00
0008

32 Undefined Undefined Held Held Iclk

CCN TEA H'FF00 000C H'1F00
000C

32 Undefined Held Held Held Iclk

CCN MMUCR H'FF00 0010 H'1F00
0010

32 H'0000
0000

H'0000 0000 Held Held Iclk

CCN BASRA H'FF00 0014 H'1F00
0014

8 Undefined Held Held Held Iclk

CCN BASRB H'FF00 0018 H'1F00
0018

8 Undefined Held Held Held Iclk

CCN CCR H'FF00 001C H'1F00
001C

32 H'0000
0000

H'0000 0000 Held Held Iclk

CCN TRA H'FF00 0020 H'1F00
0020

32 Undefined Undefined Held Held Iclk
HPM-333

Dreamcast SH4 Program Manual
CCN EXPEVT H'FF00 0024 H'1F00
0024

32 H'0000
0000

H'0000 0020 Held Held Iclk

CCN INTEVT H'FF00 0028 H'1F00
0028

32 Undefined Undefined Held Held Iclk

CCN PTEA H'FF00 0034 H'1F00
0034

32 Undefined Undefined Held Held Iclk

CCN QACR0 H'FF00 0038 H'1F00
0038

32 Undefined Undefined Held Held Iclk

CCN QACR1 H'FF00 003C H'1F00
003C

32 Undefined Undefined Held Held Iclk

UBC BARA H'FF20 0000 H'1F20
0000

32 Undefined Held Held Held Iclk

UBC BAMRA H'FF20 0004 H'1F20
0004

8 Undefined Held Held Held Iclk

UBC BBRA H'FF20 0008 H'1F20
0008

16 H'0000 Held Held Held Iclk

UBC BARB H'FF20 000C H'1F20
000C

32 Undefined Held Held Held Iclk

UBC BAMRB H'FF20 0010 H'1F20
0010

8 Undefined Held Held Held Iclk

UBC BBRB H'FF20 0014 H'1F20
0014

16 H'0000 Held Held Held Iclk

UBC BDRB H'FF20 0018 H'1F20
0018

32 Undefined Held Held Held Iclk

UBC BDMRB H'FF20 001C H'1F20
001C

32 Undefined Held Held Held Iclk

UBC BRCR H'FF20 0020 H'1F20
0020

16 H'0000*2 Held Held Held Iclk

BSC BCR1 H'FF80 0000 H'1F80
0000

32 H'0000
0000*2

Held Held Held Bclk

BSC BCR2 H'FF80 0004 H'1F80
0004

16 H'3FFC*2 Held Held Held Bclk

BSC WCR1 H'FF80 0008 H'1F80
0008

32 H'7777
7777

Held Held Held Bclk

BSC WCR2 H'FF80 000C H'1F80
000C

32 H'FFFE
EFFF

Held Held Held Bclk

Module Register P4 Address
Area 7
Address*1 Size

Power-On
Reset

Manual
Reset Sleep Standby

Synchro-
nization
Clock
HPM-334

A. User’s Manual Supplement
BSC WCR3 H'FF80 0010 H'1F80
0010

32 H'0777
7777

Held Held Held Bclk

BSC MCR H'FF80 0014 H'1F80
0014

32 H'0000
0000

Held Held Held Bclk

BSC PCR H'FF80 0018 H'1F80
0018

16 H'0000 Held Held Held Bclk

BSC RTCSR H'FF80 001C H'1F80
001C

16 H'0000 Held Held Held Bclk

BSC RTCNT H'FF80 0020 H'1F80
0020

16 H'0000 Held Held Held Bclk

BSC RTCOR H'FF80 0024 H'1F80
0024

16 H'0000 Held Held Held Bclk

BSC RFCR H'FF80 0028 H'1F80
0028

16 H'0000 Held Held Held Bclk

BSC PCTRA H'FF80 002C H'1F80
002C

32 H'0000
0000

Held Held Held Bclk

BSC PDTRA H'FF80 0030 H'1F80
0030

16 Undefined Held Held Held Bclk

BSC PCTRB H'FF80 0040 H'1F80
0040

32 H'0000
0000

Held Held Held Bclk

BSC PDTRB H'FF80 0044 H'1F80
0044

16 Undefined Held Held Held Bclk

BSC GPIOIC H'FF80 0048 H'1F80
0048

16 H'0000
0000

Held Held Held Bclk

BSC SDMR2 H'FF90 xxxx H'1F90 xxxx 8 Write-only Bclk

BSC SDMR3 H'FF94 xxxx H'1F94 xxxx 8 Bclk

DMAC SAR0 H'FFA0 0000 H'1FA0
0000

32 Undefined Undefined Held Held Bclk

DMAC DAR0 H'FFA0 0004 H'1FA0
0004

32 Undefined Undefined Held Held Bclk

DMAC DMATCR0 H'FFA0 0008 H'1FA0
0008

32 Undefined Undefined Held Held Bclk

DMAC CHCR0 H'FFA0 000C H'1FA0
000C

32 H'0000
0000

H'0000 0000 Held Held Bclk

DMAC SAR1 H'FFA0 0010 H'1FA0
0010

32 Undefined Undefined Held Held Bclk

Module Register P4 Address
Area 7
Address*1 Size

Power-On
Reset

Manual
Reset Sleep Standby

Synchro-
nization
Clock
HPM-335

Dreamcast SH4 Program Manual
DMAC DAR1 H'FFA0 0014 H'1FA0
0014

32 Undefined Undefined Held Held Bclk

DMAC DMATCR1 H'FFA0 0018 H'1FA0
0018

32 Undefined Undefined Held Held Bclk

DMAC CHCR1 H'FFA0 001C H'1FA0
001C

32 H'0000
0000

H'0000 0000 Held Held Bclk

DMAC SAR2 H'FFA0 0020 H'1FA0
0020

32 Undefined Undefined Held Held Bclk

DMAC DAR2 H'FFA0 0024 H'1FA0
0024

32 Undefined Undefined Held Held Bclk

DMAC DMATCR2 H'FFA0 0028 H'1FA0
0028

32 Undefined Undefined Held Held Bclk

DMAC CHCR2 H'FFA0 002C H'1FA0
002C

32 H'0000
0000

H'0000 0000 Held Held Bclk

DMAC SAR3 H'FFA0 0030 H'1FA0
0030

32 Undefined Undefined Held Held Bclk

DMAC DAR3 H'FFA0 0034 H'1FA0
0034

32 Undefined Undefined Held Held Bclk

DMAC DMATCR3 H'FFA0 0038 H'1FA0
0038

32 Undefined Undefined Held Held Bclk

DMAC CHCR3 H'FFA0 003C H'1FA0
003C

32 H'0000
0000

H'0000 0000 Held Held Bclk

DMAC DMAOR H'FFA0 0040 H'1FA0
0040

32 H'0000
0000

H'0000 0000 Held Held Bclk

CPG FRQCR H'FFC0 0000 H'1FC0
0000

16 *2 Held Held Held Pclk

CPG STBCR H'FFC0 0004 H'1FC0
0004

8 H'00 Held Held Held Pclk

CPG WTCNT H'FFC0 0008 H'1FC0
0008

8/
16*3

H'00 Held Held Held Pclk

CPG WTCSR H'FFC0 000C H'1FC0
000C

8/
16*3

H'00 Held Held Held Pclk

CPG STBCR2 H'FFC0 0010 H'1FC0
0010

8 H'00 Held Held Held Pclk

RTC R64CNT H'FFC8 0000 H'1FC8
0000

8 Held Held Held Held Pclk

Module Register P4 Address
Area 7
Address*1 Size

Power-On
Reset

Manual
Reset Sleep Standby

Synchro-
nization
Clock
HPM-336

A. User’s Manual Supplement
RTC RSECCNT H'FFC8 0004 H'1FC8
0004

8 Held Held Held Held Pclk

RTC RMINCNT H'FFC8 0008 H'1FC8
0008

8 Held Held Held Held Pclk

RTC RHRCNT H'FFC8 000C H'1FC8
000C

8 Held Held Held Held Pclk

RTC RWKCNT H'FFC8 0010 H'1FC8
0010

8 Held Held Held Held Pclk

RTC RDAYCNT H'FFC8 0014 H'1FC8
0014

8 Held Held Held Held Pclk

RTC RMONCN
T

H'FFC8 0018 H'1FC8
0018

8 Held Held Held Held Pclk

RTC RYRCNT H'FFC8 001C H'1FC8
001C

16 Held Held Held Held Pclk

RTC RSECAR H'FFC8 0020 H'1FC8
0020

8 Held*2 Held Held Held Pclk

RTC RMINAR H'FFC8 0024 H'1FC8
0024

8 Held*2 Held Held Held Pclk

RTC RHRAR H'FFC8 0028 H'1FC8
0028

8 Held*2 Held Held Held Pclk

RTC RWKAR H'FFC8 002C H'1FC8
002C

8 Held*2 Held Held Held Pclk

RTC RDAYAR H'FFC8 0030 H'1FC8
0030

8 Held*2 Held Held Held Pclk

RTC RMONAR H'FFC8 0034 H'1FC8
0034

8 Held*2 Held Held Held Pclk

RTC RCR1 H'FFC8 0038 H'1FC8
0038

8 H'00*2 H'00*2 Held Held Pclk

RTC RCR2 H'FFC8 003C H'1FC8
003C

8 H'09*2 H'00*2 Held Held Pclk

INTC ICR H'FFD0 0000 H'1FD0
0000

16 H'0000*2 H'0000*2 Held Held Pclk

INTC IPRA H'FFD0 0004 H'1FD0
0004

16 H'0000 H'0000 Held Held Pclk

INTC IPRB H'FFD0 0008 H'1FD0
0008

16 H'0000 H'0000 Held Held Pclk

Module Register P4 Address
Area 7
Address*1 Size

Power-On
Reset

Manual
Reset Sleep Standby

Synchro-
nization
Clock
HPM-337

Dreamcast SH4 Program Manual
INTC IPRC H'FFD0 000C H'1FD0
000C

16 H'0000 H'0000 Held Held Pclk

TMU TOCR H'FFD8 0000 H'1FD8
0000

8 H'00 H'00 Held Held Pclk

TMU TSTR H'FFD8 0004 H'1FD8
0004

8 H'00 H'00 Held H'00*2 Pclk

TMU TCOR0 H'FFD8 0008 H'1FD8
0008

32 H'FFFF FFFF H'FFFF FFFF Held Held Pclk

TMU TCNT0 H'FFD8 000C H'1FD8
000C

32 H'FFFF FFFF H'FFFF FFFF Held Held Pclk

TMU TCR0 H'FFD8 0010 H'1FD8
0010

16 H'0000 H'0000 Held Held Pclk

TMU TCOR1 H'FFD8 0014 H'1FD8
0014

32 H'FFFF FFFF H'FFFF FFFF Held Held Pclk

TMU TCNT1 H'FFD8 0018 H'1FD8
0018

32 H'FFFF FFFF H'FFFF FFFF Held Held Pclk

TMU TCR1 H'FFD8 001C H'1FD8
001C

16 H'0000 H'0000 Held Held Pclk

TMU TCOR2 H'FFD8 0020 H'1FD8
0020

32 H'FFFF FFFF H'FFFF FFFF Held Held Pclk

TMU TCNT2 H'FFD8 0024 H'1FD8
0024

32 H'FFFF FFFF H'FFFF FFFF Held Held Pclk

TMU TCR2 H'FFD8 0028 H'1FD8
0028

16 H'0000 H'0000 Held Held Pclk

TMU TCPR2 H'FFD8 002C H'1FD8
002C

32 Held Held Held Held Pclk

SCI SCSMR1 H'FFE0 0000 H'1FE0
0000

8 H'00 H'00 Held H'00 Pclk

SCI SCBRR1 H'FFE0 0004 H'1FE0
0004

8 H'FF H'FF Held H'FF Pclk

SCI SCSCR1 H'FFE0 0008 H'1FE0
0008

8 H'00 H'00 Held H'00 Pclk

SCI SCTDR1 H'FFE0 000C H'1FE0
000C

8 H'FF H'FF Held H'FF Pclk

SCI SCSSR1 H'FFE0 0010 H'1FE0
0010

8 H'84 H'84 Held H'84 Pclk

Module Register P4 Address
Area 7
Address*1 Size

Power-On
Reset

Manual
Reset Sleep Standby

Synchro-
nization
Clock
HPM-338

A. User’s Manual Supplement
Note: With control registers, the above addresses in the physical page number Þeld can be accessed by means
of a TLB setting. When these addresses are referenced directly without using the TLB, operations
are limited.
Includes undeÞned bits. See the descriptions of the individual modules.
Use word-size access when writing. Perform the write with the upper byte set to H'5A or H'A5,
respectively. Byte- and longword-size writes cannot be used.
Use byte-size access when reading.

SCI SCRDR1 H'FFE0 0014 H'1FE0
0014

8 H'00 H'00 Held H'00 Pclk

SCI SCSCMR1 H'FFE0 0018 H'1FE0
0018

8 H'00 H'00 Held H'00 Pclk

SCI SCSPTR1 H'FFE0 001C H'1FE0
001C

8 H'00*2 H'00*2 Held H'00*2 Pclk

SCIF SCSMR2 H'FFE8 0000 H'1FE8
0000

16 H'0000 H'0000 Held Held Pclk

SCIF SCBRR2 H'FFE8 0004 H'1FE8
0004

8 H'FF H'FF Held Held Pclk

SCIF SCSCR2 H'FFE8 0008 H'1FE8
0008

16 H'0000 H'0000 Held Held Pclk

SCIF SCFTDR2 H'FFE8 000C H'1FE8
000C

8 Undefined Undefined Held Held Pclk

SCIF SCFSR2 H'FFE8 0010 H'1FE8
0010

16 H'0060 H'0060 Held Held Pclk

SCIF SCFRDR2 H'FFE8 0014 H'1FE8
0014

8 Undefined Undefined Held Held Pclk

SCIF SCFCR2 H'FFE8 0018 H'1FE8
0018

16 H'0000 H'0000 Held Held Pclk

SCIF SCFDR2 H'FFE8 001C H'1FE8
001C

16 H'0000 H'0000 Held Held Pclk

SCIF SCSPTR2 H'FFE8 0020 H'1FE8
0020

16 H'0000*2 H'0000*2 Held Held Pclk

SCIF SCLSR2 H'FFE8 0024 H'1FE8
0024

16 H'0000 H'0000 Held Held Pclk

Hitachi-UDI SDIR H'FFF0 0000 H'1FF0 0000 16 H'FFFF*2 Held Held Held Pclk

Hitachi-UDI SDDR H'FFF0 0008 H'1FF0 0008 32 Held Held Held Held Pclk

Module Register P4 Address
Area 7
Address*1 Size

Power-On
Reset

Manual
Reset Sleep Standby

Synchro-
nization
Clock
HPM-339

Dreamcast SH4 Program Manual
HPM-340

B. Instruction Prefetch
Side Effects
The SH4 is provided with an internal buffer for holding pre-read instructions, and always performs pre-reading.
Therefore, program code must not be located in the last 20-byte area of any memory space. If program code is
located in these areas, the memory area will be exceeded and a bus access for instruction pre-reading may be
initiated. A case in which this is a problem is shown below.

Figure 1: Instruction Prefetch

Figure B.1 presupposes a case in which the instruction (ADD) indicated by the program counter (PC) and the
address H'0400002 instruction prefetch are executed simultaneously. It is also assumed that the program branches
to an area outside area 1 after executing the following JMP instruction and delay slot instruction.

In this case, the program ßow is unpredictable, and a bus access (instruction prefetch) to area 1 may be initiated.

Instruction Prefetch Side Effects

1) It is possible that an external bus access caused by an instruction prefetch may result in misoperation of
an external device, such as a FIFO, connected to the area concerned.

2) If there is no device to reply to an external bus request caused by an instruction prefetch, hangup
will occur.

Remedies

1) These illegal instruction fetches can be avoided by using the MMU.

2) The problem can be avoided by not locating program code in the last 20 bytes of any area.

Address
H'03FFFFF8
H'03FFFFFA
H'03FFFFFC
H'03FFFFFE
H'04000000
H'04000002

Area 0

Area 1

ADD R1,R4
JMP @R2
NOP
NOP

.

.

.

.

.
PC (program counter)

Instruction prefetch address
HPM-341

Dreamcast SH4 Program Manual
HPM-342

B. Instruction Prefetch Side Effects
HPM-343

Dreamcast SH4 Program Manual
HPM-344

	Dreamcast SH4 Program Manual
	Table of Contents
	1. Overview
	1.1 SH7091 Features
	1.1.1 Block Diagram

	2. Programming Model
	2.1 Data Formats
	2.2 Register Configuration
	2.2.1 Privileged Mode and Banks
	2.2.2 General Registers
	2.2.3 Floating-Point Registers
	2.2.4 Control Registers
	2.2.5 System Registers

	2.3 Memory-Mapped Registers
	2.4 Data Format in Registers
	2.5 Data Formats in Memory
	2.6 Processor States
	2.7 Processor Modes

	3. Memory Management Unit (MMU)
	3.1 Overview
	3.1.1 Features
	3.1.2 Role of the MMU
	3.1.3 Register Configuration
	3.1.4 Caution

	3.2 Register Descriptions
	3.3 Memory Space
	3.3.1 Physical Memory Space
	3.3.2 External Memory Space
	3.3.3 Virtual Memory Space
	3.3.4 On-Chip RAM Space
	3.3.5 Address Translation
	3.3.6 Single Virtual Memory Mode and Multiple Virtual Memory Mode
	3.3.7 Address Space Identifier (ASID)

	3.4 TLB Functions
	3.4.1 Unified TLB (UTLB) Configuration
	3.4.2 Instruction TLB (ITLB) Configuration
	3.4.3 Address Translation Method

	3.5 MMU Functions
	3.5.1 MMU Hardware Management
	3.5.2 MMU Software Management
	3.5.3 MMU Instruction (LDTLB)
	3.5.4 Hardware ITLB Miss Handling
	3.5.5 Avoiding Synonym Problems

	3.6 MMU Exceptions
	3.6.1 Instruction TLB Multiple Hit Exception
	3.6.2 Instruction TLB Miss Exception
	3.6.3 Instruction TLB Protection Violation Exception
	3.6.4 Data TLB Multiple Hit Exception
	3.6.5 Data TLB Miss Exception
	3.6.6 Data TLB Protection Violation Exception
	3.6.7 Initial Page Write Exception

	3.7 Memory-Mapped TLB Configuration
	3.7.1 ITLB Address Array
	3.7.2 ITLB Data Array 1
	3.7.3 ITLB Data Array 2
	3.7.4 UTLB Address Array
	3.7.5 UTLB Data Array 1
	3.7.6 UTLB Data Array 2

	4. Caches
	4.1 Overview
	4.1.1 Features
	4.1.2 Register Configuration

	4.2 Register Descriptions
	4.3 Operand Cache (OC)
	4.3.1 Configuration
	4.3.2 Read Operation
	4.3.3 Write Operation
	4.3.4 Write-Back Buffer
	4.3.5 Write-Through Buffer
	4.3.6 RAM Mode
	4.3.7 OC Index Mode
	4.3.8 Coherency between Cache and External Memory
	4.3.9 Prefetch Operation

	4.4 Instruction Cache (IC)
	4.4.1 Configuration
	4.4.2 Read Operation
	4.4.3 IC Index Mode

	4.5 Memory-Mapped Cache Configuration
	4.5.1 IC Address Array
	4.5.2 IC Data Array
	4.5.3 OC Address Array
	4.5.4 OC Data Array

	4.6 Store Queues
	4.6.1 SQ Configuration
	4.6.2 SQ Writes
	4.6.3 Transfer to External Memory
	4.6.4 SQ Protection

	5. Exceptions
	5.1 Overview
	5.1.1 Features
	5.1.2 Register Configuration

	5.2 Register Descriptions
	5.3 Exception Handling Functions
	5.3.1 Exception Handling Flow
	5.3.2 Exception Handling Vector Addresses

	5.4 Exception Types and Priorities
	5.5 Exception Flow
	5.5.1 Exception Flow
	5.5.2 Exception Source Acceptance
	5.5.3 Exception Requests and BL Bit
	5.5.4 Return from Exception Handling

	5.6 Description of Exceptions
	5.6.1 Resets
	Power-On Reset
	Manual Reset
	Hitachi-UDI Reset
	Instruction TLB Multiple-Hit Exception
	Operand TLB Multiple-Hit Exception

	5.6.2 General Exceptions
	Data TLB Miss Exception
	Instruction TLB Miss Exception
	Initial Page Write Exception
	Data TLB Protection Violation Exception
	Instruction TLB Protection Violation Exception
	Data Address Error
	Instruction Address Error
	Unconditional Trap
	General Illegal Instruction Exception
	Slot Illegal Instruction Exception
	General FPU Disable Exception
	Slot FPU Disable Exception
	User Breakpoint Trap
	FPU Exception

	5.6.3 Interrupts
	NMI
	IRL Interrupts
	Peripheral Module Interrupts

	5.6.4 Priority Order with Multiple Exceptions

	5.7 Usage Notes

	6. Floating-Point Unit
	6.1 Overview
	6.2 Data Formats
	6.2.1 Floating-Point Format
	6.2.2 Non-Numbers (NaN)
	6.2.3 Denormalized Numbers

	6.3 Registers
	6.3.1 Floating-Point Registers
	6.3.2 Floating-Point Status/Control Register (FPSCR)
	6.3.3 Floating-Point Communication Register (FPUL)

	6.4 Rounding
	6.5 Floating-Point Exceptions
	6.6 Graphics Support Functions
	6.6.1 Geometric Operation Instructions
	6.6.2 Pair Single-Precision Data Transfer

	7. Instruction Set
	7.1 Execution Environment
	7.2 Addressing Modes
	7.3 Instruction Set

	8. Pipelining
	8.1 Pipelines
	8.2 Parallel-Executability
	8.3 Execution Cycles and Pipeline Stalling

	9. Power-Down Modes
	9.1 Overview
	9.1.1 Types of Power-Down Modes
	9.1.2 Register Configuration

	9.2 Register Descriptions
	9.2.1 Standby Control Register (STBCR)
	9.2.2 Peripheral Module Pin High Impedance Control
	9.2.3 Peripheral Module Pin Pull-Up Control
	9.2.4 Standby Control Register 2 (STBCR2)

	9.3 Sleep Mode
	9.3.1 Transition to Sleep Mode
	9.3.2 Exit from Sleep Mode

	9.4 Deep Sleep Mode
	9.4.1 Transition to Deep Sleep Mode
	9.4.2 Exit from Deep Sleep Mode

	9.5 Standby Mode
	9.5.1 Transition to Standby Mode
	9.5.2 Exit from Standby Mode
	9.5.3 Clock Pause Function

	9.6 Module Standby Function
	9.6.1 Transition to Module Standby Function
	9.6.2 Exit from Module Standby Function

	10. Instruction Descriptions
	11. Realtime Clock (RTC)
	11.1 Overview
	11.1.1 Features
	11.1.2 Block Diagram
	11.1.3 Pin Configuration
	11.1.4 Register Configuration

	11.2 Register Descriptions
	11.2.1 64 Hz Counter (R64CNT)
	11.2.2 Second Counter (RSECCNT)
	11.2.3 Minute Counter (RMINCNT)
	11.2.4 Hour Counter (RHRCNT)
	11.2.5 Day-of-Week Counter (RWKCNT)
	11.2.6 Day Counter (RDAYCNT)
	11.2.7 Month Counter (RMONCNT)
	11.2.8 Year Counter (RYRCNT)
	11.2.9 Second Alarm Register (RSECAR)
	11.2.10 Minute Alarm Register (RMINAR)
	11.2.11 Hour Alarm Register (RHRAR)
	11.2.12 Day-of-Week Alarm Register (RWKAR)
	11.2.13 Day Alarm Register (RDAYAR)
	11.2.14 Month Alarm Register (RMONAR)
	11.2.15 RTC Control Register 1 (RCR1)
	11.2.16 RTC Control Register 2 (RCR2)

	11.3 Operation
	11.3.1 Time Setting Procedures
	11.3.2 Time Reading Procedures
	11.3.3 Alarm Function

	11.4 Interrupts

	12. Timer Unit (TMU)
	12.1 Overview
	12.1.1 Features
	12.1.2 Block Diagram
	12.1.3 Pin Configuration
	12.1.4 Register Configuration

	12.2 Register Descriptions
	12.2.1 Timer Output Control Register (TOCR)
	12.2.2 Timer Start Register (TSTR)
	12.2.3 Timer Constant Registers (TCOR)
	12.2.4 Timer Counters (TCNT)
	12.2.5 Timer Control Registers (TCR)
	12.2.6 Input Capture Register (TCPR2)

	12.3 Operation
	12.3.1 Counter Operation
	TCNT Count Timing:

	12.3.2 Input Capture Function

	12.4 Interrupts
	12.5 Usage Notes
	12.5.1 Register Writes
	12.5.2 TCNT Register Reads
	12.5.3 Resetting the RTC Frequency Divider
	12.5.4 External Clock Frequency

	A. User’s Manual Supplement
	Appendix A Address List

	B. Instruction Prefetch Side�Effects
	Instruction Prefetch Side Effects
	Remedies

